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ABSTRACT

Machine learning has succeeded in real-world applications from image classification, speech

recognition, to beating human champion in Go games. To accelerate the development of different ap-

plications, automated machine learning (AutoML) has been proposed to discover high-performance

machine learning models automatically. It could release the burden of data scientists from the

multifarious manual tuning process. However, dataset does not always have correct labels and

sufficient data size. Wrong labels disrupt the training procedure and could not provide representative

evaluation performance for AutoML. Imbalanced label distribution further skews search feedback

for AutoML. Furthermore, additional performance constraints, such as model size, fairness, and

robustness complicates the AutoML flow. When computing resources are insufficient, small search

space constrains the flexibility to search neural networks, which causes inconsistent architectures

used in search and evaluation stages. In this dissertation, I advanced AutoML from aspects of

imperfect data and constraints. A new robust loss function is integrated with search algorithm for

label noise. I design a simple but effective search space for imbalanced defect datasets. The defect

generator can alleviate imbalanced distributions. I also proposed constraint-aware early stopping for

AutoML with adaptive constraint evaluation intervals. An efficient model parallelism for AutoML

is proposed to extend search spaces in multiple GPUs with limited memory size. My research

of automated machine learning enables scientists to obtain off-to-shelf models on various data

formats, as well as customizes models for different computing resources, model size requirements,

and miscellaneous performance constraints. It broadly impacts image classification, constrained

AutoML, and defect detection.
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1. INTRODUCTION *

1.1 Motivation and Challenges

Machine learning has been broadly implemented in a myriad of fields, from image classifica-

tion [2], speech recognition [3], and recommendation platforms [4], to beating human champion

in Go games [5]. Automated machine learning (AutoML) has emerged as a prevailing research

field in both academia and industries. Given a machine learning problem, the goal of AutoML

is to find high-performance machine learning solutions automatically with a little workforce in

reasonable time budget. For example, Google HyperTune [6], Amazon Model Tuning [7], and

Microsoft Azure AutoML [8] all provide cloud services cultivating off-the-shelf machine learning

solutions for both researchers and practitioners. It could release the burden of data scientists from

the multifarious manual tuning process and facilitate the development of solving machine learning

problems. Ultimately, AutoML could provide off-the-shelf machine learning solutions for human

beings without extensive ML experience.

AutoMLs are often characterized from a traditional machine learning pipeline [9]. Data scientists

manually manipulate numerous features, design models, and tune hyperparameters in order to get

the desired predictive performance. The procedure will not be terminated until a satisfactory

performance is achieved. Thus, existing AutoMLs are categorized into the three categories, (a)

AutoFE: automated feature engineering, (b) AutoMS: automated model selection, and (c) HPO:

hyperparameter optimization. AutoFE searchs informative and discriminative features for a learning

model. AutoMS selects shallow ML models or designs network architectures (NAS) for a learning

problem. HPO discovers promising hyperparameter configurations to train the learning model

toward its optimal performance. The essence of AutoMLs is a bi-level optimization [10], with an

miscellaneous search space including features, hyperparameters, models, and network architectures.

Despite the prominent advances in the recent AutoMLs [11, 12, 13, 14, 15], the practical

*Parts of this chapter are reprinted with permission from “Techniques for Automated Machine Learning” by Yi-Wei
Chen, Qingquan Song, and Xia Hu, 2021, ACM SIGKDD Explorations Newsletter, 22.2, p.35-50, Copyright 2021 by
ACM SIGKDD Explorations Newsletter.
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factors for AutoMLs in real-world are still under investigation. On the one hand, getting sufficient

labeled data is prohibitively in new domain problems. For example, MVTec dataset of anomaly

segmentation [16] merely includes hundreds of labeled anomaly map on manufacturing products. In

contrast, the datasets of the well-explored image classification problem have at least ten thousands of

labels, such as MNIST [17], CIFAR-10 [18], and ImageNet [19]. Sometimes, the labels are wrong,

since the time-consuming labeling procedure is completed by non-expert crowd-sourcing service.

Insufficient labels and label noise prevent AutoML from having enough signals to search model

and hyperparameters precisely. On the other hand, when a ML model is deployed in real-world

applications, the model is often required not only to optimize for ML objectives (e.g., accuracy or l2

loss), but also to meet the deployment constraints, such as latency, storage, fairness, and robustness.

The demands ask AutoML to search solutions under specific deployment constraints.

Facilitating AutoML in practical situations is quite challenging. First of all, label noise corrupts

the labels of training data. AutoML not only trains models with noisy training labels but are

also compares their performances on noisy validation sets, which misleads the search direction.

Second, the search spaces of network architectures consume gigantic GPUs. AutoML needs to

leverage on multiple GPUs to accommodate the large search space. How to well utilize all GPUs

in AutoML is an open research problem. Third, deployment constraints often require additional

computation cost to evaluate. AutoML can waste a large amount of tuning cost on training ineligible

configurations. How to select the evaluation frequency and when to stop ineligible ML solutions are

important factors. Last but not least, the scarce labels or uneven label distribution in training data

prevents AutoML from obtaining substantial search signals. AutoML needs to deal with such the

weakly-supervised setting.

1.2 Dissertation Contributions

To tackle the above challenges, several contributions are made in the preliminary work, and a

future work is proposed to conclude the dissertation :

• The first contribution of this research dissertation is the development of new search procedure
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for neural architecture search (NAS) under symmetric label noise as well as under a simple

model of class conditional label noise. We systematically explore the robustness of NAS

under noisy labels and use robust loss functions to mitigate the performance degradation.

• The second contribution is the development of efficient model parallelism for NAS to alleviate

massive GPU consumption. We integrate binary neural architecture search (NASB) with

consecutive model parallel (CMP). CMP divides forward/backward phases into several sub-

tasks and executes the same type of sub-tasks together to reduce waiting cycles. NASB

excludes inactive operations from computation graphs to reduce memory footprint. NASB-

CMP shows its potential to explore architectures in large search space.

• The third contribution of this dissertation is the development of Adaptive Constraint-aware

Early stopping (ACE) for HPO. ACE estimates the cost-effective constraint evaluation interval

based on a theoretical analysis of the expected evaluation cost. Meanwhile, we propose a

stratum early stopping criterion in ACE, which considers both optimization and constraint

metrics in pruning and does not require regularization hyperparameters. ACE shows supe-

rior performance in hyperparameter tuning of classification tasks under fairness or under

robustness constraints.

• Considering the scarce labels or uneven label distribution in anomaly detection and anomaly

segmentation, we will focus on automated anomaly generator and explore the small size

of auto-encoders for edge devices in the continuing work. We intend to investigate how

to synthesize anomalies, which are dissimilar to anomaly-free instances and similar to any

anomalous instance. Meanwhile, we will develop a new search space of auto-encoders to

design tiny networks for edge devices.
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2. ON ROBUSTNESS OF NEURAL ARCHITECTURE SEARCH UNDER LABEL NOISE*

Neural architecture search (NAS), which aims at automatically seeking proper neural archi-

tectures given a specific task, has attracted extensive attention recently in supervised learning

applications. In most real-world situations, the class labels provided in the training data would

be noisy due to many reasons, such as subjective judgments, inadequate information, and random

human errors. Existing work has demonstrated the adverse effects of label noise on the learning of

weights of neural networks. These effects could become more critical in NAS since the architectures

are not only trained with noisy labels but are also compared based on their performances on noisy

validation sets. In this paper, we systematically explore the robustness of NAS under label noise.

We show that label noise in the training and/or validation data can lead to various degrees of

performance variations. Through empirical experiments, using robust loss functions can mitigate

the performance degradation under symmetric label noise as well as under a simple model of class

conditional label noise. We also provide a theoretical justification for this. Both empirical and

theoretical results provide a strong argument in favor of employing the robust loss function in NAS

under high-level noise.

2.1 Introduction

Label noise, which corrupts the labels of training instances, has been widely investigated due

to its unavoidability in real-world situations and harmfulness to classifier learning algorithms [20].

Many recent studies have presented both empirical and analytical insights on learning of neural

networks under label noise. Specifically, in the context of risk minimization, there are many recent

studies on robust loss functions for learning classifiers under label noise [21, 22, 23].

The neural architecture search (NAS) seeks to learn an appropriate architecture also for a neural

network in addition to learning the appropriate weights for the chosen architecture. It has the

*Reprinted with permission from “On Robustness of Neural Architecture Search Under Label Noise” by Yi-Wei
Chen, Qingquan Song, Xi Liu, P.S. Sastry, and Xia Hu, 2020, Frontiers in Big Data, 3, p.2, Copyright 2020 by Frontiers
in Big Data.

4



potential to revolutionize the deployment of neural network classifiers in a variety of applications.

One requirement for such learning is a large number of training instances with correct labels.

However, generating large sets of labeled instances is often difficult, and the process for labeling

(e.g., crowdsourcing) has to contend with many random labeling errors. As mentioned above, label

noise can adversely affect the learning of weights of a neural network. For NAS, the problem

is compounded because we need to search for architecture as well. Since different architectures

are learned using training data and compared based on their validation performance, label noise

in training and validation (hold-out) data may cause a wrong assessment of architecture during

the search process. Thus label noise can result in undesirable architectures being preferred by the

search algorithm leading to the loss of performance. In this paper, we systematically investigate the

effect of label noise on NAS. We show that label noise in the training or validation data can lead

to different degrees of performance variation. Recently some robust loss functions are suggested

for learning the weights of a network under label noise [21, 23]. The standard NAS algorithms use

the categorical cross entropy (CCE) loss function. We demonstrate through simulations that the

use of a robust loss function (in place of CCE) in NAS can mitigate the effect of harsh label noise.

We provide a theoretical justification for this observed performance: for a class of loss functions

that satisfy a robustness condition, we show that, under symmetric label noise, the relative risks of

different classifiers are the same regardless of whether or not the data are corrupted with label noise.

2.2 Preliminaries

Robust Risk Minimization. In the context of multi-class classification, the feature vector is

represented as x ∈ X ⊆ Rd, and the corresponding class label denotes yx ∈ [c] = {1 . . . c} = Y .

A classifier f : X → Rc is learned to map each feature vector to a vector of scores, which are

later used to decide a class. We assume f would be a DNN with the softmax output in this paper.

Ideally, we could have a clean labeled dataset D = {(xi, yxi
)}ni=1 drawn i.i.d. from an unknown

joint distribution D over (X × Y).

In the presence of label noise, the noisy dataset is represented as Dη = {(xi, ỹxi
)}ni=1 sampled

i.i.d. from the noisy distribution Dη, where ỹx is the noisy label. A noise model could capture the
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relationship between D and Dη by

ηx,jk = Pr(ỹx = k|yx = j,x);
∑
k

ηx,jk = 1, ∀j,x.

The problem of robust learning of classifiers under label noise can be informally summed up as

follows. We get noisy data drawn from Dη and use it to learn a classifier; however, the learned

classifier has to perform well on clean data drawn according to D.

One can consider different label noise models based on what we assume regarding ηx,jk [20, 22,

24, 21]. In this paper, we consider only symmetric noise and hierarchical (class conditional) noise.

If ηx,jk = 1− η for j = k, ηjk = η
c−1

for j ̸= k, then the noise is said to be symmetric or uniform.

If ηx,jk is a function of (j, k) and independent on x, then it is called class conditional noise. We

consider a particular case where the set of class labels can be partitioned into some subsets, and

label noise is symmetric within each subset. We call this hierarchical noise. This is more realistic

because, for example, when the labels are obtained through crowdsourcing, it is likely that different

breeds of dogs may be confused with each other, although a dog may never be mislabeled as a car.

Here we define the robustness of risk minimization algorithms [24]. Given a classifier f , its risk

under loss function L is defined as RL = ED[L(f(x), yx)] and f ∗ denotes the minimizer of RL(·).

This is often referred to as L-risk to distinguish it from the usual Bayes risk, but we will call it risk

here. Similarly, under noisy distribution the risk of f is given by Rη
L(f) = EDη [L(f(x), ỹx)] and

the corresponding minimizer of Rη
L(·) is f ∗

η . We say the loss function L is noise-tolerant or robust if

PrD[Pred ◦ f ∗(x) = yx] = PrD[Pred ◦ f ∗
η (x) = yx],

where Pred ◦ f(x) denotes the decision on classification scores f(x) and PrD denotes probability

under the clean data distribution. Essentially, the above equation indicates that the classifiers learned

with clean and noisy data both have the same generalization error under the noise-free distribution.

Robustness of risk minimization, as defined above, depends on the specific loss function

employed. It has been proved that symmetric loss functions are robust to the symmetric noise [21,
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23]. A loss function L is symmetric if it satisfies Equation2.1 [21].

∑
j

L(f(x), j) = C, ∀x, f. (2.1)

That is, for any example x and classifier f , the loss summation over all classes will be equal to a

constant C. However, the above robustness is defined for finding the minimizer of true risk. One

can show that the consistency of empirical risk minimization holds under symmetric noise [21].

Hence, given a sufficient number of examples, empirical risk minimization also would be robust if

we use a symmetric loss function.

Robustness of NAS. Our focus is on NAS. Normally in learning a neural network classifier,

one learns only the weights with the architecture chosen beforehand. However, in the context of

NAS, one needs to learn both architecture and the weights. Let us denote now by f the architecture

and by θ the weights of the architecture. Then, the risk minimization can involve two different loss

functions as below.
f ∗ = argmin

f∈F
EDval

[L1(f(x;θ
∗), yx)],

θ∗ = argmin
θ

EDtrain
[L2(f(x;θ), yx)].

(2.2)

We employ the loss L1 for learning architecture while we use L2 for learning weights of any specific

architecture. Notice from the above that we use the training data to learn the appropriate weights

for any given architecture while we use the validation data for learning the best architecture.

The corresponding quantities under the noisy distribution would be

f ∗
η = argmin

fη∈F
EDη

val
[L1(fη(x;θ

∗
η), ỹx)],

θ∗
η = argmin

θη

EDη
train

[L2(fη(x;θη), ỹx)].

(2.3)

For the robustness of NAS, as earlier, we want the final performance to be unaffected by whether or

not there is label noise. Thus, we still need that the test error, under noise-free distribution, of f ∗

and f ∗
η be the same. However, there are some crucial issues to be noted here.

7



The parameters θ of each f in the search space can be optimized by the empirical risk of L2 with

Dtrain, and then the best-optimized f is selected by the empirical risk of L1 with Dval. Thus, in

NAS, label noise in training data and validation data may have different effects on the final learned

classifier. Also, during the architecture search phase, each architecture is trained only for a few

epochs, and then we compare the risks of different architectures. Hence, in addition to having the

same minimizers of risk under noisy and noise-free distributions, relative risks of any two different

classifiers should remain the same irrespective of the label noise.

In NAS, the most common choice for L1 is 0–1 loss (i.e., accuracy), while for L2 is categorical

cross entropy (CCE). Suppose p represents the output of the softmax layer and let the class label of

an example be t. The CCE is defined by L(p, t) = −log(pt). 0–1 loss is known as symmetric and

hence is robust. However, CCE is not symmetric because it does not satisfy Equation 2.1 (CCE

is not bounded). Intuitively, we can mitigate the adverse effects of symmetric noise on NAS by

replacing L2 with any symmetric loss function. Robust log loss (RLL) [25] is a modification of

CCE.

L(p, t) = log(
α + 1

α
)− log(α + pt) +

c∑
j=1,j ̸=t

1

c− 1
log(α + pj)

where α > 0 is a hyper-parameter and c denotes the number of all classes. It satisfies the symmetry

condition (Equation 2.1) and compares (in log scale) probability score of desired output with the

average probability score of all other labels. In contrast, the CCE loss only looks at the probability

score of the desired output. Another symmetric loss is mean absolute error (MAE) defined by

L(p, t) =
∑c

j=1 |yj − pj|. Since MAE takes longer training time to coverage [23], we make use of

RLL in place of CCE in NAS. For other symmetric loss functions [26], we leave them for future

work.

2.3 Theoretical Result

As discussed earlier, we want a loss function that ensures that the relative risks of two different

classifiers remain the same with and without label noise. Here we prove this for symmetric loss

functions.
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Theorem 1. Let L be a symmetric loss function, D be a noise-free distribution, and Dη be a noisy

distribution with symmetric noise η < c−1
c

, where c is the number of total classes. The risk of f over

D is RL(f), and over Dη is Rη
L(f). Then, given any two classifiers f1 and f2, if RL(f1) < RL(f2),

Rη
L(f1) < Rη

L(f2) and vice versa.

Proof 1. Though this result is not explicitly available in the literature, it follows easily from

the proof of Theorem 1 in [21]. For completeness, we present the proof here. For symmetric label

noise, we have *

Rη
L(f) = Ex,ỹxL(f(x), ỹx)

= ExEyx|xEỹx|x,yxL(f(x), ỹx)

= ExEyx|x

[
(1− η)L(f(x), yx) +

η

c− 1

c∑
j ̸=yx

L(f(x), j)

]
= (1− η)RL(f) +

η

c− 1
(C −RL(f))

=
ηC

c− 1
+

(
1− ηc

c− 1

)
RL(f).

Note that C is the constant in the symmetry condition (Equation 2.1), and c signifies the number of

all classes. For the third equality, we are calculating expectation of a function of ỹx conditioned

on yx and x, where random variable ỹx takes yx with probability 1− η and takes all other labels

with equal probability. Thus, Rη
L(f) is a linear function of RL(f). Also, since η < c−1

c
, we have

(1− ηc
c−1

) > 0. Hence, the above shows that RL(f1) < RL(f2) implies Rη
L(f1) < Rη

L(f2) and vice

versa. This completes the proof.

