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ABSTRACT

As many coastal areas suffer from chronic erosion, innovative solutions beyond
traditional local nourishment must be explored. One such solution is mega-nourishment (MN)
where a large sediment volume is deposited in a single location and redistributed via natural
processes thereby feeding adjacent beaches. However, only one MN, the Dutch Sand Motor, has
been built to date, and potential MN coastline interactions with engineered features such as
groins are unknown. To investigate this, one-line numerical modeling approaches of MN
evolution are presented using the Coastline Evolution Model (CEM) and GenCade. CEM is
modified to allow for a much more detailed parameterization and higher resolution operation to
address MNs specifically. Both models are parameterized for the Sand Motor to explore the
feasibility of the MN approach. The models are then used to identify the implications of
combining a MN with a groin field (GF). This is accomplished by re-writing CEM in MATLAB
and adding highly robust groin-simulating algorithms.

Both models are able to reproduce the morphological patterns observed at the Sand
Motor. GenCade produces mean measured-modeled differences on the order of 50 m showing
relatively accurate absolute shoreline positions. CEM captures the 400-meter-feature tip
migration due to its wave shadowing algorithm. CEM groin algorithms are validated using
measured shorelines from Galveston Island. The idealized MN-GF interaction scenarios are
modeled using similar baseline conditions. Results also show that a MN placed adjacent to a GF
results in sediment feeding of beaches on both sides of the MN and on the far side of the GF on
multidecadal time scales. MN feeding rates are highly dependent on the offshore wave climate,

with climates rich in high angle waves slowing MN diffusion and feeding rates. Model results



also indicate that shoreline advance can be maximized in areas of erosional hot spots near a GF
by building a MN on top of a groin field or directly downdrift of it. The advances made to CEM
allow its use in future MN research, which should include the examination of different MN/GF

parameters as well as temporal variability in forcings.
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Table N.1. List of variables

A

Dot

EnOr
Etot

HO,rms
Ho
HO,s

Offshore wave climate asymmetry

Conversion factor for bypassing

Fractional amount of sediment bypassing a groin

Breaking wave group celerity

Median sediment grain diameter

Berm elevation

Depth of closure

Water depth at groin tip

Depth of longshore transport

Longshore distance between wave breaking point and groin
Deep water wave energy contribution to shoreline diffusivity
Normalized E

Cumulative E

Fractional amount of sediment in CEM cell

Acceleration due to gravity

Wave height

Offshore root-mean-square wave height

Offshore wave height (either RMS or significant can be used)
Offshore significant wave height

Breaking wave height

Breaking wave height (due to refraction/diffraction)

Wave height at groin tip

Empirical proportionality coefficient (CERC Equation)
Proportionality constant (GenCade LST equation)
Proportionality constant

Diffraction coefficient

Cross-shore length of groin

Sediment porosity

Fractional groin permeability




Table N.1. Continued

pf Fractional probability of offshore wave angle
Qin Sediment flux into CEM cell
Qo Amplitude of LST rate
Qout Sediment flux out of CEM cell
Qs Volumetric longshore sediment flux
Ss Slope of shelf
Ssf Slope of shoreface
t Time
T Wave period
U Offshore wave climate highness
W Model cell width
X Alongshore position of coastline
y Cross-shore position of coastline
Zmax Water depth where refraction begins
Dt Model time step
Dxtip Longshore tip migration
Dymax  Change in max. cross-shore shoreline extent (i.e., tip retreat)
a1 Non-dimensional parameter (GenCade)
a2 Non-dimensional parameter (GenCade)
Qb Breaking wave angle (relative to shoreline)
Olbd Breaking wave angle due to diffraction
Qs Mean wave direction at groin tip
S Average bathymetric slope
Vb Wave breaking index
& Diffusion coefficient
& Shoreline angle
Water density
Ds Sediment density
Po Offshore wave angle of incidence (relative to x-axis)
P Breaking wave angle (relative to x-axis)

Xi
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1. EXECUTIVE SUMMARY

Considering the large amount of human infrastructure on the coast and that much
of the world’s shores suffer from chronic erosion, innovative coastal defenses beyond
traditional nourishment must be explored. One solution pioneered by the Dutch is the
use of mega-nourishment (MN), where a large volume of sediment is deposited at a
single nourishment site. This sediment is then redistributed via natural processes, thus
feeding nearby beaches. Since many developed beaches have been fortified with groin
fields (GF), robust predictive capabilities on interactions between MNs and groins are
needed.

At the time of writing, only one MN has been built, the Dutch Sand Motor. This
MN was not built in the vicinity of any groins, and as such, there is no field data on how
a MN and a GF may interact. Furthermore, all field data on MNs is for a single site in
the Netherlands, and as such, there is no field data on how a MN may evolve in other
areas of the world. As a result, numerical modeling is necessary to fill these knowledge
gaps.

One-line models are often the preferred method of numerical modeling in
engineering applications given their simplicity and relatively low data requirements.
Limited one-line modeling has been performed in MNs to this point, and thus, the
capabilities of specific one-line models to simulate MN evolution is not well understood.
Therefore, two one-line numerical modeling methods using the Coastline Evolution

Model (CEM) and GENESIS + Cascade (GenCade) are presented to evaluate their



capabilities in modeling MN coastline evolution. The models are then used to
investigate the implications of building a MN on a coast with a GF.

CEM and GenCade have been used to simulate large-scale coastal evolution, and
GenCade is the current U.S. industry standard. Since CEM was designed as a theoretical
model, it is highly modified here to explore specific study sites and operate at higher
spatial resolution (25 m). As CEM’s original version written in the programming
language C does not have the ability to simulate groins, a new CEM version coded in
MATLAB is presented here. The new version includes the mentioned modifications as
well as robust groin simulating algorithms.

Both models are found capable of reproducing the morphological patterns
observed at the SM and are therefore suitable for MN simulation. GenCade produces a
low measured-modeled difference over the entire MN area (on the order of 50 m)
showing relatively accurate predictions of absolute shoreline position. CEM measured-
modeled differences are typically on the order of 5 m greater than GenCade, and it can
capture the 400-meter feature tip migration due to its wave shadowing algorithm. The
best results from both models can be obtained for higher K values than those commonly
suggested in the literature.

The groin simulating algorithms added to CEM are validated using measured
shoreline evolution data from Galveston Island, Texas, including a GF comprised of 13
(out of 15) groins. Measured-modeled differences in Galveston over 2 years of
evolution (2014 to 2016) are on the order of 12-16 m for CEM while GenCade’s

differences are on the order of 30 m.



The idealized MN-GF interaction scenarios are modeled using similar baseline
conditions to that of Galveston. Model results show that a MN placed adjacent to a GF
results in sediment feeding of beaches on both sides of the MN and on the far side of the
GF on multidecadal time scales. MN feeding rates are highly dependent on the offshore
wave climate, with climates rich in high angle waves slowing MN diffusion and feeding
rates. Model results also indicate that shoreline advance can be maximized in areas of
erosional hot spots (downdrift of a GF) by building a MN on top of a groin field or
directly downdrift of it.

Future research on MN-GF interaction should include the examination of
different MN-GF configurations including, but not limited to, ranges of MN-GF area
ratios, groin lengths and spacing, and MN aspect parameters. It is also recommended
that the effects of temporal variations in offshore wave climate and K be examined for
the MN-GF situation. Furthermore, hypothetical MN scenarios for specific study sites
around the world should be explored. The incorporation of additional processes in CEM
and/or GenCade such as cross-shore processes, sediment sources/sinks, and offshore

advection may further improve the accuracy of the models.



2. INTRODUCTION

Considering that 70% of the world’s coastlines are eroding (Davison et al., 1992)
with roughly 23-40% of the world’s population living within 100 km of the coastline
(Small and Nicholls, 2003), it is clear that a large amount of infrastructure is vulnerable
to retreating coastlines. Continuing development of coastal regions combined with sea
level rise increases the damage risk from shoreline retreat (Gornitz et al., 1994). As a
result, coastal defense schemes aiming to maintain the coastline position have become
common in populated coastal regions. Hard coastal defenses, such as groins, jetties,
breakwaters, dams, dykes, and seawalls, are very costly, permanently alter the natural
environment, and may come with unforeseen long-term effects on coastal evolution (van
Slobbe et al., 2013). Soft defense schemes generally involve beach nourishment, which
is less costly and more environmentally sustainable. However, nourished sediment is
often transported out of the region requiring repetitive nourishments (Peterson and
Bishop, 2005).

The problems of chronic erosion and sediment scarcity call for innovative shore
defense concepts beyond traditional approaches. An innovative technical solution is
mega-nourishment (MN), a relatively new concept that relies on natural forces to
disperse a large sediment volume at a single nourishment site. An effective MN acts as a
feeder beach, providing a sediment source for nearby shores. This could be potentially
more cost-effective than recurring smaller nourishments as all of the nourishment would
occur at a single site at one point in time rather than nourishing at multiple sites along a

beach multiple times. A pilot MN, known as the Delftland Sand Motor (SM), or
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Zandmotor in Dutch, was constructed in 2011 on the Dutch coast to examine the
feasibility of MNs feeding larger stretches of the coast. MN could be applied to beaches
around the world where natural threats to the coast can be very dangerous and
destructive. However, the SM has not evolved entirely as expected raising issues related
to the local ecosystem, recreational and navigational safety, ground water, and potential
changes to nearshore processes (Stive et al., 2013). This necessitates additional
modeling efforts to improve the predictive capabilities of potential MN projects.
One-dimensional (one-line) coastline models can be used to predict shoreline
morphology without considering the full complexity of the coastal system
(Zacharioudaki and Reeve, 2008). These do not have large data requirements to
evaluate, have shown to be remarkably robust despite their simplicity, and have
remained the preferred method of evaluating potential shoreline change in many
engineering applications (Thomas and Frey, 2013). However, most analytical solutions
to these models cannot incorporate time-varying input data or account for longshore
variations in wave breaking. To mitigate shortcomings in analytical one-line models,
numerical one-line models have been developed that can account for time-varying input
data, highly obligue wave angles, and complex boundary conditions. Commonly used
numerical coastline models in the U.S. include GENESIS (Hanson and Kraus, 1989) and
GenCade (Frey et al., 2012). These models can account for longshore variations in wave
conditions, wave refraction and diffraction, and the effects of man-made structures such
as groins and seawalls. GENESIS typically operates on domains ranging from 1 to 30

km over time periods up to 20 years, making it unsuitable for region-wide simulations



(Gravens et al., 1991). GenCade couples GENESIS with Cascade (Larson et al., 2003),
a regional-scale coastline model, allowing GenCade to simulate coastlines on spatial
scales up to hundreds of meters and time scales up to millennia. GenCade has become
the industry standard in one-line numerical modeling for engineering projects in the U.S.
Several other one-line models developed in other countries are also available. These
include ONELINE (Dabees and Kamphuis, 1999), LITPACK (DHI, 2009) and
UNIBEST (Deltares, 2011).

Given the processes included and the spatial/temporal scales involved, GenCade
is a suitable numerical model for MN simulation, and it is used in this dissertation.
However, there does appear to be a disconnect between the models used in the
engineering community for practical applications (e.g., GenCade) and those used in the
scientific community for theoretical studies (Syvitski et al., 2009). Theoretical models
are often oversimplified while industrial software packages, though more complex, are
not easily modifiable to incorporate more physical processes that may not have been
adequately investigated in the past. In an effort to bridge that gap and expand the
number of model options available in coastal research, a one-line model designed for
theoretical studies is also used here in the examination of MN evolution: the Coastline
Evolution Model (CEM). While GenCade is commonly used in the coastal engineering
community, CEM has been used primarily in theoretical scientific studies to explore
shoreline morphology on very large temporal (thousands of years) and spatial (hundreds
of kilometers) scales (Ashton et al., 2001). Unlike GenCade, CEM is capable of

representing an offshore wave climate stochastically rather than using a time series,
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allowing small potential changes in wave climate to be readily examined (e.g., Moore et
al., 2013). CEM also has the advantage that it is a self-contained open-source model
capable of running without overhead unlike other models that require additional software
(e.g., GenCade project work often requires the Surface-Water Modeling System).
Considering the scales on which CEM operates, it should be ideal for large coastline
formations such as MNSs that evolve on large spatial and temporal scales.

While some one-line modeling work has been applied to MNs such as the semi-
analytical methods presented in Valsamidis et al. (2017) and a probabilistic shoreline
approach by Kroon et al., (2020), the accuracy of specific one-line models in the
reproduction of observed MN morphology (such as CEM or GenCade) is not well
understood. Furthermore, many coastal areas suffering from chronic erosion have been
reinforced with groin fields in an effort to mitigate sediment loss. While a MN could
potentially be advantageous at such sites, the interactions between a MN and a groin
field are unknown. One-line modeling of MN coastline interactions with a groin field
could shed light on erosion and deposition patterns that could result from a physical MN
built near a groin field.

The one-line models presented here are primarily driven by wave-induced
longshore sediment transport (LST; see the Literature Review in Chapter 2 for details).
When waves approach the coast and break at an oblique angle, they induce a nearshore
water flow in the longshore direction (Komar and Inman, 1970). The wave action also
suspends sediment particles on the seabed. The particles are suspended in the nearshore

flow resulting in a longshore sediment flux (Qs). When simulating a protruding
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shoreline feature such as a Gaussian-shaped MN in a one-line model, changes to the
coastline are caused by longshore sediment flux gradients (%) as positive fluxes (more

sediment leaving than going in) cause erosion and negative fluxes cause accretion
(Figure 2.1). For instances when waves primarily approach from low angles (less than
45 degrees), this has the effect of causing the feature tip to retreat while the flanks
extend (Falqués, 2003). When simulating groin fields, shores updrift of the groin field
experience accretion due to the negative sediment flux as less sediment is able to be
transported due to groin inhibition (Basco, 2002). However, LST inhibition from the
groins also causes sediment starvation downdrift of the groin field. Despite the general
trends expected in modeling nourishments and groin fields individually, the interactions
of a large-scale nourishment coastline with a nearby groin field are not well understood.
Furthermore, the performance of GenCade and CEM in simulating accurate MN
evolution is untested prior to this work.

The research presented in the dissertation consists of two research projects. The
first project examines the feasibility of one-line numerical coastline modeling
methodologies in the application of mega-nourishment (MN) simulation. This requires
significant modification of CEM to operate at higher spatial and temporal resolutions
than usual and allow for additional topographic and wave refraction parameters to be
user-specified that are not present in the default version of the model. The second
project examines the interactions between MN coastline evolution and groin fields.
While both MNs and groin fields have the same purpose of delaying the impacts of

shoreline erosion, they have opposite mechanisms by which this is achieved. In light of
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the more recent shift from only hard to soft or hard/soft combinations of erosion risk
reduction schemes, the necessity to assess the issues of MN/groin field combinations
becomes important. In order to use one-line models (CEM, in particular) to evaluate
this, additional algorithms to properly model groin behavior (including LST inhibition,
groin bypassing, and wave diffraction from groins) were developed and added to CEM

in this project. GenCade already contained this functionality.

Approaching
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Figure 2.1. A schematic diagram of coastline changes for a simulation of a
Gaussian-shaped coastline with a groin field downdrift of the feature. Here
dominant LST is downdrift and offshore waves are predominantly low

angle (|¢o] < 45°%). Sediment fluxes (Qs) are indicated by gray arrows (scaling
indicates magnitude) while shoreline change is indicated by white ones. Beach
areas where sediment influxes are greater than outfluxes (positive flux gradient)
experience accretion (coastline extension) while the opposite gives rise to erosion
(coastline retreat). Under most circumstances, sediment accumulates updrift of
groin fields due to LST inhibition while sediment starvation causes erosion
downdrift of the field.



The dissertation first presents a literature review (Chapter 3) of relevant coastal
risk reduction measures, the state-of-the-art in coastline modeling, and the MN concept.
The details of the first research project in evaluating the feasibility of using CEM and
GenCade in MN simulation is next included in the dissertation (Chapter 4). This is
followed by the investigation of MN shoreline evolution in combination with groin
fields (Chapter 5). Both research projects have accompanying articles that have been
published in or submitted to peer-reviewed journals. Chapter 6 presents overall

conclusions for the dissertation.

2.1. Research Questions
2.1.1. One-Line Modeling of Mega-Nourishment Evolution

The first research project in the course of the dissertation examines one-line
numerical modeling methods in the exploration of mega-nourishment (MN) evolution.
As limited amounts of one-line modeling have been applied to MNs, the performance of
specific models such as CEM and GenCade in the evaluation of MN evolution is not
well understood. Furthermore, an appropriate K value in the CERC Transport Equation
is up for debate as a MN model parameter (see Section 3.4). Through the course of this

project, the following research questions (RQs) are addressed:

RQ1. Much one-line modeling has been performed with traditional nourishments

and natural coastlines, but relatively little one-line modeling has been done with
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MNs. Can MN evolution be reasonably simulated using one-line models

(specifically CEM and GenCade)?

It is hypothesized that the models are capable of reasonably reproducing
observed MN evolution given proper calibration. CEM has been used to show the
evolution of large-scale features in the literature, and the scales at which GenCade

operate should make it ideal for MN simulation.

RQ2. The K value in the CERC Transport Equation is used to relate available
wave power to longshore sediment fluxes. Are commonly used K values given
in the literature adequate for MN simulation in a one-line model (specifically

CEM and GenCade)?

While a number of methods presented in the literature derive K from field data to
determine a relationship between immersed weight transport and wave power, Rosati et
al. (2002) use a linear regression over a very large data set of field observations to obtain
the value of K =0.92, which is one of the more recent determinations. It is therefore

hypothesized that this value should be adequate to simulate a MN.
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RQ3. What are the major differences between the shorelines produced by CEM

compared to those produced by GenCade when modeling MN evolution?

CEM’s wave transformation technique includes a wave shadowing algorithm
while GenCade’s default wave transformation (used here) does not. It is hypothesized
that these wave shadowing algorithms in CEM can lead to areas of sediment starvation
that result in asymmetric evolution of a modeled MN under an asymmetric wave climate

(as observed at the SM).

2.1.2. Numerical Modeling of Mega-Nourishment Shoreline Interactions with a
Groin Field

The second research project explores the interactions between MN coastlines and
groin fields. As no mega-nourishment thus-far built is near a groin field, it is unknown
how the presence of a groin field affects MN evolution. It is important to ascertain these
effects as many beaches that would greatly benefit from a MN are already reinforced
with groin fields (e.g., Galveston Beach). Therefore, the following research questions

are addressed numerically in this project:

RQ4. Many coastlines that would benefit from a MN have been reinforced by
groin fields. However, MNs are designed to feed adjacent beaches via LST

while groins are designed to inhibit LST. What are the implications of
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combining these two features on the same coastal system?

It is expected that as a MN diffuses, a nearby groin field will inhibit LST across
it, thus reducing the diffusion rate of the MN. However, with such a large supply of
sediment added from the MN, it is hypothesized that beaches on the side of the groin
field opposite the MN will be fed as there are a number of mechanisms for sediment to
be transported past the groins, specifically bypassing and through-passing (due to groin

permeability).

RQ5. Different coasts around the world can experience vastly different wave
climates. What effects do wave climate (specifically, the probability distribution
of offshore wave angles) have on shoreline evolution in a coupled MN-groin

field system?

An asymmetric wave climate should be accompanied by a dominant direction of
LST. When a MN is placed updrift of a groin field, it is expected that this should result
in augmented accumulation of sediment updrift of the groin field. Under normal
circumstances (with no MN), this should be accompanied by sediment starvation
downdrift of the field. However, with such a large sediment supply from the MN, it is
hypothesized that the overall rate of erosion updrift of the groin field will be diminished
from that without a MN present. Consequently, if a MN is placed downdrift of a groin

field, it is still expected that the MN should diffuse in both directions longshore. This
13



should significantly reduce the erosion signal normally present on the downdrift side of
the groin field. Furthermore, it is hypothesized that a higher probability of high-angle

(Ipo| > 45°) incident waves in the wave climate should reduce the rate of MN diffusion.

RQ6. Beaches with groin fields where a dominant direction of littoral drift is
present often suffer from an erosional hotspot downdrift of the groin field due to
sediment starvation. Can this erosion be mitigated through mega-nourishment,

and if so, under what conditions is the mitigation maximized?

It is hypothesized that building the mega-nourishment downdrift of the GF will
maximize the mitigation of the erosion as the MN will provide a new source of sediment

for the erosional hotspot.
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3. LITERATURE REVIEW

3.1. Coastal Protection

In early U.S. history, the coastal zones of the United States were mostly
uninhabited (Galgano, 2004). However, the development on barrier beaches increased
drastically in the late 20" century. Since that time, coastal erosion has become a
significant land management issue as financial losses from erosion and flood damage
approach economically and politically unsustainable levels. Roughly 70% of beaches
worldwide and 90% of U.S. beaches are reported to be eroding (Bird, 1985; Leatherman,
1988). Strategies to combat this problem involve the landward relocation of structures,
raising infrastructure to account for projected flooding, and protection of the shore
through engineering projects (Galgano, 2004).

While natural defenses such as dunes and beaches are a first line defense system
against storm surge, flooding, and erosion (Bridges et al., 2015), the implementation of
artificial defenses has become common in populated coastal regions (van Slobbe et al.,
2013). Artificial coastal defense methods typically aim to maintain the shoreline front
and are classified as either hard or soft defense schemes. Hard coastal defense systems
include hardened structures such as groins (see Groin Fields section below), jetties,
breakwaters, levees, dikes, and seawalls (Wijnberg, 2002; Dean and Dalrymple, 2004;
van Slobbe et al., 2013). These have different design purposes. Seawalls are built as a
defense against erosion where eroding beyond the seawall would result in infrastructure

damage (Kamphuis, 2010). Levees and dikes protect against flooding from high water
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levels while breakwaters protect beaches through water wave attenuation (Bridges et al.,
2015). Jetties have the purpose of maintaining a navigational inlet from infilling while
groins stabilize the shoreline through LST inhibition (Bridges et al., 2015; Galgano,
2004). While many of these hardened structures provide necessary protection during
high-energy events, the implementation of hard coastal defenses is a very costly venture
that permanently alters the natural environment (Valsamidis et al., 2017). It has also
been hypothesized that hard engineering structures may come with unforeseen effects on
coastal evolution over long time scales, thus alternative strategies are desirable (van
Slobbe et al., 2013).

Soft coastal defense schemes generally involve beach nourishment (see Beach
Nourishment below), the replenishment of sediment on beaches to replace eroded
sediment mass (Charlier and de Meyer, 1995; Dean and Dalrymple, 2004). This is less
costly than hardened structures and more sustainable with respect to the natural
environment. However, sediment placed during beach nourishment is often transported
out of the area through natural processes. Therefore, scheduled recurring nourishments
over time are required to maintain a baseline shore position. Furthermore, issues have
also been raised concerning undesirable impacts of repetitive nourishment with respect
to the local ecology (Peterson and Bishop, 2005; Speybroeck et al., 2006). Therefore,

alternatives to frequent sediment replenishment are quite desirable.
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3.2. Groin Fields

Groins are one of the oldest and most popular hard coastal defense schemes. As
described in Basco (2002), these are structures built perpendicular to the coastline to
control LST by inhibiting transport longshore. Groins are typically built on continuous
beaches with the intent of anchoring the beach or extending the lifetime of a beach fill.
The goal of groin placement on a continuous beach is to maintain a minimum dry beach
width, which can reduce storm damage and minimize local coastline erosion in the
vicinity of the groin. Typically, groin fields consisting of multiple groins are used to
anchor a stretch of beach (Basco and Pope, 2004).

While groins do diminish LST rate, sediment is still capable of moving past
groins by several mechanisms (Basco, 2002). Most groins are permeable, allowing some
sediment to pass through them (called through-passing). Sediment can also over-pass by
moving over the top of submerged groins. Sediment transport behind groins on the
beach is also possible, called shore-passing or flanking (Basco and Pope, 2004).
Bypassing of groins is also possible through hydrodynamic sediment transport as water
flows around the tip of the groin. The amount of sediment bypassed is dependent on the
ratio of groin length to the water depth at the groin tip and the water depth at which LST
occurs. Bypassing can be accentuated when nearshore sand bars are present as they act
as a conduit for maintaining LST regime seaward of the groin tips. When numerically
modeling transport across groins, groin permeability, over-passing, and shore-passing

are often all combined into a single term while bypassing is calculated separately (see
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Methods for details). It is important to account for these effects in numerical models as
they can greatly influence coastline morphology.

Groins also have the effect of water wave diffraction, particularly on waves that
approach the coast at obligue angles (Basco, 2002). Waves diffract around the tip of
groins diminishing their wave heights and angles as they approach the shore and break.
This in turn diminishes the wave induced LST magnitude. Effects of wave diffraction
from groins should be accounted when determining wave induced LST patterns near
groin fields (see Methods for details on how this is modeled).

When a predominantly unidirectional LST is present, the use of groins often
results in a sawtooth-like coastline shape as sediment accumulates on the groin side
opposite the dominant direction of littoral drift. This is often accompanied by erosion on
the other side of the groin as sediment transported away from the groin cannot be
replenished due to the groin’s LST inhibition (i.e., sediment starvation). When a
bidirectional LST is present, this erosion can occur on both sides of the groin resulting in
a wave-like coastline form (Kamphuis, 2010). Longer impermeable groins may also
have the effect of generating local rip currents that can jet material offshore accentuating
this erosion, though the conditions required for this are up for debate (Basco and Pope,
2004).

The effects groin fields have on coastline evolution have been observed for
decades (e.g., Basco and Pope, 2004 and Galgano, 2004), and much numerical modeling
has been done on the subject (see One-line Modeling with Groins below). However,

both observations and models have focused on the coastline evolution of a natural
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(generally straight) coastline with groins or that of traditional beach fill (of much smaller
scale than a MN) in close proximity to groins. The long-term (decadal or greater) effects
a groin field has on the evolution of larger coastline features (such as a MN) is unknown,
and this knowledge is particularly relevant if MNs are to be applied to beaches where

groin fields are already present.

3.3. Beach Nourishment (Beach Fill)

Beach nourishment (also known as beach fill) is the artificial placement of
sediment on the coast with the intent of providing improved protection of upland
infrastructure from storms (Gravens et al., 2002). During high energy events (i.e.,
storms), the beach berm and dunes act as a protective buffer between rising water (and
associated wave energy) and nearshore structures. As the erosion of these beach
features reduces this protection, putting coastal infrastructure at risk, beach nourishment
has become common in the U.S. as a means of flood and storm protection.

Reinforcement of the beach berm is typically the primary feature in nourishment
projects (Gravens et al., 2002). The goal is to widen the berm seaward, which creates a
buffer for dissipating storm wave energy. This has the added effect of increasing the
beach area, which can be used for recreation. Berm reinforcement is usually
accomplished by transporting sediment onto the beach and placing it with earth-moving
equipment. Sediment can also be placed in artificial nearshore sandbars during the
nourishment processes. These subaqueous sandbars can act as wave breakers to

dissipate additional wave energy.
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As typical nourishments involve sediment placement along a finite length of the
shoreline, some nourishments can be built to feed other beaches (Gravens et al., 2002).
Known as feeder beaches, these nourishments involve the placement of material on the
updrift end of an area intended to receive the beach fill. Once the sediment is in place,
natural forces redistribute the material to the rest of the project area. These tend to work
best in areas with unusually high loss rates, where the net LST direction is predictable,
and where strong natural LST is present.

Currently, frequent nourishment is required at many sites, usually once every 3 to
10 years (Cooke et al., 2012). As aresult, large quantities of sand are required to
supply beach nourishment projects, often in areas that already have large annual sand
deficits (de Schipper et al., 2016). Furthermore, it remains questionable if recurring
nourishments have detrimental effects on fauna and natural evolution of nourishment
sites (Peterson and Bishop, 2005; Speybroeck et al., 2006).

It is highly desirable to have an understanding of how beach fill projects will
evolve after placement and how long placed sediment can be expected to remain in the
region. Many engineering projects utilize one-line coastline models as tools to predict

possible beach evolution after a nourishment. The one-line model is explained below.

3.4. The One-Line Model
One-line coastline models can be used to predict shoreline morphology without
considering the full complexity of the coastal system (Zacharioudaki and Reeve, 2008).

These do not have large data requirements to evaluate, have shown to be remarkably
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robust despite their simplicity, and have remained the preferred method of evaluating
potential shoreline change in many engineering applications (Reeve, 2006; Thomas and
Frey, 2013). The primary premise in the one-line model is that any cross-shore profile
along the beach is in equilibrium (Valsamidis and Reeve, 2017). In other words, the
seabed contours are parallel with the coast, and these adjust accordingly with cross-shore
changes in the shoreline. In this case, the assessment of only one bathymetric contour is
required, and, for practical reasons, the shoreline is chosen (Larson et al., 1987). This
premise also assumes that shoreline change is primarily driven by wave-induced LST. It
is further assumed that sediment transported is spread evenly across the shoreface out to
the depth beyond which wave action no longer influences LST. This depth is called the
depth of closure (Dc). Moreover, the combination of the continuity of mass equation
and a LST formula can be used for the formation of the mathematical expression of the
one-line model. Assuming that LST takes place up to D¢ but no further seaward,
changes in cross-shore shoreline position (y) over time (t) can be calculated via (Larson
etal., 1997):

dy 1 dQg
dt  (Dc+Dp) dx’

(3.2)
Here x is the alongshore position and Ds is the berm elevation corresponding to the part
of the beach above sea level that contributes to LST, and Qs is the LST rate. The
assumptions in the one-line model generally provide good estimation of shoreline

change under normal wave conditions but may not work as well under high energy

events or with systems having highly variable seabed contours. For example, Goff et al.
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(2010) report that during Hurricane Ike, sediment was transported off the shoreface to
depths 4 times greater than the depth of closure and may never naturally recover to the
beach. Therefore, the conservation of mass assumption in the one-line model may not
be valid under high energy conditions.

A variety of sediment transport equations to calculate Qs are shown in the
literature, but the most prevalent is the CERC equation described in Komar and Imman
(1970); Rosati et al. (2002); and Valsamidis et al. (2013). This equation describes a
relationship between breaking wave energy and littoral transport. When waves break at
an oblique angle relative to the shoreline, the wave energy generates longshore currents
that carry beach sediment via suspended load, bed load, and saltation load sediment
transport. The magnitude of volumetric sediment flux (Q;) is dependent on the wave
energy (quantified by breaking wave height Hp) and the direction of propagation at wave
break with more oblique waves generating a higher flux due to a larger longshore vector

component. The CERC equation states:

Qs = K( 1 PNg >Hbg sin(2a,), (3.2)

16yp2(ps—p)(1-n)

where p is the water density, g is the acceleration due to gravity, ps is the sediment
density, K is the empirical proportionality coefficient, n is the sediment porosity, and y,,
is the breaker index (ratio of Hy to the water depth at breaking). The breaking wave

angle relative to the shoreline (a;) is expressed as

a,= ¢, -0, (3.3)
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where ¢, is the breaking wave angle and 6 is the shoreline angle, both relative to the x-
axis (Figure 3.1). Assuming wave refraction over straight and parallel contours, ¢ is
related to the offshore wave angle (¢,) and & according to the following relationship
(e.g., Reeve, 2006):

¢p = ¢, — arctan (). (3.4)
The shoreline angle 6 is identical to the shoreline gradient Z—Z , and thus (3.3) can be

written:

— 9y
¢p = ¢, — arctan (ax)' (3.5)
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Figure 3.1. A schematic of wave and shore angles. ¢, is the offshore wave angle
relative to the longshore (x) axis, ¢, is the breaking wave angle relative to the
shoreline, and @ is the shoreline relative to the x-axis. Offshore waves undergo
refraction and shoaling to the breaking point.
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Note that the assumption of wave refraction over straight and parallel contours neglects
how refraction over non-shore parallel contours may result in longshore changes in wave
height and wave angle. This phenomenon may become more important as shoreline
features extend cross-shore and is thus a limitation of the model (Ashton and Murray,
2006a; Whitley, 2014).

The proportionality coefficient K in (3.2) is used to relate breaking wave energy
to the volumetric sediment transport rate Q. It is generally determined via a relationship
between the immersed sediment weight transport rate (I;) with the longshore component
of wave energy flux (Pi). However, an appropriate value for K has been subject to
debate in the literature (Smith et al., 2009). Komar and Inman (1970), the first to
introduce the CERC equation, use K =0.77. Del Valle et al. (1993) also present field
data from fluvial transport rates and present K as a function of median grain size (Dso) in
mm:

K = 1.4e(=25Dso), (3.6)
For reference, (3.6) yields K= 0.69 for Dso = 281 microns (used at the Sand Engine).
Rosati et al. (2002) show a linear regression of field data relating the immersed weight
transport rate to the potential longshore sediment transport rate (Figure 3.2), which
yields K = 0.92 when using root mean square (RMS) wave heights in (3.2). However,
none of the aforementioned methods for K determination are applied in situations where
a large protruding feature (such as a MN) is added to the coastline. It is possible that the
K values presented in the literature are inadequate in evaluating the evolution of such a

large feature. As such, the determination of an appropriate K value in one-line modeling
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of MNs is one of the goals of this study. This determination is based on the ability of

one-line models to reproduce observed morphology at the Sand Engine.
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Figure 3.2. Field data from various study sites relating immersed sediment weight

transport rate (I) with the longshore component of wave energy flux (Pi). A linear
regression of this data is used to yield the K value of 0.92, one of the most commonly

used values. The figure is from Rosati et al. (2002).

Both analytical and numerical solutions to the one-line model exist. Analytical

solutions incorporate the assumption of uniform and constant wave characteristics,
smooth plan beach profile, and small angles of wave propagation. Based on these

premises, the combination of (3.1) and (3.5) yields (Pelnard-Considére, 1956):
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This is a general diffusion equation describing the shoreline evolution in time where ¢ is
the diffusion coefficient (or alongshore diffusivity) given by

1 90s _ 2@

E=——7——— == .
(DC+DB) 00 Dc+Dp

(3.8)

Qo is the amplitude of the longshore transport rate (e.g., Larson et al., 1997):

0 = (255 )y 2 9

16(ps—p)(1-n)/) P
Computational versions of the one-line model are not subject to the
aforementioned restrictions. These solve the system of (3.1), (3.2), and (3.3), stepping
forward in time (e.g., Zacharioudaki and Reeve, 2008). They can also incorporate time-
varying and potentially spatially varying wave data, high values of wave angle
propagation with respect to the local shoreline orientation, and complicated initial (e.g.,
discontinuous or non-smooth coastline) and boundary (periodic, moving, pinned, etc.)

conditions.

3.5. One-line Modeling with Groins

Since the applications of one-line models include modeling the evolution of
potential beach engineering projects, much work has been done to include beach
reinforcement structures such as groins into these models. Analytical solutions to the
one-line model that included groins were among the first to be published (e.g.,

LeMéhauté and Brebner, 1960; Bakker, 1969; and Bodge and Kraus, 1991) included
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LST inhibition and bypassing. Larson et al. (1997) included solutions for time varying
wave conditions at a single groin as well as incorporating wave diffraction. More
modern semi-analytical one-line models, requiring the use of a computer to solve, often
employ integral or Laplace transform techniques for coastline response near a groin
(e.g., Reeve, 2006; Valsamidis and Reeve, 2017). The most recent work in this area
(\Valsamidis and Reeve, 2020) couples various analytical techniques to allow for specific
boundary conditions that mimic LST inhibition, bypassing, and groin permeability.
Numerical one-line models such as GENESIS (Hanson and Kraus, 1989) and
GenCade (Frey et al., 2012) simulate groins by mathematically incorporating the
physical processes that accompany groins. These processes include LST inhibition
(along with the accompanying groin permeability), groin bypassing, and wave
diffraction. The framework of these numerical models also allows for complex groin
field configurations that are difficult to model analytically. However, some numerical
one-line models, such as CEM (Ashton and Murray, 2006a), were not originally
designed with groin simulation mechanics incorporated. For CEM to be used to
simulate coastline interactions with groin fields, the physical processes governing the
influence of groins on shoreline evolution must be integrated into the model framework.
One of the goals of this research is to include groin simulation mechanics into CEM with
the intent of using that model to evaluate MN coastline interactions with groin fields (see

Methods on how this is accomplished).
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3.6. Mega-nourishment

Given the before-mentioned issues arising from frequent repetitive nourishment
projects, innovative solutions beyond traditional soft coastal defenses are needed. The
concept of mega-nourishment (MN) involves nourishing with the intent of feeding
adjacent beaches (Stive et al., 2013). This concept is similar to that of a feeder beach
but on a much larger scale. While traditional nourishments place sediment volumes on
the order of up to 5-10 million m® over a multi-kilometer stretch of coast (often in
multiple phases), MNs involve the placement of an extremely large volume of sediment
(on the order of 17-21 million m®) at a single nourishment site (Pilkey and Clayton,
1989; Davison et al., 1992). MN sediment is redistributed to adjacent beaches via natural
processes such as wind, waves, and tides, which greatly increases the longshore impact
of a nourishment to many kilometers of coastline (de Schipper et al., 2016). This could
potentially be more cost-effective than recurring smaller nourishments. The peninsula
constructed in a MN is intended to have ecological and recreational benefits as well by
greatly increasing beach area with a large cross-shore extent (Mulder and Tonnon,
2011). However, it should be noted that the sudden addition of such a large sediment
mass on the coastline (thus creating an instability) raises issues related to the local
ecosystem, recreational and navigational safety, ground water, and potential changes to
nearshore processes (Stive et al., 2013).

A pilot MN, known as the Delftland Sand Engine (SM), or Zandmotor in Dutch,
was constructed in 2011 on the Dutch coast to examine the feasibility of MNs feeding

larger stretches of the coast. The SM was built on the coast of Holland between
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Scheveningen and Rotterdam. This region is characterized as a sandy, inlet-free,
microtidal, wave-dominated coast. The SM was constructed as a hook-like peninsula
containing 17 million m® of the total 21.5 million m® of sediment in the project (Figure
3.3). Upon completion in August 2011, the peninsula extended ~1 km offshore with a
longshore footprint of ~2.3 km (de Schipper et al., 2014). Following its construction,
topographic surveys were taken nearly monthly from Aug. 2011 to Sept. 2016, described
in de Schipper et al. (2016). The SM exhibited an initial rapid redistribution of sediment
in the first 1.5 years, changing the coastline shape from a hook to a Gaussian form (de
Schipper et al., 2014). Erosion on the peninsula tip during this time was considerable
(1.6 million m® loss) with a 15% reduction in cross-shore extent. Concurrently, shores
adjacent to the SM accreted roughly 1.1 million m® increasing the peninsula’s longshore
footprint 60%. These effects are indicative of diffusion of the nourishment due to
longshore sediment transport (LST), which occurred almost symmetrically in the first
1.5 years of evolution. There were seasonal differences in the geomorphic behavior, but
considering volumetric changes during stormy months are comparable to those
calculated for an entire year, wave action due to adverse meteorological forcing is likely
a significant driver in the SM geomorphology.

However, the SM has not evolved entirely as expected raising issues related to
the local ecosystem, recreational and navigational safety, ground water, and potential
changes to nearshore processes (Stive et al., 2013). This necessitates additional
modeling efforts to improve the predictive capabilities of potential MN projects.

Furthermore, the influence a groin field has on MN evolution is also not understood. As
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many highly eroding coasts where a MN would be beneficial are reinforced with groin

fields, further numerical modeling of MN-groin field interactions is necessary to fill this

knowledge gap.
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Figure 3.3. Aerial photo of the Sand Engine dated March 28, 2013. The coastline
profile seen here is very similar to the one used as the initial coastline in the first
project (March 1, 2013). The tidal inlet, lagoon, and lake are neglected in model
simulations. Photo courtesy of the Dutch Ministry of Infrastructure and the
Environment. The top left map insert is courtesy of Google Maps.

Some modeling work applied to MNs have been through process-based
numerical models such as Q2D-morfo and Delft3D. Q2D-morfo is a quasi 2D nonlinear
morphodynamic model that simulates wave-induced longshore sediment transport and

incorporates cross-shore transport heuristically (van den Berg et al., 2012). Q2D-morfo
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has been used to simulate potential behavior of the SM and calculate its rate of coastline
diffusion (Arriaga et al., 2017). Delft3D is a 3D morphology model capable of
simulating hydrodynamics, sediment transport, and the resultant morphology from tidal,
wind, and wave-driven currents (Lesser et al., 2004). Delft3D was used in assessing
pre-construction design options for the SM (Mulder and Tonnon, 2011) as well as in
predicting its morphodynamics after a one-year hindcast simulation (Luijendijk et al.,
2017). Delft3D has been shown to work well in theoretical, laboratory, and real-life
situations. However, it requires considerable computational and data resources to
operate. The Deltares community reports that Delft3D typically runs about 1 month
(simulation time) per day (real time) using a 1000-km grid on a high-end PC, and it
would thus take a several months to run a multi-decadal simulation assuming time
compression utilities are not used.

One-line models are often used as an alternative to process-based numerical
models where computational resources are a limiting factor or when relative simplicity
in data input/output (compared to complex 3D models) is desired. Valsamidis et al.
(2017) present analytical and semi-analytical one-line models for rectangular and
Gaussian-shaped MNs respectively that incorporate wave forcings and longshore
advection parameters. However, these models cannot incorporate time-varying input
data, cannot account for longshore variations in wave breaking, and must be validated
using field data (difficult under current circumstances). As such, additional one-line
numerical modeling methodologies for MNs are necessary if MN technology is to be

applied on a larger scale.
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4. ONE-LINE MODELING OF MEGA-NOURISHMENT EVOLUTION!?

4.1. Introduction

Considering that 24% of the world’s sandy coasts are eroding (Luijendijk et al.,
2018) with roughly 40% of the world’s population living within in coastal areas
(Mentaschi et al., 2018), it is clear that coastal erosion poses a large societal threat.
Continuing development of coastal regions combined with sea level rise increase the
damage risk from shoreline retreat (Gornitz et al., 1994). As a result, coastal protection
schemes have become common in populated coastal regions. Hard coastal defenses, such
as groins, jetties, breakwaters, dams, dykes, and seawalls, provide protection during
high-energy events. However, these are often expensive and permanently alter the
natural environment (e.g., Brown and McLachlan, 2002; Griggs et al., 1994; Williams et
al., 2018). Soft defense schemes generally involve beach nourishment, which gives the
appearance of a natural beach. However, nourished sediment is often transported out of
the region requiring repetitive nourishments, which can also be costly (e.g., Davison et
al., 1992; Peterson and Bishop, 2005).

The need for coastal defense calls for innovative shore protection concepts
beyond traditional approaches. An innovative technical solution is mega-nourishment
(MN), a relatively new concept that relies on natural forces to disperse a large sediment

volume at a single nourishment site. An effective MN acts as a feeder beach, providing

! Source: Adapted from Whitley et al. (2021). Reproduced with permission from the Coastal Education
and Research Foundation.
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a sediment source for nearby shorelines. This approach could be applied to beaches
around the world and be potentially more cost-effective than recurring smaller
nourishments. A pilot MN, known as the Delftland Sand Motor (SM), or Zandmotor in
Dutch, was constructed in 2011 on the Dutch coast to examine the feasibility of MNs
feeding larger stretches of the coast. However, the SM has not evolved entirely as
expected raising issues related to the local ecosystem, recreational and navigational
safety, ground water, and potential changes to nearshore processes (Stive et al., 2013).
This has necessitated additional modeling efforts to improve the predictive capabilities
of potential MN projects. Some MN modeling work has been performed using complex
3D models (e.g., Luijendijk et al., 2017) such as Delft3D (Lesser et al., 2004). While
3D models can certainly provide detailed insights and comparison with complex
processes, they may not automatically provide the more accurate results on specific
elements, such as coastline evolution, than simple process-based models that run with
much reduced overhead.

One-dimensional (one-line) coastline models are used to predict the change in
horizontal position of a single coastal contour (e.g., the shoreline) over time without
considering the full complexity of the coastal system (Zacharioudaki and Reeve, 2008).
One-line models do not have large data requirements, are remarkably robust, and are the
preferred method of evaluating potential shoreline change for many engineering
applications (Thomas and Frey, 2013). The ability of two different one-line models,

GenCade and the Coastal Evolution Model (CEM), to predict the measured shoreline
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evolution of the Dutch Sand Motor (SM), is assessed here as well as the validity of

commonly used empirical coefficients employed in one-line model formulations.

4.1.1. Study Area

The SM was built on the coast of Holland between Scheveningen and Rotterdam.
This region is characterized as a sandy, inlet-free, microtidal, wave-dominated coast.
The SM was constructed as a hook-like peninsula containing 17 million m® of sediment
(Figure 3.3). Upon completion in August 2011, the peninsula extended ~1 km offshore
with a longshore extent of ~2.3 km (de Schipper et al., 2014). Following its
construction, topographic surveys were taken nearly monthly from Aug. 2011 to Sept.
2016 (de Zeeuw et al., 2017), described in de Schipper et al. (2016). The SM exhibited
an initial rapid redistribution of sediment in the first 1.5 years, changing the coastline
shape from a hook to a Gaussian form (de Schipper et al., 2014). Erosion on the
peninsula tip during this time was considerable (1.6 million m? loss) with a 15%
reduction in the feature’s maximum cross-shore extent. Concurrently, shores adjacent to
the SM accreted roughly 1.1 million m® increasing the peninsula’s longshore reach by
60% of its original extent (de Schipper et al., 2014). These effects are indicative of
diffusion of the nourishment due to longshore sediment transport (LST), which occurred
almost symmetrically in the first 1.5 years of evolution. There were seasonal differences
in the geomorphic behavior with large sediment volume changes calculated on the order
of 500 m? per meter alongshore in stormy months (Dec. 2013 — Feb. 2014) and little

change (< 100 m3/m) during calm ones (July 2013 — Aug. 2013) (de Vries et al., 2014).
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Considering volumetric changes during stormy months are comparable to those
calculated for an entire year, wave action due to adverse meteorological forcing is likely

a significant driver in the SM geomorphology.

4.2. Methods
4.2.1. One-Line Models

One-line model theory is based on the Pelnard-Considere (1956) equation (3.7),
discussed in detail in Section 3.4. Many solutions to (3.7) are available from the
literature on heat and solute diffusion (e.g., Carslaw and Jaeger, 1959; Crank, 1975) and
with appropriate specification of initial and boundary conditions may be transferred to
the coastal domain. This is often done with the assumption that the wave conditions are
constant in time and space so that the diffusion coefficient is a constant (e.g., Grijm,
1961; LeMéhauté and Soldate, 1977; Walton and Chiu, 1979; Wind, 1990). In this form,
the equation is most conveniently solved using Laplace transform techniques. A
summary of the most common solutions and their applications can be found in Larson et
al. (1987; 1997) and Komar (1983).

Bakker (1969) added to the one-line model theory by modeling beach movement
near a groin and including a second line to account for the beach slope. This two-line
modeling method was extended by Bakker et al. (1971) with a simplified representation
of diffraction in the lee of the groin. The addition of more lines is an innovation that
allows changes in beach slope to be modeled, but this means the strict assumption of

profile equilibrium must be relaxed. The cross-shore exchange of sediment between
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lines is usually formulated with a relaxation towards an equilibrium profile (Bakker et
al., 1971). Multiple line models may support unstable behavior under certain situations
(Reeve and Valsamidis, 2014).

Numerical one-line models can account for time-varying input data, highly
oblique wave angles, and complex boundary conditions. Commonly used numerical
coastline models include GENESIS (Hanson and Kraus, 1989), GenCade (Frey et al.,
2012), UNIBEST (Deltares, 2011), LITPACK (DHI, 2009), and CEM (Ashton et al.,
2001). Some of these models account for longshore variations in wave conditions, wave
refraction and diffraction, and the effects of man-made structures such as groins and
seawalls. One-line models tend to produce more accurate results after calibration of
inherent empirical coefficients with available field data. Usually, these field data
originate from traditional beach nourishments of limited spatial extent. The performance
of one-line models regarding MN evolution has not been tested extensively due to
scarcity of measured data.

An analytical treatment of large-angle waves and spatial variation in wave
conditions is not available. As such, computational methods are required. Furthermore,
computational methods permit additional features such as nearshore wave transformation

and interaction with structures to be included.

4.2.2. Coastline Evolution Model (CEM) Background
Based on one-line model theory, CEM has been used to explore large spatial

(hundreds of km) and temporal (millennia) scales of coastline change (e.g., Ells and
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Murray, 2012; Slott et al., 2010; Valvo et al., 2006; Whitley, 2018; Williams et al.,
2013). It was originally utilized to show that highly oblique incident waves can give rise
to anti-diffusional coastline instabilities (Falqués, 2003; Falqués and Calvete, 2005). By
default, CEM represents an offshore wave climate stochastically rather than using a time
series, allowing small potential changes in wave climate to be readily examined (e.g.,
Moore et al., 2013). CEM also has the advantage that it is a self-contained open-source
model capable of running without overhead unlike other models that require additional
software. For example, GenCade project work often requires the Surface-Water
Modeling System (Aquaveo, 2017).

The version of CEM used in this chapter (coded in C as opposed to the
MATLAB version used in Chapter 5) is a relatively efficient model taking only a couple
of minutes per model year to simulate a 10 km-long coastline. The code for the C
version can be found in Appendix A. CEM is designed as a theoretical model to explore
overall patterns in large-scale coastline morphology, not to explore specific study sites.
However, a major goal of this study is to test CEM capabilities when its domain and
primary forcing operate at a higher resolution than usual to better capture smaller scale

features.

4.2.3. CEM Framework
CEM is described in detail in Ashton and Murray (2006a; 2006b), though the
major points are covered here. Itis a cellular model that accounts for shoreline position

(y) via the amount of sediment in each beach cell. The cellular domain numerically
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represents a plan view of the local geography, each number signifying the composition
of surface sediment with 1 indicating a subaerial cell, 0 indicating a subaqueous cell, and
fractional quantities indicating a coastal cell. Unlike many other one-line models, (3.1)
is not computed directly. Instead, shoreline adjustment is calculated via influxes (Qin)
and outfluxes (Qout) of sediment in each beach cell. Positive sediment flux gradients
give rise to accretion (coastline extension) and vice versa. The fractional value of

sediment in each shoreline cell (F) is adjusted each time step via

_ (Qin_Qout)
AF = ot (4.)

where W is the cell width (m). Here, a much higher spatial resolution is used (W = 25 m)
than traditionally (W = 100 m or 1 km) to better capture smaller-scale features.

Sediment fluxes are calculated via (3.2) for all beach cells every time step. By
default, CEM calculates Qs using fixed values for K (0.69), p (1020 kg/m?3), ps (2650
kg/m®), y (0.5), and n (0.4). Here, CEM is modified so that these values are user-
specified based on study site characteristics (see model parameterization). CEM is only
capable of using periodic boundary conditions (BCs) where sediment exiting one
boundary enters the other. Domains are thus set to have boundaries over 5 km away
from the nourishment bases to mitigate effects from BCs. No model coastline change
occurs near the boundaries in the 3.5-year simulations of the SM.

As breaking wave data in the nearshore is scarce and quite complex, CEM is
driven by offshore wave information numerically transformed into breaking wave height
(Hb) and angle (¢p). The wave transformation process (details in Ashton and Murray,

2006a and Whitley, 2014) handles wave refraction and shoaling over local bathymetry
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assuming that bathymetric contours are straight and parallel to the coastline. Wave
angle changes due to refraction are calculated using Snell’s Law, re-written so that the

wave angle relative to a fixed geographic axis (¢) is

o= arcsin(cgsin ¢Oj , (4.2)

0

where C is the wave celerity, Co is the incident (offshore) wave celerity, and ¢ is the

incident (offshore) wave angle. Wave height changes due to shoaling are calculated by

How, |Co |C0S¢ (4.3)
2C, \ cos¢

where the term C, is the group velocity and Ho is the incident (offshore) wave height.

Equations (4.2) and (4.3) are solved iteratively over a user-specified refraction
step size (traditionally 0.2 m), beginning with a pre-defined starting water depth (see
below), until

H > yph, (4.4)

where H is the wave height, h is the water depth, and s is the coefficient for breaking
threshold at which time the wave will break. The wave angle at breaking (¢ = ¢) and
the wave height at breaking (H = Hp) are then imported into the CERC equation (3.2) to
calculate Qs.

Since Qs is dependent upon breaking wave information, model-produced
coastline behavior is extremely sensitive to the offshore wave climate input. While
many coastal models are forced with a time series of wave information, CEM uses a

probability distribution function (PDF) to determine offshore wave characteristics for
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any given time step. PDF theory is described in detail in Ashton and Murray (2006b).
The default PDF of CEM determines the fraction of offshore waves approaching the
coast from a high incident angle (¢o > 45° relative to the cross-shore [x-] axis) and the
fraction of waves approaching from the left of the regional shoreline trend throughout
the simulation. Traditionally, the PDF is controlled by two variables that control the
fraction of high-angle incident waves (U, or highness) and the fraction of left-
approaching waves (A, or asymmetry).

According to Ashton et al. (2001) and Ashton and Murray (2006a), high-angle
incident waves give rise to an anti-diffusional instability in the model shoreline causing
features such as sand waves, flying spits, and capes to accrete and increase in cross-
shore extension. Consequently, low-angle incident waves cause such features to diffuse
leading to a straighter coastline. Therefore, an offshore wave climate rich in low-angle
waves (U < 0.5) should cause protruding features in the shoreline to diffuse while once
rich in high-angle waves should cause the anti-diffusion of features in the model.
Furthermore, migration of shoreline features alongshore is also dependent upon the
symmetry of the wave climate. Waves approaching from the left side of the domain
produce LST to the right of the domain resulting in feature migration to the right (and
vice versa). Therefore, asymmetric wave climates (A= 0.5) yield the migration of any
protruding shoreline features with the overall direction of migration dependent on
whether the wave climate is richer with left-approaching waves (A > 0.5) or right-

approaching waves (A < 0.5). On the other hand, symmetric wave climates (A = 0.5)
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produce a nearly even number of left- versus right-approaching waves, canceling out any
migratory behavior in the shoreline features.

PDFs for CEM can be used to simulate the offshore wave climate of a physical
system as done by Ashton and Murray (2006a), Ashton and Murray (2006b), Ashton et
al. (2001), Ells and Murray (2012), Moore et al. (2013), Slott et al. (2006), and Williams
et al. (2013). PDFs are based on the offshore wave energy (E) contribution to sediment
flux (and therefore shoreline diffusivity) and the angle of incidence relative to the
shoreline (¢ - 6). Assuming that waves are refracted and shoaled over straight and
shore-parallel bathymetric contours, the CERC equation (3.2) can be transformed into a

deep-water formula

12 1 6
Qs = kzHos T5sin(gy — 6) coss(gy — 6), (4.5)
where the proportionality constant ko = 0.32 m¥ s%5, If the longshore diffusivity ¢ in

the Pelnard-Considere (1956) equation (3.7) is given by

___ 1 9¢
&= T (Dc+Dp) 30" (4.6)
inserting (4.5) into (4.6) yields
€= DCI:.ZDB Hg T {COSg(CI-')o - 6) [(g) sin?(¢py — 0) — cos®(¢py — 9)]}, (4.7)

Since k,, D¢, and Dg do not vary as wave characteristics change, wave contributions to
in (4.7) can be split into two parts: one dependent on wave angle (¢, relative to 8) and

one representing the contribution Ho and T have on potential LST. The latter is given by

12 1

E=H,sT5, (4.8)
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where E is conceptually similar to offshore “wave energy” or offshore wave height
contribution to Q4 based on (4.5).

In order to create a PDF that represents the natural wave climate off the coast of
a specific study site, wave energy approaching the shore from each direction offshore of
the site is normalized according to equation (3.6) such that the values of T and H, are
fixed to average values representative of the local wave climate for the duration of the
simulation (Slott et al., 2006) and wave energy approaching the coast is distributed by
probabilities for angles of incidence. By default, CEM uses a 4-bin PDF with each bin
having a 45-degree width spanning a spectrum of 180 degrees. Offshore wave energy
generated from tropical cyclones and other high-energy events are captured in the
offshore wave data and are thus incorporated into the PDF, though nearshore waves
generated during these events are not.

For a wave data set including sampled significant Ho, average T, and ¢, E is
calculated for every ¢, data point in the time series according to (4.8). Each data point
is then binned into a respective ¢,-range bin, and E is summed for every wave bin. The
cumulative E (Etwt) is then found for the entire data set, representing the total amount of
deepwater “wave energy” over the data’s time period. The summed E in every wave bin
is then divided by Ett to yield a normalized E (Enor) for every wave bin. Enor effectively
represents the fraction of cumulative offshore wave energy approaching the shore from
each direction. If Ho and T are held to fixed (effective average) values in a simulation,
Enor can also be used to represent the probability of a wave originating from a ¢,-range.
This is used in the models” wave PDFs to determine the probability of ¢, each time step.
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Traditionally, CEM has been forced with a 4-bin PDF with each bin having a ¢.-
range of 45° covering all possible 180° of offshore incident wave direction. To simulate
actual directional wave spectra more accurately, the PDF bin sizes are reduced to 15°
creating 12-bin PDF’s that cover the same ¢, range. This allows for a higher resolution
of the incident wave direction, which may be significant considering model sensitivity to
offshore wave forcing.

This study incorporates several new approaches to CEM (C version; see
Appendix A). First, CEM is being used at a much higher resolution than what has
traditionally been done. Previous studies have used CEM at 100 m (Ashton and Murray,
2006a; Ashton and Murray, 2006b; Ashton et al., 2001; Whitley, 2014) or 1 km (Slott et
al., 2010; Williams et al., 2013) cellular resolution. Here, a 25 m cell width model is
presented to better capture smaller scale features (such as a mega-nourishment) that
larger cell sizes cannot. This particular cell width is chosen as a compromise between a
spatial higher resolution and computational time (which greatly increases with spatial
resolution).

To verify that running at higher resolution does not affect overall model results,
two different CEM simulations are run using an initial profile similar to the Sand Engine
(dated March 1, 2013) with the exact same topographic parameters and forcing
conditions. One has a 25-m cell size and the other has a 100-m cell size. Both models
are run for ~3.5 years of simulation time. Both simulations yielded coastlines nearly
indistinguishable in shape. The feature shape and position (due to rightward migration)

between the two coastlines are almost identical. There is a 3% difference in the aspect
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ratios of the feature with the 100-m resolution model producing a feature extending 614
m offshore and the 25-m resolution model producing a feature extending 634 m. It is

concluded that changing the model resolution does not significantly affect model results.

4.2.4. GENSIS + CasCade (GenCade)

GenCade, described in detail in Frey et al. (2012), is a one-line numerical model
developed by the U.S. Army Corps of Engineers (USACE) that combines the regional-
scale calculations of the Cascade model (Larson et al., 2003) with the project-scale
calculations of GENESIS. GenCade is thus capable of simulating coastal change on a
variety of temporal and spatial scales. GenCade is designed specifically for planning
and engineering design studies, and its interface is incorporated into the Surface-water

Modeling System (SMS). GenCade directly calculates shoreline change via (4.1) except
that % can include a source/sink term (though none are used here). Therefore, the

aforementioned assumptions of numerical one-line models apply to GenCade.

LST rates are calculated via a modified version of the CERC equation (4.2),

Qs = Hy?Cyp (al sin 2a;, — a, cos a;, aaHb), (4.9)

ox
where Cg , is the breaking wave group celerity. The non-dimensional parameters a,and

a, are given by

K
M = T6(os-p)1-n)1.4165/2 (4.10)

— K,
%2 = §(ps-p)(1-m) tan f1.4165/ (4.11)
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where f is the average bottom slope of the shoreline out to D¢ and K3 is a proportionality
coefficient. Unlike CEM, GenCade uses fixed values for n (0.4), p (2650 kg/m®), and p
(1000 kg/m®) with p being the only value differing between CEM and GenCade (see
Section 4.2.5 for model parameterization). The second term in (4.9) accounts for LST
produced by diffraction of coastal structures such as breakwaters. As such, variations in
K2 only affect coastline evolution in areas influenced by wave diffraction near structures.
As no structures are used here and a direct comparison with CEM is desired, K> is
assigned a value of zero.

GenCade is driven by offshore wave time series. Wave data includes significant
Ho, average T, and ¢, (relative to shore normal) over a sampling interval. Wave data
can be physical, hindcast, or numerically modeled. In order to perform a direct
comparison with CEM, modeled wave data from a PDF are used here for GenCade so
that both models effectively have the same wave climate. Ho and T are set to fixed
values for every data point in the time series (as in CEM) while ¢ is determined by the
same PDF as its CEM counterpart. This not only allows for a fair comparison of
GenCade with CEM, but it also allows for temporal scales up to centuries of MN
evolution (with future prediction if desired).

While GenCade can be coupled to an external wave model, it also has an internal
wave model capable of transforming deep water wave information to breaking. This
accounts for shoaling and refraction over bathymetric contours and has several options
available. An offshore contour can be specified by the user, though none are used here
as CEM does not have that capability. If an offshore contour is not used, GenCade
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assumes that bathymetric contours are straight and parallel with the coastline, as done in
CEM. As this can create numerical instabilities in regions where the coastline changes
abruptly (such as sawtooth formations near groins), GenCade has an algorithm that can
smooth the offshore contours. As CEM’s wave algorithms assume that offshore
contours are perfectly straight and parallel with the coastline, the GenCade smoothing
algorithm is not used here. With this setup, both models end up using nearly identical
wave transformation techniques. The only major difference is that CEM allows for a
user-specified breaker index (y») while GenCade uses a fixed value of y, = 0.78.

GenCade uses a right-handed coordinate system where the coastline is
represented by a vector containing y values for every alongshore position at a specified
resolution. Though GenCade is capable of using variable grid spacing, a fixed 25-m-
resolution is used here. Multiple BC options are available, though fixed (or “pinned”)
BCs are used here where the cross-shore shoreline position at the boundaries do not
change. As with CEM, boundaries are a large distance (see above) from the MN bases
to mitigate BC effects.

While CEM takes 1.6 min per model year to run a 10-km-long coastline using a
0.2-day time step, GenCade takes roughly 10 seconds per model year with a 1-hour time
step to run the same coastline on the same machine. To compare the results of CEM
with GenCade, the same parameters (when possible), forcing conditions, and initial

conditions are used for both models (see Table 4.1 in Section 4.2.5).

4.2.5. Model Parameterization
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In order to evaluate LST equations (4.2) and (4.9), values from Table 4.1 are
used. While all of the below-mentioned values can be user-specified in the version of
CEM used here, p, ps, n, and y,, cannot be user-specified in GenCade. To allow for a
fair comparison between CEM and GenCade, the same variables are used in both
models. p = 1000 kg/m? is used for the approximate density of surface water (GenCade
default). ps = 2,650 kg/m? to represent the density of quartz-type sand. A porosity value
of n = 0.4 is applied as Rosati et al. (2002) recommend this value for most situations.
The default value of breaker index (y;) used in GenCade (y,= 0.78) is also applied to
CEM. Topographic parameters including Dc, Dg, the shoreface slope (Ssf), and the slope
of the shelf (Ss) are determined from topographic data described in the introduction. Of
these, only Dc and Dg can be user-specified in GenCade as it assumes that Ssr and Ss
follow an equilibrium profile.

As an appropriate value for K has been subject to debate (Smith et al., 2009),
several approaches are evaluated in the determination of K, as described in Mil-Homens
et al. (2013). Historically, Komar and Inman (1970) use K = 0.77 while Rosati et al.
(2002) recommend K = 0.96 when using root mean square (RMS) wave heights. Del
Valle et al. (1993) also present K as a function of median grain size (Dso) in mm:

K = 1.4e(=25Ds0), (4.12)
which yields K= 0.69 for Dso = 281 microns. However, none of the above methods of K
determination are applied to a coastal situation where an extremely large perturbation in
the coastline is suddenly constructed (such as a MN). As such, enlarging K may help

account for shoreline adjustments that result from such a large shoreline instability.
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Following a sensitivity analysis, it is found that enlarged K values ranging from 0.96 to
2.00 produce favorable results. Model results using this range of K values are therefore
presented here and compared with the model results produced using the commonly used
K values (i.e., 0.69, 0.77, and 0.92). All of the above methods are implemented into
CEM and GenCade SM simulations to ascertain which models produce coastline
morphology that closely matches that observed.

Table 4.1. Table of parameters used in model simulations for the Sand Motor (SM).

The same parameters are used for both CEM and GenCade. Note that GenCade
does not use the parameters S or S..

Parameter Value Description
0.69 Empirical coefficient (del Valle et al., 1993)
0.77 Empirical coefficient (Komar and Inman, 1970)
K 0.92 Empirical coefficient (Rosati et al., 2002)

0.96 to 1.80 Empirical coefficient (Range of arbitrary high values)
ps (kg/m?3) 2650 Sediment density

p (kg/m3) 1000 Seawater density
n 0.4 Sediment porosity
7 0.78 Breaker index
Dc (m) 8.22 Depth of closure
Dg (M) 1.90 Berm elevation
Sst 0.0177 Slope of the shoreface
Ss 0.0052 Slope of the shelf
T(s) 5.0 Average offshore wave period
Ho,rms (M) 0.85 Average offshore root mean square wave height
Zmax (M) 15.0 Water depth at wave station
Dso (um) 281 Median sediment grain size
At (hours) 1.0 Time step size
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Model time step sizes are chosen based on model stability. It is found that a time
step of 1 hour works well with all GenCade simulations. This time step is also used for
CEM so that a fair comparison of the models’ performance can be made.

The PDF used to simulate the wave climate at the SM is created from Meetpost
Noordwijk (MPN) wave station data (1985 to 1991) provided by Wijnberg (1995).
MPN is located ~5 km offshore from the Holland coast where the water depth (zmax) is
18 m (Wijnberg, 2002). MPN is chosen over other wave stations in the area because its
proximity to the coast minimizes the uncertainty involved in wave refraction
assumptions. The station’s annual mean wave period is 5.0 s, which is used for T in
(4.4), while the station’s annual mean significant Ho (Hos) is 1.2 m. It should be noted
that while station wave data contains Ho,s, RMS wave height (Ho,ms) is required for the
K values used. H, is converted into Hy ;s Via

V2
HO,rms = 7H0,sa (4-13)

such that the annual mean Hg -, = 0.85 m, which is used for Hoin (4.12). The SM PDF
(Figure 3.1) indicates a 74% probability of ¢,< 0° and a 42% probability of a high-angle
(> |45°| relative to x-normal) incident wave. The wave climate at the SM is highly
oblique due to energetic winter storms that mainly approach from the south-west
(highest probability, -75 to -60 degrees relative to shore normal) and the north (lower

probability, ~30 to 45 degrees relative to shore normal) (de Schipper et al., 2016).
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Figure 4.1. Probability distribution function (PDF) representing the offshore wave
climate for the Sand Motor (SM). Wave data is from the Meetpost Noordwijk
(MPN) wave station. The ordinate indicates the normalized fractional wave energy
contribution to shoreline diffusivity (E), and the abscissa indicates the offshore
directional bin (¢po-range) from which the wave energy originates. The top right
insert shows the orientation of ¢y with respect to the shore normal.

A shoreline similar to the one surveyed at the SM on March 1, 2013 is used for
the initial model coastline in SM simulations. The small tidal channel on the downdrift
side of the feature is neglected, thus offering a single continuous convex coastline
(desirable to avoid unnecessary model complexities). Model results after 3.5 years of
simulation are compared with the measured coastline dated 7 September 2016 (~3.5
years after the initial coastline date). For the domain extremities where survey data is

not available (beyond x = -2.150 km and +2.300 km), Google Earth imagery is used to

estimate the coastline out to the point where the coastline is nearly straight for both the
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measured initial and final coastlines. It is assumed that a perfectly straight coastline

exists beyond to the boundaries.

4.3. Results

Before CEM and GenCade simulations are presented for the Sand Motor using
several different K values each. CEM and GenCade model results for simulations of the
SM both show diffusion of the nourishment feature (Figure 4.2). Coastline evolution
during the 3.5 years simulated is confined between x = £4.000 km with no change in
coastline beyond. The amount of tip retreat (Aymax), OF change in maximum cross-shore
extent, is used as a measure of diffusion rate. An increase in K value leads to a greater
Aymax @and thus a greater diffusion rate (Table 4.2). A sensitivity analysis on possible K
values was conducted and results based on overall shoreline mean RMSD and cross-
shore tip retreat Aymax are shown in Figure 4.3. Of the commonly used K values (0.69,
0.77, and 0.92), 0.92 produces the closest Aymax to that observed in both models (13 m
away for CEM and 74 m away for GenCade). However, increasing K beyond 0.92 can
produce tip retreats within 2 m of that observed. Using K = 1.10 in CEM produces a
Aymax less than 5 m away from that observed, and using K = 2.00 in GenCade produces a
Aymax l€ss than 2 m away from that observed (Figure 4.2). It should be noted that using K
> 1.80 causes numerical instability in CEM due to the larger amounts of Qs. This can be
alleviated using smaller time steps and a larger spatial resolution but was not deemed

necessary for this study.
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The root mean square difference (RMSD) between measured and modeled cross-
shore coastline position is calculated for every alongshore position in the surveyed
domain (x = -2.150 km to +2.300 km). The mean RMSD is used to show how each
model reproduces the measured coastline in this region. Overall, GenCade models
produced lower mean RMSDs than CEM, regardless of K (Figure 4.3). Of the
commonly used K values, 0.92 produces the lowest mean RMSD in both models. As
with Aymax, increasing K above the commonly used values can produce a lower mean
RMSD in both models. Minimum mean RMSDs can be produced using K = 1.10 with
CEM and K = 1.60 with GenCade (Figure 4.3).

An analysis of the survey initial and final coastlines indicates a downdrift shift in
the alongshore position of the feature tip (4x:) on the order of 400 m. While tip
migration analyses of the modeled coastlines are limited to the 25 m resolution
alongshore, CEM simulations show positive (downdrift) 4x, values of similar order to
that observed. CEM 4xq, values range from 325 to 425 m, typically with increasing K
values producing greater migration magnitudes. Of all the K values simulated in CEM,
K =1.20, 1.30, and 1.40 produce the closest 4Axq (400 m downdrift) to that observed with
K = 0.92 producing a 4x, within 25 m of that observed. GenCade simulations using K <
1.30 show very little migration, typically on the order of 0 to 25 m downdrift. Using K >
1.30 in GenCade produces an updrift (negative) Ax:, with Ax;, magnitude increasing with

K.
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Figure 4.2. Initial and final coastlines both measured and modeled for the Sand
Motor (SM) for 3.5 years of evolution. The initial coastline is the same for both
measured and modeled. (A) shows model results from CEM while (B) shows model
results from GenCade. Various K values from (2) are used in the models with the
most commonly used values (0.69, 0.77, and 0.92) and a representative higher value
(1.10) shown here. Note that cross-shore scale is stretched to aid in visualization of
modeled shoreline differences.
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Table 4.2. Metrics used in analysis of measured and modeled shorelines at the Sand
Motor.

Mean Flank Slopes

Mean
Model K RMSD (m)  Aymax (M)  Axip (m) Left (deg) Right (deg)
CEM 0.69 59.9 134 325 9.80 -17.9
CEM 0.77 58.5 143 350 9.62 -17.9
CEM 0.92 55.7 158 375 9.34 -17.2
CEM 1.10 52.6 176 375 9.09 -16.6
CEM 1.20 52.3 185 400 8.91 -16.4
CEM 1.30 52.8 193 400 8.79 -16.3
GenCade 0.69 63.1 76 25 135 -13.0
GenCade 0.77 60.7 84 25 12.9 -12.6
GenCade 0.92 56.6 98 25 12.1 -12.1
GenCade 1.10 52.5 112 0 10.6 -11.0
GenCade 1.60 47.6 147 -50 10.2 10.2
GenCade 2.00 49.0 170 -75 9.9 -9.9
Survey 171 400 14.6 -16.0
75
=—CEM RMSD
70 CEM Ay, _ % Diff
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Figure 4.3. Sensitivity analysis showing the influence of K on mean RMSD between
modeled and measured shoreline position after 3.5 years (left axis) and the percent
difference between modeled and measured tip retreat (4ymax percent difference;
right axis). The minimization of the shown metrics indicates model performance
closest to that observed at the Sand Motor for that metric.
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Figure 4.4. Measured and simulated shoreline positions (initial to final after 3.5
years) for CEM and GenCade. The model results with the best-performing metrics
are shown. Note that cross-shore scale is stretched to aid in visualization of
modeled shoreline differences.

The slope of the peninsula flanks, measured in degrees relative to the x-axis, is
used as an indicator of feature symmetry. A mean updrift flank angle for each coastline
is averaged alongshore from the minimum cross-shore extent (updrift of the peninsula)
to the tip and vice versa for the downdrift flank. The initial coastline shows some
asymmetry having a mean updrift flank angle of 19.9° while the mean downdrift angle is
-23.7°. Survey results show that as diffusion occurs, the mean flank slope angles
decrease to 14.6° and -16.0° respectively, and the formation remains asymmetric with a
steeper downdrift flank slope. Similarly, both models show a decrease in mean flank

slopes on both sides as the feature diffuses. However, CEM retains formation

asymmetry in the final coastline with a consistently steeper downdrift flank slope in all

55



simulations. GenCade, on the other hand, diffuses the formation more or less
symmetrically with a 0.0- to 0.5-degree difference between mean updrift and downdrift

flank slopes (Figure 4.4).

4.4. Discussion

Of the commonly used K values presented in the literature, models using K =
0.92 produced morphology that most closely matched that observed. However, that K
determination is based on field data from a variety of nourishment projects of much
smaller scale than the SM (see Rosati et al., 2002 for details). MNs have different
coastal dynamics than traditional ones since a large intrusive feature is introduced into
the system, which can cause coastline instability. For the SM, it is shown here that
increasing K to 1.10 or higher significantly improved both models’ ability to reproduce
observed tip retreats and produce lower RMSD values. Therefore, using a higher-than-
usual K value may be a better fit when one-line models are used in applications with
such a large-scale coastline instability. However, as there is no single K value that
maximizes model performance across all metrics, an appropriate value for K in a one-
line model simulation of a MN should be a compromise between best values for
different metrics. The variability of optimal K value as a function of evolution time has
been investigated, but no clear trend based on the given dataset has been found. This
may partly be due to the fact that forcing conditions change for different time segments.

