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ABSTRACT

The purpose of this research is to reduce the runtime and improve the accuracy of

deterministic neutron transport simulations. Here, we introduce the coarse-scattering (CS)

method, and prove its ability to reduce the computational time required to model scattering

in multigroup (MG) simulations. We applied the CS method to a slab-geometry criticality

simulation and showed that it was able to reduce the overall runtime of the simulation

by almost a factor of four. Furthermore, we proved that the coarse-scattering method can

conserve particle balance as long as the CS scattering spectrum and CS fission spectrum

are recomputed in the last iteration.

In this study, we also showed that finite-element with discontiguous-support (FEDS)

method and the multigroup (MG) method have certain advantages and disadvantages for

simulating time-of-flight problems. FEDS is inherently able to model cross sections more

accurately, while MG inherently is able to model neutron speeds more accurately. We com-

pared a wide variety of FEDS energy discretizations, and determined their performance for

a single-material and a multi-material time-of-flight simulation. We found that either using

FEDS energy discretizations with large energy penalties or FEDS energy discretizations

with a small number of elements per coarse group performed best for time-of-flight sim-

ulations. The FEDS energy discretizations that used energy penalties were usually more

accurate than the MG simulations for the single-material and the multi-material time-of-

flight problems, for various detector distances and number of time bins. Also, the FEDS

energy discretization that used exactly two FEDS elements in each coarse group was com-

petitive with MG for the single-material time-of-flight problem and usually more accurate

than MG for the multi-material time-of-flight problem.
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1. INTRODUCTION

The purpose of this research is to reduce the runtime and error in deterministic neu-

tron transport simulations. Here, we introduce the coarse-scattering (CS) method to reduce

the computational time required to model scattering in multigroup (MG) codes. Addi-

tionally, we compare various finite-element with discontiguous-support (FEDS) energy

discretizations to determine which discretization works best for various steady-state and

time-dependent quantities of interest.

Currently, there is no computationally-feasible way to model the true continuous-energy

particle flux in neutron transport simulations. Monte Carlo codes do a great job of sampling

from continuous distributions, however, for thermal reactor simulations, Monte Carlo codes

tend to undersample the resolved and unresolved resonance range of the energy domain.

Also, for fast reactor simulations, Monte Carlo codes tend to undersample the thermal and

resolved resonance range of the energy domain. To make matters worse, the resolved res-

onance range can contain tens of thousands of resonances, the width of each resonance is

quite small, and the neutron flux dips by orders of magnitude at each resonance, making it

extraordinarily difficult to sample.

The deterministic MG method also does not properly capture resonance effects because

the width of each energy group is much larger than the width of resonances. A single energy

group can contain hundreds of resonances. In 2014, Till, Adams, and Morel [1] introduced

FEDS, a generalization of MG that allows for discontiguous energy discretizations, and

proved that it can capture resonance and spatial self-shielding effects more accurately than

the standard MG method. Furthermore, Till demonstrated that FEDS performed much

better than MG at estimating various steady-state quantities of interest [2]. However, Till

has shown that FEDS previously performed slightly worse than MG for time-of-flight test
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problems with large detector distances [3]. For time-of-flight simulations, as the detector is

moved further away, the neutron source becomes more accurately approximated as a point

source. Also, as the detector is moved further away, there are larger time gaps between

the slower neutrons and the faster neutrons arriving to the detector. For these reasons,

neutron speed becomes the most important parameter to capture in the simulation. The

problem with FEDS is that a discontiguous energy element can span an even wider range

of energies than a contiguous energy group. This results in poorer estimates of true neutron

speeds, and consequently makes it more challenging to accurately measure time-dependent

quantities of interest. In this dissertation, we compare strategies for mitigating this effect,

and improve the overall performance of FEDS for time-dependent simulations.
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2. NEUTRON TRANSPORT THEORY

Nuclear reactors operate in a delicate state of equilibrium known as criticality. This

state of equilibrium is so fragile that even a miniscule change in an underlying physical

parameter can cause a reactor’s power to decrease or increase exponentially in a matter

of nanoseconds. Thankfully, the presence of delayed neutron precursors and negative-

feedback effects make nuclear reactors easier to control. Also, the physics of nuclear re-

actors is well understood, and thus computer simulations can be used to accurately model

various physical phenomena occurring in nuclear reactors.

The neutron transport equation is used for the highest-fidelity reactor physics simula-

tions. In fact, neutron transport solvers are capable of predicting some quantities of interest,

such as criticality, with error margins less than a fraction of a percent. Only a few assump-

tions are necessary to make the neutron transport equation valid:

1. Neutrons can be represented as singular points in space.

2. Neutron-nuclei interactions are binary.

3. All neutron interactions are instantaneous.

4. Long-range force fields are negligible.

5. The frequency of neutron-neutron interactions is negligible compared to neutron-

nuclei interactions.

6. Free-neutron decay is negligible compared to neutron loss due to streaming and nu-

clear interactions.

Furthermore, in this study we assume:
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7. The total cross section is independent of an incident neutron’s direction Ω̂.

8. Fission is isotropic.

With these assumptions, the following time-dependent neutron transport equation can be

derived:

Lψ = (S + F)ψ +Q , (2.1)

where L is the loss operator, which represents any loss of neutrons,

Lψ =
1

v(E)

∂ψ

∂t
+ Ω̂ · ∇ψ + Σt(~r, E, t)ψ(~r, Ω̂, E, t) , (2.2)

S is the scattering operator, which computes the source of scattered neutrons being emitted

at energy E and direction Ω̂, caused by neutrons with initial energy E ′ and direction Ω̂′,

Sψ =

∫
4π

dΩ′
∞∫

0

dE ′Σs(~r, Ω̂
′ · Ω̂, E ′ → E, t)ψ(~r, Ω̂′, E ′, t) , (2.3)

F is the fission operator, which computes the quantity and energy E of neutrons emitted

from prompt fission reactions assuming that fission is isotropic,

Fψ =
1

4π

∞∫
0

dE ′Σf (~r, E
′ → E, t)φ(~r, E ′, t) , (2.4)

φ(~r, E ′, t) =

∫
4π

dΩ′ ψ(~r, Ω̂′, E ′, t) , (2.5)

and Q is the extraneous source term, which includes other neutron sources in the medium,

such as spontaneous fission sources and delayed neutron precursors,

Q = q(~r, Ω̂, E, t) +
N∑
i=1

χd,i(E)

4π
λiCi(~r, t) . (2.6)
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Note:

~r position of neutrons < x, y, z >

Ω̂ neutron direction-of-flight < θ, ϕ >

E neutron kinetic energy

t time

v(E) neutron speed

ψ(~r, Ω̂, E, t) angular flux

Σt(~r, E, t) total macroscopic cross section

Σs(~r, Ω̂
′ · Ω̂, E ′ → E, t) double-differential scattering cross section

Σf (~r, E
′ → E, t) differential prompt fission cross section

Ci(~r, t) concentration of delayed neutron precursor flavor i

λi decay constant for precursor flavor i

χd,i(E) delayed neutron spectrum for precursor flavor i

q(~r, Ω̂, E, t) other extraneous source terms, such as spontaneous fission.

For thermal reactors, the differential prompt fission cross section Σf (~r, E
′ → E, t) can

be approximated as χ(E)νΣf (~r, E
′, t) because the kinetic energy of thermal neutrons is

not enough to significantly impact the spectrum of neutrons being released from fission

interactions. However, this approximation is not as accurate for fast reactors, where the

5



incident neutron energy does noticeably affect the spectrum of neutrons being released

from fission interactions.

Also, note that the loss, scattering, and fission operators are all linear operators,

αLψ = Lαψ , αSψ = Sαψ , αFψ = Fαψ .

The steady-state neutron transport equation is sometimes referred to as the linear Boltz-

mann equation [4].

Some of the difficulties of solving the transport equation are buried into the energy

dependence of cross sections. The energy dependence of cross sections can be complex

due to nuclear resonances, a quantum mechanical effect which can cause nuclear cross

sections to vary by several orders of magnitude due to a small change in incident neutron

energy. Figure 2.1 shows how nuclear cross sections vary on a logarithmic scale.

Deterministic methods try to solve Eq. (2.1) by discretizing the six-dimensional phase

space ~r, Ω̂, and E, as well as time t.

2.1 The k-Eigenvalue Problem

The transport equation can be expressed as a generalized eigenvalue equation of the

form Ax = λBx [5]. This is done by assuming the neutron flux is steady-state and remov-

ing the extraneous source term. Specifically the k-eigenvalue transport equation is

(H− S)ψ =
1

k
Fψ , (2.7)

where H is the streaming-and-removal operator,

H = Ω̂ · ∇+ Σt(~r, E, t) ,

6
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Figure 2.1: Microscopic total cross section for 235U, acquired from ENDF/B-VII.1.

and k is the criticality eigenvalue. Note that in Eq. (2.7), delayed neutron production is

included in the fission operator F by assuming that neutron precursor concentration has

reached an equilibrium concetration, such that

Fψ =
1

4π

[ ∞∫
0

dE ′Σf (~r, E
′ → E)φ(~r, E ′) +

6∑
i=1

χd,i(E)νd,i

∞∫
0

dE ′Σf (E
′)φ(E ′)

]
.

Also, in Eq. (2.7), the k eigenvalue scales the fission source term so that the number of

neutrons gained and lost are equivalent, ensuring the equation is indeed steady-state. The

largest positive eigenvalue is keff. In nuclear reactors, when keff = 1 the reactor is critical,

meaning that neutron production and destruction are equivalent and the reactor is steady

7



state [6]. When keff > 1 the reactor is supercritical, meaning the neutron production is

greater than neutron destruction, and reactor power is expected to increase after each neu-

tron generation. When keff < 1 the reactor is subcritical, meaning the neutron production is

less than neutron destruction, and reactor power is expected to decrease after each neutron

generation.

2.2 The α-Eigenvalue Problem

The transport equation can be expressed as a time-dependent eigenvalue equation, the

α-eigenvalue form of the transport equation. The α-eigenvalue equation can be derived by

assuming the flux will grow or shrink exponentially over time,

ψ(~r, Ω̂, E, t) = ψ(~r, Ω̂, E, 0)eαt (2.8)

By substituting Eq. (2.8) into Eq. (2.1), removing the source term, and diving by eαt we get

(αV−1 + H)ψ = (S + F)ψ (2.9)

where V−1 is the inverse speed operator,

V−1 =
1

v(E)
,

α is an eigenvalue with units of inverse time, and α0 is the eigenvalue with the largest real

component.

In nuclear reactors, if Re(α0) = 0 the neutron population is not changing and thus the

reactor is critical. If Re(α0) > 0 the neutron population is increasing and thus the reactor

is supercritical. If Re(α0) < 0 the neutron population is decreasing and thus the reactor is

subcritical.
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The α-eigenvalue is more descriptive than k-eigenvalue because it provides the time

rate-of-change of the flux in a reactor.

2.3 Solving the Transport Equation

Throughout the history of nuclear engineering, several methods have been used to solve

the transport equation. Analytical methods have been applied to simplified 1D problems.

These analytical solutions are mostly used for code verification. Although, recently there

has been some success using analytical methods in 3D [7].

