
 

SOURCE ROCK RECONSTRUCTION AND HYDROCARBON MASS 

BALANCE ASSESSMENT – APPLIED TO THE WOLFCAMP FORMATION IN 

THE PERMIAN DELAWARE BASIN 

A Dissertation 

by 

ANINDITO SATRIO BASKORO 

Submitted to the Graduate and Professional School of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee, Ethan L. Grossman 
Co-Chair of Committee, Alan Yu 
Committee Members, 

Head of Department, 

Mauro Becker 
Hadi Nasrabadi 
Julie Newman 

December 2022 

Major Subject: Geology 

Copyright 2022 Anindito Satrio Baskoro



 

ii 

 

 ABSTRACT 

 

Improved efficiency of hydrocarbon resources exploration is directly 

linked to an accurate petroleum system analysis, including detailed 

quantification of hydrocarbon (HC) masses involved in a basin from generation 

to production. The quantified HC masses must be balanced following the 

fundamental laws of mass conservation. This is particularly important for a basin 

with unconventional-conventional petroleum systems where the generated HCs 

from the source rock are either expelled out from or retained within the source 

rock. Expulsion efficiency becomes even more critical as it largely determines 

the HCs in place, both for the source rock or out of the source rock 

accumulations. Before performing the hydrocarbon mass balance calculation, 

basin-wide source rock (initial quality and quantity and litho- and organo- facies) 

is reconstructed following the proposed workflow. The workflow is applied to 

Wolfcamp Formation in the Permian Delaware Basin as it is an excellent 

example of unconventional-conventional petroleum systems. Firstly, the 

proposed kinetic-based inversion workflow results show a considerable range of 

restored initial hydrogen index, ca. 188-594 mgHC/gTOC, and total organic 

carbon, ca. 1.49-3.17 wt%, values indicating source rock heterogeneity of the 

Wolfcamp. The workflow restores the measured HI and TOC significantly as 

Wolfcamp is within the oil to gas generation (transformation ratio ca. 56-84 %) 

window but initially has a good to excellent source rock potential. Secondly, 



 

iii 

 

seven basin-wide lithofacies are identified within the Wolfcamp Play by applying 

unsupervised machine learning workflows on well-log measurements. Wolfcamp 

source rock basinal lithofacies is identified as organic-rich siliceous mudstone 

with marine clastic organofacies dominated to mixed argillaceous mudstone with 

mixed marine-terrigenous organofacies dominated, interbedded with siltstone 

and limestone, reflecting a shallow-to-deeper marine to deep marine 

depositional environments. Finally, the restored source rock property and 

identified basinal facies are integrated to the 3D Delaware basin model to 

calculate the generated HC. The calculated generated HC volumes (p90/50/10) 

are 705/1,332/3,016 Billion Barrels of Oil Equivalent (BBOE). Ultimately, the 

proposed workflow assesses the mass balance and estimates the mean 

remaining recoverable hydrocarbon of 33/65/149 BBOE with mean overall 

expulsion efficiency of 50%, which may be used as a reference in modeling 

unconventional interbedded play. 
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1. INTRODUCTION  

 

1.1. Background and Motivation 

Detailed quantification of hydrocarbon masses involved in a basin from 

generation to production is necessary for an accurate petroleum system analysis 

(Hantschel and Kauerauf, 2009). The quantified hydrocarbon masses must be 

balanced following the fundamental laws of mass conservation. This is 

particularly important for a basin with combined unconventional-conventional 

petroleum systems where the generated hydrocarbon from the source rock 

interval is either expelled out from or retained within the source rock interval. 

Expulsion efficiency becomes even more critical as it largely determines the 

hydrocarbon in place, both for the source rock interval or out of the source rock 

accumulations. 

Permian Delaware Basin exhibits an excellent example of combined 

unconventional-conventional petroleum systems with the Wolfcamp Formation 

as the important source rock and unconventional reservoir target. According to 

the USGS resources assessment (Gaswirth et al., 2018), the Wolfcamp and 

Bone Spring of the Delaware Basin are currently the largest continuous oil and 

gas resource potential (undiscovered yet technically recoverable) in the United 

States. To efficiently explore Wolfcamp sourced hydrocarbon resources, it is 

fundamental in quantifying the total generated hydrocarbon balance and its 

distribution throughout the basin from expulsion to accumulation and production 



 

2 

 

is necessary. By assessing the mass balance of Wolfcamp’s sourced 

hydrocarbon from generation to production, remaining recoverable resources 

and insight into expulsion efficiency in unconventional/ hybrid systems can be 

estimated more accurately. 

1.2. Geological Overview 

The Permian Delaware Basin is the western major structural subdivision 

of the Permian Basin in west Texas and southeastern New Mexico (Hills, 1984) 

(Figure 1.1a). The Delaware Basin is bounded to the west by the Diablo 

Platform, to the north by the North American craton and Northwestern Shelf 

areas, and to the south by the Marathon orogenic belt. The Delaware Basin is 

separated from the Midland Basin to the east by the N-S trending Central Basin 

Platform (Adams, 1965; Hills, 1984). The Delaware Basin occupies a basinal 

area of 13,000 mi2 (33,500 km2) with a maximum depth of 24,000 ft (7,300 m) 

and is filled by up to 40,000 mi3 (170,000 km3) of Phanerozoic sediments (Hills, 

1984). 

The Wolfcamp Formation (Wolfcampian Series) consists of four main 

intervals: Wolfcamp A, -B, -C, and -D (Bievenour and Sonnenberg, 2019; Dutton 

et al., 2005) and is part of the thick Permian strata in the Delaware Basin 

(Figure 1.1b). The deposition took place during the early Permian with a 

depositional environment of generally a deep, oceanic connected interior 

continental basin surrounded by carbonate shelf (the Northwestern Shelf, 

eastern Central Basin Carbonate Platform, western Diablo Platform), the 
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northwestern Pedernal uplift, and the southern siliciclastic shelf in front of the 

Marathon orogenic belt (Blakey, 2019). Wolfcamp intervals were also deposited 

during the frequent eustatic fluctuations (Fairhurst et al., 2021). The complex 

depositional setting caused lithofacies heterogeneity, primarily limestone, silts, 

and mudstone, within the Wolfcamp intervals in the Delaware Basin. 

 

Figure 1.1. (a) Major subdivision and boundaries of the Permian Basin 
around the Delaware Basin (after Dutton et al. (2015) and Silver and Todd 
(1969)). (b) Stratigraphic chart of Permian strata, which includes Wolfcamp 
interval subdivision for the Delaware Basin (after Bievenour and 
Sonnenberg (2019) and Dutton et al. (2015)). 
 

Hydrocarbon generation from the Wolfcamp source rock (SR) started 

during the middle Permian (Adams, 1965; Hills, 1984; Kinley et al., 2008), 

influenced by complex tectonic history and thermal processes, including high 

thermal conductive evaporites (Adams, 1965; Gardner and Sonnenfeld, 1996; 

Hills, 1984, 1985; Kinley et al., 2008), intrusive and volcanic activities (Barker 
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and Pawlewicz, 1987), and burial history. Recent studies (Becker et al., 2019; 

Yu et al., 2020) indicate that burial history is the most dominant factor for source 

maturity, with the maximum maturity reached during the mid-Permian at 

maximum burial, then continuing to generate hydrocarbons until the present-day 

source-rock condition (Hills, 1984; Lew et al., 2013; Schwartz et al., 2015). 

There are several studies related to petroleum system analysis for the 

Wolfcamp and younger Formations in the Delaware Basin (Curtis and 

Zumberge, 2017, 2018; Fairhurst et al., 2021; Jarvie, 2017; Justman and 

Broadhead, 2010a, b; Sandvik et al., 1992). Wolfcamp SR is the primary source 

rock for the Wolfcamp unconventional/ hybrid reservoirs and lower Bone Spring 

interval with Wolfcamp marine shale and mixed upper Wolfcamp-lower Bone 

Spring SR facies (Curtis and Zumberge, 2017, 2018; Fairhurst et al., 2021; 

Jarvie, 2017; Pepper et al., 2020). The Wolfcamp marine carbonate-rich source 

rock, which is mainly restricted to eastern and northern Delaware Basin margins, 

is primarily responsible for the hydrocarbon conventional accumulations in the 

Delaware Basin margins and as far as Northwest Shelf and Central Basin 

Platform (Curtis and Zumberge, 2017, 2018; Pepper et al., 2020). The 

signatures of these two different oil families are documented in Curtis and 

Zumberge (2018); Echegu et al. (2021); and Pepper et al. (2020).  

1.3. Related Works and Objectives 

Several authors have attempted to perform hydrocarbon mass balance 

calculations at both basin and field scales (e.g., Baur et al., 2011; Carlton, 2017; 
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Coutinho, 2008; Duran et al., 2013; Lewan et al., 2002; Muscio et al., 2016). 

Most of these studies aimed to understand the migration efficiency for 

conventional hydrocarbon accumulation, calibrated to production data from the 

conventional field. While expulsion efficiency and retained hydrocarbon portion 

within the source rock interval were not adequately handled.  

Other studies have been performed on modeling or assessing the mass 

balance of unconventional hydrocarbon accumulations. For example, Rushing et 

al. (2004) and Kuchinskiy et al. (2012) quantified hydrocarbon volumes in 

unconventional play with expulsion efficiency calculated using several 

assumptions such as retaining factor and fractions of hydrocarbons lost from the 

system. However, the results were not assessed for their mass balance for the 

whole petroleum system. Expulsion efficiency is calculated using several 

assumptions, while source rock heterogeneity is generally simplified. Other 

examples are from basin and petroleum system modeling studies applied to the 

unconventional system, including Amer et al. (2015); Bryant et al. (2013); 

Cander (2012); Jarvie et al. (2007); Romero-Sarmiento et al. (2013), among 

many others. Some of these studies addressed the challenge of modeling 

unconventional systems, including factors controlling the retained hydrocarbon 

storage capacity and fluid properties. However, the calculated retained and 

expelled hydrocarbons were not assessed for their mass balance.  

Before the quantity of generated hydrocarbon mass can be calculated as 

the starting point of hydrocarbon mass balance calculation, it is necessary to:  



 

6 

 

1) accurately model the thermal maturity (Baur et al., 2011; Coutinho, 2008; 

Duran et al., 2013; Jarvie et al., 2007; Pepper, 1991; Sandvik et al., 1992), 

2) restore the present-day source-rock conditions (hydrogen index (HI) and total 

organic carbon (TOC)) to their initial state (Jarvie et al., 2007; Kuchinskiy et 

al., 2012; Lewan et al., 2002; Modica and Lapierre, 2012; Rushing et al., 2004), 

and 

3) understand source rock litho- and organo- facies (Coutinho, 2008; Donovan et 

al., 2017; Evenick, 2016; Jarvie et al., 2007; Katz et al., 2017; Pepper and 

Corvi, 1995). 

Thermal maturity plays a vital role in kerogen's thermal alteration and 

cracking process (Jarvie et al., 2007). With increasing thermal maturity, source 

rock may enter the gas generation window and/or undergo secondary cracking 

that results in more gas generation, increasing the retained hydrocarbon gas/oil 

ratio (GOR), and increasing pore pressure and micro-fracturing that enhance the 

expulsion (Jarvie et al., 2007). At the same time, thermal maturity increases the 

organic porosity and adsorption capacity, increasing the storage for the retained 

hydrocarbon within the source rock, and thus decreasing expulsion efficiency 

and affecting the generated fluid property (Baur et al., 2011; Coutinho, 2008; 

Duran et al., 2013; Jarvie et al., 2007; Pepper, 1991; Sandvik et al., 1992). 

The main goal of restoring the present-day source rock to its initial state is 

to accurately characterize the initial source rock quality to calculate the total 

hydrocarbon generation potential. The transformation of organic matter from its 
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initial state to present-day conditions will generate hydrocarbons and form 

organic porosity within the kerogen, which will also determine the storage 

capacity for retained hydrocarbon within the source rock (Jarvie et al., 2007; 

Katz and Arango, 2018; Modica and Lapierre, 2012; Romero-Sarmiento et al., 

2013).  

Various methods have been proposed to restore the measured source 

rock to its initial condition aiming to calculate the volume of hydrocarbon 

generated (e.g., Chen and Jiang (2015); Chen et al. (2016); Jarvie et al. (2007); 

Justwan and Dahl (2005); Peters et al. (2006); among many others). Most of 

these methods require measured HI data and assumptions of initial HI (HIi) to 

calculate the transformation ratio (TR) and then restore the initial TOC (TOCi) 

from measured TOC data. However, estimation of HIi is challenging for samples 

with high maturity and for cases in which immature samples are unavailable, or 

maceral data is lacking. Another challenge is to provide a representative HIi 

value for heterogeneous source rocks. Using published methods to restore HIi 

and TOCi typically add considerable uncertainty to the source rock model (e.g., 

calculated present-day HI and TOC in basin model are not calibrated to 

measured HI and TOC data) and ultimately to the calculated volume of 

generated hydrocarbon. 

Source rock lithofacies and thickness affect formation overpressure and 

therefore, hydrocarbon storage mechanism and capacity, which ultimately 

control the expulsion efficiency of the source rock (Coutinho, 2008; Jarvie et al., 
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2007; Katz et al., 2017). The organofacies (Donovan et al., 2017; Evenick, 2016; 

Pepper and Corvi, 1995) directly impact the fluid property and composition (e.g., 

marine carbonate organofacies have the highest C15+ amount) and fluid phase 

(i.e., mixed marine-terrigenous organofacies are oil and gas prone) of the source 

rock. The properties of the generated hydrocarbon will ultimately affect the 

properties of the expelled and retained hydrocarbon (Baur, 2019; di Primio and 

Horsfield, 2006; Jarvie et al., 2007; Pepper and Corvi, 1995). 

Wireline log measurements are often used for lithofacies identification as 

they are the most common well data and cover broad depth intervals of the 

formation of interest. With the development of data science and machine 

learning, numerous works related to lithofacies identification have been 

performed using various machine learning techniques applied to well-log data 

(Baldwin et al., 1990; Chang et al., 2002; Raeesi et al., 2012; Wang et al., 2014). 

They showed how machine learning methods could automate well-log-based 

lithofacies identification efficiently and comparable to a core description. 

However, most of these works are based on supervised machine learning 

methods, well-log and core-derived parameters, or integration with core data to 

classify lithofacies for the area of field scale. Nevertheless, classifying lithofacies 

based on well-log data is challenging for datasets lacking core data. Another 

challenge is consistently classifying lithofacies on a large basin-wide dataset. 

Therefore, this study aims to fill these gaps by performing hydrocarbon 

mass balance calculations using several calculation scenarios, including 
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probabilistic and basin and petroleum system modeling. Before performing the 

mass balance calculation (chapter 4), source rock initial property (chapter 2) 

and litho- and organo- facies (chapter 2 and 3) are characterized following the 

proposed alternative workflow to address the challenges reviewed above. 

Thermal maturity is a matter of intense discussion, and several studies are 

investigating it. This study will model thermal maturity under some simplified 

assumptions calibrated to the available thermal maturity indicator (chapter 2 

and 4). 

The proposed overall workflow of source rock reconstruction and mass 

balance calculation aims to achieve “bookkeeping” of the generated 

hydrocarbon from the source rock, considering the SR heterogeneity in 

unconventional/ hybrid systems. Ultimately, the proposed workflow assesses the 

mass balance to estimate the remaining recoverable hydrocarbon and expulsion 

efficiency, which can be used as a comparison or reference in modeling 

unconventional/ hybrid petroleum systems. 

1.4. Summary of Each Three Chapters 

Each of the three chapters discusses different parts of the overall 

workflow of source rock characterization and mass balance calculations. 

Chapter 2 discusses the proposed workflow and results in restoring source rock 

initial HI and TOC as part of the source rock characterization. Organofacies 

identification and thermal maturity calibration are also discussed in Chapter 2. 

