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ABSTRACT

Concrete is the most widely used quasi-brittle material in building and infrastructure construc-

tions. Such structures can be exposed to various types of load conditions. Some of these can

potentially result in the catastrophic fracture of such structures. Hence, it is imperative to study

and understand the damage behavior of quasi-brittle materials in order to design the most optimal

concrete-material composition and structure to prevent total failure of the structure.

Various numerical models have been developed over the years to describe the characteristics of

damage behavior in quasi-brittle materials. However, the following limitations exist with proposed

models: (a) in extended finite element method (XFEM), a special finite element is required rather

than using existing conventional finite elements; (b) in peridynamics, a substantial reformulation

of the conventional balance laws introduces additional complexity; and (c) in phase field model, a

crack closure behavior is described with a complex energy decomposition.

In this thesis, a multiple cracking model is developed to overcome the the limitations of these

existing models, where the model is formulated using the thermodynamically-consistent two- and

three-dimensional Graph-based Finite-Element Analysis (GraFEA) framework. The key features

of the model are as follows: (a) there is no need to reformulate the fundamental balance laws,

(a) a discrete number of microcrack planes are introduced at each material point to describe a

probabilistic description of damage evolution, (c) a purely kinematic approach to representing

crack opening and closing is introduced, and (d) conventional elements typically found in the

libraries of existing finite-element codes can be used to mesh the structures.

The developed theoretical and computational approach has been used to simulate concrete frac-

ture under quasi-static and low-speed impact conditions. Also, a fracture length scale controlled

gypsum-based composite material is fabricated to study the fracture behavior under impact load-

ing conditions. The obtained experimental data are used in the validation of the three-dimensional

non-local GraFEA simulation. The crack patterns and load-time curves from the simulation are

matched well with the experimental data.
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1. INTRODUCTION AND LITERATURE REVIEW1

Concrete is the most widely used quasi-brittle solid in the construction of buildings and various

infrastructure projects [1]. The primary role for the concrete portion of a structure is to support the

loads on the structure and also to protect the structure from failing under various load conditions.

In particular, dynamic-load conditions, where the loading duration is short but with a high-intensity

force, can be a severe cause for the total failure of a concrete structure. Examples of dynamic load

conditions are impact from a projectile, explosion, or wave propagation caused by earthquakes.

Therefore, it is crucial to study and understand the damage behavior of quasi-brittle material,

especially concrete, under quasi-static and dynamic loading conditions in order to design the most

optimal concrete material composition and structure to have high energy-absorption to prevent

total failure of the structure.

1.1 Characteristics of quasi-brittle material fracture

Figure 1.1 shows a typical response of a concrete sample under a low-strain rate tensile de-

formation. The appreciable nonlinear response prior to reaching peak stress after the initial linear

elastic response is caused by microcracking in the concrete sample. That is, at some point be-

fore reaching the peak stress, microcracks begin to localize into a macro-crack that eventually

propagates post-peak stress deformation [5]. Under displacement-controlled conditions, the dis-

placement during the post-peak stage consists of opening of the macro crack accompanied by

stress relaxation. Strain softening is observed under steady-state propagation of such cracks (see

Fig. 1.1). It should be noted that the strain-softening response is a dominant feature of the concrete

response.

For a microscopic description of the fracture and cracking process in quasi-brittle materials, it

can be aided by the illustrations shown in Fig. 1.2 [4]. Cracks in concrete may generally evolve

1Reprinted from the original reference of "Experimental, theoretical and numerical studies on plain concrete
fracture in the low-strain rate regime—A state-of-the-art review" by Ho Yong Shin, Carson Lawrence, Kalyan Raj
Kota, Prakash Thamburaja, Arun Srinivasa, Thomas E. Lacy Jr., and Junuthula Reddy, 2021. Mechanics of Advanced
Materials and Structures , 1-45, https://doi.org/10.1080/15376494.2021.2011501.
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Figure 1.1: Typical concrete response subjected to tensile loading. The highlighted portions of
the stress-displacement curve provide information regarding the linear elastic stiffness (typically
within 30% of the peak load [2]), the peak stress and strain-softening characteristics of the mate-
rial [3].

Figure 1.2: Concrete fracture [4]: (a) A schematic figure of crack growth (b) Strain softening
fracture process zone.
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from pre-existing numerous flaws2, such as air pockets, pre-cracked aggregates, weak bonds be-

tween aggregates and matrix. When the material in a given structure reaches its maximum tensile

strength, cracking will occur. Cracks generally propagate in a direction following the weakest re-

sistance in the material. As shown in Fig. 1.2(a), microcracks form ahead of a macroscopic crack,

which consists of a bridged crack directly behind the tip with traction-free crack faces further

behind the tip [6]. As cracking occurs, the fracture front is blunted by a region of microcrack-

ing typically referred as fracture process zone (FPZ, shown in Fig. 1.2(b), see also the work of

Bazant [7]). From Fig. 1.2, it can be clearly seen the microscopic complexity of the fracture pro-

cess in concrete, and a significant number of experimental and theoretical/numerical works have

been devoted to characterizing the macroscopic and microscopic aspects of concrete fracture.

Cementitious materials like concrete are highly heterogeneous by design. Such materials gen-

erally exhibit high compressive strength, low tensile strength, and brittle failure under tensile load-

ing. They also display a highly nonlinear stress-strain behavior in compression and flexure, which

is mainly attributed to an imperfect bonding between the aggregate particles and the cementing

paste. Crack growth analysis of concretes have shown the presence of microcracks prior to load-

ing. The population of microcracks evolves (in size and number of cracks) with load application.

The crack propagation in concrete is accompanied by a process zone of variable size [4]. Several

approaches such as statistical [8], energetical, and fractal theories have been analyzed by Carpin-

teri et al. [9] to study the size-scale effects on the strength and toughness of the concrete. However,

the application of statistical approaches were limited due to lack of reliable experimental data at

the time [8]. The effects of microstructural parameters such as aggregate size, and macroscopic

parameters, such as specimen dimensions, on the brittle fracture of concrete have been experimen-

tally investigated by Issa et al. [10] and was observed that the fracture energy was proportional to

the size of the specimens and maximum aggregate size. The presence of aggregates dictates the

tortuosity of fracture paths and the fracture toughness. Such effects of specimen size and aggregate

2Here, the terms “crack" and “flaw" are used interchangeably. All cracks can be considered flaws but not all flaws
can be considered as cracks. The distinction is the sharpness of the crack tip, a crack being with a very small radius of
curvature.
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Figure 1.3: Physical events associated with the magnitude of strain-rate. Note that the low strain-
rate regime encompasses structural dynamics events such as vehicle traffic and earthquake loading
[4] which significantly affects concrete-based civil structures.

size have been analyzed by applying fracture mechanics formalisms by Issa et al. [11]. When a

growing crack reaches an aggregate, it either goes around or penetrates through it. Since the frac-

ture energy of the interface is typically smaller than the fracture energy for the aggregate [10,11], a

crack more often travels around the aggregate resulting in bridging (cf. Fig. 1.2). Large aggregate

sizes will result in higher fracture toughness due to there higher surface area which provides higher

bond strength between the aggregates and the cement. The size dependence of the fracture energy

has also been analyzed and validated by Bazant et al. [12].

Generally, the fracture behavior exhibited by concrete can be broadly categorized into two

regimes: (1) the fracture exhibited in the low strain-rate regime (which encompasses creep frac-

ture, quasi-static fracture, and structural dynamics-based fracture induced by vehicle traffic and

earthquake loading) and (2) fracture exhibited in the high-strain rate regime (which encompasses

blast/impact events and surface explosions). This information is succinctly displayed in Fig. 1.3.

1.2 Experimental method for describing quasi-brittle material fracture

The focus of this section is to examine various quasi-static mode I and mixed-mode fracture

experimental methods from the literature for plain concrete. An overview of the experimental

methods for characterizing concrete fracture is covered in this section.

Concrete mode I fracture testing on concrete is carried out either directly by applying a tensile

load orthogonal to the desired crack direction, or it is done indirectly by applying a different load-
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ing scheme (such as compression or bending load) that will result in tensile stresses orthogonal

to the crack direction. Several variants of both direct tensile tests and indirect tensile tests have

been proposed, and a selection of them are described herein. These tests have been used to pro-

vide Young’s moduli, Poisson’s ratios, fracture toughness, crack paths, stress-strain relationships,

etc. to characterize concrete material properties, which is necessary for the validation of vari-

ous numerical models. Mixed-mode fracture is recognized to be one of the most frequent failure

modes of concrete structures [13]. This mode is a combination of opening and shearing fracture,

and its study is very important to fully understand the quasi-static fracture behavior of concrete.

This generally involves the application of both a tensile load and a shear load sequentially or si-

multaneously. Following the review of the experimental methods, a summary of advantages and

disadvantages of the experimental methods is presented at the end of the section.

1.2.1 Direct opening mode fracture

A fundamental experimental procedure for characterizing fracture of quasi-brittle material is

through a simple tensile testing with Mode I fracture. A basic version of these tests, known as

the notched prism test method, consists of one end of a specimen being fixed while a tensile

load is applied to the other end. A simple specimen geometry for this test method is a prism,

typically rectangular in cross-section. However, a plain prism does not provide a priori knowledge

of the location a crack will begin from; thus, to provide a starting point for crack propagation,

Gopalaratnam et al. [14] proposed the addition of one or more notches in the midsection of the

prism. This provides controlled, easily observable crack growth with a clear starting point. A

diagram of a typical testing setup is shown in Fig. 1.4.

Hordijk [3] performed quasi-static tensile experiments on notched prism specimens by gluing

the samples of various dimensions to end plates that were then fixed to the testing rig. These

samples were tested in displacement-control with a loading rate of 0.8 µm/s (over a length of 50

mm) to obtain a quasi-static stress-displacement relationship. Displacement was measured with

extensometers affixed to the corners of the specimens. The effects of specimen length and cross-

sectional area at the notch were observed through four geometries: Types A, B, C, and D. Types
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A, B, and C had cross-sectional areas s2×a (see Fig. 1.4) of 60× 50 mm2 (s1×a of 50× 50 mm2

at the notch) and lengths of 250, 125, and 50 mm, respectively. Type D had the same length as

type A of 250 mm, but it had a reduced cross-sectional area of 50 × 40 mm2 (40 × 40 mm2 at

the notch). The stress-displacement curves of these tests are seen in Fig. 1.5. It can be seen that

the concrete shows very stiff behavior pre-peak load, and then a softening response post-peak load.

Hordijk attributes the deviation of type C (the shorter specimen) to the influence of the much stiffer

end plates preventing lateral displacements (and therefore increasing the rotational stiffness) on the

specimens with a small length. Hordijk also notes that the shorter specimens (B,C) showed more

uniform crack trajectory perpendicular to the loading direction, while the longer specimens (A,D)

exhibited more nonuniform crack trajectory. This was attributed to the higher rotational stiffness

of the shorter specimens.

Sorelli et al. [15] performed uniaxial tensile experiments on concrete specimens of 100 ×

200 × 40 mm3 with a single triangular notch of depth 15 mm. The tests were conducted with a

displacement controlled method at the crack mouth opening with a rate of 1 µm/min before the

Figure 1.4: Geometry and loading conditions for a tensile notched prism sample [14].
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Figure 1.5: Stress-displacement curves for the notched prism test from Hordijk [3]. The quasi-
brittle nature of the concrete is seen in the very stiff response before the peak load and the gradual
softening response after the peak load.

peak load and 2 µm/min after the peak load. For a description regarding other works on uniaxial

tensile experiments on plain concrete, please refer to [16].

A drawback of testing notched specimens is the introduction of a nonuniform stress distribution

around the notch. To avoid this, Ren and Houben [17] devised a tensile test method on unnotched

cylinders. The specimen geometry, shown in Fig. 1.6 [17], minimizes stress concentrations with

its second order parabolically varying cross-section. The specimens were glued to endcaps that

were affixed to the test rig to ensure an even distribution of load transfer. The purpose of the

tests was to observe the effects of curing age of plain concrete; thus, ages of 1, 2, 3, 5, 7, 14,

28, and 90 days were tested. Aggregate size effects were also studied with one set of specimens

containing a maximum aggregate size of 6.3 mm and a second set containing a maximum aggregate

size of 16 mm (denoted as "type 6.3" and "type 16", respectively). The quasi-static tests were

displacement controlled with a rate of 0.1-0.05 µm/s depending on the age of the specimen being

tested. Some examples of the force-displacement responses for both aggregate types is shown in

Fig. 1.7, and an example of the crack propagation is shown in Fig. 1.8. It can be seen that for both
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Figure 1.6: Geometry and loading conditions for an unnotched cylinder test [17]. The length L =
90 mm, and the radius R = 50 mm at the center and 80 mm at the ends.

types 6.3 and 16, a longer curing age resulted in significantly higher peak loading and pre-peak

load stiffness. However, longer curing age also resulted in a more brittle response in the post-peak

load region.

Van Vliet et al. [18] performed uniaxial quasi-static tensile tests on dog bone-shaped prismatic

specimens of plain concrete, with the geometry shown in Fig. 1.9. The specimens were glued

to load platens. The tests were displacement controlled to study the structural size effect on the

nominal strength and the fracture energy. To do this, various sizes were tested, with d values

ranging from 50 to 1600 mm and r values ranging from 36.25 to 1160 mm. Also studied was

the effect of moisture on the concrete by curing a “wet” series of specimens at higher humidity

and applying moist cloths on the specimens prior to testing. The displacement rate of 0.028 µm/s

was applied until the linearly varying displacement transducers (LVDTs) reached the maximum

range of 500 µm. Because of this limitation, the large “wet" specimens were not taken to their

ultimate load before the test was concluded. Force-displacement curves for the tests are shown

in the cited paper. The larger specimens showed much higher peak loads in all cases, and the

smallest specimens showed the largest deviations in repeated tests. Van Vliet et al. attribute these
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Figure 1.7: Load-displacement curves for unnotched cylinder test from Ren and Houben [17]. The
“-1" and “-28" refer to specimens cured for 1 day and 28 days, respectively. The “6.3" and “16"
refer to maximum grain size. Note that the longer curing time leads to much higher peak stresses
but a much steeper drop-off, indicating a more brittle response. Furthermore, a larger maximum
grain size leads to a higher peak load prior to strain-softening.

Figure 1.8: Crack propagation for an unnotched cylinder test from Ren and Houben [17].
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Figure 1.9: Geometry and loading conditions for a dog bone specimen test [18]. The lengths d =
50, 100, 200, 400, 800, and 1600 mm, corresponding to the radii r = 36.25, 72.5, 145, 290, 580,
and 1160 mm respectively. The thickness t for all samples was 100 mm.

large deviations to the larger relative size of the aggregates in the fracture region of the smaller

specimen size leading to less uniformity in the stress at the fracture region. The “wet" specimens

showed lower strength values when compared with the “dry" specimens. This could be caused by

internal stresses resulting from differential shrinkage as the specimens begin to dry out.

A common test method for the characterization of fracture in metals is the compact tension

test method, in which square-shaped notched specimens are loaded in tension via internally at-

tached rods. Fernández-Canteli et al. [19] proposed the modified compact tension test method to

characterize fracture of concrete. The specimens used for this test method are disc-shaped with a

standard diameter of 150 mm and a notch cut along the radial direction of the specimen from the

edge to a point near the center. Holes are then drilled in the specimen perpendicular to the notch,

and two steel bars are glued to the two halves created by the notch. This setup can be seen in the

schematic shown in Fig. 1.10. The rods are pulled in tension, resulting in crack growth from the

tip of the notch. A displacement-controlled loading scheme is used with a rate of 0.5 mm/min.

An example of the generated crack path for these experiments is shown in Fig. 1.11. The concrete

specimen shows very stiff behavior before the peak load is reached and then a gradual softening
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Figure 1.10: Geometry and loading conditions for a modified compact tension test [19]. The
specimen diameter D = 153 mm, the length of W = 116.4 and 114.3 mm, the length of d = 40.2
and 32.9 mm, the radius of the rods was 8 mm, and the specimen thickness was 63.5 and 68.6 mm.

once fracture occurs at the peak load.

1.2.2 Indirect opening mode fracture

The cracked chevron notched Brazilian disc (CCNBD) test method can be applied to study

both mode I and mode II fracture [20]. This test is performed on disc-shaped specimens with a

chevron notch cut along the radial direction extending in opposite directions at the center of the

specimen. The specimen is then subjected to a compression load along the radial direction, and

the orientation of the notch with respect to the loading points (defined as angle β) determines the

mode of fracture being tested. Wei et al. [20] performed mode I and mode II CCNBD tests with

the geometry shown in Fig. 1.12. The angle β used for the mode II tests was determined by Wei

et al. to be 28◦. The team used a displacement-controlled load rate of 0.005 mm/min. Examples
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Figure 1.11: Crack propagation for a compact tension test from Fernández-Canteli et al. [19].

Figure 1.12: Geometry and loading conditions for a mode I (β = 0◦) cracked chevron notched
Brazilian disc test [20]. The dimensions tested were R = 36.9 mm, a0 = 9 mm (average),
a1 = 26.8 mm (average), and B = 30.2 mm (average).

of force-displacement curves for both modes are shown in Fig. 1.13, and typical crack propagation

paths are shown in Fig. 1.14. The curves do not approach zero load at the end due to unstable crack

growth splitting the specimen into two halves, at which point the test was concluded.

The three-point bend test (TPBT) method is used as an indirect method of studying the mode I
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Figure 1.13: Load-displacement curves for the Brazilian disc test with mode I and mode II load
application from Wei et al. [20]. This experimental data suggests that the peak load is sensitive
to testing modes whereas the applied displacement where cracking occurs is insensitive to testing
modes.

Figure 1.14: Crack propagation for a Brazilian disc test from Wei et al. [20], where (a) shows a
mode I test and (b) shows a mode II test.
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Figure 1.15: Geometry and loading conditions for symmetric three-point bending test [23].

concrete fracture [21]. The limitations of uniaxial tensile test methods, such as rotation of the end

platens, load eccentricity, and a nonuniform glue bonding of concrete specimens with end platens,

can be circumvented with this method. A stable analysis was achieved by placing the specimen

on two supports and applying the load at the midspan of the beam. Sufficient machine stiffness is

important to obtain the stable fracture of a concrete specimen, where the stiffness of the machine

has to be greater than the steepest slope of the softening part of the force–deflection curve [22].

From the data obtained by the conducted uniaxial tensile test, the characteristic length lch of the

beam for conducting a stable bending test was determined with the Eq. (1.1)

lch =
EGf

f 2
t

(1.1)

where Gf is the fracture energy, E is Young’s modulus, and ft is the tensile strength [23]. The

stiffness of the testing machine was determined with the consideration of a specimen size and cal-

culated specimen characteristic length [22]. The rectangular TPBT specimen has a machined notch

starting from the bottom of the surface at the center of beam. The standard shape of the specimen

is shown in Fig. 1.15. The load cell attached to the bottom of the steel actuator measures the ap-

plied load and a clip gauge attached to the notch provides a crack mouth opening displacement

(CMOD) value. The CMOD value was used as a feedback signal to ensure a constant cross-head

displacement rate.

Bažant [24] performed a series of tests to study the size effect and fracture energy of concrete
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and mortar specimens. The nominal standard strength of structure is size independent in plastic

limit analysis or elasticity with strength limit. However, in the case of quasi-brittle material such as

concrete, the nominal strength depends on a size of structure [25]. A size effect law is an equation

derived from dimensional analysis to describe effects of specimen size and maximum aggregate

size on the nominal strength at failure, where the law considers the length of the FPZ as a constant

material property. A different length of FPZ will result in different failure behavior according

to the size effect law. To study the effect of specimens size, four different values of beam depth

(d = 1.5, 3, 6, and 12 in) were used in each type of test specimen. The length, span and notch depth

of the specimen were decided based on the beam depth as (length, span, notch depth = 8/3d, 5/2d,

1/6d). The notch width was 0.1 in. The thickness of the specimen was either 0.75 in or 1.5 in. The

maximum aggregate size of 0.5 in. was used for concrete specimens. The maximum aggregate size

of mortar specimens was 0.19 in. The study showed that the fracture energy was similar for three-

point bending specimens, edge-notched specimens, and specimens under eccentric compression

in both cases of concrete and mortar specimens. The analysis of the results with the size effect

law showed that due to the difference in the size of the FPZ, the three different specimen types

showed a different shape of size effect law graph. For the TPBT, the ligament of the specimen

was experiencing both tensile and compressive stress states and the area of the ligament under the

tensile stress was larger than the tensile stress ligament area of eccentric compression specimen.

This induced a medium size of the FPZ of TPBT specimens and the plot of size effect law placed

between the edge-notched specimen and the eccentric compression specimen.

Tang et al. [26] captured a full-field displacement of beam specimens with an electronic speckle

pattern interferometry (ESPI) technology, which is using the interaction between two coherent laser

beams. Two types of plain concrete were tested in this study: a high strength concrete (HSC) con-

taining a superplasticizer and a normal strength concrete (NSC) having no plasticizer. Compressive

strength of the HSC and NSC was 90 MPa and 40 MPa. The low water to cement ratio and added

super plasticizer increase the strength of HSC. The specimen dimension used in the study was

(length × depth × thickness = 710 × 150 × 80 mm3) with 600 mm of clear span. The depth and
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Figure 1.16: Load-deflection curves of the normal and high strength concrete [26]. The low water
to cement ratio and added super plasticizer increase the strength of high strength concrete. The
dimension of the beam was (length × depth × thickness = 710 × 150 × 80 mm3) with 600 mm
of clear span. The depth and thickness of notch were 45 mm and 3 mm. A load was given by a
displacement controlled actuator with a rate of 0.01 mm/min.

width of the notch were 45 mm and 3 mm. The experiments were conducted by a displacement

controlled method with an actuator applying load on a specimen. A loading rate for the experi-

ments was 0.01 mm/min. The CMOD was measured with clip gauge at the notch and the midspan

deflection was measured with a LVDT. The load-displacement curves from the experiments are

shown in Fig. 1.16. The minimum and maximum values of experimental data are bounded by solid

or broken lines of each concrete type in the figure. Due to the difference of the individual speci-

mens and the heterogeneity of the concrete, the experimental results have not appeared as a single

curve but bounded between two lines. As seen in the figure, the load-displacement curves from the

HSC specimen show a higher peak load than the NSC due to the different mixture compositions.

The FPZ was qualitatively studied through a measured strain field by ESPI. A fully developed

FPZ length at the 33% of peak load in a post-peak region was nearly 2.7 times of the maximum

aggregate size. Bažant presented similar result that the FPZ length, which is indicating uniformly

distributed microcracks, would be 3 times of maximum aggregate size [27].
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Figure 1.17: Crack path of specimens with various notch depths. The dimension of the specimens
from S1 to S6 are shown in Table 1.1. A loading rate was 0.005 mm/min and controlled by the
CMOD. All crack paths initiated at the notch tip and propagated through a center region of the
beam [28].

Wu et al. [28] conducted TPBT to study the properties of FPZ in concrete using the digital

image correlation (DIC) technique. The DIC technique compares a reference image with a de-

formed image of the specimen to measure a deformation in the domain. In this study, a digital

camera with a resolution of 1024 × 768 was used and the camera captured the deformed image

once per second until the failure of the specimens. Six different sizes of specimens were used in

the test and the size information is shown in Table 1.1. The thickness of all the specimens was 40

mm. A load was given with a rate of 0.005 mm/min by the displacement controlled method. Four

different notch-depth ratios of α = a/d = 0.3, 0.4, 0.5, 0.6 were used to study the effect of notch

depth size on fracture behavior of concrete. The study showed that the maximum length of the FPZ

decreased as the notch depth to the specimen height ratio increased. The final crack trajectories of

each specimen are shown in Fig. 1.17. The crack was initiated from the notch tip and spread out

through the center portion of the beam.