In the 1930s, Enrico Fermi used the Monte Carlo method to solve the neutron diffusion

equation. Today, the Monte Carlo method has been largely successful at solving the neutron

transport equation. The Monte Carlo method can sample neutrons at different locations,

energies, and directions from continuous probability distributions, and thus is capable of

solving the continuous-energy form of the transport equation, Eq. (2.1) [8]. The only errors

introduced by the Monte Carlo method are statistical noise, which are partially mitigated

by variance reduction methods [9].

Although the Monte Carlo method is a great tool for many neutron transport simula-

tions, it does have difficulties with certain problem types and quantities of interest. For

example, for k- and α-eigenvalue problems, most Monte Carlo codes begin averaging keff

and α0 even before the eigenvector has converged. In time dependent problems, as smaller

and smaller time steps are used, the statistical noise within a time step becomes quite large.

Also, Monte Carlo methods tend to undersample the resolved resonance range of the en-

ergy domain. With today’s tools, it is computationally infeasible to accurately sample the

tens of thousands of dips in the neutron spectrum caused by resonances, especially for all

locations and angles in a realistic 3D simulation.

Deterministic methods provide other ways to solve the neutron transport equation. An

advantage that deterministic methods have over Monte Carlo methods is that a determinis-
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tic solution provides the angular flux in all spatial cells without statistical noise. However,

deterministic methods have trouble modeling complex geometries, and all phase-space di-

mensions must be discretized.

The energy domain is particularly difficult to discretize because a small change in neu-

tron energy can cause cross sections to vary by several orders of magnitude. The remainder

of this document will present methods for improving runtimes and accuracy for determin-

istic simulations, with an emphasis on energy- and time-dependent neutron transport.
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3. THEORY FOR THE MULTIGROUP METHOD

In this section, we will provide a brief overview of the multigroup (MG) method and

how is it applied to time-dependent, k-eigenvalue, and α-eigenvalue problems, in order to

build a foundation for theory on the coarse-scattering (CS) method and finite-element with

discontiguous-support (FEDS) method.

The MG method groups together neutrons with similar values in energy. Specifically,

this is achieved by partitioning the energy domain into groups such that each group consists

of an energy interval, and collectively all groups define the entire energy domain [10]. To

be explicit, group g is defined as

{E|E ∈ [Eg, Eg−1)} .

Note, energy groups are typically indexed from highest to lowest enery:

∞ > E1 > E2 > · · · > EG−1 > EG > 0 .

Prior to conducting a radiation transport simulation, the MG method requires gener-

ating problem-specific MG cross sections. These problem-specific MG cross sections are

calculated in order to preserve reaction rates. For group g,

Σg(~r, Ω̂)ψg(~r, Ω̂) =

Eg−1∫
Eg

dE Σ(~r, E)ψ(~r, Ω̂, E)

where

ψg(~r, Ω̂) =

Eg−1∫
Eg

dE ψ(~r, Ω̂, E) .
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Historically, the spatial domain was partitioned into regions, and cross sections were

assumed to be constant and independent of angle within each region. Reaction rates are

preserved if

Σi,gφi,g =

Eg−1∫
Eg

dE Σi(E)φi(E) (3.1)

where φi(E) is the weighting flux for region i and is only estimated by solving the slowing

down equation or another simplified transport problem, and φi,g is the volume-averaged

scalar flux for region i. Equation (3.1) can be easily rearranged to

Σi,g =
1

φi,g

Eg−1∫
Eg

dE Σi(E)φi(E) .

3.1 Derivation of the Multigroup Transport Equation

The MG transport equation can be derived by integrating the transport equation, Eq. (2.1),

over all energies, resulting in G coupled equations (one for each group),



∞∫
E1

dE
[
Lψ = (S + F)ψ +Q

]
E1∫
E2

dE
[
Lψ = (S + F)ψ +Q

]
...
EG−1∫
EG

dE
[
Lψ = (S + F)ψ +Q

]
.

These equations are coupled because neutrons can lose or gain energy from nuclear inter-

actions. Thus, a neutron lost from one energy group can become a source in another energy
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group. The terms in the MG transport equation for group g can be expanded as

Eg−1∫
Eg

dE Lψ =
1

vg

∂ψg
∂t

+ Ω̂ · ∇ψg + Σt,g(~r, t)ψg(~r, Ω̂, t)

Eg−1∫
Eg

dE Sψ =
G∑

g′=1

∫
4π

dΩ′Σs,g′→g(~r, Ω̂
′ · Ω̂, t)ψg′(~r, Ω̂′, t)

Eg−1∫
Eg

dE Fψ =
1

4π

G∑
g′=1

Σf,g′→g(~r, t)φg′(~r, t)

Eg−1∫
Eg

dE Q = qg(~r, E, t) +
N∑
i=1

χd,i,g
4π

λiCi(~r, t)

Thus, the expanded form of the MG transport equation is

1

vg

∂ψg
∂t

+ Ω̂ · ∇ψg + Σt,g(~r, t)ψg(~r, Ω̂, t) =

G∑
g′=1

∫
4π

dΩ′Σs,g′→g(~r, Ω̂
′ · Ω̂, t)ψg′(~r, Ω̂′, t) +

1

4π

G∑
g′=1

Σf,g′→g(~r, t)φg′(~r, t)+

qg(~r, E, t) +
N∑
i=1

χd,i,g
4π

λiCi(~r, t) . (3.2)

Furthermore, the MG transport equation is equivalent to the continuous-energy transport

equation only if:

ψg(~r, Ω̂, t) =

Eg−1∫
Eg

dE ψ(~r, Ω̂, E, t)

1

vg

∂ψg(~r, Ω̂, t)

∂t
=

Eg−1∫
Eg

dE
1

v(E)

∂ψ(~r, Ω̂, E, t)

∂t
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Σt,g(~r, t)ψg(~r, Ω̂, t) =

Eg−1∫
Eg

dE Σt(~r, E, t)ψ(~r, Ω̂, E, t)

Σs,g′→g(~r, Ω̂
′ · Ω̂, t)ψg′(~r, Ω̂′, t) =

Eg−1∫
Eg

dE

∫
4π

dΩ′

Eg′−1∫
Eg′

dE ′ Σs(~r, Ω̂
′ · Ω̂, E ′ → E, t)ψ(~r, Ω̂′, E ′, t)

Σf,g′→g(~r, t)φg′(~r, t) =

Eg−1∫
Eg

dE

Eg′−1∫
Eg′

dE ′ Σf (~r, E
′ → E, t)φ(~r, E ′, t)

where

ψg(~r, Ω̂, t) angular flux for group g

vg speed for group g

Σt,g(~r, t) total macroscopic cross section for group g

Σs,g′→g(~r, Ω̂
′ · Ω̂, t) macroscopic scattering cross section from group g′ to group g

Σf,g′→g(~r, t) prompt fission cross section from group g′ to group g

Ci(~r, t) concentration of delayed neutron precursor flavor i

λi decay constant for precursor flavor i

χd,i,g delayed neutron source into group g for precursor flavor i

qg(~r, Ω̂, t) extraneous source term for group g
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However, since ψ(~r, Ω̂, E, t) is not known prior to solving the Eq. (3.2) the terms vg,

Σt,g, Σs,g′→g, and Σf,g′→g must be approximated beforehand.

3.2 Spherical Harmonics

Spherical harmonics Y m
` (Ω̂) are eigenfunctions of the scattering operator [11],

SY m
` (Ω̂) = Σs,`Y

m
` (Ω̂) ,

where Σs,` is the eigenvalue as well as the moments for scattering:

Σs,` =

∫ 1

−1

dµ0 Σs(µ0)P`(µ0) ,

where µ0 = Ω̂′ · Ω̂ and P` are Legendre polynomials,

P`(x) =
1

2` `!

d`

dx`
[
(x2 − 1)`

]
.

The spherical-harmonic function is defined as

Y m
` (Ω̂) =


(−1)m

√
2
√

2`+1
4π

(`−|m|)!
(`+|m|)!P

|m|
` (µ) sin(|m|ϕ) if m < 0√

2`+1
4π
Pm
` (µ) if m = 0

(−1)m
√

2
√

2`+1
4π

(`−m)!
(`+m)!

Pm
` (µ) cos(mϕ) if m > 0 ,

where µ is cosine of the polar angle, ϕ is the azimuthal angle, and Pm
` are associated

Legendre polynomials,

Pm
` (x) = (−1)m(1− x2)m/2

dm

dxm
[P`(x)] .
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Now that we have defined spherical harmonics, we introduce a “moment” operator Mm
` :

Mm
` f(Ω̂) =

∫
4π

dΩY m
` (Ω̂)f(Ω̂) .

Furthermore, we will define the operator ML as the collection of all spherical-harmonic

moments from the 0th moment up to the Lth moments, and the pseudo-inverse operator

M−1
L as

f(Ω̂) ≈M−1
L MLf(Ω̂) =

L∑
`=0

2`+ 1

4π

+∑̀
m=−`

Y m
` (Ω̂)

[
Mm

` f(Ω̂)
]
.

If we letL→∞, then the spherical-harmonic expansion is exact. Otherwise, M−1
L MLf(Ω̂)

is just a Lth-order approximation of f(Ω̂). For fission, since it is typically assumed to be

isotropic, only the 0th moment is taken and is defined as

M0f(Ω̂) =

∫
4π

dΩ f(Ω̂) ,

and the pseudo-inverse 0th term as

M−1
0 M0f(Ω̂) =

1

4π

[
M0f(Ω̂)

]
.

The first step to computing the spherical-harmonic-expanded source terms for the MG

transport equation is to take moments of the angular flux. The `,m moment for group

g is

φm`,g = Mm
` ψg(Ω̂) .

The spherical-harmonic moments of the angular flux for all G groups is

ΦL,G = MLΨG .
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3.3 Matrix Form of the Multigroup Transport Equation

The matrix form of the MG transport equation is defined as,

LGΨG = M−1
L SL,GΦL,G + M−1

0 FGΦ0,G +QG , (3.3)

where the MG loss operator for group g is defined as

LgΨg =
1

vg

∂ψg
∂t

+ Ω̂ · ∇ψg + Σt,gψg ,

the MG scattering operator for group g is

M−1
L SL,gΦL,g =

L∑
`=0

2`+ 1

4π

+∑̀
m=−`

Y m
` (Ω̂)

G∑
g′=1

Σs,`,g′→gφ
m
`,g ,

the fission operator for group g is

M−1
0 FgΦ0,g =

1

4π

G∑
g′=1

Σf,g′→gφ0,g ,

and the extraneous source term for group g is

Qg = qg(~r, t) +
N∑
i=1

χd,i,g
4π

λiCi(~r, t) .

It should be noted that the MG loss operator LG is difficult to invert, so Eq. (3.3) is

typically solved by lagging the production terms (the right-hand side of the equation). Also,

when a large number of groups is used, the size of the scattering transfer matrix becomes

massive. However, the scattering transfer matrix is also sparse and well-suited for reduced-

order modeling approaches.
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4. EIGENVALUE ALGORITHMS FOR MULTIGROUP EQUATIONS

4.1 Solving the k-Eigenvalue Equation

The k-eigenvalue transport equation, Eq. (2.7), can be written in MG form as

HGΨG = M−1
L SL,GΦL,G +

1

k
M−1

0 FGΦ0,G .

The k-eigenvalue equation can be solved iteratively using the Power method, also known

as von Mises iterations [12]. Namely, the steps for solving (4.1) are:

Step 1: Solve the MG transport equation for Ψ
(i+1)
G by lagging the right-hand-side:

HGΨ
(i+1)
G = M−1

L SL,GΦ
(i)
L,G +

1

k
(i)
eff

M−1
0 FGΦ

(i)
0,G ,

where the superscript (i) is used to indicate iteration number.

