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ABSTRACT 

I have created a novel seismic data processing method and an algorithm that can drastically reduce 

computation times of finite difference methods (FDM) applied to acoustic wave equations. The 

former is a data decomposition method designed specifically so that its output can efficiently and 

accurately describe seismic signals. The method, referred to as shifted-matrix decomposition 

(SMD), was used to reduce the memory requirements of seismic data, improve signal-to-noise 

ratio (SNR), and detect seismic events. For compression and denoising, SMD was tested on marine 

seismic gathers, which contained a large number of reflected waves and noise with high coherence 

that resembled seismic signals. Shifted-matrix decomposition reduced the memory requirement by 

80% and improved the visibility of weak reflections that were obscured by noise. For event 

detection, SMD was applied to detect microseismic events from distributed acoustic sensing 

(DAS) recordings during fracture stimulation at a geothermal experimental site.  

Regarding acoustic wave equations, I developed an algorithm that can be applied to standard finite 

difference methods to decrease the computational cost of forward modeling. An important feature 

of the algorithm is the calculation, at each time step, of the pressure in only a moving subdomain 

which contains the grid-points across which waves are propagating. The computation is skipped 

on grid-points at which the waves are negligibly small or non-existent. The novelty in this work 

comes from flexibility of the subdomain, namely its ability to closely follow the developing 

wavefield. When applied to a standard 2D finite difference scheme it reduced the computation 

time for wave propagation simulations by over 50% while maintaining low errors. 
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CHAPTER I 

 INTRODUCTION 

Geophysical exploration and fracture monitoring play important roles in hydrocarbon 

production. Currently fracture monitoring is mainly used to optimize production from 

unconventional reservoirs.  The quantity of hydrocarbons produced depends on the distribution, 

density, and connectedness of the fractures, natural or induced by hydraulic stimulation, that are 

present in the reservoir surrounding the wellbore [1]. Therefore, fracture monitoring plays an 

integral role in reservoir stimulation operations and can be used to evaluate the production 

potential. 

As the global industry shifts towards renewable energy, geophysical exploration 

maintains importance due to its applicability for critical mineral prospection and as a means to 

characterize geothermal energy sources. Geothermal energy differs from other sources of 

renewable energy such as solar [2] and wind [3] because of its ability to provide a consistent 

power output, independent of weather conditions [4]. Thus, adding a geothermal power source 

can bring consistency to a power grid that is reliant on renewables. 

Fracture identification and monitoring may be performed by analyzing microseismic data 

[5]. The work in this dissertation is largely motivated by a recent development in reservoir 

monitoring which involves the use of fiber optic cables to record both low frequency strain and 

seismic waves in a technique called distributed acoustic sensing (DAS)[6]. DAS provides an 

unprecedented view of the reservoir via dense spatial sampling of cable strain at high cadence. 

High recording rates at numerous receiver positions greatly increase the amount of registered 

microseismic activity compared to conventional geophone monitoring.  
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While DAS is well-suited for monitoring unconventional reservoirs, recently it has seen 

increasing use outside geophysical exploration. Distributed acoustic sensing has been coupled to 

existing subsea cables to monitor ground motion signals from seismic events and to identify fault 

zones [7]. Because of its high spatial and temporal resolution, DAS is expected to see further use 

in earthquake monitoring, imaging of faults and other geologic structures, and natural hazard 

assessment [8]. Finally, DAS is also being used in the development of enhanced geothermal 

systems (EGS) [9]. 

Because of its ability to record the strain rate at a large number of locations at a high rate, 

and its ability to convert pre-existing cables into seismic antennas, DAS is expected to drastically 

increase the amount of seismic data recorded and the number of seismic events detected. To 

support these developments, the work in this thesis is oriented towards the development of 

efficient methods for data processing, seismic wave simulation, and event detection. 

Recording data with DAS requires large amounts of computer memory. Furthermore, the 

recorded datasets often contain waves from weak seismic events that are obscured by 

background noise. Thus, data processing methods that compress the data and reduce its noise 

would complement the new instrumental developments in seismic monitoring. For that reason, in 

Chapter II I developed a data decomposition method designed specifically for seismic data 

collected by a large number of linearly distributed receivers. I refer to the method as shifted-

matrix decomposition, or SMD. The output of SMD is a series of vectors that encode seismic 

information. In Chapter II I argue that this output can be used to reconstruct a denoised version 

of the original data and to reduce memory requirements of the data. In Chapter III, I show how 

the output of SMD can also be used for event detection. In Chapter IV of the dissertation, I 

develop a method for decreasing the computation time of finite difference simulations of 
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acoustic wave propagation. In seismic monitoring, seismic simulations are used to estimate the 

location of the seismic sources, and sometimes additionally the source mechanism. 

The novel aspects described in this dissertation are meant to improve different stages of 

the workflow for seismic monitoring of the subsurface. The main objective of the herein-

developed methods is the reduction of computational cost. While geothermal energy sources 

have many attractive properties, the cost of EGS development can make it difficult to obtain 

investments necessary for initiating geothermal energy production. Distributed acoustic sensing, 

which is a potentially less-expensive alternative to downhole geophones, can reduce the cost and 

risk of initial investment in EGS. By building computationally inexpensive algorithms that 

support the integration of DAS I strive to make the development of EGS more affordable, and 

therefore, more widespread.  

Chapters II and IV from this dissertation have already been published in [11] and [12], 

respectively. 
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CHAPTER II 

A MACHINE LEARNING-BASED SEISMIC DATA COMPRESSION AND 

INTERPRETATION USING A NOVEL SHIFTED-MATRIC DECOMPOSITION 

ALGORITHM 

Introduction 

The last decade has seen a great increase in hydrocarbon production from unconventional 

reservoirs. However, there are still many challenges in predicting their production potential. The 

quantity of hydrocarbons produced depends on the distribution and quantity of fractures present in 

the reservoir. Fracture identification and monitoring can be done by analyzing microseismic data 

[1]. With the goal of improving the ability to track the fracture distribution, the amount of seismic 

data acquired during reservoir monitoring has been increasing. 

Recent developments in reservoir monitoring use fiber optic cables to record both low 

frequency strain and seismic waves in a technique called distributed acoustic sensing (DAS) [2]. 

DAS provides a new and unique view of the reservoir by recording strain rate data with a high 

sample rate and dense spatial sampling. Higher recording rates and more receiver positions 

increase the amount of microseismic activity recorded while monitoring the reservoir. Recording 

microseismic events with DAS significantly increases the memory requirement of the monitoring 

data. Thus, data processing methods that can compress the data and reduce its noise would 

complement the new instrumental developments in reservoir monitoring. 

Signal processing algorithms are often based on the transformation of signal into a new 

domain. Early examples of compression involve discrete cosine transform [3] and wavelet 

transforms [4–6] which use cosine functions or wavelets to represent the data in order to reduce 
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the memory requirements. Reduced-rank methods, which approximate the noiseless seismic data 

using low rank matrices and tensors, have been used in noise reduction [7] while also 

reconstructing missing data [8,9]. In recent years, dictionary learning has seen wide application in 

seismic data. Because of its ability to provide a compact and informative representation of seismic 

signals, it has been used for both noise reduction [10–12] and data compression [13,14]. 

Unfortunately, the drawback of the dictionary learning applications is the computation time that 

comes with learning and updating the dictionary. There have been successful efforts to reduce the 

associated computational times [15], but the computational cost of applying dictionary learning to 

microseismic DAS recordings is still too great. Thus far, dictionary learning methods have been 

applied to data collected by geophones, which can be very large but are still much smaller than 

data obtained by a single fiber-optic cable which can sample strain thousands of times a second on 

hundreds, even thousands of receiver locations. Since DAS is used for microseismic monitoring, 

the great amounts of data would need to be processed in real time, which puts a constraint on the 

computation time of processing methods. 

To achieve computationally efficient compression and denoising, we created a new data 

decomposition method by improving and further developing ideas developed as a part of the local 

SVD [16]. Similarly to the previously mentioned reduced-rank methods, local SVD applies SVD 

to a window in seismic data and represents the data using a small number of singular vectors. What 

makes local SVD unique is the process of shifting the columns of the window to maximize their 

correlation prior to applying SVD. This allows singular vectors to capture the signal in seismic 

data with high accuracy, while ignoring most of the noise. Once the data in the window is 

processed with SVD, the window is moved to the next location. This process is repeated until 

column shifting and SVD have been applied to every part of the data matrix. The path of the 
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moving window as well as the number of singular vectors used at each location are predetermined. 

Local SVD can enhance a seismic data set even if it contains multiple wave arrivals. However, 

local SVD struggles to capture seismic signals if waves with different dips are interfering or 

present in the same window. The “dip” of the wave refers to the slope of the wave in the matrix, 

or how much the row position of a wave changes as we move from one column to its adjacent 

column. 

Some of the problems encountered with local SVD were resolved with the development of 

structure-oriented singular value decomposition (SOSVD) [17]. By using plane wave destruction 

[18], SOSVD can identify several dominant slopes at each window location. While using plane 

wave destruction provides a noticeable improvement, numerical artifacts can still appear at the 

intersection of the waves with different slopes. 

Our method is inspired by the SOSVD and local SVD, and it also shifts the columns of the 

matrix before applying SVD. However, in order to avoid numerical artifacts, we use different 

processes to determine how columns should be shifted. Specifically, we do not use a moving 

window with a predetermined path. Instead, we use a geometric mean filter that adaptively chooses 

which elements to use in the geometric mean. We apply the geometric mean filter to seismic data 

in order to highlight areas which contain wave arrivals. The windows from the matrix to which we 

apply SMD depend on the results of the geometric mean filter. This allows us to use more singular 

vectors to describe areas with multiple wave arrivals, and fewer singular vectors to describe areas 

dominated by noise. 

Additionally, local SVD and SOSVD use SVD results solely to denoise seismic data. They 

use them to reconstruct denoised version of seismic data as soon as they obtain them and do not 

discuss the compression achieved by storing SVD results. In our work, instead of reconstructing 
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the data immediately, we store the SVD results. The final product of our algorithm is the collection 

of SVD results, that can later be reconstructed into the denoised version of original data. By doing 

this, our algorithm can be used for data compression as well as noise suppression. We call our new 

method the shifted-matrix decomposition, or SMD for short. 

It should also be noted that DAS has seen increasing use outside geophysical exploration. 

Distributed acoustic sensing has been used to record signals from earthquakes and volcanic events 

[19]. Because of its unprecedented spatial and temporal resolutions, DAS is expected to see 

increasing use in earthquake monitoring, imaging of faults and many other geologic formations, 

and hazard assessment [20]. The growing potential of DAS application outside of geophysical 

exploration, adds importance to our method, which we believe will play an integral role in the 

processing of DAS data. 

We organize the paper as follows: First we give an overview of singular value 

decomposition and present two simple examples that show advantages and drawbacks of its 

application to seismic data. Next, we demonstrate the improvements achieved by shifting the traces 

before extracting singular vectors. In the following subsection, we describe in detail each step of 

the SMD algorithm. The SMD algorithm depends on several parameters. The optimal values of 

said parameters are determined in a machine learning stage following the algorithm description 

subsection. In the training stage we use seismic field data obtained from marine seismic gathers, 

which has a large amount of interference between coherent waves, and noise which can be difficult 

to differentiate from signal. After training on marine seismic gathers, SMD provides accurate 

results on other seismic data as well as marine seismic gathers, which allows us to skip the training 

stage in future applications. To confirm the accuracy of SMD, we reproduce synthetic data from 

[17], and compare results of SMD to results of local SVD and SOSVD. The SMD is then tested 
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on real seismic data. While SMD is primarily developed for application to microseismic data 

recorded by DAS, we currently do not have access to such data. Instead, we apply SMD to field 

data obtained from marine seismic gathers [21]. The results of applying SMD to field data are used 

to reconstruct a denoised version of the data as well as to estimate the elastic wave velocity. 

Finally, we discuss possible future applications of SMD and how its results could be used in signal 

detection during seismic monitoring. 

Materials and Methods 

Singular Value Decomposition 

Consider seismic data stored in a matrix 𝑴 ∈ ℝ௡೟,௡ೝ, where nr is the number of the 

receivers recording the data and nt is the number of time samples. An element of the matrix Mi,j 

describes the ground motion at the j-th receiver, and at the i-th time step. Singular value 

decomposition method is a common matrix decomposition method that can be used to express the 

matrix M of rank r as the product of matrices:  

𝑀 = 𝑼௥𝑫௥𝑽௥
்      (1.1)  

where 𝑼௥ = [𝒖ଵ, 𝒖ଶ, … , 𝒖௥] contains the r left singular vectors as columns, the diagonal matrix 

𝑫௥ = 𝑑𝑖𝑎𝑔(𝜆ଵ, 𝜆ଶ, … , 𝜆௥)  contains the r singular values, and 𝑽௥ = [𝒗ଵ, 𝒗ଶ, … , 𝒗௥]  contains the r 

right singular vectors as columns. In traditional SVD, the left singular vectors and right singular 

vectors are normalized. However, multiplying the right singular vector by the singular value, 

allows us to store the singular value in the right singular vector, which slightly reduces the memory 

requirements of SMD results. For that reason, from this point on, the “right singular vector” refers 

to the normalized right singular vector multiplied by the singular value. Equivalent to Equation 

(1.1), SVD can also be used to express the matrix M as a sum of outer products of left singular 
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vectors and right singular vectors weighted by singular values [7]. However, due to the way we 

define the right singular vector in this work, we can express is as just a sum of outer products of 

left singular vectors and right singular vectors:  

𝑴 = ∑ 𝒖௞𝒗௞்௥
௞ୀଵ .     (1.2) 

 While Equation (1.2) may be less common, regarding SVD as sum of outer products is 

helpful for understanding the processes of SMD. In this work, we refer to any column from U as 

a column vector, and any column from V as a row vector. This is because in the outer product 

𝒖௞𝒗௞்
 all columns are multiples of the column vector 𝒖௞ , and all rows are multiples of the row 

vector 𝒗௞்
. 

