
AUTOMATED DEEP LEARNING FOR TIME SERIES OUTLIER DETECTION

A Thesis

by

WANGYANG HE

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Xia Hu
Co-Chair of Committee, Frank Shipman
Committee Member, Kevin Nowka
Head of Department, Scott Schaefer

December 2022

Major Subject: Computer Science & Engineering

Copyright 2022 Wangyang He



ABSTRACT

Time-series outlier detection reveals uncommon points or patterns with abnormal behaviors

within time-series datasets and settings. It is a crucial research area to explore because it can be

helpful for many real-world scenarios. Some popular fields, such as fraud detection, healthcare,

cancer detection, cybersecurity attack detection, and fault detection, could benefit from time-series

outlier detection. For example, in real-world fraud detection, millions of transactions are fed into

the database daily. The outlier detection system needs to recognize a suspicious transaction or

pattern as soon as possible. If we manually download the data daily to make predictions on it, this

would take too much time and effort, and most importantly, it could potentially be too late to detect

the fraud case. Therefore, in these real-world databases, time-series data becomes a real challenge

for researchers to explore.

Oftentimes, engineers take a dataset and manually build a fixed-designed neural network for a

specific task to predict and recognize outliers. However, this isn’t the optimal strategy for treat-

ing time-series data. A fixed-designed neural network will not have enough power to capture all

the details inside a time-series data. Each time-series outlier detection task will require different

network architectures to detect outlier points and patterns accurately.

In general machine learning, researchers have found a way to search for the best model accord-

ing to the unique behaviors of each dataset, which is Automated Machine Learning (AutoML).

AutoML automates machine learning tasks and workflows with different techniques, which bene-

fits non-experts to use machine learning models more quickly. Some standard methods for AutoML

include hyperparameter optimization, meta-learning, and neural architecture search (NAS).

In this thesis proposal, by adapting and modifying the traditional NAS strategies, we propose

a new method to construct a suitable search space with the proper size and combine the power of

different deep learning time-series outlier detection algorithms with AutoML searching methods

to search an effective neural network for time-series outlier detection automatically.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Time-series outlier detection tackles the challenges of finding abnormal points or patterns based

on overall behaviors in a time series environment. This area of research [1] [2] started around the

1960s when researchers and scientists tried to solve outlier issues with single random samples

and some standard linear model methods. Back in the 1970s, researchers [3] started to categorize

different types of outlier points that can be found in time series based on different kinds of unique

behaviors. By that time, time-series outlier detection had slowly become an essential task in the

computer science and data mining field, which not only attracted more researchers to explore this

area but also interested engineers to start applying it to different real-world applications, including

fraud and fault detection tasks, etc.

As time went by, the development of this field grew extremely fast. Especially in the early

2010s, when hardware and software technologies became more advanced led, machine learning

methods began to shine in almost every area. Researchers [4] started to apply different statistical

and machine learning methods to time-series outlier detection, and this massively leveled up the

potential and popularity in this area. Statistics methods like vector autoregression (VARMA), au-

toregressive moving average (ARMA), and clustering methods like k-Means, one-class SVM, or

even unsupervised parametric methods like finite state automata (FSA) or Hidden Markov Models

(HMMs), and many more, were all tested and applied into time-series outlier detection. These tra-

ditional methods and approaches all showed promising results on popular small academic datasets

but faced challenges on large scaled multivariate time series datasets. As we all know by now,

temporal data are getting collected every second in almost every single industry. By following the

"big data" trend, it is really not an easy route for those traditional methods and approaches to be

applied to large real-world data. Therefore, this has become a huge issue with time-series outlier

detection, among all the other well-known issues like data labeling, data feature complexity, out-
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lier categorization, etc. We slowly realize a model for time-series outlier detection might not be so

easy to construct in order to take care of the complex nature of time-series data.

During the last several years, researchers adapted many deep learning methods to time-series

outlier detection and exceeded many state-of-the-art results compared to traditional methods, espe-

cially in unsupervised settings. A popular method [5] [6] is autoencoder(AE) based on recurrent-

based layers, which aims to extract and learn multivariate time series data with a large number of

dimensions. While deep learning methods like AE could achieve wonderful results on time series

data, it relies heavily on machine learning experts to construct such a model for each different case.

While the number of machine learning experts has been growing extremely fast in recent years,

it is still impossible to match the amount of data being collected, especially time-series data, are

getting collected each second.

The purpose of collecting a massive amount of time-series data isn’t just for the record itself.

We would like to find some sort of trend, structure, or behavior from these data. Machine learning

comes in place as the best tool to do so. However, there are only less than 1% of humans are

machine learning experts, and they have a better sense of how to structure and initialize the machine

learning settings and parameters. But what about the rest of 99% of the population that wants to

use machine learning? Due to the nature of machine learning, in which it could be applied to any

type of scenario and data set, this technique is now the state-of-the-art way to analyze and predict.

Many non-ML experts from areas like healthcare, statistics, finance, business, etc., want to use

machine learning in their own areas, but it would take a lot of time and effort to get their foot in

the door to learn it. Even after learning the basics of machine learning, it is extremely difficult for

them to try out all kinds of models and combinations of architectures and hyperparameters. This is

why Automated Machine Learning (AutoML) is rapidly becoming the most user-friendly way of

using machine learning.

The term “AutoML” is pretty easy to understand, making machine learning automated. A

typical AutoML process would take the input data from the user, do some necessary preprocessing

steps, and throw this data into hundreds or thousands of different combinations of machine learning

2



models. Through this process, the combinations of models are made based on the combinations

of different hyperparameters. The AutoML process will stop once all hyperparameters reach their

best performance, and this will output the best possible model for the user. The AutoML search

process is thousands of times faster than real humans could possibly try and significantly reduces

the chance of errors within its process.