Hordijk [3] proposed the four-point bending test (FPBT) method as a verification test for the
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Table 1.1: Concrete specimens used in the study of Wu et al. [28]

Specimen S1 S2 S3 S4 S5 S6

Span, S (mm) 160 240 320 320 320 320
Beam depth, d (mm) 40 60 80 80 80 80
Notch depth, a (mm) 12 18 24 32 40 48

a/d 0.3 0.3 0.3 0.4 0.5 0.6

uniaxial tensile test. The FPBT method was used in this study instead of TPBT, to avoid the

disadvantage of TPBT, where the test introduced the compressive stresses in the fracture zone from

the loading support which was parallel to the beam notch. The geometry and loading condition of

the bending test are shown in Fig. 1.18. The depth d of the beam was 100 mm and three different

depth of notches, a = 10, 30, and 50 mm, were tested at the beam bending station. The thickness

and length L of the beam were 50 and 500 mm. LVDTs were attached to the concrete specimens to

measure the deflection, while the average signal from the two LVDTs near the top surface was used

as a control parameter of the testing machine. The deformation rate applied to the specimens was

0.16 µm/s. The load was measured at the load cell attached to the actuator and the deflection at the

center of the beam was measured with two LVDTs. The material parameters of the concrete were

measured from cube tests with a specimen size 150 mm3 and a deformation-controlled uniaxial

tensile tests. The load-deflection curves of the three different types of a notched specimen are

shown in Fig. 1.19.

Figure 1.18: Geometry and loading conditions for four-point bending test [3].
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Yin et al. [29] conducted FPBTs to study the fracture properties of concrete. The load given by

the two load platens induced pure bending condition near the midspan notch section. Tensile crack

propagation was initiated at the tip of the notch as the load increased. The specimen dimension

used in the study was (length × depth × thickness = 1000 × 200 × 120 mm3) with 800 mm of

clear span. The notch size for each specimen was corresponding to a crack-depth ratios of 0.2,

0.3, 0.4, 0.5 and 0.6. The maximum size of the coarse aggregate used in the study was 20 mm.

The compressive strength fc and elastic modulus E of the concrete were 40.78 MPa and 32.46

GPa. The load was controlled by a constant midspan displacement of 0.05 mm/min. The midspan

deflection was measured with LVDTs and the CMOD was measured using a clip gage. A crack

propagation path for the specimen of each notch size are shown in Fig. 1.20. The crack propagation

was started from a notch tip at all specimens. A deviation of the crack propagation path away from

the notch plane was detected from the visual inspection of crack paths, where the influence of

coarse aggregate on the crack propagation path could be the main reason for this deviation.

Figure 1.19: Load-deflection curves of the three different notched specimens under the monotoni-
cally increasing deflection [3]. The peak force increases with reducing notch depth. The dimension
of the beam was (length× depth× thickness = 500× 100× 50 mm3) with 450 mm of clear span.
A rate of loading was 0.16 µm/s and an average deformation was used as a control parameter.
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Figure 1.20: Crack propagation path of each specimen with different notch size. The dimension
of the beam was (length × depth × thickness = 1000 × 200 × 120 mm3) with 800 mm of clear
span. The tests were displacement controlled with 0.05 mm/min of loading rate. All the specimens
showed main crack propagation path at the center of a beam. Five different notch-depth ratio(0.2,
0.3, 0.4, 0.5, 0.6) were used in the experiments and labeled as (F2, F3, F4, F5, F6) [29].

For each experiment, a load-deflection and a load-CMOD curve were generated [29]. The

load-deflection curves showed softening behavior after the peak load, where the specimens with

the initial crack-depth ratios of 0.2 and 0.3 showed more brittle behavior due to a dissipation of

relatively high amount of stored elastic energy at fracture, which is shown in the Fig. 1.21.

The gradual decrease of the maximum load was observed at the load-CMOD curves corre-

sponding to the gradual increase of critical CMOD. The fracture energy of the different tests was

calculated by using the area under the load-deflection curve. An exponential function was used

to fit the load-deflection curves to calculate the area. Although the area under the load-deflection

curve is getting large as the notch-depth ratio decreases, the increased crack surface area induced

the calculated average fracture energy of specimens with different crack-depth ratio showed simi-

lar fracture energy. The total average value of the fracture energy of normal strength concrete was

201.285 N/m, which was similar with the results from other researchers.

1.2.3 Mixed mode fracture

A simple experiment devised to test mixed-mode fracture of concrete is a modified TPBT

method. This was done by Wu et al. [13] using rectangular beams with a two-segmented notch,
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Figure 1.21: Load-deflection curves of the specimens with different crack-depth ratios. The exper-
imental data are bounded by upper and lower limits with different colors for the different crack-
depth ratios. Comparing to the result of a crack-depth ratio of 0.6, the case of crack-depth ratio of
0.2 and 0.3 show steeper decrease of load after the peak load [29].

Figure 1.22: Geometry and loading conditions for a modified three-point bending test [13]. The
dimensions tested were L = 700 mm, S = 600 mm, and d = 150 mm (ranges for a0 and α are
given in the text). The thickness was 40 mm.
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Figure 1.23: Crack propagation for a modified three-point bending test from Wu et al. [13]. These
samples have a0 = 45 mm and α = 22.5◦ (left) and 67.5◦ (right).

with the second notch segment measured at an inclination angle α with respect to the first notch

segment, as seen in Fig. 1.22. The angle α can range from 0 to 90◦. Wu et al. studied the behavior

of specimens spanning a wide variety of inclination angles (0, 22.5, 45, 67.5, and 90◦) and notch

lengths (30, 45, 60, and 75 mm). The specimen geometries tested were 700× 150× 40 mm3. The

team placed strain gauges at the notch tips and measured both CMOD and crack mouth shearing

displacement (CMSD). Load-strain curves with respect to both CMOD and CMSD were obtained

using a displacement controlled rate of 0.012 mm/min. The results can be found in the cited paper.

For both CMOD and CMSD strains, the same brittle pre-peak load behavior and softening post-

peak load behavior are shown. The crack paths (with the exception of some tests with an inclination

angle of 90◦) initiated at the tip of the inclined notch segment and grew toward the point of load

application, which can be seen in Fig. 1.23.

Unlike the modified TPBT, the modified FPBT differs greatly from its mode I counterpart.

Rather than applying the load symmetrically about a single notch in the specimen like the mode

I test method, the mixed-mode specimens consist of two notches on opposite sides. The notches

are the same dimensions and aligned with the center line of the specimen. The compressive load is

then applied with the opposite sides being offset toward opposite sides, as shown in Fig. 1.24 [30].

The asymmetry of this setup results in shear cracking as well as opening cracking.
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Figure 1.24: Geometry and loading conditions for a mixed-mode four-point bending test.

One of the earliest examples of this test method was performed by Bažant et al. [31] in the

late 1980s. Other influential studies were carried out by Bocca et al. [30] in the following years.

Swartz et al. [32] also performed similar experiments, as well as a modified version to include

axial loading. Considering all these studies, there is much data on size effects of the specimens,

size effects of the notches, and the effects of curing conditions. In all cases, experiments were

carried out under displacement-controlled quasi-static loading conditions. In general, the observed

crack paths initiate at the notch tips and grow in a curved fashion toward the middle load point on

the opposing side of the specimen.

Winkler proposed the L shaped panel test method in his studies [33, 34]. In these studies, L

shaped panels were affixed to the testing machine according to the configuration shown in Fig. 1.25.

The lower edge was held as a fixed boundary condition, and the vertical support on the horizontal

leg applied the tensile load. The tests were performed under displacement control of 0.02 mm/min.

In addition to plain concrete, Winkler also tested fiber-reinforced panels. The load-displacement

curves in terms of the vertical displacement at the point of load application for the plain concrete

specimens are shown in Fig. 1.26.

1.2.4 Summary of the experimental methods

Simple mode I fracture experiments are an effective method of determining the fracture prop-

erties of concrete. The notched prism test method, the simplest in specimen geometry, allows one

to directly measure the material properties. However, gripping the specimen with the test fixture

becomes a challenge. Typically, end caps are glued to the specimen, which must be carefully se-
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Figure 1.25: Geometry and loading conditions for the L shaped panel test [33]. The dimensions
tested were L = 500 mm, t = 100 mm and a = 40 mm.

Figure 1.26: Load-displacement curves for three L shaped panel plain concrete tests with the same
preparation, properties, and loading from Winkler [33] showing the typical concrete response.
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lected to prevent adhesive failure, and the experimental data may need correction to account for the

adhesive’s effects. The gripping of the end platens can also produce unwanted rotation reactions

in the specimen, resulting in unwanted stresses. Also, nonuniformities can arise around the notch,

which could adversely affect the data.

To avoid preparing a notch in a specimen, the unnotched cylinder test method and the dog

bone specimen test method utilize parabolically and circularly varying midsections, respectively,

as the fracture zone. These allow a priori knowledge of the location of crack initiation without the

nonuniform stresses that can arise around a notch. The issues with gripping the specimen in the

test fixture, however, still remain. The specimen geometries are also more complex compared with

the notched prism test method.

The modified compact tension test method shares many advantages and disadvantages with the

notched prism test method; it retains a simple specimen geometry with a notch and adhesives for

gripping with the test fixture. Rather than using end caps, however, the modified compact tension

test method uses steel rods glued to the inside of the specimen, which can be easier to affix to a

variety of test machines, but the adhesive effects must still be accounted for. Rotation effects must

also be accounted for, unless measures (such as rotating eye nuts) are incorporated at the grips to

eliminate the unwanted rotation reactions.

Indirect tensile test methods overcome the limitations of the direct tensile test, which are related

to the load eccentricity, unwanted rotation reactions of the end platens, and adhesive bonding at the

grip sections. The Brazilian disc test method, for example, eliminates gripping issues by utilizing a

compressive load along the radial direction of a disc-shaped specimen. This offers simple specimen

geometry with no adhesives needed, but the material properties cannot be directly measured and

must be derived from the measured data. This test method can also be extended to CCNBD test

method, which uses a chevron notch to test both mode I and mode II fracture.

The TPBT method has the advantage of the easy experimental setup and free of gripping is-

sues, but the frictional force at the support and compressive stresses in the fracture zone are the

main drawbacks of the method. The FPBT method is a similar experimental method to the TPBT
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method, but the FPBT method uses two inner loading pins to give a constant bending moment.

The wide range of zero shear force zone between the two inner pins ensures a stable stress state

at the tip of a notch. Since the loading parts have two pins, the experimental setup becomes more

complicated compared to the TPBT.

Because mixed-mode fracture is the most common fracture mode encountered by concrete

structures, several mixed-mode experimental methods have been developed. The modified TPBT

method is identical to the standard TPBT method, but the extended, angled notch provides the

shear stresses for mixed-mode fracture. This means that all the advantages and disadvantages from

the standard TPBT method are retained. The modified FPBT method, while rataining many of the

advantages and disadvantages of the modified TPBT method, is more complex than the modified

TPBT method, with two notches needed in the specimen and more loading points.

The L shaped panel test method provides a known origin point of crack propagation without

the use of a notch. However, the nonstandard specimen geometry and the complex test setup make

it a difficult test to perform. Similar to the notched prism test method, gripping issues are present,

with adhesives needed for attachment to the test fixture and the possibility of unwanted rotation

reactions needing correction.

1.3 Numerical methods for describing quasi-brittle material fracture

In this Section, a review of the prevailing theoretical and computational works which deal with

modeling fracture in plain concrete is presented.

Before embarking on the review of the prevailing theoretical and computational works, a brief

description of the physical process for governing fracture in concrete is presented since it is central

to the development of the aforementioned modeling tools: the structural characteristic of concrete,

which is the mixture of cement and aggregates, bring two main features in modeling of fracture pro-

cess of concrete. The strain-softening and diffuse crack pattern of FPZ arise from the formulation,

evolution, and coalescence of microcracks in concrete. These features are related to the regulariza-

tion method to address the damage propagation in quasi-brittle material like concrete. The various

experiments already showed the softening behavior of concrete in the post-peak region [35]. The

26



heterogeneity and brittleness of material characteristics cause progressively distributed damage,

such as dispersed microcracks and void formation, which make this particular fracture behavior

of concrete [36]. Hillerborg et al. [37] proposed the cohesive crack model for concrete describing

the gradual softening of stress due to the increasing displacement of crack opening. The model

assumed the remaining ligaments of the formulated crack would transfer the stress until the open-

ing displacement reach the critical opening displacement. The monotonic decreasing function was

used to express the softening behavior, where the critical opening displacement was decided from

the consideration of energy balance.

The diffuse characteristic of the FPZ in concrete was seen in the image obtained from the x-

ray investigation [38], which indicated the formation of a microcrack zone near the notch tip with

increasing loading condition. The densely distributed microcracks in the FPZ were captured with

the acoustic emission technique, where 95% of the acoustic energy emission originated from the

FPZ [38]. The diffuse characteristic of the FPZ can be addressed with the nonlocal regularization

method since the method has the characteristic length scale in the formulation. The concept of the

nonlocal method, which considers the interaction among the elements inside of the nonlocal zone,

is suitable to model the effect of generated microcracks on the FPZ [39]. Bažant et al. [40] used

a nonlocal regularization method with the smeared cracking model to improve the limitations of

the local model, such as spurious mesh sensitivity and directional bias of the mesh. The damage

variable for the strain softening was defined as a function of nonlocal strain, which was the spatial

averaging of the positive part of maximum principal strain. The Gaussian distribution function

was used as a weight function of the nonlocal integral formulation. Jirásek [41] incorporated

the integral based nonlocal formulation into a continuum damage mechanics model to predict the

damage propagation in concrete. The weighted spatial average of the equivalent strain was used

as a driving force of the damage evolution. The physical interpretation related the maximum

aggregate size to the internal length scale, where the 2.7 times of maximum aggregate size was

recommended to use as a length scale of the nonlocal averaging method [42]. Giry et al. [43]

proposed the stress-based nonlocal integral method which had a nonsymmetric integral domain at
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the vicinity of the boundaries. The weight function of the nonlocal formulation was dependent on

the direction and intensity of the principal stresses of the neighboring points.

The implicit gradient enhancement method is also considered as a nonlocal regularization

method, where the nonlocal strain is obtained from the Helmholtz equation. The expanded equiv-

alent local strain through the Taylor series is incorporated into the integral type of nonlocal for-

mulation to derive the differential equation of the nonlocal strain, which contains the nonlocal

length scale parameter [44]. The homogeneous Neumann type boundary condition was introduced

to ensure that the average of nonlocal strain over the entire domain would be the same with the

average of the damage-equivalent local strain [45]. The two governing equations, which are the

momentum equation and the Helmholtz equation with nonlocal strain, are solved simultaneously

by a coupled numerical scheme. Zreid et al. [46] used an implicit gradient enhancement to regular-

ize their implementation of a microplane damage-based model. The modified form of von Mises

equivalent strain incorporating the volumetric and deviatoric parts of microplane strain was used

as an equivalent strain term in Helmholtz equation [47]. Poh et al. [48] used over-nonlocal gradi-

ent enhancement as the regularization method for the plastic-damage model to represent damage

evolution in concrete. The internal damage parameter was incorporated into the integral formula-

tion, which lead to the gradient enhancement equation for the nonlocal internal damage parameter.

The effective internal parameter was defined as the weighted sum of the local and nonlocal inter-

nal damage parameters, which was introduced in the damage parameter expression. The damage

parameter reduced the nominal stress according to the evolving damage in concrete.

The aforementioned studies presented various models of the strain-softening at FPZ to describe

the response of the concrete under the evolving damage. The evolution of damage is controlled

by the damage variable incorporated in the governing equations, which reduces the stiffness of

concrete.

The subsequent sections review the various damage models for concrete fracture, from the

traditional continuum-based approach to the discrete model of extended finite element method.
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1.3.1 Crack band model

The crack band theory was introduced to address the gradual strain-softening in a heteroge-

neous material due to the formation of microcracking in mode I fracture [27]. The aggregate size

considered in the theory was not relatively small compared to the structural dimension. The FPZ

at the crack tip, also called as a crack band, was modeled as a densely distributed band of parallel

microcracks having a blunt front. The finite elements with smeared crack were used to express the

damaged material, instead of using discrete crack appearance as shown in line crack model [49].

The fracture strain εf was introduced to express an additional strain due to the opening of the mi-

crocracks. The fracture strain was defined as an average deformation due to microcracking divided

by the crack band width wc, where it incorporated the characteristic length of concrete into the

damage concept. Without considering the rate effects, the fracture strain was defined as a mono-

tonically decreasing function depending on the stress term in the loading direction, which is shown

in Eq. (1.2)

εf =
1

Cf
(ft − σ3) (1.2)

where Cf is the slope of the monotonic decreasing function; and ft is the tensile strength. The

parameters for the strain-softening behavior were defined with the material parameters from ex-

periments. The definition of Cf and the critical strain ε0 are shown in Eq. (1.3). The critical

strain represents the point where the stress in the loading direction vanishes to zero. The fracture

energy Gf is incorporated in the equation, which represents the energy consumed in opening the

microcracks per unit area of plane.

Cf =
ftwc
2Gf

, ε0 =
ft
Cf

(1.3)
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The formulated constitutive behavior under the softening range with principal stresses σ1, σ2, σ3

and principal strains ε1, ε2, ε3 is shown in Eq. (1.4)


ε1

ε2

ε3

 =


1/E −v/E −v/E

−v/E 1/E −v/E

−v/E −v/E 1/(Ecp)



σ1

σ2

σ3

 (1.4)

where E is the Young’s modulus; v is the Poisson ratio; and cp is the cracking parameter. The

equation for the cracking parameter is shown in Eq. (1.5) and it varies within the range of 0 <

cp < 1. The parameter Et = ECf/(Cf − E) is the tangent softening modulus which represents

the modulus of strain-softening region.

cp =
−Et(ε0 − ε3)

Eε3

(1.5)

The principal stress σ3 along the loading direction decreased monotonically as the fracture strain

increase, and it vanished when the fracture strain reached the critical strain. The effect of fracture

strain was incorporated into the compliance matrix as a cracking parameter to address the stiffness

reduction due to the evolving damage. It should also be noted that the original version of the crack

band model has been augmented to include a microplane model (more on this shortly) description

in order to simulate shear cracks in concrete [50].

In a crack band model, the width of the damage band is dependent on the chosen element

size. Therefore, results from simulations using the crack band model will be mesh-dependent [51].

However, for computational purposes, the width of the element-wide band may be adjusted if the

strain-softening modulus is adjusted so as to preserve the same fracture energy, and such a study

has been conducted by Bazant and Oh [27].

1.3.2 Microplane model

In the microplane models of Bažant et al. [50] which are specific to modeling the deforma-

tion response of concrete, each microplane represents the contact surface (or plane of separation)
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between neighboring particles in concrete [see Fig. 1.27(a)]. The response of a element is then

obtained from orientation averaging of a large number of spring-dashpot models with a limiting

boundary (see Fig. 1.27b). These individual springs and dashpots are referred to as microplanes

by Bazant and co-workers.

With εij being the macroscopic strain tensor, the normal strain εN in the microplane model (see

Fig. 1.28) is calculated as

εN = ninjεij (1.6)

where ni(i = 1, 2, 3) is the Cartesian coordinates components of unit normal vector n of the

microplane, is split into a volumetric portion εV (which is the same for all microplanes) and a

“deviatoric" portion εD by

εV = εkk/3 , εD = εN − εV (1.7)

where the repeated indices represent summation over i = 1, 2, 3. Furthermore. the two resolved

shear strain components εM and εL on the microplane (see Fig. 1.28) are defined as

εM = minjεij , εL = linjεij (1.8)

where mi(i = 1, 2, 3) and li(i = 1, 2, 3) are the Cartesian coordinates components of unit vectors

orthogonal to the normal vector on the microplane, and l = m× n.

Along the the use of the Hill-Mandel macrohomogeneity condition, the macroscopic stress

components on the microplane, σ are obtained from the individual microplane responses averaged

over a suitable number of microplanes (while using a kinematic constraint between the macro-

scopic and microscopic variables), that is,

σ =
3

2π

∫
Ω

s dΩ (1.9)

where Ω is a surface of a unit hemisphere centered at the material point, and 2π/3 its volume.
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Figure 1.27: (a) System of discrete microplanes which are the contact surfaces (or plane of separa-
tions) between neighboring particles in concrete, and (b) microplane systems (for normal response)
and generalized Maxwell model for each microplane. The figure is reused with permission from
ASCE [52].

Figure 1.28: Decomposition of the total macroscopic strain tensor on the microplane. ετ represents
the microplane shear strain component [53].
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Furthermore, the tensor s is given by

s = σNn⊗ n + σLsym (l⊗ n) + σMsym (m⊗ n) (1.10)

with the constitutive response of the stress components σN , σL and σM on the microplane respec-

tively given by

σN(t) = F tτ=0(εN(τ), εT (τ)), (1.11)

σL(t) = Gtτ=0(εN(τ), εT (τ)), (1.12)

σM(t) = Ht
τ=0(εN(τ), εT (τ)) (1.13)

where F , G and H are functionals of the history of the microplane strains at time t, and εT (τ) is

the shear strain resultant on the microplane with components εL and εM . It is important to note

that the functionals G andH are the same except they give different projections on axes L and M ,

respectively.

The microplane model of Bazant is one of the most popular approaches to modeling concrete

softening response, in particular, it has been widely used to simulate the response under complex

loading conditions including heavy confinement where the peak and post-peak response are quite

different. The stress response is obtained by orientation averaging over 37 microplanes at each

material point to obtain a better accuracy for far post-peak response (see Fig. 1.27b). Furthermore,

Caner and Bazant [54] point out that the Poisson’s ratio has to be less than 0.25 which is reason-

able for concrete. They continue to identify some of the challenges in meeting the 2nd Law of

Thermodynamics and their approach to addressing this issue.

Finally, with regards to regularization in a microplane framework, Bazant and Di Luzio [55]

introduces a nonlocal version of a quantity f , that is, f̄ which is calculated as

f̄(x) =

∫
R υ(x− x′)f(x′) dV∫
R υ(x− x′) dV

(1.14)
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where f(x′) is the quantity f at point x′, and dV is a volume element. The regionR is a sphere of

radius equal to an intrinsic material length scale with point x being the centroid of the sphere, and

point s being a material point within region Ω. Finally, υ(x−x′) represents a kernel function. The

user is free to assign a physical meaning to quantity f e.g. strain, stress or even components of the

microplane strain, etc.

1.3.3 Continuum damage mechanics

The damage model based on the continuum mechanics explains the fracture of materials with-

out introducing the complex description of microscopic damage initiation and evolution to the

formulation. The heterogeneity of the damaged material, which is derived from the formulation of

microcracks in the material, is homogenized with the damage variable in the continuum domain,

where the damage variable introduced in the free energy formulation expresses the macroscopic

evolution of damage. The stiffness of this element is continuously degrading as the damage vari-

able evolves [56]. The damage variable can have different forms, such as scalar, vector or tensorial

form. The scalar damage variable is used to address the formulation of randomly distributed mi-

crocracks in isotropic materials [57]. The vectorial or tensorial form of damage variable is used to

represent the oriented microcracks, which can be the sources of anisotropic damage evolution [58].

