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ABSTRACT 

The proposed thesis aims to explore novel applications of machine learning for subsurface 

characterization. In the first chapter, an image-based data-driven workflow is proposed to 

characterize oil viscosity from side-wall rock sample images. Informative features are extracted 

from the rock sample images deploying several image-based filters and statistical models. Both 

regression and classification tasks are performed on the preprocessed data. The proposed workflow 

shows promising results for viscosity classification whereas future work is needed to improve the 

regression performance. The second and third chapters explore the application of quantum-

enhanced machine learning models for lithology classification and the resulting comparison with 

classical machine learning models. The second chapter compares a quantum support vector 

machine with a traditional support vector classifier for lithology classification from well log data. 

Different sample sizes are tested to understand if a quantum advantage is obtained when the 

available data is limited. The third chapter investigates the application of both quantum support 

vector and variational quantum classifier for binary lithology classification. The score distribution 

obtained from testing the models with multiple iterations gives more insight on the current 

performance capabilities of quantum-enhanced machine models when compared to artificial 

networks. Overall, although a quantum advantage is not observed in both chapters, this work opens 

the door to future applications of quantum-enhanced machine learning for subsurface 

characterization.  
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CHAPTER I 

 IMAGE PREPROCESSING AND SUPERVISED LEARNING FOR VISCOSITY 

PREDICTION IN HEAVY OIL RESERVOIRS 

 

This chapter illustrates a hybrid approach of image preprocessing and supervised 

machine learning for viscosity prediction on rock samples. In the image preprocessing segment, 

the application of multiple image-based filters and pixel intensities provides the extraction of 

meaningful feature for supervised learning model deployment. With the resulting features, 

supervised models are trained and evaluated for both regression and classification of target fluid 

viscosity. 

 

Fundamental Questions 

• Can color emitted from rock sample images provide information on the fluid viscosity 

that they contain? 

• Do textural features extracted from RGB rock sample images provide useful information 

for fluid viscosity prediction of the stored hydrocarbon?  

• With the advancements in machine learning, can data-driven methods provide an 

alternative from laboratory measurements for fluid property prediction in subsurface 

reservoirs? 

 

Novelty and Scientific Impact 

• Sato, LBP, and Multi-Otsu filters can describe the textural features of rock samples under 

white-light and UV-light. 
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• White-light images show greater association of target viscosity with pixel intensities as 

compared to image-based filters. UV-images have a strongest association with image-

based filters. 

• The color emitted from white-light and UV-light images have a direct relationship with 

oil viscosity based on the chemical structure of the hydrocarbon present in the rock 

samples.  Textural information observed in white -light and UV-light images is related to 

fluid viscosity based on changes in rock matrix and organic matter. 

• Histogram-based parametrization can translate the information from rock images to 

numerical features. 

• Application of statistical-based methods can drastically reduce the feature space 

dimension while retaining information. 

•  The proposed image-based supervised learning model can accurately classify oil 

viscosity based on the rock sample image under white-light and UV-light.  

 

Introduction 

Literature Review 

Table 1 and Table 2 show a literature review of the work being done on viscosity 

estimation and property estimation through image analysis respectively. As described in Table 1, 

the current literature is limited in regards of using data-driven methods for viscosity prediction. 

Al-Amoudi explores the use of artificial neural networks for viscosity regression using PVT 

information with positive results (Al-Amoudi et al, 2019). However, the sue of image-base 

machine learning workflows has not been explored yet. As shown in Table 2, the use of image 

preprocessing paired with machine learning techniques for subsurface characterization is widely 
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present in the industry. Wu and Misra show a successful application of organic-rich shales 

characterization using scanning electron microscopy images (Wu et al, 2019). Lastly, Table 3 

represents examples of the research led by Dr. Misra in subsurface characterization using data-

driven workflows. The results from these studies confirm the ability of machine learning 

techniques to accurately characterize the subsurface.  

 

Table 1: Literature review of viscosity prediction methods in the Oil and Gas industry. There is 

no current model that predicts fluid viscosity based on image analysis. The use of rock images 

has not been explored yet for viscosity prediction.  

Authors Method Input Hydrocarbon 

Considered 

Conclusions 

Amir et 

al, 2018 

Modified 

Mehrotra, 

Svrcek's, 

and 

Ghaderi's 

equation 

Pressure and 

temperature 

Super 

lightweight 

completion 

fluid 

It is statistically possible to 

predict the variation of fluid's 

density and viscosity over the 

wide range of pressure and 

temperature 

Al-

Amoudi 

et al, 

2019 

Artificial 

Neural 

Network 

PVT data Yemeni crude Neural network shows greater 

accuracy than conventional 

prediction through PVT data 

Ahmed et 
al, 2014 

NMR 
relaxation 

NMR T2 Kuwait 

Crudes 
T2-Viscosity correlation shows 

better accuracy than traditional 

correlations in a Kuwait Oil 

Field 
De la 

Porte et 

al, 2009 

Mole-

average 

power law 

Experimental 

oil viscosity 

U.S light 

crude 

Fitting the power law on 

experimental data is 

problematic and extrapolation in 

temperature is highly unreliable 

Vesovic, 

2007 

Vesovic-

Wakeham 

Experimental 

gas viscosity 

Natural Gas The VW method can predict 

viscosity of natural gas within 

+- 2% in the temperature region 

of 260-400 K 

Deumah 

et al, 

2021 

KNN, 

Random 

Forest, 

Decision 

Tree 

N2, CO2, H2S Yemeni Gas Decision Tree model predicts 

gas viscosity with a 0.042% 

MAPE 
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Table 2: Literature review of image-based models for physical properties prediction. The papers 

are focused on images derived from CT scans, X-Rays, and logs. There is no current model that 

looks at traditional RGB images. 

Author Method Goal Results 

Wu et al, 2019 Random forest 

classifier 

Locating organic 

matter and pores 

in shales 

Validation dataset achieves an overall 

F1 score higher than 0.9  

Diaz et al, 2020 Multi-energy 

radiographic 

image analysis  

Unconventional 

rock typing 

Carbonates and shales were properly 

discriminated  with and average 

predictive error ranging from 1% to 

14% 

De Figueiredo 

et al, 2019 

Convolutional 

neural network 

on CT scanned 

images 

Estimate 

distribution of 

porosity and P-

wave velocity 

The approach is computationally 

efficient to estimate rock properties 

Jobe et al, 2018 Convolutional 

neural networks 

on  optical 

microscopy 

thin-section 

images  

Classify 

lithofacies, 

reservoir zone, 

porosity, and 

permeability 

Key uncertainties still exist  

Cook et al, 2016 Correlation of 

volumetric 

attributes from 

seismic data 

with image logs 

Calibrate 

seismic fracture 

prediction  

Highly fractured diagenetically 

altered chert results in anomalously 

low envelope and low density.  

Hossain et al, 

2011 

Numerical 

simulation and 

image analysis  

Estimate relative 

permeability  

Results are consisted with lab-based 

measurements  
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Table 3: Examples of work performed on subsurface characterization using data-driven models. 

The positive results confirm the validity of machine learning techniques for subsurface 

applications.  

Author Method Goal Results 

Li et al, 2019 Long short -term 

and 

convolutional 

neural networks 

Generating 

NMR T2 

distributions 

The neural networks models are 

robust to noise of the conventional 

input logs and achieve a R2 score of 

0.75   

He et al, 2019 Multiple 

machine 

learning models  

In-situ sonic log 

synthesis in 

shale reservoirs 

Artificial neural networks show the 

greatest performance with a R2 score 

of 0.87 and 0.85 

He et al, 2019 Artificial neural 

networks 

Generate 

synthetic 

dielectric 

dispersion logs 

in organic-rich 

shales 

The best performance is achieved in 

generating permittivity dispersion 

logs with a 0.089 root-mean squared 

error 

Liu et al, 2018 Discrete wavelet 

transform, 

neural networks 

Visualize 

mechanical 

discontinuity  

A double layered  neural network 

achieves the best performance with an 

accuracy of 0.95 

Foster et al, 

2021 

K-nearest 

neighbor, 

support vector 

machine, and 

logistic 

regression 

Detection of 

high-water cut 

wells in 

Delaware basin   

The three classifiers achieve a high 

median Matthew’s correlation score 

of 0.9  

Hossain et al, 

2011 

Deep 

reinforcement 

learning  

Control mixed-

mode fatigue 

crack growth   

The reinforcement learning 

framework can successfully control 

the fatigue crack growth in a material 

despite its complexity 

 

Background 

Viscosity plays a crucial role in the development of heavy oil reservoirs around the globe. 

High viscosity impairs the flow of oil from the reservoir to the surface and therefore, limiting the 

field’s production potential. Several enhanced oil recovery (EOR) methods such as CO2 and steam 

injection have been studied and applied to heavy oil reservoirs increase reservoir temperature with 

the intent of lowering fluid viscosity. EOR methods can be an extreme economic burden for 

operators due to the vast number of resources and manpower required. As a result, identifying 
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subsurface fluid viscosity becomes very useful to predict potential expenses associated with EOR 

methods.  Side-wall core samples are taken to the lab for direct viscosity measurements under 

constant temperature. From the lab, the rock fluid is extracted and purified to remove any residual 

solids and water. There are three categories of viscometers widely used in the industry: capillary 

viscometer, electromagnetic viscometer, and rheometer. These methods work on different 

operating principles dictated by the desired temperature and pressure of the reservoir. Accuracy 

and repeatability of heavy oil viscosity measurements are not only affected by sample handling, 

storage, and cleaning procedures, but they are also affected by the selection of viscometers and the 

experimental procedures followed by different operators (Zhao et al, 2016). In addition to accuracy 

and repeatability concerns, lab viscosity measurement provides an additional economic burden due 

to transportation, handling and processing associated with viscometer measurements. This paper 

aims to bypass lab measurements  by predicting hydrocarbon viscosity utilizing side-wall core 

images and machine learning models. This novel approach could severely reduce time and costs 

for heavy oil operators while potentially provide more accurate viscosity  readings when compared 

to lab measurements.  

 

Machine Learning Models 

 

Elastic Net 

 

Elastic Net performs an ordinary least squares method to identify a linear combination of 

features that best predict the target based on alpha and l1_ratio. Alpha controls regularization. 

The larger the alpha, the less features the model considers. A small value in alpha results in the 

model using all the original features. L1_ratio determines the ratio between l1 and l2 norm 

penalty. An Elastic Net model with only l1 penalty represents a Lasso regression whereas a 

module with only l2 penalty represents a Ridge regression.  
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K Nearest Neighbors 

 

K Nearest neighbors (KNN) performs a feature similarity analysis to predict the target 

values of new datapoints. The number of neighbors represents the groups present in the dataset 

needed to perform a prediction on a new sample. Possibility of overfitting increases as the 

number of neighbors gets closer to 0. On the contrary, a large number of neighbors has the 

potential to underfit the data. P value dictates the formulation used to determine the distance 

between the new sample and neighboring samples. A p value of 1 represents Manhattan distance 

whereas a value of 2 represents Euclidian distance. Euclidian distance is effective in two and 

three-dimensional spaces. As p values get larger, the effect of large separations is enhanced 

compared to smaller separation. In higher dimensional spaces,  p values over 1 tend to improve 

model accuracy. 

 

Random Forest  

 

Random forest creates a group of decision trees trained on different portions of the 

dataset. The trees are trained using the bootstrap aggregation in which the training is perform in 

parallel between different data samples. The result is then determined by the average of each 

decision tree. Random forest can be used for both regression and classification problems. The 

number of estimators represents the number of trees in the model. A small number of trees is 

conducive to overfitting. Criterion represents the decision function deployed on the feature 

space. In Random Forest, criterion dictates the feature threshold required to perform the split on 

a random feature. This hyperparameter varies depending if the model is used for regression or 

classification. Next, max depth represents the complexity of each tree. The deeper the tree, the 

larger the number of splits performed on the features. Increasing tree depth leads to potential 
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overfitting and thus, a decrease in model testing performance. Lastly, max features dictate the 

largest number of features given to each tree. The larger this threshold is, the more information 

each tree possesses. A small threshold can cause underfitting since the model trees are only 

exposed to a small subset of all the features. On the contrary, a large threshold causes 

information to be similar between each tree, causing the model to overfit.  

 

 

 

Gradient Boosting 

 

Gradient Boosting predicts target values by building a sequence of trees which improves 

during each step. Similar to Random Forest, Gradient Boosting is a tree-based model. However, 

while Random Forest build trees in parallel, Gradient Boosting builds a sequence of trees in a 

vertical structure also known as boosting. Due to the high model complexity, hyperparameter 

tuning is essential to ensure that the model doesn’t overfit the training data. Learning rate 

controls how fast the model learns with each sequential tree. Lower learning rate improves 

model performance by reducing overfitting. However, this comes at the cost of increasing 

computational time. Like Random Forest, the number of estimators represents the number of 

trees in the model. Since the trees are not placed in parallel, a larger number of trees causes 

overfitting. The loss refers to the loss function that the model uses to compare the predicted with 

the actual values. Huber loss is chosen as the loss function. Huber loss combines both MAE and 

MSE. While MAE weighs larger errors the same as smaller errors, MSE focuses on larger outlier 

errors. A combination of the two given by the Huber loss provides a suitable balance. Like 

Random Forest, max depth and max features control the threshold for the maximum depth and 

the maximum number of features within a tree respectively.    
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Performance Metrics 

Regression 

• Mean absolute error (MAE) represents the average of the absolute differences between 

actual and predicted value. For MAE, the error increases as the value gets larger. MAE 

has a value of 0 if actual and predicted value are the same. MAE is never lower than 0. 

