
FLOW TABLE MANAGEMENT IN PROGRAMMABLE NETWORK DATA PLANES

A Dissertation

by

LUKE ANDREW MCHALE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Paul V. Gratz
Co-Chair of Committee, Alex Sprintson
Committee Members, Riccardo Bettati

Krishna Narayanan
Stavros Kalafatis

Head of Department, Miroslav M. Begovic

December 2022

Major Subject: Computer Engineering

Copyright 2022 Luke Andrew McHale

ABSTRACT

The design-space of network devices is constantly evolving, driven by the continual demand for

increased global inter-connectivity, intelligent orchestration, and distributed computation between

cloud and edge resources. Modern businesses are increasingly reliant on a connected world for a

competitive advantage as well as essential operations. Meanwhile, there is an increasing number

of attacks on critical communication infrastructure from a variety of malicious actors. Thus, there

is an increasing urgency to improve all aspects of security in data communication networks.

Additionally, Software-Defined Networking (SDN) has increasingly gained traction and utility

across data centers and network administration. SDN concepts enable increased flexibility for

network operators, including the ability to implement a broad class of custom network functions

for real-time diagnostics as well as traffic management. While SDN has notable advantages over

traditional network appliances, current implementations are often more susceptible to malicious

attacks due to increased complexity and abstractions imposed on packet classification and table

management.

This dissertation investigates architectural techniques to improve the reliability and perfor-

mance of data plane processing hardware. Our techniques are applicable to both traditional packet

processing as well as SDN data plane architectures. The contributions of this research include

two novel and complementary techniques to improve data plane performance through optimizing

the use of available packet classification resources. By leveraging storage-efficient stochastic data

structures and machine learning inspired replacement policies, our techniques improve data plane

processing efficiency and predictability.

The first technique leverages a Bloom Filter to prioritize established traffic and prevent mali-

cious starvation of expensive packet classification resources. This Pre-Classification technique is

general enough to be considered for any classification pipeline with non-uniform processing re-

quirements. The second technique, originally developed for speculative microprocessors, adapts

the Hashed Perceptron binary classifier to flow table cache management. The proposed Flow

ii

Correlator mechanism leverages the Hashed Perceptron to correlate flow activity with temporal

patterns and transport/network layer hints. This technique demonstrates the viability of associat-

ing temporal patterns to network flows enabling improvements in flow table cache management.

Amenable to hardware implementations, both Flow Correlator and Pre-Classification techniques

show promise in improving the reliability and performance of flow-centric packet processing ar-

chitectures.

iii

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisors Paul Gratz and Alex Sprintson for their dedi-

cation to my personal as well as technical growth. I especially want to thank Paul for his patience,

support, and guidance throughout my graduate research. I particularly want to thank Alex for his

encouragement and foresight, always enabling opportunities from teaching fellowships to research

collaborations. Without the guidance and support of both Paul and Alex, this dissertation would

not have been possible. I also would like to sincerely thank my committee members for their

feedback and insights throughout my graduate studies.

I also sincerely appreciate the friendship of Andrew Targhetta, Braden Obrzut, Joseph Boz-

zay, Eliot Edling, Matthew Hamer, Michael Starr, Ping Wang, Gino Chacon, and Priya Madhu –

providing notable encouragement as well as essential breaks between the many hours of research.

Finally, I especially would like to thank my parents Timothy and Nancy as well as my sisters

Tabitha and KayLeigh for their support and encouragement throughout this journey.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Paul V. Gratz

(chair), Alex Sprintson (co-chair), Krishna Narayanan, and Stavros Kalafatis of Texas A&M’s

Department of Electrical and Computer Engineering as well as Professor Riccardo Bettati of Texas

A&M’s Department of Computer Science and Engineering.

Chapter 2 was a collaboration with Jasson Casey, including assistance from Eric Garfinkle.

Discussions with Boris Hanin, Andrew Sutton, and Jasson Casey provided insight which helped

scope the research direction of Chapter 3. Prior works from Andrew Sutton, Michael Gruesen,

and Hoang Nguyen were leveraged during this research. Passive network datasets provided by

Equinix and CAIDA [1] enabled the ability to perform this research. All research conducted for

this dissertation was completed by the student.

Funding Sources

This work was funded in part through National Science Foundation grant CNS-14233221 as

well as U.S. Air Force Research Lab grants FA8650-05-D-19122 and FA8650-13-C-58003.

This work was also partially funded by fellowships as well as research and teaching assis-

tantships provided by Texas A&M’s Department of Electrical and Computer Engineering including

the 2012 B. Pat and Frieda Ebsenberger Doctoral Fellowship, 2018 Graduate Teaching Fellowship,

2020 Summer Research Fellowship, as well as network equipment gifts provided by Freescale

Semiconductor in 2015.
1“Tools for Design and Analysis of Provably Correct Networking Systems”, National Science Foundation, PI: A.

Sprintson, Co-PIs: G. Dos-Reis, A. Sutton, Oct 2014 - Sep 2018, award number CNS-1423322.
2“Minority Leaders Program: Cyber-Security Research for Distributed Sensory Systems and Cloud Applications”,

U.S. Air Force Research Lab, Clarkson Aerospace, PI: Dr. Sejun Song, Co-PI: Dr. Alex Sprintson, Nov 2012 - Feb
2014, award number FA8650-05-D-1912.

3"AFRL Collaboration Program: Sensors Research: Conformance Verification and Software-Defined Flow Con-
trol Frameworks in Cloud Networks and High Power Waveguide Amplifiers for EO”, U.S. Air Force Research Lab,
Clarkson Aerospace, PI: Alex Sprintson, Co-PI: Guofei Gu, Oct 2014 - May 2018, award number FA8650-13-C-5800.

v

NOMENCLATURE

ACL Access Control List

AMAT Average Memory Access Time

ASIC Application-Specific Integrated Circuit

CDF Cumulative Distribution Function

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

HP Hashed Perceptron

IG Information Gain

IP Internet Protocol

IXP Internet Exchange Point

LRU Least Recently Used

MCC Matthew’s Correlation Coefficient

ML Machine Learning

MRU Most Recently Used

MTU Maximum Transmission Unit

NFV Network Function Virtualization

PCAP Packet Capture

PCC Pearson’s Correlation Coefficient

RTT Round Trip Time

SDN Software Defined Networking

TCP Transmission Control Protocol

UDP User Datagram Protocol

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION. 1

1.1 Packet Processing Architectures. 1
1.2 Software Defined Networking . 1
1.3 Packet Classification . 2
1.4 Dissertation Statement . 3
1.5 Contributions . 3
1.6 Dissertation Organization . 4

2. STOCHASTIC PRE-CLASSIFICATION. 5

2.1 Introduction. 5
2.2 Background . 7

2.2.1 Packet Classification . 8
2.3 Design . 9

2.3.1 Motivation . 9
2.3.2 Architecture . 11

2.4 Evaluation . 15
2.4.1 Methodology. 15
2.4.2 Experimental Results . 17

2.5 Summary . 21

3. FLOW TABLE CACHE MANAGEMENT . 22

3.1 Introduction. 22

vii

3.1.1 Contributions . 22
3.2 Motivation . 23

3.2.1 Significance of Cache Hit-Rate . 23
3.2.2 Cache Optimality Study . 24
3.2.3 Flow Patterns . 26
3.2.4 Stack-based Algorithms . 27
3.2.5 Hashed Perceptron Binary Classifier . 29

3.3 Design . 30
3.3.1 Classifier Metrics . 33
3.3.2 Flow Correlator Design . 35
3.3.3 Feature Design . 41
3.3.4 Feature Metrics . 45

3.4 Analysis. 49
3.4.1 Methodology. 49
3.4.2 Feature Exploration . 52
3.4.3 Improvement Validation. 60
3.4.4 Cache Efficiency. 63
3.4.5 Feature Roles . 65
3.4.6 Automatic Throttling . 67

3.5 Summary . 68

4. CONCLUSIONS . 70

4.1 Future Work . 70
4.2 Need for Standardized Network Benchmarks . 71

REFERENCES . 72

A. APPENDIX . 80

A.1 Matthew’s Correlation Coefficient . 81
A.2 Feature Table Weight Distributions . 83
A.3 Selected Features’ Composition . 86
A.4 Cache Pressure Dynamics . 89

viii

LIST OF FIGURES

FIGURE Page

2.1 Cumulative Distribution of Packets per Flow . 6

2.2 OpenFlow Data Plane . 8

2.3 Resilient Classification Data Plane . 10

2.4 Bloom Filter Stage . 12

2.5 Measured Throughput. 18

2.6 Measured Latency . 19

2.7 Measured Jitter . 20

3.1 Belady’s MIN Optimal Replacement. 25

3.2 Interesting Packet Inter-arrival Patterns by Flow . 27

3.3 Data Plane Classification Processing . 31

3.4 Flow Cache Management . 32

3.5 Flow Correlator Inference . 37

3.6 Active Correct (TP) Reinforcement . 39

3.7 Active Incorrect (FP) Training . 39

3.8 Dormant Correct (TN) Reinforcement . 40

3.9 Dormant Incorrect (FN) Training . 41

3.10 Feature Influence on Reuse Predictions . 53

3.11 Feature Influence on Bypass Predictions. 54

3.12 Initial Feature Ranking. 55

3.13 Random Feature Ranking . 56

3.14 Differential Improvement . 58

ix

3.15 Iterative Information Gain Ranking Improvement . 59

3.16 Final Feature Ranking Comparison . 60

3.17 Improved Hit-Rate Validation . 62

3.18 Cache Entry Lifecycle . 63

3.19 Cache Entry Lifetime . 64

3.20 Cache Entry Deadtime . 65

3.21 Cache Entry Efficiency . 66

3.22 Feature Bias . 67

A.1 f27 Weight Distribution . 86

A.2 f27 Compositions’ Weight Distributions . 86

A.3 f21 Weight Distribution . 87

A.4 f21 Compositions’ Weight Distributions . 87

A.5 f18 Weight Distribution . 88

A.6 f18 Compositions’ Weight Distributions . 88

x

LIST OF TABLES

TABLE Page

2.1 Summary of Pre-Classification Architecture. 16

3.1 Confusion Matrix . 34

3.2 Flow Correlation Confusion Matrix . 35

3.3 Complete List of Explored Features. 42

3.4 Influence Matrix . 46

3.5 Sample of CAIDA Packet Arrival Statistics . 50

3.6 Hashed Perceptron Cache Simulation Parameters . 51

3.7 Selected Features (IG3-4k). 61

A.1 Distributions of Selected Features . 83

A.2 Distributions of Contributing Feature Components . 83

A.3 Distributions of Rejected Feature Components . 84

A.4 Distributions of Control Features. 85

A.5 Cache Size vs. Entry Lifetime . 89

A.6 Cache Size vs. Entry Deadtime . 89

A.7 Cache Size vs. Efficiency . 89

A.8 Cache Associativity vs. Entry Lifetime . 90

xi

1. INTRODUCTION

The design-space of network devices is constantly evolving, driven by the continual demand for

increased global inter-connectivity, intelligent orchestration, and distribution of computation be-

tween cloud and edge resources. Modern businesses are increasingly reliant on a connected world

for a competitive advantage as well as essential operations. Additionally, there is an increasing

urgency to improve the security of critical infrastructure, emphasizing the importance of reliable

devices and ultimately resilient networks.

1.1 Packet Processing Architectures

Researchers and industry continue to push the boundaries of packet processing performance

and device reconfigurability. Trade-offs in performance, flexibility, and programmability are being

explored with the aim of improving efficiency, reliability, and overall quality of networks. Net-

working hardware and software is notably complex, accompanied a high barrier to entry. It is also

difficult, while notably important to guarantee performance across diverse network scenarios.

Packet processing devices and frameworks trade-off programmability with target performance,

ranging from networking ASICs [2, 3], network processors [4], to general purpose systems [5].

A common architectural advantage of network processors is to provide hardware-assisted event

scheduling and table lookup extensions for both on-chip and memory-backed tables. Many net-

work functions require large flow tables, often consisting of millions of entries and managed across

both on-chip and off-chip table resources [6]. To meet performance and cost requirements, caching

mechanisms are often employed. Caching a flow table using on-chip table resources preserve mem-

ory bandwidth and reduce latency, but introduces the complexity of effective cache management.

1.2 Software Defined Networking

Software Defined Networking (SDN) is an exploration into the formal separation of control

plane and data plane constructs. Motivations include commoditization of data plane hardware

(commonly referred to as whitebox switches), reconfigurable flexibility, and longer device life-

1

cycles through software updates and a third party network function application ecosystem. There

has been simultaneous resistance and desire to integrate SDN capabilities into networking devices

[7]. OpenFlow [8] is a recent effort towards standardizing abstractions and control protocols for

data plane manipulation. Abstractions introduced by this distributed model require careful engi-

neering to reduce associated overheads [9].

SDN has demonstrated utility, particularly as a diagnostic tool for complex network operations

[10]. The complexities inherent in customizing data plane processing is out of reach to all but

the largest enterprises. The complexity of the constructing SDN systems is notably higher than

that of the traditional systems [11]. In particular, it is difficult to verify data plane modification

do not result in unintended consequences [12, 13]. In practice, data plane programmability can

introduce data paths that violate protocol definitions and various expectation across networking

standards [14, 15, 16]. Moreover, SDN applications present unique safety challenges above and

beyond traditional programming language libraries and run-times [17, 18, 19, 20].

1.3 Packet Classification

Packet classification is a fundamental component of networking hardware, generally growing

in complexity with network size [21]. It is well known that packet classification is expensive

and this is a well studied problem in the traditional network hardware domain [22, 23, 24, 25].

Complexity of packet classification remains a processing bottleneck, especially in the context of

SDN [26, 27].

Networking devices have a long history of highly specialized designs along with notable service-

based market segmentation. Partly due to the complexity of underlying protocols, but also intri-

cacies involved with ensuring a device meets reliability expectations. Researchers and enterprises

have long been experimenting with trade-offs of increasing the exposed programmability of net-

working devices. Specialized applications will continue to demand the ability to categorize, filter,

and manipulate flows in increasingly complex ways.

As network reachability and uptime becomes increasingly crucial to modern infrastructure and

safety, it is necessary to develop architectural techniques to reduce the impact of Denial-of-Service

2

(DoS). Not limited to hosted services, underlying network infrastructure is also often vulnerable

to DoS [28].

Non-uniform processing requirements are a prime target for DoS. Packet classification is in-

herently complex with variable processing requirements. Worse yet, Access Control Lists (ACLs)

tend to be focused around allow lists with unauthorized traffic tending to require full ACL traversal,

opening the door for DoS attacks on classification. Accordingly there is a critical need to explore

architectures that can improve the resilience of networks.

Switching and routing functions are a backbone of all networks; however, an increasing number

of network functionality requires tracking flow state for transiting connections. Modern stateful

firewalls, security monitoring devices, and corporate edge services rely on efficient implementa-

tions of stateful flow tables. These flow tables often grow much larger than can be expected to

fit within on-chip memory, requiring a managed caching layer to meet capacity and performance

requirements [29]. Depending on the network function and performance target, the flow table and

caching layers may be distributed across both hardware and software components. Complicating

observability, this caching layer is often obfuscated and embedded between the logical control and

data plane layers [30].

1.4 Dissertation Statement

Hardware techniques leveraging temporal patterns can be used to improve the performance

and reliability of packet processing architectures.

1.5 Contributions

In this dissertation we examine how stochastic and speculative hardware techniques can be

used to further leverage temporal locality in order to improve performance over existing network-

ing hardware. The goal of this research is to improve the performance and reliability of packet

processing systems through architectural techniques.

The contributions of this dissertation are summarized as follows:

i. Novel use of a stochastic data structure to decouple the impact of malicious packets on estab-

3

lished flows.

ii. Design and evaluation of a DDoS mitigation strategy to protect classification pipelines with

non-uniform execution paths.

iii. Flow table cache management limit study using Belady’s MIN on CAIDA network exchange

traffic.

iv. Application of the Hashed Perceptron binary classifier to network flow table cache manage-

ment.

v. Iterative approach to feature selection and ranking in the context of Hashed Perceptron binary

classifiers.

vi. Discussion of feature roles, granting further perspective into the dynamics of a Hashed Per-

ceptron binary classifier.

1.6 Dissertation Organization

Chapter 2 introduces Stochastic Pre-Classification, an architectural technique to harden net-

work functions against Distributed Denial-of-Service (DDoS). Chapter 3 advances stateful flow

table cache management, introducing Flow Correlator, a feature-driven temporal flow activity

prediction mechanism. Finally, Chapter 4 wraps up this dissertation reviewing conclusions and

notable future work.