Step 2: Compute flux moments:

Φ
(i+1)
L,G = MLΨ

(i+1)
G .

Step 3: Compute the eigenvalue:

k
(i+1)
eff = k

(i)
eff

||FGΦ
(i+1)
0,G ||

||FGΦ
(i)
0,G||

,

where || · || is a norm over space and energy.

Step 4: Normalize flux moments before starting the next iteration:

Φ
(i+1)
L,G =

Φ
(i+1)
L,G

||Φ(i+1)
0,G ||

.
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Repeat Steps 1 through 4 for each iteration until the convergence criteria is met.

4.2 Solving the α-Eigenvalue equation

The α-eigenvalue transport equation, Eq. (2.9), can be written in MG form as

(αV−1
G + HG)ΨG = M−1

L SL,GΦL,G + M−1
0 FGΦ0,G .

The α-eigenvalue equation can be solved iteratively using the Rayleigh Quotient method

[13]. Namely, the steps for solving (4.2) are:

Step 1: Solve the MG transport equation for Ψ
(i+1)
G by lagging the right-hand-side:


(α(i)V−1

G + HG)Ψ
(i+1)
G = M−1

L SL,GΦ
(i)
L,G + M−1

0 FGΦ
(i)
0,G for α

(i)
0 > 0

HGΨ
(i+1)
G = −α(i)V−1

G Ψ
(i)
G + M−1

L SL,GΦ
(i)
L,G + M−1

0 FGΦ
(i)
0,G for α

(i)
0 < 0

Step 2: Update the eigenvalue via the Rayleigh Quotient method:


α(i+1) = α(i) +

〈Ψ(i+1)
G , (M−1

L SL,G∆Φ
(i+1)
L,G +M−1

0 FG∆Φ
(i+1)
0,G )〉

〈Ψ(i+1)
G ,V−1

G Ψ
(i+1)
G 〉

for α
(i)
0 > 0

α(i+1) =
〈Ψ(i+1)

G , (M−1
L SL,G∆Φ

(i+1)
L,G +M−1

0 FG∆Φ
(i+1)
0,G −α(i)V−1

G Ψ
(i)
G )〉

〈Ψ(i+1)
G ,V−1

G Ψ
(i+1)
G 〉

for α
(i)
0 < 0

where

∆Φ
(i+1)
L,G = Φ

(i+1)
L,G − Φ

(i)
L,G

∆Φ
(i+1)
0,G = Φ

(i+1)
0,G − Φ

(i)
0,G ,

and 〈 · , · 〉 is an inner product over space, angle and energy. Repeat Steps 1 and 2 for each

iteration, until the convergence criteria is met.
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5. THEORY FOR THE COARSE-SCATTERING METHOD

In this dissertation, we introduce the coarse-scattering method (CS), an approach that

reduces simulation runtimes required to model scattering in multigroup (MG) codes. The

purpose of the CS method is to reduce the size of group-to-group transfer matrices by

lumping multiple energy groups, g, together into coarse energy elements, e, such that

g ⊂ e .

This enables us to make the following substitutions to the scattering and fission operators

in the MG transport equation:

G∑
g′=1

Σs,`,g′→gφ
m
`,g′ → Sm`,e→g

E∑
e′=1

Σs,`,e′→eφ
m
`,e′ , (5.1)

G∑
g′=1

Σf,g′→gφ0,g′ → Fe→g

E∑
e′=1

Σf,e′→eφ0,e′ , (5.2)

where

Sm`,e→g =

∑G
g′=1 Σs,`,g′→gφ

m
`,g′∑E

e′=1 Σs,`,e′→eφm`,e′
(5.3)

Fe→g =

∑G
g′=1 Σf,g′→gφ0,g′∑E
e′=1 Σf,e′→eφ0,e′

(5.4)

φm`,e =
∑
g∈e

φm`,g . (5.5)

and
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Sm`,e→g CS scattering spectrum

Fe→g CS fission spectrum

Σs,`,g′→g group-to-group scattering matrix for the `th-Legendre moment

Σf,`,g′→g group-to-group fission matrix

Σs,`,e′→e coarse-element-to-coarse-element scattering matrix

Σf,e′→e coarse-element-to-coarse-element fission matrix

φm`,g′ `th flux moment for energy group g′

φm`,e′ `th flux moment for energy coarse-element e′ .

The coarse-scattering and coarse-fission transfer matrices can be computed prior to the

simulation by using an estimate of the group flux ϕg as a weighting spectrum

Σs,`,e′→e =
1

ϕe′

∑
g∈e

∑
g′∈e′

Σs,`,g′→gϕg′ ,

Σf,e′→e =
1

ϕe′

∑
g∈e

∑
g′∈e′

Σf,g′→gϕg′ .

If a flat flux is simply used as the weighting spectrum, this simplifies to

Σs,`,e′→e =
∑
g∈e

∑
g′∈e′

Σs,`,g′→g ,

Σf,e′→e =
∑
g∈e

∑
g′∈e′

Σf,g′→g .
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5.1 Matrix Form of the Coarse-Scattering Method

A fine-grid-to-coarse-grid mapping matrix CG→E , of size G × E consisting of zeroes

and ones, can be used to map fluxes onto a coarse grid:

Φm
`,E = CG→EΦm

`,G ,

Similarly, the scattering and fission matrices can easily be mapped onto the coarse grid too

by assuming a flat weighting spectrum, producing matrices of size E × E:

S`,E = CG→ES`,GC
T
G→E ,

FE = CG→EFGC
T
G→E ,

where T represents the transpose of the matrix. Also, the CS scattering and fission spectra,

previously defined in Eq. (5.3) and Eq. (5.4), can be written as matrices of size G× E:

Sm`,E→G = Sm`,GΦm
`,G ⊗ (1� Sm`,EΦm

`,E)T � CT
G→E

FE→G = FGΦ0,G ⊗ (1� FEΦ0,E)T � CT
G→E

where ⊗ is the Kronecker product operator, 1 is a vector of ones, � is the Hadamard

division operator, and � is the Hadamard product operator.

Thereby, the matrix form of the CS transport equation is:

LGΨG = M−1
L SL,E→GSL,EΦL,E +

1

keff
M−1

0 FE→GFEΦ0,E
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where, for a single group g:

LgΨg =
1

vg

∂ψg
∂t

+ Ω̂ · ∇ψg + Σt,gψg

M−1
L SL,e→gSL,eΦL,e =

L∑
`=0

+∑̀
m=−`

2`+ 1

4π
Y m
` (Ω̂)Sm`,e→g

E∑
e′=1

Σs,`,e′→eφ
m
`,e′

M−1
0 Fe→gFeΦ0,e =

1

4π
Fe→g

E∑
e′=1

Σf,e′→eφ0,e′

φm`,e =
∑
g∈e

∫
4π

dΩψgY
m
` (Ω̂) .

Figure 5.1 shows an example of a MG transfer matrix that was collapsed into a CS

transfer matrix.

Figure 5.1: Example of a MG transfer matrix that was condensed into a CS transfer matrix.
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5.2 Eigenvalue Algorithms using the Coarse-Scattering Method

In order for CS to converge to the same solution as MG, it is necessary to recompute

the S`,e→g and Fe→g during source iterations. However, note that S`,e→g and Fe→g may not

vary significantly from one iteration to the next, therefore it’s not necessary to recompute

both S`,e→g and Fe→g every single iteration.

The asymptotic computational cost of solving the MG transport equation is order G2

per iteration. However, for CS, the asymptotic computational cost is only order G2 only

in iterations when S`,e→g and Fe→g are recomputed. Thus, if the CS method is applied

appropriately it can reduce the overall runtime of a simulation.

5.3 Solving the Coarse-Scattering k-Eigenvalue Equation

The k-eigenvalue CS transport equation is

HGΨG = M−1
L SL,E→GSL,EΦL,E +

1

keff
M−1

0 FE→GFEΦ0,E . (5.6)

The k-eigenvalue equation can be solved iteratively using the Power method. Namely, the

steps for solving Eq. (5.6) are:

Step 1: Solve the MG transport equation for Ψ
(i+1)
G by lagging the right-hand-side:

HGΨ
(i+1)
G = M−1

L S
(i)
L,E→GSL,EΦ

(i)
L,E +

1

k
(i)
eff

M−1
0 F

(i)
E→GFEΦ

(i)
0,E .

Step 2: Compute the fine and coarse flux moments:

Φ
(i+1)
L,G = MLΨ

(i+1)
G , Φ

(i+1)
L,E = CG→EΦ

(i+1)
L,G .
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Step 3: Update CS scattering and fission spectra:

Sm`,E→G
(i+1) =


Sm`,GΦ

m,(i+1)
`,G ⊗ (1� Sm`,EΦ

m,(i+1)
`,E )T � CT

G→E if (i+ 1) is divisible by rS

Sm`,E→G
(i) otherwise

F
(i+1)
E→G =


FGΦ

(i+1)
0,G ⊗ (1� FEΦ

(i+1)
0,E )T � CT

G→E if (i+ 1) is divisible by rF

F
(i)
E→G otherwise

where rS and rF are integers that control how frequently the CS scattering and fission

spectra are recomputed.

Step 4: Compute the eigenvalue:

k
(i+1)
eff = k

(i)
eff

||FEΦ
(i+1)
0,E ||

||FEΦ
(i)
0,E||

.

where || · || is a norm over space and energy.

Step 5: Normalize the coarse flux moments before starting the next iteration:

Φ
(i+1)
L,E =

Φ
(i+1)
L,E

||Φ(i+1)
0,E ||

.

Repeat Steps 1 through 5 for each iteration until the convergence criteria is met.

5.4 Solving the Coarse-Scattering α-Eigenvalue Equation

The α-eigenvalue CS transport equation is

(αV−1
G + HG)ΨG = M−1

L SL,E→GSL,EΦL,E + M−1
0 FE→GFEΦ0,E . (5.7)

The α-eigenvalue equation can be solved iteratively using the Rayleigh Quotient method

[13]. Namely, the steps for solving Eq. (5.7) are:
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Step 1: Solve the MG transport equation for Ψ
(i+1)
G by lagging the right-hand-side:


(α

(i)
0 V−1

G + HG)Ψ
(i+1)
G = M−1

L SL,E→GSL,EΦ
(i)
L,E + M−1

0 FE→GFEΦ
(i)
0,E for α(i)

0 > 0

HGΨ
(i+1)
G = −α(i)

0 V−1
G Ψ

(i)
G + M−1

L SL,E→GSL,EΦ
(i)
L,E + M−1

0 FE→GFEΦ
(i)
0,E for α(i)

0 < 0

Step 2: Compute the fine and coarse flux moments:

Φ
(i+1)
L,G = MLΨ

(i+1)
G , Φ

(i+1)
L,E = CG→EΦ

(i+1)
L,G .