Similar to Chapter 2, Chapter 3 also focuses on characterizing the source rock 
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and emphasizing basin-wide lithofacies identification. Identified organofacies in 

Chapter 2 are also tied to identified lithofacies from Chapter 3 to identify the 

basin-wide gross depositional environment and organofacies distribution of the 

source rock intervals. Finally, Chapter Error! Reference source not found. i

ntegrates the finding of characterized source rock from Chapter 2 and 3 to 

calculate the volume of generated hydrocarbon. Finally, Chapter 4 assesses the 

Wolfcamp sourced hydrocarbon mass balance using proposed scenarios to 

estimate remaining recoverable hydrocarbon resources and expulsion efficiency. 

As of the time of submission of this dissertation, Chapter 2 has been 

reviewed by Marine and Petroleum Geology (Elsevier’s journal) and is currently 

under revision process. Chapter 3 is currently under review with Unconventional 

Resources (Elsevier’s journal). Both Chapter 2 and 3 have also been reviewed 

by Chevron’s geoscientists and also presented in the International Meeting for 

Applied Geoscience and Energy (IMAGE) 2021 by the American Association of 

Petroleum Geologists (AAPG) and Society of Exploration Geophysicists (SEG) 

at Denver, Colorado. Chapter 4 is currently under review with Chevron and will 

be submitted to Interpretation: The Role of Geochemical Workflows in 

Understanding Resource Plays (AAPG’s journal) once the review is done. 
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1.4.1. Chapter 2 - Restoring Source Rock Initial Quality and Quantity with 

Kinetic-Based Inversion - Applied to the Wolfcamp Play in the Permian 

Delaware Basin 

Most of the published methods require measured HI data and 

assumptions on initial HI (HIi) to calculate the transformation ratio (TR) and then 

restore the initial TOC (TOCi) from measured TOC data. Estimating HIi can be 

challenging for samples with high maturity, for cases in which immature samples 

and maceral data are lacking, or for heterogeneous source rocks. This study 

presents a workflow using a kinetic-based inversion procedure to restore the 

source-rock's HIi and TOCi from measured HI and TOC data. Unlike the other 

methods, the kinetic-based inversion method uses simulated TR derived from 

the basin model and independent of assumed HIi to restore the HIi and TOCi 

from measured HI and TOC data. Thus, a pre-defined basin model with 

calibrated thermal model and assigned kinetic (organofacies) for the source rock 

intervals is required before the kinetic-based inversion procedure is performed. 

The workflow is applied to the Wolfcamp Play in the Permian Delaware Basin 

using a proprietary dataset covering the whole basin spatially.  
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1.4.2. Chapter 3 - Basin-Wide Lithofacies Identification Using 

Unsupervised Machine Learning: Applied to the Unconventional Wolfcamp 

Play, Permian Delaware Basin 

A basin-wide lithofacies identification based on a large dataset can be 

challenging when core data are lacking. This study investigates a workflow using 

unsupervised machine learning (KMeans, Spectral, and Agglomerative 

Hierarchical clustering) procedure to identify basin-wide lithofacies from a 

proprietary well-log database with over 1500 wells. The proposed workflow is 

data-driven and straightforward, based solely on well-log data. The workflow is 

applied to the Wolfcamp Play in the Permian Delaware Basin. 

1.4.3. Chapter 4 - Mass Balance Calculation for the Wolfcamp-Sourced 

Hydrocarbon in Permian Delaware Basin: Insight on Remaining 

Recoverable Resource and Expulsion-Migration Efficiency 

Detailed quantification of basin-wide hydrocarbon (HC) masses from 

generation to production is necessary for an accurate petroleum system 

analysis. Such quantified HC masses must be balanced following the 

fundamental laws of mass conservation. Mass balance is particularly important 

for unconventional-conventional petroleum systems in which expulsion efficiency 

is a critical parameter defining HCs in place, both within the source rock interval 

(unconventional self-sourced) and outside (conventional or unconventional tight-

rock). This study introduces an HC mass balance workflow aimed at 

“bookkeeping” the HC volumes from generation to production to assess the HC's 
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mass balance, including the remaining recoverable and expulsion efficiency. The 

mass balance workflow is applied to the Wolfcamp Formation in Permian 

Delaware Basin. 
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2. RESTORING SOURCE ROCK INITIAL QUALITY AND QUANTITY WITH 

KINETIC-BASED INVERSION – APPLIED TO THE WOLFCAMP PLAY IN THE 

PERMIAN DELAWARE BASIN 

 

2.1. Introduction 

Accurate estimation of the hydrocarbon mass generated from the source 

rock is critical to improving the mass balance assessment between the 

hydrocarbons that migrated from- and hydrocarbons that remained within- the 

source rock intervals. Before the quantity of generated hydrocarbon mass can 

be calculated, it is necessary to restore the present-day source-rock conditions – 

hydrogen index (HI) and total organic carbon (TOC), to their initial state (Jarvie 

et al., 2007; Kuchinskiy et al., 2012; Lewan et al., 2002; Modica and Lapierre, 

2012; Rushing et al., 2004). Additionally, restoring the present-day source rock 

to its initial state is essential when assessing unconventional resources as the 

transformation of organic matter from its initial state to present-day conditions 

will generate hydrocarbons and form organic porosity within the kerogen, which 

will also determine the storage capacity for retained hydrocarbon within the 

source rock (Jarvie et al., 2007; Katz and Arango, 2018; Modica and Lapierre, 

2012; Romero-Sarmiento et al., 2013).  

Various methods have been proposed to restore the measured source 

rock to its initial condition aiming to calculate the volume of hydrocarbon 

generated (e.g., Chen and Jiang, 2015; Chen et al., 2016; Jarvie et al., 2007; 
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Justwan and Dahl, 2005; Peters et al., 2006; among many others). Most of these 

methods require measured HI data and assumptions of initial HI (HIi) to calculate 

the transformation ratio (TR) and then restore the initial TOC (TOCi) from 

measured TOC data (e.g., Jarvie et al., 2007; Justwan and Dahl, 2005; Peters et 

al., 2006). Transformation ratio is a ratio of the petroleum formed by kerogen to 

the total amount of petroleum that kerogen can generate (Tissot and Welte, 

1984a). For the reconstruction method based on Justwan and Dahl (2005), TR is 

calculated based on the transformation of assumed HIi to the present-day 

(measured) HI data. In contrast, Jarvie et al. (2007) and Peters et al. (2006) 

calculate TR based on the transformation of both assumed HIi to measured HI 

and assumed initial production index (PIi) to measured PI. Both Justwan and 

Dahl (2005) and Peters et al. (2006) used measured HI from the immature 

sample to represent the HIi, whereas Jarvie et al. (2007) calculated the HIi 

based on maceral percentages and assigned average HIi values for each 

kerogen-type. Nevertheless, estimation of HIi is challenging for samples with 

high maturity, and for cases in which immature samples are unavailable or 

maceral data is lacking. Another challenge is to provide a representative HIi 

value for heterogeneous source rocks. 

Another source rock reconstruction method was proposed by Chen and 

Jiang (2015; Chen et al., 2016). Unlike the other reconstruction methods, Chen 

and Jiang (2015) proposed restoring HIi using a statistical approach to fit 

measured HI and Tmax (the measured temperature at the maximum of the S2 



 

24 

 

peak of pyrolysis or the remaining hydrocarbon generation potential) data with 

hydrocarbon generation kinetic. Using their approach, HIi can be calculated 

along with its uncertainty range. The restored HIi and the measured HI data are 

then used to calculate TR (using the formula from Justwan and Dahl, 2005) and 

restore TOCi from measured TOC data (Chen et al., 2016). However, one of the 

requirements to provide a meaningful empirical model of HIi transformation vs. 

Tmax is that the dataset covers the entire Tmax range of hydrocarbon 

generation (e.g., from immature to high mature) (Chen and Jiang, 2015). In 

addition, using measured Tmax data brings additional uncertainty as 

hydrocarbon retardation by specific mineralogy or kerogen and/or organic matter 

abundance may suppress the measured data (Katz and Lin, 2021). Using 

published methods to restore HIi and TOCi typically add considerable 

uncertainty to the source rock model (e.g., calculated present-day HI and TOC in 

basin model are not calibrated to measured HI and TOC data) and ultimately to 

the calculated volume of generated hydrocarbon.  

This paper proposes and evaluates a workflow using a kinetic-based 

inversion approach to restore the source-rock's HIi and TOCi from the measured 

HI and TOC data. Unlike the previous methods, the kinetic-based inversion 

method utilizes TR derived from the basin model to restore the HIi and TOCi 

from measured HI and TOC data. In the basin model, calculated TR is not 

dependent on the assumed HIi and uses an arbitrary HIi instead (Hantschel and 

Kauerauf, 2009). The calculated TR is based on Arrhenius-type kinetic reactions 
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and thus is dependent on thermal maturity and organofacies-dependent kinetic 

(Hantschel and Kauerauf, 2009), and the model is calibrated to thermal 

indicators. Sensitivity analysis is performed to address the uncertainty of the 

restored HIi and TOCi based on a kinetic-based inversion procedure. We also 

illustrate the impact of varying restored source rock HIi and TOCi toward the 

estimated hydrocarbon resources. 

2.2. Geological Overview 

The case study for this source rock reconstruction is the Wolfcamp Play 

in the Permian Delaware Basin of West Texas and Southeast New Mexico, USA 

(Figure 2.1a). The Delaware Basin is one of the best examples of a prolific 

petroleum basin with hybrid petroleum systems. The Wolfcamp Play in the 

Permian Delaware Basin plays a vital role as one of the primary source rocks, 

especially for the Middle-Upper Permian strata in the Delaware Basin. It is also 

one of the main targets for unconventional production along with the Leonardian 

Bone Spring interval in the basin (Figure 2.1b). Performing hydrocarbon mass-

balance assessment is necessary to improve the resources assessment, 

including the distribution, for both conventional and unconventional accumulation 

sourced from the Wolfcamp interval in Delaware Basin. 
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Figure 2.1. (a) Major subdivision and boundaries of the Permian Basin 
around the Delaware Basin (after Dutton et al. (2015) and Silver and Todd 
(1969)). (b) The stratigraphic chart of Permian strata, which includes 
Wolfcamp interval subdivision for the Delaware Basin. 
 

The Permian Delaware Basin is the western major structural subdivision 

of the Permian Basin's more massive structure in West Texas and Southeast 

New Mexico (Hills, 1984) (Figure 2.1a). The Delaware Basin is bounded to the 

west by the Diablo Platform, to the north by the Northern American craton and 

Northwestern Shelf areas, and to the south by the Marathon orogenic belt. To 

the east, the Delaware Basin is separated from the Midland Basin by the N-S 

trending Central Basin Platform (Adams, 1965; Hills, 1984; Silver and Todd, 

1969).  

The Wolfcamp is part of the thick Permian strata (Figure 2.1b) in the 

Delaware Basin and consists of four main intervals: Wolfcamp A, -B, -C, and -D 

(Bievenour and Sonnenberg, 2019; Dutton et al., 2005). Wolfcamp intervals 
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were deposited during the early Permian with a depositional environment of 

generally a deep, oceanic-connected interior continental basin, surrounded by 

carbonate shelf (the Northwestern Carbonate Platform, eastern Central Basin 

Carbonate Platform, western Diablo Platform) and the southern siliciclastic shelf 

in front of the Marathon orogenic belt (Blakey, 2019). This depositional setting 

resulted in litho- and organo-facies heterogeneity within the Wolfcamp intervals. 

Hydrocarbon generation from the Wolfcamp source rock (SR) started during the 

middle Permian (Adams, 1965; Hills, 1984; Kinley et al., 2008), influenced by 

complex tectonic history and thermal processes, including high thermal 

conductive evaporites (Gardner and Sonnenfeld, 1996; Hills, 1985; Kinley et al., 

2008), intrusive and volcanic activities (Barker and Pawlewicz, 1987), and burial 

history. Recent studies (Becker et al., 2019; Yu et al., 2020) indicate that burial 

history is the most dominant factor for source maturity, with the maximum 

maturity reached during the mid-Permian at maximum burial, then continuing to 

generate hydrocarbons until the present-day source-rock condition (Hills, 1984; 

Lew et al., 2013; Schwartz et al., 2015). 

2.3. Methods and Procedures 

The source rock reconstruction workflow presented in this paper involves 

two main steps: (1) defining the source rock organofacies; (2) performing a 

kinetic-based inversion approach to restore the HIi and TOCi using measured HI 

and TOC data as the control for the determined source organofacies.  
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2.3.1. Determining Organofacies and Kinetic Models 

Pepper and Corvi's (1995) source rock organofacies (OF) classification 

was applied. This divides organofacies into five classes with defined kinetic 

parameters. 

2.3.1.1. Geochemical Data Interpretation for Organofacies 

Three methods are used to determine source rock organofacies by 

interpreting maceral composition, oil biomarkers, and Rock-Eval pyrolysis based 

on the Wolfcamp geochemical datasets provided in the Delaware Basin. 

2.3.1.1.1. Maceral Composition 

Maceral composition data are derived from both core and cuttings of five 

wells covering Wolfcamp A-B-C-D intervals in the eastern part of the basin 

(Figure 2.2). The maceral composition data are plotted on a ternary diagram of 

amorphous organic matter (AOM) + exinite vs. vitrinite vs. inertinite based on 

Tissot and Welte (1984b) to define the organofacies type of the source rock. 

AOM and exinite macerals are assumed to primarily represent marine organic 

matter. 
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Figure 2.2. Kerogen type interpretation for Wolfcamp interval based on 
maceral composition data: from marine to mixed marine-terrigenous 
dominated typed organofacies. Insert map localize the sampled wells. 
AOM refers to Amorphpus Organic Matter. 
 

Based on Figure 2.2, the Wolfcamp SR is interpreted as predominantly 

oil and mixed oil and gas prone typed organofacies. As no alginite maceral is 

recorded in the dataset, oil-prone is interpreted as marine typed (carbonate and/ 

or clastic) with no lacustrine typed organofacies. Mixed oil and gas prone is 

interpreted as mixed marine-terrigenous typed organofacies. One data point also 

indicates an associated contribution of gas-prone or terrigenous typed 

organofacies in the Wolfcamp dataset. 
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2.3.1.1.2. Oil Biomarker Analysis 

Biomarker data are from Wolfcamp-sourced (upper and lower intervals) 

oil wells distributed in the eastern part of the basin (Figure 2.3). This study uses 

oil biomarkers, including C35S/C34S hopanes, C29/C30 hopane (H), pristane/nC17 

(C17 normal alkane), and phytane/nC18 (C18 normal alkane), to determine the 

organofacies based on general facies (i.e., clastic vs. carbonate) and organic 

matter type (marine vs. terrigenous). 
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Figure 2.3. Interpretation of Wolfcamp SR sourced oil biomarkers data: 
source rock’s: (a) facies; (b) organic matter type; and (c) inferred source 
rock groups and distribution in the basin; indicating marine shale and 
mixed marine-terrigenous shale sourced in the basin depocenter and more 
carbonate sourced in the Northern and Eastern basin margin. 
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The homohopanes (C31-C35) are sourced from prokaryotic 

microorganisms and indicate the redox potential of source rock deposition 

(Peters and Moldowan, 1991; Peters et al., 2005). High homohopanes values 

are associated with a highly reducing marine depositional environment. C29-

C30/H (hopane) is commonly a major peak on m/ z 191 mass chromatograms of 

saturate fractions of oils and bitumen (Peters et al., 2005). A high C29/H value 

(>1.0) is associated with anoxic carbonate or marl source rocks. Pristane (C19) 

and phytane (C20) are primarily sourced from the phytyl side chain of chlorophyll 

a in phototrophic organisms and bacteriochlorophyll a and b in purple sulfur 

bacteria, which are a good indicator for redox conditions in the source rock 

(Peters et al., 2005). Reducing or anoxic conditions promote a reaction of the 

phytyl side chain to generate phytane eventually. In contrast, the oxic condition 

promotes the phytyl side chain's conversion to pristane. 

A plot of C35S/C34S hopanes vs. C29/C30 hopane (H) adapted from Peters 

et al. (2005) is used to interpret the source rock's facies, including clastic shale 

vs. marine carbonate and marl (Figure 2.3a), while a plot of pristane/nC17 (C17 

normal alkane) and phytane/nC18 (C18 normal alkane) (Figure 2.3b) adapted 

from Shanmugam (1985) is used to define organic matter type of the source 

rock and also to compare the interpretation results from the plot of C35S/C34S 

hopanes vs. C29/H.  

