
AN END-TO-END FRAMEWORK FOR UNIFIED COMPRESSION AND LEARNING TO

OPTIMIZE THE MINIMAX PROBLEM

A Dissertation

by

JIAYI SHEN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Zhangyang Wang
Committee Members, Theodora Chaspari

Shuiwang Ji
Xiaoning Qian

Head of Department, Scott Schaefer

December 2022

Major Subject: Computer Science

Copyright 2022 Jiayi Shen

ABSTRACT

Deep neural networks (DNNs) are resource-intensive and call for efficient compression meth-

ods to reduce the resource cost. For a composite DNN with various modules, the optimal resource

allocation among these modules remains a question. To address this issue, we propose a novel

unified compression framework that compress the whole network in an end-to-end way, without

any multi-stage heuristics nor expensive hyper-parameters tuning. We demonstrate the generality

of this framework by showing its superior performance in compressing a recommendation sys-

tem and a vision transformer. Furthermore, we discuss to what extent the optimizers learnt by

learning to optimize(L2O) technique can be adapted to a special class of functions and outperform

general-purpose optimizers for the minimax objective.

ii

ACKNOWLEDGMENTS

This dissertation owes a lot of gratitude to many people who have helped me in my research

and the completion of the dissertation.

First, I would like to say thank you to my advisor, Dr.Zhangyang (Atlas) Wang, for his support,

advice and insights in this field that make this dissertation possible. His brilliant guidance helped

me in all the time of research and writing of this dissertation.

Second, I would like to thank my dissertation committee members, Dr.Theodora Chaspari,

Dr.Shuiwang Ji, and Dr.Xiaoning Qian, for their time, advice, and firm support.

Also, I would like to thank my lab mates at the VITA (Visual Informatics Group @ Texas A&M

University) Lab in the Department of Computer Science and Engineering, and all the collaborators

during my internship, for offering valuable advice on my work.

More importantly, I would like to express the sincerest gratitude to my parents and my boyfriend.

Their love supports me spiritually throughout my Ph.D. program.

Last but not least, I would like to thank Texas A&M University and all the funding agencies

for their all kinds of support.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation (or) dissertation committee consisting of Dr.Zhangyang

Wang [advisor], Dr.Theodora Chaspari and Dr.Shuiwang Ji of the Department of Computer Sci-

ence and Engineering, and Dr.Xiaoning Qian of the Department of Electrical and Computer Engi-

neering.

Part of the experimental results in Chapter 6 were provided by Shixing Yu and Tianlong Chen.

Part of the experimental results in Chapter 8 were provided by Dr.Xiaohan Chen.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

The graduate study was supported by ARL A2I2 project.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . viii

LIST OF TABLES. x

1. INTRODUCTION. 1

1.1 Unified Recommendation Systems Compression . 1
1.2 Unified Visual Transformer Compression . 3
1.3 Learning A Minimax Optimizer . 4
1.4 Dissertation Contributions . 7

1.4.1 Unified Recommendation Systems Compression . 7
1.4.2 Unified Visual Transformer Compression . 7
1.4.3 Learning A Minimax Optimizer . 8

2. RELATED WORK . 9

2.1 Model Compression . 9
2.2 Recommendation Models . 9
2.3 Input Feature Compression For Recommendation Models . 10
2.4 Vision Transformer. 10
2.5 Minimax Optimization . 11
2.6 Learning To Optimize . 11

3. METHODOLOGY: UNIFIED COMPRESSION FOR RECOMMENDATION SYSTEMS 13

3.1 Method Overview . 13
3.1.1 Perspective Of Model Parameters . 13
3.1.2 Perspective Of Feature Embedding Vectors . 13
3.1.3 A Compression Example: Group Lasso For Weight Pruning 14

3.2 Resource-Constrained RS Model Compression . 14
3.2.1 Computation Resource Function For RS Model . 15

3.3 Optimization. 16

v

3.3.1 Minimax Optimization Reformulation . 16
3.3.2 Update Rule For All Learnable Variables . 17

3.3.2.1 UpdateW . 17
3.3.2.2 Update Dual Variables . 18
3.3.2.3 Update s . 18

3.3.3 Prune And Finetune . 20

4. EXPERIMENTS: UNIFIED COMPRESSION FOR RECOMMENDATION SYSTEMS . 21

4.1 Experimental Setup . 21
4.1.1 Dataset And Model . 21
4.1.2 Baseline Methods. 21
4.1.3 General Training And Evaluation Details . 22
4.1.4 Evaluation Metrics . 23

4.2 Prediction Model Compression For RS Model . 23
4.3 Input Feature Selection For RS Model . 25
4.4 Embedding Dimension Reduction For RS Model . 26
4.5 Sparsity Analyses Of UMEC . 27
4.6 Cascaded Pipeline As A Baseline . 28
4.7 Energy Consumption And Inference Latency Of The Network . 29

5. METHODOLOGY: UNIFIED COMPRESSION FOR VISION TRANSFORMER 31

5.1 Preliminary . 31
5.1.1 Vision Transformer (ViT) Architecture . 31
5.1.2 Compression Targets . 31

5.2 Resource-Constrained End-to-End ViT Compression . 32
5.2.1 Pruning Within A Block . 32
5.2.2 The Constraints . 33
5.2.3 The Objective . 34
5.2.4 The Final Unified Formulation . 35

5.3 Solving The Unified Optimization . 35
5.3.1 Updating policy . 35

5.3.1.1 Updating Weights . 35
5.3.1.2 Updating t . 36
5.3.1.3 Updating s and r . 37

5.3.2 Main Algorithm . 38

6. EXPERIMENTS: UNIFIED COMPRESSION FOR VISION TRANSFORMER 40

6.1 Datasets And Benchmarks . 40
6.2 Training Settings . 40
6.3 Baseline Methods . 40
6.4 Main Results. 41

7. METHODOLOGY: LEARNING A MINIMAX OPTIMIZER . 43

vi

7.1 Main Framework: Twin Learnable Optimizers (Twin-L2O) . 43
7.1.1 Analysis Of The Reward Design . 45
7.1.2 Rationale Of The Framework Selection . 48

7.2 Improving Generalizability Of Twin-L2O . 48
7.2.1 Curriculum L2O Training . 49
7.2.2 Safeguard Twin-L2O: A Preliminary Theoretical Exploration 51

8. EXPERIMENTS: LEARNING A MINIMAX OPTIMIZER . 53

8.1 Ablation Study On The Design Of Twin-L2O . 53
8.2 Comparison With State-of-the-Art Analytical Optimizers . 55

8.2.1 Computational Cost Analysis . 56
8.3 Enhanced Twin-L2O: Curriculum Learning Evaluation . 56
8.4 Safeguarded Twin-L2O Experiments . 59

9. CONCLUSION. 61

REFERENCES . 63

vii

LIST OF FIGURES

FIGURE Page

1.1 An example of the neural network-based recommendation system: the deep learn-
ing recommendation model (DLRM), proposed by [1]. Reprinted from [2]. 3

4.1 Results on RS prediction model compression by different methods on the Criteo
AI Labs Ad Kaggle dataset. Reprinted from [2]. 24

4.2 Results on RS prediction model compression by different methods on the Criteo
AI Labs Ad Kaggle dataset. Reprinted from [2]. 24

4.3 Results on RS input feature selection by different methods on the Criteo AI Labs
Ad Kaggle dataset. Reprinted from [2]. 25

4.4 Results on RS input feature selection by different methods on the Criteo AI Labs
Ad Terabyte dataset. Reprinted from [2]. 26

4.5 The number of pruned features/neurons for each layer during the training process
using UMEC with Rbudget = 0.5×pf (W0) on the Criteo AI Labs Ad Kaggle dataset,
where pf (W0) denotes the Flops of the original dense model. For the input layer,
the mentioned dense model has 27 features in total. For the two hidden layers, it
has 512 and 256 neurons respectively. The convergency of the binary cross entropy
(BCE) loss during training is shown in Figure 4.6 . Reprinted from [2]. 28

4.6 The convergency of the binary cross entropy (BCE) loss during training using
UMECwith Rbudget = 0.5×pf (W0), where pf (W0) denotes the Flops of the original
dense model. Reprinted from [2]. 29

4.7 Results on the pipeline with a cascade of input feature selection and prediction
model compression, and comparison with the corresponding jointly optimized frame-
work. Reprinted from [2]. 30

4.8 Results on the pipeline with a cascade of embedding dimension reduction and pre-
diction model compression, and comparison with the corresponding jointly opti-
mized framework. Reprinted from [2]. 30

5.1 The overall framework of UVC. We seamlessly integrate Pruning within a block: In
a transformer block, we targeting on pruning Self-Attention head numbers(s(l,1)),
neuron numbers within a Self-Attention head(rl,i) and the hidden size of MLP
module(s(l,3)) as well. Reprinted from [3]. 32

viii

5.2 The two sparsity levels for pruning within a block: the head dimension level as
controlled by r(l,i), and the head number level as controlled by s(l,1). When reach-
ing same pruning ratio, neuron level sparsity will not remove any head, which is
usually not friendly to latency; while head level sparsity will only remove head,
which is usually not friendly to accuracy. Reprinted from [3]. 38

7.1 Architecture of Twin-L2O. We let LSTM-Min and LSTM-Max, parameterized by
ϕmin and ϕmax, update x and y respectively. As shown by curved dashed lines,
Twin-LSTM keeps being updated about the latest variable values of x and y when
computing input information and the reward. When constructing the computational
graph and training the Twin-LSTM, the solid lines allow gradients to flow while
the dashed lines do not pass any gradient [4]. Reprinted from [5]. 44

7.2 Method for Safeguarded-Twin-L2O for Convex-Concave Saddle Point Problems.
Adapted from [5]. 50

8.1 Convergence curves of x and y on the ablation study of Twin-L2O design options.
Reprinted from [5]. 54

8.2 Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and
K-beam), for the rotated saddle problem. Reprinted from [5]. 56

8.3 Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and
K-beam), for the matrix game problem. Reprinted from [5]. 57

8.4 Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and
K-beam), for the seesaw problem. Reprinted from [5]. 57

8.5 Evaluation of Safe-Twin-L2O. Reprinted from [5]. 60

ix

LIST OF TABLES

TABLE Page

4.1 Results on embedding dimension reduction. Reprinted from [2]. 27

4.2 Real-device energy consumption and latency of different methods. Best values
among all compression methods are shown in bold. Reprinted from [2]. 30

6.1 Comparison of the vision transformers compressed by UVC with different bench-
marks on ImageNet. FLOPs remained denotes the remained ratio of FLOPs to the
full-model FLOPs. Reprinted from [3]. 42

8.1 Success rate (SR) of different ranges of a,b on the Seesaw problem. Reprinted from
[5]. 58

x

1. INTRODUCTION∗

1.1 Unified Recommendation Systems Compression

As the core component of a recommendation system (RS), recommendation models (RM)

based on ranking neural networks are widely adopted in general content recommendation and

retrieval applications. In general, an effective recommendation model consists of two compo-

nents: a feature embedding sub-model and a prediction sub-model, as illustrated in Figure 1.1.

Usually, an RM adopts neural networks to serve two sub-models. Formally, we denote an RM

as f(·;W), where W is the learnable parameters of f . For the inference, the model f takes the

input feature data x to predict the confidence of the content, serving the recommendation applica-

tions. Specifically, we further define the embedding and prediction sub-models as fe(·;We) and

fp(·;Wp) respectively, whereWe andWp are their own learnable parameters andW = {We,Wp}.

The embedding feature, v := fe(x;We), is the input of fp with the input data x. Hence, we can

express the RM as f(·;W) ≜ fp(fe(·;We);Wp). Given a ranking training loss ℓ(·) (i.e., binary

cross entropy (BCE) loss), the learning goal of the ranking model can be written as

min
W

∑
(x,y)∈D

ℓ(f(x;W),y),

where y is the ground-truth label, and D is the training dataset.

Nowadays, extremely large-scale data have been poured into the recommendation system to

predict user behavior in many applications. In the online inference procedure, the heaviest com-

putation component is the layer-wise product between the hidden output vectors and the model

∗ Part of this chapter is reprinted with permission from "Learning a minimax optimizer: A pilot study " [2] by
Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z. (2020, September) in International Conference on
Learning Representations, Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from
"UMEC: Unified model and embedding compression for efficient recommendation systems" [5] by Shen, J., Wang,
H., Gui, S., Tan, J., Wang, Z., Liu, J. (2020, September). in International Conference on Learning Representations,
Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from "Unified visual transformer
compression" [3] by Yu, S., Chen, T., Shen, J., Yuan, H., Tan, J., Yang, S., ... Wang, Z. (2022). in International
Conference on Learning Representations, Copyright 2022 held by the authors.

1

parametersW , for a neural network-based RM. A slimmed neural network structure would save a

great amount of power consumption during the inference. Hence, the main idea of an RM com-

pression is to slim the structural complexity of f(W) and reduce the dimension of hidden output

vectors.

To obtain an efficient ranking model (for example, MLP based) for an RS, one may apply

existing model compression methods to MLPs directly. For example, [6] removes the entire filters

in the network together with their connecting feature maps in terms of magnitudes, which can

also be applied to MLP structures to remove a specific neuron as well as its connections. [7]

approximates the importance of a neuron (filter) to the final loss by using the first and second-order

Taylor expansions, which can also be applied to pruning the neurons without hassle. There are also

some compression methods focusing on dimension reduction of embedding feature vectors. [8]

proposes a mixed dimension embedding scheme by designing non-uniform embedding dimensions

scaling with popularity of features. [9] uses Neuron Input Search (NIS) to learn the embedding

dimensions for the sparse categorical features.

However, the performance of these compression methods highly depends on the hyper-parameter

tuning and the background knowledge of the specific recommendation model. For example, an em-

bedding dimension compression method may require the user to search for the best dimension with

multiple training and search rounds.

We would like to solve the RM compression problem with a unified resource-constrained op-

timization framework. It only relies on the resource consumption of the RM f(W) to compress

both the MLP and the embedding dimensions, without any multi-stage heuristics nor expensive

hyper-parameters tuning. Our novel unified model and embedding compression (UMEC) frame-

work directly satisfies both the requirement of resource consumption of the ranking neural net-

work model and the prediction accuracy goal of the ranking model, with end-to-end gradient-based

training. We reformulate the optimization of training loss associated with hard constraints into a

minimax optimization problem solved by the alternating direction method of multipliers (ADMM)

method [10].

2

...

...

...
Concatenation

...

......

Dense	Input
Sparse	Input
Embedding	Sub-model	

Prediction	Sub-model	
Embedding	Feature	

Figure 1.1: An example of the neural network-based recommendation system: the deep learning
recommendation model (DLRM), proposed by [1]. Reprinted from [2].

1.2 Unified Visual Transformer Compression

Convolution neural networks (CNNs) [11–13] have been the de facto architecture choice for

computer vision tasks in the past decade. Their training and inference cost significant and ever-

increasing computational resources. Recently, drawn by the scaling success of attention-based

models [14] in natural language processing (NLP) such as BERT [15], various works seek to

leverage the Transformer architecture to computer vision [16–18]. The Vision Transformer (ViT)

architecture [19], and its variants, have been demonstrated achieves comparable or superior results

on a series of image understanding tasks compared to the state of the art CNNs, especially when

pretrained on datasets with sufficient model capacity [20].

Despite the emerging power of ViTs, such architecture is shown to be even more resource-

intensive than CNNs, making its deployment impractical under resource-limited scenarios. That is

due to the absence of customized image operators such as convolution, the stack of self-attention

modules that suffer from quadratic complexity with regard to the input size, among other factors.

3

Owing to the substantial architecture differences between CNNs and ViTs, although there is a large

wealth of successful CNN compression techniques [6, 21–23], it is not immediately clear whether

they are the same effective for ViTs. One further open question is how to best integrate their

powers for ViT compression, as one often needs to jointly exploit multiple compression means for

CNNs [24–26].

On the other hand, the NLP literature has widely explored the compression of BERT [27],

ranging from unstructured pruning [28, 29], attention head pruning [30] and encoder unit pruning

[31]; to knowledge distillation [32], layer factorization [33], quantization [34, 35] and dynamic

width/depth inference [36]. Lately, earlier works on compressing ViTs have also drawn ideas from

those similar aspects: examples include weight/attention pruning [37–39], input feature (token)

selection [39, 40], and knowledge distillation [41, 42]. Yet up to our best knowledge, there has

been no systematic study that strives to either compare or compose (even naively cascade) multiple

individual compression techniques for ViTs – not to mention any joint optimization like [24–26]

did for CNNs. We conjecture that may potentially limit the performance gain of ViT compression.