Singular value decomposition can also be used as a data compression method. We assume 

singular values in Dr decrease from first to last row. When applying SVD to seismic data, the initial 

singular values are much greater than the average singular value in Dr and describe most of the 

signal. By neglecting the small singular values, the singular value decomposition can be used to 

approximate matrix M as  

𝑴 ≈ ∑ 𝒖௞𝒗௞்௥ೞ
௞ୀଵ .     (1.3) 

 

where (rs << r). By using only the first few singular vectors to describe the matrix M we can 

significantly decrease the memory requirement of the seismic data. In some cases, a few pairs of 

singular vectors can very accurately describe the data stored in M. For example, if a wave packet 

arrives at all receivers at the same time, all columns in M will contain the same pattern, and in that 

case, we can represent M using a single outer product (see Figure 1.1). 
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Figure 1.1. (a) A matrix showing a single wave arriving to all receivers at the same time. (b) A 
pair of singular vectors obtained by applying SVD to the matrix. (c) The outer product of the two 
singular vectors which matches the original matrix. 
  

However, if the wave packet arrives at the receivers at different times, as in Figure 1.2, we 
can no longer represent the matrix M using a single outer product. Figure 1.2 shows an example 
of the errors that will occur if reconstruction of the data from a single outer product is attempted. 
Though in practice this would never be done, the example does show that greater data compression 
can be achieved in this framework if signals in data are aligned prior to a decomposition. 

 
Figure 1.2. (a) A matrix showing a wave arriving to the receivers at different times (b) A pair of 
singular vectors obtained by applying SVD to the matrix. (c) The outer product of the pair of 
singular vectors which is very different from the original matrix. 
 
The issues encountered with regular SVD (or PCA) were first addressed with the development of 

a local SVD by Bekara and Van der Baan [16], and later improvements led to the development of 

SOSVD by Gan et al. [17]. In both of these methods SVD is applied to a window Mw from matrix 

M with columns shifted in such a way to maximize the correlation between columns. The shape 

of the window doesn’t change as the columns are shifted. This can be achieved in several ways, 

one of which is simply applying a wrap around condition so that values off the end of a matrix 
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column, for example, are inserted at its beginning (and vice versa). An example of window shifting 

is described in Figure 3. 

 
Figure 1.3. (a) The original data matrix M. (b) A selected window Mw from the original data 
matrix M. (c) The matrix Msw, obtained by shifting the columns of Mw to maximize their 
correlation. 
 

The resulting shifted window (Msw) resembles the matrix from Figure 1.1, and can be 

described by the equation: 

𝑴௦௪ = 𝜒(𝑴௪, 𝒔)      (1.4)  

where χ is the “shift” operator, Mw is the window subset from M and s is the shift vector. The 

“shift” operator takes a matrix and a shift vector as its arguments and shifts the columns of the 

matrix based on the values prescribed by the shift vector. For example, if the value of s for 

column j is n, then we would replace an element Mi,j with the element Mi+n,j . The matrix 

decomposition used in local SVD and SOSVD can also be described with the Equation (1.5): 

𝑴௪ ≈ ∑ 𝜒(𝒖௞𝒗௞்
, −𝒔௞)௞      (1.5) 

where sk is the shift vector corresponding to the k-th pair of left and right singular vectors uk and 

vk. By using Equation (1.5) and plugging in M for Mw, the matrix M from the previous example 

can be presented with a single outer product coupled with a shift vector as shown in Figure 1.4. A 

simple quantitative example that shows the effectiveness of column-shifting with a wave similar 

to the one from Figure 1.4 can be found in the Appendix A. 
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Figure 1.4. (a) A matrix showing a wave arriving to the receivers at different times. (b) The matrix 
being expressed as a pair of singular vectors and a shift vector. (c) The singular vectors and the 
shift vector being used to reconstruct a matrix that matches the original. 
 
Unfortunately, both local SVD and SOSVD seem to fail to accurately denoise seismic data which 

contains interfering waves with different dips. In such scenarios, numerical artifacts appear around 

the area of intersection. We solve this problem by developing shifted-matrix decomposition (SMD) 

which uses a very different process for determining the shift vector. The following subsection will 

give a detailed description of the processes SMD uses to obtain the shift vectors and the pairs of 

singular vectors. 

SMD Algorithm 

The SMD algorithm can be described by the following steps: 

1. Using a geometric mean filter, choose a specific point (row number and column number) 

in the data matrix M at which a displacement (or pressure) from a coherent wave was 

most likely recorded. 
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2. Using cross-correlation, find this wave in as many surrounding columns as possible. For 

each column, the relative row positions of the said wave are recorded in the shift vector.  

3. Shift the columns of M using the shift vector s and record the row vector and the column 

vector. Subtract the shifted outer product of row vector and column vector from matrix M 

and shift the columns of M back to their original positions. 

4. Repeat steps 1–3 until a certain performance criterion is satisfied.  

A visual representation of the algorithm can also be found in Figure 1.5. 

To provide a more in-depth understanding of the algorithm, in the following paragraphs we 

will give a detailed description of each of the four steps. 

 Step 1 

To identify a point in matrix M at which a displacement (or pressure) from a coherent 

wave is likely recorded, we start by applying a geometric mean filter to the data matrix M, to 

obtain the matrix E (Equation (1.6)): 

𝐸௜,௝ = | ∏ 𝑀
ቀ௜ାఋ೔,ೕ(௤)ቁ,(௝ା௤)

௡ಶ
௤ୀି௡ಶ

|
భ

మ೙ಶశభ.    (1.6) 

For a position (i, j), the parameter nE indicates that nE columns left of the position (i, j) and 

nE columns right of the position (i, j) will be used when calculating Ei,j. If a position (i, j) is close 

to the first or the final column, fewer elements are used to calculate the geometric mean Ei,j as to 

avoid stepping outside the matrix boundaries. The row positions of elements used in the geometric 

mean are also constrained in order to always remain within the matrix boundaries. 
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Figure 1.5. A flowchart describing the SMD algorithm. 
 

What makes this filter unique is the choice of elements which are used when calculating 

the geometric mean. From each of the 2nE surrounding columns, only one element is used in the 

geometric mean. The variable δ in Equation (1.6) indicates which element is used in the geometric 

mean from each column. For example, when calculating the value of the geometric mean in 

position (i, j), from column j+q we take the element at row position i+δi,j(q) to be used in the 

geometric mean. The process for determining the said set of elements is described with Figure 1.6. 
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Figure 1.6. The process of determining the set of elements (δi,j) for calculating the geometric mean 
at the position (i, j). The curly braces indicate the set of elements from which the next element will 
be added to the geometric mean. (a) The first element, Mi,j is automatically added to the set δi,j and 
the algorithm searches for the following elements in columns adjacent to column j. (b) The two 
elements from the adjacent columns are added and the search is now on columns j−2 and j+2. (c) 
Two more elements are added to δi,j, from columns j−2 and j+2, and the search continues until δi,j 
is complete. 
 

Consider calculating the geometric mean in order to determine the value of Ei,j. Before 

calculating the geometric mean, we must determine the set of elements used in the mean (determine 

the values of δi,j ). We start from the j-th column, from which we always use the element Mi,j  

(δi,j(0) = 0). Then, we proceed to find which elements to use from adjacent columns (Figure 1.6a). 

Assuming Mi,j is positive, for column j+1, we pick the element between positions (i−m, j+1) and 

(i+m, j+1) which has the highest value. If the element Mi,j were negative, we would pick the lowest 
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value. The parameter m represents the maximum dip of the wave rounded up to the nearest integer. 

The same process is used to determine which element to use from column j−1. For any column 

j+ns where 1 < ns ≤ nE, for the geometric mean, we pick the element between positions (is−1, j+ns) 

and (is+1, j+ns) with the highest value (Figure 1.6b,c). The row number is is determined by 

following a linear trend based on the row position i in column j and the picked row position 

i+δi,j(ns−1) in the column j+ns−1. The same process is used to determine which element to use 

from columns below j − 1. 

The geometric mean filter is designed to imitate the process humans use for recognizing 

coherent waves in the data. When differentiating signal from noise, the distribution of 

displacement (or pressure) along a long range of receivers plays an important role. A weak wave 

might have an amplitude that is even smaller than that of noise in few noisy areas. However, if the 

displacement (or pressure) from the wave is present in a long range of receivers, and its arrival 

time follows a hyperbolic trend, a data reviewer would certainly notice the wave. The goal of the 

geometric mean filter is to assign higher values to such a weak wave than to a noisy area with high 

amplitudes. By testing the geometric mean filter on a large number of examples, we found few 

cases in which the weak wave was not assigned higher values than some areas of the noise. 

However, even in such cases the slight increase in filter output due to the weak wave, followed a 

hyperbolic trend in time on a large range of receivers, while the higher increases due to randomness 

of noise did not. By applying the geometric mean filter again, to the results of the first application 

of the filter, we can bring out all noticeable waves, no matter how weak, to have higher values than 

any area containing only noise. As we have achieved the desired results with the second application 

of the filter, a third application is unnecessary and would only increase computation time. 

Therefore, once all the elements of the matrix E have been calculated, the filter is used again, but 
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this time on the matrix E to obtain the matrix F. When geometric mean filter is used to obtain F, 

the parameter which controls the number of columns used in each geometric mean, nF, is different 

than nE which is used with the filter to obtain E. The optimal values of the parameters nE and nF 

are determined in a machine learning stage of the algorithm. 

An example of the original data matrix M, and of the filter’s result F is given in the Figure 

1.7. 

 
Figure 1.7. (a) The original data matrix M. (b) The filter’s result F with the indicated waveform 
row and waveform column. 
 

Matrix F is designed to produce large values at points at which a displacement (or pressure) 

from a coherent wave was recorded. We select the element in F with the highest value as the most 

likely element in the matrix M that describes a coherent wave. The row and column of the selected 

point designates the position of the coherent wave and are termed respectively the waveform row 

and waveform column, or wr and wc in equations and Figure 1.7. 

Step 2 

In the first step we determine the position (wr and wc) of a specific point, or element, that 

describes a part of a coherent wave. Thus, we know the position of said wave in only one of the 

columns, namely the waveform column (wc). In the second step, we find the row position of its 
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waveform in the remaining columns of M, and in doing so we build the shift vector. In this context, 

the shift vector records the row position of the waveform in each of the columns, relative to the 

position of the waveform row (wr). Therefore, the waveform position in any column j is equal to 

the sum of the waveform row wr and the j-th element of the shift vector s. The location of the 

waveform in the remaining columns is found using a cross-correlation procedure. 

We select a sequence (ψ) from the waveform column that contains all the elements between 

rows wr−w and wr+w (Figure 1.8a,b). The parameter w represents the window size when 

determining the sequence (ψ), and its value is determined in the machine learning stage. The 

sequence of elements ψ is supposed to represent the waveform, or the greater part of it, and we 

refer to it as the waveform sequence. The position of the waveform in other columns is then 

determined by finding in each column a sequence of elements that has the highest correlation with 

the waveform sequence (Figure 1.8c). 

 
Figure 1.8.  (a) Zoomed in area around position (wr, wc) from matrix M. (b) The selected 
waveform sequence ψ. (c) The location of ψ in the surrounding columns. 
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We start from the columns adjacent to the waveform column wc. The waveform position 

in columns adjacent to wc must be between wr−m and wr+m, where m is the maximum dip rounded 

up to the nearest integer. To reduce computation time, and to make sure to follow the same wave 

throughout all the columns, in adjacent columns we search for the ψ sequence from row wr−m−w 

to row wr+m+w. Initially, the range of rows in which we search for the ψ sequence is entirely 

dependent on the waveform position in the closest column. For any column position j > wc, we 

search for the ψ sequence from row wr+sj−1−m−w to row wr+sj−1+m+w. 

Once we have determined the waveform position in columns ranging from position wc−2l 

to position wc+2l, we narrow the search window for the following columns. The value of the 

parameter l is determined in the machine learning stage. At this point, for a column j>wc+2l we 

search for the waveform sequence from row ie−1−w to ie+1+w. 

The row position ie in column j is determined by following the parabolic trend of waveform 

positions in columns j−1, j−1−l, and j−1−2l. Fitting parabolas to shift vectors will also be used 

in the Discussion section, for estimating the velocities of the recorded waves. While arrival times 

are usually modeled with a hyperbola, we use a parabola because it requires fewer points on the 

shift vector to find its coefficients. Since most parts of the hyperbola can locally be fairly 

accurately described with a parabola, our parabolic estimates are sufficiently accurate. Narrowing 

the search window allows us to estimate the waveform position in each column more quickly and 

to make estimating waveform position more resilient to perturbations from noise and other waves. 

The optimal values for parameters w and l are determined in the machine learning stage. Moreover, 

if the maximum correlation with the waveform sequence in a certain column is below 0 the step 

terminates, as at that point we can be certain that the waveform is no longer present. 

 



 

20 
 
 

 

Step 3 

Once the shift vector and all the waveform positions are determined, the shift vector and 

shift operator are used to shift the columns of the data matrix M so that the wave appears in the 

same set of rows in each column. At that point, the waveform is similar to the one shown in Figure 

1.1, and it can be very accurately described as an outer product between two singular vectors. The 

number of rows storing the waveform pattern is much smaller than the total number of rows in M. 

Therefore, most of the elements in the column vector are not describing the waveform, hence are 

not relevant, and can be ignored. The length of the column vector need not be as long as columns 

in M, so it is reduced such that its first element specifies the number of zeros before the waveform 

and the last element specifies the number of zeros after the waveform. For example, the waveform 

row (wr) would then be equal to the sum of the first element of the column vector (u1) and half of 

the length of the recorded waveform (lw). The optimal length of the waveform that is recorded in 

the column vector (lw) (i.e., the number of elements in the column vector excluding the first and 

the last element), is determined in the machine learning stage. The row vectors and shift vectors 

are reduced in a similar manner to the column vector since the waveform is often contained in only 

a subset of columns of M, i.e., the wave packet may not be recorded at a subset of receiver 

locations. The effect of these changes is to decrease the number of elements required to represent 

M, thus decreasing the memory requirement of the SMD algorithm 

Once the two singular vectors (the column vector u and the row vector v) are extracted, 

their outer product is subtracted from the matrix M. The columns of M are also shifted back to 

their original locations. The new matrix Mnew can be described with the equation:  

𝑴௡௘௪ = 𝑀 − 𝜒(𝒖𝒗், −𝒔).     (1.7) 
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As a result, the majority of the located wave disappears which allows the algorithm to focus 

on a potential second wave present in M. At the end of this step of the algorithm, a wave has been 

subtracted from matrix M and added to the compressed data as a pair of singular vectors and a 

corresponding shift vector. 