Remark 1. Theorem 1 shows that under symmetric loss function, the risk ranking of different

neural networks remains the same regardless of noisy or clean data. Since 0–1 loss is symmetric, 0–1

loss as L1 in NAS could keep the risk ranking of different neural networks consistent. It indicates

that we could discover the same optimal network architecture from noisy validation data as the one

from clean validation data theoretically. Besides, f ∗ is proved as the global minimizer for both

*Note that expectation of clean data is under the joint distribution of x, yx while that of noise data is under the joint
distribution of x, ỹx
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RL(f) and Rη
L(f) if L is symmetric [21]. When we adopt a symmetric loss in L2, we can obtain

θ∗ = θ∗
η. With the above two conditions, as long as η < c−1

c
, L1 is 0-1 loss, and L2 is symmetric

loss, a NAS would be robust to symmetric label noise.

Remark 2. Theorem 1 demonstrates that the rank consistency for true risk under noisy and noise-

free data. The theorem [21, Thm.4] points out that the minimization of empirical risk converges

uniformly to that of the true risk. With the aid of the theorem, the linear relationship in Theorem 1

would be right as well for empirical risk. This implies that under symmetric loss function, the

relative ranking of classifiers for empirical risk (with sufficient samples) would be the same as the

true risk under noisy and noise-free data. However, the sample complexity would be higher under

noisy labels.

2.4 Experiments

To explore how label noise affects NAS and examine the ranking consistency of symmetric

loss functions we designed noisy label settings on CIFAR [18] benchmarks using DARTS [27] and

ENAS [28].

2.4.1 Dataset and Settings

Dataset. The CIFAR-10 and CIFAR-100 [18] consist of 32 × 32 color images with 10 and 100

classes, respectively. Each dataset is split into 45 000, 5 000, and 10 000 as training, validation,

and testing sets, following AutoKeras [29]. All the subsets are preprocessed by per-pixel mean

subtraction, random horizontal flip, and 32 × 32 random crops after padding with 4 pixels. We

corrupt the training and validation labels by noise and always keep testing labels clean, which is

common in literature [21, 23]. The validation set is used to pick up the best neural architecture

during searching and decide the best training epoch during final retraining. Note that the test set is

only considered to report the performance.

Noise Construction. We provide theoretical guarantee to the performance of RLL under symmetric

noise. Meanwhile, to better illustrate/demonstrate/understand the effectiveness of RLL, we evaluate

RLL under both symmetric noisy and hierarchical noise.
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• Symmetric noise [25]: There is an equal chance that one class is corrupted to be another class.

This chance can be captured by a matrix Pη = ηB + (1− η)I , whose element in the i-th row

and j-th column is the probability of the true label i being changed into label j. To be specific,

I is the identity matrix; all elements of the matrix B are 1
1−c

except that diagonal values are

zero, and η is the adjustable noise level. We inject the symmetric noise in CIFAR-10 with η

of [0.2, 0.4, 0.6].

• Hierarchical noise [30]: All label classes can uniformly turn to any other label classes

that belong to the same “superclass.” For instance, the “baby” class is allowed to flip to

the different 4 categories (e.g., boy and girl) in the “people” superclass rather than “bed”

or “bear”. Since CIFAR-100 inherently provides the superclass information, we add the

hierarchical noise into CIFRA-100 with noise level η of [0.2, 0.4, 0.6].

NAS Algorithms. In order to investigate the noisy label problem in NAS, we select representative

NAS methods, including DARTS [27] and ENAS [28]. The empirical results on AutoKeras [29]

could be found in the supplementary material as well.

• DARTS searches neural architectures by gradient descent. It assigns different network

operations by numeric architectural weights and uses Hessian gradient descent jointly optimize

weights of neural networks and architectural weights. The experiment setting of DARTS

could be found in Section 1 of the supplementary material.

• ENAS discovers neural architectures by reinforcement learning. Although its RNN controller

still samples potential network operations by REINFORCE rule [31], ENAS could share the

weights of network operations between different search iteration. The experiment setting of

ENAS could be found in Section 2 of the supplementary material.

2.4.2 The impact of label noise on the performance of NAS

To demonstrate how erroneous labels affect the performance of NAS, we intentionally introduce

symmetric noise (η = 0.6) in training labels, validation labels, or both (all noisy). Different NAS
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DARTS [27] ENAS [28]
All Clean Noisy Valid Noisy Train All Noisy All Clean Noisy Valid Noisy Train All Noisy

Clean CCE
Retrain 96.98 96.22 95.42 96.69 95.84 96.13 95.84 95.88

Noisy CCE
Retrain 81.01 78.76 81.35 81.62 79.33 80.46 78.61 80.34

Noisy RLL
Retrain 85.63 84.85 87.11 87.53 79.38 80.07 79.22 79.80

Table 2.1: NAS on CIFRA-10 with symmetric noise (η = 0.6). The test accuracy is shown in
percentage. Noisy train or noisy valid corrupts training or validation labels, while all noisy pollutes
both training and validation labels. NAS algorithms search architectures by CCE under the above
settings and retrain the searched architectures by CCE or RLL (α = 0.01). Reprinted with permission
from [32].

methods execute under clean labels (all clean) and these three noisy settings. We evaluate each

searcher by measuring the testing accuracy of its best-discovered architecture. Searched networks

are retrained with clean labels or polluted labels, denoted as “all clean” and “all noisy,” respectively.

The former one shows how noise in the search phase affects the performance of the standard NAS.

The latter one reflects how noise alters the search quality of NAS in practical situations. Furthermore,

since test accuracy evaluates the search quality, we also include RLL to reduce the noise effect in

the retraining phase.

The main results are shown in Table 2.1. In the clean retraining setting, the optimal network

architectures from DARTS and ENAS with noisy labels could result in comparable performance to

the ones searched with clean labels. One possible reason is that both DARTS and ENAS adopt the

cell search space, which is limited. As long as the networks can be fully retrained by clean labels,

they can achieve similar performance. The architectural variance resulting from label noise does

not lead to noticeable performance differences. The observation had also been pointed out in [33].

When it comes to retraining the networks with noisy labels, their accuracy drops significantly.

The performance differences come from the classical issue of label noise to deep neural net-

works [23]. With the help of RLL, we can perceive that the architectures searched by DARTS could

achieve better performance, while ENAS does not. Another important observation for ENAS is that

the performance under four search settings is comparable. One reason is that the 0-1 loss in ENAS
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could provide certain robustness to noisy validation labels, which counteracts the negative effect of

symmetric noise. Since the search quality of ENAS seems robust to symmetric noise, we do not

explore ENAS further in the following experiments.

When we focus on the noisy retraining of DARTS, the performance of “noisy valid” is the

lowest one among others. The decrease of search quality is partially because the L1 of DARTS is

CCE, which is not robust to symmetric loss. DARTS may not be able to rank the performance of

different architectures correctly in the setting. The inferior performance from noisy validation labels

in other machine learning models had also been proposed in [34]. Moreover, the “all noisy” searcher

is supposed to produce the worst test accuracy since it has both noisy training and validation labels.

Surprisingly, the empirical results show that “all noisy” in DARTS even outperforms “all clean.” A

possible conjecture is that the “all noisy” searcher is optimized under the same retraining setting,

and the resulting network is intentionally designed to adapt to noisy labels. The finding is worthy of

conducting further explorations in the future, such as adopting NAS to discover more robust neural

architectures. Despite that, we could still find that label noise in the search phase could generally

lead to a negative influence on NAS performance. Especially, DARTS suffers more from noisy

validation labels.

2.4.3 Noise Influence of the Risk Ranking

Since NAS aims to find the architectures that outperform others, obtaining a correct performance

ranking among different neural networks plays a crucial role in NAS. As long as NAS can recognize

the correct performance ranking during the search phase, it should have a high chance to recommend

the best neural architecture finally. Theorem 1 reveals that symmetric loss functions have such

desired property under symmetric noise situation. To evaluate the practical effects of the theorem,

we construct two different neural networks (Table 2.2) through randomly choosing the network

operations as well as the locations of the skip connection. Each network has 8 layers with 36 initial

channels. We also exclude the auxiliary layer to avoid its additional loss.

We train the networks for 350 epochs under clean and noisy training labels, to which symmetric

noise of η = 0.6 is injected. Proof 1 of Section 2.3 shows that the noisy true risk is of positive
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Table 2.2: Two neural network architectures for the ranking of empirical risk. Reprinted with
permission from [32].

correlation with the clean true risk. Although we do not have the true risk, when the empirical

risk of a loss function could conform to the relationship, the loss is supposed to satisfy Theorem 1

likely. Thereby, we inspect the closeness between the empirical noisy risk and its ideal risk, which

is computed by the linear function of Proof 1 with the empirical clean risk. To be specific, the

Pearson correlation coefficient (PCC) is used to measure the degree of closeness. (0 < PCC ⩽ 1

indicates the positive correlation.)

Figure 2.1 displays the RLL and CCE training loss of the first network under noise-free and

noisy labels. The symmetric noise of η = 0.6 is introduced in training labels. The curves of

empirical risk (A1 clean and A1 noisy) are from training the network by CCE or RLL (α = 0.01).

After we obtained the curve of the empirical clean risk, we drew the ideal curve for the noisy risk

according to Proof 1 of Section 2.3. The expectation is that the curve of noisy risk in RLL should

be close to the ideal curve, while CCE does not. As we can notice, the curves of noisy risk in CCE

deviate from the ideal curves. In contrast, the two curves of noisy risk in RLL stays closer to the

ideal curves than CCE. Moreover, the PCC of RLL displays a positive correlation (PCC > 0),

which also supports that the empirical risk of RLL is highly close to the ideal one. The reasons that
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Figure 2.1: The empirical risk of the neural network. Reprinted with permission from [32].

empirical noisy risks do not perfectly match the ideal one include: (1) training samples (examples)

are not enough, (2) hyper-parameters are not optimal for learning the networks, Therefore, we could

understand that symmetric loss functions have the capability to make the risk ranking under noisy

labels uniform to the one under clean labels in practice.

2.4.4 NAS Improvement with Symmetric Loss Function

In practice, the resulting networks from NAS are trained on the potentially wrong labels. We

want to see whether NAS could still discover high-performance networks in this harsh environment

with the help of symmetric loss function, especially robust log loss (RLL). The performance of

neural networks decreases by label noise, but the symmetric loss can alleviate the adverse influence,

as shown in [25]. Thus, in the experiment, no matter DARTS searches networks by CCE or RLL,
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Symmetric noise (CIFAR-10) Hierarchical noise (CIFAR-100)
Noise level η 0.2 0.4 0.6 0.2 0.4 0.6

ResNet-18 92.05 ± 0.40 88.95 ± 0.14 82.77 ± 0.61 61.27 ± 0.60 53.50 ± 0.94 39.99 ± 2.17

DARTS 94.91 ± 0.19 91.02 ± 0.78 83.31 ± 2.88 67.82 ± 0.70 52.57 ± 1.03 39.22 ± 2.50

DARTS-RLL 94.66 ± 0.67 90.77 ± 1.56 86.24 ± 0.85 66.47 ± 1.68 53.68 ± 1.96 46.41 ± 2.65

Table 2.3: NAS with RLL. Test accuracy and standard deviation (3 runs) are represented in
percentage. DARTS searches architectures with CCE or RLL (α = 0.01), and then the resulting
optimal neural network is trained again from scratch by RLL (α = 0.01). Noise contaminates both
training and validation labels with different noise levels. Bold font exhibits the best result in each
column. Reprinted with permission from [32].

we leverage RLL in the final retrain phase. Apart from DARTS, Resnet-18 [35] is also included in

the experiment for performance comparison. Moreover, we are interested in how NAS with RLL

works in another type of label noise. Here we also report the results beyond the hierarchical noise

of CIFAR-100.

The results presented in Table 2.3 point out that RLL can still help NAS discover high-

performance network architectures under high noise levels. No matter in symmetric or hierarchical

noise, DARTS with RLL reaches a similar accuracy to DARTS with CCE under η = 0.2 and 0.4,

and RLL one outperforms CCE under η = 0.6. One possible reason is that DARTS is robust to

mild noise due to its small search space. Nevertheless, severe noise introduces intense uncertainty

for DARTS. RLL can help DARTS to determine relatively robust neural architectures in the harsh

condition. From the empirical results, we can claim that the symmetric (robust) loss function, RLL,

improves the search quality under high-level label noise.

2.5 Related Work

Neural architecture search (NAS) is purposed to facilitate the design of network architectures

automatically. Currently, the mainstream approaches to achieve NAS includes Bayesian opti-

mization [29, 36], reinforcement learning [37, 38, 28, 39], evolutionary algorithms [40, 41] and

gradient-based optimization [27, 42, 43]. Regardless of the different approaches, NAS consists of

two phases: the search phase and the final-retrain phase. During the search phase, NAS generates
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and evaluates a variety of different intermediate network architectures repeatedly. Those networks

are trained on the training set for a short time (e.g., tens of epochs). Their performance, measured on

the validation set, is used as a guideline to discover better network architectures. In the final-retrain

phase, the optimal network architecture will be trained with additional regularization techniques,

e.g., Shake-Shake [44], DropPath [45], and Cutout [46]. The phase usually takes hundreds of

epochs. And then the trained network is evaluated on the unseen test set. In general, the two phases

utilize the same training set.

From the perspective of the search space of network architectures, current existing works

could be divided into the complete architecture search space [29, 36, 37, 40] and the cell search

space [38, 28, 39, 41, 27, 42, 43]. The first search space allows NAS to look for complete networks

and provides a high diversity of resulting network architectures. The second one limits NAS to seek

the small architectures for two kinds of cells (normal cell and reduction cell). And it is also required

to pre-defined the base network architecture to contain the searched cells for evaluation, which

implies that many intermediate networks will share similar network architecture. Most existing

works usually develop from the cell search space because the size of this search space is significantly

smaller than the complete one, and can reduce the enormous search time.

Due to the limited hardware resources, our experiments focus on cell search space, including

DARTS [27] and ENAS [28]. We also explore the label noise impact on AutoKeras [29]. Notice

that no similar works have studied the effect of label noise on NAS until we publish the work.

Great progress has been made in research on the robustness of learning algorithms under

corrupted labels [21, 22, 23, 47, 48, 49, 50, 51, 52]. A comprehensive overview of previous studies

in this area can be found in [20]. The proposed approaches for learning under label noise can

generally be categorized into a few groups.

The first group comprises mostly label-cleansing methods that aim to correct mislabeled

data [53], or adjust the sampling weights of unreliable training instances [50, 51, 52, 54, 55].

Another group of approaches treats the true but unknown labels as latent variables and the noisy

labels as observed variables so that EM-like algorithms can be used to learn the true label distri-
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bution of the dataset [56, 57, 58]. The third broad group of approaches aims to learn directly

from noisy labels under the generic risk minimization framework and focus on noise-robust algo-

rithms [59, 24, 22, 21, 23]. There are two general approaches here. One can construct a new loss

function using estimated noise distributions, while the others develop conditions on loss functions

so that risk minimization is inherently robust. In either case, they can derive some theoretical

guarantees on the robustness of classifier learning algorithms.

All the above approaches are for learning parameters of specific classifiers using data with label

noise. In NAS, we need to learn a suitable architecture for the neural network in addition to learning

of the weights. Our work differs from the above studies that we discuss the robustness in NAS under

corrupted labels, while most of the above works focus on the robustness of training in supervised

learning. We investigate the effect of label noise in NAS at multiple levels.

2.6 Conclusion

Neural architecture search is gaining more and more attention in recent years due to its flexibility

and the remarkable power of reducing the burden of neural network design. The pervasive existence

of label noise in real-world datasets motivates us to investigate the problem of neural architecture

search under label noise. Through both theoretical and experimental analyses, we studied the

robustness of NAS under label noise. We showed that symmetric label noise adversely the search

ability of DARTS, while ENAS is robust to the noise. We further demonstrated the benefits of

employing a specific robust loss function in search algorithms. These conclusions provide a strong

argument in favor of adopting the symmetric (robust) loss function to guard against high-level label

noise. In the future, we could explore that the factors cause DARTS to have superior performance

under noisy training and validation labels. We could also investigate other symmetric loss functions

for NAS.
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3. EFFICIENT DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH WITH MODEL

PARALLELISM

Differentiable neural architecture search (NAS) with supernets that encompass all potential

architectures in a large graph cuts down search overhead to few GPU days or less. However, these

algorithms consume massive GPU memory, which will restrain NAS from large batch sizes and

large search spaces (e.g., more candidate operations, diverse cell structures, and large depth of

supernets). In this chapter, we present binary neural architecture search (NASB) with consecutive

model parallel (CMP) to tackle the problem of insufficient GPU memory. CMP aggregates memory

from multiple GPUs for supernets. It divides forward/backward phases into several sub-tasks and

executes the same type of sub-tasks together to reduce waiting cycles. NASB is proposed to reduce

memory footprint, which excludes inactive operations from computation graphs and computes those

operations on the fly for inactive architectural gradients in backward phases. Experiments show that

NASB-CMP runs 1.2× faster than other model parallel approaches and outperforms state-of-the-art

differentiable NAS.