A notable distinction between CEM and GenCade behavior is that while

GenCade diffuses the SM near-symmetrically with little alongshore migration, CEM

56



shows an asymmetric feature with downdrift migration of its tip. Though not as drastic
as the model, downdrift migration of the tip and a gain in feature asymmetry is also
observed at the SM between March 2013 and September 2016. Longshore migration of
the feature tip is expected in the physical SM and in CEM considering the high
probability incident waves approaching from updrift (Ashton and Murray, 2006a; Lopez-
Ruiz et al., 2014). While symmetric diffusion with a wave climate rich in relatively low
incident wave angles (¢, < 45°) is expected for GenCade using its internal wave model,
CEM has a wave shadowing algorithm where large coastline formations (such as MNs)
effectively block incoming waves beyond a certain ¢, along a shadow zone (see Ashton
and Murray, 2006a for details). Wave shadowing negates wave energy (and thus LST)
in the shadowed region, and sediment transported into a shadow zone is not transported
out. In an asymmetric wave climate with predominantly downdrift propagating waves
(such as at the SM), wave shadows downdrift of a large formation become common in
the simulation. This has the effect of migrating large features towards the shadow zone
(quantified by Axgp) and can cause erosion just downdrift of the shadow from sediment
starvation. The effects of this erosion can be seen in all CEM final coastlines between x
=2 and 4 km (Figure 4.3), though such effects are not observed at the SM. Erosion here
is absent in GenCade simulations as they do not have wave shadowing. Wave
shadowing also has the effect of producing features with steeper downdrift flank slopes,
as is seen in the CEM SM simulations, while GenCade simulations produce near
symmetric features. Despite the advantages wave shadowing offers, it neglects wind

waves that may be generated nearshore, which are likely to occur at the SM during
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stormy seasons. This could further explain discrepancies between measured-CEM
modeled coastlines on the downdrift flank where shadow zones in CEM are common.

Of the measured-modeled differences, the region with highest difference is x =
0.5to 1.2 km for CEM. This is possibly the result of neglecting the lagoon feature
present on the downdrift flank of the physical SM. The entrance to the lagoon lies near y
= 1.24 km initially in March 2013. SM survey data from March 2013 to July 2016 show
that the lagoon loses roughly one third of its water surface area during this time,
indicating infilling of the lagoon. Neglecting this sediment sink could attribute to
CEM’s over-prediction of accretion in this region.

Despite their ability to reproduce observed morphology with reasonable
accuracy, CEM and GenCade do suffer from a number of limitations. Neither directly
accounts for cross-shore processes such as Aeolian transport, which has been shown to
transfer material at the SM from the low-lying beaches to the dunes (Hoonhout and de
Vries, 2017; Roest, 2017), and those transporting material offshore during storms. It is
possible that sediment lost offshore during these events recovers over long (5+ years)
time scales (Morton et al., 1994), but this limitation should not be discounted when
interpreting the results.

Both models in their forms here assume that waves refract over straight and
shore-parallel bathymetric contours and that these remain constant during shoreline
adjustment. Wijnberg (2002) reports alongshore variations in the bathymetric slope in
the SM vicinity along with subaqueous terraces that likely affect wave refraction. Given

the models’ sensitivity to wave forcing conditions, changes in breaking wave behavior
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due to refraction and shoaling can significantly affect coastline morphology. Taking
these limitations into account, shoreline extension estimations resulting from a modeled
MN project on long time scales are likely to be overestimated. Furthermore, due to the
stochastic nature of a PDF, neither model here captures temporally varying trends in ¢o
that are present in the SM’s seasonal bi-modal wave climate. While some discrepancies
between the modeled-measured results over a 3.5-year time period may be attributed to
this variability, it is assumed that these effects average out on long time scales. This
issue can be alleviated in GenCade through the use of a wave time series, though this
was not done here in order to perform a direct GenCade-CEM comparison.

Further research on this subject should incorporate the evaluation of additional
one-line models such as LITPACK and UNIBEST in the application of MN simulation.
Furthermore, CEM’s effectiveness in modeling MNs may be improved by including
additional physics such as offshore currents and cross-shore processes that may
contribute to the dynamics in MN evolution. The addition of sources/sinks and sea level
rise (e.g., Ratliff et al., 2018) could also improve CEM’s accuracy in examining specific
study sites. CEM computational time can be improved with a variable spatial resolution
as done in GenCade or with options that do not force a wave transformation for every
alongshore cell. CEM accuracy can likely be improved with a more robust wave
transformation technique such as SWAN (e.g., Limber et al., 2016) or STWAVE (i.e.,
Smith et al., 2001).

For future applications GenCade with MNs, the use of a robust wave model such

as CMS-Wave (Connell and Permenter, 2013) is recommended, which can potentially
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account for wave shadowing. The inclusion of an offshore contour would make long-
term simulations more accurate as GenCade tends to smooth coastlines toward a straight
line if an offshore contour is not specified (as seen in Figure 4.2). Using the built-in
source/sink features could also mitigate the effects of physical sediment sinks on
shoreline evolution. The inclusion of cross-shore transport processes into GenCade
simulations could also greatly improve its accuracy. GenCade is also capable of
including tidal currents and regional morphological trends, which could improve model
accuracy if data for those is available.

Theoretical studies in CEM are fairly straightforward to set up. However,
adapting CEM for a specific study site can be a challenge as there is no graphical user
interface and little documentation exists. Ideally, it is recommended that both models be
used for one-line modeling studies of MNs. While neither model can perfectly show
how a MN will evolve in a physical setting, analyzing results from both should be able
to show users the general morphologic trends. GenCade is likely to produce a closer
picture of the absolute coastline position across the domain while CEM seems to better
capture tip migration and retreat dynamics. Future work with these models on MNs

should include a more detailed study of MNs in other regions of the world.

4.5. Conclusions
Mega-nourishment is an innovative solution addressing the problem of chronic
coastal erosion. Through mega-nourishment, a large volume of sediment placed in a

single location is redistributed through natural processes to feed nearby beaches. The
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evolution over 3.5 years of mega-nourishment coastlines at the Dutch Sand Motor is
explored here using GenCade and a modified version of the Coastline Evolution Model
(CEM). Both models can show coastline diffusion at rates similar to that observed based
on the rate of shoreline retreat at the nourishment tip. The value of the empirical
constant K in the sediment transport (CERC) equation affects this rate with higher K
values yielding faster diffusion. Of the K values commonly used in modeling traditional
nourishments, K = 0.92 (suggested by USACE) gives a low RMS difference between
modeled and measured coastlines across the entire domain. In modeling an observed
mega-nourishment, however, increasing K to 1.20 in CEM and 1.60 in GenCade can
minimize mean RMS differences along the entire domain. Using higher K values than
commonly used also produces feature tip retreat within 4 m of that observed using K =
1.10 and K = 2.00 for CEM and GenCade, respectively. Given the size of a mega-
nourishment relative to traditional nourishments, it is likely that a higher-than-usual K
value may be a better fit when simulating mega-nourishments in a one-line model. In
evaluating model performance, GenCade is able to produce coastlines with an average
RMS difference between modeled and measured coastlines on the order of 50 m, thus
making it a useful tool for predicting absolute coastline position. Thus, processes such
as wave-shadowing in one-line models may not be necessary when predicting absolute
coastline position is the goal. However, CEM is able to capture longshore migration of
the feature tip on a similar scale to that observed due to its wave shadowing algorithm.
CEM also produces an asymmetric feature. While surveys of the SM coastline show

some asymmetry, it is not as pronounced as that modeled with CEM. In the form
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presented, GenCade tends to diffuse the formation symmetrically without much
migration as a simple wave transformation technique (without wave shadowing) is used.
As such, wave-shadowing allows a feature’s migration to be captured and shows that a

feature’s symmetry may change.
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5. NUMERICAL MODELING OF MEGA-NOURISHMENT SHORELINE

INTERACTIONS WITH A GROIN FIELD?

5.1. Introduction

Shore erosion is a significant threat given that 24% of the world’s sandy coasts
are actively eroding (Luijendijk et al., 2018) and approximately 40% of the world
population lives on or near the coast (Mentaschi et al., 2018). Human investment in
coastal regions continues to grow as population centers develop with the continual threat
of sea level rise and coastline retreat (Gornitz et al., 1994). As a result, shore protection
schemes to reduce the risk of erosion and flooding have become common in developed
coastal areas. These can take the form of hard defenses such as groins, jetties, seawalls,
etc. While hard defenses are able to stabilize beaches and inlets and protect against
storm surge, they are expensive and permanently alter the natural beach (e.g., Brown and
McLachlan, 2002; Griggs, et al., 1994; Williams et al., 2018). Conversely, soft defense
schemes (e.g., beach nourishments) make use of added sand placement, resulting in a
natural beach appearance. However, costly repetitive nourishment is required as
nourished sediment is often transported out of the area over time (e.g., Davison et al.,
1992; Peterson and Bishop, 2005).

Given the necessity of protecting coastal infrastructure, innovation is needed to

maintain a modern and efficient defense. One such innovative solution is the use of

2 Note that this chapter has been submitted for publication in the peer-reviewed journal Coastal
Engineering and is under review at the time of writing.
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mega-nourishment (MN), a large-scale soft defense where a sizable nourishment volume
(millions of m?) is deposited at a single site rather than spreading out construction
activity and beach fill material over many smaller projects along the coast. The MN
sediment is redistributed via natural processes to adjacent beaches, effectively acting as a
feeder beach to nourish a long stretch of coast. This could potentially be more cost
effective than repetitive traditional nourishments. Given that MNs are relatively new
technology, a limited amount of information is available on their evolution.
Construction was completed in 2011 on a pilot MN (17 million m® sediment volume)
called the Delftland Sand Engine (Zandmotor in Dutch), which was built to examine the
feasibility of MNs feeding large stretches of coastline (de Schipper et al., 2016). To
date, this is the only physical MN constructed at such a large scale.

However, many systems that could most benefit from the shoreline advance and
sediment feeding ability provided by MN construction (actively eroding coasts with
highly developed infrastructure) are reinforced by groin fields (e.g., Galveston Island,
Texas; Miami Beach, Florida). Groins are one of the oldest and most popular hard
coastal engineering schemes. As described in Basco (2002), these are structures built
perpendicular to the coastline to control longshore sediment transport (LST) through its
inhibition. Groins are typically built on continuous beaches with the intent of anchoring
the beach or extending the lifetime of a beach fill. The goal of groin placement on a
continuous beach is to maintain a minimum dry beach width, which can reduce storm
damage and minimize local coastline erosion in the vicinity of the groin. Typically, groin

fields (GFs) consisting of multiple groins are used to anchor a stretch of beach (Basco
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and Pope, 2004). Coastline morphology inside and near GFs is driven by a number of
forcings, primarily wave induced LST under normal meteorological conditions
(Kamphuis, 2010). Since groins inhibit LST, this often results in a sawtooth-shaped
coastline when there is a single dominant direction of littoral drift as sediment
accumulates updrift of groins. However, this also results in sediment starvation (coupled
with erosion) downdrift of groins as the replenishment of sediment transported downdrift
is inhibited by the groins. According to Kamphius (2010), littoral transport in both
directions can result in sediment starvation on both sides of the groins due to LST
inhibition. Cross-shore processes also contribute to GF shoreline morphology as the
presence of groins can induce rip currents that transport material offshore (Basco and
Pope, 2004). Furthermore, high-energy events can produce shore-normal wave action
within groin compartments that can transport material off the beach landward and/or
seaward, resulting in additional coastline retreat (Harter and Figlus, 2017).

The coupling of a MN and a GF is an interesting combination as MNs and GFs
seemingly have opposite goals and effects on shore evolution. Groins anchor beaches by
inhibiting LST while MNs feed beaches via natural LST. As there is no GF in the
vicinity of the only MN yet constructed, there is no physical data on how these two
features would interact. Numerical modeling efforts provide an opportunity to further
investigate the coastline interactions between a MN and a GF. While no numerical
modeling studies have been published that investigate how a coupled MN-GF system
may evolve, much modeling has been performed on the Sand Engine, specifically using

three-dimensional (3D) models (e.g., Luijendijk et al., 2017) such as Delft3D (Lesser et
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al., 2004). While 3D models are capable of providing detailed insights to complex
processes, they do not necessarily provide more accurate results on coastline evolution
than less complex processed-based models that operate with reduced resources such as
one-line models. One-line models are coastline models that are used to predict the cross-
shore movement of a single contour, in this case, the shoreline. This is done without
rendering all of the complex physics of the system (Zacharioudaki and Reeve, 2008).
One-line models are often the preferred method of evaluating coastline change in
engineering applications as they are remarkably robust despite not having large data or
computational requirements (Thomas and Frey, 2013). Some commonly used one-line
models include the Generalized Model of Simulating Shoreline Change (GENESIS;
Hanson and Kraus, 1989), Uniform Beach Sediment Transport (UNIBEST; Deltares,
2011), Littoral Processes and Coastline Kinetics (LITPACK; DHI, 2009), GENESIS +
Cascade (GenCade; Frey et al., 2012), and the Coastline Evolution Model (CEM;
Ashton et al., 2001). One-line models have been applied directly to the Sand Engine
(e.g., Tonnon et al., 2018) as well as to theoretical studies involving MNs
(e.g.,Valsamidis et al., 2017; Valsamidis et al., 2018). Specifically, CEM, designed to
simulate shoreline evolution on large spatial and temporal scales, has been used to
simulate MNs (Stevens et al., 2013; Brown et al., 2016). GenCade, the current U.S.
Army Corps of Engineers (USACE) standard, has also been applied to the study of MNs
(Whitley et al., 2021). CEM and GenCade are applied here to assess the implications of
combining a MN and a GF on a coastal system. To make this assessment, hypothetical

numerical simulations are explored with a GF and a MN on an otherwise perfectly
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straight coastline. A groin field with seven groins is used in these simulations with
cross-shore groin lengths of 100 m and longshore groin spacing of 400 m. The groin
lengths and spacing are similar to what is found at Galveston Island (on average), though
the number of groins is less (7 compared to 15 at Galveston). The results of these
hypothetical simulations may therefore present a rough idea on how a MN may evolve
on Galveston Island given similar forcing conditions. This furthermore gives a MN
beach area to GF area (longshore extent times groin length) ratio of about 8:1. As both
models are driven by offshore wave climates, the effects of wave climate conditions are
also assessed on a coupled MN-GF system. Lastly, as an erosional hotspot is often
present downdrift of a GF, the conditions under which this erosion can be mitigated
through strategic MN placement are evaluated. Note that even though Galveston Island
serves as a baseline testbed, the goal is not to model a physical system specifically but
rather to explore hypothetical MN-GF systems and examine how they theoretically

should evolve.

5.2. Methods
5.2.1. The Coastline Evolution Model (CEM)

CEM is described in detail in Ashton and Murray (2006a; 2006b) and Section
4.2.3 of this dissertation. For this study, CEM is updated to run in MATLAB and novel
groin simulating algorithms are added (see Section 4.2.1.1 below). The MATLAB
version runs slower than the original C version but is still relatively efficient taking

about 25 minutes per model year to simulate a 25 km-long coastline. The model code
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for the MATLAB version of CEM can be found in Appendix B. CEM was originally
designed as a large-scale theoretical model, not intended for specific case-studies
(Ashton and Murray, 2006a). To better explore MN evolution, Whitley et al. (2021)
adjusted CEM so that K, p, ps, yb, and n in (3.2); the breaker index y,; and the depth at
which to begin wave refraction can be user-specified. Those adjustments are used here.

Given the complexity and scarcity of nearshore wave data, CEM is driven by
deep water wave information. This information is numerically transformed into
breaking wave height (Hp) and angle (¢b) accounting for refraction and shoaling
(described in detail in Ashton and Murray, 2006a; Whitley, 2014; and Section 4.2.3).
The transformation assumes that local bathymetric contours are straight and parallel with
the coastline. Note that the construction of a MN may disturb these contours in the near
term. However, as the MN diffuses and the bathymetry evolves to a natural equilibrium
profile, the validity of this assumption should be strengthened.

CEM offshore wave information is determined by a probability distribution
function (PDF). See Ashton and Murray (2006b) or Section 4.2.3 for details on PDF
theory. For artificial wave climates used in theoretical and hypothetical CEM
simulations, PDFs are controlled by two fractional variables: wave climate asymmetry
(A) and highness (U) (Figure 5.1 insert). The parameter A controls the probability of
negative incident wave angles relative to shore normal (e.g., A = 0.30 indicates 30% of
offshore waves are negative), and U controls the probability of high-angle (|¢,| > 45°)
waves relative to shore normal (e.g., U = 0.4 indicates that 40% of the waves are high-

angle). It should be noted that U also controls the diffusivity of protruding coastline
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features such as a MN (diffusion is diagramed in Figure 5.1) as high-angle waves lead to
anti-diffusion of features (Falqués, 2003; Falqués and Calvete, 2005). Simulations of
MNs by CEM and GenCade performed in this study confirmed this and showed that
PDFs with U > 0.4 lead to anti-diffusion of the MN and, in some cases, model
instability. As MNs need to diffuse to be effective, only diffusive wave climates are

presented here, and thus, only values of U < 0.4 are used.
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Figure 5.1. Schematic of hypothetical coastline evolution (t, and t, + At,
respectively) including a MN and adjacent GF. The wave climate probability
distribution function (PDF, top left insert) shows the fractional probability of
occurrence (pr) of offshore wave angle (g). Hollow gray arrows indicate shoreline
change of note.

5.2.1.1. CEM Groin Implementation
As CEM is to be used to explore MN coastline interactions with groin fields,

groin simulation algorithms are added to CEM. Groin longshore location and cross-
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shore length can be user-specified with groins occupying the right boundary of the
specified cell. The presence of a groin in the model inhibits LST, though a fractional
amount of sediment can be transported across via bypassing and groin permeability,
handled in the same manner as in GENESIS (Hanson and Kraus, 1989) and GenCade
(Frey et al., 2012). Groin permeability (P), a quantification of the sum of through-
passing, over-passing, and shore-passing (Basco and Pope, 2004), is a user-specified
fractional value. The fractional amount of bypassed material (B) is dependent on the

water depth at the groin tip (D) and the depth of longshore transport (D, 7):

B=1-2¢ (5.1)

Dir’

If D, < Dg, B=0. D¢ is calculated via an equilibrium profile and D, is calculated via

A
DLT == ]/_‘:l: (52)

where Ay, is the conversion factor 1.27 used when calculating depth of longshore
transport for bypassing (Hanson and Kraus, 1989). Thus, the total fractional amount of

sediment passing over, around, or through a groin (F) is given by

F=P(1-B)+B. (5.3)
A combined formulation for wave refraction and diffraction near groins is also
simulated using a method described in Kamphuis (2010). Simulated groins cast a wave
shadow region determined geometrically by the wave angle at the groin tip and the
length of the groin. Breaking wave height due to refraction and diffraction (Hp) is
determined by

Hbl = Kde, (54)
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where H,, is the breaking wave height without diffraction and Kj; is the diffraction
coefficient. The formulation for K, as shown in Kamphuis (2010), is based on
directional spreading of waves described in Goda (2000). Examining the Rayleigh
distribution of wave heights, the wave height (H) along the shadow line is expressed as
0.71H;, where H; is the wave height at the groin tip. Thus, the diffraction coefficient K,
along the shadow line is 0.71. A regression analysis of the relationship between wave

energy reaching the shore and the diffracted wave angle yields the following:

K; = 0.71 — 0.0093 a + 0.000025 a,? for 0° > ag = —90°
K; = 0.71 4 0.37 sin a, for 40° > a > 0° (5.5)
K; = 0.83 4+ 0.17 sin ag for 90° > ay = 40°,
where a; is the mean wave direction at the groin tip (determined from the refracted
mean offshore wave direction). The breaking wave angle due to diffraction is

determined by

Apg = apKy

0.375 [ 2dg (5.6)

Lg{tan as+tan(0.88ap)}|’

where a,4 is the breaking wave angle due to diffraction, «;, is the breaking wave angle
without diffraction, d,, is the longshore distance between the breaking point (cell
boundary) and the groin, L, is the cross-shore length of the groin, and a; is the mean

wave direction at the groin tip.
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5.2.2. GENESIS + CasCade (GenCade)

GenCade, described in detail in Frey et al. (2012) and Section 4.2.4, is a one-line
model developed by the USACE that combines the regional-scale calculations of the
Cascade model (Larson et al., 2003) with the project-scale calculations of GENESIS
(Hanson and Kraus, 1989) and is currently the U.S. industry standard one-line model.

GenCade is driven by an offshore wave data time series. Wave data include Ho,
T, and ¢, (relative to shore normal) over a sampling interval. Wave data can be
physical, hindcast, or numerically modeled. While GenCade can be coupled to an
external wave model, it also has an internal wave model capable of transforming deep
water wave information to breaking. This accounts for shoaling and refraction over
bathymetric contours. Since GenCade results are evaluated in conjunction with those
from CEM and a fair comparison is desired, GenCade time series are generated by the
same PDFs used with the simulation’s CEM counterpart, effectively giving both models
near-identical offshore wave climates. Multiple boundary condition (BC) options are
available, though fixed (or “pinned”) BCs are used here where the cross-shore shoreline
position at the boundaries do not change. Here, boundaries are a large distance (7 or
more km) from the MN bases and GF terminal groins to mitigate BC effects.

Groin simulation is handled in a similar manner as in CEM described above.
Bypassing of groins is calculated according to (5.1), (5.2), and (5.3). Changes in wave
height due to diffraction from groins is calculated by (5.4), however the diffraction
coefficient Kq is handled differently. The values used for Kq depend on the wave angle.

Kq values corresponding to every possible wave angle have been digitized in GenCade
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according to curves presented in Kraus (1984), which are based on theory in Goda et al.
(1978). GenCade is also extremely efficient taking about 10 seconds per model year to

run a 10-km-long coastline with a 1-hour time step.

5.2.3. Model Validation for Galveston Island, Texas

To validate the newly incorporated groin algorithms, CEM simulations are
parameterized for Galveston Island, Texas, which has a relatively straight coastline
fortified with a GF. These simulations are compared with measured results of
Galveston’s shoreline as well as those produced by GenCade whose groin algorithms are
well-vetted. Shoreline data for Galveston Island is available from 2014 to 2020.
However, data from 2017 to 2020 is considered unreliable. Hurricane Harvey (2017)
produced rapid changes in the shoreline, and while LST processes generated from
tropical cyclone-induced offshore waves can be captured in CEM and GenCade, waves
generated nearshore and cross-shore processes are not simulated in these models.
Furthermore, cross-shore processes have been shown to be transport material offshore
during tropical cyclones on Galveston Island (Harter and Figlus, 2017). While these
changes often normalize on the Upper Texas Coast within 5 years (Morton et al., 1994),
there is not enough time in the data range to capture this. Also, data from 2018 on is
produced by a different company (Aptim, 2018; 2019; 2020) compared to the pre-2018
data (Atkins, 2014; 2015; 2016; 2017). As the two use different geo-reference points,
data from one company do not align properly with data from the other. Furthermore,

much of the Aptim data have very low longshore resolution (one transect every ~100 m
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or more), which would produce very low resolution shorelines. As such, only data from

June 2014 to June 2016 are considered.

Mean low water (MLW) contours from June 2014, 2015, and 2016 are utilized in
model validation (see Table 5.1 for parameter values). Topographic and groin aspect
parameters are determined from a combination of Aktins (2014, 2015, 2016), NOAA
(2006), and Google Earth imagery. Wave data is obtained from NOAA NDBC Station
42035 (Galveston, TX), producing an approximate PDF of A =0.38, U = 0.24%. The
June 2014 MLW contour is used as the initial shoreline for all simulations. As no data
are available for groin permeability (P) at Galveston, a variety of P values are assessed.
As the groins are made of concrete with minimal through-passing, P is likely close to
zero. Furthermore, values of P > 0.3 give unrealistic shoreline results with minimal
groin effects (defined as the distance between the maximum accretion updrift of a groin
to the maximum erosion downdrift of a groin). As such, only values of P < 0.3 are

discussed.

Model performance is assessed by comparing modeled coastlines to those
observed at Galveston. While a large extent of the Galveston coastline is modeled (from
the Bolivar Roads jetty to roughly 1 km west of the western edge of the Seawall), the
area of interest is the shoreline surrounding the first twelve groins (from the west) of the

GF to assess the viability of the novel groin algorithms in CEM (Figure 5.2). The

3 Note that a higher resolution 12-bin wave PDF is used for Galveston simulations as opposed to the
traditional 4-bin PDF used in all theoretical CEM and GenCade simulations. See Whitley et al. (2021) for
details.
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coastline here, while containing groin effects in the groin compartments, is relatively

straight on average (6 values are low), thus avoiding complexities arising from large Qs

computations in (3) that can result from an unrealistically large a;, (a, = ¢, — 6). The
longshore (x) axis chosen for all Galveston simulations and analyses is a line running

eastward to westward on a bearing of 233.7 degrees relative to true North.

Table 5.1. Parameters used in model validation (CEM and GenCade) for Galveston
Island, Texas.

Parameter  Value Description
K 0.92 Empirical coefficient (Rosati et al., 2002)

ps (kg/m?3) 2650 Sediment density
p (kg/m3) 1000 Seawater density (fixed in GenCade)

n 0.4 Sediment porosity
% 0.54 Breaker index (Battjes and Stive, 1985)
Dc (m) 8.00 Depth of closure
Dg (m) 1.31 Berm elevation
Set 0.015 Slope of the shoreface
Ss 0.00051  Slope of the shelf
T (s) 4.16 Average offshore wave period
Ho,rms (M) 0.71 Average offshore root mean square wave height
Zmax (M) 15.8 Water depth where refraction begins

Median sediment grain diameter (Lisle and Comer,
Dso (um) 132 2011)
At (hours) 1.0 Time step

Models are evaluated after 1 year (comparable to the June 2015 MLW contour)
and 2 years (comparable to the June 2016 MLW contour) of evolution. Model
performance is evaluated via modeled-measured shoreline position root mean square

difference (RMSD). Shoreline RMSD is calculated for every groin compartment with
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low values corresponding to low cross-shore differences in measured-modeled
coastlines. The lowest overall mean, lowest maximum, and lowest minimum RMSD
over all the groin compartments are examined. Note that there was a nourishment
(~481,000 m®) at Babe’s Beach (near x = 4.5 km in Figure 5.3) just west of the GF from

Sept. 2015 to Nov. 2015 (TGLO, 2015; Atkins, 2018; Elko et al., 2021). This explains

)
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Gulf of Mexico

Figure 5.2. Map of Galveston Island, Texas. Comparisons between simulated and
measured shoreline position evolution on Galveston Island between the Jetty
(upper right) and the western end of the seawall during the period of 2014 — 2016
are used for model validation. The groins have been accentuated in this image for
better visibility (image courtesy of Google Earth).
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the large amount of cross-shore extension from 2015 to 2016 in measured coastlines. It
should be noted that the Galveston coast experienced no tropical cyclones from 2014 —
2016, though northerly cold fronts frequently pass over the area during winter months

that generate considerable wind shear stresses (Dellapenna et al., 2006).

In general, both models produce approximately the same coastline shape (Figure
5.3). Neither model captures the U-shape of the Galveston coastline in the groin
compartments very well. Note that a partial U-shape can by synthetically generated in
CEM if the wave PDF asymmetry is reversed halfway through the simulation, though
this was not produced in GenCade. This suggests that U-shape coastlines within groin
compartments may be the result of a time dependence in the offshore angle of incidence,
which can be implemented by changing the forcing PDF over time, even though this has
not been implemented as part of the scope of this work. Groin effects are present with
accretion on the west and erosion on the east due to the asymmetry of the incident wave
PDF (A ~0.38). CEM typically underpredicts the low point within the groin
compartments but can predict the high point within 0 to 30 m (depending on P).
GenCade tends to greatly overpredict the magnitude of the groin effects (both high and
low points) with high points 30 to 50 m away and low points 0 to 50 m from observed
positions. Note that this low point always occurs next to the groin on the west while the
observed coastlines tend to have erosion occur in the middle of the groin compartment.
The low point in CEM is typically close to the west side groin but not directly adjacent

to it due to reduced LST from wave diffraction.
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Figure 5.3. Coastline evolution of CEM and GenCade simulations for the Galveston
Island GF from June 2014 — June 2015 (A) and June 2014 to June 2016 (B). Groin
numbers are identified above each groin tip.

CEM mean RMSDs for the groin compartments range from 12.6 to 15.7 m for 1

year of evolution and 11.8 to 16.2 m for 2 years (Table 5.2). Minimum RMSDs of all

the groin compartments per simulation range from 5.6 m to 6.2 m for 1 year and 3.6 m to
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9.5 m for 2 years. GenCade mean RMSDs are 29.7 m for 1 year and range from 30.4 m
to 30.8 m for 2 years. Minimum RMSDs of all the groin compartments per simulation
are on the order of 17.7 m for 1 year and range from 18.6 m to 20.9 m for 2 years.
Overall, CEM results produce a lower RMSD than GenCade when evaluating the mean,

maximum, and minimum RMSDs for each groin compartment.

Table 5.2. Root mean square difference (RMSD) between modeled-measured
coastlines for Galveston Island for 1 year (ending 2015) and 2 years (ending 2016)
of evolution.

Groin Field RMSD (m)

End
Model Year P Mean Maximum Minimum
CEM 2015 0.0 15.7 30.5 6.2
CEM 2015 0.1 14.1 25.4 5.6
CEM 2015 0.2 13.1 26.9 5.7
CEM 2015 0.3 12.6 27.5 5.8
GenCade 2015 0.0 29.7 35.3 17.7
GenCade 2015 0.1 29.7 36.3 17.7
GenCade 2015 0.2 29.7 37.6 17.5
GenCade 2015 0.3 29.7 37.6 17.8
CEM 2016 0.0 16.2 28.4 9.5
CEM 2016 0.1 13.8 22.9 6.8
CEM 2016 0.2 12.4 22.2 5.1
CEM 2016 0.3 11.8 23.5 3.6
GenCade 2016 0.0 30.8 38.6 20.9
GenCade 2016 0.1 30.8 38.5 20.3
GenCade 2016 0.2 30.6 39.0 19.5
GenCade 2016 0.3 30.4 40.0 18.6

The difference between the modeled-measured beach area inside each groin
compartment is also evaluated (Table 5.2). Differences in CEM-measured groin
compartment beach areas range from -9876 m? to 7328 m? with negative differences

corresponding to CEM showing less beach area within the groin compartment than
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measured (and vice versa). GenCade-measured area differences are only positive
ranging from 1141 m? to 17902 m?. In general, GenCade produces much greater beach
areas within the groin compartments than both the measured areas and those produced

by CEM.

GenCade is the U.S. industry standard and is the primary one-line model used by
the USACE. A valid model should produce comparable results to GenCade. CEM
produces overall coastline forms similar to GenCade. RMSD values and modeled-
measured beach areas for CEM are typically of lower magnitude than that of GenCade,
and measured-modeled beach areas within the groin compartments are also lower for
CEM on average. When modeling a GF, CEM should be able to produce results at least

as well as the U.S. industry standard.

5.2.4. Research Approach

To assess the effects of placing a MN in proximity to a GF, baseline scenarios of
a MN and a GF each alone on an otherwise straight coastline are performed. Having an
otherwise straight coast allows for analysis of the effects of the MN or GF since without
them no shoreline change should occur on a straight coast. This is done for a variety of
wave climates (varying A and U), which should indicate the effects each variable has on
a MN and a GF alone. These results are compared to coupled MN-GF simulations
where the effects of varying A and U are evaluated. In all these theoretical scenarios,
parameterization is the same as in Table 5.1 except for Dg =1.00 m, Ho=1.00m, T =

8.00s, and Ss. A very small value of Ss (10°%) is used to remove complications from
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modeling shelf dynamics (i.e., no sediment is deposited on the shelf when accreting to a
water depth beyond the depth of closure; see Ashton and Murray, 2006a for details).

Groin permeability ranging from P = 0.0 to P = 0.3 are evaluated.

The initial conditions for all simulations with an MN use a nourishment with a
cross-shore length of 1 km and a longshore footprint of 5 km. This gives the
nourishment a total volume of ~17.5 million m3. While the initial shape of the peninsula
is perfectly Gaussian instead of a hook shape, the initial parameters of the hypothetical
MN have a similar volume and aspect parameters as those of the Sand Engine upon
completion. All simulations with a GF use a seven-groin GF, with all groins evenly
spaced (400 m) and having a cross-shore length of 100 m from the initial coastline.
With a shoreface slope (Sst ) of 0.015, this puts the groin tips in a water depth of ~1.14
m. The distance between groins, groin lengths, and water depth at the groin tip here are
all similar to those in the Galveston simulations (on average), though there are fewer
groins (7 versus 15 in Galveston), and the coastline is perfectly straight. With these
groin and MN parameters, the ratio of the beach area of the MN with the area within the
groin field (the longshore GF extent times the cross-shore length of groins) is about 8:1.
Since periodic boundary conditions (CEM default) are not possible in GenCade and a
fair comparison is desired between CEM and GenCade, pinned boundary conditions are
used for GenCade and periodic boundary conditions in CEM are disabled. Instead, a
straight coastline is used initially beyond the boundaries of the domain (extending out
half the domain distance both directions along the x-axis) of CEM. Furthermore, any

features (a MN or GF) are placed at least several kilometers away from the boundaries to
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minimize boundary condition effects.

5.3. Results
5.3.1. Baseline Scenario Results (MN-Only and GF-Only)
5.3.1.1. Mega-Nourishment Only (MN-Only) Results

Simulations of a MN on an otherwise straight coastline are presented for CEM
and GenCade with varying A and U in the wave PDF. As all MN-only initial coastlines
are symmetrical (Figure 5.4), only results of A> 0.5 are presented as their counterparts
(e.g., A=0.3isa counterpart to A = 0.7) are mirror-images of each other. A symmetric
wave climate (A = 0.5) leads to symmetric diffusion of the MN, feeding either side
equally. When A is increased in either model, the peninsula shape skews downdrift, and
the tip migrates slightly downdrift as more sediment accumulates on the updrift flank. In
this manner, the MN also acts similarly to a groin in that it inhibits LST (Duo et al.,
2015). Furthermore, CEM has wave shadowing algorithms that create a shadow zone
downdrift of the MN where no wave action (and thus no LST) takes place (see Ashton
and Murray, 2006a for details). This results in sediment starvation (and shoreline
retreat) downdrift of the MN early in the simulation (as also seen in Whitley et al.,

2021), though a net shoreline extension results in this area on long time scales (after the
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Figure 5.4. MN-only model results for CEM (A) and GenCade (B) after 2 years of
evolution for varying wave climates. Year 2 is shown here because all the effects of
wave climate on model evolution are visible. Results for A > 0.75 are unstable in
CEM. The extremely high shoreline angle downdrift of the MN for high A is also
visible at year 2. As time goes on, the MN diffuses (becomes near parallel with the
x-axis), and the effects of wave climate asymmetry are less prominent.
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MN diffuses). Asymmetric wave climates in CEM also result in the MN feeding a larger
stretch of coast downdrift (e.g., cross-shore extension is noticeable 2 km further
downdrift at year 25 when A = 0.7 as opposed to when A = 0.3), though this is less
apparent in GenCade.

When A is increased beyond 0.7, sediment starvation effects downdrift of the
MN become very apparent in CEM. The downdrift flank of the MN produces a
shoreline angle near perpendicular to the x-axis in early years of the simulation (e.g.,
year 2 for A=0.75, U = 0.0 in Figure 5.4A) coupled with shoreline retreat downdrift of
the flank. A similar coastline shape is produced in GenCade when A=1.0, U=0.0
(Figure 5.4B). This shape is consistent with MN coastlines produced by Q2DMorfo
(van den Berg et al., 2014) under a highly asymmetric climate (A = 1.0) shown in
Arriaga et al. (2020). However, this shape persists for up to 50 years in Q2DMorfo
where diffusion eventually fills in the MN flank, resulting in a flatter coastline in just a
few model years, for both CEM and GenCade. Erosional hotspots downdrift of the MN
in CEM (arising from wave shadowing) are also infilled over time in most simulations.
On long time scales (decade+), A> 0.7 can result in numerical instabilities in CEM. As
such, only A values ranging from 0.3 to 0.7 are presented for MN-GF scenarios below.

For U <0.4, all simulations diffuse the MN with U primarily controlling the rate
of diffusion, evaluated by MN tip (greatest cross-shore extent) retreat and volume
change within the initial MN longshore footprint (£ 2.5 km from x = 0 km, the MN
center, in Figure 5.4). As the Sand Engine has a project life of 25 years, both of these

are evaluated at the 25-year mark in the model. In general, increasing U decreases the
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MN diffusion rate. This is expected as increasing the probability of high-angle waves
increases the amount of anti-diffusion taking place (even though the majority of wave
action results in diffusion). Varying A has no effect on diffusion rate when U = 0.
However, when U = 0.4, varying A can have a minor effect on diffusion rate with higher
asymmetry (A =0.3 or 0.7) in the PDF leading to a slightly diminished tip retreat (~15 m
less) and volume loss (~2% less) than when A = 0.5. This is the result of wave
shadowing on the downdrift MN flank preventing wave action from transporting
sediment off of the MN, which only occurs under higher wave angles. This is also in
contrast to symmetric wave climates (A = 0.5) where any wave shadowing occurs on
both sides evenly (and thus transport off the MN is symmetric).

On average for U = 0.0, tip retreats are 847.5 £ 0.3 m (mean * standard
deviation) for all CEM simulations (0.3 <4 <0.7) and 804.5 + 0.3 m for GenCade (same
Arange). Increasing U to 0.4, the average CEM tip retreat drops to 670.8 = 8.3 m while
GenCade’s drops to 678.4 + 0.3 m. Volume losses within the initial MN longshore
footprint also decrease with a U increase. The 25-year volume loss for U =0.0is 61.1 £
0.1% for CEM and 51.43 + 0.04% for GenCade. When U is increased to 0.4, the volume
losses decrease to 27.0 + 1.1% for CEM and 28.81 + 0.02% for GenCade. For highly
asymmetric wave climates (e.g., A= 0.3 or 0.7) in CEM, increasing U can also lead to a
more skewed peninsula shape as it takes longer for the MN to diffuse. In GenCade, the

overall shape remains relatively Gaussian regardless of U.
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5.3.1.2. Groin Field (GF-Only) Results

Simulations of a groin field (GF) with seven evenly spaced groins on an
otherwise straight coastline are presented for CEM and GenCade with varying A and U
in the wave PDF (Figure 5.5). For a symmetric wave climate (A = 0.5) in CEM, small
groin effects (< 2 m) develop within the GF, but there is no clear buildup or erosion on
either side of the GF. GenCade results for A ranging from 0.4 to 0.6 are unreliable as the
resultant coastline is highly dependent on the sign (direction) of the first wave angle in
the time series (i.e., symmetric and near-symmetric wave climates produce results
expected in an asymmetric wave climate). Under these conditions (assuming ¢, # 0),

groin effects develop immediately in GenCade and with great enough magnitude that the
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Figure 5.5. Results of CEM and GenCade simulations of a GF under an asymmetric
wave climate (A = 0.7). Extreme values of U (0.0 and 0.4) are indicated. Results
from both models follow the same form, though GenCade produces effects of
greater magnitude.
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shoreline angle (#) becomes a dominant driver in Qs calculations in (5.3) where a;, =

¢, — 6. This results in the initial groin effect orientation persisting throughout the
simulation, which is considered unrealistic. Note that this is true when Ho and T are held
constant and there is a 40% to 60% likelihood of a positive versus a negative wave
angle.

For an asymmetric wave climate in CEM, there are clear areas of shoreline
extension (accretion) and retreat (erosion) updrift and downdrift of the GF, respectively.
In general, the greater the A, the greater accretion updrift, erosion downdrift, and
magnitude of groin effects within the GF. The amount of extension and retreat both
grow over time. This and the overall shoreline form are consistent with those presented
in Kraus et al. (1994) when a net littoral drift is present (as with an asymmetric wave
climate). The rate of accretion updrift of the GF tends to slow over time due to an
increased amount of bypassing as the shoreline gets closer to the groin tip. However, the
amount of erosion downdrift of GF tends to increase at a steady rate. GenCade
asymmetric PDFs produce similar results to their CEM counterparts, though the
magnitude of groin effects, updrift accretion, and downdrift erosion are much larger.

In general, increasing U in GF-only CEM simulations increases the magnitude of
groin effects, updrift accretion, and downdrift erosion. There does not appear to be a
correlation between altering U in GenCade and the relative size of groin effects inside
the GF, though the accretion/erosion signals updrift/downdrift of the GF decrease as U

increases. Increasing groin permeability (P) in CEM decreases all the above as more
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sediment is allowed to through-pass the groins, while the groin effect magnitude in

GenCade does not significantly change with P for 0.0 <P <0.3.

5.3.2. Coupled MN-GF Scenario Results

Coupled MN-GF scenarios have a MN and a GF on an otherwise straight
coastline (Figures 5.6 and 5.7). A variety of wave climates are examined and a groin
permeability value (P) of 0 is used unless otherwise noted. Simulations are performed in
both CEM and GenCade, however both models have their limitations. CEM can become
unstable under A > 0.7 or < 0.3, so only stable A ranges are shown. GenCade also
becomes unstable if the shoreline extends past a groin tip as the current version of
GenCade (v1.1r8) is unable to simulate structures being buried over the course of a
simulation (personal communication with USACE ERDC personnel).

For the simulations presented below, the MN is directly adjacent to the GF,
making the nourishment as close as possible to the GF without the initial Gaussian
shoreline intruding upon the groins. While the position of the MN (centered at x = 2.5
km) relative to the GF (terminal groins at x = -2.4 km and 0 km) does not change, A in
the wave climate effectively changes the updrift/downdrift orientation of the two. While
A = 0.5 indicates a symmetric wave climate, A = 0.3 indicates that the MN is updrift of
the GF, and A = 0.7 puts the MN downdrift of the GF. Wave PDF ranges of A= 0.3 to

0.7 and U = 0.0 to 0.4 (the stable extremes in all models) are presented.
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Figure 5.6. Results of coupled MN-GF simulations compared to MN-only and GF-
only simulations in CEM under highly asymmetric wave conditions and with
highness. These results show the conditions with the largest magnitude of accretion
updrift of a GF, erosion downdrift of a GF, and groin effects withina GF. A=0.7
(A) conditions indicate that the MN is downdrift of the GF while A = 0.3 (B)
indicates that the MN is updrift of the GF.
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Figure 5.7. Results of coupled MN-GF simulations compared to MN-only and GF-
only simulations in GenCade under highly asymmetric wave conditions and with
highness. These results show the conditions with the largest magnitude of accretion
updrift of a GF, erosion downdrift of a GF, and groin effects withina GF. A=0.7
(A) conditions indicate that the MN is downdrift of the GF while A = 0.3 (B)
indicates that the MN is updrift of the GF.
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To investigate the influence of a GF on MN evolution, coupled MN-GF
simulation results are compared with MN-only results. For symmetric wave climates (A
= 0.5), the presence of a GF has no effect on MN evolution regardless of U and at all
times scales in CEM. Under asymmetric wave PDFs (A = 0.3 or 0.7) with low U (0.0),
very minor differences between MN-only and MN-GF are noticeable at year 3 in both
CEM and GenCade. Groin effects begin to develop within the GF, as well as accretion
updrift of the GF for A = 0.7 and erosion downdrift of the GF for A = 0.3 (both near x = -
2.5 km), none of which are present in MN-only simulations. However, on longer time
scales (25 to 75 years), there is no difference between MN-only and MN-GF simulations
for an 8:1 MN to GF area ratio. This suggests that when U is low, the presence of a GF
does not have any effect on MN evolution on multi-decadal time scales. This is the
result of rapid diffusion of the MN which leads to the groins being completely covered
by sediment by year 25, after which the MN evolves as if no GF was present. Under
asymmetric (A = 0.3 or 0.7) wave climates with high U (0.4) there is also very little
difference between MN-only and MN-GF early in both CEM and GenCade simulations
(year 3, Figures 5.6 and 5.7) as there has not been much time for the groins to influence
shoreline evolution. However, there are considerable differences between MN-only and
MN-GF at year 25. When the MN is downdrift of the GF (A = .7, Figure 5.6A), the MN-
GF area of the mega-nourishment tip and updrift flank (x = -1.5 to 4.5 km) have slightly
less shoreline extension (up to 12 m less) than MN-only results. This is offset by
accretion updrift of the GF (near x = -2.5 km). However, on longer time scales (year

75), sediment from the MN has buried the groins in MN-GF. Once this occurs, the
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groins no longer influence shoreline evolution thus yielding a coastline identical to MN-
only. When the MN is updrift of the GF (A = 0.3, Figure 5.6B), the MN-only shoreline
at year 25 has less cross-shore extent (up to ~42 m less) than MN-GF from x = -1.8 to
3.6 km. Since the littoral drift points in the negative x direction in this wave PDF,
sediment builds up between the MN and GF (x = 0 to 1.8 km) as diffusing MN sediment
travelling downdrift is inhibited by the groin at x = 0 km. Note that this sediment
buildup is offset by shoreline retreat downdrift of the GF (near x = -2.5 km). By year 75,
most of the groins have been buried by sediment. However, the downdrift terminal
groin at x = -2.5 km is still exposed and can influence shoreline evolution. As a result,
there is slightly less (up to 17 m) shoreline extension in MN-GF than for MN-only
downdrift of x =-2.4 km. However, this is offset by slightly more (under 17 m)
shoreline extension in the region x = -2.4 to 6.0 km.

Similarly to MN-Only simulations, MN diffusion rates here are evaluated using
MN tip retreat and volume loss at the 25-year mark (with CEM only as GenCade
becomes unstable prior to year 25). The parameter U predominately controls the MN
diffusion rate with higher U values leading to slower diffusion rates. As with the MN-
only scenarios, A has no effect on MN diffusion rate when U = 0, but higher asymmetry
can lead to slightly diminished diffusion rates when U = 0.4 due to wave shadowing.
Furthermore, coupling a MN with a GF does not affect the diffusion rate for all A when
U = 0 as these coupled MN-GF simulations have the same tip retreats and volume losses
as their MN-only counterparts (same wave PDF among counterparts). However,

coupling a MN and GF under high asymmetry (0.3 or 0.7) and high U (0.4) can change
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tip retreats from -6.2 m (A = 0.7) to +10.5 m (A = 0.3) relative to their MN-only
counterparts. This is not observed with low U (0.0) as the MN diffuses so rapidly that
the groins are buried at the 25-year mark. However, under U = 0.4, the diffusion is slow
enough that the influence from the GF is observable at year 25. This influence can take
the form of sediment accumulation updrift of the GF (A = 0.7, near x = -2.5 km in Figure
5.6A), which is offset by a diminished shoreline extent (-6.2 m) of the MN tip (x = ~2.5
km) relative to MN-only. GF influence on shoreline evolution can also take the form of
erosion downdrift of the GF (A = 0.3, near x = -2.5 km in Figure 5.6B), which is offset
by increased shoreline extent (+10.5 m) in the MN tip (x = ~2.5 km) relative to MN-
only.

An investigation of the erosional hotspot commonly found downdrift of a GF is
also performed under a coupled MN-GF system. This hotspot does not develop under
symmetric (A = 0.5) wave conditions, regardless of U. When the MN is placed
downdrift of the GF (A > 0.5, U < 0.4), the erosional hotspot does not develop at all in
either CEM or GenCade (Figure 5.6A and 5.7A, respectively). This is the result of the
MN being placed in the region where the hotspot usually develops (x =0 to 2 km). As
the MN diffuses, sediment is trapped between the MN and GF preventing any shoreline
retreat. However, the erosional hotspot does develop in the region of x < -2.4 km if the
MN is updrift of the GF (A < 0.5) in both CEM (Figure 5.6B) and GenCade (Figure
5.7B). The hotspot is observable as early as year 3 in these simulations for all U.
However, on longer time scales (25+ years), MN-GF shoreline evolutions differ with

varying U. For U =0.0 (A =0.3) at year 25 the hotspot is no longer present as it has
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been infilled with diffused sediment. At this point (and forward in time) there is no
difference between MN-GF and MN-only. For higher U (0.4) the erosional hotspot
persists up to 25 years. However, the magnitude of shoreline retreat in MN-GF is as
much as 42 m less than that for GF-only at year 25 (Figure 5.6B). Sediment is able to
travel past the groins through bypassing, even though impermeable groins are used (P =
0) in these scenarios. At year 75, the MN has diffused to the point where most of the GF
is covered, and the erosional hotspot has filled in. Here, there is little difference between
MN-GF and MN-only, though there is slightly less shoreline extension downdrift of the
GF in MN-GF.

As with the erosional hotspot, areas of accretion updrift of the GF are not present
in MN-GF simulations where A = 0.5 as there is no discernable sediment accumulation
on either side of the GF. When the MN is downdrift of the GF (A = 0.7), the area updrift
of the GF (x = -3.7 to -2.4 km) is exactly the same at year 3 for MN-GF and GF-only for
all U in CEM and GenCade (Figure 5.6A and 5.7A, respectively) as sediment from the
MN has not had time to reach this area. On longer time scales (25 years) in CEM, MN-
GF has more accretion updrift in x < -2.4 km than GF-only, though the amount of
accretion is dependent on U. When U = 0.0, MN-GF has at most 65 m more shoreline
extension than GF-only. It should be noted that the MN-GF shoreline under this wave
PDF is exactly the same as MN-only from year 25 to year 75. Under U = 0.4, there is at
most 8 m more shoreline extension for x < -2.4 km in MN-GF than GF-only at year 25.
On even longer time scales (year 75), the groins are buried, and the MN-GF shoreline is

identical to MN-only. When the MN is updrift of the GF (A = 0.3), there is more
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accretion updrift of the GF (x = 0 to 1 km) in MN-GF than GF-only for all U at year 3 in
both CEM and GenCade (Figure 5.6B and 5.7B, respectively). The MN tip (at x=2.5
km) is not far from this location (x = 0 to 1 km), and the region is being directly fed by
MN diffusion as the dominant littoral drift is in the negative x direction. As a result,
there is more accretion in this region as early as year 3, and the amount increases over
time as the MN diffuses.

For simulations where the MN is built on top of the GF, the MN center is at x = -
1.2 km, the same longshore position as the center groin in the GF. As GenCade is
unstable from these initial conditions, only CEM MN-GF simulations are presented.
Within a 25-year period, no simulations produce a MN diffusion rate (regardless of U)
where the MN shoreline retreats to a point where interactions between the MN and GF
are possible. The groins are buried (the shoreline extends past the groin tips) for all
situations examined within a 25-year period. Within this timeframe, the MN-GF
simulations produce the same shoreline as MN-only simulations of the same PDF. It
takes about 50 years for U = 0 simulations and over 75 years for U = 0.4 simulations to
diffuse the MN to a point where the shoreline retreats past the groin tips. Even when the
shoreline does retreat past the groin tips, the GF has negligible effects on shoreline
evolution since the distance between the shoreline and groin tips remains very small,
leading to a great amount of bypassing. This results in a shoreline identical to that of
MN-only.

The effects of varying groin permeability P are tested using A=0.7, U =0.4 as

shoreline morphological effects (e.g., groin effects, updrift/downdrift accretion/erosion)
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are very prevalent under those conditions. P values ranging from 0.0 to 0.3 are
examined (see Section 5.2.4). In general, the lower the P value, the larger the magnitude
of the groin effects. Increasing P also reduces the amount of sediment accumulation

updrift of a GF as well as decreases the amount of erosion downdrift of a GF.

5.4. Discussion

Model results show that a MN can feed a long stretch of coastline, even when
LST is inhibited by an impermeable GF (P = 0) for a MN:GF area ratio of ~8:1. This
suggests that processes such as bypassing may play an important role in how a coupled
MN-GF beach may evolve. Other key factors affecting shoreline evolution of this
system include the relative position of the MN and GF (MN updrift, downdrift, or on top
of the GF; quantified here by A) and the probability of offshore high-angle waves (U),
which controls the diffusion (and thus feeding) rate of the MN.

CEM results show that the erosion downdrift of a MN can arise in a few years
due to wave shadowing and sediment starvation. The placement of a GF downdrift of a
MN does not mitigate this effect. However, if a GF is updrift of a MN, LST inhibition
from the GF creates sediment buildup between the MN and GF resulting in no shoreline
retreat and greater longshore progradation than for MN-only or GF-only scenarios. Note
that this shoreline retreat is also mitigated as the MN diffuses, even if a GF is not
present. This effect does not occur in GenCade as the version used here does not

implement a wave shadowing algorithm.
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One of the goals here is to determine the conditions under which adding a MN
maximizes shoreline extension in an erosional hotspot downdrift of a GF. This is
evaluated at a 25-year time scale. The largest erosion signals of the models evaluated
occur under wave climates with high asymmetry (A = 0.3 or 0.7) and high U (0.4). For
comparison, the wave climate at Galveston Island is A = 0.38, U = 0.24 while the wave
climate at the Sand Engine is A =0.62, U = 0.34 (Wijnberg, 1995; 2002). The largest
difference between the MN-GF shoreline and GF-only in the erosion hotspot occurs in
simulations with MN on top of the GF with an asymmetric wave climate (A = 0.3 or 0.7;
these are mirror images) and high U (0.4). GF-only simulations under these wave
conditions show ~92 m of shoreline retreat in the erosion hotspot, while MN-GF shows
243 m of shoreline extension in the same area. The second largest difference occurs
when the MN is built adjacent to the GF with a wave PDF of A =0.7, U = 0.4. Here,
GF-only has the same shoreline retreat as above while MN-GF has ~219 m of shoreline
extension in the erosional hotspot area.

Several model limitations should be considered when evaluating their results.
Neither model directly computes cross-shore transport processes (e.g., aeolian transport,
nearshore circulation, rip currents, swash zone dynamics, etc.), some of which have been
shown to transport material from the beach to the dunes at the Sand Engine MN
(Hoonhout and de Vries, 2017; Roest, 2017), and have been shown to transport sediment
offshore in GFs (Basco and Pope, 2004). Morton et al. (1994) point out that cross-shore
sediment transport offshore during high-energy events is often followed by recovery on

longer time scales (>5 years), but this limitation should be considered when evaluating
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the model results. GenCade also suffers from the limitation of instability when
shorelines extend past groin tips and dependence on initial wave conditions when a PDF
is used. The latter should be alleviated with the use of a historical wave time series as
opposed to a stochastic PDF.

Future research on MN-GF interactions should investigate how geometric
parameters of the MN (e.g., initial volume, cross-shore extent, longshore footprint, etc.)
affect MN-GF interactions. The same can be done with groin field parameters such as
the number of groins, groin spacing, cross-shore length of groins, etc. The investigation
of temporal variations in wave climate affecting these interactions is also recommended
as CEM model results of Galveston Island suggest that temporal variation in wave
climate may be a contributing factor to the U-shaped coastlines in the groin
compartments. It is also worth investigating if MN diffusion remains symmetric under a
time varying symmetric wave climate where there is dominant direction in one half of
the year and an opposing dominant direction the other half of the year, as is the case with
bimodal wave climates. A detailed comparison of one-line model results of a coupled
MN-GF system with 3D model results may also prove useful but is outside the scope of
this work. Furthermore, the incorporation of additional processes in these one-line
models such as cross-shore transport processes and offshore currents (suggested by
Valsamidis et al., 2017 to be an important factor in MN evolution) may improve the
accuracy of these simulations. Also, modeling can be performed of hypothetical MNs
built at specific coastal sites with GFs (e.g., Galveston Island and Miami Beach) to

examine the feasibility of mega-nourishment at these sites.
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5.5. Conclusions

Mega-nourishment (MN) is an innovative solution for coastal risk reduction
where a large volume of sediment is placed at a single site. This sediment is
redistributed via natural processes, feeding adjacent beaches. As many beaches that
could benefit from a MN are reinforced with a groin field (GF), one-line modeling
efforts using the Coastline Evolution Model (CEM) and GENESIS + Cascade
(GenCade) have been undertaken to identify the implications of combining these two
features. For the presented simulations, the initial beach area of the MN relative to the
area of the GF is ~8:1 in all models. Other ratios and geometric arrangements are of
course possible, and the current simulations should be considered a starting point of such
investigations where scales were based on the Dutch Sand Engine (MN) and Galveston
Island, Texas (GF). The diffusion (and thus feeding) rate of the model MN is primarily
dependent on the probability of high-angle (> |45°| relative to shore normal) incident
waves (U) in the wave climate with higher probabilities yielding slower diffusion rates.
The MN remains diffusive for U > 0.4. The addition of a MN adjacent to a GF results in
shoreline extension in both the nourished region and the GF on multidecadal time scales.
Even though GFs inhibit longshore sediment transport, MNs in a diffusive wave climate
are capable of feeding beaches on the opposite side of a GF through processes such as
bypassing, even with impermeable groins. In the case of an MN updrift of a GF, this
feeding may take the form of a reduced erosion signal downdrift of the GF.

Multidecadal model results also show that once a MN shoreline diffuses past the groin

99



tips, the groins have no significant effect on shoreline evolution given the large amount
of bypassing. Under high U, a modeled erosional hotspot downdrift of a GF remains
present when a MN is updrift from the GF up to 25 years. However, the amount of
shoreline retreat in this area is diminished relative to a GF alone and can result in net
shoreline extension on very large time scales (75 years).

From a design perspective, the placement of the MN relative to the GF is critical
in determining evolution of the shoreline, especially in the short term (less than a
decade). This is particularly true in asymmetric wave climates (A # 0.5) where a
dominant direction of littoral drift can lead to erosional hotspots downdrift of the GF.
Results indicate that placing a MN downdrift of a GF could be a method of mitigating
these erosional hotspots on top of all the other benefits offered by MNs. The largest
erosive signals arise in CEM when A and U are high, and thus the largest amount of
shoreline extension arises when a MN is built on top of a GF under those conditions.
When that is the case, no shoreline retreat is present on long time scales, and the MN
diffuses without interaction with the GF. This particular design appears to maximize the
amount of shoreline extension resulting from the nourishment diffusion while
minimizing any erosive effects generated by LST inhibition from the GF. The erosive
hotspot downdrift of a GF can also be mitigated to a lesser degree when a MN is built
directly downdrift of a GF under high A and U. Here, sediment diffusing updrift from

the MN is trapped by the downdrift terminal groin, thus filling in the erosional hot spot.
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6. GENERAL DISCUSSION AND CONCLUSIONS

Mega-nourishment (MN) is a pioneering method of coastal defense against
flooding and mitigation of shoreline erosion. Through MN, a large volume of sediment
is placed at a single nourishment site, and natural forces redistribute the sediment along a
large stretch of beach thus feeding nearby beaches over time. To date, only one MN has
been constructed, the Delftland Sand Motor (SM). Therefore, physical data on MN
evolution is very limited, and numerical modeling efforts are necessary to gain a better
understanding of how MNSs evolve. One-line modeling is a robust method of modeling
shoreline evolution and is often the preferred method in engineering applications as it
does not have large data or processing requirements. The dissertation’s overall goals are
to examine the feasibility of using the Coastline Evolution Model (CEM) and GENESIS
+ CasCade (GenCade) one-line models to explore MN evolution, and to use these
models to explore the implications of combining a MN on a coastline with a groin field
(GF).

Limited amounts of one-line modeling have been undertaken related to MNs, and
thus the performance of CEM and GenCade in simulating MNs is not well understood.
To explore these one-line modeling methods for use with MN evolution, modifications
are made to the C version (Appendix A) of CEM. These modifications allow for all the
topographic variables in the CERC sediment transport equation to be user-specified.
They also allow the model to run at a much higher resolution (25 m cell size as opposed

to 100+ m cell size) than previous versions. Furthermore, the modifications allow for a

101



higher resolution wave probability distribution function (PDF) to be used as the wave
forcing. The original version used a 4-bin PDF by default, and the modifications allow
for a 12-bin PDF to be used.

To assess the feasibility of using CEM and GenCade in MN simulations,
GenCade and the modified version of CEM (C version) are used to simulate 3.5 years of
evolution of the Sand Motor (SM). The results of these simulations are compared with
measured shorelines of the physical SM from March 2013 to September 2016) (3.5

years). The following research questions (RQs) are addressed during this first project:

RQ1. Much one-line modeling has been performed with traditional nourishments
and natural coastlines, but relatively little one-line modeling has been done with
MNs. Can MN evolution be reasonably simulated using one-line models

(specifically CEM and GenCade)?

It is hypothesized that GenCade and the updated version of CEM are capable of
reasonably reproducing observed MN evolution given proper calibration. Results show
that given proper parameterization both models can reproduce diffusion rates similar to
that observed at the Sand Motor. At best, either model can show a 3.5-year tip retreat
within 1 to 5 m of the 171 m trip retreat observed. Modeled mean MN flank slopes are
less than 5.0 degrees shallower on left side for both models. Modeled mean flank slopes

on the right side are less than 2.0 degrees steeper for CEM and less than 6.0 degrees
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shallower for GenCade from that observed after 3.5 years of evolution.

RQ2. The K value in the CERC Transport Equation is used to relate available
wave power to longshore sediment fluxes. Are commonly used K values given
in the literature adequate for MN simulation in a one-line model (specifically

CEM and GenCade)?

While several methods presented in the literature derive K from field data to
determine a relationship between immersed weight transport and wave power, Rosati et
al. (2002) use a linear regression over a very large data set of field observations to obtain
the value of K =0.92, which is one of the more recent determinations. It is hypothesized
here that this value is adequate to simulate a MN. Maodel results show that the K value
affects the rate of MN diffusion with higher K values leading to faster diffusion. Of the
K values commonly used in modeling traditional nourishments and natural coastlines, K
= 0.92 from Rosati et al. (2002) produces the lowest mean measured-modeled RMS
differences. However, traditional nourishments are of much smaller scale than MNs.
MNs have different coastal dynamics since a very large feature is rapidly introduced
onto the coast, which can cause instability to the system. As such, models show that
higher-than-usual K value may be a better fit for larger-scale nourishments. Artificially
increased K values can lower measured-modeled root mean square (RMS) differences,

though no single value maximizes model performance across all metrics. K =1.20 in
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CEM and 1.60 in GenCade minimize RMS differences across the entire domain while K
=1.10 in CEM and 2.00 in GenCade minimizes measured-modeled differences in MN
tip retreat. It is possible that the ideal K value may vary over time as the MN diffuses,
though there is no clear trend based on the modeled results at this point. In evaluating
model performance, GenCade produces average measured-modeled RMS differences on
the order of 50 m. This makes GenCade a useful tool in predicting absolute coastline

position.

RQ3. What are the major differences between the shorelines produced by CEM

compared to those produced by GenCade when modeling MN evolution?

CEM’s wave transformation technique includes a wave shadowing algorithm
while GenCade’s default wave transformation (used here) does not. It is hypothesized
that these wave shadowing algorithms in CEM can lead to areas of sediment starvation
that result in asymmetric evolution of a modeled MN under an asymmetric wave climate
(as observed at the SM). Model results show that CEM can capture longshore migration
of the MN tip (observed to be ~400 m downdrift), indicating that wave shadowing
(present in CEM) may be an important component of capturing longshore migration of
shoreline features. Note that GenCade (without the wave shadowing algorithms) does
not capture this tip migration. CEM also shows asymmetric diffusion of the feature
(observed at the SM, though to a lesser extent than modeled) while GenCade produces

symmetric diffusion of the MN.
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Many beaches that could benefit from a MN are reinforced with groin fields
(GFs). It is therefore important to understand how a MN will evolve on a shore with
groins. However, no MNs have been constructed in the vicinity of a GF. Therefore,
modeling must be undertaken to determine these interactions. Whitley et al. (2021)
showed that CEM and GenCade are suitable models for MN evolution simulation.
However, prior versions of CEM did not have the ability to simulate groins. In order to
rectify this, CEM is reprogrammed in MATLAB (Appendix B) and robust groin
simulating algorithms are added so that CEM and GenCade can be used to explore the
interactions between a MN and a GF. These new CEM groin algorithms are validated
by simulating two years (2014 to 2016) of evolution of the Galveston Island GF and
comparing them to measured coastlines of the same dates. CEM results are also
compared to a well-vetted model, GenCade, as it is the current U.S. industry standard.
In general, both models produce similar sawtooth coastline shapes containing groin
effects in the groin field. CEM tends to underpredict the low points in the groin field
shorelines but can predict the high points under 30 m away from those observed.
GenCade greatly overpredicts the high points (30 to 50 m more than those observed).
Both CEM and GenCade produced measured-modeled mean RMSDs within the groin
compartment of similar order (~12 to 16 m on average), with CEM producing a lower
RMSD than GenCade in general. This shows that CEM should be able to simulate
groins at least as well as the U.S. industry standard.

The second project investigates the shoreline interactions between a MN and a

groin field. CEM and GenCade are used to simulate a MN either adjacent to or on top of

105



a seven-groin GF on an otherwise straight coastline. The initial MN to GF beach area is
~8:1. During the course of this project, the following research questions (RQs) are

addressed:

RQ4. Many coastlines that would benefit from a MN have been reinforced by
groin fields. However, MNs are designed to feed adjacent beaches via LST
while groins are designed to inhibit LST. What are the implications of

combining these two features on the same coastal system?

It is expected that as a MN diffuses, a nearby groin field will inhibit LST across
it, thus reducing the diffusion rate of the MN. However, with such a large supply of
sediment added from the MN, it is hypothesized that beaches on the side of the groin
field opposite the MN will be fed as there are a number of mechanisms for sediment to
be transported past the groins, specifically bypassing and through-passing (due to groin
permeability). The modeled MNs built adjacent to a groin field are capable of feeding
beaches within the groin field and on the far side of the groin field through processes
such as bypassing even with impermeable groins. The addition of a groin field adjacent
to a modeled MN can affect its shoreline evolution through sediment accumulation
updrift of the groin field and/or with a diminished shoreline extent (or erosion) downdrift

of the field.
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RQ5. Different coasts around the world can experience vastly different wave
climates. What effects do wave climate (specifically, the probability distribution
of offshore wave angles) have on shoreline evolution in a coupled MN-groin

field system?

An asymmetric wave climate should be accompanied by a dominant direction of
LST. When a MN is placed updrift of a groin field, it is expected that this should result
in augmented accumulation of sediment updrift of the groin field. Under normal
circumstances (with no MN), this should be accompanied by sediment starvation
downdrift of the field. However, with such a large sediment supply from the MN, it is
hypothesized that the overall rate of erosion updrift of the groin field will be diminished
from that without a MN present. Consequently, if a MN is placed downdrift of a groin
field, it is still expected that the MN should diffuse in both directions longshore. This
should significantly reduce the erosion signal normally present on the downdrift side of
the groin field. Furthermore, it is hypothesized that a higher probability of high-angle
(Ipo| > 45°) incident waves in the wave climate will reduce the rate of MN diffusion.
To test this hypothesis, various offshore wave climates are examined while adjusting the
probability of a positive versus negative wave angle (asymmetry or A) and of a high
versus low wave angle (highness or U). Model results also show that MN diffusion rates
are primarily dependent on U with higher U values slowing MN diffusion. Note that U
> 0.4 here so that the wave climate remains diffusive as higher values can lead to anti-

diffusion of the MN or model instability. On multidecadal time scales, results show that
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once a shoreline extends past the groin tips, the groins have no significant effect on

shoreline evolution due to the large amount of bypassing.

RQ6. Beaches with groin fields where a dominant direction of littoral drift is
present often suffer from an erosional hotspot downdrift of the groin field due to
sediment starvation. Can this erosion be mitigated through mega-nourishment,

and if so, under what conditions is the mitigation maximized?

It is hypothesized that building the mega-nourishment downdrift of the GF will
maximize the mitigation of the erosion as the MN will provide a new source of sediment
for the erosional hotspot. When a MN is built updrift of a GF under high U, model
results show an erosional hotspot developing downdrift of the GF after 1 to 3 years of
evolution. However, this area does experience net shoreline extension on very large
time scales (75 years). When a MN is built downdrift of a GF, the erosional hotspot
does not develop as there is an influx of sediment in this area from the diffusion MN.
This suggests this MN placement could be a method of mitigating erosional hotspots that
develop downdrift of a GF when a dominant direction of littoral drift is present. The
greatest amount of shoreline extension in the modeled erosional hotspots occur under
highly asymmetric wave climates with high U values and the MN is built on top of the
GF. Under these conditions, the GF has no effect on shoreline evolution as the groin tips
are either buried or very close to the shoreline where large amounts of bypassing can

occur. As such, no shoreline retreat occurs, and the MN diffuses as if no GF is present.
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Despite having seemingly opposite functions (MNs aim to feed beaches through
LST while GFs aim to anchor beaches through LST inhibition), much may be gained by
combining MNs and GFs. Model results indicate MNs are indeed capable of feeding
beaches on the far side of GFs despite sediment inhibition. Furthermore, the models
show that combining a MN on a coast reinforced with a GF may reduce or eliminate
erosional features generated due to the presence of a GF. However, there are several
factors to consider when planning to build a MN on a coastline reinforced with groins.
For the MN to effectively feed nearby beaches, the offshore wave climate must remain
diffusive (U < 0.5) as model results show anti-diffusive wave climates resulting in the
MN’s cross-shore length growing, not diffusing. Furthermore, model results show that
the diffusion rate of the MN is dependent on U with higher values slowing MN tip
retreat rates. Therefore, it is recommended that project planners consider a study site’s
offshore wave climate when considering MN construction.

It is recommended that future research efforts compare CEM and GenCade MN
evolution with those produced by other one-line models such as LITPACK (DHI, 2009)
or UNIBEST (Deltares, 2011). CEM accuracy may be enhanced by the inclusion of
additional features that may improve its modeling capabilities. The simulation of cross-
shore processes such as aeolian transport (likely important in MN modeling) and rip
currents (likely important in GF modeling) should improve CEM accuracy. Valsamidis
et al. (2017) suggest that the addition of offshore advection to modeling efforts may be
important in MN simulation. Given the CEM’s sensitivity to wave climate, the use of a

more robust wave transformation technique such as SWAN (e.g., Limber et al., 2016) or
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STWAVE (i.e., Smith et al., 2001) should improve CEM’s accuracy. Furthermore, the
addition of sediment sources and sinks are likely important when modeling areas with
known sediment sources and sinks, such as Galveston Island (e.g., Ratliff, et al. 2018).
GenCade accuracy in MN simulation can also be improved with the use of a more
advanced wave transformation model such as CMS-Wave (Connell and Permenter,
2013). The use of an offshore contour, the addition of sources and sinks, and the
inclusion of cross-shore processes could also improve model accuracy.

Additional research on MN-GF interactions could include the investigation of the
impacts of MN geometric parameters (such as initial volume, longshore footprint, etc.)
on shore evolution. An investigation of the effects of geometric parameters of the groin
field (groin length, groin spacing, etc.) on shoreline evolution would also prove useful.
Furthermore, as simulations of the Galveston Island groin field in Chapter 5 suggest that
temporal variation in offshore wave climate may be a contributing factor to coastline
shape, a robust investigation into the effects of wave climate temporal variability is

recommended.
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APPENDIX A

COASTLINE EVOLUTION MODEL (C VERSION) CODE

/* CAPERIFFIC

*/

/* Program To generate capes?? and sandwaves?? using wave
angle relationships */

/* Begun by Brad Murray 01/00

*/

/* Refined by Olivier Arnoult 01/00 - 06/00

*/

/* Revised and reformed by Andrew Ashton 06/00 -
*/

// Revised by Andrew Whitley 07/18

/*

*/

/* Program Notes -

*/

/* To end program, press 'd' key and 'ESC' key
simultaneously */

/* To save current iteration to file, press 's' and
'f' simultaneously */

/* To update screen display, press 'p' key

*/

/*

*/

#include <stdlib.h> /*THIS PROGRAM GONNA MAKE CAPES,
SANDWAVES??2*/

#include <stdio.h>
#include <math.h>
#include <time.h>
/*#include <GL/glx.h>
#include <GL/gl.h> */
#ifdef  unix

# include <unistd.h>
#elif defined WIN32
# include <windows.h>
#fdefine sleep(x) Sleep (1000 * x)
#endif

//#include <unistd.h>
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//#include <ncurses.h> // This header allows for the use
of graphics

/* Run Control Parameters */

int RunInWindows = 0; // Run on a WIN32
machine?

