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ABSTRACT

The behavior and dynamics of the surface stress boundary condition are explored, both in terms

of the basic physics of the condition and the associated implementation in finite-difference models.

Numerical experiments are presented to illustrate the impact of the stress condition on flows

past a region of complex terrain, with particular emphasis on the dependence of the condition on

terrain geometry. Arguments are presented to show that the surface stresses depend on the terrain

geometry in two ways: (i) a dependence on slope, as represented by a normal gradient term; and

(ii) a dependence on terrain curvature, which appears in the condition as a Dirichlet term. This

dependence on terrain geometry is illustrated through a series of experiments in which simulations

using the full form of the stress condition are compared to companion simulations using one of

two widely used approximations: (a) the normal gradient condition, which accounts for the terrain

slope but neglects curvature; and (b) the flat boundary assumption, which neglects both slope and

curvature. The results show that for realistic flows, the terrain geometry plays an important role in

the behavior of the surface stresses, and that the associated approximate conditions fail to capture

important aspects of the flow over complex terrain.

Previous implementations of the stress condition in numerical models (including the experi-

ments described above) have largely relied on a direct discretization of the stresses at the bound-

ary, ultimately resulting in a global sparse matrix inversion. However, such methods are difficult

to implement in highly parallelized models, in which domain decomposition strategies are gen-

erally employed. To simplify the implementation, a new method is presented in which the drag

condition is recast into a form allowing a straightforward local implementation, thus eliminating

the need for a global inversion. As an example, the new approach is implemented in the context

of the widely used Weather Research and Forecasting (WRF) model. Verifications are presented

showing that for sufficiently high resolution, the new method as implemented in WRF produces

essentially identical results to the previous matrix approach.
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1. INTRODUCTION

As computational power increases, high-resolution atmospheric models are increasingly being

used to simulate flows in regions of steep and complex terrain. A common example is atmo-

spheric transport and dispersion modeling (e.g., Stockie 2011), which has been used extensively

in the study of emissions from industrial operations, forest fires, and other applications, such as

ash release from volcanic eruptions (Turner & Hurst, 2001), as well as seed, pollen and insect

dispersal (Yang et al. 1998; Levin et al. 2003; Loos et al. 2003). When the source of these various

constituents are near the ground, terrain can play an important role in how the constituents are

transported. Terrain features are also important for wind energy modeling. The wind industry has

become increasingly important as the installed capacity of wind energy has grown (Haupt et al.,

2019). The wind industry in the United States has grown by a factor of 4.6 from 2008 to 2018

(Weissman, Sargent, & Fanshaw, 2018), and many wind turbines are placed in the mountainous

regions. So we might expect that higher resolution and a better representation of the terrain may

improve wind energy forecasts, as well as help decide the location of wind turbines.

The need to account for complex terrain has led to a number of well-known challenges for at-

mospheric models, from both numerical and physical aspects. One of the best known examples is

the problem of computing horizontal pressure gradients using data on sloped coordinate surfaces,

which is considered one of the most important disadvantages of using terrain-following coordi-

nates. Considerable effort has been devoted to reducing the resulting errors (Corby et al. 1972;

Mesinger 1982; Mihailović & Janjić 1986; Janjić 1989). A more physical example is the problem

of radiative effects associated with terrain shading. Topography can significantly modify radiation

on the Earth’s surface through the effects of slope orientation and shadowing, which can affect the

surface energy balance (Scherer & Parlow 1994; Dubayah & Loechel 1997; Oliphant et al. 2003).

A third example is the problem of choosing an appropriate model resolution. Increased resolution

does not always reduce model errors, due to the limitations in physical parameterizations and input

data, as well as numerical errors introduced by grid interactions with steep terrain (Mass et al.
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2002; Zängl 2007).

A problem that has received somewhat less attention is the impact of steep and complex terrain

on the drag exerted on the atmosphere by the ground. In atmospheric models, the interaction of

the flow with the ground is generally represented by specifying a turbulent flux of momentum

(or a turbulent stress) across the lower boundary. In most current models, this turbulent flux is

imposed as if the lower boundary were flat, in which case the implementation of the stress is

relatively simple. However, as discussed by Epifanio (2007, hereinafter E07), the implementation

of a surface drag over steep and complex terrain is considerably more involved. Furthermore, the

terrain is expected to have an important physical impact on the behavior of the stresses and their

interaction with the flow, a topic that has received relatively little attention.

The present thesis explores the role of complex terrain in the specification and physics of sur-

face drag conditions at the lower boundary. Broadly speaking, the thesis consists of two parts. The

first part considers the impact of terrain on the basic physics of the the surface drag and how the

drag interacts with the flow. It is shown that the behavior of the drag has an explicit dependence on

both the slope and curvature of the terrain, which produces significant differences from the behav-

ior of stress over flat ground. The second part of the thesis considers the implementation of surface

drag conditions in numerical models. A general method for imposing the drag was introduced by

E07. However, the method of E07 is difficult to implement, particularly in parallelized models

making use of domain decomposition. In the present thesis, an alternative method for imposing

the surface stress condition is presented, which is much simpler to implement.

The following chapter provides background on both the physics and implementation of the

surface drag condition. Chapter 3 discusses numerical experiments designed to explore the basic

physics of the surface stresses, with a particular focus on the role of terrain geometry. Chapter 4

presents an alternative to the method of E07 for imposing the surface stress condition in models,

with an implementation in the Weather Research and Forecasting model presented as an example.

The final chapter provides conclusions and suggests directions for future work.
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2. BACKGROUND

The present chapter reviews the basic physics and mathematical specification of the surface

drag condition over complex terrain, as well as some existing numerical methods for imposing the

drag condition in the context of numerical (particularly finite-difference) models.

2.1 Basic Physics

2.1.1 The stress condition

The drag condition describes the transfer of momentum across the lower boundary, suggesting

the shape of the terrain plays an important role. Let the terrain height in 3D Cartesian coordinates

be described by h(x, y), and assume h is second-order differentiable. The local unit normal to the

terrain pointing towards to the model interior is then defined uniquely at each terrain boundary

point by

n = (n1, n2, n3) =
(−∂h/∂x, −∂h/∂y, 1)√
(∂h/∂x)2 + (∂h/∂y)2 + 1

. (2.1)

We assume that the turbulent stress can be expressed in terms of the mean viscous stress tensor as

τij = −κ
(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij ∇ · u

)
(2.2)

where u = (u, v, w) = (u1, u2, u3) is the fluid velocity, δij is the Kronecker delta, and where

κ is the kinematic viscosity, which is taken to be the sum of a small background viscosity plus

 

Figure 2.1: Schematic representa-
tion of the normal and tangent vec-
tors, as described in the text.

a turbulent eddy viscosity, thus allowing a contribution from

subgrid-scale turbulent fluxes to be included. We assume that

κ ̸= 0 at the lower boundary.

As described by Epifanio (2007, hereinafter E07), apply-

ing the drag condition at the boundary amounts to projecting

the stress tensor (2.2) across the topographic surface and then

taking the tangential component of the resulting stress vector
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τ · n. To be concrete, let the unit tangent vectors to the terrain in the xz and yz-planes be denoted

by s and t, respectively, as illustrated schematically in Fig. 2.1. We can then specify the tangential

part of τ ·n by giving its projections in the directions of s and t. If the stress to be imposed on the

flow is given by D, then the resulting boundary condition takes the form

τijnjsi = Dx and τijnjti = Dy (2.3)

where Dx = D · s and Dy = D · t are the projections of the imposed stress into the xz and yz

tangent directions, respectively.

Note than in terms of n, the tangent vectors s and t can be written as

s =
(n3, 0,−n1)√

n2
1 + n2

3

and t =
(0, n3,−n2)√

n2
2 + n2

3

. (2.4)

Substituting into (2.3) then allows the boundary condition to be written in terms of τij and the

components of n; specifically

τ1jnjn3 − τ3jnjn1 = Dx

(
n2
1 + n2

3

)1/2 and (2.5a)

τ2jnjn3 − τ3jnjn2 = Dy

(
n2
2 + n2

3

)1/2
. (2.5b)

The goal is then to specify the flow so that both (2.5a) and (2.5b) are satisfied at all points on the

terrain surface.

Note that as written, (2.5a) and (2.5b) [or equivalently, (2.3)] seem to be boundary conditions

on the components of the stress. However, the stress tensor has six unique components, so that

(2.5a) and (2.5b) are insufficient to determine all six components. Instead, to have a solvable

problem, (2.5) should be seen as a boundary condition on the velocity components. To be specific,

substituting for τij in terms of (2.2) and combining with the condition of no flow through the
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boundary gives the system

(
∂u1
∂xj

+
∂uj
∂x1

− 2

3
δ1j ∇ · u

)
njn3

−
(
∂u3
∂xj

+
∂uj
∂x3

− 2

3
δ3j ∇ · u

)
njn1 = −Dx

κ

(
n2
1 + n2

3

)1/2 (2.6a)

(
∂u2
∂xj

+
∂uj
∂x2

− 2

3
δ2j ∇ · u

)
njn3

−
(
∂u3
∂xj

+
∂uj
∂x3

− 2

3
δ3j ∇ · u

)
njn2 = −Dy

κ

(
n2
2 + n2

3

)1/2 (2.6b)

u · n = 0 (2.6c)

which is three equations for the three unknown components of u at the boundary. The boundary

condition is applied by specifying u, v, and w at the boundary so that the three components of (2.6)

are satisfied together.

Finally, we note that in many idealized models, a free-slip condition is applied on the terrain

surface to simplify the dynamics. From the above, the free-slip condition is just a special case of

(2.6a) and (2.6b), with Dx = Dy = 0.

2.1.2 Terrain following coordinates

A common approach to deal with the irregular geometry of the terrain is to introduce terrain

following coordinates. We consider the specific class of computational-coordinate transformations

defined by

X = x, Y = y, q = q(x, y, z) (2.7)

where (x, y, z) are the physical-space Cartesian coordinates and where the mapping is assumed to

be one-to-one. The coordinate is said to be terrain following if in the transformed coordinate, the

surface of the terrain is a surface of constant q.

The use of terrain following coordinates for terrain modeling was first proposed by Gal-Chen
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& Somerville (1975), who introduced the specific coordinate

q = zT
z(x, y)− h(x, y)

zT − h(x, y)
(2.8)

where zT is the top of the model domain. In the coordinate (2.8), the terrain is defined by q = 0,

while the upper boundary of the model domain is defined by q = ztop. Applying (2.7) with (2.8)

then maps the irregular physical domain to the rectangular computational coordinates

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, 0 ≤ q ≤ zT .

Since the lower boundary is a level surface in the transformed coordinate, the Cartesian gradient

of q at the boundary must be parallel to n; i.e.,

∇q |z=h = γn (2.9)

where γ is a known function of horizontal position. For example, for the specific terrain-following

coordinate defined by (Gal-Chen & Somerville, 1975)

γ =
zT

zT − h

√(
∂h

∂x

)2

+

(
∂h

∂y

)2

+ 1 . (2.10)

The horizontal and vertical derivatives (of u as an example) in the terrain following coordinate can

then be rewritten as

∂u

∂x
=
∂u

∂X
+
∂u

∂q

∂q

∂x
=

∂u

∂X
+ γn1

∂u

∂q
(2.11a)

∂u

∂z
=
∂u

∂q

∂q

∂z
= γn3

∂u

∂q
(2.11b)

As shown by E07, using (2.9) and (2.11) in (2.6) and simplifying then puts the drag boundary
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condition eventually in the form

2n1n3
∂u

∂X
+ n2n3

(
∂u

∂Y
+

∂v

∂X

)
+ (n3n3 − n1n1)

∂w

∂X

− n1n2
∂w

∂Y
+ γn3

∂u

∂q
− γn1

∂w

∂q
= −Dx

κ

(
n2
1 + n2

3

)1/2 (2.12a)

2n2n3
∂v

∂Y
+ n1n3

(
∂u

∂Y
+

∂v

∂X

)
+ (n3n3 − n2n2)

∂w

∂Y

− n1n2
∂w

∂X
+ γn3

∂v

∂q
− γn2

∂w

∂q
= −Dy

κ

(
n2
2 + n2

3

)1/2 (2.12b)

w = u
∂h

∂x
+v

∂h

∂y
(2.12c)

2.1.3 Vorticity at the boundary

As shown by E07, for the case of 2D flow, the drag boundary condition can be rewritten more

simply in terms of the vorticity at the boundary. Specifically, starting with the 2D form of (2.12a)

2n1n3
∂u

∂X
+ γn3

∂u

∂q
+ (n3n3 − n1n1)

∂w

∂X
− γn1

∂w

∂q
= −Dx

κ
(2.13)

E07 show that by combining with (2.1), (2.9), and (2.12c), the 2D drag condition can be rewritten

as

η + 2u

[
1 +

(
∂h

∂x

)2
]−1

∂2h

∂x2
= −Dx

κ

where η is the vorticity, and its form in the terrain following coordinate can be written as

η =
∂u

∂q

∂q

∂z
− ∂w

∂X
− ∂w

∂q

∂q

∂x
= γn3

∂u

∂q
− ∂w

∂X
− γn1

∂w

∂q
(2.14)

Recalling that for 2D flow n2
1 + n2

3 = 1, combining the first of (2.4) with (2.6c) shows that the

tangential component of u at the boundary has the form

u · s = u

[
1 +

(
∂h

∂x

)2
]1/2

(2.15)
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in which case the 2D stress condition (2.13) can be expressed as

η + 2
u · s
R

= −Dx

κ
(2.16)

where

R =
[
1 + (∂h/∂x)2

]3/2
/
(
∂2h/∂x2

)
(2.17)

is the radius of curvature of the terrain profile. Note that as defined, R is positive for concave

terrain (valleys) and negative for convex terrain (ridges).

It is worth noting that with a drag condition, the vorticity at the ground depends not just on the

drag, but also on the curvature of the terrain. In particular, for flow in the positive x direction, flow

past ridges (R < 0) produces positive vorticity due to the curvature term, while flow past valleys

(R > 0) produces negative vorticity. This is true even for free-slip flow (Dx = 0), implying that

even for a free-slip condition, vorticity can be produced at the boundary.

The condition (2.16) also provides a method for implementing the stress condition in 2D

vorticity-streamfunction models, such as that described by E07 and Viner et al. (2013). In a

vorticity-streamfunction model, the updated interior vorticity is inverted at each time step to give

the updated streamfuction, and by extension, the updated velocity fields. Given the updated u, im-

posing the stress condition then amounts to specifying the updated vorticity at the lower boundary

points according to (2.16).

2.1.4 Approximate forms

Implementing the drag condition as described above can be somewhat involved numerically,

and as described in chapter 4, this is particularly true for highly parallelized models using domain

decomposition strategies. As a result, existing atmospheric models almost exclusively apply the

drag condition in an approximate form, thus simplifying the implementation. Broadly speaking,

there are two approximations in widespread use:
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• The flat boundary approximation. In the flat boundary approximation, the terrain is assumed

to be locally horizontal for purposes of specifying the stress, in which case the drag condition

(2.3) reduces to

τ13 = Dx and τ23 = Dy (2.18)

or equivalently
∂u

∂z
= −Dx

κ
and

∂v

∂z
= −Dy

κ
. (2.19)

If the model grid is such that the vertical grid lines are parallel to the z-axis, then (2.19)

and (2.18) are trivial to implement numerically. For this reason, most current generation

atmospheric models employ some version of (2.19) or (2.18) at the boundary.

• The normal gradient approximation. In the normal gradient approximation, the stresses

are applied as if the boundary was locally given by an inclined plane—specifically, by the

tangent plane to the boundary at the point of interest. The analogous condition to (2.19) for

an inclined plane is then

κ
∂V

∂n
= −D (2.20)

where ∂/∂n is a derivative in the direction normal to the boundary, and where

V = u− (u · n)n (2.21)

is the tangential wind. Projecting (2.20) into the s and t directions then reduces the drag

condition to
∂us
∂n

= −Dx

κ
and

∂ut
∂n

= −Dy

κ
(2.22)

where us = u · s and ut = u · t are the projections of the tangential wind into the xz and yz

planes, respectively. As suggested by the assumption of a tangent plane, the normal gradient

condition captures the effect of terrain slope, but fails to account for the curvature of the

terrain.
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Further discussion of the geometric dependence of these two approximations is given in sec-

tion 3.3.3.

2.2 Implementation

Below, we describe some of the attempts to implement the drag boundary condition described

above and its approximations as used in previous atmospheric models. For concreteness, we focus

on the implementation in finite-difference models, since most mesoscale atmospheric models have

been developed in the finite-difference framework.

2.2.1 Early attempts

In many cases, a drag condition was implemented during the initial development of a model

(or a family models) and then has not changed much through the subsequent versions. As such, it

is useful to review the treatment of the boundary condition in some of the early modeling studies,

particularly since the formulation of the condition has led to a certain amount of confusion.

Gal-Chen & Somerville (1975, hereinafter GS75): One of the first studies to consider model-

ing over complex terrain was GS75, which introduced a formalism for handling complex terrain

of arbitrary terrain slope and curvature, referred to in subsequent studies as terrain-following co-

ordinates (cf. section 2.1.2). To be specific, GS75 considered methods for transforming a domain

of complex shape with terrain into a simpler rectangular domain, in which the equations could be

discretized using standard methods. The specific coordinate transformation suggested by GS75

has formed the basis of many generations of terrain models.

GS75 were mainly concerned with defining the properties of the coordinate transformation

and re-deriving the equations of motion in the new coordinate system. However, the treatment of

the boundary conditions was also considered, with attention given to two alternatives: the no-slip

condition, and the free-slip condition, which in principle can be considered a specific case of (2.3).

Unfortunately, the free slip condition was in fact specified incorrectly (and without justification) as

ζ × n = 0 (2.23)
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where ζ is the 3D vorticity vector.

To see that (2.23) is incorrect, we can refer to section 2.1.3. According to (2.16), free-slip

flow past a long ridge will inevitably have a y-component of vorticity, due to the curvature of the

terrain. Since the y-direction is perpendicular to n, this in turn requires ζ × n ̸= 0. In general, it

can be shown that the free-slip version of (2.3) reduces to (2.23) only if the curvature of the terrain

is neglected.

Clark (1977, hereinafter C77): Probably the first model to make use of the coordinate transfor-

mation of GS75 was the early anelastic terrain model of C77. As part of their model formulation,

C77 specify a simple drag parameterization at the boundary. However, unlike the discussion in

section 2.1.1, C77 treat the drag condition as boundary condition directly on the stress, rather than

the velocity, which eventually leads to a problem that is not well posed. To be specific, C77 specify

the τ13 and τ23 components of the stress using the flat boundary assumption (2.18). However, the

remaining parts of the stress are simply set to zero at the boundary, namely

τ11 = τ22 = τ33 = τ12 = 0 (2.24)

which is formally inconsistent with (2.18). To see this, note that even for a flat boundary, (2.18)

puts no constraint on the horizontal derivatives of u and v at the boundary, or on ∂w/∂z, meaning

(2.24) will not generally apply. And clearly if the boundary is not flat, (2.24) constrains the stress

in an unrealistic way.

In addition to the conditions on the stress, C77 also assume a condition on the velocity as part

of their anelastic pressure solver, namely

∂u

∂z
=
∂v

∂z
= 0 (2.25)

which is a free-slip version of the flat boundary condition (2.19). However, under any more general

conditions, (2.25) is again inconsistent with (2.18). It is worth noting that the condition (2.25) is
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used only in the pressure solver and is never applied directly to the velocity. But the inconsistency

of the condition nonetheless remains.

Durran & Klemp (1983, hereinafter DK83): Another early terrain model based on the GS75

coordinate but using a somewhat different numerical framework is the time-split, compressible

model of DK83. In documenting their model, DK83 did not explicitly address the drag condition

at the boundary, except to mention that mixing normal to the lower boundary vanished, presumably

as an implementation of the free-slip condition. However, inspection of the code shows the stresses

are again implemented using the flat boundary form (2.18).

Like C77, DK83 treat the surface drag condition as a boundary condition on the stress, rather

than on the velocity, so that τ13 and τ23 are specified directly. However, unlike C77, no assumptions

are made about the remaining components of the stress tensor. Instead, through the combination

of grid staggering and one-sided differencing, DK83 avoid any reference to the remaining com-

ponents at the ground, leaving these terms unspecified (and thus avoiding the inconsistency in the

C77 approach).

Tests using our own models show that for high enough resolution, the DK83 approach produces

results similar to (2.19), suggesting the approach is a reliable implementation of the flat boundary

condition. However, the method makes no attempt to account for terrain slope or curvature.