Step 3: Update CS scattering and fission spectra:

Sm`,E→G
(i+1) =


Sm`,GΦ

m,(i+1)
`,G ⊗ (1� Sm`,EΦ

m,(i+1)
`,E )T � CT

G→E if (i+ 1) is divisible by rS

Sm`,E→G
(i) otherwise

F
(i+1)
E→G =


FGΦ

(i+1)
0,G ⊗ (1� FEΦ

(i+1)
0,E )T � CT

G→E if (i+ 1) is divisible by rF

F
(i)
E→G otherwise

where rS and rF are integers that control how frequently the CS scattering and fission

spectra are recomputed, and 〈 · , · 〉 is an inner product over space, angle and energy.

Step 4: Update the eigenvalue via the Rayleigh Quotient method:


α

(i+1)
0 = α

(i)
0 +

〈Ψ(i+1)
G , (M−1

L S
(i+1)
L,E→GSL,E∆Φ

(i+1)
L,E +M−1

0 F
(i+1)
E→GFE∆Φ

(i+1)
0,E )〉

〈Ψ(i+1)
G ,V−1

G Ψ
(i+1)
G 〉

for α
(i)
0 > 0

α
(i+1)
0 =

〈Ψ(i+1)
G , (M−1

L S
(i+1)
L,E→GSL,E∆Φ

(i+1)
L,E +M−1

0 F
(i+1)
E→GFE∆Φ

(i+1)
0,E −α(i)V−1

G Ψ
(i)
G )〉

〈Ψ(i+1)
G ,V−1

G Ψ
(i+1)
G 〉

for α
(i)
0 < 0

where

∆Φ
(i+1)
L,E = Φ

(i+1)
L,E − Φ

(i)
L,E

∆Φ
(i+1)
0,E = Φ

(i+1)
0,E − Φ

(i)
0,E .
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5.5 Particle Balance for the Coarse-Scattering Method

We start by defining the residual ρ as the following norm,

ρ = ||(M−1
L SL,G + M−1

0 FG)ΦL,G − (M−1
L SL,E→GSL,E + M−1

0 FE→GFE)ΦL,E|| . (5.8)

Particle balance is maintained if the residual in the last iteration ρ(i+1) is less than machine

epsilon. Thus, in order to ensure particle balance, we simply have to recompute SL,E→G

and FE→G in the last iteration, because then Eq. (5.8) will equal zero.
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6. COARSE-SCATTERING TEST PROBLEM: A SLAB OF HIGHLY-ENRICHED

URANIUM

In this section, we used a bare slab of highly-enriched uranium (HEU) as a test problem

to study the improvement in simulation runtime that coarse-scattering (CS) method can

provide. Since HEU is a high-Z material, it will barely moderate any neutrons down to

thermal energies. Thus, most neutrons will have high kinetic energies including those

causing fissions, hence the kinetic energy of neutrons causing fission is not negligible. For

this problem, a fission matrix is necessary to accurately model fission, because the spectrum

of neutron energies emitted from fission reactions will depend on the energy of the incident

neutrons. This allows us to apply CS method to fission as well, and study it’s impact on

simulation runtime.

When the CS method was used, the simulations required more Power iterations to con-

verge, however they required significantly less computational time per iteration, and thus

less computational time over all.

6.1 Description of the Coarse-Scattering Test Problem

This test problem consists of an 8 cm slab of highly-enriched uranium (HEU) with a

density of 18.74 g/cm3 at room temperature (293.6 K), with vacuums on the left and right

boundaries. The composition of the HEU is shown in Table 6.1.

Table 6.1: Isotopic composition of HEU.

Isotope Number Density ( nuclei
barn-cm )

234U 4.9184 × 10−4

235U 4.4994 × 10−2

238U 2.4984 × 10−3
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The cross sections for HEU were extracted from the United States’ Evaluated Nuclear

Data Library B-VII.1 (ENDF/B-VII.1) [14], and post-processed with the NJOY Nuclear

Data Processing System, Version 2016 (NJOY2016) [15] in order to create MG cross sec-

tions. The MG discretization consisted of logarithmically-spaced energy groups.

The quantity of interest for this problem was criticality, keff, for the HEU slab. The

discrete-ordinates (SN ) method was used for the k-eigenvalue calculations. The 8 cm slab

was discretized into 20 equally spaced spatial cells with diamond-difference discretization.

The angular domain was discretized into 32 polar angles, and Gauss-Legendre quadrature

was used for scattering. For a simulation with isotropic scattering and 1000 fine groups,

keff was computed to be 1.19072 ± 10−5. For a simulation with anisotropic scattering

modeled using a third-order Legendre polynomial expansion and 1000 fine groups, keff was

computed to be 1.11910± 10−5.

Several runtime comparisons were conducted with this problem. The purpose was to

determine when CS provides the greatest reduction in runtime compared to standard MG.
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6.2 Runtime Comparison 1: Varying the Number of Coarse Elements

In this study, we ran several CS k-eigenvalue calculations, using the Power iterations,

until the error was less than 10−5 for criticality, keff, and flux, φ. For each simulation,

we used 1000 fine groups, but varied the number of coarse elements from 1 to 250 coarse

elements to determine which number of coarse elements provides the greatest reduction in

simulation runtime. For these simulations, we assumed isotropic scattering, we recomputed

S0,e→g every 3 iterations, and we recomputed Fe→g every 12 iterations. Figure 6.1 shows

simulation runtimes for the simulations with varying numbers of coarse elements. All the

simulations converge to the same result (within the convergence tolerances for keff and φ).

The greatest reduction in runtime was achieved when 50 coarse elements were used.

1 10 100
Number of Coarse Groups

500

600

700

800

CP
U 

tim
e 

(s
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ds

)

Figure 6.1: Comparison of CPU times for simulations 1000 fine groups, but with different
number of coarse elements in each simulation.

Figure 6.2 shows the error in the flux as a function of iteration (left) and as a function

of runtime (right). Using the CS method may require more iterations to converge, however
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each iteration requires far less computational time, which results in a shorter total runtime.
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Figure 6.2: The L2 error norm of the neutron flux as a function of iteration (left) and as a
function of runtime (right). Note, each CS iteration requires less CPU time.

6.3 Runtime Comparison 2: Varying the Frequency of CS Fission Spectrum Recom-

putations

In this study, we ran several CS k-eigenvalue calculations, using the Power iterations,

until the error was less than 10−5 for criticality, keff, and flux, φ. For each simulation, we

used 1000 fine groups and 50 coarse elements. We also assumed isotropic scattering and

recomputed S0,e→g every 3 iterations. This time we varied the frequency of Fe→g recompu-

tations, from recomputing Fe→g every 3 iterations to recomputing Fe→g every 60 iterations.

Figure 6.3 shows simulation runtimes for the CS simulations with different frequencies of

Fe→g recomputations. We found that recomputing Fe→g every 36 iterations provided the

greatest reduction in runtime compared to standard MG. This result was expected because

the fission spectrum should not change much from one iteration to the next.
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Figure 6.3: Comparison of simulation runtimes with different frequencies of Fe→g recom-
putations.

6.4 Runtime Comparison 3: Varying the Frequency of CS Scattering Spectrum Re-

computations

In this study, we ran several CS k-eigenvalue calculations, using the Power iterations,

until the error was less than 10−5 for criticality, keff, and flux, φ. For each simulation, we

used 1000 fine groups and 50 coarse elements. We recomputed Fe→g every 18 iterations.

However, this time we varied the frequency of S0,e→g recomputations, from recomputing

S0,e→g every single iteration to recomputing S0,e→g every 7 iterations. Figure 6.4 shows

simulation runtimes for the CS simulations with different frequencies of S0,e→g recomputa-

tions. We found that recomputing S0,e→g every 3 iterations provided the greatest reduction

in runtime compared to standard MG.
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Figure 6.4: Comparison of simulation runtimes with different frequencies of S0,e→g recom-
putations.

6.5 Runtime Comparison 4: Varying the Number of Fine Groups

In this study, we ran several MG simulations and CS simulations until the error for

keff and φ was less than 10−5 in each simulation. This time we varied the number of

fine groups from 100 fine groups up to 1000 fine groups, and compared the difference in

simulation runtimes between the standard MG simulations and the CS simulations. For

the each of the CS simulations, we used 50 coarse elements. We also assumed isotropic

scattering, recomputed S0,e→g every 3 iterations, and recomputed Fe→g every 18 iterations.

Figure 6.5 compares the simulation runtimes for CS and MG, for various numbers of fine

groups. Notice that as more fine groups are used there is a greater reduction in simulation

runtime between standard MG method and the CS method. Figure 6.6 shows the reduction

in runtime compared to MG simulation, specifically, it plots the MG runtime divided by

the CS runtime for an equivalent simulation. For 1000 fine groups, the CS simulation ran
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3.9 times faster than the MG simulation.
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Figure 6.5: Comparison of simulation runtimes, for simulations with isotropic scattering,
with different numbers of fine groups.

We also conducted a similar study, but this time using anisotropic scattering modeled

using a third-order Legendre polynomial expansion (P3-scattering). We still used 50 coarse

elements, recomputed S0,e→g every 3 iterations, and recomputed Fe→g every 18 iterations.

However, we recomputed S1,e→g every 9 iterations, and recomputed S2,e→g and S3,e→g

every 18 iterations. Figure 6.7 shows the simulation runtimes for CS and MG for various

numbers of fine groups. For 1000 fine groups, the CS simulation ran 3.2 times faster than

the MG simulation.
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Figure 6.6: Reduction in runtime, for simulations with isotropic scattering, with different
numbers of fine groups.
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Figure 6.7: Comparison of simulation runtimes, for simulations with P3-scattering, with
different numbers of fine groups.
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7. THEORY FOR THE FINITE-ELEMENT WITH DISCONTIGUOUS-SUPPORT

METHOD

The finite-element with discontiguous-support (FEDS) multigroup method is a Petrov-

Galerkin finite element method [16] which allows the energy domain to be partitioned into

discontiguous elements [3]. For example, with FEDS, particles with energies 1 eV and 3

eV may belong to one energy element, whereas particles with energies 2 eV and 4 eV may

belong to a different energy element. Figure 7.1 compares a contiguous partitioning of the

energy domain using the standard multigroup (MG) method to discontiguous partitioning

of the energy domain using FEDS.

(a) MG (b) FEDS

Figure 7.1: These plots show the difference in energy partitioning between MG and FEDS.
In the left plot, each color represents a different MG energy group. In the right plot, each
color represents a different FEDS energy element.
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The FEDS method evolved from other nonstandard energy discretization methods. In

1935, astrophysicists first developed the opacity density function (ODF) method as a way

to partition the energy domain based on opacities [17]. Since then, many have made sig-

nificant contributions to the evolution of methods similar to ODF [18, 19], such as the

multiband method [20, 21, 22, 23, 24], the subgroup method [25, 26, 27, 28], and the prob-

ability tables method [29, 30, 31, 32, 33]. Many of these energy discretization methods use

bands, a cross section range, in order to partition elements; energies that have total cross

sections that fall within the upper and lower limits of a band belong to that band.

The main distinction between FEDS and its predecessors is that FEDS energy dis-

cretization is constructed based on minimizing the variation of the flux within each FEDS

energy element. Also, FEDS elements are not strictly confined to group or band boundaries.