MAE weights large errors coming from outlier predictions the same as lower errors. This 

can lead to misinterpretations of model performance when solely looking at MAE.  

• Mean absolute percentage error (MAPE) calculates the absolute difference of actual and 

predicted divided by the actual value. By scaling the error to a relative percentage, MAPE 

gives a more detail representation of the machine learning model performance through a 

wide range of values. The biggest limitation of this metric is his tendency to infinity 

when the actual values are close to zero.  

Classification 

• F1 Score calculates the harmonic mean of recall and precision which can be derived in 

terms of confusion matrix parameters.  

𝐅𝟏  𝐒𝐜𝐨𝐫𝐞 =
𝐓𝐏

𝐓𝐏 +
𝟏
𝟐 ∗ (𝐅𝐏 + 𝐅𝐍)

                                                                   𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟏 

Where: 

• TP: true positives, both actual and prediction belong to the same class which can 

be either 0 or 1. 

• FN: false negative, the actual belongs to class 1, but the predicted class is 0. 

• FP: false positive, the actual belongs to class 0, but the predicted class is 1.  
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The metric ranges from 0 to 1. A value of 0 represents a total incapacity for an accurate 

prediction whereas a value of 1 represents a perfect prediction. By itself, the F1 score 

does not account for sample balance throughout the classes. F1 weighted score 

overcomes this limit by calculating a weighted average of each class F1 score based on 

the frequency of each class in the dataset.  

• Matthew’s Correlation Score represents a correlation coefficient between the actual and 

predicted classes. MCC can only be used for binary classification and can be expressed 

in terms of a confusion matrix parameters. 

𝐌𝐂𝐂 =
𝐓𝐏 ∗ 𝐓𝐍 − 𝐅𝐏 ∗ 𝐅𝐍

√((𝐓𝐏 + 𝐅𝐏)(𝐓𝐏 + 𝐅𝐍)(𝐓𝐍 + 𝐅𝐏)(𝐓𝐍 + 𝐅𝐍))

                       𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐 

The MCC score ranges from -1 to 1. A value of one represents a perfect classification 

whereas a value of -1 a totally opposite classification. A value of 0 shows complete 

randomness. Due to its mathematical computation, MCC provides a better score for 

datasets with unbalanced classes.  

 

Data Gathering 

The proposed model is catered to heavy oil reservoirs. In particular, the data utilized 

during this study comes from a heavy oil reservoir located in the western United States. The 

reservoir is characterized by high oil content with predictable steady decline. The composition of 

the target reservoir is primarily described by the two prevalent lithologies of sandstone and 

diatomite. Samples of side-wall core from various reservoir depths were extracted for viscosity 

lab testing. In the process, images of such samples were captured under white-light and UV-light 

before fluid extraction. The images provided contain 300X300 pixels in RGB format. Samples 
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underwent testing procedures to accurately measure oil viscosity at a constant temperature of 180 

degF. Overall, 684 samples of core rock were collected. Each sample provides a white-light and 

UV-light image as well as a corresponding fluid viscosity measurement from the lab. From the 

data provided, fluid viscosity ranges from 5 cP to as high as 600 cP. The samples are categorized 

in 2 classes, the low viscosity class containing samples with viscosity < 50 cP, and the high 

viscosity class containing samples with viscosity > 300 cP. For both classes, randomized samples 

are collected and compared against each other to obtain a greater understating of the differences 

in color and texture. Figure 2 represents one of the comparisons obtained from high and low 

viscosity samples for both white-light and UV-light images. As shown in Figure 1, from the 

resulting comparison, there are clear differences in both color and texture of the rock samples 

between the low and high viscosity classes. When comparing samples under white-light, low 

viscosity samples show a darker color than high viscosity samples. In contrast, low viscosity 

rock samples under UV-light display a brighter golden color compared to the dark purple color 

of high viscosity samples. When focusing on the texture of the rock samples, the low viscosity 

group shows a much smoother surface when compared to the more granular texture of the high 

viscosity group displaying larger pores.  
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Figure 1: Visual comparison of rock samples containing low (<50 cP) fluid viscosity and high 

(>300 cP) fluid viscosity under UV-light and white-light. Significant changes in color and 

texture can be observed between the two viscosity classes. 

 

 

 

Methodology 

 

The data driven viscosity prediction model follows a clear workflow. The workflow 

implemented in the study is represented as a flowchart in Figure 2. 



 

13 

 

 

 

 

Figure 2: Flowchart of the workflow applied to create an image-based supervised learning 

model for viscosity prediction. The flowchart outlines the main steps taken as well as a more 

detailed explanation of feature extraction and feature selection. 
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The  workflow is structured in 5 levels and begins with property analysis in which the raw 

image and viscosity data is visually analyzed and properly formatted for the next step. Feature 

extraction contains all the image preprocessing steps required to transform raw white-light and 

UV-images into meaningful numerical features by analyzing pixel intensities paired with image-

based filters. In feature selection, further filtering is applied to the resulting histogram-based 

features to optimize performance and improve computational time. Several statistical-based 

models are applied to reduce the corresponding number of features. In model optimization, the 

model is initialized and trained on the respective dataset. Optimization algorithms  are 

implemented to test thousands of possible combinations of model hyperparameters that give the 

most optimal performance metric. In model evaluation, the previously trained supervised model 

is tested to assess performance on both regression and classification tasks.  

In the development of the classification model, four tasks are studied based on thresholds 

imposed on the target viscosity. Figure 3 shows a visual representation of the selected classes 

based on viscosity distribution on a natural logarithmic scale.  

• High vs Low: Samples with extreme low viscosity are compared to samples with extreme 

high viscosity. Samples with viscosity lower than 57 cP are labeled low viscosity, 

whereas the samples labelled high have values higher than 330 cP. 

• High vs Rest: Samples with extreme high viscosity are compared with the rest. the high 

viscosity category has samples higher than 330 cP while the rest category has samples 

lower than 122 cP. 
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• Low vs Rest: Samples with extreme low viscosity are compared with the rest. samples 

lower than 57 cP are labelled as low, whereas samples greater than 148 cP are labeled as 

the rest. 

• End Points vs Middle Points: End members of the viscosity distribution are compared 

with the most frequent members. The end points are defined  with viscosity less than 45 

cP and greater than 403 cP, whereas middle points have viscosity ranging from 77 cP to 

245 cP.   

 

Figure 3: Thresholds applied to viscosity distribution on natural log scale to identify the binary 

classes of each classification task. 

 

Lastly, the results are visualized to get a clear understanding of how the model is performing 

when compared to actual viscosity data. 
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Feature Extraction 

 

Background Elimination 

 

The white-light and UV-light rock sample images contains 300X300 pixels with a RGB 

format. As shown in Figure 1, the rock sample images are contained within a circular perimeter. 

Outside this perimeter, the background shows a grey color. After detail analysis, the background 

color is determined to be the same between all sample images in the provided dataset. Before 

applying image preprocessing techniques such as pixel intensities and image-based filters, the 

background is eliminated from the samples. This process ensures that the pixels contained within 

the background do not contaminate the feature extraction process. Since the background color is 

consistent across all samples, the portion of the 3D RGB matrix containing the specific 

background color is removed for each sample.  

 

Pixel Intensities 

 

The first image preprocessing technique deployed for feature extraction is pixel 

intensities. Both white-light and UV-light images follow an RGB format. Unlike 2D grayscale 

images, RGB images are represented as a 3D matrix with the third dimension representing the 

red, green, and blue channel respectively. The color of each pixel is therefore described as a one-

dimensional array containing a combination of red, green, and blue intensities. The original 

image is broken down into three 2x2 matrices each representing a color channel. This process 

allows for the creation of numerical features that describe the differences of each pixel RGB 

intensities when compared to those of the adjacent pixels. Pixel intensities alone is not sufficient 

to produce meaningful features for accurately predict viscosity values through the use of a 

supervised learning model. Additional features extracted from textural information can increase 
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the machine learning model ability to distinguish between low and high viscosity samples and 

thus, improving the model accuracy.  

 

Image-based filters 

 

A total of 5 image-based filters were tested in both white-light and UV-light images. The 

goal of image-based filters is to accurately describe differences in texture between low and high 

viscosity samples.  

 

• Sobel edge detector calculates the absolute non-directional gradient value at each 

pixel by applying a 3x3 edge-detection matrix. Sobel detects odd edges. This 

process allows the Sobel filter to derive both horizontal and vertical edges (Han et 

al., 2020). 

• Sato is referred to as a tubeness filter. It is commonly used in the medical field to 

detect continuous ridges by calculating the eigenvectors of the Hessian matrix and 

computing the similarity of an image to tubes (Sato et al., 1998). 

• Hessian filter describes the second order local image intensity variations. Hessian 

filter detects even edges. Based on the calculated eigenvalues, the filter can detect 

edge and corner regions (Rudzki, 2011). Hessian filters are good at detecting local 

structures, such as blobs. 

• Local Binary Pattern (LBP) describes the local texture patterns of an image. LBP 

works by selecting a center pixel a neighborhood of pixels around a specified 

radius. The center pixel is used as a threshold for the neighboring pixels to 

quantify textural information (Sairamya et al., 2019). 
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• Multi-Otsu is a thresholding algorithm used to separate the pixels of an input 

image into multiple classes based on the grayscale pixel intensities.  

Figure 4 shows a visual representation of these filters applied to a random low viscosity rock 

sample (<50 cP) and a random high viscosity rock sample (>300 cP). The filters highlight 

presence of channels and granularity of the samples.  

 

 
 

Figure 4: Visual representation of Sobel, Sato, Hessian, LBP. And Multi-Otsu image-based 

filters applied on white-light images in both low (L) and high (H) viscosity groups. The use of 

image-based filters provides more information on the texture of the rock samples which 

significantly differ between the low and high viscosity class. 

 

 

The five filters as well as pixel intensities are evaluated on how impactfully describe 

changes in fluid viscosity. The comparison is achieved by analyzing the differences in the 

histograms between low and high viscosity samples. A histogram is generated for each sample 

image for the corresponding image filtering technique. To reduce bias, 10 random samples are 

selected from both the low and high viscosity class. For each technique, the 10 samples 

histograms are combined into one to better represent the changes in value distribution between 

high and low viscosity samples. Figure 5 compares the differences in histogram distribution 
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between rock image samples with oil viscosity  lower than 50 cP and samples with viscosity 

higher than 300 cP. From this comparison, 3 image-based filters (Sato, LBP, and Multi-Otsu) 

paired with pixel intensities are identified to be the most informative in describing differences in 

viscosity between low and high viscosity samples. A 40-bin histogram is generated from each 

filtered/raw white-light and UV-light image. A total of 40 features per sample image are 

generated from the count of each bin. Additional features were extracted from the resulting 

histograms to add more information. Statistical parameters namely total count, minimum, 

maximum, mean, median, 25th percentile, 75th percentile, skewness, kurtosis, and mode are 

stored as feature for each filtered/raw image. In summary, there are a total of 50 features per 

sample image for each image-based filter and pixel intensity (red, green, blue). This amount to 

300 features extracted from white-light and UV-light image of each rock sample totaling to 600 

features per sample.  
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Figure 5 : Value distributions of the image pixels after filter application. The filters analyzed are 

Sobel (orange), Sato(blue), Hessian(green), LBP (cyan), Multi-Otsu (red), and the average pixel 

intensity between the three color channels (pink). For each technique, the combined histogram of 

10 randomized low viscosity samples is compared to the one generated from the high viscosity 

class 

 

 

 

Feature Selection 

 

A total of 600 histogram-based features are generated for each rock sample from the 

applied image-based filters and pixel intensities. Due to this large number, feature selection 

represents a crucial step to assure optimal performance and computational time of the supervised 

learning model. In feature selection, multiple statistical measurements are applied to reduce the 

dimensionality of the feature set. For each statistical method, thresholds are applied based on the 

observed data to ensure the selection of the most informative feature. The outlined steps for 

feature selection are presented on the flowchart in Figure 2. 

 

Robust Scaler 

 

The first step required before the applications of feature selection method is to scale the 

features. The process of feature scaling is necessary in most machine learning models to 

optimize their performance. By scaling the features, the bias is removed between features that 

display different magnitudes. Robust scaler is used for this dataset. Other scaling methods such 

as Standard scaler and MinMax scaler are sensitive to outliers due to their inherit mathematical 

formula. Robust scaler overcomes this problem by scaling the features based on the first and 

third quartile.  
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Variance threshold 

 

For optimal development of the supervised learning model, features associated with low, 

and zero-variance need to be removed from the feature set. Low-variance features do not provide 

sufficient information for the supervised model to differentiate changes in target viscosity. Zero-

variance  viscosity features provide no information since they remain constant for each rock 

samples. In addition, very high-variance features can be detrimental to model development due 

to their high noise. The Variance Threshold technique eliminates the features outside of a user-

defined lower and upper variance range. For this application, a lower threshold is established at 

0.05 and the upper threshold at 150.  