Based on Figure 2.3, Wolfcamp SR is predominantly marine shale (OF 

“B”) and mixed marine-terrigenous shale (OF “D/E”) typed organofacies in the 
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basin depocenter with marine- and mixed marine-terrigenous- carbonate/ marl 

typed organofacies (OF “A”) mostly restricted to the basin’s northern and eastern 

margin portions (Figure 2.3c). 

2.3.1.1.3. Rock-Eval Pyrolysis Data 

Rock-Eval pyrolysis data are abundant and cover most of the Wolfcamp 

intervals in the wide spatial distribution in the basin (Figure 2.4). The dataset 

was screened for possible contamination or oxidation (Peters, 1986) and 

sampled over 75-100 ft. depth intervals before being used for interpretation. 

 

Figure 2.4. A plot of measured Tmax vs. HI for 185 data points from the 
Wolfcamp Play showing oil to wet gas generation maturity window and 
predominantly marine and mixed marine-terrigenous typed kerogen. 
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A plot of HI vs. Tmax (modified after Peters et al. 2006; Tobey and 

Campbell, 2016) is used to define the kerogen type of the source rock from 

screened Rock-Eval pyrolysis data based on the roughly projected initial HI 

following the exponential maturation pathway (Devine, 2014; Jarvie and Lundell, 

2001; Montgomery et al., 2005) of the mature data points (Figure 2.4). Using 

this exponential relationship between HI and Tmax, data points are classified 

into five exponential lines (R2>0.91), assuming the intercept or flattening low-HI 

point (<10 mgHC/gTOC) is at Tmax >490oC. 

Based on Figure 2.4, Wolfcamp SR data are classified into marine (green 

and orange) and mixed marine-terrigenous (orange and yellow). Further 

classification for the orange data points is based on the paleo-structure of 

Wolfcamp intervals (Becker et al., 2019; Yu et al., 2020) and its proximity from 

the basin margin (distal vs. proximal). For example, the orange data points for 

Wolfcamp A-B are predominantly marine typed organofacies (distal wells) with 

few mixed marine-terrigenous typed organofacies for the proximal wells. The 

orange data points for Wolfcamp C-D are predominantly mixed marine-

terrigenous typed organofacies (proximal wells) with few marine typed 

organofacies for the wells in the basin's distal and deeper portion (main 

depocenter). This interpretation is based on the assumption that sediments from 

the proximal facies are rich in terrigenous material due to higher sedimentation 

rate from the sediment source, diluting the marine organic matter. The mixed 

marine-terrigenous facies is characterized by clay-rich (argillaceous) mudstone 
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or siltstone source rock with lower HI and TOC (Baskoro et al., 2022 (in prep); 

Baskoro, 2017; Donovan et al., 2007). 

2.3.1.2. Kinetic Model for Determined Organofacies 

To conclude, by integrating maceral (Figure 2.2), oil biomarker (Figure 

2.3), and Rock-Eval (Figure 2.4) data, the Wolfcamp SR within the Delaware 

Basin is shown to be predominantly marine clastic shale (OF "B") and mixed 

marine-terrigenous (OF "D/E") typed organofacies. Marine- and mixed marine-

terrigenous carbonate/ marl source rocks (OF "A") may also be present but are 

mostly restricted to the basin's northern and eastern margin portions (Figure 

2.3).  

The general source rock organofacies type interpretation from this study 

is supported by others, including Echegu et al. (2021) using Rock-Eval and oil 

biomarker data and Bievenour and Sonnenberg (2019) using Rock-Eval data. 

Bievenour and Sonnenberg (2019) also used backscatter electrons and 

secondary electrons and observed both marine and woody-concave non-porous 

terrigenous organic matter in siliceous mudstone and siltstone lithofacies 

groups, indicating a mixture of marine and terrigenous types of kerogen. 

Supporting the mixture of marine and terrigenous types of kerogen, Kvale et al. 

(2020) also found prints of a land plant (peltasperm Germaropteris martinsii) in 

the Wolfcamp SR cores they studied. 
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Therefore, based on the determined organofacies, kinetic models for OF 

“B” and OF “D/E” from Pepper and Corvi (1995) are adopted for Wolfcamp SR 

with identified marine or mixed marine-terrigenous typed organofacies. 

2.3.2. Kinetic-Based Inversion 

The kinetic-based inversion procedure is based on the calibrated thermal 

history combined with the simulated TR for the source rocks from the basin 

model and the measured HI and TOC data. The procedure restores HIi and 

TOCi by “inverting” the measured HI and TOC based on their assumed 

maturation pathway – simulated TR, to their initial (restored) condition for the 

given source organofacies. Sensitivity analysis is also performed to evaluate the 

uncertainties involved in the reconstruction of HIi and TOCi using this procedure. 

The following are the procedure steps: 

2.3.2.1. Calculation and Validation of Transformation Ratio 

In the basin model, the transformation rate of the initial kerogen (HIi and 

TOCi) to present-day kerogen is primarily controlled by thermal history and 

organofacies type (Hantschel and Kauerauf, 2009). Thus, it is important to have 

a pre-defined basin model calibrated to thermal maturity indicators, which can be 

used to calculate the transformation ratio (TR) for the kinetic-based inversion 

procedure. In this study, multiple 1D basin models with their associated 

boundary conditions and thermal maturity scenario are extracted from the 3D 

basin model of the Permian Delaware Basin, which was calibrated against all 
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thermal indicators from wells such as vitrinite reflectance, bottom hole 

temperature, and fluid property observed (Becker et al., 2019; Yu et al., 2020).  

A kinetic model (e.g., Pepper and Corvi, 1995) must be assigned to the 

intervals or sublayers where TOC and HI calibration data are available or want 

to be restored (e.g., Figure 2.4 for this study) to calculate TR. Figure 2.5 

demonstrates the calculated TR from twenty-one (21) 1D basin models, 

consisting of a total of 185 sublayers of Wolfcamp SR with measured HI and 

TOC data. Figure 2.5a shows that the calculated TR from the basin models 

generally follows the exponential maturation pathway of measured Tmax data: 

the higher the measured Tmax, the higher the calculated TR. Higher TR (>70%) 

values are predominantly distributed in the western portion of the basin (see 

Figure 2.4 for the distribution of the wells in the basin) for both OF “B” and “D/E” 

samples (Figure 2.5b and c) following the generally high thermal maturity trend 

(e.g., vitrinite reflectance: Becker et al., 2019; Yu et al., 2020) in the basin. In 

addition, high TR for OF “D/E” (>80%) is observed only from the Wolfcamp D 

samples in the western portion of the basin. 
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Figure 2.5. Simulated TR distribution of 185 source units (model sublayers) 
considered from the Wolfcamp Play: (a) TR plot against the measured 
Tmax; a histogram with Wolfcamp interval for source units with (b) OF 
“B”; and (c) OF “D/E”. East: eastern part; West: western part of Delaware 
Basin. 
 

2.3.2.2. Calculation of Restored HIi and TOCi 

By definition, TR (transformation ratio) is: 

TR =
HI𝑖−HI

HI𝑖
  (1) 

In the kinetic-based inversion procedure, HIi is calculated by rearranging 

equation (1) to solve HIi using equation (2). TOCi is calculated using equation 

(3). These equations are provided in the basin model (T. Hantschel, T. Fuchs, 

and M. de Lind, 2021, personal communication): 
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HI𝑖 =
HI

(1−TR)
   (2) 

TOC𝑖 =
TOC

(1−0.001∗W∗(HIi−HI))
 (3) 

HI and TOC are measured hydrogen index (mgHC/gTOC) and total organic 

carbon (wt%) values, while TR is the transformation ratio (fraction) for the source 

rock at a given layer, derived from the basin model. A unit conversion factor of 

the HI, from mg/gTOC to g/gTOC, is denoted by 0.001. W is the weight factor, 

which represents the mass fraction of carbon in the primary generated 

hydrocarbon and varies by the type of organofacies (e.g., 0.75 for OF "B"; and 

0.68 for OF "D/E"). 

2.4. Results and Interpretation of Restored HIi and TOCi for Wolfcamp Play 

HIi and TOCi are calculated on 185 HI and TOC measurements. These HI 

and TOC data are from the screened Rock-Eval pyrolysis dataset and 

correspond to sublayers of various Wolfcamp SR intervals (A, B, C, and D) from 

multiple wells (1D basin model) across the basin. Figure 2.6 shows the 

inversion procedure applied to a representative well for Wolfcamp A and B 

intervals. Since the inversion procedure restores HIi and TOCi using the 

measured HI and TOC data and simulated TR, the present-day simulated HI and 

TOC from the basin model will match measured HI and TOC data when using 

these restored HIi and TOCi values. Sensitivity analysis is also performed to 

illustrate the uncertainties in the inversion procedure and their impact on 

restored HIi and TOCi. 



 

40 

 

 

Figure 2.6. Example of the kinetic-based inversion procedure at a well. (a) 
Well location; (b) thermal maturity calibration; (c) determined organofacies 
(OF) and its simulated TR; (d) restored (initial value), measured, and 
calculated HI; (e) restored (initial value), measured, and calculated TOC.  
 

2.4.1. Restored Source Rock Distribution – Wolfcamp Play 

Figure 2.7 demonstrates measured data vs. restored HIi and TOCi for the 

Wolfcamp Play dataset. As expected from a source rock sample with high 

thermal maturity (Figure 2.4 and Figure 2.5), there is a significant increase 

between measured and restored initial HI and TOC values (Figure 2.7). The 

increase from HI to HIi is significantly higher for samples with identified OF “B” 

(an increase from 191 up to 749 mgHC/gTOC) than for samples with OF “D/E” 

(an increase from 60 up to 370 mgHC/gTOC). Similarly, the increase from TOC 

to TOCi is significantly higher for samples with identified OF “B”, from 0.26 to 

2.83 wt%, than for samples with OF “D/E”, from 0.06 to 0.74 wt%. The 

considerable variation of both restored HIi and TOCi indicate source rock 
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heterogeneity associated with the preservation and mixing of marine and 

terrigenous organic matter during Wolfcamp deposition. 

 

Figure 2.7. Plots (left) and histograms (right) of measured data vs. restored 
initial value for both HI (upper) and TOC (lower) for the Wolfcamp Play 
indicate the significance of restored initial value from measured data. 
 

Figure 2.8 demonstrates the distribution of restored source rock (HIi and 

TOCi) within Wolfcamp Play intervals. In general, significant variations are 

observed in Wolfcamp A, B, and C intervals, while lower HIi and TOCi dominate 

Wolfcamp D. Based on Table 2.1, each Wolfcamp interval has a similar range of 
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simulated TR of 60-90%, but the HIi varies. Better quality and quantity source 

rocks primarily are Wolfcamp A and B, indicated by the P90/50/10 values of HIi 

(Table 2.1) and TOCi (Table 2.2), showing P50 HIi of 530 and 430 mgHC/gTOC 

in Wolfcamp A and B, respectively, while P50 HIi is about 300 mgHC/gTOC for 

Wolfcamp C and D intervals. These contrast with lower P90/50/10 of HIi and 

TOCi values for Wolfcamp C and D, indicating lower quality and quantity of the 

source rock. 

 

Figure 2.8. Wolfcamp Play restored source rock distribution by Wolfcamp 
intervals based on kinetic-based inversion procedure (a) HIi, and (b) TOCi. 
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Table 2.1. Wolfcamp Play simulated TR (%) and measured and restored 
HI(i) (mgHC/gTOC) distribution (P90/P50/P10) based on the kinetic-based 
inversion procedure. 

    P90 P50 P10 

Wolfcamp A 
N = 52 

TR (%) 63 77 87 

Measured HI 65 92 186 

Restored HI
i
 246 530 713 

Wolfcamp B 
N = 53 

TR (%) 61 76 87 

Measured HI 47 81 168 

Restored HI
i
 197 429 736 

Wolfcamp C 
N = 21 

TR (%) 58 77 90 

Measured HI 38 72 147 

Restored HI
i
 179 303 715 

Wolfcamp D 
N = 59 

TR (%) 61 77 88 

Measured HI 37 64 138 

Restored HI
i
 159 325 550 

 

Table 2.2. Wolfcamp Play measured and restored TOC(i) (wt%) distribution 
(P90/P50/P10) based on the kinetic-based inversion procedure. 

    P90 P50 P10 

Wolfcamp A 
N = 52 

Measured TOC 1.23 1.78 2.68 

Restored TOC
i
 1.50 2.64 3.86 

Wolfcamp B 
N = 53 

Measured TOC 1.31 1.80 2.40 

Restored TOC
i
 1.64 2.27 3.59 

Wolfcamp C 
N = 21 

Measured TOC 1.18 1.70 2.26 

Restored TOC
i
 1.56 2.21 3.33 

Wolfcamp D 
N = 59 

Measured TOC 1.21 1.71 2.21 

Restored TOC
i
 1.47 2.09 2.97 
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The source rock potential based on TOCi vs. S2i (initial hydrocarbon 

generation potential) is also illustrated in Figure 2.9. Wolfcamp A and B show to 

be better source rock than Wolfcamp C and D. Overall, the Wolfcamp SR are 

within good to excellent source rock potential range. Figure 2.9 also 

demonstrates the positive relationship between TOCi and S2i. 

 

Figure 2.9. A plot of TOCi vs. S2i for the Wolfcamp Play showing excellent 
source rock potential is mostly from Wolfcamp A and B intervals. 
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2.4.2. Sensitivity Analysis and Uncertainty Ranges 

As the kinetic-based inversion procedure is TR-dependent, a sensitivity 

analysis is necessary to address the impacts of various scenarios related to 

thermal maturity due to burial and organofacies (e.g., kinetic model) toward the 

reconstruction of HIi and TOCi. The scenarios of varying surface erosion, which 

were determined to be the essential control of source maturity and organofacies 

(kinetic model), are assessed. This sensitivity analysis is performed at one well 

only to demonstrate the uncertainties involved. 

2.4.2.1. Sensitivity due to Thermal Maturity 

The thermal maturity of the source rock is calibrated with vitrinite 

reflectance and any available thermal indicators. However, the uncertainties of 

the calibration data - such as sample type (e.g., whole-rock vs. kerogen 

isolated), geological context, maceral abundance and identification, and vitrinite 

chemistry - lead to uncertainties in the observed vitrinite reflectance value (Katz 

and Lin, 2021) and thus to the model calibration. Delaware Basin is highly over-

pressured in the Permian strata (Lee and Williams, 2000; Sinclair, 2007), and 

vitrinite reflectance enhancement and retardation could occur (Qiu et al., 2007). 

Vitrinite-rich organofacies (e.g., mixed marine-terrigenous and/or terrigenous-

rich organic matters) and/or oxygen-rich environment (oxic) during the 

deposition (Fang and Jianyu, 1992; Fermont, 1988) can also enhance the 

observed vitrinite reflectance. Therefore, thermal maturity uncertainty must be 

considered when restoring the source rock's initial quality and quantity. 
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Additionally, other thermal maturity indicators (e.g., Raman spectroscopy 

(Manos, 2018) and carbonate clumped isotope thermometry (Naylor et al., 

2020), among many others) may also help to constrain the thermal maturity. 

Figure 2.10 gives the sensitivity analysis example from the same well as 

in Figure 2.6 but only for Wolfcamp A interval. The base case scenario is 

assumed as OF "B" typed source rock and surface erosion of 900 ft. for the 

burial history. From this base case scenario, Wolfcamp A interval is at maturity 

of TR 74-78%, and the restored initial source quality and quantity are in the 

range of 436-614 mgHC/gTOC for HIi and 3.17-3.60 wt% for TOCi, respectively. 