Step 4 

The three steps described above are repeated until a certain performance criterion is met. 

Herein we define that criterion in terms of memory. Once the memory usage of the compressed 

data reaches 20% of the original data (80% compression), the SMD algorithm terminates. 

Specifically, once the number of elements used to describe all the shift vectors and singular vectors 

is equal to 20% of the number of elements in the matrix describing the raw seismic data, the 

performance criterion is met and the SMD algorithm terminates. 

Machine Learning 

Training Data and Scoring the Model 

In the algorithm description we have introduced five parameters that influence the results 

of SMD (shifted-matrix decomposition). The five parameters are nE and nF from Step 1, w and l 

from Step 2, and lw from Step 3. However, we do not have an intuitive understanding of how the 

results of SMD are affected by the changes to the parameters, and we have no analytical solutions 

for optimal values for the parameters. For that reason, we use supervised machine learning to find 

a set of parameters that provide consistently good SMD results. Once the parameters are optimized 

in the training stage, SMD can be applied to new seismic data without the need to run the training 

stage again. Moreover, the parameter m, which also affects the results of SMD, is predetermined 

and therefore cannot be optimized. 
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The first step is to define what is meant by a good SMD output. We desire the matrix 

reconstructed from SMD to closely resemble the original seismogram matrix M. Specifically, with 

a predefined compression rate, we want to capture a big portion of the original data, and we want 

as little noise as possible to be recorded in the SMD results. We refer to the matrix reconstructed 

from decomposed data as Mr. When we measured the resemblance between M and Mr as an L1 or 

L2 norm of the error M−Mr, we obtained the smallest error norms when the SMD captured a lot of 

the noise with a few pairs of singular vectors and shift vectors. For this reason, rather than 

minimizing a norm of the error, we decided to maximize the dot product of matrices M and Mr:  

𝑴 · 𝑴௥ = ∑ 𝑀௜,௝𝑚௥
௜,௝௜,௝ .    (1.8) 

The dot product was more sensitive to SMD results representing a weak coherent wave or 

a small remaining part of a large wave than it was to SMD results representing primarily noise. 

We believe this is because the dot product of the two matrices is proportional to their correlation. 

Recording a large area of noise with a pair of singular vectors and a shift vector could decrease the 

error M−Mr by a fair amount. However, because of the randomness of noise, the reconstructed 

data will still have weak correlation with the original data in the noisy area. Recording any area 

with coherent waves with a pair of singular vectors and a shift vector usually provides high 

correlation between the original and the reconstructed data in said area. 

Thus, we search for a set of parameters which maximize the dot product M · Mr. For 

training data, we use recordings of reflected wave arrivals from 5 different shotgathers from marine 

seismic gathers. We use seismic field data obtained from marine seismic gathers because the data 

contain a large number of coherent waves with lots of interference, and noise with high coherence 

which can be difficult to differentiate from signal. To reduce the time spent in the training stage, 

from each shot-gather we only use 2 s recordings containing reflected waves and the preceding 
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noise recorded by the first 200 receivers. More details on the field data will be provided in the 

following section. The five shot-gathers are labeled as M1 − M5 and data reconstructed from 

decomposition of the five seismograms as Mr,1 − Mr,5. Thus, the overall quality of SMD with a 

given set of parameters would be quantified as the SMD score (ζ):  

ζ = ∑ 𝑴௞ · 𝑴௥,௞ହ
௞ୀଵ .     (1.9) 

The SMD score is only used in training stage to find an optimal set of parameters, and it 

will not be present in the following sections. 

Derivative Free Optimization 

There is no analytical formula directly relating the SMD score (Equation (1.9)) to the five 

input parameters. Therefore, we cannot use a gradient analysis to find optimal values for these 

parameters. Instead we use a derivative-free numerical optimization method. Specifically, we will 

use a pattern search. The five parameters to be optimized can only be natural numbers. Thus, the 

five parameters can be described by an element in ℕହ. In this optimization, we take a subset Ω of 

ℕହ, to be the set of all the reasonable values of the five parameters. Specifically, we seek an 

element in Ω for which SMD score has the highest value. This is done by performing a pattern 

search which takes the current position in Ω and checks adjacent points to see if any of them yield 

a higher SMD score. An adjacent position is defined as a position that can be reached by changing 

only one of the five parameters by the minimum amount. If the adjacent element with the highest 

SMD score has a higher score than that of the current position, the optimizing position is moved 

to the adjacent element. This is done until a local maximum for the SMD score is found. To 

increase the likelihood of finding the global maximum, the pattern search is repeated multiple 

times with a random starting location. 
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Application 

Once the training stage is finished, SMD can be applied to a new seismic data set even if 

it is not from a marine gather. Without going through the training stage again, SMD was 

successfully applied to new marine gathers, synthetic data from [17], and to field data collected by 

linearly distributed geophones. However, the discussions in the following sections are focused on 

data from marine seismic gathers, rather than data gathered by geophones. Because marine seismic 

gathers were obtained from a much larger number of receivers and contain greater volumes of 

data, they provide a more realistic example of applications of SMD. 

Even when skipping the training stage, the parameters still need to be adjusted before SMD 

is applied to new seismic data, based on the dominant frequency and the maximum slope of the 

waves in the new dataset. Specifically, parameters w from Step 2 and lw from Step 3 need to scale 

proportionally to the period of the dominant frequency multiplied by the sampling rate. Moreover, 

parameters nE and nF from Step 1 and l from Step 2 should scale proportionally to the period of 

the dominant frequency multiplied by the sampling rate and divided by the maximum slope of 

arriving waves. Therefore, when applying SMD to a seismic data set, one should also include 

information about the dominant frequency in the data set, the sampling rate of the receivers, and 

the maximum slope of the arriving waves. Knowing these values allows the user to apply SMD to 

new seismic data sets without going through the training stage. The flowchart in Figure 1.9 

provides a visual description of how SMD is applied to a set of files containing seismic data. 
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Figure 1.9. Flowchart describing the process of applying SMD to seismic data. The fourth step 
from above is described by the flowchart presented in Figure 1.5. 

 

Results 

Once the SMD parameters have been optimized in the machine learning stage, its 

performance is tested on three datasets. The first one is a synthetic dataset similar to one from [17]. 

Structure-oriented SVD [17] was tested on several datasets and while it was successful at reducing 

noise in all examples, it produced numerical artifacts in one of them. In this work we reproduce 

that challenging dataset in order to demonstrate the improvements achieved with SMD. The other 

synthetic data test cases from [17] contain fewer coherent waves and don’t show interference 

between waves of different slopes and are not as difficult for reliable compression and analysis. 

For that reason, the second and third data sets on which SMD is tested are from field data obtained 

during marine seismic gathers. The second dataset has many, interfering, strong arrivals which can 
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together create a complicated signal. The third dataset has fewer arrivals, but the coherent waves 

are much weaker and difficult to differentiate from noise. 

Synthetic Data 

Figure 1.10 shows application of local SVD and SOSVD on the synthetic dataset from 

[17], while Figure 1.11 shows the application of SMD to a very similar data set. To create the 

synthetic data in Figure 1.11 we recreated the signal observed in Figure 1.10 and added random 

noise to it. 

 
Figure 1.10. (a) Synthetic data showing several wave arrivals without noise. (b) The noisy data, 
created by adding noise to the synthetic data. (c) The noisy data filtered using local SVD. (d) The 
noisy data filtered with SOSVD. The blue rectangles highlight areas of interest in which local SVD 
and SOSVD produce numerical artifacts. This figure was modified from [17]. 
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In Figure 1.10 we see that both local SVD and SOSVD are able to remove most of the 

noise. However, both local SVD and SOSVD struggle to properly reconstruct the signal in the area 

highlighted by the blue rectangle in Figure 1.10c,b. The highlighted area contains two waves of 

different slopes intersecting with each other. 

Figure 1.11 shows results of applying SMD to the synthetic data set twice, with 95% 

compression (Figure 1.11c) and 80% compression (Figure 1.11d). In both SMD applications the 

coherent waves were reconstructed perfectly. We can see that there are no numerical artifacts in 

the area highlighted by the blue rectangle in Figure 1.11c,b, which contains intersecting waves 

with different slopes. 

 
Figure 1.11. (a) Synthetic data showing several wave arrivals without noise. (b) The noisy data, 
created by adding noise to the synthetic data. (c) Data obtained by applying SMD to the noisy data 
with 95% compression. (d) Data obtained by applying SMD to the noisy data with 80% 
compression. The blue rectangles highlight areas of interest in which local SVD and SOSVD 
produce numerical artifacts. 
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While we can see significant noise reduction, we could not find specific information in 

[17] describing the amount of noise present in synthetic data in Figure 1.10. However, we can 

estimate the signal-to-noise ratio in the synthetic data on which SMD is tested. By measuring the 

root mean square value from all receivers in time increment range from 300 to 320, where only 

noise is present, we can estimate the amplitude of the noise. To estimate the amplitude of the 

signal, we measure the root mean square value from all receivers in time increment range from 

340 to 360, from the data presented in Figure 1.11a, which contains only pure signal. The signal-

to-noise (ρ) ratio is therefore calculated with the Equation (1.10): 

ρ =
ට∑ ∑ ெ

೔,ೕ
೛ మ

ೕ
೔సయలబ
೔సయరబ

ට∑ ∑ ெ೔,ೕ
೙ మ

ೕ
೔సయ
೔సయబ

     (1.10) 

where Mp represents the data containing only pure signal presented in Figure 1.11a, and Mn 

represents the data from Figure 1.11b,c, or d, which contains some amount of noise. 

The signal-to-noise ratios in the original data, data reconstructed from SMD results after 

80% compression, and after 95% compression were 1.9, 4.7, and 12.3, respectively. Notice that 

the signal-to-noise ratio is much larger when SMD is applied with 95% compression than when it 

is applied with 80% compression. This is because there are only a few coherent waves present in 

the data. These coherent waves are represented with first several singular vectors and shift vectors, 

while the following singular vectors and shift vectors are describing noise. However, SMD results 

represent noise a lot less efficiently than coherent waves, and the majority of the noise is still not 

recorded when SMD is applied with 80% compression. In conclusion, the SMD application with 

80% reduction in memory requirements picked up some of the noise, while SMD application with 

95% data compression ignored the noise almost completely. 
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Field Data 

Finally, the SMD algorithm is tested on field data, collected between January and March 

2016 during the CREST expedition, MGL1601, aboard the R/V Marcus G. Langseth. Pressure 

waves are generated by a tuned array of 36 air guns, towed at a depth of 6 m. The resulting acoustic 

waves are recorded using a 12,587.5 m hydrophone streamer, towed at the depth of 8 to 12 m, and 

carrying 1008 receivers. The receivers are spaced by 12.5 m, each of them recording pressure once 

every 4 ms. The maximum offset between two adjacent columns is a little greater than two rows, 

so we round it up to three rows. Further information regarding data acquisition can be found in 

[21]. Seismic data are also available at the NSF-sponsored Academic Seismic Portal hosted by the 

University of Texas Institute for Geophysics and can be accessed at https://www.marine-

geo.org/tools/search/Files. php?data_set_uid=23597 (retrieved on 31 March 2021). 

Unfortunately, when being applied to real seismic data such as in Figures 1.12 and 1.13 

SMD with 95% compression cannot reconstruct the arriving waves properly. Due to multiple 

reflections and dispersion, the number of coherent waves is much larger in marine seismic gathers 

than in synthetic data. Furthermore, the noise has high coherence such that it can closely resemble 

wave arrivals. Using SMD with 80% compression ensures that the arriving waves will be properly 

reconstructed while also ensuring the noise is drastically reduced. 
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Figure 1.12. (a) The original data from ocean seismic gathers with strong reflections. (b) The data 
reconstructed after applying 80% compression with SMD to the original data. Areas highlighted 
in red are enlarged 3 times along x-axis and 6 times along y-axis. 
 

The first data set (Figure 1.12) contains strong reflections arriving far after the direct wave 

which can be seen at early times on the few receivers close to the source. In this test, SMD was 

able to identify prominent waveform-related features while almost completely ignoring noise-

dominated sections of data. The Figure 1.12 highlights in red an enlarged portion of the data (3 

times along x-axis and 6 times along y-axis) in which we can see the first arriving reflections. In 

the original data (Figure 1.12a), at the lower half of the enlarged window we can also see the 

preceding noise. However, once the data is processed with SMD (Figure 1.12b) the preceding 
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noise is no longer present. A principal drawback of SMD is that in some scenarios it will also 

ignore weaker incoming waves and fail to differentiate them from noise. 

 
Figure 1.13. (a) The original data from ocean seismic gathers with weak reflections. (b) The data 
reconstructed after applying 80% compression with SMD to the original data. Areas highlighted 
in red are enlarged (2 times along the x- and y-axes). The reflected waves are circled with purple 
lines, direct wave with green lines, and the preceding noise with black lines. 
 

The second data set (Figure 1.13) is from a different shot-gather in which we can observe 

weak reflections arriving closely after the much stronger direct wave. In Figure 1.13 the reflections 

are circled with purple lines, direct wave with green lines, and the preceding noise with black lines. 
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Red lines are used to highlight and enlarge (2 times along the x- and y-axes) an example of noise 

interfering with the reflected waves. The reflections are hard to differentiate from the more 

noticeable direct waves and because of their small amplitude, they are noticeably distorted by 

noise. In this test, SMD identified and properly reconstructed both direct waves and reflected 

waves, while reducing noise in all parts of the data. The preceding noise (circled in black) is 

noticeably weaker in the data reconstructed from SMD results (Figure 1.13b) than in the original 

data (Figure 1.13a). Furthermore, the enlarged window (circled in red) in the original data (Figure 

1.13a) shows reflected waves distorted by noise. However, in the data reconstructed from SMD 

results (Figure 1.13b), the enlarged window (circled in red) shows a more clear, denoised version 

of the reflected waves. Because SMD reduces the noise everywhere in the data, the weak reflected 

waves can be seen more clearly in the data reconstructed from SMD results (Figure 1.13b). 