4

2. STOCHASTIC PRE-CLASSIFICATION*

2.1 Introduction

Packet classification is a fundamental component of network hardware. Generally, the problem

of packet classification expands in complexity as the number of rules grow. For example, typical

firewalls have access control lists (ACLs) with thousands of matching rules. It is well known that

packet classification is expensive and this is a well studied problem in the traditional network hard-

ware domain [23, 24, 22]. With the move to Software Defined Networking (SDN), the complexity

of packet classification is expected to grow dramatically due to the increased number of matching

fields, the push to support a large number of features, and the larger degree of flexibility that SDNs

encompass. While brute force hardware approaches, such as techniques that leverage ternary con-

tent addressable memories (TCAMs), can be used to improve the throughput [2], these approaches

incur significant costs and result in increased power consumption.

Increasing packet classification complexity in turn increases data planes’ vulnerability to De-

nial of Service (DoS) and, in particular, Distributed Denial of Service (DDoS) attacks. Malicious

packet flows, such as those seen during a DDoS attack, interfere with authorized flows by consum-

ing valuable data plane resources. Accordingly there is a critical need to explore architectures that

can decouple the impact of potentially low throughput malicious traffic from high throughput au-

thorized traffic in SDN data planes. This malicious traffic may consist of multiple well coordinated

flows that come from a potentially large number of sources and can cause significant disruption (in

terms of latency and packet loss) of the authorized traffic.

The goal of this chapter is to improve the throughput and latency of packet classification for

known/authorized traffic within the SDN data plane. The main idea is to pre-classify known au-

thorized traffic in SDN data planes, separating them from unknown or malicious traffic, thereby

reducing the impact of malicious traffic on known flows.

*©2014 IEEE. Reprinted, with permission from, L. McHale, J. Casey, P. V. Gratz, and A. Sprintson, "Stochastic
Pre-classification for SDN Data Plane Matching", 2014 IEEE 22nd International Conference on Network Protocols,
October 2014 [31].

5

 0

 5

 10

 15

 20

 25

 30

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M 1.4M

M
ill

io
n
 P

a
ck

e
ts

Flow # (sorted)

Figure 2.1: Cumulative Distribution of Packets per Flow*

Sorted CDF of packets (y-axis) associated with each flow (x-axis) for CAIDA trace
equinix-sanjose.dirA.20120119-125903.

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

As a means to accelerate packet classification, we propose to leverage the locality of known,

authorized flows to enable a pre-classification stage within the SDN data plane. For example,

Figure 2.1 is a Cumulative Distribution Function (CDF) of packets per flow from a one minute

CAIDA trace [32]. The CDF shows a non-uniform distribution of packets amongst flows, with a

small subset responsible for a majority of the traffic. Specifically, just 3% of flows are responsible

for approximately 80% of packets observed. Additionally, in just 35% of flows, 95% of all packets

are covered; meanwhile, the remaining 65% of flows contribute to only 5% of the observed packets.

There is significant locality to be leveraged in packet classification. Some traditional ap-

proaches to accelerating packet classification, such as ACL caching [21, 33, 23] leverage this

locality, however these approaches are truly able to decouple the effects of highly defuse mali-

6

cious traffic as seen under DDoS attacks. To address these challenges, we propose to use a Bloom

filter [34] as a hardware pre-classification stage, improving on a prior software implementation

[35].

Our goal in this work to enable a decoupling of known authorized traffic from unknown and/or

malicious traffic within the SDN data plane. The contributions of this chapter are as follows:

i. Novel use of a stochastic data structure to decouple the impact of malicious packets on estab-

lished flows.

ii. A combined architectural approach that protects established flows from DoS/DDoS.

iii. Design and evaluation of a DDoS mitigation strategy to protect classification pipelines with

non-uniform execution paths.

iv. A simulation study to evaluate the dynamics of an SDN data plane under attack.

The remainder of the chapter is organized as follows: Section 2.2 discusses the background

on hardware data planes for use in SDNs. It also examines prior work in packet classification.

Section 2.3 introduces our proposed hardware design. Section 2.4 evaluates our design for its

ability to achieve our goal of decoupling malicious traffic’s effect on known good traffic. Finally,

in Section 2.5 we present conclusions and directions for future research.

2.2 Background

In this work we start with a baseline OpenFlow data plane architecture and explore design per-

mutations focused on improving overall data plane performance while under heavy and potentially

malicious traffic. The baseline OpenFlow architecture and protocols are maintained by the Open

Networking Foundation [8]. These specifications outline semantics for an abstract packet process-

ing machine. While these documents are not precise, they have been successful in outlining a basic

packet processing pipeline along with a control interface for manipulating the pipeline’s state.

7

Switch

packet packetPacket
Arrival

Key
Extraction

Table
Selection

Flow
Selection

Action
Application

packet

Figure 2.2: OpenFlow Data Plane*

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

2.2.0.1 OpenFlow

OpenFlow describes a simplified data plane for packet processing, this data plane pipeline is

pictured in Figure 2.2. Packet processing happens in five stages. The first stage, packet arrival, is

concerned with writing a packet to memory and sending certain bits of metadata about the packet

into the pipeline such as: address in memory, packet size in bytes, arrival port id, etc. The second

stage involves decoding enough of the packet’s header to construct a key. The packet key is a

tuple formed from a subset of packet header fields. The third stage, table selection, selects the

appropriate flow table for indexing the packet’s key. The first time a packet transits the pipeline, it

always selects the first flow table; however, subsequent traversals can choose different tables. The

fourth stage, flow selection, will use the packet’s key to choose a specific entry in the flow table.

The entry will contain a policy, or set of actions, to be applied to all matching packets. Finally, the

fifth stage applies the selected policy to the packet. This could result in the modification of data

within the packet, copying the packet, traversing the pipeline again, directing the packet towards

the controller, or egressing the system.

2.2.1 Packet Classification

Packet classification is a fundamental activity in the core of any packet processing data plane.

The basic process of classification involves forming a key that represents a packet and finding an

entry in a classifier table that matches. The key is formed by extracting a set of values from a

packet’s protocol header fields. These values are concatenated to form a bit string that represents

8

the packet. Classifier tables usually match the key bit string against a pair of bit strings, where

the first element of the pair is a value to be matched and the second element masks bits that are

important to the table entry.

There are several techniques for addressing matching problems: hash tables, tries, hierarchical

tries, etc. [23, 36], but once you move to two or more dimension prefix bit string matching solutions

become expensive in terms of time or memory. Varghese [36] provides a comprehensive survey

of the classification problems as well as approaches for their solution. For our discussion we

are interested in software and low cost hardware solutions, which are likely constraints on low cost

pervasive networking devices supporting SDN protocols. To further complicate the problem certain

types of attack traffic can drastically reduce the performance of the classification stage in a data

plane pipeline. The simple reason is that DoS/DDoS traffic cannot be classified as malicious until

the classification activities have completed. Attackers have shown their ability to generate large

volumes of attack traffic, in excess of 300 Gbps, congesting major Internet links [28]. Performing

multidimensional classification in software is expensive, therefore it would be highly desirable to

prevent malicious traffic from consuming classification resources.

2.3 Design

In this section, we describe a phenomenon inherent in network traffic. We further suggest two

techniques that provide unique advantages to classification.

2.3.1 Motivation

Network packet classification is difficult, in part, due to the inherit randomness in packet arrival.

In order to ensure no packets are discarded during classification, the network node must be able to

process all packets at line rate. However, there are many circumstances where this is not possible

due to classification complexity, throughput requirements, and available computational capability.

2.3.1.1 Pre-Classification

Our goal is to treat classification as a finite resource and prioritize packets for classification

based on whether or not the packet belongs to a known, trusted flow. By partitioning incoming

9

miss

hit

Flow
Cache packetTable

Selection
Flow

Selection
Action

Application

packet

packethit

miss

Priority
Scheduler

Bloom
Filterpacket Key

Extraction

Known Flows

Unknown Flows
update

update

Hi
Lo

Figure 2.3: Resilient Classification Data Plane*

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

packets thus, we isolate the consumption of classification resources from malicious traffic. We

propose to place a pre-classification stage before flow selection in the SDN data plane. The aim of

this pre-classification stage is to leverage the locality in known, authorized flows in order to isolate

performance of known flows from adverse effects caused by large bursts of unknown traffic.

2.3.1.2 Flow Locality

Within a period of time, old flows retire and new flows are established. The number of active

flows, while highly variable, is finite and at worst equal to the number of packets. However, the

number of flows is often much less than the total number of packets. This trend can be observed

in Figure 2.1. Over this particular trace, there exists 1.4 million unique flows contained within

27.3 million packets – an order of magnitude difference in flow count versus packet count. When

looking at received bytes, 95% of the aggregate throughput occurs from just 35% of the 1.4 million

flows. We refer to this phenomenon as flow locality. We further define the active-flow window as a

measure of flow locality over a given period of time. In this work we leverage flow locality within

the given active-flow window to improve classification throughput via active flow action caching.

We propose to leverage both pre-classification and flow locality in our proposed design. As

we will show in our results, techniques that take advantage of these properties provide orthogonal

benefit and their effect is additive.

10

2.3.2 Architecture

Figure 2.3 depicts the block diagram of our general architecture for an OpenFlow data plane

which leverages both pre-classification and flow locality. As shown, the OpenFlow abstractions

from Figure 2.2 exist in this design as well. Differing from Figure 2.2, we first note that packets

are partitioned by the Bloom Filter into two queues: Known Flows and Unknown Flows – corre-

sponding to the desired pre-classification traffic classes. These flows are scheduled for processing

in the remainder of the data plane by the Priority Scheduler, with Known Flows always processed

ahead of Unknown Flows (i.e., packets in the Unknown Flows queue will wait for processing until

no packets remain in the Known Flow queue). The final addition to this data plane is the Flow

Cache, which exploits flow locality within the active-flow window to cache the desired actions for

a given flow. The remainder of the data plane correspond to the baseline architecture of Figure 2.2.

We now discuss each of the proposed components in detail.

2.3.2.1 Flow-Identifiers and the Bloom Filter

The Bloom Filter [34], a constant time stochastic containment data structure, is the critical

component enabling quick and efficient pre-classification. Bloom Filters are a well-known, space-

efficient, data structure which approximates the behavior of a conventional hash table for testing

whether an element is within a set. In hardware, Bloom Filters store up to 10X more elements in

the same space, and/or are many times faster to access than a traditional hash table. In our proposed

design, the Bloom Filter serves as a space-efficient container to track flow identifiers. The Bloom

Filter provides the ability to quickly and arbitrarily segregate packets, effectively decoupling flows

into two logical partitions – Known Flows and Unknown Flows. Once incoming flows have been

partitioned, they are fed into two different queues prior to proceeding through the rest of the data

plane. The Known Flows queue has a higher priority than the Unknown Flows queue, decoupling

classification performance of known flows from the effect of potentially large numbers of packets

from previously unclassified, unknown flows.

In a standard SDN data plane, a unique key is extracted from the incoming packet to be used

11

in packet classification. Typically, this key is then directly used by the Table Selection and Flow

Selection stages, shown in Figure 2.2 to classify the packet. Here, we use this key first as input to

the Bloom Filter stage, as shown in Figure 2.4.

eth.src

eth.dst

eth.type

eth.vlan_id

eth.vlan_p

ipv4.tos

proto.field

Key

...

next
stage

key

Table

Hash Lookupidx

seed

Table

Hash Lookupidx

seed

Table

Hash Lookupidx

seed

Bloom Filter

key

key

key
member

member

member

1

1
2
n

2

n

1

2

n

1

2

n

1

2

n

Figure 2.4: Bloom Filter Stage*

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

To map an arbitrary k-bit tuple (Key) to a w-bit flow identifier used by both the Bloom Filter

and Flow Cache stages, the Key is reduced using an XOR tree as the hash function (Hashn). Each

of the n XOR trees fold the k-bit Key into a w-bit flow identifier, where w is log2 of the Bloom

Filter table size. Each w-bit flow identifier is then XOR’ed with a w-bit random number (seedn)

to obfuscate the hash, resulting in the Bloom Filter table index (idxn). On every clearing interval,

each seed is refreshed with a new random number.

In order to avoid n read/write ports on a single table, the Bloom Filter’s table is split into n

12

sets. Each set is managed by a single hash function. The resulting membership is simply the logical

AND of the memberships determined by each set. Even though each hash performs essentially the

same operation (reducing the k-bit Key to a w-bit flow identifier), the XOR combination must be

unique to reduce collisions caused by compression.

In order to design a sufficient XOR tree, the binary entropy was analyzed for each bit in the

Key over the length of the trace. In general, binary entropy decreases from LSB to MSB of IP and

Port fields. The payload type field offers less entropy to the Key since the bits are highly correlated

due to the popularity of IPv4 and UDP protocols.. The relative entropy of each bit in the Key may

vary depending on the type of network traffic. In order to increase the entropy of the resulting

flow identifier, the XOR tree was constructed to avoid the chance of combining bits that are highly

correlated.

We segregated the bits from the Key (sorted by measured entropy) into w-bit levels. The order

of the w bits within each level was randomized for each of the n hashes at design time. Finally, each

of the w flow identifier bits is the column compression (XOR) through each level. This effectively

randomizes the stride and reduces the chance of combining bits that are highly correlated.

Bloom Filters are stochastic data structures which have a low, but non-zero probability of false

positive matches. In our design, false positives indicate the associated packet is falsely classified

as known. Too many false positives will diminish the benefits of decoupling known flows and thus

can lead to some performance degradation should the occurrence be too high. The probability of

false positive classification increases as more items are added to the Bloom Filter. To ensure that

false positive probability remains low, our design clears the Bloom Filter after ICLR insertions.

After clearing, the Bloom Filter must effectively relearn the locality of flows, thus the clearing

interval ICLR must be infrequent enough to reduce the likelihood of cold misses, yet frequent

enough to reduce the likelihood of false positives. Real-time monitoring of false positives within

the data plane is possible, however we simply use a pre-determined constant clearing interval. In

our prior work involving exploration of a software-implemented Bloom Filter in a Linux system

[35] showed that simply cold clearing is effective, but more intelligent clearing mechanisms are

13

possible.

2.3.2.2 Flow Locality and the Flow Cache

As discussed in Section 2.3.1 and demonstrated in Figure 2.1, within typical packet traces there

exists a high degree of flow locality. Our design leverages this flow locality with the Flow Cache,

shown in Figure 2.3. Here, the purpose of the Flow Cache is to cache the actions to be performed

upon a given flow, reducing the burden upon the Table Selection and Flow Selection stages of the

SDN data plane. In our design, the Flow Cache is indexed with the same flow identifier used to

index the Bloom Filter stage (i.e., w-bit identifier, XOR’ed down from the k-bit flow key). To

ensure a deterministic match, each entry in the cache contains a full k-bit key for definitive tag

match against the flow in question, together with a 32-bit “action” field for storing a pointer to the

action-set associated with that flow entry.

2.3.2.3 Bloom Filter Flow Learning

Here we proceed to describe the learning process for unknown flows. After key extraction,

the packet is first checked against the Bloom Filter. When a miss occurs from the Bloom Filter,

the packet enters the Unknown Flows queue. When no packets are currently in the Known Flows

queue, the packet is then searched for in the Flow Cache (note, while it is unlikely that a flow

would match in the Flow Cache after missing in the Bloom Filter, it is not impossible given the

clearing interval ICLR of the Bloom Filter and the Flow Cache replacement policy). Assuming no

match in the Flow Cache, the packet then proceeds through the Table Selection, Flow Selection,

and Action Application stages for packet classification and action-set application.

The update path to the Bloom Filter and Flow Cache can potentially be definable by the ap-

plication. Applications could decide that certain flows should not be pre-classified using a pre-

classification bit and/or cached using a cacheable bit.

Additionally, a cacheable or priority instruction could be integrated to offer more fine-grained

control. Upon classification, the Action Application stage may prioritize the flow by inserting

it into the Bloom Filter and/or improve classification performance by inserting it into the Flow

14

Cache. Once the flow has been prioritized, all future packets matching the flow-identifier are

pre-classified are then forwarded to the Known Flow queue. The action execution stage may also

choose to process the packet without updating the Bloom Filter/Flow Cache selectively or only

after a threshold is reached. While we always update the Bloom Filter and Flow Cache for every

flow in our test application, configurable behavior may be desirable for low-throughput or low-

priority flows.

2.4 Evaluation

In this section we first describe our experimental methodology and design implementation

details. We then examine the performance of our design for varying combinations of malicious

traffic and interface speeds.

2.4.1 Methodology

All experiments presented were modeled using a cycle accurate SDN data plane simulator

developed in-house. SDN data plane models were developed for the following architectures:

• Baseline: Basic data plane architecture shown in Figure 2.2.

• Partition+Caching: Proposed architecture shown in Figure 2.3.

• Partition: Data Plane architecture with Bloom Filter and Priority Scheduler stages, but no

Flow Cache.