1.3 Learning A Minimax Optimizer

Many popular applications can be formulated into solving continuous minimax optimization,

such as generative adversarial networks (GAN) [43], distributionally robust learning [44], domain

adaptation [45], distributed computing [46, 47], privacy protection [48, 49], among many more. In

the above proposed unified compression problem, the ultimate objective to be optimized is also a

minimax problem, that can be elaborated as follows: we consider a cost function f : Rm×Rn → R

and the min-max game minxmaxy f(x, y). We aim to find the saddle point (x∗, y∗) of f :

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀(x, y) ∈ X × Y , (1.1)

where X ⊂ Rm and Y ⊂ Rn. If X = Rm and Y = Rn, (x∗, y∗) is called a global saddle point; if

X × Y is a neighborhood near (x∗, y∗), (x∗, y∗) is a local saddle point.

The main challenge to solve problem (1.1) is the unstable dynamics of iterative algorithms.

4

Simplest algorithms such as gradient descent ascent (GDA) can cycle around the saddle point or

even diverge [50–52]. Plenty of works have been developed recently to address this issue [53–58].

However, the convergence is still sensitive to the parameters in these algorithms. Even if the cost

function is only changed by scaling, those parameters have to be re-tuned to ensure convergence.

A recent trend of learning to optimize (L2O) parameterizes training algorithms to be learnable

from data, such that the meta-learned optimizers can be adapted to a special class of functions

and outperform general-purpose optimizers. That is particularly meaningful, when one has to

solve a large number of yet similar optimization problems repeatedly and quickly. Specifically,

for existing L2O methods that operate in the space of continuous optimization, almost all of them

solve some minimization problem [4, 59, 60], leveraging an LSTM or a reinforcement learner to

model their optimizer. Different from classic optimization results that often provide worst-case

convergence, most L2O methods have little or no convergence guarantees, especially on problem

or data instances distinct from what is seen in training, leaving their generalizability in practice

questionable [61]. Motivated by L2O’s success in learning efficient minimization solvers from

data, we seek to answer: whether we could accomplish strong minimax L2O solvers as well; and if

yes, how generalizable they could be?

As it might look straightforward at first glance, such extension is highly nontrivial due to fac-

ing several unique challenges. Firstly, while continuous minimization has a magnitude of mature

and empirically stable solvers, for general minimax optimization, even state-of-the-art analyti-

cal algorithms can exhibit instability or even divergence. To the best of our knowledge, most

state-of-the-art convergence analysis of minimax optimization is built on the convex-concave as-

sumption [57,58,62], and some recent works relax the assumption to nonconvex-concave [52,63].

Convergence for general minimax problems is still open. That makes a prominent concern on

whether a stable minimax L2O is feasible. Secondly, given the two groups of min and max vari-

ables simultaneously, it is unclear to what extent their optimization strategies can be modeled and

interact within one unified framework – a new question that would never be met in minimization.

Thirdly, the noisy and sometimes cyclic dynamics of minimax optimization will provide noisier

5

guidance (e.g., reward) to L2O; not to say that, it is not immediately clear how to define the reward:

for minimization, the reward is typically defined as the negative cumulative objective values along

the history [60]. However, for minimax optimization the objective cannot simply be decreased or

increased monotonically.

6

1.4 Dissertation Contributions

1.4.1 Unified Recommendation Systems Compression

To summarize our contributions, we present the merits of UMEC as the following:

• To the best of our knowledge, UMEC is the first unified optimization framework for the

recommendation system scenario. Unlike those existing works that treat the selection of

input feature and compression of the model as two individual problems, UMEC jointly learns

both together via unifying both original prediction learning goal and the model compression

related hard constraints.

• We reformulate the joint input feature selection and model compression task as a constrained

optimization problem. We convert resource constraints and L0 sparsity constraints into soft

optimization energy terms and solve the whole optimization using ADMM methods.

• Extensive experiments performed over large-scale public benchmarks show that our method

largely outperforms previous state-of-the-art input feature selection methods and model com-

pression methods, endorsing the benefits of the proposed end-to-end optimization.

1.4.2 Unified Visual Transformer Compression

We establish the first all-in-one compression framework that organically integrate (structured)

pruning. Rather than ad-hoc composition, we for the first time propose a unified vision transformer

compression (UVC) framework, which seamlessly integrates the three effective compression and

jointly optimizes towards the task utility goal under the budget constraints. UVC is mathematically

formulated as a constrained optimization problem and solved using the primal-dual algorithm from

end to end. Our main contributions are outlined as follows:

• We present UVC that unleashes the potential of ViT compression, by jointly leveraging

multiple ViT compression means for the first time. UVC only requires to specify a global

resource budget, and can automatically optimize the composition of different techniques.

7

• We formulate and solve UVC as a unified constrained optimization problem. It simultane-

ously learns model weights, layer-wise pruning ratios/masks, under an overall budget con-

straint.

• Extensive experiments are conducted with a DeiT backbone, outperforming or being com-

petitive with past methods, which consistently verify the effectiveness of our proposal across

different architectures. In detail, UVC on DeiT-Tiny yields around 50% FLOPs reduction,

with little performance degradation (only 0.3%/0.9% loss compared to the baseline).

1.4.3 Learning A Minimax Optimizer

We conduct a pilot study into minimax L2O. We start by establishing the first dedicated mini-

max L2O framework, called Twin-L2O. It is composed of two LSTMs sharing one objective-based

reward, separately responsible for updating min and max variables. By ablations of the design op-

tions, we find this decoupled design facilitate meta-learning most, particularly when the min and

max updates are highly non-symmetric. We demonstrate the superior convergence of Twin-L2O

on several testbed problems, compared against a number of analytical solvers.

On top of that, we further investigate how to enhance the generalizability of the learned mini-

max solver1, and discuss two complementary alternatives with experimental validations. The first

alternative is an empirical toolkit that is applicable for general minimax L2O. We introduce cur-

riculum learning to training L2O models for the first time, by recognizing that not all problem in-

stances are the same difficult to learn to solve. After plugging in that idea, we show that Twin-L2O

can be trained to stably solve a magnitude more problem instances (in terms of parameter varying

range). The second alternative explores a theoretical mechanism called safeguarding, particularly

for the important special case of convex-concave problems. When solving a testing instance,

safeguarding identifies when an L2O failure would occur and provides an analytical fall-back op-

tion [64]. That guarantees convergence for convex-concave problems and, in practice, converges

faster even when the problem parameters are drawn from a different distribution from training.
1We differentiate the usages of two terms: parameters and variables, throughout the dissertation. For example,

minu maxv ax2 − by2, we call a, b parameters and x, y variables. For simplicity, this paper only discusses the L2O
generalizability when the testing instances’ parameter distribution differs from the training.

8

2. RELATED WORK∗

2.1 Model Compression

Model compression aims to reduce the complexity of Deep Neural Network (DNN) models

to achieve inference efficiency and resource saving. Generally, model compression techniques

can be categorized into pruning [7, 65, 66], quantization [67–69] and distillation [70–72]. [65]

proposes a magnitude-based and element-wise pruning technique, which does not guarantee the

reduction of computation efficiency, energy and memory costs. Structured pruning can solve this

issue by removing whole certain types of structures from the network, such as filter pruning and

channel pruning methods [6,7,22]. Recent works [73–79] reveal that with appropriate compression

techniques, the identified sparse subnetworks are capable of training in isolation to match the dense

model performance. In the meanwhile, researchers also develop great interest in investigating

hardware-aware compression, which utilizes practical resource requirements(e.g., energy, latency,

Flops) to guide the compression [80–82].

2.2 Recommendation Models

With the recent development of deep learning techniques, plenty of works have proposed

learning-based recommendation systems to grapple with personalized recommendation tasks. [83]

applies recurrent neural networks (RNN) on long session data to model the whole session and

achieve better accuracy than the traditional matrix factorization approaches. [84] proposes a high-

level recommendation algorithm for YouTube videos by specifying a candidate generation model

followed by a separate ranking model, which demonstrates a significant performance boost thanks

to neural networks. [85] proposes a recommendation algorithm based on the graph neural network

∗ Part of this chapter is reprinted with permission from "Learning a minimax optimizer: A pilot study " [2] by
Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z. (2020, September) in International Conference on
Learning Representations, Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from
"UMEC: Unified model and embedding compression for efficient recommendation systems" [5] by Shen, J., Wang,
H., Gui, S., Tan, J., Wang, Z., Liu, J. (2020, September). in International Conference on Learning Representations,
Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from "Unified visual transformer
compression" [3] by Yu, S., Chen, T., Shen, J., Yuan, H., Tan, J., Yang, S., ... Wang, Z. (2022). in International
Conference on Learning Representations, Copyright 2022 held by the authors.

9

to better capture the complex transitions among items, achieving a more accurate item embed-

ding. Their method outperforms traditional sequential approaches. [1] exploits categorical features

and designs a parallelism scheme for the embedding tables to alleviate the limited memory prob-

lem. [86] proposes a multi-attention based model to mitigate the low efficiency problem in the

group recommendation scenarios.

2.3 Input Feature Compression For Recommendation Models

The numerous input features for practical recommendation scenarios necessitate the selec-

tion of useful ones to save memory resources and facilitate computational efficiency during in-

ference. In factorization machines(FM)-based and context-aware recommendation systems, for

example, [87] conducts input feature selection in an automatic manner by feature ranking and

feature sub-sampling, while managing to improve the prediction quality. [8] designs a mixed di-

mension embedding layers scheme and adjusts the dimension of a particular embedding feature

according to the frequency of that item. [9] performs Neural Input Search (NIS) method to search

for the embedding sizes for the sparse categorical features, and designs the multi-size embedding

framework to leverage the model capacity more efficiently. [88] proposes a discovering framework

to automatically find the interaction architecture of the prediction model.

2.4 Vision Transformer

Transformer [14] architecture stems from natural language processing (NLP) applications first,

with the renowned technique utilizing Self-Attention to exploit information from sequential data.

Though intuitively, transformer model seems inept to the special inductive bias of space corre-

lation for images-oriented tasks, it has proved itself of capability on vision tasks just as good as

CNN [19]. The main point of Vision Transformer is that they encode the images by partitioning it

into sequences of patches, projecting them into token embeddings, and feeding them to transformer

encoders [19]. ViT outperforms convolutional nets if given sufficient training data on various im-

age classification benchmarks.

Since then, ViT has been developed to various different variants first on data efficiency towards

10

training like DeiT [41] and T2T-ViT [89] are proposed to enhance ViT’s training data efficiency,

by leveraging teacher-student and better crafted architectures respectively. Swin-Transformer Then

modifications are made to the general structure of ViT to tackle other popular downstream com-

puter vision tasks, including object detection [90–93], semantic segmentation [94, 95], image en-

hancement [96,97], image generation [98], video understanding [99], and 3D point cloud process-

ing [100].

2.5 Minimax Optimization

Following [101], the minimax problem has been studied for decades due to its wide applica-

bility. Simultaneous gradient descent (SimGD) or gradient descent ascent (GDA) [52, 102–104] is

one of the simplest minimax algorithms, conducting gradient descent over variable x and gradient

ascent over variable y. However, the dynamics of SimGD or GDA can converge to limit cycles or

even diverge [50–52]. To address this issue, Optimistic gradient descent ascent (OGDA) simply

modifies the dynamics of GDA and shows more stable performance [53–58]. OGDA attracts more

attention because of its empirical success in training GANs. [62] theoretically studies OGDA by

analyzing its continuous time dynamic and proposes Anchored simultaneous gradient descent that

shows good performance. Follow-the-Ridge [105] also addresses the limit cycling problem by in-

troducing second-order information into the dynamic of GDA. Lately, K-Beam [106] stabilizes the

convergence of GDA by duplicating variable y, yielding strong performance. At each iteration, it

performs gradient ascent independently on K copies of y and greedily chooses the copy that leads

to a large function value f , then it updates x based on the selected copies.

2.6 Learning To Optimize

As a special instance of meta-learning, L2O has been studied in multiple contexts, with contin-

uous optimization being one of its main playgrounds so far. The first L2O framework is introduced

in [4], where both the optimizee’s gradients and loss function values are formulated as the input

features for an RNN optimizer. Due to the enormous number of parameters, a coordinate-wise

design of RNN optimizer is adopted, where all optimization coordinates share the same updating

11

strategy. [60] uses the gradient history and objective values as observations and step vectors as

actions in their reinforcement learning framework. [59] leverages RNN to train a meta-optimizer

to optimize black-box functions. Two effective training tricks, random scaling and objective con-

vexifying, are presented in [107]. [108] presents an optimizer of multi-level hierarchical RNN

architecture augmented with additional architectural features. [109] introduces a Jacobian regular-

ization to L2O and enhances the domain adaptation performance of optimizees. [110] proposes

several improved training techniques to stabilize L2O training and ameliorate performance.

The above works address continuous minimization problems using single optimizer models.

One exception, [111], extends L2O to solving Bayesian swarm optimization. The author presents

a novel architecture where multiple LSTMs jointly learn iterative update formulas for the swarm of

particles, coordinated by attention mechanisms. We also notice that two recent efforts [112, 113]

introduce L2O to adversarial training, a renowned application of minimax optimization. However,

both of them merely utilize L2O to solve the inner minimization of their minimax problems (i.e.,

generating attacks), while the outer maximization is still solved analytically. Neither of the two

directly solves the full minimax optimization.

12

3. METHODOLOGY: UNIFIED COMPRESSION FOR RECOMMENDATION SYSTEMS∗

3.1 Method Overview

For an arbitrary NN-based recommendation model f(·) in an RS, the terminology of "com-

pression" refers to reduce the power consumption with respect to all the computation operations

for the inference. The learning parameters of f(W) can be expressed as W :=
{
W (l)|l ∈ [L]

}
,

where L is the number of layers in the f(W). For an arbitrary layer l, the layer’s weight is denoted

as W (l) ∈ Rdout×din . The recommendation inference on the layer l is executed as

x(l+1) = σ
(
W (l)x(l) + b(l)

)
,

where x(l) ∈ Rdin is the input of l-th layer, and b(l) is the corresponding learning bias term. Since

the RM consists of two components: feature embedding sub-model and neural network prediction

sub-model, the "compression" can be interpreted as shrinking the dimension of embedding feature

v and reducing the number of parameters inW and b.

3.1.1 Perspective Of Model Parameters

It is to reduce the input or output neurons for the specific layer l. For example, the i-th neuron of

x(l+1) and j-th neuron of x(l) are chosen to remove, then the weight matrix W (l) will be reshaped

to (dout − 1)× (din − 1).

3.1.2 Perspective Of Feature Embedding Vectors

The reduction of din would result in the elimination of the input features. For example, v(1) is

defined as the concatenation of a series of embedding vectors, v(1) = [e1; e2; · · · ; en], where [·; ·; ·]

represents the concatenation operator, and n denotes the number of embedding feature vectors in

the RS. Without loss of generality, for the first embedding vector e1 ∈ Rd1 , the zero-out of first

∗ This chapter is reprinted with permission from "UMEC: Unified model and embedding compression for efficient
recommendation systems [5]" by Shen, J., Wang, H., Gui, S., Tan, J., Wang, Z., Liu, J. (2020, September). in
International Conference on Learning Representations, Copyright 2020 held by the authors.

13

d1 columns in W (1) will result in the elimination of the whole embedding vectors for e1. On the

other hand, the compression on fe(We) would reduce the feature embedding vectors’ dimensions.

