
PARU: A TASK BASED PARALLEL MULTIFRONTAL AND UNSYMMETRIC SPARSE LU

FACTORIZATION

A Dissertation

by

MOHSEN MAHMOUDI AZNAVEH

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Timothy A. Davis
Committee Members, Dezhen Song

Vivek Sarin
Simon Foucart

Head of Department, Scott Schaefer

December 2022

Major Subject: Computer Engineering

Copyright 2022 Mohsen Mahmoudi Aznaveh

ABSTRACT

We are introducing a new sparse direct solver with a parallel multifrontal algorithm. The al-

gorithm is designed by borrowing the symbolic analysis phase and some ideas from UMFPACK.

UMFPACK is a part of the SuiteSparse package and appears as a built-in routine in MATLAB.

Although the general idea of the algorithm is the same, we designed a new algorithm from scratch

that is more amenable to parallelism. The new algorithm is right-looking multifrontal with rectan-

gular fronts and uses the sparsest pivot like UMFPACK; however, its data structures are different,

and the factorization is more coarse-grained. One of the most significant contributions of this work

is the algorithm that cuts various dependencies of the data structure. The only dependency comes

from the matrix’s pattern from the elimination tree.

Independent tasks can start working in different computing cores using OpenMP tasking. Each

task can call BLAS kernels, specifically matrix multiplication and triangular solve. Therefore,

there is nested parallelism in this algorithm. To better manage hardware resources, we can exploit

parallel BLAS only if we have more computing cores than tasks. In practice, the performance

depends on the BLAS library and the input matrix. It is better to have a mixed strategy to have

both parallel BLAS with parallel fronts. Therefore, our algorithm is less affected by parallel BLAS

and shows good performance compared to UMFPACK. Data structure and memory management

are different in ParU, so it needs less memory to solve a system.

The current algorithm is implemented for a shared memory environment. However, the algo-

rithm can be an excellent candidate to be implemented in a distributed environment. Moreover,

while there are parallel BLAS calls (typically larger than what UMFPACK has), it is also an excel-

lent candidate for using hardware accelerators like GPUs.

ii

DEDICATION

To my mother and my father

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Tim Davis for his constant support. This research would never happen

without his guidance. I would also like to thank my doctoral research committee: Dr. Dezhen Song,

Dr. Vivek Sarin, and Dr. Simon Foucart. I am grateful to Dr. Wissam Sid-Lakhdar for his help,

especially for getting the results from MUMPS and SuperLU-MT. And to all the friends I made

along this long journey, Dr. Scott Kolodziej and Dr. Jinhao Chen. And thank you to Dr. Ahmad

Mahmoudi Aznaveh, my brother, whose support carried me this far.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Timothy A. Davis,

[advisor] of the Department of Computer Science and Engineering, and committee members, Pro-

fessors Dezhen Sources and Vivek Sarin from the Department of Computer Science and Engineer-

ing and Professor Simon Foucart from the Department of Mathematics.

All the work in this dissertation is completed independently, and the code base is open source

and is distributed under the GNU GPL license.

Funding Sources

The graduate study was supported by the following funding sources:

• Research startup funding for Dr. Timothy Davis through the Department of Computer Sci-

ence and Engineering at Texas A&M University.

• A Graduate Teaching Fellowship from the College of Engineering

• Corporate gift funding from Intel, Nvidia, Redis, MathWorks, and Julia Computing

v

NOMENCLATURE

AMD Approximate Minimum Degree

API Application Programming Interface

COLAMD Column Approximate Minimum Degree

CPU Central Processing Unit

CSC Compressed Sparse Column

CSR Compressed Sparse Row

Etree elimination tree

FLOPS floating point operations per second

GPU Graphics Processing Unit

I Identity matrix

MKL (Intel) Math Kernel Library

OpenMP Open Multi-Processing

ParU a PARallel Unsymmetric-pattern multifrontal package

UMFPACK an Unsymmetric-pattern MultiFrontal PACKage

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Introduction. 1
1.2 Mathematical background . 1

1.2.1 BLAS . 2
1.2.2 Sparse solvers . 2

1.2.2.1 Different flavors of LU factorization . 3
1.3 Background on frontal and multifrontal methods . 5
1.4 Fill-reducing ordering . 7

1.4.1 Multifrontal methods . 7
1.4.2 UMFPACK . 9
1.4.3 Parallel methods . 10
1.4.4 OpenMP and tasking . 11

2. PARU ALGORITHM .. 12

2.1 Introduction to ParU . 12
2.2 Symbolic Analysis . 12
2.3 Numerical Factorization . 16

2.3.1 Single Front assembly . 18
2.3.2 Pivotal column assembly . 20
2.3.3 Pivotal column factorization . 21
2.3.4 U-part assembly and update. 24
2.3.5 Contribution block assembly. 25

vii

2.3.5.1 ParU prior front assembly. 28
2.3.5.2 Finalizing the heap . 29

2.3.6 Summary of Numerical Factorization algorithm. 30
2.4 Solve . 31
2.5 Parallelism . 32

2.5.1 scheduling. 37
2.5.1.1 BLAS scheduling. 39

2.5.2 Other Parallelism Options . 40
2.6 Performance comparison with UMFPACK . 41

3. PARU CODE STRUCTURE AND RESULTS . 44

3.1 C/C++ Example . 44
3.1.1 C/C++ Syntax. 46
3.1.2 Details of the C/C++ Syntax . 47

3.2 Requirements and Availability . 48
3.3 Code Anatomy . 48
3.4 Experimental Results . 50

4. SUMMARY AND CONCLUSIONS . 57

REFERENCES . 58

APPENDIX A. DETAILED PERFORMANCE METRICS AND COMPUTING ENVIRON-
MENT. 62

viii

LIST OF FIGURES

FIGURE Page

1.1 A = L× U . 1

1.2 Right-looking LU . 4

1.3 Up-looking LU . 4

1.4 Left-looking LU . 5

1.5 An example of two fronts of a matrix . 6

2.1 The original Matrix b1_ss . 13
2.2 After column pre-ordering and the staircase structure . 14

2.3 column elimination tree . 14

2.4 Singleton structure . 15

2.5 renumbered tree . 16

2.6 Augmented tree. Boxes refer to (renumbered) original rows of the staircase matrix
S, and circles refer to frontal matrices. 17

2.7 Finding rows of an active front . 20

2.8 Assembly of pivot columns . 21

2.9 Factorize the pivot columns. 22

2.10 Panel factorization . 23

2.11 Assembling U part numerical values . 24

2.12 Applying −l21 × u12 . 25

2.13 The prior contribution block is within the current front . 26

2.14 Prior contribution block rows are a subset of current front rows . 27

2.15 Prior contribution block columns are a a subset of current front columns 27

ix

2.16 Prior contribution block rows and columns have rows and columns in common
with the current front (No assembly) . 28

2.17 ParU factors relative to the input matrix . 33

2.18 Elimination tree of the input matrix . 34

2.19 Task tree of matrix from Figure 2.18 . 35

2.20 Ready fronts to be executed . 35

2.21 The tree in the middle of the execution . 36

2.22 An example of how the task can partition the tree . 38

3.1 ParU_Factorize . 49

A.1 Intel Vtune graph for ParU . 63

A.2 Topology of our machine . 64

x

LIST OF TABLES

TABLE Page

2.1 time consuming functions in ParU . 38

3.1 ParU user-controllable variables. 47
3.2 List of matrices . 52

3.3 Comparison between different methods (total time for analysis, factorization, and
solve, in seconds) . 53

3.4 ParU and UMFPACK detailed comparison using AMD or COLAMD (run time in
seconds). 55

3.5 ParU and UMFPACK detailed comparison using METIS (run time in seconds) 56

xi

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

ParU is a C++ package to find the direct solution of systems of linear equations, Ax = b where

A is a sparse, square, and unsymmetric matrix. This package uses OpenMP tasking for finding

the solution in parallel. The matrix PAQ is factorized into the product LU , where P and Q are

permutation matrices that are chosen to preserve sparsity. ParU is using a multifrontal approach

like [1, 2, 3, 4, 5]; the most important aspect of ParU is that it is developed to be able to run

different fronts in parallel. The only restriction for running the fronts come from the elimination

tree (etree). Multifrontal methods compute the factors using dense matrix kernels such as BLAS

in each front. The use of dense BLAS kernels can lead to a nice performance compared to other

methods. In multifrontal methods, BLAS kernels are typically larger than supernodal methods and

can exploit BLAS level 3 more.

1.2 Mathematical background

Factorization, in mathematics, is the process of decomposition of mathematical objects into

the product of other objects, known as factors. The matrix factorization decomposition techniques

used in the numerical analysis include Cholesky, LU, and QR, to mention a few. The solution to

linear systems lies in the heart of numerical factorization. Solving systems of linear equations of

the form Ax = b needs the factorization algorithm to decompose the matrix into an upper and

lower triangular matrix (Figure 1.1).

A =

L

×
U

Figure 1.1: A = L× U

1

After computing the factors, solving Ax = b contains just triangular solves. We need to solve

LUx = b, let Ux = y, then Ly = b and Ux = y. First, solve Ly = b for y (forward elimina-

tion) and then solve Ux = y for x (backward substitution). LU decomposition, a matrix form of

Gaussian elimination with partial pivoting, is the most widely used algorithm for solving linear

systems.

1.2.1 BLAS

BLAS is the de facto industry standard for low-level dense linear algebra and is typically tuned

for a certain machine’s performance. Most mathematical software uses BLAS-compatible libraries

like LAPACK [6].

In ParU, whenever possible, we use BLAS kernels. There are implementations for BLAS

takes advantage of SIMD operations and has been optimized for different accelerators [7]. We

use BLAS-compatible libraries for our dense kernels whenever possible. There are three sets of

routines, called levels, for BLAS functionality, which is essential to know when you are working

with BLAS.

Level 1 includes all the routines that do vector operations, like vector addition (SAXPY).

Level 2 consists of matrix-vector operations, such as matrix-vector multiplication(GEMV). Level

3 contains matrix-matrix operation, for example matrix-matrix multiplication (GEMM). The ratio of

floating-point operations (n3) per input size (n2) for BLAS level 3 is n, and it is more efficient in

terms of cache usage and is widely used in sparse linear solvers [2].

1.2.2 Sparse solvers

Sparse matrices have enough zero entries to be taken advantage of [8]. Sparse matrices are

found in many areas of engineering and have many applications. Both direct and iterative meth-

ods are used to deal with sparse matrices. Iterative methods generate a sequence of x(k), which

converges to the solution of Ax = b. Improving direct solvers can also help iterative methods for

finding better-predefined parameters. Generally, iterative solvers need less disk and memory space

than direct solvers, but their results strongly depend on preconditioning. Iterative methods are out

2

of the scope of this dissertation.

In sparse algorithms, we do not store zero entries explicitly. A simple data structure would be

keeping non-zero elements in an arbitrary form called a triplet. This format is easy to generate

but hard to use and, most of the time, not cache-friendly. An alternative way is to store non-zero

entries column/row-wise, in a format called column/row compressed. By avoiding unnecessary

computation on zeros, the amount of work that needs to be done is much less.

Although sparse algorithms share many fundamentals with dense (or not-sparse) counterparts,

they need different methods and careful designs to be efficient. In sparse solvers, there are usually

three steps to solve the system Ax = b. The first phase is symbolic analysis, which involves

examining the matrix pattern and determining dependencies. ParU and UMFPACK do not consider

numerical values in this phase, but there are methods that do pre-scaling and permuting to put large

entries on the diagonal. ParU and UMFPACK scale rows of the matrix by default but not in the

symbolic analysis phase. This makes it easier to separate symbolic analysis and do this phase once

for the matrices with the same pattern.

The second step is factorizing the matrix and computing the numerical values of L and U . The

last step is solving, forward elimination, and backward substitution (two triangular solves).

1.2.2.1 Different flavors of LU factorization

There are many different sparse factorization algorithms implemented, each for optimizing one

or several special characteristics. Different economies are also possible for matrices with special

properties, and they might have different applications.

A right-looking algorithm factorizes the matrix from top-left to bottom right (Figure 1.2), and

as it progresses, it modifies the submatrix to the right. In Figures 1.2, 1.3 and 1.4 the gray part is

the focus of the algorithm. In Figure 1.2, the blue part resembles the part of the original matrix that

needs to be modified. Other variants do not change the original matrix. The right-looking method

is a head recursion algorithm, and by applying the Schur complement of A22 block, we have a

smaller matrix to factorize. The right-looking LU is harder to implement in general, and we have

to use a pivoting strategy for numerical stability.