 

Mutual Information and F-Test Score 

 

While the Variance Threshold method only looks at information within each feature, 

Mutual Information and F-Test captures interactions between each feature and the target. Both 

methods are applied in conjunction to exclude features depicting weak association with the target 

viscosity. MI describes the association between feature and target both linearly and non-linearly. 

MI values ranges between 0 and 1. A feature with low MI score shows a weak with the  target. 

As a result, what the model learns from this particular feature does not contribute to the 

prediction of the target. F-Test measures the linearity between feature and target. For each 

feature, F-Test compares the sum of squares of errors (SSE) between 2 models. The first model 

is generated with the feature converted to a constant. The second model combines both the 

feature and the constant. The score is determined by the ratio of difference in SSEs between the 

first and second model and the SSE of the second model divided by the degrees of freedom of 

the second model, which equals to the number of samples minus 2. F-Test becomes larger as the 
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difference in SSE between model 2 and model 1 becomes smaller indicating greater feature 

linearity to the target. In summary, a feature is linearly related to the target when the F-Test score 

becomes large. After calculating MI and F-Test scores for the entire dataset, thresholds are 

applied to both methods to exclude features with both low MI and low F-Test. A threshold of 

0.01 and 5 is applied on the dataset for MI and F-Test score respectively. Features that presented 

a low MI paired with a higher F-Test value and vice-versa are not removed. In addition, the 

highest 10 features for MI and F-Test scores are shown in Figure 6. For UV-light images, 

features derived from the Sato image-based filter show the strongest relationship with target. On 

the contrary, for white-light images, red, green, and blue pixel intensity features show the 

greatest association with target.  

 



 

23 

 

 

 

 

Figure 6: Top ten highest MI (1) and F score (2) observed during feature selection. White-light 

images show greater relationship with target viscosity on pixel intensities derived features. UV-

light images have the strongest relationship to target with image-based filters derived features. 

 

 

Pearson’s r Correlation Coefficient 

 

High collinearity between features can potentially decrease the machine learning model 

performance. Pearson’s r  is used to evaluate collinearity between features in the dataset. The r 

value, which captures the degree of linear relationship between two features, is calculated for 

each possible pair. Pearson’s r ranges from -1 to 1. The greater the absolute value, the stronger 
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the collinearity between two variables. A r value of 1 represents identical variables whereas a 

value of -1  represents opposite variables. A value of zero shows no relationship between the 

variables. After deriving the r value for each possible pair of features, the resulting scores are 

converted to absolute values. A threshold of 0.9 is imposed to eliminate all features that show 

high collinearity using Pearson’s correlation coefficient.  

 

Isolation Forest 

Presence of outliers can greatly affect the regression or classification performance of a 

machine learning model. Identifying outliers can be really challenging in the presence of a large 

dataset. Thus, outlier detection techniques namely Isolation Forest is deployed to locate and 

exclude outliers in the data. Isolation Forest is a tree-based model for outlier detection. The 

model randomly selects a feature and a split value across the feature range in a recursive manner. 

The model then implements a decision function based on the number of splitting, referred to as 

depth,  required to isolate a sample.  Shallower samples are identified as outliers based on a 

determined contamination value. Isolation Forest detects 31 out of the 684 samples as outliers.  

 

Yeo-Johnson Transformation 

Due to their mathematical nature, lognormal distribution  of features can decrease model 

performance of machine learning models. Normal distribution of feature is an underlying 

assumption in many machine learning algorithms and statistical techniques. Statistical tests, 

namely t-test and ANOVA perform better with normally distributed features. Several machine 

learning algorithms perform better when the features have an underlying Gaussian distribution 

(Brownlee, 2020), e.g., KMeans and Logistic Regression. After the application of multiple 

feature selection techniques, a large portion of the remaining features present a highly skewed 
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distribution. Yeo-Johnson transformation is utilized to convert lognormally distributed features 

into a normal distribution. Yeo-Johnson, as well as Box-Cox transformation, refers to a group of 

power transform methods. These methods allow reduction in skewness by stabilizing the 

variance. Particularly, Yeo-Johnson is chosen for its ability to operate on positive and negative 

values in the features distributions.  

 

Principal Component Analysis 

Optimization of machine learning models is depended on feature dimensionality. 

Principal Component Analysis is implemented to condense the number of features into a smaller 

dimension. Principal components are defined as the linear combinations of features that explain 

most of data variance. PCA recursively decomposes the dataset into multiple set of orthogonal 

components that explain the greatest amount of variance in the data along the directions of the 

components. The initial number of principal components equals the original feature space 

dimension. From there, PCA calculates the variance explained as the number of principal 

components decreases. Reduction of principal components is inversely proportional to the 

variance explained. A lower number of principal components can improve model computational 

time and training speed. However, with a reduction in principal components more information is 

lost by a lesser percentage of the variance being explained from the data. Therefore, a threshold 

of 95% variance explained is applied to ensure a small loss of  information. Figure 7 shows the 

relationship between the number of principal components and the percentage of variance 

explained. Based on these results, 6 principal components explain a least 95% of the variance in 

the data.  

 



 

26 

 

 

 

 
Figure 7: Percentage of variance explained by the data as a function of number of principal 

components during PCA. This chart illustrates the percentage of information retained (y axis) 

resulting from reducing the data to a certain number of principal components (x axis). Using 6 

principal components results in over 95% of variance explained from the reduce data after PCA.  

 

 

 

Summary of Feature Selection 

 

In summary, 6 techniques are used to reduce feature dimensionality. The original dataset 

begins with 600 features extracted from white-light and UV-light core sample images. Feature 

selection is applied to both regression and classification supervised learning models. Table 4 

shows the progressive reduction of feature dimensionality from  left to right as each technique is 

applied. 

  

 

 

 



 

27 

 

 

 

Table 4: Reduction in feature dimensionality for each technique applied in the feature selection 

workflow. For both regression and classification models, the total number of features is reduced 

from 600 to 6. The final 6 principal components explain at least 95% of the variance in the data. 

Class  Initial Variance 
Threshold 

Mi and F-
Test  

Pearson’s r PCA 

Regression 600 496 427 211 6 96.9 

Classification 600 496 443 224 6 96.5 
 

 

 

Model Optimization 

 

In this project, both regression and classification task are performed for viscosity 

prediction. For regression, 4 supervised learning techniques are analyzed and compared: random 

forest, gradient boosting, k-nearest neighbor, and elastic net. The models are optimized based on 

MAE and MAPE. For classification, random forest classifier is utilized. For each of the four 

classification tasks, the model is initialized and optimized based on F1 weighted and MCC score.  

 

K-fold Cross Validation 

 

Due to the small sample size of 684, K-fold cross validation is performed to ensure that 

the models are trained a tested on every portion of the data. The k-fold cross validation divides 

the dataset into k equally sizes portions. Each model is then trained on the k-1 portions and tested 

on the excluded portion. The process of splitting, training, and testing the models is repeated k 

times to ensure that every portion of the dataset has been trained and tested by the machine 

learning models. 

 

Hyperparameter tuning 

 

Hyperparameter tuning is performed to obtain a highly generalizable supervised learning 

model. Tuning is performed on both regression and classification models. Each model is 

associated with different parameters that control the learning. The wrong selection of 
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hyperparameters can lead to decrease performance in the model. Due to the high number of 

possible combinations of hyperparameters, a grid-search model is used to locate the best 

combination based on performance. Each combination of hyperparameters is tested across the k 

splits and the best set is selected based on the best performance metric. Hyperparameter tuning is 

performed for each model on several parameters. Table 5 represents a list of these parameters 

with their initial range and the resulting optimal value for regression and classification models.  

 

 

Table 5: Range and optimal values of hyperparameters of regression and classification 

techniques. The ranges were predetermined while the grid-search localized the optimal set of 

hyperparameters for each model. 

Task Technique  Hyperparameters Range  Optimal Value 

Regression Random 
Forest  

n_estimators 500 500 

criterion MAE MAE 

max_depth 6-9 7 

max_features 3-6 3 

KNN n_neighbors 3-11 11 

p 1-4 2 

Gradient 
Boosting 

learning_rate 0.001-0.1 0.1 

n_estimators 30-90 30 

loss  Huber Huber 

max_depth 2-4 4 

max_features 3-6 3 

Elastic Net alpha 0.01-2 0.011 

l1_ratio 0-1 0.5 

Classification  Random 
Forest 

n_estimators 500 500 

criterion entropy/gini gini 

max_depth 6-9 6 

max_features 3-6 3 
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Discussion of Results 

 

 

Regression 

 

As shown in Figure 8, Random Forest performs the best when looking at MAE and 

MAPE scores. Additionally, when looking at the error distribution,  Random Forest and Gradient 

Boosting show the greatest standard deviation as described in the error bar on Figure 6. The 

average MAE and MAPE of the highest performing model are 27 cP and 19% respectively.  

 

 
Figure 8: Performances of regression models developed using random forest, gradient boosting, 

KNN, and Elastic Net. Top figure (1) is MAE in cP and the bottom figure (2) is MAPE in % of 
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the optimized models. Random Forest performed the best for both error metrics.  Values plotted 

on the bar chart represents the average error metric and error bars represent their standard 

deviation. 

 

 

A scatter plot is shown in Figure 9 compares the actual vs predicted values of the best 

performing model which includes a unit slope line. The closest the point are on the unit slope 

line, the lowest the difference in viscosity between actual and predicted.   

The regression model fails to accurately predict lower viscosity values under 110 cP and higher 

viscosity values over 160 cP. The deviation from the unit slope line becomes more apparent as 

the viscosity values deviates from the average. When compared to the unit slope line, the model 

tends to overestimate low viscosity value and underestimate high viscosity values.  

 

 
Figure 9: Performance of the best model developed using Random Forest with 7-fold cross 

validation. The model tends to overestimate low viscosity values and underestimate high 

viscosity values. 
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This outcome can be attributed to the original low sample size of viscosity measurements for 

high and low viscosity. As shown in Figure 10, the dataset does not have sufficient samples that 

represent high and low viscosity samples. 

The regression model is not provided with enough information to accurately learn differences 

between high and low viscosity. Further studies can improve these results by providing new 

image-based filters and feature extraction methods.  

 

 
Figure 10: Viscosity samples by category. The low class represents samples lower than 110 cP. 

The high class represents samples greater than 160 cP. The number of samples is not sufficient 

for accurate deployment of supervised learning regression model. 
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Classification 

 

 

Figure 11 shows mean and variance of f1 weighed score and Matthew’s correlation score 

for each of the 4 classification tasks. The highest performance is achieved by classifying high 

viscosity samples against low viscosity samples. The task with the lowest performing metrics is 

detecting end points due to the greater difference in class size between end points and middle 

points. However, when looking at each class performance based on average error metrics, the 

classification model shows significant results .Standard deviations of f1 weighted and Matthew’s 

correlation score indicate the highest variability in high vs rest classification task.  
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Figure 11: Random Forest classifier performance on F1 weighted score (1) and Matthew’s 

correlation score (2). The values in the bar chart represents the mean error whereas the error bars 

show the standard deviation. The model performs the best in high vs low viscosity classification 

and the worst in the end points vs middle points classification. 
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Answer to Fundamental Questions 

 

 

• Based on the results obtained from both regression and classification, a significant 

relationship with fluid viscosity is observed with color and textural features extracted 

from the 300 pairs of RGB core sample images under UV and white light.  

• The proposed feature extraction workflow allows to identify which features show the 

greatest non-linear and linear relationship with target viscosity through implementation of 

MI and F-Test scores as shown in Figure 6. White light images show the strongest 

relationship with color-based features whereas UV light images show the strongest 

relationship with texture-based features. 

• Although promising results are obtained through classification, the model regression 

shows significant errors for low and high viscosity. The proposed model should not be 

used as a standalone method but instead in conjunction with reservoir simulators for 

enhanced subsurface characterization.  

 

 

Conclusions 

 

The proposed workflow combines image preprocessing techniques and supervised 

learning models to predict fluid viscosity from side-wall core images under white-light and UV-

light. Both regression and classification tasks are performed on the provided data and the results 

are evaluated. For viscosity regression, the machine learning model fails to accurately predict 

samples with viscosity <110 cP and >160 cP. Due to the small sample size of viscosity 

measurements, future work can improve upon the described workflow once more data becomes 

accessible. Classification model show promising results based on a binary selection between 2 

viscosity classes. In particular, the proposed model accurately classifies high viscosity samples 
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>330 cP  with low viscosity samples <57cP. The proposed work aims to reduce the cost and 

accuracy of viscosity measurements and potentially aid laboratory measurements.  
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CHAPTER II 

COMPARISON OF KERNEL-BASED QUANTUM AND CLASSICAL MACHINE 

LEARNING MODELS FOR LITHOLOGY CLASSIFICATION FROM PETROPHYSICAL 

LOGS   

 

This chapter illustrates the application of a quantum-enhanced machine learning 

algorithm to classify rock lithology based on well-log data. Quantum-enhanced machine learning 

represents a hybrid class of models that utilizes both quantum and classical computers to apply 

classification and regression tasks. Readings from Gamma Ray, Resistivity, Neutron, and 

Density logs are fed into the quantum algorithm to classify the lithology of the side-wall core 

samples at that corresponding depth. Both binary and multi-class classification are performed to 

understand the behavior of a machine learning model operating in the quantum space. 

Furthermore, an analog classical machine learning model is developed on the same dataset. 