3.1.3 A Compression Example: Group Lasso For Weight Pruning

We first consider a simple example with an RS model consisting of fe(We) and fp(Wp). For

this RS, to reduce the computation consumption, we present a straightforward model compression

method with Group Lasso. The method considers both the feature embedding selection and net-

work slimming. We only need to apply the sparse regularization terms to the weight matrices. The

optimization problem can be expressed as

min
W

ℓ(W) + λ1

∑
i

∥∥W (1)
.,gi

∥∥
1
+

L∑
l=2

λl

∑
i

∥∥∥W (l)
.,i

∥∥∥
1
, (3.1)

where ℓ(W) is the original objective function . The λs are hyper-parameters to control the im-

portance of these regularization terms. g· denotes the feature groups for the input layer. ∥ · ∥1

indicates the L1 norm. The optimization problem (3.1) restricts the group-wise sparsity for the

input layer and the neuron-wise sparsity (or group size = 1) for the rest model layers while training

with the original objective function ℓ(W). The optimization problem can be solved with the pro-

jected gradient descent method. However, the optimization problem (3.1) has its own limitation.

The hyper-parameters λs only have the latent impact on the model size and we could not directly

affect the model size. It is not friendly when the users would like to restrict the model size to a

specific number. On the other hand, the hyper-parameters also make the optimization problem hard

to tune, requiring multiple arguments searching rounds. To avoid these shortages, we are supposed

to have new approaches to handling the compression of RS.

3.2 Resource-Constrained RS Model Compression

In this section, we propose a novel unified model and embedding compression method on RS

and treat it as a constrained optimization problem. We discuss how to solve the problem using a

gradient-based optimization algorithm.

14

3.2.1 Computation Resource Function For RS Model

To avoid the hyper-parameter tuning in the optimization of problem (3.1), we define the re-

source function to measure the resource consumption for a specific RS model structure, which can

be used to guide the compression of structure. For example, if considering the computation Flops,

the resource of an MLP can be defined as

RFlops =
L∑
l=1

(
2× d(l)

in × d(l)
out + d(l)

out

)
,

where d(l)
in and d(l)

out indicate the number of input and output neurons. For a pruned layer l, the input

and output dimension are restricted by the number of pruned neurons, annotated as s(l) and s(l+1).

Therefore, we can define a resource consumption function in terms of s from each layer as

RFlops(s) ≜
L∑
l=1

(
2×

(
d(l)

in − s(l)
)
×
(

d(l)
out − s(l+1)

)
+
(

d(l)
out − s(l+1)

))
.

For simplicity, the resource function RFlops only takes the s as the number of neurons. In a more

general case, s can be substituted with the product between the number of pruned groups and the

size of each pruned group.

With the definition of the resource function, we can formulate the following optimization prob-

lem,

min
W

ℓ(W), s.t. RFlops(W) ≤ Rbudget, (3.2)

where Rbudget denotes the upper bound of the overall model computation Flops set by users.

Since we consider the group-wise sparsity for each layer, we utilize the set of variables s :=

{s(1), s(2), . . . , s(L)} to control the model’s Flops. The s(l) defines the lower bound of the l-th

layer’s zero group number for the pruned model. Therefore, we reformulate the optimization prob-

15

lem (3.2) as

min
W,s

ℓ(W) (3.3a)

s.t. RFlops(s) ≤ Rbudget (3.3b)∑
i

I
(∥∥∥W (l)

.,i

∥∥∥2
2
= 0

)
≥ s(l), ∀ l = 2, . . . , L, (3.3c)

∑
i

I
(∥∥W (1)

.,gi

∥∥2
2
= 0
)
≥ s(1), (3.3d)

where I(·) is an indicator function with the output {0, 1}. When the condition is satisfied, the

indicator function results in a value of 1, otherwise, it would be 0.
∑

i I
(∥∥∥W (l)

.,i

∥∥∥2
2
= 0

)
denotes

the zero group number for the l-th layer. The resource constraint (5.2) bounds the resource con-

sumption of the recommendation model. The inequalities in both (5.1c) and (3.3d) regularize the

Flops consumption for each layer.

3.3 Optimization

To address the optimization problem (5.1), we adopt the alternating direction method of multi-

pliers (ADMM) for the reformulation. In details, the optimization problem contains non-continuous

indicator function in constraint (5.1c, 3.3d), and non-convex constraint (5.2), which makes the

problem difficult to solve. Therefore, we first reformulate the inequality constraints as soft reg-

ularizations and introduce minimax optimization with dual variables. Then we tackle the non-

differentiable objective function using self-defined numerical differentiation. At last, we summa-

rize all the optimization details into a gradient-based optimization formulation.

3.3.1 Minimax Optimization Reformulation

Let ∥W·,g∥s,2 be the bottom-(s, 2) "norm", which denotes the Frobenius-norm of the sub-matrix

(group) composed of bottom-s groups, by sorting from top to bottom in terms of norm of each

16

group. The equivalent formulation of the sparsity constraint (5.1c, 3.3d) can be

∥W·,g∥2s,2 = 0⇔
∑
i

I
(
∥W.,gi∥

2
2 = 0

)
≥ s. (3.4)

The above equivalence (5.3) is proved by [114], where the LHS is called DC (difference of

convex functions) representation of the L0-constraint. With the transformation, we can reformulate

the problem in Eq. (5.1), into this minimax optimization problem:

min
W,s

max
y,z≥0

ℓ(W) + y(1)
∥∥W (1)

.,g

∥∥2
⌈s(1)⌉,2 +

L∑
l=2

y(l)
∥∥W (l)

.,.

∥∥2
⌈s(l)⌉,2︸ ︷︷ ︸

sparsity loss: S(y,s,W)

+ z (RFlops(s)−Rbudget) ,︸ ︷︷ ︸
resource loss

(3.5)

where y and z are dual variables. The operator ⌈·⌉ indicates the ceiling function. In the prob-

lem (5.5), the importance of regularization terms are tuned automatically based on the minimax

optimization. The sparsity loss S(y, s,W) := y(1)
∥∥∥W (1)

.,g

∥∥∥2
⌈s(1)⌉,2

+
∑L

l=2 y
(l)
∥∥W (l)

.,.

∥∥2
⌈s(l)⌉,2 and

the resource loss z (RFlops(s)−Rbudget) are introduced to substitute the original constraints (5.2,

5.1c, 3.3d). Therefore, the optimal solution to the new problem (5.5) can serve as the optimal for

the original problem (5.1).

3.3.2 Update Rule For All Learnable Variables

To solve the optimization problem (5.5), we utilize the ADMM strategy to solve a series of

sub-problems as follows.

3.3.2.1 UpdateW

The optimization problem on W can be solved with proximal-SGD [115]. The definition of

the proximal operator is as follows:

ProxηS(y,s,W)(W̄) = argminW
1

2

∥∥W − W̄∥∥2 + ηS (y, s,W)

17

where W̄ is the direct stochastic gradient descent update of W . The sub-problem above has the

closed-form solution forW∗ :=
{
W (1)∗,W (2)∗, . . . ,W (L)∗}:

W ∗
i =


W̄i, if

∥∥W̄i

∥∥ >=
∥∥W̄least-⌈s⌉

∥∥,
1

1+2ηy
W̄i, otherwise,

where Wi denotes the i-th sub-matrix, and W is the weight for an arbitrary layer.

3.3.2.2 Update Dual Variables

For the sub-optimization problem, we have

max
y,z≥0

y(1)
∥∥W (1)

.,g

∥∥2
⌈s(1)⌉,2 +

L∑
l=2

y(l)
∥∥W (l)

.,.

∥∥2
⌈s(l)⌉,2 + z (RFlops(s)−Rbudget) ,

and we can adopt the gradient ascent method as the update rule.

3.3.2.3 Update s

The optimization on s relies on both sparsity and resource loss. However, both of them are

non-differentiable due to the ceiling function ⌈s⌉. Straight-through estimator (STE) [116] is an

effective approach for optimization through the non-differentiable functions. The main idea is to

adopt some simple proxy to be the derivative of the non-differentiable formulation. Thus, the back-

propagation can be applied as what happened in the differentiable case. For ∥W ∥2s,2, we can apply

the numerical differentiation ∥W ∥2s+1,2 − ∥W ∥
2
s,2 as the proxy derivative of ∥W ∥2s,2 with respect

to s:

∂̃ ∥W ∥2s,2
∂̃s

= W 2
least-min(Dim(W), s+ 1),

where W 2 is the column-group wise L2 format of W , Dim(W) is the total number of column

groups of W , and W 2
least−j is the j-th least column group in W 2.

For a general resource consumption function (e.g., Flops), the non-differentiable part of R is

18

the ceiling function ⌈s⌉, for which we can use a common STE [116]: ∂̃⌈s⌉
∂̃s

= 1.

∂̃⌈s⌉
∂̃s

= 1.

Now we can wrap up all the update rules together to be a unified optimization algorithm 2. In

this algorithm, we only show an example for the input layer to be column-wise grouped. For a

more general case, the column-group wise sparsity can be applied to an arbitrary layer in the RS

model.

We wrap up all the update rules together to be a unified optimization algorithm, as described

in Algorithm 2. In this algorithm, we only show an example that the input layer is column-wise

grouped. For a more general case, the column-wise group sparsity can be applied to an arbitrary

layer in the RS model.

Algorithm 1: Gradient-based algorithm to solve problem (5.5) for UMEC.
Input: Resource budget Rbudget, learning rates η1, η2, η3, η4, number of total iterations τ .
Result: DNN pruned weightsW∗.

1 Initialize t = 1,W1 ; // random or a pre-trained dense model
2 for t← 1 to τ do
3 Wt+1 = Proxη1S(yt,st,Wt)

(
Wt − η1∇̂Wℓ

(
Wt
))

; // Proximal-SGD

4 st+1 = st − η2

(
∇̃sS

(
yt, st,Wt+1

)
+ ∇̃sz

t
(
RFlops

(
st
)
−Rbudget

))
; // Gradient

(STE) Descent

5 y(1)
t+1

= y(1)
t
+ η3

∥∥∥∥W (1)
.,g

t+1
∥∥∥∥2⌈

s(1)
t+1

⌉
,2

 ; // Gradient Ascent

6 y(l)
t+1

= y(l)
t
+ η3

(∥∥∥W (l)t+1
∥∥∥2⌈

s(l)
t+1

⌉
,2

)
, ∀ l = 2, · · · , L

zt+1 = zt + η4
(
RFlops

(
st
)
−Rbudget

)
; // Gradient Ascent

7 end
8 W∗ =W

19

3.3.3 Prune And Finetune

Solving the minimax optimization problem (5.5) will make some channel weights extremely

close but not exactly equal to zeros. In order to extract the slimmed network, for each W (l), we

discard the s(l) groups with smallest L2 norms ∥W (l)
·,gi∥2 (extremely close to 0) after we have solved

problem (5.5). Then we finetune the explicitly pruned network to further improve the performance.

20

4. EXPERIMENTS: UNIFIED COMPRESSION FOR RECOMMENDATION SYSTEMS ∗

To demonstrate the effectiveness of UMEC, we run experiments on a standard public RM over

the real-world recommendation dataset. And we would like to answer the following questions:

Whether our unified optimization framework that jointly considers input feature selection and pre-

diction model compression has superiority over previous state-of-the-art RS compression methods

which solve the problem from only one aspect? If yes, why?

4.1 Experimental Setup

4.1.1 Dataset And Model

We conduct all our experiments on the state-of-the-art ads CTR prediction model named DLRM [1],

as illustrated in Figure 1.1. Following [1], we use the Criteo AI Labs Ad Kaggle1 and Terabyte2

datasets for our experiments. The Criteo AI Labs Ad Kaggle dataset contains approximately 45

million click log samples collected over seven days. The Terabyte dataset consists of approxi-

mately 4.4 billion click log samples collected over 24 days and we perform uniform sampling

with 12.5% sampling rate from the raw data following the sampling scheme in [1]. Both datasets

contain samples that have 13 continuous and 26 categorical input features. Following the official

setting, for both datasets we split the data of the last day into validation and testing sets, and use

data from the rest days as the training set.

4.1.2 Baseline Methods

The latency of an ads CTR prediction model mainly comes from two sources: feature embed-

ding and prediction model inference. Feature embedding layers map categorical input values into

a vector space. Both the number of input categorical values and the output feature space dimension

can affect the latency of feature embedding stage. The inference latency of the predication model

∗ This chapter is reprinted with permission from "UMEC: Unified model and embedding compression for efficient
recommendation systems" [5] by Shen, J., Wang, H., Gui, S., Tan, J., Wang, Z., Liu, J. (2020, September). in
International Conference on Learning Representations, Copyright 2020 held by the authors.

1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://labs.criteo.com/2013/12/download-terabyte-click-logs/

21

https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs/

mainly depends on the prediction model size. Following the above analyses, methods to accelerate

ads CTR prediction models mainly fall into three categories:

• Prediction model compression: compressing the prediction model with traditional model

compression methods, such as [6, 7, 81].

• Input feature selection: reducing the number of categorical input features by filtering out

non-essential ones.

• Embedding dimension reduction: shrinking the dimension of embedding layers’ output

space. Two recent works [8, 9] fall into this category.

Our unified optimization framework jointly considers input feature selection and model com-

pression. We will further show that our method can be generalized to considering input feature

dimension-reduction as well. So we compare our method with baselines from all three categories

to show the superiority of our method over those baselines tackling the RS compression problem

from only one aspect.

4.1.3 General Training And Evaluation Details

We use the following settings for our experiments on the Criteo Ad Kaggle dataset: we use

SGD optimizer with learning rate 0.1 to optimize the BCE loss (ℓ(W) in our method); we set

training batch size to 128, initial feature embedding dimension to 16, and use the three-layer MLP

prediction model with hidden dimensions 512 and 256.

For our method, we choose Adam optimizer [117] for s and SGD optimizer for W , y, and

z. We set learning rates η1, η2, η3, η4 in Algorithm 2 to be [0.1, 0.05, 0.1, 2.0] respectively, and set

τ to be 306,969 which equals to 1 epoch. In our experiments, we initialize the model weights

from a dense model that has been pre-trained for 1 epoch using ℓ(W) to facilitate training. After

the training process in Algorithm 2, we zero out the redundant neurons (as described in the last

paragraph in Section 3) and extract the sub-network as the pruned model. We then perform fine-

tuning for 2 epochs. For a fair comparison, we also fine-tune 2 epochs for all baseline methods.

Following [1], the best accuracy on the validation set is reported.

22

For experiments on the Criteo Ad Terabyte dataset, the training settings generally follow those

mentioned above with several exceptions: batch size equal to 4096 , τ equal to 157,655, the hidden

dimensions of the three-layer MLP prediction model equal to 256 and 128.

4.1.4 Evaluation Metrics

We evaluate the performance with the following two metrics: Accuracy and Compression Ratio

(CR). Accuracy: CTR prediction accuracy on the validation set. Compression ratio (CR): the

ratio between the Flops that has been deducted and original model Flops. More formally, CR =

1− pf (W)/pf (W0), where pf (·) calculates the Flops of a (sub-)model. W andW0 are the pruned

and original dense prediction models, respectively. The larger CR, the more compact model we

will obtain.

4.2 Prediction Model Compression For RS Model

We design and conduct extensive experiments to examine the compression performance among

our method and several state-of-the-arts model compression methods. The baseline methods in-

clude handcrafted structures, one-shot magnitude pruning (MP) [6], and two recent state-of-the-art

methods, namely Taylor pruning (TP) [7] and energy-constrained model compression (ECC) [81].

In Figure 4.1 and 4.2, we demonstrate the best accuracy on validation set under different com-

pression ratios (CRs) on the Criteo AI Labs Ad Kaggle and Terabyte datasets. Each curve shows

the CR-Accuracy trade-off of one compression method. The doted magenta line represents the

accuracy achieved by the original dense DLRM model.

Several observations can be drawn from this comparison figure. First, our method continuously

outperforms all other methods with a margin of at least 0.01%. Second, only our method can

successfully compress the original dense model to the ideal budget while still manages to maintain

the performance without any degradation within a certain CR scope.

These results show that our joint model compression and input selection method can achieve

much better balance of efficiency vs accuracy than traditional model compression methods.

23

Figure 4.1: Results on RS prediction model compression by different methods on the Criteo AI
Labs Ad Kaggle dataset. Reprinted from [2].

Figure 4.2: Results on RS prediction model compression by different methods on the Criteo AI
Labs Ad Kaggle dataset. Reprinted from [2].

24

Figure 4.3: Results on RS input feature selection by different methods on the Criteo AI Labs Ad
Kaggle dataset. Reprinted from [2].