3

l11

l21

0

L22

×
0

u11 uT12

U22

a11

a21

aT12

A22

=

Figure 1.2: Right-looking LU

The up-looking LU (Figure 1.3) is a tail recursion algorithm in comparison, and by unrolling

the recursion, the algorithm also computes L and U from top left to bottom right. However, the

data movement is very different than the right-looking. In this method, there can be no pivoting

based on the numerical values of the pivot row or column, since those have yet to be computed.

L11

lT21

0

l22

×
U11

0

u12

u22

=
A11

aT21

a12

a22

Figure 1.3: Up-looking LU

Left-looking is another variant of LU algorithms that computes columns from left to right, one

column (or supernode) at a time (Figure 1.4). It is referred to as left-looking, since at each stage, it

computes the current pivot column by using the factors of L and U to the left of the current pivot

column. The left-looking method does not modify the active submatrix to the right of the current

pivot column. Both left-looking and right-looking algorithms can be used for pivoting. However,

the right-looking method in sparse cases had the advantage of finding a sparse pivot row while the

pattern of A[k] is in hand.

4

L11

lT21

L31

1

l32 L33

×
U11 u12

u22

U13

uT23

U33

A11

aT21

A31

a12

a22

a32

A13

aT23

A33

=

Figure 1.4: Left-looking LU

Matrix factorization frequently has columns and rows with duplicate structures. The supern-

odal methods are the methods that exploit this property to save space by storing fewer integers

and time by doing dense matrix operations. Most modern sparse solvers use this property in some

way. SuperLU [9] is a left-looking method introduced by Demmel, Eisenstat, Gilbert, Li, and Liu.

Demmel, Gilbert, and Li [10] introduce a parallel shared-memory version of SuperLU. We will

discuss parallel solvers in section 1.4.3.

There is a survey by Davis, Rajamanickam, and Sid-Lakhdar on direct methods and sparse

linear systems [11] and the history of different packages. Here we explain the methods that are

most relevant to our implementation. For more information on other solvers, please refer to the

survey [11].

1.3 Background on frontal and multifrontal methods

Frontal methods were first introduced by B. M. Irons [12]. The method was initially developed

to solve symmetric positive-definite banded linear systems, but Hood [13] generalized the method

for unsymmetric cases. The stiffness matrix is represented as the sum of finite-element contribu-

tions in the finite-element method. Each element is only associated with a smaller set of variables.

A front, which is a dense submatrix, may be eliminated before fully assembled. The variables that

are being eliminated need to be fully-summed; there is no more contribution to that column or row.

However, other variables do not need to be fully-summed, and summing variables can be done in

any order.

5

The frontal system for an assembled system can be written as

F11 F12

F21 F22

 (1.1)

F11 is fully-summed. Therefore, pivots can be chosen from the first block column, and nu-

merical pivoting can be done while the rows are fully-summed. The Schur complement can be

computed using dense matrix computation:

F22 − F21F
−1
11 F12 (1.2)

In a frontal method, first, a front is defined and allocated. Then the method assembles fronts

and eliminates and updates variables; the elements are assembled, and a partial factorization is

applied on the front when fully assembled. The fully-summed variables are eliminated, and other

variables get updated with each elimination. Eliminated variables are no longer needed, and this

process continues to eliminate all the variables. The solution of the system can be obtained with

forward elimination and backward substitution.

Figure 1.5: An example of two fronts of a matrix

Figure 1.5 is an example that shows two arbitrary fronts of a matrix. L and U parts of the front

are fully assembled and updated and can be stored in the disk, and S is the Schur complement that

6

will be saved after the computation and assembled in future fronts.

1.4 Fill-reducing ordering

Finding a permutation P with fewer non-zeros in its factorization LU = PA is an NP-hard

problem [14]. Therefore, there are heuristics for solving this problem. The greedy algorithm

minimum degree chooses the sparsest pivot row and column. The pivot must also be numerically

large enough compared to the absolute maximum value in the pivot column. For the symmetric

case, a permutation P must be found so that PAP T has a Cholesky LLT or LDLT factorization.

The minimum degree problem has several different variants for different types of problems.

Computing the exact degree of nodes is costly, and there is an algorithm to compute the degree

approximately (AMD) [15, 16]. The idea of approximation was first derived from rectangular

fronts in UMFPACK [3], which is an unsymmetric algorithm. AMD computes an upper bound for

the degree of each node in Cholesky computation. Using the upper bound is faster and requires

less computation than computing the accurate degree. Moreover, the minimum degree algorithm

is a heuristic per se, and in practice AMD finds an ordering of equal quality in much less time,

as compared to using the exact degree. COLAMD [17] is a variant of the approximate minimum

degree algorithm that computes an ordering of ATA without explicitly forming it.

Nested dissection, which was introduced by Birkhoff and George [18] is also a fill-reducing

ordering that works better on matrices arising from discretizations of two- or three-dimensional

problems. Like the AMD algorithm, the goal of the nested dissection algorithm is to reduce fill-in.

By employing nested dissection algorithms, a vertex separator is found that divides the graph into

two roughly equal-sized subgraphs. After removing the nodes, the subgraphs are recursively or-

dered. This sort of pre-orderings is more suitable for having a bushy elimination tree and, therefore,

more parallelism in the tree. METIS [19, 20] is a known example of this sort of algorithm.

1.4.1 Multifrontal methods

Duff and Reid [21] generalized the frontal method by Irons [12] and developed the multifrontal

method. The multifrontal method was developed to perform LLT or LDLT factorization of a

7

symmetric matrix, however, it can offer a general framework for solving unsymmetric systems,

and it can also be a basis for a sparse QR factorization.

One of the first detailed descriptions of the multifrontal method is given by Liu [5]. The finite-

element formulation of the frontal method is

A =
∑
i

A(i) (1.3)

In which A(i) is the contribution of a finite element. The frontal method is the sequential

bracketing of the equation 1.3. The multifrontal method can be interpreted as a generalization to

any bracketing, and the assembly tree can be interpreted as the expression of this bracketing. There

are three phases in a multifrontal method: analysis phase, numerical factorization and solve phase.

In the analysis phase, the elimination tree is computed. Each node in the elimination tree repre-

sents a dense matrix (or front) much smaller than the sparse input matrix. The factorization of the

sparse matrix is then partial factorization of the fronts. The assembly tree is the supernodal version

of the elimination tree. However, the term elimination tree is used for both trees in literature.

The tree is traversed from the bottom to the top in the numerical factorization phase. The only

theoretical constraint is that the computation of a front must be done after the computation of all

its children. Like the frontal method, partial factorization is applied to fully-summed rows and

columns, then the contribution block is updated (Schur complement). In the multifrontal method,

the assembly of the contribution blocks of all the children happens in the parent, while in the frontal

method, only one child is assembled.

In the solve phase, forward elimination is applied from the bottom to the top, and backward

substitution is applied from top to bottom of the tree. A dense triangular solve is needed for

each front to compute the solution of the system. We can have tree-level parallelism both in the

factorization and solve phases. While the factorization phase is the most time-consuming part of

solving the system, we have only implemented tree-level parallelism in the factorization phase of

ParU.

8

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) [22] is a symmetric-pattern

multifrontal solver. Although it can solve unsymmetric-pattern matrices, it has to use symmetric

analysis for them. Symmetric-pattern multifrontal algorithms are typically easier to implement.

We discuss the reason in section 2.3.5. Davis and Duff developed the original unsymmetric-pattern

multifrontal technique, UMFPACK [3]. The method keeps track of the approximate degrees of the

current submatrix’s rows and columns, and a symmetric form was later incorporated into AMD’s

minimal degree ordering algorithm.

1.4.2 UMFPACK

UMFPACK [23, 3] is a right-looking LU factorization with dynamic pivoting. It is used inside

MATLAB for solving x=A\bwhen A is unsymmetric. UMFPACK can be found in the SuiteSparse

package, and it can solve a general problem Ax = b where A is sparse and unsymmetric and the

matrix PAQ or PRAQ is factorized into LU . Q is the column ordering which is chosen to have a

priori upper bound on fill-in, and it changes during factorization. P is the row order and is mainly

selected for numerical stability during factorization. R is the diagonal matrix for scaling and

scales the rows of A. Note that UMFPACK can solve pattern symmetric and numerical symmetric

systems, but the algorithm is not designed to exploit symmetry, so it is not as efficient as symmetric

algorithms.

The algorithm is computing each front sequentially and is designed very carefully to take ad-

vantage of a single processor. However, it has the powerful ability to use parallel BLAS for dense

submatrix computation. The algorithm is fairly complex; our goal in this part is to give an overview

of the algorithm. We have to mention some implementation details, especially where the imple-

mentation differs from ParU.

In UMFPACK, pivots are chosen one by one, and the active front is kept as small as possi-

ble in each stage. A pivot is chosen based on numerical value and sparsity of both column and

row. After choosing the pivot, the active front is expanded if necessary, and the degrees of rows

and columns corresponding to that node are updated. In addition to the complex design of data

structures for storing the active front and results, UMFPACK also has its own garbage collec-

9

tion method that, whenever necessary, shrinks memory to better use the available space during

the runtime. UMFPACK manages the memory itself, and the number of memory allocations is

approximately constant, independent of the size of the problem.

In the analysis phase, UMFPACK finds the row ordering and the column pre-ordering, then

both the row and column orderings are revised during numerical factorization to preserve numerical

stability. In UMFPACK, there is just one active front at any stage of the algorithm. This front is

assembled from prior fronts and elements. A list of tuples for each row and column keeps track of

elements on that row/column and contains the front number and relative row/column number.

These lists are typically short and are intended to be kept as short as possible by assembling

prior fronts and trimming the list at the first available opportunity. Therefore, scanning tuple

lists are generally fast; by scanning these lists, UMFPACK does operations like set union and set

intersection. These tuples are used for finding the set union of fully assembled columns as well as

for updating the degrees of rows and columns.

1.4.3 Parallel methods

Parallel methods have a long history in sparse solvers. Parallelism first appeared in Calahan’s

work [24], and since then, there have been some parallel implementations of the most famous pack-

ages. The parallel frameworks also have changed drastically during these years. The technologies

have improved, and new hardware and software have been introduced. There are different meth-

ods of exploiting distributed environments and also shared memory environments. Here we try

to discuss the most relevant methods. SuperLU-MT [9] is the shared memory version of the left-

looking algorithm SuperLU. SuperLU has a right-looking variant, SuperLU-DIST [25] which is a

distributed-memory implementation.

Parallelism and exploiting dense submatrices are different ways modern sparse direct solvers

perform. UMFPACK [3], as an example, does not use parallelism between fronts, but it uses the

dense matrix computation. Duff [26] surveyed techniques to make direct solvers more efficient.

The implementation of dense matrix operations, which significantly impact the performance of

sparse direct solvers, is beyond the scope of this dissertation ([27, 6, 28, 29]).

10

MUMPS [22] is a multifrontal solver with many different variations. It can exploit shared

memory parallelism, and the design is for symmetric-pattern matrices. For the shared memory

version, MUMPS cuts the etree, solves different subtrees in parallel, and finally solves the subtree

containing the root. For a complete list of parallel direct solvers, please refer to the survey by

Davis, Rajamanickam, and Sid-Lakhdar [11].

1.4.4 OpenMP and tasking

OpenMP is an application programming interface (API) for shared-memory multiprocess pro-

gramming and is supported in C, C++, and Fortran language. OpenMP follows a fork-join model,

and the threads run concurrently. Each thread is assigned the resources it needs. OpenMP is de-

signed to be simple to use, and it is a portable API. The main philosophy of OpenMP is to get the

sequential code and, with minimal effort, change it to a parallel code with reasonable efficiency.

Up to version 3.0, the primary way of parallelizing OpenMP was exploiting regular loops and

ignoring irregular parallelism. Tasking added in version 3.0 in May 2008 [30] allows OpenMP to

exploit parallelism in irregular problems. Especially in the area of sparse matrix algorithms that

deal with jobs with arbitrary sizes, tasking is necessary.

In our multifrontal algorithm, tasking can be easily mapped to the execution of fronts. In

OpenMP tasking, when a thread encounters a task construct, it may choose to execute the task

immediately or defer the task. Ideally, a pool of tasks can be executed with variant sizes. The only

thing we needed to figure out in ParU was how to enforce the constraint of the tree in OpenMP.

One of the downsides of using OpenMP is that Microsoft only supports OpenMP 2.0. Also,

the programmer has little control over how and when the tasks are executed.

