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ABSTRACT

Nowadays, machine learning and deep learning are present in the most diverse types of applica-

tions. From such diversity, many particular designs, architectures, training methods were created,

given the variety of applications of many different areas. Rather than trying to find a multi-purpose

scheme to generate and train deep neural networks, which would be an impracticable challenge,

this work aims to deliver well suited training techniques for well defined problems in specific fields.

Every single domain has its own necessities and specificities, thus it is essential to have individual

solutions for each case.

In the bio-informatics domain we propose the gGAN, a novel approach to train GANs, which is

capable of generating labeled genetic datasets using a small labeled dataset and a larger unlabeled

dataset, exploiting concepts of semi-supervised learning and data augmentation to create a new

approach to deal with the limited labeled data available to researchers. This method may also be

used as a self-aware classifier, a classifier with a second level of confidence. Since it is only based

on genetic profiles, it can be applied at any stage of the disease (or even before infection). This

allows the usage as a triage tool, able to prognose early-infected patients, avoiding the exposure of

healthcare professionals who are sensitive to the disease.

This work also addresses a Scientific Machine Learning technique, the Physically Informed

Neural Networks (PINNs). Evidence shows that PINN training by gradient descent displays

pathologies that often prevent convergence when solving PDEs with irregular solutions. In this

work, we propose the use of a Particle Swarm Optimization (PSO) approach to train PINNs. The

resulting PSO-PINN algorithm not only mitigates the undesired behaviors of PINNs trained with

standard gradient descent but also presents an ensemble approach to PINN that affords the possibility

of robust predictions with quantified uncertainty. Comprehensive experimental results show that

PSO-PINN, using a modified PSO algorithm with a behavioral coefficient schedule, outperforms

other PSO variants for training PINNs, as well as PINN ensembles trained with standard ADAM.

Furthermore, we propose two distinct extensions for this method, namely Multi-Objective

ii



PSO-PINN and Multi-Modal PSO-PINN. The first one acknowledges the PINN as a multi-objective

problem and handles the PSO-PINN training as such. This approach unleashes a new paradigm

to deal with PINNs, allowing the analysis of the problem and finding out if the model-driven and

data-driven portions of the PINN are in agreement. The latter promotes a desirable characteristic of

the PSO-PINN, the diversity of the solutions. The Multi-Modal approach enforces multiple local

optima during the training, guaranteeing a solution composed of a diverse ensemble.
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1. INTRODUCTION

Artificial neural networks are a well-known machine learning technique that simulates the

mechanics of learning in neural systems of biological organisms. Simply put, the neurons are

connected to each other by their axons and dendrites, and these connections are referred to as

synapses. Throughout their lives, living organisms are able to learn by changing the thresholds to

activate those synapses. A artificial neuron is composed by inputs and outputs in order to mimic the

biological behavior of the dendrites and axons, respectively. Each input have a related weight and a

bias, which will guarantee the required plasticity for the learning process. The figure 1.1 illustrates

those structures in parallel.

The most basic neural network would be a network composed by just one neuron. This

arrangement is often called perceptron and it is illustrated on Figure 1.1 (b). The perceptron was

proposed by Rosenblatt in 1958[1] and since then it has evolved in different architectures[2][3],

training methods [4][5][6], and optimizations[7][8].

However, there is not a single training method or architecture suitable for every possible problem.

Hence, exploring multiple alternatives and creating new approaches are necessary and recurrent

tasks. In this context, this work proposes new methods for training deep neural networks.

Figure 1.1: Parallel between biological and artificial neurons.
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1.1 Motivation

Nowadays, machine learning and deep learning are present in the most diverse types of ap-

plications. From health care to analytical finances and going through wide-ranging fields such

education, security, and even entertainment[9][10][11][12][13][14]. From such diversity, many

particular designs, architectures, training methods were created, given the variety of applications of

many different areas.