Comparison between classical and quantum models gives more insights on future application of 

quantum-enhanced machine learning for lithology classification.  

 

Terminology 

• Quantum-enhanced machine learning: application of quantum calculations on classical 

machine learning models through the use of quantum simulator or devices with the goal 

of performance and computational time improvements.   

• Qubit: unit of information for quantum computer which is the analogue of bit for classical 

machines. n qubits can contain 2𝑛  bits of information. For machine learning 

applications, the number of qubits represent the dimension of the feature space.  



 

37 

 

 

 

• Superposition: qubits can represent a state value of 0,1, or any proportion of the two as 

probability of occurrence. Classical bits can only assume a value of 0 (on) and a value of 

1 (off). This property allows quantum computers to process data much faster. 

• Entanglement: qubits can be entangled with one another meaning the state of one qubit 

directly affects the state of  another qubit. If two qubits are entangled, the state of the 

second qubit can be derived by measuring the state of the first qubit. 

• Quantum simulator: classical device built with traditional hardware that simulates the 

behavior of a quantum computer. Due to the limitation of the classical hardware, the 

computational time becomes slower as the number of qubits increases.   

• Quantum computer: machine that operates based on the law of quantum physics which 

holds and process information using sub-atomic particles (qubits) as compared to 

classical machine which use transistors (bits). The premise of quantum computers is the 

ability to perform immense amount of calculations in a short period of time which 

otherwise would be impossible to be done by a classical computer. 

• Kernel Matrix: matrix used in kernel-based methods to compute the similarity between 

each pair of points in the feature space by calculating their distances. The matrix is NxN 

dimensions where N is the number of samples. The matrix is used to identify support 

vectors and generate a decision boundary for classification.   

• Radial Basis Function (RBF): kernel function widely deployed in support vector machine 

methods which computes the similarity between two points in the feature space with the 

use of Euclidian distance (l2 norm) and the hyperparameter gamma.  
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Fundamental Questions 

• Can kernel-based quantum models provide a greater accuracy compared to classical 

models in classifying rock lithology based on well log data? 

• Can quantum advantage outperform classical machine learning when limited samples are 

available? 

• Can quantum advantage provide faster results? 

 

Novelty and Scientific Impact 

• Tuning the feature map, repetitions, and entanglement type improves the accuracy of 

quantum support vector machine.  

• A kernel-based quantum model provides similar performance in binary classification of 

rock lithology to a classical model  

• When more than two lithologies are considered, a quantum approach does not provide an 

advantage to classical models.  

 

Literature review 

In the recent years, several studies have been conducted on the application of kernel-

based quantum-enhanced machine learning models. Table 6 shows the work performed on the 

application of quantum-enhanced machine learning. The current literature is still at the early 

stages with few examples testing the validity of quantum-enhanced machine learning models on 

real-world applications. As shown in the research papers below, majority of applications are 

being performed on synthetic datasets or simple open-source data available on the python scikit-

learn library such as the breast cancer dataset. When comparing classical to quantum-enhanced 
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machine learning models, as shown in Table 7, there are conflicting opinions. Park shows a 

greater classification performance of quantum models in complex datasets (Park et al, 2020). On 

the other hand, Chelli arrives to the opposite conclusion stating that classical machine learning 

models outperform quantum applications (Chelli et al, 2019). Table 8 shows the studies 

comparing the two to better understand what types of tasks can achieve a quantum advantage 

There is very limited research of applications of quantum models on petroleum engineering 

tasks. Liu presents a practical application of lithology classification using a hybrid neural 

network with a quantum layer which results in similar performance when compared to a classical 

convolutional neural network (Liu et al, 2021). 

 

Table 6: Recent work performed on the applications of kernel-based quantum-enhanced machine 

learning models. The current literature is skeptical on real-world applications of QSVM models.  

Author  Goal  Results 

Havlicek et al, 2020 Binary classification of 
complex synthetic data  

QSVM shows great results 
only if the kernel is hard to 
compute classically  

Liu et al., 2020 Classification of the discrete 
logarithm problem  

QSVM can classify the data 
unlike classical learners  

Kariya et al, 2018 Identify if a bill is real or 
forged.  

QSVM contains several 
technical difficulties for real-
data applications 

Schuld et al, 2019 Comprehensive study on 
kernel quantum methods  

QSVM shows promising 
results in real world 
applications   
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Table 7: Comparison of QSVM and classical machine learning models. There is no study 

available that compares quantum vs classical machine learning for subsurface characterization. 

Author  Goal  Results 

Park et al, 2020 Classification of synthetic and 
simple low-dimensional data 

QSVM shows similar 
performance to SVC, greater 
performance is achieved in 
complex datasets. 

Heredge et al., 2021 Signal-background 
classification task in B meson 
decays. 

QSVM outperforms classical 
methods when number of 
inputs is low 

Havenstrein et al, 2018 Classification based on breast 
cancer dataset  

QSVM shows good 
performance but high 
running time 

Chelli et al, 2019 Predict a person falling based 
on acceleration and angular 
velocity 

QSVM perfroms worse than 
ensemble bagged tree (EBT) 

 

 

 

Table 8: Applications of QML for Petroleum Engineering tasks. The literature is still very 

limited and currently progressing. 

Author  Goal  Results 

Piantanida et al, 2021 Reduce feature 
dimensionality of sensors in 
separator units 

Quantum autoencoder 
successfully captures non-
linear relationships 

Liu et al, 2021 Predict lithology  Quantum model achieves 
similar results with lower 
parameters compared to 
ANN 

 

Application of quantum-enhanced machine learning are still in the early stages for the Oil and 

Gas Industry. The development of quantum models is ongoing with Saudi Aramco and ENI 

planning to implement QML applications (O’Shea, 2022).  
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Introduction 

 

 

Background 

The goal of this work is to compare performance of quantum-enhanced machine learning 

versus conventional data-driven methods for subsurface characterization. In particular, the 

proposed models classify the rock lithology based on petrophysical well logs. The dataset 

utilized for this project comes from the Norwegian oil company Equinor which provides open 

access to the data obtained during the exploration, development, and production of the Volve 

field. This offshore field, located 80 meters below sea level in the North Sea, was developed in 

2008 with an  estimated OOIP of 173 MMBBL of oil (Wang et al, 2021). The oil target 

formation is a sandstone from the Middle Jurassic age located at an average TVD between 2700 

and 3100 meters below sea levels. Petrophysical well logs such as gamma ray, resistivity, 

neutron, and density are provided. In addition, for each 0.5 meter, the rock sample is labelled 

according to its lithology. Figure 12 shows the logs and lithological interpretation for one of the 

two wells considered  in this work. 
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Figure 12: Well log data and lithology interpretation used in this work. The blue, yellow, and 

gray regions indicate carbonate, sandstone, and shale rocks respectively. 

 

 

Well logs 

Petrophysical well logs have been widely used in the industry for reservoir rock and fluid 

characterization. Well logs provide a measurement which can be used to estimate a particular 

reservoir property. One of the most popular combinations of well logs is the triple combo which 

provides a fundamental understanding of the reservoir lithology. This combination consists of 4 

different petrophysical logs. 

• Gamma Ray: This log measures the gamma ray frequency emitted from radioactive 

isotopes Potassium 40, Uranium 235/238, and Thorium 232. The presence of these 

radioactive isotopes is concentrated in clay-rich rocks which helps identify shale 

formations.  
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• Resistivity: This log measures the flow of current of the formation by sending an electric 

charge. Resistivity is the inverse of conductivity. This log can be used to predict the fluid 

type of a formation. Brine shows low resistivity whereas hydrocarbons show high 

resistivity.  

• Density: This log delivers gamma rays signals into the formation. When the signal is sent 

at high energy levels, the tool measures the frequency of scattered gammy ray coming 

from the formation which is dependent on the average electron density. The resulting 

electron density can be correlated with the bulk density of the formation. Rock porosity 

can be derived when assuming on the rock matrix density.  

• Neutron: This log estimates the porosity by measuring the hydrogen content of the 

formation. This process assumes that the hydrogen content comes entirely from the fluids 

occupying the pore space. The log is also susceptible to other elements such as chlorine 

which can cause inaccuracy when present in the formation.  

Quantum-enhanced machine learning 

The concept of quantum computing is still relatively new and complex. The fundamental 

difference between a quantum and a classical computer resides in the object of information. In 

quantum computer, the fundamental object of information is the qubit whereas in classical 

computing is the bit. Unlike the bit, which can only assume a value of 0 or 1, a qubit can have a 

value that is either 0, 1, or a quantum superposition of 0 and 1. The nature of the qubit allows the 

computer to perform calculations on many different numbers simultaneously and then interfering 

all the results to get a single answer ( Swami, Amrata, 2011). As a result, in quantum computers 

are intrinsically probabilistic unlike classical computers which are deterministic due to the binary 

nature of the bit. Quantum computer have been successful in improving computational speed and 
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accuracy in several applications which includes simulation, cryptography, search algorithms, and 

machine learning (). Due to the expensive budget required for the creation and maintenance of a 

quantum hardware, quantum simulators have been utilized in research to predict the behavior of 

a real quantum computer. For this project, the quantum simulator was accessed from the open-

source software development kit Qiskit from IBM Quantum. After subscription, the software 

allows to run code directly on an interactive jupyter notebook. Libraries and documentation are 

also provided to further understand different quantum applications. One of the most researched 

quantum-enhanced machine learning models is Quantum Support Machine Vector (QSVM). 

QSVM is a quantum version of the classical Support Vector Classifier (SVC). Researchers are 

still debating on the efficacy of kernel-based quantum models on real-data applications. Havlicek 

argues that QSVM only provides a quantum advantage over classical approached if the 

corresponding quantum kernel s hard to estimate classically (Havlicek et al, 2018). However, Liu 

shows it is possible to achieve quantum advantage over all classical machine learning models 

regardless of complexity (Liu et al, 2020). In this work, a practical application of quantum-

enhanced machine learning is tested on real-data to compare its performance with classical 

models.  

 

How to access Quantum-enhanced models 

The proposed quantum-enhanced model is developed using the open source qiskit-

machine-learning library which can be access both locally and on the browser after registration 

through the IBM Quantum website. Figure 13 shows a schematic of the process of running a 

QSVM model.  
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Figure 13: Process of running a QSVM model through IBM Quantum. The code is built locally 

and sent on the cloud to obtain results. 

 

Alternatively, quantum-enhanced models can also be explored with the tensorflow-quantum 

library which uses Google’s Cirq quantum simulator. Both tensorflow and qiskit allow the code 

to be built locally and then tun on the cloud to process and return the results. Since the two 

simulators are using different proprietary hardware, comparison of run time should be avoided.  

 

Machine learning models 

Support Vector Classifier 

The classical kernel-based machine learning model is Support Vector Machine. This 

method can be used for both regression and classification tasks. For classification, the model is 

referred to as Support Vector Classifier (SVC). This model is a supervised machine learning 

algorithm in which both features and target from a training set are fed into the model to create a 

prediction on the testing set. This supervised learning model creates a decision boundary to 

separate the data into their appropriate classes. The decision boundary, referred to as the 

hyperplane, has the same dimensions as the number of features in the model. Margins represents 
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parallel hyperplanes that pass through the nearest points to the original decision boundary. These 

points are referred to as support vectors which can be seen as samples of one class that have the 

most similarities with points from the opposing class. SVC tries multiple orientations of the 

hyperplane that best separates each class in the dataset by maximizing the distance between the 

hyperplane and the margins. By doing so, the model can generalize and thus, obtain a better 

performance when applied on a testing set. Figure 14 gives representation of  SVC applied on 

binary dataset containing shale and sandstone samples based on well log information. To 

illustrate the process on a 2D plot, the number of features has been reduced to 2 principal 

components. 

 
Figure 14: The mechanism of action of SVC. The hyperplane classifies the datapoints as either 

shale or sandstone. The support vectors influence the position and orientation of the decision 

boundary. The model underperforms when there is no clear separation between the classes. 
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The application of SVC in Figure 14 represents an example of linearly separable classes. 

The issue arises when the data is non-linearly separable. In this case, SVC creates a kernel 

function that transforms the original data into a higher dimension to create a non-linear 

hyperplane able to separate the classes in the data. Polynomial, RBF, and Sigmoid are the main 

kernel functions used in SVC. All three kernel functions aim to achieve the same objective but 

with different mathematical formulas. The choice of one over the other is strictly dependent on 

the data in question. SVC optimizes the hyperplane position based on a regularization parameter 

C. High value of C can lead to overfitting whereas low values can generate a poor training 

performance. Gamma controls the strength of non-linear hyperplanes. Higher gamma values 

result in poor generalization due to overfitting the training dataset. Overall, SVC represents an 

effective supervised learning model for both regression and classification tasks. However, the 

model tends to underperform when classes are overlapping. 

 

QSVM 

Quantum support vector machine represents the quantum solution of the classical SVC 

model. The features from the original dataset are encoded on a quantum feature map. The model 

estimates the quantum kernel matrix on both training and testing datasets. The quantum kernel is 

then fed as a callable function to a classical SVC model. The classical model performs the 

training and testing using the quantum kernel function to obtain an accuracy score. Figure 15 

describes the steps in the application of a QSVM model.  
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Figure 15: Flowchart of the structure of a QSVM algorithm. The green cells represent steps 

performed on a classical computer whereas the red cells show the steps performed by a quantum 

simulator. 
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The first for the QSVM method is encoding the original features into a quantum space. 