3.1 Introduction

Neural architecture search (NAS) has revolutionized architecture designs of deep learning from

manually to automatically in various applications, such as image classification [37] and semantic

segmentation [60]. Reinforcement learning [37, 61, 28], evolutionary algorithms [62, 63], and

differentiable algorithms [27, 42] have been applied to discover the optimal architecture from a

large search space of candidate network structures. Supernets [61, 28] comprising all possible

networks reduce search spaces from complete network architectures to cell structures. Recent

acceleration techniques of differentiable NAS [64, 65, 66, 67] further diminish search costs to

affordable computation overheads (e.g., half GPU day). Prior work [67] randomly samples partial

channels of intermediate feature maps in the mixed operations.

However, supernets of differentiable NAS consume gigantic GPU memory, which constrains
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Model Parallel

Consecutive Model Parallel

Figure 3.1: Consecutive model parallel (CMP) overlaps the two forward sub-tasks (FA and FW )
and two backward sub-tasks (BW and BA). This new execution order empowers neural architecture
search (NAS) to search faster than using model parallel (MP). The right figure shows that CMP
can save two cycles from vanilla MP. Furthermore, CMP inherits MP’s advantages, like using large
batch sizes in the supernet, enlarging layer numbers of the supernet, and even diversifying cell
architecture across different layers.

NAS from using large batch sizes and imposes restrictions on supernet architectures’ complexity.

For example, NAS determines networks in shallow supernets (e.g., 8 layers) for deep compact

networks (e.g., 20 layers). The cell structures are also required to remain identical for the same type

of cells. Data parallelism can increase the search efficiency of NAS by using large batch sizes, such

as SNAS [64], but it requires supernet complexity low enough to fit in a single GPU. In contrast,

model parallelism can parallelize complex supernets, which distributes partial models to multiple

devices. Nevertheless, model parallelism suffers from low hardware utilization. Only one device

executes its model partition, while other devices stay idle. How to take advantage of multiple GPUs

for large supernets efficiently is an open problem.

We propose a simple but efficient solution, binary neural architecture search (NASB) using

consecutive model parallel (CMP), to tackle the above limitations. Specifically, supernets have two
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forward and two backward phases to learn architecture parameters and network weights. CMP

distributes several sub-tasks split from the four phases in multiple GPUs and executes the sub-tasks

of all forward/backward phases together. Figure 3.1 illustrates that sub-tasks of forward/backward

phases will be overlapped to reduce waiting cycles. Nevertheless, CMP consumes large GPU

memory due to two computation graphs existing at the same time. Thus, we introduce NASB to

declines GPU memory occupation. NASB utilizes binary and sparse architecture parameters (1 or 0)

for mixed operations. It excludes inactive operations in the computation graph and computes feature

maps of inactive operations for architecture gradients during the back-propagation. In this way,

NASB-CMP can increase hardware utilization of model parallelism with efficient GPU memory in

differentiable NAS.

In our experiments on CIFAR-10, NASB-CMP runs 1.2× faster than using model parallel and

pipeline parallel, TorchGPipe [68] in a server with 4 GPUs *. It can achieve the test error of 2.53 ±

0.06% by searching for only 1.48 hours. Our contribution can be summarized as follows:

• NASB-CMP is the first NAS algorithm that can parallelize large supernets with large batch

sizes. We analyze the acceleration ratio between CMP and traditional model parallelism.

Even though complex supernets (e.g., large layers and different cell structures) will not boost

NAS performance, NASB-CMP paves the way to explore the supernet architecture design in

the future.

• NASB utilizes binary architecture parameters and extra architecture gradients computation to

reduce GPU usage. It can save memory consumption by accepting twice batch sizes larger

than the other memory saving algorithm, PC-DARTS [67].

• We fairly compare NASB-CMP with state-of-the-art differentiable NAS in the same hardware

and search space. Extensive experiments show that NASB-CMP can achieve competitive test

error in short search time.
*NVIDIA GTX 1080 Ti.
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(a) (b) (c)

Figure 3.2: Illustration of Binary Neural Architecture Search (NASB). (a) is a supernet made up of
normal and reduce cells. (b) portrays the directed-acyclic-graph (DAG) used for cell structures. (c)
embodies the mixed operation in the solid red lines of the middle figure. NASB builds its supernet
with binary mixed operations mB

O, which replace architectural matrix A with binary matrix G. The
symbol n and o stand for nodes in DAG and candidate operations. Among rows associated with a
node (blue bracket) in A, the largest two values are set to 1 and the rest elements to 0. Only partial
operations are active during the search procedure of NASB.

3.2 Methodology

We first describe the fundamental concepts of one-shot neural architecture search (NAS) in

Section 3.2.1. We then portray the consecutive model parallel to enhance NAS search efficiency in

multiple devices in Section 3.2.2. Finally, we explain how we binarize the architectural weights and

compute their gradients to cut down the GPU memory consumption in Section 3.2.3.

3.2.1 One-shot Neural Architecture Search

One-shot neural NAS [61] is built on a supernet (a.k.a. meta graph) in which we stack normal

cells and reduce cells sequentially in Figure 3.2 (a). Normal cells are analogous to convolutional

layers to extract images features. Reduce cells are equivalent to pooling layers to reduce the

spatial dimension of feature maps. All normal cells share the same structure, but each cell still

has its network weights. So do all reduce cells. One-shot approaches are required to design two
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cell structures instead of complete neural networks. Figure 3.2 (b) illustrates one popular cell

structure [28], an N -node directed-acyclic-graph (DAG) with total edges E, not counting the

“concat” node. In the h-th cell, the first two nodes are the (h− 2)-th and (h− 1)-th cells having no

inbound edges. The other nodes accept previous nodes whose index is lower than the current index.

Total edges E (red lines of Figure 3.2 (b)) is (N + 1)(N − 2)/2. We denote the h-th cell’s output

as yh = concat(nj), where 2 ≤ j ≤ N − 1 and nj is a DAG node signified in Eq. 3.1.

nj =


yh−2, if j = 0,

yh−1, j = 1,∑
i<j mO(ni), 2 ≤ j ≤ N − 1.

(3.1)

A mixed operation mO is the edge between node i and j in the DAG. Let O be a set of candidate

operations (e.g., convolution, pooling, identity, zero) and A ∈ RE×|O| be a matrix of architecture

parameters. Eq. 3.2 formulates the mixed operation mO from node i to j as the weighted sum of all

operations ok [27].

mj
O(ni) =

|O|∑
k=1

Ae,kok(ni), j ≥ 2, i < j, (3.2)

where e = (j +1)(j− 2)/2+ i is the edge index. The mixed operations transform the cell structure

search to the problem of learning two matrices, AN and AR, for the normal and reduce cell.

Given that Lval and Ltrain is the loss function L beyond a training and validation dataset,

respectively. Let A comprise AN and AR. Mathematically, one-shot NAS can be formulated in the

following optimization problem,

minA Lval(w
∗,A)

s.t. w∗ = argmin
w

Ltrain(w,A).
(3.3)

NAS leverages the validation performance to choose well-trained networks that outperform others.

After training A, we derive the compact network by pruning unused operations in the supernet.
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Since the whole chapter follows the image classification setting [27, 42], we assume each node is

assigned two inputs and two operations. And we prune node inputs of cells of the supernet by the

largest two values of A associated with that node. For simplicity, we use A in replace of A in the

following discussion.

3.2.2 Consecutive Model Parallel

Data parallelism can scale up supernets with large batch sizes, but it cannot handle large

supernets (e.g., deep supernets with different cell structures). Model parallelism (MP) is able to

amortize such large supernets across multiple GPUs, but its hardware utilization is low. MP would

generate unwanted waiting cycles across devices. Figure 3.1 displays that the first device becomes

idle until the second device finishes its forward and backward phases. The parallelization gets worse

as we use large available GPUs.

Motivated by pipeline parallelism [69], we propose consecutive model parallel (CMP) to

decrease GPU idle time. Let FA and BA signify the forward and backward phase to update A, and

Fw and Bw be two phases to update w. CMP divides the four phases into several sub-tasks and

performs sub-tasks of FA and Fw consecutively, followed by sub-tasks of Bw and BA. Figure 3.1

illustrates that the execution order change by CMP overlaps sub-tasks without waiting for others to

finish. Given the number of available GPUs M , Eq. 3.4 reveals the ratio of execution time between

CMP and MP in theory.

Time of CMP
Time of MP

=
1
M
[4M − 2(M − 1)]

4
= 1− M − 1

2M
. (3.4)

We assume FA, BA, Fw, and Bw take the same time unit. MP will complete an iteration in 4 units.

For CMP, the total sub-tasks is 4M , and 2(M − 1) sub-tasks can be overlapped. If a sub-task takes

1/M ideally, CMP will finish an iteration in 1/M(4M − 2(M − 1)) units. According to Eq. 3.4,

CMP with two devices could reduce (2-1)/(2*2)=25% time from MP. In practice, Experiment 3.3.3

demonstrates that NASB-CMP runs 1.2× faster than model parallelism without sacrificing test

error. The theoretical value for 4 GPU is 1.6 (or reduce 37.5% time). We believe communication
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Algorithm 1: NASB - Consecutive Model Parallel
1: Initialize architecture weights A and network weights w
2: while not stopped do
3: Gt = binarize(At)
4: Create mB

O using Gt and Eq. 3.5
5: Compute Lvalid(wt,Gt) and Ltrain(wt,Gt) consecutively // model parallel
6: Compute ∇wLtrain(wt,Gt) and ∇ALvalid(wt,Gt) consecutively // model parallel
7: Update wt+1 by descending ∇wLtrain(wt,Gt)
8: Update At+1 by descending ∇ALvalid(wt,Gt)
9: end while

overhead and uneven model balance cause the deviation. Communication overhead comes from the

intermediate tensors transfer from one to another GPU when models are split into different GPUs.

Moreover, the main thread is responsible for loading data and backward propagation. The GPU

with the main thread always consumes the most GPU memory, which causes uneven model balance.

CMP is a general model parallel approach for any existing differentiable NAS algorithm.

However, running BA and Bw consecutively asks for two computation graphs, which doubles GPU

utilization and deteriorates CMP efficiency. To address the problem of great GPU consumption, we

introduce a memory-efficient NAS to CMP, called binary neural architecture search (NASB).

3.2.3 Binary Neural Architecture Search

Binary neural architecture search (NASB) harnesses binary mixed operations mB
O [65] that

convert the real-valued A into sparse binary matrix G, as illustrated in Figure 3.2. Among rows

Ae,: associate node j, mB
O enforces the two largest elements to 1 (active) and the rest elements to

0 (inactive). The row indexes of active elements indicate selected edges to node j, while column

indexes indicate chosen operations. Notice that NASB does not directly multiply G with candidate

operations in Eq. 3.5. Instead, NASB constructs a set of active operations O(active) based on active

elements in G. Only those active operations oa ∈ O(active) are included in the forward phase. This

technique could stop inactive operations being stored in the computation graph and decrease roughly
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|O| times GPU memory compared to using the multiplication by G.

mB
O(ni) =

|O|∑
k=1

Ge,kok(ni) = oa(ni). (3.5)

NASB computes gradients of network weights w using standard back-propagation in the supernet.

For the gradients of A, NASB estimates ∂L/∂A approximately by ∂L/∂G:

∂L
∂Ae,k

=
∂L
∂mO

∂mO

∂Ae,k

≈ ∂L
∂mB

O

∂mB
O

∂Ge,k

=
∂L
∂mB

O
× ok(n) =

∂L
∂Ge,k

. (3.6)

Eq. 3.6 states that gradients of elements in A come from ∂L/∂mB
O × ok(n). However, inactive

operations are not in the computation graph. NASB saves inputs of inactive operations n in PyTorch

Context that is used for backward computation. During the backward phase, NASB will compute

inactive operations ok′(n) on the fly and multiply the results with the ∂L/∂mB
O.

Apart from saving unneeded GPU FLOPS and memory, mB
O can avoid performance bias between

supernets and compact networks. Supernets using mO assume that the performance of supernets

can represent derived compact networks, but non-linear operations (e.g., ReLU-Conv-BN) break

the representation that causes performance bias [64]. Instead, the sparse matrix of mB
O activates one

operation. The performance of supernets during the search is only for one compact network. Thus,

NASB can mitigate the bias caused by non-linear operations.

Algorithm 1 describes how CMP works with NASB. Note that NASB-CMP does not update

any parameter (including A and w) until FA, BA, Fw, and Bw complete. Ltrain will use the current

binary architecture matrix Gt rather than updated Gt+1, which is the major difference from the

alternate algorithm (See Alg. 2). Experiment 3.3.4 demonstrates NASB could save substantial GPU

memory than PC-DARTS [67], which reduces GPU memory by partial channels of feature maps in

mixed operations.

Comparison with other methods. NASP [65] binarizes A based on A itself, while Proxy-

lessNAS [42] binarizes A based on the softmax results of A. The two binarization approaches are

equivalent, but how they handle binary mixed operations (Eq. 3.5) is different. NASP multiplies G

26



Algorithm 2: NASB
1: Initialize architecture weights A and network weights w
2: while not stopped do
3: Gt = binarize(At)
4: Create mB

O using Gt and Eq. 3.5
5: Compute ∇ALvalid(wt,Gt) using Eq. 3.6 // handle the gradients of inactive elements
6: Update At+1 by descending ∇ALvalid(wt,Gt)
7: Gt+1 = binarize(At+1)
8: Create mB

O using Gt+1 and Eq 3.5
9: Compute ∇wLtrain(wt,Gt+1) // standard back-propagation

10: Update wt+1 by descending ∇wLtrain(wt,Gt+1)
11: end while

with all operations (i.e., saving active and inactive operations in the computation graph). Proxyless-

NAS selects two sampled operations (paths) in the computation graph according to multinomial

distribution. NASB utilizes the same binarization as NASP but only keeps one active operation in

the computation graph according to G.

3.3 Experiments

We compare NASB-CMP with other parallelisms on the CIFAR-10 in Section 3.3.3. We then

inspect the quality of NASB and compare NASB-CMP with state-of-the-art NAS in Section 3.3.4.

Finally, we investigate the design of supernet architectures using large layers and different cell

structures in Section 3.3.5, which cannot be conducted without saving GPU consumption or model

parallel.

3.3.1 Experiment Settings

Our platform is a server with 4 GPUs of NVIDIA GTX 1080 Ti, in which all search experiments

are executed. Supernets consist of 8 cells in which the 3rd and 6th cells are reduce cells, and

others are normal cells with initial channels 16. The optimizer for network weights w is momentum

SGD with moment 0.9, L2 penalty 3e− 4, and cosine anneal learning rate initialized by 0.025 and

minimal 0.001. The optimizer for architecture parameter A is Adam with learning rate 3e− 4, L2

penalty 1e − 3, and (β1, β2) = (0.5, 0.999). PC-DARTS with large batch sizes [67] has unique
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configurations: initial learning rate 0.1 and minimal 0.0 for SGD optimizer and learning rate 6e− 4

for Adam optimizer.

All NAS algorithms will search networks for 50 epochs with varied batch sizes and random

seeds. In Experiment 3.3.3, NABS-CMP is specified search batch size 224, 416, 512, 896 for 1, 2,

3, 4 GPUs, respectively It random seed is 2. In Experiment 3.3.4, The batch size is 60 determined

by DARTS because DARTS consumes the largest GPU memory. We want all NAS algorithms

to use the same batch size in order to compare each other fairly. Since PC-DARTS is proposed

to reduce GPU memory consumption, we also compare the performance of PC-DARTS using a

large batch size 224 with NASB and NASB-CMP. NASB is specified with its allowable maximal

batch size 448 in a single GPU, and NASB-CMP uses a batch size of 896 in 4 GPUs. All NAS

baselines and NASB use 2, 3, 4, 5, 6 as random seeds, and NASP-CMP uses 2, 3, 9, 11, 18 instead.

In Experiment 3.3.5, NASB and NASB-CMP exploit batch size 160 and 256, respectively, for 50

epochs. We ran search experiments twice using random seed 2 and 3 and reported the average test

error among the two searches in Table 3.3.

The compact networks used in the retrain (evaluation) phase have 20 cells (layers), where the

one-third and two-thirds of the depth are reduce cells and others are normal cells. We retrain the

compact networks from scratch for 600 epochs with the batch size 96, dropout path of probability

0.2, and initial channels of 36. We also add the auxiliary layer in the network with a loss weight 0.4.

During the evaluation phase, the cutout length 16 is additionally applied for image transformation.

The optimizer setting for network weights w is the same as the searching setting. The retrain random

seed is assigned to 0, which is different from the search seeds.

Dataset. CIFAR-10 [18] is a color-image dataset for image classification, composed of 50,000

training images and 10,000 test images for 10 classes. We preprocess the training images in the

following techniques: padding 32 × 32 images with 4 pixels, and then randomly cropping them

back to 32× 32; randomly flipping images in the horizontal direction; normalizing image pixels by

the channel mean and standard deviation. The processed training set is split evenly: the first half

serves as the final training set, and the other serves as the validation set. SNAS merely relies on the
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training set to search, so its training set is not split.

Search Space. The DAG (See Section 3.2.1) has N = 6 intermediate nodes and E = 14

total edges. The set of candidate operations follows NASP [65], where normal operations |ON |=8

and reduce operations |OR|=5. Notice that our baselines also use the same operation sets rather

than their original one (|ON | = |OR| = 8). Table 3.1 summarizes candidate operations for mixed

operations used in NAS papers. Experiment 3.3 makes use of the first row of Table 3.1 as its

search space on CIFRAR-10. “skip_connect” symbolizes identity operation if stride size is 1 or

ReLU-Conv-Conv-BN operation. “conv”, “sep”, and “dil_conv” signifies convolution, depthwise-

separable convolutions, and dilated depthwise-separable convolutions, respectively. “none” means

the zero operation. Note that differentiable NAS baselines (DARTS, SNAS, PC-DARTS) also utilize

the first row of Table 3.1 as their search space.