Rather than trying to find a multi-purpose scheme to generate and train deep neural networks,

which would be an impracticable challenge, this work aims to deliver well suited training techniques

for well defined problems in specific fields. Every single domain has its own necessities and

specificities, thus it is essential to have individual solutions for each case. Taking for example the

Chapter 2, which is centered on bio-informatics and specifically on Machine Learning for genetic

models, the main challenge there is the scarcity of large enough datasets to train data-driven models.

Obtaining a patient cohort to fill such dataset would be a hard an expensive task. Therefore, the

ideal solution would not only require a smaller dataset, but it could be able to somehow expand the

knowledge acquired from it.

Physically-informed neural networks (PINNs) are the main topic of Chapter 3 and 4. Although

it came from an ingenious idea, aiding the predictions for physical problems using differential

equations, it exhibits some pathological behavior during training, especially when the differential

equation high-frequency solutions[15, 16]. This behavior is related to stiffness in the gradient flow

dynamics of the PINNs loss functions, which leads to unstable convergence for gradient-based

optimization algorithms [15, 16].

1.2 Contributions

Chapter 2 describes a novel approach to train GANs, which is capable of generating labeled

genetic datasets using a small labeled dataset and a larger unlabeled dataset, exploiting concepts of

semi-supervised learning and data augmentation to create a new approach to deal with the limited

labeled data available to researchers. This approach may benefit studies with limited datasets.
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Additionally, it also provides a self-aware classifier, capable of determine the prediction with a level

of confidence.

In chapter 3, we present PSO-PINN, this method consists of a swarm optimization, which opens

many possibilities for training PINNs. Firstly, the swarm is intrinsically an ensemble. Thus, it can

take advantage of the many ensemble methods for building predictors and quantifying uncertainty.

A more considerable degree of agreement among the PINNs leads to minor variance and a higher

degree of confidence in the predicted values. Second, by design, the proposed algorithm is highly

parallelizable, allowing massive computation and distributed processing. Also, the proposed method

does not rely exclusively on the backpropagation of the loss gradients, avoiding the pathological

behavior of the gradient descent methods when training PINNs.

In the next chapter 4, we expand the possibilities of PSO-PINN proposing two novel training

strategies for swarm training. First, we propose the Multi-Objective PSO-PINN, as a tool for assess

the problem and define how the prior information and the available data would best benefit the

training. Although the PINN method offers a certain level of flexibility to choose where the model

would be in a range starting as a strict mathematical PDE solver to a more yielding data-driven

approach, it is remarkably difficulty to find this particular configuration. Until now, this property

was partially explored, most often relying on the weighting of the total loss function, usually done in

a trial-and-failure basis. The approach described here yields a set of Pareto non-dominated solutions,

where the better one can be chosen based on how well-defined the terms are.

In chapter 4, we also propose the Multi-Modal PSO-PINN algorithm. One of the advantages of

using a swarm-based optimization algorithm like PSO-PINN is the possibility of using ensemble

methods to produce better solutions also quantify the uncertainty related to such solution. But for

the specific case of Machine Learning, full convergence might be a bad after-training situation.

For most of the cases the training does not happen through the entire possible cases, but through a

limited dataset. In such a scenario the fully-converged population would be nothing but an overfitted

model. Thus, the idea behind the Multi-Modal PSO-PINN is to enforce the optimization process to

increase the diversity of the solution. This is done by splitting the swarm into multiple sub swarms

3



and performing parallel searches for local optima. The improved diversity in the solution leads to

better generalization.

1.3 Organization

This document consists of five major chapters. This first chapter gives the reader an introductory

overview of the subject, contextualization, motivations, and contributions. Followed by three

self-contained papers reporting the advances and contributions achieved so far, and lastly, the final

chapter discusses the work done and the prospective investigations.