Subsequent models: As best we know, all the later atmospheric community models have either

followed or simply inherited the approaches for the drag condition first implemented by C77 and

DK83. For example, as discussed in chapter 4, the public version of the WRF model specifies the

surface stresses essentially as in C77, and until the study of E07, our own model specified stresses

as in DK83. The number of models implementing the full version of the stress condition, valid

for arbitrary terrain slopes and curvatures, would appear to be limited to the few cases described

below.
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2.2.2 A time-lagged implementation

The first attempt to apply the full version of the stress condition in an atmospheric model

without restrictions on terrain geometry was presented in an unpublished manuscript by V. Grubišić

and P. K. Smolarkiewicz (1999, unpublished manuscript; hereinafter GS99). The method of GS99

is based on ideas borrowed from iterative elliptic solvers, in which a complex boundary condition

is sometimes split over two iterations so as to simplify the application (e.g., Smolarkiewicz &

Margolin, 1994). As long as the solver converges, the splitting of the boundary terms is expected

to have negligible influence on the final solution.

In the context of the drag condition, the GS99 method involves splitting the boundary condition

over two time steps. To be concrete, suppose the method is applied as part of a forward in time

step advancing from t to t+∆t. In that case, the fields at the interior grid points are first advanced

using the model dynamics, and the drag condition is then used to determine the fields at the ground

at t+∆t. In the approach of GS99, the boundary condition is discretized so that only the vertical

(or more precisely, ∂/∂q) terms in (2.12) are evaluated at t + ∆t, while the remaining terms are

lagged to time t. That is, the boundary conditions (2.12) are evaluated as

γn3
∂u

∂q

t+∆t

− γn1
∂w

∂q

t+∆t

= known terms (2.26)

γn3
∂v

∂q

t+∆t

− γn2
∂w

∂q

t+∆t

= known terms (2.27)

wt+∆t −ut+∆t∂h

∂x
− vt+∆t∂h

∂y
= 0 (2.28)

where the right side in (2.26) and (2.27) includes the specified drag along with terms evaluated at

time t. The vertical derivatives in (2.26) and (2.27) are then discretized using one-sided differences

and known terms at interior points are moved to the right side, leaving a simple algebraic system

for the boundary velocity at time t+∆t.

The GS99 method has an advantage of being straightforward to implement. However, a sig-

nificant limitation of the method is that in order for (2.26)–(2.28) to provide an accurate boundary
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condition, the terms on the right side must be accurately represented at time t, implying the fields

at time t must already satisfy the boundary conditions. Going back, this means the fields at the

initial model time must satisfy the boundary conditions a priori—if not, the chain of boundary

conditions will be broken for all times going forward. While this limitation may be acceptable for

some idealized applications (e.g., an acceleration from rest), it generally cannot be satisfied for

realistic applications.

Despite its limitations, the GS99 method has been an important part of the EULAG model and

its more recent offshoots (e.g., Smolarkiewicz et al., 2007). It is worth noting that the method is

easiest to implement on unstaggered grids, since staggering requires the terms in (2.26)–(2.27) to

be averaged in space, thus coupling terms at different grid points and complicating the algebraic

solution.

2.2.3 The matrix implementation

A general method for implementing the drag boundary condition in finite difference models,

fully accounting for terrain geometry, was introduced by E07. In the E07 method, the fields are

first advanced to time t + ∆t at interior grid points, and the terrain following conditions (2.12a)

and (2.12b) are then discretized directly on the model grid at time t + ∆t. Horizontal derivatives

are differenced using second order centered differences at the boundary, for example

∂u

∂X
=
ui+1,j,0 − ui−1,j,0

2△x
(2.29)

where i and j are the horizontal indices, while the vertical index 0 refers to points on the boundary.

Vertical derivatives are differenced using one sided differences, for example

∂u

∂q
=
ui,j,1 − ui,j,0

△q
(2.30)

where the fields at the first interior level in the vertical are known.

Discretizing (2.12a) and (2.12b) as in (2.29) and (2.30) and grouping the known interior values

14



of velocity on the right side gives a pair of linear equations for the velocity components at the

boundary. Combining with (2.12c) then gives a solvable system of three equations, which can be

written symbolically as

Lu0 = b (2.31)

where L is a linear sparse matrix operator derived from the discretized forms of (2.12a)–(2.12c),

and where u0 is the vector consisting of the velocity components at the ground. The right side in

(2.31) includes terms involving the known interior values, along with the specified stresses Dx and

Dy. Solving (2.31) for u0 then gives the unique values of the velocity at the boundary satisfying

(2.12a)–(2.12c), and using these surface fields when computing the deformations and associated

viscous / turbulent flux terms at the boundary then guarantees the required stress condition is

satisfied.

As implemented by E07, (2.12a)–(2.12c) are discretized on a staggered C-grid, and the sys-

tem is solved using the iterative conjugate-residual method of Smolarkiewicz & Margolin (1994).

However, it is worth noting that while the resulting method is general, it does depend on a global

sparse matrix inversion, which can be difficult to implement. This is particularly true for paral-

lelized models using domain decomposition. A new local implementation that avoids this matrix

inversion issue will be outlined in chapter 4.

2.2.4 The drag parameterization

In general, the momentum flux at a solid boundary is highly dependent on the characteristics of

the boundary. For atmospheric flows, we usually have a hydrodynamically rough surface, in which

the stress is transmitted to the lower boundary by way of the "pressure drag" on the roughness

elements at the boundary. Above the boundary, the velocity profile is dominated by shear-induced

turbulent eddies, at least over a thin atmospheric layer referred to as the surface layer. Typical

depths for this turbulent surface layer are several 10s of meters, with deeper layers during the day

and shallower at night.

For simplicity, the lower boundary is assumed to be flat, although similar arguments should be
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expected to hold for inclined terrain. The flux of momentum in the turbulent surface layer is usually

represented in terms of the flux gradient hypothesis, in which the flux is assumed proportional to

the shear in the mean field; specifically

u′w′ = −κ∂U
∂z

(2.32)

where U is the mean wind, primes represent turbulent fluctuations, and the overline is an average

over space or time. For notation, the stress is often expressed in terms of a friction velocity, defined

so that

u∗ =
∣∣(u′w′)s

∣∣1/2 .
where the subscript s indicates the surface value. From observations, the turbulent flux is typically

assumed to be roughly constant with height in the surface layer. Combining with (2.32) then gives

κ
∂U

∂z
= u2∗ (2.33)

where u∗ is constant and where the x axis is chosen so that ∂U/∂z > 0.

The coefficient κ is given by the mixing length hypothesis, in which displaced parcels are

assumed to carry the properties of the background state over a distance l, called the mixing lenth.

In the present case, this gives (see, e.g., Holton, 1992, sec. 5.3)

u′w′ ≃ −l2
∣∣∣∣∂U∂z

∣∣∣∣ ∂U∂z (2.34)

where the signs give fluxes opposite the gradient in U . The condition (2.32) then suggests

κ = l2
∣∣∣∣∂U∂z

∣∣∣∣
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and combining with (2.33) then gives

(
l
∂U

∂z

)2

= u2∗ (2.35)

where we again assume ∂U/∂z > 0.

For a neutral surface layer, the mixing length is assumed proportional to the distance from the

boundary—specifically, l ≃ kz, where k ≃ 0.41 is the von Karman constant. Substituting into

(2.35) results in
∂U

∂z
=
u∗
kz

(2.36)

and ntegrating with respect to z gives

U

u∗
=

1

k
ln
z

z0
(2.37)

where the constant z0 is the roughness length, which is the height at which U is assumed to be

zero. In terms of the turbulent stress, (2.37) implies

τ0 = ρ u2∗ = ρU2

[
1

k
ln
z

z0

]−2

where ρ is the density.

In vector form, (2.38) is often rewritten as

D = −Cd |V|V (2.38)

where

Cd = ρ

[
1

k
ln
z

z0

]−2

(2.39)

is the drag coefficient (as determined by z0), and where V is the tangential wind, as in (2.21). The

negative sign is given by the fact that the drag is exerted to the opposite direction of the wind. As

applied in a numerical model, the tangential wind and drag coefficient are typically evaluated at
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the first grid level above the ground, which is assumed to be in the surface layer.

The conditions (2.38) and (2.39) are assumed to apply for neutral surface layers. However,

complications arise because the atmosphere is not often neutral within the surface layer. In cases

for which the surface layer is unstable or stable, observations suggest that the wind speeds are

greater than those found under neutral conditions for unstable conditions, and decreased for stable

conditions. Empirical corrections are typically applied to account for the departures from the

neutral case (Dyer 1974; Businger et al. 1971), with (2.37) replaced by the form

U

u∗
=

1

k

[
ln
z

z0
− ψm

( z
L

)]
(2.40)

where L is the Monin-Obukhov length (Obukhov, 1971) and where the function ψm takes different

forms depending on the stratification. Given the wind profile as described above, the turbulent flux

can be recovered from the friction velocity as

τ0 = ρ u2∗ = ρU2k2
[
ln
z

z0
− ψm

( z
L

)]−2

It is worth noting that the basic form of (2.40) follows from Monin-Obukhov similarity theory

(Monin & Obukhov, 1954), which was developed for turbulence over a horizontal boundary. While

significant effort has been devoted to finding more accurate flux-profile relationships in (2.40)

under different stability conditions (Businger, Wyngaard, Izumi, & Bradley, 1971), much less

attention has been given to the effect of terrain geometry on the fluxes. Specifically, for a sloped

boundary, the main shear axis of the flow is no longer aligned with gravity, which we would expect

to have an impact on the turbulent eddies and associated fluxes. To our knowledge, the impact of

the terrain slope on the Monin-Obukhov similarity theory remains an open question.
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3. SEMI-IDEALIZED MODEL EXPERIMENTS

3.1 Introduction

As discussed in section 2.2.3, a method for implementing the general surface stress condition

over terrain of arbitrary geometry was introduced by E07. However, the study of E07 was primarily

about developing the method and gave limited attention to the behavior and physics of the surface

stresses. In particular, the test cases considered by E07 were all highly idealized problems, con-

sisting of neutral stability flows with constant wind past an isolated ridge or hill. Furthermore, as

mentioned in section 2.1.4, current atmospheric community models all apply the drag condition as

if the lower boundary were flat, without taking into account the geometry of the terrain at all. As a

result, we currently have limited insight into the effect of the full, unapproximated drag conduction

in more realistic flow conditions.

The goal of the present chapter is to use the method and model of E07 to begin to explore the

physics of the drag condition in more realistic flows. In particular, some questions we hope to

address are

• How much of an impact does the use of the full stress condition have relative to simulations

using flat boundary and normal gradient approximations discussed in section 2.1.4?

• How does the physics and behavior of the flow calculated using the boundary condition

depend on particular aspects of the flow, such as the terrain geometry or the upstream wind

and stability profiles?

As will be shown below, the behavior of the flow calculated using the drag condition over complex

terrain is found to have a strong dependence on the geometry of the terrain in particular, with an

explicit dependence on both the terrain slope and curvature. To illustrate this dependence, we con-

sider experiments in which simulations using the full stress implementation of E07 are compared

to companion simulations using each of the two approximate conditions in section 2.1.4—namely,

(i) the normal gradient condition, which accounts for terrain slope but neglects curvature, and (ii)
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the flat boundary assumption, which ignores both the curvature and the slope. Note that while these

experiments highlight the role of the terrain geometry, they also address the first of the questions

listed above—specifically, how much of an impact does the full stress condition have relative to

the approximations in widespread use.

We note that in the present study, we address the questions above using the model described

by E07, which, as described in section 2.2.3, appears to be the only current model with a general

implementation of the full stress condition. (For reference, a new implementation for the WRF

model is presented in the following chapter). The E07 model was developed as an idealized dy-

namical code, which neglects more general physical processes such as microphysics and radiation.

However, to make the current simulations more realistic, the model is implemented using terrain

data for a specific region—namely, a region in Tongariro National Park, New Zealand—as well as

realistic wind and stability profiles, taken from from the ERA5 reanalysis. To highlight the role

of the surface drag (as opposed to heat fluxes), the experiments are carried out for cases with neu-

tral or nearly neutral surface layers, as generally occur during the evening and morning transition

periods.

The following section gives a brief overview of the model E07, as well as the data sources

used in the study. Section 3.2 details the implementation of the normal gradient condition in

the model (which broadly follows the method described by E07 for the full condition), along with

basic physical arguments to illustrate the dependence of the drag condition on the terrain geometry.

Section 3.4 describes the results of experiments using randomly chosen cases, so as to give a sense

of the behavior of the drag condition under a range of different flow conditions. The behavior of the

drag condition under varying grid resolution is described in section 3.5. Section 3.6 discusses some

general implications of the results for wind energy applications, while a summary and conclusions

are presented in section 3.7.
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3.2 Experimental design

3.2.1 Physical framework

We consider the non-rotating, compressible Boussinesq problem described by

Du

Dt
= −∇P + bk−∇ · τ (3.1)

Db

Dt
+N2w = −∇ ·B (3.2)

DP

Dt
+ c2s ∇ · u = 0 (3.3)

where u = (u, v, w) = (u1, u2, u3) is the velocity, P is the Boussinesq disturbance pressure and b

the buoyancy, N is the basic-state static stability (which depends on height), and cs is the constant

sound speed. The inclusion of compressibility in (3.3) allows the system to be integrated using ex-

plicit time integration methods, as described below. However, for sufficiently small Mach numbers

(as in the present case), the flow is effectively incompressible, in which case (3.1)–(3.3) reduces to

the conventional Boussinesq system. For further discussion of the compressible Boussinesq prob-

lem (including scaling arguments and range of validity), see Appendix C of Epifanio & Rotunno

(2005).

The viscous stress tensor τ in (3.1) is defined by the conventional form (2.2). A Boussinesq

potential temperature variable for the system (3.1)–(3.3) can be defined (to within a constant) by

θ =

∫ z

0

N2(z′) dz′ + b

in which case the diffusive heat flux in (3.2) takes the form

Bj = −κ ∂θ
∂xj

(3.4)

where the thermal diffusivity and viscosity have been assumed equal.

The initial and boundary conditions for the problem are defined using realistic sounding and
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terrain data, as described further in sections 3.2.2 and 3.2.3 below.

Figure 3.1: (a) Topography on the simulation domain (contour interval = 250m), showing
Mts. Ngauruhoe (to the north) and Ruapehu (to the south). Pink shading surrounding Mt. Ngau-
ruhoe shows the region used for quantitative error calculations, as described in the text. (b) Three-
dimensional rendering of the region surrounding Mt. Ngauruhoe, as viewed from the direction
indicated by the red arrow in (a). Solid lines show terrain contours, as in (a).

3.2.2 Test case and data sources

The test domain for our experiments consists of a pair of stratovolcanoes—specifically, Mt. Ngau-

ruhoe and Mt. Ruapehu—and the surrounding regions of rough terrain in Tongariro National Park,

New Zealand, as shown in Fig. 3.1. This region was chosen in part due to the strong (roughly 30o)

slopes on the sides of Mt. Ngauruhoe but also due to the very localized nature of the areas of com-

plex terrain. As seen in Fig. 3.1, away from the two volcanoes, the topography becomes relatively

flat, thus allowing the impact of the terrain to be easily attributable to specific terrain features.

The terrain was represented in the model using data obtained from the NASA Shuttle Radar

Topographic Mission (SRTM) 3 arc-second (or roughly 90 m) digital elevation database, quality

controlled to account for missing data.1 The initial state for the model was defined using data from

1Note that at the time, the 90 m SRTM was the highest resolution terrain dataset available.
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the ECMWF 0.25o × 0.25o reanalysis (ERA5). Given the limited domain size, a single ERA5 grid

point (the nearest point) was taken to be representative of the model background state, with the

sounding from this point applied uniformly in the horizontal at the initial time.

To focus attention on the effects of surface drag (as opposed to heat fluxes), cases were selected

in which the surface layer was expected to be close to neutral, as predicted by the ERA5 Monin-

Obukhov length. To be specific, 10 dates were first chosen randomly from the year 2012. Starting

from each date, the nearest case in which the ERA5 Monin-Obukhov length exceeded 500 was then

selected, implying nearly neutral surface conditions (e.g., Sathe et al., 2015). More specifically,

for each date, the nearest morning and nearest afternoon / evening cases to satisfy the criteria were

both selected, loosely representing the morning and evening transitions.

3.2.3 Numerical description

The numerical model used in this study is a version of the 3D compressible Boussinesq code de-

scribed in Epifanio & Durran (2001). The model solves (3.1)–(3.3) using the partial time-splitting

algorithm of Klemp & Wilhelmson (1978) [see also Durran (1999)] to handle the acoustic modes.

Spatial discretization is done through finite differencing on a C-grid (see Durran (1999)), with

fourth order centered differencing in the horizontal and second-order in the vertical. Topography

is incorporated using the terrain-following coordinate transformation of Gal-Chen & Somerville

(1975). Unresolved turbulence is handled through a Smagorinsky type turbulence parameteriza-

tion, while surface drag is represented using a standard roughness-length formulation, as described

in section 2.2.4.

Except where otherwise indicated, the horizontal grid spacing is uniform at 90 m (matching the

resolution of the terrain data). The vertical grid features geometric stretching, with a grid spacing

of 30 m near the lower boundary and vertical stretching factor of 1.026 between grid levels. The

upper 5.7 km of the domain is implemented as a Rayleigh sponge layer, with a gravity wave

radiation condition applied at the grid upper boundary. A sponge layer of width 5 km is applied

at all lateral boundaries.2 The lower boundary is assumed thermally insulating, consistent with the

2The damping magnitude in all cases varies as 0.5 [1 + cos(πd/Ls)], where Ls is the width of the damping zone
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emphasis on nearly neutral surface layers.

3.3 Implementation and dependence on terrain geometry

In the present experiments, the full version of the drag condition is implemented using the

matrix method of E07, as described in section 2.2.3. Below we describe the implementation of

the two approximate versions of the drag condition, namely, the normal gradient and flat boundary

approximations. We also present arguments to illustrate the role of the terrain geometry in the

behavior the effect of the boundary condition.

3.3.1 The normal gradient condition: matrix implementation

As in chapter 2, we let s and t be the tangent vectors to the terrain the xz and yz-planes,

respectively. Combining (2.22) with (2.4) then shows the normal gradient condition as projected

into the s and t directions can be written in the form

∂

∂n
(un3 − wn1) = n3

∂u

∂n
− n1

∂w

∂n
= −Dx

κ

√
n2
1 + n2

3 (3.5a)

∂

∂n
(vn3 − wn2) = n3

∂v

∂n
− n2

∂w

∂n
= −Dy

κ

√
n2
2 + n2

3 (3.5b)

For any variable ψ, the normal derivative is defined by

∂ψ

∂n
= ∇ψ · n̂ = n1

∂ψ

∂x
+ n2

∂ψ

∂y
+ n3

∂ψ

∂z
(3.6)

which suggests that the conditions (3.5) can be rewritten as

n3n1
∂u

∂x
+ n3n2

∂u

∂y
+ n2

3

∂u

∂z
− n2

1

∂w

∂x
− n1n2

∂w

∂y
− n1n3

∂w

∂z
= −Dx

κ

√
n2
1 + n2

3 (3.7a)

n3n1
∂v

∂x
+ n3n2

∂v

∂y
+ n2

3

∂v

∂z
− n2n1

∂w

∂x
− n2

2

∂w

∂y
− n2n3

∂w

∂z
= −Dx

κ

√
n2
2 + n2

3 (3.7b)

and d is the distance from the boundary.
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Suppose we use (2.9) and (2.11) to transform (3.7) to the terrain following coordinate (X, Y, q).

Keeping in mind n2
1 + n2

2 + n2
3 = 1, the end result looks like

n3n1
∂u

∂X
+ n3n2

∂u

∂Y
+ γn3

∂u

∂q
− n2

1

∂w

∂X
− n1n2

∂w

∂Y

− γn1
∂w

∂q
= −Dx

κ

√
n2
1 + n2

3

(3.8a)

n3n1
∂v

∂X
+ n3n2

∂v

∂Y
+ γn3

∂v

∂q
− n2n1

∂w

∂X
− n2

2

∂w

∂Y

− γn1
∂w

∂q
= −Dx

κ

√
n2
2 + n2

3

(3.8b)

where for the GS75 coordinate, γ is described by (2.10).

The conditions (3.8) are implemented by discretizing as in (2.29) and (2.30) and applying a

similar matrix approach as in section 2.2.3. In fact, comparing (2.12) and (3.8) shows that the

full stress condition is the same as (3.8), but with extra terms added. (We return to this point in

chapter 4.) The normal gradient condition can then be imposed using the same matrix solver as the

full condition, but with the extra terms set to zero.