• Caching: Data Plane architecture with a Flow Cache stage, but no Bloom Filter and Priority

Scheduler.

Table 2.1 shows the microarchitectural implementation details for the designs under test (except

where noted elsewhere). The Bloom Filter and Flow Cache sizes and clearing interval were set at

the size empirically determined to be the point of diminishing returns in performance benefit. The

data plane frequency was set to be equal to the access time of the slowest memory array defined

within the system as determined by the SRAM array modeling tool, Cacti [37].

15

Data Plane Frequency 2 GHz
Data Plane Queue Depth 2 high, 2 low

Bloom Filter Size 320Kb (5 arrays, each 64Kb)
Bloom Filter Clearing Interval (ICLR) 60K insertions

Flow Cache Size 69Kb (512 138-bit entries)
Flow Cache Organization 2-way set associative, LRU

Flow Selection 8,000 entries

Table 2.1: Summary of Pre-Classification Architecture*

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

The workload examined here consists of captured traffic through an internet core switch pro-

vided by CAIDA [32]. These traces were captured on a 10 Gbps line card with a median 3 Gbps

throughput during a 60 second time window. For privacy reasons, the trace was anonymized by

CAIDA. The the associated ports, protocols, and relative flows were left intact. In order to observe

how each architecture scales with throughput requirements, the packet-arrival time was expanded

or compressed linearly to emulate 1 Gbps, 40 Gpbs, and 100 Gbps line cards.

For flow classification, using the CAIDA trace, we synthesized a set of eight-thousand clas-

sification rules utilizing protocol, IP, and port fields for both source and destination. In these

experiments, the only action was either accept or drop, emulating a basic firewall application. To

generate the rules we implemented a heuristic rule generator to synthesize a set of rules (8,000 in

this case) for an arbitrary PCAP trace with a target rate of authorized (Totalauth) versus unautho-

rized (Totalreject) traffic. The generator distributes matches evenly across all 8,000 rules (as much

as possible). Rule sets were generated for the following three scenarios (labeled accordingly in the

experimental figures):

• 95% authorized traffic: representing a network in nominal conditions.

• 60% authorized traffic: representing a network with a high ratio of unauthorized traffic.

• 20% authorized traffic: representing a network under a DDoS attack.

16

2.4.2 Experimental Results

In this section, we compare the three classification architectures, Partition, Caching, and com-

bined Partition+Caching, against a baseline SDN data plane configuration. We evaluate the effect

of each approach on data plane performance by analyzing throughput, mean latency, and jitter

(mean standard deviation of latency) for a range of interface speeds and authorized to unautho-

rized traffic ratios.

2.4.2.1 Classification Throughput

Figure 2.5 shows classification throughput for each architecture. Here, throughput is measured

as authorized packets accepted (Acceptedauth) normalized against the total number of authorized

packets (Totalauth). Throughput is normalized to indicate the ratio of authorized packets that were

classified and not dropped. Normalizing allowing comparing throughput across each attack sce-

nario.

Generally for interface speeds above 10 Gbps, the baseline classifier is no longer able to keep

up with the packet arrival rate. Since baseline is indiscriminately dropping packets, the throughput

is further reduced proportional to the ratio of adversarial traffic. The effect of each architecture is

revealed as the classifier is further stressed with 40 Gbps.

Interestingly, we find that both architectures which contain pre-classification (Partition and

Partition+Cache) actually achieve higher relative throughput when the volume of unauthorized

traffic is high as opposed to nominal (i.e., 95% authorized). This is as opposed to the Baseline and

Cache architectures where a higher ratio of unauthorized traffic leads to worse throughput. This

highlights the pre-classifier’s effective quality of service toward known flows.

Generally, in the figure we see that the Caching architecture provides a significant boost to

classification throughput over baseline. Similar to the baseline architecture, throughput is reduced

proportional to adversarial traffic. By combining both components, the Partition+Caching ar-

chitecture leverages the benefits of both pre-classification and flow locality to provide consistent

classification throughput in both nominal and adversarial network conditions. In addition, the Par-

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 10 40 100

N
o
rm

a
liz

e
d

 T
h
ro

u
g

h
p

u
t

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Figure 2.5: Measured Throughput*

Throughput of Acceptedauth normalized to Totalauth for each classification architecture.

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

tition+Caching architecture scales much better compared to the baseline as interface speed, or

similarly, classification requirements increase.

2.4.2.2 Classification Latency

Figure 2.6 shows the mean latency through the SDN data plane for each of the architectures

evaluated. In the figure we see that the latency results roughly map to the throughput results

above. Generally, the data plane becomes stressed at 10 Gbps and saturated at 40 Gbps. Notice

the Partition architecture behaves identical to the baseline when queues are rarely full (1 Gbps);

however, the Partition mechanism maintains consistent behavior at 10 Gbps even when classifier

resources are stressed.

18

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 10 40 100

M
e
a
n
 L

a
te

n
cy

 (
µ

s)

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Figure 2.6: Measured Latency*

Mean Latency of Acceptedauth for each classification architecture compared to baseline.

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

The increase in mean latency for the Partition architecture under nominal traffic conditions is

caused by a longer delay-until-service for authorized packets in the unknown flow queue. The

Partition+Caching architecture is able to achieve a consistent average latency, even when faced

with adversarial traffic.

2.4.2.3 Classification Jitter

Figure 2.7 shows the latency jitter (i.e., Standard Deviation of Latency) for each architecture.

While the Partition architecture provides increased protection from DDoS attacks, it shows some

increase in jitter, due to the priority mechanism. Note that jitter here is averaged across all flows and

the increase is caused by the longer time-to-service of packets in the unknown flow queue. Once

19

 0

 5

 10

 15

 20

 25

 30

 35

1 10 40 100

Jit
te

r
(µ

s)

Interface Speed (Gbps)

Baseline - 95%
Baseline - 60%
Baseline - 20%

Caching - 95%
Caching - 60%
Caching - 20%

Partition - 95%
Partition - 60%
Partition - 20%

Partition+Caching - 95%
Partition+Caching - 60%
Partition+Caching - 20%

Figure 2.7: Measured Jitter*

Mean Standard Deviation of Latency (Acceptedauth) for each classification architecture compared
to baseline.

*©2014 IEEE. Reprinted with permission from L. McHale, J. Casey, P. V. Gratz, and A. Sprintson [31].

the flow is learned, however, the flow’s jitter will be consistent with the Caching architecture.

The Partition+Caching architecture significantly reduces the observed jitter compared to the

Partition architecture; maintaining jitter comparable to the baseline. This self-metering attribute

of the Partition+Caching architecture allows the data plane to provide higher effective quality-

of-service to known flows, avoiding over-commitment of data plane resources in addition to and

improving performance overall.

We kept queue depth small to minimize the chance of packet reordering by the priority mech-

anism. While raw packet reordering could occur whenever a priority mechanism is implemented,

we observed zero actual packet reorders within a flow.

20

2.5 Summary

While SDN provides many advantages, their abstractions dramatically impact the design trade-

offs of network appliances and the underlying architectures. As the complexity of SDN appli-

cations increase, data planes are becoming more susceptible to DoS attacks which can result in

underlying network reliability and availability concerns. Thus, there is a strong need for data plane

architectures, particularly in the context of SDN, that continue to operate efficiently in the presence

of malicious traffic.

This chapter presents a novel approach to improve the consistency and reliability of SDN data

plane classification. We validated our approach by examining an SDN network firewall applica-

tion as a fundamental component to any security appliance. For this application, our architecture

dramatically reduces the impact of malicious flows on established, authorized flows.

While the motivation of this chapter is centered around SDN, the approach presented in this

chapter is general enough for flow-centric packet processing data plane architecture. Through

leveraging a probabilistic data structure to pre-classify flows, the proposed architecture was able

to decouple legitimate traffic from malicious traffic in the context of DDoS pressure. As a com-

plementary component to stateful flow table cache management, Pre-Classification was able to

reduce the impact of malicious traffic on a classification pipeline.

21

3. FLOW TABLE CACHE MANAGEMENT

3.1 Introduction

Caching is an important component of many network devices. Switching and routing functions

are a backbone of all networks; however, an increasing amount of network functionality requires

maintaining flow state for transiting connections. Modern stateful firewalls, security monitoring

devices, and software defined networking require maintaining stateful flow tables. These flow

tables often grow much larger than can be expected to fit within on-chip memory, requiring a man-

aged caching layer to maintain performance. This caching layer is often obfuscated and embedded

between the control and data plane layers.

The design-space of network devices is continually evolving with trade-offs in performance and

reconfigurability. A common architectural advantage of network processors is to provide hardware-

assisted table lookup extensions for both on-chip and memory-backed tables. Network functions

requiring large flow tables, often consisting of millions of entries, require managing both on-chip

and off-chip table resources. To meet performance and cost requirements, caching mechanisms

are commonly employed. Caching a flow table using on-chip table resources preserves memory

bandwidth and reduces latency, but introduces the complexity of effective cache management.

In processor microarchitecture, it has long been known that software inherently exhibits locality

that can be leveraged at run-time. Cache management for network flow tables has historically seen

less research interest than in processor microarchitecture. Insight into state of the art flow table

management tends to be particularly shrouded in proprietary implementations. Existing flow table

cache management heuristics are primarily based on the Least Recently Used (LRU) replacement

as well as explicit protocol-based bypass mechanisms.

3.1.1 Contributions

This chapter aims to explore if locality in network traffic can be leveraged with more advanced

cache management techniques. We review several modern cache management approaches in mi-

22

croarchitecture, highlighting our progress exploring flow table cache management. The contribu-

tions of this chapter include:

i. Flow table cache management limit study using Belady’s MIN replacement algorithm on

CAIDA network exchange traffic.

ii. First work to apply a Hashed Perceptron binary classifier to network flow table cache manage-

ment.

iii. Iterative approach to feature selection and ranking in the context of Hashed Perceptron binary

classifiers.

iv. Discussion of feature roles, granting further perspective into the dynamics of a Hashed Per-

ceptron binary classifier.

3.2 Motivation

To bring perspective to the objective metrics used in this chapter, Section 3.2.1 first describes

the significance of cache hit-rate to system performance. In order to understand the upper bound

on room for improvement to cache hit-rate, we start with an optimality study in Section 3.2.2.

Cacheable packet inter-arrival patterns and their timescales are further motivated in Section 3.2.3.

Section 3.2.4 reviews well known stack-based cache management algorithms. Limitations to tra-

ditional approaches adapted to caching in networking are outlined in Section 3.2.4.1. Finally,

we wrap up by introducing modern multi-perspective approaches to cache management using the

hashed perceptron binary classifier in Section 3.2.5.

3.2.1 Significance of Cache Hit-Rate

System architects need to understand the impacts and potential drawbacks of caching, including

estimations of processing latency and throughput. Caching allows mitigating slow-path process-

ing requirements by taking advantage of locality. The actual performance benefit of a proposed

caching implementation depends on the ability to capture the effective working set available in

23

the workload. It is important to quickly assess the potential expected performance improvement

granted by a proposed caching architecture.

APPT ≈ AMAT = Tfast +MissRate× Tslow (3.1)

Equation 3.1 rephrases average memory access time (AMAT) to approximate the sensitivity

of cache hit-rate on average packet processing time (APPT). As accumulated packet processing

effort roughly tracks processing latency, APPT can be approximated through a first-order process-

ing latency estimation. In the context of packet processing, Tslow represents the average latency

(or effort) exerted while traversing the slow-path. Tfast represents the average latency (or effort)

consumed when a cache hit enables fast-path processing. It is expected that the processing ef-

fort between fast and slow paths could be an order or two apart – further motivating the desire to

maximize cache hit-rate.

The wide verity of stateful network functions as well as packet processing architectures make it

difficult to settle on a specific known ratio between Tfast and Tslow. For simplicity, this first-order

sensitivity estimation is scoped to a single data plane packet processing slice. A more detailed

analysis approach may be needed to take into account intricacies of parallel processing pipelines.

As is common in processor microarchitecture cache management, small percentile average hit-

rate improvements often translate into notably significant ten-percentile performance gains. While

the sensitivity estimation is ultimately left to the designer, it is conceivable that single-digit hit-rate

improvements presented in this chapter may translate to a multiple-digit performance speedup for

stateful network functions reliant on caching.

3.2.2 Cache Optimality Study

Originally developed to study optimal page replacement for virtual memory systems, Belady’s

Minimal page replacement algorithm (MIN) has been applied to cache replacement in processor

microarchitecture [38, 39, 40]. Belady’s MIN algorithm effectively orders the replacement stack

by next furthest access, maximizing cache hit-rate.

24

Outside of a few specialized domains with bounded working sets or known access patterns, an

optimal replacement ranking is usually impractical to build in hardware. Unpredictable random

events will be capturable by MIN, but elusive to practical implementations which rely on pattern

history. As an upper bound, Belady’s MIN provides useful insight to cache replacement as well as

potential headroom to improve cache hit-rate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4k 4k 8k 8k 16k 16k 32k 32k 64k 64k

LRU MIN LRU MIN LRU MIN LRU MIN LRU MIN

Hits Miss (Capacity) Miss (Compulsory)

Figure 3.1: Belady’s MIN Optimal Replacement

Fully associative flow table cache hit-rate simulation. CAIDA Equinix Sanjose January 2012
dataset.

Figure 3.1 shows the cache hit-rate for both the oracle Belady’s MIN algorithm and a baseline

fully-associative LRU implementation. While compulsory misses (misses caused by new flows)

are unavoidable, MIN’s capacity misses are entirely limited by the cache capacity and not also

the replacement algorithm. The hit-rate delta between MIN and LRU is an upper bound to best

possible hit-rate improvement achievable by improving the cache management algorithms.

25

At 4k flow entries, LRU achieved 15.8% fewer hits relative to MIN, with 23.7% true capacity

misses remaining. This gap reduced to 7.2% fewer hits at 64k entries, with only 4.7% capacity

misses remaining. It is expected that there will always be a gap between realistic cache manage-

ment algorithms and oracle algorithms. However, the following sections aim to investigate the

potential for improvement.

This limit study suggests there might be a potential cacheable working-set [41] larger than

what LRU is able to capture. However, there is no guarantee that the gap between MIN and LRU

is practically achievable. Intuitively, MIN also confirms greater potential improvement as cache

size decreases. Section 3.4.3 further discusses the significance of hit-rate including the expected

impact on overall system performance.

3.2.3 Flow Patterns

While network traffic, particularly transport layer protocol behavior, is relatively well under-

stood and modeled [42]; we theorize that network flows also exhibit locality driven by program

phases on connection endpoints. Examples of side-channel attacks [43] further support inherent

end-host program behavior embedded within packet inter-arrival patterns.

Figure 3.2 showcases four hand-selected flows extracted from the 2012 Sanjose CAIDA dataset1

in order to showcase a few representative multi-modal patterns. These plots should be interpreted

not strictly as a linear time-series, but similar to a waterfall plot drawn across the x-axis, where the

y-axis is a probability density of delays between packets.

Clusters of packet inter-arrival below the approximate transport layer Round Trip Time (RTT)2

can be considered packet bursts. Similarly, inter-arrival delays around RTT can be roughly at-

tributed to short-term transport-layer behavior. Finally, inter-arrival delays far exceeding RTT

processing are likely attributable strictly to application level behavior, with an upper bound on

flow keep-alive3 delays.

1CAIDA Equinix Sanjose January 2012 pcap trace: equinix-sanjose.20120119.
2RTT is a measure of round-trip latency between two end-hosts – commonly on the order of 10ms to 100ms for

Internet traffic.
3Keep-Alive is a common transport-layer timeout concept, primarily used to ensure a dormant flow remains tracked

in stateful Flow Tables – usually on the order of seconds.

26

0 5000 10000 15000 20000
1000

104

105

106

107

108

109

packet 

in
te
r-
ar
riv
al

(n
s)

0 1000 2000 3000 4000 5000 6000 7000
1000

104

105

106

107

108

109

packet 

in
te
r-
ar
riv
al

(n
s)

(a) (b)

0 5000 10000 15000
1000

104

105

106

107

108

109

packet 

in
te
r-
ar
riv
al

(n
s)

0 2000 4000 6000 8000 10000 12000 14000
1000

104

105

106

107

108

109

packet 

in
te
r-
ar
riv
al

(n
s)

(c) (d)

Figure 3.2: Interesting Packet Inter-arrival Patterns by Flow

The log-scale y-axis shows inter-arrival delay between packets (in nanoseconds), while the x-axis
is packets since start of the flow.

While packet inter-arrival are inherently noisy, these flows appear to exhibit potential pre-

dictable, modal, almost cyclic patterns. We theorize that the large discrete shifts in packet inter-

arrival delays are driven by end-host application behavior and are not simply transients in network

conditions. In the context of cache management, these shifts in application behavior most no-

tably impact packet burst duration and inter-frequency. Here we aim to explore whether there are

cacheable patterns above what the canonical LRU replacement policy is able to identify.