Chapter 2, titled A Semi-Supervised Generative Adversarial Network for Prediction of Genetic

Disease Outcomes, addresses an innovative method to train adversarial networks based on a semi-

supervised approach. In addition to being a reliable classifier, this technique may be used to generate

large synthetic genetic data sets based on a small amount of labeled data and a large amount of

unlabeled data (such configuration is not uncommon, especially in the genetic field). This work was

published in the 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing

(IEEE-MLSP)

Chapter 3 is titled PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm

Optimization. This work was submitted to the PINNs special issue of the IEEE Transactions on

Artificial Intelligence, and it is currently under review. This chapter describes a novel optimization

scheme for PINNs using swarm optimization, gradient descent, and ensembles techniques. This

novel technique affords the possibility of robust predictions with quantified uncertainty.

Chapter 4, Extending the PSO-PINN: The Multi-Objective and Multi-Modal approaches, intro-

duces two new approaches for PSO-PINN training, namely, The Multi-Objective and the Multi-

Modal PSO-PINN algorithms. These two techniques expanded the possibilities for the PSO-PINN

while consistently increasing the accuracy and reducing the uncertainty of the solutions. Also, they

open new implementation possibilities, specially for distributed training strategies.

Finally, Chapter 5 contains a brief reflection concerning the proposed contributions, and the

impacts and limitations of the proposed techniques. It also discusses future work and ramifications

for these techniques.
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2. A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR PREDICTION

OF GENETIC DISEASE OUTCOMES

2.1 Abstract

For most diseases, building large databases of labeled genetic data is an expensive and time-

demanding task. To address this, we introduce genetic Generative Adversarial Networks (gGAN),

a semi-supervised approach based on an innovative GAN architecture to create large synthetic

genetic data sets starting with a small amount of labeled data and a large amount of unlabeled

data. Our goal is to create a mechanism able to increase the sample size of the labeled data and

generalize learning over different populations while keeping awareness of the quality of its own

predictions. The proposed model achieved satisfactory results using real genetic data from different

datasets and populations, in which the test populations may not have the same genetic profiles. The

proposed model is self-aware and capable of determining whether a new genetic profile has enough

compatibility with the data on which the network was trained and is thus suitable for prediction.

The code and datasets used can be found at https://github.com/caio-davi/gGAN.

2.2 Introduction

Creating large genetic datasets is an expensive and time-demanding task in the case of most dis-

eases, as it involves patient recruitment, laboratory work, sequencing equipment, and bioinformatics

expertise. In many instances, data is classified as Protected Health Information (PHI)[17], making it

difficult to obtain and to handle. There is also a range of intrinsic characteristics within this domain

that increase the complexity of archiving and handling this data. Firstly, it may be difficult to obtain

patients from the right population to extract the genetic material from. Secondly, maintaining the

quality of the analysis is not a trivial process due to biological and technical noise, which varies

between laboratories and/or between batches.

*Reprinted with permission from "A Semi-Supervised Generative Adversarial Network for Prediction of Genetic
Disease Outcomes." by Caio Davi and Ulisses Braga-Neto. 2021 IEEE 31st International Workshop on Machine
Learning for Signal Processing (MLSP). IEEE, 2021.
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With current advancements in Machine Learning algorithms applied to human genetics [18,

19, 20], large datasets are increasingly needed in order to support the use and analysis of a variety

of data-intensive algorithms. Therefore, new mechanisms that are capable of generating coherent

synthetic genetic data would be a remarkable advancement within this field.

However, genetic data on neglected diseases is notoriously scarce. This is the case of Dengue

disease, a viral disease most commonly found in tropical areas of under-developed and developing

countries. Dengue is a global public health concern with an annual global incidence of 390 million

cases[21]. There is evidence supporting that the disease progression is genetically influenced[22,

23, 24, 25], but, as mentioned previously, genetic data on Dengue is scarce.

Recently, we employed machine learning algorithms to find associations between profiles of

single-nucleotide polymorphisms (SNPs) and disease severity using a small data set from a cohort

of patients in Recife, Brazil [26]. In this paper, we propose gGAN, an innovative Generative

Adversarial Network (GAN) architecture to create large synthetic genetic data starting with the

small amount of labeled data used in the previous study and a large amount of unlabeled data from

the human 1000 genome project. This leads to a semi-supervised classifier that is able to predict the

genetic predisposition to severe dengue of a patient, even if their genetic profile is from a different

population than the one originally used to train the classifier (in this case, a Brazilian population).