Notice how in Figure 7.1 there is little variation in flux within each FEDS element and the

elements are not bounded by groups or bands, whereas in MG, there is a large variation

in flux within each group, and each MG group is restricted to a contiguous energy inter-

val. FEDS has demonstrated greater accuracy than MG for steady-state radiation-transport

simulations with one or more resonant materials [3, 34, 35, 36, 37].

7.1 Derivation of the Finite-Element with Discontiguous-Support Multigroup Trans-

port Equation

The angular flux can be expressed as a linear combination of discontiguous basis func-

tions [3],

ϕ(~r, Ω̂, E, t) =
∑
e

ψe(~r, Ω̂, t)be(~r, E) , (7.1)

These basis functions, be(~r, E), are defined as,

be(~r, E) = we(E)Ce(~r)f(~r, E)

37



where f(~r, E) is an approximation of the neutron spectrum at location ~r, and the weight

functions are,

we(E) =

 1 E ∈ Ee

0 otherwise
.

where Ee includes all the energies that belong to element e [3]. Finally, we normalize the

basis functions by computing Ce(~r) as

Ce(~r) =

[∫
Ee

f(~r, E) dE

]−1

.

This results in basis functions and weight functions which are orthonormal,

∞∫
0

dE wn(E)be(E) = δe,n

∞∫
0

dE Ce(~r)f(~r, E) .

∞∫
0

dE wn(E)be(E) = δe,n ,

where δe,n is the Kronecker delta function [38].

Now that we have defined the basis functions and weights for FEDS, we substitute the

Petrov-Galerkin finite element approximation into the neutron transport equation, Eq. (2.1),

Lϕ = (S + F)ϕ+Q (7.2)

where ϕ is an approximation of the angular flux comprised of linear combination of dis-

contiguous basis functions, defined in Eq. (7.1), and L, S, F, andQ are defined in Eqs.(2.2)

– (2.6). We continue the derivation of the FEDS transport equation by integrating Eq. (7.2)
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over all energies belonging to element e,

∫
Ee

dE Lϕ =

∫
Ee

dE
[
(S + F)ϕ+Q

]
. (7.3)

Notice that this derivation of the FEDS transport equation is equivalent to the derivation of

the MG equation, in which we integrated over all energies belonging to an energy group.

The left-hand-side of Eq. (7.3) can be expressed as

∫
Ee

dE Lϕ =

∞∫
0

dE we(E)Lϕ .

After expanding the FEDS approximation of the angular flux,

∫
Ee

dE Lϕ =

∞∫
0

dE we(E)L

[
N∑
n=1

ψn(~r, Ω̂, t)bn(~r, E)

]
.

Note, the integrand is only nonzero when e and n are the same element, hence

∫
Ee

dE Lϕ =

∞∫
0

dE
[ 1

v(E)

∂

∂t
+ Ω̂ · ∇ + Σt(~r, E, t)

] [
ψe(~r, Ω̂, t)be(~r, E)

]
.

Finally, if we use element-averaged values for speed and cross section we can simplify this

to ∫
Ee

dE Lϕ =
1

ve

∂ψe
∂t

+ Ω̂ · ∇ψe + Σt,e(~r, t)ψe(~r, Ω̂, t) .

Similarly, ∫
Ee

dE Sϕ =
E∑
e′=1

∫
4π

dΩ′Σs,e′→e(~r, Ω̂
′ · Ω̂, t)ψe′(~r, Ω̂′, t)
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∫
Ee

dE Fϕ =
1

4π

E∑
e′=1

Σf,e′→e(~r, t)φe′(~r, t)

∫
Ee

dE Q = qe(~r, E, t) +
N∑
i=1

χd,i,e
4π

λiCi(~r, t) .

Thus, the expanded form of the FEDS transport equation is equivalent to the MG trans-

port equation, Eq. (3.2), with the exception that FEDS elements can have a discontiguous

support in the energy domain,

1

ve

∂ψe
∂t

+ Ω̂ · ∇ψe + Σt,e(~r, t)ψe(~r, Ω̂, t) =

E∑
e′=1

∫
4π

dΩ′Σs,e′→e(~r, Ω̂
′ · Ω̂, t)ψe′(~r, Ω̂′, t) +

1

4π

E∑
e′=1

Σf,e′→e(~r, t)φe′(~r, t)+

qe(~r, E, t) +
N∑
i=1

χd,i,e
4π

λiCi(~r, t) . (7.4)

Note, the following element-averaged variables were substituted in this derivation

1

ve(~r)
=

∞∫
0

dE
1

v(E)
be(~r, E)

Σt,e(~r, t) =

∞∫
0

dE Σt(~r, E, t)be(~r, E)

Σs,e′→e(~r, Ω̂
′ · Ω̂, t) =

∞∫
0

dE we(E)

∫
4π

dΩ′
∞∫

0

dE Σs(~r, Ω̂
′ · Ω̂, E ′ → E, t) be′(~r, E

′)

Σf,e′→e(~r, t) =

∞∫
0

dE wn(E)

∞∫
0

dE Σf (~r, E
′ → E, t)be′(~r, E

′)

where

40



ψe(~r, Ω̂, t) angular flux for element e

ve speed for element e

Σt,e(~r, t) total macroscopic cross section for element e

Σs,e′→e(~r, Ω̂
′ · Ω̂, t) differential scattering cross section from element e′ to element e

Σf,e′→e(~r, t) differential fission cross section from element e′ to element e

qe(~r, Ω̂, t) extraneous source term for element e

Ci(~r, t) concentration of delayed neutron precursor flavor i

λi decay constant for precursor flavor i

χd,i,e delayed neutron source into element e for precursor flavor i

The theoretical advantage of FEDS over MG is that discontiguous energy discretiza-

tions can capture resonance-scale behavior with fewer energy degrees-of-freedom, and thus

are capable of estimating steady-state quantities of interest with much greater accuracy.

However, there are some caveats:

• discontiguous energy discretizations are inherently worse at modeling neutron speeds

compared to contiguous energy discretizations

• FEDS can create an ideal energy discretization for a single material, but the energy

partitioning can become less optimal when multiple materials need to be modeled

• discontiguous energy discretizations result in to denser scattering matrices due to

artificial upscattering, caused by neutrons scattering back and forth between different

discontiguous energy elements.
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7.2 Objective Function for Finite-Elements with Discontiguous-Support

An optimization algorithm is used to construct the FEDS energy discretization by min-

imizing the variation of the continuous-energy flux within each energy element. Namely,

the optimization algorithm tries to minimize the following objective function,

F =

(∑
p

ωp

[∑
g

∆Eg|φp,g − φ̄p,g(e)|
]M)1/M

, (7.5)

where

p a point on the continuous-energy spectrum

g a hyperfine energy group

e an energy element

δEg energy width of group g

M a norm

φp,g the analytical pointwise flux for point p and group g

φ̄p,g(e) the average of φp,g within element e

ωp the weight of point p

We estimate the analytical pointwise flux φp,g by computing the solution for a spatially-

simplified transport problem. Specifically, we compute the pointwise flux by solving the

energy-dependent infinite-medium equation,

[Σe + Σt(E)φ(E)] = q(E) ,
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where Σe is an analytic escape cross section [36]. For a thermal system, the source term

q(E) is assumed to be either a Maxwellian spectrum, a 1/E distribution, or a Watt fission

spectrum depending on the energy value E.

The problem with the objective function shown in Eq. (7.5) is that the scalar flux can

vary by several orders of magnitude and it is usually more practical to minimize the varia-

tion of the logarithm of the flux instead [3]. Specifically, the following objective function

is minimized instead

F =

{∑
e

(∑
g∈Se

[∑
p

|Op,g − Ōe,p|M
]N1/M

)N2/N1
}1/N2

(7.6)

Op,g = ω1/M
p log10(Egφp,g)

where Op,g is the observation value for point p and hyperfine group g. Also, M , N1,

and N2 are norms that depend on the optimization method. For example, if hierarchical

agglomerative clustering is used with Euclidean distance measurements and Ward linkage,

the values are M = 2, N1 = 2, and N2 = ∞. Till has shown that Eq. (7.6) works well for

steady-state simulations, but is not fine-tuned for time-of-flight simulations [3].

7.3 Improving Convergence to Continuous Energy in Time-Dependent Simulations

For time-dependent simulations, it is essential that both FEDS cross sections and speed

values converge to their continuous-energy values. Previously, Till showed that FEDS

energy discretizations can also be constructed by minimizing the variation in multiple pa-

rameters simultaneously [3]. Here, we borrow this idea to write an objective function

that should theoretically perform well for a single-material time-of-flight problem. This

objective function depends on flux, cross section, and neutron speed (φ, Σ, and v) simulta-
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neously:

F =

{∑
e

(∑
g∈Se

[∑
p

|Ap,g−Āe,p|M+|Bp,g−B̄e,p|M+|Cp,g−C̄e,p|M
]N1/M

)N2/N1
}1/N2

(7.7)

Ap,g = ω1/M
p log10(Egφp,g)

Bp,g = ω1/M
p log10(Σp,g)

Cp,g = ω1/M
p log10(vg)

whereAp,g,Bp,g, and Cp,g represent three unique observations corresponding to point p and

hyperfine group g. Note, in time-of-flight simulations neutron arrival times are proportional

to 1/v, so it seems natural to use 1/v as an optimization parameter instead of v. However,

note that in Eq. (7.7) using v as an optimization parameter is equivalent to using 1/v as an

optimization parameter because of the following property of logarithms:

| log10(v)| = | log10(1/v)| .

For multi-material problems Eq. (7.7) would have to be modified by adding more observa-

tions to account for the cross sections and fluxes in other materials.

Figure 7.2 demonstrates how Eq. (7.7) improves convergence to continuous-energy

speeds and cross sections. Notice how MG converges well to continuous-energy speeds, but

not continuous-energy cross sections. Inversely, the version of FEDS that only used φ and

Σ as clustering optimization parameters converges well to continuous-energy cross section

values, but not continuous-energy speeds. By adding v as an additional optimization pa-

rameter, FEDS demonstrated simultaneous convergence to both continuous-energy speeds

and cross sections. However, note that this convergence to continuous-energy speeds is still

slightly slower than the rate at which MG converges to continuous-energy speeds.
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(a) MG cross sections (b) MG speeds

(c) FEDS (φ, Σ) cross sections (d) FEDS (φ, Σ) speeds

(e) FEDS (φ, Σ, v) cross sections (f) FEDS (φ, Σ, v) speeds

Figure 7.2: These plots compare how different energy discretizations converge to
continuous-energy values (indicated by the black line) for an infinite-medium of HEU.
Group/elements are color coordinated. In these plots “fine” refers to 5000 pointwise val-
ues, and “coarse” refers to group- or element-averaged values.
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7.4 Energy Penalties

An alternative strategy for improving FEDS’ ability to model neutron speeds is to use

an energy penalty [3]. This energy penalty is imposed by defining a new observation for

the FEDS objective function,

Op,g = β
√
No log10

[
φmax

φmin

]
log10(Eg)

log10

(
Emax
Emin

)
where β is the energy penalty term, φmax

φmin
is the ratio of the largest to the smallest flux,

and No represents the number of other observations in the objective function. Note that

when β = 0, it is equivalent to not having an energy penalty. For a single-material time-

dependent neutron transport simulation, we can use the following FEDS objective function:

F =

{∑
e

(∑
g∈Se

[∑
p

|Ap,g−Āe,p|M+|Bp,g−B̄e,p|M+|Cp,g−C̄e,p|M
]N1/M

)N2/N1
}1/N2

(7.8)

Ap,g = ω1/M
p log(Egφp,g)

Bp,g = ω1/M
p log(Σp,g) ,

Cp,g = β
√
No log10

[
φmax

φmin

]
log10(Eg)

log10

(
Emax
Emin

)
where Cp,g is the observation with the energy penalty term β. In this case No = 2, since

there are two other observations. For multi-material neutron transport simulations, a similar

objective function can be defined but with 2Nm + 1 observations instead, where Nm is the

number of materials and No = 2Nm. In the past, this energy penalty was only applied to

steady-state quantities of interest, and values of β less than one were used. However, in

this study, we found that larger values of β were able to enhance the performance of FEDS
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for time-dependent neutron transport.