 

Figure 2.10. Sensitivity analysis examples of the assumptions (TR) 
involved in this SR restoration workflow. (a) Thermal maturity (surface 
erosion); (b) organofacies (kinetic). From left to right: simulation scenarios 
affecting TR; simulated TR; restored HIi and TOCi (colored lines) and 
simulated HI and TOC value (grey line) with measured HI and TOC data 
(dots). 
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Two additional surface erosion scenarios (± 500 ft. from the base case) 

are included due to thermal maturity uncertainty in the basin's central-eastern 

part (Figure 2.10a). For the Wolfcamp A interval, the predicted TR is 78-82% 

and 62-68% for the high and low surface erosion scenarios, respectively. The 

restored HIi is 525-737 mgHC/gTOC for the higher erosion case and 299-420 

mgHC/gTOC for the lower erosion case, and the corresponding restored TOCi is 

3.48-4.07 wt% for the higher erosion case and 2.69-3.04 wt% for the lower 

erosion case. 

2.4.2.2. Sensitivity due to Organofacies 

Although the organofacies are defined by integrating macerals, oil 

biomarkers, and Rock-Eval, due to data limitations, most of the organofacies 

determined in the inversion procedure, especially in the western part of the 

basin, are with uncertainty. It is essential to incorporate maceral and biomarkers 

to define the organofacies for each data point used for the inversion rather than 

Rock-Eval data alone. This is because OF classification from Pepper and Corvi 

(1995) is based on similarity of organic precursor, depositional environment, and 

early diagenetic history and has no direct relationship to HI value (Baur, 2019).  

Figure 2.10b illustrates the impact of organofacies uncertainty on the 

restored HIi and TOCi by considering two different source types, OF “B” vs. 

“D/E”. With the base case of erosion, the OF “D/E” type yields a TR maturity of 

45-51%, compared with a TR maturity of 74-78% with OF “B”. The restored HIi 

are in the range of 205-280 mgHC/gTOC compared with HIi of 436-614 
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mgHC/gTOC for OF “B”, and the corresponding restored TOCi is 2.37-2.73 wt% 

compared with TOCi of 3.17-3.60 wt% for OF “B”. These variations indicate the 

importance of determining source rock organofacies appropriately. 

2.4.2.3. Sensitivity due to Kinetic Models 

Another uncertainty relates to the variation in kinetic models. There are at 

least ten kinetic models published for the OF "B", including Abu-Ali et al. (1999), 

Baur (2019), Behar et al. (1997), diPrimio and Horsfield (2006), Espitalié et al. 

(1988), Pepper and Corvi (1995), Ungerer (1990), and Vandenbroucke et al. 

(1999). A complete list of the kinetic models can be found in Baur (2019). To 

demonstrate the impact of kinetic models on TR, Figure 2.11 shows the TR vs. 

depth and thermal maturity (%Ro) from various kinetic models for source rock 

with OF "B". Within the same depth interval of Wolfcamp A (see Figure 2.6 for 

the well location), TR derived from multiple kinetic models of "B" varies from 

30% to 90%, indicating the importance of selecting an appropriate kinetic model. 
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Figure 2.11. A TR vs. depth vs. %Ro plot from various kinetic models for 
source rock with OF "B“ at a well showing a wide range of TR within the 
Wolfcamp A depths interval. 
 

2.5. Discussion 

2.5.1. Limitation of the Inversion Procedure 

We have evaluated the inversion procedure on wide-range TR maturity 

levels assuming the same HI and TOC values. For example, if assuming HI = 

100 mgHC/gTOC, the restored HIi is >1,000 mgHC/gTOC when TR >90% (see 

equation (2)). Therefore, this procedure only applies to a TR and HI domain 

shown in Figure 2.12. The dashed line can screen the HI data against TR to 

avoid the area domain that is physically not applicable in calculating the restored 

HIi and TOCi using the inversion procedure. For example, all Wolfcamp Play 
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datasets we applied here are within the applicable domain (HIi <1,000 

mgHC/gTOC). 

 

Figure 2.12. HI vs. TR plot with a dashed line to screen for projected 
restored HIi >1,000 mgHC/gTOC using the kinetic-based inversion 
procedure. 
 

2.5.2. Advantages of the Inversion Procedure 

Despite the limitation and uncertainty, advantages of using kinetic-based 

inversion procedures to restore HIi and TOCi include: 

1. This inversion procedure does not require the assumption of HIi, which is 

usually determined from the measurements of the immature sample, but is 

often lacking.  
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2. This workflow uses TR derived from the thermal indicator calibrated basin 

model (3D or multiple 1D/2D) to restore HIi and TOCi from the measured HI 

and TOC data.  

3. The method uses the measurements of HI and TOC of the source rock as 

controls to restore HIi and TOCi rather than assuming HIi and TOCi as the input 

for the source rock in the basin model. Therefore, the calculated present-day 

HI and TOC from the basin model match the measured HI and TOC. 

4. The inversion procedure captures the heterogeneity of the restored HIi and 

TOCi of the source rock, as demonstrated by the variability of the restored HIi 

and TOCi values of the Wolfcamp Play dataset in the Delaware Basin.   

The procedure provides a way to restore the HIi and TOCi based on our 

understanding of the thermal history, organofacies, and proven kinetic models 

and measured HI and TOC data of the source rock. 

2.5.3. Implications to Calculated Ultimate Expellable Hydrocarbon Potential 

To illustrate the impact of restoring the measured HI and TOC data in 

hydrocarbon resources estimation, we calculate the "ultimate expellable 

hydrocarbon potential (UEP)" (Pepper and Roller, 2021). UEP is a mass fraction 

of the generative and expellable hydrocarbons from the organic matter, which 

can accumulate as a reservoir fluid within-, and/or migrated out from-, the source 

rock. The calculated mass is expressed in liquid and gas volumetric units at 

surface conditions per unit area (Pepper and Roller, 2021).  
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The calculated UEP based on the P90/50/10 values of the restored HIi 

and TOCi in barrels of oil equivalent (boe) per acre-ft. (1 acre = 4046.86 m2; 1 

foot (ft.) = 0.3048 m) of source rocks are shown in Table 2.3. High-quality 

Wolfcamp A and B intervals have the UEP of 97/335/648 and 86/238/613 

boe/acre-ft., respectively, based on their P90/50/10 values HIi and TOCi. The 

relative lean intervals of Wolfcamp C and D have UEP of 74/168/545 and 

62/170/389, respectively, based on their P90/50/10 values HIi and TOCi. This 

calculation shows that the UEP has an extensive range of values based on 

P90/50/10, signifying the importance of considering the different HIi and TOCi for 

hydrocarbon resource evaluation. For example, a variation of 35% and 46% of 

restored HIi and TOCi (Table 2.1 and Table 2.2), respectively, of P10 values 

relative to P50 values for Wolfcamp A interval yields a variation of 93% 

calculated UEP (Table 2.3). This variation is critical to perform the whole-cycle 

hydrocarbon mass balance from generation potential, trapped and retained 

volume, to hydrocarbon production in the unconventional/ hybrid plays like 

Delaware Basin to address the UEP volume uncertainties associated with 

restored HIi and TOCi. 

 
Table 2.3. Wolfcamp Play calculated UEP in boe/acre.ft based on 
P90/P50/P10 values of restored HIi and TOCi. 

  P90 P50 P10 

Wolfcamp A 97 335 648 

Wolfcamp B 86 238 613 

Wolfcamp C 74 168 545 

Wolfcamp D 62 170 389 
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2.6. Conclusion 

Wolfcamp SR is predominantly the marine clastic (OF “B”) and the mixed 

marine-terrigenous (OF “D/E”) organofacies. The P90/50/10 values of TR 

maturity are about 60/77/90 % indicating the peak oil generation window. Based 

on this kinetic-based inversion result, the restored HIi and TOCi are shown to be 

excellent source rock for Wolfcamp A and B intervals. Generally, Wolfcamp A 

and B have initial source rock potential (P50) of 530 and 429 mgHC/gTOC of HIi 

with 2.64 and 2.27 wt% of TOCi, respectively. Wolfcamp C and D are relatively 

lean but are still considered good to very good source rocks with P50 of restored 

HIi of 303 and 325 mgHC/gTOC and TOCi of 2.21 and 2.09 wt%, respectively.  

Considering uncertainties, e.g., burial history and simulated TR, the 

restored HIi and TOCi range could be even higher. Therefore, thermal maturity, 

organofacies, and kinetic models must be constrained before using the kinetic-

based inversion procedure. 

This proposed kinetic-based inversion method has several advantages 

compared with other methods. The preliminary calculation of the restored HIi 

and TOCi and the UEP support the massive hydrocarbon volume predicted and 

produced for the Wolfcamp Play in the Delaware Basin. 
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3. BASIN-WIDE LITHOFACIES IDENTIFICATION USING UNSUPERVISED 

MACHINE LEARNING: APPLIED TO THE UNCONVENTIONAL WOLFCAMP 

PLAY, PERMIAN DELAWARE BASIN 

 

3.1. Introduction 

Accurate estimation of basin-wide hydrocarbon resources, both 

conventional and unconventional, requires several inputs, including the source 

rock lithofacies (facies with similar lithological characteristics). Source rock 

lithofacies and thickness affect formation overpressure and therefore, 

hydrocarbon storage mechanism and capacity, which ultimately control the 

expulsion efficiency of the source rock (Coutinho et al., 2009; Jarvie et al., 2007; 

Katz et al., 2017). Lithofacies is also associated with organofacies, facies of 

kerogens with common organic material from similar depositional environment 

and early diagenetic history (Pepper and Corvi, 1995), controlled by the 

depositional environment (Donovan et al., 2017; Evenick, 2016; Pepper and 

Corvi, 1995). The organofacies directly impact the fluid property and composition 

(e.g., marine carbonate organofacies have the highest C15+ amount) and fluid 

phase (i.e., mixed marine-terrigenous organofacies are oil and gas prone) of the 

source rock. The properties of the generated hydrocarbon will ultimately affect 

the properties of the expelled and retained hydrocarbon (Baur, 2019; di Primio 

and Horsfield, 2006; Jarvie et al., 2007; Pepper and Corvi, 1995). Therefore, 
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identifying the basin-wide lithofacies of the source rock interval is critical for 

hydrocarbon resource estimation. 

Wireline log measurements are often used for lithofacies identification as 

they are the most common well data and cover broad depth intervals of the 

formation of interest. With the development of data science and machine 

learning, numerous works related to lithofacies identification have been 

performed using various machine learning techniques applied to well-log data 

(Chang et al., 2002; He et al., 2019; Li and Misra, 2018; Raeesi et al., 2012; 

Wang et al., 2014). They showed how machine learning methods could 

automate well-log-based lithofacies identification efficiently and comparable to 

core description. However, most of these works are based on supervised 

machine learning methods, well-log and core-derived parameters, or integration 

with core data to classify lithofacies for the area of field scale. He et al. (2019) 

and Li and Misra (2018) have used unsupervised learning on well-log data for 

well-to-well correlations. Nevertheless, classifying lithofacies based on well-log 

data is challenging for datasets lacking core data. Another challenge is 

consistently classifying lithofacies on a large basin-wide dataset. 

This paper examines a workflow using unsupervised machine learning 

methods to identify lithofacies from a proprietary basin-wide well dataset. Unlike 

other methods, the workflow is data-driven and straightforward, based solely on 

well-log data. The interpreted lithofacies from the machine learning methods are 

compared with other studies based on core interpretation and spectral gamma-
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ray logs from the dataset. We also illustrate the impact of the identified 

lithofacies distribution on the interpretation of the basin-wide gross depositional 

environment and organofacies distribution along with their laterally and vertically 

variability.  

3.2. Geological Overview 

The case study for this unsupervised machine learning application is the 

Wolfcamp Play in the Permian Delaware Basin of West Texas and New Mexico, 

USA (Figure 3.1). The Permian Delaware Basin is the western major structural 

subdivision of the Permian Basin's more massive structure in west Texas and 

southeastern New Mexico (Hills, 1984) (Figure 3.1a). The Delaware Basin is 

bounded to the west by the Diablo Platform, to the north by the North American 

craton and Northwestern Shelf areas, and to the south by the Marathon orogenic 

belt. The Delaware Basin is separated from the Midland Basin to the east by the 

N-S trending Central Basin Platform (Adams, 1965; Hills, 1984). The Delaware 

Basin occupies a basinal area of 13,000 mi2 (33,500 km2) with a maximum 

depth of 24,000 ft (7,300 m) and is filled by up to 40,000 mi3 (170,000 km3) of 

Phanerozoic sediments (Hills, 1984). 

The Wolfcamp Formation consists of four main intervals: Wolfcamp A, -B, 

-C, and -D (Bievenour and Sonnenberg, 2019; Dutton et al., 2005); and is part of 

the thick Permian strata in the Delaware Basin (Figure 3.1b). The deposition 

took place during the early Permian with a depositional environment of generally 

a deep, oceanic connected interior continental basin surrounded by carbonate 
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shelf (the Northwestern Shelf, eastern Central Basin Carbonate Platform, 

western Diablo Platform), the northwestern Pedernal uplift, and the southern 

siliciclastic shelf in front of the Marathon orogenic belt (Blakey, 2019). Wolfcamp 

intervals were also deposited during the frequent eustatic fluctuations (Fairhurst 

et al., 2021). The complex depositional setting caused lithofacies heterogeneity, 

primarily limestone, silts, and mudstone, within the Wolfcamp intervals in the 

Delaware Basin. 

 

Figure 3.1. (a) Major subdivision and boundaries of the Permian Basin 
around the Delaware Basin (after Dutton et al. (2015) and Silver and Todd 
(1969)). (b) Stratigraphic chart of Permian strata, which includes Wolfcamp 
interval subdivision for the Delaware Basin (after Bievenour and 
Sonnenberg (2019) and Dutton et al. (2015)). 
 

The Wolfcamp Play is one of the main targets for unconventional 

production, along with the Leonardian Bone Spring interval in the Permian 

Delaware Basin (Gaswirth et al., 2018). Among the four intervals, Wolfcamp A is 
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the most drilled target zone for unconventional play in the Delaware Basin (EIA, 

2019; Fairhurst et al., 2021). Wolfcamp source rocks, especially Wolfcamp A 

and B, are the source for the Wolfcamp unconventional play on the Delaware 

Basin and mixed oil sources on the Central Basin Platform and Northwest Shelf 

areas (Fairhurst et al., 2021). The primary source rocks of Wolfcamp A and B 

are organic-rich, silica-rich facies. Identifying basin-scale lithofacies is necessary 

to improve hydrocarbon resources assessment, including the distribution, for 

both conventional and unconventional accumulation sourced from the Wolfcamp 

interval in the Delaware Basin. 

3.3. Methods 

The unsupervised machine learning methods used to identify the 

lithofacies are based on four sets of well-log measurements. A large amount of 

well-log data from over 1500 wells are considered, but only a small subset of 

wells was selected and used in this study. Two main steps are required to 

identify the basin-wide lithofacies from the well-log dataset in this workflow: (1) 

pre-processing of the well-data; and (2) clustering the well-data using 

unsupervised machine learning methods. 

3.3.1. Pre-Processing 

The main goals of the pre-processing step is to prepare the dataset and 

select the well data for the clustering. Pre-processing is essential in automating 

the data preparation from 1500 wells available for time and computational 

resource usage efficiency. 



 

67 

 

3.3.1.1. Preparing the Dataset 

The first step is to select the well dataset with the log type of 

measurement and formation of interest out of 1500 wells available for the 

clustering (Figure 3.2a). Out of 1500 wells available, we implement four filtering 

criteria: 

1. wells must be located within the Delaware Basin, 

2. wells must have four types of well-log measurements: photoelectric factor 

(PEF), gamma-ray (GR), sonic (DT), and bulk density (DEN)). These four 

types of well-log measurements represent lithology indicators and 

complement each other in lithofacies interpretation,  

3. wells must cover >60% Wolfcamp depth interval, 

4. wells must have well-log measurements with consistent and appropriate 

formats. 

Following the four filtering criteria, 31 wells were selected out of 1500 wells 

(Figure 3.2b). 
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Figure 3.2. Before (a) and after (b) pre-processing the well dataset to select 
well data of Wolfcamp interval for the clustering. Note that “Others” 
represent types of well-log measurement other than the four types of well-
log measurement used for the clustering in this workflow including GR 
(gamma-ray), DEN (bulk density), DT (sonic), and PEF (photoelectric 
factor). 
 