There are many different types of AutoML, including automated feature engineering, auto-

mated model and hyperparameter tuning, automated deep learning, etc. Within each of these types

of AutoML, there are different methods and techniques used for different purposes. For deep learn-

ing tasks, common methods such as Bayesian Optimization, Gradient Boost, Neural Architecture

Search (NAS), etc. Our method will utilize the advantages of NAS to further explore and solve

some limitations of existing AutoML techniques.

Neural Architecture Search (NAS) [7] refers to the process of automatically searching for a

good architecture design of neural networks. It tends to try different combinations of model archi-

tectures, and the goal is to find the optimal structure for a given task or data. The initial purpose

of AutoML is to reduce the time and complexity of human effort and reduce the chances of human

error. It has been proved by many researchers that NAS solves these issues and greatly decreases

human effort in selecting a good model architecture. However, new issues and limitations have

occurred with using NAS.

It has shown that the computational cost for NAS is extremely expensive. This is because,

in theory, NAS tries to search through every possible combination of model components, and

this leads to very large search space. Therefore, for complex models, the size of search space

for NAS grows at an exponential rate. Especially for time series data, its high dimensionalities

and multivariate characteristic is the biggest enemy of NAS. Hence researchers are now exploring

efficient ways to construct a suitable search space and more efficient methods to apply NAS.

To tackle the above challenge, we found a new way to solve the large search space size issue.

Inspired by the autoencoder (AE) structure, we provided a way to construct an encoder-decoder

"U" shaped architecture while keeping the advantages and flexibility of NAS. This approach proved

3



its value against many state-of-the-art traditional methods by either matching or outperforming

them. While reducing significant time and effort by using AutoML in time-series outlier detection,

we also output many different models tested during searching, which could be used for other

purposes.

1.2 Literature Review

In this section, we will review existing methods and frameworks/tools in both time-series out-

lier detection and automated machine learning. Since our proposed method is a combination of

these two areas, the goal of this section is to learn about the methods and successful works, to

extract their advantages, and to see how they realize the tool in a technical way.

1.2.1 Time-Series Outlier Detection

There are now many successfully built Time-Series Outlier Detection frameworks and open

source projects developed by machine learning experts and engineers, most of them require very

low-code setup and easy-to-understand usage for users to understand extremely quickly. In this

section, I will survey five existing papers on Time-Series Outlier Detection frameworks and/or

projects, to analyze each of them in terms of their innovative ideas, methods, limitations, etc. In

section 1.2.1.1, I will talk about each of them individually as a subsection, and in section 1.2.1.2, I

will summarize the similarities, differences, pros/cons, and my personal thoughts.

1.2.1.1 Papers and Packages

TODS

TODS is an automated time series outlier detection system, its corresponding paper [8] de-

scribes this system as an open-sourced framework mainly for automated time series outlier de-

tection tasks. It contains more than 70 python implementations of algorithms for time-series

outlier detection, including methods for data processing, time-series processing, feature analy-

sis/extraction, detection algorithms, and reinforcement module. It is very modulated and easy to

use with low-code integration, and highly flexible on building a machine learning pipeline for time-

series outlier detection. The goal for TODS is to become an end-to-end system for real-world time

4



series outlier detection. This package is open-sourced in Python language. Currently TODS does

not support any AutoML functionality, however, this is what I have accomplished for this thesis

work. TODS will be our main tool to develop and experiment on for this thesis.

telemanom

Telemanom [5] was originally proposed by researchers from NASA to handle outliers in teleme-

try data for spacecraft tasks. It uses LSTMs to catch information learned within the network so it

will become a unsupervised setting, because the amount of expert-labeled telemetry anomaly data

is very limited, so telemanom becomes very crucial for them. As we know, telemetry data contains

huge portions of time series data with high dimensional features, therefore, telemanom has also

quickly become a popular method in time-series outlier detection. It’s code has now turned into

an open-sourced framework for everyone to use, implemented in Python language. Packages like

TODS also has developed telemanom as a primitive for everyone to use.

DeepADoTS

DeepADots is a repository maintained by KDD-OpenSource to evaluate deep learning methods

in time-series outlier detection. It now has 7 implemented deep learning algorithms including

LSTM-AD [9], LSTM-ED [10], Autoencoder [11], Donut [12], REBM [13], DAGMM [14], and

LSTM-DAGMM. All of the 7 deep learning methods are available to use in the repository, fully

implemented in Python language. One disadvantage of this repository is that it does not provide

any toy dataset, only relies on MNIST within Tensorflow.

NAB

NAB [15] [16] stands for Numenta Anomaly Benchmark, which is a novel benchmark to use for

streaming and real-time tasks in time-seires outlier detection. It contains more than 50 labeled real-

world time-series outlier data and it has a scoreboard of different detectors with their performance

scores. NAB supports both Python and Julia implementations, the current leader on the scoreboard

is a Julia implementation while many other detectors are mainly Python.
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AnomalyDetection

AnomalyDetection is an open-sourced package for outlier detection, it was developed by Twit-

ter team back in early 2010s with many staistical methods. The underlying algorithm they used to

detect outliers is is Seasonal Hybrid ESD. Even though this package stopped developing ever since

8 years ago, it it still one of the most popular package used for outlier detection in the R language.

This is because nowadays the mainstream language for machine learning and outlier detection is

Python instead of R.