#define TimeStep 0.0417 /* days - reflects rate
of sediment transport per time step */

#define OffShoreWvHt 0.85 /* meters */

#define Period 5 /* seconds */

#define Asym 0.5 /*fractional portion of
waves coming from positive (left) direction */

#define Highness 0.5 /* New! .5 = even dist,
> .5 high angle domination */

#define Duration 1 /* Number of time steps
calculations loop at same wave angle */

#define StopAfter 31200 /* Stop after what
number of time steps */

int StartWRTAfter = 999999999, // Time steps
to pass before using WRT

int seed = 44; /* random seed control
value = 1 */

// Initialization parameters

char StartFromFile = 'vy'; /* start from saved
file? */

char readfilename[24] = "SE 25m 1200Cells";

char StartFromLine = 'n'; // Start from a saved
lineout file?

char readlinename[24] = "lineouttest"; // Lineout name
to start from

int Waveln = 1; /* Input Wave
Distribution file? */

char readwavename[24] = "SE MPN.dat'";

int TimesAngleHit[36];

int NumTimesRun = 100;

int iii = 0;

int iv = 0;

// Save control parameters
int StartSavingAt = 0; /* time step to begin
saving files */
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int SaveFile = 1; /* save full file? */

char savefilename[24] = "fileout";

int SaveSpacing = 10000 ; /* space between saved
files */

int SavelLine = 1; /* Save line */

char savelinename[24] = "lineout";

int SavelineSpacing = 100; /* space between saved

line files */

// Sediment transport parameters

char UseVariableCERC = 'y'; // Use the variable
CERC equation? --> allows the parameterization of rho s,
porosity, and K

char UseKamphius = 'n'; // Use the Kamphius

(1991) LST equation instead of CERC? (disables CERC; NOT
CURRENTLY FUNCTIONAL)

char UseBailard = 'n'; // Use the Bailard
(1984) equation to determine K? (only works with
UseVariableCERC)

char UseBattjesStive = 'n'; // Use the Battjes and
Stive (1985) equation to determine KBreak?

float K = 0.6935 ; // CERC formula
emperical constant (overridden if UseBailard)

float rho = 1000; /* kg/m3 - density of
water and dissolved matter */

float rho s = 2650; // Denisty of sediment
(kg/m3)

float porosity = 0.4; // Sediment porosity (n
in most literature)

float KBreak = 0.78; // Coefficient for wave

breaking threshold (breaking wave height / depth at
breaking); originally 0.5; overridden by UseBattjesStive

float Fallvel; // Fall velocity (m/s)
of sediment grains (used only in UseBailard at this point)
float DynViscosity = 1.03E-3; // Dynamic viscosity of
seawater (Pa*s)

float DFifty = 281; // D50 (median grain
size in microns)

float SedRad; // Sediment radius
(calculated from D50)

float PeakPeriod = 5; // Peak period (Tp) in

s (for Kamphius formaula)
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/// WRT save control parameters

int SaveHeight = 0; // Save breaking wave
height data?

char saveheightname[24] = "height"; // Save breaking
height name

int SaveHeightSpacing = 1; // space between saved wave
height files

int SaveAngle = 0; // Save breaking angle
data?

char saveanglename[24] = "angle'; // Save
breaking angle name

int SaveAngleSpacing = 1; // space between saved wave
angle files

int SaveRelAngle = 0; // Save relative angle
data

char SaveRelAnglename[24] = "RelAngle"; // Save
relative angle name

int SaveRelAngleSpacing = 1; // space between saved
relative angle files

int SaveSLAngle = 0; // Save the shoreline
angle?

char SaveSLAngleName[24] = "ShoreAngle"; // Save
shoreline angle name

int SaveSLAngleSpacing = 1; // space between saved
shoreline angle files

int SaveVolumeOut = 0; // Save sediment volume
transported out?

char saveVolumeOutName[24] = "VolumeOut"; // Save sed
volume out name

int SaveVolumeOutSpacing = 1; // space between saved
sed volume out files

int SaveSedFluxGradOut = 0; // Save the sediment
flux gradient?

char saveSedFluxGradOutName[24] = "SedFluxGrad"; // Save
sed flux gradient out name

int SaveSedFluxGradOutSpacing = 1; // space between
saved sed flux grad out files

int SaveQs = 0; // Save the sediment
transport data?

char SaveQsName[24] = "0s"; // Save sediment
transport name

int SaveQsSpacing = 1; // space between saved sed
transport files

int SaveDEtaDt = 0; // Save dEta/dt?
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char SaveDEtaDtName[24] = "dEta dt"; // Save dEta/dt
name

int SaveDEtaDtSpacing = 1; // space between dEta/dt
files

int SaveDiffusivity = 0; // Save the
diffusivity?

char SaveDiffusivityName[24] = "diffusivity"; // Save
diffusivity name

int SaveDiffusivitySpacing = 1; // space between
saved diffusivity files

int SaveMu = 0; // Save the mu
(diffusivity)?

char SaveMuName[24] = "mu"; // Save mu name

int SaveMuSpacing = 1; // space between mu
(diffusivity) files

int SaveGamma = 0; // Save the instability
index?

char SaveGammaName[24] = "gamma"; // Save instability
index name

int SaveGammaSpacing = 1; // space between saved

instability index files

// WRT Control Parameters

char UseSingleInitialAngle = 'n'; // Use a single
initial angle?

float thetao = 60; // Single initial angle
in degrees

char UseShadow = 'y'; // Use the built-in
shadowing routine

char UseWRT = 'n'; // Use the forward wave
ray tracing (WRT) method to propagate waves?

char UseRandWaveAngle = 'n'; // Use a random deep
water wave angle for each wave ray in WRT?

char UseWaveDist = 'n'; // Use wave
distribution in WRT

char LinkToSedTrans = 'n'; // Link WRT to Sediment
transport model

char UseRandAngleFluctuation = 'n'; // Use a random
angle fluctionation (+/- 5 deg) each WRT sweep?

char UseAWTOffshore = 'n'; // Use AWT to propagate
offshore to WRT domain (linked to CEM; *Set LinkToSedTrans
= 'n'l);

char UseHeightLimit = 'n'; // Limit how large the

wave height can get



float beta limit = 0.2; // Smallest number beta
is allowed to go

float height limit = 2*0ffShoreWvHt; // Largest number
wave height is allowed to go

float MinBreakDistance = 70; // Minimum distance (m)
a wave is allowed to go to the shore before breaking

float delta s = 1; // Runge-Kutta step
size in WRT ODE solver (meters)

int NumSweeps = 4; // Number of ray sweeps
to run in WRT

int RollAvgNeighbors = 0; // Number of neighbors
to use in rolling average calculations (1-5,10)

int MaxGammaCounter = 100; // Number of time steps
to go before resetting Gamma calculation arrays

int DisplayOverallAverages = 0; // Display the overall

averages (H, RelAngle, Qs)?

/* Delta Info */

#define NMouths 0 /* number of river mouths
*/

float QRiver [NMouths];

#define SedRate 0.00

#define StreamSpot Ymax

/* Aspect Parameters */

#define CellWidth 25.0 /* size of cells (meters)
*/

#define CritBWidth 350.0 /* width barrier maintains
due to overwash (m) important scaling param! */

#define Xmax 200 /* number of cells in x
(cross—-shore) direction */

#define Ymax 1200 /* number of cells in y

(longshore) direction */
#define MaxBeachLength 8*Ymax /* maximum length of arrays
that contain beach data at each time step */

#define ShelfSlope 0.0052 /* slope of continental
shelf */
#define ShorefaceSlope 0.0177 /* for now, linear slope

of shoreface */
/* future : shoreface
exponent m"1/3, from depth of ~10m at ~1000 meters */
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#define DepthShoreface 8.22
shoreface due to wave action

#define LandHeight 1.90

MHW */

#define BathySlope 0.5 //
#define Kappa 0.1
coefficient

#define InitBeach 20 /*

/* minimum depth of
(meters)

*/

/* elevation of land above

Slope of bathymetry

// Bathymetry diffusion

cell where intial

conditions changes from beach to ocean */

#define InitialDepth 6.0 /*
meters of continental shelf at x =

Initial Conditions creation) */
#define InitCType 0 /*
= sandy, 1 = barrier */

#define InitBWidth 4 /*
barrier (Cells) */

#define OWType 1 /*
use geometric rule */

#define OWMinDepth 0.1 /*
all */

#define FindCellError 5 /*

how far over do we try again? */
float MaxDepth = 18;

theoretical depth in
InitBeach (only used for

type of initial conds 0
initial minimum width of
0 = use depth array, 1 =

littlest overwash of

if we run off of array,

// Maximum depth of

bathymetry if not using constant slope

int StartFlatBathy = 60;

from Xmax to have a flat bathymetry
/* beyond what absolute

float SedTansLimit =
slope don't do sed trans
float OverwashLimit =
do overwash */

int Ingth bathy = Xmax;
(cross—-shore; x-direction)

90;

75;

(degrees) *

// Bathymetry width

// Number of cells away
(+ towards shore)

/

/* beyond what angle don't

// Bathymetry length

(long-
// Use the Dean Profile

// Use the Dean Profile

(mirrored after going flat)

// Use a fixed slope in

// Diffuse the

int wdth bathy = Ymax;

shore; y-direction)

char UseDeanProfile = 'y';

for bathymetry?

char UseDeanMirror = 'n';

and mirrored bathymetry

char UseFixedBathySlope = 'n';
the bathymetry? (otherwise adaptive)
char DiffuseBathymetry = 'n';
bathymetry?

float T = 5;

float period = 5;
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/* Plotting Controls */

int CellPixelSize = 4;
int XPlotExtent = Xmax;
int YPlotExtent = Ymax;

int AgeMax = 1000000; /* Maximum 'age' of cells -
loops back to zero */
int AgeUpdate = 10; /* Time space for updating age

of non-beach cells */
int AgeShadeSpacing = 10000; /* For graphics - how many
time steps means back to original shade */

/* DeBuggin Parameters */

int DoGraphics = 0;

int KeysOn = 0;

int SaveAge = 0; /* Save/update age of cells? */
char PromptStart = 'n'; /* ask prompts for file names,
etc? */

char OffArray = 'n'; /* Initializing this wvariable

for later use */

int ScreenTextSpacing = 1000;/* Spacing of writing to
screen in time steps */

int EveryPlotSpacing = 100;

int StartStop = 0; /* Stop after every iteration 'Q'
to move on */

int InterruptRun = 0; /* Allow run to be paused by
pressing the 'A' key */

int NoPauseRun = 1; /* Disbale PauseRun subroutine */
int InitialPert = 0; /* Start with a bump? */

int InitialSmooth = 0; /* Smooth starting conditions */
int TestSSInstability = 0; // Test small-scale instability

with small perturbation (InitialSmooth must be = 1)
int StartWBigBumps = 0; // Initial condition: 2 large 100-
cell tall bumps (recommend InitialSmooth = 1)

int WaveAngleSign = 1; /* used to change sign of wave
angles */

int debug0 = 0; /* Main program steps */

int debugl = 0; /* Find Next Cell */

int debug2 = 0; /* Shadow Routine */

int debug3 = 0; /* Determine Angles */

int debug4 = 0; /* Upwind/Downwind */

int debug5 = 0; /* Sediment Transport Decisions*/
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int debug6 = 0; /* Sediment Trans Calculations */

int debug7 = 0; /* Transport Sweep (move sediment) */
int debug7a = 0; /* Slope Calcs */

int debug8 = 0; /* Full/Empty */

int debug9 = 0; /* FixBeach */

int debuglOa = 0; /* Overwash Tests*/

int debuglOb = 0; /* doing overwash (w/screen) */

int debugll = 0; // WRT initial parameters
int debuglla = 0; // WRT input bathymetry

int debugl2 = 0; // ODE solver output for WRT

int debugl3 = 0; // WRT iterative output

int debugld = 0; // WRT stored data

int debugl5 = 0; // WRT Data at wave break

int debugl6e = 0; // Wave height data at each cell from

WRT

int debugl6a = 0; // Number of wave rays that passed
through each cell

int debugléb = 0; // Beta data at each cell

int debugl7 = 0; // WRT wave breaking criteria

int debugl8 = 0; // Initial wave angle and starting
position for wave rays in WRT

int debugl9 = 0; // Average breaking height and angle

data (from WRT)

int debug20 = 0; // Wave origin in WRT

int debug2l = 0; // Display AWT wave height change
int debug22 = 0; // CERC Parameter debugger

int debug33 = 0; // Wave angle distribution debugger
int OWflag = 0; /* debugger */

/* Universal Constants */

#define pi 3.1415926535898

#tdefine exp 2.7182818 /* e */

double Pi = 3.1415926535898;

float g = 9.80665;

float radtodeg = 180.0/pi; /* transform rads to degrees
*/

float PerSecondToPerDay = 86400; // Multiplying a flux

by this converts a flux per second to a flux per day

/* Overall Shoreface Configuration Arrays - Data file
information */
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char AllBeach[Xmax] [2*Ymax] ; /* Flag indicating of

cell is entirely beach ('y'/'n') */

float PercentFull [Xmax] [2*Ymax]; /* Fractional amount of
shore cell full of sediment */

int Age [Xmax] [2*Ymax] ; /* Age since cell was
deposited */

float CellDepth[Xmax] [2*Ymax] ; /* Depth array (m) (ADA
6/3) */

float StartingLine[2*Ymax]; // Starting line if
reading a lineout file

FILE *SaveSandFile;

FILE *ReadSandFile;

FILE *ReadWaveFile;

/* Computational Arrays (determined for each time step) */

int X [MaxBeachLength]; /* X Position of
ith beach element */
int Y [MaxBeachLength]; /* Y Position of
ith beach element */
char InShadow [MaxBeachLength] ; /* Is ith beach

element in shadow? */

float ShorelineAngle[MaxBeachLength]; /* Angle between
cell and right (z+1) neighbor */

float SurroundingAngle [MaxBeachLength];/* Cell-orientated
angle based upon left and right neighbor */

char UpWind[MaxBeachLength]; /* Upwind or
downwind condition used to calculate sediment transport */
float VolumeIn[MaxBeachLength]; /* Sediment volume
into ith beach element */

float VolumeOut [MaxBeachLength]; /* Sediment volume
out of ith beach element */

float avg _breaking height[Z*Ymax]; // Average breaking
height at each shoreline cell

float avg breaking angle[2*Ymax]; // Average breaking
angle at each shoreline cell

float breaking angles[2*Ymax]; // Breaking angle
for each shorline cell (same as average)

float breaking heights[Z*Ymax]; // Breaking height
for each shorline cell (same as average)

float BkAngle[2*Ymax]; // Breaking angle

for each shoreline cell (for linking WRT to CEM)
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float HeightRollAvg[2*Ymax] ;

of breaking heights

float AngleRollAvg[2*Ymax];

of breaking angles

float SedFluxGrad[MaxBeachLength];
gradient (VolumeIn - VolumeOut, m"3/s)
float Diffusivity[MaxBeachLength];
at current time step

float Mu [MaxBeachLength];
(calculated a different way)

float SumMuDeltaT[MaxBeachLength];
diffusivities * delta t (timestep)
float SumAbsMuDeltaT [MaxBeachLength];

//
//
//
//
//
//
//

value of diffusivity * delta t (timestep)

float Gamma [MaxBeachLength];
index
int GammaCounter;

//
//

Rolling average
Rolling average
Sediment flux
Diffusivity (mu)
Diffusivity

Sum of

Sum of absolute
Instability

Counter to keep

track of when to reset time on Gamma calculations.

float Os[MaxBeachLength];

sediment transport at cell border

float dEta_ dt[MaxBeachLength];

shore position each time step

float RelAngle[MaxBeachLength];
between breaking wave & shoreline angle
float SLAngle[MaxBeachLength];

float SumBkHeight [2*Ymax] ;

breaking height over entire simulation)
float SumRelAngle[2*Ymax] ;

//
//
//

//
//

//

Volumetric
Change in cross-
Relative angle

Shoreline angle
Sum of the

Sum of the

relative breaking angle (over entire simulation)

float SumQs[2*Ymax] ;

entire simulation)

float TotalAvgBkHeight [2*Ymax] ;
height (over entire simulation)
float TotalAvgRelAngle[2*Ymax] ;
angle (over entire simulation)
float TotalAvgQs[2*Ymax] ;

entire simulation)

float AWTWvHeight [Xmax] [2*Ymax] ;
height in AWT

// Compuational Arrays in WRT function
int beach[2*Ymax];
float ZZ[Xmax] [2*Ymax];
float DiffusedDepth[Xmax] [2*Ymax];
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float depth[Xmax] [2*Ymax];

int x pos[Xmax];

int y pos[Z2*Ymax];

float L[Xmax][2*Ymax];

float c[Xmax][2*Ymax];

float cx[Xmax][2*Ymax];

float c2x2[Xmax] [2*Ymax];

float cy[Xmax] [2*Ymax];

float c2y2[Xmax] [2*Ymax];

float cxcy[Xmax] [2*Ymax];

float k[Xmax][2*Ymax];

float f[Xmax][2*Ymax];

float C g[Xmax][2*Ymax];

int y int[2*Ymax];

int N _rays hit[2*Ymax]; // Number of wave rays that hit
a particular beach cell

float cell wave height[Xmax] [2*Ymax]; // Current
wave height at each cell

float sum cell wave height[Xmax] [2*Ymax]; // Sum of
wave heights at each cell (adds every time ray passes over
cell)

float avg cell wave height[Xmax][2*Ymax]; // Average
wave height at each cell (over entire simulation)

float cell beta[Xmax][2*Ymax]; // Current
beta at each cell
float sum cell beta[Xmax][Z*Ymax]; // Sum of

beta information at each cell (adds every time ray passes
over cell)

float avg cell beta[Xmax] [Z*Ymax]; // Average
beta information at each cell (over entire simulation)
float breaking height[2*Ymax]; // Breaking height

for each shoreline cell (single wave ray)

float sum breaking height[2*Ymax]; // Sum of break
heights at each shoreline cell (addes every time a wave ray
hits it)

float breaking angle[2*Ymax]; // Breaking angle
for each shoreline cell (single wave ray)
float sum breaking angle[2*Ymax]; // Sum of break

heights at each shoreline cell (addes every time a wave ray
hits it)

float avg breaking angle[2*Ymax]; // Average breaking
angle at each shorline cell

int NumRaysPerCell [Xmax] [2*Ymax] ; // Number of rays
that pass through each cell
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int RayInCell[Xmax][2*Ymax]; // Has a ray passed
through this cell this iteration? (0 or 1)

/* Miscellaneous Global Variables */

int CurrentTimeStep = 0O; /* Time step of current
calculation */

int NextX; /* Global variables used to
iterate FindNextCell in global array - */

int NextY; /* would've used pointer but
wouldn't work */

int TotalBeachCells; /* Number of cells describing
beach at particular iteration */

int ShadowXMax ; /* used to determine maximum
extent of beach cells */

float WaveAngle; /* wave angle for current time
step */

int FindStart; /* Used to tell FindBeach at
what Y value to start looking */

char FellOffArray; /* Flag used to determine if
accidentally went off array */

float MassInitial; /* For conservation of mass
calcs */

float  MassCurrent; /xm ok

int device;

short button;

long buttonback;

int NumWaveBins; /* For Input Wave - number of
bins */

int BinSize; // Size of wave distribution
bins

float WaveMax[36]; /* Max Angle for specific bin
*/

float WaveProb[36]; /* Probability of Certain Bin
*/

float MaxWaveProb; // Maximum wave probability

float xcellwidth;

float ycellwidth;

float StartAngle; // Starting wave angle for WRT
float StartHeight; // Starting wave height for WRT
//static WINDOW *mainwnd;

//static WINDOW *screen;

//WINDOW *my win;
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int current getch;
int xplotoff;
int yplotoff;

int KEY P = 93;

/* Function Prototypes */

void
void
void
void
void
void
void
void
void
void
void
void
void
void
float
void
char
void
float
void
float
float
void
void
void
void
float
void
void
void
void
void
void
float

AdjustShore (int 1) ;

AgeCells(void) ;

ButtonEnter (void) ;

CalcSedFluxGrad(void) ;

CalcDiffusivity(void) ;

CalcGamma (void) ;

CalcOverallAverages (void) ;

CheckOverwash (int icheck) ;

CheckOverwashSweep (void) ;

DeliverSediment (void) ;

DetermineAngles (void) ;

DetermineSedTransport (void) ;

DisplayAWTWvHeight (void) ;

DoOverwash (int xfrom,int yfrom, int xto, int yto,
xintto, float yintto, float distance, int ishore);

FindBeachCells (int YStart);

FindIfInShadow(int icheck, int ShadMax) ;

FindNextCell (int x, int y, int z);

FindWaveAngle (void) ;

FixBeach (void) ;

GetOverwashDepth(int xin, int yin, float xintto,
yintto, int ishore);

InitConds (void) ;

InitPert (void) ;

InitBigBumps (void) ;

LoadLineout (void) ;

MassCount (void) ;

OopsImEmpty(int x, int y);

OopsImFull (int x, int vy);

OpenWindow (void) ;

PauseRun(int x, int y, int in);

PeriodicBoundaryCopy (void) ;

PrintLocalConds (int x, int y, int in);

Raise(float b, float e);
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floa
floa
floa
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
void
MaxT
void
void
int

void

/*vo

/* Lets's Go!

t RandAngleFluctuation(void) ;

t RandWaveAngle (void)
t RandZeroToOne (void)

.
14

.
14

ReadSandFromFile (void) ;

ReadWavelIn (void) ;

RunAWTOffShore (void);

RunWRT (void) ;

SaveDEtaDtToFile(void) ;
SaveDiffusivityToFile(void) ;
SaveGammaToFile (void) ;
SaveSandToFile (void) ;
SavelLineToFile(void) ;

SaveMuToFile (void) ;
SaveQsToFile (void) ;
SaveRelAngleToFile

(void) ;

SaveSedFluxGradOutToFile (void);
SaveSLAngleToFile (void) ;

SaveVolumeOutToFile (void);

SaveWvHeightToFile

(void) ;

SaveWvAngleToFile (void) ;

SedTrans (int From,
)
ShadowSweep (void) ;

int To,

float ShoreAngle,

TransportSedimentSweep (void) ;

XMaxBeach (int Max) ;
ZeroVars (void) ;

id FillUpGap(int X, int Y,

int main(void)

{

- Main Program */

int LorR);*/

/* Initialize Variables and Device */

int xx; /* duration loop variable */
int i; // index for loops
ShadowXMax = Xmax-=5;

srand (seed) ;
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/* Start from file or not? */

if (PromptStart == 'y')

{

printf("shall we start from a file (y or n)? \n");
scanf ("%c", &StartFromFile);

if (StartFromFile == 'vy'")
{
printf("Starting Filename? \n");
scanf ("%24s", readfilename);
printf("Saving Filename? \n");
scanf ("%s", savefilename);
printf ("What time step are we starting at?");
scanf ("%d", &CurrentTimeStep) ;
ReadSandFromFile () ;

}
if (StartFromFile == 'n'")
{
printf("Saving Filename? \n");
scanf ("%s", savefilename);
InitConds() ;
if (InitialPert)
{
InitPert ()
}
if (StartWBigBumps)
{
InitBigBumps () ;
}
printf("InitConds OK \n");
}
}
else if (StartFromFile == 'vy')
{
ReadSandFromFile () ;
}
else if (StartFromLine == 'y')
{
LoadLineout () ;
}
else
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{
InitConds() ;

if (InitialPert)

{

InitPert ()
}
if (StartWBigBumps)
{

InitBigBumps () ;
}
}

/* Count Initial Mass */

PeriodicBoundaryCopy () ;
FixBeach() ;
MassInitial = MassCount () ;

/*1f (Saveline)
SaveLineToFile () ;
if (SaveFile)
SaveSandToFile () ; */

if (Waveln)
ReadWavelIn () ;

// Calculate fall velocity (using Stokes settling)
if (UseBailard == 'vy'){

SedRad = DFifty/(2*1E6);

Fallvel = (2 * (rho s - rho) * g * Raise(SedRad,”))
/ (9 * DynViscosity);

T T PRIMARY
PROGRAM LOOP === === —m——mm oo */

SavelLineToFile() ;

while (CurrentTimeStep < StopAfter )
{
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/* Time Step iteration - compute same wave angle for
Duration time steps */

// Activate WRT

if (CurrentTimeStep >= StartWRTAfter) {
UseWRT = 'vy';
UseShadow = 'n';
//SaveHeight = 1;
//SavelLineSpacing = 1;
//SaveAngle = 1;
//printf ("UseWRT = %c \n", UseWRT) ;
//printf ("UseShadow = %c \n", UseShadow) ;
//printf ("\n");

// THIS IS FOR DEBUGGING

// 1f (CurrentTimeStep >= 7700) {
// SavelineSpacing = 1;
// SaveHeightSpacig = 1;
// SaveAngleSpacing = 1

// '}

4

/* Calculate Wave Angle */

if (UseSingleInitialAngle == 'vy'){
WaveAngle=thetao*3.14159/180;
} else {

WaveAngle = FindWaveAngle() ;
}

if (debug33) {
for (iii = 0; iii < NumWaveBins+1; iii++) {
//printf ("$i\n", 1iii);
if ((-WaveAngle*130/pi > (WaveMax[iii] -
BinSize) && (-WaveAngle*1580/pi <= WaveMax[1ii]))) {
TimesAngleHit[i1ii1i] = TimesAngleHit[iii] +
1
//printf ("TimesAngleHit = %i \n",
TimesAngleHit[iii]);
break;

}
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//printf ("Wave Angle = %G \n", WaveAngle*radtodeq) ;

// Clear all tracks

for (i = 0; i < MaxBeachLength; i++) {
Os[i] = 07

}

// Run WRT to determine breaking wave angles and
heights
if (UseWRT == 'y'){ // Use WRT

if (UseAWTOffshore == "'n'){
StartHeight = OffShoreWvHt;
StartAngle = WaveAngle;
printf ("WaveAngle = %G \n",
WaveAngle*radtodeq) ;
printf("StartHeight = %G \n", StartHeight);
} else if (UseAWTOffshore == 'y'){ // Use AWT to
pre-refract
printf ("Using AWT to propagate waves to WRT
origin... \n");
RunAWTOffShore () ;
printf ("WaveAngle = %G \n",
WaveAngle*radtodeq) ;
printf("StartAngle = %G \n",
StartAngle*radtodeq) ;
printf("StartHeight = %G \n'", StartHeight);
}

printf ("Running WRT... \n");
RUnWRT () ;
printf ("WRT run complete. Current time step: %d
\n", CurrentTimeStep); printf("\n");
} else { // Use AWT

if (UseAWTOffshore == 'y'){ // Use AWT to pre-

refract

printf ("Using AWT to propagate waves to WRT
origin... \n");

RUnAWTOffShore() ;

printf ("WaveAngle = %G \n",
WaveAngle*radtodeq) ;

printf("StartAngle = %G \n",
StartAngle*radtodeq) ;
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printf("StartHeight = %G \n'", StartHeight);

}

/* Loop for Duration at the current wave sign and wave
angle */

for (xx = 0; xx < Duration; =xx++)

{

/* Text to Screen? */

if (CurrentTimeStep%ScreenTextSpacing == 0)
{
printf ("==== WaveAngle: %2.2f MASS Percent: %1.4f

Time Step: %d\n", 180*(WaveAngle) /pi,
MassCurrent/MassInitial, CurrentTimeStep) ;

}

PeriodicBoundaryCopy () ;
ZeroVars () ;

/* Initialize for Find Beach Cells (make sure
strange beach does not cause trouble */

FellOffArray = 'yv';
FindStart = 1;

/* Look for beach - if you fall off of array, bump
over a little and try again */

while (FellOffArray == 'v')
{
FindBeachCells (FindStart) ;
/*printf ("FoundCells: %d GetO = %c \n",
FindStart,FellOffArray) ;*
FindStart += FindCellError;
if (FellOffArray == 'y')
{
/*printf ("NOODLE !!!!!FoundCells: %d GetO = %c
\n", FindStart,FellOffArray); */
/*PauseRun(1l,1,-1);*/
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}

/* Get Out 1f no good beach spots exist - finish
program*/

if (FindStart > Ymax/2+1)
{

o°
Q.

printf ("Stopped Finding Beach - done
2d",FindStart,Ymax/2-5) ;

SaveSandToFile() ;
SaveLineToFile() ;
SaveWvHeightToFile() ;
SaveWvAngleToFile() ;
SaveVolumeOQutToFile () ;
return 1;

}

}

if (debug0) printf("Foundbeach!: %d \n'",
CurrentTimeStep) ;

ShadowSweep () ;

if (debug0) printf("Shadowswept: %d \n'",
CurrentTimeStep) ;

DetermineAngles() ;

if (debug0) printf("AngleDet: %d \n'",
CurrentTimeStep) ;

DetermineSedTransport () ;

if (debug0) printf("Sed Trans: %d \n",
CurrentTimeStep) ;

DisplayAWTWvHeight () ;

TransportSedimentSweep() ;

if (debug0) printf("Transswept: %d \n'",
CurrentTimeStep) ;

DeliverSediment () ;

FixBeach() ;

if (debug0) printf("Fixed Beach: %d \n",
CurrentTimeStep) ;

// Calcuate and save the sediment flux gradient

CalcSedFluxGrad() ;
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if (((CurrentTimeStep%$SaveVolumeOutSpacing == 0 &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) &&
SaveVolumeOut)
{
SaveVolumeOutToFile () ;

}

if (((CurrentTimeStep%$SaveSedFluxGradOutSpacing ==
0 && CurrentTimeStep >= StartSavingAt)

|| (CurrentTimeStep == StopAfter)) &&
SaveSedFluxGradOut)
{
SaveSedFluxGradOutToFile () ;
}

/* OVERWASH */
/* because shoreline config may have been changed,
need to refind shoreline and recalc angles*/

ZeroVars () ;
/* Initialize for Find Beach Cells (make sure
strange beach does not cause trouble */

FellOffArray = 'y';
FindStart = 1;

/* Look for beach - if you fall off of array,
bump over a little and try again */

while (FellOffArray == 'vy')
{
FindBeachCells (FindStart) ;
/*printf ("FoundCells: %d GetO = %c \n",
FindStart,FellOffArray) ;*
FindStart += FindCellError;
if (FellOffArray == 'y')
{
/*printf ("NOODLE !!!!!FoundCells: %d
GetO = %c \n", FindStart,FellOffArray); */
/*PauseRun(1,1,-1);*/
}
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/* Get Out if no good beach spots exist -
finish program*/

if (FindStart > Ymax/2+1)
{
printf ("Stopped Finding Beach - done %d
2d",FindStart,Ymax/2-5) ;
SaveSandToFile() ;
return 1;

/* printf ("Foundbeach!: %d \n",
CurrentTimeStep); */

ShadowSweep () ;
if (debug0) printf("Shadowswept: %d \n'",
CurrentTimeStep) ;
DetermineAngles() ;
if (debug0) printf("AngleDet: %d \n",
CurrentTimeStep) ;
CheckOverwashSweep () ;
FixBeach() ;

if ((StartStop) )

{

printf("---- You Paused it, bud ---- \npp");
PauseRun(1,1,-1);

}

if (debug0) printf("End of Time Step: %d \n",
CurrentTimeStep) ;

/* Age Empty Cells */

if ((CurrentTimeStep%$AgeUpdate == () && SavelAge)
AgeCells();

/* Count Mass */
MassCurrent = MassCount () ;

CurrentTimeStep ++;
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// Calculate Diffusivity, Instability Index, and
Overall Averages (H, RelAngle, & Qs)

CalcDiffusivity();

CalcGamma () ;
CalcOverallAverages() ;

/* SAVE FILE ? */

if (((CurrentTimeStep%$SaveSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveFile)
{
SaveSandToFile() ;
}
if (((CurrentTimeStep%$SavelineSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && Saveline)
{
SaveLineToFile() ;
}
if (((CurrentTimeStep%SaveHeightSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveHeight)
{
SaveWvHeightToFile (),
}
if (((CurrentTimeStep%$SaveAngleSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveAngle)
{
SaveWvAngleToFile ();
}
if (((CurrentTimeStep%$SaveRelAngleSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) &&
SaveRelAngle)
{
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SaveRelAngleToFile ()

}
if (((CurrentTimeStep%SaveSLAngleSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveSLAngle)
{
SaveSLAngleToFile () ;
}
if (((CurrentTimeStep%$SaveQsSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveQs)
{
SaveQsToFile() ;
}

if (((CurrentTimeStep%$SaveDiffusivitySpacing ==
&& CurrentTimeStep >= StartSavingAt)

|| (CurrentTimeStep == StopAfter)) &&
SaveDiffusivity)
{
SaveDiffusivityToFile() ;
}
if (((CurrentTimeStep%$SaveMuSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveMu)
{
SaveMuToFile() ;
}
if (((CurrentTimeStep$%$SaveGammaSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveGamma)
{
SaveGammaToFile () ;
}
if (((CurrentTimeStep%SaveDEtaDtSpacing == &&
CurrentTimeStep >= StartSavingAt)
|| (CurrentTimeStep == StopAfter)) && SaveDEtaDt)
{

SaveDEtaDtToFile() ;
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/*1if (CurrentTimeStep > 14300)
SaveSandToFile () ;*/

}

// Display overall averages
if (DisplayOverallAverages) {

// Total Average Breaking Wave Height
printf ("Overall Average Breaking Wave Height =

\n");
for (1 = Ymax/2; 1 < 3*Ymax/2; 1i++){
printf ("G ", TotalAvgBkHeight[i]):;
}
printf ("\n\n");
// Total Average Relative Breaking Angle
printf ("Overall Average Relative Breaking Angle =
\n'");
for (1 = Ymax/2; 1 < 3*Ymax/2; 1i++){
printf ("%G ", TotalAvgRelAngle[il]):;
}
printf ("\n\n");
// Total Average Sediment Flux
printf ("Overall Average Sediment Flux (Qs) = \n");
for (i = Ymax/?; 1 < 3*Ymax/?; i++){
printf ("sG ", TotalAvgQs[il):
}
printf ("\n\n");
}

if (debug33){
printf ("\nTimesAngleHit =");
for (iv = 0; iv < NumWaveBins+1; iv++) {
printf (" %i ", TimesAngleHit[iv]):;
}
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/e END OF MAIN ----
______________________________________________ */

printf ("Run Complete. Output file: %s \n" ,
savefilename) ;

}

float FindWaveAngle (void)

/* calculates wave angle for given time step */
// Modified to run in both Windows and UNIX
// Corrected for input of PDFs

{
float Angle; // Wave angle
float AngleBin; // Max wave angle in PDF bin
float AngleFluct; // Random angle fluctuation
/* Data Input Method */
float RandBin; /* Random number to pick wave angle
bin */

float RandAngle; /* Random number to pick wave angle
within the bin */

int flag = 1;

int i=20;

int index = 0;

int index2 = 0;

float WaveMaxProb[36]; // Maximum angle in each

PDF wave bin

/* Variables for Asymmetry Method */

float AsymRandom; /* variable used to determine
wave direction for current time step */

float AngleRandom; /* variable used to determine
wave power for current time step */

int Sign; /* defines direction of incoming
waves for current time step, */
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/* positive from left, negative from right */

/* Method using input binned wave distribution -

*/
/* variables WaveProb[], WaveMax[], previously input
from file using ReadWavelIn () *x/
// Determine the wave angle from the input PDF
if (Waveln)
{
WaveMaxProb[0] = WaveProb[0];
for (index = 1; index < NumWaveBins+1l; index++)
{
WaveMaxProb[index] = WaveMaxProb[index-1] +
WaveProb[index];
}

RandBin = RandZeroToOne() ;
//printf ("RandBin = %G\n",RandBin) ;
AngleFluct = RandZeroToOne() ;

index2 = NumWaveBins;

while (flag)

{
if (RandBin >= WaveMaxProb[index2]) {
AngleBin = WaveMax[index2+1];
//printf ("AngleBin = %G\n", AngleBin);
flag = 0;
break;
}
index2--;
}
Angle = - (AngleFluct * BinSize + (AngleBin -

BinSize)) * (pi/180);
//printf ("Angle = %G \n", Angle*180/pi);

}

else{
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/* Method using wave probability step function

*/

/* Determine sign */

/* variable Asym will determine fractional
distribution of waves coming from the */

/* positive direction (positive direction coming
from left) -i.e. fractional wave asymmetry */

if (RunInWindows) {

AsymRandom = RandZeroToOne()/10;
} else {

AsymRandom = RandZeroToOne() ;

}

if ( AsymRandom <= Asym )
Sign = 1;

else
Sign = -1;

/* Determine wave angle */
/* New formulation - even distribution */

if (RunInWindows) {

AngleRandom = RandZeroToOne() / 10;
} else {

AngleRandom = RandZeroToOne() ;

}

if (AngleRandom > Highness)

{
Angle = Sign * (((AngleRandom)-Highness)/(l-
Highness)) * pi / 4.0;
}
else
{
Angle = Sign * (((AngleRandom)/Highness)*pi/4.0 +
pi/4.0);
}

/*printf ("Highness sub: %f AngleRandom: %f \n",
Highness, AngleRandom) ;
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printf ("WaveAngle sub: %f Angle: %f \n",
180* (Angle) /pi, AngleRandom) ; *

}
Angle = WaveAngleSign*Angle;
/*Angle =1.59/180.0*pi;*/
// Make sure wave angle 1is between 89 and -89 degrees
if (Angle >= (89*pi/1380)){
Angle = Angle - (1*pi/180);
} else if (Angle <= (-89*pi/1380)){
Angle = Angle + (1*pi/180);
}

return Angle;
}
float RandAngleFluctuation (void)

// Creates a random fluctuation in the initial wave angle

{ float Angle;
int debug = 0; // local debugger
Angle = (rand() %10) - 5;
if (debug) printf("Angle = %G \n'", Angle);
return Angle;
}

void FindBeachCells(int YStart)

/* Determines locations of beach cells moving from left to
right direction */
/* This function will affect and determine the global

arrays: X[] and Y[] */
/* This function calls FindNextCell
*/

/* This will define TotalBeachCells for this time step
*/
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int y, z, Xstart; /* local iterators */

/* Starting at left end, find the x - value for first
cell that is 'allbeach' */

xstart = Xmax -1; y = YStart;

while (AllBeach[xstart][y] == 'n'")

{

xstart -= 1;

}

xstart += 1; /* Step back to where partially

full beach */
X[0] = xstart; Y[0] = YStart;

if (debugl) printf("FirsX: %3d FrstY: %3d =z: 0 \n",
X[0l, Y[OT1);

z = 0;

while ((Y[z] < 2*Ymax -1) && (z < MaxBeachLength-1))

{

z++;

NextX = =2,
NextY = =2;

FindNextCell (X[z-1], Y[z-11, z-1);
X[z] = NextX;
Y[z] = NextY;

if (debugl) printf("Nextx: %$3d NextY: %3d =z: %d \n",
NextX, NextY, z);

if (PercentFull[X[z]]I[Y[z]] == 0)
{
printf ("\nFINDBEACH: PercentFull Zero x: %d y:
sdin",X[z],Y[z]);
/*PauseRun (X[z],Y[z],z);*/
}
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/* If return to start point or go off left side of
array, going the wrong direction */
/* Jump off and start again closer to middle

*/

if ((NextY < 1) || ((NextY == Y[0])&& (NextX==X[0]1)) ||
(z > MaxBeachLength =2))

{

/*printf("!IIIITIFel]l
offlrrrrrrrrrrrrrrrrrrrrrrrr el ox o= g4 trrrrrrrprpbrem
NextX) ;*

FellOffArray = 'yv';

ZeroVars () ;

return;

}
if (z > MaxBeachLength - 3)
{

printf ("??22?2?2?2?2?2???? went to end of MaxBeach!!

2222");
}
}

TotalBeachCells = z;
FellOffArray = 'n';

if (debugl) printf("Total Beach: %d \n \n",
TotalBeachCells);

}

void FindNextCell (int x, int y, int z)

/* Function to find next cell that is beach moving in the
general positive X direction */
/* changes global variables NextX and NextY, coordinates

for the next beach cell */
/* This function will use but not affect the global arrays:
AllBeach []1[], XI[], and Y[] */
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if ( AllBeach[x-1]1[y] == 'n")
/* No beach directly beneath cell */
{
if ( AllBeach[x][y-1] == 'y' && AllBeach[x][y+]l] ==
'nl)
/* If on right side of protuberance */
{
if ( AllBeach[x-1][y-1]1 == "'y' )
{ /* Move one inshore */
NextX = x-1; NextY = y; return;
}
else if (AllBeach[x-1][y-1] == "'n' ) /* This is

where shadow procedure was */
{ /* Back and to the left */
NextX = x-1; NextY = y-1, return;
}
printf ("Should've found next cell (1): %d, %d \n",

X, ¥Y)i
PauseRun(x, vy, z);
}
else if ( AllBeach[x][y-1] == 'n' && AllBeach[x][y+1]
== 'y')
/* If on left side of protuberance */
{
if ( AllBeach[x+1][y+1] == 'n' && AllBeach[x+1][y]
== 'n')
/* Up and right - move around spit end */
{
NextX = x+1; NextY = y+1;, return;
}
else if ( AllBeach[x+1][y] == 'v'")
/* On underside of regular or diagonally thin spit
*/
{
if ( AllBeach[x+1][y-1] == 'n' && AllBeach[x-1][y-
1] == 'n' && X[z-1]>x)
/* Reaching end of spit - not going in circles
*/
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{

NextX = x-1; NextY = y; return;

}
else if (AllBeach[x+1][y-1] == 'n')
/* This 1is reaching end of spit */
{
NextX = x+1; NextY = y-1, return;
}
/* Moving along back side of spit */
{
NextX = x; NextY = y-1; return;
}
}
else if ( AllBeach[x+1][y+1l] == 'v')
/* we know ( AllBeach([x+1][y] == 'n') */

/* Moving straight up */
/* NEW - we still don't want to go in */

{
NextX = x+1; NextY = y; return;
}
printf ("Should've found next cell (2): %d, %d \n",
X, Y);
PauseRun(x, y ,z);
}
if (AllBeach[x][y-1] == 'n' && AllBeach[x][y+l] ==
'nl)
/* Hanging out - nothing on sides or top - maybe on
corner? */
{
if (AllBeach[x-1][y+1] == 'yv' && AllBeach[x+1][v]
== 'n')
/* On left corner of protuberence, move right*/
{
NextX = x; NextY = y+1; return;
}
else if (AllBeach[x+1][y] == 'y' &&
AllBeach[x+1][y-1] == 'n'")
/* Under protuberance, move around to left and up
*/
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{
NextX = x+1; NextY = y-1; return;

}
else if (AllBeach[x+1][y] == 'y' &&
AllBeach[x+1][y-1] == 'v'")
/* Under protuberance, move to left */
{
NextX = x; NextY = y-1;, return;
}
printf ("Should've found next cell (3): %d, %d \n",
X, Y)i
PauseRun(x, vy, z);
}
else if ( AllBeach[x][y-1] == 'y' && AllBeach[x][y+1]
= "v)

/* thin entrance between spits. Don't even think
about going in there */

/* (Similar case to over head and underneath -
don't go in */

/* check to see which way we were coming in - from
below or from side */

{ if (X[z-1]1 > x)
/* coming from above */

{
if (AllBeach[x+1][y+1] == 'n'")
/* Move right and up*/
{
NextX = x+1; NextY = y+!; return;
}
else if (AllBeach[x+1][y] == 'n'")
/* Straight up*/
{
NextX = x+1; NextY = y; return;
}
else if (AllBeach[x+1][y-1] == 'n')
/* Up and left*/
/* shouldn't need this, this where coming from */
{
NextX = x+1; NextY = y-1;, return;
}
}

else if (X[z-1] < x)
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/* coming from below */

{
if (AllBeach[x-1][y-1] == 'n'")
/* move down and left*/
{
NextX = x-1; NextY = y-1, return;
}
else if (AllReach[x-1][y] == 'n')
/*move straight down*/
{
NextX = x-1; NextY = y; return;
}
else if (AllBeach[x-1][y+1l] == 'n')
/*move straight down*/
/* shouldn't need this, this would be where coming
from*/
{
NextX = x-1; NextY = y+1;, return;
}
}
printf ("Should've found next cell (3.5): %d, %d \n", x,
y) i
PauseRun(x, vy, z);
}
printf ("Should've found next cell (4): %d, %d \n", x,
y) i
PauseRun(x, vy, z);
}
else if ( AllBeach[x-1][y] == 'v' && AllBeach[x+1][v]
= 'n')
/* There 1is beach beneath cell, nothing over the head
*/
{
if ( AllBeach[x][y+]l] == 'n'")
/* Adjacent Cell to right is vacant */
{
if ( AllBeach[x-1][y+1] == 'yv' )
/* move straight right */
{
NextX = x; NextY = y+!1; return;
}
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else if ( AllBeach[x-1]1[y+1] == 'n' )
/* Move down and to right */

{
NextX = x-1; NextY = y+1; return;
}
printf ("Should've found next cell (5): %d, %d \n",
X, Y)i
PauseRun(x, vy, z);
}
else if ( AllBeach[x][y+1l] == "vy")

/*Brad's note : DON'T REALLY NEED TO REPEAT THIS
(WORKS SAME IN BOTH CASES) */
/* Right neighbor occupied */

{
if ( AllBeach[x+1][y+1] == 'n' )
/* Move up and to right */
{
NextX = x+1; NextY = y+1; return;
}
else if ( AllBeach[x+1][y+1] == "vy')
/* Move straight up */
{
NextX = x+1; NextY = y,; return;
}
printf ("Should've found next cell (6): %d, %d \n",
X, Y);
PauseRun(x, vy, z);
}
printf ("Should've found next cell (7): %d, %d \n", x,
V)
PauseRun(x, vy, z);
}
else if ( (AllBeach[x-1]1[y] == "'y') &&
(AllBeach[x+1]1[y] == 'v'))

/* There is beach behind cell, and over the head don't
want to go in (will be shadowed anyway */

/* Need to use last cell to find out if going into left
or right enclosure */
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{
/* Fill up that nasty piece of work */

/* FillUpGap (x,y, y-Y[z-1]);*/

if (Y[z-1]1 < v)
/* Moving towards right, bump up and over the

problem */

{
if (AllBeach[x+1][y-1] == 'n")
/* Move up and to the left */
{
NextX = x+1; NextY¥ = y-1; return;
}
else if (AllBeach[x][y-1] == 'n")
/* Move directly left */
{
NextX = x; NextY = y-1; return;
}
else if (AllBeach[x-1][y-1] == 'n'")
/* Move left and down */
{
NextX = x-1; NextY¥ = y-1; return;
}
printf ("Should've found next cell (8): %d, %d \n",

X, V)

PauseRun(x, vy, z);

}

else if (Y[z-1]1 > vy)
/* Moving towards left, go back right */
{
if (AllBeach[x-1][y+1] == 'n'")
/* Move down and to the right */
{
NextX = x-1; NextY = y+1; return;
}
else if (AllBeach[x][y+1l] == 'n")
/* Move directly right */
{
NextX = x; NextY = y+1; return;

}
else if (AllBeach[x+1][y+1] == 'n')
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/* Move right and up */

{
NextX = x+1; NextY = y+1; return;
}
printf ("Should've found next cell (8): %d, %d \n",
X, Y)i
PauseRun(x, vy, z);
}
printf ("Should've found next cell (9): %d, %d \n", x,
v) s
PauseRun(x, vy, z);
}
printf ("Should've found next cell (10): %d, %d \n", x,
v) s
PauseRun(x, vy, z);
}

/*void FillUpGap (int X, int Y, int LorR)

NOT CURRENTLY BEING USED *
*  When thin entrance is discovered, fill it up *

{

if (AllBeach[X] [Y+2*LorR] == 'n')

{
AllBeach[X] [Y+2*LorR] = 'y';
PercentFull [X] [Y+2*LorR] = 1;
printf(™!rrrrrrrrrrrrriii\n FILLEDERUP: %d, %d, %d

\n", X, Y, LorR);
}
}*/

void ShadowSweep (void)

/* Moves along beach and tests to see if cells are in
shadow */

/* This function will use and determine the Global array:
InShadow[] */

/* This function will use and adjust the variable:
ShadowXMax */

/* This function will use but not adjust the variable:
TotalBeachCells */
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int 1i;

/* Find maximum extent of beach to use as a limit for
shadow searching */

ShadowXMax = XMaxBeach (ShadowXMax) + 3;

if (debug2?) printf ("ShadowXMax: %d XMaxBeach: %d \n",
ShadowXMax, XMaxBeach (ShadowXMax)) ;

/* Determine 1f beach cells are in shadow */

for (i=0; 1 <= TotalBeachCells; i++)

{

InShadow[i] = FindIfInShadow (i, ShadowXMax) ;
}

int XMaxBeach (int Max)

/* Finds extent of beach in x direction */
/* Starts searching at a point 3 rows higher than input Max
*/

/* Function returns integer value equal to max extent of
'allbeach' */

int xtest, ytest;

Xtest = Max + 2;
ytest 0;

while (xtest > 0)

{

while (ytest < 2 *Ymax)

{
if (AllBeach[xtest][ytest] == "'y')
{

return xtest;
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}

ytest++;
}
ytest = 0;
Xtest--;
}
printf ("***** Should've found Xmax for shadow): %d, %d

*kkkk \n"  xtest, ytest);

return Xmax;

char FindIfInShadow(int icheck, int ShadMax)

/* Function to determine if particular cell xin,yin is in

shadow */

/* Returns a character 'y' if yes 'n' if no

*/

/* New 2/04 - use pixelwise march - make it faster, more
accurate - aa */

/* New 3/04 - correctly take acocunt for sideways and
underneath shadows - aa */

/* This function will use but not affect the global
arrays: */

/* AllBeach[][] and PercentFull[][] */

/* This function refers to global variable: WaveAngle

*/

{

float slope; /* search line slope - slope of
zero goes staight forward */

int ysign; /* holder for going left or right
alongshore */

float X,V /* holders for 'real' location
of x and y */

float xin, yin; /* starting 'real' locations */
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int xinint, yinint; /* integer locations for
starting location */
int xtestint,ytestint; /* cell looking at */

float xtest,ytest; /* 'real' location of
testing */
float xout,yout; /* used in AllBeach check -

exit coordinates */
int NextXInt, NextYInt; /* holder vairables for cell to
check */

float Yup, DistanceUp; /* when going to next x
cell, what other values */

float Xside, DistanceSide; /* when gpoing to next
y cell,other values */

int debug2a = 0; /* local debuggers */

int debug2b = 0;

// Use built-in or WRT shadowing routine?
if (UseShadow == 'n'){
// Use WRT shadowing routine
if (HeightRollAvg[icheck] == 0) {
return 'vy';
} else return 'n';
} else {
// Use built-in CEM shadwoing routine

/* convert angle to a slope and the direction of steps
*/

/* note that for case of shoreline, positive angle will
be minus y direction */

/*1f (icheck == 106) {debug2a = 1;debug2b=1;}*/
if (WaveAngle == 0.0)
{

/* unlikely, but make sure no div by zero */
slope = 0.00001;

}

else if (fabs(WaveAngle) == 90.0)

{

slope = 9999.9;

}
else
{
slope

}

fabs (tan (WaveAngle)) ;
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if (WaveAngle > 0)

ysign = -1;
else
ysign = 1;
if (debug2a) printf("\nl: $d--——-——--———- Xx: %d  Y: %d
Wang: $%f Slope: %f sign: %d \n",
icheck,

X[icheck],Y[icheck] ,WaveAngle*radtodeg,slope, ysign);

/* 03/04 AA: depending on local orientations, starting
point will differ */
/* so go through scenarios */

Xxinint X[icheck];
yinint = Y[icheck];

if (AllBeach[xinint-1][yinint] == "y' ||
((AllBeach[xinint] [yinint-1] == "'y') &&
(AllBeach[xinint] [yinint+1] ==
'v')) )
/* 'regular condition' */
/* plus 'stuck in the middle' situation (unlikely
scenario) */

{

xin = xinint + PercentFull[xinint][yinint];

yin = yinint + 0.5;

if (debug2a) printf("-- Regular xin: %$f vyin:
$f\n",xin,yin) ;

}

else if (AllBeach[xinint][yinint-=-1] == 'y'")

/* on right side */

{

xin = xinint + 0.5;

yin = yinint 4+ PercentFull[xinint][yinint];

if (debug2a) printf("-- Right xin: $f vyin:
$f\n",xin,yin) ;

}

else if (AllBeach[xinint][yinint+l] == 'v')

/* on left side */

{

Xxin = xinint + 0.5;

yin = yinint + 1.0 - PercentFull[xinint][yinint];
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if (debug2a) printf("-- Left xin: %f vyin:
Ff\n",xin,yin) ;

}

else if (AllBeach[xinint+1][yinint] == 'y'")

/* gotta be on the bottom now */

{

xin = xinint + 1 - PercentFull[xinint][yinint];

yin = yinint + 0.5;

if (debug2a) printf("-- Under xin: %f vyin:
$f\n",xin,yin) ;

}

else

/* debug ain't just an insect */

{

printf ("Shadowstart Broke !!!!l ");

PauseRun(xinint,yinint,icheck) ;

}

X = x1n;

y = yin;

while ((floor(x) < ShadMax) && (y > Ymax/?) && (y <

3*Ymax/2))

{
NextXInt =

NextYI
else
NextYI

/* moving
position? */

floor(x) + 1;
if (ysign > 0)

nt

nt

to

= floor(y) + 1;

ceil(y-1);

next whole 'x' position, what is vy

Yup = v + (NextXInt-x)*slope * ysign;

DistanceUp

((Yup - y)*(Yup - y) + (NextXInt

x) * (NextXInt - x));

/* moving to next whole 'y' position, what is x

position? */

Xside = x + fabs(NextYInt - y) / slope;

DistanceSide
- X)*(Xside - x));

if (debug2
DistD: $f Xs:

a)
St

= ((NextYInt - y)*(NextYInt - y) + (Xside

printf("x: %f vy: Sf X:%d Y: %d Yd:
DistS: %$f\n",
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xX,y,NextXInt,NextYInt,
Yup,DistanceUp,Xside,DistanceSide) ;

if (DistanceUp < DistanceSide)
/* next cell is the up cell */

{
x = NextXInt;
y = Yup;
xtestint = NextXInt;
ytestint = floor(y);
if (debug2a) printf (" up ");
}
else
/* next cell is the side cell */
{
X = Xside;
y = Next¥Int;
xtestint = floor(x);
ytestint = y + (ysign-1)/2;
if (debug2a) printf (" side ");
}
if (debug2a) printf (" x: %f y: $f xtesti: %d

ytesti: %d \n\n",x,y,xtestint,ytestint);

/* Now Test */
/* If AllBeach is along the way, will we pass through
'diamond'? */

/* Trick - if crossing through the diamond, will change
quadrants */

/* Probably won't get to this one, though
*/

if (AllBeach[xtestint][ytestint] == 'v')

{

/* use same approach to find exit (could make this
modular) */

/* don't change 'x' or 'y' and this will be ok
*/

NextXInt = floor(x) + 1;

if (ysign > 0)

NextYInt = floor(y) + 1;

else
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NextYInt = ceil(y-1);

Yup = v + (NextXInt-x)*slope * ysign;

DistanceUp = ((Yup - y)*(Yup - y) + (NextXInt -
x) * (NextXInt - x));

Xside = x + fabs(NextYInt - y) / slope;

DistanceSide = ((NextYInt - y)*(NextYInt - y) +
(Xside - x)*(Xside - x));

if (DistanceUp < DistanceSide)
/* next cell is the up cell */

{

xout = NextXInt;

yout = Yup;

}

else

/* next cell i1s the side cell */
{

xout = Xside;

yout = NextYInt;

}

/*1if (debug2a) printf ("In Allbeach xin: %2.2f yin:
$2.2f xout: %$2.2f yout: %2.2f\n",
xX,y,xout,yout) ;
if (debug2a) printf("In Allbeach xin: %2.2f yin:
$2.2f xout: %$2.2f yout: %2.2f\n",
(xout-xtestint-0.5), (x-xtestint-0.5), (yout-
ytestint-0.5), (y-ytestint-0.5));*/

if(( (xout-xtestint-0.5) * (x-xtestint-0.5) < 0 )
|l ((yout-ytestint-0.5) * (y-ytestint-0.5) < 0))

{

if (debug2a) printf (" Shaddowded ") ;

return 'vy';

}
}
/* Compare a partially full cell's x - distance to a
line projected */

/* from the starting beach cell's x-distance

*/
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/* This assumes that beach projection is in x-direction
(not too bad) */

else if ( PercentFull[xtestint][ytestint] > 0 )
{

if (AllBeach[xtestint-1][ytestint] == "'y' ||
((AllBeach[xtestint] [ytestint-1] == "y') &&
(AllBeach[xtestint] [ytestint+1l] == "'v')) )

/* 'regular' condition */
/* plus 'stuck in the middle' situation (unlikely
scenario) */

{
xtest xtestint + PercentFull[xtestint] [ytestint];

ytest = ytestint + 0.5;

if (xtest > (xin + fabs(ytest-yin)/slope) )
{
if (debug2b) printf("Top: sl: Sf xt: $2.2f xin:
$2.2f yt: %2.2f yin: %2.2f comp: $%2.2f > Thing: %2.2f\n",
slope, xtest, xin, ytest, yin, xtest,
(xin + fabs(ytest-yin)/slope)):;
return 'vy';
}

}
else if (AllBeach[xtestint][ytestint-1] ==

/* on right side */
{

xtest xtestint + 0.5;
ytest = ytestint + PercentFull[xtestint][ytestint];

v')

if (ytest > (yin + (xtest-xin) * slope))
{

o°

if (debug2b) printf("Right: xt: $f vyt: $f

comp: %f > Thing: %f\n",
xtest, ytest, ytest, (yin + (xtest-xin)

* slope));
return 'y';
}
}
else if (AllBeach[xtestint][ytestint+l] == 'y'")
/* on left side */
{

Xtest = xtestint + 0.5;
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ytest = ytestint + 1.0 -
PercentFull [xtestint] [ytestint];

if (ytest < (yin + (xtest-xin) * slope))
{

o\°

if (debug2b) printf("Left: xt:
comp: %f < Thing: %f\n",
xtest, ytest, ytest, (yin + (xtest-xin)

f yt: %f

* slope));
return 'vy';
}
}
else if (AllBeach[xtestint+1][ytestint] == 'vy'")
/* gotta be on the bottom now */
{

Xxtest = xtestint + 1 -
PercentFull [xtestint] [ytestint];
ytest = ytestint + 0.5;

if (xtest < (xin + fabs(ytest-yin)/slope) )
{
if (debug2b) printf("Bottom: xt: %f vyt: %f
comp: %f < Thing: %f\n",
xtest, ytest, xtest, (xin + fabs(ytest-
yin)/slope)) ;

return 'v';
}
}

else
/* debug ain't just an insect */

{

printf (" 'Shaddows' not responding xin: %$f yin: %f

xt: $f yt: $£f \n",
xin,yin,xtest, ytest);
/*PauseRun (xtestint, ytestint, icheck) ;*/
}
}
}
return 'n';
}
}
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void DetermineAngles(void)

/* Function to determine beach angles for all beach cells
from left to right */

/* By convention, the ShorelineAngle will apply to current
cell and right neighbor */

/* This function will determine global arrays:

*/

/* ShorelineAngle[], UpWind[], SurroundingAnglel]

*/

/* This function will use but not affect the following
arrays and values: */

/* X[], Y[], PercentFull[][], AllBeach[][], WaveAngle
*/

/* ADA Revised underside, SurroundingAngle 6/03, 2/04
fixed */

/* ADA Revised angle calc 5/04

*/
{
int 1,3,k; /* Local loop variables */
int x2int, y2int; /* shoreline location vars */
float x2,x1,y2,v1l; /* shoreline location variables
*/
int debug3a = 0; /* local debuggr */

/* Shoreline Angle Calcs - ADA 05/04 - use correct
'point' to do calcs (like in shaddow */

/* Set first point */

/* first angle should be regular one - periodic BC's
should also take care */

X2
y2

X[0] + PercentFull[X[O0]11I[Y[0]1];
Y[O] + 0.5;

/* Compute ShorelineAnglel[] */
/* not equal to TotalBeachCells because angle between
cell and rt neighbor */

for (i=0 ; i < TotalBeachCells ; i++)
{
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x1l = x2;

yl = y2;

x2int = X[i+1];

y2int = Y[i+1];

if (AllBeach[x2int-1][y2int] == "'v' ||
((AllBeach[x2int] [y2int-1] == 'y') &&

(AllBeach[x2int] [y2int+1] == 'v'))
&& (AllBeach[x2int+1][y2int] == 'n'))
/* 'regular condition' - if between */

/* plus 'stuck in the middle' situation (unlikely
scenario) */

{
x2 = x2int + PercentFull[x2int][y2int];
y2 = y2int + 0.5;
if (debug3a) printf("-- Regular xin: %f vyin:
SE\n",x2,vy2);
}
else if ((AllBeach[x2int+1][y2int] == 'y') &&
(AllBeach[x2int=-1][y2int] == 'v'"))
/* in a sideways nook (or is that a cranny?) */
{
X2 = x2int + 0.5;
if (AllBeach[x2int][y2int-1] == "y')
/* right-facing nook */
{
y2 = y2int + PercentFull[x2int][y2int];
}
else
/* left-facing nook */
{
y2 = y2int + 1.0 = PercentFull[x2int][y2int];
}
if (debug3a) printf("-- Nook xin: $f vyin:
SE\n",x2,vy2);
}
else if (AllBeach[x2int][y2int-1] == 'v')
/* on right side */
{

X2 = x2int + 0.5;
y2 = y2int + PercentFull[x2int][y2int];
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if (debug3a) printf("-- Right xin: %f vyin:
SEA\n",x2,y2);
}
else if (AllBeach[x2int][y2int+l] == 'y')
/* on left side */

{
X2 = x2int + 0.5;
y2 = y2int + 1.0 - PercentFull[x2int][y2int];
if (debug3a) printf("-- Left xin: $f vyin:
SE\n",x2,vy2);
}
else if (AllBeach[x2int+1][y2int] == 'v')
/* gotta be on the bottom now */
{
X2 = x2int + 1 - PercentFull[x2int][y2int];
y2 = y2int + 0.5;
if (debug3a) printf("-- Under xin: %f vyin:
SE\n",x2,vy2);
}
else
/* debug ain't just an insect */
{
printf ("Shadowstart Broke !!!!l ");
PauseRun(x2int,y2int,i+1) ;
}

/* compute angles */

if (y2 > yl)
{
ShorelineAngle[i] = atan((x2 - x1) / (y2 - vy1));
if (debug3) printf("(R) 1 = %d X[i]: %d Y[i]: %d
Percent %3f x: %$f y: %f Angle:%$f Deg Angle: %$f \n",
i, X[1], Y[i],
PercentFull[X[1]1]1I[Y[1]1],x2,y2,ShorelineAngle[i],
ShorelineAngle[i]*130/pi) ;

}
else if (y2 == yl)
{
ShorelineAngle[i] = pi/2.0 * (x1 - x2) / fabs(x2 -
x1);

if (debug3) printf("(G) i = 2d X[i]: 2d Y[i]: %d
Percent %3f x: $%$f y: %f Angle:% Deg Angle: %f \n",
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i, X[il, YI[1i],
PercentFull [X[i]1]1[Y[1]],x2,y2,ShorelineAngle[i],
ShorelineAngle[i]*130/pi);

}
else
/* y2 <yl */
{
ShorelineAngle[i] = atan((x2 - x1) / (y2 - yl)) -
pi;
if (ShorelineAngle[i] < - pi)
{
ShorelineAngle[i] += 2.0 * pi;
}
if (debug3) printf("(U) 1 = %d X[i]: %d Y[i]: %d
Percent %3f x: %f y: %f Angle:% Deg Angle: %f \n",

i, X[il, YI[il,
PercentFull[X[1]]1I[Y[i]],x2,y2,ShorelineAngle[i],
ShorelineAngle[i]*130/pi);

}

}

for (k=1 ; k < TotalBeachCells ; k++)

{

/* compute SurroundingAngle array */

/* 02/04 AA averaging doesn't work on bottom of spits
*/

/* Use trick that x is less if on bottom of spit -
angles might be different signs as well */

if ((Y[k-1] - Y[k+1] == 2) &&
(copysign(ShorelineAngle[k-1],ShorelineAngle[k]) !=
ShorelineAngle[k-11]1))
{
SurroundingAngle[k] = (ShorelineAnglel[k-1] +
ShorelineAnglel[k]) / 2 + pi;
if (SurroundingAnglel[k] > pi)

{

SurroundingAngle[k] -= 2.0 * pi;

}

if (debug4) printf("Under: %d\n",k);
}
else
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{
SurroundingAngle[k] = (ShorelineAngle[k-1] +
ShorelineAngle[k]) / 2;

}

}

/* Determine Upwind/downwind condition
*/

/* Note - Surrounding angle is based upon left and
right cell neighbors, */

/* and is centered on cell, not on right boundary
*/

if (debug4) printf("\nUp/Down Wave Angle:%f\n",
WaveAngle * radtodeq);

for (j=1 ; J < TotalBeachCells ; Jj++)
{
if (debug4) printf("i: %d Shad: %c Angl[i]: %3.1f Sur:
%$3.1f Effect: %3f ",
j,InShadow[]j], ShorelineAngle[j]*radtodeg,
SurroundingAngle[j]*radtodeg, (WaveAngle -
SurroundingAngle[j]) *radtodeqg) ;

if ( fabs(WaveAngle - SurroundingAngle[]]) >=
42 .0/radtodeg )

{

UpWind[3] = 'u';

if (debug4) printf("U(l) ");
}
else
{

UpWind[3] = 'd';

if (debug4) printf("D(1) ");
}

if (debug4) printf("\n");

}
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void DetermineSedTransport (void)

/* Loop function to determine which neigbor/situation to
use for sediment transport calcs */

/* Once situation 1s determined, will use function
SedTrans to determine actual transport */

/* This function will call SedTrans which will determine

global arrays: */
/* VolumeIn[], VolumeOut][]
*/
/* This function will use but not affect the following
arrays and values: */
/* X[], Y[], InShadow[], UpWind[], ShorelineAngle][]
*/
/* PercentFull[][], AllBeach[][], WaveAngle
*/
{

int 1i; /* Loop variable */

float ShoreAngleUsed; /* Temporary holder for
shoreline angle */

int CalcCell; /* Cell sediment coming from to go
across boundary i */

int Next,Last; /* Indicators so test can go both
left/right */

int Correction; /* Term needed for shoreline angle

and i+l case, angle stored at i */
char UpWindLocal; /* Local holder for upwind/downwind
condition */

char MaxTrans; /* Do we need to compute using
maximum transport ? */

int DoFlux; /* Skip sed transport calcs (added
02/04 ARD) */

int y coord; // Y-coordinate of the ith cell

float dQs dtheta; // partial Qs / partial theta

float QL; // Qs on the left border of the

cell (using central breaking data & left side shoreline
angle)

float QR; // Qs on the right border of the
cell (using central breaking data & right side shoreline
angle)
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float SLAngleL; // Shoreline angle on the left side

of the cell border
float SLAngleR; // Shoreline angle on the right

side of the cell border
float rho = 1020; /* kg/m3 - density of water and

dissolved matter */

if (debugb) printf("\nSEDTRANS: %d @ %f \n\n",
CurrentTimeStep, WaveAngle * radtodeg);

for (i=1 ; i1 < TotalBeachCells-=1 ; i++)

{
if (debugb) printf("\n 1i: %d ",i);

y coord = Y[i]; // WRT y-coordinate for the ith
cell

MaxTrans = 'n';
/* Is littoral transport going left or right? */

if ((WaveAngle-ShorelineAngle[i]) > 0)
{

/* Transport going right, center on cell to left

side of border */
/* Next cell in positive direction, no correction

term needed */
CalcCell = 1i;

Next = 1;
Last = -1
Correction = 0;

if (debugb) printf("RT %d ",CalcCell);
}
else

{

/* Transport going left, center on cell to right
side of border */

/* Next cell in negative direction, correction
term needed */

CalcCell = i+1;

Next = -1;

Last = 1;
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Correction = -1;

if (debugb) printf("LT %d ",CalcCell);

}
if (UseWRT == 'y')
{
if (AngleRollAvg[y coord] - ShorelineAngle[y coord]
>= 0)
{
// Transport going right
CalcCell = 1i;
Next = 1;
Last = -1;
Correction = 0;
if (debugb) printf("RT %d ",CalcCell);
}
else
{
// Transport going left
CalcCell = 1i+1;
Next = -1;
Last = 1;
Correction = -1;
if (debugb) printf("LT %d ",CalcCell);
}
}
if ( InShadow[CalcCell] == 'n')
{

/* Adjustment for maximum transport when passing

through 45 degrees */
/* This adjustment is only made for moving from

downwind to upwind conditions */

/* */
/* purposefully done before shadow adjustment,
only use maxtran when */

/* transition from dw to up not because of shadow

*/
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/* keeping transition from uw to dw - does not seem
to be big deal (04/02 ARA) */

if ( ((UpWind[CalcCell] == 'd') &&
(UpWind[CalcCell+Next] == 'u') &&
(InShadow[CalcCell + Next] == 'n')) ||
((UpWind[CalcCell+Last] == 'u') &&
(UpWind[CalcCell] == 'd")
&§& (InShadow[CalcCell+Last] == 'n')) )
{
MaxTrans = 'yv';
if (debugb) printf ("MAXTRAN "),
}

/* Upwind/Downwind adjustment Make sure sediment
is put into shadows */
/* If Next cell is in shadow, use UpWind condition

*/

DoFlux = 1;
UpWindLocal = UpWind[CalcCell];

if (InShadow[CalcCell+Next] == 'y')
{

UpWindLocal = 'u';

if (debugb) printf("U(2) ")

}

/* If coming out of shadow, downwind should be
used */

/* HOWEVER- 02/04 AA - if high angle, will result
in same flux in/out problem */

/* solution - no flux for high angle waves */

if ((InShadow[CalcCell+Last] == 'y') &&(UpWindLocal
== 'u'))

{

DoFlux = 0;
if (debugb) printf("U(X) NOFLUX \n");

}
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// If using WRT, determine if upwind or downwind is
to be used

// 1f (UseWRT == 'y')
/7 A
// //Calculate shoreline angles on the cell
borders
// SLAngleR = ShorelineAnglel[i];
// SLAnglelL = ShorelineAngle[i-1];
// // Calculate Qs on the borders of the ith
cell

// QR =
l1.1*rho*Raise(g,3.0/2.0) *Raise (HeightRollAvg[y coord],2.5)*
cos (AngleRollAvg([y coord] -

// SLAngleR) *sin (AngleRollAvg[y coord] -
SLAngleR) *TimeStep;

// QL =
l.1*rho*Raise(g,3.0/2.0) *Raise (HeightRollAvg[y coord],2.5)*
cos (AngleRollAvg[y coord] -

// SLAnglel) *sin (AngleRollAvg[y coord] -
SLAnglel) *TimeStep;

// //Calculate dQs dtheta
// dQs dtheta = (QR - QL) / (SLAngleR -
SLAnglel) ;

// //Determine upwind/downwind
// if (dQs dtheta > 0)

/7 A

// UpWindLocal = 'u';
/7 0}
// else
// A

// UpWindLocal = 'd';
/7 0}

/7 0}

/* Use upwind or downwind shoreline angle for
calcs */

if (UpWindLocal == 'u')
{
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ShoreAngleUsed =
ShorelineAngle[CalcCell+Last+Correction];

if (debugb) printf("UP ShoreAngle: %3.1f ",
ShoreAngleUsed * radtodeg);

}

else if (UpWindLocal == 'd'")

{

ShoreAngleUsed =
ShorelineAngle[CalcCell+Correction];

if (debug5) printf("DN ShoreAngle: $3.1f ",
ShoreAngleUsed *radtodeqg) ;

}

/* !'l'l Do not do transport on unerneath c'cause it
gets all messed up */

if (fabs(ShoreAngleUsed) > SedTansLimit/radtodeq)

{

DoFlux = 0;

}

/* Send to SedTrans to calculate VolumeIn and
VolumeOut*/

/* printf("i = $d Cell: %d NextCell: %d Angle: %f
Trans Angle: %$f\n",
i, CalcCell, CalcCell+Next,
ShoreAngleUsed*180/pi, (WaveAngle -
ShoreAngleUsed) *180/pi); */

if (debugb) printf("From: %d To: %d TransAngle
%3.1f", CalcCell, CalcCell+Next,
(WaveAngle - ShoreAngleUsed) *
radtodeq) ;

if (DoFlux)

{
SedTrans (CalcCell, CalcCell+Next, ShoreAngleUsed,
MaxTrans) ;

}
}

}
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void SedTrans(int From, int To, float ShoreAngle, char
MaxT)

/* This central function will calcualte the sediment
transported from the cell at From to */

/* the cell at To, using the input ShoreAngle

*/

/* This function will caluclate and determine the global

arrays: */
/* VolumeIn[], VolumeOut[], and QOs][]
*/

/* This function does not use any other arrays

*/

/* This function will use the global values defining the
wave field: */

/* WaveAngle, Period, OffShoreWvHt

*/

/* Revised 6/02 - New iterative calc for refraction and
breaking, parameters revised */

{

/* Coefficients - some of these are important*/

//float StartDepth = 3*0ffShoreWvHt; /* m, depth to
begin refraction calcs (needs to be beyond breakers) */
float StartDepth = MaxDepth + (.00l1*StartFlatBathy)
// Ensures starting AWT at the edge of the WRT domain
float RefractStep = .2; /* m, step size to iterate
depth for refraction calcs */

/* Variables */

int Broken = 0; /* 1s wave broken yet?
*/

float AngleDeep; /* rad, Angle of waves to shore
at inner shelf */

float Depth = StartDepth; /* m, water depth for
current iteration */

float DepthBreak; // Depth at wave breaking
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float Angle; /* rad, calculation angle

*/
float CDeep; /* m/s, phase velocity in deep
water */
float LDeep; /* m, offhsore wavelength
*/
float C; /* m/s, current step phase velocity
*/
float kh; /* wavenumber times depth
*/
float n; /* n */
float WaveLength; /* m, current wavelength
*/
float WvHeight; /* m, current wave height
*/
float VolumeAcrossBorder; /* m3/day
*/

int y coord; // y-coordinate of the beach
cell "From"

int counter = 0;

int debugba = 1; // Print volume only

int debugl9a = 0; // local debugger

int debugl9b = 0; // local debugger

/* Primary assumption is that waves refract over shore-

parallel contours */

/* New algorithm 6/02 iteratively takes wiave onshore

until they break, then computes Qs */

*/

/* See notes 06/05/02

// Set MaxDepth
if (UseWRT == 'v'){
StartDepth = MaxDepth + (.00l*StartFlatBathy); //

Ensures starting AWT at the edge of the WRT domain

} else {
StartDepth = MaxDepth;

}

// Prerefract using AWT?
if (UseAWTOffshore == 'v'){
AngleDeep = StartAngle - ShoreAngle;
if (debug6) printf("Wave Angle %$2.2f Shore Angle

%2.2f ",StartAngle*radtodeg, ShoreAngle*radtodeq);
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} else {
AngleDeep = WaveAngle - ShoreAngle;
StartHeight = OffShoreWvHt;
if (debug6) printf("Wave Angle %2.2f Shore Angle

$2.2f " ,WaveAngle*radtodeg, ShoreAngle*radtodeq) ;
}
if (MaxT == 'vy')
{
AngleDeep = 42.0 / radtodeg;
}

if (debug6) printf("Deep Tranport Angle %2.2f
\n\n",AngleDeep*radtodeq) ;

/* Don't do calculations if over 90 degrees, should be
in shadow */
// But only if you're NOT using WRT

if ((AngleDeep > 0.995%pi/2.0 || AngleDeep < -
0.995%pi/2.0) && (UseWRT == 'n'))
{

return;

}

else

{

y coord = Y[From];

SLAngle[y coord] = ShoreAngle;

if (UseWRT == 'v'){

// Use breaking wave height and angle data returned

from WRT for the y-position of Y[From]
//WvHeight = avg breaking height[y coord];

//Angle = breaking angles[y coord] - pi;
WvHeight = HeightRollAvg[y coord];
//Angle = - (AngleRollAvg[y coord] - pi) + ShoreAngle;

Angle = AngleRollAvg[y coord] - ShoreAngle;

if (debugl9a) printf("y coord = %i \n", y coord);
if (debugl9a) printf("WvHeight = %G \n", WvHeight);
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if (debugl9a) printf("Angle = %G \n \n",
Angle*radtodeq) ;

if (debugl9b) printf("breaking heights = %G \n",
breaking heights[y coord]);

if (debugl9b) printf("avg breaking height = %G \n",
avg breaking height[y coord]);

if (debugl9b) printf("breaking angles = 3G \n",
breaking angles[y coord]);

if (debugl9b) printf("avg breaking angle = 3G \n",
avg _breaking angle[y coord]);

if (debugl9b) printf("BkAngle = %G \n \n",
BkAngle[y coord]);

} else { // Use the Aston Wave Transformation

/* Calculate Deep Water Celerity & Length, Komar 5.11 c
= gT / pi, L = CT  */

CDeep = g * Period / (2.0 * pi);

LDeep = CDeep * Period;

if (debug6) printf("Cheep = %2.2f LDheep = %2.2f
\n'",CDeep, LDeep):;

while (!Broken)
{
/* non-iterative eqn for L, from Fenton & McKee

*/

WaveLength = LDeep *
Raise (tanh (Raise (Raise(”.0*pi/Period,?) *Depth/g,.75)),2.0/3
-0)

C = WavelLength/Period;

if (debug6) printf("DEPTH: %2.2f Wavelength = $2.2f
C = %2.2f ", Depth, WaveLength,C);

/* Determine n = 1/2 (1+2kh/tanh(kh)) Komar 5.21
*/

Il
N

/* First Calculate kh = 2 pi Depth/L from k
pi/L */

kh = pi * Depth / WaveLength;

n=0.5* (1 4+ 2.0 * kh / sinh(2.0%*kh)):;

if (debug6) printf("kh: %2.3f n: %2.3f ", kh, n);
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/* Calculate angle, assuming shore parallel

contours and no conv/div of rays */

/* from Komar 5.47 */

Angle = asin(C/CDeep * sin(AngleDeep)) ;
if (debug6) printf("Angle: %2.2f",Angle*radtodegqg);

/* Determine Wave height from refract calcs - Komar

*/

WvHeight = StartHeight *

Raise (CDeep*cos (AngleDeep) / (C* *n*cos (Angle)),.5);

}
}

AWTWvHeight [counter] [From] = WvHeight;
if (debug6) printf (" WvHeight : %2.3f\n",WvHeight)

if (WvHeight > Depth*KBreak) {
Broken = 1;

counter = 0;

DepthBreak = Depth;

HeightRollAvg[y coord] = WvHeight;
AngleRollAvg[y coord] = Angle + ShoreAngle;
}

else if (Depth == RefractStep)
{

Broken = 1;

Depth -= RefractStep;

counter = 0;

DepthBreak = Depth;

HeightRollAvg[y coord] = WvHeight;
AngleRollAvg[y coord] = Angle + ShoreAngle;

}

else

Depth -= RefractStep;
counter++;

/* Now Determine Transport */
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/* eg. 9.6b (10.8) Komar, including assumption of sed

density = 2650 kg/m3 */

/* additional accuracy here will not improve an already
suspect eqgn for sed transport */

/* (especially with poorly constrained coefficients),
*/

/* so no attempt made to make this a more perfect
imperfection */

if (UseVariableCERC == 'vy'){

if (UseBailard == 'y'){ // Use the Bailard equation

to calculate K

K=0.054+ 2.6 * (sin (2*Angle)) * (sin
(>*Angle)) + 0.007 * (KBreak/”) * sqrt(g*DepthBreak) /
Fallvel;

}
if (UseBattjesStive == 'y'){ // Use the Battjes and

Stive (1985) equation to calculate KBreak
KBreak = 0.5 4+ 0.4 * tanh(33 *
OffShoreWvHt/LDeep) ;

}
if (debug22) printf("K = %f , KBreak = %f \n", K,
KBreak) ;

VolumeAcrossBorder = fabs( K * (rho * sqgrt(g)) /
(16 * sgrt (KBreak) *
(rho s - rho) * (I - porosity))
*Raise (WvHeight,2.5)*

sin(2*Angle) *PerSecondToPerDay*TimeStep); // This is in m"3
per time step

} else if (UseKamphius == 'vy'){
VolumeAcrossBorder = fabs (/.3 * Raise(WvHeight,2) *
Raise (PeakPeriod,1.5) *
Raise (ShorefaceSlope,0.75) * Raise(DFifty,-
0.25) * Raise(sin(2*Angle),0.0));

} else { // Use default sediment transport
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VolumeAcrossBorder
fabs(!.l*rho*Raise(g,3.0/2.0)*Raise (WvHeight,2.5)*
cos(Angle) *sin (Angle) *TimeStep) ;

}

VolumeOut [From]

VolumeIn|[To]

if (debugb)
", VolumeAcrossBorder) ;

if (debugb6) printf("Volumeln

if (debug6) printf ("VolumeOut
\n\n",VolumeOut [From]) ;

st

//Q0s[From] = VolumeAcrossBorder;
//Q0s[From] = VolumeOut|[From];
//Qs[From] =

1.1*rho*Raise(g,3.0/2.0)*Raise (WvHeight, 2.
(Angle) *TimeStep;

Os[y coord]
1.l*rho*Raise(g,3.0/2.0)*Raise (WvHeight,”.
(Angle) *TimeStep;

//Mu[From]
1.1*rho*Raise(g,3.0/2.0) *Raise (WvHeight, 2.
imeStep;

// Mu[From]
1.1*rho*Raise(g,3.0/2.0) *Raise (WvHeight, 2.
// *(sin (Angle) *sin (Angle) -

cos (Angle) *cos (Angle) ) /DepthShoreface;

RelAngle[y coord] Angle;

}

void TransportSedimentSweep (void)

printf ("VolumeAcrossBorder:

VolumeOut [From] + VolumeAcrossBorder;

VolumeIn[To] + VolumeAcrossBorder;

st

$f ",VolumeIn[To]) ;

5) *cos (Angle) *sin

5)*cos (Angle) *sin

5) *cos (2*Angle) *T

5)*TimeStep

/* Sweep through cells to place transported sediment
*/

/* Call function AdjustShore() to move sediment.