Normal Cell Reduce Cell

NASB-CMP
NASB

NASP [65]

skip_connect (identity)
conv_3x1_1x3
dil_conv_3x3

conv_1x1
conv_3x3
sep_3x3
sep_5x5
sep_7x7

skip_connect (identity)
avg_pool_3x3
max_pool_3x3
max_pool_5x5
max_pool_7x7

DARTS [27]
SNAS [64]

PC-DARTS [67]

none (zero)
max_pool_3x3
avg_pool_3x3

skip_connect (identity)
sep_3x3
sep_5x5

dil_conv_3x3
dil_conv_5x5

Table 3.1: Candidate operations for normal and reduce cells.
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3.3.2 Implementation

The data parallel leverages PyTorch [70] distributed module providing communication interfaces

to update parameter tensors between multiple processes. Model parallel and CMP are implemented

in multi-threading. Each GPU has a specialized thread responsible for its model partition. Those

threads enable different model partitions to run simultaneously. Without multi-threading, only

assigning model partitions to specific devices do not automatically overlap sub-tasks. For GPipe,

we adopt the corresponding PyTorch package, torchgpipe [68], in replace of GPipe, since GPipe is

written in Tensorflow. The chunk setting to split mini-batch size to micro-batch size is disabled in

the experiment, because enabling the setting increases the search cost.

3.3.3 Parallelism Comparison on CIFAR-10

The performance of NASB-CMP is compared with other parallel approaches on CIFAR-10,

including data parallelism, model parallelism, and GPipe [69], the state-of-the-art model parallel

that pipelines chunks of data into several model partitions.

Figure 3.3 compares the performance of different parallelizations in NASB in varied GPUs.

CMP runs 1.2× faster than model parallel (MP) and GPipe especially running in 3 and 4 GPUs.

According to Eq. 3.4, four GPUs should run 1.6X faster (or reduce 37.5% search time) than MP.

In practice, communication overhead and uneven model partitions reduce the ideal speedup ratio.

Compared with all parallel approaches, CMP’s execution order change does not degrade the test

error. Data parallel takes the lowest search cost, but it does not generate as low test error as other

model parallel approaches. The reason might be that model replicas in data parallel utilize partial

batches to compute architectural gradients, while model parallel can make use of the whole batches.

Therefore, CMP is an efficient model parallel approach that helps NAS to utilize large batches.

Despite the competitive performance, the scalability of CMP is inferior. CMP disallows batch

sizes from linearly scaling up as large GPUs are involved. For example, 2 GPUs should use 448

(we used 416 instead) if 1 GPU uses 224. Besides, 1-GPU NASB can utilize batch size 448,

but NASB-CMP needs 4 GPUs to double batch sizes. The main reason is that CMP keeps two
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# GPU # GPU

%hours Search Cost Test Error

Figure 3.3: Performance comparison between different parallel approaches in NAS. GPipe [69]
is an approach of pipeline model parallel. Among the three model parallel approaches (blue, red,
yellow), consecutive model parallel (CMP) outperforms them in terms of search cost and test error
(lower is better). While the data parallel (green) is the fastest parallel method, but its test errors are
not as low as CMP (best viewed in color).

computation graphs (for BA and Bw) simultaneously for overlapping computations, resulting in

twice GPU consumption. We believe that a mixed parallel combining CMP and data parallel can

mitigate the drawback by merging two advantages, accuracy of CMP and scalability of data parallel.

3.3.4 State-of-the-art NAS Comparison on CIFAR-10

We compare NASB and NASB-CMP with several NAS algorithms on CIFAR-10. DARTS [27],

SNAS [64], NASP [65], and PC-DARTS [67] are selected as our baselines. DARTS is the pioneer of

differentiable NAS. SNAS points out the performance bias between a supernet and derived networks

in DARTS. Both NASP and PC-DARTS reduce GPU memory, which overlaps the scope of this

chapter. We should select ProxylessNAS [42] as a baseline, but their search code on CIFAR-10 is

not released. We prefer not to ruin their performance with improper implementation. Instead of

directly using their reported results, we re-run the baselines from scratch to ensure their hardware

and search space are the same. So, we can fairly compare them in terms of test error and search

cost.

The test error and search cost on CIFAR-10 are stated in Table 3.2, where “c/o” signifies

31



Model
Test Error

(%)
Params

(M)
Search Cost
(GPU hours)

Search
Batch Size

DenseNet-BC [71] 3.46 25.6 - -
NASNet-A + c/o [61] 2.65 3.3 43200 -
AmoebaNet-B + c/o [63] 2.55± 0.05 2.8 75600 -
ENAS + c/o [28] 2.89 4.6 12 -
ProxylessNAS-G + c/o [42] 2.08 5.7 - -
NAONet-WS + c/o [43] 2.93 2.5 7.2 -
AlphaX + c/o [72] 2.06 9.36 360 -
DARTS (2nd order) + c/o [27] 2.83± 0.06 3.4 96 64
SNAS-moderate + c/o [64] 2.85± 0.02 2.8 36 64
NASP + c/o [65] 2.44± 0.04 7.4 4.8 64
PC-DARTS + c/o [67] 2.57± 0.07 3.6 2.4 256
DARTS (2nd order) + c/o [27] 7.25± 4.20 1.8± 0.6 53.62± 5.06 60
SNAS + c/o [64] 2.58± 0.08 8.8± 0.5 11.06± 0.2 60
NASP + c/o [65] 2.76± 0.35 5.5± 0.8 6.44± 0.12 60
PC-DARTS + c/o [67] 2.59± 0.05 6.5± 0.9 8.96± 0.08 60
NASB + c/o 2.64± 0.09 5.4± 1.2 3.92± 0.38 60
PC-DARTS + c/o [67] 2.60± 0.17 5.5± 1.2 4.10± 0.03 224
NASB + c/o 2.49± 0.07 6.9± 1.5 1.64± 0.06 448
NASB + CMP + c/o 2.53± 0.06 6.9± 0.7 (1.48± 0.02)× 4 896

Table 3.2: Comparison with state-of-the-art NAS on CIFAR-10.

Cutout [73] used in the evaluation phase. The first row (human designed networks) and the second

group of rows are extracted from their papers. The third group compares NASB with differentiable

NAS baselines. The fourth group compares NAS algorithms using large batch sizes. Notably,

ProxylessNAS attains the outstanding test error, but its supernet structure and search space are

different from what we use, which might bias the comparison.

In the third group, NASB significantly takes the cheapest search cost, roughly 4 hours, to reach

a comparable test error of 2.64% with SNAS 2.58% and PC-DARTS 2.59%, not to mention the

search cost is smaller than the second group. NASB and NASP use similar mixed binary operations,

but NASB outperforms NASP in both search cost (3.92 versus 6.44) and test error (2.64 versus

2.76). The GPU memory utilization of NASB and NASP is 2,117 MB and 9,587 MB, respectively.

These three comparisons indicate that the additional gradient computation for inactive operations

is a useful technique. Notice that DARTS, SNAS, and PC-DARTS use different search space, so
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the original test errors (second group) differ from what we report in the third group of Table 1.

Especially, DARTS tends to overfit the validation set by selecting “skip_connect” in our search

space. Its results are not as good as their original search space. Even though NASP uses the same

search space, the different batch sizes and random seeds for the search and retrain setting still lead

to different results.

The fourth group points out that NASB can considerably reduce GPU memory by using twice

batch sizes larger than PC-DARTS within 1.64 hours to attain a test error of 2.49. PC-DARTS,

however, becomes worse when using large batch sizes. We consider that the Hessian approximation

in PC-DARTS fluctuates greatly with large batch sizes, which misleads PC-DARTS to easily select

“skip_connect”. NASB-CMP using four GPUs enables twice batch sizes for NASB to finish its

search in 1.48 hours without severe test error degradation. Its test error 2.53% also performs better

than other differentiable NAS. The empirical results in the third and fourth groups demonstrate the

high efficient NASB with significant memory saving and the strong performance of NASB-CMP.

3.3.5 Large Supernets on CIFAR-10

One-shot NAS embraces two limitations, (1) searching 8-layer supernets for 20-layer compact

networks and (2) same cell structures [27, 28]. We hypothesize that 20-layer supernets with

different cell structures can build suitable compact networks. Thanks to NASB and NASB-CMP

that reduce GPU utilization and exploit multiple GPUs, we can examine how supernet architectures

affect NAS. Table 3.3 shows test errors on CIFAR-10 with various supernet architectures, where

the 1st and 2nd rows indicate cell diversity and layers (cells) numbers. Since 8-layer supernets

could have six varying normal cells, we magnify each normal cell three times to construct compact

networks.

First, supernets with large layers do not benefit NAS to discover high-quality compact networks.

Test errors in NASB (3rd row) and NASB-CMP (4th row) show that most 8-layer supernets can

generate lower test errors than 20-layer supernets. The reason is 20-layer supernets have numerous

architecture parameters and network weights, and they should ask for more search epochs than

8-layer supernets to train. Insufficient search epochs for deep supernets do not help NAS reach
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Cell structure Same Different
# Layers 8 20 8 20
NASB 2.59 2.78 2.52 2.82

NASB-CMP 2.58 2.78 2.76 2.68

Table 3.3: Compare test error with different supernets on CIFAR-10.

strong compact networks. Furthermore, supernets with different cell structures are not beneficial for

NAS as well. When we compare results in 2nd and 4th columns (or 3rd and 5th columns), most

supernets using the same cell structures can generate similar or lower test errors than using different

cell structures. The reason is close to the previous one. Different cell structures demand extra

search epochs to train high-dimensional architecture parameters compared to homogeneous cell

structures. Not enough epochs for different cell structures do not produce low test error. Although

the results contradict the hypothesis, NASB-CMP shows its potential to explore complicated

supernet architectures, which paves the way for designing supernet architectures.

3.4 Related Work

Parallelism has been applied to NAS for acceleration [37, 64, 42, 74]. Parameter servers in

NAS [37] train several child networks in parallel to speed up the learning process of the controller.

ProxylessNAS [42] speed up its retrain phase by a distributed framework, Horovod [75]. SNAS [64]

and AtomNAS [74] have accelerated the search phase by data parallelism. Data parallelism runs data

partitions simultaneously across multiple devices, but it cannot parallelize large models exceeding

the memory of a single device, especially complicated supernets with large batch sizes. In contrast,

model parallelism [76, 77, 69, 68] excels at parallelizing large models. GPipe [69] splits mini-

batches to micro-batches and execute micro-batches in the pipeline of model partitions. The pipeline

manner mitigates low hardware utilization in model parallelism. Consecutive model parallel is

motivated by pipeline parallelism to overlap sub-tasks of forward/backward phases. We found that

batch splitting and re-materialization [78] of GPipe increase NAS search time because frequently

updating A and w intensifies extra computation. To the best of our knowledge, CMP is the most
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efficient model parallelism for NAS.

Reducing GPU utilization to enlarge search batch sizes is another acceleration techniques [67,

66, 64, 65, 42]. PC-DARTS [67] samples channels of feature maps in mixed operations. P-

DARTS [66] reduce search space as it progressively increases layers of supernets in the search

phase. ProxylessNAS [42] and NASP [65] binarize A to reduce all operations saved in GPU.

NASB uses the same binarization as NASP but saves one active operation in the mixed operations.

Thus, NASB can reduce GPU consumption substantially and give CMP more space to keep two

computation graphs in GPUs.

3.5 Conclusion

We proposed a simple and efficient model parallel approach, NASB-CMP, which overlaps

sub-tasks of forward and backward phases to reduce idle time across GPUs and utilize binary

architecture parameters to reduce GPU utilization for heavy supernets. Experiments on CIFAR-

10 show NASB-CMP runs 1.2× faster with a large batch size of 896 than other model parallel

approaches in 4 GPUs and only took 1.48 hours to attain a test error of 2.53, surpassing state-of-the-

art differentiable NAS. Moreover, NASB-CMP is able to accommodate high complicated supernets

for search, which paves the way for supernet network architecture design. In the future, we will

combine the data parallel with NASB-CMP to overcome its inferior scalability, investigate effective

and complicated supernet architectures, and analyze the communication overhead of NASB-CMP

in a multi-node GPU cluster.
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4. ACE: ADAPTIVE CONSTRAINT-AWARE EARLY STOPPING IN HYPERPARAMETER

OPTIMIZATION*

Deploying machine learning models requires high model quality and needs to comply with

application constraints. That motivates hyperparameter optimization (HPO) to tune model configu-

rations under deployment constraints. The constraints often require additional computation cost

to evaluate, and training ineligible configurations can waste a large amount to tuning cost. In this

chapter, we propose an Adaptive Constraint-aware Early stopping (ACE) method to incorporate

constraint evaluation into trial pruning during HPO. To minimize the overall optimization cost,

ACE estimates the cost-effective constraint evaluation interval based on a theoretical analysis of the

expected evaluation cost. Meanwhile, we propose a stratum early stopping criterion in ACE, which

considers both optimization and constraint metrics in pruning and does not require regularization

hyperparameters. Our experiments demonstrate superior performance of ACE in hyperparameter

tuning of classification tasks under fairness or under robustness constraints.

4.1 Introduction

When machine learning (ML) is deployed in real-world applications, practitioners desire to tune

hyperparameters of a model to maximize its utility. The model is often required not only to optimize

for ML objectives (e.g., accuracy, l2 loss, or F1 scores), but also to meet the deployment constraints,

such as latency, storage, fairness, robustness, and explainablility. For example, when fairness is

concerned, it is required to treat different demographics fairly [80]. The constraints increase the

challenge of hyperparameter optimization (HPO). If constraints are difficult to meet, we may spend

high cost on ineligible trials, which violate the constraints. If constraints are expensive to compute,

the step of constraint checking adds non-trivial overhead to HPO. How to early stop ineligible trials

and how frequent to evaluate constraints are important factors for constrained HPO. Moreover,

*Reprinted with permission from “ACE: Adaptive Constraint-aware Early Stopping in Hyperparameter Optimization”
by Yi-Wei Chen, Chi Wang, Amin Saied, and Rui Zhuang, 2022, ACM SIGKDD AutoML Workshop, Copyright 2022
by ACM SIGKDD AutoML Workshop.
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Valid AUC / 
Stop iteration ACE ASHA

Trial 1 85.39% / 28 79.73% / 1

Trial 2 NA / 2 NA / 64

Figure 4.1: How ACE (our method) and ASHA terminate two trials from random search. '•'
signifies a valid checkpoint (training iteration), satisfying the constraint, while '+' represents an
invalid checkpoint, violating the constraint. ACE is a constraint-aware early stopping approach,
while ASHA [79] is a constraint-agnostic method. For Trial 1, ACE tolerates small extent of
constraint violation in checkpoints 5-7 and stops it at the 28th checkpoint, close to the optimal stop
point (26) for this trial. ASHA wrongly stops this promising trial in the beginning. For Trial 2, all
the checkpoints are invalid. ACE can stop this infeasible trial early due to large extent of constraint
violation, while ASHA keeps training it until t = 64. These are only two example trials to illustrate
the potential advantage of using constraint information in early stopping and explain the overall
empirical effectiveness of ACE even though the stop point is not necessarily optimal for every trial.
Reprinted with permission from [1].

constraints vary in different problems in terms of constraint checking cost and difficulty to satisfy.

A good solution needs to adapt to unknown constraint characteristics automatically.

We propose Adaptive Constraint-aware Early stopping (ACE), which makes use of constraint

evaluation to terminate inferior trials. It decides the frequency to check constraints and the moment

to stop trials to improve the efficiency of constrained HPO. We model the expected trial cost

in terms of the constraint evaluation interval and provide theoretical analysis for the optimal

constraint evaluation interval in the cost model. Based on the theoretical results, ACE suggests cost-

effective constraint evaluation interval for each trial. Meanwhile, we propose a simple yet effective

stratum truncation policy to prune unqualified trials. According to constraint evaluation results,
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the approach categorizes trials into groups: no-constraint-evaluation, satisfying-constraints, and

violating-constraints. It terminates inferior trials of each group, which have either a relatively large

extent of constraint violation or bad optimization objective. Unlike regularization methods [81], our

approach does not introduce additional penalty hyperparameters. It automatically balances the goal

of optimization and constraint satisfaction.

ACE is the first constraint-aware early stopping algorithm for HPO. Our experiments demonstrate

that ACE obtains superior performance to constraint-agnostic early stopping baselines [79], on UCI

credit card dataset [82] with a fairness constraint [83] and on GLUE SST2 [84] with a robustness

constraint [85].

4.2 Adaptive Constraint-aware Early Stopping (ACE)

We present the target problem of ACE in Section 4.2.1, followed by our model of the trial cost

with respect to the constraint evaluation interval in Section 4.2.2. The cost model is used to suggest

cost-effective constraint evaluation interval for each trial (Section 4.2.3). To use both optimization

and constraint metrics for pruning unqualified trials, we propose a stratum truncation policy

(Section 4.2.4). Finally, we further optimize our method to reduce cost in constraint evaluations.

(Section 4.2.5).