4.3 Input Feature Selection For RS Model

We evaluate the effectiveness of our proposed method on input feature selection task. The

input feature selection task can be easily realized using our proposed framework, by keeping the

resource constraint for the features groups in input layer (i.e., Eq. (5.1c)) and ignoring constraint

for weights of hidden layers(i.e., Eq. (3.3d)). We use Group Lasso as a self-designed baseline. The

loss function of Group Lasso is shown in Eq. (3.1). Since we are only considering input feature

selection in this sub-section, the sparsity regularization on hidden layers (e.g., the second term in

S(y, s,W)) is ignored. We tune hyper-parameter λ1 among 0.0005, 0.001, 0.005, 0.01 for the

Criteo AI Labs Ad Kaggle dataset, and 0.001, 0.003, 0.005 for the Terabyte dataset, in order to get

different compression ratios. After Group Lasso training, all input features whose L2 norms are

below a threshold th will be removed, and the Flops for the new model are calculated accordingly.

We empirically find that setting th to 0.01 on the Kaggle dataset and 0.001 on the Terabyte dataset

can achieve good performance. For both our method and Group Lasso, we train and fine-tune for

1 epoch and 2 epochs, respectively.

In Figure 4.3 and 4.4, the performance on the holdout validation set at the end of the compress-

25

Figure 4.4: Results on RS input feature selection by different methods on the Criteo AI Labs Ad
Terabyte dataset. Reprinted from [2].

ing process is reported. We demonstrate the effectiveness of our method in input feature selection

task, by showing its superior performance under all the compress ratios. Another observation is

that the pruned model of both methods will fail to recover the performance of the original dense

model if too many input features are removed. For example, at a 0.21 compression ratio on the

Kaggle dataset, which corresponds to removing 9 out of the total 27 input features, both methods

have a considerable drop of accuracy. This indicates that reducing the number of input features

will cause considerable harm to the model’s performance.

4.4 Embedding Dimension Reduction For RS Model

We show that our method can also be applied to embedding dimension reduction. In this new

scenario,W in Eq. (5.1) is embedding layer weights, instead of previous prediction model weights.

Eq. (3.3d) is removed (i.e., no longer to prune the input dimension). The rest parts of the objective

function remain the same.

We compare our method with the state-of-the-art embedding dimension reduction method

named mixed dimension embedding layers (MDEL) [8]. Following [8], we use size of the em-

bedding layers to help define compression ratio. More specifically, in this setting, CR = 1 −

26

ps(W)/ps(W0), where ps(·) calculates the number of parameters in a (sub-)model. W and W0

are the pruned and original dense embedding sub-models, respectively. To evaluate performance

change after pruning, we define ∆acc = AccW −AccW0 , where AccW and AccW0 are CTR predic-

tion accuracy of a pruned and original dense model, respectively.

Method CR ∆acc

MDEL 0.5 0.10%

Ours
0.5 0.24%
0.6 0.16%

Table 4.1: Results on embedding dimension reduction. Reprinted from [2].

MDEL only provides results on the Criteo AI Labs Ad Kaggle dataset, so we conduct the

comparison on this single dataset. Experiment results are shown in Table 4.1. As we can see, both

methods have slight improvement in accuracy at around 50% CR, while the accuracy improvement

of our method is larger than that of MDEL. Also, our method can still achieve better accuracy

improvements than MDEL with even 10% larger CR. These results show that our ADMM based

compression algorithm is better than MDEL.

4.5 Sparsity Analyses Of UMEC

Below we present how the sparsity of the prediction model evolves during the pruning phase

in Section 4.2. As a recall, the aforementioned prediction model consists of one input layer and

two hidden layers, with 27 input features, 512 and 256 neurons respectively. We take the Criteo AI

Labs Ad Kaggle dataset as an example. As shown in Figure 4.5, when Rbudget = 0.5× pf (W0), the

pruned input features/neurons converge to 0, 102 and 250 respectively. During training, the last

hidden layer gets the most percentage of neurons removed and the input layer gets the least per-

centage. We can come to several conclusions from this result. First, such phenomenon aligns with

the observation in Section 4.3 and serves as a piece of evidence that we need enough input features

to adequately represent the raw input information and contribute to the downstream classification

27

task. Second, to perform the relatively easier task, i.e., binary classification, the requirement of

neurons from the last hidden layer falls far below the original design. Thus considerable resource

consumption can be saved here. Third, it demonstrates that our resource-constrained unified opti-

mization plays a smart role in globally finding the optimal resource allocations across all layers.

Figure 4.5: The number of pruned features/neurons for each layer during the training process us-
ing UMEC with Rbudget = 0.5 × pf (W0) on the Criteo AI Labs Ad Kaggle dataset, where pf (W0)
denotes the Flops of the original dense model. For the input layer, the mentioned dense model has
27 features in total. For the two hidden layers, it has 512 and 256 neurons respectively. The con-
vergency of the binary cross entropy (BCE) loss during training is shown in Figure 4.6 . Reprinted
from [2].

4.6 Cascaded Pipeline As A Baseline

We provide experimental results under a cascaded pipeline using UMEC, where the compression

processes for the input feature and the prediction model are carried out sequentially. Two scenarios

are demonstrated: a) Conducting input feature selection first, then prediction model compression,

of which the results are shown in Figure 4.7; b) Conducting embedding dimension reduction first,

then prediction model compression, of which the results are shown in Figure 4.8. We set CR values

of first stage in cascaded pipeline as 0.116, 0.116, 0.302, 0.302, 0.302 respectively for a), and 0.1,

0.1, 0.1 for b). Then we try our best to set the final CR values of the whole cascaded pipeline

to be similar to the CR values used in our joint framework respectively for fair comparisons in

28

0 50000 100000 150000 200000 250000 300000
Training Iteration

0.45

0.46

0.47

0.48

0.49

0.50

0.51

Training Loss

Figure 4.6: The convergency of the binary cross entropy (BCE) loss during training using UMEC
with Rbudget = 0.5 × pf (W0), where pf (W0) denotes the Flops of the original dense model.
Reprinted from [2].

both figures. As an example, we conduct the experimental comparisons on the Criteo AI Labs Ad

Kaggle dataset.

Each curve shows the CR-Accuracy trade-off of one compression method. Comparing the

results of the cascaded pipeline with the joint framework, Figure 4.7 and Figuire 4.8 both support

the superiority of the joint framework.

4.7 Energy Consumption And Inference Latency Of The Network

We evaluate the energy cost and latency of all models on a GTX 2080 Ti GPU. Following [81],

we use the nvidia-smi utility3 to monitor the energy consumption. We follow the settings

in [118] to measure inference latency on the aforementioned real-device. All experiments are

implemented with PyTorch. As shown in Table 4.2, our method achieves the best accuracy with

the least energy consumption and latency among all compared compression methods.

3https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-
367.38.pdf

29

https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

Figure 4.7: Results on the pipeline with a cascade of input feature selection and prediction model
compression, and comparison with the corresponding jointly optimized framework. Reprinted
from [2].

Figure 4.8: Results on the pipeline with a cascade of embedding dimension reduction and pre-
diction model compression, and comparison with the corresponding jointly optimized framework.
Reprinted from [2].

Method Acc (%) Energy (10−3J) Latency (ms)
Ours 78.971 8.81 0.123
ECC 78.939 9.05 0.132

Handcrafted 78.963 9.32 0.140
MP 78.956 9.16 0.136
TP 78.958 9.23 0.137

Dense Model 78.978 9.49 0.144

Table 4.2: Real-device energy consumption and latency of different methods. Best values among
all compression methods are shown in bold. Reprinted from [2].

30

5. METHODOLOGY:UNIFIED COMPRESSION FOR VISION TRANSFORMER ∗

5.1 Preliminary

5.1.1 Vision Transformer (ViT) Architecture

To unfold the unified algorithm in the following sections, here we first introduce the notations.

There are totally L transformer blocks. In each block l of the ViT, there are two constituents,

namely the Multi-head Self-Attention module(MSA) and the MLP module. Uniformly, each MSA

for transformer blcok l has H attention heads originally.

In the Multi-head Self-Attention module, W (l)
Q , W (l)

K , W (l)
V are the weights of the three linear

projection matrix in block l that uses the block input X l to calculate attention matrices: Ql, K l, V l.

The weights of the projection module that follows self-attention calculation is denoted as W (l,1),

represents the first linear projection module in block l. The MLP module consists of two linear

projection modules W (l,2) and W (l,3).

5.1.2 Compression Targets

The main parameters that can be potentially compressed in a ViT block are W (l)
Q , W (l)

K , W (l)
V and

W (l,1), W (l,2), W (l,3). Our goal is to prune the head number and head dimensions simultaneously

inside each layer, associated with the layer level skipping, solved in a unified framework. Currently,

we do not extend the scope to reducing other dimensions such as input patch number or token size.

However, our framework can also pack these parts together easily.

For head number and head dimensions pruning, instead of going into details of QKV compu-

tation, we innovate to use {W (l,1)}1≤l≤L to be the proxy pruning targets. Pruning on these linear

layers is equivalent to the pruning of head number and head dimension. We also add {W (l,3)}1≤l≤L

as our pruning targets, since these linear layers do not have dimension alignment issues with other

parts, they can be freely pruned, while the output of {W (l,2)} should match with the dimension of

∗ This chapter is reprinted with permission from "Unified visual transformer compression" [3] by Yu, S., Chen,
T., Shen, J., Yuan, H., Tan, J., Yang, S., ... Wang, Z. (2022). in International Conference on Learning Representations,
Copyright 2022 held by the authors.

31

Transformer Block

Linear

• •
 •

Concat

Prunable Weights Removeable
Features/Modules Dot-Product Skip Manipulation across Block

• •
•

......

Linear

Linear

Linear

Add &

Norm

Add &

Norm

Linear

Linear

Scaled

Softmax

Other Weights

Transformer Block

Linear

• •
 •

Concat

• •
•

......

Linear

Linear

Linear

Add &

Norm

Add &

Norm

Linear

Linear

Scaled

Softmax

...... output

 Teacher Model:

uncompressed
Transformer
UVC

Compressed

Transformer

Hard Label

Knowledge
Distillation

Figure 5.1: The overall framework of UVC. We seamlessly integrate Pruning within a block: In
a transformer block, we targeting on pruning Self-Attention head numbers(s(l,1)), neuron numbers
within a Self-Attention head(rl,i) and the hidden size of MLP module(s(l,3)) as well. Reprinted
from [3].

block input. We do not prune W
(l)
Q , W (l)

K , W (l)
V inside each head, since Ql, K l, V l should be of the

same shape for computing self-attention.

5.2 Resource-Constrained End-to-End ViT Compression

We target a principled constrained optimization framework jointly optimizing all weights and

compression hyperparameters, i.e., structural pruning of linear projection modules in a ViT block.

The full framework is illustrated in Figure 5.1.

Alternatively, the two strategies could be considered as enforcing mixed-level group sparsity:

the head dimension level, the head number level, and the block number level. The rationale is:

when enforced with the same pruning ratios, models that are under finer-grained sparsity (i.e.,

pruning in smaller groups) is unfriendly to latency, while models that are under coarser-grained

sparsity (i.e., pruning in larger groups) is unfriendly to accuracy. The mixed-level group sparsity

can hence more flexibly trade-off between latency and accuracy.

5.2.1 Pruning Within A Block

To compress each linear projection module on width, we first denote s(l,3) as the number of

columns to be pruned for weights W (l,3). Compression for weights W (l,1) is more complicated

as it is decided by two degrees of freedom. As the input tensor to be multiplied with W (l,1) is

the direct output of attention heads. Hence, we denote s(l,1) to be the attention head numbers that

32

need to be pruned, and r(l,i) the number of output neurons to be pruned for each attention head i.

Figure 5.2 illustrates the two sparsity levels: the head dimension level as controlled by r(l,i), and

the head number level as controlled by s(l,1). They give more flexibility to transformer compression

by selecting the optimal architecture in a more delicate and multi-grained way. Let us emphasize

again that those variables above are not manually picked, but rather optimized globally.

5.2.2 The Constraints

We next formulate weight sparsity constraints for the purpose of pruning. As discussed in

Sec 5.1, the target of the proposed method is to prune the head number and head dimension simul-

taneously, which can actually be modeled as a two-level group sparsity problem when choosing

{W (l,1)}1≤l≤L as proxy compression targets. Specifically, the input dimension of {W (l,1)}1≤l≤L is

equivalent to the sum of the dimensions of all heads. Then we can put a two-level group sparsity

regularization on {W (l,1)}1≤l≤L input dimension to compress head number and head dimension at

same time, as shown in 5.1a and 5.1b. r(l,i) corresponding to the pruned size of ith head. s(l,1)

means the pruned number of heads. For {W (l,3)}1≤l≤L, it is our compression target, we just per-

form standard one level group sparsity regularization on its input dimension, as shown in 5.1c.

∑
j

I
(∥∥∥W (l,1)

gij ,.

∥∥∥2
2
= 0

)
≥ r(l,i), (5.1a)

∑
i

I
(∥∥W (l,1)

gi,.

∥∥2
2
= 0
)
≥ s(l,1), (5.1b)

∑
i

I
(∥∥∥W (l,3)

i,.

∥∥∥2
2
= 0

)
≥ s(l,3), (5.1c)

∀ l = 1, 2, ..., L, ∀ i = 1, 2, ..., H (5.1d)

where Wi,. denotes the i-th column of W ; Wgi,. denotes the i-th grouped column matrix of W , i.e.

the i-th head; and Wgij ,. the j-th column of Wgi,., which is the j-th column of the i-th head. In other

words, in Eqn. 5.1b, column matrices are grouped by attention heads. Hence among the original

33

H heads in total at block l, at least s(l,1) heads should be discarded. Similarly, Eqn. 5.1c demands

that at least s(l,3) input neurons should be pruned at this linear projection module. Furthermore,

Eqn. 5.1a requests that in the i-th attention head at block l, r(l, i) of the output units should be set

to zeros.

Our method is formulated as a resource constrained compression framework, given a target

resource budget, it will compress the model until the budget is reached.

Given a backbone architecture, the FLOPs is the function of s, r and gt, denoted asRFlops(s, r, gt).

We have the constraint as:

RFlops(s, r, gt) ≤ Rbudget, (5.2)

where s = {s(l,1), s(l,3)}1≤l≤L and r = {r(l,i)}1≤l≤L,1≤i≤H . Rbudget is the resource budget. We

present detailed flops computation equations in terms of s, r and gt in Appendix.

Those inequalities can be further rewritten into equation forms to facilitate optimization. As an

example, we follow [114] to reformulate Eqn. 5.1b as:

∑
i

I
(
∥W.,gi∥

2
2 = 0

)
≥ s⇔ ∥W·,g∥2s,2 = 0. (5.3)

where ∥W·,g∥2s,2 denotes the Frobenius norm of the sub-matrix of W consisting of s groups of W

with smallest group norms. Eqn. 5.1a and Eqn. 5.1c have same conversions.

5.2.3 The Objective

The target objective could be written as:

min
W ,gt

L(W , gt) = ℓ(W , gt) (5.4)

where Wt denotes the weights from teacher model, i.e., the uncompressed transformer model. We

choose the simper ℓ2 norm as its implementation, as its performance was found to be comparable

to the more traditional K-L divergence [119].

34

5.2.4 The Final Unified Formulation

Summarizing all above, we arrive at our unified optimization as a mini-max formulation, by

leveraging the primal-dual method [120]:

min
W ,s,r,gt

max
p,y,z≥0

Lpruning = min
W ,s,r,gt

max
p,y,z≥0

L(W , gt) + z
(
RFlops(s, r, gt)−Rbudget

)︸ ︷︷ ︸
resource loss

+

L∑
l=1

(
y(l,1)

∥∥∥W (l,1)
.,g

∥∥∥2
⌈s(l,1)⌉,2

+ y(l,3)
∥∥∥W (l,3)

.,.

∥∥∥2
⌈s(l,3)⌉,2

)
+

L∑
l=1

H∑
i=1

p(l,i)
∥∥∥W (l,1)

.,gi.

∥∥∥2
⌈r(l,i)⌉,2︸ ︷︷ ︸

sparsity loss: S(y,s,p,r,gt,W)

(5.5)

Eventually, we use the solution of the above mini-max problem, i.e. s and r to determine the

compression ratio of each layer. Here, we select the pruned groups of the parameters by directly

ranking columns by their norms, and remove those with the smallest magnitudes.