The classifier is self-aware in that one of the outputs of the proposed GAN is able to discriminate

whether a given test genetic profile is sufficiently compatible with the genetic profiles in the training

population. Even though we use dengue to demonstrate our method, it is entirely general and can

be applied to other diseases.

2.3 Background

Genome-wide association studies (GWAS) are a powerful tool for identifying genetic influences

in diseases, particularly for conditions influenced by a variety of genes and environmental factors at

once [27]. These techniques are historically used for finding genetic differences in case-controlled

studies for particular diseases.

One of the biggest concerns related to genetic studies is the size of the patient cohort used in
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Figure 2.1: Data preprocessing procedure. Each line in each dataset represents a genetic profile of a
patient. The SNPs are selected according to an Allelic Frequency Distance (AFD) threshold and the
SVM-RFE algorithm. In this figure, AFD thresholds of 0.07, 0.10, 0.21 are depicted.

the experiments. As mentioned previously, obtaining a patient cohort is a hard and expensive task.

Moreover, the discrepancy between the size of the cohort and the number of features is a frequent

burden. This occurs due to the large number of Single Nucleotide Polymorphisms (SNPs) in the

human genome, which, on average, occur almost once in every 1,000 nucleotides. This means there

are roughly 4 to 5 million SNPs in a person’s genome. This factor can easily lead to overfitting due

to the curse of dimensionality [28]. To overcome this, feature selection becomes necessary.

Dengue disease is a global public health concern caused by the Dengue Virus (DENV), a

positive-sense RNA virus from the Flaviviridae family. According to the 2009 World Health

Organization (WHO) Dengue classification guideline[29], symptomatic infection by DENV can

range from a mild disease know as Dengue Fever (DF), to a more severe disease known as Severe
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Dengue (SD), which displays hemorrhagic complications that may eventually culminate in the death

of the host individual.

There is evidence that some individuals may be genetically predisposed to some prognostic of

the Dengue disease [22, 23]. More specifically, studies have found associations between the genetic

expression, mostly in the innate and in the adaptive response pathways, and the Dengue infection

phenotype [30, 31, 32, 33, 34]. Also, there are efforts to use Machine Learning techniques to find

associations between static genetic profiles and dengue severity [35, 26].

Generative Adversarial Networks (GAN) [36] are a promising ML approach to generate synthetic

data. GANs are commonly used to generate synthetic images from a known training set. However,

there are applications of GANs in other domains[37], including genetics[38]. There is also a report

of a semi-supervised approach to GANs [39], for classification of the MNIST dataset [40].

2.4 Methods

This section describes the steps performed to create the model. We begin with pre-processing of

our datasets, then describe the model itself, and finally how it was trained. The tests and results are

described in the next section.

2.4.1 Data Preprocessing

We used two primary datasets from real genetic data available to the research community. The

first is a dataset labeled with the Dengue Infection phenotype in human subjects. Patients with

dengue-related symptoms were screened from three hospitals in the city of Recife, Brazil; this

population constitutes the domain Dl. The first dataset, denoted as Xl, was extracted from this

population, and it consists of 102 patient genotypes measured at 322 loci polymorphisms. The

methods of extraction and genotyping and cohort description for the labeled dataset can be found in

[41].

The second dataset contains unlabeled genetic data from Phase 3 of the 1000 Genomes

Project[42] (which consists of 2504 individuals genotyped for more than 84 million variants).