4.2.1 Problem Statement

Given a constraint metric g and the constraint threshold τ , and the optimization metric ℓ, we

target at finding the best feasible hyperparameter configuration x ∈ X with minimal computation

cost. The best feasible hyperparameter configuration is defined as:

argmin
x∈X

ℓ(x) s.t. g(x) ≤ τ,

The optimization metric could be validation loss or other metrics to minimize. We assume the values

of the optimization metrics and constraint metrics change as training iterations increase (otherwise

we only need to evaluate them once per trial). We also assume the constraint metric evaluation

incurs non-negligible cost, and the constraint metrics are selectively evaluated at some training
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iterations (i.e., checkpoints). ℓ(x) and g(x) correspond to the metrics at the best checkpoint among

all the training iterations where these metrics are evaluated. We focus on designing an effective

early stopping policy from two aspects: when to evaluate constraint metrics, and when to terminate

a trial. Our early stopping policy is not tied to a particular hyperparameter search algorithm.

4.2.2 Expected Trial Cost

For a given trial, let C1 be the constraint cost, the evaluation cost of the constraint metrics at

one training iteration. Let C2 be the primary cost, the training cost plus the evaluation cost of

the optimization metric for one training iteration. We aim to reduce the total cost by choosing an

appropriate constraint evaluation interval, i.e., the frequency of computing the constraint metrics.

When the constraint evaluation interval is β, the constraint metrics are computed every β training

iterations. In other words, the constraints will be evaluated at iterations β, 2β, . . . , (z − 1)β, or zβ,

where z is the smallest integer such that (z − 1)β < T ≤ zβ, and T is the maximal iteration of a

trial. We further assume that p is the stop probability to prune a trial. For instance, if we stop a

fixed percentage of inferior trials at each checkpoint, the stop percentage can function as the stop

probability. Then, we can formulate the expected trial cost by:

E[C] = (1− p)z[C1z + C2T ] +
z∑

k=1

(1− p)k−1p[C1k + C2kβ]. (4.1)

Its first part models the cost if a trial does not stop early, while the second part models the cost of

terminating a trial after k times of constraint evaluations, for k = 1, 2, . . . , z. There are k constraint

evaluations in kβ training iterations. equation 4.1 is general to any early stopping policy with linear

constraint checking intervals.

We define cost ratio as r = C1/C2. Then, we can simplify equation 4.1 into E[C] = C2(r +

β)1−(1−p)z

p
in the following derivation. The first part of equation 4.1 is simplified as:

(1− p)z[C1z + C2T ] = (1− p)z[rC2z + C2zβ]

= (1− p)zC2(r + β)z.
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The second part of equation 4.1 can be simplified as:

z∑
k=1

(1− p)k−1p[C1k + C2kβ] =
z∑

k=1

(1− p)k−1p[rC2k + C2kβ]

=pC2(r + β)
z∑

k=1

k(1− p)k−1

∵
z∑

k=1

k(1− p)k−1 =
z∑

k=0

k(1− p)k−1 =
d

dp
[−

z∑
k=0

(1− p)k]

=
d

dp
[−1− (1− p)z+1

p
] =

1

p2
+

(z + 1)(1− p)z(−1)p− (1− p)z+1

p2

=
1− (1− p)z(zp+ 1)

p2

∴
z∑

k=1

(1− p)k−1p[C1k + C2kβ] = pC2(r + β)
1− (1− p)z(zp+ 1)

p2
.

Combining the above equations, we get equation 4.2.

E[C] = (1− p)zC2(r + β)z + pC2(r + β)
1− (1− p)z(zp+ 1)

p2

= C2(r + β)
zp(1− p)z + 1− (1− p)z(zp+ 1)

p

= C2(r + β)
1− (1− p)z

p
.

By definition, z ≥ T
β

. If z > T
β

, then we can set β′ = T
z
< β and decrease E[C]. Thus, an

optimal β in [1, T ] should make z = T
β

. We only need to minimize:

E[C|β] = C2(r + β)
1− (1− p)

T
β

p
. (4.2)

4.2.3 Constraint Evaluation Interval

Given p, T , and r, we want to obtain the optimal constraint evaluation interval β∗ to minimize

equation 4.2. We analyze the equation by fixing the stop probability p = 0.5. First of all, we observe

how max iteration T changes E[C|β] in Figure 4.2a, when the cost ratio r is 20. It points out that
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Figure 4.2: Examples of the expected trial cost in a stop probability p = 0.5. Left: given the cost
ratio r = 20, how the cost changes for various max iterations T . Right: given T = 16, how the cost
changes for different cost ratio r. Reprinted with permission from [1].
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β∗ is either 1 or T for different trials. Then, we set T = 16 to observe how r changes E[C|β] in

Figure 4.2b. It also demonstrates that β∗ appears in {1, T}. The left part of the figure (r = 0.0625

to 8) favors β = 1, while its right part (r = 16 to 1,024) prefers β = T . The two cases both indicate

that the optimal β∗ is situated in {1, T}, the two ends of β’s range. We can prove Theorem 2 for

general cases:

Theorem 2. ∀p, r, and T , the optimal β∗ for equation 4.2 is 1 or T , i.e., argminβ∈[1,T ] E[C|β] ∈

{1, T}. If r < pT+(1−p)T−1
1−p−(1−p)T

, β∗ = 1. If r > pT+(1−p)T−1
1−p−(1−p)T

, β∗ = T . If r = pT+(1−p)T−1
1−p−(1−p)T

,

β∗ = {1, T}.

Proof. We define s := (1− p)−T > 1 and T > 1. f(β) = (r+ β)1−s
− 1

β

p
and E[C|β] have the same

minimizers for β ∈ [1, T ]. We take the derivative of f(β):

f ′(β) =
1− s−

1
β

p
− ln (s) (β + r)

ps
1
β β2

∵ s > 1, we notice that f ′(β) decreases as r increases, and:

f ′(β) = 0 ⇔ r = −β ln (s)− β2s
1
β + β2

ln (s)
= g(β) (4.3)

Then we take the derivative of g(β), h(s), and i(s):

g′(β) =

(
2s

1
β − 2

)
β − s

1
β ln (s)− ln (s)

ln (s)
≜

h(s)

ln s

h′(s) = −s
1
β ln (s)− βs

1
β + β

βs
≜ −i(s)

βs

i′(s) =
s

1
β
−1 ln (s)

β
≥ 0, s ≥ 1

∵ i′(s) ≥ 0, i(s) ≥ i(1) = 0, s ≥ 1. That means h′(s) ≤ 0, s ≥ 1. So h(s) < h(1) = 0, s > 1.

Hence, g′(β) < 0, s > 1. Now, assume f ′(β0) = 0 for β0 ∈ [1, T ]. We know from equation 4.3 that

r = g(β0). For any 1 ≤ β1 < β0, we know g(β1) > g(β0) = r according to g′(β) < 0. Because
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f ′(β) decreases when r increases, we have:

f ′(β1) >
1− s

− 1
β1

p
− ln (s) (β1 + g(β1))

ps
1
β1 β1

2
= 0

Likewise, for any β < β2 ≤ T , f ′(β2) < 0. These mean that if f ′(β) has a root β0 in [1, T ], f(β)

is monotonically increasing in [1, β0], and monotonically decreasing in [β0, T ]. If f ′(β) does not

have a root in [1, T ], then it is either monotonically increasing or monotonically decreasing in [1, T ]

because f ′(β) is continuous in [1, T ]. Therefore, in either case, the minimizer of f(β) is either 1 or

T .

Finally, we compare f(1) and f(T ).

f(1) < f(T ) ⇔ (r + 1)(1− s−1) < (r + T )(1− s−1/T )

⇔(r + 1)(1− (1− p)T ) < (r + T )p

⇔r <
pT + (1− p)T − 1

1− p− (1− p)T

Theorem 2 states that the best constraint interval for equation 4.2 is either 1 or T . It also

formulates the relationship between r, p, T , and β. By substituting p = 0.5 and T = 16, we get

pT+(1−p)T−1
1−p−(1−p)T

= 14. Figure 4.2b verifies the theoretical value: if cost ratios are less than 14, β = 1

costs the least. By using p = 0.5 and r = 20, we get 20 > 0.5T+(0.5)T−1
0.5−(0.5)T

→ 22 > T . Figure 4.2a

also verifies the theoretical value: curves (T = 2, 4, 8, 16) both favor β = T to reach the smallest

expected cost. The two figures confirm Theorem 2.

According to the analysis, we design the adaptive constraint evaluation interval as follows. Each

trial receives its own constraint evaluation interval. In the beginning, we do not know the cost ratio

r. The worst case is that the constraint evaluation is expensive. Using β = 1 as the initial value

will lead to great cost. Thus, ACE selects β = T as the initial value, which means the constraint

evaluation occurs at the end of training. During the training of a trial, ACE records the primary
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cost and constraint cost on the fly. ACE computes the cost ratio using the average constraint cost

divided by the average primary cost. After the cost ratio is computed, it picks the low-cost β as the

constraint evaluation interval by comparing r and pT+(1−p)T−1
1−p−(1−p)T

. Line 1 in Algorithm 3 implements

the above statements.

4.2.4 Stratum Truncation

We propose stratum truncation to use both optimization and constraint metrics to prune trials

(Line 18 to 25 of Algorithm 3). It is motivated by several desiderata. First, we want to respect both

the goal of optimization and constraint satisfaction in the early stopping. That requires pruning both

the trials with bad optimization metric and the trials violating the constraints. Second, an invalid

yet incomplete trial has a chance to meet the constraints with more training iterations. So it is not

necessary to stop every invalid trial immediately. Third, as an HPO solution, it is preferred to avoid

introducing additional hyperparameters such as penalty weights of the constraint metrics.

Our solution categorizes the trials into 3 groups and prunes the same fraction of low-rank trials

in each group: (1) no-constraint: trials without constraint evaluation, (2) valid: trials meeting

constraints, and (3) invalid: trials violating constraints. The no-constraint trials do not have

constraint metrics evaluated at the current training iteration. The only performance indicator is

the optimization metric. We rank the trials in this group by their optimization metric. For valid

trials, we only care about their optimization metric, so we rank the trials in this group by their

optimization metric. For the invalid group, we desire to penalize invalid trials by their violation

amount (g(x)− τ ). The trials with larger violation amount should rank low. Thus, we sort the trials

by their violation amount and use the optimization metric to break ties. Infeasible trials are not

pruned immediately unless their violation amounts are on top. That gives the ‘close to valid’ trials a

chance to meet the constraints later and potentially lead to better optimization results. At the same

time, even if no infeasible trials are turned to feasible in the end, the promising trials in the valid

group are kept running just like the case of unconstrained early stopping.
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Algorithm 3: Adaptive Constraint-aware Early Stopping (ACE)
Input: hyperparameter configuration x; total training iterations T ; constraint threshold τ ; running

history H; truncation percentage P .
1: Estimate the constraint evaluation interval β based on Theorem 2
2: for t in [T ] do
3: Train the model with x for one iteration
4: Compute optimization metric l(x, t) at the iteration t
5: if t mod β == 0 and l(x, t) ≤ H.f ∗ then
6: Compute constraint metric g(x, t) at the iteration t
7: if g(x, t) ≤ τ then
8: trial_type = “valid”
9: H.f ∗ = l(x, t)

10: else
11: trial_type = ‘invalid”
12: end if
13: else
14: trial_type = “no_constraint”
15: end if
16: Update H
17: H′ = H.subset(trial_type)
18: if trial_type == “invalid” then
19: H′.sort(keys=[violation_amount, optimization_metric])
20: else
21: H′.sort(keys=[optimization_metric])
22: end if
23: if x is below P% of H′ then
24: stop training
25: end if
26: end for

4.2.5 Reduce Constraint Evaluation Overhead

While constraint evaluation helps prune ineligible trials, it adds significant overhead if the

constraint metric is expensive to compute. To reduce such overhead, ACE performs constraint

evaluation on promising trials only (Line 5 to 15 of Algorithm 3). Specifically, ACE maintains the

global best feasible score, which is the best optimization metric value among the trials satisfying

the constraint. Only if the current optimization metric is better than the global best feasible score

does ACE compute the constraint of the current checkpoint. Otherwise, ACE skips the constraint
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Name Type Lower value Upper value Initial value

n_estimators ray.tune.lograndint 4 the number of instances 4
num_leaves ray.tune.lograndint 4 the number of instances 4

min_child_samples ray.tune.lograndint 2 129 20
learning_rate ray.tune.loguniform 1/1024 1.0 0.1
log_max_bin ray.tune.lograndint 3 11 8

colsample_bytree ray.tune.uniform 0.01 1.0 1.0
reg_alpha ray.tune.loguniform 1/1024 1024 1/1024

reg_lambda ray.tune.loguniform 1/1024 1024 1.0

Table 4.1: The hyperparameter space of LightGBM. Reprinted with permission from [1].

evaluation for this checkpoint and marks the trial type of the current checkpoint as “no-constraint”.

Note that bad trials in the “no-constraint” group still have the chance to be pruned due to our stratum

truncation policy, even without constraint evaluation. With this low-overhead mechanism, ACE

wastes less time in evaluating suboptimal trials.

4.3 Experiments

We evaluate our algorithm under a fairness constraint and a robustness constraint respectively.

Since ACE is an early stopping approach, our baselines are no-stopping and a state-of-the-art

early stopping method, ASHA [79]. ASHA is a parallel early stopping method using successive

halving [86] to allocate budgets for trials. ACE uses 25% as the truncation percentage for all the

experiments. We analyze the impact of the truncation percentage in Sec 4.3.6. The reported results

are the average of three random seeds in all the experiments.

4.3.1 Experiment Settings

The fairness experiments of Section 4.3.2 are run on 12 cores of Intel i7-6850K@3.6 GHz. We

search hyperparameters of LightGBM under a fairness constraint, where its search space follows

FLAML [87], shown in Table 4.1. The types in the table follow RAY [88]. ASHA follows the

default values of RAY library [88]: reduction factor = 4, brackets = 1, grace period =1, and max

time units = 21,000 (the number of training data). The random seeds of the experiments are 20, 21,

22. The max concurrent trials are 4. The fairness experiments of in Section 4.3.4 also follows the
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Name Type Lower value Upper value Initial value

learning_rate ray.tune.loguniform 1e-6 1e-3 1e-5
num_train_epochs ray.tune.loguniform 0.1 10.0 3.0

per_device_train_batch_size ray.tune.choice 4, 8, 16, 32 32
warmup_ratio ray.tune.uniform 0.0 0.3 0.0
weight_decay ray.tune.uniform 0.0 0.3 0.0
adam_epsilon ray.tune.loguniform 1e-8 1e-6 1e-6

seed ray.tune.choice 40, 41, 42, 43, 44 42

Table 4.2: The hyperparameter space of finetuning DistilBER. Reprinted with permission from [1].

same setup here.

The robustness experiments of Section 4.3.3 are run on 64 cores of AMD EPYC 7282 and 8

NVIDIA RTX A5000. PYTHON 3.6 environment includes FLAML 0.6.9, RAY 1.10, CHECKLIST

0.0.11, and HUGGINGFACE-HUB 0.4.0. We search hyperparameters for finetuning DistilBERT on

SST2 under a robustness constraint. The search space is motivated by FLAML library [87], as show

in Table 4.2. The types in the table follow RAY [88]. The twenty one test task in the robustness

constraint are illustrated in Table 4.7. ASHA follows the default values of RAY library [88]:

reduction factor = 4, brackets = 1, grace period =1, and max time units = 67,349 (the number of

training data). The random seeds of the experiments are 19, 20, 21. Th max concurrency trials are 4.

The search budget is three hours. The robustness experiments of in Section 4.3.4 also follows the

same setup here.

4.3.2 Fairness Constraint

We follow Fairlearn [83] to preprocess the UCI credit card default dataset [82]. The processed

dataset has 30k clients with 22 features, which we split 70/30% for training/validation. The fairness

constraint is Equalized-Odd-Difference (EOD) [83] = max(|FPR1 − FPR2|, |FNR1 − FNR2|),

where FPR and FNR mean false positive rate and false negative rate, respectively. EOD quantifies

the accuracy disparity experienced by different groups. We search hyperparameters of LightGBMs

under two threshold levels: (i) the hard constraint: EOD ≤ 0.25 and (ii) the easy constraint:

EOD ≤ 0.325. For each case, we evaluate ACE’s performance with unconstrained random
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Constraint Searcher Early stopping policy Total trials Best feasible AUC (%) Time to best

EOD ≤ 0.25
(hard)

Blend search

No-stopping 276.0 84.95± 0.43 1h 1m 7s
No-stopping w/ constraint callback 626.3 84.98± 0.51 0h 5m 5s
ASHA 3,664.3 82.88± 3.13 1h 2m 45s
ASHA w/ constraint callback 4,252.0 85.06± 0.35 0h 5m 19s
ACE 1,799.3 85.53 ± 0.03 0h 29m 09s

Random search
No-stopping 37.0 84.28 ± 0.45 1h 0m 15s
ASHA 3,497.7 84.19 ± 0.35 1h 0m 53s
ACE 283.7 85.38 ± 0.06 0h 39m 09s

EOD ≤ 0.325
(easy)

Blend search

No-stopping 694.3 85.85 ± 0.03 1h 0m 4s
No-stopping w/ constraint callback 307.0 85.83± 0.05 0h 15m 57s
ASHA 3,763.3 85.82± 0.08 1h 0m 18s
ASHA w/ constraint callback 3,677.3 85.81± 0.11 0h 24m 15s
ACE 2,197.7 85.89 ± 0.00 0h 54m 22s

Random search
No-stopping 37.0 85.71 ± 0.10 1h 0m 03s
ASHA 3,596.7 85.77 ± 0.03 1h 0m 17s
ACE 1,200.0 85.79 ± 0.07 0h 19m 37s

Table 4.3: Best feasible AUC under the fairness constraint. Reprinted with permission from [1].

search [89] or constrained blend search [90]. Blend search combines global and local search

and prioritizes their suggestion on the fly. Its implementation in the FLAML library [87] can

handle constrained optimization. It penalizes the optimization metric with the amount of constraint

violation. Since the constrained HPO needs constraint information, we implement the constraint

callbacks for the baselines. The callbacks compute constraint metrics for a searcher. The search

budget is one hour. The optimization metric is Area Under the Curve (AUC) of ROC [91].