*/
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/* If cell full or overempty, call OopsImFull or
OopsImEmpty () */

/* This function doesn't change any values, but the
functions it calls do */

/* Uses but doesn't change: X[], Y[], PercentFull]
*/

/* sweepsign added to ensure that direction of actu
changes does not */

/* produce unwanted artifacts (e.g. make sure
symmetrical */
{

int 1i,1ii;
int sweepsign;

if (RunInWindows) {
if (RandZeroToOne()*2/10 > 1)

{
sweepsign = 1;
if (debug7) printf("L "),
}
else
{
sweepsign = 0;
if (debug7) printf ("R "),
}
} else {
if (RandZeroToOne()*2 > 1)
{
sweepsign = 1;
if (debug7) printf ("L "),
}
else
{
sweepsign = 0;
if (debug7) printf ("R "),
}

if (debug7) printf("\n\n TransSedSweep Ang %f
WaveAngle * radtodeg, CurrentTimeStep);
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for (i=0; i < TotalBeachCells-1 ; i++)

{

if (sweepsign == 1)
ii = 1;

else

ii = TotalBeachCells-1-1i;

if (debug7) printf("i: %d ss: %d X:
$.1f Out: %.1f\n", 1i, sweepsign,
X[i], Y[i], VolumeIn[i], VolumeOut[i])

o\

d Y: %d 1In:

AdjustShore(ii) ;

if (PercentFull[X[1i]1[Y[ii]]l < 0)

{ OopsImEmpty (X[1i],Y[ii]);

ilse if (PercentFull[X[ii]][Y[ii]1> 1)
{ OopsImFull (X[1i],Y[ii]);

i

}

void AdjustShore(int i)

/* Complete mass balance for incoming and ougoing sediment
*/

/* This function will change the global data array
PercentFull[] [] */

/* TUses but does not adjust arrays:

*/

/* VolumeIn[], VolumeOut[], X[], Y[], ShorelineAnglel]
*/

/* Uses global variables: ShelfSlope, CellWidth,
ShorefaceSlope, InitialDepth */

/* NEW - AA 05/04 fully utilize shoreface depths

*/

{
float Depth; /* Depth of convergence*/
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float DeltaArea; /* Holds change in area for cell
(m*~2) */

float Distance; /* distance from shore to intercept
of equilib. profile and overall slope (m)*/

float PercentlIn;

float PercentOut;

float PercentSum;

int Xintint, Yintint; /* integer representing
location shoreface cell */

float Xintfloat,Yintfloat; /* floaters for

shoreface cell */

/* variables for loop */

float slope; /* slope of zero goes staight
back */

int ysign; /* holder for going left or right
alongshore */

float X,V7 /* holders for 'real' location
of x and y */

int xtest,ytest; /* cell looking at */

int NextXInt, NextYInt; /* holder vairables for cell to
check */

float Ydown, DistanceDown; /* when going to next x
cell, what other values */

float Xside, DistanceSide; /* when gpoing to next
y cell,other values */

int ShorefaceFlag; /* flag to see if started

intersecting shoreface cells */

if (VolumeIn[i] <= VolumeOut[il])
/* eroding, Jjust have to use shoreface depth */

{
Depth = DepthShoreface;

}

else
/* accreting, good god */
{

/* where should we intersect shoreface depth ? */

/* uncomplicated way - assume starting in middle of
cell */

Distance = DepthShoreface/CellWidth/ShorefaceSlope;

Xintfloat = X[i] + 0.5 + Distance *
cos(SurroundingAngle[i]) ;
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Xintint = floor(Xintfloat);

Yintfloat = Y[i] + 0.5 - Distance *
sin(SurroundingAngle[i]) ;

Yintint = floor(Yintfloat):;

if (debug77a)printf("xs: %d vys: %d Xint: %$f Xint:%d
Yint: $f Yint: %d Dint: %f SAng: %$f Sin = %f\n",

X[1i],Y[1i],Xintfloat,Xintint,Yintfloat,Yintint,CellDepth[Xin
tint] [Yintint], SurroundingAngle[i] *radtodeqg,sin(Surrounding
Angle[i]));

if ((Yintint < 0) || (Yintint > 2*Ymax))
{
Depth = DepthShoreface;
if ((Yintint > Ymax/?) && (Yintint < 3/2*Ymax))
{
printf ("Periodic Boundary conditions and Depth Out
of Bounds");
PauseRun(X[i],Y[i],1) >
}
}
else if ((Xintint < 0) || (Xintint > Xmax))
{
Depth = DepthShoreface;
printf ("-- Warning - depth location off of x array:
X %d Y %d",Xintint,Yintint);
PauseRun(X[i],Y[i],1) >
}
else if (CellDepth[Xintint][Yintint] <= 0)
/* looking back on land */
{
Depth = DepthShoreface;
if (debug7a) printf("=== Shoreface is Shore, eh?
Accreti: xs: %d vys: %d Xint:%d Yint: % Dint: %f \n",

X[1],Y[1],Xintint,Yintint,CellDepth[Xintint] [Yintint]);
}
else if (CellDepth[Xintint][Yintint] < DepthShoreface)
{
printf ("Shallow but underwater Depth
f",CellDepth[Xintint] [Yintint]) ;
PauseRun (Xintint,Yintint,01);

191



}

else

{
Depth = CellDepth[Xintint] [Yintint];

/* That was the easy part - now we need to 'fix'

all cells towards shoreface */

/* probably due to accretion from previous moving

forward */

&&

/* reuse some of the overwash checking code here */

if (SurroundingAngle[i] == 0)

{

/* unlikely, but make sure no div by zero */
slope = 0.00001;

}
else if (fabs(SurroundingAngle[i]) == 90.0)

{

slope

}

else

{

slope

}

9999.9;

fabs (tan (SurroundingAngle[i])) ;

if (SurroundingAngle[i] > 0)
ysign = 1;

else

ysign = -1;

x = Xintfloat;

y = Yintfloat;
xtest = Xintint;
ytest = Yintint;
ShorefaceFlag = 0;

while (( CellDepth[xtest][ytest] > DepthShoreface)
! (ShorefaceFlaqg))
{
NextXInt = ceil(x) -1;
if (ysign > 0)
NextYInt = floor(y) + 1;
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else
NextYInt = ceil(y-1);

/* moving to next whole 'x' position, what is y
position? */
Ydown = y + (x - NextXInt)*slope * ysign;
DistanceDown = Raise(((Ydown - y)*(Ydown - y) +

(NextXInt - x)*(NextXInt - x)),.5);

/* moving to next whole 'y' position, what is x
position? */

Xside = x - fabs(NextYInt - y) / slope;

DistanceSide = Raise(((NextYInt - y)*(NextYInt - y)
+ (Xside - x)*(Xside - x)),.5);

if (DistanceDown < DistanceSide)
/* next cell 1is the down cell */

{
X = NextXInt;
y = Ydown;
xtest = NextXInt-1;
ytest = floor(y);
}
else
/* next cell is the side cell */
{
x = Xside;
y = Next¥Int;
xtest = floor(x);
ytest = y + (ysign-1)/2;
}
if (CellDepth[xtest][ytest] > DepthShoreface)
/* Deep hole - fill 'er in - mass came from
previous maths */
{
if (debug77a) printf("=== Deep Hole, eh?

Accreti: xs: %d ys: %d Xint:%d Yint: %d Dint: S$f
Xfill: %d Yfill: %d Dt: %f\n",
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X[1]1,Y[1],Xintint,Yintint,CellDepth[Xintint] [Yintint],6 xtest
,ytest,
CellDepth[xtest] [ytest]);
CellDepth[xtest] [ytest] = DepthShoreface;

/*PauseRun (xtest, ytest, i) ;*/

}

else
/* stop checking - ostensibly we have hit the
shoreface or shore */

{
ShorefaceFlag = 1;
if (PercentFull[xtest][ytest] > 0)
/* not good - somehow crossing the shore */
{
/*printf ("Shoreface is the Beach !!!?2?2");*/
/*PauseRun (xtest, ytest, -1) ; *
}
}
}
}
}

Depth += LandHeight;

if (Depth < DepthShoreface)

{
printf ("too deep");
PauseRun (x,y,=-1);

}
DeltaArea = (VolumeIn[i] - VolumeOut[i])/Depth;

PercentFull [X[1]][Y[1i]] +=
DeltaArea/ (CellWidth*CellWidth) ;

PercentIn = VolumeIn[i]/(CellWidth*CellWidth*Depth) ;
PercentOut = VolumeOut[i]/(CellWidth*CellWidth*Depth) ;
PercentSum = DeltaArea/ (CellWidth*CellWidth) ;
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if (debug7) printf(" In: %2.4f Out: %2.4f Sum:
%2.4f\n", PercentIn, PercentOut, PercentSum);

}

void OopsImEmpty(int x, int y)

/* If a cell is under-full, this will find source for
desparity and move brach in */

/* Function completly changed 5/21/02 sandrevt.c

*/

/* New Approach - steal from all neighboring
AllBeach cells */

/* Backup plan - steal from all neighboring percent
full > 0 */

/* Function adjusts primary data arrays:

*/

/* AllBeach[][] and PercentFull[] []

*/

{

int emptycells = 0;
int emptycells?2 = 0;

if (debug8) printf("\n OOPS I'm EMPTY! X: %d
%d Per: Sf ", x, vy, PercentFull[x]I[v]):

/* find out how many AllBeaches to take from */

if (AllBeach[x-1]1[y] == 'v')
emptycells += 1;
if (AllBeach[x+1][y] == 'y'")
emptycells += 1;
if (AllBeach[x][y-1] == 'y'")
emptycells += 1;
if (AllBeach[x][y+1l] == 'y'")

emptycells += 1;

if (emptycells > 0)
{
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/* Now Move Sediment */

if (AllBeach[x-1]1[y] == "'y")
{
PercentFull[x-1][y] +=
(PercentFull[x] [y]) /emptycells;
AllBeach[x-1]1[y] = 'n';
if (debug8) printf (" MOVEDBACK") ;
}
if (AllBeach[x+1]1[y] == "'v")
{
PercentFull[x+1][y] +=
(PercentFull [x] [y]) /emptycells;
AllBeach[x+1]1[y] = 'n';
if (debug8) printf (" MOVEDUP");
}
if (AllBeach[x][y-1] == "'y')
{
PercentFull[x] [y-1] +=
(PercentFull[x] [y]) /emptycells;
AllBeach[x] [y-1] = 'n';
if (debug8) printf (" MOVEDLEET") ;
/*1if (debug8) PauseRun (x,y,-1);*/
}
if (AllBeach[x][y+1] == "'y')
{
PercentFull[x] [y+1] +=
(PercentFull[x] [y]) /emptycells;
AllBeach[x][y+1] = 'n';
if (debug8) printf (" MOVEDRIGHT") ;
/*if (debug8) PauseRun (x,y,-1);*/
}
}
else
{
/* No full neighbors, so take away from partially full
neighbors */

if (PercentFull[x-1][y] > 0)
emptycells2 += 1;

if (PercentFull[x+1][y] > 0)
emptycells2 += 1;

if (PercentFull[x][y-1] > 0)
emptycells2 += 1;
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if (PercentFull[x][y+1] > 0)
emptycells2 += 1;

if (emptycells2 > 0)
{

if (PercentFull[x-1]1[y] > 0)
{
PercentFull[x-1][y] +=
(PercentFull[x] [y])/emptycells2;
if (debug8) printf (" NOTFULL MOVEDBACK") ;

}
if (PercentFull[x+1][y] > 0)

{
PercentFull[x+1][y] +=
(PercentFull[x] [y]) /emptycells2;
if (debug8) printf (" NOTFULL MOVEDUP") ;
}
if (PercentFull[x][y-11 > 0)
{
PercentFull[x] [y-1] +=
(PercentFull[x] [y]) /emptycells2;
if (debug8) printf (" NOTFULL MOVEDLEET") ;
/*1f (debug8) PauseRun (x,y,-1);*/
}
if (PercentFull[x][y+1] > 0)
{
PercentFull[x] [y+1] +=
(PercentFull[x] [y])/emptycells2;
if (debug8) printf (" NOTFULL MOVEDRIGHT") ;
/*if (debug8) PauseRun (x,y,-1);*/
}
}
else
{
printf ("@@@ Didn't find anywhere to steal sand
from!! x: %d vy: %d\n",x,Vy);
PauseRun(x,y,=-1);

}
}

AllBeach[x][y] = 'n'

PercentFull[x][y] 0.0;
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CellDepth[x][y] = DepthShoreface;

if (debug8) printf("\n");

void OopsImFull (int x, int vy)

/* If a cell is overfull, push beach out in new direction
*/
/* Completely revised 5/20/02 sandrevt.c to resolve 0%

full problems, etc. */

/* New approach: put sand wherever 0% full in adjacent
cells */

/* if not 0% full, then fill all non-allbeach

*/

/* Function adjusts primary data arrays:

*/

/* AllBeach[][] and PercentFull[] []

*/

{

int fillcells = 0;
int fillcells?2 = 0;

if (debug8) printf("\n OOOPPPS I'M FULLL: X: %d
Y: %d Per: $f ==", x, vy, PercentFull[x]I[vy]l):;

/*if (debug8) PrintLocalConds (x,y,-1);*/

/* find out how many cells will be filled up */
if (PercentFull[x-1]1[y] == 0.0)

fillcells += 1;

if (PercentFull[x+1][y] == 0.0)

fillcells += 1;

if (PercentFull[x][y-1] == 0.0)

fillcells += 1;

if (PercentFull[x][y+1] == 0.0)

fillcells += 1;
if (fillcells !'= 0)
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{

/* Now Move Sediment */

if (PercentFull[x-1]1[y] == )
{
PercentFull[x-1][y] += (PercentFull[x][v]-
y/fillcells;
CellDepth[x-1][y] = - LandHeight;
if (debug8) printf (" MOVEDBACK") ;
}
if (PercentFull[x+1][y] == )
{
PercentFull[x+1][y] += (PercentFull[x][v]-
Y/fillcells;
CellDepth[x+1][y] = - LandHeight;
if (debug8) printf (" MOVEDUP");
}
if (PercentFull[x][y-1] == )
{
PercentFull[x][y-1] += (PercentFull[x]I[vy]-
)/fillcells;
CellDepth[x] [y-1] = - LandHeight;
if (debug8) printf (" MOVEDLEEFT");
/*1f (debug8) PauseRun (x,y,-1);*/
}
if (PercentFull[x][y+1] == )
{
PercentFull[x] [y+1] += (PercentFull[x][v]-
)/fillcells;
CellDepth[x][y+1] = - LandHeight;
if (debug8) printf (" MOVEDRIGHT") ;
/*1if (debug8) PauseRun (x,y,-1);*/
}
}
else
{
/* No fully empty neighbors, so distribute to partially
full neighbors */

if (PercentFull[x-1]1[y] < 1)
fillcells2 += 1;

if (PercentFulll[x+1]1[y] < 1)
fillcells2 += 1;

if (PercentFulll[x][y-1]1 < 1)
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fillcells2 += 1;
if (PercentFull[x][y+1] < 1)
fillcells2 += 1;

if (fillcells2 > 0)
{

if (PercentFull[x-1]1[y] < 1)

{

PercentFull[x-1][y] += (PercentFull[x][v]-
y/fillcells?2;

if (debug8) printf (" MOVEDBACK") ;

}
if (PercentFull[x+1][y] < 1)

{

PercentFull[x+1][y] += (PercentFull[x][v]-
y/fillcells?2;

if (debug8) printf (" MOVEDUP") ;

}

if (PercentFull[x][y-1] < 1)

{

PercentFull[x] [y-1] += (PercentFull[x][v]-
)/fillcells2;

if (debug8) printf (" MOVEDLEET") ;

}

if (PercentFull[x][y+1] < 1)

{

PercentFull[x] [y+1] += (PercentFull[x][v]-
)/fillcells2;

if (debug8) printf (" MOVEDRIGHT") ;

}
}
else
{
if (debug8) printf("Nobody wants our sand!!! x: %d

v: %d Per: $f\n",x,y,PercentFull([x]I[y]):
/*PauseRun (x,y,-1);*/

}

}

AllBeach[x][y]l = 'v';
PercentFull[x][y] = ;
CellDepth[x][y] = - LandHeight;
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if (debug8) printf("\n");

void FixBeach (void)

/* Hopefully addresses strange problems caused by
filling/emptying of cells */

/* Looks at entire data set */
/* Find unattached pieces of sand and moves them back to
the shore */

/* Takes care of 'floating bits' of sand

*/

/* Also takes care of over/under filled beach pieces

*/

/* Revised 5/21/02 to move sand to all adjacent neighbors
sandrevt.c */

/* Changes global variable PercentFull[] []

*/

/* Uses but does not change AllBeach[] []

*/

/* sandrevx.c - added sweepsign to reduce chances of

asymmetrical artifacts */

int i,x,y,sweepsign;
int FixXMax;
int fillcells3 = 0;

/*1if (debug?9) printf ("\n\nFIXBEACH %d sf\n",
CurrentTimeStep, WaveAngle*radtodeqg);*

if (RunInWindows) {
if (RandZeroToOne()*.2 > 1)

{

sweepsign = 1;

if (debug9) printf("fixL ");
}

else
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{

sweepsign = 0;
if (debug9) printf("fixkR ");
}
} else {
if (RandZeroToOne()*2 > 1)
{
sweepsign = 1;
if (debug9) printf("fixL ");
}
else
{
sweepsign = 0;
if (debug9) printf("fixrR ");
}

FixXMax = ShadowXMax +

ceil (DepthShoreface/CellWidth/ShorefaceSlope) +3;
if (FixXMax > Xmax)
FixXMax = Xmax;

for (x = FixXMax; x >= ; xX==)
{
for (i = 0; 1 <= 2*Ymax ; 1i++)
{

if (sweepsign == 1)

y = 1i;

else

y = 2*Ymax-i;

/* ye olde depth fix */

if ((PercentFull[x][y] <= 0) && (CellDepth[x][y] >
DepthShoreface) &&

(CellDepth[x-1]1[y] == DepthShoreface))

{

if ((CellDepth[x+1][y] == DepthShoreface) &&
(CellDepth[x] [y-1] == DepthShoreface)

&§& (CellDepth[x][y+!] == DepthShoreface))

{
/* Fill Hole */
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CellDepth[x][y] = DepthShoreface;

}

}

if (PercentFulll[x][y]> )
{

printf("too full");
PercentFull[x][y] = 0O;
PauseRun(x,y,=-1);

}

/* Take care of situations that shouldn't exist */

if (PercentFull[x][y] < 0)

{
AllBeach[x][y] = 'n';
if (debug9 && y '= 0) printf("\nUnder 0 Percent X:

$d Y: %d Percent: $f\n", x,y,PercentFull[x]I[y]):
OopsImEmpty(x,Vy) ;
printf ("Underzerofill™);
SaveLineToFile() ;
SaveWvHeightToFile () ;
SaveWvAngleToFile() ;
/*PauseRun (x,y,-1);*/

}

if (PercentFull[x][y] > 1)
{

AllBeach[x][y] = 'v';

CellDepth[x][y] = - LandHeight;
if (debug9 && y !'= 0) printf("\nOver 100 Percent X:
$d Y: %d Per: %f\n"
,X,y, PercentFull[x]I[v]):
OopsImFull (x,vVy);

}

if (((PercentFull[x][y] >=0) && (PercentFulll[x]I[y]
<1)) && (AllBeach[x][y] == 'v'"))

{

AllBeach[x][y] = 'n';

CellDepth[x][y] = - LandHeight;
if (debug9 && y !'= 0) printf("\nALLBeachProb X: %d
Y: sd\n", x,vy);
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/* Take care of 'loose' bits of sand */
fillcells3 = 0;

if ( (PercentFull[x][y] '= 0) && (PercentFull[x-
1ly] < 1) && (PercentFull[x+1]1[y] < 1) &&
(PercentFull[x][y+1] < 1) && (PercentFulll[x][y-1]

< 1) && (AllBeach[x][y] =='n"))

/* Beach in cell, but bottom, top, right, and left
neighbors not all full */

{

if (debug9 && y !'= 0) printf("\nFR Moved loose bit
of sand, X: %d Y: % Per: % ",

X, y, PercentFull[x]I[y]l):;

/* distribute to partially full neighbors */

if ((PercentFulll[x-1]1[y] < 1) && (PercentFull[x-
1Iyl > 0))
fillcells3 += 1;
if ((PercentFull[x+1][y] < 1) &&
(PercentFull[x+1][y]l] > 0))
fillcells3 += 1;
if ((PercentFull[x][y-1] < 1) && (PercentFull[x][y-
1>0))
fillcells3 += 1;
if ((PercentFull[x][y+1] < 1) &&
(PercentFull[x][y+1]1 > 0))
fillcells3 += 1;

if ((fillcells3 > 0))
{

if ((PercentFull[x-1]1[y] < 1) &&
(PercentFull[x-1]1[y] > 0))

{

PercentFull[x-1][y] +=
(PercentFull[x][y])/fillcells3;

if (debug9) printf (" MOVEDBACK") ;

}
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if ((PercentFull[x+1][y] < 1) &&
(PercentFull[x+1][y] > 0))

{

PercentFull[x+1][y] +=
(PercentFull [x][y])/fillcells3;

if (debug9) printf (" MOVEDUP");

}

if ((PercentFull[x][y-1] < 1) &&
(PercentFull[x][y-11 > 0))

{

PercentFull[x] [y-1] +=
(PercentFull[x][y])/fillcells3;

if (debug9) printf (" MOVEDLEET") ;

/*1f (debug9) PauseRun (x,y,-1);*/

}

if ((PercentFull[x][y+1] < 1) &&
(PercentFull[x] [y+1] > 0))

{

PercentFull[x] [y+1] +=
(PercentFull[x][y])/fillcells3;

if (debug9) printf (" MOVEDRIGHT") ;

/*1f (debug9) PauseRun (x,y,-1);*/

}
}
else
{
printf ("Loner fixbeach breakdown - mass

disintegrated x: %d y: %d\n",x,Vy);
if (debug?9)
PauseRun(x,y,-1);

}

PercentFull[x][y] = O;
AllBeach[x][y] = 'n';
CellDepth[x] [y] = DepthShoreface;

if (debug9) printf("\n");
/* If we have overfilled any of the cells in this
loop, need to OopsImFull () */

if (PercentFull[x-1]1[y] > 1)
{
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OopsImFull (x-1,vy);
if (debug9) printf (" Below Overfilled\n");
}
if (PercentFull[x][y-11 > 1)
{
OopsImFull(x,y-1);
if (debug9) printf (" Left Side
Overfilled\n");
}
if (PercentFull[x][y+1] > 1)
{
OopsImFull (x,y+1);
if (debug9) printf (" Right Side
Overfilled\n") ;
}
if (PercentFull[x+1][y+1] > 1)
{
OopsImFull (x+1,y+1);
if (debug9) printf (" Top Overfilled\n");
}

}

1ly
—1]

/*1if ((AllBeach[x] [y]
1][y] < 1) && (PercentFull[x+1
&& (PercentFull[x] [y
(PercentFull[x] [y+1] < 1)
&& (AllBeach[x-1][y-1] == 'n') && (AllBeach[x-
1] [y+1l] == 'n'") &&
(AllBeach[x+1] [y+1l] == 'n') && (AllBeach[x+1] [y-

)
<
<1

='y && (PercentFull [x-
[y] 1)
1 ) &&

printf ("$% Booger !! x: Sd y: %d", x,vy);
PauseRun (x,y,-1);

b/
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float MassCount (void)

/* Counts the total volume occupied by beach cells */

/* Uses same algorhythm as AdjustShore */
/* returns a float of the total sum */
/* Uses AllBeach[][] and PercentFull[][] */
/* and InitialDepth, CellWidth, ShelfSlope */
{

int X,V;

float Mass = 0;

/*float MassHere;

float refdepth;

refdepth = InitialDepth;*/

for (x=0; x < Xmax ; x++)

{
for (y=Ymax/”?; y < 3 * Ymax /2; y++)
{
/*1f ((PercentFull[x][y] > 0) && (PercentFull([x][y]
< 1.0))

MassHere = PercentFull [x][y] * (refdepth -
CellDepthlx] [y]) +

(1 - PercentFull[x]l[y])*(refdepth -
DepthShoreface) ;

else

MassHere = refdepth - CellDepth[x][y];*/

Mass += PercentFull[x][v];

}
}

return Mass;

float Raise(float b, float e)

/* function calulates b to the e power */
/* pow has problems if b <= 0 */
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if (b>0)

return powf (b,e);

else

return -powf (fabs(b) ,e);

float RandZeroToOne (void)

/* function will return a random number equally distributed
between zero and one */

/* currently this function has no seed */

// Modified to run on both UNIX and WIN32 machines

{
if (RunInWindows) {
return rand() %$10;
}
else {
return rand()/(Raise(2,31)-1);
}
}

void InitConds (void)

/* Creates 1initial beach conditions

*/
/* Flat beach with zone of AllBeach = 'y' separated by
AllBeach = 'n' */

/* Bounding layer set to random fraction of fullness

*/

{

int X,V;

printf("Condition Initial \n'");

if (InitCType == 0)

/* 'Regular Initial cons - beach backed by sandy land
*/
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for (v = 0; y <= 2*Ymax; y++)
for (x = 0; x <= Xmax; =x++)

{

CellDepth[x][y] = InitialDepth + ((x-InitBeach) *
CellWidth * ShelfSlope);

if (x < InitBeach)
{

PercentFull[x][y] ;
AllBeach[x][y] = "v';
CellDepth[x][y] = - LandHeight;
}
else if (x == InitBeach)
{
if (InitialSmooth)
{
PercentFull[x][y] = ;
if (TestSSInstability) {
PercentFull [x] [(Ymax-1)] = ;
PercentFull[x] [Ymax] = ;
}
}
else
{
if (RunInWindows) {
PercentFull[x] [vy]
} else {
PercentFull[x] [y] = RandZeroToOne() ;

RandZeroToOne () /10;

}
printf("x: %d Y: %d Per:
$f\n",x,y,PercentFull [x] [v])

}
AllBeach[x][y] = 'n';
CellDepth[x][y] = - LandHeight;

}

else if (x > InitBeach)

{
PercentFull[x][y] = O;
AllBeach[x][y] = 'n';
if (CellDepth[x][y] < DepthShoreface)
{
CellDepth[x][y] = DepthShoreface;
}
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}

else

{

printf ("WTF! x: %d Y: $d Per:
$f\n",x,y,PercentFull [x][y])

PauseRun(x,y,=-1);

}
Age[x][y]l = 0;
}
}
else if (InitCType == 1)
/* 'Simple Barrier' type initial condition - island
backed by lagoon at slope of shelf */
{

for (v = 0; y <= 2*Ymax; y++)
{
for (x = 0; x < Xmax; x++)
{

CellDepth[x][y] = InitialDepth + ((x-InitBeach) *
CellWidth * ShelfSlope);

if (CellDepth[x][y] <= 0)
/* This must be land due to continental shelf
intersection */

{
PercentFull[x][y] = 1.0;
AllBeach[x][y] = "v';
CellDepth[x][y] = - LandHeight;
}

else if (x > InitBeach)
/* Shoreward of beach - enforce ShorefaceDepth
if necessary */

{
PercentFull[x][y] = O;
AllBeach[x][y] = 'n';
if (CellDepth[x][y] < DepthShoreface)
{
CellDepth[x][y] = DepthShoreface;
}
}
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else if (x == InitBeach)
/* Beach */
{
if (InitialSmooth)
{
PercentFull[x][y] = ;
if (TestSSInstability) {
PercentFull[x] [ (Ymax-1)] = ;
PercentFull[x] [Ymax] = ;
}
}
else
{
if (RunInWindows) {
PercentFull[x] [y] = RandZeroToOne()/
} else {
PercentFull[x] [vy]

RandZeroToOne () ;

}
/*printf ("x: $d Y: %d Per:
$f\n",x,y,PercentFull [x] [y]);*/
}
AllBeach[x][y] = 'n';
CellDepth[x][y] = - LandHeight;
}
else if ((x < InitBeach) && (x > InitBeach -
InitBWidth - 1))
/* Island */
{
PercentFull[x][y] = ;
AllBeach[x][y] = "v';
CellDepth[x][y] = - LandHeight;
}
else if (x == InitBeach - InitBWidth -1)
/* Back of Barrier */
{
if (InitialSmooth)
{
PercentFull[x][y] = ;
}
else
{

if (RunInWindows) {
PercentFull[x][y] = RandZeroToOne ()/
} else {
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PercentFull[x][y] = RandZeroToOne() ;

}
printf("x: %d Y: %d Per:
$f\n",x,y,PercentFull[x][v])

}
AllBeach[x][y] = 'n';
CellDepth[x][y] = - LandHeight;

}
else if (x < InitBeach - InitBWidth -1)

/* Lagoon at depth of shelf slope */

{
PercentFull[x][y] = 0O;
AllBeach[x][y] = 'n';
}
if (PercentFull[x][y] > 1)
{

printf("x: %d Y: %d Per:
$f\n",x,y,PercentFull[x][v])
PauseRun (x,y,-1);

}
Age[x] [yl = 0;
}

}

}

void InitPert (void)

/* Andrew's initial bump */

int x,y;

int PWidth = 40;
int PHeight = 40;
int PYstart = 100;

if (InitialPert == 1)
/* Square perturbation */
{
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/* Fill AllBeach areas */

for (x = InitBeach ; x <= InitBeach + PHeight ; x++)

{
for (y = P¥Ystart ; y <= PYstart + PWidth ; y++)

{

PercentFull[x] [y] = ;
AllBeach[x][y]l = 'v';

}

/* PercentFull Top */

for (y = PY¥start -1, y <= PY¥start + PWidth +1; y++)

{
if (RunInWindows) {
PercentFull[InitBeach + PHeight + 1][y] =
RandZeroToOne () /10;
} else {
PercentFull[InitBeach + PHeight + 1] [y]

RandZeroToOne () ;
}

}
/* PercentFull Sides */

for (x = InitBeach ; x <= InitBeach + PHeight ; x++)

{
if (RunInWindows) {
PercentFull[x] [PYstart-1] = RandZeroToOne()/10;
PercentFull[x] [PYstart+PWidth + 1] =
RandZeroToOne () /10;
} else {
PercentFull[x] [PYstart-1] = RandZeroToOne() ;

PercentFull[x] [PYstart+PWidth + 1] =
RandZeroToOne () ;

}
}
}

else if (InitialPert == 2)
/* Another Perturbation - steep point */
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x = InitBeach;
PercentFull[x][17] = 0.8;
PercentFull[x][18] 1.0;
AllBeach[x][18] = 'v';
PercentFull[x][19] = 0.8;
X = InitBeach + 1;
PercentFull[x][17] = 0.6;
PercentFull[x][18] = 1.0;
AllBeach[x][18] = "v';
PercentFull[x][19] = 0.6;
X = InitBeach + 2;
PercentFull[x][17] = 0.2;
PercentFull[x][18] = 1.0;
AllBeach[x][18] = "v';
PercentFull[x][19] = 0.2;
X = InitBeach + 3;
PercentFull[x][18] = 0.3;

}
}

void InitBigBumps (void)

// Start initial condition with two large 100-cell tall
Bumps

{

int x,y,1i;

int BumpHeight = 100; // Initial x (cross-shore)
position of bump tip

int BumpWidth = 30; // Half of bump's width (in cells)

printf("Starting with two tall initial bumps\n");
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// First bump

// Center of bump (tip)

PercentFull[InitBeach+BumpHeight] [3*Ymax/4] = ;

for (x = InitBeach; x < InitBeach+BumpHeight; x++) {
PercentFull[x] [3*Ymax/4] = 1;

}

for (i = 1; i < BumpWidth,; i++) {

// Right side of bump
PercentFull[InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ] [ (3*Ymax/4)+i] = ;
for (x = InitBeach; x < InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ; x++) {
PercentFull[x] [(3*Ymax/4)+i] = 1;
}

// Left side of bump
PercentFull[InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ] [ (3*Ymax/4)-1] = ;
for (x = InitBeach; x < InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ; x++) {
PercentFull[x] [(3*Ymax/4)-1i] = 1;
}

// Second bump

// Center of bump (tip)

PercentFull[InitBeach+BumpHeight] [O*Ymax/4] = ;

for (x = InitBeach; x < InitBeach+BumpHeight; x++) {
PercentFull[x] [5*Ymax/4] = 1;

}

for (i = 1; i < BumpWidth,; i++) {

// Right side of bump
PercentFull [InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ] [ (5*Ymax/4)+i] = ;
for (x = InitBeach; x < InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ; x++) {
PercentFull[x] [(5*Ymax/4)+1i] = 1;
}

215



// Left side of bump
PercentFull[InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ][ (5*Ymax/4)-1] = ;
for (x = InitBeach; x < InitBeach+BumpHeight-
(i*BumpHeight/BumpWidth) ; x++) {
PercentFull [x] [(5*Ymax/4)-i] = 1;
}

void PeriodicBoundaryCopy(void)

// Simulates periodic boundary conditions by copying middle
section to front and end of arrays

{

int x,y;

for (v = Ymax; y < 3*Ymax/?; y++)

for (x = 0; x < Xmax; x++)

{
AllBeach[x] [y-Ymax] = AllBeach[x]I[v]:
PercentFull[x] [y-Ymax] = PercentFull[x][y];
Age[x] [y-Ymax] = Agel[x][y]’
CellDepth[x] [y-Ymax] = CellDepth[x][vy]:

}

for (y = Ymax/?; y <= Ymax; y++)

for (x = 0; x < Xmax; x++)

{
AllBeach[x] [y+Ymax] = AllBeach[x]I[v]:
PercentFull[x] [y+Ymax] = PercentFull[x][y];
Age[x] [y+Ymax] = Age[x][y]’
CellDepth[x] [y+Ymax] = CellDepth[x][v]:;

}

// Correct PeriodicBoundaryCopy bug

for (x = 0; x < Xmax; x++){
AllBeach[x][0] = AllBeach[x][Ymax];
PercentFull[x][0] = PercentFull[x][Ymax];

}

}
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void ZeroVars (void)

/* Resets all arrays recalculated at each time step to
'zero' conditions */

{
int z;
for (z=0; z < MaxBeachLength; z++)
{
X[z] = -1;
Y[z] = -1;
InShadow[z] = "?"';
ShorelineAngle[z] = =-999;
SurroundingAngle[z] = -998;
UpWind[z] = "?"';
VolumeIn[z] = 0;
VolumeOut[z] = 0;
}

}

void ReadSandFromFile (void)

/* Reads saved output file, AllBeach[][] & PercentFull([] []
*/
{

int x,y;

ReadSandFile = fopen(readfilename,"r") ;printf ("CHECK
READ \n");

for (v = Ymax/?; y < 3*Ymax/?; y++)
{

for (x=0,; x<Xmax,; x++)

{
fscanf (ReadSandFile, " %f", &PercentFull[x]I[vy]l):
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if (PercentFull[x][y] >= 1.0)

AllBeach[x][y] = "v';
else
AllBeach[x][y] = 'n';
}
}

for (y = Ymax/2; y < 3*Ymax/2; y++)
for (x=0; x<Xmax; x++)

fscanf (ReadSandFile, " %f", &CellDepth[x][y]):

if (SaveAge)

for (y = Ymax/z; y < B*Ymax/2; Y‘H')

{
for (x=0; x<Xmax; x++)
{
fscanf (ReadSandFile, " 2d", &Age[x]I[v]):
}
}

/*PrintLocalConds (5,5,-1);*/
fclose (ReadSandFile) ;
printf("file read!");

PeriodicBoundaryCopy () ;

void LoadLineout (void)

// Loads information from a lineout file to start a run

// Modifies global arrays PercentFull[][], CellDepth[][]
StartingLine[]
{

int x,y;

int HitBeach; // Indicator for when the x-direction

loop has reached the beach;
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int debugloc = 0; // Localdebugger

// Read the lineout file and save as StartingLine[]
ReadSandFile = fopen(readlinename,'"r");
printf ("CHECK READ \n");

for (v = Ymax/2; y < 3*Ymax/2; y++) {
fscanf (ReadSandFile, " %f", &StartingLinely]):
}

fclose (ReadSandFile) ;
printf("Line file read!");

// Convert StartingLine[] to PercentFull[][] and
CellDepth[][]
for (v = Ymax/2?; y < 3*Ymax/”; y++) {
for (x = 0; x < Xmax; x++){
if (x == 0){

PercentFull[x][y] = 1;
AllBeach[x][y] = "v';
CellDepth[x][y] = - LandHeight;
HitBeach = 0;

} else if ((x > InitBeach + StartingLinel[y]) &&
(x < InitBeach + StartingLinel[y] + 1)) {
PercentFull[x] [y] = StartingLinely] -
(x-1) + InitBeach - ;
AllBeach[x][y] = 'n';
CellDepth[x][y] = - LandHeight;
HitBeach = 1;
} else if (HitBeach == 0){
PercentFull[x][y] = 1;
AllBeach[x][y] = "v';
CellDepth[x][y] = - LandHeight;
} else if (HitBeach == 1) {
PercentFull[x][y] = 0O;
AllBeach[x][y] = 'n';
CellDepth[x][y] = InitialDepth + ((x-
InitBeach) * CellWidth * ShelfSlope);
}
}
}

// Make adjustmets
for (v = Ymax/2?; y < 3*Ymax/”; y++) {

219



for (x = 0; x < Xmax; x++){
if (PercentFull[x][y] < 0){
PercentFull[x-1][y] = PercentFull[x][y] +

AllBeach[x-1]1[y] = 'n';
CellDepth[x-1]1[y] = - LandHeight;
PercentFull[x][y] = O;
AllBeach[x][y] = 'n';

CellDepth[x][y] = InitialDepth + ((x-
InitBeach) * CellWidth * ShelfSlope);
}
}
}
for (v = Ymax/”?; y < 3*Ymax/”; y++){
for (x = 0; x < Xmax; x++){
if ((CellDepth[x][y] < DepthShoreface) &&
(PercentFull[x][y] == 0)){
CellDepth[x] [y] = DepthShoreface;

}
}

// Establish Age
for (v = Ymax/?; y < 3*Ymax/”; y++) {

for (x = 0; x < Xmax; x++) {
Age[x][yl = 0;
}
}
// Debug

if (debugloc) {

printf ("\nStartingLine = \n");

for (y = Ymax/?; y < 3*Ymax/2; y++){
printf ("G ", StartingLinely]):

} printf("\n");

printf ("\nPercentFull = \n");
for (v = Ymax/?; y < 3*Ymax/”; y++) {
for (x = 0; x < Xmax; x++){
printf ("sG ", PercentFull[x]Ilvy]l):;
} printf("\n");
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printf ("\nCellDepth = \n");
for (v = Ymax/2?; y < 3*Ymax/?; y++) {
for (x = 0; x < Xmax; x++) {
printf ("sG ", CellDepth[x]I[vy]):;
} printf("\n");
}
}

PeriodicBoundaryCopy () ;

void SaveSandToFile (void)

/* Saves current AllBeach[][] and PercentFull[][] data
arrays to file */
/* Save file name will add extension '.' and the
CurrentTimeStep */
{

int x,y;

char savename[40];

printf("\n saving \n ");

sprintf (savename, "%s.%d", savefilename,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");
exit (1) ;

}

for (y= Ymax/”; y< 3*Ymax/2; y++)
for (x=0; x<Xmax; x++)
fprintf (SaveSandFile, " %f", PercentFull[x]I[vy]):

for (y= Ymax/?; y< 3*Ymax/2; y++)
for (x=0; x<Xmax; x++)
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fprintf (SaveSandFile, " %f", CellDepth[x]I[vy]):

if (SaveAge)
for (y=Ymax/2; y< 3*Ymax/2; y++)
for (x=0; x<Xmax; x++)
fprintf (SaveSandFile, " %d", Agel[x]I[vy]):;

fclose(SaveSandFile) ;
printf("--- regular file saved! ----\n\n");

void SavelLineToFile (void)

/* Saves data line of shoreline position rather than
entire array */

/* Main concern 1s to have only one data point at each
alongshore location */

/* Save file name will add extension '.' and the
CurrentTimeStep */
{

int y,x,xtop,i;
float xsave;
char savename[40];

printf ("\n saving \n ");

sprintf (savename, "%s%d", savelinename,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1),

}

for (y=Ymax/2; y < 3*Ymax/?; y++)
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x = Xmax-1;
xtop = Xmax;

/* step back to where we encounter allbeach */

while (AllBeach[x][y] == 'n')
{

x == 1;
}

/* if on side of shape, need to average */
if (PercentFull[x+2][y] > 0)

{
xtop = x+1;
while (PercentFull[xtop] [y] > 0)
{
xtop +=1;
}
Xsave = X;
for (i=x+1; i<xtop ; i++)
xsave += PercentFulll[i][y]:
}
/* otherwise Regular Beach Condition */
else
{
xsave = x + PercentFull[x+1][vy]l;
}

/* note this assumes average of beach locations should
be 0.5 percentfull */
fprintf (SaveSandFile, " %f", xsave - InitBeach + 0.5);

/*printf ("y %$d , xtop = %d xsave = %f
\n", vy, xtop, xsave) ;
if (xtop != Xmax)
PauseRun (x+1,vy,-1); *x/

}

fclose (SaveSandFile) ;

223



printf("line file saved!\n\n");

void SaveWvHeightToFile (void)

// Saves the breaking wave height data to a file

{
int y,x,xtop,i;
float xsave;
char savename[40];

printf("\n saving \n ");

sprintf (savename, "%$s%d", saveheightname,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1),

}

for (y:YmaX/2,‘ y < B*Ymax/2; Y++)
{

xsave = HeightRollAvgl[yl];
fprintf (SaveSandFile, " %f", xsave);

}

fclose(SaveSandFile) ;
printf ("Height file saved!\n\n");
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void SaveWvAngleToFile (void)

// Saves the breaking wave angle data to a file

{
int y,x,xtop,1i;
float xsave;
char savename[40];

printf ("\n saving \n ");

sprintf (savename, "%s%d'", saveanglename,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1) ;

}

for (y:YmaX/2,‘ y < B*Ymax/2; Y++)
{

xsave = (AngleRollAvgl[y]*radtodeqg);
fprintf (SaveSandFile, " %f", xsave);
}

fclose(SaveSandFile) ;
printf ("Angle file saved!\n\n");

}

void SaveRelAngleToFile (void)
// Saves the calculated relative angle data to a file

{

225



int y,x,xtop,1i;
float xsave;
char savename [40] ;

printf ("\n saving \n ");

sprintf (savename, "%s%d'", SaveRelAnglename,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1) ;

}

for (y=Ymax/2; y < 3*Ymax/2; y++)
{

xsave = RelAngle[y]*radtodeg;
fprintf (SaveSandFile, " %f", xsave);

}

fclose (SaveSandFile) ;
printf ("Relative Angle file saved!\n\n");

}

void SaveSLAngleToFile (void)

// Saves the shoreline angle data to a file

{
int y,x,xtop,1i;
float xsave;
char savename[40];

printf ("\n saving \n ");
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sprintf (savename, "%s%d", SaveSLAngleName,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if ('SaveSandFile)

{

printf ("problem opening output file\n");

exit (1) ;

}

for (y=Ymax/2; y < 3*Ymax/2; y++)
{

xsave = SLAngle[y]*radtodeg;
fprintf (SaveSandFile, " %f", xsave);
}

fclose(SaveSandFile) ;
printf ("Shoreline Angle file saved!\n\n");

void SaveVolumeOQutToFile (void)

// Saves the sediment volume transported out of each cell
to a file

{
int y,x,xtop,i;
float xsave;
char savename [40] ;

printf("\n saving \n ");
sprintf (savename, "%s%d", saveVolumeOutName,

CurrentTimeStep) ;
printf( "Saving as: %s ", savename ) ;
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SaveSandFile = fopen(savename, "w'");
if ('SaveSandFile)

{
printf ("problem opening output file\n");

exit (1),
}

for (y=Ymax/2; y < 3*Ymax/2; y++)
{
xsave = VolumeOut[y];

fprintf (SaveSandFile, " %f", xsave);

}

fclose (SaveSandFile) ;
printf("Volume file saved!\n\n");

}

void SaveSedFluxGradOutToFile(void)

// Saves the sediment flux gradient in each beach cell to a
file

{
int y,x,xtop,1i;
float xsave;
char savename[40] ;

printf ("\n saving \n ");

sprintf (savename, "%s%d", saveSedFluxGradOutName,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1) ;
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for (y=Ymax/2; y < 3*Ymax/2; y++)
{

xsave = SedFluxGradly];
fprintf (SaveSandFile, " %f", xsave);

}

fclose (SaveSandFile) ;
printf("SedFlux file saved!\n\n");

}
void SaveGammaToFile (void)

// Saves the sediment flux gradient in each beach cell to a
file

int y,x,xtop,1i;
float xsave;
char savename[40];

printf ("\n saving \n ");

sprintf (savename, "%$s%d", SaveGammaName,
CurrentTimeStep) ;
printf( "Saving as: %s ", savename ) ;

SaveSandFile = fopen(savename, "w'");
if (!'SaveSandFile)

{
printf ("problem opening output file\n");

exit (1),
}

for (y=Ymax/2; y < 3*Ymax/2; y++)
{
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xsave = Gammal[y];
fprintf (SaveSandFile, " %f", xsave);

}

fclose(SaveSandFile) ;
printf ("Gamma file saved!\n\n");

}

void SaveDiffusivityToFile(void)

// Saves the diffusivity in each beach cell to a file

{
int y,x,xtop,i;
float xsave;
char savename[40] ;

printf ("\n saving \n ");

sprintf (savename, "%s%d", SaveDiffusivityName,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if ('SaveSandFile)

{

printf ("problem opening output file\n");

exit (1),

}

for (y=Ymax/2; y < 3*Ymax/2; y++)

{

xsave = Diffusivityl[y]l;

fprintf (SaveSandFile, " %f", xsave);
}
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fclose (SaveSandFile) ;
printf("Diffusivity file saved!\n\n");

}
void SaveMuToFile (void)

// Saves the mu in each beach cell to a file

{
int y,x,xtop,i;
float Xsave;
char savename[40];
printf ("\n saving \n ");
sprintf (savename, "%s%d'", SaveMuName, CurrentTimeStep);
printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");
if (!'SaveSandFile)
{
printf ("problem opening output file\n");
exit (1) ;
}
for (y=Ymax/2; vy < 3*Ymax/2; y++)
{
xsave = Muly];
fprintf (SaveSandFile, " %f", xsave);
}
fclose(SaveSandFile) ;
printf("Mu file saved!\n\n");
}

void SaveQsToFile (void)
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// Saves sediment transport (Qs) to file

{

int y,x,xtop,1i;

float Xsave;

char savename[40];

printf ("\n saving \n ");

sprintf (savename, "%s%d", SaveQsName, CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;

SaveSandFile = fopen(savename, "w'");

if (!'SaveSandFile)

{

printf ("problem opening output file\n");

exit (1)

}

for (y=Ymax/2; y < 3*Ymax/2; y++)

{

xsave = Qsl[y]l;

fprintf (SaveSandFile, " %f", xsave);

}

fclose (SaveSandFile) ;

printf ("Sediment transport file saved!\n\n");
}

void SaveDEtaDtToFile (void)

// Saves the dEta/dt data to file

{
int y,x,xtop,1i;
float xsave;
char savename[40];
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printf("\n saving \n ");

sprintf (savename, "%s%d", SaveDEtaDtName,
CurrentTimeStep) ;

printf( "Saving as: %s ", savename ) ;
SaveSandFile = fopen(savename, "w'");

if ('SaveSandFile)

{

printf ("problem opening output file\n");

exit (1),

}

for (y=Ymax/2; y < 3*Ymax/2; y++)
{

xsave = dEta dt[yl;
fprintf (SaveSandFile, " %f", xsave);

}

fclose (SaveSandFile) ;
printf ("Sediment transport file saved!\n\n");

void PrintLocalConds(int x, int y, int in)
/* Prints Local Array Conditions aound x,y */

{

int i,73,k,isee;
float vol = CellWidth*CellWidth*DepthShoreface;

printf("\n x: %d vy: %d z: %d\n\n", x,y,in);

/* if not given location along beach, look to see if
along beach */
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if (in<0)

{

for (i=0; 1 <= TotalBeachCells; i++)
if ((X[1i]==x) && (Y[i]==y))

isee = i,
}
else
isee = in;
for (i= x+2 ; 1 > x-3 ; i--)
{
for (j = y=-2 ; 7 < y+3 ; Jj++)
{
printf (" sd,sd", 1 , J):
}
printf ("\n");
}
printf ("\n");
for (i= x+2 ; 1 > x=-3 ; 1i--)
{
for (J = y-2 ; 3 < y+3 ; Jj++)
{
printf (" $f", CellDepth[i]l[]])
if (CellDepth[i][j] == DepthShoreface)
printf ("y");
else
printf ("n");
}
printf ("\n");
}
printf ("\n");
for (i= x+2 ; 1 > x=-3 ; i--)
{
for (J = y-2 ; J < y+3 ; J++)
{
printf (" %c", AllBeach[il[31):
}
printf ("\n");
}
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printf ("\n");

for (i= x+2 ; 1 > x-3 ; 1i--)

{
for (J = y-2 ; 3 < y+3 ; Jj++)
{
printf (" %2.5f",PercentFull[i] []]) ;
}
printf ("\n");
}

printf ("\n");
printf (" %d ", in );

if (isee>=0)

{
for (k = in-3; k <in+4; k++)
{
printf (" $2d: %2d,%2d", k , X[kl , YI[k]l):
}

printf ("\n\n\n") ;

printf ("Wave Angle: %f\n\n",WaveAngle*radtodeq) ;

printf ("i % % 1%d % $d\n",
in=-2, in-1,in,in+1,in+2);
printf ("Shadow sC sC sC sC
sc\n'",

InShadow[in-2], InShadow[in-1],InShadow[in],
InShadow[in+1], InShadow[in+2]);
printf ("Upwind %c
c\n",

0\
0\
0\

c c c
UpWind[in-2], UpWind[in-1],UpWind[in],
UpWind[in+1], UpWind[in+2])
printf ("Angle %2.2f %2.2f %2.2f
%2.2f %2.2f\n",
ShorelineAngle[in-2]*radtodeg,ShorelineAngle[in-
1]*radtodeg, ShorelineAngle[in]*radtodeg,

ShorelineAngle[in+1]*radtodeqg,ShorelineAngle[in+2]*radtodeg
)

printf ("SurrAngle $2.2%f $2.2%f $2.2%f
$2.2f $2.2f\n",
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SurroundingAngle[in-2]*radtodeqg,
SurroundingAngle[in-1]*radtodegqg,
SurroundingAngle[in] *radtodeqg,

SurroundingAngle[in+1]*radtodeqg,
SurroundingAngle[in+2] *radtodeq) ;

printf ("Vol In $2.2f $2.2f $2.2f
$2.2f $2.2f\n",

VolumeIn[in=2], VolumeIn[in-
],VolumeIn[in] ,VolumeIn[in+1],VolumeIn[in+2]) ;
printf ("Vol Out %2.2f %2.2f %2.2f
%2.2f $2.2f\n",
VolumeOut[in-2], VolumeOut[in-1],
VolumeOut[in] ,VolumeOut[in+1],VolumeOQut[in+2]) ;
printf ("Diff $2.2f $2.2f $2.2f
$2.2f %2.2f\n",
VolumeIn[in-2]-VolumeOut[in-2], VolumeIn[in-1]-
VolumeOut[in-1], VolumeIn[in]-VolumeOut[in],
VolumeIn[in+1]-VolumeOut[in+1],VolumeIn[in+2]-
VolumeOut[in+2]) ;
printf ("Frac Diff %2.3f %2.3f %2.3f
%2.3f %2 .3f\n",
(VolumeIn[in-2]-VolumeOut[in-2]1) /vol,
(VolumeIn[in-1]-VolumeOut[in-1])/vol,
(VolumeIn[in]-VolumeOut[in]) /vol,
(VolumeIn[in+1]-VolumeOut[in+1]) /vol,
(VolumeIn[in+2]-VolumeOut[in+2]) /vol) ;

}

printf ("\n");

void PauseRun (int x, int y, int in)

/* Pauses run intil the 'q' key is pressed */
/* Can Print or Plot Out Useful info */
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int xsee=l,ysee=-1,isee=-1,1;

printf ("\nPaused x: %d vy: %d Time:
$d\n",x,y,CurrentTimeStep) ;

/*1f (Saveline) SavelineToFile();
else SaveSandToFile () ;*/

if (NoPauseRun)
return;

sleep (D)
printf ("\nend Pause\n");

void ButtonEnter (void)

{
char newdigit = 'z';
int flag = 0;
int 1 = 1;
char digits[7] = "";

/*printf ("Flagl %d\n",flag);*/

printf ("Press <Space> to Start\n");

printf ("Enter Digit and <Space> (<Z> to finish)\n");

i += 1;

sprintf (digits,"%s%c",digits,newdigit) ;
printf ("\nCurrent %s\n",digits);
newdigit = 'z';
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void AgeCells (void)

/* Age Cells */

{
int x,y;
for (v = 0; y < 2*Ymax; y++)
for (x=0,; x<Xmax; x++)
if (PercentFulll[x][y] == 0)
{
Age[x] [y] = CurrentTimeStep%$AgeMax;
}
}

void ReadWavelIn (void)

/* Input Wave Distribution */

{
int 1i;
for (i=0 ; i<k= ; 14+)
{
WaveMax[i] =0;
WaveProb[i] = 0;
}
ReadWaveFile = fopen(readwavename,"r") ;printf ("CHECK

READ WAVE\Nn") ;

fscanf (ReadWaveFile, " %d \n", &NumWaveBins) ;
fscanf (ReadWaveFile, " %d \n", &BinSize);
fscanf (ReadWaveFile, " %G \n", &MaxWaveProb) ;
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printf ("Wave Bins %d \n",NumWaveBins) ;
printf("Bin Size %d degrees \n'", BinSize);
printf ("Max Wave Probability %G \n", MaxWaveProb) ;

WaveMax[0] = -90;
WaveProb[0] = 0;

for (i=1 ; i<= NumWaveBins ; i++)

{

fscanf (ReadWaveFile, " %f %f", &WaveMax[i]
&WaveProb[i]) ;

printf("i= %d Wave= %f Prob= %f \n",i, WaveMax[i],
WaveProb[i]) ;

}

14

fclose (ReadWaveFile) ;
printf ("wave file read! \n");

}
void DeliverSediment (void)
/* Simple 'first approximation of sediment delivery */

/* At certain alongshore location, add certain amount of
sed to the coast */

{
int x,y;
x = 0;
y = StreamSpot;
while (AllBeach[x][y] == "'v'")
{
x += 1;
}

PercentFull[x] [y] += SedRate;

}
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void CheckOverwashSweep (void)

/* Just a loop to call overwash check founction

CheckOverwash */

/* Nothing done here, but can be down when
CheckOVerwash is called */

{

int 1,11i; /* local loop variable */

int sweepsign;

if (RunInWindows) {
if (RandZeroToOne()*.2 > 1)

{
sweepsign = 1;
if (debuglOa) printf("L ");
}
else
{
sweepsign = 0;
if (debuglOa) printf("R ");
}
} else {
if (RandZeroToOne()*2 > 1)
{
sweepsign = 1;
if (debuglOa) printf ("L ");
}
else
{
sweepsign = 0;
if (debuglOa) printf ("R ");
}

}

OWflag = 0;
for (i=1; 1 < TotalBeachCells-=1 ; i++)
{
if (sweepsign == 1)
ii = 1i;
else
ii = TotalBeachCells-1-1;
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/* To do test shoreline should be facing seaward

*/
/* don't worry about shadow here, as overwash is
not set to a time scale with AST */
if ((fabs(SurroundingAngle[ii]) <
(OverwashLimit/radtodeg)) && (InShadow[ii] == 'n'"))
{
CheckOverwash (ii) ;
}
}
/*1if (OWflag) PauseRun(l,1,-1);*/
}

void CheckOverwash (int icheck)

/* New 1/04 ADA - Step back pixelwise in direction of
Surrounding Angle to check needage */

/* If too short, calls DoOverwash, which will move some
sediment */

/* Uses AllBeach[][] and PercentFull[][] (can be
changed when DoOVerwash is called */

/* Need to change sweepsign because filling cells
should affect neighbors */

/* '"x'" and 'y' hold real-space values, will be mapped
onto ineger array */

{

float slope; /* slope of zero goes staight
back */

int ysign; /* holder for going left or right
alongshore */

float X,V /* holders for 'real' location
of x and y */

float xin, yin; /* starting 'real' locations */
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int xtest,ytest; /* cell looking at */

float xint,yint; /* intercepts of overwash line
in overwashable cell */

int NextXInt, NextYInt; /* holder vairables for cell to
check */

float Ydown, DistanceDown; /* when going to next x
cell, what other values */

float Xside, DistanceSide; /* when gpoing to next
y cell,other values */

float checkdistance; /* distance of checking
line- minimum, not actual width, ends loop */

float measwidth; /* actual barrier width between
cells */

int AllBeachFlag; /* flag to see if overwash

line has passed over at least one AllBeach cell */

/* convert angle to a slope and the direction of steps
*/

/* note that for case of shoreline, positive angle will
be minus y direcyion */

/*1f (icheck == 122)
debuglOa = 1;
else
debuglOa = 0;*/

if (SurroundingAngle[icheck] == 0.0)
{

/* unlikely, but make sure no div by zero */
slope = 0.00001;

}
else if (fabs(SurroundingAngle[icheck]) == 90.0)
{
slope = 9999.9;
}
else
{
slope = fabs(tan(SurroundingAngle[icheck]));
}
if (SurroundingAngle[icheck] > 0)
ysign = 1;
else
ysign = -1;
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if (debuglOa) printf("\nl: d----------——~ Surr: $f
$f Slope: $f sign: %d \n",
icheck,
SurroundingAngle[icheck] ,SurroundingAngle[icheck] *radtodeqg,
slope, ysign);

if (AllBeach[X[icheck]=-1]1[Y[icheck]] == 'v' ||
((AllBeach[X[icheck]][Y[icheck]-1] == 'vy') &&
(AllBeach[X[icheck]][Y[icheck]+1] == 'v')) )
/* 'regular condition' */
/* plus 'stuck in the middle' situation (unlikely
scenario) */
{
xin = X[icheck] +
PercentFull[X[icheck]][Y[icheck]]:;

yin = Y[icheck] + ;
}
else if (AllBeach[X[icheck]][Y[icheck]=-1] == 'v'")
/* on right side */
{
xin = X[icheck] + ;

yin = Y[icheck] +
PercentFull[X[icheck]][Y[icheck]];

if (debuglOa) printf("-- Right xin: $f vyin:
$f\n",xin,yin) ;
}
else if (AllBeach[X[icheck]][Y[icheck]+1] == 'v')
/* on left side */
{
xin = X[icheck] + ;

yin = Y[icheck] + -
PercentFull[X[icheck]][Y[icheck]];
if (debuglOa) printf("-- Left xin: %f vyin:
$f\n",xin,yin) ;
}
else
/* underneath, no overwash */

{

return;
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y = yin;
checkdistance = ;
AllBeachFlag = 0;

while ((checkdistance < CritBWidth) && (y > 0) && (y <
*Ymax) && (x > 1))
{
NextXInt = ceil(x) -1;
if (ysign > 0)
NextYInt = floor(y) + 1;
else

NextYInt ceil(y-1);

/* moving to next whole 'x' position, what is vy
position? */

Ydown = y + (x - NextXInt)*slope * ysign;

DistanceDown = Raise(((Ydown - y)*(Ydown - y) +
(NextXInt - x)*(NextXInt - x)),.5);

/* moving to next whole 'y' position, what is x
position? */

Xside = x - fabs(NextYInt - y) / slope;

DistanceSide = Raise(((NextYInt - y)*(NextYInt - vy)
+ (Xside - x)*(Xside - x)),.5);

if (debuglOa) printf("x: $f vy: $f X:%d Y: %d
Yd: %$f DistD: %f Xs: %f DistS: %$f\n",

X,y,NextXInt,NextYInt,
Ydown,DistanceDown,Xside,DistanceSide) ;

if (DistanceDown < DistanceSide)
/* next cell is the down cell */

{

x = NextXInt;

y = Ydown;

xtest = NextXInt-1;

ytest = floor(y);

/*1if (debuglOa) printf (" down ");*/

}
else
/* next cell is the side cell */
{

X = Xside;
= Next¥YInt;

M
|
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xtest = floor(x);
ytest = yv + (ysign-1)/2;
/*if (debuglOa) printf (" side ");*/
}

/*if ((debuglOa) && (DoGraphics ==
'y'))PutPixel (ytest*CellPixelSize,xtest*CellPixelSize,0,0,2
00);*/

checkdistance = Raise(((x - xin)*(x - xin) + (y -
yin)*(y - yin)),.5) * CellWidth;
if (AllBeach[xtest][ytest] == 'vy')

AllBeachFlag = 1;

if (debuglOa) printf(" x: $f vy: $f xtest: %d
vtest: %d check: %$f\n\n",x,y,xtest,ytest,checkdistance);

if ((AllBeach[xtest][ytest] == 'n') &&
(AllBeachFlag) && !'(((X[icheck]-xtest) > 1) || (abs(ytest -
Y[icheck]) > 1)))

/* 1if passed through an allbeach and a neighboring
partial cell, jump out, only bad things follow */

{
return;
}
if((AllBeach[xtest] [ytest] == 'n'") &&
(AllBeachFlag) && (xtest < X[icheck]) &&
(((X[icheck]-xtest) > 1) || (abs(ytest -

Y[icheck]) > 1)))

/* Looking for shore cells, but don't want
immediate neighbors, and go backwards */

/* Also mush pass though an allbeach cell along the

way */
{
if (AllBeach[xtest+l][ytest] == 'y")
/* 'regular condition' - UNDERNEATH, here */
{

xint = (xtest + 1 -
PercentFull [xtest] [ytest]) ;
yint = yin + (xin - xint)*ysign * slope;

if ((yint > ytest+1.0) || (yint < ytest))
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/* This cell isn't actually an overwash
cell */
{
measwidth = CritBWidth;
if (debuglOa) printf("-- Regunder
Cancelled xin: %$2.2f vyin: %2.2f xt:%d yt: %d xint: %f
yint: %$f sl: %2.2fMMeas: %3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;
}

else

{
measwidth = CellWidth * Raise((xint -
xin)*(xint - xin)+ (yint - yin)*(yint - yin),0.5);

if (debuglOa) printf("-- Regunder Over
xin: %2.2f yin: %2.2f xt:%d yt: %d xint: %f yint: %f sl:
%$2.2fMeas: %$3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;

}
}
else if (AllBeach[xtest][ytest-1] == 'v'")
/* on right side */
{
yint = (ytest + PercentFull[xtest][ytest]):;

xint = xin - fabs(yin - yint)/ slope;

if (xint < xtest)

/* This cell isn't actually an overwash
cell */

{
measwidth = CritBWidth;

if (debuglOa) printf("-- Right
Cancelled xin: %2.2f yin: %2.2f xt:%d yt: %d xint: %f
yint: %$f sl: %2.2fMMeas: %3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;

}

else

{
measwidth = CellWidth * Raise((xint -
xin) * (xint - xin)+ (yint - yin)*(yint - yin),0.5);
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if (debuglOa) printf("-- Right Over
xin: %2.2f yin: %2.2f xt:%d yt: %d xint: %f yint: %f sl:
%2 .2fMMeas: %3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;
}

}
else if (AllBeach[xtest][ytest+l] == 'y')

/* on left side */
{
yint = (ytest + 1 -
PercentFull [xtest] [ytest]);
xint = xin - fabs(yin - yint)/ slope;

if (xint < xtest)
/* This cell isn't actually an overwash
cell */

{
measwidth = CritBWidth;

if (debuglOa) printf("-- Left cancelled
xin: %2.2f vyin: %2.2f xt:%d yt: %d xint: %f yint: %f sl:
%2 .2fMMeas: %$3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;
}
else
{
measwidth = CellWidth * Raise((xint -
xin) * (xint - xin)+ (yint - yin)*(yint - yin),0.5);

if (debuglOa) printf("-- Left Over
xin: %2.2f vyin: %2.2f xt:%d yt: %d xint: %f yint: %f sl:
%2 .2fMMeas: %3.2f\n",

xin,yin,xtest,ytest,xint,yint,slope,measwidth) ;
}
}
else if (AllBeach[xtest-1][ytest] == "'y')
/* 'regular condition' */
/* plus 'stuck in the middle' situation */

{
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xint = (xtest +
PercentFull [xtest] [ytest]);
yint = yin + (xin - xint)*ysign * slope;

if ((yint > ytest+1.0) || (yint < ytest))
/* This cell isn't actually an overwash
cell */
{
measwidth = CritBWidth;
if (debuglOa) printf("-- RegularODD
Cancelled xin: %2.2f vyin: %2.2f xt:%d yt: %d xint: %f
yint: $f Meas: %3.2f\n",

xin,yin,xtest,ytest,xint,yint,measwidth) ;
}
else
{
measwidth = CellWidth * Raise((xint -
xin)*(xint - xin)+ (yint - yin)*(yint - yin),0.5);

if (debuglOa) printf("-- RegularODD
Over xin: %2.2f vyin: %2.2f xt:%d yt: %d xint: %f yint:
Meas: %$3.2f\n",

xin,yin,xtest,ytest,xint,yint,measwidth) ;
/*PauseRun (xtest, ytest, icheck) ; */
}

}
else if (PercentFull[xtest][ytest] > 0)
/* uh oh - not good situation, no allbeach on

sides */
/* assume this is an empty cell, */
{
xint = x;
yint = y;

measwidth = CellWidth * Raise((xint -
xin) * (xint - xin)+ (yint - yin)*(yint - yin),0.5);

o\°

printf("-- Some Odd Over xin: $%$2.2f vyin:

%2.2f xt:%d yt: %d xint: $f yint: $f Meas: %3.2f Ang: Sf
Abs: %$f\n",
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xin,yin,xtest,ytest,xint,yint,measwidth,
SurroundingAngle[icheck] *radtodeqg, fabs (SurroundingAngle[ich

eck]) *radtodeq) ;
/*PauseRun (xtest, ytest, icheck) ; */

}
else
/* empty cell - oughta fill er up - fill max
barrier width*/
{
xint = x;
yint = y;

measwidth = CritBWidth - CellWidth;

printf ("-- Empty Odd Over xin: %2.2f vyin:
%2.2f xt:%d yt: %d xint: %$f yint: $f Meas: %3.2f Ang: Sf
Abs: %f\n",

xin,yin,xtest,ytest,xint,yint,measwidth,
SurroundingAngle[icheck] *radtodeg, fabs (SurroundingAngle[ich
eck]) *radtodeq) ;

/*PauseRun (xtest, ytest, icheck); */

}

checkdistance = measwidth;

if (measwidth < CritBWidth)
{

DoOverwash (X[icheck],Y[icheck] ,6 xtest,ytest,xint,yint,measwi
dth,icheck) ;
/* jump out of loop */

OWflag = 1;
return;
}
}
}
/* while (!getbutton (GKEY)) {}*/
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void DoOverwash(int xfrom,int yfrom, int xto, int yto,
float xintto, float yintto, float widthin, int ishore)

/* given a cell where overwash is needed ,move
sediment back *** ADA 09/03, rev 01/04 */
/* for '"true' overwash based on shoreline angles

*/

/* will change and use PercentFull[][] and AllBeach
[1[] */
{

float BBneed, delBB, delShore; /* local variables */

float MaxOver = 0.2; /*Maximum overwash step
size (enforced at backbarrier) */

/*float DepthBackBarrier = 6.0; m current set
depth for backbarrier (temp - make into function)*/

float DepthBB; /* holds effective backbarrier
depth */

short vertex[2];

DepthBB =
GetOverwashDepth (xto,yto,xintto,yintto,ishore);

/* calculated value of most that backbarrier ca nmove
given geometry (true, non-iterative solution) */

if (DepthBB == DepthShoreface)
{
BBneed = MaxOver;
}
else
{

BBneed = (CritBWidth - widthin) / CellWidth / (1 -
(DepthBB / DepthShoreface)) ;
}

if (BBneed <= MaxOver)
/* do all overwash */
{

delShore = BBneed * DepthBB / DepthShoreface;
delBB = BBneed;

250



else

/* only do overwash to max change) */

{
delShore = MaxOver * DepthBB / DepthShoreface ;
delBB = MaxOver;

if (debuglOb) printf("** Overwash From X: %d Y: %d
To: X: %d Y: %d Width: %f \n"
, xfrom, yfrom,xto,yto,widthin );
if (debuglOb) printf("DepthBB: %f BBNeed: %f DelShore:
DelBB: $f\n",
DepthBB, BBneed,delShore,delBB ) ;

o\
Hh

/*1f (DepthBB == DepthShoreface) PauseRun (xto,yto, -
1):*/
if (debuglOb && (DoGraphics == 'vy'))
{
/*bgnpolygon () ;
RGBcolor (250,0,0);
vertex[0] = (yfrom+0.2)*CellPixelSize;

vertex[1] (xfrom+.5) *CellPixelSize;
v2s (vertex
vertex [0]

v2s (vertex
vertex[0]

vertex[1]

v2s (vertex
vertex [0]

v2s (vertex) ;

vertex[0] (yfrom+0.2) *CellPixelSize;
vertex[1l] = (xfrom+.5)*CellPixelSize;

v2s (vertex) ;

endpolygon () ; */

(yfrom+0.8) *CellPixelSize;
(yvto+0.8) *CellPixelSize;
(xto+0.5) *CellPixelSize;

(yto+0.3) *CellPixelSize;;

I~ 1

~1 —I

}

PercentFull[xto] [yto] += delBB;
PercentFull [xfrom] [yfrom] -= delShore;

if (PercentFull[xto][yto] > 1)

{
OopsImFull (xto,yto) ;
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}
if (PercentFull[xfrom][yfrom] < 0)

{
OopsImEmpty (xfrom,yfrom) ;
}

if (debuglOb) PauseRun(xto,yto,-1);

float GetOverwashDepth(int xin, int yin, float xinfl, float
yinfl, int ishore)