3.3.2 The flat boundary assumption

The flat boundary approximation can take different forms, depending on which parts of the

boundary condition and the drag parameterization are approximated. In the present study, the flat

boundary approximation involves the following assumptions: (i) the drag condition is implemented

using (2.18), following a similar approach to that described for DK83 in section 2.2.1; (ii) the

reference location for (2.38) is taken to be the first full grid level above the ground vertically (as

opposed to along the terrain normal); and (iii) the reference wind in (2.38) is computed using just

the horizontal part of the wind. It is believed that these approximations are representative of most

current generation atmospheric models.

3.3.3 Dependence on terrain geometry
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Figure 3.2: Rotated Cartesian co-
ordinates at the point of interest.

The dependence of the drag condition on the terrain geom-

etry is most easily illustrated in the 2D case. The end result

can be formally derived from (2.13) with (2.15). However,

here we adopt a more basic derivation, to emphasize some of

the geometric properties.

For a given point on the terrain, suppose we define a

rotated Cartesian coordinate system (x̄1, x̄3), as shown in

Fig. 3.2. Note that the x̄3 axis is normal to the terrain and the x̄1 axis is tangent to the boundary

(and with x̄2 implicitly in the uniform direction), and let the velocity vector in these coordinates be

ū = (ū1, ū3). In the rotated coordinates, the tangent and normal vectors are simply

s̄ = (1, 0) , n̄ = (0, 1)

so that the rotated form of the stress condition (2.3) with (2.2) reduces to

∂ū1
∂x̄3

+
∂ū3
∂x̄1

= −Dx

κ
(3.9)

Since the flow at the boundary must be tangent, the ū3 component is zero at the point of interest.

The ∂ū3/∂x̄1 term in (3.9) must then depend on the change in orientation of the boundary—i.e.,

on the boundary curvature.

Figure 3.3: Geometry of the tangent direction
on a curved surface.

Consider two nearby points on the terrain sur-

face separated by an angle δϕ with respect to

the osculating circle for the terrain, as shown in

Fig. 3.3. In the limit of small δϕ, the separation

δx̄1 between the points is then

δx̄1 ≃ Rδϕ
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where R is the radius of curvature. In terms of

signs, note that both R and δϕ are negative for convex terrain (ridges), and positive for concave

terrain (valleys).

Suppose we let the (scalar) tangential component of the wind be V (which can again be positive

or negative). The difference in velocity between the two points is then

(V + δV ) (s+ δs)− V s ≃ δV s+ V δs . (3.10)

But in the limit of small δϕ, we can write δs ≃ δϕn (see Fig. 3.3), suggesting from (3.10) that the

change in the Cartesian ū3 component between the points must be

δū3 ≃ V δϕ

which further implies that the ∂ū3/∂x̄1 term in (3.9) must look like

δū3
δx̄1

≃ V δϕ

R δϕ
=
V

R
. (3.11)

Since at the point of interest the tangential component of the wind is V = u · s = us = ū1, our

rotated form of the stress condition can finally be written as

∂us
∂n

+
us
R

= −Dx

κ
(3.12)

where as before, ∂/∂n is the derivative in the normal (in this case x̄3) direction.

According to (3.12), the behavior of the stress at the boundary depends on two aspects of

the terrain geometry: (i) the slope of the boundary (through the normal derivative) and (ii) the

local terrain curvature. As a general rule, we can expect the tangential drag Dx = D · s to act

in an opposite sense to the free stream tangential wind, suggesting that the net impact of Dx is

to decrease the wind speed at the ground, relative to the free stream value (or equivalently, to
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increase the magnitude of the normal shear). On the other hand, the effect of the curvature term

in (3.12) depends on the sense of the curvature—specifically, convex terrain (R < 0) is expected

to experience a larger wind speed deficit at the ground (or equivalently, larger wind shear), while

concave terrain (R > 0) tends to produce to a smaller wind speed deficit. The size of this curvature

effect depends both on the magnitude of the surface wind speed and on the amount of curvature

in the terrain, with more strongly curved terrain (smaller R) producing a bigger impact. That said,

in the atmospheric context, we generally expect to have larger wind speeds over peaks and ridges

than over valleys, suggesting that all else being equal, the effects of curvature over convex features

will likely outweigh those over the corresponding concave terrain.

Similar considerations apply in the three dimensional (3D) case as well, although the role of

terrain curvature in that case is somewhat more involved mathematically, due to the additional

degree of freedom.

3.4 Overview of cases

As described in section 3.2.2, simulations were carried out for 20 randomly chosen cases from

2012. All cases were selected to have nearly neutral surface layers (Monin-Obukhov length greater

than 500), with half the cases occurring during the afternoon or evening hours (loosely representing

the evening transition), and the other half during the early morning or morning hours (morning

transition). For each case, simulations were carried out using three different versions of the drag

condition—specifically, the full stress condition (as described in 2.2.3, along with both the normal

gradient and flat boundary approximations (2.1.4).

For the purposes of analysis, we adopt a perfect model framework, in which the simulations

using the full stress condition are taken to accurately represent the flow. For the simulations using

the approximate drag conditions (normal gradient and flat boundary), any differences from the

full stress simulations are then treated as model errors, associated with the use of the approximate

boundary conditions. All results that follow are shown at a run time of 30 minutes, at which point

the flow at the lower boundary was found to be roughly steady.
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Figure 3.4: Errors in the low-level winds for simulations using the flat boundary [(a) and (c)]
and normal gradient [(b) and (d)] approximations. Red dots indicate afternoon or evening cases,
while blue dots show morning cases. All errors are root mean square values, as averaged over the
subdomain indicated in Fig. 3.1. (See text for details.) (a) and (b) show errors normalized by the
mean disturbance wind speed on the error averaging domain, while (c) and (d) show net errors
in units of m/s. Dashed lines in (c) and (d) show the linear least-squares regression (two outliers
excluded).

3.4.1 Error analysis

The overall errors associated with use of the flat boundary approximation in our experiments are

summarized in Figs. 3.4a and c, while the associated errors for the normal gradient approximation

are shown in Figs. 3.4b and d. Each data point in the figure represents the error for one particular

case (i.e., one date and time), plotted as a function of the low-level upstream wind speed for each

case (defined as the mean background wind speed below the peak of Mt. Ngauruhoe). Red points

indicate afternoon / evening cases, while morning cases are shown as blue.

For quantitative purposes, each of the errors in Fig. 3.4 reflects the root mean square (rms)
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vector wind difference between two otherwise identical model runs: one using the approximate

boundary condition (normal gradient or flat boundary) and the other using the full stress condi-

tion. The errors are computed for the first interior grid half level (approximately 15 m above the

ground) and then averaged over a subdomain including Mt. Ngauruhoe and the surrounding area

of rough terrain, as illustrated in Fig. 3.1. In Figs. 3.4a and b, the errors are normalized by the rms

disturbance wind speed on the averaging domain, as given by the fractional error measure

Ea =
⟨u− ua⟩

⟨u′⟩
(3.13)

where u and ua are the winds for the full stress case and for the run with the approximate boundary

condition, respectively, and where u′ is the disturbance from the background state, as evaluated for

the full stress case. The angle brackets in (3.13) represent the rms average (where the square in

this case reflects the squared vector magnitude), as averaged over all grid points in the relevant

subdomain. In Figs. 3.4c and d, the errors are presented without the normalization factor—i.e.,

showing just the numerator in (3.13).

As seen in Fig. 3.4, the normalized errors associated with use of the flat boundary approxima-

tion range from roughly 0.04 to as high as 0.17, with mean and median values of approximately

0.075 and 0.065, respectively. In dimensional (not normalized) terms (Fig. 3.4c), the correspond-

ing errors range from approximately 0.2 m/s on the low end to roughly 1.6 m/s at the upper end,

with a mean value of 0.59 m/s. As seen in Fig. 3.4c, apart from a pair of outliers, the dimensional

errors in the wind are found to vary roughly linearly with the background wind speed. A linear

least squares curve fit (excluding the two outliers) predicts a slope of 0.024, although the presence

of a nonzero intercept suggests that additional data points are needed to capture the dependence

at small windspeeds. It is worth noting that the two outlier cases in Fig. 3.4c appear to be mainly

distinguished by the direction of the background winds—further discussion of these cases is given

in section 3.4.4.

As shown in Figs. 3.4b and d, applying the normal gradient condition leads to a significant
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reduction in the low-level vector wind errors, relative to the flat boundary approximation. In quan-

titative terms, the errors for the normal gradient case are roughly half those of the corresponding

flat boundary flows across the board, including both the mean and median error values (both nor-

malized and dimensional), as well as the slope and intercept of the linear least squares fit. Recall

from section 3.3.3 that in its full, unapproximated form, the way in which the stress at the boundary

interacts with the flow depends on both the slope and curvature of the underlying terrain. Compar-

ing the flat boundary and normal gradient results then suggests that, at least for the current case,

the slope and curvature play roughly equal roles, in the sense that neglecting both the slope and the

curvature (as in the flat boundary approximation) leads to twice as much error as neglecting just

the curvature, while accounting for slope (normal gradient).

Figure 3.5: As in Figs. 3.4c and d, but including only the largest 5% of errors on the averaging
domain. Shown are mean errors in m/s for the (a) flat boundary and (b) normal gradient cases.

Finally, it is worth keeping in mind that the errors shown in Fig. 3.4 are mean values taken over

an averaging region, as illustrated in Fig. 3.1. However, as shown in section 3.4.2, in practice the

errors tend to be fairly localized to particular points in the flow, as tied to specific terrain features,

suggesting that the errors at certain points may be significantly larger than the mean values. To

give a sense of these more localized errors, Fig. 3.5 shows the average magnitude of the vector

wind difference, as in Figs. 3.4c and d, but with the average taken over just the largest 5% of the
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errors among all the grid points on the averaging domain for any given case. As shown in Fig. 3.5a,

if only the top 5% of values are included, the errors for the flat boundary case increase to a range

of roughly 0.8 m/s on the low end up to 3.3 m/s on the upper end. The mean value for Fig. 3.5a is

1.8 m/s, while the predicted slope is 0.076, both of which suggest that the average over the top 5%

of errors is roughly three times larger than the mean values for the whole averaging domain. And

as with Fig. 3.4, applying the normal gradient condition reduces the errors by roughly half, relative

to the flat boundary case (Fig. 3.5b).

3.4.2 Spatial patterns

Figure 3.6 gives a sense of the spatial distribution in the errors associated with the use of the

flat boundary approximation, as sampled for four representative cases from Fig. 3.4. Shown in

the figure is the magnitude of the vector wind difference between runs using the full stress and

flat boundary conditions, as evaluated at the first interior grid level (approximately 15 m above

ground). The errors for each case are normalized by the maximum error on the averaging domain,

so that the plotted values in each panel range from zero to one; specifically,

ef =
|u− uf |
|u− uf |max

(3.14)

where u and uf are the winds for the full stress and flat boundary simulations, respectively, and

where the denominator is the maximum value on the averaging domain from Fig. 3.1. (The cor-

responding maximum error in each case is indicated by the figure labels.) To draw attention to

regions with larger error values, the colors are defined so as to transition from bluish to reddish

shades starting at a value of roughly 0.1, as illustrated by the associated colorbar. Small green

arrows show the corresponding wind difference u − uf plotted in vector form, while thick black

arrows indicate the mean upstream wind directions below the peak of Mt. Ngauruhoe.

In each of the four cases shown, the largest errors in the winds are associated with particular

characteristics of the terrain, most notably with small ridge-like features whose axes are aligned

roughly perpendicular to the incoming winds. The largest errors are for the most part found at or
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Figure 3.6: Spatial distributions of the low-level wind errors for simulations using the flat boundary
approximation, as sampled for four representative cases from Fig. 3.4. Colors show the magnitude
of the vector wind difference between simulations using the full stress condition and the flat bound-
ary approximation, as normalized by the maximum value of the error on the subdomain shown in
Fig. 3.1. (See text for details.) Green vectors show the wind difference u−uf in vector form, while
thick black arrows show the low-level upstream wind direction. Solid black lines show contours
of constant terrain height (c.i. = 250m). Shown are results for (a) Aug 19th, 08Z; (b) Sep 08th,
05Z; (c) Nov 29th, 09Z; and (d) Dec, 16th 06Z. The view in all cases is roughly from the north, as
indicated by the red arrow in Fig. 3.1.
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near the peaks of the ridges, where the effects of terrain curvature on the stress are expected to be

largest, although in many cases the errors extend along the nearby slopes as well. The sense of the

vectors shown in Fig. 3.6 suggests that as general rule, the simulations with the full stress condition

experience stronger deceleration of the flow, relative to the flat boundary simulations, leading to

difference vectors oriented more or less opposite to the upstream winds. Note that in most cases,

the errors generated at the peaks and ridges are subsequently carried downstream, leading to wakes

of decelerated winds in the simulations with the full stress condition. A clear example can be found

in the case from November 29 (Fig. 3.6c), where a small ridge on the far side of the volcano (as

viewed in the figure) is associated with a prominent wake, extending far downstream of the terrain.

Similar examples can be found in each of the the remaining three cases, as well.

Figure 3.7 shows the spatial distributions of the error for simulations using the normal gradient

condition, with the color ranges defined as in Fig. 3.6 (i.e., using the same normalization factors),

so as to allow direct comparison between the figures. As expected, relative to the flat boundary

case, the errors in the normal gradient simulations are greatly reduced, by roughly a factor of

two. Comparing the two figures suggests that the largest errors for the normal gradient case are

more closely tied to regions of large curvature, particularly at the peaks of small ridges. That

said, the overall error patterns in Fig. 3.7 are largely similar to those seen in Fig. 3.6, with errors

generated over small ridge-like features and subsequently extending downstream. As anticipated

by section 3.3.3, the sense of the errors suggests that the flow is more strongly decelerated in the

simulations using the full stress condition, as the inclusion of curvature effects leads to larger flow

deficits near the ground.

3.4.3 Dependence on surface roughness

It is worth noting that during certain parts of the year, Tongariro National Park is largely cov-

ered by snow, leading to a significant reduction in the surface roughness. To get a sense of the effect

of reduced surface roughness on the behavior of the stress, Fig. 3.8 shows a series of experiments

identical to those shown in Fig. 3.4, except with the surface roughness length set to 0.0003 m,

characteristic of smooth, snow-covered ground.
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Figure 3.7: As in Fig. 3.6, but for simulations using the normal gradient approximation. Shown
are results for (a) Aug 19th, 08Z; (b) Sep 08th, 05Z; (c) Nov 29th, 09Z; and (d) Dec 16th, 06Z.
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Figure 3.8: As in Fig. 3.4, but for simulations using a reduced roughness length of 0.0003 m.

Comparison of Figs. 3.4 and 3.8 shows that on average, the reduction in surface roughness has

only a modest impact on the errors, both for the flat boundary and normal gradient approximations.

Quantitatively speaking, the experiments with reduced surface roughness result in slightly larger

errors, with the mean error for both the flat boundary and normal gradient experiments increasing

by roughly 10% relative to the results in Fig. 3.4. That said, it is worth noting that certain individual

cases can show a much larger sensitivity. The clearest example is the outlier case with an upstream

wind of U = 22 m/s, for which the normalized flat boundary error increases to over 0.18 (or

a dimensional error of 1.8 m/s) in the experiments with reduced surface roughness, implying an

increase of nearly 45% relative to the error with roughness length 0.005 m.

3.4.4 The outlier cases

As noted above, for most of our experiments, the errors are shown to be roughly proportional

to the low-level background wind speed, regardless of the direction of the background winds. That
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Figure 3.9: Low-level wind errors for the two outlier cases shown in Fig. 3.4, as viewed from a
vantage point above and slightly to the north. Colors show the magnitude of the low-level vector
wind difference between simulations using the full stress condition and the flat boundary approxi-
mation, normalized and plotted as described in Fig. 3.6. Thick black arrows show the direction of
the low-level upstream winds.

said, the presence of the two outlier cases suggests that this lack of directionality may not in fact

be a general result.

Figure 3.9 shows the magnitude of the errors in the flat boundary experiments for the two out-

lier cases, normalized and plotted as in Fig. 3.6, but showing an expanded (and somewhat more

vertical) view. As seen in the figure, while the terrain surrounding Mt. Ngauruhoe is mostly gentle,

there exists a range of wind directions (from roughly 0o to 45o) for which the flow first encounters

Mt. Ruapehu to the south (cf. Fig. 3.1), with the wind for the March 03 case (Fig. 3.9a) showing a

nearly direct alignment between the two mountains. As a result, there appears to be a compound-

ing effect in the errors, as the interaction with Mt. Ruapehu leads to differences between the flat

boundary and full stress simulations which extend downstream, particularly as seen for the March

03 case. These differences are then further amplified through the interaction with Mt. Ngauruhoe

(and the surrounding terrain), ultimately leading to a disproportional increase in the errors on the

averaging domain, as seen Fig. 3.4. A similar effect occurs (to a somewhat lesser extent) in the
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Oct 06 outlier case (Fig. 3.9b), as the flow encounters the rough terrain to the northeast of Mt. Ru-

apehu before approaching the Mt. Ngauruhoe area.

In addition to upstream effects, a second factor which could lead to a degree of directionality

in the results is simply the geometric properties of the terrain. If the terrain undulations tend to

be preferentially aligned along a particular axis (as in the case of a elongated ridge), then flow

directed roughly perpendicular to that axis will be expected to produce larger errors in the flat

boundary and normal gradient approximations, relative to having the flow directed along the axis.

This type of effect appears to play a significant role in the Oct 06 case, as the region of complex

terrain surrounding Mt. Ngauruhoe features several prominent ridges aligned nearly perpendicular

to the flow in that case, each of which results in significant errors.

Finally, yet another factor that might play a role in the production of outlier cases could be

the presence of certain wind and stability profiles leading to an amplified response, such as a

downslope windstorm or high-drag state. It is unclear whether such effects play a role in our

experiments, but in principle, at least, if the disturbance flow is strongly accelerated, then the

observed relationship between the stress and the upstream windspeed might not apply.

3.5 Resolution dependence and terrain smoothing

The results of section 3.3.3 and sections 3.4 show that the behavior of the surface stress has a

strong dependence on the terrain geometry, particularly on the slope and curvature of the terrain.

However, in the context of a numerical model, the geometry of the terrain can in turn be affected

by numerical factors, such as the grid resolution or the amount of terrain smoothing applied. In

the present section, we explore the impact of such factors for the case of flow past Mt. Ngauruhoe,

using a typical case from Fig. 3.4 (i.e., a case with roughly average low-level wind errors) as an

example.

3.5.1 Dependence on horizontal grid resolution

Figure 3.10 shows an example of the low-level wind errors for the flat boundary approxima-

tion, as simulated using horizontal grid spacings ranging from 90 m to 240 m (and with all other
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Figure 3.10: Error patterns in different horizontal resolution for the Sep 08th case between full-
stress and flat-boundary conditions: (a) 90m; (b) 120m; (c) 180m; (d) 240m.

parameters as described in section 3.2). The case shown is the September 08 event illustrated in

Fig. 3.6c, which is taken to be a typical case, in the sense that the normalized error for this case is

roughly equal to the mean error over all twenty cases shown in Fig. 3.4a. As in Fig. 3.6, the color

field in Fig. 3.10 shows the length of the vector wind difference between simulations using the

flat boundary approximation and the full stress condition. However, note that unlike in Fig. 3.6,

the results in Fig. 3.10 are unnormalized, allowing the size of the error to be directly compared

between panels.

As can be seen in the figure, the geometry of the terrain as represented on the model grid is
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Figure 3.11: Error patterns in different horizontal resolution for the Sep 08th case between full-
stress and normal-gradient conditions: (a) 90m; (b) 120m; (c) 180m; (d) 240m.

strongly dependent on the model grid spacing, with the terrain features generally becoming broader

and smoother as the grid interval increases. As should be expected, this change in terrain geometry

also implies a change in the errors associated with the flat boundary condition, with the approx-

imation becoming broadly more accurate as the terrain becomes smoother. (For consistency, the

blue-red transition in all panels occurs at the same value—namely, at 10% of the maximum error

observed in Fig. 3.10a.) Similar results can be seen for the normal gradient condition (Fig. 3.11),

for which the maximum errors in the ∆x = 240 m case only barely exceed the blue-red threshold.

Note that in both the normal gradient and flat boundary experiments, the decrease in the error with
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Figure 3.12: Error dependence on resolution in the Sep 08 case. Circles: errors produced by flat
boundary approximation; triangles: errors produced by normal gradient approximation.
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increasing ∆x occurs most prominently in the regions of complex terrain surrounding Mt. Ngau-

ruhoe, rather than over the mountain peak itself.