The different expression of damage variable in opening and closing cracks of concrete was also

studied, where the splitting of free energy into tension and compression part was made to study the

unilateral effects of quasi-brittle material [59].

Richard et al. [60] proposed a continuum damage mechanics model which used a scalar damage

variable to express the nonlinearities due to micro-cracking in concrete. The constitutive equations

assumed two independent behaviors of the cracked surface, where the hydrostatic strain part of

the state potential affected the cracks opening and closing and the deviatoric part of the strain and

stress tensors were related to the frictional sliding. The strain energy was decomposed into two

parts, which were spherical and deviatoric parts, to realize the constitutive assumptions. The state
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potential equation related to the damage is shown in Eq. (1.15)

ρΨdamage =
κ

6

(
(1− ζ) 〈εkk〉2+ − 〈−εkk〉

2
+

)
+ (1− ζ)µεDijε

D
ij (1.15)

where ρ is the mass density; Ψdamage is the damaged state potential; κ and µ are the bulk and shear

modulus; ζ is the scalar damage variable; εij is the total strain tensor; and εDij = εij − (1/3)εkkδij

is the deviatoric part of strain tensor, where δij is the second order Kronecker tensor. The hydro-

static strain part was decomposed into positive and negative parts to model the stiffness recovery

in the crack closure, where 〈εkk〉+ represents the positive part of εkk. Even though the damage

variable was introduced in both of the spherical and deviatoric part of the energy, the damage at

compression only acts on the deviatoric energy part due to the introduced crack closure model. The

effect of the sliding at the crack lips was considered in the total state potential with the additional

term related to the damage variable and deviatoric component of free energy. The kinematic and

isotropic hardening due to friction was also addressed in the state potential. The state equations

were derived based on the Clausius–Duhem inequality [61] to assure thermodynamic admissibil-

ity. The threshold surface, where the positive value indicated the activation of damage, was defined

with the damage energy released rate and thermodynamic force of isotropic hardening. The sur-

face without the threshold managed the sliding mechanism which related to the thermodynamic

force of the kinematic hardening. For the numerical implementation, the explicit form of dam-

age variable was calculated following the calculation of Cauchy stress and friction stress tensor.

The integral form of the nonlocal regularization method was used to avoid the strain localization,

where the nonlocal damage threshold surface was defined with the nonlocal damage energy release

rate. The proposed method was used to solve structural application problems, such as a direction

tension test [62] and a notched concrete beam bending test [63]. The simulation results followed

the experimental trend of the load-displacement curve, while the diffuse crack propagation path

was observed from the nonlocal regularization. The comparison between simulation results and

experimental data is shown in Fig. 1.19.
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Figure 1.29: Load-displacement curves: (a) direct tension test and (b) single edge notched beam
bending test [60].

Brünig et al. [64] formulated an anisotropic damage model in a continuum approach, where the

formulation followed the second law of thermodynamics. The different values of the parameters

in damage criteria were used depending on the stress state. The strain tensor was decomposed

into elastic εel and inelastic part εda, followed by the kinematic concept suggested in previous

work of modeling the damage behavior of ductile metals [65]. The decomposed strain tensor

was used in the definition of specific mechanical work and the specific Helmholtz free energy ψ.

The elastic part of the free energy was defined as a quadratic function of the elastic strain tensor

and the decrease of energy due to damage was incorporated by the linear function of the damage

strain tensor. The material parameters determined from the experimental data were included in the

energy definition, where the parameters described the degradation of elastic properties due to the

evolving damage. Two parameters were related to the isotropic growth in damage and the other two

parameters represented the anisotropic damage evolution. The specific Helmholtz free energy also

incorporated an additional internal mechanical state variable ϕ representing an equivalent damage

strain measure. From the consideration of the second law of thermodynamics, the governing state
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equation is derived as shown in Eq. (1.16)

σ · ε̇el + σ · ε̇da −
(
ρ
∂ψel

∂εel
· ε̇el + ρ

∂ψel

∂εda
· ε̇da + ρ

∂ψda

∂ϕ
ϕ̇

)
≥ 0 (1.16)

where σ is the stress tensor; ψel is the elastic part of the free energy; ψda is the damage part of

the free energy; and ρ is the mass density. The governing state equation was reduced in the Kelvin

inequality, which is shown in equation Eq. (1.17), with the consideration of the non-dissipative

process of the reversible deformation. The thermic state equation governing the reversible defor-

mation is shown in Eq. (1.18).

σ · ε̇da − ρ∂ψ
el

∂εda
· ε̇da − ρ∂ψ

da

∂ϕ
ϕ̇ ≥ 0 (1.17)

σ = ρ
∂ψel

∂εel
(1.18)

The evolution of damage was governed by a damage surface, where the concept was similar to the

yield surface in plasticity theory. The function of stress tensor and equivalent stress measure, which

was a damage threshold, was used as a damage surface function representing the criteria of the

damage initiation and evolution [66]. The damage strain rate was defined with the stress invariants

and kinematic damage parameters depending on the stress state. The stress state was defined based

on the stress triaxiality, which was the ratio of the mean stress and von Mises equivalent stress,

and the Lode parameter, which was a function of principal stress components. The proposed

damage model was calibrated with the experimental data [67] and the stress-strain curves from the

simulation results were validated with the experimental curves in various stress states.

With regards to the traditional continuum damage mechanics-based model discussed above,

there are some following issues which are important: (1) modeling of crack closure within a con-

tinuum damage mechanics framework and its numerical implementation is not straightforward

even for isotropic materials [68]; and (2) a traditional continuum damage mechanics-based model

like the one discussed above does not contain an intrinsic material length scale (it is a local model),

37



and will therefore exhibit mesh sensitivity in their application into a computing framework. With

regards to regularization, in a continuum damage mechanics framework, regularization can be

handled in a nonlocal framework (for example, using Eq. (1.14) as pursued in [69] and [70]) or a

gradient-type approach as done in a phase field framework.

1.3.4 Phase field model

This model introduces an additional field variable, which is called a phase field, that is used

to formulate a free energy of the material. The free energy functional includes both the phase

field itself as well as its gradient (which is used for regularization). The mechanical equilibrium

of the system is obtained by minimizing the energy functional with respect to the displacements.

The evolution of the phase field is related to the Volterra derivative of the energy functional with

respect to the phase field variable ζ [71]. The phase field itself is used to represent the damage

zone similar to continuum damage models. The gradient of the phase field introduces a length

scale. This length scale causes a regularization or diffusive factor [72].

The application of phase field models to simulate quasi-brittle fracture was introduced recently,

in static [73] and dynamic [74] cases. Miehe et al. [72] presented a finite element method where

the phase field parameter is treated as a nodal variable.

The general phase-field equations can be derived as follows: with ψ being the free energy

density and the global stored energy functional Ψ given by

Ψ =

∫
R
ψ(u,∇u, ζ,∇ζ) dV (1.19)

where u is the displacement vector and ζ being the phase-field or damage variable with 0 ≤ ζ ≤ 1,

it can be expressed
δΨ

δu
= b (1.20)

δΨ

δζ
+
δΦ

δζ̇
= 0 (1.21)

where δ is the Volterra derivative, b the body force vector and Φ ≥ 0 the dissipation potential.
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Eq. (1.20) represents the equilibrium equation whereas Eq. (1.21) represents the evolution equation

for the phase-field variable ζ . It is important to note that a phase-field value ζ = 0 represents an

undamaged material whereas a phase-field value of ζ = 1 represents a fully-damaged material.

For the derivation of the specific phase-field governing equations, there are generally two ways

to proceed from this point: (1) In the work of Miehe et al. [72] and Wu [75], the free energy

density ψ = ψ̂(∇u, ζ) and the dissipation potential Φ = Φ̂(ζ,∇ζ, ζ̇,∇ζ̇), and (2) in the work of

Narayan and Anand [76], the free energy density ψ = ψ̂(∇u, ζ,∇ζ) and the dissipation potential

Φ = Φ̂(ζ̇), and this method stays more true to traditional phase-field approaches. However, in

both approaches, the intrinsic material length scale which tracks crack propagation is introduced

through the∇ζ term.

As an example, from the work of Narayan and Anand [76], the regularization of a sharp crack

in the calculations is provided by the intrinsic material length scale, rφ which appears with the∇ζ

term in the free energy density ψ, and it is calculated by

rφ = Γ/ψ∗ (1.22)

where the positive-valued material constant Γ is the energy dissipated per unit area of crack exten-

sion (determined from experiments), and ψ∗ is a positive-valued fit parameter with units of energy

per unit volume. Hence, the internal material length scale rφ in the phase-field model is a numeri-

cal parameter. A possible way to provide a physical meaning to the parameter rφ is to link it to the

size of the FPZ.

This chapter will be concentrated on the phase-field-type models of Miehe et al. [72] and

Wu [75]. In these models, a crack surface density function γ(ζ,∇ζ) has to be specified. The

expression for the crack surface density function is given by [75]:

γ(ζ,∇ζ) =
1

c0

(
1

rφ
αcr(ζ) + rφ |∇ζ|2

)
,

c0 = 4

∫ 1

0

√
αcr(β) dβ

(1.23)
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where αcr(ζ) = ξ∗ζ + (1− ξ∗)ζ2 is the crack geometric function, and the parameter ξ∗ is used to

describe the diffuse pattern of the crack.

Following this, Wu [75] defines the global dissipation functional as

Φ =

∫
R

[
Gf γ̇(ζ̇ ,∇ζ̇; ζ,∇ζ) +

1

2
η∗ζ̇2

]
dV (1.24)

where Gf is the fracture energy, and η∗ is the viscosity coefficient to describe the rate-dependent

damage process.

Finally, the global stored energy functional and degradation function from Wu [75] respectively

appears in Eq. (1.25) and Eq. (1.26) as

Ψ =

∫
R
ψ(ε, ζ) dV =

∫
R
g(ζ)ψ0(ε) dV (1.25)

g(ζ) =
(1− ζ)p

(1− ζ)p + a1ζ(1 + a2ζ(1 + a3ζ))
(1.26)

where ψ0(ε) is the undamaged free energy density. The parameter a1 is related to the internal

length scale, and the parameters a2, a3 are determined from the material properties and calibrated

based on the targeted softening law. The governing equilibrium and phase-field equations are then

derived using Eqs. (1.20) and (1.21). Although Wu [75] suggests a relation described in Remark

2.4 in their work to address crack closure, they did not model crack closure in their simulations.

Remark: Another popular method pursued in the phase-field literature to address crack closure

is the route adapted by Miehe et al. [72] where they split the free energy functional into “positive"

(or tensile) and “negative" (or compressive) parts. The decomposition of the free energy into a

positive part due to tension and a negative part due to compression was achieved with the spectral

decomposition of the strain tensor. The definition of the tension and compression part of the free

energy is shown in Eq. (1.27):

ψ±0 (ε) := λe〈ε1 + ε2 + ε3〉2±/2 + µe
(
〈ε1〉2± + 〈ε2〉2± + 〈ε3〉2±

)
(1.27)
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Figure 1.30: Damage contours in a three-point bending sample. The damage started from the notch
tip and propagated toward the top surface. The internal length scale used for the simulation was
rφ = 2.5 mm [75].

The {εi}i=1,2,3 are the principal strains, which are based on the strain tensor ε. Two different ramp

functions are used(〈x〉+ := [|x|+ x] /2, 〈x〉− := [|x| − x] /2) to decompose the energy expression.

The λe and µe are the elastic constants. With the decomposed energy, the free energy density was

defined with a degradation function as shown in Eq. (1.28)

ψ (ε, ζ) = [g (ζ) + k]ψ+
0 (ε) + ψ−0 (ε) (1.28)

where g (ζ) = (1− ζ)2 is a degradation function; and k is a small positive number to ensure the

well-posed numerical discretization method when the damage variable converges to ζ = 1. The

degradation function was only applied to the positive part of stored energy to model crack closure

effects.

With regards to modeling concrete fracture using the phase field method of Wu [75], validation

of their proposed method was conducted with respect to several boundary value problems, and

one such result is shown in this paper, that is, the symmetric three-point bending simulation. The

cracking (or damage) contour in the three-point bending sample is shown in Fig. 1.30 whereas the

simulated force-displacement response from this simulation is plotted with respect to experimental

data (the experimental results are bounded by the solid lines) in Fig. 1.31. The internal length scale

used in the simulation wasrφ = 2.5 mm. From these results, it can be seen that the phase-field

method is able to simulate the output of this experiment to good accord.
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Figure 1.31: Load-deflection curve of the three-point bending test with the notched concrete beam
specimen [75]. The parameters in the model were picked to match the experimental data to the
extend possible.

1.3.5 Peridynamics model

The peridynamics model was introduced to overcome the limitation of the continuum mechan-

ics viewpoint of damage, where the relative displacement and force formulation based on the partial

derivatives in spatial coordinates could not be defined along the discontinuities [77]. The model

uses integration to compute the force of the material point, rather than using differentiation. The

special techniques, such as the redefinition of the domain near the cracked region, are not needed

with this model since the integral based equations are still valid at the region of discontinuities.

The nonlocality of the model is naturally introduced with the concept of the horizon, where the

particles interact with each other. The equation of motion of peridynamics is shown in Eq. (1.29)

ρü(x, t) =

∫
R

f(u(x′, t)− u(x, t),x′ − x) dV

+ b

(1.29)
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where u(x, t) is the displacement field at any point x in the reference configuration at time t; b is

the body force density; ρ is the mass density and f is the pairwise force function. The pairwise

force function is related to the constitutive behavior of the material, where it describes how the

deformation affects the internal forces of the material. The fracture of the material is introduced

with the concept of bond elongation. If the stretch between the two points exceeds the predefined

limit, the bond is considered to be broken and the bond force becomes zero. While the peridynamic

model has been successfully applied to the brittle fracture of solids [78], the progress is still needs

to be made for the quasi-brittle fracture in concrete like materials.

Ni et al. [79] used the irregular distribution of material points generated from finite element

mesh to simulate the quasi-brittle fracture of concrete-like material with peridynamic method. The

integral expression of the equation of motion followed by the work from Silling et al. [78] with

bond-based peridynamic model. The pairwise force function was defined by considering the effect

of the bond-breakage and stretch of the bond. The proposed force function is shown in Eq. (1.30)

f(η, ξ, t) = c%(η, ξ, t)

(
‖η + ξ‖ − ‖ξ‖

ξ

)(
η + ξ

‖η + ξ‖

)
(1.30)

where η = u(x′, t) − u(x, t) is a relative displacement vector between two points x and x′;

ξ = x′ − x is the relative position vector of two points; and ‖ξ‖ and ‖η + ξ‖ are the norms of ξ

and η+ ξ. The parameter c is describing the local resistance of the bond stretch, where it assumed

to be uniform in the peridynamics horizon, rφ.

In the peridynamics approach, the horizon rφ serves as the intrinsic length scale in the model,

and therefore provides the regularization in the calculations. Visually, the horizon of material point

x is depicted as the white circle surrounding the material point x, and rφ is measured from material

point x to the point on the circumference of the white circle. For this approach, the properties

(bond force, driving force for fracture etc.) at material point x depends on its neighboring material

points within the horizon. The description of the method to obtain the value of rφ will be following

shortly.
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Looking at the specific case of plain stress, the parameter c is expressed as

c(ξ, rφ) =


315E

8πdrφ3

[
1−

(
‖ξ‖
rφ

)2
]2

, when ‖ξ‖ ≤ rφ

0, when ‖ξ‖ > rφ

(1.31)

where d is the thickness of planar structure, and E is Young’s modulus. The local characteristic

function % was applied to indicate whether the bond breakage had occurred between two points.

The expression of this function is shown in the Eq. (1.32)

%(η, ξ, t) =

1, s ≤ s0

0, s > s0

(1.32)

where s0 is the predefined critical stretch value. If the stretch s exceeds the critical value, then the

bond breakage has occurred and the bond is considered to have no interaction. The critical stretch

value was defined using the macroscopic fracture energy Gf where the expression is shown in the

Eq. (1.33).

s0 =

√
5πdGf

8Erφ
(1.33)

Eq. (1.33) can be inverted to obtain the horizon length rφ as

rφ =
5πdGf

8Es2
0

(1.34)

Since Go, E and s0 are material-specific properties, and d is a geometric property, rφ can be

obtained by using Eq. (1.34).

In the numerical implementation, the material domain was discretized by the irregularly dis-

tributed quadrilateral elements and the barycentre of the elements were used as the material points

for peridynamics calculation. The adaptive dynamic relaxation method was applied as the time in-

tegration scheme to simulate the quasi-static behavior of solids [80]. As for the numerical example,

the brittle fracture under uniaxial tension in a plate with a circular hole was studied. The thickness
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of the crack was more localized when the smaller value of the horizon size was used. The fracture

simulation case with unilateral tension test upon a pre-cracked plate with an off-center circular

hole showed a similar crack initiation and propagation trend compared to the results reported from

Tabiei et al. [81].

Yang et al. [82] proposed the improved ordinary state-based peridynamics model which incor-

porated the cohesive crack growth for the fracture analysis of quasi-brittle materials. The state-

based peridynamics model is different from the bond-based model, in the sense that the deforma-

tion of other bonds connected to the specific pair bond affects the interaction between two material

points. The integral expression of Newton’s second law in state-based peridynamics formulation

followed the work from Silling et al. [83]. For describing the constitutive behavior of the linear

elastic isotropic solids, the model from Madenci [84] was selected as the expression for the force

density vectors. The damage initiation was explained with the bond stretch-based damage model,

where it activated when the stretch of the bond exceeded the maximum tensile strain. The maxi-

mum tensile strain was defined as elastic modulus divided by the tensile strength. The influence of

the damaged bond to the other bonds within the peridynamics horizon would gradually decrease

as the damaged bond stretch increased. The bilinear softening curve was chosen to express the

cohesive effect in the FPZ, which are shown in the Eq. (1.35) and Eq. (1.36)

f(ξ,η) =

[
sc + (γ − 1)s0 − γs

sc − s0

(1− β) + β

]
fmax

ξ + η

|ξ + η|
(1.35)

f(ξ,η) =
γ(sc − s)

(γ − 1)(sc − s0)
βfmax

ξ + η

|ξ + η|
(1.36)

where ξ is the relative position vector; η is the relative displacement vector; s is the stretch in the

bond; sc is the final bond stretch; s0 is the bond stretch at tensile strain; fmax is the pairwise force

magnitude at bond stretch so; and β = fk/fmax and γ = sc − s0/sk − s0 are the shape factors.

The Eq. (1.35) is valid in the range of s0 < s < sk and Eq. (1.36) is valid for sk ≤ s < sc. The

information about the parameters sk and fk appear in Fig. 1.32, which shows the bilinear softening

curve. The final bond stretch was defined based on the specific fracture energy GF , where the
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Figure 1.32: Bilinear softening degradation curve [82].

expressions for the two- and three-dimensional case is shown in the Eq. (1.37)

sc = 3GF γ
hrφ3fmax||ξ||(1+γβ)

+ s0 (2D case)

sc = 8GF γ
πrφ4fmax||ξ||(1+γβ)

+ s0 (3D case)
(1.37)

where rφ is the size of the horizon; h is the thickness; and wd is the area under the degrada-

tion curve. For the numerical implementation of the governing equation, the dynamic relaxation

method [85] was applied for quasi-static analysis. The validation of the proposed peridynamic

model was conducted by comparing the numerical results with the experiment results in various nu-

merical examples, including the three-point bending test [86], L-shaped panel test [34], and mixed-

mode fracture in beam bending test [87]. The crack propagation path and load-displacement curve

of the L-shaped panel test is shown in Fig. 1.33, where the experimental data of load-displacement

curve is bounded by solid lines.

Cabral et al. [88] incorporated a bilinear law into the peridynamics model to calibrate the

numerical models for the analysis of quasi-brittle fracture. The bilinear law applied in this work

was based on the work from Hillerborg [89]. The bond-based peridynamics equation was used as

the governing equation based on the work from Silling et al. [77]. The pairwise force function
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was defined as a derivative of a micro-potential with respect to the relative displacement vector

where the micro-potential represents an energy stored in an individual deformed bond. At the

definition of the critical stretch value, the study used material toughness Gf as a reference value.

The energy dissipated from the rupture of bonds in a control area should be equal to the toughness

[78]. The specific fracture energy Gf of bonds were imposed with random values, where the

values followed the Weibull extreme value distribution. Since the other parameters of the critical

stretch were deterministic and the toughness distributed randomly, the critical stretch inherited the

random distribution from the toughness Gf . Similar methods were proposed to realize the random

nature of the material models, which considered the random orientation of grains [90]. For the

numerical simulation, the study introduced numerical horizon rφ
′ , where it was different from the

characteristic length of the material rφ. The numerical horizon introduced the bilinear law to the

bond by changing the definition of the critical stretch value. The modified expression of critical

stretch s′ and the numerical horizon rφ
′ is shown in Eq. (1.38)

s
′
=

√
RGf

Erφ
′ , rφ

′
=
rφs0

2

spsr
(1.38)

Figure 1.33: Comparison of numerical and experimental results of L-shaped panel test: (a) Crack
propagation path (b) Load-displacement curve [82].
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Figure 1.34: Bilinear constitutive law at the bond level [88].

where E is Young’s modulus; R is the parameter depends on the dimension of the problem and

Poisson’s ratio; and sp and sr are the stretch parameters from the bilinear law shown in Fig. 1.34.

The shape of the bilinear law is governed by the ratio of stretch parameters Kr = sr/sp and the

place of peak force was determined by the ratio of (s0/sp)
2. The parameter Kr was fitted with

the experimental data. The numerical example was studied with the proposed method in the case

of uniaxial tension test on sandstone bodies, where the validation of the results was conducted by

comparing the results with the experimental results [91].

Wu et al. [92] used an intermediately homogenized peridynamics model, which was proposed

by Chen et al. [93], to investigate the quasi-brittle fracture behavior of the concrete. An elastic

stiffness of the bond for the pairwise force function was expressed with a two-dimensional conical

micro-modulus in plane stress condition [94]. The model considered the mesoscopic heterogene-

ity nature of the concrete, where it composed of aggregates and cement mortar. The three types of

the bond were defined, which were aggregate-aggregate bond, mortar-mortar bond, and aggregate-

mortar bond. The first two bonds were for each of the phases and the last one was for the interface.

The type of bond between two material points was decided based on the volume fraction of phases

at the two endpoints. The volume fraction of each phase of the material was distributed uniformly

in the simulation domain following the random distribution. The average material properties of ag-

gregates and cement mortar were assigned to the interfacial bond. Since the fracture of concrete is

controlled by the failure of mortar or the interface, the fracture criteria of the aggregate-aggregate

bond used the fracture energy of the interfacial transition zone. The extra bond-failure criterion
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proposed by Xu et al. [95] was used to remove the errors from the unbroken bonds bridging the

crack. The validation of the proposed method was conducted by comparing the result from the

anchor pull-out experiment on concrete [96]. Although the load-displacement curve from the pro-

posed method showed fluctuations, the average trend of the curve followed the experimental result.

The reason for fluctuations was explained by the large difference in the strain at the failure among

the bonds.

The models described hitherto are based on refomulating constitutive models (such as the mi-

croplane model or the continuum damage model) or the governing equations (such as the phase

field model or the peridynamics models). The next few models reformulate the computational

implementation of fracture directly.