11

2. PARU ALGORITHM

2.1 Introduction to ParU

The main purpose of this project is to design and implement an unsymmetric direct sparse

solver like UMFPACK in which there is more than one active front. UMFPACK is designed as a

sequential algorithm and can deal with only one front at a time. UMFPACK uses O(n) algorithms

to union set or intersection set for both rows and columns. For these types of algorithms, you

need to have a gather-scatter data structure for storing the indices. The main challenge to making

UMFPACK parallel comes from managing the columns. Each front owns rows, and each thread

can safely manage them within a single gather-scatter space. For a parallel algorithm that works

like UMFPACK, we need a version that can work on different columns at a time which either needs

several gather-scatter spaces or a way to manage a single data structure in parallel. We decided

to implement ParU to cut the dependencies of columns by using general set algorithms, like the

red-black tree algorithm, typically in O(n log n).

Like most other solvers, we solve the problem in three phases: 1) symbolic analysis, 2) nu-

merical factorization, and 3) solve. The next sections look closely at how these different parts

are implemented. In the implementation of ParU, there is not much parallelism during symbolic

factorization. The most important parallelism is during numerical factorization among fronts, and

we have used BLAS kernels during solve phase.

2.2 Symbolic Analysis

After reading the sparse input matrix, the algorithm’s first step is doing the symbolic analysis.

The symbolic analysis phase probes only the pattern of the matrix and extracts useful information

for the factorization. For reading the data, we use CHOLMOD reading functions inside Suite-

Sparse. Then we call UMFPACK’s symbolic analysis computes the elimination tree and has an

upper bound for the sizes of the fronts.

After that, ParU makes the tree more compact in the relaxed amalgamation phase. Basically,

12



• • •
• •
• •
• •

• •
• •
• •


Figure 2.1: The original Matrix b1_ss

a child and its parent merge if their count of pivotal columns is less than some threshold. The

default is 32, and the user can change it using the Control options in ParU. This phase can help

to reduce small fronts. The depth of each front in the elimination tree is also computed in the

symbolic phase. We will explain how the depth of the front can be useful in our parallel algorithm.

UMFPACK gives ParU a column pre-ordering, and ParU changes the row ordering so that

nonzeros in the columns be closest according to their new column index. Making this row ordering

is called forming the staircase structure of the matrix, while this structure looks like a staircase.

In the staircase structure, rows of the matrix are sorted in ascending order according to each row’s

column index of the leftmost nonzero element. The staircase structure of the tree is computed in

the symbolic analysis phase in ParU, which generally makes the cache usage more efficient. The

pattern of the matrix b1_ss from the SuiteSparse Matrix Collection [31] is shown in Figure 2.1.

Figure 2.2 shows this matrix after column pre-ordering done by UMFPACK and pre-ordering of

rows to form the staircase structure. The column elimination tree of this matrix is shown in Figure

2.3. Note that the last front has two pivotal columns, and for demonstration purposes, we set the

relaxed amalgamation threshold to 1.

UMFPACK, during the symbolic analysis phase, also returns the rows and columns with zero

Markowitz cost. In ParU, while computing the staircase data structure, those rows and columns

(singletons) are identified and saved in a column- or row-based data structure to be used later in

solve phase.

ParU uses a different approach to treat singletons. In ParU, the row singletons are kept in a

13



• •
• •
• •
• •
• •
• •
• • •


Figure 2.2: After column pre-ordering and the staircase structure

Figure 2.3: column elimination tree

compressed sparse row (CSR), and the column singletons are kept in a compressed sparse column

(CSC) data structure. These singletons are not needed during factorization but only during the

solve phase. Keeping them in these data structures makes the solve phase easier. Eliminating

singletons can affect the symmetry of the matrix in some cases. Therefore, the user has the option

not to let eliminate singletons both in UMFPACK and ParU with

umf_Control[UMFPACK_SINGLETONS] = 0.

Note that the numerical values of singletons are not touched during the symbolic phase. The

structure of the singletons is depicted in Figure 2.4. In ParU, U is saved as CSR, and the L part is

saved in a CSC format and used during the solve phase.

14

L

U

S

Figure 2.4: Singleton structure

ParU makes a new tree, the augmented tree, after the amalgamation phase. The augmented tree

is a row-merge tree containing rows as elements. A row-merge tree has only original rows on the

leaves. The augmented tree is a generalization of that concept into a postordered tree. ParU has to

renumber elements and add rows to the data structure to keep it postordered. Using this technique,

ParU can start with row elements in the beginning and know which rows belong to which front

by looking into an element number. It is also beneficial for parallel implementation, where the

dependencies are clear just by looking into the element number within the tree.

The process of making the augmented tree is shown in Figures 2.5 and 2.6. These trees are

from the matrix with column elimination tree in Figure 2.3. We have a matrix with seven rows

and an elimination tree with six nodes. The augmented tree will have 7 + 6 nodes, and the leaves

will be matrix rows. For this example, element 11 (front 3 in the original elimination tree) has two

children 9 and 10, that one is an original row, and the other is a front.

The augmented tree must be postordered. Each node in the augmented tree is an element. Each

internal element is a front, and each leave element is an original row. Each element owns the entire

descendent rows. Therefore, any active front has a collective interval of rows owned by that front.

This makes it more efficient to work with the concept of ownership in the parallel domain. ParU

first forms the renumbered tree to make the augmented tree (Figure 2.5), which is the etree but

adds the number of the original rows. The augmented tree is shown in Figure 2.6. The leaves are

shown in rectangles in this Figure.

15

In Figure 2.6, front 11 owns all the rows from [7, 11]. Generally, a front F always owns the

entire interval [leftmostchild, F−1]. The leftmost child is also computed in the symbolic analysis.

Moreover, by using an augmented tree, we can simplify having more than one active front while

there is no data dependency among rows. Note that columns might be shared between two or more

active fronts, and we must avoid concurrent data access.

In the symbolic analysis phase, we also compute a task tree. Each task in the task tree includes

one or more fronts of the elimination tree. Each chain inside the elimination tree is a single task.

Small tasks in the leaves also merge to form bigger tasks. We use OpenMP tasking to run these

tasks in parallel.

Figure 2.5: renumbered tree

2.3 Numerical Factorization

The numerical factorization computes the values and final pattern of the LU factors using the

symbolic analysis and the input matrix. An overview of the algorithm is given in Section 2.3.6.

The method iterates over the frontal matrices (in parallel), assembling components of the Schur

complement from prior frontal matrices, factorizing the front, and then preparing the Schur com-

plement of the front for assembly into subsequent frontal matrices.

Prior to factorizing any frontal matrices, ParU has to save the numerical values of each row

into the element list. Basically, in this phase, each row is saved as a prior front, and after this, ParU

16

Figure 2.6: Augmented tree. Boxes refer to (renumbered) original rows of the staircase matrix S,
and circles refer to frontal matrices.

can start assembling fronts in parallel. The first step of numerical analysis is to form the numerical

values staircase structure matrix, S (Figure 2.2), along with the values of singletons. Singleton

values will be kept for the solve phase, and there is no need to account for them in the factorization

phase. The matrix S is stored by row, which makes forming the row elements simpler. Having the

matrix S, ParU can form row elements in parallel and make it ready for the next phase.

In ParU, the only data dependency is from the child to the parent. However, while we are

working on an unsymmetric LU factorization method, all the data does not necessarily go strictly

from the child to the parent. It can go from a child to a grandparent or further. The data structure

to do this and how it is accessed is very important for the solver’s performance. UMFPACK uses

a set of paired numbers, tuples, for both rows and columns to keep track of available rows and

columns. ParU also uses tuples for the rows but does not use column tuples. The main reason is

that each front owns a range of rows that are computed in symbolic analysis, but they can share

columns. Accessing and changing columns’ data structures, with multiple owners, in parallel is a

challenge.

Sorting the contribution block columns according to the global column index of the matrix is

the main idea for getting rid of the column tuples in ParU. The sorting is only done once during

the creation of the contribution block. This characteristic can be helpful at several points in ParU.

17

For each front, ParU additionally keeps track of the index of the first column that hasn’t been

eliminated or the least active column (lac). Note that elimination is done for rows or columns, and

keeping track of the front’s lac or first active column is free. We will explain how we exploit this

property during the explanation of the algorithm.

In the rest of this section, we explain the ParU algorithm design, which is suitable for paral-

lelism. In the section 2.5 we will explain how the parallelism is implemented.

2.3.1 Single Front assembly

In ParU, there can be more than one active front. Let’s first explain how a single front is

assembled and factorized, and then we talk about how it can be parallel. Assembly of the current

front is done in three different places: 1) pivotal columns, 2) U-part, and 3) future prior front.

Before assembling pivotal columns, we should find the list of the rows contributing to current

pivotal columns. In the ParU symbolic analysis phase, pivot columns are identified, and the matrix

is permuted to have a staircase structure. Knowing the pivot columns, we can compute the row

pattern of the current front. The row pattern is basically a set union of row indices of pivot columns.

In Figure 2.7, you can see a scheme of the first steps of making an active front. In this phase, the

number of rows of the active front is fixed and only depends on the pivot columns and the matrix

structure.

In our earlier implementation, a shared data structure is used to compute the set union of rows,

and it is a O(n) algorithm. We just scanned the pivotal columns’ tuples with column tuples and

found the set union. In our newer version, we use lac to find the list of elements that contribute to

the pivotal columns.

A descendant contributes to the pivotal column of the current front if its global column indices

lie inside its range of pivotal columns. This property is used in ParU, and the list of pivotal columns

is put together and calculated using a heap data structure. A list of live descendant fronts that can

contribute to each front is kept; a prior live front is a front with at least a column or row not

assembled yet. This list is maintained as a heap, and the key of the heap is lac. Finding the

columns that go into the pivotal columns is thus as simple as extracting the minimum from the

18

heap. The algorithm for finding the set of rows is shown in Algorithm 1.

Algorithm 1: Finding the set of rows that appear in the current frontal matrix
Data: Set of live children, col1 < pivotal_columns < col2
for 1→ numchildren do do

if childi is still alive then
if lac(childi) < col2 then

Add childi to the pivotal columns and remove them from the list;
setrows ← setrows ∪ rows(childi);

end
end

end

ParU extracts from the heap until the point at which lac is outside the range of the pivotal

columns. If the lac is less than the upper bound of the current front’s pivotal column, then the

prior front contributes to the current pivotal columns. ParU keeps these prior elements in a list and

removes them from the heap.

ParU determines the number of rows in this front after assessing the list of elements contribut-

ing to the pivotal columns. This number is the set union of all the rows of the contributing items.

ParU accomplishes this using an algorithm similar to UMFPACK and a global table that requires

O(1) time per entry in the set of input rows which in total is a O(n) algorithm. A single table can

be utilized for this set union for all of the fronts because of the fact that each active front owns all

the rows, and there is no conflict among them.

After finding the number of rows, the amount of memory needed for pivot columns is known,

and the memory can be allocated. Then numeric values can be assembled into that memory (the

gray part in Figure 2.7). Note that in ParU, the amount of memory required for a frontal matrix is

always computed first, then allocated. Therefore, in general, it can use less memory than UMF-

PACK, which performs its memory allocation based on an upper bound on the size of the frontal

matrix.

19

Figure 2.7: Finding rows of an active front

2.3.2 Pivotal column assembly

All the descendants of the current front (the ones that are not eliminated) contribute to the

pivotal column of this front if they have a global column within the range of pivotal columns of the

current front. As we explained, we use this property, and assembly and computation on the pivot

columns are done using a heap data structure. Prior fronts column indices are sorted based on the

global column index of the matrix at the time of generation. In elimination phases, either a row or

column is eliminated, and they are marked. The column indices of the front are marked in a way

that still lets us perform binary searches.

Each front has a list of descendant fronts that can contribute to the current front. Basically, the

prior fronts that are not eliminated are kept in a heap list. In the phase of pivotal column assembly,

ParU checks all the heap lists of children of the current front. if lac is less than the larger pivotal

index of the current front, then that prior front is going to be (fully or partially) summed in the

current pivotal columns. These prior fronts are removed from the heap and added to another data

structure. Most of the time, these prior fronts are fully assembled in the current front either into

pivotal columns or the rest of the front. Note that the gray part in Figure 2.8 is a single memory

20

allocation and has a different physical space than the two other parts of the current front. The rest

of the prior fronts that do not contribute to the pivotal columns are kept as heaps, and after the

assembly, a single heap is made out of all the heaps and is passed to the parent.