5.3 Solving The Unified Optimization

The general updating policy follows the idea of primal-dual algorithm.

5.3.1 Updating policy

5.3.1.1 Updating Weights

Different from other pruning methods in CNN that uses fixed pretrained weights to select the

pruned channels/groups with certain pre-defined metrics [23, 121], here our subproblem could be

considered as following a dynamic pruning criteria that will be updated along. Specifically we

solve the following subproblem:

Proxη1S(y,s,p,r,W)(W̄) = argminW

1

2

∥∥W − W̄
∥∥2 + η1S (y, s,p, r,W) , (5.6)

where W̄ = W t − η1∇̂W ℓ (W t). The solution admits a bi-level projection [122]:

W (l,1)∗
.,gij

=


W̄

(l,1)
.,gij , if

∥∥∥W̄ (l,1)
.,gij

∥∥∥2
2
≥
∥∥∥W (l,1)

.,g
ileast-⌈r(l,i)⌉

∥∥∥2
2
,

1
1+2η1p(l,i)

W̄i, otherwise,

35

W (l,1)∗
.,gi

=


W̄

(l,1)
.,gi , if

∥∥∥W̄ (l,1)
.,gi

∥∥∥2
2
≥
∥∥∥W (l,1)

.,g
least-⌈s(l,1)⌉

∥∥∥2
2
,

1
1+2η1y(l,1)

W̄.,gi , otherwise,

W
(l,3)∗
.,i =


W̄

(l,3)
.,i , if

∥∥∥W̄ (l,3)
.,i

∥∥∥2
2
≥
∥∥∥W (l,3)

.,least-⌈s(l,3)⌉

∥∥∥2
2
,

1
1+2η1y(l,3)

W̄.,i, otherwise,

where least-j denotes the index of the (group) columns of W that have j-th least (group) norm.

5.3.1.2 Updating t

(gt(l,0), gt(l,1)) are used to generate a binomial categorical distribution to decide whether pass

through block l or directly skip it. As the two variables are discrete, we apply the renowned

Gumbel-Softmax (GSM) trick [123] to obtain differentiable and polarized sampling. For

gtl = (gt(l,0), gt(l,1)), given i.i.d Gumbel noise g drawn from Gumbel(0, 1) distribution, a soft

categorical sample can be drawn by

Gl = GSM(gtl) = Softmax((log(gtl) + g)/τ) ∈ R2, (5.7)

where G(l,1) refers to the continuous possibility to preserve current block l while G(l,0) to drop it.

Directly applying the chain rule on L(W , gt) w.r.t gt can now calculate ∇̃gtL(W t, gtt).

Also, gt participates in the calculation of FLOPs, by deciding whether to pass certain blocks.

Since passing or skipping a block is a dynamic choice during training, we estimate the FLOPs of

the l-th blockRFlops(s, r, gt) with skip gating by using its expectation. To be specific,

36

RFlopsl(sl, rl, gtl) = E[RFlopsl(sl, rl, gtl)|sl, rl] (5.8a)

= G(l,0)RFlopsl(Identity) +G(l,1)RFlopsl(sl, rl) (5.8b)

= G(l,1)RFlopsl(sl, rl) (5.8c)

Hence, updating policy for gt is formulated as:

gtt+1 = gtt − η4

(
∇̃gtL

(
W , gtt

)
+ ∇̃gtz

(
RFlops

(
s, r, gtt

)
−Rbudget

))
(5.9)

= gtt − η4

(
∇̃gtL

(
W , gtt

)
+ ∇̃gtzRFlops(s, r)GSM(gtt)

)
(5.10)

5.3.1.3 Updating s and r

Similar to the updating policy of gt, one gradient term w.r.t. s and r are ∇̃sz (RFlops (s, r, gt)−Rbudget),

∇̃rz (RFlops (s, r, gt)−Rbudget) respectively.

The other gradient term is calculated on the unified formulation Eqn. 5.5. Refer to that, s and

r are floating-point numbers during the optimization process. In pratice, ceiling functions are op-

erated on them to determine the integer number that should be pruned for each layer. However, the

ceiling function ⌈.⌉ is non-differentiable. To solve this problem, we implement Straight-through

estimator(STE) [116] to provide a proxy of gradient when performing the backward pass. We set

∂̃⌈s⌉
∂̃s

= 1.

As for ∥W.,g∥2s,2 term in the sparsity loss, we use ∥W.,g∥2s+1,2−∥W.,g∥2s,2 as the proxy of partial

derivative of ∥W.,g∥2s,2 with respect to s:

∂̃ ∥W.,g∥2s,2
∂̃s

=
∥∥∥W.,gleast-min{Dim(W),s+1}

∥∥∥2
2
, (5.11)

where Dim(W) is the number of column groups of W . The other two terms in the sparsity

37

loss can be processed similarly.

Linear

original shape is 54*9

 Remaining columns of W

two-level

group sparsity

neuron level

group sparsity

head-level

group sparsity

pruned to be 18*9

Figure 5.2: The two sparsity levels for pruning within a block: the head dimension level as con-
trolled by r(l,i), and the head number level as controlled by s(l,1). When reaching same pruning ra-
tio, neuron level sparsity will not remove any head, which is usually not friendly to latency; while
head level sparsity will only remove head, which is usually not friendly to accuracy. Reprinted
from [3].

5.3.2 Main Algorithm

The general updating policy follows the idea of primal-dual algorithm. The full algorithm is

outlined in Algorithm 2.

38

Algorithm 2: Gradient-based algorithm to solve problem (5.5) for Unified ViT Compres-
sion.

Input: Resource budget Rbudget, learning rates η1, η2, η3, η4, η5, η6, number of total iterations τ .
Result: Transformer pruned weights W ∗.

1 Initialize t = 1,W 1 ; // random or a pre-trained dense model
2 for t← 1 to τ do
3 W t+1 = Proxη1S(yt,st,pt,rt,W t)

(
W t − η1∇̂WL

(
W t, gt

))
; // Proximal-SGD

4 st+1 = st − η2

(
∇̃sS

(
yt, st,pt, rt, gtt,W t+1

)
+ ∇̃sz

t
(
RFlops

(
st, rt, gtt

)
−Rbudget

))
;

// Gradient (STE) Descent
5 rt+1 =

rt − η3

(
∇̃rS

(
yt, st+1,pt, rt, gtt,W t+1

)
+ ∇̃rz

t
(
RFlops

(
st+1, rt, gtt

)
−Rbudget

))
;

// Gradient (STE) Descent

6 gtt+1 = gtt − η4

(
∇̃gtL

(
W t+1, gtt

)
+ ∇̃gtz

t
(
RFlops

(
st+1, rt+1, gtt

)
−Rbudget

))
;

// Gradient Descent
7 zt+1 = zt + η7

(
RFlops

(
st+1, rt+1, gtt+1

)
−Rbudget

)
; // Gradient Ascent

8 y(l,1)
t+1

= y(l,1)
t
+ η5

∥∥∥∥W (l,1)
.,g

t+1
∥∥∥∥2⌈

s(l,1)
t+1

⌉
,2

 ; // Gradient Ascent

9 y(l,3)
t+1

= y(l,3)
t
+ η5

(∥∥∥W (l,3)
.,.

t+1
∥∥∥2⌈

s(l,3)
t+1

⌉
,2

)
, ∀ l = 1, · · · , L

p(l,i)
t+1

= p(l,i)
t
+ η6

∥∥∥∥W (l,1)
.,gi.

t+1
∥∥∥∥2⌈

r(l,i)
t+1

⌉
,2

 , ∀ i = 1, · · · , H, ∀ l = 1, · · · , L

10 end
11 W ∗ = W

39

6. EXPERIMENTS:UNIFIED COMPRESSION FOR VISION TRANSFORMER ∗

6.1 Datasets And Benchmarks

We conduct experiments for image classification on ImageNet [12]. We implement UVC on

DeiT [41], which has basically the identical architecture compared with ViT [19] except for an

extra distillation token. Experiment has been conducted on DeiT-Tiny. We measure all resource

consumptions (including the UVC resource constraints) in terms of inference FLOPs.

6.2 Training Settings

The whole process of our method consists of two steps.

• Step 1: UVC training. We firstly conduct the primal-dual algorithm to the pretrained DeiT

model to produce the compressed model under the given resource budget.

• Step 2: Post training. When we have the sparse model, we finetune it for another round of

training to regain its accuracy loss during compression.

In the two steps mentioned above, we mainly follow the training settings of DeiT [41] except

for relatively smaller learning rate which benefits finetuning of converged models.

Numerically, the learning rate for parameter z is always changing during the primal-dual algo-

rithm process. Thurs, we propose to use a dynamic learning rate for the parameter z that controls

the budget constraint. We use a four-step schedule of {1, 5, 9, 13, 17} in practice.

6.3 Baseline Methods

We adopt several latest compression methods specifically developed for ViTs (all proposed

only in the past four months), which fall under two categories:

∗ This chapter is reprinted with permission from "Unified visual transformer compression" [3] by Yu, S., Chen,
T., Shen, J., Yuan, H., Tan, J., Yang, S., ... Wang, Z. (2022). in International Conference on Learning Representations,
Copyright 2022 held by the authors.

40

• Category 1: Input Patch Reduction, including (i) HVT [124]: which designs efficient ar-

chitectures by reducing the spatial dimensions using max pooling hierarchically. (ii) Patch-

Slimming [40]: which identifies the effective patches in the last layer and then use them to

guide the patch selection process of previous layersk.

• Category 2: Model Weight Pruning, including (iii) SViTE [38]: which jointly optimizes

model parameters and explores sparse connectivity throughout training, ending up with one

final sparse network. SViTE belongs to the most competitive accuracy-efficiency trade-off

achieved so far, for ViT pruning. We choose its structured variant to be fair with UVC.

6.4 Main Results

The full comparison result are listed in Tab. 6.1. Firstly, we notice that most existing methods

cannot save beyond 50% FLOPs without sacrificing too much accuracy. In comparison, UVC can

easily go with larger compression rates (up to ≥ 60% FLOPS saving) without compromising as

much, showing stronger promise for resource-constrained ViT applications. For example, when

compressing DeiT-Tiny (with distillation token), UVC can trim the model down to a compelling

≥50% of the original FLOPs while losing only 0.4% accuracy. Compared with the latest SViTE

[38] that can only save up to around 30% FLOPs, we observe UVC to significantly outperform at

DeiT-Tiny, obtaining less accuracy drops (0.9%, versus 2.1%), at much aggressive FLOPs savings

(50.7%, versus 23.7%).

Secondly, On other models, we observe UVC to generally save more FLOPs, yet also sacri-

ficing more accuracies. Moreover, as we explained in Section 3.1, those input token reduction

methods represent an orthogonal direction to the model weight sparsification way that UVC is pur-

suing. UVC can also be seamlessly extended to include token reduction into the joint optimization

- a future work that we would pursue. UVC also outperformed recent strong competitors such as

HVT [124] on DeiT-Tiny.

41

Model Method Top-1 Acc. (%) FLOPs(G) FLOPs remained(%)

DeiT-Tiny

Baseline 72.2 1.3 100
SViTE 70.12(-2.08) 0.99 76.31

PatchSlimming 72.0 (-0.2) 0.7 53.8
UVC 71.8 (-0.4) 0.69 53.1
HVT 69.7 (-2.5) 0.64 49.23
UVC 71.3 (-0.9) 0.64 49.23
UVC 70.6 (-1.6) 0.51 39.12

Table 6.1: Comparison of the vision transformers compressed by UVC with different benchmarks
on ImageNet. FLOPs remained denotes the remained ratio of FLOPs to the full-model FLOPs.
Reprinted from [3].

42

7. METHODOLOGY: LEARNING A MINIMAX OPTIMIZER ∗

7.1 Main Framework: Twin Learnable Optimizers (Twin-L2O)

The minimax objective in Section 2 is solved by alternative gradient descent, of which the

effectiveness is questionable. As we discussed in Section 1.2, We would like to resort to learning

to optimize (L2O) technique to solve the minimax objective, and explore to what extent the meta-

learned optimizers can be adapted to a special class of functions and outperform general-purpose

optimizers for minimax problems.

The main L2O framework we proposed is named Twin-L2O, where we use two learnable op-

timizers to alternate between min and max updates. See Figure 7.1. Our design adopts the basic

idea of [4] to use Long Short-Term Memory (LSTM) to model learnable optimizers, for solving

target problems known as optimizees. At each step, LSTM outputs the update of the optimizee

variables. The LSTM inputs are typically the current zero-order or first-order information of the

optimizee [4, 125], plus the historic optimization trajectory information.

In Twin-L2O, two LSTMs separately update x and y and record historical trajectory informa-

tion of their own variables respectively. Formally, we consider the minimax problem minx maxy f(x, y).

We use two LSTM optimizers, LSTM-Min and LSTM-Max, to updates the min variable x and the

max variable y respectively. LSTM-Min is parameterized by ϕmin and LSTM-Max is parameter-

ized by ϕmax. At each iteration t, Twin-L2O updates x and y in turns and yields the following

rule:

xt+1 =xt +∆xt,where (∆xt, h
min
t+1) = LSTM-Min

(
[∇xf (xt, yt) ,∇yf (xt, yt)], h

min
t , ϕmin

)
,

yt+1 =yt +∆yt,where (∆yt, h
max
t+1) = LSTM-Max

(
[∇yf (xt+1, yt) ,∇xf (xt+1, yt)], h

max
t , ϕmax

)
,

(7.1)

where hmin
t and hmax

t are the historical trajectory information of LSTM-Min and LSTM-Max at

time step t.

∗ This chapter is reprinted with permission from "Learning a minimax optimizer: A pilot study " [2] by Shen, J.,
Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z. (2020, September) in International Conference on Learning
Representations, Copyright 2020 held by the authors.

43

Iteration	

	
	

......

LSTM-Max	 LSTM-Max	 LSTM-Max	

......

......

Iteration	 Iteration	

Twin-Structured	Learning	to	Optimize	(Twin-L2O)

Apply	Updating	RuleMinimax	OptimizeeTwin-LSTM	Optimizer

LSTM-Min	 LSTM-Min	 LSTM-Min	

......
	
	

	
	

	
	

	
	

	
	

Pass	Updated	 	or	 	Variable Pass	Input	Information	to	Twin-LSTM

Figure 7.1: Architecture of Twin-L2O. We let LSTM-Min and LSTM-Max, parameterized by ϕmin

and ϕmax, update x and y respectively. As shown by curved dashed lines, Twin-LSTM keeps being
updated about the latest variable values of x and y when computing input information and the
reward. When constructing the computational graph and training the Twin-LSTM, the solid lines
allow gradients to flow while the dashed lines do not pass any gradient [4]. Reprinted from [5].

This formulation is inspired by the SimGD/GDA-style algorithms [52, 102–104] that conduct

simultaneous/alternative gradient descent over x and ascent over y.

The next question is to design the L2O reward. To train the LSTM optimizers, the loss function

is often to penalize some type of cost, accumulated along the optimization trajectory for a horizon

of T steps (also known as the unrolling length for LSTM [126])

L(ϕmin, ϕmax) = Ef

[
T∑
t=1

wtR(f, xt, yt)

]
, (7.2)

wt is chosen to be all 1 following the basic setting in [4], that might be tuned for better performance

in future work.

As a key design option, R(f) represents the reward to guide the L2O training. In existing L2O

methods for continuous minimization [4, 107], R(f) is usually simply set to R(f, xt)) = f (xt)

44

to encourage fast decrease of objective values over time. To extend this existing reward to the

minimax scenario, we cannot directly penalize the overall objective function value either way,

since the min and max objectives are entangled. Also, different from pure minimization problems,

the Twin-L2O updates (7.1) consist of two alternating steps governed by two different LSTM

optimizers: each accounts for its own subproblem goal (min or max updates), but the two also

have to collaborate to explore/exploit the minimax landscape. We specifically design the following

reward that implicitly addresses the above issue by setting a new reward function:

L(ϕmin, ϕmax) = Ef

[
T∑
t=1

{[f(xt, yt−1)− f(xt, yt)] + [f(xt, yt−1)− f(xt−1, yt−1)]}

]
. (7.3)

7.1.1 Analysis Of The Reward Design

In Eqn. 7.3, the first and second terms always characterize two consecutive min and max up-

dates. In more details, the value of f (xt, yt)−f (xt, yt−1) solely reflects how effectively the t-step

max update increases the objective f , while f (xt, yt−1)− f (xt−1, yt−1) reflects the effectiveness

of t-step min update in decreasing the objective f . Our goal is then to maximize the weighted

accumulated sum for f (xt, yt) − f (xt, yt−1) , while minimizing the weighted accumulated sum

for f (xt, yt) − f (xt, yt−1) , t = 1, 2, ..., T . Combining the two sub-goals together (with a sign

change to turn max into min) yields our reward. One may also alternatively interpret Eqn. 7.3 as

penalizing the loss change from f(xt, yt) along both x and y updating directions, which would

encourage yielding stationary points.