The examples in Figures 1.12 and 1.13 show subsets of the entire data files which are too 

big to be presented in a single figure. However, the large data size provides a good opportunity for 

testing the efficiency of SMD. A single data file, which contains 12 s of recorded data, has 1008 

traces, each trace containing 3000 pressure samples. Processing this amount of data on a laptop 

with an i5-6200U CPU and 8 GB of RAM, without parallelization, takes 4.2 s on average. 

Therefore, SMD is sufficiently fast when processing marine seismic gathers in real time. However, 

distributed acoustic sensing produces produces greater volumes of data than a long line of receivers 

during marine gathers. 

We propose two solutions as we prepare SMD to future application on seismic data 

obtained by DAS. First, the current SMD algorithm is optimized to provide a best representation 

of the coherent waves, for a predefined memory requirement. To make SMD more applicable to 

new developments in the data acquisition (DAS), we could run a new training stage that considers 
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computation time as well as the quality of the results. This could create a new version of SMD that 

is more applicable to data obtained by DAS. Second is the introduction of signal detection which 

we will discuss in the following section. The large data file that requires 4.2 s of computation time 

is heavily populated with signal. This is not the case during microseismic monitoring during which 

most of the files contain only noise. Running an initial test to check for the presence of coherent 

waves, prior to fully processing the data with SMD, may significantly reduce the time spent on 

processing data during seismic monitoring. 

 

Discussion 

In addition to seismic data compression and noise reduction, SMD also provides a new 

method of seismic data analysis. Rather than a list of displacements distributed in space and time 

to describe incoming waves, we have pairs of singular vectors paired with shift vectors. In an ideal 

scenario, for each arriving wave the column vector represents the waveform, the row vector 

represents the amplitudes at different receiver locations and the shift vector represents relative 

arrival times. Even though the ideal case is rarely achieved, we believe that the results of SMD 

provide an excellent advance in the realm of seismic analysis especially with its application of 

machine learning. With SMD, identifying features that can be used for building models is 

facilitated when noise-reduced data is represented in the SMD-compressed format. 

The application of machine learning to data compression was explored in [24], which 

applied SVD to synthetic data and developed a model for estimating source location and 

orientation. However, SMD may provide greater opportunities for machine learning application. 

It is instructive to provide an example of how the SMD algorithm can help estimate 

physical properties such as elastic wave velocities. To this end, herein we predict the average 
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acoustic velocity (α) in our model (seawater) by analyzing the results of the SMD algorithm. 

Specifically, we use curvature of the shift vectors, and the zero offset time to estimate the average 

velocity of the reflected waves. Since we have a controlled source, a wave’s zero offset time is 

simply it’s row position in the first column of the data matrix multiplied by the time difference 

between consecutive recordings (td). Since the row position of a wave can be determined from the 

shift vector and the first element of the column vector, our wave velocity estimation is obtained 

solely from the data stored in SMD results. 

To derive the formula for wave velocity we must make several assumptions about our 

surroundings. First, we assume that the reflecting surface (the ocean floor) is horizontal, and that 

the depth of the ocean floor (zf ) is significantly larger than the horizontal distance from source to 

the receiver (x ≪ zf ). This gives us the expression for the total distance travel by the reflected 

waves (d): 

𝑑 ≈ 2𝑧௙ +
௫మ

ସ௭೑
.      (1.11) 

Since we are considering the average acoustic velocity (α) in our model, we can rewrite the 

expression (1.11) in terms of the reflected wave travel-time (T):  

𝑇 ≈ 2𝑧௙𝛼 +
௫మ

ସ௭೑ఈ
.     (1.12) 

The zero-offset time T0 is defined as travel-time T at zero horizontal distance (x = 0):  

𝑇଴ =
ଶ௭೑

ఈ
.     (1.13) 

Taking the second derivative of the expression (1.12) with respect to horizontal position x 

gives:  

డమ்

డ௫మ
≈

ଵ

ଶ௭೑ఈ
.     (1.14) 

Using expression (1.13) to substitute (2zf) with (T0α) in expression (1.14) gives: 
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𝛼 ≈ (
డమ்

డ௫మ
𝑇଴)

షభ

మ .     (1.15) 

Expression (1.15) can be used to calculate the acoustic velocity if we can express both 
డమ்

డ௫మ
 

and T0 in terms of SMD results. 

In subsection “SMD Algorithm, Step 2” it is explained that the row position (pj) of a wave 

in any column j is equal to the sum of the j-th element of the shift vector (s) and the waveform row 

(wr):  

𝑝௝ = 𝑠௝ + 𝑤௥.     (1.16) 

In subsection “SMD Algorithm, Step 3” it is explained that the waveform row (wr) can be 

obtained from the first element of the column vector (u) and the predetermined length of the 

recorded waveform (lw): 

𝑤௥ = 𝑢ଵ +
௟ೢିଵ

ଶ
.    (1.17) 

Using expressions (1.16) and (1.17), the zero-offset time (T0) can be described with the 

row position of the wave in the first column (p1) multiplied by the time difference between 

consecutive recordings (td): 

𝑇଴ = 𝑡ௗ ቀ𝑠ଵ + 𝑢ଵ +
௟ೢିଵ

ଶ
ቁ.    (1.18) 

The expression (1.18) will be used to obtain the zero-offset time from SMD results. If we 

assume that the relative arrival times were accurately recorded by the shift vector, we can make 

the following substitution:  

డమ்

డ௫మ
=

௦ᇱᇱ௧೏

௫೏
మ

     (1.19) 

where xd is the distance between adjacent receivers. In the expression (1.19), s’’ is the second 

derivative of an element in the shift vector s with respect to the position (j) of the element in the 

shift vector. 
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The value of s’’ is determined by fitting a parabola to first nr elements of the shift vector. 

The parameter nr need not have an exact value. While we want to use enough elements from the 

shift vector to confidently fit a parabola, we also want to only use data from the receivers close to 

the source in order to follow the (x ≪ zf ) condition. Therefore, the parameter nr is set to 50. Once 

we fit the parabola, the value of s’’ is estimated to be the quadratic coefficient c2, multiplied by 2: 

𝑗𝜖[1, 𝑛௥] ∶  𝑠௝ ≈ 𝑐଴ + 𝑐ଵ𝑗 + 𝑐ଶ𝑗ଶ,    𝑠ᇱᇱ = 2𝑐ଶ.   (1.20) 

By plugging the expressions (1.18)–(1.20) into expression (1.15) we estimate the acoustic 

velocity. However, the values of a shift vector can be affected by interfering waves, or noise. To 

minimize the error from those sources, we estimate the velocity based on the first ns pairs of shift 

vectors and column vectors. Similar to nr, the ns parameter does not need to be set to any specific 

value. In this example, the parameter ns is set to 5. The average acoustic velocity α is estimated as 

the weighted average of the results from the first ns extracted pairs of a shift vector and a column 

vector. Each term is weighted by the quality of the parabolic fit, which is equal to the inverse of 

the error norm e: 

𝑠௞ → {𝑐଴
௞ , 𝑐ଵ

௞ , 𝑐ଶ
௞}, 

𝑒௞ = ෍ ቀ𝑠௝
௞ − ൫𝑐଴

௞ + 𝑐ଵ
௞𝑗 + 𝑐ଶ

௞𝑗ଶ൯ቁ
ଶ

௡ೝ
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The formula for α, defined in expression (1.21), was applied to 20 marine field data files, 

each recording a seismic response from a unique and controlled seismic source. For each file, we 
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used the formula from expression (1.21) to estimate the velocity. The average estimated velocity 

was 1601 m/s and the standard deviation among the results was 236 m/s . Considering the ocean 

depth being about 3 km, the correct average acoustic velocity was likely about 1500 m/s . If we 

assume the correct average wave velocity experienced by the reflected waves was 1500 m/s , then 

the average and the median error from the 20 velocity estimates were 12.1% and 8.3%, 

respectively. 

The experiment in this subsection proves that there is a strong correlation between the shift 

vector and relative arrival times of the wave at different receivers. We were able to use that 

correlation to estimate the velocity of the waves without relying on any information about the 

medium through which the waves were traveling. We believe that there is also a strong correlation 

between the column vector and the waveform, as well as between the row vector and the relative 

amplitudes of the waveform at different receivers. However, proving these correlations will require 

further testing. 

In this example, SMD was applied to seismic data from a controlled source. In such cases 

we can always be certain that there are coherent waves present. However, we are planning a wide 

range of applications for SMD. During microseismic monitoring, often recorded by DAS, we 

might want to analyze coherent waves that are not coming from controlled sources. Therefore, 

when applying SMD to data from microseismic monitoring we do not know in advance whether 

the data contains signals of interest. For that reason, we developed a method for recognizing 

coherent signal in noisy data, that also relies solely on the results from SMD. 

We created a method that can differentiate between noisy data and data containing signal, 

by measuring the curvature in the first several shift vectors. Applying SMD to noisy data without 

coherent waves returns a set of completely unrelated shift vectors. On the other hand, applying 
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SMD to data containing coherent waves, usually coming from the same source, returns a set of 

shift vectors most of which have similar curvatures. Therefore, the method differentiates between 

noisy data and data containing coherent waves, by calculating the standard deviation among the 

curvatures from the first 10 extracted shift vectors. To test this method, we applied SMD separately 

to two subsets of data from each of the 20 previously mentioned data files. The first subset contains 

only the recordings of noise, and the second subset contains recordings of both the coherent waves 

and the preceding noise (Figure 1.14). 

 
Figure 1.14. Two subsets from a marine field data file. The first subset contains only noise, and 
the second subset contains both a part of the coherent waves and some of the preceding noise. 

 
For each subset, we use expression (1.20) to estimate the curvatures of the first 10 extracted 

shift vectors and then we compute the standard deviation of the 10 curvature values. The results 

are presented in Figure 1.15, in which the standard deviation for each subset without coherent 

waves is presented in blue, and the standard deviation for each subset containing coherent waves 

is presented in red. Due to shift vector curvature having random values when SMD results 
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represent noise, the standard deviation among shift vector curvatures should be greater for the data 

subsets which contain only noise. As can be seen in Figure 1.15, the standard deviation among 

shift vectors is consistently lower for subsets containing coherent waves, which are presented in 

red. This confirms that we can differentiate between data containing only noise and data containing 

signal, by using our described method. 

 
Figure 1.15. Standard deviation of shift vector curvature from each of the 20 data files. The 
results from subsets containing only noise are presented in blue and the results from subsets 

containing parts of coherent waves are presented in red. 
 

It is important to emphasize that this signal detection method does not contain any 

information regarding the amplitude of the waves. It is entirely dependent on the curvature of the 

recorded shift vectors, which is a unique property. This means that this method, while accurate, 

can also be used to complement other signal detection methods, all of which rely on other 

properties in seismic data (such as STA/LTA for example, which relies on the amplitudes of the 

waves). Furthermore, this signal detection method only requires the first 10 shift vectors, which 

can be acquired very quickly compared to the to the processing time of the SMD. Therefore, when 

applying SMD to data obtained during seismic monitoring, we suggest first running a quick version 
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of SMD that only extracts the first 10 shift vectors in order to run signal detection. If the presence 

of coherent waves is confirmed, SMD may continue to fully process the data. 

The analysis of SMD results that was conducted in this subsection was not based on 

machine learning but instead on our understanding of the correlations between compressed data 

and attributes of the recorded waves. In the future, those strong correlations will be used with 

machine learning to train algorithms to accurately infer various properties of the source and the 

surrounding velocity model directly from compressed data. Additionally, application of data from 

marine surveys is difficult because of large amounts of interference between arriving waves. Thus, 

the SMD method may be more effective in different circumstances, such as in unconventional 

reservoirs monitored by distributed acoustic sensing. 

Thus far, we only considered application of SMD to two-dimensional seismic data, 

obtained by a single line of receivers. However, receivers may often be distributed over an area, 

in a large number of lines. In such case, SMD may still be applied individually, to the data collected 

from each line. However, there may be a lot of redundancy between SMD results from each of the 

lines of receivers. Similar redundancies can also occur by applying SMD to multiple files from 

different times, obtained by a same set of receivers. In future work, we will take advantage of the 

fact that SMD results may be similar for batches of data collected from different receivers or during 

different times. Dictionary learning could be applied to SMD results to further compress the data, 

although we cannot yet recommend a method for learning the dictionary. Future work will 

therefore likely include further compression by applying dictionary learning to SMD results from 

multiple data files or multiple receiver lines. 
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Conclusions 

Shifted-matrix decomposition is a powerful tool that can simultaneously compress and 

improve seismic data. This is done by converting the seismic data from a matrix into a set of pairs 

of singular vectors coupled with shift vectors which require less memory to store the seismic data. 

Furthermore, reconstructing the seismic data from compression results, creates a denoised version 

of the original data. Shifted-matrix decomposition provides an improvement to some of the 

existing denoising techniques such as SOSVD by avoiding numerical artifacts in areas with 

multiple intersecting waves of different slopes. This allows us to apply SMD to complicated field 

data with a large number of arriving waves and still achieve 80% compression. 

When applied to synthetic data and ocean gathers it was able to boost coherent signal and 

erase the majority of the noise. In synthetic data with signal-to-noise ratio of 1.9, it was able to 

increase the ratio to 4.7 in the case of 80% compression and to 12.3 in the case of 95% 

compression. However, the excellent result achieved with 95% compression in the synthetic data 

is an artifact of the lack of coherent noise and the small number of coherent waves. Due to noise 

coherence and more complicated overlap of coherent waves, we recommend applying 80% 

compression to examples of field data in order to accurately represent the signal of interest. In field 

data, SMD was able to reduce the noise in areas preceding the signal as well as in areas containing 

coherent waves. As a results, weak waves that were difficult to notice in the original data, can be 

seen more clearly in the data reconstructed from SMD results. The only drawbacks are that in some 

scenarios SMD may fail to boost weaker signals and it is not meant to be applied to seismic data 

obtained from a small number of receivers. 