/* Rountine finds corresponding overwash depths

*/

/* OWType = 0 take the depth at neightbor to the
backing cell */

/* OWType = 1 geometric rule based upon distance
from back to shoreline */

/* AA 5/04 * /
{

int xdepth;

float Depth;

float BBDistance; /* Distance from backshore to next
shore */

float slope; /* slope of zero goes staight
back */

int ysign; /* holder for going left or right
alongshore */

float X,V; /* holders for 'real' location
of x and y */

int xtest,ytest; /* cell looking at */

int NextXInt, NextYInt; /* holder vairables for cell to
check */

float Ydown, DistanceDown; /* when going to next x
cell, what other values */

float Xside, DistanceSide; /* when gpoing to next
y cell,other values */

int BackFlag; /* Flag to indicate if hit
backbarrier */

int Backi = -1; /* 1 for backbarrier intersection
*/

int i,73; /* counters */
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int FoundFlag; /* Backbarrier intersection flag */
float AngleSin, AngleUsed;

if (OWType == 0)
/* Use Cell Depths for overwash depths */
{

xdepth = xin;
Depth = CellDepth[xdepth][yin];

while ((Depth < 0) && (xdepth > 0))
{
Depth = CellDepth[xdepth][yin];
/*printf ("-- Overwash depth problem - Here = %f
Next = $f",CellDepth[xdepth] [yto],CellDepth[xdepth-1] [yto]
) ;
PauseRun (xdepth, yto, -1) ; */

xdepth --;
}
if (Depth == DepthShoreface)
{
Depth = 6.0;
}

return Depth;

}
else if (OWType == 1)
/* Geometric relation to determine depth through
intersection of shorefaces */
/* look in line determined by shoreline slope - reuse
stepping function (again) */
{
x = xinfl;
y = yinfl;
if (SurroundingAngle[ishore] == 0.0)
{

/* unlikely, but make sure no div by zero */
slope = 0.00001;
}
else if (fabs(SurroundingAngle[ishore]) == 90.0)
{
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slope

I
~

}

else

{

slope fabs (tan (SurroundingAngle[ishorel]));

}

BackFlag = 0;

if (SurroundingAngle[ishore] > 0)
ysign = 1;

else
ysign = -1;

while (('BackFlag) && (y > 0) && (v < 2*Ymax) && (x

> 1))
{
NextXInt = ceil(x) -1;
if (ysign > 0)
NextYInt = floor(y) + 1;
else
NextYInt

ceil (y-1);

/* moving to next whole 'x' position, what is y
position? */
Ydown = y + (x - NextXInt)*slope * ysign;
DistanceDown = Raise(((Ydown - y)*(Ydown - y) +

(NextXInt - x)*(NextXInt - x)),.5);

/* moving to next whole 'y' position, what is x
position? */
Xside = x - fabs(NextYInt - y) / slope;
DistanceSide = Raise(((NextYInt - y)*(NextYInt

- y) + (Xside - x)*(Xside - x)),.5);

o°
N
X
o°
Q.

if (debuglOb) printf("x: %
Y: $d Yd: %f DistD: %f Xs: $f DistS: %f\

x,y,NextXInt,NextYInt,
Ydown,DistanceDown,Xside,DistanceSide) ;

f vy:
nll,

if (DistanceDown < DistanceSide)
/* next cell is the down cell */
{

x = NextXInt;
= Ydown;

=
|
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xtest = NextXInt-1;
ytest = floor(y);
}
else
/* next cell is the side cell */

{

X Xside;

y = NextYInt;

xtest = floor(x);

ytest = yv + (ysign-1)/2;
}

if (PercentFull[xtest][ytest] > 0)
BackFlag = 1;
}

/* Try to find the i for the cell found */
/* If you have a better idea how to do this, go
ahead */

i=2;
FoundFlag = 0;

while ((i < TotalBeachCells-1) && ! (FoundFlag))

{
if ((X[i] == xtest) && (Y[i] == ytest))
{
FoundFlag = 1;
Backi = 1i;
}
1 ++;
}

if (!'BackFlag)
/* The search for the backbarrier went out of

bounds - not good, assume big = depthshoreface */
/* Periodic B.C.'s should make this not so
important */
{

Depth = DepthShoreface;

if (debuglOb) printf("\nbackbarrier out of
bounds: xin: %d yin: %d xbi: %d ybi: %d xinf: %f yinf: %f
Per: %f Dist: Depth: %f\n",
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xin, yin, xtest, ytest, xinfl,
yinfl,PercentFull [xtest] [ytest], Depth);
/*PauseRun (xin, yin, -1) ; *
}
else
{
BBDistance = Raise(((xinfl - xtest-
PercentFull [xtest] [ytest])*
(xinfl - xtest-PercentFull[xtest][ytest])) +
((yinfl - ytest - 0.5)*(yinfl - ytest -
0.9)),.9);

if (!'FoundFlag)

/* The backbarrier intersection isn't on the
shoreline */

/* Assume 1/2 of the length applies to this
case */

{

Depth = BBDistance/2 * ShorefaceSlope *
Cellwidth;

if (debuglOb) printf("\nNot Found backi:
bx: %d by: %d Depth:%f",

Backi,xtest,ytest,Depth);

o\
(O

}

else

/* Use the fancy geometry thing */

{ AngleUsed = 0;
for (J = -1; 3 <2 ; J ++)
{ AngleUsed += SurroundingAngle[Backi+j];
;ngleUsed = AngleUsed/5;

if (fabs(AngleUsed) > pi/4.0)

{
AngleUsed = pi/4.0;
if (debuglQOb) printf("Big Angle');
/*PauseRun (X [Backi], Y[Backi],Backi);*/
}

AngleSin = sin(pi/2.0 -
fabs (SurroundingAngle[ishore] + AngleUsed));
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Depth = BBDistance * AngleSin / (1 +
AngleSin);

if (debuglOb) printf("\nBack Angle backi: %d bx: %d
by: %d BackA: $f AngU: %$f Asin: %f L/2: $f Depth:%f",

Backi,X[Backi],Y[Backi],SurroundingAngle[ishore]*radtodeg, A
ngleUsed*radtodeg,AngleSin,
BBDistance/”.0,Depth) ;

}
}
if (Depth < OWMinDepth)
{ Depth = OWMinDepth;
;lse if (Depth > DepthShoreface)
{ Depth = DepthShoreface;
}

if (debuglOb) printf("\nOverwash Depth2: xin:
%d yin: %d xbi: $d ybi: %d xinf: %f yinf: $f Per: %f Dist:
$f Depth: %$f\n",
xin, yin, xtest, ytest, xinfl,
yinfl,PercentFull [xtest] [ytest],BBDistance, Depth);
return Depth;

}
printf ("OWDepth all broken");

PauseRun(xin,yin,=-1);
return DepthShoreface;

float RandWaveAngle (void)

// Function returns a random initial wave angle for thetao
between 90 and 270 degrees

{
float Angle;

float RandNumber;
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RandNumber = rand() % 100; // Random number between
and 100
Angle = ( (RandNumber * 1.79) + 89 ) * pi/130;

//RandNumber = RandZeroToOne () ;
//RandAngle = rand() % 270 + 90;
//Angle = RandAngle * pi/180;

return Angle;

}

void CalcSedFluxGrad(void)

// Calculates the sediment flux gradient and change is
shoreline position

//

// Uses but does not change the global arrays VolumelIn/[]
and VolumeOut ][]

// Affects the global arrays SedFluxGrad[] and dEta dt[]

{
int y;
int debugloc = 0; // local debugger
if (debugloc) printf("SedFluxGrad = \n");
for (v = Ymax/?; y < 3*Ymax/”; y++) {
//SedFluxGrad[y] = VolumeIn[y] - VolumeOut[y];
SedFluxGrad[y] = VolumeOut[y] - VolumeIn[y]:;
if (debugloc) printf("%G ", SedFluxGradl[yl]l):
}
if (debugloc) printf("dEta dt = \n'");
for (v = Ymax/?; y < 3*Ymax/”; y++) {
dEta dt[y+1] = - SedFluxGrad[y] / DepthShoreface;
//dEta dt[y] = SedFluxGrad[y] / DepthShoreface;
if (debugloc) printf("sG ", dEta dt[yl);
}
}
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void CalcDiffusivity(void)

// Calculates the diffusivity and sum of (Diffusivity *
Delta t) of each beach cell for current time step

//

// Uses but does not affect global array SedFluxGradl]

// Affects global arrays Diffusivity[], SumMuDeltaT[], and
SumAbsMuDeltaT [ ]

// Affects global variable GammaCounter

{
int y;
float K2 = 0.34; // in m” (3/5)*s”(-6/5)
float DeltaTheta; // Change in shore angle
float dTheta dx; // Change is shoreline angle w/

respect to x
int debugloc = 0; // local debugger

if (debugloc) printf("Diffusivity = \n'");

for (v = Ymax/2; y < 3*Ymax/”; y++) {
// Diffusivityly] = (SedFluxGrad[y] * (
(6/5) * (pow (sin (WaveAngle-ShorelineAngle[y]),2))

// - pow(cos (WaveAngle-ShorelineAngle([y])
) / (DepthShoreface * (cos (WaveAngle-ShorelineAnglely

// * (sin (WaveAngle-ShorelineAnglel[y])) )

Diffusivityl[y] = ( K2 * pow(period,0.2) *
pow (OffShoreWvHt, (12/5))

* pow(cos (WaveAngle-ShorelineAngle[y]), (6/5)) *
sin(WaveAngle-ShorelineAngle[y])

* ( (6/5)* pow(sin(WaveAngle-
ShorelineAngle[y]),?2) - pow(cos(WaveAngle-
ShorelineAnglel[y]),2) ) )

/ (DepthShoreface * (cos(WaveAngle-
ShorelineAngle[y])) * (sin(WaveAngle-ShorelineAnglely])) )

//Diffusivity([y] = -(Qs[y+1] - Qsly]) /
(DepthShoreface * (ShorelineAnglel[y+1l] -
ShorelineAngle([y]));

//Diffusivity([y] = -(Qs[y+1] - Qs[y-11) /
(DepthShoreface * (ShorelineAngle[y+1l] - ShorelineAngle[y-
11)):

1 2) )
1))

14
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//DeltaTheta = (ShorelineAngle[y+1] -
ShorelineAngle[vy]) ;

DeltaTheta = (ShorelineAngle[y+1] -
ShorelineAngle[y-11) ;

if (DeltaTheta == 0){
Mul[y] = 0O;
} else {
//Muly] = -(Qs[y+1l] - QOs[y]) / (DepthShoreface
* DeltaTheta) ;
//if (Muly] > 2000) Muly] = 0;
Mul[y]l] = -(Qs[y+1] - Qs[y-1]1) / (DepthShoreface
* DeltaTheta);
}

//dTheta dx = DeltaTheta/CellWidth;
//Muly] = dEta _dtly] / dTheta dx;

// Determine when to reset arrays to calcualte
Gamma
if (GammaCounter == 0) {
GammaCounter = 1;
} else if (GammaCounter == MaxGammaCounter) {
GammaCounter = 0;
SumMuDeltaT[y] = 0O;
SumAbsMuDeltaT[y] = 0O;
} else {
GammaCounter++;

}

//SumMuDeltaT[y] = SumMuDeltaT[y] + (Diffusivity[y]
* TimeStep) s

//SumAbsMuDeltaT[y] = SumAbsMuDeltaT[y] +
((fabs (Diffusivity[y])) * TimeStep);

SumMuDeltaT[y] = SumMuDeltaT[y] + (Muly] *
TimeStep) ;

SumAbsMuDeltaT[y] = SumAbsMuDeltaT[y] +
((fabs(Mu[y])) * TimeStep);,

//if (debugloc) printf ("%G ", Diffusivityl[y]):
if (debugloc) printf ("G ", Mulyl);
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}
void CalcGamma (void)

// Calculates the instability index of each beach cell for
current time step

//
// Uses but does not affect global arrays SumMuDeltaT[] and

SumAbsMuDeltaT [ ]
// Affects global arrays Gammal[]

{
int y;
int debugloc = 0; // local debugger
if (debugloc) printf("Instability Index = \n");
for (v = Ymax/2; y < 3*Ymax/”; y++) {
Gamma [y] = SumMuDeltaT[y] / SumAbsMuDeltaTl[y];
if (debugloc) printf("%G ", Gammaly]) ;
}
}

void RUnAWTOffShore (void)

// Uses the Ashton Wave Transformation to propagate
offshore waves to start of WRT domain

//
// Uses global variable WaveAngle, Period, and OffShoreWvHt

// Uses and modifies global variables StartAngle and
StartHeight

{

/* Coefficients - some of these are important*/

float StartDepth = 200; /* m, depth to begin
refraction calcs (needs to be beyond breakers) */

float RefractStep = .2; /* m, step size to iterate
depth for refraction calcs */

//float KBreak = 0.5; /* coefficient for wave
breaking threshold */

float rho = 1020; /* kg/m3 - density of water and
dissolved matter */
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/* Variables */

float AngleDeep; /* rad, Angle of waves to shore
at inner shelf */

float Depth = StartDepth; /* m, water depth for
current iteration */

float Angle; /* rad, calculation angle
*/
float CDeep; /* m/s, phase velocity in deep
water */
float LDeep; /* m, offhsore wavelength
*/
float C; /* m/s, current step phase velocity
*/
float kh; /* wavenumber times depth
*/
float n; /* n */
float WavelLength; /* m, current wavelength
*/
float WvHeight; /* m, current wave height
*/
int y coord; // y-coordinate of the beach
cell "From"
int debugba = 1; // Print volume only
int debugl99a = 0; // local debugger
int debugl9b = 0; // local debugger

AngleDeep = WaveAngle;

/* Calculate Deep Water Celerity & Length, Komar 5.11 c
=gT / pi, L = CT  */

CDeep = g * Period / (2.0 * pi);

LDeep = CDeep * Period;

if (debug6) printf("Cheep = %2.2f LDheep = %2.2f
\n'",CDeep, LDeep)

// Run while loop until you reach the edge of WRT
domain (at MaxDepth)
while (Depth >= MaxDepth + (.001*StartFlatBathy)) {
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/* non-iterative egn for L, from Fenton & McKee

*/

WavelLength = LDeep *
Raise (tanh (Raise (Raise(”.0*pi/Period,?) *Depth/g,.75)),2.0/3
.0);

C = WavelLength/Period;

if (debug6) printf("DEPTH: %$2.2f Wavelength = %2.2f
C = %2.2f ", Depth, WaveLength,C);

/* Determine n = 1/2 (1+2kh/tanh(kh)) Komar 5.21
*/

/* First Calculate kh = 2 pi Depth/L from k = 2
pi/L */

kh = pi * Depth / WavelLength;

n=0.5* (1 4+ 2.0 * kh / sinh(2.0%*kh));

if (debug6) printf("kh: %2.3f n: %2.3f ", kh, n);

/* Calculate angle, assuming shore parallel
contours and no conv/div of rays */

/* from Komar 5.47 */

Angle = asin(C/CDeep * sin(AngleDeep)) ;
if (debug6) printf("Angle: %2.2f",Angle*radtodeq)

/* Determine Wave height from refract calcs - Komar
5.49 */

WvHeight = OffShoreWvHt *
Raise (CDeep*cos (AngleDeep)/ (C*2.0*n*cos (Angle)),.5);
if (debug6) printf (" WvHeight : %2.3f\n",WvHeight) ;

if (Depth == RefractStep) {

Depth -= RefractStep;
} else
Depth -= RefractStep;

}

// Determine starting wave angle & height for WRT
StartAngle = Angle;
StartHeight = WvHeight;
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void CalcOverallAverages (void)

// Calculates the average breaking height, relative
breaking angle, and Qs over the entire
// simulation

{

int 1i;

for (i = 0; 1 < 2*Ymax; i++){
SumBkHeight[i] = SumBkHeight[i] + HeightRollAvgl[il];
SumRelAngle[i] = SumRelAngle[i] + RelAnglel[il];
SumQs[i] = SumQs[i] + Qs[i]:
}
if (CurrentTimeStep > 0){
for (i = 0; 1 < 2*Ymax; i++){
TotalAvgBkHeight[i] =
SumBkHeight[1]/CurrentTimeStep;
TotalAvgRelAngle[i] =
SumRelAngle[i]/CurrentTimeStep;
TotalAvgQs[i] = SumQs[i]/CurrentTimeStep;
}

}
void DisplayAWTWvHeight (void)

// Displays the AWT wave height as it changes during
propagation

{
int x,y;
if (debug2l){
printf ("AWTWvHeight = \n");
for (v = Ymax/2?; y < 3*Ymax/”; y++) {
for (x = 0; x < Xmax; x++) {

printf ("SG ", AWTWvHeight[x]I[vy]l)
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}
printf ("\n");

void RunWRT (void)

// Runs the Wave Ray Tracer (foward wave ray tracing)

//

// Uses the global arrays PercentFull[][] and AllBeach[] []
// May utilize global variable WaveAngle

// Affects the global arrays breaking heights[] and
breaking angles[][]

{

//float KBreak = 0.5; // coefficient for wave
breaking threshold

// Initialize wave parameters

float Ho = StartHeight; // Initial deep water wave
height

int x;

int y;

int i;

// Find the cross-shore position of the beach for all
columns
if (debugll) printf("beach = ");
for (x = 0; x < Xmax; x++){
//for (y = Ymax/2 - 1; y < 3*Ymax/2; y++) {
for (y = 0; y < 2*Ymax; y++){
if ((PercentFull[x][y] > 0) &&
(PercentFull[x][y] < 1)){
beach[y] = x + 1;
if (debugll) printf("%i ", beach[y]):
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} if (debugll) printf("\n");
if (debugll) printf("\n");

// Define depth at all cells

float calc slope; // Calculated bathymetry slope

int start slope; // y-coordinate of start of slope

float Xo; // Distance from coastline to edge of beach
cell

float Zo; // Initial depth at 1st beach cell

float zf; // Depth where the bathymetry starts to
flatten out

int counter;

for (y = 0; y < 2*Ymax; y++){
for (x = 0; x < Xmax + 1; x++){
if (AllBeach[x][y] == 'v'){
2Z[x] [yl = 0;
counter = 0;
} else if (UseDeanProfile == 'y'){
if ((AllBeach[x][y] == 'n') &&
(AllBeach[(x-1)1[y] == "v")) {
Xo = CellWidth * (l-PercentFull[x][vy]);
Zo = * pow((Xo/2), ( )); // Not

exactly center of cell, but that's ok
zz[x] [yl = Zo;

counter = 1;
} else if ((AllBeach[x][y] == 'n') &é&
(AllBeach[(x-1)][y]l == "n")) {
if (x >= (Xmax - StartFlatBathy)) {
2z2[x] [yl = z2z[x-1]1[y] + ;
} else if (counter < ) |
2z[x]1[y]l = * pow( (Xo +
(CellWidth * counter) - (CellWidth/2)), ( ))
counter++;
} else if (counter = ) |

calc slope = (MaxDepth - ZZ[x-
1[y])/ (Xmax - StartFlatBathy - x);

2f = 72Z2[x-1]1[y] + calc_slope;

zz[x]1lyl = z£;

counter++;

} else if (counter > ) |
zz[x]1 [yl = 22[x-11[y] + calc slope;
counter++;
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} else if (UseDeanMirror == 'v'){

if ((AllBeach[x][y] == 'n') &&
(AllBeach[(x-1)]1[y]l == "v")) {
Xo = CellWidth * (l-PercentFull[x]I[v]):
70 = * pow(((CellWidth - Xo)/?2),
( )):; // Not exactly center of cell, but that's ok
22[x]1[y]l = Zo;
counter = 1;
} else if ((AllBeach[x][y] == 'n') &&
(AllBeach[(x=1)1[y] == 'n")) {
if (counter <= ) |
//727[x][y] = Zo + .1 *
pow ((CellWidth * counter), (.66667));
2Z[x][y]l = * pow( (Xo +
(CellWidth * (counter-1)) - (CellWidth/2)), ( ))

counter++;
} else if (counter > ) |
z2z[x]1lyl = 2Z[x-1][y] +

*CellWidth;
counter++;
}
}

} else if ((x >= Xmax - StartFlatBathy) &&

(UseFixedBathySlope == 'n')){
27Z[x][y] = MaxDepth + Zo;

} else if ((AllBeach[x][y] == 'n') &&
(AllBeach[(x-1)]1[y] == 'v') && (UseFixedBathySlope == 'vy'))
{

Z0 = BathySlope* (l-PercentFull[x]I[v])
z2z[x]1 [yl = Zo;
counter = 1;

} else if ((AllBeach[x][y] == 'n') &&
(AllBeach[(x-1)]1[y] == 'n') && (UseFixedBathySlope == 'vy'))
{

counter++;
2Z[x]1[y]l] = Zo + (BathySlope * counter);

} else if ((AllBeach[x][y] == 'n') &&

(AllBeach[(x=1)1[y] == "v")) {
start slope = x;
calc _slope = MaxDepth/(Xmax -

StartFlatBathy - start slope);
Zo = calc slope*(l-PercentFull[x][y])
22[x]1[y] = Zo;
counter = 1;
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} else if (AllBeach[x][y] == 'n') {
counter++;
27z2[x] [yl = (calc slope * counter) + Zo;

}

// Make sure that no cells have a depth greater than
MaxDepth
for (v = 0; y < 2*Ymax; y++) {
for (x = 0; x < Xmax + 1; x++){
if (zZ[x][y] > MaxDepth) {
27Z[x][y] = MaxDepth;
}

}

// Diffuse the bathymetry and establish depth
if ((CurrentTimeStep > StartWRTAfter) &&
(DiffuseBathymetry == "y')){
for (v = Ymax/”?; y < 3*Ymax/”; y++){
DiffusedDepth[Xmax-1][y] = ZZ[Xmax-1]1[v]-
depth[Xmax-1][y] = DiffusedDepth[Xmax-1]1[v];
for (x = 0; x < Xmax - 1; x++){
DiffusedDepth[x] [y] = DiffusedDepth[x]I[y] +
(TimeStep*Kappa/CellWidth*CellWidth) *(Z2Z[x+1][v]
+ 22[x-111y] + 22[x][y+!] + 22[x][y-1]
- 1*z7[x][y]) ;
depth[x][y] = DiffusedDepth[x][vy]:;

}
}
} else if ((CurrentTimeStep <= StartWRTAfter) &&
(DiffuseBathymetry == "y')){

for (y = Ymax/?; y < 3*Ymax/2; y++){
DiffusedDepth[Xmax-1][y] = ZZ[Xmax-1]1[y];
depth[Xmax-1][y] = DiffusedDepth[Xmax-1]1[y];
for (x = 0; x < Xmax - 1; x++){
DiffusedDepth[x][y] = ZzZ[x][y] +
(TimeStep*Kappa/CellWidth*CellWidth) * (ZZ[x+1][y] +
2zZ[x=1110yl + Z2Z2[x][y+1] + ZZ[x][y-1] -
*7272[x]11[v]);
depth[x][y] = DiffusedDepth[x][vy]:;
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} else {
for (v = Ymax/2; y < 3*Ymax/2; y++){
for (x = 0; x < Xmax; x++){
depth([x][y] = ZZ[x][y]’
}

}

// Copy bathymetry for periodic boundaries
for (v = Ymax; y < 3*Ymax/2; y++){
for (x = 0; x < Xmax; x++){
DiffusedDepth[x] [y-Ymax] = DiffusedDepth[x]I[vy]:
depth[x] [y-Ymax] = depth[x][vy]:;

}
}
for (v = Ymax/?; y <= Ymax; y++) {
for (x = 0; x < Xmax; x++){
DiffusedDepth[x] [y+Ymax] = DiffusedDepth[x]I[vy]:
depth[x] [y+Ymax] = depth[x][vy]:;
}
}
for (x = 0; x < Xmax; x++){
DiffusedDepth[x] [0] = DiffusedDepth[x] [Ymax];
depth[x][0] = depth[x][Ymax];
}

// Display depth at all cells
if (debugll) printf("ZzZ = \n");
for (y=0; y < 2*Ymax,; y++) {
for (x=0; x < Xmax; x++) {
if (debugll) printf("s.1f ", ZZ[x]1Iy]l);
} if (debugll) printf("\n");
} if (debugll) printf("\n");

if (DiffuseBathymetry == 'v'){

if (debugll) printf("DiffusedDepth = \n");
for (y=0; y < 2*Ymax; y++) {

for (x=0; x < Xmax; x++) {

if (debugll) printf("%.1f ',
DiffusedDepth[x]I[y])

} if (debugll) printf("\n");

} if (debugll) printf("\n");
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if (debugll || debuglla) printf("depth = \n");
for (y=0; y < 2*Ymax; y++) {
for (x=0; x < Xmax; x++) {
if (debugll || debuglla) printf("%G ",
depth[x][y])
} if (debugll || debuglla) printf("\n");
} if (debugll || debuglla) printf("\n");

// Define additional parameters

int dx = CellWidth;

int dy = CellWidth;

//int x_ int = (CellWidth * Xmax) - (2 * CellWidth) +
(CellwWidth/2) ;

int x int = (CellWidth * Xmax) - (2 * CellWidth);

int beta int = 1;

int sigma int = 0;

float h _int = StartHeight;

int sf = 0;

int si (CellWidth/4) ;

int ds = 0.5;

if (debugll) printf("Additional parameters: \n");

if (debugll) printf("dx = %i \n", dx);

if (debugll) printf("dy = %i \n", dy);

if (debugll) printf("x int = %i \n", x int);

if (debugll) printf("y int = ");
for (i=0; i < (Ymax*2),; i++){
//y int[i] = ((1 + 1) * CellWidth) + (CellWidth/2);

y int[i] = (i + 1) * Cellwidth;
if (debugll) printf ("1 ", y int[i]);
} if (debugll) printf("\n");
if (debugll) printf("beta int = %i \n", beta int);
if (debugll) printf("sigma int = %i \n", sigma_ int);
if (debugll) printf("h int = %.1f \n", h int);
if (debugll) printf("g = %.2f \n", g);
if (debugll) printf("sf = %i \n", sf);
if (debugll) printf("si = %i \n", si);
if (debugll) printf("ds = %i \n", ds);

float period now = T;
float period = period now;

float wavelength int = (g * pow(period, 2)) / (2 * Pi);
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float velocity int = pow(wavelength int, 2) /
pow (period, 2);

if (debugll) printf("period now = %.1f \n",
period now) ;

if (debugll) printf("period = %.1f \n", period);

if (debugll) printf("wavelength int = %.2f \n",
wavelength int);

if (debugll) printf("velocity int = %.2f \n",
velocity int);

if (debugll) printf("\n");

// Define x- and y-position matrices
if (debugll) printf("x pos = \n");
for (i=0; i < Xmax; i++){
//x pos[i] = 1 + (CellWidth * 1i);
x pos[i] = CellwWidth * 1i;
if (debugll) printf ("1 ", x pos[i]);
} if (debugll) printf("\n");
if (debugll) printf("\n");

if (debugll) printf("y pos = \n");
for (i=0; i < 2*Ymax+1; i++){
//y pos[i] =1 + (CellWidth * 1i);
y pos[i] = CellwWidth * 1i;
if (debugll) printf ("1 ", y pos[i]);
} if (debugll) printf("\n");
if (debugll) printf("\n");

// Define the deep water wavelength (L 0)
float L 0;

int ii;

if (debugll) printf("L 0 = ");

L 0 = ((g*T*T)/(2*Pi));

if (debugll) printf("s.2f \n", L 0);

if (debugll) printf("\n");

// Define the shallow water wavelength (L) for all
cells

if (debugll) printf("L = \n");

for (i1ii=0; ii < 2*Ymax; ii++) {

for (i=0; i < Xmax; i++){
L[i][ii] = L 0 * pow( (tanh(

pow ((2*P1/T) * (2*P1/T) * (depth[i] [1i] / qg) , -75) )) ,
(0.6666667) );
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if (debugll) printf("%.2f ", L[i]l[iil);
} if (debugll) printf("\n");
} if (debugll) printf("\n");

// Define wave celerity (C or c¢) for all cells
if (debugll) printf("c = \n");
for (ii=0; ii < 2*Ymax,; 1ii++){
for (i=0; i < Xmax; i++){
c[il[ii] = (L[i1[ii1)/T;
if (debugll) printf("sGc ", c[i]1[iil):
} if (debugll) printf("\n");
} if (debugll) printf("\n");

//Run loop to fill cx and c2x2 with gradients of ¢ & cx
// cx
if (debugll) printf("cx = \n");
for (ii=0; 1ii < 2*Ymax; ii++){
for (i=0; i < Xmax; i++) {
if (PercentFull[i][ii] >= 1){
cx[i][ii] = 0O;
} else {
cx[1]1[1ii] = (c[i+1]1[4ii] - c[i-
1[i1]1)/(2*dx); // 01ld way of doing grads
// cx[1][11] = (c[(i+1)][1i] -
cl[i] [11]) /dx;
cx[Xmax=1][1i] = cx[Xmax-2][ii];
}
if (debugll) printf("%G ", cx[i][ii]);
} if (debugll) printf("\n");
} if (debugll) printf("\n");

// c2x2
if (debugll) printf("c2x2 = \n");
for (ii=0; ii < 2*Ymax; ii++) {
for (i=0; i < Xmax; i++) {
if (PercentFull[i][ii] >= 1){
c2x2[1]1[11] = O;
} else {
c2x2[1]1[1i]1 = (((c[i+11[11] - c[i1[ii])/dx)
- ((c[i1[1i1] - cl[i-11[44]1)/dx))/dx;
// c2x2[1][11] = (cx[(1i+1)][11i] -
cx[1][1i]) /dx;
//c2x2[1][11] = (cx[i+1][1i1] - cx[i-
1][ii])/(2*dx); // 01ld way of doing grads
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}
if (debugll) printf("%G ", c2x2[i]1[iil) -
} if (debugll) printf("\n");
} if (debugll) printf("\n");

// Run loop to fill cy, c2y2, & cxcy with appropriate

gradients

// cy
if (debugll) printf("cy = \n");
// for (i=0; 1 < Xmax; 1++){
// cy[i][0] = (c[i][1] - c[1]1([0])/dy;
// if (debugll) printf("sG ", cy[i][0]);
// } if (debugll) printf ("\n");
// for (ii=1; 11 < (2*Ymax - 1); 1ii++){
// for (1=0; 1 < Xmax; 1i++) {
// cy[i][1i] = (c[i]1[(ii+1)] - cl[i][id])/dys
// if (debugll) printf("$G ", cyl[i][ii]);
// } if (debugll) printf ("\n");
// 0}
// for (1=0; 1 < Xmax; 1++) {
// cyl[i] [(2*Ymax-1)] = (c[i][0] - c[i][(2*Ymax-

1)1)/dy:

// 1f (debugll) printf ("$G ", cyli]l[(2*Ymax-1)1]1);
// } if (debugll) printf ("\n");
for (i=0; i < Xmax; i++){

cy[i1[0]1 = (c[i1[1]1 - clil[(2*Ymax - 1)1)/(2*dy);

// 0ld way

if (debugll) printf("sG ", cy[i]1[01):
} if (debugll) printf("\n");
for (ii=1; 1i < (2*Ymax - 1); ii++){
for (i=0; i < Xmax; i++){
cy[11[11] = (c[i1[ii+1] - c[i][ii-11)/(2*dy);
if (debugll) printf("sG ", cy[i]l[ii])
} if (debugll) printf("\n");
}
for (i=0; i < Xmax; i++){
cy[il[(2*Ymax=1)] = (c[i]1[0] - cl[il[(2*Ymax -

2)1)/ (2*dy) ;

if (debugll) printf("sG ", cyl[i]l[(2*Ymax-1)1);
} if (debugll) printf("\n");
if (debugll) printf("\n");
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// c2y2

if (debugll) printf("c2y2 = \n");
// for (1=0; 1 < Xmax; 1++){
// c2y2[i][0] = (cy[il[1l] - cy[i][0])/dy;

]
// if (debugll) printf ("%G
// } if (debugll) printf ("\n")
// for (ii=1; 11 < (2*Ymax - 1);:
// for (1i=0; 1 < Xmax; 1++
// c2y2[i] [11] = (cyl[i
cy[i][ii])/dy;
// if (debugll) printf("sG ", c2y2[i][ii]);
// } if (debugll) printf ("\n");
// )
// for (1=0; 1 < Xmax; 1i++) {
// c2y2[1i] [ (2*Ymax - 1)]
cy[i][0]) /dy;
// 1f (debugll) printf ("$G ", c2y2[i][(2*Ymax -

", c2yz2[1][0]);

'_‘

= (cy[i] [(2*Ymax - 1)] -

1)1):
// } 1f (debugll) printf ("\n");
for (i=0; i < Xmax; i++) {
//c2y2[i][0] = (cy[i][1] - cyli]l[2*Ymax -
11)/(2*dy) ;
c2y2[11[01 = (((c[i1[1] - c[i1[01)/dy) - ((c[il[1]
- c[i]l[2*Ymax-1])/dy))/dy;
if (debugll) printf("%G ", c2y2[i]1[01);
} if (debugll) printf("\n");
for (ii=1; 1ii < (2*Ymax - 1); ii++){
for (i=0; i < Xmax; i++){
//c2y2[i][1i1] = (cyl[i][ii+1] - cyl[i][dii-
11)/(2*dy);
c2y2 [11[1i] = (((c[i1[ii+1] - c[il[ii]l)/dy) -
((c[i1[ii] - cl[i1[ii-11)/dy))/dy;
if (debugll) printf("%G ", c2y2[i]l[iil)
} if (debugll) printf("\n");
}
for (i=0; i < Xmax; i++){
//c2y2[1i] [(2*Ymax - 1)] = (cy[1i]1[0] - cy[i][2*Ymax
- 2])/(2*dy) ;
c2y2[i]l[2*Ymax-1] = (((c[i]1[0] - cl[i]l[2*Ymax-
11)/dy) - ((cl[il[?*Ymax-1] - c[i][?*Ymax-2])/dy))/dy;
if (debugll) printf("sG ", c2y2[i]l[2*Ymax - 11);
} if (debugll) printf("\n");
if (debugll) printf("\n");

274



// cxcy

float cxcyl; float cxcy2;

float cxcy3; float cxcy4;

if (debugll) printf("cxcy = \n");

// for (1=0; 1 < Xmax; 1++){
// cxcy[i][0] = (cx[1]1[1] - cx[i]IO
// if (debugll) printf ("%G ", cxcy]|

// } if (debugll) printf ("\n")

1) /dy;
i1[01);

// for (ii=1; 1i < (2*Ymax - l), 1i+4) {
// for (i=0; 1 < Xmax; 1++){
// cxcy[1][11] = (cx[i][(1i+1)] -

cx[1][1ii])/dy;

// 1f (debugll) printf ("$G ", cxcyl[i][ii]);

// } 1f (debugll) printf ("\n");
// '}
// for (1=0; 1 < Xmax; 1i++) {
// cxcyli]l [ (2*Ymax - 1)]
cx[1] [ (2*Ymax - 1)1)/dy;

= (cx[1][0] -

// 1f (debugll) printf ("$G ", cxcyli][(2*Ymax -

1)1);
// } if (debugll) printf ("\n");

for (i=0; i < Xmax-1; i++){
if (PercentFull[i][ii] >= 1){
cxcy[1]1[ii] = O;
} else {

//cxcy[1]1[0] = (cx[1][1] - cx[1][(2*Ymax -

1)1)/(2*dy); // OLD WAY
cxcyl = (((c[i+11[1]1 - c[i1[1])/adx)
((c[i+11[01 - c[i1[01)/dx))/dy;
cxcy2 = (((c[i1[1] - c[i-11[11)/dx)
((c[i1[0] - c[i-111[01)/ax))/dy;
cxcy3 = (((c[11[0] - c[i-111[01)/dx)
((c[il[2*Ymax-1] - c[i-1]1[2*Ymax-1]1)/dx))/dy;
cxcyd = (((c[i+11[0]1 - c[i1[0])/adx)
((cl[i+1]1[2*Ymax-1] = c[i]l[2*Ymax-1]1)/dx))/dy;
cxcy[1]1[0] = (cxcyl + cxcy2 + cxcy3
cxcyd) /4;
}
if (debugll) printf ("G ", cxcy[i]1[0]1)
} if (debugll) printf("\n");
for (ii=1; ii < (2*Ymax - 1); ii++){
for (i = 0; 1 < Xmax,; i++) {
if (PercentFull[i][ii] >= 1){
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cxcy[i]1[ii] = O;
} else {
//cxey[1][11] = (cex[1][(1141)] - cx[i][(ii-
1)1)/(2*dy); // OLD WAY
cxcyl = (((c[i+1]1[1i+1] - c[i]1[idi+1])/dx) -
((c[i+11[1ii] - c[i1[ii])/dx))/dy;
cxcy2 = (((c[1]1[ii4+1] - c[i-11[4idi+1]1)/dx) -
((c[11[ii] - c[i-11[1i1)/dx))/dy;
cxcy3 = (((c[il[ii] - c[i-11[ii])/dx) -
((c[il[ii-1] - c[i-1]1[1ii-1]1)/dx))/dy;
cxcyd = (((c[i+11[1i]1 - c[i1[ii])/dx) -
((c[i+11[1i-1] - c[i1[ii-11)/dx))/dy;
cxcy[1]1[1ii] = (cxcyl + cxcy2 + cxcy3 +
cxcy4d) /4;
}
if (debugll) printf("%G ", cxcy[i]l[iil) -
} if (debugll) printf("\n");
}
for (i=0; i < Xmax; i++){
if (PercentFull[i][ii] >= 1) {

cxcy[i][1i] = 07
} else {

//cxcy[i] [(2*Ymax - 1)] = (cx[i][0] -
cx[11[(2*Ymax - 2)1)/(2*dy); // OLD WAY

cxcyl = (((c[i+1]1[0]1 - c[i1[0]1)/dx) -
((c[i+1]1[2*Ymax - 1] - c[i][?*Ymax - 1])/dx))/dy;

cxcy2 = (((c[i]1[0] - c[i-11[01)/dx) -
((c[il[2*Ymax - 1] - c[i-1]1[2*Ymax - 1])/dx))/dy;

cxcy3 = (((c[i]l[2*Ymax-1] - c[i-1][2*Ymax-

1)/dx) - ((c[i]l[2?*Ymax - 2] - c[i-1][2*Ymax-2])/dx))/dy;
cxcyd = (((c[i+1][2*Ymax-1] - cl[i]l[2*Ymax-

1)/dx) - ((cl[i+1][2*Ymax-2] - c[i][2*Ymax-2])/dx))/dy;
cxcy[1][2*Ymax-1] = (cxcyl + cxcy2 + cxcy3 +
cxcyd) /4;
}
if (debugll) printf("%G ", cxcy[i]l[(2*Ymax - 1)1);

} if (debugll) printf("\n");
if (debugll) printf("\n");

// Define wavenumber (k) for each cell
//float k d;

float extra depth;

float depth now;
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//k d = (pow(2*%3.14159265358, 2)) / (g * pow(period,
2));

// printf("k d = $.2f \n", k d);
// printf ("\n");

if (debugll) printf("k = \n");
for (ii=0; ii < 2*Ymax,; 1ii++){
for (i=0; i < Xmax; i++){
depth now = depth[i][ii];
if (depth now <= 0){
k[i][1ii] = O;
if (debugll) printf("sGc ", k[il[iil])
} else if (depth now > 0)({
k[1]1[1i] = 2*pi/L[i1[11];
if (debugll) printf("sc ", k[il[iil])
}
} if (debugll) printf("\n");
} if (debugll) printf("\n");

// Calculate group velocity for all cells
if (debugll) printf("C g = \n");
for (ii=0; 1ii < 2*Ymax; ii++){
for (i=0; i < Xmax; i++){
if (c[i][ii] <= 0){
c_glil[ii] = 0;
if (debugll) printf("sG ", C gl[i]l[ii])~
} else if (c[i]1[ii] > 0){

C_glil[ii]l = (c[il[idi]l / 2) *
(1+(2*k[1][ii]*depth[i][1i1i])/ (sinh(2*k[i] [1ii]*depth[i][ii])
)) s

if (debugll) printf("sG ", C gl[i]l[ii])~

}
} if (debugll) printf("\n");
} if (debugll) printf("\n");

L1777 7777777777077 7777 7777777777777 7777777777 777777777777
[ITT) 0007777777777 7777777777777 777
if (debug0) printf("--——-——--- Main WRT Loop ———-—---- \n'");
if (debug0) printf("\n");

// Initialize loop parameters
int wave origin; // y-coordinate of wave's origin

float theta int;
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float x now; // Current value for x (x-position
of ray)

float y now; // Current value for y (y-position
of ray)

float theta now; // Current value for theta (angle
of ray)

float beta now; // Current value for beta (distance
between rays)

float sigma now; // Current value for sigma (change
in beta wrt time)

float h now; // Current value for H (wave
height)

int x crd = (Xmax-1); // Current cell x-coordinate

int y crd = 0; // Current cell y-coordinate

float h b;

int z;

float break depth;

// float x store[9000];

// float y store[9000];

// float theta store[9000];
// float beta store[9000];
// float sigma store[9000];
// float h store[9000];
float beta calc;

float theta deg; // theta now in degrees

int N rays = 0; // Number of wave rays shot
during simulation

char DataForAllBeachCells = 'n'; // Specifies
whether or not there is waveheight data at all beach cells

float shore position; // Shore position

int debug2la = 0; // Local debugger (to see if beta
goes negative)

// CLEAR ALL TRACKS

for (y = 0; y < 2*Ymax; y++) {
avg breaking height[y] = 0;
avg breaking anglel[y] = 0;
breaking angles[y] = 0;
breaking heights[y] = 0;
breaking angle[y] = 0;
breaking height[y] =0;
sum breaking anglel[y] = 0;
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sum breaking height[y] = 0;
N rays hit[y] = 0;

for (x = 0; x < Xmax; x++){
cell wave height[x][y] = 0;
sum cell wave height[x][y]
avg cell wave height[x][y] =
cell beta[x][y] = 0;
sum cell beta[x][yl] 0;
avg cell betalx][y] 0;
NumRaysPerCell[x][y] = 0;
RayInCell[x][y] = O;

0;
0

.
4

// Run loop until there is waveheight data for all
beach cells

int sweep;

for (sweep = 1; sweep < (NumSweeps + 1); sweep++) {

//while (DataForAllBeachCells == 'n'){

printf ("Sweep number: %i \n'", sweep);

//x _now = x_int + ((l-sweep) *
(CellWidth/NumSweeps) ) ;
//printf ("x now = %G \n", x now);

// Use a random deep-water wave angle?
float theta;

if (UseRandWaveAngle == 'v'){
theta = RandWaveAngle() ;
} else if (UseWaveDist == 'y'){

theta = FindWaveAngle() ;
theta = theta + pi;

} else if (LinkToSedTrans == 'v'){
//theta = WaveAngle + pi;
theta = pi - WaveAngle;

} else if (UseAWTOffshore == "'y'){
theta = pi - StartAngle;
} else {
theta = (180-thetao)*pi/180; // Initial deep

water wave angle;
//theta = pi;
}
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if (debugl8) printf("Initial angle = %G degrees
\n", theta*130/pi);

// Makes sure theta 1s in the domain (to account
for fluctuation change & remove very high angles)
if (theta < (96 * (pi/180))) {
theta = 96 * (pi/180);
printf ("Adjusting initial angle to %G \n",
theta*radtodeqg) ;
} else if (theta > (264 * (pi/130))) {
theta = 264 * (pi/180);
printf ("Adjusting initial angle to %G \n",
theta*radtodeq) ;
}

// Use a random angle fluctuation?

float fluctuation;

fluctuation = RandAngleFluctuation() * (pi/180);

if (UseRandAngleFluctuation == 'y') theta = theta +
fluctuation;

if (debugl8) printf("theta = %G , fluctuation = %G
\n", theta*radtodeg, fluctuation*radtodeg);
if (debugl8) printf("\n");

// Run loop to solve differential equations
if (debug0) printf("--- ODE Solver Loop --- \n");

//for (wave origin =
3*Ymax/2; wave origin++) {

for (wave origin = 0; wave origin < (2*Ymax-1);
wave origint+) {

(Ymax/2) - 1; wave origin <

//for (wave origin = (Ymax/2) - 1 - (Ymax/4);
wave origin < 3*Ymax/2 + (Ymax/4); wave origint+) {
//for (wave origin = 50; wave origin < 51;

wave origin++) {

//Use a random deep-water wave angle? (*** PUT THIS
IN IF USING WHILE LOOP!! *=*x*)

// 1if (UseRandWaveAngle == 'y') {
// theta = RandWaveAngle () ;

// } else if (UseWaveDist == 'y') {
// theta = FindWaveAngle () ;

// theta = theta + pi;
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// theta d = theta*180/pi;
// 1f (debugl8) printf ("For wave ray
originating at y = %i: \n", wave origin);
// if (debugl8) printf ("Initial angle = %G
degrees \n", theta d);
// if (debugl8) printf ("\n");
// } else theta = thetao;

// Determine origin adjustment (y-direction) based
on angle sign

// This ensures that the wave rays never start on a
cell border

float y adjust;

if (theta <= 180*pi/180) {

y adjust = .0001;
} else if (theta > 180*pi/180) {
y adjust = -.0001;

}

// Establish parameters for each loop iteration
float C o; // Initial "deep water" wave celerity
C o=g * Period / (2.0 * pi);

//theta = thetao;

theta int = theta;

X now = x int - 1;

//x_now = x_int + ((l-sweep) *
(CellWidth/NumSweeps) ) ;

//y now = y int[wave origin];

y now = y int[wave origin] + ((l-sweep) *
(Cellwidth/NumSweeps)) + y adjust;

theta now = theta int;

beta now = beta int;

sigma now = sigma_ int;

h now = h int;

if (debugl3) printf("x now = %G \n'", x now);

if (debugl3) printf("y now = %G \n'", y now);

if (debugl3) printf("theta int = %.1f \n",
theta int);

if (debugl3) printf("beta now = 3.1f \n",
beta now) ;
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if (debugl3) printf("sigma now = %.1f \n",
sigma_now) ;
if (debugl3) printf("h now =

o°

.1f£ \n", h now);

// Store the now parameters
// x store[0] = x now;

// y store[0] = y now;

// theta store[0] = theta now;
// beta store[0] = beta now;
// sigma store[0] = sigma now;
h b =h int;

z = 0;

break depth = 70;
depth now = 999999;

// (Re-)establish cell wave height[][] as all =zeros
(done at beginning of each iteration)
for (x=0; x < Xmax; x++) {
for (y=0; y < 2*Ymax; vy++) {
cell wave height[x][y]
cell beta[x][y]l = 0;
RayInCell[x] [vy] 0;

0;

}

// (Re-)establish breaking angle[] and
breaking height[] as all zeros for each iteration
for (y=0; y < 2*Ymax; y++) {
breaking height[y] = 0;
breaking angle[y] = 0;
}

// Make sure this occurs before waves break
int WaveBreak = 0;
while (WaveBreak == 0) {
//while (h now < KBreak*depth now) {
//while ((h now < depth now) && (x now > 0)) {
if (break depth < 9){
ds = 10;
}

// Determine current cell coordinates
([x_crd] [y crd])
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for(i = Xmax; i > 0; i--){ // determines x crd
if ((x now >= x pos[i]) && (x now <
(x_pos[i] + dx))){
x crd = 1i;
}
}

if (debugl3) printf("x crd = %i \n", x crd);
for(i = 2*Ymax; 1 > 0; i-=-){

if ((y now >= y pos[i]) & (y now <

(y_pos[i] + dy))){
y crd = 1i;

}
}
if (debugl3) printf("y crd = %i \n", y crd);
if (debugl3) printf("\n");

// Determine which gradients to use (dependent
on wave position in cell)

float cx_ode; float cy_ ode;

float c2x2 ode; float c2y2 ode;

float cxcy ode;

for (i = 0; 1 < Xmax; i++){
if ( (x _now >= x pos[i]) && (x now <=
(x_ pos[i] + (Cellwidth/2))) ){
cx ode = cx[x crd][y crd];
c2x2 ode = c2x2[x crd] [y crd];
} else if ( (x now >= x pos[i]) && (x_now
>= (x _pos[i] + (Cellwidth/2))) ){
//cx _ode = cx[x crd+l] [y crd];
//c2x2 ode = c2x2[x crd+l] [y crd];
cx ode = cx[x crd][y crd];
c2x2 ode = c2x2[x crd] [y crd];

}

for (i = 0; 1 < 2*Ymax; i++){
if ((y now >= y pos[i]) && (y now <=
(v pos[i] + (Cellwidth/2)))){
cy ode = cy[x crd][y crd];
c2y2 ode = c2y2[x crd] [y crd];
cxcy ode = cxcyl[x crd][y crd];

283



} else if ((y now >= y pos[i]) && (y now >=
(v pos[i] + (Cellwidth/2)))){

// cy ode = cy[x crd] [y crd-1];

// c2y2 ode = c2y2[x crd] [y crd-1];

// cxcy ode = cxcyl[x crd] [y crd-1];

cy ode = cy[x crd][y crd];

c2y2 ode = c2y2[x crd] [y crd];

cxcy ode = cxcyl[x crd] [y crd];

}
}
// Break out if ¢ or C g <= 0
if (c[x crd]l[y crd] <= 0 || C g[x crd] [y crd]
<=0) {
printf("c or C g has gone to zero! \n");
h now = 0;
break;

}

// Use Runge-Kutta method to solve ODE's
int Ny

N = (si - sf)/delta s;

//if (debugl3) printf ("N = %i \n", N);
float x ode[Z*N];

float y ode[Z*N];

float theta ode[2*N];

float beta ode[2*N];

float sigma ode[2*N];

float s _ode[2*N];

float x kl; float x k2; float x k3; float x k4;

float y kl; float y k2; float y k3; float y k4;

float theta k1; float theta k2; float theta k3;
float theta k4;

float beta kl; float beta k2; float beta k3;
float beta k4;

float sigma_ kl; float sigma k2; float sigma k3;
float sigma k4;

// Establish initial conditions
x ode[0] = x now;

y ode[0] = y now;

theta ode[0] = theta now;

beta ode[U] = beta now;
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sigma ode[0] = sigma now;
s _ode[0] = sf;

// Run Runga-Kutta
for(i=0; 1 < N; i++){
theta k1 =
(((1/c[x crd]l[y crd]))*cx ode*(sin(theta ode[i])) -
cos(theta ode[i])*cy ode) * delta s;

theta k2 =
((((L/c[x _crd][y crd]))*cx ode*(sin(theta ode[i] +
*theta kl)) - cos(theta ode[i] + *theta kl)*cy ode))
* delta s;
theta k3 =
((((1/c[x_crd][y crd]))*cx ode*(sin(theta ode[i] +
*theta k2)) - cos(theta ode[i] + *theta k2)*cy ode))
* delta sy
theta k4 =

((((L/c[x _crd][y crd]))*cx ode*(sin(theta ode[i] +
theta k3)) - cos(theta ode[i] + theta k3)*cy ode)) *
delta s;

x k1 = (cos(theta ode[i])) * delta s;

x k2 = (cos(theta ode[i] + *theta k1)) *
delta s;

x k3 = (cos(theta ode[i] + *theta k2)) *
delta_s;

x k4 = (cos(theta ode[i] + theta k3)) *
delta s;

y k1 = (sin(theta ode[i])) * delta s;

y k2 = (sin(theta ode[i] + *theta k1)) *
delta_s;

y k3 = (sin(theta ode[i] + *theta k2)) *
delta_ s;

y k4 = (sin(theta ode[i] + theta k3)) *
delta s;

sigma k1l = ( - (-
(cos(theta ode[i]))*(cx ode/c[x crd][y crd]) -
(sin(theta ode[i]))*(cy ode/c[x crd][y crd])) *
sigma ode[i]
-
sin(theta ode[i])*sin(theta ode[i])*(c2x2 ode/c[x crd][y cr
d]) -
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*sin(theta ode[i])*cos(theta ode[i]) * (cxcy ode/c[x crd]l[y
crd])
+
cos (theta ode[i]) *cos(theta ode[i])*(c2y2 ode/c[x crd]l[y cr
d])) * beta ode[i] ) * delta s;

beta kl = sigma ode[i] * delta s;

sigma k2 = ( - (-
(cos(theta ode[il]l+ *theta kl))*(cx ode/c[x crd][y crd]) -
(sin(theta ode[i]l+ *theta kl))*(cy ode/c[x crd][y crdl))
* (sigma ode[i]+ *sigma k1)
-
sin(theta ode[i]l+ *theta kl)*sin(theta ode[i]+ *theta k
1) *(c2x2 ode/c[x crd][y crd]) -
*sin(theta ode[i]l+ *theta kl)*cos(theta ode[i]+ *theta
k1)
* (cxcy ode/c[x crd][y crd]) +
cos(theta ode[i]l+ *theta kl)*cos(theta ode[i]+ *theta k
1)*(c2y2 ode/c[x crd]l[y crd])) * (beta ode[i]l+ *beta k1)
) * delta s;

beta k2 = (sigma ode[i] + *sigma k1) *
delta s;

sigma k3 = ( -(-
(cos(theta ode[il+ *theta k2))*(cx ode/c[x crd][y crd]) -
(sin(theta ode[il]l+ *theta k2))*(cy ode/c[x crd][y crdl))
* (sigma_ode[i]+ *sigma k2)
-
sin(theta ode[i]+ *theta k2)*sin(theta ode[i]+ *theta k
2)*(c2x2_ode/c[x_crd] [y crd]) -
*sin(theta ode[i]l+ *theta k2)*cos(theta ode[i]+ *theta
_k2)
* (cxcy ode/c[x _crd][y crd]) +
cos(theta ode[i]+ *theta k2)*cos(theta ode[i]+ *theta k
2)*(c2y2 ode/c[x _crd] [y crd])) * (beta ode[il+ *beta k2)
) * delta_ s;

beta k3 = (sigma ode[i] + *sigma k2) *
delta s;

sigma k4 = ( -(-
(cos(theta ode[i]+theta k3))*(cx ode/c[x crd][y crd]) -
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(sin(theta_ode[i]+theta_k3))*(cy_ode/c[x_crd][y_crd])) *
(sigma ode[i]+sigma k3)

-
sin(theta ode[i]+theta k3)*sin(theta ode[i]+theta k3)*(c2x2
ode/c[x crd] [y crd]) -
*sin(theta ode[i]+theta k3)*cos(theta ode[i]+theta k3)

* (cxcy ode/c[x crd][y crd]) +
cos(theta ode[i]+theta k3)*cos(theta ode[i]+theta k3)*(c2y2
_ode/c[x crd][y crd]l)) * (beta odel[i]+beta k3) ) * delta s;

beta k4 = (sigma ode[i] + sigma k3) *

delta s;
x ode[i+]l] = x ode[i] +
(( ) ¥ (x kl+2*x k2+2%*x k3+x k4));
y ode[i+l] = y ode[i] +
(( ) * (y_k1+2%y_k2+2%y k3+y_k4)) ;
theta ode[i+]1] = theta ode[i] +
(( ) *(theta kl+ *theta k2+2*theta k3+theta
k4));
beta ode[i+]l] = beta ode[i] +
(( ) *(beta kl+2*beta k2+2*beta k3+beta k4))
sigma ode[i+1] = sigma ode[i] +
(( ) *(sigma kl+ *sigma k2+2*sigma k3+sigma
k4));

s ode[i+]l] = s ode[i] + delta s;

// Periodic Boundaries
// Make sure that the wave ray does not run
off the domain (have it loop around, like in a VG)
if (y ode[N-1] < Cellwidth) {
y ode[N-1] = 2*Ymax*CellWidth -
CellWidth + y ode[N-1];
} else if (y ode[N-1] > (2*Ymax*CellWidth -
CellWidth)) {
y ode[N-1] = y ode[N-1] -
(2*Ymax*CellWidth - CellWidth) ;
}

} // END of Runga-Kutta

// Display the results of the ODE solver
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if (debug0) printf("--- ODE solver has run ---
\n'");
if (debugl2) printf("x ode = \n'");
for (i=0; 1 < N; i++){
if (debugl2) printf("sGC ", x odel[i]):
} if (debugl2) printf("\n");
if (debugl2) printf("\n");
if (debugl2) printf("y ode = \n'");
for (i=0; 1 < N; i++){
if (debugl2) printf("sGC ", y odel[i]);
} if (debugl2) printf("\n");
if (debugl2) printf("\n");
if (debugl2) printf("theta ode = \n");
for (i=0; 1 < N; i++){
if (debugl2) printf ("G ", theta ode[i]):;
} if (debugl2) printf("\n");
if (debugl2) printf("\n");
if (debugl2) printf("beta ode = \n'");
for (i=0; 1 < N; i++){
if (debugl2) printf ("G ", beta ode[i]):
} if (debugl2) printf("\n");
if (debugl2) printf("\n");
if (debugl2) printf("sigma ode = \n");
for (i=0; 1 < N; i++){
if (debugl2) printf("sG ", sigma ode[i]);
} if (debugl2) printf("\n");
if (debugl2) printf("\n");
if (debugl2) printf("c[x crd][y crd] = 3G \n",
clx crd]l [y crdl]);
if (debugl2) printf("cx[x crd] [y crd]
cx[x crd] [y crdl);
if (debugl2) printf("cyl[x crd] [y crd] = %G \n",
cylx_crd] [y_crdl) ;
if (debugl2) printf("c2x2[x crd][y crd] =
\n", c2x2[x _crd] [y crdl):;
if (debugl2) printf("c2y2[x crd] [y crd] = %G
\n", c2y2[x _crd][y crdl]):;
if (debugl2) printf("cxcyl[x crd] [y crd] =
\n'", cxcyl[x crd] [y crd]);
if (debugl2) printf("C g = %G \n",
C_glx_crd]l[y_crdl);
if (debugl2) printf("x crd = %i \n", x crd);
if (debugl2) printf("y crd = %i \n", y crd);
if (debugl2) printf("\n");

%G \n",

o°

G

\O

G

|
oo

288



// Establish new now parameters based on
output of of ODE solver

X now = x ode[N-1];

y now = y ode[N-1];

theta now = theta ode[N-1];

beta now = beta ode[N-1];

sigma now = sigma ode[N-1];

depth now = depth[x crd][y crd];

if (debugl3) printf("x now = %G \n'", x now);

if (debugl3) printf("y now = %G \n'", y now);

if (debugl3) printf("theta now = %G \n",
theta now) ;

if (debugl3) printf("beta now = 3G \n",
beta now) ;

if (debugl3) printf("sigma now = %G \n",
sigma_ now) ;

if (debugl3) printf("depth now = %G \n",

depth now) ;

// Store the current now parameters

// x _store[z] = x now;

// y store[z] = y now;

// theta store[z] = theta now;

// beta store[z] = beta now;

// sigma store[z] = sigma now;

// h store[z] = h now;

// Take si, sf, and z to the next iteration

si = si + ds;

sf = sf + ds;

z =2z + 1;

// Re-establish current cell coordinates (x crd
& y crd)

for(i = Xmax; i > 0; i--){ // determines x crd
if ((x now >= x pos[i]) && (x now <=
(x_pos[i] + dx))){
x crd = 1;
}
}

if (debugl3) printf("x crd = %i \n", x crd);
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for(i = Ymax*2; 1 > 0; i-=-){
if ((y now >= y pos[i]) & (y now <=
(y_pos[i] + dy))){
y crd = 1i;
}
} if (debugl3d) printf("y crd = %i \n", y crd);

depth now = depth[x crd] [y crd];

// Break out of 'for' loop if wave ray enters
cell adjacent to the beach
// if (depth now <= 2*BathySlope) {
// if (debugl?7) printf ("Wave ray has run
into the beach! \n");
// if (debugl7) printf ("\n");
// break;
/7 )

// Determine shore position (for current y-
coordinate)
float beach location;
for (x=0; x < Xmax; x++) {
if ((PercentFull[x][y crd] > 0) &&
(PercentFull[x] [y crd] < 1)){
beach location = (x +
PercentFull[x] [y crd])*CellWidth;
//printf ("beach location = %G \n",
beach location);
}
}

// Determine Distance to Beach

float x beach dist; // Distance to the beach in
the y-direction

float y beach dist; // Distance to the beach in
the y-direction

float DistToBeach; // Closest distance to beach
(either x or vy)

x beach dist = fabsf(x now - beach location);
// If adjacent cell is a beach or land cell in
the y-direction,

// determine the distance to it
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if (PercentFull[x crd] [y crd+l] > 0) {
y beach dist = fabsf(y crd*CellWidth -
y _now) ;
} else if (PercentFull[x crd][y crd-1]1 > 0){
y beach dist = fabsf(y now -
y crd*Cellwidth) ;
} else if ((PercentFull[x crd][y crd+l] > 0) &&
(PercentFull[x crd] [y crd-1] > 0)){
if (PercentFull[x crd] [y crd+l] >=
PercentFull[x crd] [y crd-1]){
y beach dist

fabsf(y crd*CellWidth -
y_now) ;
} else {
y beach dist

fabsf (y now -
y crd*CellWidth) ;
}
} else {
y beach dist = CellWidth*Xmax*10; // Make
it so big it'll never be > x beach dist

}

// Use whichever distance (x or y) 1s smaller
at actual distance to beach
if (x beach dist > y beach dist){
DistToBeach = y beach dist;
if ((DistToBeach < CellWidth+(CellWidth/2))
&& (debugl?)) printf("Using y-direction distance to
shore\n") ;
} else {
DistToBeach = x beach dist;
if ((DistToBeach < CellWidth+(CellWidth/2))
&& (debugl7)) printf("Using x-direction distance to
shore\n") ;

}

// Determine "true" depth (as opposed to depth
in cell) --> Determines wave breaking
float true depth;
if (DistToBeach < CellWidth+ (CellWidth/2)) {
true depth =
.1*(pow ((DistToBeach), .666666667));
if (debugl7) printf("true depth = %G \n",
true depth);
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// Break wave 1f wave height is greater
than true depth
if (h now >= (KBreak * true depth)) {
if (debugl?7) {

printf ("BREAK WAVE!!!! True depth =
$G, wave height = %G \n", true depth, h now);
printf("x location = %G , vy
location = %G , \ndistance to shore = %G \n", x now, y now,
DistToBeach) ;
}
WaveBreak = 1;
break;

} else if (DistToBeach <=
MinBreakDistance) {
if (debugl?) {

printf ("BREAK WAVE!!!! True depth =
G, wave height = %G \n'", true depth, h now);
printf("x location = %G , distance
to shore = %G \n", x now, DistToBeach);
}
WaveBreak = 1;
break;

}

// Define beta calc (used to calculate h now)
if (beta now <= beta limit) {
beta calc = beta limit;
//beta calc = -beta now;
if (debug2la) printf("Beta has gone below
$.1f0 \n ", beta limit);
} else beta calc = beta now;

// Calculate current wave height (h now)
//h now = StartHeight *
sqrt ((C_o)/(2*C_glx crd] [y crd])) * sqgrt(l/beta calc);

float kh;

float n; // C*n = C g

kh = pi * depth[x crd][y crd] /
L[x crd] [y crd];

292



if (debugl3) printf("depth = %G ",
depth[x crd] [y cxd]);

if (debugl3) printf("L = %G ",
L[x crd]l[y crdl]);

if (debugl3) printf("kh = %G ", kh);

n=20.5% (L + 2 * kh / sinh(2 * kh));
if (debugl3) printf("'n = %G ", n);

h now = StartHeight *
sart ((C_o)/ (2*n*c[x crd] [y crd])) * sqgrt(l/beta calc);

if (debugl3) printf("h now = %G \n'", h now);
cell wave height[x crd][y crd] = h now;

cell beta[x crd] [y crd] = beta now;

// Has a ray passed through this cell?