1.3.6 Extended finite element method

The extended finite element method (XFEM) aims to model problems containing singularities

and discontinuities, which traditional interpolation are unable to do. These discontinuities can be

cracks, grain boundaries, dislocations, or phase boundaries [97]. The process is performed by

adding discontinuous functions to the traditional displacement field functions of FEM, a process

commonly referred to as “enriching" the elements. Sets of elements containing the crack and crack

tips are defined for the application of the discontinuous functions. An important advantage of this

method is the ability to model the crack without remeshing the geometry to align the element edges

with the discontinuity. The general equation for the XFEM crack displacement field is shown in

Eq. (1.39)

u(x) =
∑
i∈I

Ni(x)ui +
∑
i∈If

Ni(x)J(fcr(x))q0
i

+
∑
i∈It

Ni(x)

(∑
j

Λ(j)(x)q
(j)
i

) (1.39)

where the first term represents the elements of traditional FEM expression (set I), the second term

represents the enriched elements at the crack face away from the tip (set If ), and the third term

represents the enriched elements at the crack tip (set It). Here ui represents the displacement vector

for element i, Ni represents the standard FEM shape functions for element i in each respective
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element set, Λ(j) represents the set of j discontinuous enrichment functions applied to element i

in set It, q
j
i represents the enrichment coefficients for element i in set It along with the set of j

discontinuous enrichment functions, and q0
i represents the enrichment coefficients for element i in

set If . Finally, the function J(fcr) is defined in Eq. (1.40)

J(fcr) =

−1 if fcr > 0

+1 if fcr < 0
(1.40)

where function fcr is a signed distance function to the crack such that sign determines which side

of the crack the material point x is on.

Many developments have been made in recent years to apply XFEM to quasi-brittle materials

like concrete. XFEM is very commonly combined with cohesive zone models for these materials.

Moes et al. [98] performed this using a linear cohesive softening law. Cohesive zone modeling

is described in more detail in the following section of this review. Moes et al. [98] used the

Heaviside function to enrich the nodes of elements split by the crack, and for the nodes of the

elements containing crack tips, a set of branch functions as seen in Eq. (1.41) from linear elastic

fracture mechanics was used:

F (rcr, θcr) = {
√
rcr sin

(
θcr
2

)
,
√
rcr cos

(
θcr
2

)
,

√
rcr sin

(
θcr
2

)
sin (θcr) ,

√
rcr cos

(
θcr
2

)
sin (θcr)}

(1.41)

where (rcr, θcr) are the polar coordinates at the crack tip. However, since the stresses at the crack tip

are not singular in cohesive zone modeling, alternative branch functions in which
√
rcr is replaced

with rcr or r3/2
cr or r2

cr are substituted for use. To determine the direction of crack growth, the
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maximum circumferential stress criterion is used in the following manner:

θcr = 2 arctan

1

4

 KI

KII

±

√(
KI

KII

)2

+ 8

 (1.42)

where θ is the direction of crack growth andKI andKII are the mode I and mode II stress intensity

factors, respectively.

Another highly influential XFEM study for concrete was performed by Unger et al. [99] by

again combining XFEM with the cohesive zone model. The incorporation of the XFEM enrich-

ment functions is the same as in the work of Moes et al. [98] except for the addition of a correction

for curved cracks. This correction is given by Eq. (1.43), and this θcr is substituted into Eq. (1.42).

θcr = arcsin

(
dcr
dtip

)
(1.43)

Here dcr is the shortest distance from the reference point to the crack and dtip is the distance to the

crack tip. The implementation of the cohesive zone is also improved by implementing a softening

law that describes both normal and tangential tractions, as seen in Eq. (1.44).

wcr =

√
u2
n + (αut)

2,

σ (wcr) =


Kpwcr if wcr < wpcr

fcte
−fct(wcr−w

p
cr)

Gf otherwise


(1.44)

Here wcr is the total crack opening, un and ut are the normal and tangential sliding of the interface

surfaces, α is a material parameter that controls the weighting of the normal and tangential open-

ing, wpcr is the crack opening at the peak load, Kp is the penalty stiffness, fct is the tensile strength

of the interface layer, and Gf is the fracture energy. Three different criteria for crack direction de-

termination are implemented and compared with experimental results; these include the maximum

circumferential stress, the maximum energy release rate, and the minimization of total potential.

Zamani et al. [100] showed that high-order terms of asymptotic fields can be used for XFEM to
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increase the accuracy of the stress distribution near the crack tip. Zamani et al. [100] performed this

for both traction-free and cohesive cracks and tested stress intensity factor (SIF) criterion and stress

criterion in the determination of crack growth direction. The full expressions for the enrichment

functions are not shown here for the sake of brevity, but they can be found in the cited paper.

Zamani et al. [100] showed that the higher order enrichment functions increased the accuracy of

the simulations when compared to similar studies of lower order functions.

Next, aspects of regularization is discussed within the XFEM framework. In an XFEM frame-

work, regularization can be handled along with the combination of a damage mechanics-based

approach [101]. For example, in the work of Roth et al. [101], a regularized local anisotropic

continuum damage approach is used to describe the first stage of the FPZ formation. Once the

damage reaches a critical value, the analysis switches to a cohesive XFEM approach. Central to

the approach of Roth et al. [101] is the calculation of the nonlocal stress at point x, σ̄(x) where

σ̄(x) =

∫
R υ(x− x′)σ(x′) dx′∫
R υ(x− x′) dx′

(1.45)

where σ(x′) is the Cauchy stress at point x′, and dx′ is a line element. The region R is a circle of

radius equal to an intrinsic material length scale with point x being the centroid of the circle, and

point x′ being a material point within regionR. Finally, υ(x− x′) represents a kernel function.

1.3.7 Cohesive zone model

The cohesive zone model (CZM) is a general fracture mechanics model that defines a cohesive

zone around the crack tip. In this zone, the material experiences cohesive traction forces that

weaken as the crack opens according to a softening law. As the separation of the crack faces

approaches a critical value, the stresses in the cohesive zone gradually decrease until the critical

length is reached (see Fig. 1.35) and the traction stresses become zero. This method was proposed

by Hillerborg et al. [37] for concrete, and a full review of the method can be found in the review

by Elices et al. [102].

The softening law can be considered as a material property, and it can be derived either from
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Figure 1.35: Representation of a cohesive zone near a crack tip [4].

experiments or from micromechanical models. Different formulations of softening laws are the

basis for various research studies focused on CZM. Two important properties for defining the

softening law are the the fracture energy Gf , and the characteristic length lch. The definition of Gf

is shown in Eq. (1.46), and lch was previously defined in Eq. (1.1):

Gf =

∫ wccr

0

σczm(wcr)dwcr (1.46)

In this equation, wcr is the crack opening width, wccr is the critical crack opening width at which

cohesive traction becomes zero, and σczm(wcr) is the cohesive traction as a function of the crack

width. The characteristic length is an inverse measure of the brittleness of the material, and it is

directly related to the size of the FPZ. The function σczm(wcr) represents the softening, i.e., how the

stress will decrease as crack width increases. Hillerborg originally approximated this relationship

with a simple linearly decreasing function, but many other relationships have been proposed, such

as bilinear models, exponential models, and potential-based models. Park et al. [103] undertook a

critical review of proposed constitutive relationships between the traction and displacement in the

cohesive zone, particularly potential-based models.

Tijssens et al. [104] utilized a CZM method that incorporated an effective cohesive separation

53



that includes both normal separation and tangential separation as shown in Eq. (1.47).

∆̄2 = ∆2
n + α∆2

t (1.47)

Here ∆̄ is the effective separation, ∆n is the normal separation, ∆t is the tangential separation,

and α is a parameter to vary the weight of the tangential separation. This effective separation was

incorporated into both linear and exponential softening functions. It was found that the exponential

softening function was more accurate than the linear softening funcion, but further improvements

were needed to gain better alignment with experimental results.

Roesler et al. [105] proposed a CZM method with a bilinear softening law for the purpose of

modeling fracture behavior of concrete. For the bilinear softening law, the tractions increase until

the critical traction is reached; after this point, the tractions begin softening in a linear fashion.

Once the tractions reach a second critical value, another linear softening relation with a lower

slope is employed. To characterize the softening law, initial fracture energy (G0), total fracture

energy (Gf ), and the concrete tensile strength (ft) were determined experimentally and used to

calculate the coordinates of the softening curve. A parameter p of value between 0.15 and 0.33 is

introduced and multiplied by ft to determine the traction at the transition to the second softening

curve. The horizontal axis intercepts of the two softening curves are described in Eq. (1.48).

w1 =
2G0

ft
, wf =

2

pft
[Gf − (1− p)G0] (1.48)

Yang et al. [106] attempted to account for the heterogeneity of concrete by combining CZM

with Monte Carlo simulations. Pre-inserted cracks were distributed in the material using Weibull

random fields, and material property heterogeneities were randomly applied through various nu-

merical algorithms. An effective crack separation was incorporated in the same manner as in [104]

with an α value of 1. A linear softening law was applied to the randomly inserted cracks. Fracture

properties were then randomly applied to the domain, resulting in a heterogeneous distribution of

both preexisting cracks and fracture properties. Many tests were performed and studied to deter-
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mine the statistical significance of the random properties. These were compared with homogeneous

simulations, and the Monte Carlo simulations agreed more accurately with the experimental data.

An important disadvantage of the standard CZM is the inability to characterize the interaction

between mode I loading and mode II loading for a mixed-mode case. While the other studies de-

scribed before employed an effective crack opening to address this, Most et al. [107] proposed a

solution to this using an energy-based meshless cohesive zone at the crack tip. Most used a hyper-

bolic yield surface to describe the fracture process as a function of a Coulomb friction coefficient

and both shear and tensile strengths. The shear and tensile strengths were softened according to an

exponential function shown in Eq. (1.49)

χ = χ0 − χ0fs

(
Wf

GI
f

, pshχ

)
,

c = c0 − c0fs

(
Wf

GII
f

, pshc

) (1.49)

where χ is the tensile strength, c is the shear strength, Wf is the fracture work, GI
f is the mode

I specific fracture energy, GII
f is the mode II specific fracture energy, and the scaling function fs

represents softening controlled by the shape parameters pshχ and pshc . For this study, pshχ and pshc

were chosen to represent an exponential softening curve. The results of this method were compared

with standard CZM results and experimental data for mixed-mode tests, and the mixed-mode CZM

results showed improved agreement with the experiments compared to the standard CZM results.

An example of this comparison is shown for the L shaped panel test conducted by Winkler [33] in

Fig. 1.36.

Because the CZM does not inherently describe a descretized finite element formulation, it is

commonly combined with other fracture modeling methods described in this review, especially

XFEM, peridynamics, and phase field approaches. These other frameworks will use CZM to de-

scribe the fracture criteria and the behavior of the traction stresses near the crack tip, but the

remainder of the formulations remain the same. Thus, while regularization of CZM itself is not

possible, regularization of the other methods that can incorporate CZM is a topic of interest.
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Figure 1.36: Comparison of numerical and experimental results of L shaped panel test for the
improved CZM from Most et al. [107]: (a) Crack propagation path, and (b) Load-displacement
curve.

1.3.8 Lattice discrete particle model

A lattice discrete particle (LDP) model considers the heterogeneous nature of concrete by in-

troducing different phase materials of concrete [108]. Therefore, this method is an example of a

multiscale approach for modeling concrete response. From the direct description of components

of concrete, which are aggregates, mortar, and interfacial transition zone, the model has an advan-

tage in representing heterogeneity and damage localization behavior in concrete compared to the

continuum models [109]. The LDP model can be further improved considering the effect of chem-

ical reactions, such as alkali-silica-reaction, on the damage behavior of concrete [110]. Since the

model considers the size distribution of aggregates in concrete, a close relationship can be found

with mesoscale modeling [111].

Concrete modeling with LDP consists of two major parts: generating lattice domain and impos-

ing constitutive behavior at the interfacial transition zone [112]. The center of the coarse aggregates

is dispersed in the numerical domain as nodal points either in regular or irregular grids. The nodal

points are occupied with random poly-sized spheres, which represent aggregate particles. The size

distribution of aggregate particles follows the sieve curve used in the target material, and the dis-
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Figure 1.37: Schematic diagram for the lattic discrete particle method showing an interfacial facet
between node i and node j. A possible crack can occur at surrounding facets of aggregate particles
[109].

persed particles achieve densely graded distributions throughout the domain. The lattice system is

generated by connecting nodal points of aggregates through Delaunay tetrahedralization, where the

tetrahedral mesh edges define the connectivity of the nodes. Dual to the generated lattice system,

the modified Voronoi diagram is applied to define the facets around each aggregate particle. The

LDP cells are formed by facets surrounding an inside particle, and the facets of lattice cells are

considered as locations of potential cracks. A rigid body motion decides the motion of every cell,

and the constitutive behaviors of concrete are imposed on facets of the LDP cell [109]. The surface

of facet perpendicular to the node i and node j is appeared in Fig. 1.37, where an unit vector n

shows normal direction and unit vectorsm, and l show two shear directions of the facet.

The matrix expressions of stress σ = [σN σM σL]T and strain ε = [εN εM εL]T are defined on

each facet with the normal and shear components as shown in Eq. (1.50)

εN =
nT [|uc|]

le
, εM =

mT [|uc|]
le

, εL =
lT [|uc|]
le

(1.50)

where [|uc|] is a displacement jump between node i and node j; and le is a distance between

the nodes. Before an inelastic behavior from damage, elastic behavior is imposed as constitutive
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behavior on each facet. The equation for the elastic relation is shown in Eq. (1.51)

σ = E0Gε, G =


1 0 0

0 α 0

0 0 α

 (1.51)

where E0 is an effective normal modulus; and α is a shear-normal coupling parameter.

Fascetti et al. [112] used an elliptical stress curve to address the boundary limits of the tension,

compression, and shear stresses at the interfacial transition zone. If the stress state violates the

predefined stress curve, the damage occurs at a facet, and the stress state follows an exponential

decay to express softening behavior. A coupling strain w∗ was introduced to represent the source

of the cohesive response under a tension-shear interaction loading condition. The expression of

the coupling strain is shown in Eq. (1.52)

tan w∗ =
εN√
αεT

=
σN
√
α

σT
(1.52)

where σT =
√
σ2
M + σ2

L is a tangential stress. The effective strain and stress were defined as

Eq. (1.53).

ε =
√
ε2
N + αε2

T , σ =

√
σ2
N +

σ2
T

α
(1.53)

The exponential decay form of the stress expression to express the softening behavior is shown in

Eq. (1.54)

σb = σh0e
− H̄
σh0
〈εh−εh0〉 (1.54)

where σh0 and εh0 are the effective stress and strain at the starting of damage for the element; and

εh =
√
ε2
N,max + αε2

T,max is a history value of the effective strain achieved in the element. The

subscriptmax describes the maximum value of strain achieved until a certain calculation step. The

coefficient H̄ in Eq. (1.54) is used to match the energy dissipation in the macroscale and mesoscale.

The expression for the coefficients for the energy dissipation in pure shear and pure tension, Hs
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and Ht, respectively, are shown in Eq. (1.55)

H̄(w∗ = 0) = Hs =
2αE0

(2αE0Gs)/(σ2
s l
e)− 1

,

H̄(w∗ = π/2) = Ht =
2E0

(2E0Gt)/(σ2
t l
e)− 1

(1.55)

where Gs and Gt are the material parameters which represent the mesoscale fracture energy in

shear and tension, respectively; and σt, σc, and σs are the material parameters which address

mesoscale limits in tension, compression, and shear. The material parameters of the Eq. (1.55)

were determined from the experimental data. If the damage was not occurred either from pure

tension(w∗ = π/2) or pure shear (w∗ = 0), the coefficient H̄ was having a form in Eq. (1.56)

H̄(w∗) = Hs + (Ht −Hs)

(
2w∗

π

)nt
(1.56)

where nt decides the shape of the softening behavior. The proposed model also described the

response of the concrete under the compressive stress state. The negative normal strain was de-

composed into volumetric and deviatoric parts to address postpeak compressive behavior. Under

the negative normal strain, the stress response followed perfectly plastic behavior for the positive

volumetric strain and showed hardening behavior for the negative volumetric strain. The frictional

behavior under the compression was described with an exponential law, where the expression was

similar to the cohesive behavior expression of Eq. (1.54). The different definition of the coefficient

H̄ was used to describe the frictional behavior for the coupling strain range of (−π/2 ≤ w∗ ≤ 0).

The material parameters for the mesoscale model were determined through the conducted experi-

ments with mortar specimens. The proposed model with the calibrated mesoscale parameters was

validated through the compression test with concrete specimens by comparing stress-strain data.

Although the LDP model for the concrete modeling succeeded in representing softening behav-

ior under tension-shear state and frictional behavior in compression state, a treatment of a crack

closure is not available at the present moment. The mesh sensitivity test showed converged results
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with the coarse and fine mesh, although a specific regularization method was not introduced in

the LDP model [113]. A hint of regularization in the lattice model can be found in a nonlocal

lattice spring model. The nonlocal lattice spring model calculates the total energy of a unit lattice

cell with the consideration of the potential energies of the neighbor elements. With increasing the

packing distance of neighbor lattice cells, the crack propagation path and the force-displacement

curve show converging response [114].
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2. MULTIPLE CRACKING MODEL UNDER GRAPH-BASED FINITE ELEMENT

ANALYSIS1

A multiple cracking model combines the best features of damage mechanics (ease of imple-

mentation with thermodynamic consistency) and discrete crack models. The core idea is based

on the notions of microcrack normals [115]. Marshall et al. [116] used such an approach com-

bined with a modified Cosserat continuum model to develop models for microcracking in rocks.

In contrast to these approaches where there is a single microplane normal that evolves with time,

the approach developed by Bazant and coworkers [117] utilize constitutive relations for a single

microplane and then integrate over all possible orientations of the microplane using the equivalent

of a microplane orientation distribution function (ODF). However, the proposed model follows a

different strategy, which may refer to as a "discrete microplane approach". Here instead of one

microplane with an evolving normal or an evolving ODF, the model introduces a finite number of

discrete microplanes where fracture can propagate. This is no doubt more restrictive than using

the whole ODF but it is done keeping computational approaches in mind—the model will end up

with the discretization of the microplane orientations anyway.

This approach has the added advantage of being able to accommodate single crack growth

quite easily while allowing crack branching and oriented cracks, without the problems of crack

spreading which is inherent in damage mechanics. Furthermore, in the model presented here,

the elastic response is identical to that of a conventional elastic solid and it is only the fracture

response that is nonlocal. By judicious separation of the crack opening description (which is

purely kinematical in this approach) from crack kinetics, the model is capable of accommodating

a wide range of different fracture criteria without having to modify the underlying finite element

implementations. This ensures that the model can "piggy back" on existing or legacy finite element

codes since it is an extension and not a reworking of the whole model. The model will focus only

1Reprinted from the original reference of "Multiple cracking model in a 3D GraFEA framework" by A.R. Srini-
vasa, H.Y. Shin, P. Thamburaja, and J.N. Reddy, 2021. Continuum Mechanics and Thermodynamics , 33, 1409-1428.
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on small deformations for immensely practical reasons—most brittle and quasi-brittle materials

can sustain only small deformations before widespread fracture.

The presented work in this section describes the damage evolution in a probabilistic manner,

where the probability of material intact is expressed with damage variable having the value from

0 to 1. Here, I introduce a master equation which governs the rate of change of the probability

density using ideas based on population dynamics [118]. The notable features of the approach

presented here are:

1. The introduction of a finite number K of possible crack normals (or microplane two-forms)

at each point.

2. A kinematical way to account for crack opening and closing, which is completely separated

from the kinetics. This is a novel idea and substantially simplifies and broadens the applica-

bility of the model.

3. The model assumes that the microcracking at a location is a random variable field with two

possible values (1 = intact, 0 = broken) at each location. The model introduces the survival

probability φi which is the probability that the i-th microplane is intact at time t.

4. The development of an equivalent elastic strain Eφ which is the expectation (over the survival

probability of the microcracks) of the normal strains across the open crack faces. This plays

a similar role as the elastic strains in plasticity models.

5. The use of the master equation for the evolution of the survival probability with time with

a nonlocal transition probability. The irreversibility of fracture or the possibility of healing

can be enforced here.

6. A model for the nonlocal interactions based on probabilistic population dynamics.

The present model is developed based on the use of the Clausius–Duhem inequality. The model is

specialized for quasi-brittle material fracture and obtains values for the constants from experimen-

tal data in the literature. The model then shows by means of a simple homogeneous deformation
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Figure 2.1: (a) A three-dimensional view of the possible micro cracks or fracture microplanes inter-
secting at a material point, (it shows only six microplanes but many more can be accommodated)
and (b) the corresponding normal directions to the fracture microplane surfaces at the material
point.

response that its rate dependent microcracking response as well as the bilinear response due to

crack closure can be simulated.

2.1 Constitutive theory development

The model considers a (uncracked) body occupying its reference configuration at time t=0. The

typical material point of the body in this configuration is location x. Let u(x, t) be the displacement

field of the body. The model assumes that the body undergoes a small deformation during which it

is capable of undergoing damage in the form of numerous micro cracks (more on this shortly). Let

v = u̇ be the velocity of a material point and σ represent the stress for the body. The usual balance

laws are assumed to hold irrespective of whether the body cracks or not, that is (in the absence of

body forces)

divσ = ρ v̇ , σ = σ> (2.1)

where ρ represents the material density.

To illustrate the possible microplane cracks or micro cracks at a material point, The model

is guided by the schematic diagram shown in Fig. 2.1(a) displaying the possible crack planes
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intersecting at a material point. Each crack plane surface is identified by a normal direction to

the crack plane cf. Fig. 2.1(b). At each location x, the model assumes that there can be at most N

microcrack surfaces or fracture microplanes with surface normals ni where integer i = 1, 2, . . . , K,

and that these crack normal directions are known a priori2. I will discuss the choice of these crack

normals in Section 3. Since these cracks are internal, the model has no way of knowing whether any

of the possible cracks are really open or not. To account for this, the model provides a probabilistic

description of the state of any microplane, that is, any microplane can be in a state S which can

take one of two values: “intact" (S = 1) and “fractured" (S = 0). The model now introduces φi(x)

which represents the “intactness" or “survival probability" of the ith microcrack surface, so that

φi(x, t) is the probability that the ith microplane at x is intact at time t. Thus, φi(x) = 1 implies

that the ith crack at x has definitely not occurred while φi(x) = 0 implies that the ith crack at x

has definitely occurred.

2.1.1 Damage in crack plane

Let ε denote the small strain tensor for the body. As the body deforms, the nominal strain

across the crack face is given by ei := ε • (ni ⊗ ni).

To write this in a more convenient way and to keep the notation simple, The model utilizes the

Voigt vector notation and define a 6× 1 strain column vector E as

E := [εxx, εyy, εzz,
√

2 εyz,
√

2 εxz,
√

2 εxy]
> (2.2)

In the above definition, the model has used a factor of
√

2 on the off-diagonal terms to ensure that

the vector and symmetric matrix norms agree.