This process is performed using a feature map. For each datapoint, the feature map creates a link 

from the classical feature vector to a vector with 2𝑛 dimensions where n is the number of qubits. 

Based on the literature presented, the Pauli first order (Z), and Pauli second order (ZZ) are the 

most studied feature maps. Unlike ZZ,  Z map does not model entanglement between qubits. As 

a result, the ZZ Feature map is conjectured to be hard to simulate with a classical computer and 

can be implemented on quantum devices (Havlicek et al, 2019). The goal of a feature map is to 

represents the individual samples into a higher dimensional space to quantify the distance more 

accurately between each pair of samples. An accurate computation of the distance results in a 

greater classification performance. The choice of feature map is dependent on the data. When 

selecting a feature map, the number of qubits, repetitions and entanglement type must be defined. 

The number of qubits refers to the feature dimension of the original dataset. Repetitions 

represents the number of times the feature map is repeated. Lastly, entanglement represents the 

connectivity between qubits which can be expressed as linear or full. In linear, qubits are 

entangled in series whereas in full, each qubit is entangled to each other. Once the feature map is 

defined, the kernel function is computed by calculating the transition amplitude for each pair of 

samples in the training and test set. The transition amplitude is derived by the inner product of 

each pair of samples. Figure 16 shows the kernel matrix obtained using the well log dataset. The 

matrix has NxN dimensions where N is the number of training samples. The darker regions 

indicate the greatest similarity between points whereas the lighter regions represent the lowest 

similarity between datapoints. The matrix has the diagonal value of 1 in which the similarity is at 

its peak since it’s comparing each point to itself. The matrix is symmetrical with respect to the 

diagonal since the distance from point a to b is the same from b to a. The kernel matrix is 
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computed with and without linear entanglement and compared using an RBF kernel with gamma 

value of 1. Figure 16 shows a comparison between an RBF kernel matrix calculated classically, a 

quantum derived kernel without qubit entanglement, and a quantum kernel with linear qubit 

entanglement. The darker regions represent the highest similarity between a pair of points in the 

dataset. Based on the corresponding heatmaps, the RBF and no entanglement matrices are fairly 

similar. Although, all three methods localize the same high-similarity regions, the quantum 

kernel with entanglement show a much greater granularity in the results.  
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Figure 16: Comparison of kernel matrices between RBF with gamma 1, quantum kernel without 

entanglement, and quantum kernel with entanglement. The darker regions represent higher 

similarity whereas lighter regions represent lower similarity. When modelling entanglement, the 

results are more granular.  

 

 

The kernel function is then passed onto a classical SVC model. Based on the provided function, 

SVC creates a hyperplane to differentiate samples depending on their class. Lastly, the resulting 

accuracy is computed for both training and testing to assess model performance. 

 

Applications of QSVM 

Applicability of QSVM is still debated in the literature. Havlicek argues that a quantum 

advantage can only be observed if the kernel is hard to estimate with a classical computer 

(Havlicek et al, 2020). Although Havlicek’s results are based on a small synthetic dataset, 

several papers explore the application of QSVM on real-world dataset. Kariya demonstrate a 

practical application of QSVM for binary classification of forged banknotes which is made of 

1372 grayscale images (Kariya et al, 2018). After further preprocessing, the 2-qubit model 

returns an average accuracy of 70% when tested on both a quantum simulator and actual 

quantum machine which significantly underperforms compared to classical machine learning 

methods which exhibit accuracies over 90% . Comparison of QSVM with traditional machine 

learning model is presented extensively by Park which compares extensively SVM and QSVM 

on simple and complex datasets from the python scikit-learn library (Park et al, 2020). The 

results show that a quantum advantage is achieved in complex datasets such as the scikit learn 

hand-written number dataset in which the underlying boundaries between classes is too complex 

for a traditional kernel to estimate. Based on the results of the proposed literature, real-world 

applicability of QSVM on current quantum simulators and machines is contingent upon the 
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complexity of the dataset in which traditional kernels are hard to classically compute. With 

simpler datasets such as the breast cancer dataset, classical machine learning models are 

perfectly capable to achieve a high classification score. The potential applicability of QSVM 

reside in more complex datasets such as the handwritten digits datasets shown in Figure 17.  

 

 

Figure 17: Complex dataset representing handwritten digits in which QSVM has shown greater 

performance compared to classical machine learning methods. The data is reduced to two 

principal components for visualization 

 

Methodology 

The workflow for the proposed method is shown in Figure 18. The method starts with 

raw data from the well logs and ends with a performance comparison between QSVM and SVC. 

For both models binary and multi-class classification are tested. For multi-class classification, all 
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facies in the dataset are included whereas in binary classification only sandstone and shale are 

considered. Samples at different sizes are selected from the original dataset. The goal is to 

compare the efficacy between quantum and classical machine learning model with varying 

sample sizes. For QSVM, feature map and quantum kernel are tuned to optimize accuracy. For 

SVC, conventional hyperparameter tuning is performed. The models are then compared for both 

binary and multiclass classification.  
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Figure 18: The flowchart represents the main steps taken in this work, from obtaining the raw 

features to comparing performance between QSVM and SVC. The green cells represent steps 

taken on a classical computer while red cells require a quantum simulator. 
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Data Gathering 

The initial data comes from two separate wells in the Volve field named well 14 and well 

15. For each well, gamma ray, resistivity, neutron, density logs are provided. In well 14, the 

depth interval of the logs ranges from 3178.5 m to 4220.5 m. The logs in well 15 investigate a 

similar depth range, starting from 3500 m to 4085.5 m. The logs perform a measurement every 

0.5 ft. Each depth interval is labelled with a corresponding rock type. Rock typing is performed 

by extracting cores from the subsurface and performing analysis in the laboratory. This amount 

to a total number of recording of 2082 and 1159 respectively for well 14 and well 15. Both wells 

contain the same lithologies in similar proportions. Figure 19 shows a pie chart of lithologies for 

both wells respectively.  

 

 
Figure 19: Proportions of different lithologies in the investigated depth for both well 14 and well 

15. The lithology is consistent in both wells. 
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The rock types identified in this formation are sandstone (SS), carbonate (CB), and shale (SH). 

There is a fourth type (UN) that includes unnamed rocks. It is not known if this was done on 

purpose or because of potential data loss.  This category does not represent a significant portion 

of the overall dataset in both wells. Therefore, for the purpose of this study, the UN class and 

associated log measurements are omitted from the dataset.  

 

Outlier detection 

Outlier detection is performed to improve both the quantum and classical models. Like in 

Chapter I, isolation forest is used to identify outliers. The contamination parameter is set to a 

small value of 0.05 which detects 13 outliers in the data. The outlier values are removed from the 

dataset.  

 

Feature Selection 

In feature selection, the original log measurements are compared to identify any potential 

features that do not contribute to the dataset. Each well log represents a feature. For this study, 

the original dataset already contains limited number of features. However, to optimize 

computational time, statistical-based methods are applied to evaluate any uninformative features. 

As referred to in Chapter I, Pearson’s r correlation coefficient is useful to identify collinearity 

between features in the dataset. Figure 20 shows a correlation matrix created using the Pearson’s 

r as a scoring metric. Each element of the matrix measures the collinearity between two features 

in the dataset.  
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Figure 20: Heatmap of the correlation matrix using Pearson’s r using data from both well 14 and 

well 15. Neutron and gamma ray logs display the highest collinearity.  

 

 

The correlation matrix does not display any high r values. In Chapter I, the upper threshold for r 

value was set at 0.9. For this dataset, the collinearity between features is significantly below the 

threshold. Therefore, no features were excluded from the dataset.  

Before moving to the next preprocessing technique, the data is split into a training and testing 

with an 80% ratio. Applying the split before further preprocessing ensures that no bias is 

transferred from the training to the test set. Stratification is applied to provide a proportional 

representation of rock types between training and testing datasets.  

 

Standard Scaler 

As discussed in Chapter I, features can affect the machine learning model depending on 

their magnitude. The features are scaled individually to a unit variance by setting the mean to 0 

as shown in Equation 3. This scaling method is referred to as standard scaler. 
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𝐗𝐬𝐜𝐚𝐥𝐞𝐝 =
𝐗 − 𝐦𝐞𝐚𝐧

𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝 𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧
                                                                    𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑 

 

Principal Component Analysis 

As described in Chapter I, PCA helps identifying linear combinations of features that 

retain the original information with a smaller dimensionality. For this work, the goal is to 

understand if the percentage of variance explained in the data decreases significantly when 

choosing a number of principal components lower than the 4 initial features. Figure 21 represents 

the percentage of variance explained by the number of principal components. Reducing the 

number of principal components from 4 to 3, does not cause a significant loss of variance 

explained. The reduction of the feature space in three principal components improves the 

computational performance of the machine learning model with a limited reduction in variance 

explained. When using a quantum simulator, feature dimensionality directly correlates to the 

model computational time.  
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Figure 21: Percentage of variance explained as a function of principal components in PCA. 

Reducing the number of features from 4 to three principal components results in 94% of variance 

explained. 

 

 

Min Max Scaler 

Min max scaler is used to transform each feature to a standardized range between 0 and 1 with 

the following equation.  

𝐗𝐬𝐜𝐚𝐥𝐞𝐝 =
𝐗 − 𝐗𝐦𝐢𝐧

𝐗𝐦𝐚𝐱 − 𝐗𝐦𝐢𝐧
                                                                         𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒 

The application of a min max scaler is not necessary for this method since standard scaler was 

already applied. However, by scaling the feature range, it is possible to visualize the position of 

samples in the dataset with their respective label. Figure 22 shows a 2D plot generated by 

reducing the data to 2 principal components. There is not a clear separation between the three 
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features. Several elements belonging to the carbonate class are present in the sandstone region. 

The shale class shows the least contamination with the other two lithologies. These findings are 

consistent when considering the well logs included in the dataset. In particular, gamma ray better 

differentiates shale from sandstone and carbonate based on the radioactive isotopes.  For this 

reason, shale and sandstone are chosen when designing  the binary classification model.  

 

 
Figure 22: 2D plot of samples from well 14 and well 15 based on their lithology. There is a 

better separation of the shale class from the rest.  
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Data sampling 

The study aims to assess the efficacy of quantum models at different sample sizes. For 

classical machine learning, the size of the dataset can play a significant role in the model’s 

performance. Assuming no outliers, the more information available to the model translates to a 

greater ability to predict the target value. The original train and test datasets are randomly 

shuffled and divided into 4 sample sizes for both binary and multiclass classification. The binary 

classification includes shale and sandstone whereas the multiclass classification considers all 

three lithologies.  

• Binary Classification  

- 40 samples 

- 80 samples 

- 160 samples 

- 320 samples 

• Multiclass Classification  

- 42 samples 

- 81 samples 

- 162 samples 

- 321 samples 

During this procedure, the class size proportions remained unaltered for both train and test 

samples. By selecting random samples, there is the possibility to obtain a dataset with classes of 

different size. This would negatively impact the performance of the machine learning model. 

Therefore, when selecting random samples, the class size proportions remained unaltered for all 

the cases.   
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Model Optimization 

SVC Hyperparameter Tuning 

As described in Chapter I, selecting the appropriate combination of hyperparameters 

improves the supervised model performance. For SVC a grid is created to train the model on 

each possible combination of hyperparameters. The tuning is performed on C, gamma, and 

kernel function. As previously discussed, gamma is only present with a non-linear kernel 

function. The model is trained with a 7-fold cross validation similarly to Chapter I.  The best 

hyperparameter set is chosen based on the mean accuracy. The process is then repeated 10 times 

to record the mean and standard deviation of the train and test accuracies for both multiclass and 

binary classification. Table 9 represents a list of these parameters with their initial range and 

resulting optimal value based on a 7-fold cross validation. From the results obtained, in binary 

classification, the classes are linearly separable. For multiclass classification, a higher dimension 

non-linear kernel is necessary to separate the classes.  

Table 9: Hyperparameter tuning of SVC model for both binary and multiclass classification 

 Sample Size  Range  Optimal Value 

  C kernel gamm
a 

C kernel Gamma 

Binary Classification 40 0.1-100 
 

Linear, 
poly, 
sigmoid
, rbf 
 

0.001-
1 
 

100 linear / 

80 10 linear / 

160 10 linear / 

320 10 linear / 

Multiclass 
Classification 

42 1 rbf 0.01 

81 1 sigmoid 1 

162 100 poly 1 

321 100 sigmoid 0.1 
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QSVM Optimization 

 

In QSVM, a similar approach to hyperparameter tuning is taken to optimize the model 

performance. As previously described in the Machine Learning Models section, the choice of 

feature map can dictate the performance of the model. In this study, two feature map are 

considered: Z and ZZ. For each type, number of reps are varied to identify the combination with 

the greatest mean accuracy. For ZZ map, the entanglement type is varied between full and linear. 

This process is performed on both binary and multiclass classification. Table 9 shows initial 

range and optimal value for feature map selection.  