Figure 2.8: Assembly of pivot columns

During the pivotal column assembly, due to the staircase structure of the input, sometimes

rows of entire zeros are added to the pivotal columns. Those rows are usually padding zeros of

prior contribution blocks. Although there are non-zeros on that rows, they might not appear in

the current front. These rows can accumulate in several iterations and add useless work until they

are filled. In ParU, these rows are not added to the current front, while they add extra unnecessary

flops to the computation. Their prior contribution should remain in a heap, though. Therefore ParU

deals differently with this kind of pivotal column.

2.3.3 Pivotal column factorization

When the numerical values of the pivot columns are assembled, we can factorize the pivotal

columns, which is called partial factorization. Note that the factorized part (blue part in Figure

21

2.9) will be a part of the final result. We use the numerical values to update the U part (triangular

solve) and compute the Schur complement(matrix multiplication). After computing the Schur

complement, both factorized part and the U part will no longer be necessary for the rest of the

factorization phase. While ParU uses different memory allocations for each one, and there is no

more access to this data in this phase, operating system virtual memory management probably

stores it on the disk.

Figure 2.9: Factorize the pivot columns

In ParU, during factorizing the pivotal columns, no other assembly happens. Pivoting can

change the size of the current front. However, ParU does not form the rest of the front only until

all the factorization of the pivotal columns is completed. A single front can be very large, and we

might need several stages to factorize it. UMFPACK grows the front one column at a time and

intends to keep the front as small as possible while forming the whole front. In ParU, on the other

hand, we grow the factorizing of the pivotal column by a set of pivot columns or panels. The user

can change the number of columns of a panel using the control option panel_width.

The contribution block’s number of columns is unknown until we pick all the pivots. When

ParU factorizes a panel, it knows the rows of the panel that is a subset of rows of that front. It

22

can also compute the number of columns related to that panel. ParU has an upper bound for that

(QR upper bound), and it can reallocate the memory if it needs to grow the size of the contribution

block. Figure 2.10 shows an active front with three panels, one of which is already factorized. The

current front’s size is unknown until all the pivots are chosen. The pivots are chosen not only based

on values but also based on sparsity. UMFPACK, after choosing a pivot, grows the front as needed

and updates the sparsity degree of rows. In ParU, we do not permute columns, so there is no need

to keep the degree of columns. Moreover, updating the degree after choosing a single pivot might

not be efficient for a parallel implementation.

The parallel algorithm of choosing pivots and updating the degrees is thus a challenge. ParU

updates degrees and the sizes of the front after factorizing each panel. On the other hand, while

ParU fixes the columns first, it has the exact number of rows of the active front. Compared to

UMFPACK, ParU’s work is simpler in this part, while it only needs to grow the front just by one

dimension. In such an implementation, we can still exploit zeros (Figure 2.10) on the staircase

structure, no matter how we allocate memory for the contribution block. Note that although ParU

computes the front size; it does not form it explicitly. It only updates the degrees of rows and

updates the list of columns contributing to this front at this stage.

Figure 2.10: Panel factorization

23

2.3.4 U-part assembly and update

For the active front, we can have the mathematical expression in equation 2.1:


l11 0

l21 L22



u11 uT12

0 U22

 =


a11 aT12

a21 A22

 (2.1)

By factorizing the pivotal column of the active front, two equations are solved (l11 and l21 are

blue part of Figure 2.9): l11 × u11 = a11 and l21 × u11 = a21.

After the factorization of pivotal columns, ParU has to assemble the numerical values of u12

(Figure 2.11), then it has to solve a triangular equation: l11 × u12 = a12 → u12 = a12/l11.

Figure 2.11: Assembling U part numerical values

The only remaining part of the equation is solving l21×u12+L22×U22 = A22 → L22×U22 =

A22 − l21 × u12.

This would be part of the contribution block that will be used in computation for future fronts.

The blue parts in Figure 2.12 are computed, and we will need the green part for future (future prior

fronts). Triangular solve and matrix-matrix multiplication here is computationally intensive, and

24

they are a good candidate to be parallelized. In fact, in most cases, this matrix-matrix multiplication

is the most time-consuming part of factorization. The challenge in ParU arises from the fact that

you can not necessarily use all the computational cores for the current front. There might be other

fronts that also have similar computations. In other words, we have nested parallelism in ParU,

and we will discuss how we address the problem in section 2.5.1.

Figure 2.12: Applying −l21 × u12

2.3.5 Contribution block assembly

Prior front assembly on the contribution block can have a very nice effect on the performance.

However, it is not mandatory to get the correct result. The only mandatory part is assembling

the pivotal columns. Especially in an unsymmetric algorithm, we do not only have a full prior

front assembly; we can have partial column/row assembly as well. The algorithm should avoid

spending too much time searching for intersections of prior fronts. In UMFPACK, row/column

tuple lists (list of ordered pairs) are used for finding the intersection between the current front and

prior fronts. In ParU, while we no longer have the column tuples, other algorithms are designed

and implemented.

UMFPACK does four passes on the columns and the rows of the current front to know how to

25

deal with prior contribution blocks. In ParU, we have row tuples, but for the columns, we have two

other data structures: a list of elements that contributed to the pivotal columns and a list of heaps

of live children of the current front.

Five possible conditions can happen for the current front relative to a prior front. One possible

condition is where a prior front has no column or rows in common with the current front, so there

can be no assembly. Other cases are depicted in Figures 2.13, 2.14, 2.15, and 2.16.

The most important condition is that all rows and columns of the prior front are in the current

front (Figure 2.13). Therefore, we can assemble the entire prior front into the current front. The

memory space of the prior front can be released. One instance of this situation is when a prior

front contributes to at least one pivotal column and one pivotal row. In ParU, we have the list of

the elements that contribute to the pivotal column; if one of them contributes to the pivotal rows,

it would be the case. In practice, most of the instances of these cases are like it, and it is simple to

find. This case can also happen if the prior front shares all the rows and columns with the current

front. However, detecting it requires searching in the columns.

Figure 2.13: The prior contribution block is within the current front

It is also possible that only a set of rows (Figure 2.14) or a set of columns (Figure 2.15) of

26

a prior front is the subset of the current front, and there are other rows or columns that cannot

be assembled to the current front. Elements that contribute to the pivotal columns share all the

columns to the current front (Figures 2.14 and 2.13)

Figure 2.14: Prior contribution block rows are a subset of current front rows

Figure 2.15: Prior contribution block columns are a a subset of current front columns

27

Finally, it is also possible that both rows and columns of the prior contribution block has some

rows and columns in common with the current front, but not all of them(Figure 2.16). In this case,

a part of the prior contribution block can be assembled, however, since it is hard to manage such

an assembly, we prefer not to (like UMFPACK).

Figure 2.16: Prior contribution block rows and columns have rows and columns in common with
the current front (No assembly)

2.3.5.1 ParU prior front assembly

In ParU, other than the list of the elements contributing to the pivotal columns, we flag the

elements that contribute to the pivotal rows. In the prior front assembly phase of the current front,

first, all the elements that contributed to the pivotal columns are tested. If they also contributed to

the pivotal rows, they can be fully assembled in the current front. Otherwise, they may contribute to

several columns. After probing elements that contribute to the pivotal columns, ParU checks some

of the prior fronts that are in a heap. The algorithm that explains how those heaps are finalized is

shown in Algorithm 2.3.5.2.

As we mentioned earlier, the list of columns of the fronts is sorted, and we can use binary

search to find a specific column of the current front in the prior front in O(log n). To be able to

28

look up the columns faster, ParU uses a simple hash that takes an expected time ofO(1). We make

sure that searching for columns in ParU does not take more than O(log n).

For the cases that partially contribute to the columns, we use an incremental algorithm in ParU.

The pseudo-code of this algorithm is shown in Algorithm 2. First, the least active column, lac, of

the prior front is tested if it is inside the current front; if lac is inside, this column is assembled and

goes to the next column and increases lac of the prior front. The process continues until the first

column is detected, which is not in the current front. After that, to limit the searching time, we use

a mechanism to punish if the column is not inside the current front or reward if it is.

To do so we define an integer number, toll which is initialized by a constant, line 6 in Algorithm

2. We decrement the toll for each column that is not inside the current front, and for any column

within the current front, we increase the toll. This process continues until we visit all the columns

or the toll is zero. With this algorithm, if the prior front fully fits the current front, we can fully

assemble it, but we also avoid searching too much to find the intersection. A similar algorithm

is implemented for the cases that partially contribute only to the rows. ParU, store dense matri-

ces column-oriented and column-by-column assembly is more cache-friendly. Therefore, ParU

assembles by columns even for the row assembly.

2.3.5.2 Finalizing the heap

A list of live descendent fronts in a heap data structure is passed into the current front, a list of

fronts that contributed to the pivotal columns is extracted from them, and the rest of the heap is left

intact. During the prior front assembly phase, the heaps are merged together to make a new heap

to pass to the parent. ParU does not touch the prior heap if it is not necessary. Heapfying some of

the lists can be really expensive. We also decided not to check all the prior elements not to fall into

the trap of doing too much computation without any gain.

One of the reasons that ParU waits until the assembly time is that usually, many of the prior

elements are already fully assembled, making heapifying cheaper. ParU keeps track of the size of

the biggest heap among the children. If the biggest child is empty, there is nothing to be done with

the heap.

29

Algorithm 2: Assemble Columns
Data: Current element, ec and a prior element ep which contributes to the columns
//Toll-free zone
//using hash or binary search to find the column

1 while column lac(ep) is inside ec do
2 assemble the column lac(ep) ;
3 lac(ep)← next active column
4 end
66 toll← 8;
7 nc← lac(ep) + 1;
//Toll zone

8 while toll > 0 do
9 if column nc is inside ec then

10 assemble the column nc;
11 toll← toll+1;
12 else
13 toll← toll-1;
14 end
15 end

If the biggest child is much larger than the rest of the children, it is cheaper not to even look

at the elements of the biggest child and add the rest to the biggest child. Adding one element to a

heap is O(log n). Therefore, the complexity of making a heap this way is O(k log n) in which k is

the size of the rest of the elements. In this case, the elements of the biggest child are not checked

for assembly.

Otherwise, if the size of the biggest child is about the order of the rest of the children, ParU

uses the O(n) algorithm to heapify all the children, and all of the children are checked for the

assembly. The list of pivotal elements is already checked for assembly, and it is already not a heap

data structure. The remaining pivotal elements are added to the final heap structure one by one

using the O(log n) algorithm. The algorithm is shown in algorithm 3.

2.3.6 Summary of Numerical Factorization algorithm

The summary of the factorization algorithm is shown in algorithm 4. This algorithm can run

from the first front to the last. Any topological order can work and we will explain how it can be

30

Algorithm 3: Finalizing the heaps
Data: Find t e biggest heap biggest_Child
if log2(Sizebiggest_Child) > (Sizebiggest_Child/(Sizerest + 1)) + 1) then

//Using O(klogn) algorithm
for ei in Rest do

Check ei for row/col assemlby ;
Add ei to the biggest_Child;

end
else

//Using O(n) algorithm
for ei in All do

Check ei for row/col assemlby ;
end
Heapify(All);

end

implemented in parallel in Section 1.4.3.

2.4 Solve

Solve phase consists of a forward elimination and a backward substitution. Typically the solve

phase is much faster than the factorization. Therefore, in ParU, we decided not to implement front-

level parallelism during the solve phase. However, it is possible to implement both in the same

manner that we implemented factorization. Forward elimination traverses from the bottom to the

top of the tree, and backward substitution traverses the tree from the bottom to the top.

In ParU, we use parallel BLAS for the solve phase and compute from the front 0 to the last

front (or vice versa). The data structure of the factors plays an important role in the efficiency of

the algorithm of the solve phase. Let’s assume that we have nf number of fronts for solving. ParU

partition the input matrix into nf dense matrices that contain L and U and nf − 1 dense matrices

that only contain U . Note that singletons also must be taken into account. The partition of a matrix

with three fronts is shown in the Figure 2.17. This figure shows the matrix with L and U as LU .

Note that the size of the dense matrices is much smaller than the dimension of the input matrix,

but the figure shows the placement of the elements inside the matrix. The number of rows in LU

31

Algorithm 4: Summary of Numerical Factorization algorithm
Data: Initialize the row elements
for 1→ nf do do

//Working on front fi
numrows ← Find the set of rows for fi (See Algorithm 1) ;
Allocate memory with the size numpivotal_col × numrows.;
Assemble pivotal columns. (See Section 2.3.2) ;
Factorize the pivotal columns (partial factorization). (See Section 2.3.3) ;
Allocate memory with the size numpivotal_ccol × numnonpivotal_col. ;
Assemble the U-part. (See Section 2.3.4) ;
Allocate memory with the size numrows − numpivotal_col × numnonpivotal_col. ;
Schur complement of U-part and pivotal column part (See Figure 2.12) ;
Assemble the contribution block (See Section 2.3.5.1) ;
Finalize the heap (See section 2.3.5.2) ;

end

matrices and the number of columns in U matrices in the figure are smaller than what you see in

the figure.