The 1000 Genomes Project maps genetic information from populations around the world; we call
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Figure 2.2: Model architecture. The discriminator network is fed two datasets (labeled dataset
(n=102), unlabeled dataset (n=2504)) and the synthetic genetic profiles from the generator network.
The discriminator training consists of two phases, the first using real unlabeled data and synthetic
data, and the second using labeled data.

this population Du. The unlabeled dataset Xu consists of the same set of 322 loci in the labeled

dataset, extracted from the 1000 Genomes Collection. An important step in the manipulation of this

kind of data is that we estimated each of the allelic frequencies[43]. Different populations tend to

have different frequencies due to their diverse genomic background[44]. These differences may

affect the performance of the discriminator network, which would try to learn from two datasets

with different frequency distributions. With this in mind, we compared these frequencies between

the labeled dataset and the unlabeled dataset. We measured the frequencies for each allele of each

variant in both datasets and assume the largest difference between them as their frequency proximity.

The Allelic Frequency Distance (AFD) between two domains is defined as

AFD = max(fi(Xl)− fi(Xu)) . (2.1)

In equation (1), fi is the frequency of a specific allele i within the ni possible values for each

nucleotide in population X .
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After this, we established certain thresholds to sampling the data and used them to create

different INPUT configurations to the network. We used thresholds of 0.7, 0.1, and 0.21 resulting

in subsets of 12, 25, and 96 SNPs, as shown in Figure 2.1. Those subsets were used to build the

modelsM1,M2 andM3, respectively.

We also used a subset of SNPs chosen in [26]. In that paper, a Support Vector Machine was

used to find the best SNPs to discriminate Severe Dengue. As a result, 13 SNPs were found as the

most adequate ones to be used to classify the severe form of the disease. One of those SNPs was

not genotyped in the 1000 Genome Project, so it was removed from this set, resulting in 12 SNPs

for modelM4.

2.4.2 gGAN Architecture

We modified the traditional GAN architecture to work with both labeled and unlabeled data.

In the traditional GAN model, the discriminator has only one output, which classifies the input

as real or fake (synthetic). In our case, we want to predict the label of a test genetic profile

("Dengue Fever" or "Severe Dengue") in addition to classifying between real or fake. In order

to archive this, we added a new output to the discriminator network. This is illustrated in Figure

2.2. Tables 2.1 and 2.2 give a detailed overview of the layers of the discriminator and generator

networks in the implementation of the proposed paradigm. All layers and operators in these tables

are described in Tensorflow API notation. Notice that all generators have inputs of the same length.

The generators are always fed with random noise, and in this case, we opted to keep the same size

for all the models. The Upsample layer simply increases the size of the layer by duplicating it.

During training, the discriminator network weights are updated using the labeled and unlabeled

data. This update occurs in turns (labeled and then unlabeled) for each epoch of training. First the

networkMm,disc, for m = 1, . . . , 4, is exposed to the labeled samples in Dl, and a loss L(Dl) is

calculated using the binary cross-entropy [45]:

L(Dl) = − 1

N

N∑
i=1

1∑
j=0

yij log ŷij , (2.2)
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Table 2.1: Architecture of the discriminator networks.

M1,disc M2,disc M3,disc M4,disc

input(12,1) input(25,1) input(96,1) input(12,1)
ReLu(12,24) ReLu(25,50) ReLu(96,180) ReLu(12,24)
ReLu(12,48) ReLu(25,100) ReLu(96,360) ReLu(12,48)
ReLu(12,24) ReLu(25,50) ReLu(96,180) ReLu(12,24)

Flatten Flatten Flatten Flatten
Dropout Dropout Dropout Dropout

Outputl(2, 1) Outputl(2, 1) Outputl(2, 1) Outputl(2, 1)
Outputu(2, 1) Outputu(2, 1) Outputu(2, 1) Outputu(2, 1)

Table 2.2: Architecture of the generator networks.