There is a good correlation between the physical properties such as elastic wave velocity 

and the results of the SMD. As an example, the average wave velocity in the medium through 
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which the waves propagate (seawater) was roughly estimated by analyzing the shift vector 

curvature. In the future, we will use machine learning to build models that infer with high accuracy 

the properties of the source and the velocity model, directly from the SMD results. Results of SMD 

can also be used for other analysis, such as signal detection. By analyzing only the first several 

shift vectors, we can check for the presence of coherent waves. Because it requires such a small 

amount of data, this technique can be executed very quickly by taking only the initial results of 

SMD. We recommend using it during microseismic monitoring before fully processing the data 

with SMD. 
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CHAPTER III 

 EVENT DETECTION IN DAS DATA BASED ON SHIFTED-MATRIX DECOMPOSITION 

 

Introduction 

Increasing global energy demand and the push towards decarbonization due to growing 

concerns over climate change have led to an intensification of renewable energy development as 

a means to reduce emissions in the energy sector [1,2,3]. Geothermal energy, while not as widely 

used as other renewables such as solar [4] and wind [5], may play an important role in the future 

of sustainable energy sources. Geothermal energy can provide a consistent power output that is 

independent of weather conditions [6]. Thus, adding a geothermal power source brings consistency 

to a future power grid that is heavily reliant on renewable energy. 

In order to convert geothermal energy into electricity, the construction of enhanced 

geothermal system (EGS) infrastructure [7] is necessary. The development of EGS infrastructure 

starts by drilling an injection well into a geothermal source of energy. Then, pressurized water is 

injected into the hot rock to create a fractured volume. After a sufficient number of fractures have 

opened, production wells are installed. Once the injection well and production wells are 

established, EGS heats up water by pushing it into the hot subsurface through an injection well 

and then extracts it through a production well. The hot water can then be used for either heating or 

electricity production. 

The main challenges with the construction of EGS concern the subsurface fracture network. 

Specifically, for EGS to be successful, the injection well must create a fracture network of 

sufficiently large volume to pump out a substantial amount of heat. Second, the fractures must be 

connected to the production wells. The latter should be placed such that the water flows from the 
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injection well, through the fractures, to the production wells. Finally, the risk of induced seismicity 

during the development of the fracture network must be carefully managed. 

One way to tackle these challenges is through microseismic event monitoring. By 

analyzing seismic data and tracking fracture propagation paths one can create a highly accurate 

and dynamic image of the subsurface. Such imagery provides important information for 

determining when the reservoir is adequately developed and where to place production wells. 

Knowledge of the fracture geometry also helps to estimate the risk of induced seismicity. 

Acquisition of seismic data is generally performed with geophones. However, recent 

developments in reservoir monitoring utilize fiber optic cables to record both low-frequency strain 

and higher-frequency seismic waves in a technique called distributed acoustic sensing (DAS) [8]. 

DAS provides a unique view of the reservoir by recording strain rate data with high temporal and 

dense spatial sampling rates. Higher recording rates and abundant receiver positions increase the 

amount of microseismic activity that is recorded during reservoir monitoring. 

Compared to downhole geophones, DAS fiber returns a smaller signal to noise ratio and 

can measure strain in only one direction, that of the borehole axis, unless deployed in a spiral 

around the well, which is a difficult operation. However, DAS fiber is more heat- and pressure-

resistant than geophones and can be deployed closer to the geothermal energy source. Furthermore, 

DAS fiber can be deployed along-side any well, such as an injection well, eliminating the need for 

a dedicated monitoring well. Therefore, DAS provides a cost-effective alternative to downhole 

geophone deployment [9]. The problem of locating events while using DAS (because DAS usually 

records strain in only one direction) can be somewhat overcome by combining DAS data with 

surface geophone data [10], or by using multiple DAS cables. 
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It is important to note that the use of DAS data brings new challenges. Due to the extremely 

large amount of data captured by DAS, it can be difficult to process all the data in real time, a 

necessity for monitoring the propagation of fractures during hydraulic stimulation operations. 

Here, I introduce a highly efficient algorithm that uses shifted-matrix decomposition (SMD) to 

detect seismic events in DAS data. Shifted-matrix decomposition is a data decomposition method 

specifically developed for seismic data gathered by a large number of receivers [11]. The SMD-

based detection algorithm is herein applied to DAS data gathered at the FORGE geothermal site 

in Utah [12]. 

Methodology 

As stated above, I will use a data decomposition method (SMD) to detect seismic events 

in DAS data. In this section, I provide a description of the SMD output, and how it is used to 

differentiate between files containing seismic signal and those containing only noise. The 

following is a quick review of SMD [11]. 

The input to the shifted-matrix decomposition algorithm is a matrix containing seismic 

data. The row position indicates time, and the column position indicates receiver number. The 

SMD output is a series of sets, each set comprising three vectors. Two of the three vectors are 

referred to as basis vectors, (also previously refer to as singular vectors),  and the third one is 

referred to as a shift vector. Similar to other data decomposition methods, the original data can be 

approximately reconstructed by summing the outer-products of the pairs of basis vectors. 

However, in SMD each outer-product has its columns shifted, by the amount specified in the shift 

vector, before being added to the sum. Equation 2.1 describes how the original seismic-data matrix 

M can be reconstructed from pairs of basis vectors (ai, bi) and corresponding shift vectors si: 

𝑴 ≈ ∑ χ(𝒂௜𝒃௜்
, 𝒔௜)௜ .     (2.1) 
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In the equation above, χ is an operator that takes a matrix (aibiT) as its first argument and 

shifts the columns of said matrix up or down based on the values in the shift vector si. 

The result of including a shift vector in the data decomposition process is that the output 

more accurately captures coherent seismic waves. In an ideal scenario, each seismic wave 

arriving at the fiber is perfectly recorded with a single pair of basis vectors and a corresponding 

shift. The first basis vector captures the waveform, the second basis vector captures the 

amplitude of the wave at each receiver, and the shift vector captures the arrival time of the wave 

at each receiver. For this reason, I refer to the first basis vector as the “waveform vector” and the 

second basis vector as the “amplitude vector.” An illustration of the ideal scenario is presented in 

Figure 2.1. Even though the ideal case is rarely achieved, there usually is a strong correlation 

between the SMD results and the aforementioned properties of the recorded waves. 

 

Figure 2.1. Shifted matrix decomposition applied to matrix M containing a recording of a single 
seismic wave to generate a waveform vector (first basis vector), an amplitude vector (second basis 
vector) and a shift vector. 
 

A detailed description of SMD algorithm can be found in [11]. Here, I provide only a 

brief overview necessary for understanding the SMD output. Let M be a seismic data matrix to 

be processed by SMD. At the start, the algorithm uses an adaptive geometric mean filter to locate 

an element, or point, in matrix M that is part of a seismic wave, or rather, that has a high 
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likelihood of being part of a seismic wave. The strain rate (or displacement) recorded by the 

elements in the same column and near the selected point is considered to be a temporary estimate 

of the waveform. We refer to this set of values as the ‘waveform sequence’.  Then, the algorithm 

attempts to identify the waveform sequence in the surrounding columns using cross correlation. 

The search starts from the columns adjacent to the selected point and expands further outward as 

long as the correlation with the waveform sequence remains high. If the correlation drops below 

a predefined value of 0.25, the algorithm stops searching for the waveform sequence. As a result, 

the shift vector and the amplitude vector refer only to the subset of the columns in the matrix 

from which the waveform is identified. It is important to note that if the basis vectors and the 

shift vector are describing an actual seismic wave, the waveform sequence will often be 

noticeable in a large set of columns and the shift vector and the amplitude vector will contain 

many elements. Otherwise, if the basis vectors and the shift vector describe noise, the shift vector 

and the amplitude vector will contain fewer elements. 

Once the row position of the waveform sequence has been identified in all the examined 

columns, the entries of the latter are shifted so that the wave becomes flattened, i.e. it appears in 

the same set of rows in every column. Finally, the wave is extracted, or rather, the basis vectors 

are recorded, and their outer product is subtracted from the matrix. Then, the columns are shifted 

back to their positions and the whole process is repeated in order to extract any remaining 

seismic waves. The algorithm terminates when a performance criterion is satisfied. The 

workflow is illustrated in Figure 2.2. 
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Figure 2.2. A flowchart describing the SMD algorithm. 

 

Once the SMD has processed a matrix containing seismic data, the next step is to analyze 

the SMD output to determine whether any seismic waves have been found. Specifically, I have 

created a signal detection algorithm that takes the SMD results as input and returns an estimate of 

the likelihood of seismic waves being present in the data. 

It would be intuitive to regard the sum of the elements in the amplitude vector as a 

diagnostic of seismic waves. However, there are two types of noise that could affect the results of 

a signal detection algorithm based on this diagnostic. The first noise type is a sudden high value 

that appears in a small set of adjacent traces, usually fewer than ten. To avoid the effect of such 

noise bursts on the sum of elements in the amplitude vector, I subtract the sum of the ten highest 

values from the sum of all the values in the amplitude vector. Also note that the length of the 
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amplitude vector is dependent on the number of columns in which SMD has identified the 

supposed wave. Therefore, if a waveform has been identified in a large number of columns, as 

usually is the case with coherent seismic waves, then the sum of the elements in the amplitude 

vector will be high. 

The second type of noise, characteristic of the Forge DAS data set, is shown in Figure 2.3. 

The “ambient noise” (the pervasive signal curving downward to the right) in Figure 2.3 has some 

properties similar to seismic waves (the localized signals curving downward to the left). For 

example, the noise has high amplitudes and is present in a large number of columns; thus, the 

ambient noise is likely to be present in the SMD output. To prevent the ambient noise from 

affecting the results of the seismic-wave detection algorithm, I rely on the information stored in 

the shift vectors. In Figure 2.3, the ambient noise is traveling downward, from shallower depths to 

deeper depths. At the Forge site, seismic events occur near the injection well which is ~1000 m 

below the lowest point in the vertical monitoring well. This geometry implies that waves 

emanating from seismic events of interest will be traveling upwards as they reach the monitoring 

well equipped with the DAS fiber. Therefore, ambient noise in the detection algorithm can be ruled 

out by retaining only waves that are traveling upwards. These waves can easily be identified in 

SMD results because arrival times are recorded in the shift vector. Since I analyze data recorded 

by DAS at depths between 300-900 m, the detection algorithm is instructed to consider only waves 

traveling upward at velocities slower than 6000 m/s. The latter value is well above the expected 

wave velocities in the geological formation at this depth range. 
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Figure 2.3. Ambient noise in DAS data. 

 
Above, I have described how the detection algorithm processes a single pair consisting of 

an amplitude vector and a corresponding shift vector. I refer to this output as an “amplitude vector 

sum”. However, the output of SMD is a series of pairs of waveform and amplitude vectors, coupled 

with corresponding shift vectors. Those results must be added together to create a complete picture 

of a file containing seismic data. Specifically, I consider two quantities. The first is the value of 

the greatest amplitude vector sum, and the second is the five greatest amplitude vector sums 

combined. However, rather than adding the five sums together, I consider their arrival time, or 

rather, the times at which they are recorded in the data. For example, noise bursts occur at random 

times and therefore their difference in row positions is random. On the other hand, seismic waves 

that that are propagating from a single seismic event will have similar arrival times (similar row 

positions). Therefore, considering the row position (or arrival time), which is recorded in the shift 
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vector, enables a differentiation between signal and noise. An example of such process is provided 

in Figure 2.4. 

 
Figure 2.4. The overview of the process for detecting seismic waves in the data. 
 

Specifically, to combine all the amplitude vector sums, the algorithm creates a new vector, 

termed the “result vector.” The latter contains one value for each row in the seismic data matrix. 

For each pair of amplitude and shift vectors, the amplitude vector sum is added to the result vector, 

but only to elements corresponding to the matrix rows in which the waveform is present. Thus, if 

two distinct waves are closely spaced in time, they will be added to a similar set of rows in the 

result vector. If they are far apart in time, they will be added to different sets of rows in the result 

vector. The final output is the maximum value of the result vector, along with its position in the 

vector. A matrix containing seismic data is classified as containing only noise, or containing 

seismic waves, based on the maximum value of the result vector, and the value of the greatest 

amplitude vector sum. Optimal threshold values for these two classification criteria are determined 

by applying the detection algorithm to a small subset of all the seismic data files. 
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Results 

As previously stated, I have applied the SMD seismic event-detection algorithm to DAS 

data recorded at the FORGE site in Utah [12]. At the FORGE site, the enhanced geothermal system 

comprises two wells, an injection well and an observation well. The injection well is ~2242 m 

deep with most microseismic events occurring near the bottom of the well. The observation well 

is 985 m deep and laterally separated from the injection well by ~360 m. The observation well is 

equipped with twelve geophones and DAS fiber, which records data every 1 m at a rate of 2000 

samples/s along the entire length of the well. An illustration of the wells and surrounding geology 

is present in Figure 2.5. 

 
Figure 2.5. A sketch showing the Injection well (black), the monitoring well (red), downhole 
geophones (green) and the surface geophones (blue). The DAS fiber is deployed along the entire 
length of the monitoring well (red). This figure is taken from [10] and modified.  
 

The SMD algorithm is not applied directly to the raw FORGE dataset. Instead, I first apply 

several basic pre-processing filters to improve the signal to noise ratio. An example of the filters 
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applied is presented in Figure 2.6. First, a 2.5 ms averaging window is applied. Then all the traces 

are normalized to unit maximum amplitude in each trace. Next, I extract the systematic noise 

pattern (shown in Fig.2.6, second panel from left) that is present in all traces. The noise pattern is 

identified by summing all the columns into a single column, termed the “noise column”, which is 

then normalized (each entry is divided by the magnitude of the noise column). For each trace I 

subtract the noise column scaled by the dot product of the trace and the noise column. By doing 

this, the systematic noise is removed from the data. The final pre-processing step is frequency 

filtering. Spectral analysis of the continuous data revealed extraneous electrical noise at high 

frequencies, above the dominant frequency range of 20-50 Hz for microseismic events [12]. I use 

a filter that rejects frequencies below 20 Hz and above 60 Hz. It should also be noted that due to 

excessive noise recorded by DAS at the top and the bottom of the monitoring well, we only use 

data between the depths of 300 m and 900 m. 

 
Figure 2.6. Example of the SMD pre-processing steps on a subset of data from a DAS data file. 
 

To analyze the results of SMD detection, I compare my detected events to the set of 

detected seismic waves from two other FORGE seismic catalogs. The two catalogs recorded 
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seismic events that emanated only from a ‘zone of interest’ which refers to the volume surrounding 

the bottom of the injection well. 