1.2.1.2 Thoughts on Time-Series Outlier Detection

We analyzed five different frameworks and/or projects of time-series outlier detection. The

goal of these frameworks concludes in several different directions, including different industries,

different purposes, different languages, and different topics. Some of them are task-specific, while

others are trying to build a unified framework. While most of the algorithms are similar to these

frameworks, some of them are still in process of development, and some of them are capable of

letting the users implement new algorithms. Some of these frameworks has almost all the state-

of-the-art methods within itself, like TODS. While some others only uses deep leanring methods,

like DeepADoTs. Some of these are for benchmark purpose, like NAB, while some are only for

a certain industry, like telemanom for aerospace. While most of them can be used with Python,

several had the capability to use them in other languages like Julia and R.

1.2.2 AutoML

There are now many successfully built AutoML frameworks and open source projects devel-

oped by machine learning experts and engineers, most of them require very low-code setup and

easy-to-understand usage for users to understand extremely quickly. In this section, I will survey

five existing papers on AutoML frameworks and/or projects, to analyze each of them in terms of

their innovative ideas, methods, limitations, etc. In section 1.2.2.1, I will talk about each of them

individually as a subsection, and in section 1.2.2.2, I will summarize the similarities, differences,

pros/cons, and my personal thoughts.
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1.2.2.1 Papers and Packages

AutoKeras

In AutoKeras [17] the authors focus on neural architecture search in deep neural networks.

They think most of the algorithms and frameworks are limited by expensive computational costs,

and they built an open-sourced AutoML system called AutoKeras. AutoKeras is designed to run

the searching process in parallel on both CPU and GPU, and it will also automatically adapt the

searching configuration based on the user’s hardware memory limitation. The method behind this

system enables Bayesian optimization to support the searching process, and it also optimizes the

proposed acquisition function to build the search space. This framework is open-sourced with

Python and is one of the most popular AutoML frameworks now. AutoKeras is now being devel-

oped by Google’s official Keras team, and the authors have written the book called “Automated

Machine Learning in Action” for AutoML learners. AutoKeras will also be an important tool to

use for the experiment of this thesis, which I will modify parts of AutoKeras and merge into TODS

to activate the AutoML functionalty in time-series outlier detection.

TPOT

In TPOT [18] the authors built a genetic programming-based AutoML system, which focuses

on the optimization of a series of feature preprocessors and models. The goal of this system is

to maximize the accuracy of supervised machine learning problems. The term TPOT stands for

Tree-based Pipeline Optimization Tool, and it is a wrapper of the scikit-learn package. It has vari-

ous operators and algorithms within the framework, including supervised algorithms like Decision

Tree, Random Forest, XGBoost, etc; feature preprocessing algorithms like Standard Scaler, Min-

Max Scaler, etc; and feature selection algorithms like Select K Best, Select Percentile, etc. The

pipeline flow is the most important thing to use in this framework, the users need to optimize the

best pipeline for the best outcome. This system was tested on 150 supervised classification data

sets, and it performs extremely well with a good pipeline.
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Auto-SKLearn

In Auto-SKLearn [19] the authors want to make a framework that can be used with low-code,

low-requirement, for non-experts of machine learning. They developed a new AutoML system

that is implemented based on the scikit-learn library, called Auto-SKLearn. This system won the

first phase of the ChaLearn AutoML challenge, which was participated by the developer of many

powerful AutoML frameworks. They define the AutoML problem as a CASH problem, which

stands for Combined Algorithm Selection and Hyperparameter. This system was compared to

Auto-WEKA and hyperopt-sklearn, which contains 21 datasets from the Auto-WEKA system. It

tied the best optimizer in nine of the sixteen cases and lost the other ones. This system is open-

sourced and implemented with Python.

H2O AutoML

In H2O AutoML [20] the authors designed a new platform called H2O AutoML, it is capable

of dealing with very large data sets, and it has APIs for four different languages, such as R, Java,

Python, and Scala. It also has a well-designed web GUI for diverse teams of users to use. The

results of this framework present themselves as a “leaderboard” list, which ranks all the searched

models based on a certain metric, and each model is exportable for users to reuse. The techniques

used to search are fast random search and stacked ensembles, these techniques are semi-random

with a goal of optimization of performance and time. This framework contains many algorithms

and it is open-sourced with Python implementation.

Google Vizier

In Google Vizier [21] the authors describe Google Vizier, which is an internal AutoML frame-

work for Google. Google Vizier is used for performing black box tasks to help tune parameters,

and it works together with Google’s Cloud Machine LEarning HyperTune subsystem to optimize

their machine learning models. It is meant to be ease of use, minimal configuration, and setup,

fast searching process, a wide range of algorithms, flexible algorithm implementation, etc. This
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framework is currently implemented with C++, Python, and Golang. It has a flexible functional-

ity for users to use their own arbitrary algorithms, called algorithm playground. It also has very

impressive functionalities like automated early stopping, which makes the searching process stop

when it reaches the best performance. It also supports transfer learning which will save time for

advanced users. One rare capability of Vizier is it designs excellent cookies, which is important

for back-tracking purposes.

AutoCompete

In AutoCompete [22] the authors proposed the framework called AutoCompete, which is an

automated machine learning framework to use for machine learning competitions. The authors

spent approximately two years developing this framework in online machine learning competition

environments. The main contribution of this paper is the process of helping its users to identify

data types, choose a well-fitted model, and tune the hyperparameters while avoiding overfitting

and containing several popular evaluation metrics. The authors defined a “Stacker” which contains

the pre-processing features and stacks them into the feature selection process, which will be later

on sent to the “Selector” and the “Hyperparameter Selector” for the best performance model. This

framework contains both classification and regression algorithms for users to pick, including many

famous algorithms like Random Forest, Gradient Boosting, Logistic Regression, SVM, etc. This

framework is written in Python and heavily relies on the scikit-learn library. The authors would

like to add many features in the future and also enable the functionality for searching the optimized

model with a certain evaluation metric.