Similarly the model will define a 6× 1 column vector Ni as

Ni := [n2
ix, n

2
iy, n

2
iz,
√

2niyniz,
√

2nixniz,
√

2nixniy]
> , i = 1, 2, . . . , K (2.3)

2While the fact that there can be only K cracks of known normals is limiting from a theoretical point of view, the
model points out that when the body is discretized, it will have no option but to limit the number of cracks anyway.
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In terms of these variables, the model can see that

ei = Ni •E (2.4)

Turning now to crack face i, it is easy to see that the spatial length between two points on the crack

face normal which are at a distance dli apart can be obtained as (1 + ei) dli. However, if the crack

is open, and the model measures the "material distance", that is, if it is measured by counting only

the material points and skipping the open crack, they will be the same as the original length dli,

i.e., the “material elastic strain” will be zero. Of course, the situation is different for a closed crack.

Here the “material elastic strain” will be the total strain.

Since the probability that there is no crack is φi , the expected value of the material elastic strain

across the crack face is then

eei =


φiei if ei > 0

ei if ei ≤ 0

(2.5)

which can be conveniently written as

eei = (φi − 1) < ei > + ei (2.6)

where < x >:= (x + |x|)/2 is the “ramp function" which is zero if x < 0 and x if x > 0. The

above definition of material elastic strain across the crack face allows for accounting for crack

closure and for opening in an extremely simple kinematically plausible way rather than obtaining

it through the use of different energy functions in tension and compression and the difficulties

associated with defining these correctly.

2.1.2 Material equivalent strain tensor

Equivalent elastic strain tensor Eφ is assumed to be (at least approximately) the strain in the

body at the same state of stress if there were no cracks. This is similar to the notion of an elastic

strain in an elasto-plastic material as well as the idea of an equivalent undamaged body. However,
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here this notion is defined in a purely kinematical way.

The model postulates that, the equivalent elastic strain tensor should reduce to (2.6) across

each crack normal, that is, Ni •E
φ = eei . However this is impossible unless there are exactly six

independent crack normals at a given point. For finite elements using tetrahedral simplices, this

condition is very conveniently and uniquely satisfied if the normals ni are taken to be parallel to

the element edges, that is, the cracks are assumed to propagate perpendicular to the element edges.

If the model uses more than six crack normals, the model can define an equivalent elastic strain

that satisfies the above condition in a least-squares sense, that is,

Eφ := argminA

∑
i

(||Ni •A− eei ||2) (2.7)

where A represents a 6×1 matrix. A routine calculation involving the minimization of a quadratic

function reveals that the model can obtain an explicit representation for the equivalent elastic strain

of the form

Eφ =
∑
i

eei B[Ni] (2.8)

where the 6× 6 matrix B is given by

B :=

(∑
i

NiN
>
i

)+

(2.9)

where B is the pseudo-inverse of matrix
∑
i

NiN
>
i . It is also important to emphasize that B is

unique and that

B =

(∑
i

NiN
>
i

)−1

if
∑
i

NiN
>
i is not singular

Since the mathematical descriptions for the microplane fracture surfaces and slip systems in crystal

plasticity are analogous, the model has used the pseudo-inverse method for calculating quantity B.
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The quantities B and Ni are not functions of time, and therefore it can be written as

Eφ =
∑
i

eei Zi where Zi := B[Ni] (2.10)

Several observations can be made about the equivalent elastic strain Eφ :

1. If there are exactly 6 possible independent crack normals, then Eφ will satisfy Ni •E
φ = eei

exactly.

2. It vanishes only if all the possible cracks are guaranteed to be broken, that is, φi = 0 for all

i.

3. It accounts for crack closure on each crack front in a least-squares sense.

4. In two dimensions it reduces to the form developed by Khodabakhshi et al. [119, 120].

5. It is not explicitly related to any constitutive model, being purely kinematic in nature. This

allows for the approach presented here to be used in conjunction with any constitutive rela-

tion of choices.

6. Due to the crack closure conditions it can be noted that Eφ is not linear in E even for small

deformations, so that the behavior of this material is fundamentally nonlinear (this will be-

come obvious with the simulation results from the homogeneous cracking response where

crack closure and the bilinear response will become evident under cyclic loading).

2.1.3 Constitutive modeling

Note that up until now, no mention has been made about stresses or constitutive relations,

further highlighting the fact that entire approach including conditions for crack closure are entirely

kinematical in nature.

A definition of the constitutive relations can be started with the specific Helmholtz potential, ψ
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as a function of the equivalent elastic strain Eφ of the form

ψ = ψ0(Eφ) + ψ1(φ1, φ2, . . . , φK) (2.11)

Here the first term on the right-hand side is due to the strain energy of the cracked solid while the

second term on the right-hand side accounts for the surface energy created by cracking. The model

now introduces the stress σ and its six dimensional vector version T as

T := [σxx, σyy, σzz,
√

2σyz,
√

2σxz,
√

2σxy]
> (2.12)

With this notation, the mechanical dissipation equation (that is, the isothermal form of the Clausius–

Duhem inequality) becomes

T • Ė− ψ̇ = T • Ė− ψ̇0 − ψ̇1 = ξ ≥ 0 (2.13)

where ξ denotes the mechanical dissipation density. By repeated use of the chain rule and taking

the time derivative of eei in (2.6), the model can obtain

ėei = φ̇i < ei > + (1 + (φi − 1)H(ei)) ėi (2.14)

where H(ei) is the unit step function of quantity ei .

The use of step and ramp functions to describe the elastic response of bilinear materials that

have different responses in tension and compression, is unavoidable. Our approach moves this all

to kinematics which is really the source of this bilinearity in these quasi-brittle materials.

Using this notation, the model can show that (2.13) can be rewritten as

(T−Tφ) • Ė −
∑
i

(ai < ei >) φ̇i = ξ ≥ 0 (2.15)
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where the elastic stress Tφ is

Tφ :=
∂ψ

∂E
=
∑
i

{(1 + (φi − 1)H(ei))σiNi} with σi :=
∂ψ0

∂Eφ
•Zi (2.16)

and σi is the normal stress component on each possible crack face i. The model also has

ai = σi −
∂ψi
∂φi

(2.17)

as the cracking force for the ith crack face.

2.1.4 Crack closure properties of the model

Notice that the elastic stress in the body is the sum of the stress across each crack face imodified

by (1 + (φi − 1)H(ei)). If crack i is guaranteed to be intact (that is, φi = 1) then this modification

disappears and the model gets the usual elastic stress. On the other hand, if φi = 0, crack i is

definitely present and then the model obtains a bimodal response, that is, if ei > 0 then the crack

has no strength at all whereas if ei < 0 the crack is fully shut and the material behaves elastically

as if there is no crack.

With the crack growth driving force on each microplane γi ≡ ai < ei >, the model now

assumes that, in the absence of crack growth (φ̇i = 0 for all i) the material is elastic so that

T = Tφ. Furthermore, for each microplane i, the condition γi > 0 must be satisfied during crack

growth, that is, φ̇i < 0.

2.1.5 Evolution of survival probability

The model borrows from probability theory where “master equations" (see e.g. [121] eqn. 7)

are used to describe the time evolution of a system that is a probabilistic combination of discrete

states and the switching between states is determined by a transition rate function. Suppressing the

integer i for the moment (for the sake of clarity), in our case any microplane can exist in only two

states: intact (I) or fractured (F). Correspondingly, the probability of a microplane being in either

state is φI := φ and φF = 1− φ.
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The model now considers details of how the survival probability of a fracture microplane

evolves. As with other Markov processes, the survival probability can be written in terms of

a master equation. There are only two transitions possible for every microplane – transition from

intact to fractured (leading to crack growth) and transition from fractured to intact (indicating heal-

ing). In a time interval dt, the rate of change of the probability density is given by the well-known

master equation (involving events that move into the state – those that move out)

dφ = −φG(I → F )dt+ (1− φ)G(F → I)dt (2.18)

where the transition probability G(I → F ) is the probability of breakage of the microplane, and

G(F → I) is the probability of spontaneous healing. Our current assumption is that G(F → I) =

0 so that no healing is possible. With this assumption, the master equation for the ith fracture

microplane reduces to
∂φi
∂t

= −Giφi (2.19)

It is a simple matter to see that the above equation together with the condition T = Tφ, the

dissipation inequality (2.15) reduces to

∑
i

(ai < ei >)Giφi ≥ 0 (2.20)

Since Gi which represents the transition rate must be greater than zero, the above condition indi-

cates that Gi must depend upon the driving force for crack opening ai < ei >, and the model will

make this dependence explicit by requiring that Gi be nonzero only if ai and ei are greater than

zero. Henceforth, the model will then refer to Gi as the “fracturing rate".

2.1.6 Nonlocal damage calculation of fracture process zone

A formulation of the model is now led to the development of the constitutive relation for the

state transition rate function (i.e., fracture rate) Gi(x, t). As is commonly utilized in fracture

mechanics, the region around a microcrack has an extremely complex distribution of strains and
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usually the simplifying assumption is made that the fracture at a particular microplane at any point

is influenced by the state of strain in a small but finite fracture process zone (FPZ) of the material

point in question [122]. There are two approaches to the development of such ideas: using higher

gradients of the state variables (such as the approach underlying phase field models) or using an

integral approach using kernel functions [123]. The latter approach is more suited and natural to

the probabilistic approach presented here. The model borrows from the work on spatial population

distribution models (see [118] eqs. 3-8) from population biology when developing the transition

probability functions that it is described here.

The core idea here is that the fracturing probability is influenced by other locations through an

integral expression using a “competition kernel" [118]. This kernel is a function of the distance

from the current point and represents the interaction of the current microplane with the others in

its vicinity. In the current context it is more appropriate to call it the influence kernel.

To begin the development of this kernel and the general fracturing probablity, at each point x

the model defines the expected number of survivors as

Φ(x) =
∑
i

φi(x, t) (2.21)

where Φ is a real number between 0 and N (the maximum number of microplanes at x) and is

exactly equal to zero if no microplane is intact and N if all microplanes survive. This implies that

the average survival probability of any crack at point x is ω(x) = Φ(x)/N .

From fracture mechanics, the rate of cracking depends upon the strain field of its immediate

surrounding [124, 125]. However it should be excluded from the model consideration of those

points that are already fully cracked since they have no load bearing capacity under tension. In

ecological terms only those animals or plants that are in the immediate vicinity of the current

animals or plant that are alive can participate. Thus the influence is modified the probability that

both the microplane at x and the microplanes at other points y are intact or not.

The joint survival probability of microplane i at location x and the microplanes at location y
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(assuming independence) is

Pi(x,y) = φi(x)ω(y) (2.22)

With this definition, the net influence of the strain at point y on the cracking at point x is

defined as

Ii(x) = (1/A(x))

{∫
Ω(x− y)Pi(x,y)E(y) dV

}
•Ni(x) (2.23)

where Ω(x − y) is the influence kernel which delineates the FPZ, and A(x) is the normalization

factor defined by

A(x) =

∫
Ω(x− y)ω(y) dV (2.24)

with dV being the volume element. Following [126], the model takes the influence kernel Ω(x −

y) = H( rφ − |x − y| ) where rφ > 0 is a material parameter which sets the size of the FPZ.

Hence, rφ is an intrinsic material length scale which controls the fracture process in the material.

Turning now to the main task, the model knows that

1. The fracture rate Gi must be zero when either the cracking force ai or the normal strain on

the microplane i are negative.

2. It will grow only as long as the crack continues to open only as long as ėi > 0.

3. Gi depends upon the state of the FPZ through the influence function I and will not rupture

until the influence exceeds a critical threshold Ici .

A close examination of Eq.(2.23) reveals that the Ii can be considered as an equivalent normal

strain on microplane i. Given these criteria, the model now assumes that the fracture rate function

is given by

Gi = G0H(ai)H(ei) < Ii − Ici >< ėi > (2.25)

where G0 > 0 is a constant which is assumed to be the same for all microplanes everywhere.
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2.1.7 Rate dependence of fracture response

The constitutive relations that have been developed so far allow for two different sources for

rate dependent behavior: 1. The stress response T can be rate dependent [127]. Such a possibility

indicates that the material is rate dependent even in the absence of cracks. 2. the crack growth

threshold Ic is rate dependent [127].

To be specific, if Ici is constant, it can easily be verified from a close perusal of Eqs. (2.19) and

(2.25) that the equation for the crack growth rate will be homogeneous of order 1 in strain-rates,

indicating that the response will be rate independent (although irreversible).

However, for materials like concrete, it is well-known from experiments that bond rupture in

the fracture process zone (FPZ) of concrete is sensitive to loading rates, that is, the cracking process

is rate-dependent even with the bulk concrete sample deforming under quasi-static loading rates.

Experimental data indicates that the cohesive strength against cracking increases with increasing

applied strain-rate [127–130]. A general constitutive relation of the form Ici = Ico + f(ėi) can then

account for rate dependent response and strengthening effect that can be seen in such materials.

Here the model is guided by the experimental results in [128] which show the fracture response of

the material being rate independent until the crack opening rate exceeds a critical value:

Ici /I
c
o =

 (ėi/ėo)
co for ε̇i > ε̇o

1 for ε̇i ≤ ε̇o

where Ico > 0 is a constant threshold resistive strain against cracking, and co > 0 a constant

dimensionless power-law coefficient.

2.2 Finite element simulations: Microcracking response for homogeneous deformation

The developed constitutive equations have been implemented into the Abaqus/Explicit [131]

finite-element program through a vectorized user-material (VUMAT) subroutine. The efficacy of

the theory is enough to model the response of cementitious materials with the baseline material pa-

rameters listed in Table 2.2. In this work, the simulations only consider homogeneous deformation
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Displacement boundary & loading conditions
Node number Coordinates X direction Y direction Z direction

1 (-1,0,0) · Fixed Fixed
2 (1,0,0) · Fixed Fixed
3 (0,1,0) Fixed · Fixed
4 (0,0,

√
2) Fixed Fixed Velocity profile

Table 2.1: Boundary and loading conditions imposed on the simulation domain for simulating
simple tension/compression stress states.

cases. This is admittedly an extremely simple problem meant for illustrating some aspects of the

theory alone. Since the deformation is assumed homogeneous, the nonlocal effects are vastly sim-

plified and the model can consider only the effects of loading rates and crack closure. In particular,

the net influence function on each microplane i of any representative volume element reduces to

the local form

Ii(x) = φiE •Ni(x) , i = 1, 2, . . . , 6. (2.26)

As our intention is to develop a numerical scheme based on simplex shapes (triangles in two di-

mensions and tetrahedra in three dimensions), finite-element simulations are performed using one

tetrahedron element shown in Fig. 2.2 where this element is sufficient to represent homogeneous

deformation. Fig. 2.2(a) shows the three-dimensional view of the element, and Fig. 2.2(b) shows

the plan view of the element. In the simulation domain, there are a total of 4 nodes with 3 nodes

at the base of the element which lies on the X − Y plane, and one node at the apex of the element

which lies on the Z-axis. Therefore, there are 3 edges at the base of the tetrahedron element, and

the remaining 3 edges of the tetrahedron element will be termed as the side edges.

The boundary conditions and loading conditions imposed on the domain for simulating simple

tension/compression stress states are listed in Table 2.1. It can be emphasized again that the model

allow a maximum possibility of six microplanes (that is, each volume element can possibly contain

at most 6 cracks). In Fig. 2.2c, a three-dimensional visualization is described for the 6 possible

fracture microplanes within a tetrahedron element.
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Figure 2.2: The initially-undeformed (a) three-dimensional view, and (b) plan view of the simu-
lation domain used to perform the finite-element simulations. The element is meshed using one
Abaqus C3D4 continuum three-dimensional tetrahedron element. The nodal coordinates for the
tetrahedron element are listed in Table 2.1. (c) A three-dimensional visualization of the 6 possible
fracture microplanes within a tetrahedron element.
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Parameters Y (GPa) ν ρ (kg/m3) ėo (/s) Ico G0 co

Value 18 0.2 2400 3×10−6 2×10−4 2×109 0.057

Table 2.2: Baseline material parameters for concrete.

2.2.1 Fracture in a quasi-brittle material

Using the baseline material parameters listed in Table 2.2, monotonic simple tension simu-

lations are performed with varying values of Ico and Go, and plot the corresponding stress-strain

responses in Figs. 2.3(a) and 2.3(b), respectively. The simulated stress-strain curves show similar

trends which is typical of a quasi-brittle material: starting from the initial state of zero stress and

zero strain, applied deformation will result in a (nominally) linear elastic stress-strain response

until a peak stress value is attained. Further deformation beyond the peak stress level results in

a strain-softening stress-strain response [72, 125]. From the simulated stress-strain curves shown

in Fig. 2.3(a), it can be seen that the peak stress value is controlled by Ico where the peak stress

value increases with increasing Ico . Furthermore, from Fig. 2.3(b), it can be ascertained that Go

controls the diffuseness of the transition from a linear elastic stress-strain response to a strain-

softening stress-strain response once the deformation exceeds the critical applied strain to initiate

the fracture process, eac . Once the applied deformation exceeds eac , increasingGo yields in a sharper

transition from a linear elastic stress-strain response to a strain-softening stress-strain response.

Next, the effect of element geometry on the fracture response can be studied by changing the

location of the node located at the apex (that is, node 4) shown in Fig. 2.2. Figure 2.4 shows the

monotonic simple tension stress-strain response with varying z-coordinate for the apex node of the

tetrahedron element. Note that increasing the value for the z-coordinate of the apex node results

in a lower value for the peak stress, and this is not surprising since an increasing value for apex

node’s z-coordinate results in the side edges of the tetrahedron element becoming more favorably

oriented to the principal loading direction, and this in turn yields in a lower applied stress for

fracture initiation, that is, the peak stress.
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Figure 2.3: Monotonic simple tension stress-strain response, obtained from the FEM simulations
using the simulation domain shown in Fig. 2.2. Using the baseline material parameters shown in
Table 2.2, the effect of varying (a) Ico and (b) Go on the stress-strain responses are displayed.

Following this, the simulations can use the baseline material parameters shown in Table 2.2,

and model the crack closure response in a concrete by performing a simple tension/compression

cyclic loading simulation. This is done by imposing the applied strain profile plotted in Fig. 2.5(a)

on the simulation domain shown in Fig. 2.2 along with the imposed boundary and loading condi-

tions on the element listed in Table 2.1. The corresponding stress-strain curve obtained from the

applied strain profile shown in Fig. 2.5(a) is plotted in Fig. 2.5(b), and this simulated stress-strain

response is qualitatively similar to that simulated by Miehe et al. [72]. For ease of comparison,

the monotonic simple tension stress-strain response is also plotted using the baseline materials

listed in Table 2.2 (see Fig. 2.3) in Fig. 2.5(b). The cyclic loading stress-strain response plotted in

Fig. 2.5(b) can be described as follows: starting from an initially-uncracked state of zero stress and

zero strain, an applied tensile strain to 0.045% results in a stress-strain response equal to that of

the monotonic simple tension case (see the description in Section 3.1). At a tensile strain 0.045%,

reverse loading to a strain of zero results in a reduction of stress to zero but with a reduction in ten-
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Figure 2.4: Monotonic simple tension stress-strain response, obtained from the FEM simulations
using the simulation domain shown in Fig. 2.2. Using the baseline material parameters listed
in Table 2.2, the effect of the geometry by varying the z-coordinate of the node located at the
element’s apex, on the stress-strain and fracture response is shown. Note that fracture is more
easily initiated with increasing value of the element’s z-coordinate since this results in the side
edges of the tetrahedron becoming more favorably oriented with respect to the direction of applied
deformation (that is, direction-Z.).
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sile stiffness due to some degree of cracking in the material. However, further reverse loading from

zero strain to a compressive strain of 0.064% results in a compressive stress-strain response of stiff-

ness equal to that of the initially-uncracked material in tension. This indicates that a perfect crack

closure response is obtained in simple compression even with some degree of cracking in material.

By reversing the applied deformation from a compressive strain of 0.064% to a tensile strain of 5%

results in a retracing of the stress-strain response due to the deformation from a tensile strain of

0.045% to a compressive strain of 0.064%. Continued deformation from a tensile strain of 0.045%

to a tensile strain of 0.056% results in the strain-softening response which perfectly overlaps the

stress-strain response obtained from the monotonic simple tension stress-strain response. The re-

verse loading from a tensile strain of 0.056% to zero strain results in an unloading stress-strain

response with the tensile stiffness being further reduced due to further cracking in the material

induced by the tensile deformation from an applied strain of 0.045% to 0.056%. Further reverse

loading to a compressive strain of 0.064% again results in a compressive stress-strain response

of stiffness equal to that of the initially-uncracked material in tension. This again indicates that

perfect crack closure conditions are modeled in simple compression. The final stage of the cyclic

loading profile involves a deformation from a compressive strain of 0.064% to a tensile strain of

0.16%. For this stage, the stress-strain response from a compressive strain of 0.064% to a tensile

strain of 0.056% perfectly retraces the stress-strain response due to the previously-obtained defor-

mation from a tensile strain of 0.056% to a compressive strain of 0.064%. However, a continued

deformation from a tensile strain of 0.064% to a tensile strain of 0.16% results in further cracking

in the material, and a stress-strain response which perfectly overlaps the monotonic simple ten-

sion stress-strain response. Therefore, from this FEM calculation, it can be concluded that crack

closure can be perfectly simulated using our relatively-simple computational procedure where in

compression, the material is able to regain its initially-uncracked stiffness.

The effect of applied strain-rate is also investigated on the simple tension deformation of the

simulation domain shown in Fig. 2.2 by varying the applied strain-rate from 1×10−7/s to 1×10−4/s

(which are typical applied strain-rates for investigating the quasi-static response of concrete, except
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Figure 2.5: (a) The applied strain profile for the crack closure simulation for a concrete, and
(b) its corresponding simple tension-compression cyclic loading stress-strain response. Note that a
perfect crack closure response is obtained since the stiffness in compression is equal to the stiffness
of the uncracked material in tension.

80



Figure 2.6: The monotonic simple tension stress-strain response under varying applied strain-rates.
The stress required to sustain the cracking process in the material increases with increasing applied
strain-rate beyond a critical applied strain-rate, below which the stress-strain response is insensitive
to applied strain-rates.

for the strain rate 1 × 10−4/s). The material parameters in Table 2.2 were used for the study but

with G0 = 2× 108. The corresponding stress-strain responses obtained from these applied strain-

rates are plotted in Fig. 2.6. Note that the stress-strain response from the simulations performed

under an applied strain-rate of 1 × 10−7/s to 1 × 10−6/s are identical, and as the applied strain-

rates are increased, the peak stress levels also increase, indicating that the stress required to sustain

the cracking in the material increases with increasing applied strain-rate beyond a critical applied

strain-rate.

To further confirm the crack closure capability of the proposed method, a fully three-dimensional

boundary value problem is simulated under cyclic shear deformation using the experimental spec-

imen geometry proposed by Bazant and Prat [132]. The meshed configuration of the circumfer-

entially notched cylinder specimen is shown in Fig. 2.7(a). The boundary and loading conditions
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Figure 2.7: (a) The three-dimensional mesh configuration of the circumferentially-notched cylin-
der specimen used in the cyclic-shear simulation. The notched cylinder is meshed with the Abaqus
C3D4 elements. (b) Boundary and loading conditions imposed on the sample shown in (a). These
imposed conditions will result in the cracking of the specimen’s gauge section. Plan view of the
specimen along (c) X-axis, and (d) Y -axis of the notched cylinder specimen with d = 160 mm.
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imposed on the specimen are shown in Fig. 2.7(b), where the Z = -d surface is imposed with the

fixed boundary condition in all translational movement. The displacement profile in the Y axis is

given as a loading condition on two surfaces, which are the X = -d surface and the X = d surface.