The first seismic catalog [13] is generated mainly by data from geophones placed in the 

monitoring well. The geophones recorded data only during reservoir stimulation intervals. During 

other time periods, the catalog contains data from a three-component, short-period sensor installed 

at FORK, a seismic station located near the FORGE site.   

The second catalog of events [9] is generated solely from an analysis of the DAS data and 

thus comprises a good performance benchmark for the SMD detection algorithm. The algorithm 

used to generate the second catalog is described in detail elsewhere [14], but here I provide a 

summary. The algorithm first uses a well perforation shot of known time and location to estimate 

the P-wave velocities in the geological formation adjacent to the monitoring well. To find the S-

wave velocities, it uses a different event that generated strong S-waves. Based on the resulting 

velocity model, the algorithm calculates the moveout of a plane wave along the monitoring well 

as a function of the incidence angle at the bottom of the well. Then, operating on a given DAS data 

matrix, the columns are shifted once for each angle in a set of trial incidence angles. The columns 

are shifted such that the curved waves arriving at the said incidence angle are transformed into flat 

waves in the matrix. Once the columns are so shifted for a given incidence angle, a ‘semblance’ 

function is computed for each row in the matrix. If there exists an incidence angle and a row 

position for which the semblance value exceeds a predefined threshold, the seismic matrix is 

marked as containing coherent seismic waves. I refer to this event detection algorithm as 

semblance-based detection. 

Compared to SMD-based detection, downsides of the semblance-based method are that it 

is more computationally expensive, and it requires a known velocity model around the monitoring 
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well, which can be difficult to obtain if there aren’t any strong events or perforation shots from 

known locations. The SMD method requires only upper and lower bounds for seismic wave 

moveouts. To process 15 s of DAS data, SMD-based detection takes ~2.4 s, several times faster 

than semblance-based detection.  

To estimate the computation time of semblance-based detection, we created an algorithm 

with equal number of operations and complexity. For example, we might not know by how much 

the columns needed to be shifted, but it takes the equal amount of time to shift them correctly and 

randomly. The subsampling information and number of incidence angles tested wasn’t provided 

in [9], so we used information from an earlier application of semblance-based detection [14]. We 

estimated the computation time of semblance-based detection to be about 7.25 second. However, 

the author reported longer computation times, so it is likely that our estimates of subsampling and 

number of incidence angles tested were incorrect. It should also be noted that the computation time 

of SMD can also be further decreased with subsampling. 

The reason for the speed advantage of the SMD method is that, while SMD shifts only a 

subset of a column that is proposed to contain a coherent wave, semblance-based detection shifts 

the entire column. Furthermore, for every incidence angle, to calculate semblance all columns must 

be shifted, squared and added together. However, the semblance-based algorithm does provide 

information on the incidence angle whereas SMD detects events only, without providing 

information on the incidence angle. Compared to SMD, semblance-based detection is a standard 

and well-tested method for processing seismic data. 

The semblance-based detection was tested on DAS data acquired over the 24-hour period 

between April 27th 2022 at 5:00 pm and April 28th 2022 at 5:10 pm. Henceforth I will be using this 

time interval to compare the performance of the SMD and semblance-based detection schemes. 
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During this time interval, the geophones were active and 299 events were recorded in the first 

catalog. The second catalog [9] contains 110 DAS sensor-recorded events, all of which are also 

present in the first catalog. The first catalog of events will be used to determine if an event detected 

by SMD originated from the zone of interest or if it is presumably due to a nearby earthquake 

unrelated to the well-site hydraulic stimulation operations. 

During the time interval described above, the SMD-based algorithm detected 86 events. Of 

these, 43 were already cataloged by the semblance-based detection algorithm. The remaining 43 

events were not matched to any events in the first catalog [13]. Therefore, the remaining 43 events 

probably do not describe seismic waves originating from the zone of interest. Moreover, the SMD-

based detection found fewer events than semblance-based detection. 

First, I consider the set of events that were detected by both semblance-based and SMD-

based detection. Figure 2.7 shows 4 such events in which distinct P-wave and the S-wave 

signatures are the most noticeable, and an additional event in which the P-wave and S-wave 

signatures are relatively weak compared to other events. 

 
Figure 2.7. Four of the clearest events and, at right, one weak event from the set of events detected 
by both semblance detection and SMD detection algorithms. On the third plot from the right, P-
wave, S-wave and S-P conversion are marked. 
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In the four clear events (leftmost four panels of Figure 2.7), we can see the P-wave, the S-

wave and the S-P conversion (also marked on the third figure from the left with red, yellow and 

orange, respectively). The difference in arrival times between the P-wave and the S-wave at the 

receiver at 900 m depth ranges from 200 to 222 ms. We also see the S-P conversion being created 

at the depth of about 900 m which is consistent with the layer boundary seen in the velocity model 

from Figure 2.5. Based on the velocity model, we estimate the velocity in the granite layer below 

the boundary to be 6 km/s and uniform. Then the P-S time difference indicates that the distance 

from the source to the receiver at 900 m depth ranges from 1200 to 1332m, consistent with the 

position of the observation well relative to the bottom of the injection well (Figure 2.5). 

Events that were detected by the SMD algorithm but are not present in the two published 

catalogs are presented in Figure 2.8. While we cannot show plots of all 43 such events, the plots 

in the figure provide a good representation of them. 

 
Figure 2.8. The representation of detected seismic waves that were not present in the published 
catalogs. 
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The leftmost plot in Figure 2.8 is interpreted as tube waves recorded by DAS, likely caused 

by site operators moving the geophones in the observation well. The SMD detection picked up the 

tube wave since it doesn’t use specific information regarding velocity around the observation well. 

However, I could in future add a criterion to the SMD detection algorithm to exclude seismic tube 

waves when the moveout (estimated by the shift vector) fits a linear trend. 

For the two events shown in the middle panels of Figure 2.8, I estimated the difference in 

arrival times between the P-wave and the S-wave to be 488 and 525 ms, respectively. These 

differences in arrival times indicate that the distance from the source is too great for the source to 

be located in the zone of interest, i.e. at the bottom of the injection well. Finally, the rightmost plot 

in Figure 2.8 shows a repetitive series of S-waves. Here the difference in arrival times between the 

P-wave and the S-wave (5.5 s) is too great to display them both in the same plot. The large number 

of arriving S-waves most likely indicate multiples of a head S-wave. In the middle two plots one 

can also observe multiples of the head S-wave but there are fewer of them. Since the S-wave on 

the rightmost plot traveled a greater distance than the S-waves in the middle two plots, it has passed 

through more formation heterogeneities and thus more multiples were generated. In conclusion, 

among this set of events, the seismic waves were either tube waves or waves emanating from 

sources that are not in the zone of interest. 

Finally, I have examined events that were detected by the semblance-based algorithm but 

not by the SMD algorithm. Figure 2.9 shows the first three events from this set and an additional, 

later event for which the recorded seismic wave signatures are the clearest. 
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Figure 2.9. The first three events recorded by the catalog from [9] that weren’t picked by SMD 
detection, and an event from the catalog with the most noticeable seismic waves that also wasn’t 
picked by SMD detection. In all four plots, the events were detected in [9] at 750 ms time. 
 

In the three leftmost plots of Figure 2.9, seismic waves are not evident. The non-appearance 

of seismic waves is most likely because my data pre-processing sequence is less extensive than 

that of [9]. Specifically, pre-processing steps in the semblance algorithm included a sample-by-

sample median filter, frequency filtering and an f-k velocity filter. This pre-processing sequence 

is superior to my workflow, described at the beginning of this section. The main difference is that 

for the semblance-based algorithm the ambient noise was removed in the pre-processing stage, 

while SMD was applied to data still containing ambient noise and relied on the shift vectors to 

filter it out. 

To see if I can generate results comparable to those of [9] and achieve a reduction in 

ambient noise, I added a step to the pre-processing workflow. I tried shifting the columns to 

maximize their correlation and then I subtracted from them the outer-product of the first pair of 

basis vectors. Figure 2.10 shows two examples of how the added ambient noise reduction changes 
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the pre-processing results. The upper example shows the noise reduction done to the leftmost plot 

from Figure 2.9 and the lower example shows the nose reduction applied to the rightmost plot. 

While this did not make a big difference in the pre-processing, it did enhance the visibility of 

several events enough for SMD-based algorithm to detect them. For example, the added pre-

processing was enough to make the bottom example (from Figure 2.10) visible to the SMD-based 

detection algorithm, but it was unable to make visible the event from the upper example.  

 
Figure 2.10. Rightmost and leftmost plot from Figure 2.9, before and after the added step in pre-
processing. 
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Conclusion 

I have introduced a new DAS event detection method based on shifted-matrix 

decomposition (SMD) that can be applied in real time. Advantages of the method are rapid 

computation time, and the fact that it does not require specific knowledge of the velocity model 

surrounding the receivers. Compared to the more expensive semblance-based detection method, 

my scheme detected fewer seismic events. The majority of the events that SMD-based detection 

failed to pick up could not be visually identified when looking at the processed data. This 

indicates that the differences in the sets of detected events are largely be due to different pre-

processing sequence that was done to prior to applying the detection methods.  
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CHAPTER IV 

 A METHOD FOR MODELING ACOUSTIC WAVES IN MOVING SUBDOMAINS 

 

Introduction 

The new simulation method presented in this manuscript is largely motivated by the recent 

developments in the data acquisition technology. Specifically, it is motivated by the development 

of distributed acoustic sensing (DAS), which uses fiber optic cables to record both low frequency 

strain and high frequency seismic waves [1]. DAS provides a new and unique view of the reservoir 

by sampling cable strain at rapid cadence and at densely spaced locations. High recording rates at 

numerous receiver positions increase the amount of registered microseismic activity. While it was 

originally developed for geophysical exploration, DAS has recently seen increasing use in other 

fields of geophysics. Distributed acoustic sensing has been coupled to existing submarine cables 

to monitor ground motion signals from seismic events and identify fault zones [2]. Because of its 

unprecedented spatial and temporal resolutions, DAS is expected to see further use in earthquake 

monitoring, imaging of faults and other geologic structures, and natural hazard assessments [3]. In 

conclusion, DAS records data at high frequency and over a long range of densely spaced locations. 

Furthermore, it can turn fiber-optic cables, which were initially intended for other purposes, into 

large collectors of seismic data. While DAS is excellent for gathering seismic data, it also has the 

potential to drastically increase the amount of seismic data recorded in the future. 

To prepare for the future increase in the volumes of seismic data, we developed an 

algorithm to decrease the computational cost of forward wave modeling, which will speed up the 

processing and analysis of these data. The initial application, presented in this manuscript, is to 

acoustic waves, modeled by the acoustic wave equation in two dimensional domains, but the 
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algorithm can be extended to three-dimensional models. The appropriate method for modeling 

waves depends on the purpose of modeling, the size and properties of the modeling domain, and 

the available computer resources. There does not exist an ideal finite difference method that can 

be used in every situation. For example, Zhou et al. [4] show improvements in accuracy via 

optimization that allows a reduction in the length of the FDM operator. Here, we take an alternate 

approach for optimizing scalar wave equation simulations. We develop an algorithm that can be 

used with any finite difference method that utilizes pre-defined finite difference operators and any 

model discretization regardless of the grid-point distribution. Specifically, the algorithm allows 

the user to calculate the pressure in only a subset of grid points in the modeling domain through 

which waves are propagating. Therefore, the numbers of grid points and physical degrees of 

freedom are reduced, while the grid-point spacing remains the same. Therefore, the numbers of 

grid points and physical degrees of freedom are reduced, while the gridpoint spacing remains the 

same. However, if the physical nature of the problem is such that active waves are propagating 

over the entire domain, with no quiet areas, such as in [5], then the RDM method loses its principal 

advantage. 

This is not the first study that aims to speed up a finite difference scheme by modeling 

waves in only a subset of all the grid points, i.e., in a moving subdomain. Initially, Boore [6] noted 

that the displacement does not need to be computed in the areas which the first arrival has not yet 

reached. This idea was further developed when Vidale [7] used an eikonal equation to calculate 

the arrival times of waves at each grid point and then modeled the evolution of the wave at each 

grid point for a predetermined amount of time after the arrival. The drawback of this method is 

that it is focused on modeling only the head waves. There have also been studies published that 

model the propagation of seismic waves in moving zones (or boxes [8–10]. The path of the box 
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shaped moving zone is pre-defined, and the box represents a subset of the entire modeling domain 

that is focused on the waves of interest (which are often the head waves). By restricting the 

modeling to the box enclosing the wave of interest, reflections outside the zone of interest are 

neglected. In both methods discussed above, the constraints to the modeling subdomain that 

provide the computational speed-up also restrict the applicability of the method. 

In this work we introduce a new flexible approach for selecting the subset of grid points on 

which the wave is modeled. This method allows for the modeling of reflected waves even if they 

are far from the first-arriving wavefront. At the neglected, or irrelevant, grid points, disturbances 

caused by the waves should be small, or even non-existent, depending on the application and user-

defined parameters. Because the purpose of our method is to reduce the number of grid points in 

the domain at which the pressure is calculated, we refer to it as the “reduced domain method” or 

RDM. By defining certain parameters in RDM, the user may adjust the criterion which 

differentiates between relevant and irrelevant grid points. Because of this, while the performance 

may vary, the algorithm can be useful in a large variety of scenarios of wave propagation. 

It should also be noted that the most recent application of a moving subdomain, or a moving 

frame to be more accurate, was for modeling acoustic waves propagating through the earth’s 

atmosphere using the Navier–Stokes equations. The numerical simulations have been performed 

in two dimensions on Cartesian grids [11], in a two dimensional cylindrical coordinate system with 

assumed axial symmetry [12,13], and in full three dimensions [14]. While the algorithm developed 

in our research is implemented for the acoustic wave equation, with additional programming effort 

it can also be applied to FDMs used for modeling the elastic wave equation as well as the Navier–

Stokes equations. This is because the reduced domain method is designed to be applied to any 
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FDM and velocity model, regardless of the grid-point distribution as long as the FDM has pre-

defined operators. For simplicity, we will refer to such methods as standard FDMs. 