M1,gen M2,gen M3,gen M4,gen

input(100) input(100) input(100) input(100)
ReLU(24) ReLU(50) ReLU(90) ReLU(24)

UpSample(48) UpSample(100) UpSample(180) UpSample(48)
ReLU(48) ReLU(100) ReLU(180) ReLU(48)

UpSample(96) UpSample(200) UpSample(360) UpSample(96)
ReLu(12) ReLu(25) ReLu(96) ReLu(12)

Reshape(12,1) Reshape(25,1) Reshape(96,1) Reshape(12,1)

where N is the batch size, (yi0, yi1) is a one-hot encoding for the training label ("Dengue Fever"

or "Severe Dengue"), and (ŷi0, ŷi1) is the softmax output of the discriminator corresponding to

training profile xi, for i = 1, . . . , N . Next, the weights are updated using profiles in Du using the

loss function:

L(Du,Dg) = − 1

M

M∑
i=1

1∑
j=0

yij log ŷij (2.3)

where M is the batch size, (yi0, yi1) is a one-hot encoding for the training label (“fake” or “real”),

and (ŷi0, ŷi1) is the softmax output of the discriminator corresponding to training profile xi, for

i = 1, . . . ,M . The training batch is composed by unlabeled real samples (Du) and synthetic

samples (Dg) created by the generator model.
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On the other hand, the weights of the generator network are updated using random noise as

the input data set, denoted by Dr. A synthetic sample will be produced using this random input

and then the discriminator will classify it as real or fake data. Based on this answer, the binary

cross-entropy is used to calculate the loss:

L(Dr) = −
1

P

P∑
i=1

1∑
j=0

yij log ŷij (2.4)

where P is the batch size, (yi0, yi1) = (0, 1) is a one-hot encoding for the training label (all profiles

are “fake”), and (ŷi0, ŷi1) is the softmax output of the discriminator corresponding to the random

genetic profile xi, for i = 1, . . . , P .

2.5 Results

The dataset from the labeled domainDl was split into training and testing following a proportion

of 80% for training and the remaining 20% for testing. This resulted in a training dataset Xltrain

containing 72 labeled genetic profiles, and testing dataset Xltest with the remaining 20 labeled

profiles. We used the whole unlabeled dataset to train during the unlabeled step and selected 20%

as a testing dataset Xutest , for a total of 502 unlabeled testing profiles.

In our implementation, the batch size for training the supervised discriminator was N = 10,

selected randomly from the labeled dataset each time. Also, 50 randomly selected profiles from

the unlabeled dataset with an additional 50 profiles created by the generator network were used to

train the unsupervised discriminator, for a batch size M = 100. Finally, P = 100 random genetic

profiles were used to train the generator model.

We followed two testing procedures to perform accuracy estimation. The first, denoted by T1,

simply measures the accuracy of each of the discriminator outputs, independently. The second,

denoted by T2, aggregates both of the discriminator outputs. Testing procedure T1 calculates the

labeled accuracy Acc(Dl) and unlabeled accuracy Acc(Du) on the testing data sets Xltest and Xutest ,

respectively. Testing procedure T2 uses the testing dataset Xltest to simulate a deployment scenario.

It is a two-step procedure: first, it checks if the discriminator is able to recognize the test profile
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as a real profile, and calculates the accuracy Acc1(Dl) on the testing dataset. After that, it verifies

if the labeled output matches the actual data label, producing an accuracy estimate Acc2(Dl) using

only the correctly predicted profiles in the first step. The accuracy rates obtained in our experiments

according to testing procedures T1 and T2 are displayed in Table 2.3.

Table 2.3: Accuracy rates according to testing procedures T1 and T2.

Models T1 T2

Acc(Dl) Acc(Du) Acc1(Dl) Acc2(Dl)

M1(AFD <0.07) 0.6111 0.8719 0.9444 0.6470
M2(AFD <0.10) 0.6999 0.9918 1.0 0.6999
M3(AFD <0.21) 0.5263 0.9919 0.9473 0.5555
M4(SVM-RFE) 0.9375 0.9430 1.0 0.9375

The first two columns in Table 2.3 from testing procedure T1 show good results for the unlabeled

output for all models, meaning that gGAN has good performance when differentiating between real

and synthetic data. ModelsM2, andM3 correctly classified almost all of the test profiles in the

Xutest dataset (n=500). ModelM4, using the SNPs obtained by the SVM-RFE method, showed

superior results, obtaining 94.3% accuracy when discriminating test profiles in Xutest as real or

synthetic, and nearly 93.75% accuracy on the labeled testing profiles in Xltest (these results are

similar to the ones obtained in [26]).