Figure 7.3 demonstrates the effect that energy penalties have on the FEDS discretiza-

tions. For small energy penalty values, FEDS elements tend to be more discontiguous. As

larger energy penalties are used the FEDS discretizations begin to look more like contigu-

ous MG discretizations. Consequently, when large values of energy penalties are used the

accuracy of the FEDS discretizations are similar to the accuracy of MG discretizations for

various quantities of interest.
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(a) Energy Penalty = 0 (b) Energy Penalty = 1

(c) Energy Penalty = 2.5 (d) Energy Penalty = 5

Figure 7.3: These plots show the FEDS energy discretizations that were constructed for
different energy penalty values. Each color represents a different energy element.
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7.5 Coarse Groups

A third strategy for improving the performance of FEDS for time-dependent simula-

tions is to use coarse groups. This is accomplished by first partitioning the energy domain

into coarse groups which are contiguous, and then further partitioning those coarse groups

into FEDS energy elements which can be discontiguous. The intention is to confine the

maximum energy span of an energy element.

Figure 7.4 compares FEDS energy discretizations that have different numbers of coarse

groups. A theoretical disadvantage of using coarse groups is that elements that belong to

the same coarse group tend to have the same energy span and thus have similar element-

averaged neutron speeds. In fact, it is possible that multiple elements belonging to the same

coarse group have almost identical values for element-averaged neutron speed. This could

result in large gaps in the element speeds that belong to different coarse groups, which

is problematic for time-of-flight simulations. On the other hand, a theoretical advantage

of using coarse groups is that it bounds the artificial upscattering that is created by using

discontiguous energy discretizations, reducing the amount of upper-diagonal terms in the

scattering matrix. This creates a scattering matrix that is block lower-triangular [36].
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(a) FEDS, No Coarse Groups (b) FEDS, 2 Elements per Coarse Group

(c) FEDS, 3 Elements per Coarse Group (d) FEDS, 5 Elements per Coarse Group

Figure 7.4: These plots display the FEDS energy discretizations that were constructed with
different numbers of FEDS elements per coarse group. Each color represents a different
energy element.
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We conducted some preliminary comparisons to determine which energy discretiza-

tion strategies result in the smallest discrepancy between the various energy discretiza-

tions and continuous-energy values. For these studies we used 400 energy degrees-of-

freedoms (MG groups or FEDS elements) for each discretization, and macroscopic cross

section data for U-235 was used. Table 7.1 compares the discrepancy between discrete

and continuous-energy values for cross section at 10,000 points, logarithmically-spaced in

the energy domain. Similarly, Table 7.2 compares the discrepancy between discrete and

continuous-energy values for speed at 10,000 points, logarithmically-spaced in the energy

domain. The L1, L2, and L∞ relative error norms were used as metrics to quantify the

energy-discretization error for various discretization strategies, and are defined as

||ε||1 =

∑
p |ud,p − uc,p|∑

p |uc,p|

||ε||2 =

√∑
p |ud,p − uc,p|2∑

p |uc,p|2

||ε||∞ =
max |ud,p − uc,p|

max |uc,p|

where ud,p is the energy-discretized value for point p and uc,p is the continuous-energy

value at point p.

Note that in Table 7.1, the MG discretization and the FEDS discretization with an en-

ergy penalty of 50 had the largest L1, L2, L∞ cross section error norms. In contrast, the

FEDS discretization that used v as an additional optimization parameter had the smallest

L1, L2, L∞ cross section error norms. In general, many FEDS discretizations provided an

improvement in cross section values compared to MG. Inversely, note that in Table 7.2, the

MG discretization had the smallest L1, L2, L∞ speed error norms. Although, using either

high energy penalties or using coarse groups allowed FEDS to also have small L1, L2, L∞
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speed error norms as well.

For energy penalty values, there was a noticeable trade off in ability to accurately model

cross sections and neutron speeds: smaller energy penalties generated more accurate cross

sections, whereas large energy penalties produced more accurate neutron speeds.

Table 7.1: Comparing the discrepancy between continuous and discrete values for cross
section, Σt, at 10,000 logarthmically-spaced points using L1, L2, L∞ relative error norms.
Each energy discretization compared contained 400 energy degrees-of-freedoms.

Method Clustering Constraints L1 Error L2 Error L∞ Error
MG logarithmically-spaced groups 8.76% 18.95% 91.71%

FEDS no coarse groups, no energy penalty 3.87% 4.80% 21.62%
FEDS used v(E) as additional optimization parameter 3.56% 4.11% 17.71%
FEDS energy penalty = 0.25 3.62% 4.21% 17.71%
FEDS energy penalty = 0.50 3.66% 4.23% 17.71%
FEDS energy penalty = 1. 3.65% 4.78% 25.72%
FEDS energy penalty = 2.5 4.19% 6.42% 30.03%
FEDS energy penalty = 5. 4.67% 6.91% 31.43%
FEDS energy penalty = 10. 5.61% 9.61% 45.28%
FEDS energy penalty = 25. 7.88% 15.77% 88.59%
FEDS energy penalty = 50. 9.18% 19.70% 89.22%
FEDS exactly 2 elements per coarse group 5.93% 12.33% 65.75%
FEDS average of 2 elements per coarse group 3.64% 4.64% 25.99%
FEDS exactly 5 elements in each coarse group 3.61% 6.18% 32.20%
FEDS average of 5 elements per coarse group 4.41% 5.19% 17.71%
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Table 7.2: Comparing the discrepancy between continuous and discrete values for speed,
v, at 10,000 logarthmically-spaced points using L1, L2, L∞ relative error norms. Each
energy discretization compared contained 400 energy degrees-of-freedoms.

Method Clustering Constraints L1 Error L2 Error L∞ Error
MG logarithmically-spaced groups 0.74% 0.85% 1.47%

FEDS no coarse groups, no energy penalty 4.39% 5.31% 9.77%
FEDS used v(E) as additional optimization parameter 3.41% 4.04% 9.93%
FEDS energy penalty = 0.25 3.21% 3.99% 9.77%
FEDS energy penalty = 0.50 2.49% 2.90% 4.94%
FEDS energy penalty = 1. 1.82% 2.12% 4.42%
FEDS energy penalty = 2.5 1.48% 1.73% 3.68%
FEDS energy penalty = 5. 1.24% 1.46% 3.22%
FEDS energy penalty = 10. 1.03% 1.22% 2.54%
FEDS energy penalty = 25. 0.95% 1.17% 2.34%
FEDS energy penalty = 50. 0.86% 1.01% 2.08%
FEDS exactly 2 elements per coarse group 0.79% 0.95% 2.85%
FEDS average of 2 elements per coarse group 1.48% 1.71% 3.03%
FEDS exactly 5 elements per coarse group 0.85% 0.98% 2.49%
FEDS average of 5 elements per coarse group 3.50% 4.09% 6.27%
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7.6 Hierarchical Agglomerative Clustering

One option for minimizing the FEDS objective function is to use a hierarchical ag-

glomerative clustering algorithm. The purpose of this clustering algorithm is to cluster

data points with similar values into clusters. This results in minimal variation of values

within each cluster.

In order to construct the optimal FEDS energy grid, it is best to start with a large number

of points in the energy domain, for example, a million energy points logarithmically-spaced

between 10−5 eV and 20 MeV. For each energy point, we determine the value of different

observations corresponding to that point. For hierarchical agglomerative clustering, each

point starts off as its own cluster i, then:

1. The distance between any two clusters i and j is computed, for all possible combina-

tions of clusters.

2. The distances are then sorted to determine the shortest distance.

3. The clusters i and j that have the shortest distance from each other are clustered

together. This process is repeated until the desired number of clusters is achieved.

In this study, the Ward’s minimum variance method was used to evaluate the distance be-

tween two clusters [39]. In the Ward minimum variance method, the distance between

cluster A and cluster B is measured as the increase in variance that would result from

merging the two clusters,

∆(A,B) =
∑
i∈A∪B

‖Oi − ŌA∪B‖2 −
∑
i∈A

‖Oi − ŌA‖2 −
∑
i∈B

‖Oi − ŌB‖2 ,

where Ō represents the centroid of a cluster, and ∆(A,B) is called the merging cost for

combining clusters A and B.
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Figure 7.5 shows an example of hierarchical agglomerative clustering with six data

points, and its associated dendrogram. Figure 7.5 demonstrates how observations 1 and 2

can be thought of as orthogonal dimensions in a Euclidean space (even if the observations

are not truly orthogonal) and shows how six data points are merged into two separate clus-

ters via hierarchical agglomerative clustering. This visual also depicts how each point or

cluster can be thought of as a node on a hierarchical tree. Each node in the hierarchical

tree can have a maximum of one parent node and a maximum of two daughter nodes. A

node that has no parent nodes, is called an orphan node. In Figure 7.5, there are two orphan

nodes “ABC" and “DEF". Once the algorithm is complete, each orphan node corresponds

to a FEDS energy element. This could result in a discontiguous set of energies belonging to

a single FEDS element, assuming no connectivity constraints are placed on the algorithm.
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BA C

DEF
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ED F

Figure 7.5: An example of hierarchical agglomerative clustering on a two-dimensional
Euclidean space (left), and it’s equivalent dendrogram (right).

After the clustering process is complete, FEDS cross sections are computed for the

constructed energy discretization [3]. One of the limitations of the optimization algorithm

is that it may converge to a local minimum, instead of the global minimum.
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7.7 Generating Weighted-Averaged Cross Sections

Bondarenko iterations are used to iteratively modify the weighting spectrum to produce

self-consistent MG (or FEDS) cross sections for each energy group g and each isotope i in

a material [40]. A Bondarenko iteration consists of the following steps:

Step 1: Compute the background microscopic cross section σk0,g,i for iteration k

σk0,g,i =
1

Ni

(
Σe +

∑
j 6=i

Njσ
k−1
t,g,i

)
,

where N is the number density of an isotope, and Σe is an analytic escape cross section.

Step 2: Compute the weighting spectrum wki (E) using the new background cross section

wki (E) ≈ S(E)

Ni

(
σkt,i(E) + σk0,g,i

) .
Step 3: Compute the total microscopic cross section σkt,g,i using the updated weighting

spectrum

σkt,g,i =

∫ Eg−1

Eg
dE wki (E)σkt,i(E)∫ Eg−1

Eg
dE wki (E)

.