ATM

In ATM [23] the authors presented ATM, which stands for Auto-Tuned Models. It is an au-

tomated machine learning system that can deliver read-to-predict models extremely fast. It has

heavy attention to feature engineering, which is a crucial part of machine learning. The results can

be displayed in the form of a confusion matrix, cross-validation results, and training times. The
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authors tested this framework on 420 different datasets and trained more than 3 million classifiers

for a few days. ATM by itself generated the largest single repository of trained models for users

to use, and with only several days of training, it beat about 30% of the human-generated model’s

performances. Keep in mind that this accomplishment only used 1% of the time compared to

human-performed models. This paper also presented a novel method for forming a hierarchical

search space of different methods, and the parameter tree is the optimized structure for hyperpa-

rameter searching.

LEAF

In LEAF [24] the authors think that deep neural networks (DNNs) are usually not being used

by their full potential, due to the fact that it is extremely hard to find the proper configuration.

Therefore, they promoted a framework called LEAF, which optimizes the hyperparameters, and the

network architectures with the most suitable size. This framework works based on evolutionary

algorithms to produce the optimal model. It uses neural architectures search space as the main

technique to form the proper space and to find the best result. All of the algorithms are based on

the CoDeepNEAT algorithm and various versions of it. They tested this framework with Wikipedia

comment toxicity classification data sets and medical data sets like X-rays. This framework heavily

relies on Keras, which mainly runs with Python.

DeepArchitect

In DeepArchitect [25] the authors think that current frameworks are too focused on a specific

use-case, and are not general enough. They developed a formal language to encode the search

space of the AutoML process, which can be used with many different combinations of algorithms

and settings with ease. The advantages of this language are: very similar to computational graph,

where it is nothing new for users to learn; the reusable search space and modules are flexible

enough to save users some time; easy to use, usable without needing a machine learning expert.

This framework is written in Python and open-sourced for everyone to use.
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Auptimizer

In Auptimizer [26] the authors want to speed up the model tuning process of the AutoML prob-

lem, which they developed Auptimizer. This framework is a general hyperparameter optimization

framework in which the users will be able to use most of their computing resources available. One

of the unique features of this framework is that it’s able to play the role of a bookkeeper which will

track the history of searching for users to see. This framework is also flexible enough for users to

switch between algorithms with ease, or even integrate new algorithms into the framework. This

framework is now free to use in Python and many other languages like MATLAB and R. There are

both implementations of model frameworks for Tensorflow and PyTorch.

1.2.2.2 Thoughts on AutoML

We analyzed five different frameworks and/or projects of AutoML. The goal of these frame-

works concludes in several different directions, including usability, faster speed, less hardware

reliability, and even for internal organization use. Some of them are task-specific, while others are

trying to build a unified framework. While most of the algorithms are similar to these frameworks,

some of them are still in process of development, and some of them are capable of letting the users

implement new algorithms. Some of these frameworks use the HPO (hyperparameter optimiza-

tion) strategy, some use semi-random search algorithms, and some use NAS (neural architecture

search space). While all of them can be used with Python, several had the capability to use them

in other languages.
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2. BASELINE METHODS

2.1 Baseline Methods

In this section, we will look at some baseline methods commonly used in time-series outlier

detection, which categorizes into methods that include searching, and without searching. For meth-

ods without searching, we will describe LSTM AutoEncoder and LSTM RNN; for methods with

searching, we will describe Basic Search and Random Search.

2.1.1 Methods without Searching

2.1.1.1 LSTM AutoEncoder

An LSTM AutoEncoder [10] stands for Long Short Term Memory Networks based Encoder-

Decoder. It is a way to implement an autoencoder with Encoder-Decoder LSTM architecture. This

is a two-part process, including the encoder and the decoder. The encoder will encode or compress

input data into compressed representations. The final layer of the encoder will then become the

initial layer of the decoder, where the decoder will try to reconstruct back to the input data from the

compressed representations. During this process, it will learn the behavior of normal time-series

data, and after reconstructing the data, it will detect outliers based on the reconstruction error.

Oftentimes, it is easy to reconstruct the normal data points, while not so easy to reconstruct the

abnormal data points, which tells us that this could be a potential outlier. LSTM AutoEncoders

have been applied to different types of sequence data, including audio, video, text, and time series

data.

2.1.1.2 RNN LSTM

RNN LTSM [27] [9] stands for Recurrent Neural Networks with Long Short Term Memory.

LSTM networks can keep long-term memory information in their input, output, and forget gates

with a particular unit called "memory cells". It has proven that LSTM shows its true power under

sequences with long patterns or lengths, which means this advantage fits perfectly with the nature
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of time series data. To achieve the RNN LSTM method, we need to stack up LSTM networks by

fully connecting LSTM units in hidden layers with recurrent connections. This means every unit in

the lower half of the LSTM hidden layer will be fully connected to every unit in the upper half of

the LSTM hidden layer. Then, to predict outliers, we use the error vector to compute the prediction

errors, which will help us find the abnormal results.

2.1.2 Methods with Searching

2.1.2.1 Basic Search

Basic search in AutoML, also refers to grid search [28], is the traditional method for hyperpa-

rameters optimization. It simply defines the possible search space of NAS as a grid that contains all

possible hyperparameters and will evaluate every single possibility during the searching process.

Grid search is great for small experiments to do a quick search of hyperparameters if you already

expect some value of hyperparameters will perform well.