We term the reward function in Eqn. 7.3 as an objective-based reward, since it penalizes the

objective change from f(xt, yt) along both x and y updating directions. It is naturally inherited and

extends the reward functions prevailing in most prior L2O works for minimization [4, 60], whose

default reward is to minimize a weighted sum of the past function values.

One may also design the following two rewards, which we name as gradient-based rewards:

45

L(ϕmin, ϕmax) = Ef

[
T∑
t=1

∥∇xf (xt, yt)∥2 + ∥∇yf (xt, yt)∥2
]
, (7.4)

L(ϕmin, ϕmax) = Ef

[
T∑
t=1

(
f (xt, yt−1)− f (xt, yt)

∥yt − yt−1∥

)2

+

(
f (xt−1, yt−1)− f (xt, yt)

∥xt − xt−1∥

)2
]
. (7.5)

Eqn. 7.5 is the gradient-based Nikaido-Isoda function introduced by [127].

For minimax optimization, it is not immediately clear whether the objective-based or the

gradient-based might work practically better. Intuitively by definition, the former is likely to lead

towards a saddle point (defined in Eqn. 1.1) and the latter to a stationary point. They do not always

coincide in general, e.g, a stationary point might not be a saddle point. But for all specific test

problems we studied in this dissertation, a stationary point is also a saddle point.

We try several experiments on the challenging seesaw problem as a specific example, to provide

a close comparison between the gradient-based in Eqn. 7.4 and the objective-based reward. We re-

do Twin-L2O by only replacing Eqn. 7.3 with the gradient-based reward, and our observations are:

a) the gradient-based reward solves the seesaw problem worse than the objective-based one; b) the

minimization variable x diverges on testing problem instances; c) the maximization variable y will

converge to a solution of precision magnitude 0.04 (for reference, y converges to have magnitude

less than 0.01 when using the objective-based loss). We further identify one possible cause after

analyzing the gradient behaviors. Note here the gradient-based reward could be expressed as:

||∇xf(x, y)∥2 + ∥∇yf(x, y)∥2 = a2b2π2y2 cos2(aπx) + b2 sin2(aπx) (7.6)

Because a, b ∼ U [0.9, 1], the first term often dominates during training due to the π2 multiplier,

unless y is sufficiently close to zero. The imbalance could be a cause of instability. For example,

this reward could sometimes penalize cos2(aπx) to be close to zero, which is the opposite direction

of the true solution sin2(aπx) = 0 . Although this is just a very specific problem example, it reveals

that the gradient-based loss may sometimes not work well as expected, due to the instability or

asymmetry of min/max gradients.

46

Besides, we have also tried the second gradient-based reward in Eqn. 7.5, and find it ineffective.

It is mainly because the denominator (consecutive variable differences) can become very small and

the loss will then explode and break training.

Back to the objective-based reward used in this dissertation, we have not observed oscillation

empirically from all experiments so far. Our hypodissertation is that the recurrent structure of

the proposed Twin-L2O framework (shown in Eqn. 7.1) plays a role here. Although we use two

LSTMs for the min and max updates respectively, the LSTM of one variable actually takes in the

information of the other LSTM implicitly, because it takes the output of the other as input. When

we penalize the objective function value of one LSTM update, all previous min and max updates

can (in principle) be taken into account due to the effect of unrolled back-propagation, e.g., the

min and max updates each take reference to not only its own, but also the other’s higher-order past

trajectory information. While this is a tentative explanation, we think more in-depth analysis of

why oscillation may or may not happen in L2O could be a really interesting future work.

Another implicit intuition that leads us to prioritizing the use of objective-based over gradient-

based is that, in classic minimization, objective change is summable (i.e., having a finite accu-

mulation), but gradient change is not summable in general (unless with properties such as strong

convexity). While summability is itself not a guarantee for good training/testing performance, lack

of summability means the loss may have an overly large dynamic range.

To summarize, our function-based objective naturally extends previous L2O convention, works

better than other alternatives, and observes no oscillation yet. However, we emphasize that there is

no intention to claim the current reward in Eqn. 7.3 is the best choice for minimax L2O - it is one

of plausible options. We do concur the gradient-based reward designs in Eqn. 7.4 and Eqn. 7.5 are

a complicated yet interesting question, especially when considering more complicated minimax

problems. Again, as this dissertation is intended only as the first work and pilot study towards un-

derstanding the profound challenges and rich possibilities for minimax L2O, we believe everything

discussed and proposed here, including the loss function, has large room of improvement.

47

7.1.2 Rationale Of The Framework Selection

Another important design question is to what extent learning the min and max updates should

be (dis)entangled: on the one hand, the two steps obviously interact with each other as they jointly

explore the minimax landscape; on the other hand, min and max steps commonly have asymmetric

difficulty levels, that have been leveraged by previous algorithms. For example, [106] demonstrates

the failure of alternating gradient descent in minimax optimization due to the multiple solution dis-

continuity of the inner maximization, and addresses that by simultaneously tracking K candidate

solutions for the max step, while the outer minimization remains to take one descent step. Be-

sides the joint reward (7.3), the default Twin-L2O design leverages two independent LSTMs in

Eqn. (7.1), each dedicatedly handling min or max updates. In comparison, we also consider two

other more "entangled" ways: (a) fully entangling the two optimizers, i.e. using one LSTM to

simultaneously generate min and max outputs; (b) weakly entangling the two optimizers, by using

two LSTMs sharing weights, yet allowing either to maintain its own temporal hidden states. Our

ablation experiments (see Section 8.1) find that the default decoupled design in Eqn. (7.1) seems

to facilitate the L2O learning most.

7.2 Improving Generalizability Of Twin-L2O

Despite the empirical success of L2O, it is unfortunately impossible to ensure that any L2O

algorithm always converges. Assuming the objective function type to keep unchanged, the testing

instances’ parameter distribution may differ from the one of training, and L2O can catastroph-

ically fail. For the Twin-L2O, we discuss two remedies to partially fix this issue and boost its

generalizability.

We first propose curriculum L2O training scheme as a practical L2O training technique such

that Twin-L2O can be trained to work on a much wider coverage of problem parameters than

its vanilla versions. That would empirically help the generalizability due to broader coverage by

training instance, but would still inevitably fail when meeting unseen testing instances. We then

present a preliminary exploration of the safeguard mechanism on minimax under a special case,

48

i.e., solving convex-concave problems. We demonstrate that with such strong assumptions, it is

possible to theoretically establish the "perfect" convergence of Twin-L2O on any unseen optimizee.

7.2.1 Curriculum L2O Training

When it comes to general minimax problems, it is unlikely to exist an ideal theory to fully

ensure Twin-L2O convergence on all instances. Therefore, we seek empirical L2O success of as

many instances as possible. Specifically: can we train Twin-L2O better, so that it can work on

instances at a broader parameter range?

We find a curriculum learning (CL) strategy [128] particularly useful. CL was first adopted to

train neural networks by first focusing the training on an "easy" training subset (often adaptively

selected), that is then gradually grown to the full set. It is known to be effective to stabilize training,

especially when the training set is highly varied or noisy [129]. Since minimax optimization is

notoriously unstable no matter via analytical or learned optimizers, we conjecture that the noisy

minimax dynamics might challenge Twin-L2O by providing unreliable guidance and impede its

training. Considering that our Twin-L2O is modeled using LSTMs, it is natural to think of whether

CL can bring additional gains if applied to meta-training. Previously it was also found effective in

L2O for minimization problems [110].

Specifically, in one epoch, we will rank all optimizee instances by their cumulative losses (7.2)

from low to high, and only select the top C instances to count into the total reward. In that way,

only the instances that exhibit "good training behaviors" (smaller gradients & more likely to get

close to stationary points) will be initially used for updating the Twin-L2O. That prevents the

learned optimizer being misled by random failures and outliers, which are commonly found in the

early epochs of Twin-L2O training. We by default set the percentage C to start from 20%, then

growing linearly every epoch until reaching 100% in the later training stage.

Up to our best knowledge, this is the first effort to incorporate CL with L2O training. We can

this Twin-L2O trained with CL as Enhanced Twin-L2O: note that it is the same model structure,

just trained in a different and better way. More details are provided below.

49

Figure 7.2: Method for Safeguarded-Twin-L2O for Convex-Concave Saddle Point Problems.
Adapted from [5].

In L2O framework, the reward for training the optimizer is defined as:

L(ϕ) = Ef

[
T∑
t=1

wtR (f (xt))

]
(7.7)

where f is a distribution of functions. The Enhanced Twin-L2O using Curriculum Learning(CL)

selects a portion of instances that demonstrate "good training behaviors" (smaller gradients & more

likely to get close to stationary points) to be counted into the reward, with the portion C increasing

linearly from 20% to 100% as the training epoch increases. In our experiments, the detailed scheme

of C is:

C = min{20 + epoch_index, 100}% (7.8)

where epoch_index denotes the index of epoch when training, starting from 0 and ending with 199

50

in our case. When applying CL, the actual reward becomes

L̃(ϕ) = Ef

[
T∑
t=1

wtq(f)R (f (xt))

]
(7.9)

where q(f) = 1 if the value m(f) =
∑T

t=1wt ∥∇yf (xt, yt)∥2 ranks top C of all sampled functions,

and q(f) = 0 otherwise.

This process does not change the structure of Twin-L2O, and essentially acts as adding masks

to those training instances that demonstrate poor behavior and ignoring them in the actual training

phase. Combining this trick with the existing framework, the Twin-L2O can achieve a higher

success rate when solving problems with a larger range of parameters.

7.2.2 Safeguard Twin-L2O: A Preliminary Theoretical Exploration

Most L2O methods have little or no convergence guarantees. Very recently, a safeguarding

mechanism has been introduced to L2O for convex minimization problems with gradient and/or

proximal oracles [61]. Conceptually, a safeguard is anything that identifies when a ”bad" L2O

update would occur and what ”fallback" update to apply in place of that bad L2O update. In this

section, we establish a safeguarding theory and algorithm, specifically for learned convex-concave

saddle point algorithms. Here the safeguard takes the form of an energy inequality (c.f. Line 6 in

Method 7.2).

In this section, we write u = (x,y) ∈ Rm × Rn and let α > 0. We use the resolvent, defined

by

Jα∂f (x,y) = (Id + α∂f)−1, (7.10)

where we note ∂f = (∂xf,−∂yf). For simple f (e.g., quadratic functions), a closed formula exists

for Jα∂f . Otherwise, one may use an iterative method to approximate this quantity. In addition,

define the residual operator

F (u) :=
1

2
(u− Jα∂f (u)) , (7.11)

51

and, for each k ∈ N, the energy Ek : Rm × Rn → R by

Ek(u) := ∥F (u)∥2 − λk

1− λk

⟨F (u),u1 − u⟩ , (7.12)

where {λk} is a sequence of step sizes. The full method is outlined in the Method 7.2, where the

L2O update is denoted by LSTM(uk;ϕk) and the fallback method is a Halpern iteration [130].

Our main result for minimax safeguarding theory is formally stated below:

Theorem 7.2.1. If the sequence {uk} is generated by Algorithm 7.2, then

∥uk − Jα∂f (u
k)∥ ≤ 1

2

(
d1
k

+

√
d21
k2

+
4C

k

)
, for all k ≥ 2, (7.13)

where d1 := min{∥u − u1∥ : 0 ∈ ∂f(u)} is the distance from the initial iterate u1 to the set of

saddle points and C ≥ 0 is an arbitrary constant. In particular, this implies each limit point of

{uk} is a saddle point.

Our proof draws and integrates two sources of ideas: (1) the safeguarded L2O technique that

has recently just been introduced to convex minimization [61]; and (2) Halpern iteration [64] that is

adopted for analytical minimax optimization with favorable theoretical properties. The full proof is

provided below. Note that this work is not intended as a theory innovation on (classical) minimax

optimization. Instead, our aim is to extend the emerging idea of safeguarded L2O from convex

minimization to convex-concave minimax problems of interest, and shows this idea to be helpful

for minimax L2O too: see experiments section.

52

8. EXPERIMENTS: LEARNING A MINIMAX OPTIMIZER ∗

8.1 Ablation Study On The Design Of Twin-L2O

We first investigate the design choices for Twin-L2O that we discussed in Section 7.1. We

mainly investigate two aspects: (i) whether to share the weights in the two LSTM solvers or

not; (ii) whether to share the hidden states between the two LSTM solvers or not. That leads

us to four options, denoted as (with self-explanatory names): Share-LSTM-Share-Hidden, Share-

LSTM-Two-Hidden, Two-LSTM-Share-Hidden, and Two-LSTM-Two-Hidden. We use the seasaw

problem, formulated as below, as the testbed for our ablation study (note that the ranges of a, b are

picked only to make L2O easy to converge, while more will be investigated later):

Seesaw: min
x

max
y
−by sin(aπx), a ∼ U [0.9, 1], b ∼ U [0.9, 1] (Seesaw)

The Seesaw problem is nonconvex-concave, and is considered challenging [106] due to its non-

differentiability arising from that the solutions of the state equation or the adjoint state equation

are not unique [131]. The L2O training routine follows [4]: we use 128 optimizee instances for

training; each of them has its parameters i.i.d. sampled, and variables x, y randomly initialized

by i.i.d. sampling from U [−0.5, 0.5]. A validation set of 20 optimizees is used with parameters

and variables sampled in the same way; and similarly we generate a hold-out testing set of another

100 instances. For each epoch, an L2O optimizer will update the optimizee parameters for 1000

iterations, with its unrolling length T = 10. When the next epoch starts, all x, y as well as LSTM

hidden states are reset. We train the L2O solvers for 200 epochs, using Adam with a constant

learning rate 10−4. We pick the model checkpoint at the epoch when its validation performance

reaches the peak. Figure 8.1 compares the convergence results of the four options, evaluated on the

same testing set. We measure the ℓ2 distances between the solved variables and their corresponding

∗ This chapter is reprinted with permission from "Learning a minimax optimizer: A pilot study " [2] by Shen, J.,
Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z. (2020, September) in International Conference on Learning
Representations, Copyright 2020 held by the authors.

53

ground-truth solutions (or the closet one, if multiple exist). It is obvious that only the Two-LSTM-

Two-Hidden can successfully converge to the correct solution (x∗, y∗) = (0, 0), which is also

the equilibrium. Our major observation from the above experiments is that for minimax L2O

optimization, especially for asymmetric problems such as Seesaw, it would be a better choice to

use decoupled two LSTM solvers and let them take care of their own trajectory information. We

will hence stick to this option and use it as our default Twin-L2O.

All experiments in this and following sections are conducted using the GeForce GTX 1080 Ti

GPUs.

0 100 200 300 400 500
Iteration

10 3

10 2

10 1

100

Di
st

an
ce

 to
 G

ro
un

d
Tr

ut
h

Two-LSTM-Two-Hidden
Two-LSTM-One-Hidden
One-LSTM-Two-Hidden
One-LSTM-One-Hidden

0 100 200 300 400 500
Iteration

10 2

10 1

100

Di
st

an
ce

 to
 G

ro
un

d
Tr

ut
h

Two-LSTM-Two-Hidden
Two-LSTM-One-Hidden
One-LSTM-Two-Hidden
One-LSTM-One-Hidden

Figure 8.1: Convergence curves of x and y on the ablation study of Twin-L2O design options.
Reprinted from [5].