3.3.1.2. Data Cleaning 

The next step is to create the DataFrame from the dataset as the input for 

the clustering. The DataFrame is then scaled using a Standard Scaler and 

cleaned from missing values and outliers, accounting for 63,311 data points 

(Figure 3.3). 
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Figure 3.3. Matrix scatter-plot of the four types of well-log measurement for 
the 31 well data of Wolfcamp DataFrame (63,311 data points). PEF: 
photoelectric factor; GR: gamma-ray; DEN: bulk density; DT: sonic. 
 

3.3.2. Clustering 

The main goal of the clustering step is to classify the data points into 

several compact and well-separated facies that can be interpreted as consistent 

lithofacies throughout the basin. For clustering, unsupervised, or data-driven 

machine learning, clustering methods (Alloghani et al., 2020; Gentleman and 

Carey, 2008) were applied for the well-log data (Figure 3.3) following the 

workflow. 
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3.3.2.1. Finding the Number of Clusters Present in the Data 

In this workflow, we primarily deploy clustering methods that require a 

specified number of clusters as user input. An essential requirement for robust 

clustering is determining the optimal number of clusters in the dataset. The 

clusters should be consistent and robust. The optimal number of clusters 

present in the data (k) is determined using several intrinsic metrics, including the 

Elbow curve method (Edwards and Cavalli-Sforza, 1965; Kodinariya and 

Makwana, 2013), Silhouette score (Rousseeuw, 1987), Calinski-Harabasz index 

(Caliński and Harabasz, 1974), and Davies-Bouldin index (Davies and Bouldin, 

1979). These metrics assess the goodness of the data partitioning without the 

use of any external information. These scores serve as heuristic tools to 

evaluate the clustering performance (as shown by Gonzalez and Misra (2022)). 

These scores are based on the compactness (similarity) of each cluster and the 

separation (distinction) between the clusters. A higher value of Calinski-

Harabasz score and lower value of Davies-Bouldin score indicate a robust 

clustering. For the Silhouette score, the range of performance is set from -1 to 1, 

where 1 represents the best clustering performance. 

3.3.2.2. Determining the Best Clustering Method 

Three clustering methods were applied to the well-log data: KMeans 

(Hartigan and Wong, 1979), Agglomerative Hierarchical (Johnson, 1967), and 

Spectral (Ng et al., 2001). KMeans is the distance-based clustering where each 

centroid sets itself in the center of one of the k clusters in the data. 
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Agglomerative Hierarchical clustering considers each data point as an individual 

cluster and merges the most similar data points until k clusters are formed. On 

the other hand, Spectral clustering roots in graph theory, where communities of 

nodes are grouped in a graph based on the edges connecting them. 

Best clustering methods for the given dataset are determined with the 

help of three intrinsic cluster validation metrics: Silhouette score, Calinski-

Harabasz index, and Davies-Bouldin index. An Adjusted Rand Score is also 

used to determine whether the clusters from the two clustering methods are 

similar. The closer to 100% the score is, the more similar the clusters are, 

indicating consistent results, even from different clustering methods. Similar 

clustering comparisons have been performed by Gonzalez and Misra (2022) and 

Chakravarty and Misra (2022) to find the best clustering method. 

3.3.2.3. Clusters Interpretation and Validation 

Clusters from the best-unsupervised learning methods are then 

interpreted into lithofacies based on the feature set derived from the well-log 

measurements. The interpretation is compared with other studies based on core 

interpretation and spectral gamma-ray logs from the dataset. The interpreted 

lithofacies are compared at individual wells nearby to see whether the clustering 

workflow can classify the various well-log features following the basin-wide 

geological variation. The interpreted lithofacies are validated for Wolfcamp A 

samples due to the availability of other geological and geochemical data 

(literature and dataset). The identified basin-wide lithofacies are then used to 
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construct basin-wide gross depositional environment (GDE) and associated 

organofacies. 

3.4. Results and Interpretation 

3.4.1. Clustering Evaluation 

3.4.1.1. First-Level Clustering 

All four intrinsic metrics indicate that the optimal number of clusters 

present is 2 (Figure 3.4). It is evident from Figure 3.5a that KMeans and 

Spectral clustering perform better than Hierarchical clustering, with KMeans 

having the best intrinsic cluster validation metric scores. This is also supported 

by a high Adjusted Rand Score of 94.35% between KMeans and Spectral 

clustering (Table 3.1). With two as the number of clusters from KMeans 

clustering, 46,466 data points are assigned as Facies A, while 16,845 data 

points are assigned as Facies B. Based on the matrix scatter plot (Figure 3.5b), 

it is not easy to interpret the classified facies as each cluster has a wide range 

and overlapping features of the well-log measurements. Generally, Facies A is 

predominantly silt and mudstone lithofacies, while Facies B is predominantly 

carbonate lithofacies. Thus, the second-level clustering workflow is necessary to 

further subdivide Facies A and Facies B into more refined lithofacies on each 

new subset of data from the first-level clustering: DataFrame for Facies A and 

DataFrame for Facies B. 
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Figure 3.4. First-level clustering: all four intrinsic metrics indicate 2 as the 
optimal number of clusters present in the Wolfcamp data. 
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Figure 3.5. Clustering results for the first level-clustering of the Wolfcamp 
data: (a) intrinsic cluster validation metrics; (b) matrix scatter-plot of the 
identified KMeans facies. 
 

Table 3.1. Comparison of Adjusted Rand Score of the facies similarity 
among different clustering methods. 

 

 

3.4.1.2. Second-Level Clustering 

The same procedure as the first-level clustering is applied for the second-

level clustering to further subdivide the mudstone and carbonate lithofacies into 

more detailed lithofacies. Two-level clustering has been shown to be useful and 
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informative in identifying physically consistent groups by Falola et al. (2022). For 

the Facies A dataset, three intrinsic metrics indicate that the optimal number of 

clusters present is 4 (Figure 3.6), and thus the workflow proceeds with four as 

the number of clusters. Based on Figure 3.7a, both KMeans and Spectral 

clustering perform significantly better than Hierarchical clustering. This is also 

supported by a higher Adjusted Rand Score of 66.15% between KMeans and 

Spectral clustering than Hierarchical clustering (Table 3.1). Using four as the 

number of clusters with KMeans clustering, 46,466 data points are subdivided 

into 4 Facies with data points ranging from 9,288 to 14,089 data points (Figure 

3.7b). 

 

Figure 3.6. Second-level clustering of Facies A - Wolfcamp: All four 
intrinsic metrics indicate 4 as the optimal number of clusters present in 
the Wolfcamp data - Facies A. 
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Figure 3.7. Clustering results for the second level-clustering of the 
Wolfcamp data – Facies A: (a) intrinsic cluster validation metrics; (b) 
matrix scatter-plot of the identified KMeans facies. 
 

For the Facies B data, three intrinsic metrics indicate that the optimal 

number of clusters present is 3 (Figure 3.8), and thus the workflow proceeds 

with three as the number of clusters. Based on Figure 3.9a, both KMeans and 

Spectral clustering perform significantly better than Hierarchical clustering. This 

is also supported by a high Adjusted Rand Score of 88.38% between KMeans 

and Spectral clustering (Table 3.1). Using three as the number of clusters with 

KMeans clustering, 16845 data points are subdivided into 3 Facies with data 

points ranging from 3200 to 7417 data points (Figure 3.9b). The combined 

clusters, with seven identified basin-wide lithofacies, have a combined Adjusted 

Rand Score of 72.07% between KMeans and Spectral clustering, compared to 
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53.81% if only first-level clustering with seven as the number of clusters is 

applied. 

 

Figure 3.8. Second-level clustering of Facies B - Wolfcamp: intrinsic 
metrics indicate 2 or 3 as the optimal number of clusters present. 
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Figure 3.9. Clustering results for the second level-clustering of the 
Wolfcamp data – Facies B: (a) intrinsic cluster validation metrics; (b) 
matrix scatter-plot of the identified KMeans facies. 
 

3.4.2. Lithofacies Interpretation and Validation 

3.4.2.1. Facies Interpretation Based on the Well-Log Measurement 

Seven lithofacies from the combined data (Figure 3.10) are interpreted 

based on their well-log measurements. Generally, Facies 0-3 are interpreted as 

clastic source-rock facies, while Facies 4-6 are interpreted as carbonate/ marl 

with non-source-rock facies (see Table 3.2 for the summary). 



 

79 

 

 

Figure 3.10. Matrix scatter-plot of the identified KMeans facies from the 
combined data of Facies A and B (second-level clustering). 
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Table 3.2. Interpreted lithofacies and their associated well-log data 
distribution. 

 

Facies 0-3 have relatively high gamma-ray (GR), high sonic (DT), and low 

bulk density (DEN), indicative of clastic and possible organic-rich interval or 

hydrocarbon-bearing zone, with Facies 2 and 3 being richer in organic content 

than Facies 0 and 1. Compared with Facies 1-3, Facies 0 is likely coarser grain 

siltstone, indicated by relatively lower GR values. Facies 0, 1, 2, and 3 are 

interpreted as predominantly siltstone, mixed argillaceous mudstone, siliceous 

mudstone, and calcareous-argillaceous mudstone, respectively, based on their 

photoelectric factor (PEF) values. This interpretation is supported by DEN and 

DT values, as siliceous mudstone has lower DEN and higher DT values than 

calcareous-argillaceous mudstone. 

Facies 4, 5, and 6 are dominated by low GR, low DT, high DEN, and high 

PEF, indicating carbonate-dominated lithofacies. Facies 4 is interpreted as 

limestone-dominated lithofacies, while Facies 5 is interpreted as mixed 

carbonate-siliciclastic as the log values are between typical limestone log 

characteristics (e.g., Facies 4) and siliciclastic lithofacies (e.g., Facies 0). Facies 
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6 is unique due to its high PEF value, indicating heavy minerals associated with 

carbonate (e.g., ankerite). 

3.4.2.2. Comparison with Other Studies and Dataset 

The interpreted lithofacies from this study are compared with the 

interpretation from other studies based on core and spectral GR data (dataset). 

3.4.2.2.1. Well-to-Well Lithofacies Comparison with Another Study: 

Wolfcamp A as an Example 

Figure 11 shows KMeans clustering-derived lithofacies compared with 

core data derived from other studies (Bievenour and Sonnenberg, 2019). Both 

interpreted facies indicate that Wolfcamp A at this well-location is predominantly 

siliceous mudstone with some interbedded siltstone and minor carbonate. Note 

that the core well location is from a nearby well. Therefore, there might be 

vertical heterogeneity variability between wells. Another vertical variability 

difference is possibly caused by differences in depth measurement scale 

between well-log (every 0.5 ft) and core data (centimeters). 
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Figure 3.11. Comparison of interpreted lithofacies (Wolfcamp A) from the 
KMeans facies vs. from the core data from nearby well (dashed-box) 
derived from Bievenour and Sonnenberg (2019). 
 

3.4.2.2.2. Comparison with Spectral GR Log (Dataset): Wolfcamp A and B 

as Examples 

Figure 3.12 compares the interpreted lithofacies from the KMeans vs. 

measured spectral gamma-ray from the nearby wells. From the depth plots, 

mixed argillaceous mudstone is differentiated from siliceous mudstone by the 

uranium content, with the latter having high uranium content, primarily 

associated with a reducing environment. This supports the interpretation of 

siliceous mudstone being richer in organic matter than the mixed argillaceous 

mudstone. 
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Clay minerals identified in mixed argillaceous mudstone and siliceous 

mudstone lithofacies are predominantly mixed-layer clay and illite (Figure 3.12 - 

thorium vs. potassium plots). This clay mineral identification supports the 

interpretation of a silica-rich lithology for the low PEF lithofacies (e.g., siliceous 

mudstone), as minor montmorillonite (PEF ~2.0) or kaolinite (PEF ~1.8) is 

identified in the plot which may confuse the interpretation with silica-rich 

minerals (PEF ~1.8). 

 

Figure 3.12. Comparison of the interpreted lithofacies (Wolfcamp A & B) 
from the KMeans vs. measured spectral gamma-ray from the nearby wells. 
(a) mixed argillaceous mudstone dominated well in the northwest area; (b) 
siliceous mudstone dominated well in the southeast area; Upper: depth 
plot highlighting the high uranium content in (b); Lower: clay mineral 
identification plot showing predominantly mixed-layer clay and illite with 
minor montmorillonite and kaolinite, indicating low PEF values (PEF~2.0) 
are associated to silica minerals. 
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3.4.2.2.3. Basin-Wide Distribution Comparison with Interpreted Lithofacies 

from Other Studies 

Figure 3.13 shows the distribution of the interpreted lithofacies at 

different well locations in the basin from both KMeans and other studies based 

on core data of the Wolfcamp A interval (Bievenour and Sonnenberg, 2019; 

Colborne and Sonnenberg, 2019; Jones, 2019; Kvale et al., 2020; Thompson et 

al., 2018). Both interpretations indicate that the northern basin margin is 

limestone-dominated, while more siliceous mudstone is encountered in the 

central to southern parts of the basin. However, uncertainty exists in lithofacies 

heterogeneity due to different definitions of “Wolfcamp A” among various studies 

and this study. 
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Figure 3.13. Basin-wide lithofacies distribution of Wolfcamp A, both from 
this study (KMeans) and other studies based on core-data (dashed circle 
and dashed square). 
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3.4.2.3. From Basin-Wide Lithofacies to Depositional Environments and 

Organofacies 

3.4.2.3.1. Wolfcamp A Gross-Depositional Environments (GDE) and 

Organofacies 

Figure 3.14 is the interpreted lithofacies and depositional environment 

map based on this workflow and other studies and the interpreted organofacies 

from the geochemical data (Baskoro et al., 2021) for the Wolfcamp intervals. 

With the formation thickness as a reference, the interpreted lithofacies-

organofacies (or GDE) of the Wolfcamp Play is generally divided into the shallow 

marine, shallow-to-deeper marine transition, and deep marine facies. In 

reference to the facies maps by Blakey (2019), the shallow marine facies is 

equivalent to the restricted shelf and open marine shelf facies, while the shallow-

to-deeper marine transition and deep marine facies are equivalent to the deep 

marine slope to shallow-to-deeper marine transition and deep basin marine 

facies, respectively. 

The shallow marine facies is dominated by limestone lithofacies. The 

shallow-to-deeper marine transition facies is dominated by mixed argillaceous 

mudstone lithofacies with some contribution from other lithofacies, especially 

non-shale, depending on the geographic location in the basin. The deeper 

marine facies is dominated by siliceous mudstone lithofacies with some 

contribution from other lithofacies depending on the geographic location in the 

basin. The variability of the lithofacies can be explained by multiple sediment 
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sources (Figure 3.14) surrounding the Delaware Basin during Wolfcamp 

deposition (Blakey, 2019). Figure 3.15 shows the variability of the lithofacies in 

the W-E cross-section in the northern part of the basin, from shallow-to-deeper 

marine transition facies to shallow marine facies in the east margins. Figure 

3.16 is the N-S cross-section in the eastern part of the basin, showing a 

depositional environment from shallow-to- deeper marine transition to deep 

marine facies and lithofacies from mixed argillaceous mudstone to siliceous 

mudstone dominated. 

 

Figure 3.14. Interpreted gross-depositional environments based on litho- 
and organo- facies distribution and formation thickness of Wolfcamp A 
interval: marine shelf, transitional shallow to deep marine, and deep 
marine. 
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Figure 3.15. West-East northern cross-section of interpreted lithofacies distribution of Wolfcamp A interval, 
showing the carbonate dominated marine shelf in the east margin. 
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Figure 3.16. North-South eastern cross-section of interpreted lithofacies distribution of Wolfcamp A 
interval, showing the GDE change from shallower to deeper marine and lithofacies change from 
predominantly mixed argillaceus mudstone to siliceous mudstone. 
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Each GDE facies (Figure 3.14) is generally associated with organofacies. 