Table 4.3 shows the results under the fairness constraint. “Time to best” means the time to

find the best feasible trial within each run from the beginning of search. For baselines without the

constraint callback, after the tuning, we sort the searched trials by their optimization metric and

compute constraints from top to down until we find the first feasible trial. So their "time to best" is

longer than the one hour budget. If a method can find the highest feasible AUC compared to other

methods, then smaller “Time to best” is better. Otherwise, smaller “Time to best” just indicates a

method converges to a suboptimal point early.

ACE outperforms the baselines in terms of feasible AUC when using both searchers under both

easy and hard constraints. In blend search with the hard constraint (top Table 4.3), ACE needs
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only 1/2 of the search budget to attain the best feasible AUC. ASHA and no-stopping converge to

worse feasible AUC even when using the full budget. Their feasible AUC are not improved after

5 minutes. Without considering constraint results, ASHA wastes time in training infeasible trials.

Furthermore, although random search is an unconstrained searcher, ACE improves feasible AUC by

1.1% in the hard constraint and makes it perform as well as the constrained searcher. We make a

case study of two trials both appearing in ACE and ASHA, shown in Figure 4.1. ASHA wrongly

prunes a promising trial (blue curve) very quickly and spends unnecessary training time on an

infeasible trial (red curve). ACE successfully prunes them at the appropriate iteration. It highlights

that adding the constraint violation in the performance ranking makes ACE allocate the training

budget to promising trials. For the easy constraint, constraint violations are rare. Our constrained

early stopping gets close to constraint-agnostic early stopping, as few trials are categorized into the

“invalid” group. In this case, ACE still performs as well as ASHA (bottom Table 4.3). It implies our

stopping policy can also work well with limited utility of constraint feedback.

4.3.3 Robustness Constraint

We use DistilBERT [92] to predict the sentiment of a given sentence from the Stanford Sentiment

Treebank (SST2) of GLUE [84]. DistilBERT is a small and fast transformer model, which uses

BERT [93] as a teacher and is pretrained on the same corpus as BERT in a self-supervised fashion.

SST is split into 67,349 and 872 sentences for training and validation respectively, where the

sentences are encoded by the DistilBERT’s pretrained tokenizer. The robustness constraints come

from the NLP model CHECKLIST [85], which provides a sentiment test suite to check the prediction

invariance in the presence of certain perturbation or certain corner cases. CHECKLIST measures

the test score by the failure rate, a portion of predictions failing to remain original answers with

perturbation. We use 21 test tasks in the test suite, where each task has 300 test cases. Average

failure rate (AFR) is chosen to aggregate the results of the 21 test tasks. We use random search to

find the hyperparameters for finetuning DistilBERT under four threshold levels: AFR ≤ 0.19, AFR

≤ 0.20, AFR ≤ 0.24, and AFR ≤ 0.25. We report average accuracy of three random seeds for each

threshold.
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Figure 4.3: Best feasible accuracy under the robustness constraint. The column name represents
different robustness constraint thresholds, where AFR is the short name of average failure rate. The
values in the table are the best feasible accuracy (%). Successful rate indicates how many times
an early stopping policy can find at least one feasible trial among three random seeds. The figure
displays that ACE is robust to find feasible trials and outperforms baselines in most constraints.
Reprinted with permission from [1].

Figure 4.3 exhibits that ACE achieves 100% successful rate to get feasible trials under all

the robustness constraints, while no-stopping and ASHA only attain 100% successful rate under

AFR ≤ 0.25. For the best feasible accuracy (the table in Figure 4.3), ACE obviously outperforms

state-of-the-art ASHA under all the robustness constraints. With the consideration of constraint

values, ACE can wisely invest time on feasible trials. ACE also beats no-stopping under the first

three constraint thresholds and performs competitively under AFR ≤ 0.25. The best feasible trials

of no-stopping under AFR ≤ 0.25 possesses the worst accuracy in the initial training iterations.

Hence, ACE prunes these two trials accordingly, as well as ASHA does. The results reveal that

reducing training overhead on inferior trials sometimes leads to wrongful termination of promising

candidates. Addressing this limitation would be promising future work.

4.3.4 Ablation Study

We analyze ACE design choices by evaluating (i) different stopping criterion and (ii) static/adaptive

constraint evaluation intervals in Table 4.4 and Table 4.5, respectively. Since random search gener-

50



Constraint Method Stopping criterion Low-overhead evaluation Best feasible AUC (%)

EOD ≤ 0.25
(hard)

ACEhard hard stopping ✓ 84.94 ± 0.31
ACEnoskip stratum 85.37 ± 0.02
ACE stratum ✓ 85.38 ± 0.06

EOD ≤ 0.325
(easy)

ACEhard hard stopping ✓ 85.74 ± 0.05
ACEnoskip stratum 85.69 ± 0.03
ACE stratum ✓ 85.79 ± 0.07

Table 4.4: Ablation study for early stopping choices. Reprinted with permission from [1].

ates the identical sequences of hyperparameters given the same random seed, we select it to compare

different choices fairly for the ablation study.

Our stratum truncation in ACE is a soft stopping approach, which tolerates invalid checkpoints.

A hard stopping policy terminates a trial immediately as soon as the trial encounters the first invalid

checkpoint. We implement the hard stopping in ACEhard. Table 4.4 shows that ACEhard decreases

performance for both easy and hard fairness constraints. The constraint values do not increase or

decrease monotonically. It might temporarily violate the constraint and meet the constraint late,

such as the blue curve in Figure 4.1. Just considering constraint validity, ACEhard might terminate

trials at wrong iterations. Furthermore, ACEnoskip faithfully evaluates constraints without skipping

suboptimal trials which have inferior optimization metrics compared to the best feasible trial.

Table 4.4 indicates that the reduction of constraint evaluation overhead improves ACE performance

for the easy constraint and does not degrade the performance for the hard constraint. ACEnoskip

suffers from unnecessary constraint cost on suboptimal trials, especially when the constraint is

expensive to evaluate.

Next, we study how constraint intervals affect the performance by replacing ACE’s adaptive

constraint interval with static values. ACEβ=T enforces all the trials to check constraints once at

the end of the training iteration. A trial’s constraint metric is computed for its best checkpoint

(with the best optimization metric). ACEβ=1 fixes β = 1 for all the trials. Table 4.5 demonstrates

that ACE can adjust the constraint interval for different constraint characteristics. For the cheap
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Constraint Cost ratio Method β = 1 (%) β = T (%) Best feasible score (%)

EOD ≤ 0.25
(cheap)

1.94
ACEβ=1 100 0 85.38 ± 0.05
ACEβ=T 0 100 84.61 ± 0.57
ACE 87 13 85.38 ± 0.06

AFR ≤ 0.2
(expensive)

23.98
ACEβ=1 100 0 84.33 ± 1.80
ACEβ=T 0 100 79.82 ± 2.93
ACE 36 64 85.93 ± 1.15

Table 4.5: Ablation study for the adaptive constraint evaluation interval. Reprinted with permission
from [1].

constraint (low cost ratio), ACE assigns 87% of trials β = 1. For the expensive constraint (high cost

ratio), ACE assigns 64% of trials β = T . The results match the theoretical prediction in Theorem 2.

Since Eq. equation 4.2 also depends on a trial’s total training iteration T , β is not fixed for all the

trials. It is not surprising that ACEβ=1 can achieve competitive performance of ACE for the cheap

constraint but weaker for the expensive constraint, as our theory predicts. ACEβ=T has a chance in

theory to outperform ACE for the expensive constraint, since ACEβ=T largely reduces the constraint

evaluation overhead. ACEβ=T indeed searches 1.8 times more trials than ACE and 3.9 times more

than ACEβ=1. Nevertheless, a trial’s best checkpoint is not equal to its best feasible checkpoint.

Some feasible trials in ACE are considered as infeasible by ACEβ=T for that reason. Thus, ACEβ=T

ends up performing poorly. ACE selects β = 1 for trials with large T (See Figure 4.2a). Even

though ACE selects β = T for a trial with small T , its small number of checkpoints reduces the

chance for ACE to use wrong checkpoint. ACE’s adaptive constraint interval is merely derived from

the constraint cost consideration. It is an interesting question for future work whether it is beneficial

to adjust the constraint evaluation interval according to the feasibility consideration.

4.3.5 Comparison between Geometric and Linear Interval

Given the reduction factor = 4, ASHA examines trial performance by geometric intervals, i.e., 1,

4, 16, 64, . . . . In contrast, ACE check trials by linear intervals, i.e., 1, 2, 3, .... The different interval

motivates us to study the performance of geometric intervals in constrained early stopping. We
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Searcher Method Interval type Stopping criterion Constraint interval Best feasible AUC (%)

Blend search

ASHA geometric no-stratum fixed 85.05 ± 0.35
ASHAstratum geometric stratum fixed 85.35 ± 0.07
ASHAstratum_not_fixed geometric stratum not-fixed 85.16 ± 0.07
ACEnoskip linear stratum not-fixed 85.41 ± 0.09

Random search

ASHA geometric no-stratum fixed 84.19 ± 0.35
ASHAstratum geometric stratum fixed 85.27 ± 0.16
ASHAstratum_not_fixed geometric stratum not-fixed 85.32 ± 0.17
ACEnoskip linear stratum not-fixed 85.37 ± 0.02

Table 4.6: Geometric vs. linear interval. Reprinted with permission from [1].

extend ASHA with adaptive constraint interval and stratum truncation. If the adaptive constraint

interval suggests β = 1, we enforce ASHA to compute constraint values by geometric intervals. If

the adaptive constraint interval suggests β = T , ASHA uses a trial’s best checkpoint to evaluate

constraint values at the last training iteration. Notice that Thereom 2 is developed by the linear

interval assumption. We merely borrow it to suggest constraint intervals, rather than develop a new

theorem. We use blend and random search to search hyperparameters of LightGBM under the hard

fairness constraint (EOD ≤ 0.25). In Table 4.6, we observe the stratum truncation and adaptive

constraint interval can improve constraint-agnostic ASHA. Since the constrained ASHAs do not

have the low-overhead constraint evaluation, we report ACEnoskip to compare their performance.

ACEnoskip outperforms ASHAstratum and ASHAstratum_not_fixed. A trial’s best checkpoint is not

equal to its best feasible checkpoint. The large interval space of ASHA makes it unlikely to

locate feasible trials at correct checkpoints. Thus, using linear intervals performs better than using

geometric intervals.

4.3.6 Truncation Percentage Analysis

ACE’s stratum truncation terminates a fraction of low-rank trials according to the “truncation

percentage” (See Section 4.2.4). We analyze the impact of the percentage by searching hyperpa-

rameters of LightGBM under the fairness constraints (See Section 4.3.2). Since random search

can generate the same sequences of hyperparameters in different “truncation percentage”, we use

it to report the feasible AUCs with three random seeds (20, 21, and 22). Figure 4.4 exhibits that
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Figure 4.4: Truncation percentage analysis of ACE’s stratum truncation. The label under each point
represents AUC (%) and the number of total trials. The best feasible AUC is fairly stable as the
truncation percentage varies from 3% to 25%. Reprinted with permission from [1].

13% as truncation percentage leads ACE to perform the best for both hard (EOD ≤ 0.25) and

easy (EOD ≤ 0.325) constraints. 50% as truncation percentage is the most nature choice, but 50%

decreases the feasible AUC for the easy constraint. The number of total trials increases from 3%

to 75%. The large truncation percentages stop more trials than small truncation percentages. We

also observe that when truncation percentage varies from 3% to 25%, the best feasible AUC is

fairly stable. These observations suggest that it is reasonable to use 25% as the default truncation

percentage for the stratum truncation and the performance of ACE is not particularly sensitive to

this choice.

4.4 Related work

Constrained hyperparameter optimization (HPO) uses constraint information to suggest the next

candidate trials. In Bayesian optimization [94, 95, 96, 80], they use additional Gaussian process

to model the probability of the constraint violation. The utility function of expected improvement

(EI) is multiplied by the constraint probability to suggest the next promising and feasible trials.

The constraint violation can also function as a regularization term to penalize the optimization

metric [81]. The penalized metrics lead the optimization algorithm toward feasible regions with
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less violation. Since their penalty hyperparameter is sensitive to the scale of constraint violation,

penalized methods require extra effort to tune the penalty. These methods check whether a trial

meets or violates constraints once after a trial completes training. When constraints are difficult

to satisfy, we may spend unnecessary training cost on ineligible trials. Our method can examine

constraints during training and stop trials without extra penalty hyperparameters.

Early stopping methods are widely applied to unconstrained HPO to reduce training time of

inferior trials. Dynamic budget allocation [97, 79, 86] can run N trials for a small budget (e.g.,

training iterations). They iteratively select the best 1/c portion and increase their budget by c times.

Median stopping policy [98] stops a trial if the trial’s best optimization metric is worse than the

median value of running average of all completed trials. Bandit stopping policy [99] compares a

trial’s best optimization metric to an allowable slack ratio of the global best optimization metric.

Performance curve stopping policy [100, 98, 101] use training curves of completed trials to train a

regression model, which predict an optimization metric for an incoming trial. If the probability of

exceeding the optimal optimization metric is low, the trial is stopped. These early stopping methods

prune trials only based on the optimization metric. In the existing tuning frameworks [102, 103]

and business services [104, 98], they provide classical early stopping approaches by comparing

optimization metrics. No constraint information is used in their early stopping policy. We are

motivated to augment these services to handle constraints required by practitioners.

4.5 Conclusion

We study the problem of effective early stopping for constrained HPO, which saves cost in

training infeasible trials and explores other promising and feasible candidates. For broader impact,

ACE calls for attention to practical HPO scenarios where application constraints must be met for

model deployment. It highlights the computational challenge of constrained HPO and opportunities

for cost saving through a new approach of early stopping. It also reveals important characteristics

of constraints to consider in designing a generic approach, such as the difficulty to meet and the

computation cost to evaluate. It provides a new point of research view toward constrained HPO.

ACE is extensible to diverse search algorithms and shallow and deep ML models. It is implemented
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on top of RAY, a hyperparameter tuning framework, which supports 14 search techniques and

integrates a variety of ML frameworks, including PyTorch, Tensorflow, HuggingFace, LightGBM,

etc. Thus, ACE can be quickly adopted into different scenarios as the benefit of RAY ecosystem. As

a limitation, ACE’s stratum truncation policy is designed for a single constraint metric. Although in

practice one could combine multiple constraint metrics into one, some information can be lost in

the combination. More advanced extensions for multiple constraints might make ACE flexible to

prioritize multiple constraints in complicated scenarios.
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# Test task name Example

1 Single positive words fun

2 Single negative words boring

3 Single neutral words saw

4 Sentiment-laden words in context That staff is boring.

5 Neutral words in context I see this aircraft.

6 Intensifiers This is an incredibly unpleasant service.

7 Change neutral words with BERT
@USAirways my in-laws just Cancelled Flighted 4 tonight.
U auto rebooked 4 just on Tuesday that doesn’t work.
Can you help reFlight Booking Problems them?

8 Add positive phrases
@JetBlue so technically I could drive to JFK now and put in.
Request for tomorrow’s flight. You are sweet.

9 Add negative phrases
@JetBlue we are well aware. Insufficient info.
No options. You are poor.

10 Add random urls and handles
@united My flying United is over...sorry.
The Captain still had 20 minutes of pre-flight preparations
to make while we sat with no air! https://t.co/befys3

11 Punctuation
@united pleasantly surprised with quality of service and flight.
Flew LGA-CLE-DEN. Friendly crew. Love the concept of #byod #worksnicely.

12 Typos
@VirginAmerica - can you tweet me the Cancelled Flight/chng fee for a flight?
or can I rebook nuder one of your affiliates? If so, who are afiliates?

13 2 typos
@united @annricord 0162431184663.\n3 o fyour agents said we wouldb e refunded.
Agents said United should never have sold us the ticket.

14 Contractions
@united didn’t get her name. She was not in our group. She was sitting behind us.
Think it was window seat #40? We only overheard...

15 Change names
@AmericanAir You guys did an amazing job today! Know it’s hard;
thanks to Kate Appleton for all her hard work reFlight
Booking Problems my friends and me!

16 Change locations
@SouthwestAir Gate attendant at McCarran C16 (Vegas to Dallas) went above and beyond.
After a long day of frustration it was welcome.

17 Change numbers
@SouthwestAir Your onboard wifi is so bad it’s taking me 20 minutes to send this tweet.
Working is off the table. #disappointed

18 Protected race Melanie is a black migrant.

19 Protected sexual Jesse is an asexual father.

20 Protected religion Ryan is a Christian student.

21 Protected nationality Destiny is a Chinese developer.

Table 4.7: Twenty-one test tasks and examples. Reprinted with permission from [1].
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5. TOWARDS AUTOMATIC DISCOVERING OF EFFICIENT ARCHITECTURE FOR

DEFECT DETECTION

Defect detection and segmentation recognize rare defective areas from massive normal images.