 

Table 9: Feature map tuning for QSVM in both binary and multiclass classification 

 Sample Size  Range  Optimal Value 

  Feature 
Map 

Entangl
ement  

Reps Featur
e Map 

Entan
gleme
nt  

Reps 

Binary Classification 40 Z, ZZ 
 

Linear, 
full  
 

1-5 
 

ZZ linear 1 

80 ZZ full 2 

160 ZZ linear 1 

320 ZZ linear 1 

Multiclass 
Classification 

42 Z / 1 

81 Z / 2 

162 ZZ linear 1 

321 ZZ linear 2 
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Discussion of Results 

 

Test on Benchmark Dataset 

The QSVM model is first applied and tested on a benchmark dataset. The breast cancer 

dataset is a public binary classification dataset widely used in ML applications. The initial data is 

preprocessed and reduced to 2 principal components using the same workflow as the well log 

dataset as shown in Figure 23.  

 

Figure 23: Preprocessed training set for breast cancer dataset. The initial data is scaled from 0 to 

1 and reduced to 2 principal components. The goal is to classify the samples as either malignant 

or benign.  
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The QSVM model is designed and optimized using the same range of hyperparameters 

and feature map combinations. The 2D feature space is divided into 70 segments along each 

dimension forming a 70x70 matrix. The QSVM model is then tested on each element of the 

matrix and colored accordingly to the result to draw a decision boundary. Figure 24 shows the 

decision boundary of QSVM along with the test samples. The model separates the data non-

linearly. For this specific train-test split, the model achieves 0.9 accuracy due to the 2 false 

positive values that belong to the malignant class.  

 

Figure 24: Decision boundary of QSVM on the breast cancer dataset. The model draws a non-

linear decision boundary that achieves 0.9 accuracy.  

 

Binary Classification 

SVC and QSVM models are compared based on accuracy score on both train and test 

data at different sample sizes ranging from 40 to 320 for binary classification and 60 to 480 for 
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multiclass classification. For each sample, both models are run 10 times to record the mean and 

standard deviation of the accuracy score. Figure 25 and Figure 26 show the comparison of the 

two models for binary classification on training and testing data respectively.  

 

Figure 25:  Recorded accuracy score on training dataset for QSVM and SVC at the respective 

sample sizes. The models perform a binary classification between sandstone and shale. For each 

sample size, the models were run 10 times to record the standard deviation of the accuracy score. 

The black error-bar represents the standard deviation in the accuracy score. 
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Figure 26:  Recorded accuracy score on testing dataset for QSVM and SVC at the respective 

sample sizes. The models perform a binary classification between sandstone and shale. For each 

sample size, the models were run 10 times to record the standard deviation of the accuracy score. 

The black error-bar represents the standard deviation in the accuracy score. 

 

For binary classification on train data, both models have good performance and low standard 

deviation in the accuracy score. On testing data, QSVM shows lower performance at lower 

sample size with a greater standard deviation when compared to SVC. Overall, for binary 

classification, the quantum-enhanced model tends to overfit the training data at lower sample 

size and underperform on the training set. At higher sample sizes, the difference in performance 

remains negligible between the two models. In addition, the decision boundaries of the 2 models 

are compared on the entire dataset by dividing the feature space into a 70x70 matrix. Figure 27 

shows a comparison of the two decision boundaries. While SVC draws a linear decision 

boundary, QSVM decision boundary is non-linear. In the next chapter, a more in-depth analysis 

of the performance of QSVM on the entire well log dataset is provided. 
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Figure 27: Comparison of decision boundaries for QSVM (left) and SVC (right) for binary 

classification between sandstone (red) and shale (blue). QSVM draws a linear decision boundary 

whereas SVC draws a linear decision boundary. 

 

 

Multiclass Classification 

For multiclass classification, the models classifies whether the sample is a sandstone, 

carbonate, or shale. Like with binary classification, both models are run 10 times to record mean 

and standard deviation of the accuracy score.  Figure 28 and Figure 29 show the comparison of 

the two models for multiclass classification on training and testing data respectively.  
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Figure 28:  Recorded accuracy score on training dataset for QSVM and SVC at the respective 

sample sizes. The models perform a multiclass classification between sandstone, shale, and 

carbonate. For each sample size, the models were run 10 times to record the standard deviation 

of the accuracy score. The black error-bar represents the standard deviation in the accuracy 

score. 
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Figure 29: Recorded accuracy score on testing dataset for QSVM and SVC at the respective 

sample sizes. The models perform a multiclass classification between sandstone, shale, and 

carbonate. For each sample size, the models were run 10 times to record the standard deviation 

of the accuracy score. The black error-bar represents the standard deviation in the accuracy 

score. 

 

In both train and test dataset, the QSVM model performs at a lower accuracy than SVC 

regardless of the sample size. Like in binary classification, QSVM does not improve the 

accuracy for multiclass classification. The quantum-enhanced machine learning model shows 

greater performance variability than the classical approach.  

Lastly, the testing performance of QSVM was observed between binary and multiclass 

classification as shown in Figure 30. The quantum-enhanced model shows greater performance 

with binary classification as compared to multiclass classification regardless of the sample size.  

 

Figure 30: Recorded accuracy score on testing dataset for QSVM binary classifier and QSVM 

multi-class classifier at the respective sample sizes. For each sample size, the models were run 

10 times to record the standard deviation of the accuracy score. The black error-bar represents 

the standard deviation in the accuracy score. 
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Run Time  

An additional goal of this work is to compare the run time of initializing, fitting, and 

predicting the data between QSVM and SVC. As pointed by Havenstein, queuing times are very 

lengthy when accessing a quantum simulator (Havenstein et al, 2018). The same issue is 

experienced in this work when testing the QSVM model. Run times are exponentially longer 

when compared to a classical model. Figure 31 shows a comparison if running time between 

QSVM and SVC for binary classification. Run times increases exponentially for QSVM as 

sample size increases. On the opposite side, run time of SVC stays relatively constant. Future 

work can provide a better understanding of computational time if direct access to a quantum 

simulator is granted without any additional queuing times.  

 

Figure 31: Comparison of run time between QSVM and SVC. The run time increases 

exponentially for the quantum model as sample size increases. 
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Answers to Fundamental Questions 

• With the well log dataset analyzed in this chapter, an improvement in accuracy was not 

observed with kernel-based quantum-enhanced models. The well log dataset can be easily 

classified with traditional machine learning model and does not require a complex non-

linear decision boundary.  

• With smaller samples, QSVM underperforms when compared to SVC. As the sample size 

increases, the gap in performance between the two models becomes smaller. Sufficient 

sample size is necessary for QSVM to accurately classify lithology. 

•  A speed-up in computational time was not observed due to the queuing time necessary 

for accessing the quantum simulator  

 

Conclusions 

This work compares the performance between quantum and classical machine learning 

models in classifying lithology based on petrophysical well logs. Both methods are tested on 

binary and multiclass classification based on their mean accuracy. The results obtained 

demonstrate that there is no actual quantum advantage with the data considered. In both binary 

and multiclass classification, the classical model SVC outperforms the quantum model QSVM in 

both training and testing performance. The queuing time necessary to access a quantum 

simulator grows exponentially as the sample size of the data increases which makes this method 

impractical if no direct access is granted. Future work is necessary to assess the possibility of 

quantum advantage in other Petroleum Engineering problems.  
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CHAPTER III 

COMPARISON OF CIRCUIT-BASED AND KERNEL-BASED QUANTUM-ENHANCED 

MACHINE LEARNING MODELS WITH ARTIFICIAL NEURAL NETWORKS FOR 

LITHOLOGY CLASSIFICATION FROM REAL-TIME DRILLING DATA AND 

PETROPHYSICAL LOGS 

This chapter further explores the application of quantum-enhanced machine learning 

models for lithology classification. Variational quantum classifier and quantum support vector 

machine are trained and tested on binary lithology classification from petrophysical well logs 

and real-time drilling data. Both models are optimized based on their respective parameters. The 

performance and computational time are compared with a benchmark classical artificial neural 

network. Variation in decision boundary and performance metric distribution between the three 

models provide additional understanding on how quantum models differ from classical models.  

Terminology 

• Repetitions: the number of times the encoding feature map or variational circuit is

repeated. The higher the repetitions, the more complex the model is. In variational circuit,

increasing repetitions adds additional trainable weights to the model.

• Variational weights: like in neural networks nodes, weights in a variational quantum

classifier iterate through multiple values based on the resulting cost function.

• Parity function: the process of converting quantum states back to classical information to

derive an expectation value.
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• Expectation value: probabilities associated with the occurrence of one sample belonging

to a specific class.

Fundamental Questions 

• Can quantum-enhanced machine learning models provide a greater performance in

unbalanced datasets?

• Can a variational quantum classifier perform similar to a classical neural network using

less parameters?

• Does increasing the number of qubits and repetitions improve the performance of

quantum-enhanced machine learning models?

Novelty and Scientific Impact 

• In a binary classification task, classical machine learning model draw a linear decision

boundary whereas QML models draw a non-linear decision boundary

• Variational quantum classifier models have similar performance to artificial neural

networks using a lower number of parameters on unbalanced datasets.

• Increasing the number of qubits results in greater performance of the variational quantum

classifier whereas increasing the number of repetitions does not.

• QML models show a much greater variance in scoring parameters compared to classical

models.
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Literature Review 

For implementation of variational quantum classifier (VQC) models, the present 

literature focuses mostly on synthetic data and particle physics applications as shown in Table 

11. On average, the findings show similar performance between VQC and classical ML models.

Table 11: Literature review on applications of VQC models on synthetic and real-world datasets. 

No applications on subsurface characterization are found comparing VQC to classical methods. 

Author Goal Results 

Maheshwari et al, 2021 Binary classification 

on synthetic and 

diabetes datasets  

VQC shows greater performance in 

synthetic datasets compared to 

real-data dataset. VQC 

performance is ls slightly lower 

compared to classical methods 

Fuster et al, 2019 Classification of 

points in a circle 

VQC shows same performance of 

ANN with lower parameters  

Sierra-Sosa et al, 2020 Dementia 

prediction 

VQC gives more consistent result 

compared to SVC with a linear 

kernel 

Blance et al, 2021 Resonance search 

of di-top final state 

in particle physics 

VQC outperforms ANN when 

trained on small amounts of data 

Wu et al, 2021 Identification of 

rare signals in 

particle physics  

VQC perform similarly to classical 

methods (SVC and BDT) 

Introduction 

The following chapter further explores the application of quantum-enhanced machine 

learning methods for binary lithology classification. Variational quantum classifier and quantum 
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support vector machine (QSVM) are tested and compared on two lithology classification 

datasets. A third model, a classical artificial neural network (ANN) is deployed as a benchmark 

reference for quantum-enhanced models.   

Real-Time Drilling Dataset 

The first dataset represents real-time drilling data from an offshore well in the North Sea 

which is part of the Volve open-source database. The information provided includes a total of 30 

measurements at 270 specific depths obtained during the drilling process. Currently, lithology is 

predicted from a geological interpretation of drill cuttings. The use of data-driven machine 

learning methos for lithology prediction can aid to geological interpretation and ultimately 

benefit drilling engineers to identify the target formation. For each measurement taken every 5 

meters, a lithology class is present from core analysis. Figure 32 shows the data distribution 

colored by lithology after reducing the dimensionality to 2 principal components. The dataset is 

severely underbalanced when comparing the different lithology groups. The sandstone class 

represents majority of the sample measurements.  
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Figure 32: Sample distribution of the real-time drilling dataset of one well in the Volve field. 

The data is scaled and reduced to 2 principal components for visualization. The classes are 

severely unbalanced as sandstone samples represent majority of the dataset. 

Well-Log Dataset  

The second dataset implemented is the petrophysical well log data discussed in Chapter 2 . The 

same data preprocessing steps discussed in the previous chapter are applied to remove outliers 

and reduce the feature dimensionality. The objective for this dataset is to evaluate and compare 

quantum and classical models on the entire sample size.  The data includes gamma ray, density, 

neutron, and resistivity logs for two wells in the Volve field for a total of 1600 samples.  
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Machine Learning Models 

Artificial Neural Network 

Artificial neural network (ANN) is a classical machine learning method used in both 

regression and classification tasks. The model is made of a collection of layers containing 

multiple nodes connected to each other. The input layer represents the initial data while the 

output layer represents the final result. For each node, the hidden layers located between the 

input and output layers, transform the input sample from one dimension to another using a non-

linear activation function. Each node has a randomized initial weight associated with it. The 

activation function takes the weighted sum of all the inputs and calculates the next node for the 

subsequent layer. The final output node is then compared to the actual label using a cost 

function. Based on the resulting cost function, the weights of the ANN are updated using an 

optimizer model. The process of calculating the output from current weights is referred to as 

forward pass whereas the process of deriving each weight contribution to the error and 

optimizing the weights is referred to as backward pass. The epoch represents one forward pass 

followed by one backward pass. This model iterates through multiple epochs until it obtains the 

best combination of weights that provide the lowest cost function. In this work, a sequential 

ANN is built using the keras library. The model consists of initial input layer, three hidden 

layers, and one output layer. The activation function ReLU is used for the hidden layers whereas 

the Sigmoid function is used for the final output layer. 

• ReLu: piecewise linear activation function which outputs the weighted sum of the

previous layer’s nodes if positive or 0 if negative.

• Sigmoid: function which outputs a value between 0 and 1 which represents the

probability of the sample belonging to a specific class.
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Overall, with the specified configuration, the ANN model is built on 381 trainable parameters. 