2.1.2.2 Random Search

Random search in AutoML is similar to basic search, except it randomly chooses hyperparam-

eters instead of searching in a predefined order like grid search. Random search proves to perform

better than grid search. However, it takes a longer time to finish the search process if you do

not know what hyperparameters will perform well. A tree-based random search in AutoML [18]

can also perform well, it is based on genetic programming methods, and the goal is to maximize

accuracy in supervised classification tasks, represented by a popular framework called TPOT.
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3. PROPOSED METHOD

3.1 Method

Our goal is to tackle the biggest issue of AutoML in time-series outlier detection, which is to

find a suitable search space with the proper size while keeping the flexibility of the NAS strategy.

We propose a new method inspired by the encoder-decoder structure of autoencoders(AE), where

our search space will have a similar "U" shaped predefined architecture before searching.

The advantage of NAS searching is to be able to search for all possibilities because, in theory,

this will ensure an optimal solution. However, to control the size of the search space, we found a

technique to semi-randomly design our architecture prior to searching. On top of the commonly

used hyperparameters for NAS, like the number of layers, number of units, number of filters, etc.

We also added two important hyperparameters to help us construct a suitable search space: the

number of middle-layer units and layer multiplier:

Figure 3.1: Proposed Neural Architecture Design
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Number of Middle-layer Units: a hyperparameter that defines the number of units in the middle

layer of all possible layers. This will always make the number of layers an odd number. The

number of units in the middle layer will always be the lowest among all layers. In an autoencoder

setting, this middle layer will become the last layer of the encoder and the first layer of the decoder.

Layer Multiplier: a hyperparameter that defines the multiplier for the number of units between

each layer.

The two hyperparameters above will work together with the "number of layers" hyperparameter

to construct a new architecture during each training step. As shown in Figure 3.1, based on an odd

number "number of layers", the "number of middle-layer units" will start expanding the number

of units per layer to its left and to its right based on a selected "layer multiplier", this process will

end until the number of "number of layers" has been fulfilled. Then the final architecture for this

specific training step will become:

[...,m3n,m2n,mn, n,mn,m2n,m3n, ...] (3.1)

where n is the "number of middle-layer units" and m is the "layer multiplier".

3.1.1 Example Scenarios

Below I will list two possible scenarios on how this works:

Case 1:

First, NAS randomly selects the hyperparameter "number of layers" as 7, then our initial archi-

tecture will look like:

[l1, l2, l3, l4, l5, l6, l7] (3.2)

where l means layer number. At this time, we are unsure how many units are in each of the layers

yet.
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Second, NAS randomly selects the hyperparameter "number of middle-layer units" as 4, from

the above euqation, l4 is the middle-layer of this architecture, then our updated architecture will

look like:

[l1, l2, l3, 4, l5, l6, l7] (3.3)

in which now we know the number of units in the middle layer is 4. At this time, we are still unsure

how many units are in each of the other layers yet.

Third, NAS randomly selects the hyperparameter "layer multiplier" as 2, which means starting

from the middle layer, each layer to its left and right will be multiplied by 2 to get the number of

units in that layer, then our updated architecture will look like:

[32, 16, 8, 4, 8, 16, 32] (3.4)

which this will be the final architecture for this specific training step.

Case 2:

First, NAS randomly selects the hyperparameter "number of layers" as 9, then our initial archi-

tecture will look like:

[l1, l2, l3, l4, l5, l6, l7, l8, l9] (3.5)

where l means layer number. At this time, we are unsure how many units are in each of the layers

yet.

Second, NAS randomly selects the hyperparameter "number of middle-layer units" as 8, from

the above euqation, l5 is the middle-layer of this architecture, then our updated architecture will

look like:

[l1, l2, l3, l4, 8, l6, l7, l8, l9] (3.6)
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in which now we know the number of units in the middle layer is 8. At this time, we are still unsure

how many units are in each of the other layers yet.

Third, NAS randomly selects the hyperparameter "layer multiplier" as 3, which means starting

from the middle layer, each layer to its left and right will be multiplied by 3 to get the number of

units in that layer, then our updated architecture will look like:

[648, 216, 72, 24, 8, 24, 72, 216, 648] (3.7)

which this will be the final architecture for this specific training step.

3.1.2 Summary

As shown in the above section, we can see our method could potentially construct either small

or large architectures. In Case 1, since our hyperparameters are commonly selected as smaller

values, we resulted in a simple architecture as shown in Equation 3.4. However, in Case 2, our

selected hyperparameters were bigger values than the ones selected in Case 1, and we resulted in a

much more complex architecture, as shown in Equation 3.7.

Therefore, we can see that our proposed method did keep the flexibility of traditional basic

search or random search methods. At the same time, it also has the capability of searching for both

small and large architectures to ensure an optimal solution.
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4. EXPERIMENTS

In this section, we will present a group of experimental studies to compare and evaluate the

performance of our automated deep-learning methods in time-series outlier detection. We carefully

set up our experiments and ignored problematic benchmark datasets mentioned in [29] and [30],

where we picked two well-known benchmark datasets that are approved by many researchers in

time-series outlier detection.

4.1 Experimental Setup

4.1.1 Environment

All experiments of this section are performed on an NVIDIA V100 GPU server with 8 GPUs,

64 CPUs, and a disk size of 1000GB. We believe it isn’t necessary to use this high-performance

environment for the experiment’s purpose. However, it was used to decrease the running time.

4.1.2 Tools

To combine both AutoML and Time-series outlier detection, we utilized two open-source pack-

ages introduced in the Introduction sections. For automated machine learning, we used AutoKeras’

AutoML backend framework1, which relies heavily on TensorFlow and Keras. We used the "Re-

gression Head" module from AutoKeras to enable the reconstruction functionality in TODS.