The next two columns in Table 2.3 from testing procedure T2 show that all models built with

AFD SNPs display high accuracy on testing profiles in Xltest , which reinforces the AFD hypothesis

for selecting the best SNPs. On the other hand, AFD ignores the relationship between the SNPs and

the dengue phenotype, as it only considers the similarity between SNPs. This can be noticed in the

results for Acc2(Dl). ModelM4 is far more accurate in this respect, which confirms that the SNPs

used byM4 have information on the Dengue phenotype.
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2.6 Conclusion

In this paper, we introduced a novel approach to train GANs, which is capable of generating

labeled genetic datasets using a small labeled dataset and a larger unlabeled dataset, exploiting

concepts of semi-supervised learning and data augmentation to create a new approach to deal with

the limited labeled data available to researchers.

The proposed gGAN architecture modifies the usual perspective on GANs: instead of a tool

solely designed to generate labeled genetic profiles, it also provides a classifier with a level of

confidence. Previous ML methods to classify diseases based on genetic information are not aware of

data coming from new populations. With gGAN, one may see the unlabeled output as a self-aware

output. While the labeled output of the discriminator predicts whether the individual with the

corresponding genetic profile is likely to develop Severe Dengue, the unlabeled output predicts

whether the genetic profile is real or synthetic. Given a real genetic profile, if the gGAN classifies it

as not real (i.e., synthetic), we can infer that it was most likely never seen before and thus is not

appropriate for prediction by the model.

The differences within the allelic frequencies between populations is a challenge when one is

using multiples datasets from different populations. Indeed, even the 1000 Genome Dataset[42] is

composed of different populations and is therefore subject to a variety of allelic frequencies itself.

Due to limitations on the size of our datasets, we opted to filter the datasets using the AFD, but

other approaches would have also been possible if a good sample of both labeled and unlabeled data

were available for a population. Since we utilized the labeled dataset from Recife, Brazil [41], and

there is no large unlabeled dataset for this specific population, we had to construct our own AFD

thresholds. Another possible approach to this issue would be to use Style Transfer to somehow

make the synthetic data with frequencies between those of the two datasets.

Nevertheless, our methods produced good results using the SNPs selected by [26] using the

same labeled dataset we are using here. In their work, they chose the 13 most representative SNPs

to classify Severe Dengue. Indeed, we had good results using those SNPs in the labeled phase of

the training and test. However, we also had surprisingly good results using the unlabeled output of
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the discriminator network, which lead us to believe that the discriminator was able to generalize

well, even with the allelic frequencies discrepancies.

As expected, the results of the modelM4 in the tests using Xltest were far better than the models

trained using the AFD method to select SNPs. Also, the modelM2 had a fair accuracy (almost

70%) if we think of it as a triage tool for prognosis. Those results are even more acceptable during

disease outbreaks, when more specific tests are commonly scarce and expensive. Another important

aspect is that it can be applied at any stage of the disease, or even before infection, and can use a

broad choice of human sample tissue, since it is only based on genetic profiles.