54

8.2 Comparison With State-of-the-Art Analytical Optimizers

In this section, we apply Twin-L2O to two more test problems besides Seesaw:

• Rotated Saddle1: minx maxy ax
2 − by2 + 2xy, a ∼ U [0.9, 1], b ∼ U [0.9, 1]

• Matrix Game: minxmaxy x
TAy, A ∈ R5×5,Ai,j ∼ Bernoulli(0.5) · U [−1, 1]

On all three problems, we compare Twin-L2O with several state-of-the-art algorithms: Gradi-

ent Descent Ascent (GDA) [52], Optimistic Mirror Descent (OMD) [53] and GD with anchoring

(GD-Anchoring) [62]. On Rotated Saddle and Seesaw we will compare with K-beam [106] in

addition. For matrix game, we also compare it with the standard Halpern Iteration [64] that is

designed for convex-concave minimax problems. For these analytical methods, all parameters are

tuned with careful grid search. We train, validate and test Twin-L2O models following the protocol

described in Section 8.1.

Figure 8.2, Figure 8.3 and Figure 8.4 plot the convergence curves of all methods, averaged

across all testing problems (and each with 20 trials of random x, y initialization). Several observa-

tions are drawn below:

• L2O does not show superiority over well-tuned analytical algorithms on the simplest Rotated

Saddle problem (and similarly Saddle). The problem is very gradient-friendly, and therefore

OMD already achieves the best convergence speed as well as solution quality.

• On Matrix Game, Twin-L2O starts to show competitive edges over analytical solvers with

faster convergence speed and higher-precision solutions.

• On the Seesaw problem, Twin-L2O largely outperforms all carefully-tuned analytical algo-

rithms, achieving one-magnitude higher-precision solutions with comparable convergence

speed. That shows us one take-home message: L2O can work for minimax optimization,

and can contribute most significantly to those hard problems. That makes minimax L2O a

1We also test on the classical Saddle problem, but its behaviors and conclusions are almost identical to the Rotated
Saddle. We hence report on Rotated Saddle due to the space limit.

55

highly meaningful complement to existing analytical minimax solvers. More analysis on

comparing the actual computational costs (MAC numbers) are provided below.

8.2.1 Computational Cost Analysis

We analyze the number of the multiplier–accumulator operation (MAC) of Twin-L2O and K-

beam [106] for a Seasaw problem testing instance with 20 trials of random x, y initialization, each

trial lasting for 1000 iterations. As for K-beam, the numbers of MAC are 2.36M (Million), 3.8M,

8.11 M, 15.31M for K = 1, 2, 5, 10 respectively. For Twin-L2O, the total number of MAC is

3.86M.

We use K = 5 in K-beam for experiments in this dissertation whose number of MAC costs 2.1

times more than that of Twin-L2O, yet its solution quality in terms of both the converging speed

and the precision fails to beat it.

100 101 102 103
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

6.19e-92

GDA
OMD
GD-Anchoring
K-beam
Twin-L2O

100 101 102 103
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Di
st

an
ce

5.56e-92

GDA
OMD
GD-Anchoring
K-beam
Twin-L2O

Figure 8.2: Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and K-beam), for
the rotated saddle problem. Reprinted from [5].

8.3 Enhanced Twin-L2O: Curriculum Learning Evaluation

We again use the Seesaw problem as an example in this section. Its two parameters a and b,

i.e., the problem period and the scale, are sampled independently from two uniform distributions

56

100 101 102 103
Iteration

0.0

0.5

1.0

1.5

2.0
Di

st
an

ce

2.16e-03

GDA
OMD
GD-Anchoring
Halpern
Twin-L2O

100 101 102 103
Iteration

0.0

0.5

1.0

1.5

2.0

Di
st

an
ce

1.89e-03

GDA
OMD
GD-Anchoring
Halpern
Twin-L2O

Figure 8.3: Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and K-beam), for
the matrix game problem. Reprinted from [5].

100 101 102 103
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
st

an
ce

5.64e-04

GDA
OMD
GD-Anchoring
K-beam
Twin-L2O

100 101 102 103
Iteration

0.0

0.1

0.2

0.3

0.4
Di

st
an

ce

2.94e-03

GDA
OMD
GD-Anchoring
K-beam
Twin-L2O

Figure 8.4: Convergence comparison of variable x (left) and y (right) between Twin-L2O and
state-of-the-art analytical minimax optimizers (GDA, OMD, GD-Anchoring, and K-beam), for
the seesaw problem. Reprinted from [5].

U [L1a, L2a], U[L1b, L2b]. In Section 8.1, both are chosen as U [0.9, 1] for the ease of L2O conver-

gence. We now stretch both parameter ranges and test whether an L2O model can still solve the

resultant broader range of problems. All other training protocols follow Section 8.1 identically.

Sections 8.1 and 8.2 evaluate the average solution distances over the testing set (100 instances),

which worked fine in the small [a, b] range then. However, when we extend the [a, b] range,

we find that the L2O behaviors can differ vastly across testing instances, i.e., some converging

quickly while others suffering from heavy fluctuations or even divergence, which is an artifact of

inefficient L2O training that leaves it unable to cover the full large problem range. That motivates

57

us to carefully re-design our evaluation metrics here, to reflect both the solution quality and its

variation/stability.

For p-th testing instance, we record its solution distance l2 D
p
t , at epoch t = 1, 2, Given two

thresholds ϵacc and ϵstd (chosen by multi-fold validation; we use default ϵd = 2 × 10−2 and ϵstd =

10−4), we define two forms of success rate (SR):

SR1 =
∑n

p=1 I(d(D
p)<ϵacc)

n
SR2 =

∑n
p=1 I(Std(D

p)<ϵstd)

n

where d(Dp) =
∑L

t=t0
Dp

t

L−t0+1
, Std(Di) = Std({Dp

t }Lt=t0
), t0 = 0.8L; n = 100 is the number of testing

instances; L = 1000 is the total iteration number that each instance (optimizee) is trained by L2O.

Intuitively, SR1 emphasizes the average solution precision from the last 20 iterations; and SR2

measures how large solution variation is seen in the last 20 iterations.

Table 8.1 compares Twin-L2O and Enhanced Twin-L2O at multiple combinations to stretch

the ranges of a and b, starting to the original [0.9, 1]× [0.9, 1], up to as large as [0, 5]× [0, 2] : the

parameter coverage increase by 1,000 times. Adding CL evidently helps Twin-L2O stay effective

to train over a broader instance range, under both SR metrics. Vanilla Twin-L2O performs perfectly

at [0.9, 1] × [0.9, 1], yet begins to drop at [0, 1] × [0.9, 1] (mainly showing higher instability, as

indicated by lower SR2), and hardly succeeds beyond [0, 3.5] × [0.9, 1]. In contrast, Enhanced

Twin-L2O obtains nontrivial results even at [0, 5]× [0, 1] (tens of times wider than the vanilla one).

Settings
Ranges a [0.9, 1.0] [0.0, 1.0] [0.0, 3.5] [0.0, 5.0] [0.9, 1.0] [0.0, 5.0] [0.0, 5.0]

b [0.9, 1.0] [0.9, 1.0] [0.9, 1] [0.9, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 2.0]

SR1 (Twin-L2O) 100.0% 96.6% 0.0% 0.0% 97.8% 11.6% 22.8%
SR2 (Twin-L2O) 100.0% 89.6% 17.4% 16.0% 96.2% 31.4% 71.6%

SR1 (Enhanced Twin-L2O) 100.0% 96.6% 64.8% 82.8% 98.0% 85.0% 62.6%
SR2 (Enhanced Twin-L2O) 100.0% 96.0% 87.8% 91.2% 97.4% 86.2% 53.8%

Table 8.1: Success rate (SR) of different ranges of a,b on the Seesaw problem. Reprinted from [5].

58

8.4 Safeguarded Twin-L2O Experiments

Here we use the matrix game as the example to evaluate the above established safeguard mech-

anism for convex-concave minimax optimization. We directly take a well-trained Twin-L2O model

for matrix game in Section 8.2, where the matrix A ∈ R5×5 and Ai,j ∼ Bernoulli(0.5) · U [−1, 1],

and the coordinates of initial optimization variables x and y are independently sampled from

U [−1, 1]. During testing, in addition to testing the Twin-L2O model on the testing data from

this seen distribution, we also evaluate it on unseen data, whose A is now sampled from an inten-

tionally very distinct distribution: Ai,j ∼ Bernoulli(1.0) · U [−8, 8]. x and y are initialized in the

same manner.

We compare Safeguarded Twin-L2O (denoted as Safe-Twin-L2O) with standard Halpern it-

eration [64] as the fallback update, when the L2O update is disapproved in Method 7.2. We also

compare with OMD and GD-Anchoring on both seen and unseen testing data (GDA fails to con-

verge in both cases, even we tune its hyperparameters to our best efforts). The results are shown

in Figure 8.5. When tested on the aggressively varied unseen data, the vanilla Twin-L2O model

fails and diverges, but Safe-Twin-L2O remains to converge successfully: even faster than Halpern

iteration and OMD, and much better than GD-Anchoring.

59

(a)	Seen	Data

(b)	Unseen	Data
Figure 8.5: Evaluation of Safe-Twin-L2O. Reprinted from [5].

60

9. CONCLUSION∗

In this dissertation, we discuss the unified compression under two use cases: the recommenda-

tion system and the vision transformer, and then we discuss how to utilize the learning to optimize

technique to improve the minimax optimization.

First, we propose UMEC framework by integrating these two objectives into one unified con-

strained optimization problem, solved by the ADMM method. We conduct extensive experiments

and demonstrate the effectiveness of our proposed UMEC method by observing its superior perfor-

mance than other state-of-the-art baseline methods

Then, we propose UVC, a unified ViT compression framework that seamlessly assemble prun-

ing techniques. A budget-constrained optimization framework is formulated for joint learning.

Experiments demonstrate that UVC can aggressively trim down the prohibit computational costs

in an end-to-end way. The future work will extend UVC to incorporating weight quantization as

part of the end-to-end optimization as well.

Last, we study L2O for minimax optimization for the first time. We present the Twin-L2O

model, and further improve its generalizability by introducing a theoretically grounded safeguard-

ing framework (for convex-concave problems), as well as an empirical curriculum training strategy

(for general problems). Extensive simulations endorse the promise of our algorithms. This pilot

study suggests and paves the way for extending L2O beyond continuous minimization problems.

Our method has limitations. The entire L2O field faces challenges to scale up to larger-scale

optimization [4], and our study has not yet made an exception. Despite very promising gains from

challenging cases such as the Seasaw and Matrix Game problems, the current work only proves

∗ Part of this chapter is reprinted with permission from "Learning a minimax optimizer: A pilot study " [2] by
Shen, J., Chen, X., Heaton, H., Chen, T., Liu, J., Yin, W., Wang, Z. (2020, September) in International Conference on
Learning Representations, Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from
"UMEC: Unified model and embedding compression for efficient recommendation systems" [5] by Shen, J., Wang,
H., Gui, S., Tan, J., Wang, Z., Liu, J. (2020, September). in International Conference on Learning Representations,
Copyright 2020 held by the authors. Part of this chapter is reprinted with permission from "Unified visual transformer
compression" [3] by Yu, S., Chen, T., Shen, J., Yuan, H., Tan, J., Yang, S., ... Wang, Z. (2022). in International
Conference on Learning Representations, Copyright 2022 held by the authors.

61

the first concept of minimax L2O, on relatively basic and low-dimensional test problems. Our

immediate next step is to scale up Twin-L2O, and to explore its potential in solving the minimax

application problems of practical interest, such as adversarial training [112,113] and GANs [132].

A potential idea might leverage the memory-efficient hierarchical RNN structure in [108].

62

REFERENCES

[1] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang, U. Gupta,

C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Mallevich, I. Cherniavskii, Y. Lu, R. Krish-

namoorthi, A. Yu, V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong,

and M. Smelyanskiy, “Deep learning recommendation model for personalization and rec-

ommendation systems,” CoRR, vol. abs/1906.00091, 2019.

[2] J. Shen, H. Wang, S. Gui, J. Tan, Z. Wang, and J. Liu, “Umec: Unified model and embed-

ding compression for efficient recommendation systems,” in International Conference on

Learning Representations, 2021.

[3] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu, and Z. Wang, “Unified visual

transformer compression,” in International Conference on Learning Representations, 2022.

[4] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,

and N. De Freitas, “Learning to learn by gradient descent by gradient descent,” in Advances

in neural information processing systems, 2016.

[5] J. Shen, X. Chen, H. Heaton, T. Chen, J. Liu, W. Yin, and Z. Wang, “Learning a minimax

optimizer: A pilot study,” in International Conference on Learning Representations, 2020.

[6] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient

convnets,” arXiv preprint arXiv:1608.08710, 2016.

[7] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation for

neural network pruning,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 11264–11272, 2019.

[8] A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou, “Mixed dimension em-

beddings with application to memory-efficient recommendation systems,” arXiv preprint

arXiv:1909.11810, 2019.

63

[9] M. R. Joglekar, C. Li, M. Chen, T. Xu, X. Wang, J. K. Adams, P. Khaitan, J. Liu, and

Q. V. Le, “Neural input search for large scale recommendation models,” in Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 2387–2397, 2020.

[10] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the

alternating direction method of multipliers. Now Publishers Inc, 2011.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computa-

tion, vol. 1, no. 4, pp. 541–551, 1989.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” Advances in neural information processing systems, vol. 25,

pp. 1097–1105, 2012.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, 2017.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[16] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran, “Image

transformer,” in International Conference on Machine Learning, pp. 4055–4064, PMLR,

2018.

[17] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse

transformers,” arXiv preprint arXiv:1904.10509, 2019.

64

[18] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Generative

pretraining from pixels,” in International Conference on Machine Learning, pp. 1691–1703,

PMLR, 2020.

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[20] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang,

Y. Zhang, and D. Tao, “A survey on vision transformer,” 2021.

[21] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional

networks through network slimming,” in ICCV, 2017.

[22] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,”

in The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[23] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median for deep

convolutional neural networks acceleration,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

[24] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to improve

low-precision network accuracy,” in International Conference on Learning Representations,

2018.

[25] H. Yang, S. Gui, Y. Zhu, and J. Liu, “Automatic neural network compression by sparsity-

quantization joint learning: A constrained optimization-based approach,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178–2188,

2020.

[26] Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and Y. Lin, “Smar-

texchange: Trading higher-cost memory storage/access for lower-cost computation,” in

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),

pp. 954–967, IEEE, 2020.

65

[27] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, D. Chen, M. Winslett, H. Sajjad, and

P. Nakov, “Compressing large-scale transformer-based models: A case study on bert,” arXiv

preprint arXiv:2002.11985, 2020.

[28] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying the effects of weight

pruning on transfer learning,” arXiv preprint arXiv:2002.08307, 2020.

[29] F.-M. Guo, S. Liu, F. S. Mungall, X. Lin, and Y. Wang, “Reweighted proximal pruning for

large-scale language representation,” arXiv preprint arXiv:1909.12486, 2019.

[30] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than one?,” arXiv

preprint arXiv:1905.10650, 2019.

[31] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on demand with structured

dropout,” arXiv preprint arXiv:1909.11556, 2019.

[32] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert: smaller,

faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[33] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert

for self-supervised learning of language representations,” arXiv preprint arXiv:1909.11942,

2019.

[34] W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, and Q. Liu, “Ternarybert:

Distillation-aware ultra-low bit bert,” arXiv preprint arXiv:2009.12812, 2020.

[35] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu, M. Lyu, and I. King, “Binary-

bert: Pushing the limit of bert quantization,” arXiv preprint arXiv:2012.15701, 2020.

[36] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, “Dynabert: Dynamic bert with

adaptive width and depth,” arXiv preprint arXiv:2004.04037, 2020.

[37] M. Zhu, K. Han, Y. Tang, and Y. Wang, “Visual transformer pruning,” arXiv preprint

arXiv:2104.08500, 2021.

66

[38] T. Chen, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang, “Chasing sparsity in vision

transformers: An end-to-end exploration,” arXiv preprint arXiv:2106.04533, 2021.

[39] B. Pan, Y. Jiang, R. Panda, Z. Wang, R. Feris, and A. Oliva, “Ia-red2: Interpretability-aware

redundancy reduction for vision transformers,” arXiv preprint arXiv:2106.12620, 2021.

[40] Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao, “Patch slimming for efficient

vision transformers,” arXiv preprint arXiv:2106.02852, 2021.