As we stated above, TODS is an automated time-series outlier detection system2 that contains

most of the state-of-the-art algorithms in outlier detection. Each algorithm is implemented into a

"primitive" under the TODS unified framework. We took the "Dense Block" module and the "RNN

Block" module from AutoKeras, modified both blocks, and merged them into TODS as new prim-

itives called "AKAE" and "AKRNN".

1https://github.com/keras-team/autokeras
2https://github.com/datamllab/tods
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AKAE is a new primitive in TODS, which stands for AutoKeras AutoEncoder. This primitive

utilizes the original AutoKeras "Dense Block" which does not have the capability of an AutoEn-

coder. We added our newly designed method within the original "Dense Block" to predefine the

Encoder-Decoder architecture before each training step.

AKRNN is also a new primitive in TODS, which stands for AutoKeras Recurrent Neural Net-

work. This primitive utilizes the original AutoKeras "RNN Block" which stacks up many layers of

LSTMs/GRUs. We added a dropout layer at the end to improve performance for time-series data.

We added our newly designed method within the original "RNN Block" to predefine the neural

architecture before each training step.

4.1.3 Datasets

We chose two datasets for testing our newly implemented primitives, which are The Server

Machine Dataset(SMD) and the UCR benchmark dataset.

The Server Machine Dataset(SMD)3 [6] is a real-world time-series public dataset. It was col-

lected throughout a time period of 5 weeks from a large internet company. This dataset provides

a training set, testing set, and labels for each corresponding machine, and they are all divided into

the same size to better evaluate using different metrics. In total, it contains data from 28 server

machines that monitor 33 metrics individually. We picked ten different machines to evaluate our

method on and also compared to baseline methods performances on the same ten datasets selected.

The UCR Time Series Archive4 [31] is another dataset we tested on. It was introduced in 2002

and has become one of the most used data sources for time-series-related research areas. This

dataset contains 85 different time-series datasets on different tasks, and it gives information on the

3https://github.com/NetManAIOps/OmniAnomaly
4https://www.cs.ucr.edu/~eamonn/time_series_data/
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number of training samples, testing samples, and anomaly ranges. To test our newly implemented

primitives, we selected ten different datasets within this UCR archive and also used the same se-

lected datasets to compare performance on selected algorithms.

4.1.4 Evaluation

The loss function used during model training is Mean Squared Error(MSE) 4.1, that is mainly

because we currently only have regression based primitives. MSE can be defined as following:

D∑
i=1

(xi − yi)
2 (4.1)

We could also consider using Mean Absolute Error(MAE) 4.2, however it isn’t as sensitive to

time-series data as MSE. MAE can be defined as:

D∑
i=1

|xi − yi| (4.2)

The evaluation metrics used to compare results throughout all experiments are Precision, Recall,

Accuracy, F1 score, and AUC score. In the resulting table, we reported only Accuracy, F1 score

and AUC score, because both Precision and Recall are used to compute the F1 score.

In a confusion matrix, we would obtain information on the evaluated data with True Posi-

tive(TP) samples, True Negative(TN) samples, False Positive(FP) samples, and False Negative(FN)

samples. In a time-series data setting, TP samples means the model detected normal sample points

correctly compared to the ground truth labels; TN means the model detected outlier sample points

correctly compared to the ground truth labels; FP means the model detected outliers as a normal

point compared to the ground truth labels; FN means the model detected normal points as out-

liers compared to the ground truth labels. With the help of these information, we can compute the

Precision as following:
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Precision =
TP

TP + FP
(4.3)

We can also compute the Recall as the following:

Recall =
TP

TP + FN
(4.4)

On top of precision and recall, Accuracy can also be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (4.5)

Now that we have both Precision and Recall, we can compute the F1 score 4.6:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4.6)

Lastly, to compute the AUC score, we will need to use Sensitivity and Specificity, where Sen-

sitivity can be computed similar to recall:

Sensitivity = Recall =
TP

TP + FN
(4.7)

Specificity can be computed as:

Specificity =
TN

FP + TN
(4.8)
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Finally, Area Under Curve(AUC) can be computed as:

AUC = Sensitivity(TPR)− (1− Specificity)(FPR) (4.9)

Which can be expanded to:

AUC = (
TP

TP + FN
)(TPR)− (1− TN

FP + TN
)(FPR) (4.10)

In my opionion the most important metric to look at is the F1 score, where we will be looking at

the Macro-F1 average instead of the highest F1 score for each method. This is because the average

would be more reasonable to compare since some algorithms aren’t stable at all, they could have

the highest F1 score on one dataset out of all the methods but also have the lowest F1 score on

another dataset at the same time.

4.1.5 Baseline Comparison

We compared the neural architecture searched by AutoML for both AKAE and AKRNN with

different related traditional approaches. Below here I will briefly summarize the traditional meth-

ods that we will be comparing to.

For AKAE, since it is very similar to the traditional AutoEncoder, just with architecture search-

ing. We compared AKAE with AutoEncoder(AE) and VariationalAutoEncoder(VAE).

AutoEncoder

AutoEncoder(AE) is a neural network that can learn and can compress the input data, it will

also learn how to reconstruct the data back to original input. The AutoEncoder contains two parts,

the encoder, and the decoder. As shown in Figure 4.1, an image of number "2" from the MNIST

dataset is fed into the encoder, the encoder will learn the image and compress it into compressed

representations. The compressed representation will be the output of the encoder, and the input of
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Figure 4.1: AutoEncoder for MNIST

the decoder. The decoder will take the compressed representation and try to reconstruct the image,

which outputs a similar image like the original image.