With additional programming effort, the RDM may also be adapted to some methods even 

if the finite difference operators are not pre-determined. A good example of this is [15], where 

acoustic waves are modeled while the coefficients in the finite difference operators adaptively 

change. However, there are some methods such as [16], in which the acoustic waves are modeled 

by finite difference operators which change length adaptively during the simulation. For such 

methods, the implementation of RDM becomes more difficult. To summarize, RDM provides a 

reduction in computational cost by modeling the waves in only a subset of the entire domain and 

it can be applied to any velocity model and a variety of FDM. However, thanks to its flexible and 

adaptive selections of subdomains during the simulation time, it also allows the user to accurately 

observe the majority of the wavefield. This is an improvement compared to previous methods that 

modeled waves in moving subdomains. 

 

Methodology 

RDM is a method that first determines the “active” portion of the modeling domain, i.e., 

the zone within which waves are propagating. The method then uses the selected finite difference 

method to simulate wave propagation within the active area. Further details are given below. 

In finite difference schemes, the pressure field is described by a vector p whose number of 

elements equals the number of grid points in the modeling domain. We seek to reduce the length 

of this vector and refer to the new, smaller vector as the ”reduced” pressure vector, or simply the 

reduced vector p r . The elements in the reduced vector at a given time step comprise only the 

pressure at those grid points through which a wave is actively propagating. We refer to these grid 
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points as ”relevant” grid points. As waves propagate through the modeling domain, the set of 

relevant grid points changes. To find the reduced vector at each time step, RDM determines the 

set of relevant grid points without actually evaluating the pressure at all the grid points. The 

following paragraphs and Figure 3.1 below explain how RDM achieves this goal. 

 
Figure 3.1. A flowchart providing a high-level description of RDM. 

 
The RDM algorithm starts by dividing the time during which the wave propagation is 

simulated into subintervals of length T s . The subinterval length T s needs to be small in order to 

keep the set of relevant grid points within subintervals small. On the other hand, decreasing the 

subinterval length T s will increase the number of subintervals in the simulation and the time spent 

finding the set of relevant grid points for all subintervals could start having a large effect on 

computation time. The best value for T s depends on the velocity model and the source, and there 
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does not exist an ideal T s value that gives the best results in every scenario. However, you can 

still run consistently fast and accurate simulations while always using the same value of T s . We 

set T s to be equal to the period of the dominant frequency of the source, and as can be seen in the 

following section, RDM drastically reduced computation time and maintained accuracy in all of 

the tested models. 

At the start of each subinterval, prior to advancing the simulation using the reduced vector, 

RDM runs a fast simulation on a coarse grid that spans the entire modeling domain. The grid-point 

spacing, and the time step of the coarse-grid simulation are set to be twice as large as those in the 

standard grid, or rather, fine-grid simulation. The FDM that is used to run the simulation in the 

coarse grid is the same as the FDM used in the fine-grid simulation. For future improvement of 

RDM one could consider using a different FDM for the coarse-grid simulation, which allows the 

use of fewer grid points and reduces the computation time. However, on average only 25–30% of 

RDM computation time is spent in the coarse-grid simulation, so the potential for the computation 

reduction is limited. The simulation on the coarse grid is not intended to yield a highly accurate 

displacement field, but it is detailed enough to avoid excessive numerical dispersion and allow a 

sufficiently accurate determination of the relevant grid points. 

The relevant grid points are determined by first defining a “sum vector” v sum. Each 

component of the sum vector is a time summation, over the current subinterval, of the squared 

time derivatives of the corresponding component of the pressure field on the coarse grid: 

𝑣௜
௦௨௠ = ∑ ቀ

డ௣೔
೎൫௧బା(௝ିଵ)௧ೞ೙೛൯

డ௧
ቁ

ଶ
ே
௝ୀଵ     (3.1) 

where pc is the pressure vector computed in the coarse-grid simulation, N is the number of 

snapshots in a subinterval, and tsnp is the time between two subsequent snapshots. The magnitude 
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of the sum vector for a given subinterval, at a given grid point, is large if the corresponding pressure 

on that grid point was large during the subinterval. 

The values of N and tsnp depend on the length of the subinterval Ts and the time step of the 

finite difference scheme. Although N and tsnp need not have specific values, typically we set tsnp 

such that 40 ≥ N ≥ 20. The goal is to use enough snapshots to accurately describe the wavefield 

during the interval, while also not using so many snapshots as to affect the computation time. It 

should be noted that changing N and tsnp has very little effect on the performance of the simulation. 

Thus, we do not think that optimizing those parameters can lead to noticeable improvements. 

Before the values recorded in vsum are used to estimate the map of relevant grid points, an 

equal weight averaging filter is applied to vsum. Filtering is performed to smooth the results stored 

in the sum vector, which reduces the length of the bounding curve between the relevant and 

irrelevant grid points, as can be seen in Figure 3.2. A big part of the error caused by using RDM 

is produced at the boundary between relevant and irrelevant grid points. Having wavefield drop 

from near-zero values to zero can create a source of error in the wavefield. By reducing the length 

of the boundary between relevant and irrelevant grid points, we reduce the error. This allows us to 

reduce the computation time more aggressively, while still maintaining a small error. The 

averaging filter is two dimensional and 32 grid points wide and long. This is because its length is 

defined as four times the shortest wavelength in the model, i.e., four times the period of the 

dominant frequency multiplied by the velocity from the slowest area in the model. The processing 

time of the averaging filter is proportional to the length of the filter and the number of grid points 

used in the simulation. As RDM was tested on multiple models, the computation time of the 

averaging filter varied between 3% and 7% of the entire simulation time when using RDM. To 

further reduce the computation time of the averaging filter, we could use better picks for the 
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window size that are based on the velocity average rather than minimum velocity, and we could 

also apply the filter to a different vector that has fewer elements than v sum, for example, a vector 

containing elements of vsum for grid points with spacing four times as large as that of the fine grid. 

Once the sum vector vsum is determined, the set of relevant grid points is constructed. 

 
Figure 3.2. (a) The sum vector v sum without the averaging filter and (b) the resulting map of 
relevant grid points. (c) The sum vector v sum with the averaging filter and (d) the resulting map 
of relevant grid points. 
 
The set of relevant grid points is defined as the smallest subset U of all the grid points such that 

the sum of elements in the sum vector vsum representing those grid points is greater than or equal 

to some pre-determined threshold fraction (1−e−δ) of the sum of all elements in the sum vector: 

min൫𝑛(𝑼)൯:   ∑ 𝑣(௎ೕ)
௦௨௠௡(𝑼)

௝ୀଵ ≥ (1 − 𝑒ିఋ) ∑ 𝑣௝
௦௨௠௡(𝒗ೞೠ೘)

௝ୀଵ    (3.2) 

where n(U) is the number of elements in U, n(vsum) is the number of elements in vsum, and the 

threshold (1−e−δ) is defined by the parameter δ. The threshold is defined in this way so that an 

increase in δ causes the threshold to increase, converging closer to the value of 1. An increase in 
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the threshold results in more grid points being included in the set of relevant grid points. Therefore, 

increasing the parameter δ increases the accuracy of RDM but also increases the computation time. 

While the parameters Ts, tsnp and N should remain the same in all simulations, the parameter 

δ can be adjusted to best support the FDM we are applying our method to, which is the purpose of 

the simulation. For example, if we are doing reverse time migration (RTM) for the purpose of 

locating a seismic event, we can ignore a lot of weak waves that we know will not contribute to 

the convergence at the source location. In this case we could set up δ to a small value that will 

result in fewer relevant grid points and faster simulation. Alternatively, if the user is interested in 

simulating weak reflection, the parameter δ would be set up to a larger value to make sure the weak 

reflections are represented. 

When using Equation (3.2), RDM determines the set of relevant grid points based on the 

amplitudes of the propagating waves. This method allows the user to observe the large majority of 

the wavefield while reducing the computation time. In a more specific example, the user might 

have a special interest in reflections in a given area of the model, even if the reflections are weak. 

In such a case, Equation (3.2) can be modified so that the summations include weights for each 

grid point. This way, we can add extra importance to grid points from a specific area. Therefore, 

depending on the specific purpose of the wave simulations in the future, the parameter δ and 

Equation (3.2) may be adjusted and modified. 

Once the set of relevant grid points has been determined, the next step is to create the 

reduced model. The set of relevant grid points (U) is applied to the vectors describing the pressure 

from the two latest subsequent time steps (p, po ) and velocity (c) on the fine grid. Specifically, the 

set of relevant grid points tells us which elements in pressure (or velocity) vectors represent the 

pressure (or velocity) on the relevant grid points. To generate reduced pressure and velocity 
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vectors, an algorithm goes through all the elements of the pressure vectors p, po, and velocity 

vector c and the values describing the pressure or velocity at relevant grid points are recorded in 

reduced pressure and velocity vectors pr, por, and cr. The set of vectors converted to the reduced 

model may vary between different models and different simulation methods. For example, in cases 

with heterogeneous density, we also must apply the set of relevant grid points to the density vector 

(ρ) in order to generate the reduced density vector ρr. 

At the next stage of the algorithm, the fine-grid simulation is executed over the subinterval 

on the set of relevant grid points. The computation is executed on pr and por rather than on p and 

po, creating a significant reduction in computation time. Once the fine-grid simulation reaches the 

end of the subinterval, the values of the pressure on the standard fine grid p and po are updated 

using the reduced vectors pr and por and the set of relevant grid points U. The process is repeated 

until the simulation reaches the end of the final subinterval. 

In the introduction we stated that RDM is used to reduce the cost of modeling the acoustic 

wave equation. The specific FDM that RDM is applied to is the one by Alford et al. [17], also 

described in Zakaria et al. [18], which was chosen for its efficiency and simple implementation. 

Here, the second time derivative of pressure, 
డమ𝒑

డ௧మ
, is estimated with a fourth-order accurate nine-

point stencil: 

డమ௣೔,ೕ

డ௧మ
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ଷ
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            (3.3) 

where ∆x is the spacing between grid points. Furthermore, the finite difference scheme can be 

adapted to heterogeneous density models by altering the finite difference coefficients: 
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డమ௣೔,ೕ

డ௧మ
= ൬ቀ൫2 − 𝜌௜,௝

௫ ൯𝑝௜ିଵ,௝ + ൫2 + 𝜌௜,௝
௫ ൯𝑝௜ାଵ,௝ + ൫2 − 𝜌௜,௝

௬
൯𝑝௜,௝ିଵ + ൫2 + 𝜌௜,௝
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𝜌௜,௝
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௫ ൯𝑝௜ାଶ,௝ + ൫1 − 𝜌௜,௝
௬

൯𝑝௜,௝ିଶ + ൫1 + 𝜌௜,௝
௬

൯𝑝௜,௝ାଶቁ
ଵ

ଵଶ
− 5𝑝௜,௝൰

௖೔,ೕ
మ

∆௫మ
  (3.4) 

where: 

𝜌௜,௝
௫ = 𝜌௜,௝ ൬

ଵ

ఘ೔షమ,ೕ
−

଼

ఘ೔షభ,ೕ
+

଼

ఘ೔శభ,ೕ
−

ଵ

ఘ೔శమ,ೕ
൰

ଵ

ଵଶ
  

𝜌௜,௝
௬

= 𝜌௜,௝ ൬
ଵ

ఘ೔,ೕషమ
−

଼

ఘ೔,ೕషభ
+

଼

ఘ೔,ೕశభ
−

ଵ

ఘ೔,ೕశమ
൰

ଵ

ଵଶ
.   (3.5) 

Equations (3.4) and (3.5) above, which are applied to inhomogeneous density models, can 

be derived from the first equation from [19]. It is important to point out that Equations (3.3-3.5) 

do not provide a perfectly accurate representation of the processes in RDM. Specifically, the 

pressure, velocity, and density are all recorded as vectors in RDM whereas in Equations (3.3–3.5) 

they are presented as matrices. We made this decision because we wanted to provide a more clear 

and easy-to-read representation of the finite difference operators being used. 

In the fine-grid simulations we set the grid-point spacing to be sixteen times smaller than 

the period of the dominant frequency of the source multiplied by the velocity in the slowest area 

in the model. This way, there is never fewer than sixteen grid points per wavelength, or eight grid 

points per wavelength in the coarse-grid simulation. Once the second derivative of the pressure 

field p is calculated, a second-order accurate scheme uses the current pressure p and the pressure 

from the previous time step po to calculate the pressure field at next time step pn: 

𝒑௡ = 2𝒑 − 𝒑௢ + ∆𝑡ଶ డమ𝒑

డ௧మ
    (3.6) 

where ∆t is the time-step size of the simulation. To maintain stability of the simulation, the size of 

the time steps is set to be one half of the grid-point spacing divided by the maximum wave velocity 

in the model. Therefore, the number of time steps per wave period is dependent on the ratio 



 

76 
 
 

 

between the velocities in the slowest and the fastest regions in the model. However, if the model 

were homogeneous, there would be 32 time-steps in the period of the dominant frequency. 

 

Results 

The RDM algorithm was tested on four synthetic models. The first two models comprise 

scenarios in which a steel object is buried partially or completely beneath the seafloor. They are 

used to demonstrate the performance of the algorithm and illustrate how the map of relevant grid 

points progresses along with the waves during a simulation. All calculations in this manuscript are 

fully 2-D, i.e., an infinite line source excites an infinite structure invariant along strike, the 

direction parallel to the source. The run time of RDM is compared to the run time of the standard 

FDM without RDM. The relative error is defined as the change to the final pressure vector resulting 

from RDM application, specifically: 

𝐸௥௘௟ =
||𝒑ି𝒑ೃವಾ||

||𝒑||
     (3.7) 

where p is the pressure vector obtained from standard FDM and pRDM is the pressure vector 

obtained by applying RDM to the same FDM. 

The code was written in Julia programming language, which is designed for rapid 

execution of numerical simulations. We chose Julia because it can conveniently optimize functions 

and implement vectorization, thereby reducing computation time. Furthermore, the simulations are 

executed on a single core of Intel i7-6820HQ which has a base frequency of 2.70 GHz and 16 GB 

of RAM. Adjusting the code to run on multiple cores would require more programming, but the 

algorithm is inherently parallelizable. 