Variational Quantum Classifier 

The Variational quantum classifier (VQC) combines the same architecture of ANN with 

quantum computations. Much like the QSVM method discussed in Chapter II, VQC is a hybrid 

quantum-classical machine learning model used for classification tasks. Figure 33 shows the 

architecture of VQC from the initial input data to the final label prediction. As discussed in 

Chapter II, the feature map encodes the information of the initial data into a quantum state by 

modeling the qubit rotation. VQC takes this process a step further by implementing a variational 

circuit which consists of a quantum feature map with additional weights applied to the angle 

rotations and entanglement layers. The model is trained in an iterative process in which the 

weights are updated by an optimizer model based on the resulting cost function. The model 

completes the training procedure once the lowest cost is achieved.  

Figure 33: Structure of VQC. The initial input data is encoded into a quantum state with the use 

of a feature map. A variational circuit assigns different weights to the angle rotations of the 

qubits in the feature map. The weights are updated by an optimizer model based on a cost 

function. 
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The variational circuit represents the equivalent of a collection of layers in a neural 

network. The circuit expressed in Equation I applies weights to the qubit rotation and 

entanglement layers defined in the feature map . 

𝐔(𝐱, 𝐰) = 𝐒(𝐱)𝐖(𝐰)                                                                          𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓 

S represents the quantum feature map which encodes the classical data x into a quantum state. W 

represents the variational component which applies the weights w to the feature map. The 

variational circuit U can then be expressed in terms of classical input data x and weights value w.  

An additional redout qubit is added to apply a weight to the entanglement layer. The number of 

weights is dependent upon the structure of the feature map and the number of repetitions. The 

resulting variational circuit using a feature map with two qubits and linear entanglement employs 

13 trainable weights as shown in Figure 34.  

Figure 34: Structure of a variational circuit with two qubits and linear entanglement. @-X  

represents the entanglement layers. The redout qubit XX applies a weight on the qubit 

entanglement. Rotations respect to the y and z axis are performed depending on the weight 

applied. 

The model translates the quantum output to a classical value by the parity function. The quantum 

output can be expressed as a probability distribution of each possible qubit state 2𝑛 where n is

the number of qubits. When using two qubits, the probability distribution of the qubit state can 

assume values of 00,01,10,11 with their respective associated probability. Even combinations 

such as 00 and 11 represent the 0 class and odd combinations 01,10 represents the 1 class. The 

associate probabilities from the probability distribution are summed to compute expectation 
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values depending on their even or odd state. Figure 35 represents an example of how expectation 

values are derived in a VQC for a binary classification task using 2 qubits.  

Figure 35: Example of expectation value derivation in a VQC. The output result from the 

variational circuit represents a probability distribution of the qubit states. Based on the even or 

odd class, the expectation value is derived by the sum of the probabilities associated with each 

class. 

When comparing their structure, ANN and VQC are very much similar. Both models implement 

a “black box” format where multiple weights are trained and updated depending by on the 

specified cost function. In recent years, VQC has been researched for potential application in 

classification tasks and has often been referred to as quantum neural network. The premise 

behind the development of VQC is in its ability to produce accurate results with a lower number 

of weights which translates into lower computations.  

Applicability of VQC 

In the literature, VQC models have been tested on both synthetic and real-world dataset. 

Blance compares the efficiency of VQC and NN in classifying di-top final states in particle 

physics (Blance et al, 2021). The dataset is made of 2500 samples in a two-dimensional feature 

space. VQC shows a slightly greater boost in performance compared to ANN. Maheshwari 

conducts a similar comparison on the open-source diabetes and sonar datasets available in the 

python scikit-learn library (Maheshwari et al, 2021). The larger dataset (diabetes) shows greater 

performance. The addition of more qubits improves the average score of the quantum-enhanced 
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model. From the literature observed, VQC tends to perform better in smaller and higher 

dimensions datasets. 

Cost Function 

Binary Cross-Entropy 

For each epoch during training, the ANN and VQC models predict the probability of a 

sample belonging to either one of the two classes. A cost function is required to define the 

accuracy of the prediction. The resulting cost determines the change in the models’ weights for 

each epoch. The model training stops once the lowest cost value is achieved. Binary cross 

entropy represents the negative log average of a sample belonging to its original class as shown 

in Equation 6. The metric ranges from 0 to 1, where a value of 1 is only achieved if the predicted 

and true labels are identical.  

𝐁𝐜_𝐞 =  −
𝟏

𝐍
∑ 𝐲𝐢 ∗ 𝐥𝐨𝐠(𝐩(𝐲𝐢)) + (𝟏 − 𝐲𝐢) ∗ 𝐥𝐨𝐠(𝟏 − 𝐩(𝐲𝐢))   𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟔 

𝐍

𝐢=𝟏

• N = total number of samples

• y = class, either 0 or 1

• p(y) = probability of the sample belonging to the specific class

Optimizer 

Adam 

For both ANN and VQC, the training procedure requires constant update of the weights 

after each iteration to minimize the cost function. The optimizer represents the algorithm that 

modifies the weights of the machine learning model according the cost function value obtained 
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from the previous iteration. The proper selection of the optimizer method is necessary to reach 

the combination of weights that result in the lowest cost function at a low computational time. 

Figure 36 shows a simple representation of how an optimizer preforms. Gradient vectors are 

derived to determine the direction of the steepest descent. The algorithm modifies the input 

weights according to a specified learning rate until the optimal minimum is achieved. 

Figure 36: Example of an optimizer algorithm. The gradients are represented by the black 

segments connecting the points. The optimal minimum is represented by the lowest cost function 

as a white triangle. The algorithm modifies the weights and learning rates until the lost cost 

function is reached. 

The adaptive moment estimator (ADAM) optimizer has been recognized to be extremely 

effective when implemented in neural networks models (Kingma et al, 2014). This method 

calculates the gradients based on batches from the initial sample pool. Unlike other optimizer, 
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this method updates the learning rate of each weight in the neural network individually. The 

weights are updated based on the weighted and moving average of the gradients. This 

functionality allows the ADAM optimizer to continue the learning process when passing through 

a local minimum until the absolute minimum is reached.  

Methodology 

The proposed workflow is presented in Figure 37. The goal is to compare the lithology 

classification performance between classical and quantum models in a real-time drilling and well 

log datasets. VQC and QSVM are compared to a classical ANN model. As previously 

mentioned, VQC represents a variational circuit-based QML model which implements an 

optimization method that variates the circuit weights to achieve the lowest binary cross-entropy. 

QSVM represents a kernel-based method in which the distances between each point are 

computed in a kernel matrix. The kernel matrix is then passed to a SVC model that computed the 

support vectors for classification.  The raw data coming from real-time drilling logs is 

preprocessed to eliminate outlier values and scaled to the same magnitude. Feature selection is 

performed on the original 30 features to identify the ones that do not provide sufficient 

information. ANN, VQC, and QSVM models are initialized and optimized accordingly based on 

different hyperparameters. The models are then run on 100 different train- test split and the 

median and standard deviation are recorded. Similar procedure is performed using the 

preprocessed petrophysical well log data in Chapter II. Additionally, the performance results of 

quantum models are compared using 2 and 3 qubits to understand how increasing model 

complexity improves classification performance. Comparison of performance and training 
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computational time give insights of future implementation of QML models for lithology 

classification.  

Figure 37: Workflow applied for lithology classification on both drilling and well log datasets. 

The real-time drilling dataset is preprocessed first whereas the well log dataset is already 

preprocessed form Chapter II. ANN, VQC, and QSVM are tuned and compared on performance 

and computational time.  

Data Preprocessing 

The original drilling log dataset contains 5 different lithologies for a total of 270 samples. 

The lithology classes are severely underbalanced with sandstone being the most prevalent as 

shown in Figure 38. For this work, binary classification is tested. The goal is to identify if the 

lithology presented is a sandstone or not. Therefore, the labels are redistributed such that samples 

of sandstone have a value of 0 and samples other than sandstone have a value of 1. Even with 
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this layout, there is still a great disparity in sample size between the two classes. To compensate 

for this, classification metrics such as F1 weighted score and Matthew’s correlation score are 

used to better evaluate the performance of the classical and QML models.  

Figure 38: Lithology frequency of the drilling log dataset. The lithology classes are significantly 

unbalanced. For binary classification, the sandstone samples are marked as 0 and the non-

sandstone samples are marked as 1.  

Train Test Split 

Before applying any preprocessing techniques, the data is divided into train and testing 

set with a 70/30 ratio. This procedure ensures no bias is transferred to the machine learning 

models from the test set. The quantum and classical machine learning models are built and 
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trained entirely on the train set. The models come in contact with the test set for the first time 

only when evaluating the performance. As described in Figure 35, the classed in the drilling logs 

dataset are severely unbalanced. The split between train and test is stratified to ensure that the 

same proportion of samples in each class is preserved.  

Isolation Forest 

After splitting the original feature set, the first step of the workflow is designed to remove 

outlier values from the original dataset. Like in previous chapters, isolation forest is implemented 

to detect and remove outliers in the data. Due to the small sample size of 270, a small 

contamination value of 0.05 is used to honor the original drilling log values and prevent the 

sample size from dropping significantly. With the implementation of isolation forest, 14 samples 

were detected as outliers and removed from the dataset.  

Standard Scaler 

Feature scaling is necessary to optimally apply feature selection techniques such as 

principal component analysis. Standard scaler is used to equalize the features to a zero mean and 

a standard deviation of 1.   

Variance Threshold 

Due to the high number of features, selection techniques are deployed to reduce the 

feature space dimensionality. Variance threshold helps identify features with zero variance that 

do not present any useful information for the machine learning model. Using a small threshold of 

0.01, 9 out of the original 30 features are omitted from the dataset due to their low variance.  
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Pearson’s r correlation 

Features with high collinearity do not contribute at improving the model performance. 

Pearson’s r correlation value is used as the score metric to evaluate the collinearity between each 

pair of features in the dataset. As shown in Figure 39, a matrix of correlation is generated to 

visually locate the features with the highest collinearity. The correlation matrix is symmetrical 

with the diagonal having values of 1. Therefore, for purpose of visualization, only the lower 

triangular portion is shown. A threshold of 0.9 is imposed on the Pearson’s r value. For each 

couple of features, if the absolute r value exceeds 0.9, one of the two features is omitted from the 

dataset. Following this procedure, 8 features are removed from the dataset due to high absolute 

collinearity.  
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Figure 39: Person’s r correlation matrix helps identify highly collinear features in the dataset. 

Red cells show high positive collinearity whereas blue cells show high negative collinearity. A 

total of 8 features are removed due to high absolute collinearity.  

Visualizing the Data 

Before proceeding to further preprocessing techniques, each feature is visually analyzed 

on a x-y plane. This helps identify any features that do not provide any information a machine 

learning model. From the subplots shown in Figure 40, there are 4 features that remain constant 

or linearly decrease throughout the depth interval. Mudretdepth measures the depth of the mud 
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which is equal to the depth recorded. Since the purpose of the machine model is to predict 

lithology regardless of the depth interval, this linear relationship is redundant. Lagmwdiff and 

lagmtemp measure the mud weight difference and mud temperature respectively. Both 

measurements reach a constant value of 0 only after 5 meters deep in the drilling process. The 

same behavior is observed in mtin which has a zero value for the majority of the dataset. The 

resulting number of selected features is 9.  

Figure 40: Visual representation of real-time drilling data as function of depth. Outlier detection 

and feature scaling is applied beforehand. Mudretdepth is linearly related to formation depth. 

Lagmwdiff, lagmtemp, and mtin have a constant value of 0 for the majority of the dataset. 
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Principal Component Analysis 

The last step for data preprocessing is principal component analysis. As mentioned 

previously, the number of qubits is represented by the number of features in the dataset. For the 

real-time drilling dataset, the quantum models are tested with 2 qubits. As a result, the 

preprocessed drilling dataset is reduced to two principal components. The variance explained by 

each principal component is recorded to quantify the potential information loss due to the 

reduction of the feature space. Figure 41 shows the percentage of variance explained as function 

of the number of principal components. Unlike the petrophysical well log data observed in 

Chapter II, the variance explained with 2 principal components in the drilling dataset follows 

below 70%. Although a low percentage of variance explained decrease the machine learning 

model performance, the goal of this chapter is to create a benchmark between classical and 

quantum ML models. In both cases, the models are trained and tested on the same data with 2 

principal components.  
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Figure 41: Percentage of variance explained by number of principle components during PCA. 

Using 2 principal components explains 68% of the variance in the data. Both classical and 

quantum models are trained and test on the same dataset with 2 principal components.  

Model Optimization 

Like traditional machine learning models, in QML models, parameter tuning is necessary 

to achieve optimal performance. As observed in Chapter II, quantum models achieve optimal 

performance when using feature maps that model linear entanglement between qubits such as the 

second order Pauli feature map (ZZ). With QSVM, the number of repetitions and regularization 

parameter C are varied. For VQC, the tuning is performed on the variational circuit and 

optimizer model. Much like a neural network, the variational circuit is trained on a different 
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number of weights depending on the number of repetitions and qubits. A linear relationship is 

observed in the number of trainable weights when varying the number of repetitions and qubits 

as show in Figure 42. When keeping the number of qubits constant, the total count of weights 

increases linearly as more repetitions of the circuit are present. Similarly, as the repetitions are 

kept constant, the number of weights increases linearly as more qubits are used. Overall, the 

number of qubits has a stronger impact on the total number of trainable weights.  