We should consider the matrix’s scaling, permutation, and singletons during the solve phase.

ParU, like UMFPACK (see 1.4.2, factorize PRAQ into LU and for the solve we have to compute

x = Q*(U\(L\(P*R*b))) in MATLAB notation. ParU applies P*R*b first, then computes

the forward elimination, then computes the backward substitution, and finally applies Q. After

dealing with singletons, forward elimination performs a triangular solve DTRSV for each of the

fronts and a DGEMV for those that need it. ParU also has a multiple right-hand side solver that uses

DTRSM and DGEMM accordingly. Backward substitution is similar but starts from the last front and

goes back to the first front.

2.5 Parallelism

We decided to use OpenMP to parallelize ParU. However, the algorithm is suitable for any kind

of shared-memory parallelism as it is. As mentioned, the elimination and task trees are generated

during the symbolic analysis phase. For example, in the Figure 2.18, the elimination tree of the

matrix 494_bus from SuiteSparse Matrix Collection [31] is depicted. This tree is generated after

32

Figure 2.17: ParU factors relative to the input matrix

the amalgamation and staircase structure.

Before looking deeper into the current algorithm implemented in ParU, let us explain the pro-

cess that led us to the current algorithm. The first parallel implementation used the original elim-

ination tree and was recursively implemented from the root(s). In this implementation, each child

is a task that runs in parallel with the siblings, and when all the children are done, the parent can

start.

This head recursion implementation is really easy to implement, and it works. However, it has

several drawbacks. First, there are always the middle fronts and root(s) waiting for their term of

execution, which can be an overhead for the OpenMP tasking queue. This is not an issue for many

matrices, but when the matrix has a huge and unbalanced etree, that can cause problems. Second

and most importantly, the OpenMP tasking tends to perform the task in the tree level by level.

Unbalanced trees will lead to performing the critical path at last, and it significantly reduces the

performance. Using OpenMP priority does not change this effect much.

The other approach is traversing the tree from the bottom to the top. This approach does not

have a long waiting time for some tasks in the queue. The longest queue is at the algorithm’s

beginning, and the queue’s size is the tree’s number of leaves. However, some of the leave tasks

33

Figure 2.18: Elimination tree of the input matrix

are small, and making a single task for them can reduce performance. Therefore, ParU makes

another tree from the etree, which is only made for parallelism purposes. This tree is coarser, and

leaves with less work are merged together. The task tree of the etree in Figure 2.18 is shown in

Figure 2.19. The chains of the original etree are also merged into a single task. A chain in an etree

is a sequence of fronts with only one child. The resulting task tree might still have chains, but ParU

does not eliminate secondary chains.

Each node in the task tree can be a front or a group of fronts, and the factorization can be done

from the bottom to the top of the tree. The only limitation is that you can not start a task unless

you have finished all the children. ParU makes a queue of all the tasks that can be immediately

done. ParU, sort these tasks based on their depth in the task tree and start to schedule them using

OpenMP tasking. In Figure 2.20, all the tasks that are initially inserted into the queue are shown

with a different color.

34

Figure 2.19: Task tree of matrix from Figure 2.18

Figure 2.20: Ready fronts to be executed

35

Once each task finishes its work, the number of remaining children of its parent is atomically

decremented by one. If it is the last child, it can execute the parent in a recursive manner. Figure

2.21 uses a darker highlight for the tasks that are already finished. For example, when task 7 is

finished, it can put task 8 into the queue. When task 6 is finished, it should wait for siblings 5 and

8 to be able to start task 9. This algorithm is shown in Algorithm 5. The function Execute in

this algorithm is defined recursively. The recursion is tail recursion, which basically partitions the

task tree into smaller trees on the runtime. It is a very flexible way to partition the tree. However,

it might partition the tree in different ways each time.

Figure 2.21: The tree in the middle of the execution

An example of how running tasks can partition the tree is shown in 2.22. This partition can

change in another run. For example, if task 5 finishes the last between its siblings, 6 and 8, then

that is the task that will call their parent 9. There are some details in implementing how the task

36

Algorithm 5: Parallel task execution
Data: make an array of #task_children (NoC) the tasks with > 1 child
Data: make a Task_Q of tasks with no children
Parallel Region

while enough tasks do
//look at algorithm 6 for defining enough
T0 ← Enqueue(Task_Q) ;
Execute(T0);
P ← parent(T0);
Atomic

NoC(P)← NoC(P)− 1;
Num_rem← NoC(P);

end
if Num_rem = 0 then

Execute(parent(T0));
//T0 is the last child

end
end

end

must run. For example, in Figure 2.22 top tasks 1, 12, 13, 14 are the only task remaining, and there

is no parallelism among tasks. For some libraries, it is better to jump out of the OpenMP parallel

region and execute the last chain with a fully parallel BLAS. The main reason is that many BLAS

libraries use OpenMP inside, and controlling the nested parallelism and thread affinity of OpenMP

is difficult between the two libraries. This is also shown on Algorithm 6 line 10.

2.5.1 scheduling

Each task contains a series of dense matrix-matrix multiplications and triangular solves, and

these tasks can be executed in parallel. Therefore, there is nested parallelism in ParU. Managing

nested parallelism is sometimes difficult and can reduce some inner libraries’ performance. ParU

jumps out of the parallel region when no more parallel task is available. We found that it is more

efficient to do this in practice.

BLAS computation takes most of the computation time during factorization, and using the right

libraries greatly impacts overall time. In Table 2.1, the analysis of Intel Vtune is shown as a matrix

37

Figure 2.22: An example of how the task can partition the tree

Function CPU Time: Total
ParU_Factorize 42.3%
cblas_dgemm 29.9%
paru_assemble_all 7.3%
ParU_Analyze 1.1%

Table 2.1: time consuming functions in ParU

being factorized using ParU. Note that functions might overlap. Full analysis of Vtune is shown

in Appendix A Figure A.1. Typically the analysis of Vtune shows that most of the time is spent

on DGEMM. Computing resource distribution can have a significant effect on the efficiency of the

overall program. In the Algorithm 6 the way ParU distributes the tasks for BLAS is shown. The

full Vtune analysis is shown in Appendix Figure A.1.

There are several places in the ParU where BLAS is needed. During the pivotal column fac-

torization. DGER is needed, and after each panel DTRSM and DGEMM is needed for the rest of the

pivots. A DTRSM and a DGEMM (see section 2.3.4) is needed for the contribution block, and they

38

Algorithm 6: Scheduling Algorithm for BLAS
Data: make a Task_Q of tasks with 0 child

1 if enough parallelism then
2 while tasks > computing cores do
3 Use single thread BLAS
4 end
5 while tasks > 1 do
77 Use parallel BLAS (some threads)
8 end

1010 Break out of parallel region;
//Only one chain remained

11 Use parallel BLAS (all threads) for the last task;
12 else
13 execute fronts 0→ nf with parallel BLAS
14 end

can be large computations. Typically, most floating operations are spent on the DGEMM. DGEMM

computes the result of C = αA×B + βC, where C is m by n, A is m by k and B is k by n. The

sizes of m,n, and k are usually small at the bottom of the tree, and they get larger as we traverse

the tree. In ParU, They can get really big, especially for the Schur complement In comparison,

UMFPACK does not let the k for BLAS be bigger than a threshold. Therefore, usually, ParU has

fewer BLAS operations but bigger ones that are more suitable for contemporary architectures and

accelerators.

2.5.1.1 BLAS scheduling

There are two stages in the scheduling that are fairly straightforward. First when there are more

active fronts than the total number of cores and second when there is just a single active front. For

the prior, we can use a single thread BLAS, and for the latter, we use all the threads for the BLAS

operation (Algorithm 6 lines 3 and 11). In practice, even if enough tasks are ready, using parallel

BLAS with fewer threads for each task can be beneficial. Users have control over a maximum

number of front-level threads. The default number in ParU is less than the maximum number of

threads. Therefore the algorithm usually starts with some local BLAS parallelism.

39

The middle stage can be complicated and greatly impact performance. There are also cases

where the computation in the etree is unbalanced, and you start with many active fronts, and only

one of them remains after some time. Having an idea of how many fronts are active and how many

tasks remain can be difficult. In ParU, we use two global variables naft (number of active fronts)

and resq (number of remaining tasks in the queue) to control it dynamically. These variables are

accessed atomically and can help run any BLAS computation with the number of threads needed

line 7 Algorithm 6.

The second challenge in scheduling is that you cannot locally control the number of threads

in some of the BLAS libraries. For example, if you run two instances of parallel OpenBLAS

simultaneously, you get a terrible slowdown. Using Math Kernel Library (MKL), you can set the

number of threads locally. However, setting thread affinity while using MKL can greatly impact

performance.

If ParU is using MKL and in the area of the tree that is using parallel BLAS but with not all

the threads, the number of threads for that specific BLAS is the total number of threads divided

by naft. If the BLAS library is anything besides MKL, ParU uses OpenMP tasking and makes

enough tasks with a single-threaded BLAS. This strategy might not be the best solution, while the

size of the BLAS is also important in scheduling threads for them. However, it is difficult to have a

global scheduler that knows everything about all the running BLAS and schedules them optimally.

Moreover, that scheduler can be a bottleneck of the algorithm.

2.5.2 Other Parallelism Options

There are many parallelism options in the ParU source code. However, there are not many

cases that show a good performance improvement. The most important parallelism in ParU is

among fronts and BLAS parallelism. ParU also uses parallelism for full assembly of a prior front.

The partial front assembly is tested for parallelism, but the cost of making threads is usually more

than the gain of parallelism.

There is not much parallelism to exploit during symbolic analysis. The algorithms for paral-

lelism during the symbolic analysis are often complicated and mostly do not show a good perfor-

40

mance. Moreover, most of the work during symbolic analysis is done inside UMFPACK. If the

input array size is large enough, the only case that shows a good result is the permutations.

While all the rows are independent, that part is fully parallel in the initializing rows and fronts.

During the factorization, if there is enough active front, the dominating parallelism is among fronts.

When there are more computing cores than active fronts, ParU has parallel BLAS and parallel

assembly. During panel factorization, the only profitable way of parallelism is using vectorization,

which is always used regardless of the number of active fronts.

The only parallelism ParU uses during the solve phase is the parallelism within the BLAS

libraries. As we mentioned, it is possible to have front-level parallelism, but it is left as future

work. There are some parallelism options in this phase, but in practice, it is better only to use

parallelism inside the BLAS library.

2.6 Performance comparison with UMFPACK

ParU and UMFPACK have different algorithms for their numerical factorization, which can

greatly impact their performance. One difference is that UMFPACK changes the column ordering

during numerical factorization, while ParU does not change the column permutation. The other

important difference is that ParU does not update the row degrees after each pivot. Therefore

the minimum degree ParU finds for pivots other than the first pivot in the panel can be stale.

UMFPACK uses an approximate minimum degree for both rows and columns. Our results show

that the quality of order does not suffer much when you update row degrees less frequently, which

is preferable for parallelism.

To compare the difference in parallelism, let us assume that ParU and UMFPACK use the

same elimination tree and the same permutation, which is not usually realistic but simplifies this

comparison. Let us assume we have a balanced elimination tree with a root, two children, and two

computational cores. We also assume that each front takes 10 seconds to finish the computation.

Therefore, it would take 30 seconds to finish everything in a single-core machine.

In multifrontal sparse solvers, most of the time is usually spent on matrix-matrix multiplica-

tion. ParU supports only double-precision now, so the routine it calls is DGEMM. DGEMM is one of

41

the routines that are massively parallel and can be effectively parallelized. UMFPACK executes

one single front at a time and calls parallel DGEMM. ParU, on the other hand, calls single-threaded

DGEMM while there is enough work for all threads, and it starts to call parallel DGEMM when there

are more computational cores available. If the parallel portion of each front is 80% of the com-

putation, UMFPACK can finish each front in 6 seconds. Therefore the total time for UMFPACK

would be 18 seconds. This is an optimistic assumption for UMFPACK since we are ignoring the

case when the elimination tree has many tiny frontal matrices.