The first two models are energized by a Ricker source wavelet with peak frequency 2.3 

kHz placed 8.4 m above the ocean floor at a midpoint between the two lateral boundaries. In the 
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first model the steel object is not completely buried in the surrounding limestone ocean floor. The 

velocity and density values used for limestone in this model were obtained from Table 1 of Bayer 

[20]. In the second model the entire steel object is buried in sediment. The velocity and density 

values used for sediment were obtained from Hamilton [21]. If a grid point is positioned on the 

interface of the two layers, an arithmetic average is used to determine the velocity and density at 

said grid point. These two models are shown in Figure 3.3, along with the evolution of the map of 

the relevant grid points throughout the simulation and the final wavefield in each of the two 

models. 

 
Figure 3.3. (a) Results for the first limestone model. (b) Results for the second sediment model. 
From left to right we see: the map of relevant grid points in the first subinterval, nineteenth 
subinterval, and thirty-seventh subinterval, and finally, the wavefield corresponding to the end of 
the thirty-seventh subinterval. The figures were acquired during the simulation, with δ set to 12. 
The relevant grid points are in the yellow region. The brown line represents the surface of the 
ocean floor, and the blue line represents the steel object. 
 

In both models, the wave propagation is simulated over a period of 0.016 s, and it took 

about 255 s with standard FDM to run the simulation, which contained 4515 time-steps on a 501 

by 501 grid. During the simulations, the waves propagate to the steel object and are reflected past 

their point of origin. We stated above that the parameter δ affects the size of the set of relevant 

grid points, such that an increase in δ causes an increase in both accuracy and run time. Table 3.1 
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displays the computation time reduction and relative error of RDM for various value choices of δ 

for the two models. 

Table 3.1. Performance indicators for the first two models. 
 First Model Second Model 

Parameter δ Comp. Time 
Reduction (%) 

Relative Error Comp. Time 
Reduction (%) 

Relative Error 

10 56.5 0.017 63.0 0.062 
20 54.8 0.016 61.8 0.043 
30 48.0 0.014 56.9 0.026 
40 40.5 0.015 49.1 0.033 
50 40.1 0.005 50.2 0.020 
60 40.1 0.001 47.8 0.005 

 
In the third test we use the velocity model from [22] but assuming a spatially uniform 

density. The purpose of the modeling is to test RDM on a more heterogeneous velocity model in 

which many reflections and dispersions are generated. A Ricker source with peak frequency 7.1 

Hz is located at the center of the upper boundary of the model domain. The wave is propagated in 

the simulation for 10.1 s, until it reaches the lateral boundaries of the model domain. The 

computation time of the standard FDM simulation, which contained 7764 time-steps on a 5795 by 

1155 grid, was about 9420 s. The velocity model (top), the map of relevant grid points (middle), 

and the wavefield (bottom) at the end of the simulation are shown in Figure 3.4. The performance 

of RDM for different choices of δ is presented in Table 3.2. 

In the fourth test we combine the velocity and density models from [22] with the same 

source and simulation time as in the third test. Here, the computation time of the standard FDM 

simulation, which contained 7764 time-steps on a 5795 by 1155 grid was about 10,210 s. The 

density is strongly heterogeneous which produces a great number of reflections such that every 

grid point in the model domain is populated with strong coda after the passage of the first-arriving 

wave. For as long as the strong coda remains, all the grid points through which a head wave has 

passed would be considered relevant grid points. Thus, we add a new criterion to the selection of 
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grid points that forces RDM to neglect low-amplitude waves. The objective is to assess the 

accuracy by which RDM models the high-amplitude waves while neglecting weaker ones. 

 
Figure 3.4. (a) The velocity model from [22]. (b) The map of relevant grid points in the final 
subinterval. (c) The wavefield at the final subinterval of the simulation. The parameter δ was set 
to 12. 
 
Table 3.2. Performance indicators for the third model. 

Parameter δ Comp. Time Reduction (%) Relative Error 
10 71.3 0.026 
20 67.9 0.011 
30 66.9 0.003 
40 68.8 6.0 × 10-4 
50 65.9 2.7 × 10-4 
60 65.8 6.5 × 10-5 

 

The new criterion is set by fixing the parameter δ to 20 and adding an extra condition that 

the number of relevant grid points may not be larger than the total number of grid points multiplied 

by some fraction θ. This is enforced by adding a new criterion to Equation (3.2) that states 

n(U)≤θn(p). This criterion is designed to maintain or ensure a low computation time, wherein the 

weaker waves are presumably negligible, e.g., below the sensitivity of the recording instruments. 

The relative error will also be calculated in the zones enclosing the high-amplitude waves, which 

are presented in Figure 3.5, along with the density model (top), the map of relevant grid points 
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(middle), and the wavefield (bottom). The performance of RDM on the fourth model is presented 

in Table 3.3 below. 

 
Figure 3.5. (a) The density model from [22]. (b) The map of relevant grid points at the final 
subinterval of the simulation with parameter θ set to 0.7. (c) The wavefield at the end of the 
standard FDM simulation with the strong waves marked with red squares. 
 
Table 3.3. Performance indicators for the fourth model. 

Parameter θ Comp. Time 
Reduction (%) 

Relative Error Relative Error in 
the Area of Interest 

0.5 72.5 0.310 0.112 
0.6 71.7 0.229 0.073 
0.7 71.5 0.136 0.025 
0.8 71.0 0.066 0.002 
0.9 66.7 0.005 5.7 × 10-7 
1.0 66.7 5.4 × 10-5 5.7 × 10-7 

 

 

Discussion 

The data in Tables 3.1 and 3.2 show that the reduction in computation time from RDM 

ranges between 40 and 70%, depending on the modeling scenario and the value of the δ parameter. 

Even though the third model is more heterogeneous than the first two, the reduction in computation 

time is greater in the third test. This is because the first two modeling domains are much smaller, 
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so the waves reach the boundaries earlier, and therefore the map of relevant grid points expands 

across the domain more rapidly than in the third model. 

While relative error maintains low values in the first three tests, from several percent to 

10−4, in the fourth test it reaches 0.3. The large relative error in the fourth test occurs because an 

aggressive criterion is used to select relevant grid points, so that many of the weaker waves are not 

modeled. The goal in the fourth test is to efficiently yet accurately model the high-amplitude 

waves. This goal is achieved as the relative error in areas enclosing the strong waves (presented in 

Figure 3.5) is much smaller, as shown in Table 3.3. 

As stated in the introduction, RDM can be applied to any FDM with pre-defined spatial 

operators. This means that RDM can also be applied to other, higher-order FDM. Higher-order 

FDM are generally used to reduce the number of grid points needed in the model, which reduces 

the memory requirements and can also lead to lower computation times. We expect the percent 

reduction in computation to remain the same as RDM is applied to various FDM. This is because 

we do not expect that changing the FDM to which RDM is applied would have a noticeable effect 

on the RDM’s estimation of what portion of the domain contains irrelevant grid points. As long as 

there are parts of the domain with weak or non-existent waves, RDM can identify areas with 

irrelevant grid points in the simulation, and the computation time can be reduced. However, if the 

total number of grid points in the domain decreases as a result of the use of higher-order FDM, the 

perimeter of the areas of relevant and irrelevant grid points would become more coarse. This could 

cause the error due to RDM application to increase slightly. It should also be noted that the 

application of RDM does not create any new limitations on the frequency range of waves that can 

be modeled in the simulation. The frequency range is entirely dependent on the grid-point spacing, 

time-step size, and the FDM to which RDM is being applied. 
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The calculations in this manuscript are performed in 2-D models. The simulations can 

therefore be used to describe a line source and the response from a structure invariant along strike, 

which is the direction parallel to the source. In such a scenario, the line of receivers, possibly 

provided by DAS, can be oriented in any direction relative to the source. 

There are several possibilities for future work. The RDM method can be adapted to more 

complex finite difference schemes or to 3-D applications. Currently, we are more focused on 

developing a 3-D version of RDM as it will have a greater impact on the range of applications of 

RDM. This will take time and additional programming effort, but we expect RDM to be able to 

maintain its significant reduction in computational cost in the three-dimensional simulations. 

 

Conclusion 

Wave modeling methods that allow the calculation of pressure in only a subset of grid 

points can provide an excellent reduction in computation time and complement a variety of finite 

difference schemes. The RDM algorithm developed herein can be applied to any FDM that uses 

pre-defined finite difference operators. The developed method uses an adaptively changing subset 

of all the grid points to accurately model both first-arriving and reflected waves. As a result, a high 

level of accuracy is obtained while reducing computation time by more than 50%. The reduced 

domain method was tested on simple models describing the ocean floor with a buried steel object, 

which were used to demonstrate how the map of relevant grid points changes throughout the 

simulation, and also on more complex and realistic models which contained many layers and 

substantial heterogeneity. 

While RDM is valuable in most forward modeling scenarios, we expect RDM to be the 

most useful in inverse problems wherein many forward modeling runs are required. Running 
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repeated forward models can take a lot of time. Here, the computation cost reduction to forward 

modeling obtained with RDM could be of great value. Furthermore, RDM may also be very useful 

when studying a seismic source with reverse time migration (RTM), where we are only concerned 

with the waves converging at the source. Because a big portion of the waves in RTM does not 

converge at the source, we could apply RTM aggressively to drastically reduce computation time, 

while having little effect on the accuracy of the results. 
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CHAPTER V 

CONCLUSION 

I have developed a seismic data decomposition algorithm that is specifically optimized for 

large datasets containing many traces. The algorithm was used for denoising, compressing and 

detecting events in seismic data. In a short illustrative example, its capability for estimating the 

velocities of P-waves was tested. I call this method shifted-matrix decomposition (SMD). The 

majority of data decomposition methods, including SMD, take a matrix containing seismic data as 

input. What makes SMD unique is its output, which was specifically designed to optimally 

describe seismic data. In fact, SMD was developed by first determining what kind of results I 

wanted from a data decomposition method applied to a seismic data matrix, and then designing an 

algorithm that can return such results. 

To be more specific, the result of applying SMD to seismic data matrix is a series of sets 

of three vectors. The three vectors consist of a pair of basis vectors, also referred to as a pair of 

singular vectors, and a third vector I term the shift vector. In an ideal scenario, for a single seismic 

wave, the first basis vector describes the waveform, the second describes the amplitude at each 

receiver, and the shift vector describes the arrival time at each receiver. For this reason, the two 

basis vectors are termed the waveform vector and the amplitude vector. While the ideal case is 

rarely achieved, the set of three vectors usually captures a significant part of a recorded seismic 

wave. There are many advantages in storing seismic data this way, as outlined in Chapter II. 

The first advantage is that it requires less memory to store seismic data as SMD output than 

as a matrix. When tested on marine seismic gathers, SMD results reduced the memory 

requirements of the data by 80% while capturing most of the coherent waves. This is because SMD 

is designed for, and very efficient at, capturing seismic signals. For the same reason, SMD is 
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effective at denoising seismic data. Because SMD is much more efficient at capturing seismic 

signals than noise, reconstructing the original data from SMD results creates a new version with 

much less noise and better SNR. Examples of SMD enhancing weak reflections in marine seismic 

gathers can be found in Chapter II. 

To further stress that the results of SMD provide a unique and valuable view of seismic 

data, in Chapter III I created an event detection algorithm that directly operates on the results of 

SMD, rather than the seismic data matrix. The algorithm was applied to DAS data from FORGE 

testing site [10] and it was able to accurately pick seismic signals. However, it detected only about 

40% of events that were previously detected by a semblance-based detection algorithm. The 

difference is largely due to the elementary pre-processing steps performed on the data to which 

SMD was applied. For the semblance-based algorithm, the ambient noise was removed in a more 

sophisticated pre-processing stage, while SMD was applied to data still containing ambient noise 

but relied on the shift vectors to filter it out. It should also be noted however that the SMD-based 

detection algorithm is much faster than the semblance-based algorithm. Furthermore, the 

semblance-based algorithm requires knowledge of the seismic velocities in the area surrounding 

the receivers, while SMD does not. Regarding the application to DAS data, SMD can detect events 

in real time, reduce the memory requirements (which are extensive for DAS) and improve the 

signal to noise ratio which could prove useful for source location and mechanism determinations. 

With the goal of efficiently inferring source location and mechanism, I’ve also created an 

algorithm for reducing the computation time of finite difference methods used for acoustic wave 

simulations. I refer to it as reduced domain method (RDM), and it can easily be generalized to 

elastic wave simulations. In Chapter IV the algorithm is developed for two-dimensional acoustic-
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wave modeling and is found to reduce computation time by over 50% while maintaining low 

errors.  

In summary, in this dissertation I have developed practical tools for reducing the memory 

requirements of seismic data storage, improving SNR, efficiently running event detection on large 

quantities of data in real time, and reducing the computational cost of acoustic wave simulations. 

These developments together reduce the cost and computational requirements for seismic 

monitoring which will prove valuable in geothermal resource development as society progresses 

along the clean energy transition. 
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APPENDIX A 
THE QUANTITATIVE EXAMPLE 

 

Consider a small matrix 𝑴௦ ∈ ℝ଼,଼ representing a simple wave arrival recorded by 8 

receivers. 

 

In the matrix Ms, each receiver is represented by one of the columns, and the time increases 

from top row to the bottom row. The source is closest to the third receiver, and the perceived 

waveform is simply: 

 

Figure A1 loosely describes a toy model that can generate the matrix Ms. 



 

91 
 
 

 

 
Figure A1. A toy model corresponding to the data recorded in the matrix Ms. 

 

By applying SMD to matrix Ms we extract a pair of the singular vectors (uSMD, vSMD), and 

a shift vector (s). Keep in mind that when using SMD, the singular value λSMD is stored in right 

singular vector vSMD by multiplying the vector with it: 

 

Using the singular vectors and the shift vector we can reconstruct a matrix MSMD to be 

identical to Ms: 
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We can also apply regular SVD to the matrix Ms to extract a singular value λ and singular 

vectors u and v: 

 

We can reconstruct a matrix MSVD from the extracted eigenpair with the following equation: 

 

There is a significant difference between Ms and MSVD. The data from matrix Ms cannot be 

described by a single pair of singular vectors and a singular value obtained by applying regular 

SVD. However, it can be described by a pair of singular vectors coupled with a shift vector 

obtained by applying SMD.