RayInCell[x crd][y crd] = 1;

h b = h now;
theta deg = theta now*180/pi;

if (debugl3) printf("theta deg = %G \n",
theta deg);

if (debugl3) printf("c[x crd] [y crd] = 3G \n",
clx crd]l [y crdl]);
if (debugl3) printf("C gl[x crd] [y crd] = 3G

\n", C_glx_crd] [y _crd]);

if (debugl3) printf("cx[x crd] [y crd] = 3G \n",
cx[x crd] [y crd]);

if (debugl3) printf("cyl[x crd] [y crd] = %G \n",
cylx_crd][y_crd]);

if (debugl3) printf("c2x2([x crd] [y crd] = %G
\n", c2x2[x _crd] [y crdl]):;

if (debugl3) printf("c2y2[x crd] [y crd] = %G
\n", c2y2[x crd] [y crdl]);

if (debugl3) printf("cxcyl[x crd] [y crd] = %G

\n'", cxcyl[x crd] [y crd]);
if (debugl3) printf("h now = %G \n'", h now);
if (debugl3) printf("depth now = %G \n",
depth now) ;
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if (debugl3) printf("Current Time Step: %i \n",
CurrentTimeStep) ;

if (debugl3) printf("\n");

if (debugl3) printf("z = %i \n", z);

} // END OF WHILE LOOP (includes ODE Solver)

// Display the stored results
// 1if (debugl4) printf("x store = \n");
// for (i=0; 1 < z; 1++)/{
// if (debugl4) printf("$G ", x storeli]);
// } if (debugld) printf ("\n");
// 1f (debugld) printf ("\n");

// 1f (debugl4) printf("y store = \n");
// for (1=0; 1 < z; i++){
// if (debugl4) printf("$G ", y storeli]);
// } if (debugld) printf ("\n");
// 1f (debugld) printf ("\n");

// if (debugl4) printf ("theta store = \n");
// for (1i=0; 1 < z; 1i++){
// 1f (debugl4) printf("$G ", theta store[i]);
// } 1f (debugld) printf ("\n");
// 1f (debugld) printf ("\n");

// if (debugl4) printf ("beta store = \n");
// for (i=0; 1 < z; 1i++){
// if (debugl4) printf("%G ", beta store[i]);
// } 1f (debugld) printf ("\n");
// if (debugld) printf ("\n");

// if (debugl4) printf("sigma store = \n");
// for (i=0; 1 < z; i++){
// if (debugl4) printf("$G ", sigma store[i]);
// } 1f (debugld) printf ("\n");
// if (debugld) printf ("\n");

// if (debugl4) printf("h store = \n");
// for (1i=0; 1 < z; 1i++){
// if (debugl4) printf("$G ", h store[i]);
// } 1if (debugld) printf ("\n");
// if (debugld) printf ("\n");
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// Display braking wave data for this wave ray

if (debuglb) printf("for wave origin = %i : \n",
wave origin);

if (debuglb) printf("Breaking wave angle = %G \n'",
theta deg);

if (debuglb) printf("Breaking wave height = %G \n",
h now) ;

o°

if (debuglb) printf("Breaking coordinates: [%i][%1]
\n", x crd, y crd);

if (debuglb) printf("\n");

// Store breaking wave data for this wave ray
breaking angle[y crd] = theta now;
breaking height[y crd] = h now;

// Calculate sum of breaking wave heights and
angles in each shoreline cell
for (y=0; y < 2*Ymax,; y++) {
sum _breaking height[y] = sum breaking height[y]
+ breaking height[y];
//sum breaking angle[y] = sum breaking anglel[y]
+ breaking anglely];
}

// Calculate average breaking angle for that
particular beach cell
N rays hit[y crd] = N rays hit[y crd] + 1;

avg_breaking angle[y crd] =
((avg _breaking anglel[y crd]*(N rays hit[y crd] - 1))
+ breaking anglely crd])/N rays hit[y crd]l;

// printf ("Average breaking angle at y = %$i is %G
\n", y crd, avg breaking anglely crd]);

// printf ("Number of wave rays hit at y = %1 is %i
\n", y crd, N rays hit[y crd]);

// printf ("\n");

// Calculate the number of wave rays that passed
through each cell
for (x=0; x < Xmax; x++) {
for (y=0; y < 2*Ymax,; y++) {
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NumRaysPerCell[x] [y] = NumRaysPerCell[x][y]
+ RayInCell[x]I[v];
}
}

// Calculate sum of wave heights and betas in each
cells
for (x=0; x < Xmax; x++) {
for (y=0; y < 2*Ymax,; y++) {
sum cell wave height[x][y] =
sum_cell wave height[x][y] + cell wave height[x][y];
sum cell beta[x][y] = sum cell betal[x][y] +
cell betalx]I[yl;
}
}

N rays++;

Y ////////// Shoot next wave ray //////////

// Calculate average cell wave height and cell beta for
all cells
for (x=0; x < Xmax; x++) {
for (y=0; y < 2*Ymax+1; y++) {
//avg cell wave height[x][y] =
sum cell wave height[x][y]/N rays;
//avg cell wave height[x][y] =
sum cell wave height[x] [y]/NumSweeps;
if (NumRaysPerCell[x][y] == 0){
avg_cell wave height[x][y] = 0;
avg_cell beta[x][y]l = 0;
} else {
avg_cell wave height[x][y] =
sum_cell wave height[x] [y]/ (NumRaysPerCell[x][y])
avg cell betal[x][y] =
sum_cell betal[x][y]/ (NumRaysPerCell[x][y]);
}
}
}

// Calculate average breaking wave height [and angle]
for each shoreline cell
for (y = 0; y < 2*Ymax; y++) {
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//avg breaking anglely] =
sum breaking angle[y]/N rays;

//avg breaking height[y]
sum breaking height[y]/sweep;

//avg breaking height[y]
sum breaking height[y]/N rays;

if (N _rays hit[y] > 0){
avg breaking height[y] =
sum breaking height[y]/N rays hit[y];
} else avg breaking height[y] = 0;

//printf ("avg breaking height = %G, y = %$i \n",
avg breaking height([y], vy);

//printf ("sum breaking height $G, N rays hit =
%1, y = %1 \n", sum breaking height[y], N rays hitly], vy);

if (avg breaking height[y] > height limit) {
avg breaking height[y] = height limit;
printf ("Wave height has gone over %G ! \n",
height limit);
}

}

// Determine if there is wave height data for all beach
cells
for (v = Ymax/?; y < 3*Ymax/”; y++) {
if (avg breaking height[y] > 0){

DataForAllBeachCells = 'y';
} else if (avg breaking height[y] == 0){
DataForAllBeachCells = 'n';

//printf ("No wave height data for at least one
beach cell! \n");

//printf ("Running loop again. \n");

//printf ("\n") ;

break;

}

} // Ends sweep 'while' or 'for' loop (depending on
which method is used)

// Average right and left neighbors if no data for cell
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// 1f ((avg breaking height[0] == 0) &&
(avg_breaking height[1l] == 0)

// && (avg breaking height[Ymax] != 0) &&
(avg breaking height[2] != 0)) {
// avg breaking height[0] = (avg breaking height[2]
+ avg breaking height[Ymax])/2;
// avg breaking angle[0] = (avg breaking angle[2] +

avg breaking angle[Ymax])/2;
// printf ("Modified breaking data at 0 \n");

// } else if ((avg breaking height[0] == 0) &&
(avg_breaking height[1l] == 0)
// && (avg breaking height[Ymax-1] != 0) &&
(avg _breaking height[2] != 0)) {
// avg breaking height[0] = (avg breaking height[2]
+ avg breaking height[Ymax-11)/2;
// avg breaking angle[0] = (avg breaking angle([2] +

avg breaking angle[Ymax-1])/2;
// printf ("Modified breaking data at 0 \n");

// } else
if ((avg breaking height[0] == 0) &&
(avg_breaking height[Ymax] '= 0)
&& (avg breaking height[1] !'= 0)){

avg breaking height[0] = (avg breaking height[1] +
avg breaking height[Ymax])/2;

avg breaking angle[0] = (avg breaking angle[l] +
avg _breaking angle[Ymax])/Z2;

printf ("Modified breaking data at 0 \n");

}
for (v = 1; v < (2*Ymax) - 1; y++){
// if ((avg breaking height[y] == 0) &&
(avg_breaking height[y+1] == 0)
// && (avg breaking height[y-1] != 0) &&
(avg _breaking height[y+2] != 0)) {

// avg breaking height[y] =
(avg _breaking height[y+2] + avg breaking height[y-1])/2;
// avg breaking height[y+1] =
(avg_breaking height[y+2] + avg breaking height[y-11)/2;
// avg breaking anglely] =
(avg_breaking angle[y+2] + avg breaking anglely-1])/2;
// avg breaking angle[y+1l] =
(avg_breaking angle[y+2] + avg breaking anglely-1])/2;
// printf ("Modified breaking data at %i \n",y);
// } else
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if ((avg breaking height[y] == 0) &&
(avg breaking height[y-1] != 0)
&& (avg breaking height[y+1] !'= 0)) {

avg breaking height[y] =

(avg breaking height[y+1] + avg breaking height[y-1])/2;
avg breaking anglely] =

(avg breaking angle[y+1] + avg breaking anglel[y-11)/2;
printf ("Modified breaking data at %i \n",y);

}
}
// if ((avg breaking height[Ymax] == 0) &&
(avg breaking height[0] == 0)
// && (avg breaking height[1l] != 0) &&
(avg _breaking height[Ymax-1] != 0)) {

// avg breaking height[Ymax] =
(avg breaking height[1l] + avg breaking height [Ymax-1])/2;
// avg breaking angle[Ymax] =
(avg _breaking angle[l] + avg breaking angle([Ymax-11)/2;
// printf ("Modified breaking data at %i \n", Ymax);
// } else if ((avg breaking height[Ymax] == 0) &&
(avg breaking height[0] == 0)
// && (avg breaking height[1l] == 0) &&
(avg breaking height[Ymax-1] != 0)) {
// avg breaking height [Ymax] =
(avg_breaking height[2] + avg breaking height[Ymax-11)/2;
// avg breaking angle[Ymax] =
(avg_breaking angle[2] + avg breaking angle([Ymax-11)/2;
// printf ("Modified breaking data at %i \n", Ymax) ;
// } else
if ((avg breaking height[Ymax] == 0)
&& (avg breaking height[1] !'= 0) &&
(avg_breaking height[Ymax-1] '= 0)){
avg _breaking height[Ymax] = (avg breaking height[1]
+ avg breaking height[Ymax-1])/2;
avg_breaking angle[Ymax] = (avg breaking angle[l] +
avg breaking angle[Ymax-1]1)/2;
printf ("Modified breaking data at %i \n",Ymax);
}

// Fill breaking angle data matrices

for (y = 0; y < 2*Ymax; y++) {

//for (y = Ymax/2; y < 3*Ymax/2; y++) {
breaking angles[y] = avg breaking anglelyl];
breaking heights[y] = avg breaking height[y];

299



BkAngle[y] = avg breaking anglel[y] - pi;

}
// Average right and left neighbors if no data for cell
for (y = 1; yv < (2*Ymax) - 1; y++){
if ((avg breaking height[y] == 0) &&
(avg breaking height[y+1] == 0)) {

avg _breaking height[y] =

(avg breaking height[y+2] + avg breaking height[y-1])/2;
avg breaking height[y+1] =

(avg breaking height[y+2] + avg breaking height[y-1])/2;
avg breaking anglely] =

(avg breaking angle[y+?] + avg breaking anglel[y-11)/2;
avg _breaking angle[y+1] =

(avg breaking angle[y+2] + avg breaking anglel[y-1]1)/2;

} else if (HeightRollAvg[y] == 0) {

avg _breaking height[y] =

(avg breaking height[y+1] + avg breaking height[y-11)/
avg breaking angle[y] =

(avg breaking angle[y+1] + avg breaking anglel[y-1]1)/2;

~e

}
}
// Calculate rolling averages for breaking height and
angle
if (RollAvgNeighbors == 0) {
for (y = 0; y < 2*Ymax; y++) {
HeightRollAvg[y] = avg breaking height[y];
AngleRollAvg[y] = avg breaking anglelyl];
}
}
else if (RollAvgNeighbors == 1) {

HeightRollAvg[0] = (avg breaking height[Z2*Ymax-1] +
avg _breaking height[0]
+ avg breaking height[1]) / 3;

AngleRollAvg[0] = (avg breaking angle[Z?*Ymax-1] +
avg breaking angle[0]
+ avg breaking angle[l]) / 3;

for (y = 1; y < 2*Ymax - 1; y++){
HeightRollAvg[y] = (avg breaking height[y-1] +
avg breaking height[y]
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+ avg breaking height[y+1]) / 3;
AngleRollAvg[y] = (avg breaking angle[y-1] +
avg _breaking angle[y]
+ avg breaking anglely+1]1) / 3;
}

HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
1] + avg breaking height[2*Ymax-1]
+ avg breaking height[0]) / 3;

AngleRollAvg[Z2*Ymax-1] = (avg breaking angle[2*Ymax-"]
+ avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0]) / 3;
}

else if (RollAvgNeighbors == 2){
HeightRollAvg[0O] = (avg breaking height[Z*Ymax-2] +
avg breaking height[2*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[2]) / 5;
HeightRollAvg[l] = (avg breaking height[Z2*Ymax-1] +
avg breaking height[0]
+ avg breaking height[l] + avg breaking height[Z] +
avg breaking height[2]) / 5;

AngleRollAvg[0] = (avg breaking angle[Z*Ymax-2] +
avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[2]) / 5;
AngleRollAvg[1l] = (avg breaking angle[Z*Ymax-1] +
avg _breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[”] +
avg breaking angle[3]) / 5;

for (y = 2; yv < 2*Ymax - 2; y++){
HeightRollAvg[y] = (avg breaking height[y-2] +
avg breaking height[y-1] + avg breaking height[y]
+ avg breaking height[y+1] +
avg_breaking height[y+2]) / 5;
AngleRollAvg[y] = (avg breaking anglel[y-2] +
avg breaking angle[y-1] + avg breaking angle[y]
+ avg breaking angle[y+1] +
avg breaking anglel[y+2]1) / 5;
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}

HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-]
+ avg breaking height[Z*Ymax-1] +
avg breaking height[0] + avg breaking height[1]) / 5;
HeightRollAvg[2*Ymax-2] = (avg breaking height[2*Ymax-
1 + avg breaking height[2*Ymax-3]
+ avg breaking height[Z*Ymax-2] +
avg breaking height[2*Ymax-1] + avg breaking height[0]) /

’

AngleRollAvg[2*Ymax - 1] = (avg breaking angle[Z*Ymax-
] + avg breaking angle[2*Ymax-2]
+ avg breaking angle[Z*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]) / 5;
AngleRollAvg[Z2*Ymax - 2] = (avg breaking angle[Z*Ymax-
] + avg breaking angle[Z*Ymax-3]
+ avg breaking angle[2*Ymax-2] +
avg breaking angle[2*Ymax-1] + avg breaking anglel[0]) / 5;
}

else if (RollAvgNeighbors == 3) {
HeightRollAvg[0] = (avg breaking height[2*Ymax-3]
+ avg breaking height[Z*Ymax-2] +
avg_breaking height[Z2*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3]) / 7;
HeightRollAvg[l] = (avg breaking height[2*Ymax-2] +
avg_breaking height[Z2*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4])
/7
HeightRollAvg[2] = (avg breaking height[2*Ymax-1] +
avg_breaking height[0] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3] +
avg breaking height[4]
+ avg breaking height[5]) / 7;
HeightRollAvg[3] = (avg breaking height[0] +
avg breaking height[l] + avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
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+ avg breaking height[6]) / 7;

AngleRollAvg[0] = (avg breaking angle[Z*Ymax-3] +
avg breaking angle[”*Ymax-2] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[”]
+ avg breaking angle[3]) / 7;
AngleRollAvg[l] = (avg breaking angle[Z*Ymax-2] +
avg breaking angle[”*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[Z] +
avg breaking angle[3]
+ avg breaking anglel[4]) / 7;
AngleRollAvg[2] = (avg breaking angle[Z*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[”] + avg breaking angle[3] +
avg breaking angle[4]
+ avg breaking angle[5]) / 7;
AngleRollAvg[3] = (avg breaking angle[0] +
avg breaking angle[l] + avg breaking angle[Z]
+ avg breaking angle[3] + avg breaking angle[4] +
avg breaking angle[5]
+ avg breaking angle[6]) / 7;

for (v = 3; v < 2*Ymax - 3; y++){
HeightRollAvg[y] = (avg breaking height[y-3]
+ avg breaking height[y-2] +
avg breaking height[y-1] + avg breaking height[y]
+ avg breaking height[y+1] +
avg_breaking height[y+?] + avg breaking height[y+3]) / 7;
AngleRollAvg[y] = (avg breaking angle[y-3]
+ avg breaking angle[y-”2] +
avg_breaking angle[y-1] + avg breaking anglely]
+ avg breaking angle[y+1] +
avg_breaking angle[y+2] + avg breaking angle[y+3]) / 7;
}

HeightRollAvg[2*Ymax-3] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-5] +
avg breaking height[Z*Ymax-4]
+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2] + avg breaking height[”*Ymax-
]
+ avg breaking height[0]) / 7;
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HeightRollAvg[2*Ymax-2] = (avg breaking height[2*Ymax-
1] + avg breaking height[2*Ymax-4] +
avg _breaking height[2*Ymax-3]
+ avg breaking height[Z*Ymax-2] +
avg _breaking height[Z2*Ymax-1] + avg breaking height[0]
+ avg breaking height[1]) / 7;
HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
1] + avg breaking height[2*Ymax-3] +
avg breaking height[Z*Ymax-2]
+ avg breaking height[Z*Ymax-1] +
avg _breaking height[0] + avg breaking height[1]
+ avg breaking height[2]) / 7;

AngleRollAvg[2*Ymax-3] = (avg breaking angle[2*Ymax-6]
+ avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-
]
+ avg breaking angle[2*Ymax-3] +
avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0]) / 7;
AngleRollAvg[Z*Ymax-2] = (avg breaking angle[Z2*Ymax-5]
+ avg breaking angle[”*Ymax-4] + avg breaking angle[Z*Ymax-
]
+ avg breaking angle[Z*Ymax-2] +
avg _breaking angle[2*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l]) / 7;
AngleRollAvg[”2*Ymax-1] = (avg breaking angle[Z*Ymax-4]
+ avg breaking angle[”*Ymax-3] + avg breaking angle[Z*Ymax-
]
+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[2]) / 7;

}

else if (RollAvgNeighbors == 4) {
HeightRollAvg[0] = (avg breaking height[2*Ymax-4] +
avg_breaking height[2*Ymax-3]
+ avg breaking height[Z*Ymax-2] +
avg breaking height[Z*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4])
/9
HeightRollAvg[l] = (avg breaking height[2*Ymax-3]
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+ avg breaking height[Z*Ymax-2] +
avg _breaking height[2*Ymax-1] + avg breaking height[0]
+ avg breaking height[l] + avg breaking height[Z] +
avg breaking height[3]
+ avg breaking height[4] + avg breaking height[5])
/ 9;
HeightRollAvg[2] = (avg breaking height[?*Ymax-"]
+ avg breaking height[Z*Ymax-1] +
avg breaking height[0U] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3] +
avg _breaking height[4]
+ avg breaking height[5] + avg breaking height[6])
/9
HeightRollAvg[3] = (avg breaking height[2*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
+ avg breaking height[6] + avg breaking height[7/])
/ 9;
HeightRollAvg[4] = (avg breaking height[0]
+ avg breaking height[l] + avg breaking height[Z] +
avg breaking height[3]
+ avg breaking height[4] + avg breaking height[5] +
avg breaking height[0]
+ avg breaking height[/] + avg breaking height[&])
/ 9;

AngleRollAvg[0] = (avg breaking angle[Z*Ymax-4]
+ avg breaking angle[”*Ymax-3] +
avg_breaking angle[2*Ymax-2] 4+ avg breaking angle[”*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[”]
+ avg _breaking angle[3] + avg breaking angle[4]) /

AngleRollAvg[l] = (avg breaking angle[Z*Ymax-3]
+ avg breaking angle[2*Ymax-2] +
avg breaking angle[”*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[”] +
avg _breaking angle[Z]
+ avg breaking angle[4] + avg breaking angle[5]) /

AngleRollAvg[2] = (avg breaking angle[Z*Ymax-"]
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+ avg breaking angle[Z*Ymax-1] +

avg _breaking angle[0] + avg breaking angle[l]

+ avg breaking angle[2] + avg breaking angle[3] +

avg breaking angle[4]

+ avg breaking angle[5] + avg breaking angle[6]) /

AngleRollAvg[3] = (avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +

avg breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[7]) /

AngleRollAvg[4] = (avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[Z”] +

avg breaking angle[Z]

+ avg breaking angle[4] + avg breaking angle[5] +

avg breaking angle[©]

+ avg breaking angle[7] + avg breaking angle[8]) /

for (y = 4, y < 2*Ymax - 4; y++){
HeightRollAvg[y] = (avg breaking height[y-4] +

avg _breaking height[y-2]

+ avg breaking height[y-2] +

avg_breaking height[y-1] + avg breaking height[y]

+ avg breaking height[y+1] +

avg breaking height[y+”] + avg breaking height[y+3]

+ avg breaking height[y+4]) / 9;
AngleRollAvg[y] = (avg breaking angle[y-4] +

avg _breaking angle[y-7]

+ avg breaking angle[y-”2] +

avg breaking angle[y-1] + avg breaking angle[y]

+ avg breaking angle[y+1] +

avg_breaking angle[y+”] + avg breaking angle[y+3]

]

+ avg breaking angle[y+4]) / 9;
}

HeightRollAvg[2*Ymax-4] = (avg breaking height[2*Ymax-

+ avg breaking height[Z*Ymax-7] +

avg breaking height[Z*Ymax-6] + avg breaking height[Z*Ymax-

]
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+ avg breaking height[Z*Ymax-4] +
avg _breaking height[Z*Ymax-3] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-1] +
avg breaking height[0]) / 9;
HeightRollAvg[2*Ymax-3] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z2*Ymax-6] +
avg breaking height[Z*Ymax-5] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z2*Ymax-3] +
avg breaking height[Z?*Ymax-2] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1])
/ 9;
HeightRollAvg[2*Ymax-2] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-5] +
avg breaking height[Z2*Ymax-4] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-2] +
avg _breaking height[Z2*Ymax-1] + avg breaking height[0]
+ avg breaking height[l] + avg breaking height[”])
/9
HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-4] +
avg breaking height[Z*Ymax-3] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-1] +
avg_breaking height[0] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3])
/ 9;

AngleRollAvg[”2*Ymax-4] = (avg breaking angle[Z*Ymax-8]
+ avg breaking angle[”*Ymax-/] +
avg_breaking angle[2*Ymax-6] + avg breaking angle[Z2*Ymax-5]
+ avg breaking angle[Z*Ymax-4] +
avg breaking angle[”*Ymax-3] + avg breaking angle[Z*Ymax-2]
+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0]) / 9;
AngleRollAvg[2*Ymax-3] = (avg breaking angle[?*Ymax-7]
+ avg breaking angle[2*Ymax-6] +
avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-4]
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avg .

avg

avg

avg

avg

avg

avg

1

avg

avg

avg

avg

+ avg breaking angle[Z*Ymax-3] +
breaking angle[2*Ymax-2] 4+ avg breaking angle[2*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[1]) /

AngleRollAvg[Z2*Ymax-2] = (avg breaking angle[2*Ymax-6(]
+ avg breaking angle[Z*Ymax-5] +

breaking angle[2*Ymax-4] + avg breaking angle[Z*Ymax-3]
+ avg breaking angle[2*Ymax-2] +

breaking angle[2*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[2]) /

AngleRollAvg[Z*Ymax-1] = (avg breaking angle[”*Ymax-5]
+ avg breaking angle[2*Ymax-4] +

breaking angle[2*Ymax-3] + avg breaking angle[2*Ymax-2]
+ avg breaking angle[Z*Ymax-1] +

breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[?] + avg breaking angle[3]) /

}

else if (RollAvgNeighbors == 5) {
HeightRollAvg[0O] = (avg breaking height[Z*Ymax-5] +
breaking height[2*Ymax-4]
+ avg breaking height[Z*Ymax-3] +
breaking height[”*Ymax-”] + avg breaking height[?*Ymax-

+ avg breaking height[0] + avg breaking height[1] +
breaking height[”]

+ avg breaking height[3] + avg breaking height[4] +
breaking height[5]) / ;
HeightRollAvg[1l] = (avg breaking height[Z?*Ymax-4] +
breaking height[2*Ymax-3]

+ avg breaking height[Z*Ymax-"] +
breaking height[2*Ymax-1] + avg breaking height[0]

+ avg breaking height[l] + avg breaking height[”] +

avg _breaking height[3]

+ avg breaking height[4] + avg breaking height[5] +

avg breaking height[6]) / ;

HeightRollAvg[2] = (avg breaking height[Z2*Ymax-3] +

avg breaking height[Z*Ymax-"]

+ avg breaking height[Z*Ymax-1] +

avg_breaking height[0] + avg breaking height[1]
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+ avg breaking height[”] + avg breaking height][
avg _breaking height[4]
+ avg breaking height[5] + avg breaking height][
avg breaking height[7]) / ;
HeightRollAvg[3] = (avg breaking height[2*Ymax-2] +
avg breaking height[Z*Ymax-1]
+ avg breaking height[0] + avg breaking height][
avg _breaking height[2]
+ avg breaking height[3] + avg breaking height][
avg breaking height[5]
+ avg breaking height[6] + avg breaking height][
avg breaking height[8]) / ;
HeightRollAvg[4] = (avg breaking height[Z2*Ymax-1] +
avg breaking height[0]
+ avg breaking height[l] + avg breaking height][
avg breaking height[3]
+ avg breaking height[4] + avg breaking height][
avg breaking height[0]
+ avg breaking height[/] + avg breaking height|[
avg breaking height[9]) / ;
HeightRollAvg[5] = (avg breaking height[0] +
avg breaking height[1]
+ avg breaking height[”] + avg breaking height][
avg breaking height[4]
+ avg breaking height[5] + avg breaking height][
avg _breaking height[7]
+ avg breaking height[8] + avg breaking height][
avg breaking height[10]) / ;

AngleRollAvg[0] = (avg breaking angle[Z*Ymax-5] +
avg _breaking angle[2*Ymax-4]
+ avg breaking angle[2*Ymax-3] +

avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-
+ avg breaking angle[0] + avg breaking angle[l] +

avg _breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg _breaking angle[5]) / ;
AngleRollAvg[l] = (avg breaking angle[Z?*Ymax-4] +
avg breaking angle[”*Ymax-3]
+ avg breaking angle[2*Ymax-2] +
avg breaking angle[”*Ymax-1] + avg breaking angle[0]

+ avg breaking angle[l] + avg breaking angle[”] +

avg _breaking angle[Z]
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+ avg breaking angle[4] + avg breaking angle]|
avg breaking angle[6]) / ;
AngleRollAvg[2] = (avg breaking angle[Z*Ymax-3] +
avg breaking angle[Z*Ymax-2]
+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[”] + avg breaking angle]|
avg breaking angle[4]
+ avg breaking angle[5] + avg breaking angle]
avg breaking angle[7]) / ;
AngleRollAvg[3] = (avg breaking angle[Z*Ymax-2] +
avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking anglel[
avg breaking angle[?]
+ avg breaking angle[3] + avg breaking angle]|
avg breaking angle[5]
+ avg breaking angle[6] + avg breaking anglel[
avg breaking angle[8]) / ;
AngleRollAvg[4] = (avg breaking angle[Z*Ymax-1] +
avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle]|
avg breaking angle[Z]
+ avg breaking angle[4] + avg breaking angle]
avg breaking angle[0]
+ avg breaking angle[/] + avg breaking angle]|
avg breaking angle[9]) / ;
AngleRollAvg[5] = (avg breaking angle[0] +
avg breaking angle[1]
+ avg breaking angle[”] + avg breaking angle[
avg breaking angle[4]
+ avg breaking angle[5] + avg breaking angle[
avg _breaking angle[7]
+ avg breaking angle[8] + avg breaking angle]|
avg breaking angle[10]) / ;

for (y = 5; v < 2*Ymax - 5; y++){
HeightRollAvg[y] = (avg breaking height[y-5] +

avg breaking height[y-4] + avg breaking height[y-3]

+ avg breaking height[y-2] +
avg_breaking height[y-1] + avg breaking height[y]

+ avg breaking height[y+1] +
avg breaking height[y+”] + avg breaking height[y+3]

+ avg breaking height[y+4] +
avg breaking height[y+5]) / ;
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AngleRollAvg[y] = (avg breaking angle[y-5] +

avg_breaking angle[y-4] + avg breaking angle[y-3]

+ avg breaking angle[y-2] +
avg breaking angle[y-1] + avg breaking angle[y]

+ avg breaking angle[y+1] +
avg breaking angle[y+”] + avg breaking angle[y+3]

+ avg breaking angle[y+4] +
avg _breaking anglel[y+5]) / ;

}

HeightRollAvg[2*Ymax-5] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-9]
+ avg breaking height[Z*Ymax-8] +
avg breaking height[Z2*Ymax-/] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-5] +
avg breaking height[Z2*Ymax-4] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-2] +
avg breaking height[2*Ymax-1] + avg breaking height[0]) /
HeightRollAvg[2*Ymax-4] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-5]
+ avg breaking height[Z2*Ymax-/] +
avg breaking height[Z*Ymax-6] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-4] +
avg breaking height[Z*Ymax-3] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-1] +
avg_breaking height[0] + avg breaking height[1]) / ;
HeightRollAvg[2*Ymax-3] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-7]
+ avg breaking height[Z*Ymax-06] +
avg _breaking height[”*Ymax-5] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2] + avg breaking height[”*Ymax-
]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[2]) / ;
HeightRollAvg[2*Ymax-2] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-0]
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+ avg breaking height[Z*Ymax-5] +
avg _breaking height[Z*Ymax-4] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-2] +
avg _breaking height[Z2*Ymax-1] + avg breaking height[0]
+ avg breaking height[l] + avg breaking height[?] +
avg breaking height[3]) / ;
HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-5]
+ avg breaking height[Z*Ymax-4] +
avg _breaking height[Z*Ymax-3] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-1] +
avg _breaking height[0] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3] +
avg _breaking height[4]) / ;

AngleRollAvg[Z*Ymax-5] = (avg breaking angle[Z2*Ymax-10]
+ avg breaking angle[2*Ymax-9]
+ avg breaking angle[”*Ymax-8] +
avg breaking angle[”*Ymax-/] + avg breaking angle[Z*Ymax-6]
+ avg breaking angle[Z2*Ymax-5] +
avg breaking angle[”*Ymax-4] + avg breaking angle[Z*Ymax-3]
+ avg breaking angle[2*Ymax-2] +
avg breaking angle[2*Ymax-1] + avg breaking angle[0]) / ;
AngleRollAvg[”2*Ymax-4] = (avg breaking angle[Z*Ymax-9]
+ avg breaking angle[”*Ymax-8]
+ avg breaking angle[”*Ymax-/] +
avg _breaking angle[2*Ymax-6] + avg breaking angle[”*Ymax-5]
+ avg breaking angle[”*Ymax-4] +
avg_breaking angle[”*Ymax-3] + avg breaking angle[”*Ymax-"]
+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]) / ;
AngleRollAvg[”2*Ymax-3] = (avg breaking angle[Z*Ymax-8]
+ avg breaking angle[2*Ymax-7]
+ avg breaking angle[”*Ymax-0] +
avg_breaking angle[2*Ymax-5] + avg breaking angle[Z2*Ymax-4]
+ avg breaking angle[Z*Ymax-3] +
avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[2]) / ;
AngleRollAvg[2*Ymax-2] = (avg breaking angle[Z*Ymax-7]
+ avg breaking angle[2*Ymax-0]
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+ avg breaking angle[Z*Ymax-5] +
avg breaking angle[2*Ymax-4] + avg breaking angle[Z2*Ymax-3]
+ avg breaking angle[2*Ymax-2] +
avg breaking angle[”*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[2] +
avg breaking angle[3]) / ;
AngleRollAvg[~2*Ymax-1] = (avg breaking angle[?*Ymax-6]
+ avg breaking angle[2*Ymax-5]
+ avg breaking angle[Z*Ymax-4] +
avg breaking angle[”*Ymax-3] + avg breaking angle[Z*Ymax-2]
+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[2] + avg breaking angle[3] +
avg breaking angle[4]) / ;

}

else if (RollAvgNeighbors == ) {
HeightRollAvg[0] = (avg breaking height[2*Ymax-10] +
avg breaking height[Z*Ymax-9]
+ avg breaking height[Z*Ymax-8] +
avg breaking height[Z2*Ymax-/] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-5] +
avg breaking height[Z*Ymax-4] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-2] +
avg breaking height[Z“*Ymax-1] + avg breaking height[0]
+ avg breaking height[1l] + avg breaking height[”] +
avg breaking height[Z]
+ avg breaking height[4] + avg breaking height[5] +
avg _breaking height[6]
+ avg breaking height[/] + avg breaking height[Z] +
avg _breaking height[9]
+ avg breaking height[10]) / ;
HeightRollAvg[l] = (avg breaking height[2*Ymax-9] +
avg_breaking height[2*Ymax-5]
+ avg breaking height[Z*Ymax-7] +
avg breaking height[Z*Ymax-6] + avg breaking height[Z*Ymax-
1
+ avg breaking height[Z*Ymax-4] +
avg breaking height[Z*Ymax-3] + avg breaking height[Z*Ymax-
1
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+ avg breaking height[Z*Ymax-1] +
avg _breaking height[0] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3] +
avg breaking height[4]
+ avg breaking height[5] + avg breaking height[6] +
avg breaking height[7/]
+ avg breaking height[8] + avg breaking height[9] +
avg _breaking height[10]
+ avg breaking height[11]) / ;
HeightRollAvg[2] = (avg breaking height[2?*Ymax-8]
+ avg breaking height[Z2*Ymax-/] +
avg breaking height[Z*Ymax-6] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-4] +
avg breaking height[Z*Ymax-3] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-1] +
avg breaking height[0] + avg breaking height[1]
+ avg breaking height[”] + avg breaking height[3] +
avg breaking height[4]
+ avg breaking height[5] + avg breaking height[6] +
avg breaking height[7]
+ avg breaking height[8] + avg breaking height[9] +
avg breaking height[10]
+ avg breaking height[11] +
avg breaking height[12]) / ;
HeightRollAvg[3] = (avg breaking height[2*Ymax-7] +
avg breaking height[Z*Ymax-6]
+ avg breaking height[Z*Ymax-5] +
avg breaking height[Z*Ymax-4]
+ avg breaking height[Z*Ymax-3] +
avg _breaking height[”*Ymax-”] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg _breaking height[5]
+ avg breaking height[6] + avg breaking height[/] +
avg breaking height[&]
+ avg breaking height[9] + avg breaking height[10]
+ avg breaking height[l1] + avg breaking height[12]
+ avg breaking height[13]) / ;
HeightRollAvg[4] = (avg breaking height[2*Ymax-6]
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+ avg breaking height[Z*Ymax-5] +
avg _breaking height[2*Ymax-4]

+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2]

+ avg breaking height[Z*Ymax-1] +
avg breaking height[0]

+ avg breaking height[l] + avg breaking height[?] +
avg _breaking height[3]

+ avg breaking height[4] + avg breaking height[5] +
avg breaking height[0]

+ avg breaking height[/] + avg breaking height[8] +
avg breaking height[9]

+ avg breaking height[10] + avg breaking height[11]
+ avg breaking height[12]

+ avg breaking height[13] +
avg breaking height[14]) / ;

HeightRollAvg[5] = (avg breaking height[Z2*Ymax-5] +

avg breaking height[Z*Ymax-4]

+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2]

+ avg breaking height[Z*Ymax-1] +
avg _breaking height[0] + avg breaking height[1]

+ avg breaking height[”] + avg breaking height[3] +
avg breaking height[4]

+ avg breaking height[5] + avg breaking height[6] +
avg _breaking height[7]

+ avg breaking height[8] + avg breaking height[9] +
avg breaking height[10]

+ avg breaking height[11] + avg breaking height[17]

+ avg breaking height[13] + avg breaking height[14]
+ avg breaking height[15]) / ;

HeightRollAvg[6] = (avg breaking height[Z2*Ymax-4] +

avg breaking height[Z*Ymax-3]

+ avg breaking height[Z*Ymax-"] +
avg_breaking height[Z*Ymax-1] + avg breaking height[0]

+ avg breaking height[l] + avg breaking height[”] +
avg _breaking height[3]

+ avg breaking height[4] + avg breaking height[5] +
avg breaking height[0]

+ avg breaking height[/] + avg breaking height[8] +
avg breaking height[9]

+ avg breaking height[10] + avg breaking height[11]
+ avg breaking height[12]
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+ avg breaking height[13] + avg breaking height[14]
+ avg breaking height[15]
+ avg breaking height[16]) / ;
HeightRollAvg[/] = (avg breaking height[?*Ymax-3] +
avg _breaking height[2*Ymax-2]
+ avg breaking height[Z*Ymax-1] +
avg breaking height[0]
+ avg breaking height[l] + avg breaking height[Z] +
avg breaking height[3]
+ avg breaking height[4] + avg breaking height[5] +
avg _breaking height[6]
+ avg breaking height[/] + avg breaking height[8] +
avg breaking height[9]
+ avg breaking height[10] + avg breaking height[11]
+ avg breaking height[12]
+ avg breaking height[13] + avg breaking height[14]
+ avg breaking height[15]
+ avg breaking height[16] +
avg breaking height[17]) / ;
HeightRollAvg[8] = (avg breaking height[Z*Ymax-2] +
avg breaking height[Z*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
+ avg breaking height[6] + avg breaking height[/] +
avg breaking height[&]
+ avg breaking height[9] + avg breaking height[10]
+ avg breaking height[11]
+ avg breaking height[1”] + avg breaking height[13]
+ avg breaking height[14]
+ avg breaking height[15] + avg breaking height[16]
+ avg breaking height[17]
+ avg breaking height[16]) / ;
HeightRollAvg[9] = (avg breaking height[2*Ymax-1]
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
+ avg breaking height[6] + avg breaking height[/] +
avg breaking height[&]
+ avg breaking height[9] + avg breaking height[10]
+ avg breaking height[11]
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+ avg breaking height[1”] + avg breaking height[13]
+ avg breaking height[14]

+ avg breaking height[15] + avg breaking height[16]
+ avg breaking height[17]

+ avg breaking height[16] +
avg breaking height[17]) / ;

AngleRollAvg[0] = (avg breaking angle[”*Ymax-10] +
avg breaking angle[Z*Ymax-9]
+ avg breaking angle[2*Ymax-8] +
avg breaking angle[”*Ymax-/] + avg breaking angle[Z*Ymax-6]
+ avg breaking angle[2*Ymax-5] +
avg breaking angle[2*Ymax-4] + avg breaking angle[Z2*Ymax-3]
+ avg breaking angle[Z*Ymax-2] +
avg _breaking angle[2*Ymax-1] + avg breaking angle[0]
+ avg breaking angle[l] + avg breaking angle[2] +
avg breaking angle[Z]
+ avg breaking angle[4] + avg breaking angle[5] +
avg breaking angle[©]
+ avg breaking angle[/] + avg breaking angle[S8] +
avg breaking angle[Y]
+ avg breaking angle[10]) / ;
AngleRollAvg[l] = (avg breaking angle[Z*Ymax-9] +
avg breaking angle[”*Ymax-8]
+ avg breaking angle[2*Ymax-7/] +
avg breaking angle[”*Ymax-06] + avg breaking angle[Z*Ymax-5]
+ avg breaking angle[”*Ymax-4] +
avg _breaking angle[”*Ymax-3] + avg breaking angle[”*Ymax-"]
+ avg breaking angle[”*Ymax-1] +
avg_breaking angle[0] + avg breaking angle[l]
+ avg breaking angle[”] + avg breaking angle[3] +
avg breaking angle[4]
+ avg breaking angle[5] + avg breaking angle[6] +
avg _breaking angle[7]
+ avg breaking angle[8] + avg breaking angle[9] +
avg _breaking angle[10]
+ avg breaking angle[11]) / ;
AngleRollAvg[2] = (avg breaking angle[Z*Ymax-8]
+ avg breaking angle[2*Ymax-7] +
avg breaking angle[”*Ymax-06] + avg breaking angle[Z*Ymax-5]
+ avg breaking angle[Z*Ymax-4] +
avg _breaking angle[2*Ymax-3] + avg breaking angle[Z2*Ymax-7]
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+ avg breaking angle[Z*Ymax-1] +
avg _breaking angle[0] + avg breaking angle[l]

+ avg breaking angle[2] + avg breaking angle[3] +
avg breaking angle[4]

+ avg breaking angle[5] + avg breaking angle[6] +
avg breaking angle[7]

+ avg breaking angle[8] + avg breaking angle[9] +
avg breaking angle[10]

+ avg breaking angle[l1l] + avg breaking angle[12])
/ 21;
AngleRollAvg[3] = (avg breaking angle[Z*Ymax-7/] +
avg breaking angle[Z*Ymax-0]

+ avg breaking angle[2*Ymax-5] +
avg breaking angle[2*Ymax-4]

+ avg breaking angle[Z*Ymax-3] +
avg breaking angle[2*Ymax-2] + avg breaking angle[”2*Ymax-1]

+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +
avg breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[/] +
avg breaking angle[&]

+ avg breaking angle[9] + avg breaking angle[10]

+ avg breaking angle[l1l] + avg breaking angle[1Z2] +
avg breaking angle[13]) / ;

AngleRollAvg[4] = (avg breaking angle[Z*Ymax-0]

+ avg breaking angle[”*Ymax-5] +
avg breaking angle[”*Ymax-4]

+ avg breaking angle[2*Ymax-3] +
avg breaking angle[Z*Ymax-"]

+ avg breaking angle[2*Ymax-1] +
avg _breaking angle[0]

+ avg breaking angle[l] + avg breaking angle[”] +
avg _breaking angle[Z]

+ avg breaking angle[4] + avg breaking angle[5] +
avg breaking angle[©]

+ avg breaking angle[/] + avg breaking angle[8] +
avg breaking angle[9]

+ avg breaking angle[10] + avg breaking angle[l1] +
avg _breaking angle[12]

+ avg breaking angle[l3] + avg breaking angle[14])
/21
AngleRollAvg[5] = (avg breaking angle[Z*Ymax-5] +
avg breaking angle[”*Ymax-4]
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+ avg breaking angle[Z*Ymax-3] +
avg _breaking angle[2*Ymax-2]

+ avg breaking angle[2*Ymax-1] +
avg breaking angle[0] + avg breaking angle[l]

+ avg breaking angle[2] + avg breaking angle[3] +
avg breaking angle[4]

+ avg breaking angle[5] + avg breaking angle[6] +
avg breaking angle[7]

+ avg breaking angle[8] + avg breaking angle[9] +
avg breaking angle[10]

+ avg breaking angle[l1l] + avg breaking angle[12]

+ avg breaking angle[13] + avg breaking angle[14] +
avg breaking angle[15]) / ;

AngleRollAvg[6] = (avg breaking angle[Z*Ymax-4] +

avg breaking angle[Z*Ymax-3]

+ avg breaking angle[2*Ymax-2] +
avg _breaking angle[2*Ymax-1] + avg breaking angle[0]

+ avg breaking angle[l] + avg breaking angle[Z”] +
avg breaking angle[Z]

+ avg breaking angle[4] + avg breaking angle[5] +
avg breaking angle[©]

+ avg breaking angle[/] + avg breaking angle[8] +
avg breaking angle[9]

+ avg breaking angle[10] + avg breaking angle[l1] +
avg breaking angle[17]

+ avg breaking angle[13] + avg breaking angle[14] +
avg breaking angle[15]

+ avg breaking angle[16]) / ;

AngleRollAvg[/] = (avg breaking angle[Z*Ymax-3] +

avg breaking angle[Z*Ymax-"]

+ avg breaking angle[2*Ymax-1] +
avg _breaking angle[0]

+ avg breaking angle[l] + avg breaking angle[”] +
avg _breaking angle[Z]

+ avg breaking angle[4] + avg breaking angle[5] +
avg breaking angle[©]

+ avg breaking angle[/] + avg breaking angle[8] +
avg breaking angle[9]

+ avg breaking angle[10] + avg breaking angle[l1] +
avg _breaking angle[12]

+ avg breaking angle[13] + avg breaking angle[14] +
avg breaking angle[15]

+ avg breaking angle[l16] + avg breaking angle[17])
/ 21;
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AngleRollAvg[8] = (avg breaking angle[”*Ymax-2] +

avg _breaking angle[2*Ymax-1]

+ avg breaking angle[0]

avg breaking angle[”]

+ avg breaking angle[3]

avg breaking angle[5]

+ avg breaking angle[6]

avg breaking angle[&]

+ avg breaking angle[9]

avg breaking angle[11]

+ avg breaking anglel

avg breaking angle[14]

+ avg breaking anglel

avg breaking angle[17]

+ avg breaking angle]

AngleRollAvg[9] = (avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +

avg breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[/] +

avg breaking angle[&]

+ avg breaking angle[9] + avg breaking angle]

avg breaking angle[11]

+ avg breaking angle]|

avg _breaking angle[14]

+ avg breaking angle]|

avg breaking angle[17]

/

+ avg breaking angle[

for (y = 7y < 2%Ymax -

avg_breaking height[y-9]

+ avg breaking height[y-8] +
avg_breaking height[y-7] + avg breaking height[y-6]
+ avg breaking height[y-5] +

avg breaking height[y-4] + avg breaking height[y-3]
+ avg breaking height[y-2] +

avg breaking height[y-1] + avg breaking height[y]

+ avg breaking height[y+1] +
avg_breaking height[y+”] + avg breaking height[y+3]
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+ avg breaking angle[l] +
+ avg breaking angle[4] +
+ avg breaking angle[7] +
+ avg breaking angle]|
] + avg breaking anglel[

1 + avg breaking anglel[

N/

] + avg breaking angle|
] + avg breaking angle|

] + avg breaking angle|[

7oyt {
HeightRollAvg[y] = (avg breaking height[y-

4

]

]

]
]

]
]
]

+

+

)

+

+

+

+



avg .

avg

avg

avg

avg .

avg .

avg

avg .

avg

1

avg_
avg

avg
avg

avg
avg

avg

1

avg

1

avg

1

+ avg breaking height[y+4] +
breaking height[y+5] + avg breaking height[y+6]
+ avg breaking height[y+7/] +
breaking height[y+8] + avg breaking height[y+9]
+ avg breaking height[y+10]) / ;
AngleRollAvg[y] = (avg breaking anglel[y-10] +
breaking angle[y-9] + avg breaking angle[y-¢]
+ avg breaking angle[y-7] +
breaking angle[y-6] + avg breaking angle[y-5]
+ avg breaking angle[y-4] +
breaking angle[y-3] + avg breaking angle[y-2]
+ avg breaking anglel[y-1] +
breaking angle[y] + avg breaking angle[y+1]
+ avg breaking angle[y+2] +
breaking angle[y+3] + avg breaking angle[y+4]
+ avg breaking angle[y+5] +
breaking angle[y+6] + avg breaking angle[y+7]
+ avg breaking angle[y+3] +
breaking angle[y+9] + avg breaking angle[y+10]) / ;
}

HeightRollAvg[2*Ymax-10] = (avg breaking height[”*Ymax-
+ avg breaking height[Z*Ymax-19]
+ avg breaking height[Z*Ymax-18] +
breaking height[Z*Ymax-17] +
breaking height[Z*Ymax-16]
+ avg breaking height[Z*Ymax-15] +
breaking height[Z*Ymax-14] +
breaking height[Z*Ymax-13]
+ avg breaking height[Z?*Ymax-12] +
breaking height[Z*Ymax-11] +
breaking height[Z2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
breaking height[”*Ymax-8] + avg breaking height[2*Ymax-

+ avg breaking height[Z*Ymax-06] +
breaking height[”*Ymax-5] + avg breaking height[Z*Ymax-

+ avg breaking height[Z*Ymax-3] +
breaking height[”*Ymax-”] + avg breaking height[Z*Ymax-

+ avg breaking height[0]) / ;
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HeightRollAvg[2*Ymax-9] = (avg breaking height[2*Ymax-
1 + avg breaking height[2*Ymax-18]
+ avg breaking height[Z2*Ymax-17] +
avg breaking height[Z*Ymax-16]
+ avg breaking height[Z*Ymax-15] +
avg breaking height[Z*Ymax-14] +
avg breaking height[Z*Ymax-13]
+ avg breaking height[Z2*Ymax-12] +
avg breaking height[Z*Ymax-11] +
avg breaking height[Z*Ymax-10]
+ avg breaking height[Z2*Ymax-9] +
avg breaking height[Z*Ymax-8] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg breaking height[Z*Ymax-5] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1])

HeightRollAvg[2*Ymax-8] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-17] +
avg breaking height[Z*Ymax-16]
+ avg breaking height[Z*Ymax-15] +
avg breaking height[Z*Ymax-14] +
avg breaking height[Z*Ymax-13]
+ avg breaking height[Z?*Ymax-12] +
avg breaking height[Z*Ymax-11] +
avg_breaking height[2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg breaking height[Z*Ymax-8] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z*Ymax-06] +
avg breaking height[Z*Ymax-5] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[2]) / ;
HeightRollAvg[2*Ymax-/] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-10]
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+ avg breaking height[Z*Ymax-15] +
avg _breaking height[Z*Ymax-14] +
avg _breaking height[2*Ymax-13]
+ avg breaking height[Z*Ymax-12] +
avg _breaking height[Z*Ymax-11] +
avg breaking height[Z*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg _breaking height[2*Ymax-8] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg _breaking height[Z*Ymax-5] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg breaking height[2*Ymax-”] + avg breaking height[2*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3]) / ;
HeightRollAvg[2*Ymax-6] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-15] +
avg breaking height[Z*Ymax-14] +
avg breaking height[Z*Ymax-13]
+ avg breaking height[Z*Ymax-12] +
avg breaking height[Z*Ymax-11] +
avg_breaking height[2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg breaking height[Z*Ymax-8] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg _breaking height[”*Ymax-5] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg _breaking height[”*Ymax-”] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
+ avg breaking height[3] + avg breaking height[4])
/ 21;
HeightRollAvg[2*Ymax-5] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-14] +
avg breaking height[Z*Ymax-13]
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+ avg breaking height[Z*Ymax-12] +
avg _breaking height[Z*Ymax-11] +
avg _breaking height[2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg _breaking height[Z*Ymax-8] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg _breaking height[Z*Ymax-5] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg _breaking height[Z*Ymax-”] + avg breaking height[2*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg _breaking height[5]) / ;
HeightRollAvg[2*Ymax-4] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-13]
+ avg breaking height[Z*Ymax-12] +
avg breaking height[Z2*Ymax-11] +
avg breaking height[Z*Ymax-10]
+ avg breaking height[Z2*Ymax-9] +
avg breaking height[Z*Ymax-8] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg _breaking height[”*Ymax-5] + avg breaking height[”*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg _breaking height[”*Ymax-”] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg _breaking height[5]
+ avg breaking height[6]) / ;
HeightRollAvg[2*Ymax-3] = (avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-12] +
avg breaking height[Z2*Ymax-11] +
avg_breaking height[2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg breaking height[Z*Ymax-8] + avg breaking height[Z*Ymax-
1
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+ avg breaking height[Z*Ymax-6] +
avg breaking height[Z*Ymax-5] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg _breaking height[Z*Ymax-”] + avg breaking height[2*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[2]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
+ avg breaking height[6] + avg breaking height[7/])
/ 21;
HeightRollAvg[2*Ymax-2] = (avg breaking height[2*Ymax-
1] + avg breaking height[2*Ymax-11] +
avg breaking height[Z*Ymax-10]
+ avg breaking height[Z2*Ymax-9] +
avg breaking height[Z2*Ymax-8] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z2*Ymax-6] +
avg breaking height[Z*Ymax-5] + avg breaking height[Z”*Ymax-
1
+ avg breaking height[Z*Ymax-3] +
avg breaking height[Z*Ymax-2] + avg breaking height[”*Ymax-
1
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
+ avg breaking height[3] + avg breaking height[4] +
avg breaking height[5]
+ avg breaking height[6] + avg breaking height[/] +
avg breaking height[8]) / ;
HeightRollAvg[2*Ymax-1] = (avg breaking height[2*Ymax-
] + avg breaking height[2*Ymax-10]
+ avg breaking height[Z*Ymax-9] +
avg _breaking height[”*Ymax-8] + avg breaking height[2*Ymax-
1
+ avg breaking height[Z*Ymax-6] +
avg_breaking height[Z*Ymax-5] + avg breaking height[2*Ymax-
]
+ avg breaking height[Z*Ymax-3] +
avg_breaking height[Z*Ymax-”] + avg breaking height[2*Ymax-
]
+ avg breaking height[0] + avg breaking height[1] +
avg _breaking height[”]
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+ avg breaking height[3] + avg breaking height[4] +
avg _breaking height[5]

+ avg breaking height[6] + avg breaking height[/] +
avg breaking height[&]

+ avg breaking height[9]) / ;

AngleRollAvg[2*Ymax-10] = (avg breaking angle[Z2*Ymax-
] + avg breaking angle[Z*Ymax-19]
+ avg breaking angle[Z*Ymax-18] +
avg_breaking angle[2*Ymax-17/] + avg breaking angle[Z*Ymax-
1
+ avg breaking angle[2*Ymax-15] +
avg _breaking angle[2*Ymax-14] + avg breaking angle[Z*Ymax-
1
+ avg breaking angle[2*Ymax-12] +
avg _breaking angle[2*Ymax-11] + avg breaking angle[Z*Ymax-
1
+ avg breaking angle[2*Ymax-9] +
avg breaking angle[”*Ymax-8] + avg breaking angle[Z*Ymax-7]
+ avg breaking angle[Z*Ymax-0] +
avg breaking angle[2*Ymax-5] + avg breaking angle[”*Ymax-4]
+ avg breaking angle[Z*Ymax-3] +
avg breaking angle[2*Ymax-2] + avg breaking angle[”2*Ymax-1]
+ avg breaking angle[0]) / ;
AngleRollAvg[Z2*Ymax-9] = (avg _breaking angle[Z*Ymax-19]

+ avg breaking angle[”*Ymax-18]
+ avg breaking angle[”*Ymax-17] +
avg_breaking angle[2*Ymax-16]
+ avg breaking angle[”*Ymax-15] +
avg_breaking angle[2*Ymax-14] + avg breaking angle[”*Ymax-

1
+ avg breaking angle[”*Ymax-12] +
avg_breaking angle[2*Ymax-11] + avg breaking angle[”*Ymax-
1
+ avg breaking angle[”*Ymax-9] +
avg_breaking angle[2*Ymax-8] + avg breaking angle[2*Ymax-7]
+ avg breaking angle[Z*Ymax-0] +
avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-4]
+ avg breaking angle[2*Ymax-3] +
avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l]) /

AngleRollAvg[2*Ymax-8] = (avg breaking angle[?*Ymax-18]
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+ avg breaking angle[Z*Ymax-17] +

avg _breaking angle[2*Ymax-16]
+ avg breaking angle[2*Ymax-15] +
avg breaking angle[”*Ymax-14] + avg breaking angle[2*Ymax-

1
+ avg breaking angle[Z*Ymax-12] +
avg breaking angle[Z*Ymax-11] + avg breaking angle[2*Ymax-
1
+ avg breaking angle[2*Ymax-9] +
avg breaking angle[”*Ymax-8] + avg breaking angle[Z*Ymax-7]
+ avg breaking angle[2*Ymax-6] +
avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-4]
+ avg breaking angle[2*Ymax-3] +
avg breaking angle[2*Ymax-2] + avg breaking angle[”*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[2]) / ;

AngleRollAvg[2*Ymax-/] = (avg breaking angle[2*Ymax-17]
+ avg breaking angle[Z*Ymax-16]
+ avg breaking angle[2*Ymax-15] +
avg breaking angle[”*Ymax-14] + avg breaking angle[2*Ymax-

1
+ avg breaking angle[2*Ymax-12] +
avg breaking angle[”*Ymax-11] + avg breaking angle[2*Ymax-
1
+ avg breaking angle[”*Ymax-9] +
avg_breaking angle[2*Ymax-8] + avg breaking angle[”*Ymax-7]
+ avg breaking angle[”*Ymax-0] +
avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-4]
+ avg breaking angle[2*Ymax-3] +
avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg _breaking angle[”]
+ avg breaking angle[3]) / ;
AngleRollAvg[Z2*Ymax-6] = (avg _breaking angle[Z*Ymax-16]
+ avg breaking angle[2*Ymax-15] +
avg breaking angle[”*Ymax-14] + avg breaking angle[”*Ymax-
1
+ avg breaking angle[Z*Ymax-12] +
avg breaking angle[”*Ymax-11] + avg breaking angle[2*Ymax-
1
+ avg breaking angle[Z*Ymax-9] +
avg breaking angle[”*Ymax-8] + avg breaking angle[Z*Ymax-7]
+ avg breaking angle[2*Ymax-6] +
avg breaking angle[”*Ymax-5] + avg breaking angle[Z*Ymax-4]
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+ avg breaking angle[Z*Ymax-3] +
avg breaking angle[2*Ymax-2] + avg breaking angle[Z2*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg breaking angle[”]
+ avg breaking angle[3] + avg breaking angle[4]) /
AngleRollAvg[2*Ymax-5] = (avg breaking angle[?*Ymax-15]
+ avg breaking angle[2*Ymax-14] +

avg breaking angle[Z*Ymax-13]
+ avg breaking angle[Z*Ymax-12] +
avg _breaking angle[2*Ymax-11] + avg breaking angle[Z*Ymax-

1

+ avg breaking angle[2*Ymax-9] +

avg breaking angle[2*Ymax-8] + avg breaking angle[Z2*Ymax-7/]
+ avg breaking angle[Z*Ymax-0] +

avg breaking angle[2*Ymax-5] + avg breaking angle[”2*Ymax-4]
+ avg breaking angle[2*Ymax-3] +

avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +

avg breaking angle[”]
+ avg breaking angle[3] + avg breaking angle[4] +

avg breaking angle[5]) / ;

AngleRollAvg[Z*Ymax-4] = (avg breaking angle[”*Ymax-14]

+ avg breaking angle[2*Ymax-13]
+ avg breaking angle[”*Ymax-12] +
avg_breaking angle[2*Ymax-11] + avg breaking angle[Z*Ymax-

1
+ avg breaking angle[”*Ymax-9] +
avg _breaking angle[2*Ymax-8] + avg breaking angle[”*Ymax-7]
+ avg breaking angle[”*Ymax-0] +
avg_breaking angle[2*Ymax-5] + avg breaking angle[”*Ymax-4]
+ avg breaking angle[2*Ymax-3] +
avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-1]
+ avg breaking angle[0] + avg breaking angle[l] +
avg _breaking angle[”]
+ avg breaking angle[3] + avg breaking angle[4] +
avg _breaking angle[5]
+ avg breaking angle[6]) / ;

AngleRollAvg[2*Ymax-3] = (avg breaking angle[?*Ymax-13]
+ avg breaking angle[2*Ymax-12] +
avg breaking angle[”*Ymax-11] + avg breaking angle[2*Ymax-

1
+ avg breaking angle[2*Ymax-9] +
avg breaking angle[”*Ymax-8] + avg breaking angle[Z*Ymax-7]
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+ avg breaking angle[Z*Ymax-0] +

avg breaking angle[2*Ymax-5] + avg breaking angle[Z2*Ymax-4]

+ avg breaking angle[2*Ymax-3] +

avg breaking angle[”*Ymax-2] + avg breaking angle[Z*Ymax-1]

+ avg breaking angle[0] + avg breaking angle[l] +

avg breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[7]) /

AngleRollAvg[2*Ymax-2] =
+ avg breaking angle[Z*Ymax-
avg _breaking angle[2*Ymax-

+ avg breaking angle[2*Ymax-9] +

avg breaking angle[”*Ymax-8] + avg breaking angle[Z*Ymax-
+ avg breaking angle[2*Ymax-6] +

avg _breaking angle[2*Ymax-5] + avg breaking angle[Z2*Ymax-
+ avg breaking angle[Z*Ymax-3] +

avg _breaking angle[2*Ymax-2] + avg breaking angle[Z2*Ymax-
+ avg breaking angle[0] + avg breaking angle[l] +

avg breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[/] +

avg breaking angle[8]) / ;
AngleRollAvg[2*Ymax-1] =
+ avg breaking angle[”*Ymax-

+ avg breaking angle[”*Ymax-9] +

avg_breaking angle[2*Ymax-8] + avg breaking angle[”*Ymax-
+ avg breaking angle[”*Ymax-0] +

avg_breaking angle[2*Ymax-5] + avg breaking angle[”*Ymax-
+ avg breaking angle[2*Ymax-3] +

avg breaking angle[”*Ymax-”] + avg breaking angle[Z*Ymax-
+ avg breaking angle[0] + avg breaking angle[l] +

avg _breaking angle[”]

+ avg breaking angle[3] + avg breaking angle[4] +

avg _breaking angle[5]

+ avg breaking angle[6] + avg breaking angle[/] +

avg breaking angle[Z]

+ avg breaking angle[9]) /

}

else {

(avg breaking angle[2*Ymax-

1 +
1

(avg breaking angle[”*Ymax-

1
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printf ("Rolling average neighbor unspecified!
\nUsing raw averages. \n");
for (y = 0; yv < 2*Ymax; y++) {
HeightRollAvg[y] = avg breaking heightl[y];
AngleRollAvg[y] = avg breaking angle[y];

}
}
// Average right and left neighbors if no data for cell
// if ((HeightRollAvg[0] == 0) && (HeightRollAvg[l] ==
0) && (HeightRollAvg[Ymax] != 0)) {
// HeightRollAvg[0] = (HeightRollAvgl[2] +
HeightRollAvg[Ymax]) /2;
// AngleRollAvg[0] = (AngleRollAvgl[2] +

AngleRollAvg[Ymax])/2;
// printf ("Modified Rolling Average at 0 \n");

// } else if ((HeightRollAvg[0] == 0) &&
(HeightRollAvg[l] == 0) && (HeightRollAvg[Ymax] == 0)) {
// HeightRollAvg[0] = (HeightRollAvg[2] +
HeightRollAvg[Ymax-1]1)/2;
// AngleRollAvg[0] = (AngleRollAvg[2] +

AngleRollAvg|[Ymax-1])/2;
// printf ("Modified Rolling Average at 0 \n");

// } else if ((HeightRollAvg[0] == 0) &&
(HeightRollAvg[Ymax] != 0)) {
// HeightRollAvg[0] = (HeightRollAvg[l] +
HeightRollAvg[Ymax]) /2;
// AngleRollAvg[0] = (AngleRollAvgl[l] +

AngleRollAvg[Ymax])/2;
// printf ("Modified Rolling Average at 0 \n");

/7 0}
// for (y = 1; y < (2*Ymax) - 1; y++){
// if ((HeightRollAvgl[y] == 0) &&
(HeightRollAvg[y+1l] == 0)) {
// HeightRollAvg[y] = (HeightRollAvgl[y+2] +
HeightRollAvg([y-1]1)/2;
// HeightRollAvg[y+1] = (HeightRollAvg[y+2] +
HeightRollAvg[y-11)/2;
// AngleRollAvg[y] = (AngleRollAvg[y+2] +
AngleRollAvg[y-1]1)/2;
// AngleRollAvg[y+1] = (AngleRollAvg[y+2] +

AngleRollAvg([y-1]1)/2;
// printf ("Modified Rolling Average at %i
\n",y);
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// } else if (HeightRollAvgly] == 0) {

// HeightRollAvg[y] = (HeightRollAvgl[y+1] +
HeightRollAvg[y-11)/2;
// AngleRollAvg[y] = (AngleRollAvg[y+1] +

AngleRollAvg([y-1]1)/2;
// printf ("Modified Rolling Average at %i

\n",vy);
/7 0}
/] 0}
// if ((HeightRollAvg[Ymax] == 0) && (HeightRollAvg[0]
—= 0) && (HeightRollAvg([l] != 0)){
// HeightRollAvg[Ymax] = (HeightRollAvg[l] +
HeightRollAvg[Ymax-11)/2;
// AngleRollAvg[Ymax] = (AngleRollAvg[l] +

AngleRollAvg|[Ymax-1])/2;

// printf ("Modified Rolling Average at %i
\n", Ymax) ;

// } else 1f ((HeightRollAvg[Ymax] == 0) &&

(HeightRollAvg[0] == 0) && (HeightRollAvg[l] == 0)) {

// HeightRollAvg[Ymax] = (HeightRollAvg[2] +
HeightRollAvg[Ymax-11)/2;

// AngleRollAvg[Ymax] = (AngleRollAvg[2] +
AngleRollAvg|[Ymax-1])/2;

// printf ("Modified Rolling Average at %i
\n", Ymax) ;

// } else if (HeightRollAvg[Ymax] == 0) {
// HeightRollAvg[Ymax] = (HeightRollAvg[l] +
HeightRollAvg[Ymax-11)/2;
// AngleRollAvg[Ymax] = (AngleRollAvg[l] +

AngleRollAvg|[Ymax-1])/2;
// printf ("Modified Rolling Average at %i
\n", Ymax) ;

// 0}

// Convert angles back to CEM orientation
for (y = 0; y < 2*Ymax; y++) {

AngleRollAvgl[y] = pi - AngleRollAvgly]:
}

//printf ("Thetao = %G \n", (pi-thetao)*radtodeq);

// If the breaking angle is over 90 degrees, consider
that "shadowed"
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for (v = 0; y < 2*Ymax; y++) {
if (AngleRollAvg[y] > 90*pi/180){
if (debug2?) printf("Cell y = %i is in shadow!",
V) 7
AngleRollAvgly] = 0;
HeightRollAvgl[y] = 0O;

}

// Display average cell wave height data
if (debuglb6) printf("Average wave height at each cell
is: \n");
//for (y = 0; y < 2*Ymax; y++) {
for (v = Ymax/?; y < 3*Ymax/”; y++) {
for (x=0; x < Xmax; x++) {
if (debugl6) printf("sG ",
avg _cell wave height[x][y]l);
} if (debugl6) printf("\n");
} if (debugl6) printf("\n");

// Display the number of wave rays that passed through
each cell
if (debuglba) printf("Number of wave rays taht passed
through each cell: \n");
for (v = Ymax/?; y < 3*Ymax/”; y++) {
for (x=0; x < Xmax; x++) {
if (debuglba) printf("%i ",
NumRaysPerCell[x]1[y])
} if (debugl6a) printf("\n");
} if (debugloca) printf("\n");

// Display the average beta data
if (debugl6b) printf("Average beta at ecah cell is:
\n");
for (v = Ymax/2; y < 3*Ymax/”; y++) {
for (x=0; x < Xmax; x++) {
if (debugl6éb) printf("2G ",
avg _cell betal[x]I[y]);
} if (debugl6b) printf("\n");
} if (debugléb) printf("\n");

// Display average breaking wave height and angle for
each shoreline cell
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is:

if (debugl9) printf("Average breaking wave angle
\n") ;
//for (v = 0; y < 2*Ymax; y++) {

for (v = Ymax/2; y < 3*Ymax/2; y++) {

if (debugl9) printf("sC ", avg breaking angle[yl*radtodeg);
} if (debugl9) printf("\n");
if (debugl9) printf("\n");
if (debugl9) printf("Average breaking wave height data: \n");
//for (y = 0; y < 2*Ymax; y++) {
for (y = Ymax/?; y < 3*Ymax/2; y++){

if (debugl9) printf ("G ", avg breaking height[y]):
} if (debugl9) printf("\n");
if (debugl9) printf("\n");

// Display average breaking wave height and angle for each shoreline cell
if (debugl9) printf("Rolling average breaking wave angle data is: \n");
//for (y = 0; y < 2*Ymax; y++) {
for (v = Ymax/?; y < 3*Ymax/2; y++){
if (debugl9) printf("3G ", AngleRollAvgl[y]*radtodeg)
} if (debugl9) printf("\n");
if (debugl9) printf("\n");
if (debugl9) printf("Rolling average breaking wave height data: \n");
//for (y = 0; y < 2*Ymax; y++) {
for (v = Ymax/?; y < 3*Ymax/2; y++){
if (debugl9) printf("sG ", HeightRollAvglyl):
} if (debugl9) printf("\n");
if (debugl9) printf("\n");

// Determine which beach cells are shadowed

if (UseShadow == 'n'){
if (debug2) printf("Using WRT shadowing scheme... \n");
if (debug2) printf("InShadow = \n");
for (y = 0; y < 2*Ymax; y++){

if (HeightRollAvg[y] == 0) {
InShadow[y] = 'v';
} else InShadowl[y] = 'n';

if (debug2) printf("%*c ", InShadowl[y]):
} if (debug2) printf("\n");
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APPENDIX B
COASTLINE EVOLUTION MODEL (MATLAB VERSION) CODE

% Coastline Evolution Model (CEM)
% MATLAB Version

% Version 2.28.2

% Original program by Brad Murray, Oliver Arnoult, and
Andrew Ashton
% Reprogrammed by Andrew E. Whitley

% Note: if using an input PDF or starting a simulation from

¢ conditions, the appropriate matrices must already be
loaded into the
MATLAB workspace.

Input files:
WavePDF - input wave PDF
l1st column: maximum wave angle (deg) for bin
2nd column: fractional probability of wave angle

in

5 PercentFull - fractional amount of sediment in each
domain cell

% AllBeach - flag indicating of cell is entirely beach
('y'/'n")
% Age - Age since cell was deposited
% CellDepth - Depth array (m)

o\°

o®

Required function files:
CEM AdjustShore.m
CEM AgeCells.m
CEM CalcGroinBypassParams.m
CEM AWTRefractToBreak.m
CEM AWTRefractToDepth.m
CEM CalcVolInOut.m
CEM CheckOverwash.m
CEM CheckOverwashSweep.m
CEM CreateGroins.m
CEM DetermineAngles.m
CEM DetermineMeanWvDir.m
CEM DetermineSedTransport.m

o\°

o° o o°

o o® o© o° o° o° o°

o\

334



o\°

CEM DoOverwash.m

CEM FindCoastline.m

CEM FindGroinBeachCells.m
CEM FindIfInShadow.m

CEM FindWaveAngle.m

CEM FindWaveAngleWavelIn.m
CEM FixBeach.m

CEM GroinShadowing.m

CEM InitConds.m

CEM InitCondsFromLine.m
CEM InitialPert.m

CEM MassCount.m

CEM MassCountBetweenPoints.m
CEM MATLABFindBeachCells.m
CEM OopsImEmpty.m

CEM OopsImFull.m

CEM PeriodicBoundaryCopy.m
CEM SaveLineToFile.m

CEM SaveSandToFile.m

CEM SedTrans.m

CEM ShadowSweep.m

CEM StraightBoundaries.m
CEM TransportSedimentSweep.m
CEM XMaxBeach.m

O 00 o° o° O° A o° A o° ° A ° O° A° O° ° o°

o° o o°

o° o

o\

\O

¢ Clear workspace (except for persisting input variables)
clearvars -except WavePDF PercentFull CellDepth AllBReach
Age GroinInputData

InputLine Coastline(O MassInitial MassCountInput
MassBetweenPointsInitial...
CumVolumeIn CumVolumeOut

%%% CONTROLS AND PARAMETERS $%%%

% Run Control Parameters

TimeStep = 1/24; % Time step in days
StartingTimeStep = 0; % Starting time step

StopAfter = 6*24*365; % Stop after what number of
time steps

seed = 44; % Random number generator seed (can
set to 'default' to return to MATLAB default')

RunOverwash = 0; % Run overwash algorithm?
TimeModel = 1; % Time the model?
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UseFixBeachFlag = 0; % Use the FixBeachFlag to run
CEM FixBeach twice?

o)

% Initialization Parameters

StartFromFile = 0; % Start from an input file (or
matrix in this case)?
StartFromLine = 1; % Start from an input coastline?

[e)

% Name of input coastline:
'"InputLine'’
LoadCellDepth = 0;
LoadAge = 0;

o\°

Load the CellDepth matrix?
Load the Age matrix?
LoadAllBeach Load the AllBeach matrix?
WavelIn = 1; Input a wave PDE?
readwavename = WavePDF; % Input PDF file (matrix)

Q

% Column 1: Maximum wave

o\

o\

0;

o°

angle in bin
% Column 2: Wave
probability for bin
% Note that positive wave angles approach from the left,
and negative approach from the right

[

% Output File Parameters

SaveFile = 0; % Save files?
savefilename = 'fileout';

SavelLine = 1; % Save shoreline files
savelinename = 'lineout'

00 ~e

StartSavingAt = 1;
SaveSpacing = 5000;
SavelLineSpacing = 730;

Time step to start saving files
Time steps between save files
Time steps between saving line

o\

o°

files

SaveLineASCII = 1; % Save coastline line output
files in ASCII?

SaveFinalData = 1; % Save the final data?

% Wave and Wave PDF Parameters

UseSingleWaveAngle = 0; % Use a single wave angle for
the entire simulation? (otherwise uses a PDF)
SingleOffshoreAngle = 20; % Single offshore wave angle
(deg)

OffShoreWvHt = 0.7141; % Offshore wave height (m)
Period = 4.1636; % Offshore wave period (s)
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Asym = ''; % Asymmetry of wave PDF
(fractional portion of waves coming from positive (left)
direction)

Highness = ''; % Highness of wave PDF (fractional
portion of waves coming from high angle (> 45 deq))
Duration = 1; % Number of time step calculations
loop at same wave angle

BinSize = 15; % Size of wave PDF bins (deq)
MaxDepth = 15.8 ; % Maximum depth to start
refraction (m)

RefractStep = 0.2; % Wave refraction step size (depth,
m)

AgeMax = 1000000; % Maximum 'age' of cells - loops

back to zero

o)

% Sediment Transport Parameters

UseVariableCERC = 1; % Use the variable CERC
equation? --> allows the parameterization of rho s,

porosity, and K

MaxVol = 5000; % Maximum volume that can be
transported across a single border (m”3)

K = 0.92; % CERC formula emperical
constant (overridden if UseBailard)

rho = 1000; % kg/m3 - density of water and
dissolved matter

rho s = 2650; % Denisty of sediment (kg/m3)
porosity = 0.4; % Sediment porosity (n in most
literature)

KBreak = 0.5352; % Coefficient for wave

breaking threshold (breaking wave height / depth at
breaking); originally 0.5; overridden by UseBattjesStive

% Periodic Boundary Condition Controls
UsePeriodicBoundaries = 0; % Use periodic boundaries?
(PeriodicBoundaryCopy 1s applied each time step)

InitialStraigthBoundaries = 1; % Have the initial
boundaries be straight on the extremities?
ForceStraightBoundaries = 0; % Force straight boundaries

on the extremites? (copies every time step)
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o°

Note: if both
periodic boundaries and

o°

forcing straight
boudnaries are off,
no copying of the

o\°

extremeties takes

% place
PeriodicCopyGroins = 0; % Periodic boundary copy

the groins? (CURRENTLY NOT FUNCTIONAL)

o)

5 Aspect Parameters

CellWidth = 25; % Size of cells (m)

Xmax = 75; % Number of cells in x (cross-
shore) direction

Ymax = 1000; % Number of cells in y
(longshore) direction

MaxBeachLength = 8*Ymax; % Maximumk length of arrays
that contain beach data

ShelfSlope = 0.00051; % Slope of continental shelf
ShorefaceSlope = 0.015; % Linear slope of shoreface
DepthShoreface = 8; % Minimum depth of shoreface due
to wave action (m)

InitBeach = 20; % Cell where initial conditions
changes from beach to ocean

InitialDepth = 8; % Theoretical depth (m) of
continental shelf at x = InitBeach

LandHeight = 1.31 ; % Elevtaion of land above
MHW

InitCType = 0; % Type of initial conditions (O
= sandy; 1 = barrier);

InitBWidth = 4; % Intiial min width of barrier
(cells)

OWType = 1; % 0 = use depth array, 1 = use

geometric rule

OWMinDepth = 0.1;
FindCellError = 5;

far over do we try again?

o\

Smallest overwash of all
if we run off of array, how

o°

SedTransLimit = 90; % Beyond what absolute slope
don't do sed trans (deq)

CritBWidth = 350; % Width barrier maintains due
to overwash (m) important scaling parameter!
OverwashLimit = 75; % beyond what angle don't do
overwash

338



[e)

% Gaussian Coastline Parameters

StartWithGaussian = 0; % Start with a Gaussian-shaped
coastline

GaussMult = 800; % Gaussian function multiplier;
controls the magnitude (height) of the Gaussian function
GaussSigma = 50; % "Standard deviation" for
Gaussian; controls with width of the function

GaussCenter = 200; % "Mean" for the Gaussian;

controls the center of the function (in cells)

o)

% Groln Controls and Parameters

UseGroins = 1; % Include groins in the
simulation
UseGroinBypassing = 1; % Include groin bypassing in

the simulation?
UseGroinDiffraction
the simulation?
UseGroinShadowBlock = 0;
all incoming wave energy?

UseGeometricDiffAng = 0; % Geometrically determine
breaking wave angle from diffraction? (if not, use Eqgq 15.11
in Kamphuis, 2010)

UseBreakDepthAsD LT = 1; % Use the modeling wave
breaking depth as depth of longshore transport (D LT)?

1;

o°

Include groin diffraction in

o\

Have the groin shadow block

GroinStart = 1; % Cross-shore starting position
of groins (cells)
GroinData = GroinInputData; % Groin input data

% Column 1: Alongshore
position of groins (cells, indicates groin on right side of
cell)

% Column 2: Cross-shore
length of groins (cells)
GroinPermeability = 0.5; % Fractional amount of
sediment allowed to pass through groins (range 0 [0%] to 1

[100%])

DeanProfileA = .053; % Dean profile scaling
parameter (used in Groin Bypassing)
Aw=1.27; % Factor to convert waveheight

to H 1/10 for depth of longshore transport calc (1.27 for
Hs; only used if UseBreakDepthAsD LT=0)

Q

% Sea Level Rise (SLR) Parameters
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o\°

UseConstantSLR = 0O; Use constant sea level rise
algorithm?

RateSLR Const = 0.63;

o\

Rate of constant SLR (cm/yr)

% Plot Controls

ShowPFAnim = 0; % Show an animation of
PercentFull matrix every time step?

ShowLineAnim = 1; % Show an animation of the
Coastline every time step?

PlotInitialCoastline = 1; % Show the original
coastline on the line animation?

PauseAnim = 0; % Pause the animation every
timestep?

[

% Mass counting parameters

MassCountBetweenPoints = 0; % Count mass in between
specified points?
MassCountPoints = ''; % Matrix containing end points for

mass counting extents

% (N X 2) Matrix
containing end

% points (LS cells)
in which to

% count sediment
mass
% Debugging parameters
SaveAge = 0; % Save the age of cells?
ScreenTextSpacing = 100; Spacing of writing to the

screen in time steps

o\

NoPauseRun = 1; % Disable PauseRun subroutine
InitialPert = 0; % Start with a small bump?
InitialSmooth = 1; % Smooth starting conditions
WaveAngleSign = 1; % Used to change the sign on
wve angles

debug0 = 0; % Main progrm stpes

debugl = 0; % Find Next Cell

debug2 = 0; % Shadow routine

debug3 = 0; % Determine angles

debug3a = 0; % Wave angle adjustment
debug3b = 1; % PDF calling

debug4d = 0; % Upwind/downwind

debugb = 0; % Sediment transport decisions
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debug6 = 0;

o\

Sediment transport

calculations

debugba = 0; % To/From sediment transport
volumes

debug7 = 0; % Transport sweep (moving
sediment)

debug7a = 0; % slope calculations

debug8 = 0; % Full/empty

debug9 = 0; % Fix beach

debuglOa = 0;
debuglOb = 0;
debug40 = 0;
debug40a = 0;
(includes bypassing)
debug4l = 0;
debug4la = 0;
calculations
debug42 = 0;
subroutines (domain)
debug43 = 0;

(once per timestep)
debug43a = 0;
subroutines

OWFlag = 0;

o\

Overwash tests
Doing overwash
Groin location
Transport over groins

o° o°

o°

o\

Groin diffraction shadowing
Groin diffraction

o°

o\

Mass count between

o\

Mass count between points

o°

Mass count between points

o°

debugger

% Universal Constants
g = 9.80665;

(m/s"2)

radtodeg = 180/pi;
degtorad = pi/180;

o°

Acceleration due to gravity

o\

Transform radians to degrees
Transform degrees to radians

o°

% Computational Arrays (determined each time step)

X = zeros (l,MaxBeachLength) ; % X position (cross-
shore) of ith beach element

Y = zeros (l,MaxBeachLength); % Y position
(alongshore) of ith beach element

InShadow = char (ones (l,MaxBeachLength)*'?"); % Is the
ith beach element in shadow?

ShorelineAngle = zeros (l,MaxBeachLength); % Angle between
cell and right (z+1) neighbor

SurroundingAngle = zeros(l,MaxBeachLength); % Cell-
orietned angle based upon left and right neighbor

UpWind = char (ones (1l,MaxBeachLength)*'?'"); % upwind or

downwind condition used to calculated sediment transport
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¢}

% VolumeIn = zeros(l,MaxBeachLength); % Sediment volume
into ith beach element

% VolumeOut = zeros (l,MaxBeachLength) ; % Sediment volume
out of ith beach element

CumVolumeIn = zeros(l,2*Ymax); % Cumulative sediment
volume into every y position

CumVolumeOut = zeros(l,2*Ymax) ; % Cumulative sediment
volume out of every y position

MeanVolumeIn = zeros(l,2*Ymax); % Mean sediment volume
into every y position

MeanVolumeOut = zeros(1l,2*Ymax) ; % Cumulative sediment

volume out of every y position

% Miscellaneous Variables
CurrentTimeStep = StartingTimeStep; % Current time
step

% End controls and parameters
%% Begin main program

if (TimeModel)
tic
end
% Initialize wvariables
ShadowXMax = Xmax -5;

rng (seed) ;

YStart = (Ymax/2) + 1; % Starting y position in coastline
of interest

YEnd = 3*Ymax/2; % Ending y position in coastline of
interest

%$%% LOAD FILE
if (StartFromLine == 1)

% Make the initial conditions
[PercentFull, CellDepth, AllBeach, Age] =
CEM InitCondsFromLine (InputLine, ...
InitialDepth, InitBeach,CellWidth, ShelfSlope, LandHeight, Dept

hShoreface, ...
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UsePeriodicBoundaries, InitialStraigthBoundaries, Xmax, Ymax) ;

fprintf ('Line file read! \n');

Fpause
elseif (StartFromFile == 0)

¢}

% Initialize overall shoreface configuation arrays

AllBeach = char (ones (2*Ymax,Xmax) * 'n'); % Flag
indicating of cell is entirely beach ('y'/'n")

PercentFull = zeros (2*Ymax, Xmax) ; % Fractional amount
of shore cell full of sediment

Age = zeros (2*Ymax,Xmax) ; % Age since cell
was deposited

CellDepth = zeros (2*Ymax,Xmax) ; % Depth array (m)

% Make the initial conditions
[PercentFull, CellDepth, AllBeach, Age] =
CEM InitConds (PercentFull, ...

CellDepth,AllBeach,Age, InitialDepth, InitBeach, InitBWidth, Ce
11width, ...

ShelfSlope, LandHeight, DepthShoreface, InitialSmooth, InitialP
ert, ...

InitCType, Xmax, Ymax, StartWithGaussian, GaussMult, GaussSigma,
GaussCenter) ;

fprintf ('Initial Conditions OK \n');

%pause
elseif (StartFromFile == 1)

o)

% Starting from a pre-loaded matrix

% Will AT LEAST need PercentFull

% If CellDepth, Age, or AllBeach are not loaded, they
are created below

% Make the CellDepth Matrix
if (LoadCellDepth == 0)

CellDepth = zeros (2*Ymax,Xmax) ;
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for y = 1:2*Ymax
for x = 1:Xmax
CellDepth(y,x) = InitialDepth + ((x-
InitBeach) * CellWidth * ShelfSlope);

if (PercentFull(y,x) > 0)
CellDepth(y,x) = -LandHeight;

elseif (CellDepth(y,x) < DepthShoreface)
CellDepth(y,x) = DepthShoreface;
end
end
end
end

% Make the Age matrix
if (LoadAge == 0)

Age = zeros (2*Ymax,Xmax) ;
end

% Make the AllBeach Matrix
if (LoadAllBeach == 0)

AllBeach = char (ones (2*Ymax,Xmax) * 'n');

for y = 1:2*Ymax
for x = 1:Xmax

if (PercentFull(y,x) >= 1)

AllBeach(y,x) = 'y';
else
AllBeach(y,x) = 'n';
end
end
end
end
else
fprintf ('Loading file algorithm busted!!!\n'");
beep
pause
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end
%% Initialize Model Domailn

% Periodic boundary copy
if (ForceStraightBoundaries)

[PercentFull, CellDepth, AllBeach, Age] =
CEM StraightBoundaries (PercentFull,CellDepth,AllBeach,Age,Y
max) ;

elseif (UsePeriodicBoundaries)

[PercentFull, CellDepth, AllBeach, Age] =
CEM PeriodicBoundaryCopy (PercentFull, ...
CellDepth,AllBeach,Age, Xmax, Ymax) ;

end

% Groin Creation
if (UseGroins)
[GroinCells,GroinX, GroinY,GroinXPlot,GroinYPlot] =
CEM CreateGroins (Xmax, Ymax,GroinData,GroinStart,InitBeach,P
eriodicCopyGroins) ;
else
GroinCells = zeros (2*Ymax,Xmax); % Matrix showing
cells that have a groin on the right boundary
end

% Fix Beach
[PercentFull, AllBeach, CellDepth, FixBeachFlag] =
CEM FixBeach (PercentFull, AllBeach, CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;

% Mass Count

if (StartingTimeStep <= 1)
[MassInitial] =

CEM MassCount (PercentFull, Xmax, Ymax,UsePeriodicBoundaries) ;
MassCurrent = MassInitial;

1f (MassCountBetweenPoints)
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[MassBetweenPointsInitial] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsCurrent =
MassBetweenPointsInitial;
end
end

%% Input the wave PDF
if (Waveln)

fprintf ("CHECK READ WAVE\n');

WaveMax = readwavename(:,1);
WaveProb = readwavename(:,2);
NumWaveBins = length (WaveMax) ;

fprintf ('Wave PDF imported!\n');

BinProbabilitiy = zeros (l,NumWaveBins) ;
BinProbabilitiy (1) = WaveProb (1)
for ii = 2:NumWaveBins
BinProbabilitiy(ii) = WaveProb(ii) +
BinProbabilitiy (ii-1);
end

end

Q

% Preallocate to rrack the number of times each wave angle
bin is called

if ((debug3 || debug3b) && Waveln)
TimesAngleHit = zeros (2, length (WaveProb)) ;
TimesAngleHit (2,:) = WaveProb;

% elseif (debug3)

% WaveMax = [-45 0 45 90];

% WaveProb = [(((l1-Asym)/2)+ (Highness/2))/2 (((1-

Asym) /2)+ ((1-Highness) /2)) /2
(((Asym)/2)+((1l-Highness)/2))/2
((Asym) /2)+ (Highness/2)) /2];

o° —~ o©

o\°

TimesAngleHit = zeros(2,4);
TimesAngleHit (2,:) = WaveProb;

o\
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end

$% ————m——m——— - PRIMARY PROGRAM LOOP  ———-—-—————--

% Save the i1nitial coastline

if ((StartingTimeStep == 0) && (Saveline ||
PlotInitialCoastline))
[Coastlinel] =

CEM SaveLineToFile (PercentFull,AllBeach, InitBeach, ...