3.2.4 Stack-based Algorithms

Cache management algorithms that maintain ranked order for replacement or insertion are for-

mally referred to as stack-based algorithms. The Least Recently Used (LRU) algorithm intuitively

maintains a replacement stack ordered by last access time. Specifically, LRU is analgous to Be-

27

lady’s MIN reversed in time – ranking past instead of future accesses. Ultimately, LRU is effective

when past history leads to a good prediction of the future.

LRU assumes reuse is always likely, inserting all new items in the most-recent position. Adap-

tive insertion policies such as Dual Insertion Policy (DIP) [44], allow insertion into either the top

or bottom of the LRU recency stack. DIP is similar to bypassing the cache entirely, but does grant

the demoted insertion a chance to become promoted. Adjusting the promotion/demotion logic of

LRU can improve cache efficiency in the context of unequal probability of reuse [45].

Replacement policies based on reference counts have proven useful as a means to capture

temporal patterns. Cache Bursts [46] introduced both RefCount and BurstCount as mechanisms

estimate reuse predictions from cache entry hit counters. Reference interval counting mechanisms

continue to be researched and improved, leading to Re-Reference Interval Prediction (RRIP) [47]

and Signature-based Hit Predictor (SHiP) [48].

Branch prediction research has long been combining multiple information sources, leading to

mechanisms to combine or prioritize multiple predictors. The TAGE predictor is similarly able to

combine multiple predictions in a ranking mechanism to select a most likely accurate prediction

[49]. While the Hashed Perceptron mechanism has been steadily gaining momentum as a robust

means to consider multiple potentially indicative features together as a whole [50, 51].

The Hashed Perceptron technique originated in branch prediction, but has been successfully

applied to cache management [52, 53, 54, 55]. Recent research has also leverage the Hashed

Perceptron structure as a filtering mechanism to improve prefetching quality [56]. Similar efforts

towards prefetching filtering were also accomplished using Bloom Filters [57].

Several research efforts have applied offline deep learning techniques towards cache replace-

ment [58]. Similarly, Hawkeye [59] leveraging a time-delayed belady’s min algorithm as an online

replacement prediction feedback mechanism.

3.2.4.1 Preliminary Exploration

In processor microarchitecture, access patterns are constantly shifting, depending on program

behavior. Similarly in networking, flows also exhibit modes of operation depending on the protocol

28

transport layer as well as end-host program phases. In the context of a flow table cache replacement

policy, LRU does a decent job capturing short-term packet bursts. However, LRU’s ranking can

also be polluted by dormant, low-bandwidth flows competing for cache resources. LRU has no

way to differentiate reuse probability, treating all flows as equally likely.

The insertion policy is especially critical to flow table cache management due to the short

lifetime of most flows. Most flows are short lived with the majority of bandwidth attributed to a

small subset of flows [60]. However, it is particularly challenging to predict which flows will be

short lived early in the flow life-cycle.

Inspired by prior works in CacheBursts [46] and SHiP [48], cache entry hit counters seemed

well suited as a means to track packet bursts. However, early attempts at leveraging CacheBursts

and SHiP directly as cache management strategies resulted in performance degradation compared

to baseline LRU implementations when applied to flow table cache management. That said,

CacheBursts ended up being a notably informative feature component in our proposed final de-

sign.

Our single-perspective cache management approaches were not able to outperform LRU re-

placement when applied to managing flow tables. Packet arrival variability inherent in networking

adds significant noise to simple pattern predictors such that simple predictor tables alone could

not outperform a baseline LRU implementation. It became evident that a more robust pattern

correlation mechanism is needed to rank reuse probability amongst noisy inter-arrival patterns.

3.2.5 Hashed Perceptron Binary Classifier

The Hashed Perceptron binary classifier has been successfully used in processor microarchitec-

ture as an approach to improve cache management heuristics. While research on how to integrate

and apply this prediction technique has extended over a decade, the technique is now being shipped

in modern processors in recent years.

Much like modern machine learning approaches, the Hashed Perceptron improves overall reuse

prediction quality by combining multiple predictive features into a singular weighted prediction.

While conceptually similar to perceptrons in a single-layer neural network, the Hashed Perceptron

29

has the significant advantage of being efficient to implement in both hardware and software. The

Hashed Perceptron is also paired with an adaptive training technique to adjust to changing run-time

behavior.

Differing from a traditional Perceptron model which scale analog values, requiring integral

meaning for each perceptron input. The Hashed Perceptron is able to map disjoint binary inputs

to a corresponding correlation using the feature’s table. The correlation output can be interpreted

as an integral value, expressing a historical correlation of a particular feature to the inference

question at hand. During inference, combining multiple features’ independent correlations result

in a strengthened overall prediction.

The processor microarchitecture community has demonstrated the Hashed Perceptron is well

suited for reuse prediction, performing especially well in noisy multicore cache hierarchies. This

chapter outlines our exploration into adapting the Hashed Perceptron mechanism to flow table

cache management.

Our early exploration discovered that relying on any single feature is fragile, especially when

applied to network flow table cache management. Traditional single-feature approaches failed to

surpass the consistent performance of LRU when applied to network caching. The variety of traffic

patterns encountered in network cache management demands a general approach to consistently

approximate a good working set.

Caching will continue to be a fundamental component of network data planes as a means to

amortize costly control path decisions. The trend in networking to support programmability of

generic network functions increases control path complexity. Advances in cache management

strategies leveraged in modern processor microarchitecture are absent in the networking domain.

Clearly there is a gap between Belady and LRU, can we do better?

3.3 Design

One of the goals of this work is to explore a generalized approach to flow table cache manage-

ment. Stateful flow tables are core components in the classification pipeline for firewalls and edge

security devices. However, caching can be applied generically to any large table supporting a clas-

30

sification pipeline. While the focus of this chapter is on improving cache management for stateful

flow tables, the techniques we propose can be applied to assist any data plane table considered for

caching.

packet Key
Extraction packetTable

Selection
Flow

Selection
Action

Application

packet

Classification

Figure 3.3: Data Plane Classification Processing

Figure 3.3 portrays an abstract cycle of table selection, flow selection, and action application as

the underlying fundamental classification abstraction. Network functions are composed by chain-

ing multiple logical rounds of classification across relevant flow-state tables. Network functions

that also manipulate packets often also queue data plane and packet actions4. Fundamentally,

SDNs aim to expose table management and packet manipulation for a composable packet process-

ing pipeline.

Figure 3.4 shows a classification pipeline focused around a flow cache and a backing stateful

flow table. It is useful to reiterate that a stateful flow table often resides in off-chip memory due to

the number of concurrent flows tracked. Stateful flow tables are managed by the control plane and

a cache is often instantiated in the data plane to meet performance requirements. There are two

high-level scenarios encountered in stateful flow table management:

• New Flow: Requires classification and a new reservation in the stateful flow table.

• Existing Flow: Track flow state in relevant table entry for associated packet.

A flow cache and its management algorithm must then contend with three scenarios triggered

by incoming packets:
4OpenFlow specifies certain actions apply immediately, while others may be queued in an action-set with notable

complications.

31

hit
misspacket Key

Extraction packetFlow Cache

new flowClassification

Action
Application

fast path
slow path

existing flow

Stateful
Flow TableCache

Management

Figure 3.4: Flow Cache Management

• Compulsory Miss: New flow, not yet tracked in the stateful flow table.

• Capacity/Conflict Miss: Existing flow, not currently cached.

• Cache Hit: Existing flow, cached.

Cache management algorithms consist of two distinct components: the insertion and replace-

ment policy. A dynamic insertion policy may choose to bypass cache insertion if the flow is

predicted to have a low probability of reuse before eviction. In networking, bypassing flows based

on static protocol heuristics is somewhat common, for example ICMP messages. However, there is

additional opportunity for an insertion algorithm to bypass tracked flows that have a low probability

of cache reuse. Both bypass and early replacement require a means to estimate reuse probability.

Additionally, a dynamic replacement policy may choose to evict a cache entry earlier than a

static replacement policy otherwise would. Since static replacement policies grant all entries equal

opportunity for reuse, some flow entries are stuck waiting for eviction, taking up valuable cache

resources even when the probability for reuse is markedly lower. Dynamic replacement policy

with an early eviction mechanism provides an additional opportunity to improve cache efficiency

by removing stale entries sooner.

A packet without an associated flow table entry is considered a new flow, requiring classifi-

cation. Once the flow is classified, the a flow table entry is reserved and the cache management

32

algorithm may be consulted on whether to cache the entry (insert or bypass). From the perspec-

tive of the flow cache, new flows triggering classification are compulsory misses – an unavoidable

slow-path.

Once a flow is tracked by the stateful flow table, the classification pipeline no longer needs to be

consulted. However, the effectiveness of the limited cache resources is ultimately up to the cache

management algorithm. This design aims to minimize the cache misses encountered by existing

flows by exploring better cache management techniques.

Packets that encounter hits in the flow cache may simply update the cached flow table entry

without needing to access off-chip flow table resources. A more intelligent cache management

algorithm has the potential to significantly improve the flow cache hit-rate and thus data plane

processing performance.

The remaining section outlines the design details of the flow correlator mechanism. Apart from

design-time feature selection, the hashed perceptron flow correlation approach does not require

global weight training. The hashed perceptron feedback mechanism resembles an online training

technique, adjusting correlation tables dynamically at run-time.

The adaptation of hashed perceptron cache management as a flow correlation mechanism is

described in Section 3.3.2. As with many machine learning approaches, selecting useful Features

at design-time is non-trivial and requires artful exploration. Our approach to feature design and

metrics are covered in Section 3.3.3. Since feature selection consumed a majority of our effort

during design iteration, we developed an iterative optimization approach generically applicable

to tuning Hashed Perceptron based cache management. Section 3.3.4.2 describes this methodical

approach to approximating information gained by differential performance analysis.

3.3.1 Classifier Metrics

Early in feature exploration, we heavily leveraged average and standard deviations of both pure

and mixed features to help gain insight into input sparsity. However, simply analyzing input and

output distributions alone isn’t sufficient to distinguish predictive features.

Analysis of binary classification problems is well studied, applicable across many research

33

domains. The aptly named Confusion Matrix is commonly used to summarize the behavior of

binary-outcome systems. Table 3.1 depicts a common representation of a confusion matrix.

Predicted

Positive Negative

Positive True Positive False Negative
Actual

Negative False Positive True Negative

Table 3.1: Confusion Matrix

While simple ratio metrics are heavily used in certain domains, they aren’t sufficiently robust

for this work. Accuracy (Eq. 3.2) considers both positive and negative cases; however it is easily

swayed by even moderately unbalanced datasets. The F1 score (Eq. 3.3) is similarly unsuited as

it is essentially accuracy focused only on the positive set – used primarily as a positive detection

metric.

accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

F1 =
2TP

2TP + FP + FN
(3.3)

Matthew’s Correlation Coefficient (MCC) is a particularly useful metric to compare binary

classifier performance [61]. MCC (Eq. 3.4) is derived from Pearson’s correlation coefficient ap-

plied specifically to binary classification. MCC provides a balanced view of the confusion matrix,

reducing decision bias from skewing the perceived accuracy. Appendix A.1 provides further intu-

ition on the interpretation of MCC as defined in Equation 3.4

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.4)

34

As a correlation coefficient, MCC is bound between−1 and 1. A positive MCC indicates a cor-

relation to correct predictions; while a negative MCC indicates anti-correlation. An MCC near zero

indicates a weak correlation, hinting at a poor prediction confidence resembling a random process.

As MCC approaches±1, the predictor is deemed to have a relatively higher prediction confidence.

Ultimately MCC provides a balanced view of binary classifier performance, particularly useful

when operating within reasonable bias limitations [62, 63].

Predicted

Active Dormant

Active Active Correct (TP) Dormant Incorrect (FN)
Actual

Dormant Active Incorrect (FP) Dormant Correct (TN)

Table 3.2: Flow Correlation Confusion Matrix

To assist in subsequent sections, Table 3.2 specializes the confusion matrix around predictions

of flow activity in the context of cache management. Section 3.3.2.2 will connect each case in the

confusion matrix to the hashed perceptron training algorithm.

3.3.2 Flow Correlator Design

The hashed perceptron technique provides a structured mechanism to leverage multiple predic-

tion tables for improved overall accuracy and resiliency. The hashed perceptron training algorithm

plays a crucial role in keeping these predictor tables balanced across multiple features. Apart from

design-time feature selection, the hashed perceptron flow correlation approach does not require

global weight training. The hashed perceptron feedback mechanism resembles an online training

technique, adjusting correlation tables dynamically at run-time.

The hashed perceptron consists of correlation tables (feature tables) consulted during inference.

Each correlation table is indexed by a feature and contains saturating counters (weights) resembling

35

typical prediction tables. The Hashed Perceptron differs from single-perspective predictors by

combining the predictions from multiple feature tables to produce a final combined decision. The

magic of the hashed perceptron centers around the ability to manage multiple tables cohesively

using a prediction feedback mechanism (the hashed perceptron training algorithm).

Flow table cache management relies on accurately predicting reuse for a given flow. This

ultimately boils down to predicting packet inter-arrival patterns for each active Flow. More specif-

ically, predicting the likelihood of a subsequent packet arrival for a given flow within the relative

time window allotted by the cache’s working set.

The Hashed Perceptron mechanism is conceptually split into two phases: inference and rein-

forcement. Section 3.3.2.1 describes the process of generating a reuse prediction for every packet

arrival. Section 3.3.2.2 describes the Hashed Perceptron training algorithm as the basis for main-

taining prediction tables.

3.3.2.1 Inference

Cache management predictions are generated in real-time by the flow correlator inference

mechanism. Every packet event triggers an inference prediction for cache management, thus it

is crucial that inference is able to meet the packet processing requirement of the underlying design

target.

Cache management handles two scenarios depending on the cached state of the flow entry.

First, a flow cache miss triggers a cache management decision to insert or bypass the flow entry.

Secondly, cache management seeks to identify optimal scenarios for early eviction. An early

eviction, or conversely a reuse prediction, is performed on a flow cache hit. In both scenarios,

cache management consults flow correlation inference to estimate the likelyhood of flow entry

reuse relative to overall cache pressure.

Both predictions are essentially re-framing an underlying flow entry reuse prediction around

a relative ranking of flow activity. Thus, the flow correlator inference and training pipelines are

organized around the concept of active or dormant flows. Both bypass and early eviction share

table resources, interpreting positive table weights as likely to be active and negative weights as

36

likely dormant.

CN* [fN*]

W1,1
W1,2

W1,M

Feature Tables

...

predict active

Predict Dormant History

…

C1*f1*

≥
∑

<

W1,1
W1,2

W1,M

...

C2*f2*

fN* CN*

predict dormant

Predict Active History

…
decision
threshold

θ

ip.proto

layer4.port

tcp.flags

Feature 2

frameLength

burstCount

Feature 1

Feature N

…

Figure 3.5: Flow Correlator Inference

Figure 3.5 outlines the flow correlator’s inference pipeline. In order for cache management

to generate an inference, the feature components must first be gathered from the packet header

bitfields and the relevant flow table entry. Stateless protocol feature components originate from the

packet headers and are readily available by preexisting classification Key Extraction operations.

Stateful feature components (e.g. burstCount) are pulled from a cached flow table entry during a

cache hit, or simply zero during a cache miss.

Each assembled feature (fN∗) indexes into a corresponding feature table providing a mapping to

independent correlations (CN∗). The decision threshold (θ) is applied to the sum of each feature’s

correlation. Since θ is zero for this flow correlator design, the magnitude of the accumulated

correlations can be interpreted as a confidence and the sign represents the decision.

On inference, each feature contributes an opinion as a correlation count. The hashed perceptron

structure accumulates the correlations from all features, thresholding to create a reuse prediction.

The confidence of the feature’s opinion, can be inferred by the magnitude of the correlation count.

Similarly, the confidence of the overall prediction is the magnitude of all accumulated correlations.

37

Feature tables map a disjoint input feature-space to cache reuse correlations. Loosely resem-

bling a hash, features are often orthogonal combinations of several bit fields. These feature table

lockups are performed in parallel. Each feature table holds saturating correlation counters, com-

monly referred as weights. Each feature table’s length is 2m entries where m refers to the bit-width

of the corresponding feature assembly. The implementation requirements of each feature is then

simply w ∗ 2m bits, where w refers to the saturating counter bit-width.

Flow entries marked for early eviction by the flow correlation mechanism are in the cache, but

prioritized for replacement. When a flow entry needs to be inserted and no entries are marked

for early eviction, replacement falls back to LRU. If a flow entry marked for early replacement

encounters a hit before eviction, the prediction is corrected and a training event is triggered.