Figure 3.12 shows the errors for the September 08 case as averaged over the subdomain shown

in Fig. 3.1, for grid spacings ranging from 90 m to 240 m. Figure 3.12a shows the errors as

normalized by the RMS disturbance wind, as in Figs. 3.4a and b, while Fig. 3.12b shows the

errors in dimensional form, as in Figs. 3.4c and d. In all cases, the error is seen to have a strong

dependence on the grid spacing, particularly for grid intervals less than roughly ∆x = 150 m.

All told, the error in the flat boundary experiments changes by roughly a factor of three (from

0.8 m/s to 0.25 m/s, or from 0.073 to 0.024 in normalized terms) between ∆x = 90 m and 240 m,

with roughly two thirds of that difference occurring for grid intervals between 90 m and 150 m.

Similar results apply for the normal gradient approximation, with the error decreasing from roughly

0.41 m/s at ∆x = 90 m to roughly 0.15 m/s by ∆x = 240 m.

Figure 3.12c gives a sense of the resolution dependence for the largest errors on the grid, in

terms of the mean over all grid points in the top 5% of errors (as described for Fig. 3.5). As with

the mean over all grid points, the errors for the top 5% case show a decrease of roughly a factor

of three for the flat boundary experiments (from roughly 2.2 m/s to 0.8 m/s) over the range of grid

spacings shown. However, relative to Figs. 3.12a and b, a larger fraction of the change (roughly

82%) occurs at grid spacings less than 150 m, suggesting that the top 5% errors are particularly

sensitive to grid spacing at high resolution. Also apparent is that the errors for the normal gradient

condition in Fig. 3.12c show somewhat less of a decrease (proportionally) than the errors for the

flat boundary approximation, meaning that the two approximations become gradually more similar

as the grid spacing increases.

Finally, it is worth noting that for both the flat boundary and normal gradient approximations,

the errors in Fig. 3.12show little sign of leveling off as the grid spacing decreases, at least for grid

spacing larger than 90 m. We might expect that once the grid spacing decreases sufficiently, the

terrain features resolved by still smaller grid spacing would start to have less of impact on the

overall flow, at which point the resolution dependence of the errors should begin to saturate. That
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said, according to Fig. 3.12, if such a saturation does occur, it clearly occurs at a grid interval

smaller than 90 m.

3.5.2 An outlier case

Figure 3.13 shows the resolution dependence for one of the two outlier cases discussed in

section 3.4.4, specifically, the March 03 case shown in Fig. 3.9a. Comparison to Fig. 3.12 shows

that same basic trends from the September 08 case apply to the outlier case as well, only more

exaggerated, with the errors decreasing by a factor of roughly five in Figs. 3.13a and b over the

range of grid spacings shown. This increased resolution sensitivity would appear to be consistent

with the discussion in section 3.4.4 related to the compounding effects of the upstream terrain.

Specifically, as the grid interval is increased, the errors decrease not only locally, but also upstream

over Mt. Ruapehu, leading to more accurate winds incident on the Mt. Ngauruhoe region. This

improvement in the incident winds then tends to compound the improvement in the local errors,

leading to a bigger change in the errors measured locally.

3.5.3 Dependence on terrain smoothing

When using high-resolution datasets, the terrain data as loaded into the model will inevitably

have significant spatial variations on length scales close to the model grid scale, which in turn leads

to poorly resolved numerical disturbances. To avoid this problem, the raw terrain data is typically

smoothed as part of the model initialization phase, with the intention of removing any problematic,

high wavenumber components. However, as should probably be expected, this smoothing of the

terrain invariably impacts the terrain geometry, which in turn affects the behavior of the surface

boundary condition.

Table 3.1 shows the low-level vector wind errors for a series of experiments in which the

model terrain has been subjected to various types and degrees of smoothing. Shown in the table

are the normalized, dimensional, and top 5% rms errors (defined as in Fig. 3.4and Fig. 3.5) for

the flat boundary approximation, with the September 8 case chosen as the specific example case

(cf. Fig. 3.6c and Fig. 3.7c). The smoothing types considered include a simple second-order (1
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Figure 3.13: Error dependence on the resolution in Mar 03 case
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Table 3.1: Errors in low-level winds for simulations using the flat boundary condition with different
filters

Filter number of passes Normalized error Error in m/s Top 5% error in m/s

2nd order 2 0.07267 0.8018 2.2335
4th order 7 0.09201 1.0502 3.2468
4th order 6 0.09697 1.1137 3.4779
4th order 5 0.10315 1.1934 3.7832
4th order 4 0.11066 1.2922 4.1590
4th order 3 0.12071 1.4262 4.6885

Table 3.2: Errors in low-level winds for simulations using the normal gradient condition with
different filters

Filter number of passes Normalized error Error in m/s Top 5% error in m/s

2nd order 2 0.03775 0.4164 1.1741
4th order 7 0.04568 0.5214 1.6173
4th order 6 0.04795 0.5507 1.7505
4th order 5 0.05046 0.5838 1.8829
4th order 4 0.05386 0.6289 2.0935
4th order 3 0.05780 0.6829 2.3222

-2 1) diffusive smoother, along with a more scale-selective fourth-order (-1 4 -6 4 -1) diffusive

smoother, applied using varying numbers of passes (e.g., Durran, 1999, sec. 2.4.3). In each case,

the smoother is applied in both the x and y directions, with the amplitude of the smoother set so

as to completely damp the 2∆x and 2∆y modes within a single pass. For the sake of comparison,

note that all results prior to this section were computed using the second-order smoother with two

passes.

As can be seen in the table, the errors for the flat boundary simulations show a surprising de-

gree of sensitivity to the type of terrain smoothing applied, with the errors steadily increasing as the

degree of smoothing is reduced. The lowest errors are associated with the second order smoother,

which is the most diffusive option considered, resulting in the smoothest terrain profiles. By com-

parison, the fourth order smoother is less diffusive at short wavelengths, leading to terrain features
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with increased slope and curvature. As a result, switching to the fourth order filter was found to

have a significant impact on the errors, even for seven passes of the smoother. Reducing the num-

ber of passes leads to even sharper terrain features and larger errors, with the model eventually

becoming unstable for terrain with less than three passes. Similar trends were seen for the normal

gradient condition (see Table 3.2), but with the errors generally reduced by roughly half.

Figure 3.14: Error patterns of different filters for the Sep 08th case between full-stress and approx-
imated conditions: (a),(d) 2nd order 2 passes; (b),(e) 4th order 7 passes; (c),(f) 4th order 3 passes.
The top three panels show error patterns between full-stress and flat-boundary conditions, while
the bottom three show error patterns between full-stress and normal-gradient conditions.

The spatial distributions of the errors for the simulations with varying terrain smoothing are

shown in Fig. 3.14 for both the flat boundary and normal gradient approximations. For reference,

Figures 3.14a and d are identical to Fig. 3.6c and Fig. 3.7c, showing the Sep 08th cases with the

second order filter. To illustrate the errors for the cases with reduced smoothing, the color table in

Fig. 3.14 was extended beyond that used previously, to include pinkish colors for larger velocity

differences. Inspection of the terrain contours in Fig. 3.14 suggests that the changes in topography
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Figure 3.15: Errors in the lower 5 levels winds for simulations using the flat boundary [(a) and (c)]
and normal gradient [(b) and (d)] approximations. (a) and (b) show errors in units of m/s of wind
speed on the error averaging domain, while (c) and (d) show the 5% averaging errors.

for the different smoothing levels appear to be relatively subtle. Nonetheless, Fig. 3.14a–c show

that decreasing the smoothing from the second order / 2 passes case to fourth order / 3 passes leads

to a surprising increase in the errors in the flat boundary experiment, with the errors in Fig. 3.14c

nearly doubled relative to Fig. 3.14a. The increase is particularly pronounced in regions with high

terrain curvature, as well as in the wake of decelerated flow extending downstream. Similar results

are seen in Fig. 3.14.d–f for the normal gradient condition.

3.6 Implications for wind energy forecasting

One of the more important applications for high resolution meteorological modeling is the

prediction of low-level winds for wind energy forecasting. Broadly speaking, for a given wind

turbine, the total wind power available to convert to electricity is set by the flux of wind kinetic

energy across the area swept out by the turbine blades, which in turn varies with the cube of the

47



wind speed; that is,

P ∼ 1

2
ρAU3 (3.15)

where in this context P is the maximum power available, A is the area swept by the turbine blades,

and U is the wind speed across the turbine (keeping in mind that most turbines rotate to face the

wind). The cubic dependence on the wind speed suggests that predictions of the maximum power

available are strongly sensitive to errors in the predicted wind speed. Specifically, given a small

wind speed error δU , the fractional change in the corresponding predicted available power can be

approximated by
δP

P
∼ 3

δU

U
(3.16)

showing that when translated into predicted power, the fractional error in the wind speed is ampli-

fied by roughly a factor of three.

Figure 3.15 gives a sense of how the types of errors discussed in previous sections could po-

tentially impact the prediction of the maximum power available for wind generation. Shown in

the figure are the mean and top 5% errors corresponding to simulations using the flat boundary

approximation for each of the 20 cases considered in section 3.4, plotted as a function of the mean

low-level upstream wind speed, as in Figs. 3.4c and 3.5a. However, it should be kept in mind that

while previous sections only included data from the first interior grid level (approximately 15 m

above ground), the typical total height (i.e., hub height plus rotor radius) of a modern wind tur-

bine can reach as high as 150 m. Thus, to give a better sense of the winds actually incident on

the turbine blades, the results in Fig. 3.15 have been averaged all grid levels below 150 m, which

corresponds in practice to the lowest five interior grid levels of the model.

As in Figs. 3.4c and 3.5a, the errors in Fig. 3.15 are seen to have a roughly linear dependence

on the upstream wind speed, albeit at somewhat reduced magnitudes relative to the results at the

lowest grid level. To the extent the error dependence can be treated as linear, the fractional error

δU/U can be estimated in terms of the slope of the linear regression, which for Fig. 3.15a is

evaluated as 0.014. Factoring in the cubic dependence of the power as in (3.16) then gives an
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estimated fractional error for the available power of 4.5%, as evaluated in terms of the mean over

all grid points in the averaging domain. However, it is worth keeping in mind that wind turbines

are more likely to be sited in locations with higher wind speeds, which, according to section 3.4,

also tend to be locations with larger errors. To give a sense of the dependence at these higher-wind

locations, Fig. 3.15b shows the results as averaged over only those grid points in the top 5% of

the errors (as in 3.5a), in which case the slope of the linear regression increases to 0.059, implying

an error in the available power of roughly 18%. Finally, the results above are all for the flat

boundary approximation. As in previous sections, applying the normal gradient condition reduces

the errors by roughly half (not shown), suggesting an error in the available power of roughly 10%,

as averaged over the points with higher wind speed.

It should be kept in mind the estimates described above are all framed in terms of the maximum

available power, as opposed to the actual rate of electricity generation. To address the latter requires

consideration of the efficiency at which a given turbine extracts the wind resource, often expressed

in terms of the turbine’s power curve, which varies from turbine to turbine. Broadly speaking, for

the case of weak or modest wind speeds, the energy produced by a given turbine will tend to follow

the same cubic dependence on U as the available power, in which case the considerations described

above apply without modification. However, above a certain critical wind speed (typically in the

range of 12 to 15 m/s), the energy generated by the turbine will tend to saturate, at which point

the sensitivity to the wind becomes less of a concern. How this all plays out in a given situation is

likely to be complicated, and is left to future studies to explore.

3.7 Summary

The behavior of surface drags on complex terrain surfaces was explored, with a particular

emphasis on the way in which the associated drag condition depends on terrain geometry.

From a basic physical standpoint, specifying a surface drag (or more precisely, a surface stress)

at the ground in place of the no-slip condition effectively defines an alternative lower boundary

condition for the velocity at the terrain surface. Arguments were presented to suggest that this

boundary condition is directly tied to the geometry of the terrain, in two respects: (i) a dependence
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on the slope of the terrain, as expressed through a normal gradient term; and (ii) a dependence on

the local terrain curvature, appearing in the boundary condition as a Dirichlet term. The respective

roles and impacts of these geometric effects were explored through a series of numerical experi-

ments, in which simulations using the full surface-stress boundary condition [implemented as in

Epifanio (2007)] were compared to simulations using one of two widely used approximations: (a)

the normal gradient approximation, which accounts for the terrain slope, but ignores the local cur-

vature; and (b) the flat boundary assumption, in which the slope and curvature of the terrain are

both neglected.

The experiments were carried out using a region of complex terrain in Tongariro National Park,

NZ, as an example problem, as simulated at 90 m horizontal grid spacing. Attention was limited

to flows with neutral or nearly neutral surface layer conditions (as at the morning and evening

transition periods, for example), but with cases otherwise chosen at random among all the corre-

sponding events in a given year (2012). The experiments were carried out within the perfect model

framework, in which flows simulated using the full form of the surface drag / stress condition

were considered to be correct. For simulations using the normal gradient and flat boundary con-

ditions, departures from the full stress simulations were treated as model errors, associated with

the approximate boundary conditions and their corresponding neglect of the terrain’s geometric

properties.

For any given case, the error was quantified by taking the magnitude of the vector wind dif-

ference between a simulation using the full stress condition and the corresponding simulations

using the normal gradient and flat boundary approximations, as evaluated at the lowest grid level

(roughly 15 m) and averaged over all grid points in the domain of interest. By this measure, the flat

boundary approximation was found to be associated with an error of roughly 0.59 m/s, as averaged

over all 20 cases considered. That said, the impact of the boundary condition was found to be

highly uneven in space, with errors several times larger than the mean value at particular locations

in the flow. Applying the normal gradient condition in place of the flat boundary assumption re-

duced the errors by roughly half, suggesting that the slope and curvature of the terrain play roughly
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equal roles in determining the overall behavior of the drag.

The spatial distribution of the errors shows that the impact of the terrain geometry tends to

be largest over specific features in the terrain, particularly over small ridge-like features whose

long axes are oriented roughly perpendicular to the incident wind direction. When using the flat

boundary assumption, the errors were largest both at the peaks of the ridges, where the curvature

of the terrain is largest, as well as along the nearby slopes, while for the normal gradient condi-

tion, the errors were more closely tied to the locations of strongest curvature. In all cases, the

application of the full stress condition lead to greater flow deceleration than for either of the two

approximate conditions, ultimately resulting in a wake of decelerated air extending downstream of

the corresponding terrain features.

As should be expected, experiments at varying horizontal grid spacing showed that the resolu-

tion of the model grid has a significant impact on the geometry of the terrain, which in turn implies

an impact on the behavior of the stress condition, as well. At a grid spacing of 240 m, the errors

associated with the flat boundary simulations were shown to be relatively modest (0.25 m/s, for a

typical example case), suggesting that the effects of terrain slope and curvature at that resolution

are relatively small. However, decreasing the grid spacing to 90 m led to a rapid increase in the

errors (by roughly a factor of three), with most of the increase occurring for grid spacings less than

150 m. Similar results were found for the normal gradient condition, but with the errors at any

given resolution decreased by roughly a factor of two. To the extent our experiments are represen-

tative, we thus suggest that in regions of complex terrain, geometric effects are likely to play an

important role in the stress condition once the horizontal grid spacing is decreased to something

roughly on the order of 100 m or so. Interestingly, the errors in our experiments showed no sign of

leveling off as the resolution increased, raising the question as to how the drag condition is likely

to behave as the grid spacing is reduced even further.

It is worth noting that, apart from a pair of outlier cases, the errors for both the flat boundary

and normal gradient experiments were found to have a roughly linear dependence on the upstream

wind speed. Given that our cases in our experiments were chosen at random, this in turn suggests

51



that the scaling of the drag condition with the wind speed is largely independent of factors such

as the wind direction or the details of the vertical wind and stability profiles. That said, a close

inspection of the two outlier cases suggests this result may not in fact be general. In particular, both

of the outlier cases showed significant impacts from upstream terrain features, which ultimately led

to a compounding effect on the errors. Further, anisotropic terrain features with a particular axis

of elongation, such as an elongated ridge, would be expected to produce greater errors for winds

perpendicular to the elongation axis, as suggested to some degree by the Oct 6 outlier event. We

thus expect that for many terrain flows, the behavior of the drag condition will have a significant

dependence on the upstream wind direction, as well as potentially on other factors, such as the

vertical wind and stability profiles.

Finally, one of the more important applications for high-resolution atmospheric modeling is

the prediction of low-level winds for wind energy forecasting. Given that the total power available

for wind energy depends on the cube of the wind speed, we might expect even modest errors in

the winds to be amplified significantly when translated into predictions of available power. Indeed,

based on the present results, a typical error associated with use of the flat boundary approximation

would be expected to lead to a roughly 20% error in the available power, as evaluated at the

locations with largest wind speeds, while the normal gradient condition would be associated with

a roughly 10% error. Having said that, these estimates have several important caveats. First,

while our experiments were carried out using real terrain data and realistic background states, we

nonetheless made use of an idealized model (so as to have access to the full stress condition),

meaning that factors such as microphysics, radiation, and detailed land surface properties were

neglected. Furthermore, a prediction of the energy actually generated by a turbine (as opposed

to the total available energy) would require consideration of the particular turbine’s power curve,

which was beyond the scope of the present study. Thus, while at a basic physical level, the role

of the terrain geometry in the drag condition would appear to be significant, an assessment of the

impact under more realistic flow conditions is left for future work.
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4. WRF IMPLEMENTATION

4.1 Introduction

As described in previous chapters, a method for implementing the general surface drag con-

dition in the context of finite-difference models was introduced by E07. However, the method of

E07 is based on discretizing the boundary condition directly in the form (2.12), which ultimately

results in a global sparse matrix problem to be solved simultaneously over the whole domain. As

described below, this global nature of the method complicates its implementation in highly par-

allelized models, such as the Weather Research and Forecasting (WRF) model. The goal of the

present chapter is develop a new, alternative method for implementing the drag condition, more

suitable for use in models such as WRF.

As with many highly parallelized models, the WRF model achieves its high degree of scalabil-

ity by means of a domain decomposition strategy, in which the full model domain is decomposed

into smaller subdomains, called tiles. These subdomains are distributed across different compu-

tational nodes, with each tile assigned to an individual processor on a given node. To a certain

degree, a given processor/tile is able to share information with its neighbor tiles, particularly at

specific points during the time integration, such as after the completion of a model time step. But

to maintain computational efficiency, the communication between tiles must be limited—that is,

the computations carried out by a given processor must be largely limited to the information on the

associated tile.

From a software design standpoint, the decomposition of the WRF domain is carried out by

means of three different software layers, each of which has a different (virtual) window into the

information distributed across the tiles. Of the three layers, the most relevant for the present

discussion is the so-called model layer, where the actual numerical computations are implemented.

By design, the model layer is constrained to be tile callable, meaning that the computations in this

layer only have access to the information available on a single grid tile, which in turn allows
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the computations to be efficiently distributed across processors. Model processes that require a

wider view into the data (communication between tiles, I/O, etc.) are relegated to the higher, more

abstract layers of the model (namely, the driver and mediation layers).

In most respects, constraining the model layer to be tile callable tends to simplify the code, in

that the numerical computations can be implemented as if the model were serial, without worrying

about things like message passing, etc. However, in our particular case, this restriction presents

a significant obstacle, in that the implementation of the stress condition described by Epifanio

(2007) is by nature a global calculation, requiring information across the entire model domain at

once. Indeed, after looking through the WRF model code, our conclusion is that the matrix method

described in section 2.2.3 likely cannot be implemented in any straightforward way in WRF, at least

not in a manner that respects the parallelization and efficiency of the model.

The following section describes a reformulation of the surface stress boundary condition into a

form allowing the condition to be implemented locally, without the need for a global matrix solver.

It is shown that the condition reduces to the sum of two terms, analogous to the terms in the 2D

form of the condition described in section 3.3.3. Section 4.3 describes the basic algorithm and

numerics of the method, as developed for implementation the WRF model, including an overview

of associated changes to the WRF code. Section 4.4.1 presents verifications and tests of the method

involving comparisons to simulations using the model of E07, as implemented using the matrix

method. Some details of the default boundary condition in the standard WRF model are addressed,

as well as the performance of the new method at varying grid resolution. Finally, a summary and

discussion of the results is presented in section 4.5.