Existing defect detection models are too big to deploy limited computing devices. Neural architec-

ture search (NAS) accelerate architecture design by learning to search from data. Although NAS can

tailor network size for miscellaneous hardware specification, imbalanced distribution and deficient

images of defect detection make it challenging to search memory-efficient networks. We propose

Automated Defect Detection (AutoDD) to solve the above challenges. AutoDD incorporates an

effective Perlin defect generator to augment datasets and reduce imbalanced instance distribution.

A simple but effective search space for UNet is proposed, which contains standard convolution,

atrous convolution, and separable convolution are the primary operation to design UNet. AutoDD

uses one-shot UNet to share network weights of candidates and avoid elongated training time.

Evolutionary algorithm of AutoDD reuses the trained one-shot to evaluate candidates’ performance.

It searches the best feasible UNet under the model size constraint. Our experiments on MVTec-AD

demonstrate that AutoDD can achieve superior performance with 4× less model size, implying that

AutoDD discovers lightweight and effective UNet for edge devices.

5.1 Introduction

Defect detection and segmentation recognize rare defective instances and areas over massive

normal images, which makes manufacturing pipelines quickly remove low-quality products. It

increases defect-free rate of the products and then grows up their economic profit [105]. The size

of the datasets is usually small and their distributions between good (negative) and bad (positive)

images are imbalanced. False positive rate easily dominates performance of machine learning

models. Although several successful defect detection approaches are proposed [106, 107, 108],

they are too large to deploy into embedding systems and mobile devices. For example, NVIDIA

Jetson NANO [109] is only equipped with 6× less GPU memory than a single GPU RTX 3090.
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The state-of-the-art DRAEM [106] causes out-of-memory error in NANO. Finding effective but

lightweight models for defect detection is inevitable demands.

Neural architecture search approaches accelerate network design for different applications,

such as image classification [110], semantic segmentation [111, 112], object detection [113], and

anomaly detection [114]. They learn to design network from data. However, the imbalanced and

insufficient defect datasets result in the following challenges. First, small data size makes network

candidates easily to overfit to the training data. One-class training for defect detection [115] makes

it hard to use common evaluation metrics (e.g., accuracy and AUROC [91]), since only normal

images are used. Second, data augmentation approaches can mitigate imbalanced distribution. The

good pixels still overwhelm scarce defect pixels. False positive rate in pixel level does disrupt

the performance evaluation. Suitable evaluation metrics are required to provide representative

performance feedback for search algorithms. Last but not least, existing search space is not well

designed [114, 112]. Their discovered networks are not as good as state-of-the-art approaches [106].

Besides, training each candidate from scratch to evaluate its performance is time-consuming. How

to design an effective search space and efficiently get performance is a research problem we have to

solve.

We propose Automated Defect Detection (AutoDD) to overcome the above challenges, as shown

in Figure 5.1. Motivated by DRAEM [106], AutoDD has a defect generator by Perlin noise, which

adds arbitrary shapes of random textures to normal images. With the generator, we can increase the

number of training data and balance dataset from the instance level. The generative defective images

and synthetic ground-truth labels also allow us using AUPR [116]. The backbone of search space is

dual autoencoders, where the first and second one is standard autoencoder and plain UNet [117]

respectively. AutoDD focuses on search network operations in plain UNet. The network operations

contain standard convolution, atrous convolution [118], and separable convolution [119]. One-shot

UNet in AutoDD is constructed to encompass all UNet candidates [120]. The weight sharing

mechanism prevent us from training each candidate from scratch. AutoDD’s uses evolutionary

algorithm to suggest UNet population under model size constraint. The fitness function is AUPR,
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Figure 5.1: Overview of Automated Defect Detection. Defect generator diversifies normal images
by random rotation and creates synthetic defective images by injecting random stuff to normal
images. Augmented dataset is split into training and validation set. One-shot UNet contains three
convolution operations in each node. We uniformly sample operations to train their weights on
training set. After one-shot training, Evolutionary algorithm suggest network candidates under size
constraint, which are initialized by one-shot UNet’s checkpoint. We rank their performance by
AUPR on validation set. Notice that AutoDD has no access to real defective images during search.

which focus on minor defect labels to compute performance. It provides AutoDD representative

performance to select next generation. Each candidate reuses the network weights from trained

one-shot UNet without training. AutoDD augments a dataset by defect generator, which is split into

training and validation set. Then, AutoDD trains one-shot UNet by the training set. After one-shot

training is completed, AutoDD use evolutionary algorithm to search the best feasible UNets by

ranking candidates’ AUPR on the validation set.

Our experiments demonstrate that AutoDD can discover lightweight and effective UNets on

MVTec-AD [16]. It outperforms the strong baseline, DRAEM [106], with 4× less network pa-

rameters. Even though other memory efficient UNet can be deployed in embedding systems,

their performance is not as good as AutoDD. We also compare AutoDD with existing NAS ap-

proaches [114, 112], indicating the effective design of our search space. AUPR also further tight

the decision boundary on neural architecture, leading to much promising networks.
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5.2 Automated Defect Detection

To discover efficient networks for defect detection, we propose a new automated defect detection

(AutoDD). We overcome deficient number of images by Perlin defect generator in Section 5.2.2.

Then, we design a simple but effective search space in Section 5.2.3. Finally, we use evolutionary

algorithm to search convolution operations for autoencoders in Section 5.2.4. The overview of

AutoDD is shown in Figure 5.1.

5.2.1 Preliminary

For input space X ⊆ Rd and output space Y ⊆ Rd, let Dtrain = {(xi,yi)}ni=1 be training data

and Dtest = {(xi,yi)}mi=1 be test data, where xi ∈ X and yi ∈ Y . In the context of defect detection,

n,m are usually small numbers, e.g., MVTec-AD [16] has n = 3, 629 and m = 1, 725, while

CIFAR-10 [18] has n = 50, 000 and m = 10, 000. Following in one-class classification [115],

Dtrain only contains normal (good) instances. We cannot make use of defect instance appears in

training data. Dtest just has extremely rare defect regions. Thus, defect detection data is notorious

for small-size and imbalanced.

Let A be architecture search space, which consists of architecture search space S and network

operations space C, A = S × C. Network architectures control connection topology and the depth,

e.g., where to add skip connection and the number of convolution layers. Common architectures

for deep defect detection are autoencoder [121] and UNet [117]. Network operations learn latent

representation, e.g, convolution and pooling. An architecture s ∈ S and operations c ∈ C determine

the model size and prediction capability. A network candidate is denoted as N(s, c, w) with network

parameters w. In this work, we aim to find the optimal network under the model size constraint M

as follows,

s∗, c∗ = argmax
s∈S,c∈C

P(N(s, c, w∗),Dval), (5.1)

s.t. w∗ =argmin
w

L(N(s, c, w),Dtrain),

and M(N(s, c, w)) ≤ τ,

(5.2)
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Perlin noise
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Figure 5.2: Defect generation by Perlin noise.

where Dvalid is the validation data split from Dtrain. Network candidates need to be less than or

equal to the size threshold τ . We rank them by the performance metric P over validation data

Dvalid. There are several challenges to search networks. First, Dtrain is extremely small such that

network candidates are easily overfitting. Second, training thousands of candidates from scratch is

time-consuming. It is inefficient to get their performance. Third, Dvalid has no defect labels. We

cannot use accuracy, AUROC [91], or AUPR [116] to evaluate network quality [110]. We should

select an effective evaluation metric. AutoDD is proposed to solve the above challenges.

5.2.2 Perlin Defect Generator

To resolve the issue of insufficient data and scarce labels, we introduce Perlin defect generator.

Motivated by DRAEM [106], the generator rotates normal instances with random angles to diversify

the normal set. It also creates artificial defective instances by injecting stochastic shapes of random

objects into normal instances, as shown in Figure 5.2. Perlin noise [122] create continuous random

shapes by by interpolating gradients of normal instances. We binarize the random shape to locate

defect regions. The regions are then filled with images uniformly sampled from Textures Dataset

(DTD) [123]. We then blend defects with normal backgrounds (blend factor β=0.8). The artificial

defects increase anomaly pixel distribution. We also balance the number of normal and defect

instances during generation. The two tricks help us mitigate the imbalance distribution from instance

and pixel level. Furthermore, the augmented D̃train has normal and synthetic defect labels. We can

calculate networks’ accuracy or AUROC without real defective instance.

There are common approaches to generate defects. Cutout [46] adds a colored rectangle with
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random size to images. CutPaste [124] crops a patch from one normal image and pastes to other

normal images. Reusing normal patches make generated defects more realistic. Scar [124] add a

colored line with random length to images. We hypothesize that different defect categories might

favor some generation approaches. Generating defects by the category-favor style might discover

better networks. Eventually, Section 5.3.3 demonstrate that Perlin is the best generation for all

defect categories. Hence, Perlin is the default defect generator. It is unnecessary to extend our

search space with generation approaches.

5.2.3 Search Space

An ideal search space should encompass well-performance handcrafted architectures and op-

erations. Instead of exhausting all possibles in S and C, our search space is carefully designed by

human prior knowledge from literature.

Our architecture space is built on dual autoencoders [106, 108]. The first autoencoder as

reconstruct network repairs defect images. The second one recognizes the segmentation map of the

defect regions. The output of the first autoencoder are concatenated with its input as the input of the

second autoencoder. Given an input image x and the output of the second autoencoder p ∈ [0, 1],

the loss function L in equation 5.2 is defined as follows,

L = Lrec + Lseg = |x− xrec|2+SSIM(x,xrec)+

−α(1− p)γlog(p),

(5.3)

where xrec is the reconstructed image from the first autoencoder and SSIM is the similarity loss [121].

αt and γ are hyperparaemters for focal loss [125]. Since U-Net has been proved useful in the

medical segmentation [117] and defect detection [106], our second autoencoder is vanilla U-like

architecture, where skip connections are added between the encoder and decoder. We do not

follow UNet variances [126, 127, 112, 128]. Section 5.3.2 indicates that the vanilla structure works

the best. Furthermore, NAS usually fixes the network architecture and only changing network

operations [129]. It is effective to reduce the size of search space. Similarly, our search space also
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(a) Standard conv.

𝐶𝑜𝑠𝑡: 9𝐶!𝐻𝑊

(b) Depthwise conv.

𝐶𝑜𝑠𝑡: 9𝐶𝐻𝑊

(c) Pointwise conv.

𝐶𝑜𝑠𝑡: 𝐶!𝐻𝑊

(d) Atrous depthwise conv.

𝐶𝑜𝑠𝑡: 9𝐶𝐻𝑊

Operations Type Cost Comment
Conv 3x3 (a) 9𝐶)𝐻𝑊 Standard Conv

SepConv 3x3 (b) + (c) (9𝐶 + 𝐶))𝐻𝑊 Reduce ~9x cost
Atrous Conv 3x3 (d) + (c) (9𝐶 + 𝐶))𝐻𝑊 Wide receptive field

Figure 5.3: Operation search space includes Conv 3 × 3, SepConv3 × 3, and AtrousConv 3 × 3.
Each operation consists of different convolution types. Cost and comments explains the advantages
to adopt them.

fixes two autoencoders’ architectures. equation 5.1 is simplified to

c∗ = argmax
c∈C

P(N(c, w∗),Dval). (5.4)

And we search the second autoencoder’s network operations. For simplicity, we do not search the

first autoencoder’s operations and leave it for future work.

Our operation space includes (1) 3 × 3 convolution, (2) 3 × 3 atrous depthwise separable

convolution [118], and (3) 3× 3 depthwise separable convolution [119], displayed in Figure 5.3.

We exclude 5× 5 and 7× 7 convolutions because their receptive fields can be achieved by stacking

multiple 3× 3 convolutions. A depthwise separable convolution [119] is composed on one depth-

wise convolution followed by one pointwise convolution. Classical 3× 3 convolution consumes

9C2HW of Multiply-Add operations, while a depthwise separable convolution only consumes

(9C + C2)HW of Multiply-Add operations. H , W , C is height, width, and channels of a feature

map, respectively. When C approaches to a large value (e.g., 1024), the reduction rate approximates

9. The depthwise separable convolution effectively reduces the model size. However, simply using

separable convolutions [128] in U-Net will impair the performance (Section 5.3.2). We also select
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the atrous convolution [118], which is widely adopted in the semantic segmentation [130, 131].

The operation magnifies 3× 3 kernel’s field-of-view (our atrous rate r = 2). The atrous depthwise

separable convolution is the memory-efficient extension of atrous convolution. Using the three con-

volution operations, we simulate multiple atrous rates to utilize different image-level features [118]

for defect segmentation. In our experiments, the U-Net architecture has 18 nodes (9 nodes for

encoder, 9 nodes for decoder), where each node chooses 3 network operations. The size of our

search space is 318 ≈ 3.8× 108.

This simple but effective search space can discover memory efficient U-Net for defect detection.

Even though NAS-UNet [112] uses the same networks operations, its complicated cell network

architecture degenerates overall performance (Section 5.3.2). We argues that search space should

balance the complexity and generality.

5.2.4 Evolutionary Algorithm

After the search space is determined, we explain how to search network operations to the

second autoencoder. Our search algorithm is evolutionary algorithm (EA), as demonstrated in

Algorithm 4. There are many search algorithms [9] in neural architecture search, including rein-

forcement learning [114, 110] and differentiable approach [27, 32]. It is not easy to extend them

with constraints since addition penalty hyperparameters are required to tuned. In contrast, evolu-

tionary algorithm [132, 120] enables us to eliminate unqualified candidates before evaluating their

performance. EA simulates biological evolution procedures. Given an initial population of network

candidates, inference function computes their fitness (or performance). The top k candidates with

high performance are selected as the parents for the next generation. Crossover function swaps parts

of any two parents randomly. Mutation function changes any operation in a parents randomly. We

enforce offspring from crossover or mutation to satisfy the model size constraint. The generated

offspring functions as the next population. The above steps are repeated until the max search

iteration.

To prevent tremendous training time in the inference function, we construct one-shot UNet N ,

which encompasses all network candidates [133, 120]. Its weight sharing mechanism allows that
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Algorithm 4: Constrained Evolutionary Algorithm
Input: population size P, search iteration T , trained weights W ∗ of one-shot UNet, model size

constraintM.
Output: the network with the highest AUPR under M.

P0 = InitializePopulation(P, M)
for i in 1:T do
AUPRi−1 = Inference (Pi−1, W ∗)
TopK = SelectTopK(AUPRi−1)
Pcross = Crossover (TopK, M)
Pmut = Mutation (TopK, M)
Pi = UpdatePopulation(Pcross, Pmut)

end for

network parameters of one operation are shared, when the same operation appears in the same node

across different networks. Training the such one-shot model is equivalent to training all candidates.

We use single path approach to update aggregated network parameters W [120, 134]. Before start

evolutionary algorithm, we train the one-shot UNet. In each training iteration, we uniformly sample

network operations for N . equation 5.2 can be rewrite as follows,

W ∗ = argmin
W

Ec∈C[L(N (c,W ),Dtrain)]. (5.5)

After the one-shot training, EA can directly compute candidates’ performance by initializing their

network weights from W ∗. Weight co-adaptation would degrade the training quality of one-shot

model if we adopt differentiable search algorithm [120, 64, 134]. Differentiable methods introduce

architecture parameters to aggregate feature maps of network operations. It makes backward

propagation leak one network’s weights to others. On the contrary, single path method only turns

on one network candidate in each training iteration to avoid weight co-adaptation issues. This is

another reason we choose EA eventually.

The fitness function of EA is Area Under Precision and Recall (AUPR) [116]. Precision

calculates correct positive predictions divided by all predictions. Recall computes correct positive

predictions over all positive samples, The two metrics focus on positive samples (i.e., minority
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labels). By changing defect thresholds, we can plot precision and recall curve and measure the

area under the curve (AUPR) Although the defect generator (Section 5.2.2) can balance positive

and negative images, but imbalanced pixel distribution still triggers high false positive rate. In

the ablation study (Section 5.3.4), AUPR tightens the decision boundary and enable us to find

well-performance network. Hence, AUPR is suitable for P in equation 5.1.

5.3 Experiments

We evaluate the performance of our best discovered architecture under MVTec-AD [16] dataset

and conduct several experiments to answer the following three research questions.

• RQ1. How effective will AutoDD achieve? Do we have reasonable search space?

• RQ2. How does the defect generation affect performance? Do we have to search generation

styles for defective images?

• RQ3. Compared with random search, how does evolutionary search improve performance?

5.3.1 Experimental Settings

The training setting follows DRAEM [106]: epochs 800 and batch size 8. Images are resized

to 256× 256. Adam optimization [135] trains autoencoders with the initial learning rate 0.0001.

The multi-step learning rate scheduler decays learning rate by 0.2 at epoch 640 and 720. Our

defect generator uses Perlin noise to generate several synthetic defects. Blending factor β = 0.8

decides the degree to blend defects with the normal backgrounds. The augmented dataset is split

into 0.8/0.2 for training and validation set. Both subsets includes normal, synthetic anomaly images,

and synthetic ground truth masks. We balance the number of good and bad images when generating

synthetic defective images. The one-class classification protocol is adopted [115]: training a model

for one class and predicting good or bad for each pixel. The training set is used to train the one-shot

supernet, while the validation one is used to rank performance.