A detailed fundamental concept of GDE, lithofacies, and their association to 

organofacies are illustrated in Donovan et al. (2017), Evenick (2016), and 

Pepper and Corvi (1995). The shallow-to-deeper marine transition facies is 

predominantly mixed marine-terrigenous organofacies (OF “D/E’-“B”) with mixed 

argillaceous mudstone and coarser grain lithofacies. Marine carbonate-marl (OF 

“A”) or mixed marine carbonate-clastic (OF “A/B”) may also be encountered 

adjacent to shallow marine facies associated with limestone or calcareous 

mudstone lithofacies. The deep marine facies is dominated by marine clastic 

organofacies associated with siliceous mudstone (OF “B”). Mixed marine-

terrigenous organofacies (OF “D/E”) may also be found, especially adjacent to 

the eastern basin margin transported through sedimentation from the Central 

Basin Platform (Kvale et al., 2020). Additionally, Bievenour and Sonnenberg 

(2019) concluded that siliceous mudstone lithofacies are richer in marine organic 

matter than the siltstone facies based on their backscatter and secondary 

electron observations. Even though no Rock-Eval or maceral data are available 

for the shallow marine facies, most oil biomarkers (upper Wolfcamp sourced-oil) 

indicated a marine carbonate-marl source rock or OF “A” (Baskoro et al., 2021), 

associated with limestone and mixed carbonate-siliciclastic lithofacies. 

3.4.2.3.2. Wolfcamp B-C-D Intervals GDE and Organofacies 

The GDE maps for Wolfcamp B, C, and D intervals are reconstructed in 

Figure 3.17. In general, each Wolfcamp interval has a similar overall GDE and 
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litho- and organo- facies trend but with a lateral variability reflecting lateral 

changes of the depositional environment. The lateral variability (e.g., from north 

to south) includes deepening in relative water depth, changing lithofacies from 

mixed argillaceous to siliceous mudstone lithofacies dominated, and changing 

organic matter richness from relatively poorer to richer. 

 

Figure 3.17. Interpreted gross-depositional environment and litho- and 
organo- facies distribution of Wolfcamp B-C-D (upper and lower) intervals. 
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Vertical variability is also spotted among the different Wolfcamp intervals 

(Figure 3.18). One of the significant variabilities is that the mixed marine-

terrigenous organofacies of the shallow-to-deeper marine transition facies of 

Wolfcamp B-C-D intervals are richer in terrigenous organic matter than 

Wolfcamp A interval’s shallow-to-deeper marine transition facies. Another 

vertical variability is observed, including the changes in the predominant litho- 

and organo-facies from older to younger intervals (e.g., from Wolfcamp D to 

Wolfcamp A), reflecting the changes in relative water depth and overall 

depositional environments, from relatively shallower to deeper marine. 
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Figure 3.18. Wolfcamp A-B-C-D intervals heterogeneity across different well-location in the Delaware 
Basin. 
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3.5. Discussion 

3.5.1. Data Challenge and Pre-Processing Procedure 

There are challenges in developing the pre-processing workflow. Firstly, 

the large number of well-data requires automation for each pre-processing 

stage. Secondly, well-log aliases in the dataset are inconsistent due to different 

operators (e.g., gamma-ray in numerous aliases such as GR, GRWS, GR_1, 

GR1, HCGR, GAMMA (>250 aliases). It is critical to QC the data and filter the 

best subset of data to carry out the proposed workflow.  

3.5.2. Advantages of the Unsupervised Machine Learning 

As demonstrated in Figure 3.10 and Table 3.2, even though each facies 

can be distinguished from each other by at least one type of well-log 

measurement, the other types of well-log measurement are sometimes blurry or 

partially overlapping (e.g., PEF and GR values between Facies 0 and 5), which 

complicates the interpretation. Additionally, the lithofacies interpretation is based 

on a broad range of well-log measurements (e.g., between P90 and P10 values 

or 80% of data), which is assumed to represent the facies signature. The 

narrower the cluster is, e.g., the smaller the range between P90 and P10 values, 

the easier and more accurate the interpretation. 

Despite the limitations and challenges, there are several advantages of 

using unsupervised machine learning methods to classify lithofacies from well-

log data. Firstly, the workflow is data-driven and straightforward; no human 

interference is necessary. The data-driven workflow suggests the number of 
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clusters once the appropriate input data is compiled as a DataFrame. Only four 

types of well-log measurements (PEF, GR, DT, and DEN) are necessary to yield 

meaningful clusters of lithofacies in this geological case study. The dataset must 

cover the spatial distribution of the study area to yield representative clusters. 

Only 31 out of 1500 wells are used in this study to draw the basin-wide GDE. 

Secondly, the workflow consistently captures lateral and vertical lithofacies 

variability, as demonstrated with the Wolfcamp Play dataset in the Delaware 

Basin. Distinct basin-wide lithofacies trends are recognized geographically 

across the basin, even though only a subset of data is used in this workflow. 

3.6. Conclusion 

Seven basin-wide lithofacies are identified within the Wolfcamp Play 

dataset by applying two levels of unsupervised machine learning workflow. The 

lithofacies interpretation concludes that there are three predominant facies on 

the gross depositional environments for the Wolfcamp intervals. The shallow 

marine facies is dominated by limestone lithofacies with marine carbonate/ marl 

organofacies ”A” and “D/E” sources. The shallow-to-deeper marine transition 

facies is generally dominated by mixed argillaceous mudstone and other 

lithofacies with mixed marine-terrigenous organofacies “D/E” sources. The deep 

marine facies is dominated by siliceous mudstone and other lithofacies with 

marine clastic organofacies “B” sources. The vertical and lateral variability of 

depositional environments and lithofacies are recognized throughout the 

different Wolfcamp intervals, e.g., from both north to south and older to younger 
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are deepening in relative water depth, changing in lithofacies from mixed 

argillaceous to siliceous mudstone lithofacies, and changing in organic matter 

richness from relatively poorer to richer. 

Because the procedure is a data-driven workflow, proper pre-processing 

is necessary to handle the large basin-wide dataset, well-log aliases, well-log 

scale, and computational resources. Even though most clusters are compact 

and well-separated, few clusters have an overlapping well-log signature, making 

the interpretation challenging. 

The proposed two-level unsupervised machine learning workflow is data-

driven and straightforward. Using only four types of well-log measurements 

(PEF, GR, DT, and DEN) and selecting wells from a large dataset, the workflow 

can consistently capture the variability of the lithofacies that outlines the basin-

wide geological variations.  
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4. MASS BALANCE OF GENERATION, RETENTION, AND PRODUCTION 

FOR THE WOLFCAMP-SOURCED HYDROCARBON IN PERMIAN 

DELAWARE BASIN: INSIGHT ON REMAINING RECOVERABLE RESOURCE 

AND EXPULSION EFFICIENCY 

 

4.1. Introduction 

Improved efficiency of hydrocarbon resources exploration is directly 

linked to an accurate analysis of the petroleum system in a basin. An accurate 

petroleum system analysis requires detailed quantification of hydrocarbon (HC) 

masses involved in a basin from generation to production (Hantschel and 

Kauerauf, 2009a). The quantified HC masses must be balanced following the 

fundamental laws of mass conservation. This is particularly important for a basin 

with unconventional-conventional petroleum systems where the generated HCs 

from the source rock interval are either expelled out from or retained within the 

source rock interval. Expulsion efficiency becomes even more critical as it 

largely determines the HCs in place, both for the source rock interval or out of 

the source rock accumulations (Arango and Katz, 2019; Bai et al., 2017). 

Several authors have attempted to perform HC mass balance calculations 

at both basin and field scales (e.g., (Baur et al., 2011; Coutinho, 2008; Duran et 

al., 2013; Lewan et al., 2002; Muscio et al., 2016). They calculated the HC mass 

balance using basin and petroleum system modeling (Baur et al., 2011; 

Coutinho, 2008; Duran et al., 2013), stochastic/ probabilistic methods (Lewan et 
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al., 2002), or comparison of both methods (Muscio et al., 2016). Most of these 

studies aimed to understand the accumulation efficiency for conventional HC 

accumulation, calibrated to production data from the conventional field. 

Expulsion efficiency and retained HC portion within the source rock interval were 

not discussed in depth. 

Numerous studies have been performed on modeling or assessing the 

mass balance of unconventional HC accumulations. For example, Rushing et al. 

(2004) and Kuchinskiy et al. (2012) calculated the HC volumes of tight-rock and 

source rock plays, respectively, by employing a stochastic/ probabilistic 

approach using a modified HC generation potential formula from Schmoker 

(1994). HC volumes quantification focused on the source rock, with expulsion 

efficiency calculated using several assumptions regarding retaining factor and 

fractions of HCs lost from the system, while source rock heterogeneity was 

generally simplified. However, the results were not assessed for their mass 

balance for the whole petroleum system. 

Other examples are from basin and petroleum system modeling studies 

applied to the unconventional system, including Amer et al. (2015); Bryant et al. 

(2013); Cander (2012); Jarvie et al. (2007); Romero-Sarmiento et al. (2013), 

among many others. Some of these studies addressed the challenge of 

modeling unconventional systems, including factors controlling the retained HC 

storage capacity and fluid properties. However, the calculated retained and 

expelled HCs were not assessed for their mass balance.  



 

105 

 

Thus, this study aims to fill these gaps by performing HC mass balance 

calculations using several calculation scenarios, including basin and petroleum 

system modeling. The proposed workflow of mass balance calculation aims to 

achieve the distribution of the generated HC from the source rock, considering 

the SR heterogeneity in an unconventional system. This calculation assesses 

the mass balance to estimate the remaining recoverable and derive expulsion 

efficiency. The multiple calculation scenarios of mass balance also aim to 

establish a reference or comparison for modeling the unconventional system. 

4.2. Geological Overview 

The case study for this HC mass balance calculation is the Wolfcamp 

Play in the Permian Delaware Basin of West Texas and New Mexico, USA 

(Figure 4.1a). The Delaware Basin is bounded to the west by the Diablo 

Platform, to the north by the North American craton and Northwest Shelf areas, 

and to the south by the Marathon orogenic belt. The Delaware Basin is 

separated from the Midland Basin to the east by the N-S trending Central Basin 

Platform (Adams, 1965; Dutton et al., 2005; Hills, 1984; Silver and Todd, 1969). 

Delaware Basin occupies a basinal area of 13,000 mi2 (33,500 km2) with a 

maximum depth of 24,000 ft (7,300 m) and is filled by up to 40,000 mi3 (170,000 

km3) of Phanerozoic sediments (Hills, 1984). 



 

106 

 

 

Figure 4.1. (a) Major subdivision and boundaries of the Permian Basin 
around the Delaware Basin (after Dutton et al. (2015) and Silver and Todd 
(1969)). (b) The stratigraphic chart of Permian strata, which includes 
Wolfcamp interval subdivision for the Delaware Basin. 
 

The Wolfcamp Formation (Fm) is part of the thick Permian strata in the 

Delaware Basin and consists of four main intervals: Wolfcamp A, -B, -C, and -D 

(Figure 4.1b). Wolfcamp sediments were deposited during the early Permian in 

a generally deep, oceanic-connected interior continental basin surrounded by 

carbonate shelf (Northwest Shelf, eastern Central Basin Platform, western 

Diablo Platform), the northwestern Pedernal uplift, and the southern siliciclastic 

shelf in front of the Marathon orogenic belt (Blakey, 2019). This depositional 

setting resulted in litho- and organo-facies heterogeneity within the Wolfcamp 

intervals in the Delaware Basin. Wolfcamp sediments were deposited during the 
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frequent eustatic fluctuations that cause lithofacies heterogeneity, primarily 

limestone, silts, and shales (Fairhurst et al., 2021). 

The Wolfcamp Play is one of the main targets for unconventional 

production in the Permian Delaware Basin, along with the Leonardian Bone 

Spring interval (Gaswirth et al., 2018). Among the four intervals, Wolfcamp A is 

the most drilled target zone for unconventional play in the Delaware Basin 

(Fairhurst et al., 2021; Popova, 2019). 

Several studies have performed petroleum system analysis for the 

Wolfcamp and younger Permian intervals in the Delaware Basin (Curtis and 

Zumberge, 2017, 2018; Fairhurst et al., 2021; Jarvie, 2017; Justman and 

Broadhead, 2010a, b). Wolfcamp marine shale facies is the primary source rock 

for the Wolfcamp unconventional/ hybrid reservoirs and the lower Bone Spring 

interval (Curtis and Zumberge, 2017, 2018; Fairhurst et al., 2021; Jarvie, 2017; 

Pepper et al., 2020). The marine carbonate-rich source rock, which is mainly 

restricted to eastern and northern Delaware Basin margins, is primarily 

responsible for the HC accumulations in the Delaware Basin margins and as far 

as the Northwest Shelf and Central Basin Platform (Curtis and Zumberge, 2017, 

2018; Pepper et al., 2020). The signatures of these two different oil families are 

documented in Baskoro et al. (2021a); Curtis and Zumberge (2018); Echegu et 

al. (2021), and Pepper et al. (2020). Wolfcamp Fm is suitable for mass balance 

calculation due to its importance as a source rock and unconventional system. 
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4.3. Workflow and Methods 

The HC mass balance procedure involves “bookkeeping” of the 

calculated HC from generation to production. A 3D basin and petroleum system 

model (BPSM) is utilized to calculate the HC masses from generation (Hantschel 

and Kauerauf, 2009b) to expulsion-retention. The HC mass balance calculation 

is then performed on the calculated generated HC as the starting point with the 

produced HC data as the endpoint. 

4.3.1. 3D Basin and Petroleum System Modeling 

The 3D BPSM covers the Delaware Basin area within the basin outline 

(Figure 4.1). The main focus of the mass balance calculation is the Wolfcamp-

sourced HC within the Permian strata in the Delaware Basin. It is essential to 

calibrate the 3D BPSM with thermal maturity indicators (e.g., vitrinite reflectance) 

and then to calibrate the source rock (Wolfcamp) with measured source rock 

property (HI and TOC) before calculating the HC mass. 

4.3.1.1. Model Building 

4.3.1.1.1. 3D Delaware Basin Model 

The foundation of the 3D BPSM, including the associated boundary 

conditions, layer subdivisions, age and facies assignment, and thermal maturity 

scenario, are documented in Becker et al. (2019) and Yu et al. (2020). Figure 

4.2a the thermal maturity calibration to measured vitrinite reflectance in different 

areas of the basin. The thermal maturity at the Wolfcamp intervals is from the oil 

to gas generation window, with the oil dominating in the Wolfcamp A interval and 
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the gas generation dominating in the Wolfcamp D interval (Figure 4.2b). For the 

reliable HC mass calculation from the Wolfcamp source, the 3D BPSM is built 

with restored source rock initial TOC, HI, and litho- and organo- facies for the 

Wolfcamp A, B, C, and D intervals. 
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Figure 4.2. Thermal maturity (a) calibration to measured vitrinite reflectance data and (b) model (easy %Ro) 
shown at top and base of each Wolfcamp interval, indicates peak oil to gas generation window. 
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4.3.1.1.2. Restored Source Rock Initial HI-TOC and Litho- and Organo- 

Facies Parameters for the Wolfcamp Formation 

The lithofacies variability (Figure 4.3) is based on the basin-wide 

lithofacies study in Baskoro et al. (2021b). Generally, the predominant source 

rock lithofacies is organic-rich mudstone (more siliceous in the south and more 

argillaceous in the north) with interbedded siltstone and limestone, reflecting 

depositional environments from shallow to deep marine (Bievenour and 

Sonnenberg, 2019; Blakey, 2019; Fairhurst et al., 2021). In the model, siltstone 

and limestone layers are determined as non-SR, while the mudstone layers are 

designated SR intervals.  

Deep marine or siliceous mudstone facies is predominantly associated 

with marine clastic OF “B” type kinetic model, while the shallow-to-deeper 

marine or mixed argillaceous mudstone facies is predominantly associated with 

mixed marine-terrigenous OF “D/E” type, depending on the initial HI and TOC 

values (Baskoro et al., 2021a; Baskoro et al., 2021b). Baur (2019) kinetic model 

is chosen as it is based on the Pepper and Corvi (1995) kinetic model and has 

updated transformation ratio and fluid properties prediction. 
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Figure 4.3. 3D basin and petroleum system model of Delaware Basin with 
enhanced input of variability of Wolfcamp lithofacies. 
 