4.2 The stress condition in local form

The boundary condition in the form (2.12) is complicated by the presence of horizontal deriva-

tives along the boundary, which couple nearby grid points. This coupling can be avoided by

reformulating the drag conditions into a form involving the normal derivative. Specifically, by

comparing (2.12a) and (2.12b) with the normal gradient condition (3.8), the full stress conditions
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can be rewritten in the form

∂

∂n
(un3 − wn1) + n1n3

∂u

∂X
+ n2n3

∂v

∂X
+ n3n3

∂w

∂X
= −Dx

κ

√
n2
1 + n2

3 (4.1a)

∂
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√
n2
2 + n2

3 . (4.1b)

Given the nature of the normal gradient approximation, the terms added to the normal gradients

in (4.1) presumably depend on terrain curvature. Note that by combining with (2.12c), these terms

can be rewritten as

n1n3
∂u

∂X
+ n2n3
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(4.2a)
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(4.2b)

But from the definition of the normal vector (2.1), we have

n3
∂h

∂x
= −n1 , n3

∂h

∂y
= −n2

implying that the terms in parentheses in (4.2) are zero. Substituting (4.2) back into (4.1) then

allows the full stress condition to be rewritten as

∂

∂n
(un3 − wn1) + n2

3 u ·∇∂h
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κ
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1 + n2

3 (4.3a)
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or equivalently

∂us
∂n

+
n2
3√

n2
1 + n2

3

u ·∇∂h

∂x
= −Dx

κ
(4.4a)

∂ut
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n2
3√

n2
2 + n2

3

u ·∇∂h

∂y
= −Dy

κ
(4.4b)

where as before us = u · s and ut = u · t.

The first terms in (4.4a) and (4.4b) are the normal gradient terms from (2.22). The second

terms involve rates of change of ∂h/∂x and ∂h/∂y along a parcel trajectory, which are related to

the curvature of the terrain in the xz and yz planes as seen by a moving parcel, respectively. Note

these terms involve only the components of u and not their derivatives, suggesting these terms

are effectively Dirichlet terms. As shown below, this allows (4.4) to be implemented as a local

condition, without the need for a matrix inversion.

4.3 Numerical implementation

4.3.1 3D local full condition

To compute the normal derivatives in (4.4), we consider the intersection of line normal to the

terrain with the first interior model coordinate surface. To specific, suppose for a given boundary

point, the velocity components at the boundary are represented by (u0, v0, w0), while the velocity

interpolated to the normal intersection point is denoted (û, v̂, ŵ). In the WRF model, the velocity

components are staggered vertically, so that û and v̂ are defined at the first interior half-level, while

ŵ is defined at the first full level. With that in mind, the stress condition (4.3) can be discretized as

n3
û− u0
∆s

− n1
ŵ − w0

∆sf
+ n2

3

∂2h

∂x2
u0 + n2

3

∂2h
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√
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3 (4.5a)
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3
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3 (4.5b)
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where ∆s is the distance to the intersection with the first half level, while ∆sf is the distance to

the first full level.

Replacing w0 in favor of u0 and v0 using (2.12c) converts (4.5) to

(
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− n3 + n2

3
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)
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3
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− n3û+ n1

∆s

∆sf
ŵ
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which is a linear system for u0 and v0 at the boundary. Denoting the coefficients in (4.6) as
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(4.7)

the solution is given as

u0 =
A4A5 + A3A6

A1A4 − A2A3

, v0 =
A1A6 + A2A5

A1A4 − A2A3

(4.8)

At any given time step, the coefficients A1 through A6 are known, so that (4.8) gives the velocity

components u0 and v0 at the boundary. The vertical component w0 is then recovered from (2.12c).
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4.3.2 The normal gradient and flat boundary approximations

As described in section 4.2, the normal gradient approximation can be recovered from the full

stress condition by simply setting the Dirichlet curvature terms in (4.3) to zero. In practice, this

translates into setting the terms involving second derivatives in h to zero in (4.7).

A version of the flat boundary approximation was implemented using (2.19), which gives the

boundary u0 and v0 fields simply as

u0 =
Dx

κ
∆s+ u1 , v0 =

Dy

κ
∆s+ v1

where in this case, u1 and v1 refer to values at the first interior half level directly above the point

of interest. As before, w0 is then recovered from (2.12c).

4.3.3 Finding the intersection point

Figure 4.1: The intersection of the terrain normal
with the first interior coordinate surface

As described above, our method for com-

puting the normal derivatives in (4.3) relies on

interpolating the wind fields to the intersection

of the line normal to the terrain with the first in-

terior coordinate surface. To find the intersec-

tion point, suppose the location of the point of

interest on the boundary is given by (x0, y0, z0).

Then noting that points along the normal direction are perpendicular to s and t, as defined in (2.4),

the coordinates of points along the line must satisfy

n3(x− x0) = n1(z − z0) and n3(y − y0) = n2(z − z0) . (4.9)

In the WRF model, the height of the first interior coordinate surface is defined in terms of an

interpolation of the geopotential field at the surrounding grid points. Suppose the line normal to

the terrain intersects the coordinate surface in a grid box defined by four surrounding geopotential
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points, as illustrated in Fig. 4.1. Given the horizontal grid spacing and map factors, the horizontal

positions of the surrounding points can be determined from the latitude and longitude coordinates.

Suppose the positions of the surrounding points are given by (x1,y1), (x1,y2), (x2,y1), (x2,y2), and

let the associated heights at these points be given by z11, z12, z21, z22, as shown in Fig. 4.1. The

height of the coordinate surface in the grid box can then be defined through bilinear interpolation

as

z(x, y) =

∑
zij(−1)i−j(x− xi)(y − yi)

(x2 − x1)(y2 − y1)
(4.10)

where the sum is over the i and j coordinates for the surrounding points.

Given the height of the coordinate surface and the line normal to the surface, the intersection

is found by replacing x and y in (4.10) in terms of z using (4.9), implying that the resulting point

will be both on the coordinate surface and along the normal line. The result can be written in the

form

Az2 +Bz + C = 0 (4.11)

where

A = n1 ∗ n2 ∗ (z11 + z22 − z12 − z21)

B = ((z0 − y1) ∗ n1 + (z0 − x1) ∗ n2) ∗ z22 + ((y1 − z0) ∗ n1 + (x2 − z0) ∗ n2) ∗ z12+

((y2 − z0) ∗ n1 + (x1 − z0) ∗ n2) ∗ z21 + ((z0 − y2) ∗ n1 + (z0 − x2) ∗ n2) ∗ z11−

(y2 − y1) ∗ (x2 − x1)

C = (z0 − x1) ∗ (z0 − y1) ∗ z22 + (x2 − z0) ∗ (z0 − y1) ∗ z12+

(z0 − x1) ∗ (y2 − z0) ∗ z21 + (x2 − z0) ∗ (y2 − z0) ∗ z11

(4.12)

Of the two solutions to (4.11), only one will be valid, with the other predicting a z value either

higher than the highest point of the surrounding points or lower than the lowest of them.

The solution to (4.11) gives the height of the desired intersection point, with the x and y co-

ordinates then recovered from (4.9). Given the coordinates of the point, the wind fields can be
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interpolated to give û, v̂ and ŵ in (4.5).

4.3.4 Implementation in the WRF code

The implementation of the stress condition involves two steps:

1. The full stress and no-penetration conditions are applied to solve for the velocity components

at the boundary, as described in previous sections.

2. The surface fields are used in the computation of the deformations and stresses at the ground,

which then ultimately feed into the viscosity / turbulent mixing parameterization at the

boundary.

A map of the parts of the WRF model code relevant to this implementation is shown in Figure 4.2,

with parts of the code requiring modification colored red. Note that apart from minor modifica-

tions like subroutine calls, all the changes to the code are limited to the diffusion module (mod-

ule_diffusion_em). The code that needs to be added / modified to carry out the implementation

includes:

• Registry: We added arrays to hold the values of the surface wind fields, as well as deforma-

tion values at the ground. And we also made sure these surface arrays are included in the

halo updates between tiles.

To be specific, in the default (public) version of WRF (as well as most atmospheric

models), there are no ground level values for τ11, τ12, τ22, and τ33, because they are defined on

half levels. We thus added four new deformation fields (defor11, defor12, defor22, defor33)

at the ground, to hold the values computed from the surface fields.

As with the deformation terms described above, WRF also does not include surface

values for the u and v components of the wind, which are again at half levels. We thus

added arrays u_sfc_u, v_sfc_u, w_sfc_u, u_sfc_v, v_sfc_v, w_sfc_v to hold the velocity

components at the ground provided by the stress condition. Note that in the method described

above, all three components of the velocity are obtained at each surface grid point. To be

60



specific, u_sfc_u, v_sfc_u, w_sfc_u are the velocity fields defined directly under u points at

the boundary, while u_sfc_v, v_sfc_v, w_sfc_v are the components defined directly under v

points.

All new arrays are added to Registry.COMMON.

• get_norm_intersection (new routine): Code to implement the solution for the normal inter-

section points for both the full level and half level, as described in section 4.3.3, as well as

the interpolation of the velocity components to the intersection points.

• get_surf_winds (new routine): Code to implement the solution for the surface wind fields

using either the full stress boundary condition or the normal gradient / flat boundary approx-

imations, as described in sections 4.3.1 and sections 4.3.2. Note that this step makes use

of the surface drags [i.e., Dx and Dy in (2.3)] generated by the surface layer module (and

passed in to the diffusion routines as a friction velocity).

• cal_deform_and_div: The next step is to modify the computation of the deformations (which

later become stresses) at the ground, so as to make use of the surface velocities determined

previously. Note that we make use of the new deformation arrays described above, since

some deformations do not exist in the default WRF model at the surface. This guarantees

the stresses at the ground are consistent with the imposed stress condition.

• horizontal_diffusion_2 and vertical_diffusion_2: The final step is to use the modified defor-

mations at the ground to define the associated stresses. The new stresses are then ultimately

used in the computation of the stress convergence in the subgrid-scale turbulence parameter-

ization, thus determining the associated time tendency.
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Figure 4.2: Code map showing parts of the WRF model code relevant to the surface stress imple-
mentation.
Parts of the code requiring changes (beyond simple subroutine calls, etc) are colored reddish.

The changes in horizontal_diffusion_2 and vertical_diffusion_2 are somewhat subtle, but the

main idea is the updated stresses can be used to determine the associated time tendencies for the

winds. The remaining parts of the changed WRF code are attached in Appendix A.
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4.4 Idealized tests

4.4.1 Verification

In principle, the 3D local conditions described in section 4.2 should give results equivalent to

the 3D matrix full stress / normal gradient conditions introduced in Chapter 3. Verifications were

thus carried by comparison to the model of E07, which implements the boundary conditions using

the matrix method. The test problems considered consist of 2D and 3D flows past an isolated

obstacle. Attention was limited to neutral flows with free-slip (Dx = Dy = 0) boundaries, so as to

highlight the impact of the boundary condition itself, as opposed to the specified drag or interior

dynamics.

4.4.1.1 2D verifications

For the 2D verifications, the terrain profile is the ridge with linearly sloping sides defined by

E07, as specified by

h(x) = h0 ×



1
8
[1 + cos( πx

2L0
)2] + 3

√
3π

32
, if |x| < 2L0

3
;

9
32

+ 3
√
3π

32
(5
3
− |x|

L0
), if 2L0

3
≤ |x| < 5L0

3
;

1
8

{
1 + cos[ πx

2L0
]
}2

, if 5L0

3
≤ |x| < 3L0;

0, otherwise.

(4.13)

where h0 is the height of mountain, L0 is the half width. The upstream wind velocity is constant at

U = 10 m/s, and a rigid upper lid is at the top of the model domain at height D0. The governing

parameters are (twice of the) max slope δ0 = h0/L0 ≈ 2, Reynolds number Re = UL/κ = 50,

and D0/L0 = 5 + δ0. To be specific, the mountain height is set to be 1000 m, so that the rigid

lid is at the height of 3500 m; L0 = 500 m which is half width of the mountain. In the following

cases, the simulation domain in the x direction is −18L0 ≤ x ≤ 22L0. Horizontal and vertical

grid spacing are given by ∆x/L0 = 1/40 and ∆z/L0 = 1/60.

Fig. 4.3 shows a set of simulations with three different stress conditions in two different mod-

els. The top three panels show horizontal velocity fields in the semi-idealized model using the
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Figure 4.3: Numerical simulations for free-slip flow with Re = 50 past a 2D ridge at time Ut/L =
24. (a), (d) The semi-idealized model with the matrix full-stress condition and the WRF model
with the local full-stress condition; (b), (e) The semi-idealized model with the matrix normal-
gradient condition and the WRF model with the local normal-gradient condition; and (c), (f) The
semi-idealized model with the flat-boundary condition and the WRF model with the flat-boundary
condition. All the plots show x-component velocity (c.i. = 2.5 m/s; reddish indicates positive and
blue means negative, darker color indicates higher absolute horizontal velocity).

matrix method. Comparison of the different boundary conditions shows the full-stress condition

(Fig. 4.3a) decelerated the wind most on the leeward side of the mountain, and it was the only case

that could produce a reverse wind (u < 0) zone. In the normal gradient condition case (Fig. 4.3b),

the obstacle decelerated the wind downstream, but obviously less than the deceleration in the full

stress case. The reason might be found in sections 2.1.3: according to (2.16), the curvature term

2u · s/R is negative at the top of the mountain, so that the convex terrain was expected to lead

to positive vorticity η > 0 at the top of the mountain. As a result, this positive vorticity will be

brought to downstream to create a negative horizontal velocity zone on the leeward side.

In Fig. 4.3.c, the flat boundary condition was adopted and the deceleration is even more mod-

erate than the normal gradient case. The difference between the two approximate methods is

described in sections 2.1.4: the normal-gradient condition ignores the curvature effect, while the

flat-boundary condition ignores both the curvature and the slope effects. Note that similar effects
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of applying the different stress conditions were found in the Ngauruhoe test case in section 3.4

(e.g., Fig. 3.6 and Fig. 3.7).

Fig. 4.3d-f show the corresponding local conditions implemented in WRF. The very similar

patterns shown by Fig. 4.3a and d, Fig. 4.3b and e, and Fig. 4.3c and f confirm that the matrix

conditions and their matching local conditions produce nearly identical flows, at least for these

high-resolution tests.

4.4.1.2 3D verifications

To further verify the 3D local stress conditions, another test of 3D free-slip flow past a mountain

was done. The mountain in this 3D case is given by

h(x) =


h0

16
[1 + cos( πr

4L0
)]4;

0, otherwise.
(4.14)

where r is the radius and L0 is again the half-width of the mountain. As in the 3D case, D0 is the

model domain vertical depth; the max (twice of the) slope of the mountain is δ0 = h0/L0 ≈ 2 and

D0/L0 = 4 + δ. Specifically, Re = 50, L0 is set to be 500 m and the domain depth D0 is 3000 m.

Horizontal and vertical grid spacing are given by ∆x/L0 = ∆y/L0 = 1/12.5 and ∆z/L0 = 1/25.

Fig. 4.4 shows a set of 3D simulations with different stress conditions in two different models.

Fig. 4.4a and b show that for the u fields produced by the two full stress conditions, the patterns are

basically the same, confirming the local and matrix implementations again produce roughly equiv-

alent results. The pattern difference between the normal-gradient conditions showed in Fig. 4.4c

and Fig. 4.4d is also minor. Fig. 4.4e and Fig. 4.4f show results using the flat-boundary assump-

tion. However, unlike in Fig. 4.3, the WRF flat boundary result in Fig. 4.4f uses the default (public)

version of WRF, rather than the flat boundary implementation described in section 4.3.2. It is very

clear that the E07 flat-boundary condition decelerated the flow least. Fig. 4.4f shows that in this

free-slip 3D test, the default WRF stress condition gave a similar pattern as in the normal gradient

cases (i.e., Fig. 4.4c and d). The difference between the default WRF stress condition and the flat
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Figure 4.4: Numerical simulations for free-slip flow with Re = 50 past a 3D mountain at time Ut/L
= 16.8. (a), (b) The idealized model with the matrix full-stress condition and the WRF model with
the local full-stress condition; (c), (d) The semi-idealized model with the matrix normal-gradient
condition and the WRF model with the local normal-gradient condition; (e) The semi-idealized
model with the flat-boundary condition; and (f) WRF model with the default condition. All the
plots show x-component velocity (c.i. = 2.5 m/s; darker color indicates higher horizontal velocity).
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boundary condition in E07 will be introduced in the following section.

4.4.2 Flat boundary condition in the default WRF

As mentioned in sections 2.1.4, the flat boundary condition is employed by most current gen-

eration atmospheric models, and WRF is not an exception. In WRF, only two components at the

lower boundary are specified, which are τ13 and τ23. However, by exploring the WRF code, we

found that the "flat-boundary" condition of default WRF is different from the idealized model

described in Chapter 3. The details are:

• Surface wind fields used for the calculation of the stresses. In the default WRF code, al-

though the velocity fields for u and v are not stored or used (i.e., these two wind compo-

nents are located on the half vertical level due to the vertical grid staggering), polynomial

extrapolations of u and v from the lowest three model half levels to the surface were in-

deed employed for the use of stress calculation. That is, to calculate stresses at the first half

level(τ11, τ12, and τ22), vertical derivatives du/dz and dv/dz need the values for surface wind

fields. Unlike what default WRF did, we just calculated the surface u and v fields by using

(2.19) in the semi-idealized model described in Chapter 3. The extrapolation is obviously

an approximation to specify the stress components, which may lead to inaccuracy or even

errors.

Moreover, in E07 model, u and v fields at the surface were combined with the no-penetration

condition 2.6c to update the surface w field, which would contribute to the calculations of

τ13 and τ23 at the surface (i.e., the dw/dx and dw/dy terms).

• Make use of the surface stress components. Once the stress components were obtained, they

could be used to calculate the wind tendencies for the u and v fields at the first half level.

For example

∂u

∂t
=
∂τ11
∂x

+
∂τ12
∂y

+
∂τ13
∂z

=
∂τ11
∂X

+
∂τ12
∂Y

+
∂τ11
∂q

∂q

∂x
+
∂τ12
∂q

∂q

∂y
+
∂τ13
∂q

∂q

∂z
(4.15)
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so that the stresses at the surface can be used for calculating the ∂/∂q terms when dealing

with the vertical derivatives. However, the default WRF code just assign stresses to be zero

at the ground except for τ13 and τ23, which is different to E07 significantly.

Figure 4.5: Numerical simulations for flat-boundary flow with (a) flat boundary condition de-
scribed in Chapter 3, but applied in WRF code; (b) default version WRF code. (c.i. = 2.5 m/s;
reddish indicates positive and blue means negative, darker color indicates higher absolute horizon-
tal velocity).

From the differences mentioned above, we can expect the resulting flow patterns shown by two

different flat-boundary conditions (semi-idealized model and default WRF) might be different from

each other. Fig. 4.5 shows the u component field at the same model running time as in Fig. 4.3.

Fig. 4.5a is the same as Fig. 4.3f, the flat-boundary condition used in the semi-idealized model was

adopted by the WRF code; While Fig. 4.5.b used the default WRF code. The difference between

two conditions is clear—wind was decelerated more in the default WRF case downstream, and

there is a small region with low-speed reverse flow, which never showed up in Fig. 4.5.a, or even

in the normal-gradient stress runs (Fig. 4.3b and f). Actually, the default WRF stress condition

in Fig. 4.5b shows a wind pattern that is somehow between the full-stress condition case pattern

and the normal-gradient condition case pattern, so that if the full stress condition is considered

to be the "correct" one, the performance of the default WRF "flat boundary" condition is more
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acceptable than the other two approximates in this test; nonetheless, the reason for its relative good

representing of the wind field is hard to track, since some of the rough estimates made by the

default WRF is difficult to be understood.

4.4.3 WRF Resolution tests

Although the high resolution runs in Fig. 4.3 showed identical wind patterns, inaccuracies

might show up if the resolution was getting coarser by using the local normal-gradient stress con-

dition (as well as the local full-stress condition). The process of finding the intersection points and

bi-linear interpolations will be imprecise.

To test whether the local methods are still valid in lower resolution, a series of resolution tests

were carried out for different stress conditions.

Fig. 4.6 shows the simulations with the full-stress condition in different resolutions, the left

column gives the horizontal velocity fields by adopting the matrix method while the right one

shows the local condition ones in WRF. Fig. 4.6a and b are just Fig. 4.3c and f with ∆x = 1/40L0

and ∆z = 1/60L0, these two cases are fairly close to each other. At the resolution of ∆x = 1/20L0

(∆x/∆z stays proportional in this series of tests, so only ∆x is specified here and later), which are

shown in Fig. 4.6c and Fig. 4.6d, the difference is still minor. Larger difference showed up in the

third line (∆x = 1/10L0), one less contour was at the top of the barrier in Fig. 4.6f, and the dark

blue reversed wind region (−5.0m/s ≤ u ≤ −2.5m was getting larger and closer to the mountain;

in contrast, Fig. 4.6e was still similar to Fig. 4.6a and c. For the last pair of the full stress resolution

runs, ∆x/L0 = 1/5, and obvious difference was seen by comparing the coarse WRF run Fig. 4.6g

to the corresponding highest resolution case, and this difference is much smaller in the left column

matrix tests. It seems that the matrix method performed better than the local WRF implementation

in the lower resolution cases.