ParU, on the other hand, can execute the children in parallel (10 seconds) and then use both

cores to finish the root in 6 seconds. Therefore, in theory, ParU needs 16 seconds to finish factor-

ization. This example shows the theoretical limits of performance of ParU versus UMFPACK, and

it is basically a generalization of Amdahl’s law in an elimination tree.

In practice, ParU and UMFPACK have different permutations that can lead to different com-

putations. Moreover, the shape of the elimination tree is not usually balanced, which makes the

scheduling for ParU difficult. There are also cases that have small fronts, and the parallel portion in

each front is less, and ParU has a better strategy for parallelism. Consequently, it is hard to predict

the performance of ParU versus UMFPACK. Typically for unsymmetric matrices, the tree is more

balanced, and ParU shows a nice performance.

To perform well, ParU typically favors bushy trees. Therefore, selecting the appropriate pre-

ordering can influence how well the algorithm performs. Preordering is carried out through the

UMFPACK interface. While using METIS [19] frequently results in a more suited tree, the sym-

bolic analysis process may take longer. It may be a good idea to call METIS for symbolic analysis

if the user wants to perform the symbolic analysis only once and performs many factorizations.

The other two are COLAMD [32] for unsymmetric cases and AMD [33] for symmetric cases.

Additionally, the user can send several right-hand sides as a single dense matrix to ParU or call

symbolic analysis and factorization once and solve multiple times.

Even though ParU is an unsymmetric algorithm, it adopted UMFPACK’s symmetric mode.

When the pattern of the matrix is close to symmetric, then UMFPACK uses the symmetric mode.

42

ParU and UMFPACK do not have a specific design for symmetric matrices, but they strongly

prefer diagonal entries in symmetric cases. If the diagonal entry has a small relative magnitude,

the algorithm can still choose a pivot other than the diagonal element. However, it strongly favors

the diagonal entry since it performs better for symmetric matrices. However, given the overhead of

the unsymmetric matrix data format, it is still not as effective as symmetric methods like MUMPS

[22]. UMFPACK symbolic analysis finds the symmetry of the matrix, 1 for a symmetric pattern

matrix and 0 for an unsymmetric matrix. Our experiments show that even with symmetry of about

0.3 in the pattern, it is better to use the symmetric mode. Note that both UMFPACK and ParU

cannot use numerical symmetry.

43

3. PARU CODE STRUCTURE AND RESULTS

ParU is a parallel sparse direct solver. This package uses OpenMP tasking for parallelism.

ParU calls UMFPACK for the symbolic analysis phase, after that, ParU itself does some symbolic

analysis, and then the numeric phase starts. The numeric computation is a parallel task phase using

OpenMP, and each task calls parallel BLAS, i.e. nested parallelism. After that, the solve phase

can be called with either a single right-hand side or multiple right-hand sides. The performance of

BLAS has a heavy impact on the performance of ParU. However, depending on the input problem,

the parallel performance of the BLAS can sometimes have a smaller effect on the performance of

ParU.

The details on how to install ParU is on ParU/Doc/paru_usser_guide.pdf.

3.1 C/C++ Example

The C++ interface is written using only real matrices. The simplest function computes the

MATLAB equivalent of x=A\b and is almost as simple: Below is a simple C++ program that illus-

trates the use of ParU. The program reads in a problem from stdin in MatrixMarket format [34],

solves it, and prints the norm of A and the residual. Some error testing code is omited to simplify

showing how the program works. The full program can be found in ParU/Demo/paru_demo.cpp.

#include "ParU.hpp"

int main(int argc, char **argv)

{

cholmod_common Common, *cc;

cholmod_sparse *A;

ParU_Symbolic *Sym = NULL;

//~~~~~~~~~Reading the input matrix and test if the format is OK~~~

// start CHOLMOD

cc = &Common;

int mtype;

44

cholmod_l_start(cc);

// A = mread (stdin) ; read in the sparse matrix A

A = (cholmod_sparse *)cholmod_l_read_matrix(stdin, 1, &mtype, cc);

//~~~~~~~~~~~~~~~~~~~Starting computation~~~~~~~~~~~~~~~~~~~~~~~~~~

ParU_Control Control;

ParU_Ret info;

info = ParU_Analyze(A, &Sym, &Control);

ParU_Numeric *Num;

info = ParU_Factorize(A, Sym, &Num, &Control);

double my_time = omp_get_wtime() - my_start_time;

//~~~~~~~~~~~~~~~~~~~Test the results ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Int m = Sym->m;

if (info == PARU_SUCCESS)

{

double *b = (double *)malloc(m * sizeof(double));

double *xx = (double *)malloc(m * sizeof(double));

for (Int i = 0; i < m; ++i) b[i] = i + 1;

info = ParU_Solve(Sym, Num, b, xx, &Control);

printf("Solve time is %lf seconds.\n", my_solve_time);

double resid, anorm;

info = ParU_Residual(A, xx, b, m, resid, anorm, &Control);

printf("Residual is |%.2lf| and anorm is %.2e and rcond is %.2e.\n",

resid == 0 ? 0 : log10(resid), anorm, Num->rcond);

free(b);

free(xx);

}

//~~~~~~~~~~~~~~~~~~~End computation~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Int max_threads = omp_get_max_threads();

BLAS_set_num_threads(max_threads);

//~~~~~~~~~~~~~~~~~~~Free Everything~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ParU_Freenum(&Num, &Control);

45

ParU_Freesym(&Sym, &Control);

cholmod_l_free_sparse(&A, cc);

cholmod_l_finish(cc);

}

3.1.1 C/C++ Syntax

ParU_Ret is the output structure of all ParU routines. The user must check the output before

continuing and computing further the result of prior routine. You can see the user callable routines

in ParU/Include/ParU.hpp. The following is a list of user-callable C++ functions and what

they can do:

1. ParU_Version: return the version of the ParU package you are using.

2. ParU_Analyze: Symbolic analysis is done in this routine. UMFPACK is called here and

after that, some more specialized symbolic computation is done for ParU. ParU_Analyze

is called once and can be used for different ParU_Factorize calls for the matrices with

the same pattern.

3. ParU_Factorize: Numeric factorization is done in this routine. Scaling and making

Sx (scaled and staircase structure) matrix, computing factors, and permutations are here.

ParU_Symbolic structure which is computed in ParU_Analyze, is input in this rou-

tine.

4. ParU_Solve: Using symbolic analysis and factorization phase output to solve Ax = b. In

all the solve routines Num structure must come with the same Sym struct that comes from

ParU_Factorize. This routine is overloaded and can solve different systems. It has

versions that keep a copy of x or overwrite it. Also, it can solve multiple right-hand side

problems.

5. ParU_Freenum: frees the numerical part of factorization.

46

ParU_Control default value explanation
mem_chunk 1024 ∗ 1024 chunk size for memset and memcpy
umfpack_ordering UMFPACK_ORDERING_METIS default UMFPACK ordering
umfpack_strategy UMFPACK_STRATEGY_AUTO default UMFPACK strategy
umfpack_default_singleton 1 default filter singletons if true
relaxed_amalgamation_threshold 32 threshold for relaxed amalgamation
scale 1 if 1 matrix will be scaled using max_row
panel_width 32 width of panel for dense factorizaiton
paru_strategy PARU_STRATEGY_AUTO default strategy for ParU
piv_toler 0.1 tolerance for accepting sparse pivots
diag_toler 0.001 tolerance for accepting symmetric pivots
trivial 4 Do not call BLAS for smaller dgemms
worthwhile_dgemm 512 dgemms bigger than worthwhile are tasked
worthwhile_trsm 4096 trsm bigger than worthwhile are tasked
paru_max_threads 0 initialized with omp_max_threads

Table 3.1: ParU user-controllable variables

6. ParU_Freesym: frees the symbolic part of factorization.

3.1.2 Details of the C/C++ Syntax

For further details on how to use the C/C++ syntax, please refer to the definitions and descrip-

tions in the following files:

1. SuiteSparse/ParU/Include/ParU.hpp describes each C++ function. Only double

and square matrices are supported.

2. SuiteSparse/ParU/Include/ParU.h describes the C-callable functions.

There are C/C++ options to control ParU, which is an input argument to several routines. When

you make ParU_Control object, it is initialized with default values. The user can change the

values. The list of control options are shown in Table 3.1. Here are the details of the list of controls:

The first row of the options is used in the symbolic analysis. In the symbolic analysis phase,

only the matrix pattern is probed. The second row of control options shows those that impact

numerical analysis.

paru_max_threads is initalized by omp_max_threads if the user do not provide a

smaller number.

47

If paru_strategy is set to PARU_STRATEGY_AUTO, ParU uses the same strategy as

UMFPACK, however, the user can ask UMFPACK for an unsymmetric strategy but use a sym-

metric strategy for ParU. Usually, UMFPACK chooses a good ordering, however, there might

be cases where users prefer unsymmetric ordering on UMFPACK but symmetric computation on

ParU.

3.2 Requirements and Availability

ParU requires several Collected Algorithms of the ACM: CHOLMOD [35, 36] (version 1.7

or later), AMD [15, 33], COLAMD [37, 38] and UMFPACK [1] for its ordering/analysis phase

and for its basic sparse matrix data structure, and the BLAS [39] for dense matrix computations

on its frontal matrices. An efficient implementation of the BLAS is strongly recommended, either

vendor-provided (such as the Intel MKL, the AMD ACML, or the Sun Performance Library) or

other high-performance BLAS such as those of [28]. Note that while ParU uses nested parallelism

heavily the right options for the BLAS library must be chosen.

The use of OpenMP tasking is optional, but without it, only parallelism within the BLAS can

be exploited (if available).

3.3 Code Anatomy

The user callable functions which is described in section 3.1.1 is in ParU/Include/ParU.hpp.

Several overloaded functions in that file are usually for the distinction between a single right-hand

side and multiple right-hand sides. In ParU, the convention is to use capital ParU for the beginning

of the name of user callable routines and use paru for the rest.

Source files are in the directory of ParU/Source. /Source/paru_analyze is the file

that contains ParU_Analyze routine and the symbolic analysis are done in this file. This file is

explained in section 2.2. paru_factorize.cpp is the file where numerical analysis occurs,

either sequential or parallel. In Figure 3.1 the main routine in this file is shown and how it calls

other routines to do the factorization. Doxygen makes this Figure, and you can make this using the

Doxygen in ParU/Doc/.

48

Figure 3.1: ParU_Factorize

As illustrated in Figure 3.1, whether it uses parallel routines paru_exec_task or sequential

routines paru_exec_task_seq it calls paru_front routine. This routine is the routine that

you can call on a specific front, and the only constraint is first to finish all the children. There

are times that ParU_Factorize calls paru_front directly; it is when at the beginning of the

work, ParU decides not to use any parallel method from the beginning.

49

paru_init_rowFronts that is called before paru_front does the initializations, scale

the matrix, form numerical values for singletons, and S matrix and form initial fronts.

3.4 Experimental Results

ParU is written in C++ and uses OpenMP tasking; it has primarily been tested on Linux plat-

forms. Microsoft Windows only supports OpenMP 2.0, so testing ParU on Windows computers are

not available. The package does work on Windows Subsystem Linux (WSL). ParU is appropriate

for unsymmetric-pattern matrices because it is built with rectangular fronts. Although it can also

solve symmetric systems, a symmetric technique is more effective.

The computer on which we do our testing has two NUMA nodes, a 12-core (24-thread) Intel

Xeon E5-2695 processor running at 2.40GHz, 30MB of cache per core, and a total of 792GB of

memory.

The SuiteSparse Matrix Collection is where we acquired the matrices we used for the studies

[31, 40]. The matrices mentioned in Table 3.2 are selected to be square, asymmetric, and have

full sparse rank. These are all the matrices in the SuiteSparse Matrix Collection that are real, and

square, have less than 65 percent pattern symmetry, have less than 15 percent numeric symmetry,

and have more than one million nonzero entries. We expect ParU to perform well on these matrices,

while they do not have much symmetry and are big enough. The MATLAB code to obtain this list

of matrices is shown in Listing 1. Table 3.2 shows the name of the matrix, the pattern symmetry,

the numerical symmetry, and the number of nonzeros of each matrix.

We compare ParU, UMFPACK[23, 3], SuperLU_MT[10] and MUMPS[22]. The time reported

is the total time for symbolic analysis, numerical factorization, and solve with a single right-hand

side for all of these solvers utilizing AMD for preordering. Table 3.3 contains the comparison. In

this table, the best runtimes are indicated by bold entries.