Xmax, Ymax, CurrentTimeStep, savelinename, SaveLineASCII) ;
end

% Determine the mean wave angles
if (UseGroins && UseGroinDiffraction)
CEM DetermineMeanWvDir

else

PosMWD 0 = 0; % Positive mean offshore wave
direction (radians)

NegMWD 0 = 0; % Negative mean offshore wave
direction (radians)
end

while (CurrentTimeStep < StopAfter)

% Time Step iteration - compute same wave angle for
Duration time steps

% Calculate the Wave Angle
%% May want to make these outside functions, though
I've had problems
%% doing that in the past
if (UseSingleWaveAngle)

% Use a single wave angle for the duration of the
simulation

WaveAngle = SingleOffshoreAngle*degtorad;

o\°

o°

elseif (Waveln)

[e)

% Use the imported Wave PDF
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sWaveAngle =
CEM FindWaveAngleWavelIn (WaveProb,BinProbabilitiy,BinSize);
sWaveAngle*radtodeg

% Initialize
flag = 1;

index = 1;

% Choose a random PDF bin
RandBin = rand(1l);

while (flag)
if (RandBin <= BinProbabilitiy(index))
AngleBin = WaveMax (index) ;

flag = 0;
break

end

index = index + 1;

end

% Create a random angle fluctuation
AngleFluct = rand(1l);

% Calculate the offshore wave angle

Angle = (AngleFluct * BinSize + (AngleBin -
BinSize));
WaveAngle = Angle*degtorad;
else
% Method using wave probability step function (CEM
default)

% Determine sign
% variable Asym will determine fractional
distribution of waves
% coming from the positive direction (positive
direction coming
% from left) -i.e. fractional wave asymmetry

AsymRandom = rand(1l);
if (AsymRandom <= Asym)
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Sign = 1;
else

Sign
end

I

I
'_\
~.

¢}

% Determine wave angle
AngleRandom = rand(1l);

if (AngleRandom > Highness)

Angle = Sign * (((AngleRandom)-Highness)/ (1-
Highness)) * pi / 4.0;
else
Angle = Sign * (((AngleRandom)/Highness)*pi/4.0

+ pi/4.0);
end

WaveAngle = WaveAngleSign*Angle;

[

end % End wave angle determination

o)

% Make sure wave angle is between 89 and -89 degrees

if (WaveAngle >= (89*degtorad))
Angle = Angle - (l*degtorad);
if (debug3a)
fprintf ('Adjusted WaveAngle by -1 deg\n');
end
elseif (WaveAngle <= (-89*degtorad))
Angle = Angle + (l*degtorad);
if (debug3a)
fprintf ('Adjusted WaveAngle by +1 deg\n');
end
end

% Determine how many times each bin in PDF is called
if ((debug3 || debug3b) && Waveln)
for 1iii = 1l:1length (WaveProb)
if ((WaveAngle*radtodeg > (WaveMax (iii) -
BinSize)) &&
(WaveAngle*radtodeg <= WaveMax (iii)))
TimesAngleHit (1,iii) = TimesAngleHit (1,iii)

+ 1;
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break;
end
end
end

for xx = 1l:Duration

% Text to screen?
if (mod(CurrentTimeStep, ScreenTextSpacing) == 0)
fprintf ([ '==== WaveAngle:
', num2str (WaveAngle*radtodeqg), ...
' MASS Percent:
', num2str (MassCurrent/MassInitial), ...
' Time Step:
',num2str (CurrentTimeStep), '\n']);
end

% Periodic boundary copy
if (ForceStraightBoundaries)

[PercentFull, CellDepth, AllBeach, Age] =
CEM StraightBoundaries (PercentFull,CellDepth,AllBeach,Age,Y
max) ;
elseif (UsePeriodicBoundaries)
[PercentFull, CellDepth, AllBeach, Age] =
CEM PeriodicBoundaryCopy (PercentFull, ...
CellDepth,AllBeach, Age, Xmax, Ymax) ;

end

% Zero Vars
%%% May want to make this a function
(

X(:,:) = -1;

Y(:,:) = -1;

InShadow(:,:) = "'2'";
ShorelineAngle(:,:) = -999;
SurroundingAngle(:,:) = -998;
UpWind (:,:) = '2"';

if (debug4?)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;
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fprintf ('TS:%1i, Mass before
FixBeach:%G\n',CurrentTimeStep,MassCurrent/MassInitial);
end

if (debug4d43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =
l:length (MassCountPoints(:,1))
fprintf ('TS: %i, before FixBeach,
MassPer between %1 and %$i == %G\n'

3

J oo e e

CurrentTimeStep,MassCountPoints (PointSet,1),MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end

% Fix Beach
[PercentFull, AllBeach, CellDepth, FixBeachFlag] =
CEM FixBeach (PercentFull, AllBeach, CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;

% Run Fix Beach again if necessary
if (UseFixBeachFlag && FixBeachFlaq)
[PercentFull, AllBeach, CellDepth,
FixBeachFlag] = CEM FixBeach (PercentFull, AllBeach,
CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;
end

if (debug4?)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;
fprintf ('TS:%i, Mass after
FixBeach:%G\n',CurrentTimeStep,MassCurrent/MassInitial);
end
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if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
,Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =

l:length (MassCountPoints (:,1))
fprintf ('TS: %i, after FixBeach, MassPer

between %1 and %1 == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet,1),MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end

% Find beach cells using MATLAB function

[X, Y, TotalBeachCells] =
CEM MATLABFindBeachCells (PercentFull,AllBeach, InitBeach, Xma
X, Y¥Ymax) ;

% Find which beach cells have a groin on the border
if (UseGroins)
[GroinRightOfBeach, GroinLeftOfBeach] =
CEM FindGroinBeachCells (X,Y,GroinCells, TotalBeachCells, Ymax
, debug40) ;
else
GroinRightOfBeach = zeros(l,TotalBeachCells);
GroinLeftOfBeach = zeros(l,TotalBeachCells);
end

% Run ShadowSweep

[InShadow, ShadowXMax] = CEM ShadowSweep
(InShadow, ShadowXMax, TotalBeachCells,AllBeach, PercentFull, X
max, Ymax, WaveAngle, X,Y,CurrentTimeStep, debug?) ;

if (debug0)
fprintf ([ 'Shadowswept:
',num2str (CurrentTimeStep), "'\n']);
end
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% DetermineAngles
[ShorelineAngle, UpWind, SurroundingAngle] =
CEM DetermineAngles (X,Y,PercentFull,AllBeach,WaveAngle, InSh
adow, TotalBeachCells, ShorelineAngle, SurroundingAngle, Ymax, d
ebug3, debugid) ;

if (debugO)
fprintf (['AngleDet:
', num2str (CurrentTimeStep), '\n']);
end

% Determine shadowing from groin diffraction
if (UseGroins)

[InDiffShadow,GroinTipX, GroinTipY,DiffPhi b,DiffK b] =
CEM GroinShadowing (X, ...

WaveAngle, OffShoreWvHt, Period, MaxDepth, GroinData, GroinStart

FAREEEEY

TotalBeachCells,DeanProfileA,RefractStep,PeriodicCopyGroins

AN

Ymax,UseGroinDiffraction,UseGroinShadowBlock, UseGeometricDi
ffAng, PosMWD 0, NegMwD O, ...
CellWidth, KBreak, debugb) ;
else
InDiffShadow = zeros(l,TotalBeachCells);
DiffPhi b = 0;
DiffK b = 0;
end

o°

beep
fprintf ('Paused\n') ;
pause

o®

o\°

o\

Determine parameters for groin bypassing
if (UseGroins && UseGroinBypassing)
CEM CalcGroinBypassParams
else
D G = zeros(l,TotalBeachCells); % depth of
water at groin tips
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D G=DG + 999;
end

if (debug0)
fprintf ([ 'GroinsSwept:
', num2str (CurrentTimeStep), '\n']);
end
% DetermineSedTransport
CEM DetermineSedTransport

if (debug0)
fprintf (['Sed Trans:
',num2str (CurrentTimeStep), "'\n']);
end

% Calculate the cumulate and mean sediment
transport volumes
CEM CalcVolInOut;

if (debug4?)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;
fprintf ('TS:%1i, Mass Before Transport
Sweep:%G\n',CurrentTimeStep,MassCurrent/MassInitial) ;
end

if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =
l:length (MassCountPoints(:,1))
'TS: %i, before transport sweep,

fprintf
MassPer between %$i and %i == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet, 1) ,MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end
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% Run TransportSedimentSweep
CEM TransportSedimentSweep

if (debug0)
fprintf ([ 'Transswept:
', num2str (CurrentTimeStep), '\n']);
end

if (debug4?)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax,UsePeriodicBoundaries) ;
fprintf ('TS:%i, Mass After Transport
Sweep:%G\n',CurrentTimeStep,MassCurrent/MassInitial) ;
end

if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet
l:length (MassCountPoints(:,1
fprintf ('

))
TS: %$i, after transport sweep,
MassPer between %i and %i !

I
o\°
()]
~
=}

CurrentTimeStep,MassCountPoints (PointSet, 1) ,MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet)) ;
end
end

% Fix Beach
[PercentFull, AllBeach, CellDepth, FixBeachFlag] =
CEM FixBeach (PercentFull, AllBeach, CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;

% Run Fix Beach again if necessary
if (UseFixBeachFlag && FixBeachFlaq)
[PercentFull, AllBeach, CellDepth,
FixBeachFlag] = CEM FixBeach (PercentFull, AllBeach,
CellDepth, ...
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GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug9) ;
end
if (debug0)
fprintf (['Fixed Beach:
', num2str (CurrentTimeStep), '\n']);
end

if (debug4?)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;
fprintf ('TS:%i, Mass after
FixBeach:%G\n',CurrentTimeStep,MassCurrent/MassInitial) ;
end

if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =

l:length (MassCountPoints(:,1))
fprintf ('TS: %$i, after FixBeach, MassPer

between %1 and %i == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet, 1) ,MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end

%% OVERWASH $%%%
if (RunOverwash)
% because shoreline config may have been
changed, need to refind
% shoreline and recalc angles

% ZeroVars
%%% May want to make this a function
(

X(:,:) = -1;
Y(:,:) = -1;
InShadow(:,:) = '?"';



ShorelineAngle(:,:) = -999;

SurroundingAngle (:, :) = -998;
UpWind(:,:) = '?2';
VolumeIn(:,:) = 0;
VolumeOut (:,:) = 0;

% Periodic boundary copy
if (ForceStraightBoundaries)
[PercentFull, CellDepth, AllBeach, Age] =
CEM StraightBoundaries (PercentFull,CellDepth,AllBeach,Age,Y
max) ;
elseif (UsePeriodicBoundaries)
[PercentFull, CellDepth, AllBeach, Age] =
CEM PeriodicBoundaryCopy (PercentFull, ...
CellDepth,AllBeach, Age, Xmax, Ymax) ;
end
% Initialize for Find Beach Cells (make sure
strange beach does not cause trouble
FellOffArray = 'v';
FindStart = 1;
% Look for beach - if you fall off of array,
bump over a little and try again
while (FellOffArray == 'y')

[X, Y, FellOffArray, TotalBeachCells,
InShadow, ShorelineAngle,
SurroundingAngle, UpWind, Volumeln,
VolumeOut] = CEM FindBeachCells(X,Y, ...

Xmax, Ymax, FindStart,AllBeach, PercentFull,MaxBeachLength, InS
hadow, ...

ShorelineAngle, SurroundingAngle, UpWind, VolumeIn, VolumeOut, d
ebugl) ;

FindStart = FindStart + FindCellError;
% Get Out if no good beach spots exist -
finish program
if (FindStart > (Ymax/2) + 1)
fprintf ([ 'Stopped Finding Beach - done,
FindStart: ', ...
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num2str (FindStart),' Ymax/2 -
5:', num2str ((Ymax/2) - 5)1);:
beep
pause
return
end

end

% Run ShadowSweep
[InShadow, ShadowXMax] = CEM ShadowSweep
(InShadow, ShadowXMax, . ..

TotalBeachCells,AllBeach, PercentFull, Xmax, Ymax, WaveAngle, X,
Y, debug?2) ;

if (debug0)
fprintf (['Shadowswept:
',num2str (CurrentTimeStep), "'\n']);
end

% DetermineAngles
[ShorelineAngle, UpWind, SurroundingAngle] =
CEM DetermineAngles (X,Y,PercentFull,AllBeach,WaveAngle, InSh
adow, TotalBeachCells, ShorelineAngle, SurroundingAngle, Ymax, d
ebug3, debugi) ;

if (debug0)
fprintf (['AngleDet:
', num2str (CurrentTimeStep), '\n']);
end

% CheckOverwashSweep
[PercentFull, AllBeach, CellDepth, OWFlag] =
CEM CheckOverwashSweep (AllBeach, PercentFull,CellDepth,X,Y, .

SurroundingAngle, InShadow, OverwashLimit, TotalBeachCells,Cri
tBWidth,CellWidth, DepthShoreface, LandHeight, OWFlag, OWType, Y
max, debug8, debuglla, debugl0b) ;

end % end overwash algorithm

if (debug4?)
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[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax,UsePeriodicBoundaries) ;
fprintf ('TS:%1i, Mass before
FixBeach:%G\n',CurrentTimeStep,MassCurrent/MassInitial);
end

if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
,Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =
l:length (MassCountPoints(:,1))
'TS: %1, before FixBeach,

fprintf
MassPer between %1 and %1 == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet,1),MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end

% Fix Beach
[PercentFull, AllBeach, CellDepth, FixBeachFlag] =
CEM FixBeach (PercentFull, AllBeach, CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;

% Run Fix Beach again if necessary
if (UseFixBeachFlag && FixBeachFlaqg)
[PercentFull, AllBeach, CellDepth,
FixBeachFlag] = CEM FixBeach (PercentFull, AllBeach,
CellDepth, ...

GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlope,CellWid
th, Xmax, Ymax, LandHeight, debug8, debug?9) ;
end

if (debug4?)

[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax,UsePeriodicBoundaries) ;
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fprintf ('TS:%i, Mass after
FixBeach:%G\n',CurrentTimeStep,MassCurrent/MassInitial) ;
end

if (debug4d43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

for PointSet =

l:length (MassCountPoints(:,1))
fprintf ('TS: %$i, after FixBeach, MassPer

between %1 and %1 == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet,1),MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet)) ;
end
end

% Account for SLR
if (UseConstantSLR)

[PercentFull] =
CEM ConstantSLRAdjust (PercentFull,RateSLR Const,TimeStep, Sh
orefaceSlope,CellWidth, Xmax, Ymax) ;

end

if (debug4?2)
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;
fprintf ('TS:%i, Mass After SLR
Adjust:%G\n',CurrentTimeStep,MassCurrent/MassInitial) ;
end

if (debug43a)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;
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for PointSet =
l:length (MassCountPoints(:,1))
'TS: %i, after SLR adjust,

fprintf
MassPer between %1 and %i == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet, 1) ,MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end

% Age Empty Cells
if (SaveAge)
[Age] =
CEM AgeCells (Age, PercentFull,AgeMax,CurrentTimeStep, Xmax, Ym
ax);
end

% Count Mass
[MassCurrent] =
CEM MassCount (PercentFull, Xmax, Ymax, UsePeriodicBoundaries) ;

if (MassCountBetweenPoints)
[MassBetweenPointsCurrent] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax) ;
MassBetweenPointsPercentage =
MassBetweenPointsCurrent./MassBetweenPointsInitial;

if (debug43 && MassCountBetweenPoints)
NumPointSets =
length (MassCountPoints(:,1));

for PointSet = 1:NumPointSets
fprintf ('TS: %i, MassPer between %$i and
%1 == %G\n', ...

CurrentTimeStep,MassCountPoints (PointSet, 1) ,MassCountPoints
(PointSet, 2) ,MassBetweenPointsPercentage (PointSet));
end
end
end

CurrentTimeStep = CurrentTimeStep + 1;
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% Determine the coastline
[Coastline] =
CEM FindCoastline (PercentFull,AllBeach, InitBeach, Xmax, Ymax)

4

% SAVE FILE

if (((mod(CurrentTimeStep, SaveSpacing) == 0 &&
CurrentTimeStep...

>= StartSavingAt) || (CurrentTimeStep ==
StopAfter)) && SaveFile)

CEM SaveSandToFile (PercentFull, Age,CellDepth,AllBeach,Curre
ntTimeStep, SaveAge, savefilename) ;

end

% Save the shorelines
if (((mod(CurrentTimeStep, SavelLineSpacing) == 0 &&
CurrentTimeStep...
>= StartSavingAt) || (CurrentTimeStep ==
StopAfter)) && SavelLine)

[Coastline] =
CEM SaveLineToFile (PercentFull,AllBeach, InitBeach, Xmax, Ymax
,CurrentTimeStep, savelinename, SaveLineASCII) ;

end

o)

end % End of duration for each time step

%$%% GRAPHICS AND ANIMATION %%%
% Prepare the Years
CurrentYear = (CurrentTimeStep) * (TimeStep/365);

% PercentFull Animation
if (ShowPFAnim)
figure (1) ;

imagesc (rot90 (PercentFull ( ((Ymax/2)+1) : (3*Ymax/2),:)));
title(['TimeStep: ',num2str (CurrentTimeStep),'
Year: ',num2str (CurrentYear)]);
xlabel ('Y (cells)'");
ylabel ('X (cells)'");
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drawnow;

% Pause animation?

if (PauseAnim)
pause;

end

end

% Coastline Animation
if (ShowlLineAnim)

% Make the figure
figure (2);

% Plot the Intial coastline
if (PlotInitialCoastline)
plot (CoastlineO, '--k'");
hold on;
end
% Plot the current coastline
plot (Coastline);
title(['TimeStep: ',num2str (CurrentTimeStep), '
Year: ',num2str (CurrentYear)]);
xlabel ('Y (cells)'");
ylabel ('X (cells)"');

% Plot the groin locations
if (UseGroins)

scatter (GroinXPlot,GroinYPlot, 's', '»v");
end

% Make the legend
if (PlotInitialCoastline && UseGroins)
legend ('Initial Coastline', 'Current
Coastline', 'Groin');
elseif (PlotInitialCoastline)
legend('Initial Coastline', 'Current Coastline');
end
% Draw now
drawnow;
hold off;
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% Pause animation?

if (PauseAnim)
pause;

end

end

o\©

figure (1) ;

plot (InDiffShadow)
title(['TimeStep: ', num2str (CurrentTimeStep), '
WvAngle:',num2str (WaveAngle*radtodeqg) ])

o\

o\°

[

end % End of main program loop

e END OF MAIN ———————-—————————————
% Make TimesAngleHit (1,:) be a percent occurance

if (debug3 || debug3b)

TimesAngleHit (1,:) =
TimesAngleHit (1, :)/CurrentTimeStep;
end

if (TimeModel)
TimeToRunSec = toc
end

if (SaveFinalData)
save ('FinalData')
end

fprintf ('Run Complete.');

fprintf ('\n END OF LINE\n'");
$%% END OF LINE %%%

The following is code for MATLAB functions necessary to run CEM.

o\°

CEM AdjustShore.m

o\

% CEM Function: Complete mass balance for incoming and
ougoing sediment
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o\°

NEW - AA 05/04 fully utilize shoreface depths
$radtodeg = 180/pi; % Transform radians to degrees

if (VolumeIn (i) <= VolumeOut (1))

¢}

% eroding, just have to use shoreface depth

Depth = DepthShoreface;

else
% accreting, oh my gosh!!!
% where should we intersect shoreface depth ?
% uncomplicated way - assume starting in middle of cell

Distance = DepthShoreface/CellWidth/ShorefaceSlope;
Xintfloat = X(1i) + 0.5 + Distance *
cos (SurroundingAngle (i) ) ;
Xintint = floor (Xintfloat);
Yintfloat = Y(i) + 0.5 - Distance *
sin (SurroundingAngle (1))
Yintint = floor (Yintfloat):;

if (debug7a)

fprintf(['xs: ',numZ2str(X(i)),"' ys:
",num2str (Y (1)), ' Xint: ', ...
num2str (Xintfloat),' Xint: ',num2str(Xintint),'
Yint: ', ...
num2str (Yintfloat),' Yint: ',num2str(Yintint),'
Dint: ', ...

num2str (CellDepth (Yintint,Xintint)), ' SAng:
num2str (SurroundingAngle (i) *radtodeqg), ' Sin =

num2str (SurroundingAngle (i)), '\n']);
end

if ((Yintint <= 1) || (Yintint > 2*Ymax))
Depth = DepthShoreface;
if ((Yintint > Ymax/2) && (Yintint < 3/2*Ymax))
fprintf ('Periodic Boundary conditions and Depth

Out of Bounds\n');:
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Spause;

end
elseif ((Xintint <= 1) || (Xintint > Xmax))
Depth = DepthShoreface;
Sfprintf (['-- Warning - depth location off of x
array: X ',num2str (Xintint),' Y ',num2str(Yintint),'\n']);
%pause

elseif (CellDepth(Yintint,Xintint) <= 0)
%looking back on land

Depth = DepthShoreface;
if (debug7a)

fprintf (['=== Shoreface is Shore, eh? Accreti:
xs: ', ...
num2str (X(i)),"' ys: ',num2str(Y(i)),'
Xint::',num2str (Xintint), ...

' Yint:',num2str(Yintint), ' Dint:
',num2str (CellDepth (Yintint, Xintint)), '\n']1);
end

elseif (CellDepth (Yintint,Xintint) < DepthShoreface)
fprintf (['Shallow but underwater Depth
',num2str (CellDepth (Yintint,Xintint))])
spause

else
Depth = CellDepth(Yintint,Xintint);

% That was the easy part - now we need to 'fix' all
cells towards shoreface
% probably due to accretion from previous moving

forward
% reuse some of the overwash checking code here

% calculate the slope

if (SurroundingAngle (i) == 0)
% unlikely, but make sure no div by zero
slope = 0.00001;

elseif (abs(SurroundingAngle (i) *radtodeg) == 90)
slope = 9999.9;

else
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slope = abs (tan(SurroundingAngle(i)));

end

% determine the ysign

if (SurroundingAngle (i) > 0)
ysign = 1;

else
ysign = -1;

end

o\

Initialize variable for while loop
= Xintfloat;

Yintfloat;

xtest = Xintint;

ytest = Yintint;

ShorefaceFlag = 0;

X
Il

while ( (CellDepth (ytest,xtest) > DepthShoreface)

&& (ShorefaceFlag == 0))

else
NextYInt = ceil(y-1);

end

% moving to next whole 'x' position, what is
position?

Ydown = y + (x - NextXInt)*slope * ysign;

DistanceDown = ((Ydown - y)* (Ydown - y) +
(NextXInt - x)* (NextXInt - x))70.5;

% moving to next whole 'y' position, what is
position?

Xside = x - abs (NextYInt - y) / slope;

DistanceSide = ((NextYInt - y)* (NextYInt - V)
(Xside - x)*(Xside - x))70.5;

NextXInt = ceil (x) -1;
if (ysign > 0)
NextY¥Int = floor(y) + 1;

i1f (DistanceDown < DistanceSide)

o)

x = NextXInt;
y = Ydown;
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xtest = NextXInt-1;
ytest floor (y):;
else

¢}

% next cell is the side cell

X = Xside;

y = NextY¥Int;

xtest = floor (x);

ytest = y + (ysign-1)/2;
end

if (CellDepth(ytest,xtest) > DepthShoreface)
% Deep hole - fill 'er in - mass came from

previous maths

if (debug7a)
fprintf ([ '=== Deep Hole, eh? Accreti:

xXs: ',...

num2str (X(i)),"' ys:
',num2str (Y (1)), " Xint::',...
numZ2str (Xintint), '
Yint:',num2str (Yintint), ...
' Dint:
',num2str (CellDepth (Yintint,Xintint)), '\n']);
end
CellDepth (ytest, xtest) = DepthShoreface;
%pause

else
% stop checking - ostensibly we have hit
the shoreface or shore

ShorefaceFlag = 1;

if (PercentFull (ytest,xtest) > 0)
% not good - somehow crossing the shore

fprintf ('Shoreface is the Beach
Tbeep;
%pause;

end

end
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o)

end % end while loop
end
end

Depth = Depth + LandHeight;

if (Depth == 0)
fprintf (['\nDepth went to zero!!! xs: ',
num2str (X(i)), "' ys: ',num2str(Y(i))1):;
return;
end

if (Depth < DepthShoreface)
fprintf ('too deep ');

spause
end
DeltaArea = (VolumelIn (i) - VolumeOut (i))/Depth;
PercentFull (Y (i),X (1)) = PercentFull(Y(i),X(i)) +

DeltaArea/ (CellWidth*CellWidth) ;

Sfprintf ([' (', num2str(X(i)), "', ', num2str(Y(i)),"') DeltaArea:
', num2str (DeltaArea), ' PercentFull:
', num2str (PercentFull (Y (1),X(1))),"'\n"]);

% Alert if it goes to infinity
if (isinf (PercentFull (Y (i),X(1))))

beep

fprintf (['PercentFull went to infinity!!!
x:',num2str(X(i))," y:',num2str(Y(i))])

$PercentFull (Y (i),X (1)) = 0.5;
pause;

end

if (debug7)

PercentIn = VolumeIn (i) / (CellWidth*CellWidth*Depth) ;
PercentOut = VolumeOut (i)/ (CellWidth*CellWidth*Depth) ;
PercentSum = DeltaArea/ (CellWidth*CellWidth) ;
fprintf ([’ In: ',num2str (PercentIn), ' Out:

', num2str (PercentOut), ...
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! Sum: ',num2str (PercentSum), '\n']l);
end

function [Age] =
CEM AgeCells (Age, PercentFull,AgeMax,CurrentTimeStep, Xmax, Ym
ax)

% CEM Function: Ages the cells (returns matrix 'Age')

for y = 1:2*Ymax

for x = 1l:Xmax
if (PercentFull (y,x) == 0)
Age (y,x) = mod(CurrentTimeStep,AgeMax) ;
end
end

end

function [WvHeight,WvAngle] =

CEM AWTRefractToBreak (WaveAngle, OffShoreWvHt, Period, MaxDept
h,KBreak, ShoreAngle,RefractStep, debugb)

% CEM Function: Refracts an offshore wave though the
Asthon-Murray Wave

% Transformation (AWT) from an offshore depth to a
specified depth.

% Waveheight and angle at this point are returned.

% Coefficients
= 9.80665; % Acceleration due to gravity
m/s"2)

Q

% Initialize Variables

counter = 0;
Broken = 0;
radtodeg = 180/pi; % Transform radians to degrees
$degtorad = pi/180; % Transform degrees to radians

[e)

% Use the Ashton-Murray Wave Transformation to determine
wave breaking data
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% Primary assumption is that waves refract over shore-
parallel contours

% New algorithm 6/02 iteratively takes wave onshore until
they break, then computes Qs

% Initialize offshore wave conditions

StartDepth = MaxDepth;

AngleDeep = WaveAngle - ShoreAngle;

StartHeight = OffShoreWvHt;

Depth = StartDepth;

if (debugb6)
fprintf ([ 'Wave Angle: ',numZ2str (WaveAngle*radtodeq),'
Shore Angle: ', ...
num2str (ShoreAngle*radtodeqg), ' 1)
end

o\

Begin refraction
Calculate Deep Water Celerity & Length, Komar 5.11 c¢ = gT
pi, L = CT

~ o°

g * Period / (2.0 * pi);
CDeep * Period;

CDeep
LDeep

if (debugo6)

fprintf (['CDheep = ',num2str (CDeep), ' LDeep =
', num2str (LDeep), '\n']);
end

while (Broken == 0)
% non-iterative egn for L, from Fenton & McKee
Wavelength = LDeep * (tanh (
(((2*pi/Period) "~2) * (Depth/g)) "~ (.75))) ~(2/3);

C = Wavelength / Period;

if (debugb6)
fprintf (['DEPTH: ',num2str (Depth),' Wavelength =

num2str (Wavelength),' C = ',num2str(C)," ']);
end
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% Determine n = 1/2(1+2kh/tanh(kh)) Komar 5.21
% First Calculate kh = 2 pi Depth/L from k = 2 pi/L

kh = pi*Depth/Wavelength;
n=20.5* (1 +2 * kh / sinh(2*kh)):;

if (debugb6)
fprintf (['kh: ',num2str(kh),' n: ',num2str(n),’
"1)

% Calculate angle, assuming shore parallel contours and
no conv/div
% of rays from Komar 5.47

Angle = asin(C/CDeep * sin (AngleDeep)) ;

if (debugb6)
fprintf (['Angle: ',num2str (Angle*radtodeqg)]);
end
% Determine Wave height from refract calcs - Komar 5.49

WvHeight = StartHeight * sqrt (abs(CDeep *
cos (AngleDeep) / (C * 2 * n * cos(Angle))));

if (debugb6)
fprintf ([' WvHeight: ',num2str (WvHeight), '\n']);
end

if (WvHeight > Depth*KBreak)
Broken = 1;

counter = 0;
DepthBreak = Depth;
elseif (Depth == RefractStep)

Broken = 1;
Depth = Depth - RefractStep;
counter = 0;
DepthBreak = Depth;
else
Depth = Depth - RefractStep;
counter = counter + counter;
end
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¢}

end % end while wave not broken loop
% Return the angle relative to the y-axis (not the
shoreline)

WvAngle = Angle + ShoreAngle;

function [WvHeight,WvAngle] =

CEM AWTRefractToDepth (WaveAngle, OffShoreWvHt, Period,MaxDept
h, DepthStop, ShoreAngle,RefractStep, debugb)

% CEM Function: Refracts an offshore wave though the
Asthon-Murray Wave

% Transformation (AWT) from an offshore depth to a
specified depth.

% Waveheight and angle at this point are returned.

% Coefficients
= 9.80665; % Acceleration due to gravity
m/s”*2)

o)

% Initialize Variables

counter = 0;
Broken = 0;
radtodeg = 180/pi; % Transform radians to degrees
$degtorad = pi/180; % Transform degrees to radians

Q

% Use the Ashton-Murray Wave Transformation to determine
wave breaking data

% Primary assumption is that waves refract over shore-
parallel contours

% New algorithm 6/02 iteratively takes wave onshore until
they break, then computes Qs

% Initialize offshore wave conditions
StartDepth = MaxDepth;

AngleDeep = WaveAngle - ShoreAngle;
StartHeight = OffShoreWvHt;

Depth = StartDepth;

if (debugb6)
fprintf ([ '"Wave Angle: ',num2str (WaveAngle*radtodeq), '
Shore Angle: ', ...
num2str (ShoreAngle*radtodeqg), ' 1)
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end

o\©

Begin refraction
% Calculate Deep Water Celerity & Length, Komar 5.11 ¢ = gT
/ pi, L = CT

CDeep g * Period / (2.0 * pi);
LDeep = CDeep * Period;

if (debugo6)

fprintf (['CDeep = ',num2str (CDeep), ' LDeep =
', num2str (LDeep), '\n']1);
end

while (Broken == 0)
% non-iterative eqgn for L, from Fenton & McKee

Wavelength = LDeep * (tanh (
(((2*pi/Period)~2)* (Depth/qg)) "~ (.75))) "~(2/3);
C = Wavelength / Period;

if (debugo6)
fprintf (['DEPTH: ',numZstr (Depth),' Wavelength =

num2str (Wavelength),' C = ',num2str(C)," ']);
end

% Determine n = 1/2(1+2kh/tanh(kh)) Komar 5.21
% First Calculate kh = 2 pi Depth/L from k = 2 pi/L

kh = pi*Depth/Wavelength;
n=20.5* (1 +2 * kh / sinh(2*kh));

if (debugb6)
fprintf(['kh: ',num2str(kh),' n: ',num2str(n),’
"1)

% Calculate angle, assuming shore parallel contours and
no conv/div

Q

% of rays from Komar 5.47
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Angle = asin(C/CDeep * sin(AngleDeep)) ;

if (debugo6)
fprintf (['Angle: ',numZ2str (Angle*radtodeqg)]):;
end
% Determine Wave height from refract calcs - Komar 5.49

WvHeight = StartHeight * sqgrt (abs (CDeep *
cos (AngleDeep) / (C * 2 * n * cos(Angle))));

if (debugb6)
fprintf ([' WvHeight: ',num2str (WvHeight), '\n']);

end

if (Depth <= DepthStop)

Broken = 1;
counter = 0;

elseif (Depth == RefractStep)
Broken = 1;
Depth = Depth - RefractStep;
counter = 0;

else
Depth = Depth - RefractStep;
counter = counter + counter;

end

o)

end % end while wave not broken loop
% Return the angle relative to the y-axis (not the
shoreline)

WvAngle = Angle + ShoreAngle;

Q

% CEM CalcGroinBypassParams.m
% CEM Function: determines the bypassing parameters for
groins.

% Specifically, the water depth at the groin tip is
calcualted.

% Constants and Parameters

debugloc = 0; % local debugger
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%

Initialzie
D G = zeros(l,TotalBeachCells); % water depth at groin tip

¢}

% Find D G for all groins

for GroinNumber = l:length(GroinTipVY)
% Loop for all beach cells
for 1 = 1:TotalBeachCells

if (Y (i) == GroinTipY (GroinNumber) )

% There is a groin on the right side of the
cell at Y (1)

% Determine the cross-shore distance between
shoreline and groin tip

x SLPos = X (1) + PercentFull(Y(i),X(1));
cross-shore position of shoreline (cells)

x GrTipPos = GroinTipX (GroinNumber)+0.5;
cross-shore position of groin tip (cells)

o°

o\

if (x SLPos >= x GrTipPos)

% the shoreline is past (or up to) groin
tip

if (debugloc)
fprintf ('X:%G Y:%G ',X(1i),Y (1))
fprintf (['SL pos up to groin tip: D G =
",num2str (D G(i)),'\n"']);
fprintf('X = %G, PF = %G, x SLPos = %G,
x GrTipPos =
%G\n',X(i),PercentFull(Y(i),X(i)),X_SLPos,X_GrTipPos);
beep
pause
end

else
¢}

% Calculate the cross-shore distance to
calculate BYP
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CSDist = (x GrTipPos - x SLPos) *
Cross—-shore distance between shoreline and

o\

CellWidth;
groin tip (m)

% Calculate the water depth at the groin
tip (from Dean

profile)
D G(i) = DeanProfileA * (CSDhist *~ (2/3));

if (debugloc)
fprintf ('X:%G Y:%G ', X(1),Y(1));
fprintf (['CSDist: ',num2str (CSDist),"'
D G: ',num2str (D G(i)),"'\n'"]);
end

end

elseif (Y (i) == GroinTipY (GroinNumber) +1)
% There is a groin on the left side of the cell
at Y (1)

[

% Determine the cross-shore distance between
shoreline and groin tip

x SLPos = X (1) + PercentFull(Y(i),X(1));
cross-shore position of shoreline (cells)

x GrTipPos = GroinTipX (GroinNumber)+0.5;
cross-shore position of groin tip (cells)

o°

o°

if (x SLPos >= x GrTipPos)
% the shoreline is past (or up to) groin
tip

if (debugloc)
fprintf ('X:%G Y:%G ',X(1),Y(1));
fprintf (['SL pos up to groin tip: D G =
",num2str (D G(i)),"'\n']);
fprintf ('X = %G, PF = %G, x SLPos = 3G,
x GrTipPos =
$G\n',X(i),PercentFull (Y (i),X(i)),x SLPos,x GrTipPos);
beep
pause
end
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else
% Calculate the cross-shore distance to
calculate BYP

CSDist = (x GrTipPos - x SLPos) *
CellWidth; % Cross—-shore distance between shoreline and
groin tip (m)

% Calculate the water depth at the groin
tip (from Dean

o
°

profile)
D G(i) = DeanProfileA * (CSDhist "~ (2/3));

if (debugloc)
fprintf ('X:%G Y:%G ',X(1i),Y (1))
fprintf (['CSDist: ',num2str (CSDist), "’
D G: ',num2str(D G(i)),'\n']);
end
end
end

end

end

o®

CEM CalcVolInOut.m

o\°

% CEM Function: Calculates the cumulative and overall mean
sediment volumes

Q

% transported in and out of every cell

% Calculate the cumulative volume in and out of every beach
element

for 1 = 1l:length(Y)

ypos = Y (i);
CumVolumeIn (ypos) = CumVolumelIn (ypos) + VolumeIn (i) ;
CumVolumeOut (ypos) = CumVolumeOut (ypos) + VolumeOut (i)
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end

¢}

% Calculate the mean volume in to and out of every beach
element

MeanVolumeIn = CumVolumeIn/ (CurrentTimeStep -
StartingTimeStep) ;
MeanVolumeOut = CumVolumeIn/ (CurrentTimeStep -
StartingTimeStep) ;

function [PercentFull, AllBeach, CellDepth, OWFlag] =
CEM CheckOverwash (icheck,AllBeach, PercentFull,CellDepth,X,Y

YA

SurroundingAngle, CritBWidth,CellWidth, DepthShoreface, LandHe
ight, TotalBeachCells, OWFlag, OWType, Ymax, debug8, debuglOa, deb
uglOb)

% CEM Function: Step back pixelwise in direction of
Surrounding Angle to

% check needage

% If too short, calls DoOverwash, which will move some
sediment

% Need to change sweepsign because filling cells should
affect neighbors

% 'x' and 'y' hold real-space values, will be mapped onto
ineger array

if (SurroundingAngle (icheck) == 0)

% unlikely, but make sure no div by zero
slope = 0.00001;
%abs (tan ( (SurroundingAngle (icheck+1l) +

SurroundingAngle (icheck-1))/2));

elseif (abs(SurroundingAngle (icheck)) == 90)
slope = 9999.9;

else
slope = abs (tan(SurroundingAngle (icheck)));
end

379



if (SurroundingAngle (icheck) > 0)
ysign = 1;

else
ysign = -1;

end

if (debuglOa)
fprintf (['\nI: ',num2str(icheck),'-———————————- Surr:
num2str (SurroundingAngle (icheck)), "' ', ...
num2str (SurroundingAngle (icheck) *radtodeqg), ' Slope:

|
AN

num2str (slope), ' sign: ',num2str(ysign), '\n']);
end
if ((AllBeach(Y (icheck),X(icheck)-1) == "y") || ...
((AllBeach (Y (icheck)-1,X (icheck)) == 'y') &&
(Al1lBeach (Y (icheck)+1,X (icheck)) == 'vy')))

% 'regular condition'
% plus 'stuck in the middle' situation (unlikely
scenario)

xin = X (icheck) + PercentFull (Y (icheck),X (icheck));
yin = Y (icheck) + 0.5;

elseif (AllBeach (Y (icheck)-1,X(icheck)) == "'y'")
% on right side

xin = X (icheck) + 0.5;
yin = Y (icheck) + PercentFull (Y (icheck), X (icheck));

if (debuglOa)

fprintf (['--Right xin: ',num2str(xin),' vyin:
',num2str (yin), '\n']);
end
elseif (AllBeach (Y (icheck)+1,X (icheck)) == 'y'")

% on left side

Xin = X (icheck)

0.5;
yin = Y (icheck) 1

+
+ - PercentFull (Y (icheck), X (icheck)) ;

if (debuglOa)
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fprintf (['--Left xin: ',num2str(xin),' yin:
',num2str (yin), '\n']);
end
else

o)

% underneath, no overwash
return

end

o\

initialize while loop

X = xXin;
y = yin;
checkdistance = 0;

AllBeachFlag = 0;

while ((checkdistance < CritBWidth) && (y > 0) && (y <
2*Ymax) && (x > 1))

NextXInt = ceil (x) -1;

if (ysign > 0)

NextY¥Int = floor(y) + 1;
else

NextYInt = ceil(y-1);
end
% moving to next whole 'x' position, what is vy
position?

Ydown = y + (x - NextXInt)*slope * ysign;

DistanceDown = ((Ydown - y)* (Ydown - y) + (NextXInt -
X) * (NextXInt - x))*(0.5);

% moving to next whole 'y' position, what is x
position?

Xside = x - abs(NextYInt - y) / slope;
DistanceSide = ((NextYInt - y)*(NextYInt - y) + (Xside
- xX)*(Xside - x))"(0.5);

if (debuglOa)

fprintf(['x: ',num2str(x),' y: ',num2str(y),' X:
', num2str (NextXInt), ...
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"'Y: ',num2str (NextYInt), 'Yd:
', num2str (Ydown), ' DistD: ', ...
num2str (DistanceDown), ' Xs: ',num2str (Xside), '
DistS: ', ...
num2str (DistanceSide), '\n']);
end

1f (DistanceDown < DistanceSide)
% next cell is the down cell

x = NextXInt;

y Ydown;

xtest = NextXInt-1;
ytest = floor (y):

else
% next cell is the side cell

x = Xside;

y = NextYInt;

xtest = floor (x);

ytest = y + (ysign-1)/2;

end

% make sure ytest doesn't do to O

if (ytest == 0)
ytest = 2*Ymax;
end
checkdistance = CellWidth * (((x - xin)*(x - xin) + (y

- yin)*(y - yin))".5);
if (AllBeach (ytest,xtest) == 'y')
AllBeachFlag = 1;

end

if (debuglOa)

fpritnf([' x: '",num2str(x),' y: ',num2str(y),’'

Xtest: ', ...
num2str (xtest), ' ytest: ',numZ2str(ytest),’'

check: ', ...

num2str (checkdistance), "\n\n']) ;
end
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if ((AllBeach(ytest,xtest) == 'n') && (AllBeachFlag) &&
(xtest < X (icheck)) && ((X(icheck)-xtest > 1)

(abs (test - Y (icheck)) > 1)))
% Looking for shore cells, but don't want immediate
neighbors, and go backwards
% Also mush pass though an allbeach cell along the
way

if (AllBeach (ytest,xtest+l) == 'y')
% 'regular condition' - UNDERNEATH, here

xint = (xtest + 1 - PercentFull (ytest,xtest));
yint yin + (xin - xint)*ysign*slope;

if ((yint > ytest + 1) || (yint < ytest))
% This cell isn't actually an overwash
cell
measwidth = CritBWidth;

if (debuglOa)

fprintf (['-- Regunder Cancelled xin:
', num2str (xin), ...
' yin: ',numZstr(yin),' xt:
', num2st (xtest), " yt: ', ...
num2str (ytest), ' xint:
',num2str (xint), " yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '\n']);
end
else
measwidth = CellWidth * ((xint - xin) * (xint

- xin) + (yint - yin)*(yint - yin)) ~ (0.5);
if (debuglOa)

fprintf (['-- Regunder Over xin:
', num2str (xin), ...
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yin: ',num2str(yin), ' xt:
', num2st (xtest), ' yt: ', ...
num2str (ytest), ' xint:

', num2str (xint), "' yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '"\n'1);
end
end
elseif (AllBeach (ytest-1,xtest) == 'y')

% on right side

yint = ytest + PercentFull (ytest,xtest);
xint = xin - abs(yin - yint)/ slope;

if (xint < xtest)
% This cell isn't actually an overwash cell

measwidth = CritBWidth;

if (debuglOa)
fprintf (['-- Right Cancelled xin:
', num2str (xin), ...
' yin: ',numZstr(yin),' xt:
', num2st (xtest), " yt: ', ...
num2str (ytest), ' xint:

',num2str (xint), " yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '\n']);
end
else
measwidth = CellWidth * ((xint - xin) * (xint

- xin)+ (yint - yin)*(yint - yin))"~(0.5);
if (debuglOa)

fprintf (['-- Right Over xin:
', num2str (xin), ...
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yin: ',num2str(yin), ' xt:

', num2st (xtest), ' yt: ', ...
num2str (ytest), ' xint:

', num2str (xint), "' yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '"\n'1);
end
end
elseif (AllBeach (ytest+1l,xtest) == 'y')

% on left side

yint = (ytest + 1 - PercentFull (ytest,xtest));
xint = xin - abs(yin - yint)/slope;

if (xint < xtest)
% This cell isn't actually an overwash

cell
measwidth = CritBWidth;

if (debuglOa)
fprintf(['-- Left Cancelled xin:
', num2str (xin), ...
' yin: ',numZstr(yin),' xt:
', num2st (xtest), " yt: ', ...
num2str (ytest), ' xint:

',num2str (xint), " yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '\n']);
end
else
measwidth = CellWidth * ((xint - xin) * (xint

- xin)+ (yint - yin)*(yint - yin)) ~0.5;
if (debuglOa)

fprintf(['-- Left Over xin:
', num2str (xin), ...
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yin: ',num2str(yin), ' xt:
', num2st (xtest), ' yt: ', ...
num2str (ytest), ' xint:

', num2str (xint), "' yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '"\n'1);
end
end
elseif (AllBeach (ytest,xtest-1) == 'y')

o)

% 'regular condition'
% plus 'stuck in the middle' situation

xint = xtest + PercentFull (ytest,xtest);
yint yin + (xin - xint)*ysign * slope;

if ((yint > ytest+1l) || (yint < ytest))

Q

% This cell isn't actually an overwash cell
measwidth = CritBWidth;

if (debuglOa)
fprintf (['-- RegularODD Cancelled xin:
', num2str (xin), ...
' yin: ',numZstr(yin),' xt:
', num2st (xtest), " yt: ', ...
num2str (ytest), ' xint:

',num2str (xint), " yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '\n']);
end
else
measwidth = CellWidth * ((xint - xin) * (xint

- xin)+ (yint - yin)*(yint - yin))"0.5;
if (debuglOa)

fprintf (['-- RegularODD Over xin:
', num2str (xin), ...
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' yin: ',num2str(yin),"' xt:

', num2st (xtest), ' yt: ', ...
num2str (ytest), ' xint:

', num2str (xint), "' yint: ', ...
num2str (yint), "' sl:
', num2str (slope),' MMeas: ',...
num2str (measwidth), '"\n'1);
end
end

elseif (PercentFull (ytest,xtest) > 0)
% uh oh - not good situation, no allbeach on

sides
% assume this is an empty cell

Xint = x;
yint = y;
measwidth = CellWidth * ((xint - xin)*(xint -

xin)+ (yint - yin)*(yint - yin))*(0.5);

if (debuglOa)

fprintf(['-- Some Odd Over xin:
', num2str (xin), ...
' yin: ',numZstr(yin),' xt:
', num2st (xtest), "' yt: ',...
num2str (ytest), ' xint:
',num2str (xint), " yint: ', ...
num2str (yint),"' sl: ',num2str(slope),’
MMeas: ', ...
num2str (measwidth), '"\n'1);
end
else
% empty cell - oughta fill er up - fill max

barrier width

xint = x;
yint = y;
measwidth = CritBWidth - CellWidth;

if (debuglOa)
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fprintf (['-- Empty Odd Over xin:
', num2str(xin), ...

' yin: ',num2str(yin),' xt:
', num2st (xtest), "' yt: ', ...
num2str (ytest), ' xint:
', num2str (xint), "' yint: ', ...
num2str (yint), "' sl: ',num2str(slope),’
MMeas: ', ...
num2str (measwidth), '"\n'1);
end
end

checkdistance = measwidth;
1f (measwidth < CritBWidth)

% DoOverwash

[PercentFull, AllBeach, CellDepth] =
CEM DoOverwash (X (icheck), Y (icheck), xtest, ytest, xint, yint, me
aswidth, icheck, ...

PercentFull,AllBeach,X,Y,CellDepth, DepthShoreface, LandHeigh
t,SurroundingAngle, TotalBeachCells, OWType, debug8, debugl0b) ;

OWFlag = 1;
return;
end

end

Q

end % end while loop

function [PercentFull, AllBeach, CellDepth, OWFlag] =
CEM CheckOverwashSweep (AllBeach, PercentFull,CellDepth,X,Y, .

SurroundingAngle, InShadow, OverwashLimit, TotalBeachCells,Cri
tBWidth,CellWidth, DepthShoreface, LandHeight, OWFlag, OWType, Y
max, debug8, debuglla, debuglOb)

% CEM Function: Just a loop to call overwash check
founction CheckOverwash
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% Nothing done here, but can be down when CheckOVerwash is
called

% Initialize

radtodeg = 180/pi; % Transform radians to degrees
RandNum = rand(1l);

if (RandNum*2 > 1)
sweepsign = 1;

if (debuglOa)
fprintf ('L "),
end
else
sweepsign = O0;

if (debuglOa)
fprintf ('R ") ;
end
end

for i = 3:TotalBeachCells - 2

if (sweepsign == 1)

ii = i;
else

ii = TotalBeachCells - 1;
end

if (( abs(SurroundingAngle(ii)) <
OverwashLimit/radtodeg) && (InShadow(ii) == 'n'"))

% CheckOverwash
[PercentFull, AllBeach, CellDepth, OWFlag] =
CEM CheckOverwash (ii,AllBeach,PercentFull,CellDepth,X,Y, ...

SurroundingAngle,CritBWidth,CellWidth, DepthShoreface, LandHe

ight, TotalBeachCells, OWFlag, OWType, Ymax, debug8, debuglOa, deb
uglOb) ;

end
end
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function [PercentFull] =

CEM ConstantSLRAdjust (PercentFull,RateSLR Const,TimeStep, Sh
orefaceSlope,CellWidth, Xmax, Ymax)

% CEM function: accounts for shoreline retreat from a
constant sea level

o)

% rise.

¢}

loc debug = 0; % local debugger
% Find change in water level for every time step
$DeltaEta = RateSLR Const * (TimeStep / (365*100)); %
change in SL per timestep (m)

DeltaEta = RateSLR Const * (TimeStep / (CellWidth * 100 *
365)); % change in SL per timestep (cells)

% Find the change in PercentFull (F) every timestep due to
SLR
DeltaF = DeltakEta / ShorefaceSlope;

% Loop for all PercentFull to determine beach locations
for y = 1:2*Ymax
for x = 1l:Xmax

if ((PercentFull(y,x) < 1) && (PercentFull (y,x) >
% We have found a beach cell

if (loc_debug)
fprintf ('Adjusting PercentFull at (%i,%1i)
by %d\n',y,x,DeltaF);
0old
end

I~

PercentFull (y, x) ;

% Adjust the PercentFull due to the change in
sea level

$PercentFull (y,x) = ((CellWidth *
PercentFull (y,x)) - (ShorefaceSlope*Deltakta)) / CellWidth;
PercentFull (y,x) = PercentFull (y,x) - DeltaF;

if (loc_debug)
New = PercentFull (y,x);
ChangeInPF (y) = New - 01d;
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Sfprintf (['Delta PF:
', num2str (ChangeInPF(y)), '\n']);
end

end
end
end

function [GroinPos,GroinX,GroinY,GroinXPlot,GroinYPlot] =
CEM CreateGroins (Xmax, Ymax,GroinData,GroinStart, InitBeach,P
eriodicCopyGroins)

o\

CEM Function: Creates the Gron Position Arrays.

o\°

o\

Creates the following variables:
GroinPos - shows groin positions
(=1 if groin on right side of cell)
GroinX - x-coordinates of the cells that contain groins
GroinY - y-coordinates of the cells that contain groins
GroinX - x-coordinates of groins (for plotting only)
GroinY - y-coordinates of groins (for plotting only)

o° o

o\

o° o\°

o\

o)

% Initialize

debug = 0; % local debugger
% Make the input groin data matrix
GroinInputData = GroinData;

Q

% Make the groin position matrix

Q

GroinPos = zeros (2*Y¥max,Xmax); $ Matrix

for 1 = 1l:length(GroinInputData(:,1))
$GroinPos (GroinInputData (:,1)+ (Ymax/2)+1,GroinStart) =
1;

GroinPos (GroinInputData (i, 1)+ (Ymax/2),GroinStart:GroinStart
+GroinInputData(i,2)) = 1;
end

% Find the x & y coordinates of groin positions (for
plotting)
[GroinXPlot, GroinYPlot] = find(GroinPos==1);
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GroinXPlot = GroinXPlot - (Ymax/2) + 0.5;

Groin¥YPlot = GroinYPlot - InitBeach - 1;
if (debugq)

figure;

scatter (GroinXPlot, Groin¥YPlot, 's', 'r'");
end

% Periodic Boundary Copy

if (PeriodicCopyGroins)
GroinPos (l:Ymax/2,:) = GroinPos (Ymax+l:3*Ymax/2,:);
GroinPos ((3*Ymax/2)+1:2*Ymax, :) =

GroinPos ((Ymax/2)+1l:Ymax, :);

end

if (debuqg)

figure;

imagesc (GroinPos) ;
end

% Find the x & y coordinates of groin positions
[

GroinY, GroinX] = find(GroinPos==1);
% if (debuqg)

% figure;

% scatter (GroinX, GroinY, 'x', "'g");
% end

function [ShorelineAngle,UpWind, SurroundingAngle] =

CEM DetermineAngles (X,Y,PercentFull,AllBeach,WaveAngle, InSh
adow, TotalBeachCells, ShorelineAngle, SurroundingAngle, Ymax, d
ebug3, debugid)

% CEM Function: Function to determine beach angles for all
beach cells from

% left to right. By convention, the ShorelineAngle will
apply to current

[e)

% cell and right neighbor.

Q

% pause
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o\

radtodeg = 180/pi;
degtorad = pi/180;
debug3a = 0;

Transform radians to degrees
Transform degrees to radians
local debugger

o\

o\

% Shoreline Angle Calcs - ADA 05/04 - use correct 'point'
to do calcs (like in shaddow

% Set first point

% first angle should be regular one - periodic BC's should
also take care

x2 = X (1) + PercentFull (Y(1),X(1));
y2 = Y(1) + 0.5;

%% Compute ShorelineAngle
% not equal to TotalBeachCells because angle between cell
and rt neighbor

for i = 1l:TotalBeachCells

o\°

if (i == TotalBeachCells)
pause;
end

o\

o®

% Account for periodic Boundary Conditions

if (1 == 1)
iplus = 1i+1;

elseif (i == TotalBeachCells)
iplus = 1;

else
iplus = i+1;

end

x1l = x2;

yl = v2;

x2int = X (iplus):;
y2int = Y (iplus);

% Account for periodic Boundary Conditions
if (y2int == 2*Ymax)
y2intPlus = 1;
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else
y2intPlus = y2int+1;

end
if (y2int == 1)
y2intMinus = 2*Ymax;
else
y2intMinus = y2int-1;
end
if (AllBeach(y2int,x2int-1) == 'y' ||
((AllBeach(y2intMinus, x2int) == 'y')...
&& (AllBeach(y2intPlus,x2int) == 'y')) &&
(AllBeach (y2int,x2int+1) == 'n'"))
% 'regular condition' - 1f between
% plus 'stuck in the middle' situation (unlikely
scenario)
X2 = x2int + PercentFull (y2int,x2int);
y2 = y2int + 0.5;
if (debug3a)
fprintf(['-- Regular xin: ',num2str(x2),' yin:
',num2str (y2), '\n']);
end
elseif ((AllBeach(y2int,x2int+l) == 'y') &&
(AllBeach (y2int,x2int-1) == "'y'))

% in a sideways nook (or is that a cranny?)
x2 = x2int + 0.5;

if (AllBeach(y2intMinus,x2int) == 'y')

Q

% right-facing nook
y2 = y2int + PercentFull (y2int,x2int);

else

o

s left-facing nook
y2 = y2int + 1.0 - PercentFull (y2int,x2int);
end

if (debug3a)
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fprintf (['-- Nook xin: ',num2str(x2),' yin:
',num2str (y2),'\n']);
end

elseif (AllBeach(y2intMinus,x2int) == 'y')

¢}

% on right side

x2 = x2int + 0.5;
y2 = y2int + PercentFull (y2int,x2int);

if (debug3a)

fprintf(['-- Right xin: ',num2str(x2),' yin:
',num2str (y2),'\n']);
end
elseif (AllBeach(y2intPlus,x2int) == 'y')

% on left side

x2 = x2int + 0.5;

y2 = y2int + 1.0 - PercentFull (y2int,x2int);
if (debug3a)
fprintf(['-- Left xin: ',num2str(x2),' yin:
',num2str (y2), '\n']);
end
elseif (AllBeach(y2int,x2int+l) == 'y')

Q

% gotta be on the bottom now

X2 = x2int + 1 - PercentFull (y2int,x2int);
y2 y2int + 0.5;
if (debug3a)
fprintf(['-- Under xin: ',num2str(x2),' yin:
', num2str (y2), '\n']);
end

else

[e)

% debug ain't just an insect
fprintf ('Determine Angles broke!!!! \n');

return;
end
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% compute angles

% Account for periodic Boundary Conditions
if (yl1 > 2*Ymax)

yl = yl - 2*Ymax;

ShorelineAngle (i) = atan((x2 - x1) / abs(y2 -
v1l));
if (debug3)
fprintf (['Rt.boundary (R) 1 = ',num2str (i),
X(1i): '",num2str(X(i))," Y(i): ', ...

num2str(Y(i)), ' PercentFull:
', num2str (PercentFull (Y (1),X(1))), ...
' x: ',num2str(x2),"' y: ',num2str (y2),"'
SLAng: ', ...
num2str (ShorelineAngle (i) *180/pi), "\n']);
end

elseif (y2 > yl)
ShorelineAngle (i) = atan((x2 - x1) / (y2 - yl1));

if (debug3)
fprintf (['(R) 1 = ',num2str(i),' X(i):
',num2str (X (1)), " Y(i): ', ...
num2str (Y (i)), "' PercentFull:
', num2str (PercentFull (Y (i) ,X(i))), ...

' x: '",num2str(x2),"' y: ',num2str (y2),"'
SLAng: ', ...
num2str (ShorelineAngle (i) *180/pi), '\n']1);
end
elseif (y2 == yl)

ShorelineAngle (i) = pi/2.0 * (x1 - x2) / abs(x2 -

x1);
if (debug3)
fprintf (['(G) 1 = ",num2str(i),"' X(i):
',num2str (X (1)), " Y(i): ', ...

num2str (Y (i)), "' PercentFull:
', num2str (PercentFull (Y (1),X(1))), ...
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x: ',num2str(x2),"' y: ',num2str(y2),"'

SLAng: ',...
num2str (ShorelineAngle (i) *180/pi), '\n']);
end
else
5 y2 < vyl
ShorelineAngle (i) = atan((x2 - x1) / (y2 - yl)) -
pi;

if (ShorelineAngle (i) < -pi)
ShorelineAngle (i) = ShorelineAngle (i) + 2*pi;
end

if (debug3)
fprintf (['(U) 1 = ',num2str(i),' X(i):
',num2str(X(1))," Y(i): ', ...
num2str(Y(i)), ' PercentFull:
', num2str (PercentFull (Y (1i),X(1i))), ...
' x: ',num2str(x2),"' y: ',num2str (y2),"'
SLAng: ', ...
num2str (ShorelineAngle (i) *180/pi), '\n'1);
end

end
end
%% loop through to make sure that shoreline angle does not

reach 90 deg
for iii = 1l:TotalBeachCells

if (iii == TotalBeachCells)
iiiPlusl = 1;
else
iiiPlusl = iii+1;
end
if (iii == 1)
iiiMinusl = TotalBeachCells;
else
iiiMinusl = iii-1;
end
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1if |
(Shoreli

(ShorelineAngle (iii) >= 89* (pi/180)) ||
neAngle (iii) <= -89* (pi/180)))
ShorelineAngle (iii) =

mean (ShorelineAngle (iiiMinusl:iiiPlusl));

end
end

%% compute SurroundingAngle array

o\°

02/04

AA averaging doesn't work on bottom of spits

% Use trick that x is less 1f on bottom of spit - angles

might be
for k =
if (
else

end
if |

else

end

if (
(Shoreli
Shorelin

Shorelin

2*pi;

different signs as well
1:TotalBeachCells

k == TotalBeachCells)
kPlusl = 1;

kPlusl = k+1;

k == 1)

kMinusl TotalBeachCells;

kMinusl

k-1;

(Y (kMinusl) - Y (kPlusl) == 2) &&
neAngle (kMinusl) *sign (ShorelineAngle (k)) ~=
eAngle (kMinusl)))

SurroundingAngle (k) = (ShorelineAngle (kMinusl) +
eAngle (k)) / 2 + pi;

if (SurroundingAngle (k) > pi)
SurroundingAngle (k) = SurroundingAngle (k) -

end
if (debug4)
fprintf (['Under: ',num2str(k), '\n']);

end
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else
SurroundingAngle (k) = (ShorelineAngle (kMinusl) +
ShorelineAngle (k))/2;
end

end

o\

% Determine Upwind/downwind condition
% Note - Surrounding angle is based upon left and right
cell neighbors,

[

% and 1is centered on cell, not on right boundary

if (debug4)

fprintf (['\nUp/Down Wave Angle:
', num2str (WaveAngle*radtodeqg), '\n']) ;
end

for j = 1l:TotalBeachCells

if (debug4)
fprintf(['J: ',num2str(j),' Shad: ',InShadow(j),"

num2str (ShorelineAngle (J) *radtodeg), ' SurAng:

num2str (SurroundingAngle (j) *radtodeg), ' Effect:

num2str ( (WaveAngle -
SurroundingAngle (J)) *radtodeg), '\n']) ;

end

if (abs(WaveAngle - SurroundingAngle(j)) >=
42 .0*degtorad)

UpWind (j) = 'u';
if (debug4)
fprintf ('U(1) ")
end
else
UpWind (J) 'd';
if (debug4

)
fprintf ('D(1) ")
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end
end
if (debug4)
fprintf('\n'");
end

end

%% Get rid of any NaN's

o\

ShorelineAngle (isnan (ShorelineAngle)) = 0;
SurroundingAngle (isnan (SurroundingAngle)) = 0;

o\

% CEM DetermineMeanWvDir.m

% CEM-MATLAB Function: determines the mean wave directions
(

[

% rightward approaching) for diffraction calculations from
Kamphuis (2000) .

o)

% Initialize function

radtodeg = 180/pi; % Transform radians to degrees
degtorad = pi/180; % Transform degrees to radians
MWD GroinTip = 0; % Mean wave direction at groin tip
(radians)

o\°

Determine the mean offshore wave angle

% Positive and negative (Asymmetry) not taken into account
if ((UseSingleWaveAngle == 0) && (WaveIn == 0))

% Use A & U (4-bin PDF)

% This should be determined only from highness

PosMWD 0 Deg = (Highness + 0.5) * 45; % Mean wave
direction offshore in degrees

NegMWD O Deg = —-PosMWD 0 Deg;
elseif ((UseSingleWaveAngle == 1) && (WavelIn == 0))

% Use the single wave angle
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PosMWD 0 Deg = SingleOffshoreAngle;
NegMWD 0O Deg -PosMWD 0 Deg;

elseif ((UseSingleWaveAngle == 0) && (WavelIn == 1))

o)

% Use the input wave PDF

NumBins = length (WavePDF(:,1)):;
counter 0;

for i = 1:NumBins
if (WavePDF(i,1) <=0)

[

% Wave angle is negative

NegPDF (i,1) = WavePDF(i,1);
NegPDF (i1,2) = WavePDF (1i,2);
counter = counter + 1;

elseif (WavePDF(i,1) > 0)

o)

% wave angle is positive

PosPDF (i - counter,l) = WavePDF (i, 1);
PosPDF (i - counter,2) = WavePDF (1i,2):;
else
% something is wrong!
beep
fprintf ('CEM DetermineMeanWvDir broke!!!! \n"')
pause
end
end
clear i

% Find the positive offshore MWD
PosMWD 0 DegSum = 0;
for ii = 1l:length (PosPDF (:,1))
PosMWD 0 DegSum = PosMWD O DegSum + ((PosPDF(ii,1) -
(BinSize/2)) * PosPDF (1i,2)):
end
PosMWD 0 Deg = PosMWD O DegSum / sum (PosPDF(:,2)):;

clear ii

% Find the negative offshore MWD
NegMWD O DegSum = 0;
for ii = l:length (PosPDF(:,1))
NegMWD O DegSum = NegMWD O DegSum + ((NegPDF(ii,1) -
(BinSize/2)) * NegPDF (ii,2));
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end
NegMWD O Deg = NegMWD 0 DegSum / sum(NegPDF (:,2));

else
% something is wrong!
beep
fprintf ('CEM DetermineMeanWvDir broke!!!! \n')
pause
end
PosMWD 0 = PosMWD 0 Deg*degtorad; % Mean positive
wave direction offshore in radians
NegMWD O = NegMWD 0 Deg*degtorad; % Mean negative

wave direction offshore in radians

% CEM DetermineSedTransport.m

% CEM function: Loop function to determine which
neigbor/situation to use

[

% for sediment transport calcs. Once situation is
determined, will use

[

% function SedTrans to determine actual transport.

o)

$ Initialize function

VolumeIn = zeros(l,TotalBeachCells); % Sediment volume
into ith beach element
VolumeOQut = zeros (l,TotalBeachCells); % Sediment volume

ou of ith beach element

GroinTransRight = 0;

GroinTransLeft = 0;

GroinTipDepth = 0;

debugba = 0; % Local Debugger (periodic boundary
conditions)

if (debugb)
fprintf (["\nSEDTRANS: ',num2str (CurrentTimeStep), ' @

num2str (WaveAngle*radtodeqg), "\n\n']) ;
end
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for i

= l:TotalBeachCells

GroinTransport = 0; % Is transport occuring
over a terminal groin? (assume no at first)

if (debugb)
fprintf (['\n i: ',num2str(i),’ 1)
end
sy coord = Y (1); % WRT y-coordinate for the ith cell

(if using WRT)

MaxTrans = 'n';

[

if

% Is littoral transport going left or right?

((WaveAngle - ShorelineAngle(i)) > 0)

[

% Transport going right, center on cell to left side

of border

[

% Next cell in positive direction, no correction

term needed

CalcCell = 1i;

Next = 1;
Last = -1;
Correction = 0;

$TransRight = 1;

if (debugb)
fprintf (['RT ', num2str (CalcCell), ' '1);
end

else

Q

% Transport going left, center on cell to right side

of border

needed

Q

% Next cell in negative direction, correction term

CalcCell = i+1;

Next = -1;
Last = 1;
Correction = -1;

$TransRight = 0;
if (debugb)

fprintf (['LT ', num2str (CalcCell), "' '1);
end
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end

% Acccount for periodic boundary conditions

if (CalcCell+Next == TotalBeachCells + 1)
CalcCellPlusNext = 1;

if (debugba)

fprintf ('CalcCell: %i, CalcCellPlusNext: %i
\n',CalcCell,CalcCellPlusNext):;

beep
pause

end

elselif (CalcCell+Next == 0)

CalcCellPlusNext = TotalBeachCells;

if (debugba)
fprintf('CalcCell: %i, CalcCellPlusNext: %i

\n',CalcCell,CalcCellPlusNext) ;
beep
pause
end

else
CalcCellPlusNext = CalcCell+Next;
end

if (CalcCell+Last > TotalBeachCells)
CalcCellPluslLast = CalcCell+Last-TotalBeachCells;

if (debugba)
fprintf('CalcCell: %i, CalcCellPlusLast: %i
\n',CalcCell,CalcCellPlusLast);
beep
pause
end

elseif (CalcCell+Last < 1)
CalcCellPluslLast = CalcCell+Last+TotalBeachCells;

if (CalcCellPlusLast <= 0)
fprintf ('CalcCellPlusLast has gone below 1!\n"'")
beep

end
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if (debugba)
fprintf ('CalcCell: %i, CalcCellPluslLast: %i
\n',CalcCell,CalcCellPlusLast);
beep
pause
end

else
CalcCellPlusLast = CalcCell+Last;

end

% Account for periodic boundary conditions for [To] and
[From]
if (CalcCell == TotalBeachCells + 1)
CalcCellOrig = CalcCell;
CalcCell = 1;

end

if (CalcCellPlusNext == TotalBeachCells + 1)
CalcCellPlusNext = 1;

elseif (CalcCellPlusNext == 0)
CalcCellPlusNext = TotalBeachCells;

end

if (InShadow(CalcCell) == 'n')

% Adjustment for maximum transport when passing
through 45 degrees

% This adjustment is only made for moving from
downwind to upwind conditions

Q

o

% purposefully done before shadow adjustment, only
use maxtran when

% transition from dw to up not because of shadow

% keeping transition from uw to dw - does not seem
to be big deal (04/02 AR)

if ( ( (UpWind(CalcCell) == 'd') &&
(UpWind (CalcCellPlusNext) == 'u') &&
(InShadow (CalcCellPlusNext) == 'n'") ) ||
( (UpWind (CalcCellPlusLast) == 'u') &&
(UpWind (CalcCell) == 'd')...
&& (InShadow (CalcCellPlusLast) == 'n') ) )
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MaxTrans = 'y';

if (debug))
fprintf ('MAXTRANS ")
end
end
% Upwind/Downwind adjustment Make sure sediment is
put into shadows

¢}

% If Next cell is in shadow, use UpWind condition

DoFlux = 1;
UpWindLocal = UpWind(CalcCell);

if (InShadow (CalcCellPlusNext) == 'y')
UpWindLocal = 'u';
if (debugb)
fprintf ('U(2) ")
end
end

% If coming out of shadow, downwind should be used
% HOWEVER- 02/04 AA - if high angle, will result in
same flux in/out problem

% solution - no flux for high angle waves
if ((InShadow(CalcCellPluslLast) == 'y') &&
(UpWindLocal == 'u'))
DoFlux = 0;
if (debugb)
fprintf ('U(X) NOFLUX \n'");

end
end
if (UpWindLocal == 'u')

Q

% Account for periodic boundary conditions
CalcCellPluslLastPlusCorrection =
CalcCellPluslLast+Correction;

o\

if (debugba)

fprintf ('CalcCell: %1,
CalcCellPlusLastPlusCorrection: %i
\n',CalcCell,CalcCellPlusLastPlusCorrection);

o\
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o\°

beep
pause
end

o\

o\

if ((CalcCellPluslastPlusCorrection) <= 0)
CalcCellPluslastPlusCorrection =
TotalBeachCells;

o\

if (debugba)

fprintf ('CalcCell: %1,
CalcCellPlusLastPlusCorrection: %i
\n',CalcCell,CalcCellPlusLastPlusCorrection) ;

o\

% beep
% pause
% end
end
ShoreAngleUsed =

ShorelineAngle (CalcCellPlusLastPlusCorrection);

if (debug))
fprintf (['UP ShoreAngle:
', num2str (ShoreAngleUsed*radtodeqg)]) ;
end

elseif (UpWindLocal == 'd'")
% Account for periodic boundary conditions
CalcCellPlusCorrection = CalcCell+Correction;

if (CalcCellPlusCorrection <= 0)
CalcCellPlusCorrection = TotalBeachCells;
end

ShoreAngleUsed =
ShorelineAngle (CalcCellPlusCorrection);

if (debug))
fprintf ([ 'DN ShoreAngle:
', num2str (ShoreAngleUsed*radtodeqg)]) ;
end
end
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% !'!! Do not do transport on unerneath c'cause it
gets all messed up
if (abs(ShoreAngleUsed) > SedTransLimit/radtodeq)
DoFlux = 0;
end

% Determine if transport is occuring over a groin
if (CalcCell < CalcCellPlusNext)

¢}

% Transport is going right

if (GroinRightOfBeach (CalcCell) == 1)

Q

% Transport is over a groin

GroinTransport = 1;

GroinTransRight = 1;

GroinTipDepth = D G(CalcCell);
end

elseif (CalcCell > CalcCellPlusNext)

[

% Transport is going left

if (GroinLeftOfBeach (CalcCell) == 1)

Q

% Transport is over a groin

GroinTransport = 1;
GroinTransLeft = 1;
GroinTipDepth = D G(CalcCell);
end
else
fprintf ('"WTF is going on with Left/Right

beep
pause
end
% See 1f sediment transport is occuring in a zone of
wave
% diffraction
if ((CalcCell < CalcCellPlusNext) &é&
(InDiffShadow (CalcCell) == 1))
% Transport going right
DiffShadowed = 1; % Flag
indicating diffractive effects
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DiffPhi = DiffPhi b (CalcCell); % Break angle
due to diffraction

DiffKb = DiffK b(CalcCell); % Diffraction
coefficient

elseif ((CalcCell > CalcCellPlusNext) &&

(InDiffShadow (CalcCellPlusNext) == 1))

% Transport is going left
DiffShadowed = 1; % Flag

indicating diffractive effects

DiffPhi = DiffPhi b (CalcCellPlusNext); % Break

angle due to diffraction
DiffKb = DiffK b (CalcCellPlusNext);
Diffraction coefficient
else
% Breaking waves not influenced by diffraction
DiffShadowed = 0;
DiffPhi = 0;
DiffKb = 0;
end

o\

[

% Send to SedTrans to calculate VolumeIn and
VolumeOut

if (debugh)
fprintf (['From: ',num2str (CalcCell),' To:
', num2str (CalcCellPlusNext), ...
' TransAngle: ',num2str ((WaveAngle -
ShoreAngleUsed) *radtodeqg) ]) ;
end

if (debug40a && GroinTransport)
if (GroinTransRight)
fprintf (['Trans over groin -- RT
From:',num2str (CalcCell), ' To:
', num2str (CalcCellPlusNext), '\n']);
elseif (GroinTransLeft)
fprintf ([ 'Trans over groin -- LT
From:',num2str (CalcCell), ' To:
', num2str (CalcCellPlusNext), '\n']l);
end
end

if (DoFlux)

409



% Call SedTrans
[VolumeIn, VolumeOut] = CEM SedTrans (CalcCell,
CalcCellPlusNext,
ShoreAngleUsed, MaxTrans, Y, WaveAngle,
Period, OffShoreWvHt,
MaxDepth, RefractStep, KBreak, TimeStep,
VolumeIn, VolumeOut,

UseVariableCERC, K, rho, rho s,porosity,GroinTransport, ...