Fig. 4.7 are the runs with the exact same setting as their corresponding case except for adopting

the normal-gradient conditions (matrix or local method). Basically, the matrix normal gradient

method performed as good as the full stress condition in the lower resolutions; while the local

normal gradient application also showed a similar magnitude of inaccuracy in the largest grid

69



Figure 4.6: Numerical simulations for free-slip flow with full stress condition (matrix method used
in the left column, local method used in the right column) past a 2D ridge at time Ut/L = 24. (a),
(b) ∆x = 1/40L0; (c), (d) ∆x = 1/20L0; (e), (f) ∆x = 1/10L0; (g), (h) ∆x = 1/5L0. (c.i. =
2.5 m/s; reddish indicates positive and blue means negative, darker color indicates higher absolute
horizontal velocity).
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Figure 4.7: Same as 4.6, but with normal gradient conditions
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spacing run as the full stress case did.

Same as Fig. 4.6 and Fig. 4.7, Fig. 4.8 exhibited the u pattern by using flat-boundary stress

condition in two models. The flat boundary WRF case with the lowest resolution also showed a

nearly equal inaccuracy as the full stress or normal gradient case did, which suggested that the

wind field inaccuracies produced by the lower resolution cases in WRF were more likely caused

by the numerical methods of WRF model instead of the boundary conditions.

Changing the horizontal and vertical resolutions separately instead of proportionally might be

helpful to better understand the inaccuracies produced by the lower resolution cases. Fig. 4.9

show the horizontal resolution tests using full stress condition by keeping ∆z = 1/60L0, while

changing the horizontal resolution (∆x = 1/40L0 for Fig. 4.9a and d, 1/20L0 for Fig. 4.9b and e,

and 1/10L0 for Fig. 4.9c and f), which means Fig. 4.9a and d are same as Fig. 4.3a and d. Fig. 4.9a-

c gave a similar and small u pattern change as shown in Fig. 4.6a, c and e, which suggested that the

E07 matrix full stress implementation was not sensitive to the vertical resolution but was mostly

affected by the horizontal resolution. However, Fig. 4.9d-f showed a different u pattern shift as

in Fig. 4.6b,d and f, especially in Fig. 4.9f, the pattern differed drastically to other cases, which

implied that when the grid spacing ratio ∆x/∆z was not close to one, the inaccuracy created by

the numerics in WRF might be significant.

Fig. 4.10 show the vertical resolution tests using full stress condition by keeping ∆x =

1/10L0, while changing the vertical resolution (∆z = 1/60L0 for Fig. 4.10a and d, 1/30L0 for

Fig. 4.10b and e, and 1/15L0 for Fig. 4.10c and f). The matrix method cases showed nearly

identical results, which proved that the matrix full implementation is not sensitive to the vertical

resolution. And by comparing Fig. 4.10d-f, it seems that when the grid spacing ratio ∆x/∆z got

back to close to 1, the results shown were getting normal.

4.5 Summary

A method was developed for imposing the surface stress boundary condition over complex ter-

rain, taking full account of the terrain slope and curvature. The method is based on a reformulation

of the full stress boundary condition to an expression involving two terms: a normal gradient term
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Figure 4.8: Same as 4.6, but with flat boundary conditions
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Figure 4.9: Numerical simulations for free-slip flow with full stress condition (matrix method used
in the top panels, local method used in the lower panels) and fixed vertical grid spacing past a 2D
ridge at time Ut/L = 24. (c.i. = 2.5 m/s; reddish indicates positive and blue means negative, darker
color indicates higher absolute horizontal velocity).

and a second Dirichlet term, describing the rate of change in terrain slope along a parcel trajectory.

Unlike the approach of E07, the new method avoids coupling nearby points along the boundary

and can thus be implemented entirely locally, without the need for a global matrix inversion. As

a result, the method is significantly more straightforward to implement, particularly in the con-

text of parallelized models using domain decomposition, in which global methods are difficult to

implement.

For the present study, the new method was implemented in the context of the widely used

Weather Research and Forecasting (WRF) model. The normal derivative terms are computed by

first starting from the surface data points and finding the intersection between the terrain normal

direction and the first interior coordinate surface, and then interpolating the wind components to

the intersection point so as to allow normal differences to be computed. Combining the normal

difference terms with the Dirichlet curvature terms then gives a simple algebraic system for the

surface wind fields. The surface wind fields are used to compute deformations and stresses at

the boundary, which then feed into the subgrid turbulence parameterization at the lowest grid
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Figure 4.10: Same as 4.9 but with fixed horizontal grid spacing

level. Two approximations to the boundary condition were also implemented: a normal gradient

condition, using a method similar that used for the full condition; and a flat boundary assumption,

in which the vertical derivatives are specified directly.

The new method was verified by comparing to simulations using the matrix method of E07, for

the case of idealized 2D and 3D flows past an isolated hill. The results show that for sufficiently

high resolution tests (in this case ∆x = L/40), the local and matrix implementations of the stress

condition produce nearly identical results. For lower resolution, the agreement between the two

implementations remains relatively strong for horizontal grid spacing as large as L/10, while for

larger grid spacing the two models begin to show significant differences. However, a similar degree

of difference was found in tests using the flat boundary approximation, which is implemented the

same in the two models. This suggests the divergence of the model results for larger grid spacings

is likely due to differences in the general numerics of the two models, as opposed to the boundary

condition in particular. In all cases, the simulations using the full stress condition showed signif-

icant differences from simulations using the flat boundary and normal gradient approximations,

highlighting the effects of terrain slope and curvature in the implementation of the stress.

Interestingly, although the default (public) version of WRF uses the flat boundary assump-
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tion, simulations using the default WRF produced results very different from the flat boundary

simulations described above. Inspection of the code shows the differences are due to additional

assumptions made by the WRF implementation at the boundary, similar to those described in sec-

tion 2.2.1 for the Clark (1977) model. While the extra assumptions are not formally correct, the

results for the present experiments showed that the default WRF produced somewhat better results

than the simple flat boundary assumption. Specifically, the default WRF showed a similar level of

agreement with the full stress runs as the normal gradient approximation.

While our results suggest that the method described in this study provides a valid alternative to

the matrix method, it should be kept in mind our verification tests were all carried out using highly

idealized flows. Further testing is needed to determine how the method performs under more realis-

tic conditions, such as those described in chapter 3. Indeed, our new implementation should allow

us to go one step further, by considering cases with the full range of physical parameterizations

available in WRF.
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5. CONCLUSIONS

In the previous chapters, the behavior and dynamics of the surface drag boundary condition

were explored, both in terms of the basic physics and the numerical implementation of the con-

dition. In chapter 3, a series of semi-idealized numerical experiments was presented to explore

the basic physics of the condition. The results suggest that the behavior of the drag condition

is strongly dependent on the geometry of the terrain, specifically on the terrain slope and curva-

ture, and that the approximations currently in widespread use fail to capture the behavior of the

condition over complex terrain. In chapter 4, a new method for implementing the condition was

presented. The method is based on a reformulation of the drag condition that allows the method to

be implemented locally, thus streamlining the implementation, particularly for parallelized mod-

els using domain decomposition. Taken together, these results suggest that implementing the full

stress boundary condition should likely play an important role in future high-resolution forecast

models.

That said, the results in this thesis come with a number of important caveats. First, as men-

tioned in previous chapters, our numerical experiments were carried out primarily in the context

of idealized or semi-idealized modeling. Further experiments are needed to show how the full

stress condition behaves in more realistic flows. Fortunately, the new implementation developed

in chapter 4 should allow us to consider such experiments using the full range of physical parame-

terizations available in WRF. Perhaps more importantly, the present experiments were carried out

entirely in the perfect model framework, in which the simulations making use of the full stress

implementation were considered to be correct. However, a better representation of the physical

processes in the model does not always translate into better predictions. To verify the usefulness

of the condition, model experiments using the full stress condition will need to be compared with

observations.

In addition to the model evaluations mentioned above, the results of chapters 3 and 4 suggest

several important directions for future exploration. One important question is the behavior of the
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stress condition at even higher resolutions than considered in the present study. As discussed in

chapter 3, the errors in the flat boundary and normal gradient approximations did not not show any

sign of leveling off at the grid spacing of ∆x = 90m. At some point, we might expect the errors

to saturate as the grid spacing decreases, but experiments would be needed to understand how this

saturation occurs.

Another more general issue for future study is the behavior of the drag parameterization itself

over complex terrain. As mentioned in chapter 2, the Monin-Obukhov theory was developed for

turbulence over a flat boundary. However, over a sloped boundary, the shear axis of the flow is

no longer parallel to gravity, which would have an impact on the turbulent eddies and the related

fluxes when buoyancy is a factor. A first step to explore this issue might involve high resolution

(large-eddy simulation) modeling of the surface layer itself over boundaries of varying slope, and

with varying heat fluxes.

Finally, a third potential direction of interest is the problem of parameterizing the effects of

complex terrain in lower resolution models, where the slope and curvature of the resolved ter-

rain are not well represented. Development of a parameterization of this type is likely to prove a

difficult problem. Even so, one could imagine developing a statistical representation of the geo-

metric properties of the terrain in a given region, and then using this representation to estimate the

associated drag effects.
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APPENDIX A

WRF CODING

A.1 Registry

In RegistryRegistry.EM_COMMON, we added arrays to hold the values of the surface wind

fields as well as deformation values at the ground:
s t a t e r e a l d e f o r 1 1 _ s f c i j misc 1 − r " d e f o r 1 1 _ s f c " "DEFORMATION 11 AT SURFACE" " s −1 "

s t a t e r e a l d e f o r 2 2 _ s f c i j misc 1 − r " d e f o r 2 2 _ s f c " "DEFORMATION 22 AT SURFACE" " s −1 "

s t a t e r e a l d e f o r 3 3 _ s f c i j misc 1 − r " d e f o r 3 3 _ s f c " "DEFORMATION 33 AT SURFACE" " s −1 "

s t a t e r e a l d e f o r 1 2 _ s f c i j misc 1 − r " d e f o r 1 2 _ s f c " "DEFORMATION 12 AT SURFACE" " s −1 "

s t a t e r e a l u _ s f c _ u i j dyn_em 1 X i r h "USFCU" " s u r f a c e u v e l o c i t y a t u v o r t p t s "

s t a t e r e a l v _ s f c _ u i j dyn_em 1 X i r h "VSFCU" " s u r f a c e v v e l o c i t y a t u v o r t p t s "

s t a t e r e a l w_sfc_u i j dyn_em 1 X i r h "WSFCU" " s u r f a c e w v e l o c i t y a t u v o r t p t s "

s t a t e r e a l u _ s f c _ v i j dyn_em 1 Y i r h "USFCV" " s u r f a c e u v e l o c i t y a t v v o r t p t s "

s t a t e r e a l v _ s f c _ v i j dyn_em 1 Y i r h "VSFCV" " s u r f a c e v v e l o c i t y a t v v o r t p t s "

s t a t e r e a l w_sfc_v i j dyn_em 1 Y i r h "WSFCV" " s u r f a c e w v e l o c i t y a t v v o r t p t s "

And we also made sure these surface arrays are included in the halo updates between tiles:
h a l o HALO_EM_TKE_C dyn_em 8 : u_sfc_u , v_s fc_v , w_sfc_u , w_sfc_v

h a l o HALO_EM_TKE_D dyn_em 8 : d e f o r 1 1 _ s f c , d e f o r 2 2 _ s f c , d e f o r 1 2 _ s f c

A.2 get_norm_intersection and get_surf_winds

I combined get_norm_intersection and get_surf_winds to one subroutine: get_norm_intersection_surf_winds.

So now it is the only new subroutine we added in the WRF code, and it is placed at the beginning

of dynmodule_diffusion_em.F.
SUBROUTINE g e t _ n o r m _ i n t e r s e c t i o n _ s u r f _ w i n d s ( c o n f i g _ f l a g s , i s o t r o p i c , &

ph , phb , z _ a t _ u _ s u r f , z _ a t _ v _ s u r f , &

n1_u , n1_v , n2_u , n2_v , n3_u , n3_v , &

x l a t _ u , x l a t _ v , xlong_u , xlong_v , &

x l a t , x long , dx , dy , msf tx , msf ty , &

msfux , msfuy , msfvx , msfvy , &

d e l t a _ x _ u , d e l t a _ x _ v , d e l t a _ y _ u , d e l t a _ y _ v , &

d e l t a _ h _ u , d e l t a _ h _ v , dsu , dsv , &

d e l t a _ h _ u _ f , d e l t a _ x _ u _ f , d e l t a _ y _ u _ f , &

d e l t a _ h _ v _ f , d e l t a _ x _ v _ f , d e l t a _ y _ v _ f , &

u_norm_u , v_norm_u , w_norm_u , &

u_norm_v , v_norm_v , w_norm_v , &

u_2 , v_2 , w_2 , &

xkmv , xkmh , xkhv , xkhh , &

rdzw , dt , mix_upper_bound , &

u_sfc_u , v_s fc_u , w_sfc_u , &
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u_sfc_v , v_s fc_v , w_sfc_v , &

D_x_u , D_y_u , D_x_v , D_y_v , &

u s t , rho , &

i d s , ide , j d s , jde , kds , kde , &

ims , ime , jms , jme , kms , kme , &

i t s , i t e , j t s , j t e , k t s , k t e )

IMPLICIT NONE

TYPE( g r i d _ c o n f i g _ r e c _ t y p e ) , INTENT ( IN ) &

: : c o n f i g _ f l a g s

INTEGER , INTENT( IN ) &

: : i d s , ide , j d s , jde , kds , kde , &

ims , ime , jms , jme , kms , kme , &

i t s , i t e , j t s , j t e , k t s , k te , i s o t r o p i c

REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( INOUT ) &

: : ph , phb , u_2 , v_2 , w_2 , rdzw , rho

REAL, DIMENSION( ims : ime , kms : kme , jms : jme ) , INTENT( INOUT ) &

: : xkmv , xkmh , xkhv , xkhh

REAL, DIMENSION( ims : ime , jms : jme ) , INTENT ( IN ) &

: : x l a t , x long , x l a t _ u , x l a t _ v , xlong_u , xlong_v , u s t , &

msftx , msf ty

REAL, DIMENSION( ims : ime , jms : jme ) , INTENT ( OUT ) &

: : z _ a t _ u _ s u r f , n1_u , n2_u , n3_u , dsu , &

d e l t a _ x _ u , d e l t a _ y _ u , d e l t a _ h _ u , u_norm_u , v_norm_u , w_norm_u ,&

u_sfc_u , v_s fc_u , w_sfc_u , D_x_u , D_y_u , &

msfux , msfuy , d e l t a _ h _ u _ f , d e l t a _ x _ u _ f , d e l t a _ y _ u _ f

REAL, DIMENSION( ims : ime , jms : jme ) , INTENT ( OUT ) &

: : z _ a t _ v _ s u r f , n1_v , n2_v , n3_v , dsv , &

d e l t a _ x _ v , d e l t a _ y _ v , d e l t a _ h _ v , u_norm_v , v_norm_v , w_norm_v ,&

u_sfc_v , v_s fc_v , w_sfc_v , D_x_v , D_y_v , &

msfvx , msfvy , d e l t a _ h _ v _ f , d e l t a _ x _ v _ f , d e l t a _ y _ v _ f

REAL, INTENT ( IN ) : : dx , dy , dt , mix_upper_bound

! Loca l v a r i a b l e s .

INTEGER : : i , j , k , i _ s t a r t , j _ s t a r t , i_end , j_end , k t f , i _ d i r , j _ d i r

REAL : : A1 , A2 , z0 , x1 , x2 , y1 , y2 , &

h11 , h12 , h21 , h22 , AA, BB, CC, h_max , h_min , d e l t a s , &

e p s l n , V0_u , V0_v , aa1 , aa2 , aa3 , aa4 , aa5 , aa6 , dx_m , dy_m , &

u_drag , v_drag , w_drag , d2hdx2 , d2hdy2 , d2hdxy , dhdx , r _ c u r v e

LOGICAL, EXTERNAL : : wrf_dm_on_moni tor

CHARACTER*256 : : o u t s t r i n g

! H i s t o r y : Sep 2019 Changes by Yi Li and C r a i g E p i f a n i o , TAMU

! Comments : Th i s SUBROUTINE i s t r y i n g t o f i n d t h e i n t e r s e c t i o n p o i n t

! be tween t h e s u r f a c e normal d i r e c t i o n from u p o i n t s and v

83



! p o i n t s t o t h e h a l f − l e v e l s u r f a c e o f ( ph + phb ) / g ,

! a l s o wi th t h e c a l c u l a t i o n o f t h e wind f i e l d s n e a r t h e

! ground ove r complex t e r r a i n .

!

e p s l n = 1 . e −10

! To s t a r t t h e c a l c u l a t i o n , we have t o i n i t i l i a z e kv and kh ( v e r t i c a l and h o r i z o n t a l v i s c o s i t i e s )

k t f = min ( k te , kde −1)

i _ s t a r t = i t s

i _ e n d = MIN( i t e , ide −1)

j _ s t a r t = j t s

j _ e n d = MIN( j t e , jde −1)

IF ( i s o t r o p i c .EQ . 1 ) THEN

DO j = j _ s t a r t , j _ e n d

DO k = k t s , k t f

DO i = i _ s t a r t , i _ e n d

d e l t a s =( dx / msf tx ( i , j ) * dy / msf ty ( i , j ) / rdzw ( i , k , j ) ) * * 0 . 3 3 3 3 3 3 3 3

xkmh ( i , k , j )=max ( xkmh ( i , k , j ) , 1 . 0 E−4* d e l t a s * d e l t a s )

xkmv ( i , k , j )=xkmh ( i , k , j )

xkhh ( i , k , j )= xkmh ( i , k , j )*3

xkhh ( i , k , j )= min ( xkhh ( i , k , j ) , mix_upper_bound * MIN( dx / msf tx ( i , j ) * dy / msf ty ( i , j ) , 1 / rdzw ( i , k , j ) / rdzw ( i , k , j ) ) / d t ) ! new

xkhv ( i , k , j )= xkhh ( i , k , j )

ENDDO

ENDDO

ENDDO

ENDIF

! v a r i a b l e v a l u e s a t t h e b o u n d a r i e s a r e t r i c k y , we need t o d e f i n e v a l u e s t h e r e

IF ( i t s == i d s ) THEN

DO j = j _ s t a r t , j _ e n d

xkmh ( i t s −1 , k t s , j ) = xkmh ( i t s , k t s , j )

xkmv ( i t s −1 , k t s , j ) = xkmv ( i t s , k t s , j )

ENDDO

ENDIF

IF ( j t s == j d s ) THEN

DO i = i _ s t a r t , i _ e n d

xkmh ( i , k t s , j t s −1) = xkmh ( i , k t s , j t s )

xkmv ( i , k t s , j t s −1) = xkmv ( i , k t s , j t s )

ENDDO

ENDIF

IF ( i t e == i d e ) THEN

DO j = j _ s t a r t , j _ e n d

xkmh ( i t e , k t s , j ) = xkmh ( i t e −1 , k t s , j )

xkmv ( i t e , k t s , j ) = xkmv ( i t e −1 , k t s , j )

ENDDO

ENDIF

IF ( j t e == j d e ) THEN

DO i = i _ s t a r t , i _ e n d

xkmh ( i , k t s , j t e ) = xkmh ( i , k t s , j t e −1)

xkmv ( i , k t s , j t e ) = xkmv ( i , k t s , j t e −1)

ENDDO

ENDIF
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IF ( i t s == i d s . and . j t s == j d s ) THEN

phb ( i t s −1 , k t s , j t s −1) = phb ( i t s , k t s , j t s )

u_2 ( i t s −1 , k t s , j t s −1) = u_2 ( i t s , k t s , j t s )

v_2 ( i t s −1 , k t s , j t s −1) = v_2 ( i t s , k t s , j t s )

w_2 ( i t s −1 , k t s , j t s −1) = w_2 ( i t s , k t s , j t s )

ENDIF

IF ( i t s == i d s . and . j t e == j d e ) THEN

phb ( i t s −1 , k t s , j t e ) = phb ( i t s , k t s , j t e −1)

u_2 ( i t s −1 , k t s , j t e ) = u_2 ( i t s , k t s , j t e −1)

v_2 ( i t s −1 , k t s , j t e +1) = v_2 ( i t s , k t s , j t e )

w_2 ( i t s −1 , k t s , j t e ) = w_2 ( i t s , k t s , j t e −1)