Step 4: After steps 1 through 3 are completed for all isotopes and groups, check that the

following convergence criterion is satisfied,

||
σkt,g,i − σk−1

t,g,i

σkt,g,i
|| < ε .

If the convergence criterion is not satisfied, repeat steps 1 through 4.
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8. TIME-OF-FLIGHT PROBLEM 1: AN IRON SLAB

This test problem derives from the time-of-flight problem in Till’s dissertation [3].

However, in this study we compare an even wider variety of energy discretizations.

In time-of-flight simulations, the quantity of neutrons reaching a detector is measured as

a function of time. For these simulations, it is essential to accurately model neutron speeds,

since detector arrival times are inversely proportional to neutron speeds. Previously, the

only FEDS discretizations that were tested for this problem were FEDS discretizations that

used coarse groups. The reason for using coarse groups is that they strictly limit the energy

span of FEDS elements, thus resulting in element speeds that are more representative of true

neutron speeds. Here, we also test discretizations that do not use coarse groups, but rely on

other strategies for limiting the energy span of FEDS elements. These strategies included

adding v as an additional FEDS optimization parameter well as using energy penalties. We

also compare these to the standard MG method.

8.1 Description of Time-Of-Flight Problem 1

This test problem consists of a thin slab of containing an extraneous fission source

adjacent to a slab of natural iron, with a density of 7.874 g/cm3 at room temperature (293.6

K). A point detector is placed at various distances away from the source. This detector is

used to obtain the energy-integrated flux at the detector location as a function of time. The

physical layout of the test problem is shown in Figure 8.1, and isotopic composition of the

iron is shown in Table 8.1.

The point detector is assumed to be perfectly collimated and therefore the contribution

of scattered neutrons to the detector signal is assumed to be negligible. Consequently,

the flux of neutrons reaching the detector can be approximated as simply the uncollided

flux for Ω̂ = +x̂. The source is pulsed and turned off after 1 ns. The extraneous fission
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Variable Distance

Fission Source

Detector

Fe 2.06 cm

Vacuum
Thin Point

0.05 cm

Figure 8.1: Physical configuration of the iron slab time-of-flight problem.

Table 8.1: Isotopic composition of iron.

Isotope Number Density ( nuclei
barn-cm )

54Fe 8.68307 × 10−6

56Fe 1.36306 × 10−4

57Fe 3.14789 × 10−6

58Fe 4.18926 × 10−7

source is assumed to produce neutrons with energies corresponding to the Watt spectrum

for 235U, and is also assumed to produce these neutrons uniformly in space, angle and time.

Additionally, neutron interactions within the fission source are assumed to be negligible.

Based on these assumptions, the transport equation can be simplified to

(
1

v(E)

∂

∂t
+

∂

∂x
+ Σ(x,E)

)
φ(x,E, t) =

q(x,E, t)

4π
,

q(x,E, t) =


4π
τXS

χ(E) for x ∈ [0, XS] , t ∈ [0, τ ]

0 otherwise
,
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Σ(x,E) =


ΣI(E) for x ∈ [XS, XS +XI ]

0 otherwise
,

where XS is the thickness of the source, XI is the thickness of the iron, τ is the duration

of the pulse, ΣI is the macroscopic cross section for iron, and χ(E) is the Watt fission

spectrum for U-235. Next, we wish to analytically determine the following quantities of

interest:

1. the total number of reactions

2. the energy-integrated detector response as a function of time.

The total number of reactions, R, is calculated by integrating over time and phase space

R =

∞∫
0

dE χ(E)(1− e−Σ(E)XI ) .

The energy-integrated detector response Db for time bin b can be expressed as

Db =

∞∫
0

dE

tb+1∫
tb

dt φ(XD, E, t) , (8.1)

where XD is the location of the detector along the x-axis, and the flux at the detector

location is defined as

φ(XD, E, t) =
χ(E)

τXS

e−Σ(E)XI

XD∫
XD−XS

dxδ

[
H
(
t− xδ

v

)
−H

(
t− τ − xδ

v

) ]
,

where XI is the thickness of the iron slab, XS is the thickness of the source and H is the

59



Heaviside step function [41]. Thus, Eq. (8.1) becomes

Db =

∞∫
0

dE
χ(E)

τXS

e−Σ(E)XI

XD∫
XD−XS

dxδ

tb+1∫
tb

dt
[
H
(
t− xδ

v

)
−H

(
t− τ − xδ

v

) ]
, (8.2)

where tb and tb+1 represent the lower and upper bounds for time bin b, where tb+1 > tb.

Both of the following integrals can be evaluated using integration by parts

tb+1∫
tb

dtH
(
t− xδ

v

)
= tb+1H

(
tb+1 −

xδ
v

)
− tbH

(
tb −

xδ
v

)
−

xδ
v
H
(xδ
v
− tb

)
H
(
tb+1 −

xδ
v

)
, (8.3)

tb+1∫
tb

dtH
(
t− τ − xδ

v

)
= tb+1H

(
tb+1 − τ −

xδ
v

)
− tbH

(
tb − τ −

xδ
v

)
−

(
τ +

xδ
v

)
H
(
τ +

xδ
v
− tb

)
H
(
tb+1 − τ −

xδ
v

)
. (8.4)

By plugging in Eq. (8.3) and Eq. (8.4) into Eq. (8.2), we find that the detector response is

Db =

∞∫
0

dE
χ(E)

τXS

e−Σ(E)XI

XD∫
XD−XS

dxδ

{
tb+1

[
H
(
tb+1 −

xδ
v

)
−H

(
tb+1 − τ −

xδ
v

) ]
−

tb

[
H
(
tb −

xδ
v

)
−H

(
tb − τ −

xδ
v

) ]
−

xδ
v
H
(xδ
v
− tb

)
H
(
tb+1 −

xδ
v

)
+(

τ +
xδ
v

)
H
(
τ +

xδ
v
− tb

)
H
(
tb+1 − τ −

xδ
v

)}
. (8.5)

A Python script was written in order to obtain the analytical solutions.
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The cross sections for iron were extracted from the United States’ Evaluated Nuclear

Data Library B-VII.1 (ENDF/B-VII.1) [14], and post-processed with the NJOY Nuclear

Data Processing System, Version 2016 (NJOY2016) [15] in order to generate the continuous-

energy, MG and FEDS cross sections. Figure 8.2 shows the macroscopic cross section for

natural iron. The MG and FEDS cross sections were generated using Bondarenko iter-

ations in order to properly weight cross section values. For the MG discretizations, we

simply partitioned the energy domain into logarithmically-spaced groups. Similarly, for

FEDS discretizations that used coarse groups, we also partitioned the energy domain into

logarithmically-spaced groups. For the energy discretizations that used v is an additional

observation, no coarse groups were used. Also, for the energy discretization that used

energy penalties, no coarse groups were used.
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Figure 8.2: Macroscopic cross section of natural iron, acquired from the ENDF/B-VII.1
library and post-processed with NJOY2016.
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8.2 Detector Responses for Time-Of-Flight Problem 1

The total number of reactions and the time-dependent detector response were com-

puted for different energy discretization strategies for 100, 200, 300, 400, and 500 energy

degrees-of-freedom. The analytical solutions were computed for two detector distances:

10 cm and 100 cm. For the detector distance of 10 cm, linearly-spaced time bins were

placed between 0 and 10−7 s. For the detector distance of 100 cm, linearly-spaced time

bins were placed between 0 and ×10−6 s. The reference “continuous-energy" solution for

this time-of-flight problem used 100,000 logarithmically-spaced groups.

Figures 8.3 and 8.4 show the detector response at a distance of 10 cm, using 1000

time bins, with 500 energy-degrees-freedom for each of the various energy discretization

strategies. Figures 8.5 and 8.6 show the detector response at a distance of 10 cm, using 100

time bins, with 500 energy-degrees-freedom for each of the various energy discretization

strategies.

Similarly, Figures 8.7 and 8.8 show the detector response at a distance of 100 cm,

using 1000 time bins, with 500 energy-degrees-freedom for each of the various energy

discretization strategies. Figures 8.9 and 8.10 show the detector response at a distance of

100 cm, using 100 time bins, with 500 energy-degrees-freedom for each of the various

energy discretization strategies.

62



0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 7

10 14

10 12

10 10

10 8

10 6

10 4

10 2

De
te

ct
or

 R
es

po
ns

e 
at

 x
=1

0c
m

 (c
m

2 ) Reference Solution
MG

(a) MG, logarithmically-spaced

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 7

10 14

10 12

10 10

10 8

10 6

10 4

10 2

De
te

ct
or

 R
es

po
ns

e 
at

 x
=1

0c
m

 (c
m

2 ) Reference Solution
FEDS, no coarse groups, optimization parameters = v,  , t

(b) FEDS, optimized using v, φ, Σ

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 7

10 14

10 12

10 10

10 8

10 6

10 4

10 2

De
te

ct
or

 R
es

po
ns

e 
at

 x
=1

0c
m

 (c
m

2 ) Reference Solution
FEDS, no coarse groups, energy penalty=0.5

(c) FEDS, energy penalty = 0.5
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Figure 8.3: Detector response for different energy discretizations. These solutions are
based on a detector distance of 10 cm with 1000 linearly-spaced time bins.
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Figure 8.4: This is a continuation of Figure 8.3. Detector response for different energy dis-
cretizations. These solutions are based on a detector distance of 10 cm with 1000 linearly-
spaced time bins. 64
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Figure 8.5: Detector response for different energy discretizations. These solutions are
based on a detector distance of 10 cm with 100 linearly-spaced time bins.
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Figure 8.6: This is a continuation of Figure 8.5. Detector response for different energy
discretizations. These solutions are based on a detector distance of 10 cm with 100 linearly-
spaced time bins. 66
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Figure 8.7: Detector response for different energy discretizations. These solutions are
based on a detector distance of 100 cm with 1000 linearly-spaced time bins.
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Figure 8.8: This is a continuation of Figure 8.7. Detector response for different energy
discretizations. These solutions are based on a detector distance of 100 cm with 1000
linearly-spaced time bins. 68
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Figure 8.9: Detector response for different energy discretizations. These solutions are
based on a detector distance of 100 cm with 100 linearly-spaced time bins.
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Figure 8.10: This is a continuation of Figure 8.9. Detector response for different energy dis-
cretizations. These solutions are based on a detector distance of 100 cm with 100 linearly-
spaced time bins. 70



8.3 Error Comparisons for Time-Of-Flight Problem 1

The L2 error norm for a discretization was determined by comparing the result to a

reference solution. The reference solution used 100,000 logarithmically-spaced energy

groups. Specifically, the L2 error was for computed for 1000 linearly-spaced time bins as

||ε||2 =

√∑
b |ud,b − ur,b|2∑

b |ur,b|2

where ud,b is the energy-discretized analytic estimate for time bin b and ur,b is the reference

solution value for time bin b. The consequence of this error metric is that if a neutron is

simulated with a sufficiently inaccurate speed, then that neutron will appear in the wrong

time bin and therefore introduce errors in two seperate time bins. For this reason, we also

computed the L2 error norm for 100 linearly-spaced time bins, since it is slightly more

forgiving of inaccurate speeds. It should also be noted that this magnitude of this error

metric is mostly impacted by time bins with largest absolute errors, not the time bins with

the largest relative errors.