GroinPermeability,GroinTipDepth, DiffShadowed, DiffPhi, DiffKb
,MaxVol, ...

A w,UseBreakDepthAsD LT, debugb6,debug40a,
debugdla) ;

if (debugba)

i1f ((CalcCell > TotalBeachCells) ||
(CalcCell+Next <= 0))
fprintf ('From: %i, To: %i, VolumelIn: %G,
VolumeOut: %G \n',CalcCell,CalcCellPlusNext,
VolumelIn (CalcCell), VolumeOut (CalcCell));
beep
pause
end
end

end

Q

end % end if in shadow is no

Q

end % end for loop

function [PercentFull, AllBeach, CellDepth] =
CEM DoOverwash (xfrom, yfrom, xto, yto,xintto,yintto,widthin,is
hore, ...

PercentFull,AllBeach,X,Y,CellDepth, DepthShoreface, LandHeigh
t,SurroundingAngle, TotalBeachCells, OWType, debug8, debuglOb)
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% CEM Function: given a cell where overwash is needed, move
sediment back
% for 'true' overwash based on shoreline angles

[DepthBB] = CEM GetOverwashDepth
(xto,yto,xintto, yintto, ishore, ...

PercentFull,CellDepth, X, Y, SurroundingAngle, DepthShoreface, T
otalBeachCells, OWType, debuglOb) ;

[

% calculated value of most that backbarrier ca nmove given
geometry (true, non-iterative solution)

if (DepthBB == DepthShoreface)
BBneed = MaxOver;

else

BBneed = (CritBWidth - widthin) / CellWidth / (1 -
(DepthBB / DepthShoreface));

end

if (BBneed <= MaxOver)
% do all overwash

delShore = BBneed * DepthBB / DepthShoreface;
delBB = BBneed;

else

Q

% only do overwash to max change)

delShore = MaxOver * DepthBB / DepthShoreface ;
delBB = MaxOver;

end
if (debuglOb)

fprintf (['** Overwash From X: ',num2str(xfrom),' Y:
', num2str (yfrom), ...
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' To: X: ',num2str(xto),' Y: ',num2str(yto),’
Width: ',num2str (widthin), '\n']):;
fprintf ([ 'DepthBB: ',num2str (DepthBB), ' BBNeed:
', num2str (BBneed), ...
' DelShore: ',num2str (delShore),' DelBB:
', num2str (delBB), '\n'1);
end

% Adjust PercentFull matrix

PercentFull (yto,xto) = PercentFull (yto,xto) + delBB;
PercentFull (yfrom, xfrom) = PercentFull (yfrom,xfrom) -
delShore;

% Adjust for empty and full cells
if (PercentFull (yto,xto) > 1)

[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull,AllBeach,CellDepth,xto, yto, LandH
eight, debug8) ;

end
if (PercentFull (yto,xto) < 0)

[PercentFull, AllBeach, CellDepth] =
CEM OopsImEmpty (PercentFull,AllBeach,CellDepth,xto,yto,Dept
hShoreface, debug8) ;

end

function [Coastline] =

CEM FindCoastline (PercentFull,AllBeach, InitBeach, Xmax, Ymax)
% CEM Function: finds the coastline from PercentFull and
AllBeach

Q

% Initialize

ShoreLength = (3*Ymax/2) - (Ymax/2+1);
Coastline = zeros (1, ShorelLength);
index = 1;

[e)

% Determine the shoreline
for v = (Ymax/2+1) : (3*Ymax/2)
X = Xmax-1;
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Xtop = Xmax;

% step back to where we encounter allbeach
while (AllBeach(y,x) == 'n'")

x = x-1;
end

% if on side of shape, need to average
if (PercentFull (y,x+2) > 0)

xtop = x+1;

while (PercentFull (y,xtop) > 0)
xtop = xtop + 1;

end
Xsave = X,
for i = (x+1) :xtop
xXsave = xsave + PercentFull (y,1i);
end

% otherwise Regular Beach Condition

else
xsave = x + PercentFull (y,x+1);
end
Coastline (index) = xsave - InitBeach + 0.5;
index = index + 1;

end

function [GroinRightOfBeach,GroinLeftOfBeach] =

CEM FindGroinBeachCells (X,Y,GroinCells, TotalBeachCells, Ymax
, debug40)

% CEM Function: Determines which beach cells have a
terminal groin on the

% right (downdrift) border.

%$% Initialize
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GroinRightOfBeach = zeros(l,TotalBeachCells);
GroinLeftOfBeach = zeros(l,TotalBeachCells);

%% Run loop
for i = 1l:TotalBeachCells

% Account for periodic boundary condtions
i

f (Y(i)-1 == 0)
YMinus = 2*Ymax;
else
YMinus = Y (1i)-1;

end

% Check to see if there is a groin on the right border
of the ith beach

% cell
if (GroinCells (Y (1i),X(1i)) == 1)

% You've found a beach cell with a terminal groin
on the right

[

% border

if (debug40)
fprintf (['Groin found right of beach x:

',num2str (X (1)), " ,y: ',num2str(Y(i)),'\n'l);
end
GroinRightOfBeach (i) = 1;
GroinLeftOfBeach (i+l) = 1;
end

% Check to see if there is a groin on the left border
of the ith beach
% cell
if (GroinCells (YMinus,X (1)) == 1)
% You've found a beach cell with a terminal groin
on the left

[e)

% border

if (debug40)
fprintf (['Groin found left of beach x:
',num2str (X (1)), ,y: ',num2str(Y(i)),'\n'l);
end
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GroinLeftOfBeach (i) = 1;
end

end

function [IsInShadow] = CEM FindIfInShadow (icheck, ShadMax,
AllBeach, PercentFull,

WaveAngle, X, Y, TotalBeachCells,CurrentTimeStep, Ymax)

% CEM Function: Function to determine if particular cell
xin,yin is in

[

% shadow. Returns a character 'y' if yes 'n' if no.

$ Initialize

$degtorad = pi/180; % Transform degrees to radians
radtodeg = 180/pi; % Transform radians to degrees
debug2a = 0; % local debugger
%debug2b = 0; % local debugger

% convert angle to a slope and the direction of steps
% note that for case of shoreline, positive angle will be
minus y direction

if (WaveAngle*radtodeg == 0.0)

Q

% unlikely, but make sure no div by zero
slope = 0.00001;

elseif (abs(WaveAngle*radtodeg == 90))
slope = 999.9;

else

slope abs (tan (WaveAngle)) ;
end

if (WaveAngle > 0)
ysign = -1;
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else
ysign = 1;
end

if (debug2a)

fprintf (['\nI: ',num2str (icheck),'-————————- X:
', num2str (X (icheck)), ...
' Y: ',num2str (Y (icheck)),' WaveAngle:
', num2str (WaveAngle*radtodeq), ...
' Slope: ',numZ2str(slope),' Sign:
',num2str (ysign), '\n'l);

end
% depending on local orientations, starting point will
differ

% so go through scenarios
xinint = X (icheck);
yinint = Y (icheck);

% Account for periodic boundary conditions
if (yinint == 1)
% on left boundary

yinintMinus = Y (TotalBeachCells);
yintintPlus = yinint+1l;

elseif (yinint == 2*Ymax)
% on right boundary

yintintPlus = Y (1),
yinintMinus = yinint-1;

else

Q

% regular situation

yinintMinus = yinint-1;
yintintPlus = yinint+1;
end
if ((AllBeach(yinint,xinint-1) == 'y') ||
((AllBeach (yinintMinus, xinint) == 'y') &&
(AllBeach (yinint+1l,xinint) == 'y')))
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% 'regular condition'

% plus 'stuck in the middle' situation (unlikely
scenario)

xin = xinint + PercentFull (yinint,xinint);
yin = yinint + 0.5;

if (debug2a)

fprintf(['-- Regular xin: ',num2str(xin),' vyin:
',num2str (yin), '\n']);
end
elseif (AllBeach(yinintMinus,xinint) == 'y')

o)

% on right side

xin = xinint + 0.5;
yin yinint + PercentFull (yinint,xinint);

if (debug2a)

fprintf(['-- Right xin: ',num2str(xin),' yin:
',num2str (yin), '\n']);
end
elseif (AllBeach(yintintPlus,xinint) == 'y')

o)

% on left side

xin = xinint + 0.5;
yin yinint + 1.0 - PercentFull (yinint,xinint);

if (debug2a)

fprintf (['-- Left xin: ',num2str(xin),' vyin:
',num2str (yin), '\n']);
end
elseif (AllBeach(yinint,xinint+1l) == 'y')

o)

% gotta be on the bottom now

xin xinint + 1 - PercentFull (yinint,xinint);
yin = yinint + 0.5;
if (debug2a)
fprintf(['-- Under xin: ',num2str(xin),' yin:
',num2str (yin), '\n']);
end
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else

o)

% debug ain't just an insect

fprintf (['Shadowstart Broke !!!! x: ', num2str (xinint),’'
v: ',num2str (yinint), '\n']l);
return;
end
X = xin;
y = yin;

while ((floor(x) < ShadMax ) && (y > Ymax/2) && (y <
3*Ymax/2))

NextXInt = floor(x) + 1;

if (ysign > 0)

NextYInt = floor(y) + 1;
else

NextYInt = ceil(y-1);
end

o)

% moving to next whole 'x' position, what is y

position?
Yup = y + (NextXInt - x)*slope * ysign;
DistanceUp = ((Yup - y)*(Yup - y) + (NextXInt -

X)* (NextXInt - x));

o)

% moving to next whole 'y' position, what is x

position?

Xside = x + abs (NextYInt - y) / slope;

DistanceSide = ((NextYInt - y)*(NextYInt - y) + (Xside
- X)*(Xside - x));

if (debug2a)
Sfprintf ([
end

if (DistanceUp < DistanceSide)

[e)

% next cell is the up cell

x = NextXInt;
Yup;

g
Il
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xtestint = NextXInt;
ytestint = floor(y);

if (debug2a)
fprintf (
end

else

o\

x = Xside;

y = NextY¥Int;

up ');

next cell i1s the side cell

xtestint = floor (x):;

ytestint = y +

if (debug2a)
fprintf (
end

end

o\°

if (debug2a)

o\

Now Test

o\°

'diamond'?

o)

quadrants

(ysign-1)/2;

side ');

If AllBeach is along the way, will we pass through

% Trick - if crossing through the diamond, will change

% Probably won't get to this one, though

if (AllBeach (ytestint,xtestint) == 'y')

o)

modular)

Q

% don't change

% use same approach to find exit (could make this

x' or 'y' and this will be ok

NextXInt = floor(x) + 1;

if (ysign > 0)

NextYInt
else

NextY¥Int
end

floor(y) + 1;

ceil (y-1);

Yup = y + (NextXInt-x)*slope * ysign;
((Yup - vy)*(Yup - y) + (NextXInt -

DistanceUp =
x)* (NextXInt - x));
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Xside = x + abs (NextYInt - y) / slope;
DistanceSide = ((NextYInt - y)* (NextYInt - y) +
(Xside - x)*(Xside - x));

if (DistanceUp < DistanceSide)

¢}

% next cell is the up cell

xout = NextXInt;
yout = Yup;

else

[

% next cell i1s the side cell

xout = Xside;
yout = NextYInt;

end

1f(( (xout-xtestint-0.5) * (x-xtestint-0.5) < 0 )
((yout-ytestint-0.5) * (y-ytestint-0.5) <

if (debug2a)
fprintf (' Shaddowed ")
end
IsInShadow = 'y';
return;
end
% Compare a partially full cell's x - distance to a
line projected */

o)

% from the starting beach cell's x-distance

*/

% This assumes that beach projection is in x-direction
(not too bad) */

elseif (PercentFull (ytestint,xtestint) > 0)

if ((AllBeach(ytestint,xtestint-1) == 'y') ||
((AllBeach (ytestint-1,xtestint) ==

(AllBeach (ytestint+1l, xtestint) == 'y')))
% 'regular' condition
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¢}

% plus 'stuck in the middle' situation
(unlikely scenario)

Xtest = xtestint +
PercentFull (ytestint, xtestint);
ytest = ytestint + 0.5;

if (xtest > (xin + abs(ytest-yin)/slope) )

IsInShadow = 'y';
return;
end
elseif (AllBeach(ytestint-1,xtestint) == 'y')

o)

% on right side
xtest = xtestint + 0.5;
ytest = ytestint +
PercentFull (ytestint, xtestint);

if (ytest > (yin + (xtest-xin) * slope))

IsInShadow = 'y';
return;
end
elseif (AllBeach (ytestint+l,xtestint) == 'y"')

o)

% on left side
xtest = xtestint + 0.5;
ytest = ytestint + 1.0 -
PercentFull (ytestint, xtestint) ;

if (ytest < (yin + (xtest-xin) * slope))

IsInShadow = 'y';
return;
end
elseif (AllBeach (ytestint,xtestint+l) == 'y');

Q

% gotta be on the bottom now

Xxtest = xtestint + 1 -
PercentFull (ytestint, xtestint) ;
ytest = ytestint + 0.5;

if (xtest < (xin + abs(ytest-yin)/slope) )
IsInShadow = 'y';
return;
end
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else

o)

% debug ain't just an insect

fprintf (['Shadows not responding in xin:
', num2str (xin), ' yin: ', ...
num2str (yin), ' xtestint:
', num2str (xtestint), ' ytestint: ',numZ2str(ytestint),’
Timestep:',num2str (CurrentTimeStep), '\n']);
end

end
end
IsInShadow = 'n';
return;

function WaveAngle = CEM FindWaveAngle

% CEM Function: calculates wave angle for given time step
% Initialize
flag = 1;
S 1 = 0;
index =

1;
% index2 =

0;

if (Waveln)
% Choose a random PDF bin
RandBin = rand(1l);

while (flag)
if (RandBin <= BinProbabilitiy (index))
AngleBin = WaveAngleBin max (index) ;

flag = 0;
break

end

index = index + 1;

end
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¢}

% Create a random angle fluctuation
AngleFluct = rand(1l);

¢}

% Calculate the offshore wave angle
WaveAngle = (AngleFluct * BinSize + (AngleBin - BinSize));

else

end

function WaveAngle =

CEM FindWaveAngleWavelIn (WaveMax,BinProbabilitiy,BinSize)
% CEM Function: calculates wave angle for given time step

if using an
imported wave PDF.

o\

% Constants

% radtodeg = 180/pi; % Transform radians to
degrees
degtorad = pi/180; % Transform degrees to radians

o)

$ Initialize
flag = 1;
index = 1;

% Choose a random PDF bin
RandBin = rand(1l);

while (flag)
if (RandBin <= BinProbabilitiy (index))
AngleBin = WaveMax (index) ;

flag = 0;
break

end

index = index + 1;

end

[e)

% Create a random angle fluctuation
AngleFluct = rand(l);

% Calculate the offshore wave angle
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Angle = (AngleFluct * BinSize + (AngleBin - BinSize));
WaveAngle = Angle*degtorad;

function [PercentFull, AllBeach, CellDepth, FixBeachFlag] =
CEM FixBeach (PercentFull, AllBeach,
CellDepth,GroinCells, ShadowXMax, DepthShoreface, ShorefaceSlo
pe,CellWidth, Xmax, Ymax, LandHeight, debug8, debug9)

% For CEM: Looks at entire data set, finds unattached
pieces of sand, and

% moves them back to the shore. This should take care of
floating bits of

sand as well as over/under filled beach pieces.

o° o\

o\

Required function files:
CEM OopsImFull.m
CEM OopsImFull.m

o\°

o\

%$fillcells3 = 0;
%sweepsign = '';
% debug9 = 0;

FixBeachFlag = 0;
RandNumber = rand(1l);

if (RandNumber*2 > 1)
sweepsign = 1;
if (debug9)
fprintf ('fixL ");
end
else
sweepsign =
if (debug9)
fprintf ('fixR "),
end
end

0;

FixXMax = ShadowXMax +
ceil (DepthShoreface/CellWidth/ShorefaceSlope) + 3;

if (FixXMax > Xmax)
FixXMax = Xmax-1;
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end

for x = FixXMax:-1:2
for i = 2:2*Ymax-1
if (sweepsign == 1)
y = 1;
else
y = (2*Ymax)-1i;
end

% Account for periodic boundary conditions

if (y == 1)
yMinus = 2*Ymax;
else
yMinus = y-1;
end
if (y == 2*Ymax)
yPlus = 1;
else
yPlus = y+1;
end

% ye old depth fix
if ((PercentFull(y,x) <= 0) && (CellDepth(y,x) >
DepthShoreface) ...

&& (CellDepth(y,x-1) == DepthShoreface))

if ((CellDepth(y,x+1) == DepthShoreface) &&
(CellDepth(y,x-1) == DepthShoreface) &&
(CellDepth (yPlus,x) == DepthShoreface))

% Fill hole
CellDepth(y,x) = DepthShoreface;
end
end

% Fix beaches that are too full
if (PercentFull(y,x) > 1)
if (debug9)
fprintf('too full (%i,%i) PF:
%G\n',x,y,PercentFull (y,x));

end
PercentFull (y,x+1) = PercentFull(y,x) - 1;
AllBeach (y,x+1) = 'n';



PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
end

% Take care of situations that shouldn't exist

% Empty cell (percent full < 0)
if (PercentFull (y,x) < 0)

AllBeach(y,x) = 'n';
if (debug® && (y ~= 0))
fprintf (['\nUnder 0 Percent X:
', num2str(x),"' Y: ',

num2str(y), ' Per:
', num2str (PercentFull(y,x)),'\n']);
end

[PercentFull, AllBeach, CellDepth] =
CEM OopsImEmpty (PercentFull, ...

AllBeach,CellDepth,GroinCells, x,y,DepthShoreface, Ymax, debug
8);

if (debug9)
fprintf (['Underzerofill (', num2str(x), "', "', num2str(y), ") '1);
end

end

% Overfull cell (percent full > 1)
if (PercentFull(y,x) > 1)

AllBeach(y,x) = 'y';

CellDepth(y,x) = -LandHeight;

if (debug9)

fprintf (['\nOver 100 Percent X:
', num2str(x)," Y: ', ...
num2str(y),' Per:

',num2str (PercentFull(y,x)),'\n']);

end

[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...

AllBeach,CellDepth,GroinCells, x,y,LandHeight, Ymax, debug8) ;
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end

if (((PercentFull(y,x) >= 0) && (PercentFull (y,x)
1)) && (AllBeach(y,x) == 'y'))
AllBeach(y,x) = 'n';
CellDepth(y,x) = -LandHeight;

if (debug9 && y ~= 0)
fprintf ([ '\nALLBeachProb X: ', num2str(x),’
Y: ',num2str(y),'\n'l);
end
end

o)

% Take care of 'loose' bits of sand
fillcells3 = 0;

if ((PercentFull(y,x) ~= 0) && (PercentFull (y,x-1)

< 1) &&

(PercentFull (y,x+1) < 1) &&
(PercentFull (yPlus,x) < 1) &&...

(PercentFull (yMinus,x) < 1) &&
(AllBeach(y,x) == "'n'"))

% Beach in cell, but bottom, top, right, and

left neighbors not all full

if (debug9 && y ~= 0)

<

fprintf (['\nFB Moved loose bit of sand, X:

', num2str(x), ...
''Y: ',num2str(y),' Per:
', num2str (PercentFull (y,x))1);
end

% distribute to partially full neighbors

if ((PercentFull(y,x-1) < 1) &&
(PercentFull (y,x-1) > 0))
fillcells3 = fillcells3 + 1;
end
if ((PercentFull (y,x+1) < 1) &&
(PercentFull (y,x+1) > 0))
fillcells3 = fillcells3 + 1;
end
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if ((PercentFull (yMinus,x) < 1) &&

(PercentFull (yMinus,x) > 0))

fillcells3 = fillcells3 + 1;
end
if ((PercentFull (yPlus,x) < 1) &&

(PercentFull (yPlus,x) > 0))

fillcells3 = fillcells3 + 1;
end

if (fillcells3 > 0)

if ((PercentFull(y,x-1) < 1) &&

(PercentFull (y,x-1) > 0))

+

PercentFull (y,x-1) = PercentFull (y,x-1)
(PercentFull (y,x)/fillcells3);
if (debug9)
fprintf (' MOVEDBACK"') ;
end

end
if ((PercentFull (y,x+1) < 1) &&

(PercentFull (y,x+1) > 0))

+

PercentFull (y,x+1) = PercentFull (y,x+1)
(PercentFull (y,x)/fillcells3);
if (debug9)
fprintf (' MOVEDUP') ;
end

end
if ((PercentFull (yMinus,x) < 1) &&

(PercentFull (yMinus, x) > 0))

PercentFull (yMinus, x) =

PercentFull (yMinus, x) + (PercentFull(y,x)/fillcells3);

if (debug9)
fprintf (' MOVEDLEFT') ;
end
end
if ((PercentFull (yPlus,x) < 1) &&

(PercentFull (yPlus,x) > 0))

PercentFull (yPlus,x) =

PercentFull (yPlus,x) + (PercentFull(y,x)/fillcells3);

if (debug9)
fprintf (' MOVEDRIGHT') ;
end
end
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else

fprintf (['Loner fixbeach breakdown - mass
disintegrated x: '...

,num2str (x), "' y: ',num2str(y),'\n']);

end
PercentFull (y,x) = 0;
AllBeach(y,x) = 'n';
CellDepth(y,x) = DepthShoreface;
if (debug9)

fprintf('\n'");
end

o)

% If we have overfilled any of the cells in
this loop, need to OopsImFull ()

if (PercentFull(y,x-1) > 1)
[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...
AllBeach,CellDepth,GroinCells, (x-
1),y,LandHeight, Ymax, debug8) ;
if (debug9)
fprintf (' Below Overfilled\n'):;
end
end
if (PercentFull (yMinus,x) > 1)
[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...

AllBeach,CellDepth,GroinCells, (x), (yMinus), LandHeight, Ymax,
debug8) ;
if (debug9)
fprintf (' Left side Overfilled\n');
end
end
if (PercentFull (yPlus,x) > 1)
[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...

AllBeach,CellDepth,GroinCells, (x), (yPlus), LandHeight, Ymax, d
ebug8) ;
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if (debug9)
fprintf (' Right Side Overfilled\n');
end
end
if (PercentFull (yPlus,x+1) > 1)
[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...

AllBeach,CellDepth,GroinCells, (x+1), (yPlus), LandHeight, Ymax
, debug8) ;
if (debug9)
fprintf (' Top Overfilled\n');
end
end

end

o\

Fix situations that break shadow sweep
% Added for v2.15.1

if ((PercentFull(y,x) > 0) && (PercentFull (y,x) <

1))
% We have a beach cell
if ((AllBeach(y,x-1) == 'n') &&
(PercentFull (y,x+1) == 0))
% We have stacked beach cells
if ((PercentFull (yMinus,x) == 0) &&
(PercentFull (yPlus,x) == 0)...
&& ((PercentFull (yMinus,x-1) == 0)

&& (PercentFull (yMinus,x-1) == 0)))

% We have stacked beach cells sticking
out

Q

% Move the beach back to correct

PercentFull (y,x-1) = PercentFull (y,x-1) +
PercentFull (y, x);
AllBeach(y,x) = 'n';
CellDepth(y,x) = DepthShoreface;
if (debug9)
fprintf (' MOVEDBACK') ;
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end
end
end

FixBeachFlag = 1; % Run FixBeach again just to
be sure

end % end added fix for v2.15.1
end

end

function
[InDiffShadow,GroinTipX, GroinTipY,DiffPhi b,DiffK b] =
CEM GroinShadowing (X, ...

WaveAngle, Of fShoreWvHt, Period,MaxDepth, GroinData, GroinStart
, TotalBeachCells, ...

DeanProfileA,RefractStep, PeriodicCopyGroins, Ymax,UseGroinDi
ffraction, ...

UseGroinShadowBlock,UseGeometricDiffAng, PosMWD 0, NegMWD 0,C
ellWidth, KBreak, debugb)

% CEM Function: Creates shadow zones from groins to
simulate
% diffraction of waves

Q

% Initialize

degtorad = pi/180; % Transform
degrees to radians

InDiffShadow = zeros(l,TotalBeachCells); % Indicator if
cell is in diffraction shadow (0/1)

DiffPhi b = zeros(l,TotalBeachCells); % Breaking wave

angle under diffraction (angle from right boundary of cell
to groin tip)

DiffK b = zeros(l,TotalBeachCells); % Diffraction
coefficient at the right boundary all beach cells
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% Make the new groin data matrix (that accounts for
periodic bounaries)
if (PeriodicCopyGroins == 0)

NewGroinData =
zeros (length (GroinData(:,1)), length (GroinData(l,:)))
NewGroinData(:,2) = GroinData(:,2);
NewGroinData(:,1) = GroinData(:,1) + (Ymax/2);
elseif (PeriodicCopyGroins)
beep

fprintf ('ERROR: Periodic Boundary Copying of Groins NOT
YET FUNCTIONAL\n');
pause

NewGroinData =

zeros (length (GroinData(:,1))*2, length (GroinData(l,:)));
NewGroinData ((Ymax/2)+1l: (3*Ymax/2),1) =
GroinData(:,1) + (Ymax/2):;

o\°

o\

% NewGroinData ((Ymax/2)+1l: (3*Ymax/2),2) =
GroinData(:,2);

% NewGroinData (:,1) =
GroinY (l:length (GroinData(:,1))*2);

% NewGroinData (1:1length (GroinData(:,1)),2) =
GroinDbata(:,2);

% NewGroinData (length (GroinData(:,1))+1l:end,2) =
GroinData(:,2);

end

% Find the coordinates (x,y relative to PercentFull) for
tips of all groins

% Qualifier: make sure there is no beach above it (for the
moment, I'm

% going to assume that CEM FindIfInShadow already takes
care of this)

NumberOfGroins = length (NewGroinData (:,1));
X coordinate of

%

GroinTipX = zeros (1l,NumberOfGroins);
tips of groins
GroinTipY = zeros(l,NumberOfGroins); % Y corodinate of

tips of groins

for GroinNo = 1:NumberOfGroins
GroinTipY (GroinNo) = NewGroinData (GroinNo,1);
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GroinTipX (GroinNo) = NewGroinData (GroinNo,2) +
GroinStart;
end

if (UseGroinDiffraction)

if (WaveAngle >= 0) % Positive angle

% Wave moving left to right (transport should be
right)

for i = 1:NumberOfGroins
% Calculate the cross-shore distance from
shoreline to groin tip
CSGroinLength = GroinTipX (i) - X (GroinTipY (1))
% Cross-shore distance (in cells) from groin tip to
shoreline

if (CSGroinLength > 0)
% Groin 1is past the shorline; it causes

wave diffraction

% Calcalute the water depth at the groin
tips using the mean cross-shore length of the groins

% Assume that the bathymetry follows the
Dean profile

DepthStop = DeanProfileA * ((CellWidth *
CSGroinLength) ~ (2/3));

ShoreAngle = 0; % Assume that
refraction occurs over contours parallel to y-axis

% Determine the wave angle (WvAngle) at the
groin tip

[WvHeight,WaveAngleAtGroinTip] =
CEM AWTRefractToDepth (WaveAngle, OffShoreWvHt, Period, MaxDept
h, DepthStop, ShoreAngle,RefractStep, debugb) ;

% Determine the mean wave angle at the
groin tip

[WvHeight, PosMWD] =
CEM AWTRefractToDepth (PosMWD 0,OffShoreWvHt, Period,MaxDepth
, DepthStop, ShoreAngle, RefractStep, debugb) ;
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% Calculate the longshore length of wave
shadow

LSShadow = floor (CSGroinLength *
tan (abs (WaveAngleAtGroinTip))); % Longshore extent of
diffraction shadow (in cells, down up)

% Find the beginning and ending cells of
shadow

ShadowStart = GroinTipY (i) + 1; % Beginning
cell of shadow (left to right)

ShadowEnd = ShadowStart + LSShadow - 1; %
Ending cell of shadow (left to right)

% Declare which cells in are the shadow
InDiffShadow (ShadowStart:ShadowEnd) = 1;

% Determine the diffraction coefficient
(DiffK b) and

% breaking wave angle (DiffPhi b) for every
cell in shadow

for cell = ShadowStart:ShadowEnd

\O

5 If UseGroinShadowBlock, block wave
energy in shadow
if (UseGroinShadowBlock)

DiffPhi b (cell) = 0;
DiffK b(cell) = 0;

else
% Determine the longshore distance
from break point to groin
% Right boundary of cell used as
break point (LST right)

LSDist = cell - GroinTipY (i)

% Find the diffraction coefficient
% First, we need theta (I believe
this is the angle between the mean wave direction and the

wave ray
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% at the groin tip). Theta should
be negative i1if wave angle is less than MWD

theta = WaveAngleAtGroinTip -
PosMWD;

% Calculate the diffraction
coefficient
% Use Kamphius (2010)
if (theta <= 0)
DiffK b(cell) = 0.71 -
(0.0093*theta) + (0.000025* (theta”"2)):;
elseif (theta <= 40*degtorad)
DiffK b(cell) = 0.71 +
0.37*sin(-theta);
else
DiffK b(cell) = 0.83 +
0.17*sin(-theta);
end

% Find the breaking wave angle
if (UseGeometricDiffAng)

% Gemetrically determine the
breaking wave angle

DiffPhi Db (cell) =
atan (LSDist/CSGroinLength) ;

else

o)

% Use Eqg. 15.11 Kamphius (2010)

% First, we need the breaking
wave angle without diffraction

% Refract assuming zero wave
angle (using

% another wave angle in the
shadow zone can get

% messy)

[WvHeight, Alpha b] =
CEM AWTRefractToBreak (WaveAngle, OffShoreWvHt, Period, MaxDept
h,KBreak, 0,RefractStep, debugb) ;

% Calculate the breaking wave
angle
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DiffPhi b(cell) = Alpha b *
(DiffK b(cell) .”0.375) *...
( (2*LSDhist) /
(CSGroinLength) * ((tan(PosMWD)) + (tan(0.88*Alpha b))) );

end

end % End if UseGroinShadowBlock
end % end loop for shadowed cells

end % end if groin length > 0

[

end % End loop for all groins

o)

elseif (WaveAngle < 0) % Negative angle

% Wave moving right to left (transport should be
left)

for i = NumberOfGroins:-1:1

% Calculate the cross-shore distance from
shoreline to groin tip

CSGroinLength = GroinTipX (i) - X (GroinTipY (1))
% Cross-shore distance (in cells) from groin tip to
shoreline

if (CSGroinLength > 0)
% Groin is past the shorline; it causes
wave diffraction

% Calcalute the water depth at the groin
tips using the mean cross-shore

% length of the groins

% Assume that the bathymetry follows the
Dean profile

DepthStop = DeanProfileA * ((CellWidth *
CSGroinLength) ~ (2/3));

ShoreAngle = 0; % Assume that
refraction occurs over contours parallel to y-axis

% Determine the wave angle (WvAngle) at the
groin tip
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[WvHeight, WvAngle] =
CEM AWTRefractToDepth (WaveAngle, OffShoreWvHt, Period, MaxDept
h, DepthStop, ShoreAngle,RefractStep, debugb) ;

% Determine the mean wave angle at the
groin tip

[WvHeight, NegMWD] =
CEM AWTRefractToDepth (NegMWD 0,OffShoreWvHt, Period,MaxDepth
, DepthStop, ShoreAngle, RefractStep, debugb) ;

% Calculate the longshore length of wave
shadow

LSShadow = floor (CSGroinLength *
tan (abs (WvAngle))); % Longshore extent of diffraction
shadow (in cells, rounded up)

% Find the beginning and ending cells of
shadow

ShadowEnd = GroinTipY¥(i); % Ending cell of
shadow (left to right)

ShadowStart = GroinTipY (i) - LSShadow + 1;
% Beginning cell of shadow (left to right)

% Declare which cells in are the shadow
InDiffShadow (ShadowStart:ShadowEnd) = 1;
% Geometrically determine the breaking wave
angle for every

% beach cell in shadow
for cell = ShadowStart:ShadowEnd

\O

s If UseGroinShadowBlock, block wave
energy in shadow
if (UseGroinShadowBlock)

DiffPhi b (cell) = 0;
DiffK b(cell) = 0;

else
% Determine the longshore distance
from break point to groin

% Right boundary of cell used as
break point (LST right)
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LSDist = GroinTipY (i) - cell + 1;

Find the diffraction coefficient
First, we need theta (I believe

o\

o\°

this is the angle

o\

between the mean wave direction
and the wave ray

o\

at the groin tip. You'll need to
refract the

% wave to the groin tip.
theta = abs (DiffPhi b(cell)) -

abs (NegMWD) ;

o°

Theta should be negative 1f wave
angle 1is less

o°

than MWD

Calculate the diffraction

o\

coefficient

o\

Use Kamphius (2010)
if (theta <= 0)
DiffK b(cell) = 0.71 -
(0.0093*theta) + (0.000025* (theta”2));
elseif (theta <= 40*degtorad)
DiffK b(cell) = 0.71 +
0.37*sin(-theta);
else
DiffK b(cell)

0.83 +
0.17*sin(-theta);
end

% Find the breaking wave angle
if (UseGeometricDiffAng)

DiffPhi b (cell) =
atan (LSDist/CSGroinLength) ;

else
% Use Eg. 15.11 Kamphius (2010)

% First, we need the breaking
wave angle without diffraction
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% Refract assuming zero wave
angle (using

% another wave angle in the
shadow zone can get

% messy)

[WvHeight,Alpha b] =
CEM AWTRefractToBreak (WaveAngle, OffShoreWvHt, Period,MaxDept
h,KBreak, 0,RefractStep,debugb) ;

Alpha b = abs (Alpha b);

% Calculate the breaking wave

angle
DiffPhi b (cell) = -Alpha b *
(DiffK b(cell) .”0.375) * ( (2*LSDist) / (CSGroinLength) *
((tan (abs (NegMwWD))) + (tan(0.88*abs(Alpha b)))) );
end
end % End if UseGroinShadowBlock
end % end loop for shadowed cells
end % end if groin length > 0
end % end loop for all groins
else

Q

% wave angle is neither positive nor negative (how
did this happen?!?!)
fprintf ('GroinShadowing Broke!!!!\n")
beep
pause
end

else
% Not using groin diffraction

% All pertinent matrcies should already be zero

end
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function [PercentFull, CellDepth, AllBeach, Age] =
CEM InitConds (PercentFull, ...

CellDepth,AllBeach,Age, InitialDepth, InitBeach, InitBWidth, Ce
11width, ...

ShelfSlope, LandHeight, DepthShoreface,InitialSmooth, InitialP
ert, ...

InitCType, Xmax, Ymax, StartWithGaussian, GaussMult, GaussSigma,
GaussCenter)

% Function that makes the initial conditions for the MATLAB
version of the
% Coastline Evolution Model (CEM)

fprintf ('Condition Initial \n');

if (InitCType == 0)
% Create regular initial conditions - beach backed by
sandy island

for y = 1:2*Ymax
for x = 1l:Xmax
CellDepth(y,x) = InitialDepth + ((x-InitBeach)
* CellwWidth * ShelfSlope);

if (x < InitBeach)

PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
CellDepth(y,x) = -LandHeight;
elseif (x == InitBeach)
if (InitialSmooth || StartWithGaussian)
PercentFull(y,x) = .5;
else
PercentFull (y,x) = rand(l);
end
AllBeach(y,x) = 'n';
CellDepth(y,x) = -LandHeight;
elseif (x > InitBeach)
PercentFull (y,x) = 0;

440



AllBeach(y,x) = 'n';

if (CellDepth(y,x) < DepthShoreface)

CellDepth(y,x) = DepthShoreface;
end
else
fprintf (['"WTE!?! X: ',num2str(x),' Y:
',num2str(y),"' Per: ',PercentFull (y,x)]1);
beep
return
end
Age(y,x) = 0;
end
end
elseif (InitCType == 1)

% Create a simple barrier type initial condition -
island backed by
% lagoon at slope of shelf

for y = 1:2*Ymax
for x= 1:Xmax

CellDepth(y,x) = InitialDepth + ((x-InitBeach)
* CellwWidth * ShelfSlope);

if (CellDepth(y,x) <= 0)
% This must be land due to the continental
shelf

Q

% intersection

PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
CellDepth(y,x) = -LandHeight;

elseif (x > InitBeach)
% Shoreward of beach - enforce
ShorefaceDepth if necessary

PercentFull (y,x) = 0;
AllBeach(y,x) = 'n';
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if (CellDepth(y,x) < DepthShoreface)
CellDepth(y,x) = DepthShoreface;
end

elseif (x == InitBeach)
% Beach cells

if (InitialSmooth || StartWithGaussian)
PercentFull (y,x) = 0.5;

else
PercentFull (y,x) = rand(1l);

end

AllBeach(y,x) = 'n';

CellDepth(y,x) = -LandHeight;

elselif ((x < InitBeach) && (x > InitBeach -

InitBWidth - 1))
% Island area

PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
CellDepth(y,x) = -LandHeight;
elseif (x == InitBeach - InitBWidth - 1)

% Back of barrier

if (InitialSmooth || StartWithGaussian)
PercentFull (y,x) = 0.5;

else
PercentFull (y,x) = rand(1l);

end

AllBeach(y,x) = 'n';

CellDepth(y,x) = -LandHeight;

elseif (x < InitBeach - InitBWidth - 1)
% Lagoon at depth of shelf slope

PercentFull (y,x) = 0;
AllBeach(y,x) = 'n';

end

if (PercentFull(y,x) > 1)
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fpritnf(['Yo,
PercentFull (',num2str(y), "', ',num2str(x),') is greater than
1rrrryy;
end

Age (y,x) = 0;
end
end

end

% Make the initial perturbation
if (InitialPert)

% Establish perturbation parameters
PWidth = 20;

PHeight = 20;

PYstart = 40;

if (InitialPert == 1)
% Square perturbation

% Fill all beach areas
for x = InitBeach: (InitBeach + PHeight)
for y = PYstart: (PYstart + PWidth)
PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
end
end
% PercenFull Top
for y = (PYstart -1):(PYstart + PWidth +1)
PercentFull (y, (InitBeach + PHeight + 1)) =

rand (1) ;
end
% PercentFull Sides
for x = InitBeach: (InitBeach + PHeight)
PercentFull (PYstart-1,x) = rand(l);
PercentFull ((PYstart + PWidth + 1),x) =
rand (1) ;
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end

elseif (InitialPert == 2)

¢}

% Steep point perturbation

X = InitBeach;
PercentFull (17, x) 0.8;
PercentFull (18,x) = 1.0;
AllBeach(18,x) = 'y';
PercentFull (19,x) = 0.8;
X = InitBeach + 1;
PercentFull (17, x) 0.6;
PercentFull (18,x) = 1.0;
AllBeach (18,x) = 'y';
PercentFull (19,x) = 0.6;
X = InitBeach + 2;
PercentFull (17,x) = 0.2;
PercentFull (18,x) = 1.0;
AllBeach (18,x) = 'y';
PercentFull (19,x) = 0.2;
X = InitBeach + 3;
PercentFull (18,x) = 0.3;

end
end

% Make the Gaussian coastline
if (StartWithGaussian)

% Create the Gaussian Function

y = 0:.1:Ymax;
GaussianFunction = GaussMult.* (1/GaussSigma*sqgrt (2*pi))
.* exp(-.5 .* ((y - GaussCenter)/GaussSigma) ."2);
GaussianCoastline = zeros(l,Ymax);
for 1 = 1l:Ymax
GaussianCoastline (i) = GaussianFunction (y==i);
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end

o)

% Translate the function into computational arrays for
CEM
ii = 1; % Placekeep for GaussianCoastline

for v = (Ymax/2)+1: (3*Ymax/2)
xBeachPos = InitBeach + 0.5 +
GaussianCoastline (ii);
xCell = floor (xBeachPos);

[

% Create computational cells for beach cell

location
PercentFull (y,xCell) = xBeachPos - xCell;
AllBeach(y,xCell) = 'n';
CellDepth(y,xCell) = -LandHeight;

% Create computational cells for cells behind beach
% Do this just to be sure

PercentFull (y,1: (xCell-1)) = 1;
AllBeach (y,1: (xCell-1)) = 'y';
CellDepth(y,1: (xCell-1)) = -LandHeight;

% Prepare for next iteration
ii = 1i+1;
end

end

function [PercentFull, CellDepth, AllBeach, Age] =
CEM InitCondsFromLine (InputLine, ...

InitialDepth, InitBeach,CellWidth, ShelfSlope, LandHeight, Dept
hShoreface, ...

UsePeriodicBoundaries, InitialStraigthBoundaries, Xmax, Ymax)

% CEM Function: Makes the initial conditions for CEM if
starting from an

% 1input coastline

% Initialize local variables

loc debug = 0;
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% Initialize overall shoreface configquation arrays

AllBeach = char (ones (2*Ymax,Xmax) * 'n'); % Flag
indicating of cell is entirely beach ('y'/'n'")

PercentFull = zeros (2*Ymax,Xmax) ; % Fractional amount of
shore cell full of sediment

Age = zeros (2*Ymax,Xmax) ; % Age since cell was
deposited

CellDepth = zeros (2*Ymax,Xmax) ; % Depth array (m)

o)

% Set up CellDepth first (assuming that the average beach
position is x =

o)

% InitBeach

for yl = (Ymax/2+1): (3*Ymax/2);
for x1 = 1:Xmax
CellDepth(yl,x1) = InitialDepth + ((x1-InitBeach)
CellWidth * ShelfSlope);
end
end

[

% Loop for all coastline positions
for LineCell = l:length(InputLine)

o\

Find the vy (longshore) coordinate of the coastline
= LineCell + (Ymax/2);

=

o\°

Find the x (cross-shore) coordinate of the coastline
= floor (InputLine(LineCell) + 0.5) + InitBeach;

X

o\°

Fill in the configuration arrays
Fill in the coastline cells first

o°

PercentFull (y,x) = InputlLine(LineCell) - x + InitBReach
+ 0.5;

AllBeach(y,x) = 'n';

CellDepth(y,x) = -LandHeight;

% Fill in the beach cells

PercentFull (y,1l:x-1) = 1;
AllBeach(y,1l:x-1) = 'y';
CellDepth(y,1l:x-1) = -LandHeight;

[e)

% Fill in the ocean cells
PercentFull (y,x+1:Xmax) = 0;
AllBeach(y,x+1:Xmax) = 'n';
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end

% Run CellDepth Correction

for y2 = (Ymax/2+1): (3*Ymax/2);
for x2 = 1:Xmax

if ((CellDepth(y2,x2) < DepthShoreface) &&
(AllBeach(y2,x2) == 'n') && (AllBeach(y2,x2-1) == 'n'"))
CellDepth(y2,x2) = DepthShoreface;
end
end
end

% Periodic Boundary Copy
if (InitialStraigthBoundaries)

[PercentFull, CellDepth, AllBeach, Age] =
CEM StraightBoundaries (PercentFull,CellDepth,AllBeach,Age,Y
max) ;

elselif (UsePeriodicBoundaries)

[PercentFull, CellDepth, AllBeach, Age] =
CEM PeriodicBoundaryCopy (PercentFull, ...
CellDepth,AllBeach, Age, Xmax, Ymax) ;

end

% Debug plots
if (loc_debug)
figure;
imagesc (PercentFull) ;
figure;
imagesc (CellDepth) ;
end

function

CEM InitialPert (PercentFull,AllBeach, InitBeach,InitialPert)
% Function that makes the initial perturbation in the
coastline for the

% MATLAB version of the Coastline Evolution Model (CEM)
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% Establish perturbation parameters

PWwidth = 4;
PHeight = 4;
PYstart = 20;

if (InitialPert == 1)

o)

% Square perturbation
% Fill all beach areas
for x = InitBeach: (InitBeach + PHeight)
for y = PYstart: (PYstart + PWidth)
PercentFull (y,x) = 1;
AllBeach(y,x) = 'y';
end
end
% PercenFull Top
for y = (PYstart -1):(PYstart + PWidth +1)
PercentFull (y, (InitBeach + PHeight + 1)) = rand(1l);
end

% PercentFull Sides
for x = InitBeach: (InitBeach + PHeight)

PercentFull (PYstart-1,x) = rand(1l);

PercentFull ((PYstart + PWidth + 1),x) = rand(l);
end

elseif (InitialPert == 2)

o)

% Steep point perturbation

x = InitBeach;

PercentFull (17, x) 0.8;
PercentFull (18,x) = 1.0;
AllBeach(18,x) = 'y';
PercentFull (19,x) = 0.8;
X = InitBeach + 1;
PercentFull (17, x) 0.6;
PercentFull (18,x) = 1.0;
AllBeach (18,x) = 'y';
PercentFull (19,x) = 0.6;
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X = InitBeach + 2;

PercentFull (17, x) 0.2;
PercentFull (18,x) = 1.0;
AllBeach(18,x) = 'y';
PercentFull (19,x) = 0.2;
X = InitBeach + 3;
PercentFull (18,x) = 0.3;

end

function [MassCurrent] =

CEM MassCount (PercentFull, Xmax, Ymax,UsePeriodicBoundaries)
% CEM Function: Counts the total volume occupied by beach
cells;

% Uses same algorhythm as AdjustShore and returns the total
sum

% Initialize
Mass = 0;

% Determine limits
if (UsePeriodicBoundaries)

yLow = (Ymax/2)+1;

yHigh = (3*Ymax/2);
else

yLow = 1;

yHigh = 2*Ymax;

end

Q

% Run through all cells and sum up the mass
for x = 1l:Xmax
for y = (yLow:yHigh)

Mass = Mass + PercentFull (y,x);

end
end

MassCurrent = Mass;

449



function [MassBetweenPoints] =
CEM MassCountBetweenPoints (MassCountPoints, PercentFull, Xmax
, Ymax)

% CEM Function: Counts the total volume occupied by beach
cells between

two specified longshore points

% Uses same algorhythm as AdjustShore and returns the total
sum

o\

o)

% Initialize
NumRuns = length (MassCountPoints(:,1));
MassBetweenPoints = zeros (1,NumRuns) ;
% Run through every count point
for 1 = 1:NumRuns
% Reset the mass count
Mass = 0;
% Determine limits
yLow = MassCountPoints (i, 1)+ (Ymax/2);
yHigh = MassCountPoints (i, 2)+ (Ymax/2) ;

Q

% Run through all cells and sum up the mass
for x = 1l:Xmax
for y = (yLow:yHigh)

Mass = Mass + PercentFull (y,x);

end
end

MassBetweenPoints (i) = Mass;

end

end
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function [X, Y, TotalBeachCells] =

CEM MATLABFindBeachCells (PercentFull,AllBeach, InitBeach, Xma
X, Ymax)

% CEM Function: Finds the location of beach cells from
PercentFull. This

% function is made specfically for the MATLAB version of
CEM.

%% Begin Function

% Find which PercentFull cells are beach cells
[row,col] = find((PercentFull > 0) & (PercentFull < 1));

% Sort the beach cells by row (y/cross-shore position)
[row sorted,row order] = sort (row);
col sorted = col(row order,:);

% Save output variables
= col sorted;

X
Y row_sorted;

TotalBeachCells = length(Y);

% Make sure that X and Y coordinates go from left to right
in domain
Determine the coastline

o)
°
o)

°

Initialize
ShoreLength = 2*Ymax;
Coastline = zeros (1, ShoreLength);
index = 1;

Q

% Determine the shoreline
for y = 1:2*Ymax

x = Xmax-1;

Xtop = Xmax;

% step back to where we encounter allbeach
while (AllBeach(y,x) == 'n')

x = x-1;
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end

% if on side of shape, need to average
if (PercentFull (y,x+2) > 0)

xtop = x+1;

while (PercentFull (y,xtop) > 0)
xtop = xtop + 1;

end
xsave = X;
for i = (x+1) :xtop
xsave = xsave + PercentFull(y,1i);
end

% otherwise Regular Beach Condition

else
xsave = x t+ PercentFull (y,x+1);
end
Coastline (index) = xsave - InitBeach + 0.5;
index = index + 1;

o)

end % end shoreline determination

% Determine the derivative of the coastline wrt x
DerivCoastline = diff (Coastline);

% Go through all X & Y coordinates to determine the
location of stacked

% beaches
for 1 = l:length(DerivCoastline)-1

if (Y(i) == Y (i+1))
% We have a stacked beach (2 beach cells with same
y coordinates)
% Determine the direction of shoreline change in
this location
if (DerivCoastline(Y(i)) > Q)
% Positive derivative
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DerivPositive = 1;

elseif (DerivCoastline(Y (1)) < 0)
DerivPositive = 0;
else
fprintf ('"WTF?!?! Zero derivative at a stacked
beach?!?\n") ;
beep
pause
return
end
if ((DerivPositive) && (col sorted(i) >

col sorted(i+l)))
% Coastline going up but X coordinates going

down
X (i) = col sorted(i+l);
X(i+l) = col sorted(i);
elseif ((DerivPositive == 0) && (col sorted(i) <

col sorted(i+l)))

% Coastline going down but X coordinates going
up

X (i) = col sorted(i+l);
X(i+1) = col sorted(i);

else
% Stacked coastline, but it should be in the
right order

Q

% Do nothing
end
end

end

function [PercentFull, AllBeach, CellDepth] =
CEM OopsImEmpty (PercentFull,AllBeach,CellDepth,GroinCells, x
, v, DepthShoreface, Ymax, debug8)

% CEM function: If a cell is under-full, this will find
source for
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% desparity and move brach in

% Initialize

emptycells = 0;

emptycells2 = 0;

GroinRight = 0; % Flag indicating groin to the right of
PercentFull (y, x)

GroinLeft = 0; % Flag indicating groin to the left of
PercentFull (y, x)

if (debug8)
fprintf (['\n OOPS I AM EMPTY! X: ',num2str (x),'
Y: ', ...
num2str(y), ' Per: ',num2str (PercentFull(y,x))]);
end

% Account for periodic boundary conditions

if (y == 1)
yMinus = 2*Ymax;
else
yMinus = y-1;
end
if (y == 2*Ymax)
yPlus = 1;
else
yPlus = y+1;
end

Q

% Figure out the position of groins so that no sediment is
redistrubted
% over them
if (GroinCells(y,x) == 1)
GroinRight = 1;
end
if (GroinCells (yMinus,x) == 1)
GroinLeft = 1;
end

Q

% find out how many AllBeaches to take from

if (AllBeach(y,x-1) == 'y")
emptycells = emptycells + 1;
end
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if (AllBeach(y,x+1) == 'y')
emptycells = emptycells + 1;

end
if ((AllBeach(yMinus,x) == 'y') && (GroinLeft == 0))
emptycells = emptycells + 1;
end
if ((AllBeach(yPlus,x) == 'y') && (GroinRight == 0))
emptycells = emptycells + 1;
end
if (emptycells > 0)
% Move sediment
if (AllBeach(y,x-1) == 'y'")
PercentFull(y,x 1) = PercentFull(y,x-1) +
(PercentFull (y, x) /emptycells) ;
AllBeach(y,x 1) = 'n';
if (debug8)
fprintf (' MOVEDBACK') ;
end
end
if (AllBeach(y,x+1l) == 'y'")
PercentFull (y,x+1l) = PercentFull (y,x+1) +
(PercentFull (y, x) /emptycells) ;
AllBeach(y,x 1) = 'n'";
if (debug8)
fprintf (' MOVEDUP');
end
end
if ((AllBeach(yMinus,x) == 'y') && (GroinLeft == 0))
PercentFull (yMinus, x) = PercentFull (yMinus,x) +
(PercentFull (y, x) /emptycells) ;
AllBeach(yMlnus xX) = 'n';
if (debug8)
fprintf (' MOVEDLEFT');
end
end
if ((AllBeach(yPlus,x) == 'y') && (GroinRight == 0))
PercentFull(yPlus x) = PercentFull (yPlus,x) +
(PercentFull (y, x) /emptycells) ;
AllBeach(yPlus,x) = 'n';
if (debug8)

fprintf (' MOVEDRIGHT');
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end
end
% end if (emptycells > 0)
else
% No full neighbors, so take away from partially full
neighbors

if (PercentFull(y,x-1) > 0)
emptycells?2 = emptycells2 + 1;

end

if (PercentFull (y,x+1) > 0)
emptycells?2 = emptycells2 + 1;

end

if ((PercentFull (yMinus,x) > 0) && (GroinLeft == 0))
emptycells?2 = emptycells2 + 1;

end

if ((PercentFull (yPlus,x) > 0) && (GroinRight == 0))
emptycells?2 = emptycells2 + 1;

end

if (emptycells2 > 0)

if (PercentFull(y,x-1) > 0)
PercentFull (y,x-1) = PercentFull (y,x-1) +
(PercentFull (y,x) /emptycells?2) ;
if (debug8)
fprintf (' NOTFULL MOVEDDOWN'") ;
end
end
if (PercentFull (y,x+1) > 0)
PercentFull (y,x+1l) = PercentFull (y,x+1) +
(PercentFull (v, x) /emptycells?2);

if (debug8)
fprintf (' NOTFULL MOVEDUP'") ;
end
end
if ((PercentFull (yMinus,x) > 0) && (GroinLeft ==
0))
PercentFull (yMinus, x) = PercentFull (yMinus, x)
(PercentFull (y,x) /emptycells?2) ;
if (debug8)
fprintf (' NOTFULL MOVEDLEFT'") ;
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end

end

if ((PercentFull (yPlus,x) > 0) && (GroinLeft == 0))
PercentFull (yPlus,x) = PercentFull (yPlus,x) +

(PercentFull (y,x) /emptycells?2) ;
if (debug8)
fprintf (' NOTFULL MOVEDRIGHT') ;

end

end

else

fprintf (['Q@Q@E@ Did not find anywhere to steal sand
from!! x: ',num2str(x),"' y: ',num2str(y)]):

end

[

end % end else after if (emptycells > 0)

[

% Set the current cell to 0 percent full
AllBeach(y,x) = 'n';

PercentFull (y,x) = 0;

CellDepth(y,x) = DepthShoreface;

if (debug8)
fprintf ('"\n');
end

function [PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull,AllBeach,CellDepth,GroinCells, x,
y, LandHeight, Ymax, debug8)

% CEM function: If a cell is overfull, push beach out in
new direction

% Set up matrcies

%%% Note: this may be unncessary, but I want to make
certain that the

%%% entire matrix is exported from the function

% PercentFull = PercentFull;
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% AllBeach = AllBeach;

% CellDepth = CellDepth;

% Initialize function

fillcells = 0;

fillcells2 = 0;

GroinRight = 0; % Flag indicating groin to the right of
PercentFull (y, x)

GroinLeft = 0; % Flag indicating groin to the left of
PercentFull (y, x)

if (debug8)
fprintf (['\n OOPS I AM FULL!! X: ',num2str(x),’
Y: ', ...
num2str (y), ' Per: ',num2str (PercentFull(y,x))]);
end

% Account for periodic boundary conditions

if (y == 1)
yMinus = 2*Ymax;
else
yMinus = y-1;
end
if (y == 2*Ymax)
yPlus = 1;
else
yPlus = y+1;
end

% Figure out the position of groins so that no sediment is
redistrubted
% over them
if (GroinCells(y,x) == 1)
GroinRight = 1;
end
if (GroinCells (yMinus,x) == 1)
GroinLeft = 1;
end

% find out how many cells will be filled up
if (PercentFull(y,x-1) == 0)
fillcells = fillcells + 1;
end
if (PercentFull (y,xt+1l) == 0)
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fillcells = fillcells + 1;

end

if ((PercentFull (yMinus,x) == 0) && (GroinLeft == 0))
fillcells = fillcells + 1;

end

if ((PercentFull (yPlus,x) == 0) && (GroinRight == 0))
fillcells = fillcells + 1;

end

if (fillcells > 0)

[

% Now Move Sediment

if (PercentFull (y,x-1) == 0)
PercentFull (y,x-1) = PercentFull (y,x-1) +
((PercentFull (y,x)-1)/fillcells);
CellDepth(y,x-1);

if (debug8)
fprintf (' MOVEDBACK') ;
end
end
if (PercentFull (y,x+1) == 0)
PercentFull (y,xt1l) = PercentFull (y,x+1) +

((PercentFull (y,x)-1)/fillcells);
CellDepth (y,x+1);

if (debug8)
fprintf (' MOVEDUP');
end
end
if ((PercentFull (yMinus,x) == 0) && (GroinLeft == 0))
PercentFull (yMinus, x) = PercentFull (yMinus,x) +

((PercentFull(y,x)-1)/fillcells);
CellDepth (yMinus, x) ;

if (debug8)
fprintf (' MOVEDLEFT"'") ;
end
end
if ((PercentFull (yPlus,x) == 0) && (GroinRight == 0))
PercentFull (yPlus,x) = PercentFull (yPlus,x) +

((PercentFull(y,x)-1)/fillcells);
CellDepth (yPlus, x);
if (debug8)
fprintf (' MOVEDRIGHT') ;
end
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end
else

% No fully empty neighbors, so distribute to partially
full neighbors

if (PercentFull (y,x-1) < 1)
fillcells2 = fillcells2 + 1;

end

if (PercentFull (y,x+1) < 1)
fillcells2 = fillcells2 + 1;

end

if ((PercentFull (yMinus,x) < 1) && (GroinLeft == 0))
fillcells?2 = fillcells2 + 1;

end

if ((PercentFull (yPlus,x) < 1) && (GroinRight == 0))
fillcells2 = fillcells2 + 1;

end

if (fillcells2 > 0)

if (PercentFull(y,x-1) < 1)

PercentFull (y,x-1) = PercentFull (y,x-1) +
((PercentFull (y,x)-1)/fillcells?2);
if (debug8)
fprintf (' MOVEDBACK');
end
end
if (PercentFull (y,xt+1l) < 1)
PercentFull (y,xt1) = PercentFull (y,x+1) +
((PercentFull(y,x)-1)/fillcells?2);
if (debug8)
fprintf (' MOVEDUP'") ;
end
end
if ((PercentFull (yMinus,x) < 1) && (GroinlLeft ==
0))
PercentFull (yMinus,x) = PercentFull (yMinus, x)
+ ((PercentFull (y,x)-1)/fillcells2);
if (debug8)
fprintf (' MOVEDLEFT');
end

end
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if ((PercentFull (yPlus,x) < 1) && (GroinRight ==
0))
PercentFull (yPlus,x) = PercentFull (yPlus,x) +
((PercentFull(y,x)-1)/fillcells?2);
if (debug8)
fprintf (' MOVEDRIGHT');
end
end

else

if (debug8)
fpritnf ([ 'Nobody wants our sand!!! x:
',num2str(x), " oy o', ...
num2str (y),"' Per:
', num2str (PercentFull(y,x)),'\n']);
end
end

end

AllBeach(y,x) = 'y';
PercentFull (y,x) = 1;
CellDepth(y,x) = -LandHeight;

if (debug8)
fprintf ('"\n');
end

function [PercentFull, CellDepth, AllBeach, Age] =
CEM PeriodicBoundaryCopy (PercentFull,CellDepth,AllBeach, Age
, Xmax, Ymax)

% Simulates periodic boundary conditions by copying middle
section to front

[e)

% and end of arrays for CEM

for v = (Ymax+1) : (3*Ymax/2)
for x = 1l:Xmax
AllBeach (y-Ymax,x) = AllBeach (y,x);
PercentFull (y-Ymax, x) = PercentFull (y, x);
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Age (y-Ymax, x) = Age(y,X);

CellDepth(y-Ymax,x) = CellDepth(y,x):;
end
end
for vy = (Ymax/2)+1:Ymax
for x = 1l:Xmax
AllBeach (y+Ymax,x) = AllBeach (y,x);
PercentFull (yt¥Ymax, x) = PercentFull (y,x);
Age (ytY¥max, x) = Age(y,x);
CellDepth (y+Ymax,x) = CellDepth(y,x);
end
end

function [Shoreline] =

CEM SaveLineToFile (PercentFull,AllBeach, InitBeach, Xmax, Ymax
,CurrentTimeStep, savelinename, SaveLineASCII)

% CEM Function: Saves data line of shoreline position
rather than entire array

fprintf ('\n Saving Shoreline\n');
Determine the shoreline

[Shoreline] =
CEM FindCoastline (PercentFull,AllBeach, InitBeach, Xmax, Ymax)

~e

% Save the coastline
if (SavelLineASCII)

SaveName = [savelinename,num2str (CurrentTimeStep)];
save (SaveName, 'Shoreline', "—-ascii')

else
SaveName =

[savelinename, num2str (CurrentTimeStep), '.mat'];
save (SaveName, 'Shoreline')
end
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fprintf(['Line file saved! TimeStep:
',num2str (CurrentTimeStep), "\n\n']);

function

CEM SaveSandToFile (PercentFull, Age,CellDepth, AllBeach,Curre
ntTimeStep, SaveAge, savefilename)

% CEM Function: Saves the model data in output files
fprintf ('\n saving\n');

SaveName = [savefilename,num2str (CurrentTimeStep),'.mat'];
fprintf (['Saving as :',SaveName]) ;

if (SaveAge)

save (SaveName, 'PercentFull', "Age', 'CellDepth', "Al1Beach')
else

save (SaveName, 'PercentFull', '"CellDepth', "Al1Beach')
end

fprintf ('--- regular file saved! ----\n\n');
function [VolumeIn, VolumeOut] = CEM SedTrans (From, To,
ShoreAngle,

MaxT, Y, WaveAngle, Period, OffShoreWvHt, MaxDepth,
RefractStep, KBreak, TimeStep, VolumeIn, VolumeOut,
UseVariableCERC, K, rho, rho_s,porosity,GroinTransport, ...

GroinPermeability,GroinTipDepth, DiffShadowed, DiffPhi, DiffKb
,MaxVol, ...

A w,UseBreakDepthAsD LT, debug6,debug40a, debug4dla)
% CEM Function: This central function will calcualte the
sediment
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[e)

% transported from the cell at From to the cell at To,
using the input

% ShoreAngle. This function also contains the Ashton-
Murray Wave

% Transformation (AWT) to determine breaking wave
information. This

o)

% information is used to determine transport.

o)

% Initialize
BYPDebug = 0; % Local debugger for groin bypassing

% Coefficients

g = 9.80665; % Acceleration due to gravity
(m/s"2)
$rho = 1020; % kg/m3 - density of water and

dissolved matter (I will likely put this in main later)

PerSecondToPerDay = 86400; % Multiplying a flux by this
converts a flux per second to a flux per day

[

% Initialize Variables

counter = 0;
Broken = 0;
radtodeg = 180/pi; % Transform radians to degrees
degtorad = pi/180; % Transform degrees to radians

% Use the Ashton-Murray Wave Transformation to determine
wave breaking data

% Primary assumption is that waves refract over shore-
parallel contours

% New algorithm 6/02 iteratively takes wave onshore until
they break, then computes Qs

% Initialize offshore wave conditions

StartDepth = MaxDepth;

AngleDeep = WaveAngle - ShoreAngle;

StartHeight = OffShoreWvHt;

Depth = StartDepth;

if (debugb)
fprintf ([ 'Wave Angle: ',num2str (WaveAngle*radtodeqg),'
Shore Angle: ', ...
num2str (ShoreAngle*radtodeq), ' 1)
end
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if (MaxT == 'y'")
AngleDeep = 42.0*degtorad;
end

if (debugb6)

fprintf ([ 'Deep Transport Angle:
', num2str (AngleDeep*radtodeqg), '\n\n']) ;
end

% Don't do calculations if over 90 degrees, should be in
shadow

if ((AngleDeep > 0.995*pi/2) || (AngleDeep < -0.995*pi/2))
return;
else

y coord = Y (From);

% Begin refraction

% Calculate Deep Water Celerity & Length, Komar 5.11 c
=gT / pi, L = CT

CDeep = g * Period / (2.0 * pi);
LDeep CDeep * Period;

if (debugb6)
fprintf (['CDheep = ',num2str (CDeep), ' LDeep =
', num2str (LDeep), '\n'1);
end

while (Broken == 0)
% non-iterative egn for L, from Fenton & McKee
Wavelength = LDeep * (tanh/(
(((2*pi/Period) "2)* (Depth/qg)) "~ (.75))) ~(2/3);
C = Wavelength / Period;

if (debugo6)
fprintf (['DEPTH: ',numZstr (Depth),' Wavelength

num2str (Wavelength),' C = ',num2str(C), "'
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end

% Determine n = 1/2(1+2kh/tanh(kh)) Komar 5.21
% First Calculate kh = 2 pi Depth/L from k = 2
pi/L

kh = pi*Depth/Wavelength;
n=20.5* (1 +2 * kh / sinh(2*kh)):;

if (debugb6)
fprintf (['kh: ',num2str(kh),' n: ',num2str(n),’

end

[

% Calculate angle, assuming shore parallel contours
and no conv/div

o)

5 of rays from Komar 5.47
Angle = asin(C/CDeep * sin (AngleDeep)) ;

if (debugb6)
fprintf (['Angle: ',num2str (Angle*radtodeqg)]);
end

o)

% Determine Wave height from refract calcs - Komar

WvHeight = StartHeight * sqgrt (abs (CDeep *
cos (AngleDeep) / (C * 2 * n * cos(Angle))));

if (debugo6)
fprintf ([' WvHeight:
',num2str (WvHeight), '"\n']);
end

if (WvHeight > Depth*KBreak)

Broken = 1;
counter = 0;
DepthBreak = Depth;

elseif (Depth == RefractStep)
Broken = 1;
Depth = Depth - RefractStep;
counter = 0;

DepthBreak = Depth;
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else
Depth = Depth - RefractStep;
counter = counter + counter;
end

end % end while wave not broken loop

% Account for wave diffraction
if (DiffShadowed)
WvHeightNoDiff = WvHeight;
Angle = DiffPhi - ShoreAngle;
WvHeight = DiffKb * WvHeightNoDiff;

if (debugdla)
fprintf (['From: ',num2str (From),' in
diffraction shadow; a b: ',...
num2str (Angle*radtodeqg),' phi b:
',num2str (DiffPhi*radtodeqg),' SLAng: ',...
num2str (ShoreAngle*radtodeqg), ' Hb:
', num2str (WvHeight), '\n']1);

end

end

% Now Determine Transport
if (UseVariableCERC)
% Use the CERC Formula

if (debugo6)
fprintf ('Using CERC formula for SedTrans\n');

end

VolumeAcrossBorder = abs( K * (rho * sqgrt(g)) / (16
* sgrt (KBreak) *
(rho_ s - rho) * (1 - porosity))
(WvHeight”2.5)*...
sin(2*Angle) *PerSecondToPerDay*TimeStep); %
This is in m"3 per time step

*

else
% Use default CEM equation for transport
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if (debugb6)
fprintf ('Using default CEM sediment transport
formula\n') ;
end

VolumeAcrossBorder = abs(l.1 * rho * (g"(3/2)) *
(WvHeight” (5/2)) ...
* cos (Angle) * sin(Angle) * TimeStep);
end

% Make sure that not too much volume is transported
if (VolumeAcrossBorder > MaxVol)
fprintf ('Volume (%G) exceeded maximum limits from
%1 to %i\n',VolumeAcrossBorder,From, To) ;
VolumeAcrossBorder = MaxVol;
end

% Account for groin permeability and bypassing
if (GroinTransport)
% Transport is occuring over a groin

% Find the Bypassing Coefficient
% Calculate the depth of LST
if (UseBreakDepthAsD LT)
% Use depth of wave break as D LT
D LT = DepthBreak;
else
% Use D LT Equation from GENESIS
D LT = (A w/KBreak) * WvHeight;
end

% Calculate the bypassing coefficient
if (GroinTipDepth >= D LT)
BypCoeff = 0;

else

BypCoeff = 1 - (GroinTipDepth/D LT);
end
if (BYPDebug || debug40a)

4

fprintf ('From:%i, To:%i, D G = %G, D LT = %G,
BypCoeff = %G \n',From,To,GroinTipDepth,D LT,BypCoeff)
end

468



¢}

% Calculate the fraction of sediment passing
over/through groin
GroinF = GroinPermeability* (1-BypCoeff) + BypCoeff;

if (BYPDebug || debug40a)
fprintf ('From:%1i, To:%i, GroinF:%G
\n',From, To,GroinF) ;
end

if (GroinF >= 1)

% All volume is either bypassed or transmitted
via permeability

VolumeOut (From) = VolumeOut (From) +
VolumeAcrossBorder;

VolumeIn (To) = VolumelIn (To) +
VolumeAcrossBorder;

if (debugb6)
fprintf ('All volume is either bypassed or
transmitted via permeability\n');
end

else
)

% Transport accounting for permeability and
bypassing

VolumeOut (From) = VolumeOut (From) +
GroinF*VolumeAcrossBorder;

VolumeIn (To) = VolumeIn (To) +
GroinF*VolumeAcrossBorder;

if (debug40a)
fprintf ('VolumeAcrossBorder:
%G\n', GroinF*VolumeAcrossBorder)
end

end

else

Q

% Transport as normal
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VolumeOut (From) = VolumeOut (From) +
VolumeAcrossBorder;

VolumeIn (To) = VolumeIn (To) + VolumeAcrossBorder;

end

end

function [InShadow, ShadowXMax] = CEM ShadowSweep
(InShadow, ShadowXMax, TotalBeachCells,AllBeach, PercentFull, X
max, Ymax, WaveAngle, X,Y,CurrentTimeStep, debug?)

% CEM Function: Moves along beach and tests to see if cells
are in shadow

% Find maximum extent of beach to use as a limit for shadow
searching

[ShadowXMax] = CEM XMaxBeach (ShadowXMax,AllBeach, Xmax, Ymax)
+ 35

if (debug2)
fprintf (['ShadowXMax: ',num2str (ShadowXMax), '
XMaxBeach: ', ...
num2str (ShadowXMax - 3),'\n']);
end
% Determine if beach cells are in shadow
for i = 1l:TotalBeachCells

[IsInShadow] = CEM FindIfInShadow (i, ShadowXMax,
AllBeach, PercentFull,
WaveAngle, X, Y, TotalBeachCells,CurrentTimeStep, Ymax) ;
InShadow (i) = IsInShadow;

end
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function [PercentFull, CellDepth, AllBeach, Age] =

CEM StraightBoundaries (PercentFull,CellDepth,AllBeach,Age,Y
max)

% CEM Function: creates a straight coastline in the
extremities; this is

¢}

% done in lieu of a periodic boundary copy

for vy = 1: (Ymax/2)

AllBeach (y,:) = AllBeach ((Ymax/2+1),:);
PercentFull (v, :) = PercentFull ((Ymax/2+1),:);
Age(y,:) = Age((Ymax/2+1),:);
CellDepth(y,:) = CellDepth((Ymax/2+1),:);

end

for vy = (3*Ymax/2)+1:2*Ymax
AllBeach(y,:) = AllBeach((3*Ymax/2),:);
PercentFull (y, :) = PercentFull ((3*Ymax/2),:);
Age(y,:) = Age ((3*Ymax/2),:);
CellDepth(y, :) = CellDepth((3*Ymax/2),:);

end

o°

CEM TransportSedimentSweep.m

o°

o\°

CEM Function: Sweep through cells to place transported
sediment

% Call function CEM AdjustShore.m to move sediment.

% If cell full or overempty, call CEM OopsImFull or

CEM OopsImEmpty

% sweepsign added to ensure that direction of actuating
changes does not

% produce unwanted artifacts (e.g. make sure
symmetrical)

% pause
% Determine direction of sediment trasnport sweep
if (rand(l)*2 > 1)

sweepsign = 1;
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if (debug7?)

fprintf ('L ")
end
else
sweepsign = 0;
if (debug7)
fprintf ('R ")
end
end
if (debug?)

fprintf (['\n\nTransSedSweep Ang:
', num2str (WaveAngle*radtodeqg), ...
' TimeStep: ',num2str (CurrentTimeStep), '\n']l);
end

%% Run loop
for i = 1:TotalBeachCells;

if (sweepsign == 1)
ii = i;
else
ii = TotalBeachCells;
end
if (debug7)
fprintf (['ii: ',num2str(ii),' sweepsign:
', num2str (sweepsign),' X: ', ...
num2str(X(i))," Y: '",num2str(Y(i)),"' VolIn:

', num2str (VolumeIn(i)), ...
' VolOut: ',num2str (VolumeOut(i)),'\n']1);

end
% [MassCurrent] = CEM MassCount (PercentFull, Xmax, Ymax) ;
% fprintf('i:%1i, Mass before

Adjust:%G\n', i,MassCurrent/MassInitial);

% Run Adjust Shore
CEM AdjustShore

% [MassCurrent] = CEM MassCount (PercentFull, Xmax, Ymax) ;
% fprintf('i:%i, Mass After

Adjust:%G\n',i,MassCurrent/MassInitial) ;
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% Take care of any infinities that may arise

$PercentFull (isinf (PercentFull)) = 1;
X = X (ii);
y = Y(ii);

if (PercentFull(Y(ii),X(ii)) < 0)

[PercentFull, AllBeach, CellDepth] =
CEM OopsImEmpty (PercentFull,AllBeach,CellDepth,GroinCells, x
, v, DepthShoreface, Ymax, debug8) ;

elseif (PercentFull(Y(ii),X(ii)) > 1)

[PercentFull, AllBeach, CellDepth] =
CEM OopsImFull (PercentFull, ...

AllBeach,CellDepth,GroinCells,X(ii),Y(ii), LandHeight, Ymax, d
ebug8) ;

end

end

function [ShadowXMax] =
CEM XMaxBeach (ShadowXMax, AllBeach, Xmax, Ymax)

% CEM Function: Finds extent of beach in x direction.
Starts searching at

% a point 3 rows higher than input Max. Function returns
integer value

Q

% equal to max extent of 'allbeach'

Q

% Initialize

Xtest = ShadowXMax + 2;
ytest = 1;

while (xtest > 0)

while (ytest < 2 *Ymax)
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end

fprintf (['***** Should have found Xmax for

if (AllBeach(ytest, xtest)

ShadowXMax = xtest;

return;
end

ytest = ytest + 1;

end
ytest = 1;
Xtest = xtest - 1;

', num2str (xtest), ', ',...

num2str (ytest), "*****x\n']);

ShadowXMax = Xmax;

end
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