VariationalAutoEncoder

VariationalAutoEncoder(VAE) is another popular neural network and it is an extension of AE.

The only difference is that VAE addresses the non-regularized representations of AE so that now

it is capable of randomly sampling vectors and generate data continuously. In VAE, to produce the

latent value z:

z ∼ qµ,σ(z) = N (µ, σ2) (4.11)

we need to sample:

ϵ ∼ N (0, 1) (4.12)

and finally z will be:

z = µ+ ϵ · σ (4.13)

For AKRNN, it is a basic RNN network with either LSTM or GRU layers, it also can have

bidirectional layers or dense layers based on searching results. We compare AKRNN to four

different trational methods: Telemanom, DeepLog, SoGaal, and MoGaal.

Telemanom
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Telemanom [5] uses LSTMs to detect anomalies under multivariate time-series data. The

LSTM layers will learn the normal data points behaviors during the encoding process. It generates

prediction errors during each single time step and compare it to the learned expected behavior. It

is able to detect outlier points and even sequences in the time-series data. It was used initially by

the NASA on aircraft telemetry environment, and now applied to many different time-series outlier

detection tasks.

DeepLog

DeepLog [32] also uses LSTMs to detect outliers. It models a system log as a natural language

sequence which allows DeepLog to learn the recorded system log patterns. The patterns learned

will be compared to the patterns from normal executions to detect the outliers after comparison.

SoGaal

SoGaal [33] stands for Single-Objective Generative Adversarial Active Learning, it utilizes

generative adversarial network(GAN) to adapt into outlier detection which directly generates in-

formative possible outliers. It contains a generator and a discriminator to actively generate outliers.

SoGaal heavily relies on prior knowledge to perform well on time-series outlier detection tasks.

MoGaal

MoGaal [33] stands for Multiple-Objective Generative Adversarial Active Learning, it utilizes

generative adversarial network(GAN) to adapt into outlier detection which directly generates in-

formative possible outliers. It contains a generator and a discriminator to actively generate outliers.

It is an extension of the SoGaal method to prevent the generator from falling into the mode col-

lapsing problem, in which MoGaal will generate a good distribution of references throughout the

input dataset.
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4.2 Results

As shown in Figure 4.2, we compared our AutoML AutoEncoder method to the vanilla AutoEn-

coder and VariationalAutoEncoder, and we compred our AutoML RNN method to the DeepLog,

Telemanom, SoGaal, and MoGaal methods, on the Server Machine Dataset.

Also shown in Figure 4.3, we compared our AutoML AutoEncoder method to the vanilla

AutoEncoder and VariationalAutoEncoder, and we compred our AutoML RNN method to the

DeepLog, Telemanom, SoGaal, and MoGaal methods, on the UCR Time Series Dataset.

Figure 4.2: Performance Comparison on SMD Dataset

Figure 4.3: Performance Comparison on UCR Dataset

For each dataset, we provided three evaluation metrics to compare the results as shown in above
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tables, including Macro-F1 score, area under curve score, and the accuracy score.

4.2.1 Performance Comparison

The experiment measures the use-fullness of AutoML in time-series outlier detection with ef-

ficient searching. We compare the best architecture found by AutoML after searching a certain

number of trials. For testing purposes, we searched ten trails on each dataset. For each trial, the

number of epochs is fixed at 30 for fairness. The batch size is also fixed at 128 for fairness.

For the comparison results shown in Figure 4.2, we compared AKAE against vanilla AE and

VAE with three metrics. We compared AKAE with these two algorithms because they all shared

the same Encoder-Decoder structure, which is significantly different from others. In the SMD

dataset, AKAE had the best F1 score out of all three algorithms, with an increased performance of

about 15%, which is the most important metric to look at. Additionally, AE performed the best on

AUC and Accuracy metrics. However, it did not beat VAE or AKAE by a large margin, therefore

are no significant differences between these two metrics.

For the comparison results shown in Figure 4.2, we compared AKRNN against DeepLog,

Telemanom, SoGaal, and MoGaal, with three metrics. We compared AKRNN with these four

algorithms because both DeepLog and Telemanom utilize LSTMs, which are similar to AKRNN.

Additionally, SoGaal and MoGaal are GAN methods designed specifically for outlier detection, so

I would like to see the comparison between these methods. In the SMD dataset, AKRNN had the

best F1 score, AUC score, and Accuracy score, out of all five algorithms, with an increased perfor-

mance of about 30% for the F1 score and AUC score and just a slight improvement in accuracy.

For the comparison results shown in Figure 4.3, we compared AKAE against vanilla AE and

VAE with three metrics. We compared AKAE with these two algorithms because they all shared

the same Encoder-Decoder structure, which is significantly different from others. In the UCR

dataset, AKAE had the best AUC score out of all three algorithms. Additionally, AE also per-
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formed the best on Macro-F1, AUC, and Accuracy metrics. However, the results for AE, VAE, and

AKAE were extremely close to each other, and we are confident to say it all performed about the

same. However, we were able to do it with less time and effort using NAS.

For the comparison results shown in Figure 4.3, we compared AKRNN against DeepLog,

Telemanom, SoGaal, and MoGaal, with three metrics. We compared AKRNN with these four

algorithms because both DeepLog and Telemanom utilize LSTMs, which are similar to AKRNN.

Additionally, SoGaal and MoGaal are GAN methods designed specifically for outlier detection,

so I would like to see the comparison between these methods. In the UCR dataset, AKRNN had

the best F1 score and AUC score, and MoGaal was the second-best performing result. However,

Telemanom and DeepLog had poor results compared to AKRNN. All the other four methods were

designed with lots of time and effort to become one the state-of-the-art methods in time-series out-

lier detection, and we were able to beat them by simply enabling AutoML searching with RNN,

which shows that our method is very promising.