Table 4.1 shows the p90/50/10 restored initial HI and TOC values 

adopted in the model, based on the SR restoration study in Baskoro et al. 

(2021a). For more accurate calculations, each Wolfcamp interval (A, B, C, and 

D) is subdivided into 2 to 3 layers, where each layer is assigned two initial HI 

and TOC values for each p90/50/10 model: one value for the shallow-to-deeper 

marine facies and one value for the deep marine facies (see Figure 4.4 for the 

example from the p50 model). Wolfcamp A and B generally have a better initial 

source rock potential, from very good to excellent, than Wolfcamp C and D. 
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Table 4.1. P90/50/10 restored initial: HI (upper) and TOC (lower), of 
Wolfcamp SR intervals adopted in the 3D model. 
 

Initial HI 
(mgHC/gTOC) 

Shallow-to-Deeper 
Marine 

Deep Marine 
p90 p50 p10 p90 p50 p10 

Wolfcamp A 
Upper 217 313 579 318 473 647 
Middle 266 288 499 413 552 700 
Lower 200 320 576 423 475 765 

Wolfcamp B 
Upper 179 207 426 420 444 691 
Middle 213 242 503 407 445 660 
Lower 192 225 348 382 455 532 

Wolfcamp C 
Upper 167 186 218 403 454 562 
Lower 151 187 202 403 423 573 

Wolfcamp D 
Upper 150 281 398 307 373 464 
Lower 129 215 407 129 215 407 

        

Initial TOC 
(mgHC/gTOC) 

Shallow-to-Deeper 
Marine 

Deep Marine 
p90 p50 p10 p90 p50 p10 

Wolfcamp A 
Upper 1.27 1.66 3.00 1.54 1.93 3.05 
Middle 1.50 1.88 3.24 2.28 2.61 4.19 
Lower 1.66 2.36 3.17 1.64 3.21 5.03 

Wolfcamp B 
Upper 1.37 1.94 2.15 1.99 2.72 3.97 
Middle 1.51 2.23 3.30 2.10 2.57 3.16 
Lower 1.80 1.95 2.63 1.94 2.48 2.77 

Wolfcamp C 
Upper 1.44 1.79 2.66 1.94 2.22 3.27 
Lower 1.38 2.09 2.45 1.45 2.00 2.92 

Wolfcamp D 
Upper 1.85 2.28 2.82 1.48 1.87 2.40 
Lower 1.24 1.67 2.18 1.24 1.67 2.18 
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Figure 4.4. 3D basin and petroleum system model of Delaware Basin with enhanced input of variability of 
Wolfcamp (p50 model) restored initial (a) HI and (b) TOC. Note that only Wolfcamp is displayed in this 
figure. 
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In the current model, the carbonate-dominated lithofacies with marine 

carbonate OF “A” type in the basin margin is excluded from the calculation, as it 

is assumed that this source rock primarily charged the Central Basin Platform 

and Northwest Shelf outside the basinal portion of the Delaware Basin (Baskoro 

et al., 2021a; Curtis and Zumberge, 2018; Pepper et al., 2020).  

4.3.1.2. Hydrocarbon Generation Simulation and Calibration 

Three model cases of p90/50/10 are built with parameters of probable 

initial HI-TOC for each lithofacies. Each probable model is then simulated and 

matches the measured HI (Figure 4.5a) and TOC (Figure 4.5b) for the 

Wolfcamp Fm in most parts of the basin. 

The siliceous mudstone facies is predominantly modeled with the kinetic 

model of OF “B”, while the mixed argillaceous mudstone is predominantly 

modeled with the kinetic model of OF “D/E” (Figure 4.6a). Calculated 

transformation ratio (TR) generally varies from 15 to 90 % (Figure 4.6b), with 

high TR dominating the center part of the basin in response to OF “B” dominated 

facies with higher thermal maturity levels than the southernmost part of the 

basin. 
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Figure 4.5. Calibration of the present-day (a) HI and (b) TOC based on p90/50/10 initial HI and TOC input for 
the Wolfcamp source rock. 
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Figure 4.6. (a) Predominant basin-wide litho- and organo- facies 
distribution of the source rock unit for each Wolfcamp interval and (b) 
calculated transformation ratio on top of each Wolfcamp intervals. 
 

Figure 4.7 illustrates the calculated present-day HI and TOC distribution 

for different Wolfcamp intervals based on the initial HI and TOC input from the 

p50 model. Generally, Wolfcamp intervals in the northern-western part of the 

basin are dominated by lower present-day HI and TOC as a result of lower initial 

HI-TOC (Figure 4.4), OF “D/E” dominated organofacies (Figure 4.6), and higher 

thermal maturity level (Figure 4.2). In contrast, Wolfcamp intervals in the 

southern-eastern part of the basin have higher initial HI-TOC, OF “B” dominated 

organofacies, and lower thermal maturity. Since the 3D BPSM is calibrated to 

the thermal maturity indicator and measured HI and TOC, the workflow proceeds 

with HC generation simulation. 
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Figure 4.7. Calculated present-day HI & TOC on main source rock unit for 
each Wolfcamp intervals (p50 model). 
 

HC generation simulation yields three different calculated masses of 

generated HC in oil and gas phases in Giga tons (GTons) unit: p90/50/10 

models. Figure 4.8 shows the cumulative oil and gas volume (BBOE) of 

generated HC over geological time from the whole Wolfcamp SR intervals for 

each probable case. The cumulative oil and gas volumes are 271/519/1,693 

BBO and 434/814/1,324 BBOE, respectively, for p90/50/10 models. The total oil 

equivalent volumes of generated HC for each p90/50/10 model are 

705/1,332/3,016 BBOE. These calculated volumes are the starting point for the 

main calculation of HC mass balance. 
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Figure 4.8. Calculated cumulative generated oil and gas volumes over 
geological time from the whole Wolfcamp SR intervals for each p90/50/10 
model. 
 

4.3.2. Hydrocarbon Mass Balance Calculation 

4.3.2.1. Mass Balance Calculation Scheme 

4.3.2.1.1. Assumptions Used in the Calculation 

Figure 4.9 illustrates the “bookkeeping” scheme of the calculated HC 

volume from generation to production. All the calculated masses from generation 
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to production must balance, following the fundamental law of mass conservation 

(Hantschel and Kauerauf, 2009a). 

 

Figure 4.9. “Bookkeeping” scheme of calculated hydrocarbon masses 
from generation to production applied to Wolfcamp sourced hydrocarbon. 
 

Several assumptions are involved in this mass balance calculation 

scheme. Firstly, the “produced HC” is based on production data compiled from 

Dutton et al. (2005) and Enverus (2019) data. Secondly, the recoverable HC is 

estimated based on the recovery factor (RF) derived from the literature study. 

This calculation uses typical RF for unconventional play of 10% (Fryklund and 

Stark, 2020; Liu et al., 2018; Qian et al., 2020) to calculate recoverable HC 

(unconventional accumulation) from the Wolfcamp Fm. RF of 30%, higher than 

the Wolfcamp Fm’s RF, accounts for combined conventional (Dutton et al., 

2005; Fryklund and Stark, 2020) and unconventional accumulations in 

Leonardian and Guadalupian Fms. Thirdly, Wolfcamp SR is assumed to 
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contribute hydrocarbon charge for the whole Permian strata, including the 

Leonardian and Guadalupian Fms. 

4.3.2.1.2. Defining the Terms Used in the Calculation 

In this mass balance scheme (Figure 4.9), “Wolfcamp Formation” 

represents one geologic unit or formation of whole Wolfcamp interbedded 

source and non-source (reservoir and carrier) intervals. While “Wolfcamp SR” 

refers to source rock interval (organic-rich shale) parts of the “Wolfcamp 

Formation”. For example, the term “generated HC” represents the total HC 

volume generated from the whole “Wolfcamp SR” intervals of the “Wolfcamp 

Formation” (Figure 4.9).  

Most of the terms used are derived from Hantschel and Kauerauf (2009a; 

b) and Peters et al. (2012). One of the important concepts for this calculation is 

“expulsion”. As described in Hantschel and Kauerauf (2009a) and Katz et al. 

(2017), expulsion has been defined as either the movement of HCs out of the 

kerogen (e.g., (Ertas et al., 2006; Pepper, 1991; Rushing et al., 2004) or out of 

the source rock (e.g., (Katz et al., 2017; Leythaeuser et al., 1984; Sandvik et al., 

1992). Since one of the main purposes of the mass balance calculation is HC 

resource assessment, the term expulsion herein is closely tied to the latter 

definition.  

Rather than detailed expulsion from each source rock interval only, 

expulsion herein refers to the movement of HCs out of the Wolfcamp Fm as one 

source rock-dominated geological unit. Thus, the term “expelled HC” represents 
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the proportion of “generated HC” expelled out from the Wolfcamp Fm, which 

may further migrate to the carrier or reservoir outside the Wolfcamp Fm (Figure 

4.9). While the term “retained HC” represents the remaining proportion of the 

“generated HC,” which remains in the Wolfcamp Fm, both in the shale (source 

rock play) or non-shale (tight-rock play) intervals. The proportions of the retained 

HC and expelled HC are defined by “expulsion efficiency - EE”. The term “EE” 

herein represents the overall EE of the Wolfcamp Fm. This simplification is 

relevant, considering Wolfcamp Play is a self-sourced play. 

Using an assumed RF of 10% for the Wolfcamp Fm, “recoverable HC” in 

the Wolfcamp Fm can be calculated by multiplying the RF with the retained HC 

(Figure 4.9). From this point, the “remaining recoverable HC” in the Wolfcamp 

Fm can be estimated by subtracting the calculated recoverable HC with the 

“produced HC” from the Wolfcamp Fm based on production data. 

The following important concept in this calculation is “migration,” which 

herein refers to “secondary migration” or migration from the source rock to the 

reservoir or trap through the carrier bed or fault (Hantschel and Kauerauf, 

2009a; Baur et al., 2011; Duran et al., 2013). Secondary migration or “migration” 

represents the movement of HC sourced from the Wolfcamp Fm or the “expelled 

HC” in the “Leonardian and Guadalupian Fms” carrier bed. Portions of the 

expelled HC are either accumulated or trapped in Leonardian and Guadalupian 

reservoirs as “accumulated HC,” or migrated out from the system or wasted in 

the system as “lost HC” (Figure 4.9). The proportion of accumulated and lost HC 
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is defined by “accumulation efficiency - AE”, equivalent to accumulation or 

trapping efficiency in other studies (e.g., Baur et al., 2011; Duran et al., 2013; 

(Rushing et al., 2004). In this calculation, the assumed AE is 10%. 

Using an assumed combined RF of 30% for the combined Leonardian 

and Guadalupian Fms, “recoverable HC” from the combined Leonardian and 

Guadalupian Fms can be calculated by multiplying the RF with the accumulated 

HC. From this point, the “remaining recoverable HC” from the combined 

Leonardian and Guadalupian Fms can be estimated by subtracting the 

calculated recoverable HC with the “produced HC” from the combined 

Leonardian and Guadalupian Fms based on production data. 

4.3.2.2. Mass Balance Calculation Scenarios 

Three calculation scenarios are performed for the mass balance 

calculation: (1) backward calculation to derive expulsion-accumulation 

efficiencies to match USGS-estimated remaining recoverable HCs, (2) forward 

calculation with assumed expulsion-accumulation efficiencies, and (3) forward 

BPSM simulation with assumed geological model. The mass balance is then 

assessed using these three different calculation scenarios, focusing on the 

retained HC portion. The calculation scheme and assumptions involved in each 

scenario are integrated into the section below to make it easier for the reader to 

follow each calculation scenario and its impact on the estimated remaining 

recoverable HC in and EE of the Wolfcamp Fm. 
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4.4. Hydrocarbon Mass Balance Assessment from Multiple Calculation 

Scenarios 

4.4.1. Calculation 1 – Inverse Calculation of Required Expulsion-

Accumulation Efficiency to Accommodate USGS Estimated Remaining 

Recoverable HC 

4.4.1.1. Calculation Scheme and Assumptions Involved 

Calculation 1 is performed backward from recoverable HC to p90/50/10 

generated HC (Figure 4.9). In calculation 1, the remaining recoverable HC 

portion is represented by the remaining recoverable resources based on the 

USGS estimates, both for Wolfcamp Fm (Gaswirth et al., 2018) and combined 

Leonardian-Guadalupian Fms (Gaswirth et al., 2018; Schenk et al., 2008). Since 

recoverable HCs are already estimated, retained-expelled-accumulated HC can 

be back-calculated by putting it into the mass balance calculation scheme along 

with the generated HC. The “required” expulsion and accumulation efficiencies 

can be derived to balance the estimated remaining recoverable based on the 

USGS estimates. 

4.4.1.2. Results 

Table 4.2 illustrates the results of calculation 1. The estimated expulsion 

and accumulation efficiency required to accommodate the USGS estimated 

recoverable HC in the Wolfcamp (35/78/140 BBOE) and combined Leonardian 

and Guadalupian Fms (18/31/51 BBOE) are 48/40/53 % and 21/22/11 %, 

respectively. It can also be observed that the calculated AE is 23/23/12 %, 
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higher than the assumed minimum AE (10%) in this mass balance calculation 

scheme. The calculated EE from calculation 1 and USGS estimates serve as a 

comparison or reference model for the following two calculations. 
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Table 4.2. Hydrocarbon mass balance inverse calculation of required expulsion-accumulation efficiency to 
accommodate USGS estimated remaining recoverable HC. 
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4.4.2. Calculation 2 – Multiple Expulsion Efficiency Scenarios to Estimate 

Remaining Recoverable HC 

4.4.2.1. Calculation Scheme and Assumptions Involved 

Calculation 2 aims to calculate the remaining recoverable HC by applying 

multiple scenarios of assumed possible minimum and maximum EE of 20 and 

80%, respectively, on each calculated p90/50/10 generated HC through forward 

calculation, following the mass balance scheme from generated HC to 

recoverable HC (Figure 4.9). From these calculations, scenarios and the range 

of minimum-maximum EE for each p90/50/10 generated HC, which are possible 

according to mass balance, can be inferred. Then, the mean remaining 

recoverable HC from the possible minimum and maximum possible EE 

scenarios for each p90/50/10 generated HC is calculated and compared to 

USGS estimated remaining recoverable HC in Wolfcamp Fm (Gaswirth et al., 

2018). The calculated mean EE is compared to the calculated EE from 

calculation 1. Additionally, by assuming a minimum AE of 10%, the expelled HC 

portion is further assessed to infer whether the generated HC from the 

Wolfcamp SR was sufficient to charge Leonardian and Guadalupian Fms or not. 

4.4.2.2. Results 

Table 4.3 demonstrates the results of calculation 2. The calculated 

recoverable HC for the Wolfcamp Fm is “larger” than the produced HC, using all 

p90/50/10 generated HC and EE scenarios. The calculated mean EE from all 

p90/50/10 generated HC is 50%, comparable to the EE calculated from 
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calculation 2, with the largest difference of EE of 10% from the p50 case. With 

the mean EE of 50%, the calculated remaining recoverable HC is 33/65/149 

BBOE, comparable to the USGS estimated remaining recoverable HC in the 

Wolfcamp Fm (Gaswirth et al., 2018).  