ENDIF

IF ( i t e == i d e . and . j t s == j d s ) THEN

phb ( i t e , k t s , j t s −1) = phb ( i t e −1 , k t s , j t s )

u_2 ( i t e +1 , k t s , j t s −1) = u_2 ( i t e , k t s , j t s )

v_2 ( i t e , k t s , j t s −1) = v_2 ( i t e −1 , k t s , j t s )

w_2 ( i t e , k t s , j t s −1) = w_2 ( i t e −1 , k t s , j t s )

ENDIF

IF ( i t e == i d e . and . j t e == j d e ) THEN

phb ( i t e , k t s , j t e ) = phb ( i t e −1 , k t s , j t e −1)

u_2 ( i t e +1 , k t s , j t e ) = u_2 ( i t e , k t s , j t e −1)

v_2 ( i t e , k t s , j t e +1) = v_2 ( i t e −1 , k t s , j t e )

w_2 ( i t e , k t s , j t e ) = w_2 ( i t e −1 , k t s , j t e −1)

ENDIF

! F ind t h e h e i g h t s o f u & v p o i n t s

DO j = MAX( j t s , j d s ) , MIN( j t e , jde −1)

DO i = MAX( i t s , i d s ) , MIN( i t e , i d e )

z _ a t _ u _ s u r f ( i , j ) = ( phb ( i −1 , k t s , j ) + phb ( i , k t s , j ) ) / 2 / g

END DO

END DO

DO j = MAX( j t s , j d s ) , MIN( j t e , j d e )

DO i = MAX( i t s , i d s ) , MIN( i t e , ide −1)

z _ a t _ v _ s u r f ( i , j ) = ( phb ( i , k t s , j −1) + phb ( i , k t s , j ) ) / 2 / g

END DO

END DO

! Th i s i s t h e main c a l c u l a t i o n p a r t , f i n d t h e i n t e r s e c t i o n p o i n t s from

! t h e s u r f a c e u p o i n t s and t h e c o r r e s p o n d i n g wind f i e l d s n e a r t h e ground

DO j = MAX( j t s , j d s ) , MIN( j t e , jde −1)

DO i = MAX( i t s , i d s ) , MIN( i t e , i d e )

dx_m = dx / msfux ( i , j ) ! c a l c u l a t e t h e h o r i z o n t a l g r i d s p a c i n g i n c l u d i n g m a p f a c t o r s

dy_m = dy / msfuy ( i , j )

! A1 , z0 , h11 . e t c a r e a l l p a r a m e t e r s used t o f i n d t h e i n t e r s e c t i o n p o i n t s

A1 = ( phb ( i −1 , k t s , j ) − phb ( i , k t s , j ) ) / dx_m / g ! m a p f a c t o r

A2 = ( phb ( i −1 , k t s , j −1) + phb ( i , k t s , j −1) &

− phb ( i −1 , k t s , j +1) − phb ( i , k t s , j +1) ) / &

4 / dy_m / g ! m a p f a c t o r
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z0 = 0

x1 = −1 * dx_m / 2 ! m a p f a c o t r

x2 = dx_m / 2 ! m a p f a c t o r

y1 = 0

h11 = ( phb ( i −1 , k t s , j ) + phb ( i −1 , k t s +1 , j ) + ph ( i −1 , k t s +1 , j ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

h21 = ( phb ( i , k t s , j ) + phb ( i , k t s +1 , j ) + ph ( i , k t s +1 , j ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

IF ( A2 >= 0 ) THEN

y2 = dy_m ! m a p f a c t o r

j _ d i r = 1

h12 = ( phb ( i −1 , k t s , j +1) + phb ( i −1 , k t s +1 , j +1) + ph ( i −1 , k t s +1 , j + 1 ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

h22 = ( phb ( i , k t s , j +1) + phb ( i , k t s +1 , j +1) + ph ( i , k t s +1 , j + 1 ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

ELSE

y2 = −1 * dy_m ! m a p f a c t o r

j _ d i r = −1

h12 = ( phb ( i −1 , k t s , j −1) + phb ( i −1 , k t s +1 , j −1) + ph ( i −1 , k t s +1 , j − 1 ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

h22 = ( phb ( i , k t s , j −1) + phb ( i , k t s +1 , j −1) + ph ( i , k t s +1 , j − 1 ) ) / 2 / g &

− z _ a t _ u _ s u r f ( i , j )

ENDIF

IF ( A1 >= 0) THEN

i _ d i r = 1

ELSE

i _ d i r = −1

ENDIF

AA = A1*( h22 − h12 − h21 + h11 )*A2

BB = ( ( z0 − y1 )*A1 + ( z0 − x1 )*A2 ) * h22 + &

( ( y1 − z0 )*A1 + ( x2 − z0 )*A2 ) * h12 + &

( ( y2 − z0 )*A1 + ( x1 − z0 )*A2 ) * h21 + &

( ( z0 − y2 )*A1 + ( z0 − x2 )*A2 ) * h11 − &

( y2 − y1 ) * ( x2 − x1 )

CC = ( z0 − x1 ) * ( z0 − y1 ) * h22 + ( x2 − z0 ) * ( z0 − y1 ) * h12 + &

( z0 − x1 ) * ( y2 − z0 ) * h21 + ( x2 − z0 ) * ( y2 − z0 ) * h11

!A r e s o n a b l e s o l v e r f o r t h e h e i g h t o f i n t e r s e c t i o n p o i n t s h o u l d be above

! t h e l o w e s t h e i g h t o f n ea rb y 4 p o i n t s & above t h e h i g h e s t one

h_max = MAX( h11 , ( h12+h11 ) / 2 , h21 , ( h22+h21 ) / 2 )

h_min = MIN( h11 , ( h12+h11 ) / 2 , h21 , ( h22+h21 ) / 2 )

iF &

( ABS(AA) <= 0 . 0 0 0 1 ) THEN

d e l t a _ h _ u ( i , j ) = −1*CC / BB

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ u ( i , j ) = ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA
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ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ u ( i , j ) = ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE

d e l t a _ h _ u ( i , j ) = −999

ENDIF

d e l t a _ x _ u ( i , j ) = A1 * d e l t a _ h _ u ( i , j )

d e l t a _ y _ u ( i , j ) = A2 * d e l t a _ h _ u ( i , j )

!We have d e l t a _ x , d e l t a _ y and d e l t a _ h t o c a l c u l a t e t h e d i s t a n c e from t h e s u r f a c e

! u p o i n t t o t h e i n t e r s e c t i o n p o i n t

dsu ( i , j ) = SQRT( d e l t a _ h _ u ( i , j )**2 + d e l t a _ x _ u ( i , j )**2 + d e l t a _ y _ u ( i , j ) * * 2 )

!We r e p e a t t h e p r o g r e s s , b u t t o f i n d t h e i n t e r s e c t i o n p o i n t s a t t h e f i r s t f u l l l e v e l

! above t h e ground i n s t e a d o f t h e f i r s t h a l f − l e v e l

h11 = ( phb ( i −1 , k t s +1 , j ) + ph ( i −1 , k t s +1 , j ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

h21 = ( phb ( i , k t s +1 , j ) + ph ( i , k t s +1 , j ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

IF ( A2 >= 0 ) THEN

h12 = ( phb ( i −1 , k t s +1 , j +1) + ph ( i −1 , k t s +1 , j + 1 ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

h22 = ( phb ( i , k t s +1 , j +1) + ph ( i , k t s +1 , j + 1 ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

ELSE

h12 = ( phb ( i −1 , k t s +1 , j −1) + ph ( i −1 , k t s +1 , j − 1 ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

h22 = ( phb ( i , k t s +1 , j −1) + ph ( i , k t s +1 , j − 1 ) ) / g &

− z _ a t _ u _ s u r f ( i , j )

ENDIF

AA = A1*( h22 − h12 − h21 + h11 )*A2

BB = ( ( z0 − y1 )*A1 + ( z0 − x1 )*A2 ) * h22 + &

( ( y1 − z0 )*A1 + ( x2 − z0 )*A2 ) * h12 + &

( ( y2 − z0 )*A1 + ( x1 − z0 )*A2 ) * h21 + &

( ( z0 − y2 )*A1 + ( z0 − x2 )*A2 ) * h11 − &

( y2 − y1 ) * ( x2 − x1 )

CC = ( z0 − x1 ) * ( z0 − y1 ) * h22 + ( x2 − z0 ) * ( z0 − y1 ) * h12 + &

( z0 − x1 ) * ( y2 − z0 ) * h21 + ( x2 − z0 ) * ( y2 − z0 ) * h11

h_max = MAX( h11 , ( h12+h11 ) / 2 , h21 , ( h22+h21 ) / 2 )

h_min = MIN( h11 , ( h12+h11 ) / 2 , h21 , ( h22+h21 ) / 2 )

iF &

( ABS(AA) <= 0 . 0 0 0 1 ) THEN

d e l t a _ h _ u _ f ( i , j ) = −1*CC / BB

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ u _ f ( i , j ) = ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &
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h_max >= ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ u _ f ( i , j ) = ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE

d e l t a _ h _ u _ f ( i , j ) = −999

ENDIF

d e l t a _ x _ u _ f ( i , j ) = A1 * d e l t a _ h _ u _ f ( i , j )

d e l t a _ y _ u _ f ( i , j ) = A2 * d e l t a _ h _ u _ f ( i , j )

A1 = −A1

A2 = −A2

! Find t h e wind f i e l d s a t t h e i n t e r s e c t i o n p o i n t s by b i l i n e a r i n t e r p o l a t i o n

u_norm_u ( i , j ) =(ABS( d e l t a _ x _ u ( i , j ) * d e l t a _ y _ u ( i , j ) ) * u_2 ( i + i _ d i r , k t s , j + j _ d i r ) &

+ ABS ( ( i _ d i r *dx_m− d e l t a _ x _ u ( i , j ) ) * d e l t a _ y _ u ( i , j ) ) * u_2 ( i , k t s , j + j _ d i r ) &

+ ABS( d e l t a _ x _ u ( i , j ) * ( j _ d i r *dy_m− d e l t a _ y _ u ( i , j ) ) ) * u_2 ( i + i _ d i r , k t s , j ) &

+ ABS ( ( i _ d i r *dx_m− d e l t a _ x _ u ( i , j ) ) * ( j _ d i r *dy_m− d e l t a _ y _ u ( i , j ) ) ) * u_2 ( i , k t s , j ))& ! m a p f a c t o r

/ dx_m / dy_m

v_norm_u ( i , j ) = ( ( dx_m / 2 + d e l t a _ x _ u ( i , j ) ) * ( dy_m / 2 + d e l t a _ y _ u ( i , j ) ) * v_2 ( i , k t s , j +1) &

+ ( dx_m / 2 − d e l t a _ x _ u ( i , j ) ) * ( dy_m / 2 + d e l t a _ y _ u ( i , j ) ) * v_2 ( i −1 , k t s , j +1) &

+ ( dx_m / 2 + d e l t a _ x _ u ( i , j ) ) * ( dy_m / 2 − d e l t a _ y _ u ( i , j ) ) * v_2 ( i , k t s , j ) &

+ ( dx_m / 2 − d e l t a _ x _ u ( i , j ) ) * ( dy_m / 2 − d e l t a _ y _ u ( i , j ) ) * v_2 ( i −1 , k t s , j ) )&

/ dx_m / dy_m

w_norm_u ( i , j ) =(ABS ( ( dx_m / 2 + d e l t a _ x _ u _ f ( i , j ) ) * d e l t a _ y _ u _ f ( i , j ) ) * w_2 ( i , k t s +1 , j + j _ d i r ) &

+ ABS ( ( dx_m / 2 − d e l t a _ x _ u _ f ( i , j ) ) * d e l t a _ y _ u _ f ( i , j ) ) * w_2 ( i −1 , k t s +1 , j + j _ d i r )&

+ ABS ( ( dx_m / 2 + d e l t a _ x _ u _ f ( i , j ) ) * ( j _ d i r *dy_m− d e l t a _ y _ u _ f ( i , j ) ) ) * w_2 ( i , k t s +1 , j ) &

+ ABS ( ( dx_m / 2 − d e l t a _ x _ u _ f ( i , j ) ) * ( j _ d i r *dy_m− d e l t a _ y _ u _ f ( i , j ) ) ) * w_2 ( i −1 , k t s +1 , j ) )&

/ dx_m / dy_m

! D ef in e t h e d r a g s i n two t a n g e n t i a l d i r e c t i o n s

u_drag = u_2 ( i , k t s , j )

v_drag = ( v_2 ( i , k t s , j ) + v_2 ( i , k t s , j +1) + v_2 ( i −1 , k t s , j ) + v_2 ( i −1 , k t s , j + 1 ) ) / 4

w_drag = u_drag * A1 + v_drag * A2

n1_u ( i , j ) = − A1 / SQRT( A1**2 + A2**2 + 1)

n2_u ( i , j ) = − A2 / SQRT( A1**2 + A2**2 + 1)

n3_u ( i , j ) = 1 . / SQRT( A1**2 + A2**2 + 1)

V0_u = SQRT( u_drag **2 + v_drag **2 + w_drag **2 − &

( u_drag * n1_u ( i , j ) + v_drag * n2_u ( i , j ) + w_drag * n3_u ( i , j ) ) ** 2 ) + e p s l n

D_x_u ( i , j ) = −(( u s t ( i −1 , j ) + u s t ( i , j ) ) / 2 ) ** 2 * ( rho ( i , k t s , j )+ rho ( i −1 , k t s , j ) ) / 2 * &

( u_drag − w_drag * A1 ) / SQRT( A1**2 + 1) / V0_u

D_y_u ( i , j ) = −(( u s t ( i −1 , j ) + u s t ( i , j ) ) / 2 ) ** 2 * ( rho ( i , k t s , j )+ rho ( i −1 , k t s , j ) ) / 2 * &

( v_drag − w_drag * A2 ) / SQRT( A2**2 + 1) / V0_u

! F u l l s t r e s s 2d t e s t

! IF ( i > i d s +1 .AND. i < ide −1) THEN

! F u l l s t r e s s 3d t e s t

!We need t h e s l o p e s and c u r v a t u r e s i n d i f f e r e n t d i r e c t i o n s t o a p p l y l o c a l f u l l − s t r e s s c o n d i t i o n

IF ( i > i d s +1 .AND . i < ide −1 .AND . j > j d s +1 .AND . j < j d e −1) THEN

d2hdx2 = 0 . 5 / dx_m / dx_m / g * ( phb ( i +1 , k t s , j ) + phb ( i −2 , k t s , j ) − phb ( i , k t s , j ) − phb ( i −1 , k t s , j ) )

d2hdy2 = 0 . 5 / dy_m / dy_m / g * ( phb ( i , k t s , j +1) + phb ( i −1 , k t s , j +1) + phb ( i , k t s , j −1) + phb ( i −1 , k t s , j −1) − &

2 * phb ( i −1 , k t s , j ) − 2 * phb ( i , k t s , j ) )

d2hdxy = 0 . 5 / dx_m / dy_m / g * ( phb ( i , k t s , j +1) − phb ( i −1 , k t s , j +1) − phb ( i , k t s , j −1) + phb ( i −1 , k t s , j − 1 ) )

ELSE

d2hdx2 = 0 .
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d2hdy2 = 0 .

d2hdxy = 0 .

ENDIF

! aa1 . e t c a r e t h e p a r a m e t e r s t o c a l c u l a t e wind f i e l d s n e a r t h e ground

aa1 = d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * n1_u ( i , j ) * A1 − n3_u ( i , j ) + n3_u ( i , j )**2 * d2hdx2 * dsu ( i , j )

aa2 = d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * n2_u ( i , j ) * A1 + n3_u ( i , j )**2 * d2hdxy * dsu ( i , j )

aa3 = d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * n1_u ( i , j ) * A2 + n3_u ( i , j )**2 * d2hdxy * dsu ( i , j )

aa4 = d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * n2_u ( i , j ) * A2 − n3_u ( i , j ) + n3_u ( i , j )**2 * d2hdy2 * dsu ( i , j )

aa5 = −D_x_u ( i , j ) * SQRT( n1_u ( i , j )**2 + n3_u ( i , j ) * * 2 ) * dsu ( i , j ) / ( xkmh ( i , k t s , j ) + xkmh ( i −1 , k t s , j ) ) * 2 − &

n3_u ( i , j ) * u_norm_u ( i , j ) + n1_u ( i , j ) * d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * w_norm_u ( i , j )

aa6 = −D_y_u ( i , j ) * SQRT( n2_u ( i , j )**2 + n3_u ( i , j ) * * 2 ) * dsu ( i , j ) / ( xkmh ( i , k t s , j ) + xkmh ( i −1 , k t s , j ) ) * 2 − &

n3_u ( i , j ) * v_norm_u ( i , j ) + n2_u ( i , j ) * d e l t a _ h _ u ( i , j ) / d e l t a _ h _ u _ f ( i , j ) * w_norm_u ( i , j )

u _ s f c _ u ( i , j ) = ( aa4 * aa5 − aa3 * aa6 ) / ( aa1 * aa4 − aa2 * aa3 )

v _ s f c _ u ( i , j ) = ( aa1 * aa6 − aa2 * aa5 ) / ( aa1 * aa4 − aa2 * aa3 )

w_sfc_u ( i , j ) = u _ s f c _ u ( i , j ) * A1

END DO

END DO

! Same as u p o i n t s , f o r v p o i n t s

DO j = MAX( j t s , j d s ) , MIN( j t e , j d e )

DO i = MAX( i t s , i d s ) , MIN( i t e , ide −1)

dx_m = dx / msfvx ( i , j )

dy_m = dy / msfvy ( i , j )

A1 = ( phb ( i −1 , k t s , j −1) + phb ( i −1 , k t s , j ) &

− phb ( i +1 , k t s , j −1) − phb ( i +1 , k t s , j ) ) / &

4 / dx_m / g ! m a p f a c t o r

A2 = ( phb ( i , k t s , j −1) − phb ( i , k t s , j ) ) / dy_m / g ! m a p f a c t o r

z0 = 0

x1 = 0

y1 = −1 * dy_m / 2

y2 = dy_m / 2

h11 = ( phb ( i , k t s , j −1) + phb ( i , k t s +1 , j −1) + ph ( i , k t s +1 , j − 1 ) ) / 2 / g &

− z _ a t _ v _ s u r f ( i , j )

h12 = ( phb ( i , k t s , j ) + phb ( i , k t s +1 , j ) + ph ( i , k t s +1 , j ) ) / 2 / g &

− z _ a t _ v _ s u r f ( i , j )

IF ( A1 >= 0 ) THEN

x2 = dx_m ! m a p f a c t o r

i _ d i r = 1

h21 = ( phb ( i +1 , k t s , j −1) + phb ( i +1 , k t s +1 , j −1) + ph ( i +1 , k t s +1 , j − 1 ) ) / 2 / g &

− z _ a t _ v _ s u r f ( i , j )

h22 = ( phb ( i +1 , k t s , j ) + phb ( i +1 , k t s +1 , j ) + ph ( i +1 , k t s +1 , j ) ) / 2 / g &

− z _ a t _ v _ s u r f ( i , j )

ELSE

x2 = −1 * dx_m ! m a p f a c t o r

i _ d i r = −1

h21 = ( phb ( i −1 , k t s , j −1) + phb ( i −1 , k t s +1 , j −1) + ph ( i −1 , k t s +1 , j − 1 ) ) / 2 / g &
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− z _ a t _ v _ s u r f ( i , j )

h22 = ( phb ( i −1 , k t s , j ) + phb ( i −1 , k t s +1 , j ) + ph ( i −1 , k t s +1 , j ) ) / 2 / g &

− z _ a t _ v _ s u r f ( i , j )

ENDIF

IF ( A2 >= 0) THEN

j _ d i r = 1

ELSE

j _ d i r = −1

ENDIF

AA = A1*( h22 − h12 − h21 + h11 )*A2

BB = ( ( z0 − y1 )*A1 + ( z0 − x1 )*A2 ) * h22 + &

( ( y1 − z0 )*A1 + ( x2 − z0 )*A2 ) * h12 + &

( ( y2 − z0 )*A1 + ( x1 − z0 )*A2 ) * h21 + &

( ( z0 − y2 )*A1 + ( z0 − x2 )*A2 ) * h11 − &

( y2 − y1 ) * ( x2 − x1 )