3.3.2.2 Reinforcement

The hashed perceptron mechanism consists of an online training algorithm organized around

prediction feedback. Applied to flow correlation, prediction feedback seeks correlations of flow

entry reuse across feature vectors. With respect to the available cache resources, the flow correla-

tion predictor aims to rank flow entries by likelihood of reuse within the available cache working

set.

Active flow predictions are inserted into the active history queue, while dormant flow predic-

tions are inserted in the dormant history queue. In order to reinforce cache management decisions,

these feedback queues must be searchable by a unique flow identifier. The flow identifier imple-

mentation leveraged by the flow cache may be borrowed for this purpose.

Hashed perceptron training reinforcement consists of four potential scenarios, each correspond-

ing to entries in the confusion matrix. Active prediction reinforcement is shown in Figure 3.6 and

Figure 3.7 covering the true positive and false positive cases, respectively.

In Figure 3.6, the example flow F3 has a prior active flow prediction awaiting confirmation

in the active history queue. Since the prior reuse prediction is now proved correct, the feature

vector, ⟨f3⟩, associated with the previous prediction is popped off of the queue. If the prediction

confidence associated with ⟨f3⟩ do not surpass the training threshold, the corresponding feature

38

Predict Active History

≥ θ

F3
features <f3*>

<C3*>

… <f1><fN-1> <f2><f3>

TP
… F1FN-1 F2F3

reinforce active

∑
predict active

C[<f3>]++
Training Threshold

"

flowID

Predict Dormant History

…feature
correlations

Figure 3.6: Active Correct (TP) Reinforcement

table correlation counts are incremented. The new reuse prediction associated with F3 is also

pushed into the active history queue along with the associated new feature vector, ⟨f3∗⟩.

FP Predict Active History

≥ θ

FN
features <fN*>

<CN*>

… <f1><fN-1> <f2><f3>
… F1FN-1 F2F3

reinforce dormant

∑
predict active

C[<f1>]--

flowID

Predict Dormant History

…feature
correlations

Figure 3.7: Active Incorrect (FP) Training

Figure 3.7 outlines how incorrect active flow predictions are determined. Example flow FN

does not have a previous reuse prediction, yet is predicted active by inference. In order to free a

slot, the oldest prediction is popped off the end of the active history queue and considered incorrect.

The example flow F1 and feature table correlation counts associated with feature vector ⟨f1⟩ are

decremented. Note the training threshold is omitted since the active flow prediction associated

39

with F1 was determined to be incorrect. The new reuse prediction associated with FN is pushed

into the active history queue along with its feature vector, ⟨fN∗⟩.

The next two figures illustrate dormant flow prediction reinforcement covering the true nega-

tive and false negative cases of the confusion matrix, respectively. Conversely to active history,

entries popped off the end of the dormant history queue are considered correct.

Predict Dormant History

< θ

FN
features <fN*>

<CN*>

… <f1><fN-1> <f2><f3>
… F1FN-1 F2F3

reinforce dormant

∑
predict dormant

C[<f1>]--
Training Threshold

"

flowID

Predict Active History

…

TN

feature
correlations

Figure 3.8: Dormant Correct (TN) Reinforcement

Figure 3.8 illustrates example flow FN predicted dormant during inference. Finding no prior

prediction associated with FN , the oldest prediction in the dormant history queue is popped off

the end. If the prediction confidence associated with ⟨f1⟩ do not exceed the training threshold, the

corresponding feature table correlation counts are decremented – reinforcing the correct dormant

prediction. The new dormant prediction associated with FN is pushed into the dormant history

queue along with its feature vector, ⟨fN∗⟩.

In Figure 3.9, the example flow F3 has a prior dormant flow prediction awaiting confirmation

in the dormant history queue. The prior dormant prediction was caught before falling off the

end of the queue, indicating that feature vector ⟨f3⟩ may contain hints towards flow reuse. The

existing F3 entry and associated feature vector, ⟨f3⟩, is removed from the queue and the respective

feature table correlation counts incremented. Note once again that the training threshold is omitted

40

Predict Dormant History

< θ

F3
features <f3*>

<C3*>

… <f1><fN-1> <f2><f3>
… F1FN-1 F2F3

reinforce active

feature
correlations

∑
predict dormant

C[<f3>]++

flowID

Predict Active History

…

FN

Figure 3.9: Dormant Incorrect (FN) Training

since the dormant flow prediction associated with F3 was determined to be incorrect. Finally, the

new reuse prediction associated with F3 is pushed into the dormant history queue along with the

associated new feature vector, ⟨f3∗⟩.

Seznec developed a dynamic training thresholding mechanism for the GEometric History Length

branch predictor [64]. We leveraged Seznec adaptive mechanism for the training threshold (Φ),

which also requires the decision threshold (θ) to be centered around zero. Through experimenta-

tion, we confirmed that Seznec’s target 1 : 1 ratio of correct to incorrect predictions resulted in the

best overall predictor accuracy, matching our experimentally tuned parameters.

While the optimal Φ depends on the cache pressure, we observed a notably stable threshold

once the predictor warmed up and aggressiveness balanced. It is also notably advantageous to

keep the decision threshold (θ) intuitively at zero – preserving the numeric symmetry of weights

as well as accumulated correlations.

3.3.3 Feature Design

Table 3.3 lists features explored during the design process with remarks on approximate intent

behind each combination. There is limited information available from fields contained within each

packet. However, we found notable value in associating temporal patterns with hints from packet

fields. The features outlined in this table are nowhere near an exhaustive exploration, but rather a

41

first pass to identify useful combinations.

f# Feature Type Feature Components Remarks
0 Control UniformRandom Uncorrelated: map to random entry
1 Pure Mix ipProto ∧min(srcPort, dstPort) Protocol hints
2 Pure Mix ipv4Dst[31: 16] ∧ dstPort Destination service
3 Pure Mix ipv4Src[31: 16] ∧ srcPort Source service
4 Pure flags TCP/IP flags
5 Pure srcPort ∧ dstPort Bi-directional TCP/UDP ports
6 Pure Mix fTCP≪7 ∧ f1 Mix TCP flags with protocol hint
7 Pure (ipv4Dst ∧ ipv4Src)[31: 16] Bi-directional upper 16-bits IP addresses
8 Pure (ipv4Dst ∧ ipv4Src)[23: 8] Bi-directional middle 16-bits IP addresses
9 Pure (ipv4Dst ∧ ipv4Src)[15: 0] Bi-directional lower 16-bits of IP addresses
10 Pattern ⌈flowPackets⌉16 Packets since start of flow
11 Pure ipLength IP frame length
12 Pure flowID 5-tuple flow identifier
13 Pure Mix f12 ∧ f11 Unroll frame length over flowID
14 Pattern ⌈refCount⌉16 Hit count while inserted into cache
15 Pattern ⌈burstCount⌉16 Hit count while in MRU position
16 Pattern Mix {⌈f14⌉8, ⌈f15⌉8} Concatenate RefCount and BurstCount
17 Pure + Pattern f16 ∧ f12 Unroll Burst/RefCount over flowID
18 Pure + Pattern f16 ∧ f7 Unroll Burst/RefCount over upper IP
19 Pure + Pattern f16 ∧ f8 Unroll Burst/RefCount over middle IP
20 Pure + Pattern f16 ∧ f9 Unroll Burst/RefCount over lower IP
21 Pure + Pattern f11 ∧ f7 Unroll frame length over upper IP
22 Pure + Pattern f11 ∧ f8 Unroll frame length over middle IP
23 Pure + Pattern f11 ∧ f9 Unroll frame length over lower IP

24 Pure Mix ipFragOffset ∧ f4 ∧ f11 ∧ f12
Unroll fragment offset, flags, and
frame length over flowID

25 Pure Mix f7 ∧ f4 Unroll flags over upper IP
26 Control NULL Sparsity: map to single entry
27 Pure + Pattern {f11, ⌈f15⌉8} Concatenate BurstCount with frame length
28 Pure + Pattern f16 ∧ f11 Unroll Burst/RefCount over frame length

Table 3.3: Complete List of Explored Features

Concatenation syntax is represented as {A,B}. ⌈A⌉N refers to the ceiling function: min(A,N).
The XOR operation is indicated by ∧. A≪N represents left shift left by N-bits. Bit-field

selection is indicated using the syntax [M:N], where bit positions M through N are extracted.

The Feature Type column approximately categorizes each feature by information sources.

42

There are two potential sources of information: Pure (stateless) and Pattern (stateful). Pure feature

components originate from packet headers. Pattern feature components introduce temporal infor-

mation, not already available within packet headers. Pure Mix are simple combinations of packet

header bit-fields. Pattern Mix refers to combinations of temporal state. Finally, Pure + Pattern

are combinations of both packet header bit-fields and temporal state. Appendix A.2 provides all

feature table weight distributions for comparison alongside the descriptions below.

3.3.3.1 Pure Features

There are really only five pure feature components originating from packet headers explored

in this study. These include IP source and destination addresses, IP protocol identifier, TCP/UDP

port numbers, IP frame length, and few grouped IP/TCP flags. The IP flags assembled in f4 are:

DF and MF. The TCP flags assembled in f4 and f6 are: SYN, FIN, RST, PSH, ACK, URG.

3.3.3.2 Temporal Pattern Features

Pattern features are distinguished from Pure features as they require temporal metadata in the

flow table entry. These pattern feature components do not originate from packet headers, but offer

the ability to associate sequences or temporal patterns between packets. Pattern based featured

proved to be valuable sources of information, but required mixing to unlock their potential.

The flowPackets feature (f10) is simply the packet count since the flow started, a counter often

already present in stateful flow tables. RefCount (f14) and BurstCount (f15) on the other hand are

similar counters, but unique to the lifetime of the cached flow table entry. RefCount is simply

the packets observed since the flow was inserted into the cache, while BurstCount is the packets

observed while the entry remains in the MRU position.

3.3.3.3 Combined Features

There are endless ways to assemble features with complementary pure and pattern-based com-

ponents. There were two conceptual approaches when attempting to constructively combine fea-

tures components: orthogonal combination and correlation unrolling.

Orthogonal combinations allows for better utilization of feature table resources through a union

43

of independent feature components. For example: some feature components are useful for bypass

predictions, while others provide hints toward early eviction. Usually we observed a trade-off in

feature information density at the cost of collisions and reduced confidence. However, we also

observed potential for coincidental benefit – correlations simultaneously occurring, strengthening

feature confidence.

Feature unrolling, as an approach towards enabling constructive feature combinations aiming

to distribute global correlations across subsets of flow designators such that opportunities for in-

dependent correlations may arise. For example: temporal patterns tend to perform better when

associated with partial IP address subsets, protocol, or port designators. Correlation unrolling is a

balance and can either benefit or detract from feature performance.

Pattern-based features are particularly complex in the context of networking. Subsets of flows

may exhibit similar patterns, but all flows together tend to be quite noisy with conflicting inter-

arrival patterns. Thus, we observed notable utility in correlating pattern-based feature components

across protocol differentiating components. It is also important to conceptualize that each packet in

a given flow maps to different flow table entries throughout the sequence. The inter-arrival access

patterns is thus encoded across multiple entries in any given table.

There is certainly a trade-off ranging from targeting independent per-flow correlations to strate-

gic groupings sharing correlator entries. Unlike bloom filter designs where hashes are desired to

be as uniquely identifying and free of collisions as possible, there is a balance in hashed perceptron

feature construction where carefully selected subsets improve correlation potential.

The designer can choose to combine orthogonal features, or unroll features by spreading po-

tential correlations out over subsets of flows. Since necessary unrolling can increase a features

effective training latency, there is a non-obvious trade-off between the concept of sharing correla-

tions across subsets of flows as well as enabling flows to maintain independent correlations. The

features presented in this work are almost certainly non-optimal, but do provide insight towards

successful (as well as unsuccessful) combinations.

44

3.3.3.4 Control Features

To help understand the natural bias of the system, two control features were included in the

study: UniformRandom (f0) and NULL (f26). These were only used in the feature exploration

process as a likeness comparison UniformRandom simply chooses a table entry randomly based

on a uniform random distribution, providing insight into the hysteresis of the system. NULL is

effectively a single table entry (5-bit saturating counter), representing sparse feature behavior.

Combining too many components reduces the opportunities for correlations. We have observed

that heavily mixed features, such as features that combine the full flow identifier (flowID, f12) tend

to under-perform features that combine a partial flow identifier such as f7. All components mixed

together into a single feature tends to approach UniformRandom (f1) while sparse features tend to

resemble NULL (f26).

3.3.4 Feature Metrics

Since the hashed perceptron structure consists of multiple independent prediction tables con-

tributing opinions towards an overall prediction, there is a need to analyze feature performance

relative to the overall system. Just as MCC is a notably useful classifier metric, it can also be

calculated with respect to each feature, independently.

The Hashed Perceptron training feedback is assumed to be ground truth. Absolute truth is

non-trivial to ascertain as each misprediction has implications that propagate forward in time.

Imperfect, ground truth is a practical compromise that extends to all feature analysis techniques in

this work.

3.3.4.1 Feature Influence

While MCC is well suited for relative feature comparisons, it doesn’t quite grant insight into

the confidence of predictions. Specifically in the context of the hashed perceptron mechanism,

each feature has the potential to influence the system prediction equally. However well behaved

features self-moderate their confidence by the weight of their contribution. Understanding how a

feature contributes to the overall system provides valuable feedback into the behavior of feature

45

components as well as intuition into successful combinations.

Predicted

Positive Negative

Positive
∑

w⃗f

TP

∑
w⃗f

FN

Actual
Negative −

∑
w⃗f

FP

−
∑

w⃗f

TN

Table 3.4: Influence Matrix

Table 3.4 shows how influence is an extension of the confusion matrix. The influence matrix is

categorized with respect to the overall correctness of the system prediction (TP, TN, FP, FN). The

vector notation simply indicates that feature weights (w⃗f) are accumulated independently, with

respect to each system prediction.

Note that influence of a single-feature predictor is simply the average weight with respect

to that predictor’s confusion matrix. However, the influence metric becomes more than just an

average weight when per-feature contributions are tracked with respect overall system decisions.

Influence grants insight into the feature’s contribution, or lack thereof, relative to the correctness

of the system’s overall prediction.

Influence can be analyzed with respect to each quadrant of the confusion matrix. As noted

above, the influence vector notation
»

INF indicates individual per-feature weight accumulations

(w⃗f) with respect to system decisions. To simplify analysis, feature influence can be grouped with

respect to correct and incorrect system predictions.

»

INF correct =

TP∑
w⃗f

TP
−

TN∑
w⃗f

TN
(3.5)

Equation 3.5 defines Correct Influence as the contributed weight towards correct decisions. The

46

numerical value of correct influence is the average weight contributed towards correct predictions.

Correct Influence can be interpreted as a feature’s confidence when deemed correct, providing

unique insight alongside prediction accuracy.

»

INF incorrect =

FN∑
w⃗f

FN
−

FP∑
w⃗f

FP
(3.6)

Similarly, Equation 3.6 defines the Incorrect Influence as the contributed weight towards in-

correct decisions. Incorrect influence can be interpreted as a feature’s overconfident contribution

towards incorrect predictions. Overconfident features ultimately detract from an otherwise poten-

tially correct prediction, a notably useful insight unique to influence. To improve interpretation,

Incorrect Influence maintains the same directionality alongside Correct Influence, where weight

contributions towards incorrect predictions are negative numeric values, while correct contribu-

tions despite being overruled are positive.

The negation of the FP and TN accumulations map all correct predictions into a positive influ-

ence and incorrect predictions into negative influence. Total influence can them be considered the

sum of correct and incorrect influence as shown in Equation 3.7.

»

INF total =
»

INF correct +
»

INF incorrect (3.7)

Ideally, features would remain impartial until sufficient correlation occurs to form a reliable

prediction. In practice, features can be confidently wrong or even marginally correct while still

providing value to the system. Independently, features often produce noisy and inaccurate predic-

tions. Considered together with the hashed perceptron structure, feature noise is averaged away

while simultaneous correlations combine to improve prediction quality.

The notable difference between MCC and Influence centers around the penalty attributed to

mispredictions. MCC treats all feature predictions equally, regardless of the accompanying con-

fidence. Rather, influence provides a perspective into the confidence towards correct decisions as

well as overconfidence towards incorrect decisions. MCC provides a robust balanced accuracy,

47

where influence grants insight into contributions.

Features able to regulate their overconfidence are notably valuable to the system – even if they

only occasionally grant unique perspectives. While there will inherently be inaccuracies in any

history-based pattern correlation mechanism, understanding feature contributions towards correc-

t/incorrect decisions helps during feature selection and tuning.