Calculation 2 also indicates that the Wolfcamp generation balance 

(except for the p90 case with EE of 20%) is sufficient to charge both Wolfcamp 

Fm and Leonardian-Guadalupian Fms accumulation using a wide range of EE 

scenarios, even when assuming a minimum AE of 10% - lower than the required 

AE from the calculation 1, and minimum generated HC (p90 model) scenarios 

(Table 3b). The calculated accumulated HC significantly underestimated the 

USGS estimated remaining recoverable HC in the Leonardian-Guadalupian Fms 

(Gaswirth et al., 2018; Schenk et al., 2008). 
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Table 4.3. Hydrocarbon mass balance calculation with multiple assumed expulsion efficiency scenarios to 
estimate mean expulsion efficiency and mean remaining recoverable HC. 
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4.4.3. Calculation 3 – 3D HC Expulsion Simulation Prediction of Remaining 

Recoverable HC and Expulsion Efficiency 

4.4.3.1. Calculation Scheme and Assumptions Involved 

Similar to calculation 2, calculation 3 is also performed forward from 

generated HC to recoverable HC (Figure 4.9). The main difference is that the 

expelled and retained HC are calculated from the expulsion simulation with the 

3D geological basin model. Calculation 3 aims to test modeling source rock as 

unconventional play using default parameters built in PetroMod® expulsion by 

performing mass balance calculation. The concept of expulsion in this 3D 

expulsion simulation by PetroMod® is similar to the concept applied in this mass 

balance calculation. And thus, expelled HC portion represents the proportion of 

the generated HC which is expelled out from the Wolfcamp Fm, which may 

further migrate to the reservoir or trap through a carrier or fault to a reservoir 

outside the Wolfcamp Fm. Since HC migration simulation is not part of this 

study, the expelled HC portion is not further assessed for its AE. 

In PetroMod®, the expulsion simulation requires an “expulsion factor” 

parameter, which represents a portion of the generated mass, excluding the 

residual saturation, that is expelled from the “source rock” (e.g., organic-rich 

Wolfcamp SR layer). However, after testing a wide range of expulsion factors 

(20-80 %), the difference in the calculated retained HC volume is insignificant. 

This is because the amount of retained HC is determined by the source rock's 

adsorption capacity, controlled by the source rock's property (initial HI-TOC and 
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litho- and organo-facies), as the first order in the model. Once the adsorption 

capacity is surpassed (e.g., at the 20% expulsion factor), any expulsion factor of 

>20% will no longer significantly affect the calculated amount of retained HC 

portion. Thus, the simulation proceeds with only a 50% expulsion factor applied 

to the p90/50/10 model. 

4.4.3.2. Results 

Table 4.4 summarizes the results of calculation 3. The predicted overall 

EE is 16/33/64 %, while the estimated remaining recoverable HC from the 

Wolfcamp Fm is 57/87/107 BBOE. It can be observed that the higher the initial 

HI-TOC, the higher the predicted EE. This is because a smaller fraction of the 

total generated HC is required to surpass the critical saturation threshold for 

expulsion (Sandvik et al., 1992).  

It can be observed that the calculated remaining recoverable HC from the 

p50 model is comparable to USGS-estimated remaining recoverable HC. On the 

other hand, the calculation results from p90 and p10 models are significantly 

different. Compared to USGS's estimated remaining recoverable HC, the p10 

models significantly overestimate the EE and, thus, underestimate the calculated 

remaining recoverable HC by 23 %. 
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Table 4.4. Hydrocarbon mass balance calculation based on 3D hydrocarbon expulsion simulation 
prediction of remaining recoverable HC and expulsion efficiency. 
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4.5. Discussion 

4.5.1. Petroleum System Analysis – Wolfcamp as Unconventional Play and 

Primary Source Rock for the Permian Strata 

4.5.1.1. Insight on Modeling Source Rock and Unconventional Play of 

Interbedded Model: Moderate Expulsion Efficiency is Observed 

Based on the mass balance calculation, Wolfcamp unconventional play 

could contribute to significant remaining recoverable HC potential in the 

Delaware Basin. It indicates production is still within the early stage as the 

amount of produced HC is only a tiny portion compared to the recoverable HC. 

The mass balance calculation also implies that Wolfcamp unconventional play is 

self-sourced from Wolfcamp SR intervals.  

Based on calculations 1 and 2, the mean overall EE is within 40 to 53%. 

The overall EE is considered moderate for the unconventional play model of 

“interbedded” source-reservoir like the Wolfcamp Play. In reference to this 

calculated EE, EE in other unconventional play models, including “massive” 

source (e.g., Marcellus Fm in Appalachian Basin) and “sandwiched” source-

reservoir-source (e.g., Bakken Fm in Williston Basin), which typically considered 

lower than “interbedded” model (Katz et al., 2017), may even be lower than 

40%, and thus leading to limited conventional accumulation outside the source 

rock unit.  

The mass balance calculation can be a comparison or reference in 

modeling unconventional play. As illustrated in calculation 3, the current 3D 
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model geological setting and more reliable models at various scales must be 

accurately adjusted to predict retained HC portion and expulsion efficiency to 

accommodate moderate overall expulsion efficiency and significant remaining 

HC resources. However, these efforts require more geological interpretation, 

high-resolution input and modeling, and computational resources. 

4.5.1.2. Revisiting Petroleum System of Permian Strata: Insight on 

Accumulation Efficiency and Contribution of Multiple Source Rocks 

toward Significant Remaining Recoverable HC in Leonardian and 

Guadalupian Fms 

Inferred AE from calculation 1 may be considered too high as most well-

studied basins typically have AE of less than 15% (e.g., Baur et al., 2011; Duran 

et al., 2013; Lewan et al., 2002; Magoon and Valin, 1994). The inferred high AE 

from calculation 1 may indicate that other source rocks besides Wolfcamp, 

including the Bone Spring, Avalon and probably some of the Guadalupian 

source rocks, were most likely responsible for charging the Leonardian and 

Guadalupian Fms. This possibility is also indicated in calculation 2 with an 

assumed AE of 10%. Wolfcamp expelled-accumulated HC balance was 

insufficient to accommodate the USGS estimates of Leonardian-Guadalupian 

remaining recoverable HC (Gaswirth et al., 2018; Schenk et al., 2008), even 

when assuming a high EE of 80%. Based on our 3D BPSM, the source rocks of 

the Guadalupian Fm are predominantly within the early to peak oil generation 

window, while the source rocks of the Leonardian Fm are within the peak to late 
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oil generation window (Figure 4.10), indicative of charge potential from these 

source intervals. 

 

Figure 4.10. Calculated thermal maturity (easy %Ro) for source rock 
intervals in Leonardian and Guadalupian Formations. 
 

There is a limited number of oil-source correlation studies between 

Leonardian/ Guadalupian Fms and Wolfcamp SR or in the Leonardian-

Guadalupian Fms within the Delaware Basin. A few examples of oil-source 

correlation studies of Permian strata in the Delaware Basin are Curtis and 

Zumberge (2017, 2018) and Echegu et al. (2021). However, their analyses are 

limited to the Wolfcamp-Lower Bone Spring (marine and mixed marine-

terrigenous shale source rock) petroleum system within the Delaware Basin and 

Wolfcamp marine carbonate source rock, which is primarily responsible for HC 

accumulations outside DB. Oil-source correlation studies for Leonardian and 

Guadalupian petroleum systems are performed for the Northwest shelf’s marine 

carbonate oil accumulations outside the DB. The oil accumulations in 

Leonardian and Guadalupian Fms within the Delaware Basin are not yet well 

studied for oil-source correlation. A recent study by Echegu et al. (2021) also 
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suggests that Wolfcamp could have charged younger Permian strata, assuming 

vertical migration without a strong top seal was available until the Ochoan 

Evaporite. Thus, performing migration simulation is necessary to assess the 

expelled-accumulated HC balance and AE from multiple source rocks, which is 

beyond the scope of this study. 

4.5.2. Highlights of the Mass Balance Calculation Workflow: Limitations 

and Advantages 

4.5.2.1. Limitations of the Workflow 

This mass balance calculation is highly dependent on the recovery factor 

to calculate recoverable HC; however, uncertainty in this parameter is 

considerable. This limitation becomes prominent in this workflow calculation due 

to the assessment scale. The whole basin is assumed as a unified fetch area as 

HC (secondary) migration simulation is not currently considered and is not the 

focus of this study. However, even calculation at a field scale will show 

significant uncertainty relative to basin-scale assessment. This is due to the 

complex lateral heterogeneity of the Fm of interest. For example, EE calculated 

for one field may not apply to another; likewise, one lithology pattern may differ 

from another. Thus, the mass balance calculation will also be different. 

4.5.2.2. Advantages of the Workflow 

The current mass balance demonstration has already considered the 

uncertainty in the generated HC, demonstrated through p90/50/10 values 

derived from the extensive studies of source rock restoration (Baskoro et al., 
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2021a) and lithofacies (Baskoro et al., 2021b) to characterize the uncertainty in 

the starting point of the mass balance calculation.  

This workflow has some advantages, especially for quantifying remaining 

recoverable HC or deriving expulsion efficiency as part of a petroleum system 

analysis study. Firstly, the proposed workflow is an efficient way of taking a 

quick look at the petroleum system to assess whether the quantified generation 

balance is sufficient for charging specific reservoirs (both unconventional and 

conventional) by applying assumed possible expulsion-accumulation efficiency 

and estimated remaining recoverable HC. Secondly, the workflow can be 

applied on a smaller scale in a mature production stage, and the more reliable 

remaining recoverable HC can be estimated. Thirdly, EE of the Fm of interest 

can be derived by incorporating production data and accurately estimating the 

remaining recoverable HC. Accurate EE can be derived more confidently in a 

highly mature production area. Finally, this calculation provides a reference 

model for performing basin and petroleum system modeling for source rock and/ 

or unconventional play. 

4.6. Conclusion 

Using the restored source rock initial TOC, HI, and facies, the total 

p90/50/10 generated HC from the Wolfcamp SR is 705/1,332/3,016 BBOE. The 

inversion calculation of expulsion efficiency indicates that the p90/50/10 of 

48/40/53 % overall expulsion efficiency is required for the Wolfcamp Formation 

to achieve the USGS estimated remaining recoverable HC. Compared to the 
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forward and inverse calculations, calculation with expulsion simulation illustrates 

the current 3D model geological setting and expulsion parameters must be 

accurately adjusted to predict unconventional HC accumulations better. 

The mass balance calculations demonstrate that only a tiny portion of the 

oil and gas volume has been produced from Wolfcamp reservoirs in the 

Delaware Basin. Based on the calculated mean expulsion efficiency of 50%, 

forward calculation shows a large volume of oil and gas of 33/65/149 BBOE 

remains to be produced from the Wolfcamp Play.  

Finally, the mass balance calculation also reveals that multiple other 

source rocks from the Leonardian and Guadalupian Formations were most likely 

responsible for significant remaining recoverable HC in the Leonardian and 

Guadalupian Formations beside the Wolfcamp SR. 
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5. SUMMARY AND CONCLUSIONS 

 

5.1. Summary 

5.1.1. Chapter 2 - Restoring Source Rock Initial Quality and Quantity with 

Kinetic-Based Inversion - Applied to the Wolfcamp Play in the Permian 

Delaware Basin 

Based on geochemical interpretation, the organofacies within the 

Wolfcamp interval vary from predominantly marine clastic (OF “B”) to mixed 

marine-terrigenous (OF “D/E”) facies. The kinetic-based inversion results show a 

considerable range of restored HIi and TOCi, values indicating source rock 

heterogeneity of the Wolfcamp Play. Generally, Wolfcamp A and B intervals are 

excellent source rocks with P50 HIi of ca. 530 and 429 mgHC/gTOC and P50 

TOCi of 2.64 and 2.27 wt%, respectively. Wolfcamp C and D intervals are also 

good-very good source rocks with relatively lower potential than Wolfcamp A 

and B.  

Despite the limitation and uncertainty as a consequence of using TR 

derived from the basin model, the kinetic-based inversion procedure has the 

advantages of requiring no HIi assumption and restoring the source rock 

according to thermal maturity, source rock organofacies, kinetic model, and 

measured data, among many others. Preliminary calculation of the restored HIi 

and TOCi and the calculated volumes of ultimate expellable hydrocarbon 
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potential support the massive hydrocarbon volume predicted and produced for 

the Wolfcamp Play in the Delaware Basin. 

5.1.2. Chapter 3 - Basin-Wide Lithofacies Identification Using 

Unsupervised Machine Learning: Applied to the Unconventional Wolfcamp 

Play, Permian Delaware Basin 

Seven basin-wide lithofacies are identified within the Wolfcamp Play by 

applying two levels of unsupervised machine learning workflows using a 

determined subset of wells with four types of well-log measurements (PEF, GR, 

DT, and DEN). The gross depositional environment interpretation based on 

identified lithofacies concludes that there are three predominant facies of 

Wolfcamp intervals: the shallow marine, shallow-to-deeper marine transition, 

and deep marine. The shallow marine facies is dominated by limestone 

lithofacies with marine carbonate/ marl organofacies (OF “A”). The shallow-to-

deeper marine facies is generally dominated by mixed argillaceous mudstone 

and other lithofacies with mixed marine-terrigenous organofacies (OF “D/E-B”). 

The deep marine facies is dominated by siliceous mudstone and other 

lithofacies with marine clastic organofacies (OF “B”). The vertical and lateral 

variability of lithofacies and depositional environments is recognized throughout 

Wolfcamp intervals. Other minor lithofacies are also identified, including 

calcareous-argillaceous mudstone, siltstone, mixed carbonate-siliciclastic, and 

heavy mineral (probably ankerite) bearing intervals. 
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Despite the limitation and challenges, a consequence of a data-driven 

method, the procedure has the advantages of being a straightforward workflow 

and using only four types of well-log measurements. The interpretation of 

lithofacies and depositional environments for Wolfcamp intervals from this 

workflow is comparable with the interpretation from other studies based on core 

data. 

5.1.3. Chapter 4 - Mass Balance Calculation for the Wolfcamp-Sourced 

Hydrocarbon in Permian Delaware Basin: Insight on Remaining 

Recoverable Resource and Expulsion-Migration Efficiency 

Calculated generated HC volumes (p90/50/10) from the Wolfcamp whole 

source rock (SR) intervals based on the assumed 3D geological model and 

source rock properties are 705/1,332/3,016 Billion Barrels of Oil Equivalent 

(BBOE). The mass balance is performed with three calculation scenarios. Firstly, 

mass balance with inverse calculation scenario indicates the back-calculated 

overall expulsion efficiency for p90/50/10 of Wolfcamp Formation is 48/40/53 %. 

Secondly, mass balance calculation with a wide range of assumed expulsion 

efficiencies with a mean expulsion efficiency of 50% determines the mean 

p90/50/10 remaining recoverable HC in the Wolfcamp Formation is 33/65/149 

BBOE. Finally, calculation with expulsion simulation illustrates the current 3D 

model geological setting, and expulsion parameters must be accurately adjusted 

to match the prediction of unconventional HC accumulations with the first two 

calculations as the reference.  
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Despite the limitation of this workflow due to its dependency on recovery 

factor and availability of production data, this workflow is an efficient tool for 

taking a quick look at the petroleum system, especially related to possibilities of 

generated HC distribution in the system. The calculated mass balance can be a 

comparison or reference in modeling unconventional systems. 

5.2. Conclusion 

A new alternative workflow of source rock reconstruction has been 

proposed. The proposed workflow includes kinetic-based inversion to restore 

initial quality and quantity and unsupervised machine learning to identify basin-

wide litho-organo-facies and gross depositional environments. The proposed 

workflow reveals that Wolfcamp SR initial quality and quantity are predominantly 

good to excellent, with initial hydrogen index of 416 ± 198 mgHC/gTOC and 

initial TOC of 2.45 ± 0.85 wt%. The identified basin-wide gross depositional 

environment varies from shallow marine in the basin margin to shallow-to-

deeper and deep marine in the basin depocenter. Higher quality and quantity of 

source rock units are found in deep marine facies associated with predominantly 

siliceous mudstone with marine clastic-typed source rock.  

The reconstructed Wolfcamp source rock is integrated into the 3D 

Delaware basin model and the calculated p90/50/10 generated hydrocarbon 

volumes is 705/1,333/3,016 BBOE. Based on mass balance calculations with 

mean expulsion efficiency of 50%, significant mean p90/50/10 recoverable HC of 

33/65/149 BBOE remains in the Wolfcamp Formation. The proposed source 
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rock reconstruction and hydrocarbon mass balance workflow can be applied in 

any source rock or unconventional play to understand source rock distribution 

and estimate remaining recoverable resources and expulsion efficiency to 

reduce the hydrocarbon exploration risk. 

 

 

 

 

 

 

 

 

 

 

 