In our tests, MUMPS performs well, especially for the matrices with an high degree level of

symmetry, as shown in Table 3.3. MUMPS always utilizes a symmetric method and is not intended

for unsymmetric scenarios. The algorithm is significantly simpler when a symmetric approach is

used since the fronts are square, no partial assembly is required. The symmetric mode in ParU

50

index = ssget ;

f = find (index.nrows == index.ncols & ...
index.sprank == index.ncols & ...
index.sprank == index.nrows & ...
index.isReal & ~index.isGraph & ...
index.numerical_symmetry < .15 &...
~index.posdef & ...
index.nnz >=1e6 & ...
index.pattern_symmetry <= .65) ;

Listing 1: MATLAB script to obtain the list in Table 3.2

derives from UMFPACK. ParU and UMFPACK do not have a specific design for symmetric ma-

trices, but they significantly favor diagonal entries in symmetric cases. The procedure changes

little; ParU and UMFPACK strongly prefer the diagonal entry, which works better for symmetric

matrices. However, it is not as good as symmetric algorithms while we have the burden of the data

structure of unsymmetric matrices.

A group of problems in Table 3.3 shows a good performance with SuperLU. These are optimal

power flow problems, and KLU [41] does better addressing them. They are also strongly reducible

to block triangular form. Using this form is the best strategy for these matrices. But none of

the techniques discussed here can accomplish that. However, SuperLU, which is a left-looking

problem, does a better job than multifrontal methods here.

The two biggest problems are in the VLSI group, and they are huge problems. SuperLU did not

finish either of the problems after 7 hours. ParU reported that it does not have enough memory for

either of these problems using AMD. MUMPS could solve the smaller one and run out of memory

for the bigger one. Note that these two problems are fairly symmetric-pattern. ParU, UMFPACK,

and MUMPS do better on these problems using METIS.

ParU takes the symbolic analysis phase of UMFPACK and adds a few extra steps to it, which

makes ParU’s symbolic analysis phase a little slower than UMFPACK’s. ParU and UMFPACK’s

performance can be considerably different because of the different paths in numerical factoriza-

51

Table 3.2: List of matrices

Name Pattern Numerical NNZ
symmetry symmetry

rim 63.90% 0% 1,014,951
TSOPF_RS_b39_c30 5.90% 0% 1,079,986
twotone 24.50% 10.60% 1,224,224
std1_Jac2 0% 0% 1,248,731
mac_econ_fwd500 6.00% 0.60% 1,273,389
std1_Jac3 0% 0% 1,455,848
TSOPF_RS_b300_c1 1.00% 0% 1,474,325
lhr71 0.20% 0% 1,528,092
Zd_Jac2 0% 0% 1,642,833
av41092 0.10% 0% 1,683,902
Zd_Jac6 0% 0% 1,711,983
crashbasis 55.00% 0% 1,750,416
bbmat 53.00% 0.10% 1,771,722
Zd_Jac3 0% 0% 1,916,152
mc2depi 0% 0% 2,100,225
TSOPF_RS_b300_c2 1.00% 0% 2,943,887
TSOPF_RS_b678_c1 0.40% 0% 4,396,289
TSOPF_RS_b300_c3 1.00% 0% 4,413,449
Chebyshev4 30.20% 0% 5,377,761
Hamrle3 0% 0% 5,514,242
pre2 33.20% 6.50% 5,959,282
TSOPF_RS_b2052_c1 0.40% 0% 6,761,100
torso1 42.40% 0% 8,516,500
TSOPF_RS_b678_c2 0.40% 0% 8,781,949
TSOPF_RS_b2383 0.20% 0% 16,171,169
vas_stokes_4M 46.40% 11.40% 131,577,616
stokes 47.30% 12.90% 349,321,980

tion. One difference is that whereas UMFPACK changes the column ordering during numerical

factorization, ParU does not alter the column permutation. The fact that ParU does not update the

row degrees following every single pivot is another important difference. ParU’s minimum degree

may consequently be out of date for pivots other than the first pivot on the panel. Our results

show that changing row degrees less frequently is actually preferred for parallelism and does not

52

Table 3.3: Comparison between different methods (total time for analysis, factorization, and solve,
in seconds)

Name SuperLU MUMPS UMFPACK ParU
rim 0.40 0.24 0.74 4.70
TSOPF_RS_b39_c30 0.31 0.35 0.30 0.27
twotone 1.85 1.34 0.93 0.68
std1_Jac2 1.20 1.31 0.66 0.55
mac_econ_fwd500 - 4.21 6.90 4.96
std1_Jac3 1.10 1.49 0.65 0.56
TSOPF_RS_b300_c1 0.39 0.36 0.53 0.42
lhr71 0.56 0.81 0.72 0.48
Zd_Jac2 1.06 1.47 0.79 0.65
av41092 2.91 1.77 3.42 3.25
Zd_Jac6 0.97 1.66 0.76 0.65
crashbasis 1.74 1.43 1.53 1.19
bbmat 3.56 1.08 3.63 6.48
Zd_Jac3 1.06 1.71 0.79 0.70
mc2depi 2.93 3.59 6.56 3.84
TSOPF_RS_b300_c2 0.52 0.71 1.09 0.88
TSOPF_RS_b678_c1 1.19 1.32 3.99 2.01
TSOPF_RS_b300_c3 0.74 1.10 1.67 1.39
Chebyshev4 - 5.84 191.36 5.80
Hamrle3 - 114.86 38.61 24.94
pre2 73.83 9.36 46.95 42.60
TSOPF_RS_b2052_c1 1.96 2.31 6.66 3.35
torso1 2.58 3.48 12.03 4.94
TSOPF_RS_b678_c2 1.42 2.61 5.22 4.17
TSOPF_RS_b2383 4.67 6.66 56.42 66.79
vas_stokes_4M - 1920.63 - -
stokes - - - -

significantly degrade the quality of the result.

In practice, matrix-matrix multiplications take up most of a multifrontal factorization’s pro-

cessing time, and UMFPACK can use parallel BLAS. Therefore, as you can see in Table 3.3,

UMFPACK performs similarly to other parallel solvers and occasionally performs better than oth-

ers. Comparing two solvers is challenging since they each produce different orderings, which

53

leads to distinct fill-in entries and flops. UMFPACK might be quicker for smaller matrices and

outperform ParU according to the etree.

The overhead of parallelism often has the potential to lower performance. The algorithm may

get more complicated with nested parallelism. As a result, ParU first determines whether having

front-level parallelism is a good idea. If there are no more parallel fronts accessible, the algorithm

also exits the nested parallel region. In that case, the efficient use of parallel BLAS benefits the

algorithm.

In Table 3.4, you can see a complete comparison between ParU and UMFPACK. In this ta-

ble, symbolic analysis, numerical factorization, and solve times are depicted in different columns.

These results also come from the AMD preordering for both ParU and UMFPACK. As you can

see, typically, the symbolic analysis phase of ParU takes longer than UMFPACK. However, nu-

merical factorization and solve time of the ParU can be better. The numerical factorization of ParU

is described in detail in this thesis. The solve phase is usually a very small portion of the total

time. However, ParU’s data structure of the results is more straightforward than UMFPACK, and

that can make the solve phase faster.

In Table 3.5, you can see a complete comparison between ParU and UMFPACK using METIS

preordering. This table is like Table 3.4. However, we add two larger matrices that run out of mem-

ory with AMD preordering. Using METIS, both UMFPACK and ParU can solve vas_stokes_4M,

and ParU can solve stokes.

54

Ta
bl

e
3.

4:
Pa

rU
an

d
U

M
FP

A
C

K
de

ta
ile

d
co

m
pa

ri
so

n
us

in
g

A
M

D
or

C
O

L
A

M
D

(r
un

tim
e

in
se

co
nd

s)

N
am

e
Pa

rU
_s

ym
Pa

rU
_f

ac
t

Pa
rU

_s
ol

ve
Pa

rU
_t

ot
U

M
F_

sy
m

U
M

F_
fa

ct
U

M
F_

so
lv

e
U

M
F_

to
t

ri
m

0.
10

4.
39

0.
21

4.
70

0.
05

3.
54

0.
13

3.
72

T
SO

PF
_R

S_
b3

9_
c3

0
0.

11
0.

15
0.

01
0.

27
0.

09
0.

20
0.

02
0.

30
tw

ot
on

e
0.

13
0.

51
0.

04
0.

68
0.

10
0.

74
0.

09
0.

93
st

d1
_J

ac
2

0.
39

0.
14

0.
02

0.
55

0.
40

0.
24

0.
03

0.
66

m
ac

_e
co

n_
fw

d5
00

0.
58

4.
19

0.
19

4.
96

0.
55

5.
86

0.
49

6.
90

st
d1

_J
ac

3
0.

39
0.

16
0.

01
0.

56
0.

40
0.

23
0.

02
0.

65
T

SO
PF

_R
S_

b3
00

_c
1

0.
30

0.
11

0.
01

0.
42

0.
29

0.
20

0.
02

0.
51

lh
r7

1
0.

25
0.

22
0.

02
0.

48
0.

23
0.

47
0.

02
0.

72
Z

d_
Ja

c2
0.

48
0.

14
0.

02
0.

65
0.

49
0.

27
0.

03
0.

79
av

41
09

2
0.

22
2.

88
0.

14
3.

25
0.

19
2.

99
0.

24
3.

42
Z

d_
Ja

c6
0.

46
0.

18
0.

01
0.

65
0.

47
0.

28
0.

02
0.

76
cr

as
hb

as
is

0.
26

0.
85

0.
07

1.
19

0.
22

1.
33

0.
27

1.
81

bb
m

at
0.

27
6.

11
0.

11
6.

49
0.

25
4.

17
0.

43
4.

85
Z

d_
Ja

c3
0.

50
0.

17
0.

03
0.

70
0.

50
0.

28
0.

01
0.

79
m

c2
de

pi
0.

59
2.

96
0.

29
3.

84
0.

54
5.

61
0.

41
6.

56
T

SO
PF

_R
S_

b3
00

_c
2

0.
65

0.
21

0.
02

0.
88

0.
62

0.
42

0.
05

1.
09

T
SO

PF
_R

S_
b6

78
_c

1
1.

72
0.

28
0.

02
2.

01
1.

71
2.

21
0.

08
3.

99
T

SO
PF

_R
S_

b3
00

_c
3

1.
04

0.
32

0.
02

1.
39

0.
94

0.
63

0.
10

1.
67

C
he

by
sh

ev
4

1.
07

4.
52

0.
21

5.
80

0.
97

3.
10

0.
24

4.
31

H
am

rl
e3

1.
95

21
.8

6
1.

12
24

.9
4

1.
86

34
.3

4
2.

41
38

.6
1

pr
e2

3.
59

37
.1

9
1.

80
42

.5
9

2.
85

43
.3

1
1.

95
48

.1
1

T
SO

PF
_R

S_
b2

05
2_

c1
2.

96
0.

37
0.

02
3.

35
2.

87
3.

66
0.

14
6.

66
/N

or
ri

s/
to

rs
o1

0.
95

3.
93

0.
06

4.
94

0.
77

4.
75

0.
20

5.
73

T
SO

PF
_R

S_
b6

78
_c

2
3.

56
0.

58
0.

03
4.

17
3.

51
1.

55
0.

15
5.

22
T

SO
PF

_R
S_

b2
38

3
1.

93
64

.6
2

0.
24

66
.7

9
1.

49
53

.0
3

1.
90

56
.4

2

55

Ta
bl

e
3.

5:
Pa

rU
an

d
U

M
FP

A
C

K
de

ta
ile

d
co

m
pa

ri
so

n
us

in
g

M
E

T
IS

(r
un

tim
e

in
se

co
nd

s)

N
am

e
Pa

ru
_s

ym
Pa

ru
_f

ac
t

Pa
ru

_s
ol

ve
Pa

ru
_t

ot
U

M
F_

sy
m

U
M

F_
fa

ct
U

M
F_

so
lv

e
U

M
F_

to
t

ri
m

0.
34

0.
33

0.
02

0.
69

0.
26

0.
42

0.
04

0.
72

T
SO

PF
_R

S_
b3

9_
c3

0
0.

45
0.

16
0.

01
0.

62
0.

44
0.

29
0.

02
0.

75
tw

ot
on

e
1.

32
0.

59
0.

03
1.

94
1.

37
0.

86
0.

07
2.

30
st

d1
_J

ac
2

0.
75

0.
14

0.
02

0.
91

0.
78

0.
30

0.
03

1.
11

m
ac

_e
co

n_
fw

d5
00

4.
23

1.
30

0.
36

5.
89

4.
44

3.
55

0.
26

8.
25

st
d1

_J
ac

3
0.

79
0.

16
0.

01
0.

96
0.

80
0.

32
0.