CC = ( z0 − x1 ) * ( z0 − y1 ) * h22 + ( x2 − z0 ) * ( z0 − y1 ) * h12 + &

( z0 − x1 ) * ( y2 − z0 ) * h21 + ( x2 − z0 ) * ( y2 − z0 ) * h11

h_max = MAX( h11 , h12 , ( h21+h11 ) / 2 , ( h22+h12 ) / 2 )

h_min = MIN( h11 , h12 , ( h21+h11 ) / 2 , ( h22+h12 ) / 2 )

iF &

( ABS(AA) <= 0 . 0 0 0 1 ) THEN

d e l t a _ h _ v ( i , j ) = −1*CC / BB

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ v ( i , j ) = ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ v ( i , j ) = ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE

d e l t a _ h _ v ( i , j ) = −999

ENDIF

d e l t a _ x _ v ( i , j ) = A1 * d e l t a _ h _ v ( i , j )

d e l t a _ y _ v ( i , j ) = A2 * d e l t a _ h _ v ( i , j )

dsv ( i , j ) = SQRT( d e l t a _ h _ v ( i , j )**2 + d e l t a _ x _ v ( i , j )**2 + d e l t a _ y _ v ( i , j ) * * 2 )

h11 = ( phb ( i , k t s +1 , j −1) + ph ( i , k t s +1 , j − 1 ) ) / g &

− z _ a t _ v _ s u r f ( i , j )

h12 = ( phb ( i , k t s +1 , j ) + ph ( i , k t s +1 , j ) ) / g &

− z _ a t _ v _ s u r f ( i , j )

IF ( A1 >= 0 ) THEN

h21 = ( phb ( i +1 , k t s +1 , j −1) + ph ( i +1 , k t s +1 , j − 1 ) ) / g &

− z _ a t _ v _ s u r f ( i , j )

h22 = ( phb ( i +1 , k t s +1 , j ) + ph ( i +1 , k t s +1 , j ) ) / g &

− z _ a t _ v _ s u r f ( i , j )

ELSE

h21 = ( phb ( i −1 , k t s +1 , j −1) + ph ( i −1 , k t s +1 , j − 1 ) ) / g &
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− z _ a t _ v _ s u r f ( i , j )

h22 = ( phb ( i −1 , k t s +1 , j ) + ph ( i −1 , k t s +1 , j ) ) / g &

− z _ a t _ v _ s u r f ( i , j )

ENDIF

AA = A1*( h22 − h12 − h21 + h11 )*A2

BB = ( ( z0 − y1 )*A1 + ( z0 − x1 )*A2 ) * h22 + &

( ( y1 − z0 )*A1 + ( x2 − z0 )*A2 ) * h12 + &

( ( y2 − z0 )*A1 + ( x1 − z0 )*A2 ) * h21 + &

( ( z0 − y2 )*A1 + ( z0 − x2 )*A2 ) * h11 − &

( y2 − y1 ) * ( x2 − x1 )

CC = ( z0 − x1 ) * ( z0 − y1 ) * h22 + ( x2 − z0 ) * ( z0 − y1 ) * h12 + &

( z0 − x1 ) * ( y2 − z0 ) * h21 + ( x2 − z0 ) * ( y2 − z0 ) * h11

h_max = MAX( h11 , h12 , ( h21+h11 ) / 2 , ( h22+h12 ) / 2 )

h_min = MIN( h11 , h12 , ( h21+h11 ) / 2 , ( h22+h12 ) / 2 )

iF &

( ABS(AA) <= 0 . 0 0 0 1 ) THEN

d e l t a _ h _ v _ f ( i , j ) = −1*CC / BB

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ v _ f ( i , j ) = ( −1*BB + SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE IF &

( MAX( 0 . , h_min ) < ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA .AND . &

h_max >= ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA) THEN

d e l t a _ h _ v _ f ( i , j ) = ( −1*BB − SQRT(BB*BB − 4 * AA * CC ) ) / 2 / AA

ELSE

d e l t a _ h _ v _ f ( i , j ) = −999

ENDIF

d e l t a _ x _ v _ f ( i , j ) = A1 * d e l t a _ h _ v _ f ( i , j )

d e l t a _ y _ v _ f ( i , j ) = A2 * d e l t a _ h _ v _ f ( i , j )

A1 = −A1

A2 = −A2

v_norm_v ( i , j ) =(ABS( d e l t a _ x _ v ( i , j ) * d e l t a _ y _ v ( i , j ) ) * v_2 ( i + i _ d i r , k t s , j + j _ d i r ) & ! m a p f a c t o r

+ ABS ( ( i _ d i r *dx_m− d e l t a _ x _ v ( i , j ) ) * d e l t a _ y _ v ( i , j ) ) * v_2 ( i , k t s , j + j _ d i r ) &

+ ABS( d e l t a _ x _ v ( i , j ) * ( j _ d i r *dy_m− d e l t a _ y _ v ( i , j ) ) ) * v_2 ( i + i _ d i r , k t s , j ) &

+ ABS ( ( i _ d i r *dx_m− d e l t a _ x _ v ( i , j ) ) * ( j _ d i r *dy_m− d e l t a _ y _ v ( i , j ) ) ) * v_2 ( i , k t s , j ))&

/ dx_m / dy_m

u_norm_v ( i , j ) = ( ( dx_m / 2 + d e l t a _ x _ v ( i , j ) ) * ( dy_m / 2 + d e l t a _ y _ v ( i , j ) ) * u_2 ( i +1 , k t s , j ) &

+ ( dx_m / 2 − d e l t a _ x _ v ( i , j ) ) * ( dy_m / 2 + d e l t a _ y _ v ( i , j ) ) * u_2 ( i , k t s , j ) &

+ ( dx_m / 2 + d e l t a _ x _ v ( i , j ) ) * ( dy_m / 2 − d e l t a _ y _ v ( i , j ) ) * u_2 ( i +1 , k t s , j −1) &

+ ( dx_m / 2 − d e l t a _ x _ v ( i , j ) ) * ( dy_m / 2 − d e l t a _ y _ v ( i , j ) ) * u_2 ( i , k t s , j −1) )&

/ dx_m / dy_m

w_norm_v ( i , j ) =(ABS ( ( dy_m / 2 + d e l t a _ y _ v _ f ( i , j ) ) * d e l t a _ x _ v _ f ( i , j ) ) * w_2 ( i + i _ d i r , k t s +1 , j ) &

+ ABS ( ( dy_m / 2 − d e l t a _ y _ v _ f ( i , j ) ) * d e l t a _ x _ v _ f ( i , j ) ) * w_2 ( i + i _ d i r , k t s +1 , j −1)&

+ ABS ( ( dy_m / 2 + d e l t a _ y _ v _ f ( i , j ) ) * ( i _ d i r *dx_m− d e l t a _ x _ v _ f ( i , j ) ) ) * w_2 ( i , k t s +1 , j ) &

+ ABS ( ( dy_m / 2 − d e l t a _ y _ v _ f ( i , j ) ) * ( i _ d i r *dx_m− d e l t a _ x _ v _ f ( i , j ) ) ) * w_2 ( i , k t s +1 , j −1) )&

/ dx_m / dy_m
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u_drag = ( u_2 ( i , k t s , j ) + u_2 ( i +1 , k t s , j ) + u_2 ( i , k t s , j −1) + u_2 ( i +1 , k t s , j − 1 ) ) / 4

v_drag = v_2 ( i , k t s , j )

w_drag = u_drag * A1 + v_drag * A2

n1_v ( i , j ) = − A1 / SQRT( A1**2 + A2**2 + 1)

n2_v ( i , j ) = − A2 / SQRT( A1**2 + A2**2 + 1)

n3_v ( i , j ) = 1 . / SQRT( A1**2 + A2**2 + 1)

V0_v = SQRT( u_drag **2 + v_drag **2 + w_drag **2 − &

( u_drag * n1_v ( i , j ) + v_drag * n2_v ( i , j ) + w_drag * n3_v ( i , j ) ) ** 2 ) + e p s l n

D_y_v ( i , j ) = −(( u s t ( i , j −1) + u s t ( i , j ) ) / 2 ) ** 2 * ( rho ( i , k t s , j )+ rho ( i , k t s , j − 1 ) ) / 2 * &

( v_drag − w_drag * A2 ) / SQRT( A2**2 + 1) / V0_v

D_x_v ( i , j ) = −(( u s t ( i , j −1) + u s t ( i , j ) ) / 2 ) ** 2 * ( rho ( i , k t s , j )+ rho ( i , k t s , j − 1 ) ) / 2 * &

( u_drag − w_drag * A1 ) / SQRT( A1**2 + 1) / V0_v

IF ( i > i d s +1 .AND . i < ide −1 .AND . j > j d s +1 .AND . j < j d e −1) THEN

d2hdx2 = 0 . 5 / dx_m / dx_m / g * ( phb ( i +1 , k t s , j ) + phb ( i +1 , k t s , j −1) + phb ( i −1 , k t s , j ) + phb ( i −1 , k t s , j −1) − &

2 * phb ( i , k t s , j ) − 2 * phb ( i , k t s , j − 1 ) )

d2hdy2 = 0 . 5 / dy_m / dy_m / g * ( phb ( i , k t s , j +1) + phb ( i , k t s , j −2) − phb ( i , k t s , j ) − phb ( i , k t s , j − 1 ) )

d2hdxy = 0 . 5 / dx_m / dy_m / g * ( phb ( i +1 , k t s , j ) − phb ( i +1 , k t s , j −1) − phb ( i −1 , k t s , j ) + phb ( i −1 , k t s , j − 1 ) )

ELSE

d2hdx2 = 0 .

d2hdy2 = 0 .

d2hdxy = 0 .

ENDIF

aa1 = d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * n1_v ( i , j ) * A1 − n3_v ( i , j ) + n3_v ( i , j )**2 * d2hdx2 * dsv ( i , j )

aa2 = d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * n2_v ( i , j ) * A1 + n3_v ( i , j )**2 * d2hdxy * dsv ( i , j )

aa3 = d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * n1_v ( i , j ) * A2 + n3_v ( i , j )**2 * d2hdxy * dsv ( i , j )

aa4 = d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * n2_v ( i , j ) * A2 − n3_v ( i , j ) + n3_v ( i , j )**2 * d2hdy2 * dsv ( i , j )

aa5 = −D_x_v ( i , j ) * SQRT( n1_v ( i , j )**2 + n3_v ( i , j ) * * 2 ) * dsv ( i , j ) / ( xkmh ( i , k t s , j ) + xkmh ( i −1 , k t s , j ) ) * 2 − &

n3_v ( i , j ) * u_norm_v ( i , j ) + n1_v ( i , j ) * d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * w_norm_v ( i , j )

aa6 = −D_y_v ( i , j ) * SQRT( n2_v ( i , j )**2 + n3_v ( i , j ) * * 2 ) * dsu ( i , j ) / ( xkmh ( i , k t s , j ) + xkmh ( i −1 , k t s , j ) ) * 2 − &

n3_v ( i , j ) * v_norm_v ( i , j ) + n2_v ( i , j ) * d e l t a _ h _ v ( i , j ) / d e l t a _ h _ v _ f ( i , j ) * w_norm_v ( i , j )

u _ s f c _ v ( i , j ) = ( aa4 * aa5 − aa3 * aa6 ) / ( aa1 * aa4 − aa2 * aa3 )

v _ s f c _ v ( i , j ) = ( aa1 * aa6 − aa2 * aa5 ) / ( aa1 * aa4 − aa2 * aa3 )

w_sfc_v ( i , j ) = v _ s f c _ v ( i , j ) * A2

END DO

END DO

! Again , we need t o be c a r f u l o f t h e v a l u e s a t t h e b o u n d a r i e s

IF ( i t s == i d s ) THEN

DO j = j t s , MIN( j t e , jde −1)

w_sfc_u ( i t s −1 , j ) = w_sfc_u ( i t s , j )

w_sfc_v ( i t s −1 , j ) = w_sfc_v ( i t s , j )

v _ s f c _ v ( i t s −1 , j ) = v _ s f c _ v ( i t s , j )

ENDDO

IF ( j t e == j d e ) THEN

w_sfc_v ( i t s −1 , j t e ) = w_sfc_v ( i t s , j t e )

ENDIF

ENDIF
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IF ( i t e == i d e ) THEN

DO j = j t s , MIN( j t e , jde −1)

w_sfc_u ( i t e +1 , j ) = w_sfc_u ( i t e , j )

w_sfc_v ( i t e , j ) = w_sfc_v ( i t e −1 , j )

ENDDO

IF ( j t e == j d e ) THEN

w_sfc_v ( i t e , j t e ) = w_sfc_v ( i t e −1 , j t e )

ENDIF

ENDIF

IF ( j t s == j d s ) THEN

DO i = i t s , MIN( i t e , ide −1)

w_sfc_v ( i , j t s −1) = w_sfc_v ( i , j t s )

w_sfc_u ( i , j t s −1) = w_sfc_u ( i , j t s )

u _ s f c _ u ( i , j t s −1) = u _ s f c _ u ( i , j t s )

ENDDO

IF ( i t e == i d e ) THEN

w_sfc_u ( i t e , j t s −1) = w_sfc_u ( i t e , j t s )

ENDIF

ENDIF

IF ( j t e == j d e ) THEN

DO i = i t s , MIN( j t e , jde −1)

w_sfc_v ( i , j t e +1) = w_sfc_v ( i , j t e )

w_sfc_u ( i , j t e ) = w_sfc_u ( i , j t e −1)

ENDDO

IF ( i t e == i d e ) THEN

w_sfc_u ( i t e , j t e ) = w_sfc_u ( i t e , j t e −1)

ENDIF

ENDIF

END SUBROUTINE g e t _ n o r m _ i n t e r s e c t i o n

A.3 cal_deform_and_div

We modified the computation of deformations at the ground, so that we could make use the

wind fields near the ground we calculated above.
! n o r m _ s t r e s s i s t h e p a r a m e t e r we c r e a t e d t o a p p l y norm− grad or f u l l − s t r e s s c o n d i t i o n

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

h a t a v g ( i , 1 , j ) = ( u _ s f c _ u ( i , j ) / msfuy ( i , j ) + u _ s f c _ u ( i +1 , j ) / msfuy ( i +1 , j ) ) / 2

END DO

END DO

END IF

! d e f i n e t h e new a r r a y : d e f o r 1 1 _ s f c

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

d e f o r 1 1 _ s f c ( i , j ) = 2 . * mm( i , j ) * ( rdx * ( u _ s f c _ u ( i +1 , j ) / msfuy ( i +1 , j ) − u _ s f c _ u ( i , j ) / msfuy ( i , j ) ) − &

( ( h a t ( i , k t s , j ) + h a t ( i +1 , k t s , j ) ) / 2 . − h a t a v g ( i , 1 , j ) ) * &

( zx ( i , k t s , j ) + zx ( i +1 , k t s , j ) ) * rdzw ( i , k t s , j ) ) ! s t r e t c h
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END DO

END DO

ENDIF

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

h a t a v g ( i , 1 , j ) = ( v _ s f c _ v ( i , j ) / msfvx ( i , j ) + v _ s f c _ v ( i , j +1) / msfvx ( i , j +1) ) / 2 .

END DO

END DO

END IF

! d e f i n e t h e new a r r a y : d e f o r 2 2 _ s f c

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

d e f o r 2 2 _ s f c ( i , j ) = 2 . * mm( i , j ) * ( rdy * ( v _ s f c _ v ( i , j + 1 ) / msfvx ( i , j +1) − v _ s f c _ v ( i , j ) / msfvx ( i , j ) ) − &

( ( h a t ( i , k t s , j ) + h a t ( i , k t s , j +1) ) / 2 . − h a t a v g ( i , 1 , j ) ) * &

( zy ( i , k t s , j ) + zy ( i , k t s , j + 1 ) ) * rdzw ( i , k t s , j ) )

END DO

END DO

ENDIF

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

tmp1 ( i , k t s , j ) = ( w( i , k t s +1 , j ) − ( w_sfc_u ( i , j )+ w_sfc_u ( i +1 , j )+ w_sfc_v ( i , j )+ w_sfc_v ( i , j + 1 ) ) / 2 . ) * rdzw ( i , k t s , j )

END DO

END DO

END IF

! d e f i n e t h e new a r r a y : d e f o r 3 3 _ s f c

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

d e f o r 3 3 _ s f c ( i , j ) = d e f o r 3 3 ( i , k t s , j )

END DO

END DO

END IF

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

h a t a v g ( i , 1 , j ) = ( u _ s f c _ u ( i , j ) / msfux ( i , j ) + u _ s f c _ u ( i , j −1) / msfux ( i , j −1) ) / 2

END DO

END DO

END IF

! f i r s t t e rm of d e f o r 1 2 _ s f c

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

d e f o r 1 2 _ s f c ( i , j ) = mm( i , j ) * ( rdy * ( u _ s f c _ u ( i , j ) / msfux ( i , j ) − u _ s f c _ u ( i , j − 1 ) / msfux ( i , j − 1 ) ) − &

( ( h a t ( i , k t s , j ) + h a t ( i , k t s , j −1) ) / 2 . − h a t a v g ( i , 1 , j ) ) * &

( zy ( i , k t s , j ) + zy ( i −1 , k t s , j ) ) * 0 . 2 5 * &

( rdzw ( i , k t s , j ) + rdzw ( i −1 , k t s , j ) + rdzw ( i , k t s , j −1) + rdzw ( i −1 , k t s , j − 1 ) ) )
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END DO

END DO

END IF

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

h a t a v g ( i , 1 , j ) = ( v _ s f c _ v ( i , j ) / msfvy ( i , j ) + v _ s f c _ v ( i −1 , j ) / msfvy ( i −1 , j ) ) / 2 .

END DO

END DO

END IF

! second te rm of d e f o r 1 2 _ s f c

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d

d e f o r 1 2 _ s f c ( i , j ) = d e f o r 1 2 _ s f c ( i , j ) + &

mm( i , j ) * ( rdx * ( v _ s f c _ v ( i , j ) / msfvy ( i , j ) − v _ s f c _ v ( i −1 , j ) / msfvy ( i −1 , j ) ) − &

( ( h a t ( i , k t s , j ) + h a t ( i −1 , k t s , j ) ) / 2 . − h a t a v g ( i , 1 , j ) ) * &

( zx ( i , k t s , j ) + zx ( i , k t s , j − 1 ) ) * 0 . 2 5 * &

( rdzw ( i , k t s , j ) + rdzw ( i −1 , k t s , j ) + rdzw ( i , k t s , j −1) + rdzw ( i −1 , k t s , j − 1 ) ) )

END DO

END DO

END IF

! change t h e f i r s t l a y e r d e f o r 1 3

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d

DO i = i _ s t a r t , i _ e n d +1 ! i m p o r t a n t change by YiLi 11 /2019

d e f o r 1 3 ( i , k t s , j ) = mm( i , j ) * ( rdx * ( h a t ( i , k t s , j ) / ms f ty ( i +1 , j ) − h a t ( i −1 , k t s , j ) / msfuy ( i −1 , j ) ) − &

( h a t a v g ( i , k t s , j ) − (4* w_sfc_u ( i , j )+ w_sfc_v ( i , j )+ w_sfc_v ( i , j +1)+ w_sfc_v ( i −1 , j )+ w_sfc_v ( i −1 , j + 1 ) ) / &

4 . / msfuy ( i , j ) ) * zx ( i , k t s , j ) * &

( rdzw ( i , k t s , j ) + rdzw ( i −1 , k t s , j ) ) ) + &

( u ( i , k t s , j ) − u _ s f c _ u ( i , j ) ) * ( rdzw ( i , k t s , j ) + rdzw ( i −1 , k t s , j ) )

d e f o r 1 3 ( i , k t f +1 , j ) = 0 . 0

END DO

END DO

END IF

! change t h e f i r s t l a y e r d e f o r 2 3

IF ( c o n f i g _ f l a g s%n o r m _ s t r e s s == 1) THEN

DO j = j _ s t a r t , j _ e n d +1 ! i m p o r t a n t change by YiLi 11 /2019

DO i = i _ s t a r t , i _ e n d

d e f o r 2 3 ( i , k t s , j ) = mm( i , j ) * ( rdy * ( h a t ( i , k t s , j ) / ms f tx ( i , j ) − h a t ( i , k t s , j −1) / ms f tx ( i , j − 1 ) ) − &

( h a t a v g ( i , k t s , j ) − (4* w_sfc_v ( i , j )+ w_sfc_u ( i , j )+ w_sfc_u ( i +1 , j )+ w_sfc_u ( i , j −1)+ w_sfc_u ( i +1 , j − 1 ) ) / &

4 . / msfvx ( i , j ) ) * zy ( i , k t s , j ) * &

( rdzw ( i , k t s , j ) + rdzw ( i , k t s , j −1) ) ) + &

( v ( i , k t s , j ) − v _ s f c _ v ( i , j ) ) * ( rdzw ( i , k t s , j ) + rdzw ( i , k t s , j −1) )

d e f o r 2 3 ( i , k t f +1 , j ) = 0 . 0

END DO

END DO

END IF
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