3.3.4.2 Inferring Information Gain

Information gain has been influential in decision trees [65] as a tool to estimate mutual in-

formation. Decisions trees leverage information gain as a means to estimate mutual information

between competing branches when growing as well as trimming decision trees.

Inspired by information gain, we leverage a similar technique comparing the differential per-

formance gain (or loss) between adjacent simulation runs. Algorithm 1 defines a simulation sweep

across an ordered set of features. By incrementally adding features in ranked order, information

gained by the added feature can be estimated through a resulting change in the simulation’s perfor-

mance metric. Plotting the improvement (or degradation) of each additional feature grants insight

into any objectively useful information added to the system.

Algorithm 1 Simulation Feature Sweep

1: function SWEEP(R⃗) ▷ Simulation hit-rate sweep across feature ranking
2: for n← 1 to LENGTH(R⃗) do
3: r⃗ ← {R⃗[0], ..., R⃗[n]} ▷ Feature subset to include in simulation run
4: P⃗ [i]← SIMULATE(r⃗)

5: return P⃗ ▷ Simulation performance metric in inclusive ranked order

This feature sweep estimation is particularly useful as both MCC and influence are inherently

unable to identify shared information between competing features. Realizing that competing rank-

ings can be compared by sweeping features, we stumbled on an approach to prune shared informa-

tion. Algorithm 2 describes our approach to formalize our process of feature ranking in the context

48

of a hashed perceptron prediction system.

Algorithm 2 Differential Information Gain

1: function IG(F⃗) ▷ Inferring information gain through differential system improvement
2: p0 ← SIMULATE(F⃗)

3: R⃗0 ← MCC(p0) ▷ Initial ranking provided by MCC
4: i← 1
5: while R⃗i ̸= R⃗i−1 do ▷ Repeat until ranking is stable
6: p⃗← SWEEP(R⃗i−1)
7: q⃗ ← ADJACENTDIFFERENCE(p⃗) ▷ Calculate relative improvement gain
8: R⃗i ← SORT(q⃗)
9: i← i+ 1

10: return R⃗i ▷ New ranking sorted by relative improvement

Ranking features purely by information gain is tempting, but unfairly favors the features al-

ready selected over the differential new feature added. This algorithm greedily optimizes to the

nearest local minimum. However, this technique is notably useful in eliminating mutual informa-

tion from an already decent initial feature ranking provided by MCC.

3.4 Analysis

The primary evaluation goal of this work is to assess the viability of applying the Hashed

Perceptron correlation mechanism to stateful flow table cache management. Contrasted with the

cache optimality limit study in Section 3.2.2, this feasibility study provides insight into practically

capturable locality.

3.4.1 Methodology

The simulator developed for this study allowed for quick exploration of cache management

strategies in the context of stateful network flow tables. This work focused on cache hit-rate as

the primary performance metric with the expectation that cache hit-rate translates directly into

improved throughput and ultimately cache efficiency. While this cache hit-rate simulation does

not model the latency intricacies incurred by cache misses as well as flow table management, it

49

does showcase relative prediction accuracy of competing cache management algorithms. Focusing

on cache hit-rate simulation for the viability study allows for quick design iteration.

3.4.1.1 Network Traffic Datasets

It is tempting to leverage synthesized network traffic based on statistical models of packet ar-

rival behavior [66, 67]. However, the random packet inter-arrival assumptions of these models

would both hinder the cache management algorithm as well as introduce uncertainly around the

accuracy of the synthesized traces. While these models can quite accurately resemble real inter-

arrival flow behavior, actual packet arrival behavior is inherently complex and beyond our confi-

dence to model. This viability study hinges on having representative datasets of network traffic

to validate the premise of capturable temporal locality through more advanced cache management

techniques.

For this study, we chose to leverage network packet capture (PCAP) traces rather than synthetic

traffic in order to preserve temporal inter-arrival patterns theorized to be present in Section 3.2.3.

CAIDA’s offers passive PCAP traces within their Equinix internet exchange5 data centers. We

leveraged PCAP traces from CAIDA Equinix Sanjose, Chicago, and NYC datasets spanning 2012

to 2018 [1]. Traffic flowing through these exchange points should contain a representative sampling

network traffic commonly found on the Internet. CAIDA’s Equinix datasets were chosen primarily

because of the availability and diversity of the traffic provided and available to researchers.

CAIDA Dataset Equinix Sanjose January 2012
Interface 10 Gbps link (6 Gbps average, bi-directional)

Packet Rate 1M / second
New Flows 30k / second

Active Flows 300k over 4-second window
Trace Length 5 minutes

Table 3.5: Sample of CAIDA Packet Arrival Statistics

5Internet Exchange Points (IXPs) are crucial infrastructural components of the Internet where network operators
(peers) exchange traffic.

50

The CAIDA Equinix PCAP traces utilized for this study are captured on 10 Gbps links and

taken over one hour intervals, split into 1 minute files. Table 3.5 provide a summary of packet

arrival and flow turnover statistics. The CAIDA PCAP files contain pseudo-anonymized network

layer IPv4 addresses, preserving subnets while anonymizing exact addressing. Because of the

inherent complexities involved, we believe actual traces of representative network traffic to be

crucial in exploring the viability of network flow table cache management.

3.4.1.2 Cache Simulation

The simulator models a single inline device maintaining a stateful flow table such a firewall.

Maintaining this stateful flow table is the critical-path for achievable throughput. Caching tech-

niques are leveraged to improve device throughput; this study focuses on improving the approach

of cache management by borrowing techniques developed within the the computer microarchitec-

ture community.

Flow Cache Entries 4k flow entries
Cache Associativity 8-way

Feature Tables 5 features, each 64k entries
5-bit saturating counters

Feedback History 8 predictions / associative-set
Feature Selection Dataset CAIDA Equinix Sanjose January 2012

Validation Datasets

CAIDA Equinix Sanjose March 2012
CAIDA Equinix Chicago March 2014
CAIDA Equinix Chicago March 2016
CAIDA Equinix NYC March 2018

Table 3.6: Hashed Perceptron Cache Simulation Parameters

Table 3.6 summarizes the cache simulation parameters as well as feature selection and valida-

tion datasets. The simulator replays PCAP files, preserving relative arrival order to maintain packet

inter-arrival patterns. The packet headers are parsed, stateful flow identifiers maintained through-

out the simulation to track and evaluate cache management algorithm’s relative performance. In

51

addition to cache hit-rates, the simulator gathers evaluation metrics helpful to gain insight dur-

ing early design exploration of the Flow Correlator cache management mechanism described in

Section 3.3.2.

We first provide insight into our feature exploration, evaluating several competing feature rank-

ing mechanisms in Section 3.4.2. Second, we evaluate the robustness of the final selected features

across datasets in Section 3.4.3. In Section 3.4.4 we infer changes in cache entry lifetime by an-

alyzing cache efficiency. Finally, Section 3.4.5 recaps some of the dynamics between the chosen

features in the context of bypass and reuse cache management predictions.

3.4.2 Feature Exploration

While performance estimation is the ultimate goal of any architectural design-space explo-

ration, quickly ranking useful features early in the design process is immensely valuable. Feature

design, ranking, and selection is a time-consuming component of design exploration – adding yet

another dimension to an already complex optimization problem.

Since nearly all of the features explored in Table 3.3 perform poorly in isolation, it is crucial to

compare feature performance as a system. Further, it becomes non-trivial to select the best com-

binations of feature components as candidate combinations inherently share mutual information.

Therefore, there is a need for a reliable ranking mechanism that allows the architect to identify top

performing feature combinations early in the design phase.

The two competing feature ranking techniques analyzed in this section are Matthews Correla-

tion Coefficient (MCC) and Total Influence (INF). Randomly ordered features (RND) were also

included to gauge the effectiveness of the mechanisms in context. Finally, we describe a differ-

ential analysis technique developed in this work to trim mutual information, resulting in the final

feature ranking.

3.4.2.1 Feature Design

Influence was discovered out of a desire for feedback during feature design. In particular, hints

at strengths and weaknesses of competing features help identify successful mixing strategies early

52

RefCount

PortsIpPair Mid

RefCount

BrustCount

NULL

Proto Port

Random

Burst ^ IpLength

IpLength ^ Tuple ^ Frag

5Tuple

IpLength ^ Low

Source ServiceIpPair Mid
Flags ^ Upper

IpPair Upper

Flags

System

RefCount

Ref ^ Burst

BrustCount

NULL

Proto Port

Random

Burst ^ IpLength

Dest Service
Ports

5Tuple

IpLength ^ Low

Source Service

IpPair Low

Ref ^ Burst ^ IpLength

IpLength

IpPair Mid

Flags ^ Upper

Flags Service

System

-6

-4

-2

2

4

6

8

{*, 4, 6, 21, 7, 25, 22, 8, 11, 28, 9, 3, 23, 12, 10, 13, 5, 2, 24, 18, 27, 19, 20, 17, 0, 1, 26, 15, 16, 14}

Correct Influence Incorrect Influence MCC

Figure 3.10: Feature Influence on Reuse Predictions

in the design exploration. The intuition behind Influence centers around interpreting the feature’s

correlation output (weight) as a confidence. Influence then contrasts these contribution confidences

against the overall correctness of the system, grouped by prediction type (Reuse or Bypass).

Figure 3.10 provides insight into feature contributions towards flow entry reuse predictions, rel-

ative to MCC’s balanced prediction accuracy. Per-feature MCC and Influence metrics are tracked

across all candidates in a single Hashed Perceptron Flow Correlation simulation. Features are

sorted in decreasing MCC order with the corresponding Correct Influence and Incorrect Influence

presented for relative comparison.

The first entry, System, represents the overall flow entry reuse prediction exhibiting a notable

improvement in MCC compared to any individual feature. The contributions towards correct pre-

dictions (Correct Influence) as well as contributions towards incorrect predictions (Incorrect In-

53

Ref ^ Burst

5TuplePorts

IpLength ^ TuplePackets

Proto Port

IpPair Upper

IpLength ^ Upper

IpLengthFlags

System

Ref ^ Burst ^ Low

5TuplePortsIpPair Low

Source Service

IpLength ^ Mid

IpLength

Flags

RefCount

BrustCount

NULL5Tuple

Ref ^ Burst ^ Mid

Ports
Dest Service

Packets

Proto Port

IpPair Upper

Source Service

IpLength ^ Mid

Flags ^ Upper

IpLength

Ref ^ Burst ^ IpLength

Flags Service

Flags

System

-2

2

4

6

{*, 4, 6, 28, 27, 11, 21, 25, 22, 3, 7, 8, 1, 23, 18, 10, 2, 9, 13, 5, 19, 24, 12, 20, 17, 0, 26, 15, 14, 16}

Correct Influence Incorrect Influence MCC

Figure 3.11: Feature Influence on Bypass Predictions

fluence) represent a feature’s influence over the predictor. The magnitude represents confidence

while the sign represents a positive (or negative) influence on predictor outcomes.

Interestingly, features exhibiting high confidence towards correct predictions tend to also be

accompanied by overconfidence towards incorrect predictions. Overconfidence can be tolerated

when coupled with a high prediction accuracy (MCC); however, there is a strong preference for

features that provide value while also minimally contributing to mispredictions as represented by

Incorrect Influence.

Figure 3.11 provides insight into feature contributions towards flow entry bypass predictions

relative to MCC. It is intuitive that features have strengths towards either Bypass or Reuse predic-

tions. Unlike reuse flow entry predictions, bypass predictions inherently lack some of the temporal

indicators tracked in cached flow table entries.

54

Bypass and Reuse predictions both aim to predict flow entry reuse within the approximation

of the useful cache working set. However, they are distinct predictions as reuse probability of a

cached and uncached flow table entry are not necessarily equivalent. Bypass predictions occur not

only at the start of new flows, but also on transitions from Dormant to Active for already established

flows. Reuse predictions aim to identify Active connections amongst established flows, triggering

early eviction if predicted to transition from Active to Dormant.

Burst Count and Reference Count (Pure features f14 and f15) exhibit a perplexing anti-correlation

as seen by both MCC and Influence. It is notable that Burst and Reference Count rely on unrolled

and allowed to decouple from global patterns. Intuitively, it makes sense that temporal patterns

need to be grouped (unrolled) in some way to enable correlations. During feature design, Influence

enabled insight into how each feature fell into natural cache management roles.

3.4.2.2 Feature Ranking

4

6

6

27

21

7

28

28

22

8

27

11

7

4

11

21

25

22

8

25

23

3

3

1

9

10

12

9

1

12

10

5

13

2

18

23

5

13

2

24

24

26

19

18

20

19

17

20

26

17

15

16

16

15

14

14

0

1

2

3

4

5

6

%

MCC-4k INF-4k

Figure 3.12: Initial Feature Ranking

Hit-rate improvement over baseline LRU comparing MCC-4k below bars in yellow to INF-4k
above in blue.

55

Figure 3.12 shows the relative hit-rate improvement over LRU as baseline. Total Influence as

defined in 3.7 was used for INF-4k’s ranking. The plot is generated by incrementally including

features in ranked order using Algorithm 1. This sweep plot shows the incremental gain in hit-rate

by including additional features as a useful means to compare feature rankings. Spanning from a

single feature (left) to all features (right), diminishing returns can be easily identified.

Both MCC and INF provide a relatively similar ranking, with a few notable differences. In

particular MCC’s top choice, f4 consists of just TCP flags is unable to stand alone. INF’s top

choice, f6, consists of a mix of Port, Protocol, and TCP/IP flags, covering f4. As a single-table

predictor, INF’s f6 manages to provide a modest 2% hit-rate improvement over baseline LRU,

while MCC’s f4 actually degrades hit-rate. Ultimately MCC provides a better all-rounded ranking;

however, INF does identify a few notably valuable features before MCC.

To help put into perspective the utility of MCC as a feature ranking mechanism, we compare

against four randomized rankings. As expected, Figure 3.13 showcases the stunted performance of

random rankings amongst features with significant permutation overlap. There are a few notable

observations that highlight the behavior of a Hashed Perceptron based predictor.

1

2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

-4

-2

0

2

4

6

%

RND1 RND2 RND3 RND4

Figure 3.13: Random Feature Ranking

56

The first notable observation is that predictor effectiveness under-performs baseline LRU until

the third randomly selected feature is added. The situation flips with the third random selection

able to surpass baseline; achieving half the potential hit-rate improvement by the fourth random

selection.

As expected, there is significant shared information across the features in Table 3.3 due to fea-

ture permutation similarity. The goal of the ranking algorithm is to identify the best combinations

in order to hasten designer iteration. It is clear that MCC and INF are both able to identify a better

initial ranking than random selections. However, MCC and INF are both unable to account for

shared information, looking only at the feature’s own track record in isolation.

3.4.2.3 Iterative Information Gain

Relying on the designer to select the best choice is untenable as system complexity grows. Ulti-

mately we need a method to rank features by incremental value contributed to the system. Inspired

by information gain decision tree learning algorithms, we outline our approach to both measure a

feature’s actual contribution to the system as well as take into account mutual information between

features.

Our iterative information gain method outlined in Section 3.3.4.2 improves a MCC ranking by

differential analysis sweep. The feature sweep analysis plot is differential analysis, where hit-rate

is plotted as features are incrementally added until all features are included. Figure 3.14 shows

the incremental change in hit-rate as features are incrementally added to the predictor in MCC-4k

rank-order.

57

4
6 21 28 22 27 7 11 25 8 23 3 9 12 1 10 13 18 5 2 24 19 20 17 26 15 16 14

0

1

2

3

%

MCC-4k

Figure 3.14: Differential Improvement

Per-feature hit-rate differential gain (adjacent difference) of MCC-4k.

Figure 3.14 shows the change in hit-rate as features are added to the predictor from left to right.

While early features are likely to bring a larger gain, the goal is to minimize shared information

between features.

58

6

6

6

27

27

27

18

18

21

23

21

18

21

23

10

25

25

23

28

28

25

8

10

28

24

24

24

19

8

9

0

1

2

3

4

5

6

%

MCC-4k IG1-4k IG2-4k IG3-4k

Figure 3.15: Iterative Information Gain Ranking Improvement

Figure 3.15 shows the iterative improvement from the initial MCC-4k ranking through three

iterations of differential information gain. To improve readability, this figure just showcases the

hit-rate improvement for the first ten features. IG1-4k through IG3-4k represent the improvement

in ranking through each differential Information Gain (IG) iteration.

The first notable adjustment made in the first pass (IG1) is identifying that f6 covers f4 entirely

and translates to a hit-rate improvement as the first feature, despite f4 achieving a marginally higher

prediction accuracy as inferred by MCC.

It is also notable that f10 and f18 were both overlooked by MCC and INF implying a relatively

low prediction accuracy. However, both propagated to the top five ranking in the subsequent two

iterations (IG2 and IG3). This differential information gain analysis identified that f10 and f18

provided notable value to the system, despite the lower prediction accuracy.