[41] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Train-

ing data-efficient image transformers & distillation through attention,” arXiv preprint

arXiv:2012.12877, 2020.

[42] D. Jia, K. Han, Y. Wang, Y. Tang, J. Guo, C. Zhang, and D. Tao, “Efficient vision transform-

ers via fine-grained manifold distillation,” arXiv preprint arXiv:2107.01378, 2021.

[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing

systems, pp. 2672–2680, 2014.

[44] A. Globerson and S. Roweis, “Nightmare at test time: robust learning by feature deletion,”

in Proceedings of the 23rd international conference on Machine learning, pp. 353–360,

2006.

[45] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv

preprint arXiv:1409.7495, 2014.

[46] J. Shamma, Cooperative control of distributed multi-agent systems. John Wiley & Sons,

2008.

[47] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,”

IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5262–5276, 2010.

67

[48] Z. Wu, Z. Wang, Z. Wang, and H. Jin, “Towards privacy-preserving visual recognition via

adversarial training: A pilot study,” in Proceedings of the European Conference on Com-

puter Vision (ECCV), pp. 606–624, 2018.

[49] Z. Wu, H. Wang, Z. Wang, H. Jin, and Z. Wang, “Privacy-preserving deep action recogni-

tion: An adversarial learning framework and a new dataset,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2020.

[50] M. Benaım and M. W. Hirsch, “Mixed equilibria and dynamical systems arising from ficti-

tious play in perturbed games,” Games and Economic Behavior, vol. 29, no. 1-2, pp. 36–72,

1999.

[51] P. Mertikopoulos, C. Papadimitriou, and G. Piliouras, “Cycles in adversarial regularized

learning,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete

Algorithms, pp. 2703–2717, SIAM, 2018.

[52] T. Lin, C. Jin, and M. I. Jordan, “On gradient descent ascent for nonconvex-concave mini-

max problems,” arXiv preprint arXiv:1906.00331, 2019.

[53] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng, “Training gans with optimism.,” in

International Conference on Learning Representations (ICLR 2018), 2018.

[54] C. Daskalakis and I. Panageas, “The limit points of (optimistic) gradient descent in min-max

optimization,” in Advances in Neural Information Processing Systems, 2018.

[55] T. Liang and J. Stokes, “Interaction matters: A note on non-asymptotic local convergence

of generative adversarial networks,” in The 22nd International Conference on Artificial In-

telligence and Statistics, pp. 907–915, 2019.

[56] P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G. Piliouras,

“Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile,” arXiv

preprint arXiv:1807.02629, 2018.

[57] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien, “A variational inequality

perspective on generative adversarial networks,” arXiv preprint arXiv:1802.10551, 2018.

68

[58] A. Mokhtari, A. Ozdaglar, and S. Pattathil, “A unified analysis of extra-gradient and op-

timistic gradient methods for saddle point problems: Proximal point approach,” arXiv

preprint arXiv:1901.08511, 2019.

[59] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and

N. De Freitas, “Learning to learn without gradient descent by gradient descent,” in Proceed-

ings of the 34th International Conference on Machine Learning-Volume 70, pp. 748–756,

JMLR. org, 2017.

[60] K. Li and J. Malik, “Learning to optimize,” arXiv preprint arXiv:1606.01885, 2016.

[61] H. Heaton, X. Chen, Z. Wang, and W. Yin, “Safeguarded learned convex optimization,”

arXiv preprint arXiv:2003.01880, 2020.

[62] E. K. Ryu, K. Yuan, and W. Yin, “Ode analysis of stochastic gradient methods with optimism

and anchoring for minimax problems and gans,” arXiv:1905.10899, 2019.

[63] T. Lin, C. Jin, M. Jordan, et al., “Near-optimal algorithms for minimax optimization,” arXiv

preprint arXiv:2002.02417, 2020.

[64] J. Diakonikolas, “Halpern iteration for near-optimal and parameter-free monotone inclusion

and strong solutions to variational inequalities,” arXiv preprint arXiv:2002.08872, 2020.

[65] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149,

2015.

[66] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural

networks,” in Advances in neural information processing systems, pp. 2074–2082, 2016.

[67] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural net-

works: Training neural networks with low precision weights and activations,” The Journal

of Machine Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

69

[68] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin, “Deep k-means: Re-training

and parameter sharing with harder cluster assignments for compressing deep convolutions,”

in International Conference on Machine Learning, pp. 5363–5372, PMLR, 2018.

[69] T. Ajanthan, P. K. Dokania, R. Hartley, and P. H. Torr, “Proximal mean-field for neural

network quantization,” in Proceedings of the IEEE International Conference on Computer

Vision, pp. 4871–4880, 2019.

[70] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv

preprint arXiv:1503.02531, 2015.

[71] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation and quantiza-

tion,” arXiv preprint arXiv:1802.05668, 2018.

[72] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in Proceedings of the

IEEE International Conference on Computer Vision, pp. 1365–1374, 2019.

[73] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural

networks,” 2019.

[74] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin, “The lottery ticket

hypothesis for pre-trained bert networks,” arXiv, vol. abs/2007.12223, 2020.

[75] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang, “The lottery tick-

ets hypothesis for supervised and self-supervised pre-training in computer vision models,”

arXiv preprint arXiv:2012.06908, 2020.

[76] X. Chen, Z. Zhang, Y. Sui, and T. Chen, “Gans can play lottery tickets too,” in International

Conference on Learning Representations, 2021.

[77] T. Chen, Z. Zhang, S. Liu, S. Chang, and Z. Wang, “Long live the lottery: The existence of

winning tickets in lifelong learning,” in International Conference on Learning Representa-

tions, 2021.

70

[78] T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang, “A unified lottery ticket hypothesis for

graph neural networks,” 2021.

[79] H. Ma, T. Chen, T.-K. Hu, C. You, X. Xie, and Z. Wang, “Good students play big lottery

better,” arXiv preprint arXiv:2101.03255, 2021.

[80] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model compres-

sion and acceleration on mobile devices,” in Proceedings of the European Conference on

Computer Vision (ECCV), pp. 784–800, 2018.

[81] H. Yang, Y. Zhu, and J. Liu, “Ecc: Platform-independent energy-constrained deep neural

network compression via a bilinear regression model,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 11206–11215, 2019.

[82] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun, “Metapruning: Meta

learning for automatic neural network channel pruning,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, pp. 3296–3305, 2019.

[83] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations

with recurrent neural networks,” arXiv preprint arXiv:1511.06939, 2015.

[84] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommenda-

tions,” in Proceedings of the 10th ACM conference on recommender systems, pp. 191–198,

2016.

[85] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with

graph neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 33, pp. 346–353, 2019.

[86] Z. Huang, X. Xu, H. Zhu, and M. Zhou, “An efficient group recommendation model with

multiattention-based neural networks,” IEEE Transactions on Neural Networks and Learn-

ing Systems, 2020.

71

[87] X. Mao, S. Mitra, and V. Swaminathan, “Feature selection for fm-based context-aware

recommendation systems,” in 2017 IEEE International Symposium on Multimedia (ISM),

pp. 252–255, IEEE, 2017.

[88] Q. Song, D. Cheng, H. Zhou, J. Yang, Y. Tian, and X. Hu, “Towards automated neural

interaction discovery for click-through rate prediction,” in Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 945–955,

2020.

[89] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan, “Tokens-

to-token vit: Training vision transformers from scratch on imagenet,” 2021.

[90] M. Zheng, P. Gao, X. Wang, H. Li, and H. Dong, “End-to-end object detection with adaptive

clustering transformer,” arXiv preprint arXiv:2011.09315, 2020.

[91] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end

object detection with transformers,” in European Conference on Computer Vision, pp. 213–

229, Springer, 2020.

[92] Z. Dai, B. Cai, Y. Lin, and J. Chen, “Up-detr: Unsupervised pre-training for object detection

with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 1601–1610, 2021.

[93] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr: Deformable transform-

ers for end-to-end object detection,” arXiv preprint arXiv:2010.04159, 2020.

[94] H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, “Max-deeplab: End-to-end panoptic

segmentation with mask transformers,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 5463–5474, 2021.

[95] Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia, “End-to-end video

instance segmentation with transformers,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 8741–8750, 2021.

72

[96] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao,

“Pre-trained image processing transformer,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 12299–12310, 2021.

[97] F. Yang, H. Yang, J. Fu, H. Lu, and B. Guo, “Learning texture transformer network for

image super-resolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 5791–5800, 2020.

[98] Y. Jiang, S. Chang, and Z. Wang, “Transgan: Two transformers can make one strong gan,”

arXiv preprint arXiv:2102.07074, 2021.

[99] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all you need for video

understanding?,” arXiv preprint arXiv:2102.05095, 2021.

[100] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point transformer,” arXiv preprint

arXiv:2012.09164, 2020.

[101] J. v. Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische annalen, vol. 100,

no. 1, pp. 295–320, 1928.

[102] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point problems,” Journal of

optimization theory and applications, vol. 142, no. 1, pp. 205–228, 2009.

[103] S. S. Du and W. Hu, “Linear convergence of the primal-dual gradient method for convex-

concave saddle point problems without strong convexity,” in The 22nd International Con-

ference on Artificial Intelligence and Statistics, pp. 196–205, 2019.

[104] C. Jin, P. Netrapalli, and M. I. Jordan, “What is local optimality in nonconvex-nonconcave

minimax optimization?,” arXiv preprint arXiv:1902.00618, 2019.

[105] Y. Wang, G. Zhang, and J. Ba, “On solving minimax optimization locally: A follow-the-

ridge approach,” arXiv preprint arXiv:1910.07512, 2019.

[106] J. Hamm and Y.-K. Noh, “K-beam minimax: Efficient optimization for deep adversarial

learning,” arXiv preprint arXiv:1805.11640, 2018.

73

[107] K. Lv, S. Jiang, and J. Li, “Learning gradient descent: Better generalization and longer hori-

zons,” in Proceedings of the 34th International Conference on Machine Learning-Volume

70, pp. 2247–2255, JMLR. org, 2017.

[108] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil,

N. de Freitas, and J. Sohl-Dickstein, “Learned optimizers that scale and generalize,” in

Proceedings of the 34th International Conference on Machine Learning, 2017.

[109] C. Li, T. Chen, H. You, Z. Wang, and Y. Lin, “Halo: Hardware-aware learning to optimize,”

in European Conference on Computer Vision, pp. 500–518, Springer, 2020.

[110] T. Chen, W. Zhang, J. Zhou, S. Chang, S. Liu, L. Amini, and Z. Wang, “Training stronger

baselines for learning to optimize,” arXiv preprint arXiv:2010.09089, 2020.

[111] Y. Cao, T. Chen, Z. Wang, and Y. Shen, “Learning to optimize in swarms,” in Advances in

Neural Information Processing Systems, pp. 15018–15028, 2019.

[112] H. Jiang, Z. Chen, Y. Shi, B. Dai, and T. Zhao, “Learning to defense by learning to attack,”

arXiv preprint arXiv:1811.01213, 2018.

[113] Y. Xiong and C.-J. Hsieh, “Improved adversarial training via learned optimizer,” 2020.

[114] K. Tono, A. Takeda, and J.-y. Gotoh, “Efficient dc algorithm for constrained sparse opti-

mization,” arXiv preprint arXiv:1701.08498, 2017.

[115] A. Nitanda, “Stochastic proximal gradient descent with acceleration techniques,” in Ad-

vances in Neural Information Processing Systems, pp. 1574–1582, 2014.

[116] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through

stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[117] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[118] Y. Fu, W. Chen, H. Wang, H. Li, Y. Lin, and Z. Wang, “Autogan-distiller: Searching to

compress generative adversarial networks,” arXiv preprint arXiv:2006.08198, 2020.

74

[119] T. Kim, J. Oh, N. Kim, S. Cho, and S.-Y. Yun, “Comparing kullback-leibler divergence and

mean squared error loss in knowledge distillation,” arXiv preprint arXiv:2105.08919, 2021.

[120] N. Buchbinder and J. Naor, The design of competitive online algorithms via a primal-dual

approach. Now Publishers Inc, 2009.

[121] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, “Hrank: Filter pruning

using high-rank feature map,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 1529–1538, 2020.

[122] H. Yang, Y. Huang, L. Tran, J. Liu, and S. Huang, “On benefits of selection diversity via

bilevel exclusive sparsity,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 5945–5954, 2016.

[123] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv

preprint arXiv:1611.01144, 2016.

[124] Z. Pan, B. Zhuang, J. Liu, H. He, and J. Cai, “Scalable vision transformers with hierarchical

pooling,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,

pp. 377–386, 2021.

[125] Y. Lee and S. Choi, “Gradient-based meta-learning with learned layerwise metric and sub-

space,” arXiv preprint arXiv:1801.05558, 2018.

[126] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term mem-

ory (lstm) network,” arXiv preprint arXiv:1808.03314, 2018.

[127] A. Raghunathan, A. Cherian, and D. Jha, “Game theoretic optimization via gradient-based

nikaido-isoda function,” in Proceedings of the 36th International Conference on Machine

Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine

Learning Research, pp. 5291–5300, PMLR, 09–15 Jun 2019.

[128] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings

of the 26th annual international conference on machine learning, 2009.

75

[129] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet: Learning data-

driven curriculum for very deep neural networks on corrupted labels,” arXiv preprint

arXiv:1712.05055, 2017.

[130] B. Halpern, “Fixed points of nonexpanding maps,” Bulletin of the American Mathematical

Society, vol. 73, no. 6, pp. 957–961, 1967.

[131] J. M. Danskin, “The theory of max-min, with applications,” SIAM Journal on Applied Math-

ematics, vol. 14, no. 4, pp. 641–664, 1966.

[132] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training

of wasserstein gans,” in Advances in neural information processing systems, pp. 5767–5777,

2017.

76

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Unified Recommendation Systems Compression
	Unified Visual Transformer Compression
	Learning A Minimax Optimizer
	Dissertation Contributions
	Unified Recommendation Systems Compression
	Unified Visual Transformer Compression
	Learning A Minimax Optimizer

	Related Work
	Model Compression
	Recommendation Models
	Input Feature Compression For Recommendation Models
	Vision Transformer
	Minimax Optimization
	Learning To Optimize

	Methodology: Unified Compression for Recommendation Systems
	Method Overview
	Perspective Of Model Parameters
	Perspective Of Feature Embedding Vectors
	A Compression Example: Group Lasso For Weight Pruning

	Resource-Constrained RS Model Compression
	Computation Resource Function For RS Model

	Optimization
	Minimax Optimization Reformulation
	Update Rule For All Learnable Variables
	Update W
	Update Dual Variables
	Update s

	Prune And Finetune

	Experiments: Unified Compression for Recommendation Systems
	Experimental Setup
	Dataset And Model
	Baseline Methods
	General Training And Evaluation Details
	Evaluation Metrics

	Prediction Model Compression For RS Model
	Input Feature Selection For RS Model
	Embedding Dimension Reduction For RS Model
	Sparsity Analyses Of UMEC
	Cascaded Pipeline As A Baseline
	Energy Consumption And Inference Latency Of The Network

	Methodology: Unified Compression for Vision Transformer
	Preliminary
	Vision Transformer (ViT) Architecture
	Compression Targets

	Resource-Constrained End-to-End ViT Compression
	Pruning Within A Block
	The Constraints
	The Objective
	The Final Unified Formulation

	Solving The Unified Optimization
	Updating policy
	Updating Weights
	Updating t
	Updating s and r

	Main Algorithm

	Experiments: Unified Compression for Vision Transformer
	Datasets And Benchmarks
	Training Settings
	Baseline Methods
	Main Results

	Methodology: Learning a Minimax Optimizer
	Main Framework: Twin Learnable Optimizers (Twin-L2O)
	Analysis Of The Reward Design
	Rationale Of The Framework Selection

	Improving Generalizability Of Twin-L2O
	Curriculum L2O Training
	Safeguard Twin-L2O: A Preliminary Theoretical Exploration

	Experiments: Learning a Minimax Optimizer
	Ablation Study On The Design Of Twin-L2O
	Comparison With State-of-the-Art Analytical Optimizers
	Computational Cost Analysis

	Enhanced Twin-L2O: Curriculum Learning Evaluation
	Safeguarded Twin-L2O Experiments

	Conclusion
	REFERENCES