Figures 8.11 and 8.12 compare the L2 error norms for the detector response for various

energy discretizations at a detector distance of 10 cm, using 1000 time bins and 100 time

bins, respectively. Figures 8.13 and 8.14 compare the L2 error norms for the detector

response for various energy discretizations at a detector distance of 100 cm, using 1000

time bins and 100 time bins, respectively.

The results from these time-of-flight simulations demonstrate that using large energy

penalty values are an effective strategy for improving the performance of FEDS discretiza-

tions for single-material time-of-flight simulations. Using large energy penalty values

usually resulted in better time-dependent detector responses compared to logarithmically-

spaced MG for various detector distances and number of time bins. However, note that
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using large energy penalty values gradually degrades the performance of FEDS for steady-

state quantities of interest. Figure 8.15 compares the L2 error norms for total number of

reactions occuring in the iron slab for various energy discretizations. For this steady-state

quantity of interest, using an energy penalty of 25 provided the least accurate result com-

pared to other FEDS discretizations, however it was still more accurate than using MG,

especially when 500 energy degrees-of-freedom were used. Since iron has resonances in

the keV and MeV range, where the neutron flux is largest, FEDS was expected to com-

pute reaction rates more accurately than MG; the results in Figure 8.15 agree with these

expectations.
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Figure 8.11: Error convergence for time-dependent detector response for 1000 time bins
with the detector placed 10 cm from the source.
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Figure 8.12: Error convergence for time-dependent detector response for 100 time bins
with the detector placed 10 cm from the source.
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Figure 8.13: Error convergence for time-dependent detector response for 1000 time bins
with the detector placed 100 cm from the source.
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Figure 8.14: Error convergence for time-dependent detector response for 100 time bins
with the detector placed 100 cm from the source.
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Figure 8.15: Error convergence for total number of reactions in the iron slab.
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9. TIME-OF-FLIGHT PROBLEM 2: A MULTILAYER SLAB

In this chapter, we test the performance of FEDS for a multi-material time-of-flight

problem. This creates an additional challenge for discontiguous energy methods, because

a discontiguous energy discretization that is ideal for one material may not be ideal for

other materials. However, Till [3] and Lou [36] have previously demonstrated that FEDS

designed to handle this challenge better than other discontiguous energy methods.

9.1 Description of Time-Of-Flight Problem 2

This test problem consists of a 1D multilayer slab geometry, with a 14.1 MeV neutron

source incident normally to the multilayer slab. The first layer consists of 4 cm of U-235

with a density of 19 g/cm3. The second layer consists of 3 cm of Al-27 with a density of 2.7

g/cm3. The third layer consists of a 3 cm thick slab of Fe-56 with a density of 7.8 g/cm3.

Finally, a detector is placed adjacent to the right boundary of the multilayer slab. Figure

9.1 shows the physical layout of the problem. Note, the slabs are infinite in the ŷ and ẑ

dimensions.

The neutron source is pulsed according to a time-dependent gaussian distribution,

1

σ
√

2π
e−

1
2

( t−to
σ

)2

where σ = 0.2 ns and to = 1 ns. The detector response was measured for 2000 time bins

between 0 and 20 ns.
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Figure 9.1: Physical configuration of the multilayer slab time-of-flight problem.
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Figure 9.2: Macroscopic cross sections for three layers, acquired from the ENDF/B-VII.1
library and post-processed with NJOY2016.
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We wish to evaluate the following quantities of interest:

1. criticality

2. the time-dependent fission rate

3. the energy-integrated detector response as a function of time.

The microscopic cross sections were extracted from ENDF/B-VII.1 [14], and post-

processed with NJOY2016 [15] in order to generate the continuous-energy, MG and FEDS

cross sections. Figure 9.2 shows the macroscopic cross sections for three materials in the

problem. The MG and FEDS cross sections were generated using Bondarenko iterations.

However, the cross sections for the three materials were generated independently. For

example, when generating the MG or FEDS cross sections for uranium, the weighting

spectrum was only impacted by the cross sections for uranium, and the cross sections for

iron and aluminum neglected.

For the MG discretizations, we simply partitioned the energy domain into logarithmically-

spaced groups. Similarly, for FEDS discretizations that used coarse groups, we also parti-

tioned the energy domain into logarithmically-spaced coarse groups. Also, note that coarse

groups were not used for the FEDS energy discretization that used energy penalties or used

v as an additional optimization parameter.

A Python package was created to run discrete-ordinates SN neutron transport simula-

tions. For the steady-state simulations, the code used a cell-centered diamond-difference

spatial discretization with 500 spatial cells. The angular domain was discretized into 256

polar angles, and 13th-order Gauss-Lobatto quadrature was used.

For the time-dependent simulations, the code used a Crank-Nicolson temporal dis-

cretization scheme with 2000 time steps between 0 and 20 ns, as well as 120 spatial cells,

32 polar angles, and 13th-order Gauss-Lobatto quadrature.
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9.2 Reference Solutions for Time-of-Flight Problem 2

The Monte Carlo N-Particle Transport Code 6 (MCNP6) was used to generate reference

solutions, by sampling from continuous-energy cross sections [42]. A MCNP6 criticality,

"kcode", simulation was conducted to determine the value of keff, which was found to

be 0.87452 ± 0.00003. A separate MCNP6 simulation was used to determine the time-

dependent detector response and fission rate. The detector response was determined using

the "F2" surface fluence tally and 2000 linearly-spaced time bins. The fission rate was

determined using the "F4" cell fluence tally, a cross section multiplier for U-235 fission

reactions, "FM4 -1 92235 -6", and 2000 linearly-spaced time bins.

Figure 9.3, Figure 9.4, and Figure 9.5 show the reference MCNP6 fluences, detector

response, and time-dependent fission rate, respectively.
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Figure 9.3: MCNP6 fluences, obtained by using a separate cell fluence tally for each mate-
rial.

81



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) 1e 8

0

1

2

3

4

5

6

In
te

gr
at

ed
 D

et
ec

to
r R

es
po

ns
e 

(c
m

2 )

1e8

Figure 9.4: Reference detector response, based on MCNP6 simulation.
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Figure 9.5: Reference time-dependent fission rate, based on MCNP6 simulation.
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9.3 Error Comparisons for Time-Of-Flight Problem 2

The L2 error norm for an energy discretization was computed by comparing the simu-

lation results to the reference MCNP6 solution at 2000 linearly-spaced time bins as

||ε||2 =

√∑
b |ud,b − ur,b|2∑

b |ur,b|2

where ud,b is the energy-discretized value for time bin b and ur,b is the reference value

for time bin b. The consequence of this error metric is that if a neutron is simulated with

a sufficiently inaccurate speed, then that neutron will appear in the wrong time bin and

therefore introduce errors in two seperate time bins. Another problem with this error metric

is that spatial, angular, and temporal discretization can also cause a neutron to appear in the

wrong time bin. For this reason, we also computed the L2 error norm for a single time bin

between 0 and 20 ns. The spatial, angular, and temporal discretization error would have a

smaller impact in this case.

The simulation errors were compared for 50, 100, 200, and 300 energy degrees-of-

freedom for each energy discretization strategy. Figures 9.6 and 9.7 compare the L2 error

norms for the detector response for various energy discretizations, using 2000 time bins

and 1 time bin, respectively. Figures 9.8 and 9.9 compare the L2 error norms for the fission

rate for various energy discretizations, using 2000 time bins and 1 time bin, respectively.

Lastly, Figure 9.10 compare the relative error for keff for various energy discretizations. It

is important to note that a method can achieve an accurate estimate of the detector response

for only 1 time bin simply by luck, due to error cancellations. Similarly, a method can also

achieve an accurate estimate of keff simply by luck, due to error cancellations.

A common pattern that was observed for the results for this test problem is that FEDS

discretizations that used exactly 2 elements in each coarse group were consistently more ac-
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curate than MG when 200 or 300 energy degrees-of-freedom were used for various steady-

state and time-dependent quantities of interest. In general, when 300 energy degrees-of-

freedom were used, most of the FEDS energy discretization strategies were more accurate

than MG for various steady-state and time-dependent quantities of interest, especially when

using an energy penalty equal to one with no coarse groups.

It is important to note, that for time-of-flight simulations with 2000 time bins the spa-

tial, angular and temporal discretization error were non-negligible. Based on convergence

studies, the spatial discretization error for time-of-flight simulations with 2000 time bins is

estimated to be less than 1%, the temporal discretization error was also estimated to be less

than 1%, the angular discretization error was estimated to be less than 1%, and the trun-

cation error for the 13th-order Legendre polynomial expansion was estimated to be around

1%.
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Figure 9.6: Error comparisons for time-dependent detector response for 2000 time bins.
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Figure 9.7: Error comparisons for time-dependent detector response for 1 time bin.
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Figure 9.8: Error comparisons for time-dependent fission rate for 2000 time bins.
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Figure 9.9: Error comparisons for time-dependent fission rate for 1 time bin.
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Figure 9.10: Error comparisons for keff.
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10. CONCLUSION

In this study, we introduced the coarse-scattering (CS) method, and proved its ability

to reduce the computational time required to model scattering in multigroup (MG) simu-

lations. We applied the CS method to a slab-geometry criticality simulation, and showed

that it was able to reduce the overall runtime of the simulation by almost a factor of four.

Furthermore, we proved that the CS method is able to conserve particle balance as long as

the the CS scattering spectrum and CS fission spectrum are recomputed in the last iteration.

Also in this study, we showed that finite-element with discontiguous-support (FEDS)

method and the multigroup (MG) method have certain advantages and disadvantages for

simulating time-of-flight problems. FEDS is inherently able to model cross sections more

accurately, while MG inherently is able to model neutron speeds more accurately. For

this reason, there may be some time-of-flight problems where the MG method will always

produce more accurate simulations, or vice-versa. We compared a wide variety of FEDS

energy discretizations, and determined their performance for a single-material and a multi-

material time-of-flight simulation. We found that either using FEDS energy discretizations

with large energy penalties or FEDS energy discretizations with a small number of ele-

ments per coarse group performed best for time-of-flight simulations. The FEDS energy

discretizations that used energy penalties were usually more accurate than the MG simu-

lations for the single-material and the multi-material time-of-flight problems, for various

detector distances and number of time bins. Also, the FEDS energy discretization that used

exactly two FEDS elements in each coarse group was competitive with MG for the single-

material time-of-flight problem and usually more accurate than MG for the multi-material

time-of-flight problem. Another noticeable result from these test problems is that when

very high energy penalty values were used, the accuracy of the FEDS simulations were
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similar to the accuracy of MG simulations.

A conservative strategy for generating FEDS energy discretizations for time-dependent

neutron transport is to first create a MG grid that already provides reasonable estimates

for various quantities of interests, then further partition each MG group into a few FEDS

elements per group until the desired level of accuracy is achieved for various quantities of

interest. However, it may be simpler and possibly more accurate to just generate a FEDS

energy discretization using an appropriate energy penalty.

In the future, the use of energy penalties and coarse groups for time-dependent FEDS

simulations should be further investigated, using even higher energy degrees-of-freedom

as well as a wider variety of test problems. Also, there should be more investigations

into possible modifications to the FEDS objective function and clustering algorithm. For

example, it may be possible to limit the energy span of energy elements by modifying the

connectivity graph used for hierarchical agglomerative clustering, and yield better results

for time-dependent simulations.
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