The magnitude of the displacement profile given to the X = d surface is exactly equal to the mag-

nitude of the displacement profile imposed to X = -d surface except that the displacement at the

X = d surface is along the positive Y axis whereas the the displacement at the X = −d surface is

along the negative Y axis. This loading profile along with the imposed boundary conditions create

a torque on the gauge section of the sample to induce cracking [see Fig. 2.7(b)]. Figs. 2.7(c) and

2.7(d) show the dimensions of the sample where diameter of the cylindrical specimen is d = 160

mm with the width of the circumferential notch being 8 mm and the round fillet at each corner of

the loading plate having a radius of 15 mm.

For this simulation, the simulation uses the baseline material parameters presented in Table 2.2

except for G0 = 2× 108. Fig. 2.8(a) shows the imposed deformation profile on the reference node

of the sample shown in Fig. 2.7(b). The resulting force-displacement response from this cyclic

shear deformation simulation is shown in Fig. 2.8(b) where the force and displacement data is

obtained from the reference node [see Fig. 2.7(b)]. The cyclic loading force-displacement curve

plotted in Fig. 2.8(b) can be described as follows: starting from an initially-undamaged state at zero

force and zero displacement, a deformation from a displacement of 0 mm to 0.26 mm and back

to 0 mm results in a cracking of the sample in the gauge section, as evidenced by the significant

hysteresis in the force-displacement response, and also the reduced stiffness of the sample when the

deformation is reversed from a displacement of 0.26 mm to 0 mm. Note that the hysteretic response

is closed-loop. However, further reverse loading from zero displacement to a displacement of -0.05

mm shows the stiffness recovery of the damaged specimen to the initially-undamaged state of the

sample. This indicates that a perfect crack closure response is obtained for the cyclic shear loading

simulation. Hence, the presented numerical simulation shows the crack closure capability of our

proposed method for a three-dimensional boundary value problem of importance.
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Figure 2.8: (a) The applied displacement profile for the three-dimensional cyclic shear simulation,
and (b) its corresponding cyclic loading force-displacement response. The crack closure result in
the cyclic shear loading-induced fracture case is confirmed by the stiffness recovery in the negative
displacement regime.

Figure 2.9: The monotonic simple tension stress-strain response for a brittle material. Note that
deformation beyond the strain level at peak stress results in a precipitous drop in stress from the
peak stress to zero stress, and the inability of the material to further sustain tensile stresses.
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2.2.2 Fracture in brittle materials

It is important to note that our computational framework is also able to model brittle fracture

since this case is a special case of quasi-brittle failure, that is, brittle fracture is modeled by setting

G0 → ∞. In our FEM simulations, the simulations use the baseline material parameters listed in

Table 2.2 but set G0 = 1 × 1020 to mimic the conditions for brittle fracture. Using the element

shown in Fig.2.2 along with the boundary and loading conditions listed in Table 2.1, a monotonic

simple tension FEM simulation is performed and plot the corresponding stress-strain curve in

Fig. 2.9. From this figure, it can be clearly seen that the theory and FEM implementation is able to

model a brittle fracture response, namely deformation beyond the strain level at peak stress results

in a precipitous drop in stress from the peak stress to zero stress, and the inability of the material

to further sustain tensile stresses. This simulation result is qualitatively similar to that obtained by

other researchers [133].

Finally, the cyclic tension-compression stress-strain response is simulated for a brittle elastic

material to investigate the ability of our computational framework in modeling crack closure in

brittle elastic materials using the baseline material parameters listed in Table 2.2 but with G0 =

1× 1020. The applied strain profile on the element shown in Fig. 2.2 for this simulation is plotted

in Fig. 2.10(a), and it is the same profile as shown in Fig. 2.5(a). The corresponding stress-strain

response obtained from this applied strain profile is displayed in Fig. 2.10(b). Starting from an

initially-uncracked state at zero stress and zero strain, a tensile deformation to a strain of 0.045%

results in an initially elastic stress-strain response, and a precipitous drop in tensile stress from a

peak stress value to zero stress at a tensile strain of 0.032%. Once this “event" (or in actuality, a

very fast process) occurs, the material will be further unable to bear tensile stresses. However, when

the strain in the material is compressive, the material is able to fully-recover its initially-uncracked

stiffness as evident by the stress-strain slope in compression [see Fig. 2.10(b)]. Therefore, our

relatively-simple computational procedure is also able to simulate a perfect crack closure response

for brittle elastic materials as well.
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Figure 2.10: (a) The applied strain profile for the crack closure simulation for an elastic-brittle ma-
terial, and (b) its corresponding simple tension-compression cyclic loading stress-strain response.
Note that a perfect crack closure response is obtained since the stiffness in compression is equal
to the stiffness of the uncracked material in tension. Furthermore, after the material experiences a
load drop to zero stress during the first portion of applied tensile strain profile, it is further unable
to bear tensile stresses.
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3. TWO-DIMENSIONAL GRAFEA SIMULATION VALIDATION: DROP WEIGHT

IMPACT EXPERIMENTS1

High-strength (or performance) concrete (HSC) is one of the most commonly used materials

for building structures such as offshore platforms, nuclear power plants, highway bridges, high-rise

buildings etc. [134–136]. When deployed, these structures can be exposed to high intensity short

duration time dependent loads due to impact, explosion or earthquake during their service life. This

can potentially result in the catastrophic fracture of such structures. Hence, it is imperative for any

developed computational framework for modeling quasi-brittle response to be able to ascertain

and quantity the effect of dynamics and loading rates on the fracture properties of HSC.

Therefore, the following objectives are set for this section: (a) to verify the GraFEA approach

for modeling fracture in HSC at deformation rates higher than quasi-static conditions, (b) to as-

certain if the calibration of material parameters using low-strain-rate experimental data allows the

satisfactory prediction for the macroscopic response e.g. cracking profile, load-time (impulse)

responses etc. of HSC fracture under impact conditions, and (c) to independently validate experi-

mental crack propagation speed data obtained from the impact of HSC samples.

The highlights of this chapter are:

• With the material parameters calibrated using a quasi-static experimental data, the GraFEA

model is able to accurately predict the load-time impulse data obtained from impact experi-

ments;

• The experimental crack speed data measured from impact experiments are also matched to

good accord using material parameters calibrated from quasi-static experimental data.

1Reprinted from the original reference of "On simulating impact fracture in high-strength concrete using GraFEA"
by H.Y. Shin, P. Thamburaja, A.R. Srinivasa and J.N. Reddy, 2022. Extreme Mechanics Letters, 52, 101618.
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Figure 3.1: Set-up for the three-point bending experiments conducted on a HSC sample [137,141].
For quasi-static experiments, a velocity profile, v is imposed on the load cell to deform the sam-
ple [141]. For the impact experiments, a drop-weight experiment at different heights were con-
ducted resulting in different initial impact velocities, v on the HSC sample [137]. All dimensions
are in mm. The notch width is inferred to be 6 mm.

3.1 Quasi-static response: calibration of material parameters

The elastic response of the fully-intact material is assumed to be isotropic and hence can be

quantified by the Young’s modulus Y and the Poisson’s ratio ν.

An outline of the procedure for determining the material parameters in the model is following,

that is, {Y , ν , rφ , Go , ε
c
o , ε̇o , co , ρ }. The HSC has a material density of ρ = 2368 kg/m3 [137].

The Poisson’s ratio is taken as ν = 0.2 [138]. Furthermore, the maximum aggregate size (or diam-

eter) in the HSC is between 6 mm to 12 mm [139]. Hence, following the procedure of [140], the

simulation takes the intrinsic material length-scale rφ = 4.5 mm. Finally, since there is a paucity of

experiments conducted on the HSC of Zhang et al. [141] at various strain-rates in the quasi-static

regime, it was not possible to calibrate the material parameters ε̇o and co for HSC. Therefore, as a

first-cut assumption, the parameters are set as ε̇o = 3× 10−6/s and co = 0.055 [140].

The remaining material constants {Y,Go, ε
c
o} are fit to a macroscopic force-displacement (P −

∆) data obtained from a (symmetric) three-point bend experiment conducted under quasi-static

conditions [141]. Fig. 3.1 shows the set-up for the three-point bending experiments conducted

on HSC [137, 141]. The experimental program for the quasi-static and impact experiments are
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described in the caption of Fig. 3.1.

The quantification of the quasi-static and impact experimental response is conducted using

FEM simulations. In our ABAQUS/Explicit [131] FEM simulations, mesh for the HSC sample is

generated as shown in Fig. 3.1 using constant-strain continuum triangular elements, and all FEM

simulations are conducted using a set of 3 random crack plane orientations assigned to each Gauss

point of the continuum elements used to mesh the HSC sample, that is, K = 3. To ensure mesh-

independent P −∆ responses, it is ensured that there are at least 4 elements spanning the diameter

of the ZOI [140] at Gauss points in the region where cracks are expected to form. The load cell/drop

weight and supports are modeled as analytical rigid surfaces which is available in Abaqus. The

impact simulations impose a mass of 120.6 kg for the drop-weight [137], and the impact force is

taken to be equal to the absolute-value of the mass of the drop-weight × the deceleration of the

drop-weight as impact occurs. Finally, all the FEM simulations were conducted under a plane

stress condition, and the effect of friction has also been ignored in the numerical simulations.

Fig. 3.2 shows the P −∆ response obtained from the quasi-static symmetric three-point bend

experiment of Zhang et al. [141]. For this experiment, the load cell moves at a constant speed of

5.5 × 10−4 mm/s (Experiment 1). The material parameters are decided by following the fitting

procedure. The initial response is used to fit the Young’s modulus, Y , the transient response is

used to calibrate the strain softening rate, Go, and the steady-state response is used to fit the rate-

independent threshold strain, εco. A FEM simulation2 is conducted using half of the HSC sample

shown in Fig. 3.1 (due to symmetry of the sample geometry and boundary/loading conditions),

and compare the fit of the P − ∆ response obtained from this FEM simulation (Simulation 1)

to the P − ∆ response determined from Experiment 1, in Fig. 3.3. The FEM simulated P − ∆

response fits the P −∆ experimental data obtained from Experiment 1 to good accord, and the list

of material parameters used to conduct the fit are shown in Table 3.1.

The inset of Fig. 3.3 also shows the FEM determined survival probability contours in the HSC

sample, obtained at the completion of Simulation 1. As expected, the crack forms in the sample’s

2The FEM simulation conducted in the quasi-static regime was sped up using the mass scaling option in
ABAQUS/Explicit [131] while still ensuring quasi-static conditions prevail during the FEM simulation.
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Figure 3.2: A quasi-static force-displacement experimental response of a HSC beam under sym-
metric three-point bending loading [141]. The initial response is used to fit the Young’s modulus,
Y , the transient response is used to calibrate the strain softening rate, Go, and the steady-state
response is used to fit the rate-independent threshold strain, εco.

plane of symmetry as seen in experiments [28,141,142]. Therefore, the material parameters in the

constitutive model are successfully calibrated.

3.2 Impact response: independent verification

Using the list of calibrated material parameters (see Table 3.1), simulations are conducted to

independently verify experimental data obtained from impact experiments. Fig. 3.4 shows the

mean impact load-time (I-T) data obtained from the experiments of Zhang et al. [137], with an

initial impact speed of 8.81×102 mm/s (Experiment 2), 1.76×103 mm/s (Experiment 3) and 2.64×

103 mm/s (Experiment 4). Although the experimental I-T data plotted in Zhang et al. [137] (which

90



Table 3.1: Material constants for HSC [137, 141]

Y = 18 GPa ν = 0.2 εco = 1.3× 10−4 Go = 450
rφ = 4.5 mm ε̇o = 3× 10−6/s co = 0.055 ρ = 2368 kg/m3

Figure 3.3: The experimentally-determined force-displacement (P − ∆) response from a quasi-
static symmetric three-point bending experiment [141]. The load cell is imposed loading speed of
5.5× 10−4 mm/s. The FEM simulated P −∆ response conducted at a loading speed of 5.5× 10−4

mm/s is also shown. The experimental P − ∆ data is accurately fit by the P − ∆ output from
the FEM simulation. Shown inset of the figure is the FEM simulated cracking pattern in the half-
sample, obtained at the completion of the simulation. The experimentally-determined cracking
pattern [28, 141, 142] is also well-reproduced by the FEM simulation.

is displayed in Fig. 3.4) only showed the mean response, it must be emphasized that scatter in the

experimental results is inherent in impact tests on concrete as mentioned in Banthia et al. [143].

Furthermore, it is also important to note that the experimental results shown in Fig. 3.4 are the

time-shifted 3 or corrected experimental data.

3A strategy of shifting the experimental I-T responses is conducted along the time axis by projecting the initial
slope of the experimental signal to the zero load line, and taking the intercept to represent the commencement of

91



Figure 3.4: The raw experimental impact load-time (I-T) data obtained from Zhang et al. [137]
for an initial drop-weight impact speed of (a) 0.881 × 103 mm/s, (b) 1.76 × 103 mm/s, and (c)
2.64 × 103 mm/s. The prediction from the GraFEA FEM simulation for each case is also plotted,
and the experimental I-T responses are well-predicted by the FEM simulations once a time-shift
is applied to the raw data. The simulated cracked pattern in the HSC sample for each initial
impact speed, obtained at the completion of each simulation, is also shown inset of each figure,
and these predictions match the experimentally-determined cracking pattern in the sample (see Fig.
1 of [137]).

Two major trends can be noticed from the impact experimental data: (a) the peak impact load

increases with increasing initial impact speed, and (b) the peak loads observed in the impact exper-

iments are an order magnitude larger than the peak loads observed in the quasi-static experiments

cf. Fig. 3.3 vs. Fig. 3.4.

Then FEM simulations of the impact experiments are performed with the drop-weight imparted

with an initial speed of 8.81 × 102 mm/s (Simulation 2), 1.76 × 103 mm/s (Simulation 3) and

2.64 × 103 mm/s (Simulation 4) using the material parameters listed in Table 1. The resulting

I-T response obtained from each impact FEM simulation are also plotted in Fig. 3.4. From this

figure, it can be seen that the FEM simulations are able to independently quantify the (a) peak

“actual" loading.
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impact loads, and (b) width of the I-T responses (measured along the time axis), to good accord.

In particular, the FEM simulations are able to: (i) predict the increasing peak impact load with

increasing initial impact speed, and (ii) predict the experimentally-determined cracking pattern in

the HSC sample under impact conditions (compare the contour plots shown inset of Figs. 3.4(a)-(c)

to Fig. 1 of Zhang et al. [137]).

To summarize, using the results plotted in Fig. 3.4, it can be ascertained that the model has

successfully predicted the response from impact experiments (∼1m/s) conducted at loading rates

that are 6 to 7 orders of magnitude higher than the loading rate used for calibrating the material

parameters (∼ 1 × 10−7m/s). Our next task is to compare the FEM-simulated crack propagation

speeds in the HSC sample under impact loading to experimental data.

3.3 Prediction of crack propagation speeds in impact experiments

In the experiments of Zhang et al. [137] conducted under different impact speeds (see Fig. 3.4),

crack propagation speeds at different positions in the HSC beam were measured using four strain

gauges (SGs) placed at various positions in the notched beam [see Fig. 3.5(a)], and the experi-

mental data are plotted in Fig. 3.5(b). The crack propagation speed at locations in the mesh of the

HSC beam corresponding to the locations of the attached SGs in the sample, obtained from the

FEM simulations conducted under different initial impact speeds (see Sec. 3.2), are also plotted in

Fig. 3.5(b).

Before proceeding further, it is crucial to describe the method for determining the crack speeds

from our FEM simulations: in the simulations, the strain profile data is sampled in each element at

a very large rate. Next, the area-averaged strain profile is calculated for the elements located in the

region occupied by each strain gauge in the HSC sample. As described in Zhang et al. [137], each

strain gauge has dimensions of 6 mm (measured along the x-axis) by 2.8 mm (measured along the

y-axis). It is assumed that the area-averaged strain profile data for each region is the area-averaged

strain profile data at the centroid of each respective strain gauge. Upon obtaining the raw area-

averaged strain profile data at each strain gauge centroid, the data is post-processed with a Python

script to smoothen the area-averaged strain profile response using a least-squares approach. From
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Figure 3.5: (a) The location for the strain gauges (SGs) used to measure crack speeds in the impact
experiments of Zhang et al. [137] conducted on notched high-strength concrete (HSC) samples.
All dimensions are in mm. (b) The experimentally-determined crack propagation speeds in the
impact experiments of Zhang et al. [137], obtained at different strain gauge locations for vari-
ous initial drop-weight impact velocities. The corresponding FEM-determined crack propagation
speeds obtained from the GraFEA impact simulations are also plotted with respect to experimental
data, and the overall comparison between the experimental & simulation data are reasonable. The
Rayleigh wave speed for the material, vr ≈ 1600 m/s.

the smoothened area-averaged strain data profile at each strain gauge centroid, the exact times are

determined when peaks and inflection points occur, and then the crack speeds are calculated at

each strain gauge using the procedure outlined by Zhang et al. [137].
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By comparing the experimental and simulated data shown in Fig. 3.5(b), it can be ascertained

that the experimental crack propagation speeds are reasonably well-validated by the FEM simula-

tions.

Finally, it is also important to compare the simulated crack propagation speeds to the Rayleigh

wave speed, vr. The Rayleigh wave speed is calculated by [137]:

vr = vs
0.862 + 1.14ν

1 + ν
(3.1)

where vs is the shear wave speed. Using the value for the Young’s modulus and Poisson’s ratio

calibrated in Table 3.1, the Rayleigh wave speed is determined for the material to be vr ≈ 1.6 km/s.

Therefore, from the results shown in Fig. 3.5(b), it can be clearly seen that the FEM simulated crack

propagation speeds are well-below the Rayleigh wave speed.

95



4. FRACTURE LENGTH SCALE CONTROLLED QUASI-BRITTLE MATERIAL

EXPERIMENTS1

Although the previously listed experiments show characteristics of concrete damage behavior,

limitations exist to study the physical phenomenon of fracture in quasi-brittle solids in a conven-

tional laboratory setting. Since concrete samples have a wide range distribution of the aggregate

size from fine to coarse, it is hard to find a clear insight of the material intrinsic length scale of

fracture. Also, a relatively large coarse aggregate size makes it difficult to design a controlled ex-

periment using smaller sample sizes. The concrete samples which are to be tested in a laboratory

need to be large enough to have a statistical representation of the actual structure in deployment

in order to obtain a smooth enough response at the continuum level of interest. Therefore, due to

the requirement of large sample sizes, the experimental set-ups for the concrete fracture test, either

quasi-static or impact testing, are required to have high-capacity load cells and relatively large-

scale testing facilities [23, 29, 144]. This is particularly true for the experimental characterization

of impact loads (for example, as done through a hammer drop test experimental set-up) where the

experienced impact loads can exceed hundreds of kNs [145]. Hence, the requirement of a large

capacity experimental set-up prevents conventional laboratories from performing a large number

of detailed experiments for characterizing the impact fracture of concrete structures under various

loading rates.

To overcome the limitations of performing impact experiments on concrete samples using con-

ventional laboratory Universal Testing machines, laboratory-scale tests with a gypsum-based com-

posite material (or Plaster of Paris) are proposed in this study to obtain insight on concrete fracture

due to the similar nature of behavior, that is, these materials have a quasi-brittle response [146].

Since the fracture process zone of quasi-brittle materials is influenced by the size of the aggregates

in the material [38,147], a single type of coarse aggregate within a narrow size range is mixed in the

1Reprinted from the original reference of "Modeling impact fracture in a quasi-brittle solids using a 3D nonlocal
graph-based finite element analysis: Theory, finite element simulations, and experimental verification" by H.Y. Shin,
P. Thamburaja, A.R. Srinivasa and J.N. Reddy, 2023. Journal of the Mechanics and Physics of Solids, 170, 105097.
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Figure 4.1: (a) Experimental set-up of the three-point bending test with the gypsum-based com-
posite material, and (b) the crack propagation path of the notched beam samples. The crack path
generally follows the middle plane of the beam samples, but it deviates and bifurcates due to the
presence of aggregates.

gypsum-based composite material to better control the intrinsic material length scale which gov-

erns the fracture process. To perform the impact experiments, a simple ball drop impact test set-up

is designed to give low-velocity impact on the Plaster of Paris samples, which generates a clear

crack propagation path in a smaller size sample compared to that of concrete sampled. The results

from the conducted experiments are then used in the validation process of the three-dimensional

nonlocal GraFEA simulations.

4.1 Specimen preparation

In this section, the experimental approach is described for characterizing the deformation and

fracture response a quasi-brittle solid made out of a gypsum-based composite material commonly

known as Plaster of Paris. The advantage of this material is that it is able to have a controlled

size single type of aggregate in the experimental test samples in order to have a clear insight into

the effective intrinsic material length scale on the fracture response. A more detailed experimental

program which explores the effect of aggregate size on the intrinsic fracture length scale will be

pursued in our future works.
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Three-point bending tests and ball drop tests are conducted with relatively small size samples to

find out the material characteristics and damage behavior of the gypsum-based composite material.

The procedure of the validation is similar to the two-dimensional concrete beam impact test case,

where the material parameters are fitted based on the force-displacement curves obtained from

the quasi-static loading conditions and the fitted material parameters are used in predicting impact

damage behavior [148]. Through the validation process, the capability of the three-dimensionally

oriented microcracks on predicting crack propagation in the three-dimensional domain can be fully

revealed.

The dried calcium sulfate (gypsum powder) is mixed with the controlled size silica aggregates

(diameters in the range of 3-5 mm) to make the plaster/aggregate heterogeneous material. The

gypsum powder is provided by DAP Global Inc. (Baltimore, MD, U.S.A) with the name Plaster

of Paris. The chemical composition of the product is following: Dried calcium sulfate 60-80wt%,

Limestone 10-30wt%, and Quartz 0.5-1.5wt%. The weight ratio of water to the plaster powder

(w/p) is chosen as 0.6 to match the w/p of the construction plaster sample [149, 150]. The weight

ratio of the aggregates to the plaster powder is chosen as 1.0. The component mixing process starts

with a dry mix of the plaster powder and the aggregates in a large bowl. Following this, the mixed

grains are slowly poured and mixed in a water bowl to make a plaster/aggregate mixture. The

mixture is then poured into the mold in a predetermined shape to make the desired samples. After

the demolding, the samples are placed on the flat surface and dried for 7 days under a temperature

of 23 ± 2°C and an air relative humidity of around 50 ± 5% [151].

4.2 Three-point bending test

A notched Plaster of Paris beam sample is used in the symmetrical three-point bending test.

The experimental set-up of the three-point bending test appears in Fig. 4.1(a). The configuration

and dimensional information of the notched beam appears in Fig. 4.2. A hammer is used to load the

sample at the top surface of the sample, and the hammer lies directly above the notch. Furthermore,

the notch is symmetrically-placed between the bottom supports of the beam. The dimension of the

beam is given as (length× width× depth = 160× 40× 40 mm3), with a notch width of 2 mm and

98



Figure 4.2: Experimental set-up for the three-point bending test. For quasi-static loading condi-
tions, a velocity profile of the loading part is imposed with a specific velocity. The velocity of the
impact loading conditions is controlled by changing the drop height of the loading part to achieve
the desired velocity. The dimension of the plaster beam is (length×width× depth = 160×40×40
mm3) with 100 mm of clear span. The width and depth of the notch are 2 mm and 20 mm. The
concrete beam has dimension of (length × width × depth = 420× 100× 100 mm3) with 300 mm
of clear span. The width and depth of the notch are 6 mm and 50 mm.

notch depth of 20 mm. The beam span for the test is set as 100 mm, that is, the distance between

the two bottom supports of the beam is 100 mm. A 68TM-10 INSTRON universal testing system

is used for the bending test with a load cell of 10 kN capacity. For the quasi-static experiments,

a loading rate of 5.5 × 10−4 mm/s is used, and the experiments are stopped once the samples are

fully-fractured. The crack propagation path of each beam sample at the end of the tests appears in

Fig. 4.1(b). Due to the presence of coarse aggregates in the sample, a deviation of the crack path

from the center plane and bifurcation of the crack can be found in the crack path images [142].