The final notable adjustments were marginal, preferring to unroll across upper IP addresses

rather than middle or lower variants (f18 and f21).

This iterative information gain technique is best fit to trim shared information from an already

59

decent ranking. While not showed here, attempts to iterate from a random feature selection using

just the iterative information gain technique was computationally prohibitive.

We found Influence to be a particularly useful during feature creation, MCC best suited for

initial feature ranking, and differential information gain notably helpful to narrow in on the most

informative features. Automating feature selection, even if imperfect, allows the system designer

to focus on feature creation – in particular introducing novel feature combinations and information

sources.

3.4.3 Improvement Validation

4

6

6

6

27

27

21

7

21

28

28

18

22

8

10

27

11

23

7

4

25

11

21

28

25

22

24

8

25

9

23

3

12

3

1

11

9

10

19

12

9

2

1

12

5

10

5

15

13

2

8

18

23

17

5

13

20

2

24

22

24

26

14

19

18

13

20

19

3

17

20

4

26

17

26

15

16

7

16

15

1

14

14

16

0

1

2

3

4

5

6

%

MCC-4k INF-4k IG3-4k

Figure 3.16: Final Feature Ranking Comparison

Figure 3.16 recaps the ranking improvement on the training dataset. Diminishing returns in

achievable hit-rate improvements started to occur roughly between four and seven features. For

validation, we decided to select the five best features from each ranking.

60

f# Feature Type Feature Components
6 Pure Mix fTCP≪7 ∧ ipProto ∧min(srcPort, dstPort)

27 Pure + Pattern {ipLength, ⌈burstCount⌉8}
21 Pure + Pattern ipLength ∧ (ipv4Dst ∧ ipv4Src)[31: 16]
18 Pure + Pattern {⌈refCount⌉8, ⌈burstCount⌉8} ∧ (ipv4Dst ∧ ipv4Src)[31: 16]
10 Pattern ⌈flowPackets⌉16

Table 3.7: Selected Features (IG3-4k)

Optimized on flow cache with 4k entries, 8-way set associativity using the CAIDA Equinix
Sanjose January 2012 dataset (equinix-sanjose.20120119) during feature selection and ranking.

Table 3.7 list the top five features in ranked order of improved system value after the third

iteration of differential information gain (IG3-4k). It is interesting to note that all Pure information

sources were utilized in some form in the final set of features. While it is not surprising that

protocol and TCP/IP flags proved to be a naturally useful reuse hints, it is certainly interesting

that f6 was preferred over the f4. A similarly useful reuse hint comes from deviations in IP frame

length. While both MCC and INF showed high utility of frame length (f11) as a Pure indicator,

IG3 found significantly higher utility by combining frame length and BurstCount (f27).

It appears that both frame length and BurstCount contributed uniquely as a reuse prediction

hint, both notably providing additional value being unrolling over upper IP addresses (f18 and f21).

With IP address combinations seemingly contributing little insight into reuse as Pure sources, it is

interesting that both frame length and BurstCount found extra utility through unrolling. Appendix

A.3 provides further insight into selected features’ weight distributions alongside the contributing

feature components.

3.4.3.1 Validation Datasets

While it is clear that there is notable improvement performing IG passes within the training

dataset, it is crucial that this process did not over-optimize feature selection. The training set

consisted of five minutes of PCAP, bi-directional from January 2012 taken at CAIDA Sanjose

exchange. The validation set consisted of five minutes of PCAP, bi-directional from March of

2012, 2014, 2016 and 2018 spanning the three available CAIDA exchange locations: Sanjose,

61

Chicago, and NYC. The validation set will be used to compare the top-five features provided by

the MCC-4k, INF-4k, and IG3-4k rankings.

Sanjose

03-2012

Chicago

03-2014

Chicago

03-2016

NYC

03-2018

0

2

4

6

8

%

4k entries, 8-way associativity

MCC-4k

INF-4k

IG3-4k

Figure 3.17: Improved Hit-Rate Validation

Figure 3.17 shows consistent improvement across all validation sets. Hit-rate improvements

ranged between 4% and just under 8% over baseline LRU. The validation datasets showed no

degradation from MCC-4k to IG3-4k, indicating that iterative Information Gain did not over opti-

mize. However, we suspect IG’s greedy optimization requires generality in feature creation – best

suited to remove mutual information rather than select the most robust features.

These results attest to the generality of the features chosen, providing value to a generic cache

management reuse predictor beyond the original dataset location. It is certainly notable to demon-

strate viability towards a flow table cache management approach which translates beyond the orig-

inal optimization parameters.

62

3.4.4 Cache Efficiency

Tracking the lifecycle of cache entries can be helpful to understand how cache management

techniques impact cache behavior. Figure 3.18 depicts a cache entry’s lifecycle from insertion (t0)

to last-access time (tL) and finally the eviction time (tE).

t0 tEtL
Lifetime Deadtime

Figure 3.18: Cache Entry Lifecycle

t0: insertion time, tL: last-access time, tE: eviction time

Equation 3.8 defines a cache line’s lifetime as duration between insertion and last access.

lifetime = tL − t0 (3.8)

Similarly, deadtime is the duration between last access and eviction as defined in Equation 3.9.

deadtime = tL − tE (3.9)

Finally, Equation 3.10 defines cache line efficiency as the useful lifetime over the total time the

cache entry was occupied.

efficiency =
tL − t0
tE − t0

(3.10)

Tracking the lifetime, deadtime, and efficiency for all cache lines throughout the simulation

provides some insight into the relative impact of cache management algorithms on overall caching

behavior.

Figure 3.19 compares the cache line lifetime during a cache simulation over a one minute

63

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107
ev

en
ts

4k-8 Lifetime
min
hp
lru

Figure 3.19: Cache Entry Lifetime

pcap trace1. While the vast majority of flows entries have a short lifetimes in the cache, the Flow

Correlator Hashed Perceptron cache management technique (hp) more closely resembles Belady’s

MIN (min). Holding onto certain bursty flows for a longer duration between pauses potentially

reducing entry turn-over.

Figure 3.20 shows the corresponding deadtime, implying that the hashed perceptron technique

simultaneously has both more and less patience. A significant number of entries are evicted very

early (within 10ms), while simultaneously waiting on average twice as long as LRU for others

(upwards of 200ms). This adaptability allows hp to triage flows with low probability of reuse,

while simultaneous willing to increasing entry deadtime in hopes of also enabling an increase in

entry lifetime.

Figure 3.21 outlines how the hashed perceptron approach generally smoothed out cache effi-

ciency. LRU’s inherent requirement to wait for demotion from MRU to LRU limits cache effi-

1CAIDA Equinix Sanjose January 2012 pcap trace: equinix-sanjose.20120119.

64

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
seconds

101

103

105

107
ev

en
ts

4k-8 Deadtime
hp
lru

Figure 3.20: Cache Entry Deadtime

ciency. Meanwhile, the hashed perceptron technique is a step towards both triaging flows with a

low probability of reuse as well as a tendency to hold onto cache entries for a longer duration.

Cache efficiency doesn’t grant perspective into the quantity of hits over the entry lifetime, just

that the entry had reuse. Coupled with an improvement to hit-rate, this cache line efficiency anal-

ysis confirms that there is a worthwhile trade-off to holding onto certain flows longer as well as

triaging flows early.

3.4.5 Feature Roles

Throughout the feature selection process, we noticed a few noteworthy trends in roles assumed

by each feature. Observed primarily through feature influence described in Section 3.3.4.1, fea-

tures tended to produce a certain prediction bias as measured by average output prediction weight.

Originally described as a form of optimism, features tended to vote for eviction (pessimistic),

while others tended to lean towards reuse (optimistic). What was observed as a natural feature bias

65

0 20 40 60 80 100
%

103

104

105

106

107

108

ev
en

ts

4k-8 Efficiency
hp
lru

Figure 3.21: Cache Entry Efficiency

towards a particular outcome, in actually reflects the natural predictive utility of the feature.

Certain features are better indicators of early eviction – hinting at a flow’s transition from active

to dormant. The temporal pattern feature components (f10, f14, and f15) are clear contributes to

bypass role. Other features are best suited to triage incoming flows during bypass – hinting at

flow transitions from dormant to active. Indications of protocol behavior from several pure feature

components (f4, f6, and f11) were notable contributions to the reuse role.

These two cache management roles (bypass and reuse) tend to uniquely favor subsets of feature

components. In nearly all cases, we noticed an overall benefit in combining feature components

with orthogonal roles. Additionally, we also noticed that certain orthogonal combinations (f27,

f28) resulted in improved predictions accuracy and confidence for both bypass and reuse. IP frame

length (f11), while valuable as a pure feature component contributing to both roles, strengthened

nearly any feature component it was combined with.

As an artifact of packetizing flows into manageable units bounded by Maximum Transmission

66

Unit (MTU), IP’s frame length field was a notable indicator of packet inter-arrival patterns. It is

further noteworthy that while f11 was able to stand alone, it also significantly strengthened when

combined with role-focused feature components. While not included in this study, the interplay

between frame length and received packet size (only differing if IP fragmentation has occurred), is

expected to be noteworthy low-hanging fruit in further feature design explorations. The final fea-

ture ranking pass of our differential Information Gain approach preferred the information density

of role-orthogonal feature components.

3.4.6 Automatic Throttling

One of the critical aspects of cache management is the ability to dynamically adapt predic-

tion aggressiveness in response to changing cache pressure. While not quite hardened against

adversarial attacks, the Hash Perceptron flow correlation mechanism presented in this work ex-

hibits inherent self-throttling behavior which adapts to changes in cache pressure. The correlation

feedback mechanism reinforces likely good predictions, while predictions with less probability of

being correct naturally tend to regress to the natural bias of the system. See Appendix A.4 for

additional cache efficiency analysis providing insight into cache pressure dynamics.

20 40 60 80
sec

-2

2

4

Avg. weight

Flags Service (6)

Burst ^ IpLength (27)

IpLength ^ Upper (21)

Ref ^ Burst ^ Upper (18)

Packets (10)

Figure 3.22: Feature Bias

Figure 3.22 shows the feature’s prediction bias over epochs of each evaluated feature. Naively,

67

we would desire all features to be neutral biased; however, this isn’t aligned with the objective of

discriminating flows based on estimated short-term activity. Features assume a role implicit by

the construction of their components, producing a bias skewed towards the utility of their insight.

Pessimistic features (net bias of evict) primarily contribute to the role of bypass, effectively filtering

flows from entering the cache until sufficient optimism arises from other features. Optimistic

features (net bias of keep) primarily contribute to reuses prediction. The adaptive nature of hashed

perception mechanism dynamically adjusts each feature to the average observed cache pressure.

3.5 Summary

Cache management for stateful flow tables is a largely unexplored area of research, despite

their wide deployment. This work demonstrates viability of the Hashed Perceptron approach to

cache management. The Hashed Perceptron correlation technique is uniquely able to cope with

noisy information sources, well suited for network flow table cache management.

Feature creation is still an designer’s art coupled with both intuitive and counter-intuitive sur-

prises. Early feedback and iteration is essential to enable fast design exploration. Advancements to

systematic feature ranking and selection, even if non-optimal, allow designers to focus on system

architecture and feature creation first and foremost. Ultimately, any ML approach is inherently

reliant on effective feature creation and information sources.

The Hashed Perceptron technique is proving to be an interesting lightweight ML approach

where weights are run-time correlations, enabling adaptability beyond comparable offline tech-

niques. When applying the Hashed Perceptron technique to a new domain it became apparent how

a multi-feature, consensus-based system significantly improves prediction reliability compared to

hand-crafting complex heuristics. A interesting observation in the context of network traffic is

the resiliency of the Hashed Perceptron technique to cope with noisy or even misleading features.

While it is certainly possible to degrade performance, the Hashed Perceptron’s ability to combine

multiple features offers stability over any single perspective technique.

Few mechanisms allow combining independent correlations reliably, yet efficiently to improve

system performance. This work describes the process of adapting and evaluating the Hashed Per-

68

ceptron mechanism to an unexplored domain, where the input patterns and vectors available to

features bring unique challenges.

69

4. CONCLUSIONS

As the complexity of networking and network functions increase, data planes are becoming

more susceptible to DoS attacks which can result in underlying network reliability and availability

concerns. Thus, there is a strong need for data plane architectures, particularly in the context of

SDN, that continue to operate efficiently in the presence of malicious traffic. The first technique

presented leverages a Bloom Filter to prioritize established traffic and prevent malicious starvation

of expensive packet classification resources. This Pre-Classification technique is general enough

to be considered for any classification pipeline with non-uniform processing requirements.

The second technique explored, originally developed for speculative microprocessors, adapts

the Hashed Perceptron binary classifier to flow table cache management. The proposed Flow

Correlator mechanism leverages the Hashed Perceptron to correlate flow activity with temporal

patterns and transport/network layer hints. The Flow Correlator technique was able to demonstrate

a consistent hit-rate improvements across all validation sets.

This dissertation explored how temporal locality present in flow behavior can be leveraged to

improve both the reliability and performance of packet processing pipelines. Providing a unique

complement to flow table caching, Pre-Classification improves reliability by prioritizing estab-

lished traffic when classification resources are strained. Amenable to hardware implementations,

both Flow Correlator and Pre-Classification techniques show promise in improving the reliability

and performance of flow-centric packet processing architectures.

4.1 Future Work

Exploring graceful Bloom Filter clearing strategies for Pre-Classification would help reduce or

eliminate the impact of re-learning flows immediately following cold clearing. Using two Bloom

Filters with out-of-phase clearing intervals would noticeably help smooth the transition. Alter-

natively, clearing subsets of a single Bloom Filter’s memory arrays in a cyclic manner similar to

memory row refreshing may also be sufficient to maintain false positive rate while reducing the

70

impact from clearing. Further research is needed to understand these trade-offs in a time-decaying

Bloom Filter mechanism.

While flow table cache management driven by the Hashed Perceptron binary classifier shows

promise, further research is needed to close the gap between feasibility and practical implemen-

tations. We believe there remains notable room for improvement beyond the achievable hit-rates

demonstrated in this study. The features designed in this exploration were a first pass in order

to understand dynamics and viability of applying the Hashed Perceptron binary classifier to flow

table cache management. It is clear that follow-on investigations are needed to quantify realizable

improvements from advanced cache management techniques.

Additionally, it would be interesting to explore a bounded Belady’s algorithm as ground truth

and training feedback for a Hashed Perceptron cache management system in a manner similar

to Hawkeye [59]. While not leveraged in this exploration, genetic algorithms applicable to au-

tomating feature design. Further exploration is needed to improve the iterative information gain

technique to remove mutual features alongside partially automated feature creation techniques.

4.2 Need for Standardized Network Benchmarks

Unlike in processor microarchitecture research where standardized test suites are available and

well understood, networking research lacks a comparable structure for caching research. One

of the critical components of this work was exploring patterns present in real traffic, opposed

to attempting to fully capture all the real-world dynamics in synthetic traffic generation. The

processor microarchitecture community has enjoyed competitive advancements in caching and

branch prediction predictor accuracy enabled by community recognized standardized benchmarks.

The networking community would benefit from open competitions enabling improvement of flow

table cache management algorithms.

71

REFERENCES

[1] “The CAIDA UCSD Anonymized Internet Traces - 2012, 2014, 2016, 2018, kc claffy, Dan

Andersen, Paul Hick.”

[2] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and

M. Horowitz, “Forwarding Metamorphosis: Fast Programmable Match-action Processing in

Hardware for SDN,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, (New York, NY, USA), pp. 99–110, ACM, 2013.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Ta-

layco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming Protocol-independent

Packet Processors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95, July 2014.

[4] B. Wheeler and L. Wirbel. sixteenth ed., 2015.

[5] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,

J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design and implementation of open

vSwitch,” in 12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15), (Oakland, CA), pp. 117–130, USENIX Association, May 2015.

[6] Y.-K. Chang and H.-C. Chen, “Fast Packet Classification using Recursive Endpoint-Cutting

and Bucket Compression on FPGA,” The Computer Journal, vol. 62, pp. 198–214, 06 2018.

[7] H. Song, “Protocol-oblivious Forwarding: Unleash the Power of SDN Through a Future-

proof Forwarding Plane,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking, HotSDN ’13, (New York, NY, USA), pp. 127–132,

ACM, 2013.

[8] Open Networking Foundation, “Openflow switch specification.” opennetworking.org/

software-defined-standards/specifications.

72

opennetworking.org/software-defined-standards/specifications
opennetworking.org/software-defined-standards/specifications

[9] C. J. Casey, A. Sutton, and A. Sprintson, “tinyNBI: Distilling an API from Essential Open-

Flow Abstractions,” in Proceedings of the Third Workshop on Hot Topics in Software Defined

Networking, HotSDN ’14, (New York, NY, USA), pp. 37–42, ACM, 2014.