The hyperparameters of our evolutionary search follows single one-shot NAS [120]: population

number 50, top-k selected offsprings 10, mutation probability 0.1, crossover number 25, and
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mutation number 25. The fitness function is AUPR for defect segmentation (pixel-wise) on the

validation set. Notice that defect labels are created by our defect generator. We do not refer to real

defect labels during search. According to the memory capacity of NVIDIA Jetson Nano 4GB, the

constraint of the model size is 160 MB using Floating Point 32 (equivalent to network parameters

40M). We search network architectures using MVTec’s Capsule in AMD EPYC 7282 16-Core

Processor and one NVIDIA RTX A5000 GPU. The supernet training time is 31 GPU hours. The

search time is 4 GPU hours. The best discovered architecture is retrained for other categories using

full augmented data.

MVTec-AD [16] is a benchmark for anomaly/defect detection focusing on industrial inspection.

It contains high-resolution 3,629 good images for training, 467 good images and 1258 defective

images for testing. It also provides the ground truth of defect regions. The ratio of good and

defective images is about 3:1. More than 75% images are good. The total defect regions across all

images occupy only 1% in average. 99% pixels are labeled as good. The statistic indicates highly

imbalanced distribution between positive and negative labels regardless of the instance level or

pixel level. The benchmark encompasses 10 types of objects and 5 types of textures. We reports the

performance of defect segmentation on 5 categories, Bottle, Cable, Capsule, Hazelnut, Metal nut in

all experiments.

Baselines include four handcrafted networks, DRAEM [106], Mobile-UNet [126], Shuffle-

fabric [127], and SCUNet [128], and two AutoML approaches, NAS-UNet [112] and AutoAD [114].

DRAEM consists of a classical autoencoder as reconstructive network and a UNet as discriminative

network. It also uses Perlin noise to create synthetic defective images. The reconstructive network

is responsible for repairing corrupted images to normal ones. The discriminative network outputs

defect regions with probability scores. Although DRAEM performs accurate defect detection, its

model size is too large to fit in embedding systems. Mobile-UNet replaces the encoder of the UNet

with MobileNetv2 [136], which stacks several inverted residual blocks. The depthwise separable

convolutions in inverted residual blocks reduce its model size dramatically. Shuffle-fabric simplifies

the encoder of UNet by ShuffleNetV2 [137] which stacks basic units and down sampling units.
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Figure 5.4: Comparison between AutoDD (ours) and state-of-the-art deep models on MVTec-AD.
AutoDD attains AUPR 79.3% of anomaly segmentation, while is 4× smaller than the best existing
DRAEM. Our lightweight model is suitable for mobile / edge devices.

The two types of units utilize depthwise separable convolutions to reduce parameters, and they

also split and shuffle channels for information communications between branches. NAS-UNet

defines the cell structure for down sampling and up sampling units. The edge of the cell is a

mixture of candidate operations, parameterized by architectural parameters. NAS-UNet adopts

the differential search [27, 32] to compute gradients of network and architectural parameters

iteratively. Its candidate operations contain atrous convolution, depthwise convolution max pooling,

average pooling, idential, and squeeze and excitation [138]. After search, the best discovered down

sampling units and up sampling units stacks repeatedly to form UNet. AutoAD provides the most

flexible search space, where its reinforcement learning searcher [110] learns to design regularization

function, distance measurement, channel numbers, convolution kernel numbers, pooling kernel

kernels, normalization types, and activation function. The discovered network choices built up an

classical autoencoder, not U-like network structure. Notice that AutoAD does not add depthwise-like
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convolution in the search space.

Evaluation metrics are AUROC [91] and AUPR [116]. AUROC is the short name of Area Under

Receiver Operating Characteristic (ROC). The ROC curve is spanned by true positive rate (TPR)

and false positive rate (FPR) by varying defect thresholds. This is the most popular evaluation

metric for anomaly detection. AUPR is the abbreviation of Area Under Precision and Recall. The

PR curve is plotted by precision and recall by changing defected thresholds. AUROC and AUPR

are threshold-independent metrics. The larger value, the better performance.

5.3.2 Defect Segmentation

To answer RQ1, we train the human- and machine-designed baselines with same training setting

as AutoDD. For AutoAD, they do not release the code in public. We report its performance from the

original paper directly. Table 5.1 demonstrates the effectiveness of AutoDD for defect segmentation

(pixel-wise) by comparing baselines in terms of AUPR and AUROC. Our AutoDD achieves the

highest AUPR scores in 4 out of 5 categories and surpasses the best baseline DRAEM by 3.61%. It

also produces the comparable AUROC scores in all categories with DRAEM. Figure 5.4 indicates

that AutoDD reduces 4× network parameters from DRAEM, showing AutoDD’s high memory

efficiency. AutoDD uses 22% standard convolutions and 78% separable-like convolutions, which

contribute to major model size reduction. It uses low network parameters to achieve competitive

AUROC to DRAEM. AutoDD is more suitable than baselines for mobile and embedding system

deployment.

AutoDD significantly outperforms the three tiny baselines, Mobile-UNet, Shuffle-fabric, and

SCUNet (Figure 5.4 and Table 5.1). The target device Jetson NANO has room to accommodate

large networks. We do not enforce the constraint of model size as small as tiny baselines. AutoDD

is flexible to tailor network for large model size. The three baselines cannot easily scale up to

fit in the device. According to Table 5.1, Mobile-UNet and Shuffle-fabric, using MobileNetV2

and ShuffleNetV2 respectively, cannot improve defect segmentation performance at all. We are

motivated not to choose MobileNet-like search space [42, 132, 139] in the beginning. SCUNet

use vanilla UNet structure like ours, but simply applying separable convolutions to UNet will
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Category DRAEM [106] Mobile-UNet [126] Shuffle-fabric [127] SCUNet [128] NAS-UNet [112] AutoAD [114] AutoDD (ours)

Bottle 90.18 / 99.30 80.36 / 98.24 50.26 / 75.35 11.24 / 64.81 55.19 / 76.82 - / 93.00 90.79 / 99.21
Cable 64.36 / 95.90 31.61 / 87.11 21.43 / 75.77 3.53 / 60.83 13.23 / 75.90 - / 87.00 63.93 / 95.21

Capsule 45.03 / 95.00 42.63 / 92.21 16.62 / 77.91 1.03 / 59.61 18.29 / 77.13 - / 95.00 56.64 / 94.40
Hazelnut 87.67 / 99.59 85.25 / 99.05 64.62 / 97.97 25.23 / 79.76 66.09 / 96.31 - / 97.00 88.92 / 99.71
Metal Nut 91.19 / 98.77 80.82 / 96.25 70.69 / 93.03 33.21 / 83.08 37.90 / 73.11 - / 88.00 96.21 / 99.45

Avg. 75.69 / 97.71 64.13 / 94.57 44.72 / 84.01 14.85 / 69.62 38.14 / 79.85 - / 92.00 79.30 / 97.60

Table 5.1: “AUPR / AUROC” scores for defect segmentation (pixel-wise) on MVTec-AD. Baselines
are trained from scratch in the same setting as our model. AutoAD’s results are from the original
paper. AUPR is the Area Under Precision Recall, while AUROC is Area Under Receiver Operating
Characteristic. The average score is shown in the last row (Avg.). AutoDD outperforms human- and
machine-design baselines in terms of AUPR. It reduces 4× less network parameters of DRAEM to
attain the comparable AUROC performance.

drop performance harshly. Our discovered network greatly exceeds SCUNet indicating that atrous

separable convolutions are necessary to add in the search space. Otherwise, promising networks

will suffer from the same performance drop as SCUNet. The above empirical results and analysis

explicitly support the necessity of plain UNet backbone and atrous convolutions.

AutoDD remarkably beats existing neural architecture search (NAS) for defect segmentation,

including NAS-UNet and AutoAD. The search space of AutoAD has 3.9 × 1023 architecture

candidates, 1015 times larger than our search space. Our AutoDD outperforms AutoAD by 5.6% for

AUROC, manifesting that our compact search space is well-designed. The size of search space is

not the key factor to successful NAS. We directly set the successful handcrafted DRAEM as our

backbone to ensures state-of-the-art architectures in our space. Unlike AutoAD, AutoDD does not

explore kernel size, channel numbers, pooling, loss function, and regularization function. It can put

search budget on vital operation choices. On the other hand, the size of NAS-UNet’s search space is

1010, 100 times larger than ours. Although NAS-UNet also puts atrous and separable convolutions

in operation candidates, AutoDD extensively exceeds NAS-UNet by 17.8% AUROC scores. The

major difference is the U-Net structure. NAS-UNet searches operations for two predefined cells,

which are stacked repeatedly to form a UNet. AutoDD relaxes the limitation of cell structure, and

directly search convolutions for plain UNet structure. Our outstanding performance signifies that

cell-based architecture search space [27] is not beneficial for defect segmentation. Comparing to
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Style AUPR AUROC

Perlin [106] 79.30 97.60
Cutout [46] 44.25 80.27

CutPaste [124] 55.35 91.58
Scar 48.64 87.01

Joint search 74.37 96.14

Table 5.2: Results for defect segmentation on MVTec-AD using different styles. The Perlin style
is the most effective generation to augment dataset. Joint search represents that the evolutionary
algorithm searches generated styles and architectures jointly. AutoDD does not take the joint search
strategy.

NAS-UNet and AutoAD, designing search space is not trivial. Good search space is the critical

component to successful NAS. Our search space is verified as the simple but effective one.

5.3.3 Defect Generation Comparison

The main purpose to create additional defective images is to solve the issue of insufficient number

of images for search. Using limited number of normal images could reduce the generalization of

discovered architectures. To answer RQ2, we collect additional generation styles from literature,

Cutout [46], CutPaste [124], and Scar [124] and use them to train AutoDD’s best discovered

architecture. Table 5.2 shows that Perlin generation leads to the best AUPR and AUROC scores.

It surpasses Cutpaste by 23.9% in AUPR and 6% in AUROC. Unlike other generations, random

shapes from the Perlin’s noise function simulate the irregular defect appearances, not limited to

rectangles or lines. It give the reconstructive network more practices to repair stochastic defects

shapes. Moreover, Perlin’s corrupted regions are usually larger than other generation styles. It can

increase the number of defect pixels to mitigate uneven pixel distribution. Random shapes and large

defect areas make Perlin effective for defect generation.

The joint search is created to verify that generating defects by the category-favor style might

discover better networks. We augment the search space (Section 5.2.3) by the above generation

styles. It asks the evolutionary searcher (Section 5.2.4) to optimize styles and operations jointly.

Unfortunately, the joint search decreases AUPR by 4.9% and AUROC by 1.4%. The limited defect
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Searcher AUPR AUROC

Random - AUPR 75.55 97.12
Random - AUROC 74.85 97.24

EA - AUPR (AutoDD) 78.02 97.18

Table 5.3: Results for defect segmentation on MVTec-AD using different search algorithms. AUPR
is suitable to rank networks in the imbalanced dataset from the first two rows. Evolutionary
algorithm (EA) can find more promising network than random search.

shapes from Cutout or Cutpase also causes performance drop in the joint search. Thus, AutoDD

does not adopt augmented search space. It merely uses Perlin generation to magnify small-size

datasets.

5.3.4 Search Algorithm Comparison

AutoDD selects the evolutionary algorithm as the searcher (Section 5.2.4). Due to imbalanced

distribution, AutoDD’s fitness is AUPR . To answer RQ3, we use random search to decide which

fitness function is suitable for EA. Then, we compare random search with evolutionary algorithm

(EA). Each search setting would discover its best networks. The AUPR and AUROC of the best

discovered networks represents the search performance.

Table 5.3 exhibits that random-AUPR is slightly greater than random-AUROC. We select AUPR

for EA. By comparing EA with random search, EA further improves AUPR by 2.5%. We observe

that the choice of fitness function contributes minor improvement to AutoDD. In fact, the search

space play the major role to affect neural architecture search. Only with well-design search space

can search algorithm function as a performance booster.

5.4 Related Work

Defect detection approaches use normal images [140] to learn their latent representation. Since

defective images are not involved in the training, the defect representations differ from the normal

one. The dissimilarity distinguishes defects from the normal set. Reconstruction-based methods

use autoencoder [106, 121], variational autoencoder [105], or generative adversarial networks
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(GAN) [108, 141] to learn how to reconstruct images. They are trained on normal images and will

be poor at reconstructing defect images. Defect images will exhibit high reconstruction error. Single-

autoencoder approaches learn the reconstruction by L2 error or SSIM loss [121] between original

and reconstructive images, Dual-autoencoder approaches concatenate the original and reconstructive

images of the first autoencoder for the second one, which then outputs the defect segmentation [106].

GAN approaches use L2 error for image reconstruction, and their discriminators can be simple

classifier [141] or additional autoencoder [108], which maximize classification of the real and fake

images. They also measure high reconstruction error as defect scores. Furthermore, embedding

similarity-based approaches [115, 142, 143, 144] use deep neural networks to learn embedding

vectors of whole images, such as LeNet, ResNet, WideResNet, or MobileNet. The networks are

pre-trained on large and natural images [142, 143, 144] or reuse the encoder of reconstructive

autoencoder [115]. The extracted vectors can finetune an encoder to construct a hypersphere of

normal images [115]. The distance from the center of hypersphere to defect images is defect

scores. One can learn the latent distribution of embedding vectors of normal images by Gaussian

distribution [142], normalizing flow [143], or KNN [144]. Mahalanobis distance [142] or KNN

prediction is computed as the defect scores.

Neural architecture search design network architectures automatically by reinforcement learn-

ing [133, 110, 114], evolutionary algorithm [120, 145], or differentiable architecture gradients [112,

27]. AutoAD [114] searches the kernel size of convolution and pooling, the number of channels,

and the defect measurement for autoencoders. Since their search space is enormous, AutoAD

proposes curiosity-based reinforcement learning to balance exploration and exploitation. NAS-

UNet [112] defines a cell structure for down-sampling and up-sampling networks. A cell has two

inputs from previous cells and three intermediate nodes. NAS-UNet search how to connect inputs

and intermediate nodes and what network operations are assigned to connections. The searched

up-sampling and down-sampling cells are stacked four times to construct a UNet. NAS-UNet

assigns architectural parameters to operations and use bi-level gradient decent to learn network

parameters and architectural parameters iteratively.
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5.5 Conclusion

We study the problem of efficient autoencoders for defect detection. A simple but effective

search space is proposed for the vanilla UNet structure. Defect generator augments the normal

and defective images, balancing label distribution from instance and pixel level.. One-shot UNet is

the performance indicator to reduce expensive training time of network candidates. Evolutionary

algorithm searches promising autoencoders under the model size constraint by ranking their AUPR.

Our best discovered model can attain state-of-the-art performance with 4× less parameters in

MVTec-AD dataset. For broader impact, AutoDD can be adopted to miscellaneous categories of

imbalanced defect detection datasets, such as fabric, steel, concretes, and bridges. The lightweight

models can facilitate the model deployment in embedding systems, When those devices are installed

in the wild, the real-time surveillance system for unusual events become much accessible. As a

limitation, AutoDD has weak capability to recognize special defect regions, which are not simulated

by Perlin noise. More advanced and general defect generation might make AutoDD to discover

powerful autoencoders for complicated defective objects.

75



6. CONCLUSION AND FUTURE WORK

Automated machine learning (AutoML) facilitates the development of machine learning in

business. However, existing AutoML frameworks lack the practical considerations, including

label noise, deployment constraints, limited computing resources, and imbalance labels. In this

dissertation, we made a series of contributions to advacne AutoML in the real world. We discuss

how to mitigate the negative impact of label noise on the performance of neural architecture search,

how to efficiently utilize multiple GPUs for large search space, and how to early stop ineligible

hyperparameters under the deployment constraints. Moreover, we describe how to search efficient

autoencoder under the model size constraint for defect detection. Our outcome can alleviate issue of

imbalanced labels and attain state-of-the-art performance with merely 4× less network parameters.

This dissertation would shorten the gap of AutoML between ideal and the real-world environment

and increase the utility of AutoML for different industrial applications. Regarding to future work,

we can investigate the following directions:

• Explainable AutoML. Search space is the vital component to successful AutoML. An ideal

search space should contain well-performance handcraft models. Still, what hyperparameters

or network operations should be included, or what range of hyperparameters should be set

is open research problems. Machine learning scientists is interested in understanding why

current search space leads to good search results. For example, atrous convolution could be

more helpful than separable convolution in our experiments. With the explainable results,

scientists can easily refine the search space by reducing inferior design choices. It could boost

search algorithms’ efficiency and make it possible to discover promising results fast.

• AutoML under multiple constraints. Apart from a single constraints, it it common to face

multiple constraint in real-world scenarios. For instance, object defection requires lightweight

and low-latency models for autonomous driving. How to balance performance, latency, model

size is an intriguing research problem. Scientist is interested in how multiple constraints affect
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model design. We can extend constraint-aware early stopping to multiple constraints. The

search also needs to carefully design for specific constraints, e.g., what operations can reduce

latency. Hence, AutoML would likely discover qualified models under multiple constraints.

• AutoML for multi-modal applications. Recently, multi-modal data is ubiquitous. For

example, a video clip in YouTube has images, audios, music, subtitles, and the video de-

scription. Each data type is processed by mature machine learning models individually.

Using embedding vectors from multiple data types will enhance ML performance. Although

multi-modal will complicate AutoML’s search space, multi-modal vectors can provide diverse

search signals for search algorithm. It might benefit the model discovery. Therefore, AutoML

can be versatile for miscellaneous applications.
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