Furthermore, from the generated crack surface for each sample shown in Fig. 4.3(a), the dispersed

aggregates can be seen within the test samples.

4.3 Ball drop impact test

An impact testing set-up and geometry of the gypsum composite sample are designed to con-

duct ball drop tests to generate out-of-plane damage propagation. Disc samples are made with the

gypsum composite having a diameter of 100 mm and a thickness of 10 mm. It should be noted

that these sample sizes are much smaller than the concrete sample size considered at the low-speed

impact tests [144, 152].
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Figure 4.3: (a) Generated crack surface on each beam sample from the three-point bending test.
The beam sample is fractured into two pieces after the test and the images show generated sur-
faces from the fracture. The crack surfaces show the dispersed aggregates in the beam samples.
(b) Force-displacement curves from the raw experimental data and the fitted two-dimensional
GraFEA simulation. The quasi-static loading condition is imposed at the load cell with a velocity
of 5.5 × 10−4 mm/s. The inset figure shows the contour plot of the average survival probability
at the material point of each element. The cracking pattern obtained from the half-beam sample
simulation matches well with the experimental data [145]. The peak loads of the experimental
results range from 172 N to 228 N and the steady-state responses appear from 15 N to 32 N. It is
important to emphasize that although the material composition is the same for the beam samples
(S1-S3), the force-displacement curves show a scattered response which is typical of quasi-brittle
solids such as concrete [142].

The configuration of the testing set-up appears in Fig. 4.4(a). A steel ball with a mass of 0.5 kg

is dropped at a certain height to apply impact force on the disc sample. The guide tube and stand

are used to make the ball drops in a straight line. An impact force is applied at the center of the disc

sample to generate crack paths. At the current work, the ball is dropped from the height of 182 mm

to make an impact velocity of 1.89× 103 mm/s at the top surface of the plaster disc sample. Below

the plaster disc sample, a steel ring is placed to make a gap region between the plaster sample and

the steel disc to prevent the crushing of the sample. A sensor is placed below the center of the steel
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Figure 4.4: (a) The configuration of the ball drop testing set-up for low-speed impact loading
conditions. The steel ball drops at a specific height to achieve the desired impact velocity. The
actual image of the set-up appears in (b) multiple supports for the sensor system, and (c) pressure
sensing sensor. (d) Simulation domain for the ball drop test. Each part of the domain is discretized
with either deformable elements or rigid surfaces. Each C3D4 element is a tetrahedral element.

disc. A steel rod is positioned on top of the foundation as a base support for the sensor. Actual

images of the drop test set-up appear in Fig. 4.4(b) and Fig. 4.4(c). An A502 Flexiforce sensor

from Tekscan Inc. (Boston, MA, U.S.A) is used as a sensor for the testing set-up, where the sensor

changes the resistance according to the applied pressure. An inverting operational amplifier circuit

is constructed with an LF356N linear amplifier from Texas Instruments (Dallas, TX, U.S.A) to

measure the voltage output according to the change in the sensor’s resistance due to the applied

impact force. The electric circuit diagram for the impact testing is shown in Fig. 4.5(a). An input

voltage to the electric circuit is set as Vin=-0.5 V, which is following the range given by the sensor

manual. The reference resistance is set as RF1 =10 kΩ and the output voltage from the circuit

is measured based on the equation shown in the figure. By using the constructed sensor circuit,

a 3-point calibration method is used to obtain a force-voltage relationship. Fig. 4.5(b) shows the

voltage outputs from static loads given by steel plates. One steel plate weighs 22.0725 N and three

points for the calibration are chosen as follows: 0 N from 0 steel plate, 22.0725 N from one steel
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Figure 4.5: (a) Electric circuit diagram for the pressure sensing sensor. Inverting amplifier circuit
is used to obtain a linear relationship between the input and output voltage. (b) Three-point cali-
bration data with linearly varying weights. (c) Force-voltage relation derived from the calibration
data. The linear regression equation is used in converting the voltage output from the impact force
to the force value.

plate, and 44.145 N from two steel plates. The total average of three tests for each calibration

condition is used to derive linear regression relation, and the regression plot and calibration data

points appear in Fig. 4.5(c). The obtained regression relationship is used to convert voltage output

to force value at impact testing.
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5. THREE-DIMENSIONAL GRAFEA SIMULATION VERIFICATION ON FRACTURE OF

QUASI-BRITTLE MATERIAL1

The main objectives of the current chapter are as follows: (a) to develop and implement the non-

local three-dimensional GraFEA constitutive theory for modeling fracture in quasi-brittle materials

into a parallelized CPU/GPU hybrid mode computing framework to accelerate the finite-element

simulations; and (b) verify the developed three-dimensional nonlocal GraFEA constitutive theory

and its parallelized CPU/GPU hybrid mode computational implementation with respect to exper-

imental force-displacement data, load-time impulse data and crack patterns in samples, obtained

from physical experiments on gypsum-based particulate composite test specimens and also for

concrete samples.

The Compute Unified Device Architecture (CUDA) parallel computing is implemented in the

calculation of damage driving force to increase the total computational performance. GPU-based

parallel computing is getting attention in the implementation of the finite element method by

changing the implementation structure in element level deformation calculations [153, 154] or

using a subroutine to speed up the calculation at specific tasks [155]. The current work is im-

plementing the parallel computing method in the nonlocal strain calculation subroutine, since this

calculation step is a bottle neck in total computational performance. The three-dimensional non-

local GraFEA simulations are performed to predict the fracture behavior of the gypsum-based

composite material under impact loading conditions and the results are validated with the obtained

experimental data. Finally, the efficacy of the three-dimensional nonlocal GraFEA simulation on

simulating concrete fracture is shown under various loading conditions.

1Reprinted from the original reference of "Modeling impact fracture in a quasi-brittle solids using a 3D nonlocal
graph-based finite element analysis: Theory, finite element simulations, and experimental verification" by H.Y. Shin,
P. Thamburaja, A.R. Srinivasa and J.N. Reddy, 2023. Journal of the Mechanics and Physics of Solids, 170, 105097.
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Figure 5.1: (a) Nonlocal fracture influence zone for a (b) two-dimensional case, and (c) three-
dimensional case. The zone of influence (ZOI) is defined by the radius rφ from material point
P . It represents the intrinsic material length scale governing the fracture process. The fracture
response at material point P is influenced by the properties at material points within the ZOI. For
the two-dimensional case, the ZOI is a circle whereas for the three-dimensional case, the ZOI is a
sphere.

5.1 Three-dimensional nonlocal fracture process zone

Damage in quasi-brittle material starts from the numerous flaws in the material, such as voids

or existing cracks, to form a microcracks. Generated microcracks link and coalescence with each

other to form a fracture process zone and finally show visible macrocracks. A complex distribution

and interaction of strains at the edge of microcracks are simplified through the assumption that a

damaged state of a particular microplane is influenced by the state of strain and damage of material

points that fall into a finite-sized fracture process zone. In the multiple cracking model, an integral-

based nonlocal approach is used to represent fracture process zone, which is based on a nonlocal

mechanics-based approach [156, 157], and it can be briefly described as follows:

Consider an arbitrary material point P in a body which is located at position x [see Fig. 5.1(a)].

A fracture zone of influence (ZOI) can be defined at material point P as a circular (for the two-

dimensional case) or spherical (for the three-dimensional case) region Rf of radius rφ. The ma-

terial points within the ZOI influences the fracture properties at material point P . Hence, rφ rep-

resents an intrinsic material length scale governing the fracture process. Next, using a population

dynamics-based approach [158], A joint survival probability of the i th crack plane can be de-

104



fined at location x considering the damage state of the crack planes at location y, Pi(x,y) through

Eq. (5.1):

Pi(x,y) = φi(x)ω(y), ω(y) =

∑K
i=1 φi(y)

K
(5.1)

where ω(y) is the average survival probability at location y. With dV representing the differential

volume of an element, the expected nonlocal normal strain on the i th crack plane can be expressed

at material point P , Ii(x) as Eq. (5.2):

Ii(x) = (1/Ā(x))

{∫
Rf
H(rφ − |x− y|)Pi(x,y)E(y) dV

}
· Ni(x) (5.2)

where H(∗) represents the Heaviside step function of a given quantity ∗, and Ā(x) is the normal-

ization factor at material point P . The expression for Ā(x) appears in Eq. (5.3):

Ā(x) =

∫
Rf
H( rφ − |x− y| )ω(y) dV. (5.3)

The expected nonlocal normal strain represents the net influence of the strain and damage state

at location y on location x. This quantity is considered as the driving force for crack survival

probability degradation. The developed constitutive theory of three-dimensional nonlocal GraFEA

simulation has been implemented into the ABAQUS/Explicit [131] finite element program through

a vectorized user-material (VUMAT) subroutine, where the detailed numerical implementation is

provided in [140].

5.2 Numerical implementation with CPU/GPU hybrid computation

The GraFEA formulation is an integral based nonlocal damage model, and a damage evolu-

tion law uses the nonlocal strain as a driving force for damage growth. Each element inside the

numerical domain has its own nonlocal zone, and the nonlocal zone consists of neighbor elements

to represent the fracture ZOI. In the finite-element simulations, the quasi-brittle solid is meshed

using reduced integration elements where the Gauss point of an element is located at the centroid

of the element. Each Gauss point in a quasi-brittle simulation domain represents a material point.
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Figure 5.2: Changes in ABAQUS environmental file settings. NVIDIA FORTRAN compiler
(nvfortran) is used instead of the reference INTEL FORTRAN compiler. The necessary modifi-
cations are made in compile commands (‘compile_fortran’) and shared library linking commands
(‘link_sl’) to use CUDA parallelization in the VUMAT code.

For the two-dimensional simulations, the quasi-brittle solid is meshed using continuum triangular

elements whereas for the three-dimensional simulations, the quasi-brittle solid is meshed using

tetrahedral elements. Moreover, for the two-dimensional calculations, it is set K = 3, and for the

three-dimensional calculations, it is set K = 6. The quasi-brittle modeling domain is meshed to

ensure that the diameter of the fracture ZOI spans at least 5 elements to ensure a mesh insensitive

response [140].

The nonlocal strain calculation requires the source code to access the geometric and defor-

mation information of every nonlocal neighbor element for each calculation time step. The loop

calculation of this process using CPU-based sequential computing consumes a large portion of to-

tal computational time even though this part is only calculated once at the end of every time step

increment. To reduce computational expense, this repetitive element loop level calculation can

be spread into many-core computational environments, and a GPU can be utilized to perform this

task [159, 160].

A GPU is designed to have many-core processing units, which is different from a multi-core

processing unit of a CPU. A collection of a large number of simple processing units of GPU gives

the best performance in highly parallel computing environments. A GPU developed by NVIDIA

has a number of streaming multiprocessor (SM), which contains a set of low clock rate cores with

a small cache. The main task of SM is the execution of parallel computing with its GPU cores. The
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NVIDIA GPU is based on the platform of the CUDA, which is a hybrid programming framework

utilizing CPU and GPU together for the computational task. The main execution steps of the

logical process, serial computing, and memory transfer are performed by the host (CPU), while

the parallel processing task is handled by the device (GPU). The parallel computing output from

the GPU cores is transferred to the host by global memory, which is connected between the host

and the device [161].

The reference compiler for the ABAQUS explicit solver is the Intel compiler, and for utilizing

the CUDA packages for parallel computing, the ABAQUS environment file (the .env file) should

be modified to enable the NVIDIA HPC compiler. Adding to the change in using the specific

compiler, the compiler flags and dynamic library linking commands should also be modified to use

the CUDA toolkit for GPU accelerated computations. An adequately modified environmental file

should be located in the working directory to apply necessary changes in environmental settings.

For the reference of the readers, wthe modified ABAQUS environmental file is shown for using

CUDA computing in Fig. 5.2.

Next, an implementation of the computational algorithm and the time-integration procedure

into the ABAQUS/Explicit solver is described using a VUMAT subroutine. The schematic flow-

chart of the time-integration procedure and its implementation into a VUMAT subroutine is shown

in Fig. 5.3.

The first step of the simulation is to initialize the ABAQUS platform by given discretized

domain and simulation conditions, such as boundary and loading conditions. After the problem

initialization, the ABAQUS/Explicit solver calculates the displacement of nodes in every time step

increment based on the VUMAT subroutine. The task of the VUMAT subroutine is to calculate

the stress and energy state of the elements for the given time step based on the defined constitutive

model. The stress and energy states of elements are passed to the next time step with the user-

defined solution dependent state variables. The time step increment is decided automatically by

ABAQUS based on the material properties and the characteristic lengths of the deformed elements.

The algorithm blocks for the GraFEA VUMAT are shown in the broken red box on the flow-chart.
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Figure 5.3: Flow chart of the three-dimensional ABAQUS/Explicit solver with nonlocal GraFEA
VUMAT code. The nonlocal zone and crack plane direction information are imported at the initial
stage of the VUMAT subroutine. The damage evolution is calculated inside of the element loop
calculation and the nonlocal strain calculation is activated after the finish of the element loop
calculation. The GPU computing is implemented at the nonlocal strain calculation step, and the
rest of the code is executed by CPU.

108



Figure 5.4: Nonlocal strain calculation with (a) CPU/GPU hybrid mode and (b) CPU sequential
mode. The CPU sequential model is composed of multiple loop calculations. The nonlocal zone
volume calculation is activated first and used in the nonlocal strain calculation. The main structure
of the CPU/GPU hybrid mode is the same as the CPU sequential mode. The dynamic memory
allocation is used for arrays related to the nonlocal strain calculation. The nonlocal zone volume
subroutine and nonlocal strain subroutine are parallelized using CUDA computing, and these steps
are highlighted in the green broken boxes.

109



The nonlocal information data flies are imported at the initial time and first time step increment.

From the imported nonlocal information, the crack plane information is calculated once and saved

as common variables through the simulation’s lifetime and used when necessary. The normal

strain is calculated from the local strain components and crack plane directional information. The

survival probability is calculated based on the evolution law, which utilizes nonlocal strain as the

driving force of damage. The nonlocal strain from the current step is passed to the next time step

calculation by solution dependent variable. The calculated survival probability for the current time

step is used in equivalent strain calculations, and the Cauchy stress tensor calculation follows. Each

element’s loop calculation is finished when the stress, energy, and solution dependent variables are

updated for the next time step calculation. After finishing the element loop calculation, the GraFEA

VUMAT activates the nonlocal strain calculation.

The code structures of nonlocal strain calculation for different computing modes are shown

in Fig. 5.4. The left column shows CPU/GPU hybrid mode, and the right column shows CPU

sequential mode. The CPU sequential model is composed of multiple simple loop calculations.

The first loop is related to calculating the total volume of the nonlocal zone by considering the

damage state and volume of each element. After the initialization of the nonlocal strain array, the

code executes a loop calculation for nonlocal strain components. The first part of the CPU/GPU

hybrid mode is the initialization of the variables, which are related to the nonlocal strain calculation

but only used in the device. This part is executed once at the first step time when the main code

processes nonlocal information and calculates crack plane information. The elemental volume data

and nonlocal zone data are imported and stored in the device global memory through the lifetime

of the simulation. A process of nonlocal strain calculation of CPU/GPU hybrid mode is similar

to CPU sequential mode, but the data transfer between the host and device is required. Three-

dimensional type variables are used to assign a number of threads per block (blockSize) and a

number of blocks per grid (gridSize). The thread numbers per block is fixed as 1024 and the grid

size is decided by a ceiling function. The dynamic memory allocation is used to allocate a nonlocal

zone volume array at the host, and the strain and damage arrays in the device. The damage array is
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transferred from the host to the device, and the device kernel subroutine is activated to calculate the

total volume of the nonlocal zone. The code structure of the kernel subroutine appears in the green

broken box. The CUDA device management function follows to make the host wait for all stream

processors to finish the execution. The initialization step of the nonlocal strain array is the same

as the CPU sequential mode. The nonlocal strain calculation starts with the data transfer of the

local strain array and the initialized nonlocal strain array. The kernel subroutine for nonlocal strain

calculation is activated at the device, and the device array is transferred to the host nonlocal strain

array after the calculation. Finally, the nonlocal calculation step is finished with the deallocation

of the arrays.

The ABAQUS/Explicit solver is used to solve the boundary value problem through the imple-

mentation of the constitutive theory into a vectorized user material subroutine (VUMAT) interface.

The Abaqus/Explicit VUMAT is written using the FORTRAN language. The ABAQUS/Explicit

solver with the GraFEA VUMAT is run on the Intel x86-64 Linux cluster, and the cluster server

uses the SLURM job scheduling system. A single core of an Intel Xeon 6248R (Cascade Lake) at

3.0 GHz clock speed is used as the main processor. The total allocatable memory of the system is

384 GB DDR4 ram, and different memory space is assigned to the simulation depending on the

memory size of the problem. For the device calculation, a NVIDIA A100 GPU is used with an

available memory space of 40 GB. The ABAQUS 2021 version is used for the simulations, and the

NVIDIA HPC Software Development Kit (SDK) is used to utilize necessary compilers, libraries,

and software tools for the GPU parallel computing.

5.3 Verification of CPU/GPU hybrid three-dimensional GraFEA simulation in concrete

fracture

The developed three-dimensional nonlocal GraFEA simulation with the GPU implemented par-

allel computing is used in this section to show the efficacy of the developed method on simulating

the fracture of concrete beam samples under impact loading conditions. Previously, the fracture

of a high-strength concrete beam sample under low-speed impact loading conditions is simulated

with the two-dimensional nonlocal GraFEA simulation using a CPU sequential execution. Fur-
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Table 5.1: Material constants for high strength concrete [148]

Y = 18 GPa ν = 0.2 Ic0 = 1.3× 10−4 G0 = 450
rφ = 4.5 mm ė0 = 3× 10−6/s c0 = 0.055 ρ = 2368 kg/m3

thermore, a complicated three-dimensional boundary value problem is simulated involving crack

closure in a concrete cylinder sample under cyclic shear loading conditions.

5.3.1 Concrete beam impact fracture

The developed multiple cracking model under the three-dimensional GraFEA framework is

used in simulating the damage behavior of high-strength concrete under impact loading conditions.

The load-time (impulse) curves and cracking patterns from the simulations are validated through

the experimental reference data obtained by Zhang et al. [145]. A configuration of the notched

beam specimen is shown in Fig. 4.2. The dimension of the beam is (length × width × depth

= 420 × 100 × 100 mm3), with a notch width of 6mm and notch depth of 50 mm. The span

of the beam sample is 300 mm. At the reference experiment, three different impact velocities

were tested by changing the drop height of the steel hammer with a mass of 120.6 kg, where the

obtained velocities were 0.881, 1.76, and 2.64× 103 mm/s. The reaction force from the impact

was measured through the load cell attached to the hammer.

For the three-dimensional nonlocal GraFEA simulation, the notched concrete beam is dis-

cretized using reduced integration four-noded tetrahedral elements (C3D4 ABAQUS elements).

The supports and hammer are modeled as analytical rigid surfaces. The reference nodes for the

rigid support are fixed in translational and rotational movement. An impact velocity is imposed

on the reference node of the rigid hammer as an initial condition in the ABAQUS input file. The

impact force on the concrete sample is given by the absolute value of multiplication between the

mass of the hammer and its deceleration due to an impact reaction. A general contact method is

used (*CONTACT) for surface interactions between elements and rigid surfaces, where the friction

effect is ignored.

The material parameters in the constitutive theory, {Y , ν , rφ , G0 , I
c
0 , ė0 , c0 , ρ }, used for the
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Figure 5.5: The crack propagation paths obtained from the two- and three-dimensional nonlocal
GraFEA simulation for an initial impact speed of (a) 0.881×103 mm/s, (b) 1.76×103 mm/s, and (c)
2.64×103 mm/s. The contours of average survival probability are displayed. The two-dimensional
images only show the generated crack path at one surface plane, but the three-dimensional cases
can show crack paths on different cross-sectional planes of the front surface (Z = 100 mm), middle
plane (Z = 50 mm), and back surface (Z = 0 mm). The crack path that appears in the two- and
three-dimensional cases matches well with the experimental result, where the crack starts from the
notch tip and fractures the beam sample into two pieces.

three-dimensional impact simulations, are obtained from the previous two-dimensional concrete

beam fracture simulations [148]. These parameters are listed in Table. 5.1. The comparison of the

crack paths between the two- and three-dimensional simulations are shown in Fig. 5.5. The crack

paths from the different impact velocities start from the tip of the notch, and the damage evolution

reaches the loading surface. From the generated crack, the concrete samples fractured into half

in both two- and three-dimensional simulations, which are the same as the experimental result. It

should be emphasized that both the two- and three-dimensional simulations use the nonlocal zone

size rφ = 4.5 mm, and it appears in the formulation as the nonlocal circle for the two-dimensional

case and the nonlocal sphere for three-dimensional simulations. The crack paths for both two- and

three-dimensional simulations show similar width, which represents the fracture process zone size

is well preserved in the three-dimensional GraFEA simulation. In the three-dimensional simulation

results, a generated crack path in the middle plane of the thickness direction can be observed at
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Figure 5.6: The impact load-time curves obtained from the raw experimental data [145] and two-
and three-dimensional GraFEA simulations for an initial impact speed of (a) 0.881 × 103 mm/s,
(b) 1.76 × 103 mm/s, and (c) 2.64 × 103 mm/s. The impact impulse response is well predicted in
both the two- and three-dimensional simulation results once the raw experimental data are properly
shifted. The initial slope of the load-time curves and the peak loads are slightly over-predicted in
the three-dimensional simulation.

the Z = 50 mm plane. The crack path of the Z = 100 mm plane shows the damage at the

front surface of the beam sample and the cross-sectional view at Z = 0 mm shows crack path at

the back surface. From the given crack paths in three cross-sectional planes, the crack growth in

the whole region of thickness direction can be confirmed, which shows a three-dimensional crack

propagation characteristic.

The load-time curves from the three-dimensional GraFEA simulations are shown in Fig. 5.6.