02
1.

14
T

SO
PF

_R
S_

b3
00

_c
1

0.
73

0.
17

0.
01

0.
91

0.
71

0.
35

0.
03

1.
10

lh
r7

1
1.

75
0.

21
0.

02
1.

98
1.

89
0.

59
0.

02
2.

50
Z

d_
Ja

c2
0.

94
0.

18
0.

02
1.

14
0.

94
0.

37
0.

04
1.

35
av

41
09

2
5.

26
0.

80
0.

03
6.

09
5.

25
2.

19
0.

10
7.

54
Z

d_
Ja

c6
0.

95
0.

18
0.

02
1.

16
0.

98
0.

40
0.

04
1.

41
cr

as
hb

as
is

1.
79

1.
27

0.
14

3.
20

1.
89

1.
66

0.
15

3.
69

bb
m

at
1.

09
2.

70
0.

17
3.

97
1.

08
2.

25
0.

23
3.

56
Z

d_
Ja

c3
0.

98
0.

19
0.

02
1.

18
1.

00
0.

39
0.

03
1.

42
m

c2
de

pi
5.

13
1.

62
0.

97
7.

73
5.

31
4.

77
0.

38
10

.4
6

T
SO

PF
_R

S_
b3

00
_c

2
1.

53
0.

29
0.

02
1.

84
1.

54
0.

76
0.

07
2.

37
T

SO
PF

_R
S_

b6
78

_c
1

4.
18

0.
57

0.
02

4.
77

4.
02

2.
05

0.
12

6.
19

T
SO

PF
_R

S_
b3

00
_c

3
2.

65
0.

42
0.

03
3.

10
2.

60
1.

09
0.

12
3.

81
C

he
by

sh
ev

4
2.

45
7.

75
0.

30
10

.5
0

2.
47

4.
18

0.
40

7.
06

H
am

rl
e3

17
.3

3
13

.3
4

1.
29

31
.9

6
18

.5
3

21
.2

0
1.

70
41

.4
3

pr
e2

69
.4

5
10

.5
3

1.
46

81
.4

4
69

.9
6

18
.6

7
1.

20
89

.8
3

T
SO

PF
_R

S_
b2

05
2_

c1
7.

34
0.

89
0.

04
8.

26
7.

10
3.

30
0.

15
10

.5
5

to
rs

o1
3.

65
3.

02
0.

07
6.

75
3.

34
4.

46
0.

25
8.

05
T

SO
PF

_R
S_

b6
78

_c
2

8.
52

0.
94

0.
06

9.
53

8.
38

2.
43

0.
19

11
.0

0
T

SO
PF

_R
S_

b2
38

3
24

.3
2

2.
52

0.
24

27
.0

7
24

.7
6

9.
91

0.
51

35
.1

8
va

s_
st

ok
es

_4
M

20
2.

35
23

54
.8

0
23

.5
0

25
80

.6
8

21
4.

10
19

97
.2

7
11

2.
82

23
24

.2
1

st
ok

es
66

4.
27

12
77

2.
51

85
.4

7
13

52
2.

30
-

-
-

-

56

4. SUMMARY AND CONCLUSIONS

This dissertation described a multifrontal parallel sparse direct solver’s algorithm and imple-

mentation using OpenMP tasking for parallelism. The SuiteSparse library environment was used

to design ParU. ParU does the symbolic analysis and reads the input matrix using CHOLMOD,

AMD, COLAMD, and UMFPACK. For dense kernel calculations, it uses the BLAS library, and

some of its algorithms use the C++ STL library. It is optional in ParU to use METIS; however,

doing so can speed up factorization by creating a bushy etree for the parallel method. ParU is

available under a GNU license and is open source.

The feasibility of a parallel unsymmetric multifrontal algorithm can be proven through ParU’s

implementation. Although it is developed with OpenMP, the idea and algorithm are generic and

can be applied to any upcoming framework. This ParU implementation has numerous challenges.

However, these can be alleviated by adopting different frameworks or architectural designs. For

instance, optimizing the number of cores operating at each level of parallelism for the best perfor-

mance is challenging. However, this issue becomes less significant if we use accelerators for large

BLAS computations. Additionally, ParU can overlap the communication and processing times

while simultaneously calling numerous BLAS functions in parallel.

The program also uses straightforward data structures that are simple to divide and use in a

distributed memory setting. The distributed memory implementation of ParU can benefit from the

list of live descendants already utilized in the algorithm. In conclusion, ParU is an effective parallel

solver, and we think it has a lot of potential for use in various settings.

57

REFERENCES

[1] T. A. Davis, “Algorithm 832: UMFPACK V4.3, an unsymmetric-pattern multifrontal

method,” ACM Trans. Math. Softw., vol. 30, pp. 196–199, June 2004.

[2] P. R. Amestoy, M. J. Daydé, and I. S. Duff, “Use of level-3 blas kernels in the solution of full

and sparse linear equations,” in High Performance Computing (J.-L. Delhaye and E. Gelenbe,

eds.), pp. 19–31, Amsterdam: North-Holland, 1989.

[3] T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse LU fac-

torization,” SIAM J. Matrix Anal. Appl., vol. 18, no. 1, pp. 140–158, 1997.

[4] I. S. Duff and J. K. Reid, “A note on the work involved in no-fill sparse matrix factorization,”

IMA J. Numer. Anal., vol. 3, no. 1, pp. 37–40, 1983.

[5] J. W. H. Liu, “The multifrontal method for sparse matrix solution: theory and practice,” SIAM

Review, vol. 34, no. 1, pp. 82–109, 1992.

[6] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK Users’ Guide.

Philadelphia, PA: SIAM, 3rd ed., 1999. http://www.netlib.org/lapack/lug/.

[7] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid GPU

accelerated manycore systems,” Parallel Computing, vol. 36, pp. 232–240, June 2010.

[8] J. H. Wilkinson and C. Reinsch, eds., Handbook for Automatic Computation, Volume II:

Linear Algebra. Springer-Verlag, 1971.

[9] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, “A supernodal

approach to sparse partial pivoting,” SIAM J. Matrix Anal. Appl., vol. 20, no. 3, pp. 720–755,

1999.

58

[10] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel supernodal algorithm

for sparse Gaussian elimination,” SIAM J. Matrix Anal. Appl., vol. 20, no. 4, pp. 915–952,

1999.

[11] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of direct methods for

sparse linear systems,” Acta Numerica, vol. 25, pp. 383–566, 5 2016.

[12] B. M. Irons, “A frontal solution program for finite element analysis,” Intl. J. Numer. Methods

Eng., vol. 2, pp. 5–32, 1970.

[13] P. Hood, “Frontal solution program for unsymmetric matrices,” Intl. J. Numer. Methods Eng.,

vol. 10, no. 2, pp. 379–400, 1976.

[14] M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM J. Alg. Disc. Meth.,

vol. 2, pp. 77–79, 1981.

[15] P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum degree ordering algo-

rithm,” SIAM J. Matrix Anal. Appl., vol. 17, no. 4, pp. 886–905, 1996.

[16] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an approximate minimum

degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, pp. 381–388, Sept. 2004.

[17] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “Algorithm 836: COLAMD, a

column approximate minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30,

pp. 377–380, Sept. 2004.

[18] G. Birkhoff and A. George, “Elimination by nested dissection,” in Complexity of Sequential

and Parallel Numerical Algorithms (J. F. Traub, ed.), pp. 221–269, New York: Academic

Press, 1973.

[19] G. Karypis and V. Kumar, “A parallel algorithm for multilevel graph partitioning and sparse

matrix ordering,” J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 71–95, 1998.

[20] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular

graphs,” SIAM J. Sci. Comput., vol. 20, pp. 359–392, 1998.

59

[21] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse symmetric linear

equations,” ACM Trans. Math. Softw., vol. 9, no. 3, pp. 302–325, 1983.

[22] P. R. Amestoy, I. S. Duff, S. Pralet, and C. Vömel, “Adapting a parallel sparse direct solver

to architectures with clusters of SMPs,” Parallel Computing, vol. 29, no. 11–12, pp. 1645 –

1668, 2003.

[23] T. A. Davis, “A column pre-ordering strategy for the unsymmetric-pattern multifrontal

method,” ACM Trans. Math. Softw., vol. 30, pp. 165–195, June 2004.

[24] D. A. Calahan, “Parallel solution of sparse simultaneous linear equations,” in Proceedings of

the 11th Annual Allerton Conference on Circuits and System Theory, pp. 729–735, 1973.

[25] X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems,” ACM Trans. Math. Softw., vol. 29, pp. 110–140, June

2003.

[26] I. S. Duff, “The impact of high-performance computing in the solution of linear systems:

trends and problems,” J. Comput. Appl. Math., vol. 123, no. 1-2, pp. 515–530, 2000.

[27] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, “A set of level-3 basic linear

algebra subprograms,” ACM Trans. Math. Softw., vol. 16, no. 1, pp. 1–17, 1990.

[28] K. Goto and R. van de Geijn, “High performance implementation of the level-3 BLAS,” ACM

Trans. Math. Softw., vol. 35, pp. 14:1–14:14, July 2008.

[29] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, “Flame: Formal linear

algebra methods environment,” ACM Trans. Math. Softw., vol. 27, pp. 422–455, Dec. 2001.

[30] T. Mattson, Y. He, and A. Koniges, The OpenMP Common Core: Making OpenMP Simple

Again. Scientific and Engineering Computation, MIT Press, 2019.

[31] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Trans.

Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

60

[32] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column approximate minimum

degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, pp. 353–376, Sept. 2004.

[33] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an approximate minimum

degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, no. 3, pp. 381–388, 2004.

[34] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra, “The Matrix Mar-

ket: A web resource for test matrix collections,” in Quality of Numerical Software, Assess-

ment and Enhancement (R. F. Boisvert, ed.), pp. 125–137, London: Chapman & Hall, 1997.

(http://math.nist.gov/MatrixMarket).

[35] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algorithm 887: CHOLMOD,

supernodal sparse Cholesky factorization and update/downdate,” ACM Trans. Math. Softw.,

vol. 35, no. 3, pp. 1–14, 2008.

[36] T. A. Davis and W. W. Hager, “Dynamic supernodes in sparse Cholesky update/downdate

and triangular solves,” ACM Trans. Math. Softw., vol. 35, no. 4, pp. 1–23, 2009.

[37] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “Algorithm 836: COLAMD, a column

approximate minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, no. 3,

pp. 377–380, 2004.

[38] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column approximate minimum

degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30, no. 3, pp. 353–376, 2004.

[39] J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling, “A set of Level 3 Basic Linear

Algebra Subprograms,” ACM Trans. Math. Softw., vol. 16, pp. 1–17, 1990.

[40] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson, Y. Hu, and

R. Sandstrom, “The SuiteSparse matrix collection website interface,” Journal of Open Source

Software, vol. 4, no. 35, p. 1244, 2019.

[41] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct sparse solver for

circuit simulation problems,” ACM Trans. Math. Softw., vol. 37, pp. 36:1–36:17, Sept. 2010.

61

APPENDIX A

DETAILED PERFORMANCE METRICS AND COMPUTING ENVIRONMENT

The topology of our machine is shown in Figure A.2.

62

Fi
gu

re
A

.1
:I

nt
el

V
tu

ne
gr

ap
h

fo
rP

ar
U

63

Fi
gu

re
A

.2
:T

op
ol

og
y

of
ou

rm
ac

hi
ne

64

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION AND LITERATURE REVIEW
	Introduction
	Mathematical background
	BLAS
	Sparse solvers
	Different flavors of LU factorization

	Background on frontal and multifrontal methods
	Fill-reducing ordering
	Multifrontal methods
	UMFPACK
	Parallel methods
	OpenMP and tasking

	PARU ALGORITHM
	Introduction to ParU
	Symbolic Analysis
	Numerical Factorization
	Single Front assembly
	Pivotal column assembly
	Pivotal column factorization
	U-part assembly and update
	Contribution block assembly
	ParU prior front assembly
	Finalizing the heap

	Summary of Numerical Factorization algorithm

	Solve
	Parallelism
	scheduling
	BLAS scheduling

	Other Parallelism Options

	Performance comparison with UMFPACK

	PARU CODE STRUCTURE AND RESULTS
	C/C++ Example
	C/C++ Syntax
	Details of the C/C++ Syntax

	Requirements and Availability
	Code Anatomy
	Experimental Results

	SUMMARY AND CONCLUSIONS
	REFERENCES
	APPENDIX DETAILED PERFORMANCE METRICS AND COMPUTING ENVIRONMENT