4.2.2 Searching Path

4.2.2.1 General Searching Path

The searching path of AKAE and AKRNN follows the fashion of AutoKeras. We need to first

set the max number of trials NAS can search until it stops and outputs the best model. For each

trial it will train with user specified number of epochs and batch size. As show in Figure 4.4, this

is the first trail of the searching process. On the left,it will show the hyperparameters chosen for

this specific trail, in the middle it will show the best value so far for each single hyperparameter.

Since this is the first trail, we do not have any values in the middle part yet. Lastly, on the right it

shows the corresponding hyperparamter name within the search space.

Next, as shown in Figure 4.5, this is the output of the first trail, it shows the time taken for this
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Figure 4.4: Step 1 of AutoML Searching Path

trail, and the MSE score for this trail. It also shows the best MSE so far, since we have only had

one trail so far, the best MSE so far will be the MSE from the first trail. After this output shows

up, the second searching trail will begin.

Figure 4.5: Step 2 of AutoML Searching Path

As shown in Figure 4.6 the next searching trail started and the hyperparameters on the left side

changed for this trail. So far the architecture is still a small sized architecture.

Figure 4.6: Step 3 of AutoML Searching Path
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However, look at Figure 4.7 the architecture during the fifth trail has grew a lot bigger.

Figure 4.7: Step 4 of AutoML Searching Path

4.2.2.2 Example Searching Case

Let’s take a look at a real process of the searching process, in this example we are using AKAE

to demonstrate the searching process step by step:

As shown in Figure 4.8, this is the initial trail of the searching process, we have a predefined

architecture for this trail with its corresponding hyperparameters like "num_layers", "multiplier"

and "middle_unit". During this searching step, the predefined architecture is a pretty small sized

architecture.

As shown in Figure 4.9, this is the 6th trail of the searching process, you can see that the best

value so far has been changed from the first trail shown in 4.8, and the predefined architecture for

this 6th trail is bigger than the 1st trail.

As shown in Figure 4.10, this is 9th trail of the searching process, the current trail has a very

large predefined architecture and it is being compared to the architecture from the 6th trail shown

in Figure 4.9, the model will be trained and compared its performance against the previous-best

trail on this large predefined architecture.
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Figure 4.8: Step 1 of AutoML Searching Path Example

Lastly, as shown in Figure 4.11, after searching all trails, the best performance architecture is

shown, we can see that the best isn’t the biggest architecture we searched, it was the middle-sized

architecture from the 6th trail. After all trails, it will trail on 30 epochs to evaluate the best perfor-

mance architecture out of the 10 searching trails.

4.2.2.3 Searching Output

During the model searching process, for each trail searched, the information will be stored as

output files in the current directory. As shown in Figure 4.12, the root folder named "auto_model"

has the "best_model" folder which contains the best performing trail throughout the searching pro-

cess. It also contains all information of the other searching trails, named "trail_num".
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Figure 4.9: Step 2 of AutoML Searching Path Example

As shown in Figure 4.13, under the folder "best_model" there are files of the variables and the

model to be used again. Under the "trail_num" folders, it contains the same information for this

specific trail, and also the JSON information on the hyperparameters during this specific trail.

In Figure 4.14, we can see the JSON information on the hyperparameters for our model, which

contains the default value and all other possible values.

Finally, in Figure 4.15, we can see the JSON information on the best performing trail with the

best choices of the hyperparameters.

31



Figure 4.10: Step 3 of AutoML Searching Path Example

Figure 4.11: Step 4 of AutoML Searching Path Example
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Figure 4.12: Output of Searching Results Part 1

4.3 Thoughts and Future Works

From our experiment results, we can confidently say that AutoML methods can either match

or beat the state-of-the-art traditional methods. Combining AutoML with time-series outlier de-

tection is a new research direction, and there aren’t many findings in this area yet. The purpose of

this thesis is to explore the potential and the limit of these two research areas combined together,

to test the waters in this field. This was not just a research idea but also an engineering challenge

since there are not any standard time-series outlier detection tools that have AutoML functionali-

ties. We identified the challenges of combining these two topics together, and we solved part of the

challenge by developing a method to predefine the architecture. I am very excited about the future

of this area as I know many researchers are currently working on a better solution in AutoML for

time-series outlier detection.

In the future, we could expand this work with more tasks. As we currently only support regres-
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Figure 4.13: Output of Searching Results Part 2

sion tasks, we would like to add more tasks like classification. We would also like to expand our

different types of neural networks, we only support AE and RNN so far, and something like CNN

or Transformers would be great to have. Finally, a better solution to limit the suitable search space

size for NAS is needed if AutoML in time-series outlier detection methods are being scaled up in

the industry.
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Figure 4.14: Output of Searching Results Part 3
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Figure 4.15: Output of Searching Results Part 4
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5. CONCLUSION

In this thesis, we proposed a new method to solve one of the biggest challenges for deep auto-

mated learning in time-series outlier detection, which is finding a suitable search space. We com-

bined TODS and AutoKeras to enable new primitives such as AKAE and AKRNN to do regression

tasks for time-series outlier detection tasks. We compared our method against many state-of-the-

art traditional methods like AutoEncoder, VariationalAutoEncder, DeepLog, Telemanom, SoGaal,

and MoGaal. Our results were as expected and very promising. Our method could either match or

outperform most of the traditional methods based on comparing evaluation metrics like F1 score,

AUC score, and accuracy with less effort and time taken.
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