The two-dimensional GraFEA simulation results are also included in Fig. 5.6 for comparison pur-

poses. From the simulation results shown in Fig. 5.6, it can be concluded that the three-dimensional

GraFEA calculations are also able to quantitatively match the experimental force-displacement

response for all three loading rates to good accuracy. In particular, the three-dimensional calcu-

lations are also showing that increasing drop hammer kinetic energy results in increasing peak

load. Furthermore, the simulated duration of the impact loading are also in good agreement with
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Figure 5.7: Normalized computational time for each calculation step of ABAQUS explicit three-
dimensional GraFEA VUMAT simulation for an initial impact speed of (a) 0.881× 103 mm/s, (b)
1.76× 103 mm/s, and (c) 2.64× 103 mm/s. The computational time for each step is normalized by
the total computation time of the CPU sequential mode. The speed-up achieves at the nonlocal step
calculation with the CPU/GPU hybrid mode is 63 − 113 times compared to the CPU sequential
mode. From this, the total computational time of the hybrid mode reduces to 30-42% compared to
the sequential mode.

experimental data, for both the two- and three-dimensional simulations. Although the trend of

the simulation curve matches well with the experimental data, the GraFEA results show an over-

prediction at some peak loads. The mismatch in the load value can be attributed from the absence

of capability in the proposed model in describing the damage from compression state and plasticity,

which can manifest under compressive loads [162]. Overall, it can also be concluded that the two-

and three-dimensional simulations produce matching results to a sufficiently high degree (with lit-

tle differences in the impulse response), thus reinforcing the choice of modeling this experiment

using a two-dimensional framework as pursued in the previous work [148].

A computational time comparison between the CPU sequential mode and the CPU/GPU hybrid

mode for this boundary value problem is shown in Fig. 5.7. The comparison is made for the

time consumed at the different steps of the simulation life cycle. The total step represents the

computational time taken for the entire simulation process. The explicit step shows time consumed
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at the ABAQUS explicit solver, which is outside the VUMAT calculation process. The GraFEA

step shows the time used in the three-dimensional nonlocal GraFEA VUMAT calculation, and the

nonlocal step represents the time consumption of the nonlocal strain calculation, which is inside the

GraFEA VUMAT code. The bar graphs show the normalized time, where each step time is divided

by the CPU sequential mode total computational time. A small portion of time is consumed at the

explicit calculation step, which is 4% of the total computation time in the CPU sequential mode.

At the CPU sequential mode, most of the computational time took from the GraFEA VUMAT

calculation, which is 96% of the total simulation time. Inside the GraFEA VUMAT code, the

nonlocal strain calculation step takes the largest portion of time consumption which is 55-65% of

the GraFEA VUMAT calculation time and 57-68% of the total computational time. Therefore, a

focus is set on reducing the nonlocal strain calculation time to improve the total computational

efficiency in terms of time. By using the CUDA enabled nonlocal strain calculation, the time taken

at nonlocal strain calculation step is reduced tremendously to 0.6 − 0.9% of the total simulation

time. The speed-up achieved from the CUDA parallelization is 63 − 113 times at the nonlocal

strain calculation. From the saved time consumption at the nonlocal strain calculation step, the

total simulation time of the hybrid mode reduces to 30 − 42% compared to the sequential mode.

Therefore, it is confirmed that the implementation of the CUDA parallel computing at the nonlocal

strain calculation reduces computational time significantly.

5.3.2 Concrete cylinder cyclic loading condition

Finally, a simulation of boundary value problem under cyclic shear deformation is conducted to

address the capability of the developed model in describing three-dimensional nonlocal crack clo-

sure. A circumferentially notched cylinder specimen is used in the simulation, originating from the

experimental specimen proposed by Bazant and Prat [132]. The meshed configuration is shown in

Fig. 5.8(a), where the domain is discretized with the four-node regular tetrahedron element (C3D4

ABAQUS element). The boundary and loading conditions appear in Fig. 5.8(b). The displacement

of the nodes at the Z = −d plane is fixed in all translational movements. Directions of the loading

conditions appear with arrows, where the loading conditions are applied as velocity conditions to
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Figure 5.8: (a) The configuration of the circumferentially notched cylinder specimen discretized
with the ABAQUS C3D4 tetrahedron elements. (b) Boundary and loading conditions imposed on
the meshed domain shown in (a). The imposed cyclic shear loading conditions induce damage at
the gauge section of the specimen. Plan view of the specimen in (c) X axis, and (d) Y axis with
dimensional information. The diameter of the specimen is d = 160 mm.

the nodes at the highlighted surfaces. The displacement profile is applied to the X = 0.4375d

plane in the positive Y direction, whereas the X = −0.4375d plane has the same magnitude of

displacement but in the opposite direction. The imposed boundary and loading conditions impose

a torsional force on the gauge section of the specimen. The dimensions of the specimen are shown
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Figure 5.9: (a) The applied displacement profile at the loading surface to impose cyclic shear
loading, and (b) its corresponding force-displacement curve of the cylinder specimen. The crack
closure behavior appears as a recovery of the initial stiffness after the strain softening response.
(c) The damage evolution history at the gauge section. Contours of average survival probability
in the sample are plotted. The damage starts at the notch tip and evolves to the center line of
the specimen. The damage stops growing in the reverse loading condition (from P3 to P4) since
the opened crack planes are turning into closing mode. (d) Normalized computational time for
each calculation step. The simulation times are normalized with respect to the total time taken to
complete the CPU sequential model calculation. The total computational time of the CPU/GPU
hybrid mode reduces to 53% of the CPU sequential mode.

in Figs. 5.8(c) and 5.8(d), where the cylinder diameter is d = 160 mm and the width of the center

notch is 6 mm.

The material parameters used for the simulation are the same with the notched concrete beam

samples at the impact testing (see Table. 5.1), but the softening parameter is changed toG0 = 4×103

to obtain a faster softening response. Using the imposed quasi-static displacement-time profile

shown in Fig. 5.9(a) to load the sample, the simulated force–displacement response obtained from
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the reference node of the sample [see Fig. 5.8(b)] is shown in Fig. 5.9(b). Starting from zero load

and zero displacement, applied deformation results in a linear force-displacement response of the

initially undamaged material, indicating elastic behavior. A damage generation starts before the

peak load is attained, and the nonlinear response is observed due to the generated damage and

cracking in the sample. A peak force is attained at an applied displacement of 0.178 mm, and the

cross-sectional image of the damaged domain at the x = 0 plane is shown in Fig. 5.9(c) keyed

to point P1 of the force–displacement response shown in Fig. 5.9(b). The damage starts from the

tip of the circumferential notch, and the damage accumulation leads the material response to show

strain–softening behavior. The loading direction is reversed at the displacement of 0.2 mm, and

the damaged state at this point is shown in Fig. 5.9(c) keyed to point P2 of the force–displacement

response shown in Fig. 5.9(b). The direction of the damage growth can be ascertained from images

P1 and P2, that is, that damage starts from the tip of the notch and grows to the center line of

the cylinder specimen to form a coalescence damage zone. Once reverse loading commences, a

reduced stiffness can be seen in the force–displacement response [see Fig. 5.9(b)] caused by the

generation of cracks in the sample during the forward loading step. The trace of the force under

the reverse loading condition shows a sharp turn followed by a nominally linear response. The

images of the damaged zone in the sample under the reverse loading are shown in Fig. 5.9(c) keyed

to points P3 and P4 of the force–displacement response shown in Fig. 5.9(b). The comparison

between images P2, P3 and P4 show no further damage evolution in the sample under the reverse

loading step.

Once the simulated load-displacement response [see Fig. 5.9(b)] enters the third quadrant (neg-

ative displacement and negative load), it can be clearly seen from the simulated force–displacement

response that the original stiffness of the sample has been recovered. In other words, the stiffness

of the sample in the third quadrant of the force–displacement graph is equal to the stiffness of the

sample in the forward loading step prior to any damage in the sample. Although the generated

damage still remains in the sample [see P4 of Fig. 5.9(c)], the closed crack planes caused by the

applied displacement entering the negative region, that is, crack closure results in the sample re-
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covering its undamaged stiffness. Therefore, this result shows that the three-dimensional nonlocal

GraEFA theory and finite-element simulation method can describe crack closure response under

cyclic loading conditions.

Finally, a comparison is made on the simulation times for this three-dimensional boundary

value problem using a CPU sequential mode and a CPU/GPU hybrid mode. The simulation time

data comparison for these two computational modes are shown in Fig. 5.9d. The simulation times

are normalized with respect to the total time taken to complete the CPU sequential mode calcula-

tions. By using the CUDA parallel computing in nonlocal strain calculation, the calculation time at

the nonlocal step is 13 times smaller in a CPU/GPU hybrid mode compared to the CPU sequential

mode. Eventually, for this boundary value problem, the total computational time taken from using

the CPU/GPU hybrid mode is 53% less than the CPU sequential mode. From the data shown in

Fig. 5.9d, it can be clearly seen the improvement in computing times when a CPU/GPU hybrid

mode computing framework is pursued instead of just using a CPU sequential mode calculation.

Finally, it should be noted that the simulation results obtained from using a CPU sequential mode

or a CPU/GPU hybrid mode are identical.

5.4 Validation of the numerical model with the ball drop impact test

5.4.1 Material parameter fitting process

To determine the material parameters for the Plaster of Paris, it is required a combination

of a fitting process of the constitutive model to the experimental force-displacement response

which links information available in the literature and microstructural information. The force-

displacement curves obtained from the quasi-static experiments are displayed in Fig. 4.3(b). The

experimental curves are slightly shifted along the displacement axis to properly match the initial

slope, as slack in the experimental testing setup is inherent. All the curves from the experimental

data show an initial linear region of force increment and softening behavior after the peak load,

where the general trend of the curves matched well with the damage behavior of quasi-brittle ma-

terials [26, 142]. The peak loads range from 172 N to 228 N and the steady-state responses appear
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Table 5.2: Material constants for plaster/aggregate composite

Y = 1.7 GPa ν = 0.2 Ic0 = 4.1× 10−4 G0 = 650
rφ = 2.5 mm ė0 = 3× 10−6/s c0 = 0.002 ρ = 1600 kg/m3

from 15 N to 32 N. Finally, it is important to emphasize that although the material composition

is the same for the beam samples (S1-S3), the force-displacement curves in Fig. 4.3(b) show a

scattered response which is typical of quasi-brittle solids such as concrete [142].

For the fitting process, a two-dimensional nonlocal fracture GraFEA simulation is performed

for a half-beam due to the symmetry of the imposed boundary conditions and loading conditions

on the Plaster of Paris beam. Fig. 4.3(b) shows the force–displacement curve obtained from the

FEM simulation and it quantitatively matches the experimental data to good accord. The contour

plot displayed inset of Fig. 4.3(b) shows the average survival probability at each element within

the beam, and it clearly displays a mode I type fracture response.

The material parameters for Plaster of Paris material are obtained using the following proce-

dure: the density of the material is measured as ρ = 1600 kg/m3 using Archimedes’ principle;

the Poissons’s ratio is chosen as ν = 0.2 where literature data show a distribution between 0.18

to 0.24 [163, 164]; the diameter of the nonlocal zone sphere is taken as 2rφ = 5 mm to match

the maximum size of the coarse aggregate following the procedure of [140]. This is based on the

assumption that the fracture is dominated by the debonding of the particulates resulting in an un-

dulating crack path with many microcracks. For this to occur, it is expected the zone size to be at

least the size of the largest particle (so that the crack can grow around the particle). Of course, if

the concentration of the particles is very low, so that distance between the particles in much larger

than the particle size, then the crack growth is dominated by the intrinsic fracture properties of the

base material (cement or gypsum) m (matrix cracking), the crack path is relatively unhindered,

resulting in a very small zone size and very low strength, brittle response.

In this case, based on the work of Chandrasekhar [165] (p89, Eq. 676) it can be estimated

that the average center distance between randomly dispersed particles in a region as < r >≈
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0.554/n1/3), where n is the number of particles per unit volume. For spherical particles of radius

R and volume fraction c, this reduces to

< r >= 0.893×R/c1/3 (5.4)

for this case, the volume concentration of particles is about 29% with a mean particle diameter

of about 4mm so that the mean distance between particles is < r >= 2.6 mm which is com-

parable to the large particle radius. This justifies the zone size being about rφ = 2.5 mm that

was chosen here. The Young’s modulus of the material in tension is determined as Y = 1.7 GPa

by matching the initial linear elastic slope of the experimental force-displacement response; the

rate-independent threshold strain is set at Ic0 = 4.1 × 10−4 to match the experimental steady-state

force-displacement response; the softening rate parameter is taken asG0 = 650 to match the general

trend of the experimental force-displacement softening response; due to the lack of experimental

data on the rate-dependent behavior of the gypsum-based composite, the threshold strain-rate for

a rate-dependent cohesive response is set as ė0 = 3 × 10−6/s where as a first-cut assumption, it

is taken to be equal to that of plain concrete [140]; finally, c0 = 0.002 is set to match the initial

slope of the softening response. The material constants for the Plaster of Paris material are listed

in Table. 5.2.

Using the calibrated material parameters listed in Table. 5.2, a validation is made for the con-

stitutive theory and its numerical implementation with respect to three-dimensional impact exper-

iments on the Plaster of Paris samples.

5.4.2 Impact response: independent verification

The simulation domain is constructed based on the impact experimental set-up. Each part of

the discretized domain is shown in Fig. 4.4d with information on element types used. Analytical

rigid surfaces are used to express the surface of the steel ball and foundation. The impact velocity

of 1.89× 103 mm/s is imposed on the steel ball reference point as an initial condition. A reference

point of the foundation is fixed in translational and rotational movement. A plaster disc sample
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Figure 5.10: The crack propagation paths appear on the top surface of the gypsum disc samples in
(a) experimental data and (b) simulation results. The experimental data show 4 to 6 macrocracks on
the top surface from the ball drop tests. The prediction made from the three-dimensional nonlocal
GraFEA simulation shows 6 macrocracks, which matches well with the Disc S2 experimental
result.

is discretized with the four-node regular tetrahedron element (C3D4 ABAQUS element) and the

remaining simulation domain is discretized with the eight-node brick element with reduced in-

tegration (C3D8R ABAQUS elements). A general contact method (*CONTACT) is used for all

surface interactions, and a frictional effects are ignored in the simulations as a first-cut assumption.

The final crack paths obtained from the ball drop tests appear in Fig. 5.10(a) and Fig. 5.11(a),

where the Fig. 5.10(a) pictures show viewpoint from the top surface and the Fig. 5.11(a) pictures

show the bottom surface of the disc samples. The images in Fig. 5.10(b) and Fig. 5.11(b) show fi-

nal crack paths from the three-dimensional nonlocal GraFEA simulation, where Fig. 5.10(b) shows

generated final cracks in the top surface and Fig. 5.11(b) shows bottom surface crack paths. The

experimental data show 4 to 6 generated macrocrack paths from the conducted ball drop impact

tests. The final crack paths from the simulation show 6 major cracks and this matches well with

the crack paths of the Disc S2 sample. The images of the damaged discs show more damage oc-
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Figure 5.11: The crack propagation paths appear on the bottom surface of the gypsum disc samples
in (a) experimental data and (b) simulation results. At the experimental data, the small spalling
zone appears at the bottom surface right below the steel ball impact point. The simulation result
shows a concentrated damage zone at the center of the bottom surface, which is considered the
spalling zone.

curred at the center region of the disc bottom surface compared to the top surface center where the

steel ball impacts the disc sample. This phenomenon is well captured with the three-dimensional

GraFEA simulation, where the most damaged region appears at the bottom surface center.

The damage evolution history from the impact loading condition is well described in Fig. 5.12.

The figure shows the time history of the average survival probability evolution at the top and

bottom surfaces. The damage first appears at the bottom surface right below the steel ball impact

point, but the top surface is not having damage at t = 0.15 ms. The damage at the bottom surface

continuously grows to form a widely spreading damage zone at the bottom surface at t = 0.35 ms.

At this time, the damage at the top surface can be observed. The wide dispersion of the damage

at the bottom surface is then concentrated in some areas to form concentrated damage lines at

t = 0.45 ms, which can be considered possible crack propagation paths. The final crack paths are
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Figure 5.12: The simulation time history of the damage evolution at the top and bottom surface of
the gypsum-based disc sample. The contours of average survival probability are displayed. The
damage first appears at the bottom surface and is widely spread throughout the whole surface. The
concentration of the damage clearly generates 6 major cracks, which start to appear at t = 0.8 ms.
The damage zone smears into the top surface to form 6 major cracks aligned with the macrocracks
that appear on the bottom surface.

clearly seen in the top and bottom surface images obtained at t = 0.8 ms. The 6 major crack paths

first appear at the bottom surface, and then the damage evolves to reach the top surface. From

this damage evolution history, the top surface does not show a wide damage dispersion but only

shows a concentrated damage zone following the major crack paths. The final images of damage

behavior at t=1.1ms show the final crack paths are well maintained and further damage growth is

only concentrated in the major cracked regions.

The load-time (impulse) curves from the experimental data and simulation result are shown in

Fig. 5.13(a). The load value is measured from the sensor at the support and the impulse response

is appeared from the impact force with the multiple peak loads [166]. The experimental curves are

properly shifted to match the second peak load to the simulation curve as in standard practice. The

load-time curve determined from the three-dimensional nonlocal GraFEA simulation is obtained

using the material parameters fitted from the quasi-static loading conditions (see Table. 5.2). A

pure prediction is made for impact testing with the material parameters based on the quasi-static

loading conditions, where the loading rate difference is about 6 to 7 orders of magnitude. From
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Figure 5.13: (a) Load-time curves based on the experimental data and the three-dimensional
GraFEA prediction. The experimental data are shifted to match the time at the second peak load
to the GraFEA prediction. Although the load values are over-predicted at some load peaks, the
GraFEA simulation predicts the impulse response of the experimental data well. (b) Normalized
computational time from the simulation of low-speed impact fracture in gypsum-based disc sam-
ple. The time is normalized with respect to the total computational time of the CPU sequential
mode. The total time is a summation of the explicit time and GraFEA time. The nonlocal step is
included in the GraFEA calculation step. The total computational time of the CPU/GPU hybrid
mode reduces to 28% of the CPU sequential computing due to the significant speed-up achieved
from the nonlocal calculation step. The simulation results are identical for the CPU sequential
mode and CPU/GPU hybrid mode.

the comparison of the experimental data and the FEM simulation result shown in Fig. 5.13(a), it

can be seen that the GraFEA model is able to quantitatively predict the experimental data to good

accuracy.

Note that as observed in the experiments, the numerical prediction also shows several peaks

and trough loads occurring at different times [cf. Fig. 5.13(a)]. For the j th peak/trough load where

integer j = 1, 2, 3, 4, it can be seen that the numerically-predicted time at the j th peak/trough

load matches well with the experimentally obtained time at the j th peak/trough load. However,

the simulated load response is zero from time of approximately 0.6 ms onwards although the

experimental data shows a fifth peak load at a time of approximately 0.74 ms. Nevertheless, as a
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first-cut attempt, the current GraFEA formulation is able to independently predict the experimental

load-time impact response to good accord (see Fig. 5.13) given that the material parameters in

the model were fit to an experimental force-displacement response conducted under quasi-static

conditions, and the GraFEA model is also able to predict the experimentally-determined cracking

patterns in the Plaster of Paris samples under low-velocity impact conditions (see Figs. 5.10 and

5.11).

Finally, a note can be made on the computational advance of the present work with regards

to the comparison of simulation times between performing GraFEA calculations using a CPU se-

quential mode and CPU/GPU hybrid mode. The normalized computational times in the gypsum

disc impact simulations are shown in Fig. 5.13(b). The time taken at each calculation step is nor-

malized with respect to the total computational time of the CPU sequential mode. The CPU/GPU

hybrid mode reduces the total computational time to 28% compared to the CPU sequential mode.

The computational time saving is coming from the improved calculation performance from the

nonlocal calculation step. The speed-up achieved at the nonlocal step by using CUDA parallel

computing is 92 times compared to sequential computing.

127



6. SUMMARY AND CONCLUSIONS

A multiple cracking model has been developed for simulating quasi-brittle material fracture

and the developed numerical model is implemented under the GraFEA framework. A literature

survey has been done to characterize the features of the fracture process in quasi-brittle material

and the physical characteristics of quasi-brittle fracture is incorporated in the developed numerical

model. The key features of the quasi-brittle fracture implemented in the numerical model are

follows: (1) a strain-softening behavior, which shows a gradual decrease in stiffness after the

peak load is described by the survival probability evolution law; (2) the fracture process zone

is realized by integral-based nonlocal strain formulation; (3) a purely kinematical approach to

modeling crack opening and closing is introduced for simulating crack closure behavior; and (4)

rate-dependent behavior is incorporated in the survival probability evolution law by power law

expression. The developed numerical model is used in simulating fracture of quasi-brittle material

in various loading rates.

In Chapter 2, a thermodynamically-consistent three-dimensional small-strain-based theory to

describe the deformation and fracture in quasi-brittle and brittle elastic solids was presented. The

description for fracture at a material point resembles the microplane fracture but the present theory

has the following novel features: (a) a probabilistic description of fracture propagation is used,

developing evolution equations for the probability of a microcrack occurring at a given location

and (b) a kinematical approach to modeling crack opening and closing. The new three-dimensional

constitutive theory has been computationally implemented within a Graph-based Finite-Element

Analysis framework and it has also been implemented into the dynamics-based Abaqus/Explicit

finite-element program through a vectorized user-material subroutine interface. Our computational

approach for fracture modeling is intra-element-based, which is central to the GraFEA approach

rather than inter-element fracture, as is done in cohesive zone-based numerical methods, together

with selective nonlocality where the nonlocality is only for probability evolution motivated by

population dynamics models that allows us to perform efficient implementation of the code without
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special elements or other numerical artefacts. In particular, it is shown that the computational

procedure is able to model crack closure in solids in a robust, relatively-simple and elegant manner.

In Chapter 3, a GraFEA framework developed for modeling deformation and nonlocal frac-

ture in quasi-brittle materials is used to simulate the fracture response of high-strength concrete

(HSC) samples under impact loads. By fitting the material parameters in the theory to match a

macroscopic force-displacement response obtained from a three-point bending experiment con-

ducted under quasi-static conditions, it is shown that the GraFEA computational method is able

to independently validate the experimentally-determined impulse response, obtained from impact

experiments conducted under various initial impact speeds imposed by a drop-weight on HSC

samples that are 6 to 7 orders of magnitude higher than the quasistatic tests. Furthermore, the

GraFEA-based FEM simulations are also able to reproduce experimental crack propagation speeds

in a HSC sample under different initial impact speeds to good accord.

In Chapters 4 and 5, a novel nonlocal three-dimensional graph-based finite element approach

has been developed and implemented for simulating fracture in quasi-brittle solids as an extension

of our previous work in two dimensions. In order to validate the nonlocal aspects of the model, a

gypsum-based particulate composite is fabricated with silica particles of specific dimensions and

mass fractions, thus the length scale of the material is fixed by the particulate media. The GraFEA

fracture model is implemented in a graphics processing unit parallel computing environment that

allows substantial speed-up of the simulations in both cases of impact and quasi-static loading

conditions. The improvement in computational performance is especially essential for caring out

the simulation of parametric study. Comparison of the physical response of this specially designed

composite with the three-dimensional nonlocal GraFEA shows that the model is capable of sim-

ulating fracture in such materials. Finally, the efficacy of simulating impact response of concrete

including crack closure behavior is tested by simulating hammer drop test for the concrete beam

sample and cyclic shear loading on the circumferentially notched concrete cylinder sample.

For the future work, the plastic deformation can be introduced to the GraFEA model to predict

impact reaction forces more accurately to overcome the current mismatch in peak loads compared
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to the experimental data. In the experimentation side, a high-speed camera can be used to validate

the damage evolution history of the nonlocal simulation results with the captured crack propagation

history. Also, the proposed experiment might help in determining rate-dependency parameters

more precisely. Moreover, a further optimization of the GraFEA VUMAT code can be made to

reduce wall-clock computation times. Finally, a more detailed experimental programs can be set

to explore the effect of aggregate size on the intrinsic fracture length scale.
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