[10] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu, “Towards fine-grained

network security forensics and diagnosis in the sdn era,” in Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’18, (New York, NY,

USA), p. 3–16, Association for Computing Machinery, 2018.

[11] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, Software-Defined Network (SDN) Data

Plane Security: Issues, Solutions, and Future Directions, pp. 341–387. Cham: Springer

International Publishing, 2020.

[12] P. Zhang, H. Li, C. Hu, L. Hu, L. Xiong, R. Wang, and Y. Zhang, “Mind the gap: Moni-

toring the control-data plane consistency in software defined networks,” in Proceedings of

the 12th International on Conference on Emerging Networking EXperiments and Technolo-

gies, CoNEXT ’16, (New York, NY, USA), p. 19–33, Association for Computing Machinery,

2016.

[13] A. Voellmy, J. Wang, Y. Yang, B. Ford, and P. Hudak, “Maple: Simplifying sdn program-

ming using algorithmic policies,” in Proceedings of the ACM SIGCOMM 2013 conference on

SIGCOMM, pp. 87–98, 2013.

[14] C. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker,

“Netkat: Semantic foundations for networks,” in Proceedings of the 41st annual ACM Sym-

posium on Principles of Programming Languages, pp. 113–126, 2014.

[15] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network controllers,” in Proceedings

of the 34th ACM SIGPLAN conference on Programming language design and implementa-

tion, pp. 483–494, 2013.

[16] C. Jasson Casey, A. Sutton, G. Dos Reis, and A. Sprintson, “Eliminating network proto-

col vulnerabilities through abstraction and systems language design,” in Network Protocols

73

(ICNP), 2013 21st IEEE International Conference on, pp. 1–6, Oct 2013.

[17] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker, “Fre-

netic: A network programming language,” ACM SIGPLAN Notices, vol. 46, no. 9, pp. 279–

291, 2011.

[18] A. Voellmy, A. Agarwal, and P. Hudak, “Nettle: Functional reactive programming for open-

flow networks,” tech. rep., DTIC Document, 2010.

[19] M. Lopez, C. Jasson Casey, G. Dos Reis, and C. Chojnacki, “Safer sdn programming through

arbiter,” in Proceedings of the 2015 ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences, pp. 65–74, ACM, 2015.

[20] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazières, “Tiny packet programs for low-latency

network control and monitoring,” in Proceedings of the Twelfth ACM Workshop on Hot Topics

in Networks, HotNets-XII, (New York, NY, USA), Association for Computing Machinery,

2013.

[21] K. Li, F. Chang, D. Berger, and W. chang Feng, “Architectures for packet classification

caching,” in The 11th IEEE International Conference on Networks, 2003. ICON2003.,

pp. 111–117, Sept 2003.

[22] P. Gupta and N. McKeown, “Classifying packets with hierarchical intelligent cuttings,” IEEE

Micro, vol. 20, pp. 34–41, Jan 2000.

[23] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE Network, vol. 15,

pp. 24–32, Mar 2001.

[24] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple space search,”

SIGCOMM Comput. Commun. Rev., vol. 29, pp. 135–146, Aug. 1999.

[25] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “Efficuts: Optimizing packet classifica-

tion for memory and throughput,” in Proceedings of the ACM SIGCOMM 2010 Conference,

SIGCOMM ’10, (New York, NY, USA), p. 207–218, Association for Computing Machinery,

2010.

74

[26] T. Inoue, T. Mano, K. Mizutani, S.-I. Minato, and O. Akashi, “Rethinking packet classifica-

tion for global network view of software-defined networking,” in 2014 IEEE 22nd Interna-

tional Conference on Network Protocols, pp. 296–307, 2014.

[27] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards the deployment

of machine learning solutions in network traffic classification: A systematic survey,” IEEE

Communications Surveys and Tutorials, vol. 21, no. 2, pp. 1988–2014, 2019.

[28] “Biggest ddos attack’ did not hurt the global internet – this time,” 2014.

[29] A. Ruia, C. J. Casey, S. Saha, and A. Sprintson, “Flowcache: A cache-based approach for im-

proving sdn scalability,” in 2016 IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 610–615, 2016.

[30] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about sdn flow tables,”

in Passive and Active Measurement (J. Mirkovic and Y. Liu, eds.), (Cham), pp. 347–359,

Springer International Publishing, 2015.

[31] L. McHale, J. Casey, P. V. Gratz, and A. Sprintson, “Stochastic pre-classification for sdn

data plane matching,” in 2014 IEEE 22nd International Conference on Network Protocols,

pp. 596–602, 2014.

[32] “The CAIDA UCSD Anonymized Internet Traces - 2012, kc claffy, Dan Andersen, Paul

Hick.”

[33] I. L. Chvets and M. H. MacGregor, “Multi-zone caches for accelerating ip routing table

lookups,” in Workshop on High Performance Switching and Routing, Merging Optical and

IP Technologie, pp. 121–126, 2002.

[34] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” Internet

Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[35] P. Ghoshal, C. J. Casey, P. V. Gratz, and A. Sprintson, “Stochastic pre-classification for soft-

ware defined firewalls,” in Computer Communications and Networks (ICCCN), 2013 22nd

International Conference on, pp. 1–8, IEEE, 2013.

75

[36] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to Designing Fast Net-

worked Devices (The Morgan Kaufmann Series in Networking). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2004.

[37] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool to model large

caches,” HP Laboratories, pp. 22–31, 2009.

[38] L. A. Belady and F. P. Palermo, “On-line Measurement of Paging Behavior by the Multival-

ued MIN Algorithm,” IBM Journal of Research and Development, vol. 18, no. 1, pp. 2–19,

1974.

[39] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM Sys-

tems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[40] R. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for storage

hierarchies,” IBM Systems Journal, vol. 9, no. 2, pp. 78–117, 1970.

[41] P. J. Denning, “The Working Set Model for Program Behavior,” Commun. ACM, vol. 11,

p. 323–333, May 1968.

[42] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre, “Internet traffic modeling by

means of hidden markov models,” Comput. Netw., vol. 52, p. 2645–2662, oct 2008.

[43] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and timing attacks on

ssh,” in Proceedings of the 10th Conference on USENIX Security Symposium - Volume 10,

SSYM’01, (USA), USENIX Association, 2001.

[44] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive Insertion Policies

for High Performance Caching,” SIGARCH Comput. Archit. News, vol. 35, p. 381–391, June

2007.

[45] D. A. Jiménez, “Insertion and Promotion for Tree-Based PseudoLRU Last-Level Caches,”

in Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-46, (New York, NY, USA), p. 284–296, Association for Computing Machinery,

2013.

76

[46] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache Bursts: A new approach for eliminating

dead blocks and increasing cache efficiency,” in 2008 41st IEEE/ACM International Sympo-

sium on Microarchitecture, pp. 222–233, 2008.

[47] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High Performance Cache Replacement

Using Re-Reference Interval Prediction (RRIP),” SIGARCH Comput. Archit. News, vol. 38,

p. 60–71, June 2010.

[48] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and J. Emer, “SHiP:

Signature-based Hit Predictor for high performance caching,” in 2011 44th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 430–441, 2011.

[49] A. Seznec, “A new case for the TAGE branch predictor,” in 2011 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 117–127, 2011.

[50] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” in Proceedings of

the 7th International Symposium on High-Performance Computer Architecture, HPCA ’01,

(USA), p. 197, IEEE Computer Society, 2001.

[51] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Predic-

tion,” ACM Trans. Archit. Code Optim., vol. 2, p. 280–300, Sept. 2005.

[52] S. M. Khan, Y. Tian, and D. A. Jiménez, “Sampling Dead Block Prediction for Last-Level

Caches,” in 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 175–186, 2010.

[53] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse prediction,” in 2016

49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–12,

2016.

[54] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jiménez, “CHiRP: Control-Flow His-

tory Reuse Prediction,” in 2020 53rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), pp. 131–145, 2020.

77

[55] D. A. Jiménez and E. Teran, “Multiperspective Reuse Prediction,” in Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, (New

York, NY, USA), p. 436–448, Association for Computing Machinery, 2017.

[56] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A. Jiménez, “Perceptron-Based

Prefetch Filtering,” in Proceedings of the 46th International Symposium on Computer Archi-

tecture, ISCA ’19, (New York, NY, USA), p. 1–13, Association for Computing Machinery,

2019.

[57] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-SPY:

Context-Driven Conditional Instruction Prefetching with Coalescing,” in 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 146–159, 2020.

[58] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying Deep Learning to the Cache Replacement

Problem,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO ’52, (New York, NY, USA), p. 413–425, Association for Computing

Machinery, 2019.

[59] A. Jain and C. Lin, “Back to the Future: Leveraging Belady’s Algorithm for Improved Cache

Replacement,” in Proceedings of the 43rd International Symposium on Computer Architec-

ture, ISCA ’16, p. 78–89, IEEE Press, 2016.

[60] L. McHale, J. Casey, P. V. Gratz, and A. Sprintson, “Stochastic pre-classification for sdn

data plane matching,” in 2014 IEEE 22nd International Conference on Network Protocols,

pp. 596–602, 2014.

[61] B. W. Matthews, “Comparison of the predicted and observed secondary structure of t4 phage

lysozyme,” Biochimica et Biophysica Acta (BBA)-Protein Structure, vol. 405, no. 2, pp. 442–

451, 1975.

[62] D. Chicco and G. Jurman, “The advantages of the matthews correlation coefficient (mcc)

over f1 score and accuracy in binary classification evaluation,” BMC genomics, vol. 21, no. 1,

pp. 1–13, 2020.

78

[63] Q. Zhu, “On the performance of matthews correlation coefficient (mcc) for imbalanced

dataset,” Pattern Recognition Letters, vol. 136, pp. 71–80, 2020.

[64] A. Seznec, “Analysis of the O-GEometric history length branch predictor,” in 32nd Interna-

tional Symposium on Computer Architecture (ISCA’05), pp. 394–405, 2005.

[65] S. Nowozin, “Improved information gain estimates for decision tree induction,” in ICML

2012, June 2012.

[66] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation of realistic network workload

for emerging networking scenarios,” Comput. Networks, vol. 56, pp. 3531–3547, 2012.

[67] S. Molnár, P. Megyesi, and G. Szabó, “How to validate traffic generators?,” in 2013 IEEE

International Conference on Communications Workshops (ICC), pp. 1340–1344, 2013.

79

A. APPENDIX

80

A.1 Matthew’s Correlation Coefficient

This appendix aims simplify the interpretation of MCC by Equation A.5. Pearson’s Correlation

Coefficient is defined in Equation A.1.

PCC = corr(X, Y) =
cov(X, Y)

σXσY

(A.1)

Equation A.2 is rewritten with respect to covariance and variance:

corr(X, Y) =
cov(X, Y)√

var(X)
√
var(Y)

(A.2)

Equation A.2 is further rewritten in terms of expected value:

corr(X, Y) =
E[(X − µX)(Y − µY)]√

E(X2)− E(X)2
√
E(Y 2)− E(Y)2

(A.3)

Matthew discovered restricting Pearson’s Correlation Coefficient to binary classes allows for

simplification. After manipulation, and reduction, MCC is commonly represented as seen in Equa-

tion A.4.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(A.4)

By correlating the predictions against actual, MCC balances the predictor accuracy across both

classes. Matthew’s Correlation Coefficient can be interpreted as bisections of the confusion matrix:

MCC =
correct(X, Y)− incorrect(X, Y)√
actual(X, Y) ∗ predicted(X, Y)

(A.5)

Where the numerator contains the difference of products between the correct diagonal (Equa-

tion A.6) and vs the incorrect diagonal (Equation A.7).

correct(X, Y) = TP ∗ TN (A.6)

81

incorrect(X, Y) = FP ∗ FN (A.7)

Normalized by a denominator consisting of product of sums across actual ground truth rows

(Equation A.8) vs prediction columns (Equation A.9).

actual(X, Y) = (TP + FN)(TN + FP) (A.8)

predicted(X, Y) = (TP + FP)(TN + FN) (A.9)

82

A.2 Feature Table Weight Distributions

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Flags Service (6)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Burst ^ IpLength (27)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Upper (21)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ Upper (18)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Packets (10)

Table A.1: Distributions of Selected Features (in IG3-4k ranked order)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpPair Upper (7)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength (11)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Proto Port (1)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

BrustCount (15)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst (16)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

RefCount (14)

Table A.2: Distributions of Contributing Feature Components (in MCC-4k ranked order)

83

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Flags (4)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ IpLength (28)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Mid (22)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Flags ^ Upper (25)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpPair Mid (8)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Low (23)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Source Service (3)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpPair Low (9)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

5Tuple (12)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Tuple (13)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ports (5)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Dest Service (2)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Tuple ^ Frag (24)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ Mid (19)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ Low (20)

Table A.3: Distributions of Rejected Feature Components (in MCC-4k ranked order)

84

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ Tuple (17)

Table A.3 Continued: Distributions of Rejected Feature Components (in MCC-4k ranked order)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Random (0)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

NULL (26)

Table A.4: Distributions of Control Features

85

A.3 Selected Features’ Composition

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Burst ^ IpLength (27)

Figure A.1: f27 Weight Distribution

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength (11)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

BrustCount (15)

Figure A.2: f27 Compositions’ Weight Distributions

86

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength ^ Upper (21)

Figure A.3: f21 Weight Distribution

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpLength (11)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpPair Upper (7)

Figure A.4: f21 Compositions’ Weight Distributions

87

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst ^ Upper (18)

Figure A.5: f18 Weight Distribution

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

Ref ^ Burst (16)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

IpPair Upper (7)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

RefCount (14)

-15 -10 -5 0 5 10 15

weight

Feature Table Weights

BrustCount (15)

Figure A.6: f18 Compositions’ Weight Distributions

88

A.4 Cache Pressure Dynamics

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

2k-8 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

4k-8 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

8k-8 Lifetime
min
hp
lru

2k, 8-way 4k, 8-way 8k, 8-way

Table A.5: Cache Size vs. Entry Lifetime

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
seconds

101

103

105

107

ev
en

ts

2k-8 Deadtime
hp
lru

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
seconds

101

103

105

107

ev
en

ts

4k-8 Deadtime
hp
lru

0.0 0.1 0.2 0.3 0.4 0.5 0.6
seconds

100

101

102

103

104

105

106

107

ev
en

ts

8k-8 Deadtime
hp
lru

2k, 8-way 4k, 8-way 8k, 8-way

Table A.6: Cache Size vs. Entry Deadtime

0 20 40 60 80 100
%

103

104

105

106

107

108

ev
en

ts

2k-8 Efficiency
hp
lru

0 20 40 60 80 100
%

103

104

105

106

107

108

ev
en

ts

4k-8 Efficiency
hp
lru

0 20 40 60 80 100
%

104

105

106

107

108

ev
en

ts

8k-8 Efficiency
hp
lru

2k, 8-way 4k, 8-way 8k, 8-way

Table A.7: Cache Size vs. Efficiency

89

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts
2k-4 Lifetime

min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

4k-4 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

8k-4 Lifetime
min
hp
lru

2k, 4-way 4k, 4-way 8k, 4-way

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

2k-8 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

4k-8 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

8k-8 Lifetime
min
hp
lru

2k, 8-way 4k, 8-way 8k, 8-way

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

2k-16 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

4k-16 Lifetime
min
hp
lru

0 10 20 30 40 50 60
seconds

100

101

102

103

104

105

106

107

ev
en

ts

8k-16 Lifetime
min
hp
lru

2k, 16-way 4k, 16-way 8k, 16-way

Table A.8: Cache Associativity vs. Entry Lifetime

90

	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Packet Processing Architectures
	Software Defined Networking
	Packet Classification
	Dissertation Statement
	Contributions
	Dissertation Organization

	STOCHASTIC PRE-CLASSIFICATION
	Introduction
	Background
	Packet Classification

	Design
	Motivation
	Architecture

	Evaluation
	Methodology
	Experimental Results

	Summary

	FLOW TABLE CACHE MANAGEMENT
	Introduction
	Contributions

	Motivation
	Significance of Cache Hit-Rate
	Cache Optimality Study
	Flow Patterns
	Stack-based Algorithms
	Hashed Perceptron Binary Classifier

	Design
	Classifier Metrics
	Flow Correlator Design
	Feature Design
	Feature Metrics

	Analysis
	Methodology
	Feature Exploration
	Improvement Validation
	Cache Efficiency
	Feature Roles
	Automatic Throttling

	Summary

	CONCLUSIONS
	Future Work
	Need for Standardized Network Benchmarks

	REFERENCES
	APPENDIX
	Matthew's Correlation Coefficient
	Feature Table Weight Distributions
	Selected Features' Composition
	Cache Pressure Dynamics