Figure 42: Number of trainable weights in a variational circuit as function of number of 

repetitions (left) and number of qubits (right). On the left plot, the number of qubits is kept 

constant at 2. On the right plot, the number of repetitions is kept constant at 2. In both cases, a 

linear relationship is observed.  



94 

When increasing the number of repetitions, the depth or complexity of the variational circuit 

increases linearly. The trainable weights associated with each qubit rotation are repeated in 

sequence. Model complexity can also be increased with a larger number of qubits. However, an 

additional qubit introduces weights that model the new qubit’s rotation and entanglement with 

the rest. In summary, additional repetitions increase the number of weights by copying the 

existing circuit layout whereas additional qubits introduce new rotation and entanglement 

weights. Unlike adding more repetitions, increasing the number of qubits inherently adds more 

entanglement layers since more qubits are present. As a result, the rate of increase in complexity 

is significantly higher when varying the number of qubits as compared to the number of 

repetitions.  

Tuning is performed on both the classical and quantum ML models for the two datasets. 

For the drilling dataset, the number of qubits is kept constant at 2 whereas for the well log 

dataset, the qubits count is varied between 2 and 3. The goal is to observe if a greater number of 

qubits improves model performance. In addition, VQC and ANN are tuned on the Adam learning 

rate and batch size. Lastly, for the classical neural network, different combinations hidden layer 

activation functions are tested. After iterating through multiple combinations, the optimal values 

are determined based on the resulting F1 score as described in Table 12.  
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Table 12: Model tuning for ANN, VQC, and QSVM. The models are tuned on both the drilling 

and well log datasets. The optimal values are determined based on the resulting F1 score. 

Model Parameters Range Optimal Value 

Drilling 

Dataset 

Well Log 

Dataset 

ANN Activation function reLU, tanh reLU reLU 

Learning Rate 0.001-0.1 0.01 0.1 

Batch size 5-100 5 50 

VQC Repetitions 1-10 3 2 

Learning rate 0.001-0.1 0.01 0.01 

Batch size 5-100 5 10 

QSVM C 100-1000 1000 800 

Repetitions 1-10 2 2 

From the results obtained on the VQC, increasing the number of repetitions does not translate in 

greater performance. Increasing the number of repetitions adds additional weights from copies of 

the existing variational circuit. This procedure increases the model complexity but does not 

lower the resulting cost function during training.  

Discussion and Results 

After the classical and quantum models optimization, the models are tested to evaluate 

and compare the performance. Lithology classification is performed on both real-time drilling 

data and well log data. In both datasets, the models are evaluated in their ability to accurately 
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classify the lithology from two classes for each depth interval. The decision boundary is 

visualized by testing each model on the feature space matrix. Since each sample contains two 

features ranging from 0 to 1, a 2D matrix can be generated with a predetermined dimension. For 

this work, a 150x150 matrix contains different combinations of the two features. By testing the 

models on each matrix element, it is possible to visualize a decision boundary. For real-time 

drilling data, due to the highly unbalanced classes, F1 weighted score and MCC are used as the 

performance metrics. For the petrophysical well log data, train/test accuracy and F1 score are 

recorded. The models are trained and tested on 100 different combinations of train and test data. 

For each iteration, the original dataset is divided into train and test sets and the previously 

described preprocessing methods are applied to that specific split. This procedure generates a 

distribution of score metrics. Due to the stochastic nature of machine learning models, 

probability distributions give a more comprehensive insight on their performance.  

Lithology Classification from Real-Time Drilling Data 

The dataset contains 270 measurements obtained while drilling for every 5 meters. For 

each depth interval, core evaluation is performed in the lab to label the sample’s lithology. The 

data is divided into sandstone and non-sandstone samples with the sandstone class being the 

most prevalent. The data is divided into train and test sets and multiple preprocessing techniques 

are applied to eliminate outlier values and reduce the feature space to two dimensions. After 

optimizing the models parameters, ANN and VQC are compared on their training performance. 

Both models are run on 100 epochs with an EarlyStopping callback function. The function halts 

the training procedure if binary cross entropy does not decrease after 10 epochs. Figure 43 shows 

the changes in binary cross entropy as the training progresses after each epoch. ANN reaches the 
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lowest cost function at a faster rate than VQC. In both models, the callback function stops the 

training procedure before the 100 epochs are completed. The lowest binary cross entropy 

achieved during training is relatively similar in both model with ANN showing a slightly lower 

cost than VQC.  

Figure 43: Comparison of binary cross entropy loss throughout each epoch between ANN and 

VQC in lithology classification of real-time drilling dataset. The callback function stops the 

training procedure after 21 epochs (ANN) and 22 epochs (VQC). ANN reaches a slightly lower 

cost function than VQC. 

After training, ANN, QSVM, and VQC are evaluated on their classification performance 

on the testing set. Figure 44 shows the decision boundaries for each model. The test dataset 

labelled by class is placed on top of the feature space matrix ranging from 0 to 1. Both ANN and 

QSVM draw a linear decision boundary to classify the data. On the other hand, the shape of 
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VQC’s decision boundary mimics a sinusoidal function. Due to the low-test size, the number of 

false positives and negatives can be quickly assessed. ANN shows the best performance with 

only 2 false negatives. VQC has a lower number of false negatives but higher false positives. 

Lastly, QSVM shows the poorest performance with 3 false negatives and 2 false positives.  

ANN                                                                  VQC 

QSVM 

Figure 44: Decision boundaries of ANN (top left), VQC (top right), and QSVM (bottom center) 

on lithology classification of real-time drilling data. When analyzing the number of false 

negative and false positives, ANN shows the greatest performance followed by VQC and 

QSVM. 

To concretely evaluate and compare the performance, F1 weighted score and MCC score 

are computed from the testing results. The performance metrics are recorded 100 times for each 
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train-test split. Figure 45 and  Figure 46 show the distribution of F1 weighted and MCC scores 

respectively in a boxplot format. In the plot, the box represents the IQR defined by the difference 

between the 25th and 75th percentile. The error bars range 1.5 times the IQR where any outlier 

point outside the range is shown as a circle. For both metrics, ANN and VQC have nearly 

identical median value. As seen in the decision boundary analysis, QSVM shows the poorest 

performance with a large number of outliers outside the interquartile range. Compared to the 

classical ANN, quantum models exhibit higher variability in the results.  

Figure 45: F1 weighted score distribution between ANN (left), QSVM (center), and VQC 

(right). The orange line represents the median of the distribution. ANN and VQC show very 

similar performance. QSVM displays a greater number of outliers.  
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Figure 46: Matthew’s correlation score distribution between ANN (left), QSVM (center), and 

VQC (right). The orange line represents the median of the distribution. ANN and VQC show 

very similar performance. QSVM shows much greater metric variation.  

Lithology Classification from Petrophysical Well Log Data 

An additional analysis of binary classification performance between classical and 

quantum-enhanced machine learning models is performed on the well log database discussed in 

Chapter II. The same preprocessing steps outlined in the previous chapter are applied to the data 

to eliminate outlier values and reduce feature dimensionality. Training/testing accuracy, and F1 

score are selected as scoring metrics since the two classes shale and sandstone are fairly balanced 

unlike the real-time drilling dataset. The goal is to understand if VQC shows the same 

advantages in performance over QSVM in a larger dataset with more balanced classes.  
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Isolation forest is applied to detect and eliminate outliers. Standard scaling and principal 

component analysis are implemented to reduce the feature space to two dimensions. The decision 

boundary is shown for each model in Figure 47. QML models utilize a non-linear decision 

boundary to classify the data unlike the traditional neural network.  

ANN VQC 

QSVM 

Figure 47: Decision boundaries of ANN (top left), VQC (top right), and QSVM (bottom center) 

on lithology classification of petrophysical well log data. The classical ANN model divides the 

data with a straight line whereas the QML models utilize a non-linear curve decision function.  
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The model training and testing is performed 100 times to record summary statistics of the 

resulting performance metrics. A boxplot of training/testing accuracy and F1 score is shown in 

Figure 48. In this dataset, QML models underperform significantly when compared to the 

classical neural network with VQC having the poorest performance. Moreover, quantum models 

display much greater variability in the results.  

Figure 48: Performance metrics distribution in a boxplot format for training accuracy (left), test 

accuracy (center), F1 score (right) for lithology classification from well log data using two 

qubits. The quantum models both underperform compared to a classical neural network. 

In addition, the secondary goal is to understand if the number of qubits in each QML 

model is directly related to its performance. As mentioned previously, the number of qubits in a 

quantum variational circuit is equal to the dimension of the feature space. In this last section, the 

models are applied using three qubits with the corresponding three principal components as 

features. Figure 49 represents the resulting distribution of score metrics for the three models.  
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Figure 49: Performance metrics distribution in a boxplot format for training accuracy (left), test 

accuracy (center), F1 score (right) for lithology classification from well log data using three 

qubits. The quantum models both underperform compared to a classical neural network. 

While the median of the three metrics remains relatively the same between the two and three 

qubits trials for ANN and QSVM, the performance of VQC increases. The improvement in VQC 

performance can be directly related to the increase in number of weights present in the 

variational circuit. Similar to the previous trial, QML models exhibit grater variability in the 

results. Overall, even with an increase in qubit count, quantum models slightly underperformed 

when compared with classical machine learning methods.  

Computational Time 

As discussed in Chapter II, computational time of quantum models is affected by the 

queuing time necessary for the quantum simulator to receive the data. As mentioned previously, 

QSVM is ran on the IBM qiskit library while VQC on the tensorflow-quantum library. The two 
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libraries utilize different quantum simulators with varying queuing times. However, as shown in 

Figure 50, computational time of classical and quantum models gives a benchmark comparison.  

Figure 50: Comparison of computational time between ANN (left), QSVM (center), and VQC 

(right) for one training/testing iteration. Quantum models tend to be slower depending on the 

number of qubits used. Overall, classical methods perform much faster.  

The time recorded includes the duration of training and testing the model once. In 

agreement with Chapter II analysis, the computational time increases with QML models due to 

the queuing time of quantum simulators. The increase in data size between the real-time drilling 

dataset (270 samples) versus the well log data (1600 samples) prolongs the time needed to train 

and test the models. Lastly, the increase in number of qubits results in a more complex feature 
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map and variational circuit which causes the computational time to increase. When comparing 

the two QML models, QSVM is much faster than VQC. This behavior can be attributed to 

QSVM performing the actual classification on a classical SVC algorithm as compared to VQC 

which uses a variational circuit in quantum space to classify the data.  

Answer to Fundamental Questions 

• The variational quantum classifier is tested on a highly unbalanced dataset for binary

classification. From the results obtained, VQC shows almost identical median

performance with ANN for both F1 weighted score and Matthew’s correlation score.

Although the performance did not improve, VQC is able to replicate the results of a 4-

layer artificial neural network with 13 trainable weights as compared to 381 weights of

the classical model.

• For the underbalance drilling dataset, VQC achieve similar results to ANN with less

parameters. For the larger balanced well log dataset, VQC show significant lower

performance.

• When increasing the feature space and number of qubits from 2 to 3, the median

performance of VQC improved for both accuracy and F1 score on the test set. QSVM did

not show any improvements when varying the number of qubits. For both quantum-

enhanced models, the variability of the resulting metrics increases with higher qubits.

Conclusions 

This chapter further explores the application of quantum-enhanced machine learning 

methods for real-word applications on petroleum engineering problems. The goal achieved is to 
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compare the performance and computational time of QSVM and VQC to a benchmark classical 

neural network. While QML methods achieved similar scoring metrics to ANN, a quantum 

advantage was not observed in binary lithology classification. The noisiness of current quantum 

devices results in a greater variability of expectation values as the input size increases. When 

analyzing the performance distribution on 100 different splits of train and test data, quantum 

models show a much greater variance in classification metrics. The use of a larger number of 

qubits to express the classical data into a quantum state shows a slight improvement in the 

parameterized model VQC which is, however, underperforming when compared to ANN.  

Despite the results obtained, the implementation of quantum theory on machine learning models 

can be proven advantageous on real-world applications with future development of quantum 

devices. 
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RECOMMENDATIONS FOR FUTURE WORK 

Image-based machine learning model for viscosity prediction 

The image-based machine learning workflow lacks the ability to accurately perform 

regression on target viscosity. As a result, possible future work should include the use of 

additional image-based filters to better describe the texture of side-wall rock samples under 

white and UV light. Performing blob detection using the difference of Gaussian can enhance the 

characterization of rock sample images. In addition, the current work is limited to the available 

660 image-viscosity pairs at constant temperature. If more samples become available, future 

work should be performed on a larger sample size.  

Quantum-enhanced machine learning applications for lithology classification 

QML models requires careful tuning performed on the feature map. The process of 

encoding a feature vector into a quantum state can be achieved using a variety of feature map 

and number of qubits which model entanglement differently. Future work should consist of 

optimizing the feature map structure based on the initial data by testing several combinations. 

Specific to VQC, a variational circuit should be designed with more than three qubits to achieve 

a number of trainable weights similar to complex artificial neural networks for fair comparison. 

If available, QML models should be tested on a much larger sample size to better understand 

their behavior. Advancement of QML models can be inherited from future development of 

quantum machines which are currently susceptible to high noise. 

CHAPTER IV
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