The COVID-19 pandemic is a good example of a scenario where the method described here

could bring great benefits to society. Our approach could be used to help triage patients with a level

of confidence. It could also be used to avoid exposure of healthcare professionals who are sensitive

to the disease. The proposed method could be a powerful tool to help public health efforts against a

new outbreak.
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3. PSO-PINN: PHYSICS-INFORMED NEURAL NETWORKS TRAINED WITH PARTICLE

SWARM OPTIMIZATION

3.1 Abstract

Physics-informed neural networks (PINN) have recently emerged as a promising application of

deep learning in a wide range of engineering and scientific problems based on partial differential

equation (PDE) models. However, evidence shows that PINN training by gradient descent displays

pathologies that often prevent convergence when solving PDEs with irregular solutions. In this

paper, we propose the use of a particle swarm optimization (PSO) approach to train PINNs. The

resulting PSO-PINN algorithm not only mitigates the undesired behaviors of PINNs trained with

standard gradient descent but also presents an ensemble approach to PINN that affords the possibility

of robust predictions with quantified uncertainty. Comprehensive experimental results show that

PSO-PINN, using a modified PSO algorithm with a behavioral coefficient schedule, outperforms

other PSO variants for training PINNs, as well as PINN ensembles trained with standard ADAM.

3.2 Introduction

Physics-informed machine learning is an emerging area that promises to have a lasting impact in

science and engineering. Physics-informed neural networks (PINNs) [46], in particular, have shown

remarkable success in a variety of problems modeled by partial differential equations [47, 48].

PINNs exploit the universal approximation capabilities of neural networks [49]. Unlike traditional

neural networks, PINNs employ a multi-part loss function containing data-fitting and PDE residual

components. And differently from traditional numerical methods, PINNs are meshless, producing a

solution over an entire, possibly irregular, domain, rather than on a pre-specified grid of points.

Standard gradient descent tools already in widespread use for training deep neural networks,

such as stochastic gradient [50] and ADAM [8], were promptly adopted as the methods of choice

to train PINN. However, an accumulating body of evidence shows that gradient descent exhibits

pathological behavior when training PINNs, especially when the differential equation solution
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contains irregular and fast varying features [15, 16]. Numerous approaches have been proposed

to mitigate this undesirable behavior, including weighting the loss function [16, 51, 52], domain

decomposition[53, 54], and changes to the neural network architecture [15]. Recent work attributed

this behavior to stiffness in the gradient flow dynamics of the PINNs loss functions, which leads to

unstable convergence for gradient-based optimization algorithms [15, 16].

In this work, we propose to address this issue by moving away from pure gradient descent by

employing particle swarm optimization (PSO) [55], a metaheuristic algorithm used in numerous

applications, including neural network training [56, 57, 58, 59, 60]. Indeed, the original paper on

PSO [55] was motivated in part by neural network training. The resulting PSO-PINN algorithm

not only mitigates the pathologies associated with grandient-based optimization, but also produces

a diverse ensemble of neural networks [61], which enables the application of ensemble methods

to PINNs, such as variance reduction[62] and uncertainty quantification[63]. Indeed, ensemble

methods have become popular in deep learning as they combine the outputs of a diverse set of neural

networks, thus reducing prediction variance and producing uncertainty estimates [64, 65, 66, 67].

To our knowledge, PSO-PINN is the first algorithm for training PINNs based on swarm optimization.

However, PSO-PINN is not the only ensemble approach to PINNs; the ensemble approach was used

to progressively train PINNs forward in time in a recent publication [68].

In this paper, we consider and contrast three variants of the PSO algorithm to train PINNs:

the PSO method in its original form [55], a variant called PSO-BP (PSO with Back-Propagation),

which adds a gradient descent component to the particle velocity vectors [69], and PSO-BP-CD

(PSO-BP with Coefficient Decay), a proposed modification of PSO-BP that includes a decreasing

schedule for the behavioral coefficients. PSO-BP-CD puts more weight on the gradient descent

component near the end of training, when the swarm should have already converged on a good

local optimum. Experimental results with several ODE and PDE benchmarks show that PSO-PINN,

using the proposed PSO-BP-CD algorithm, consistently outperforms the other PSO variants for

training PINNs, as well as PINN ensembles trained with standard ADAM [8], in diverse scenarios

under various parameter settings. These results demonstrate the potential of PSO-PINN in providing
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accurate prediction with quantified uncertainty.

This paper is organized as follows. Section 3.3 provides a brief overview of deep neural networks,

physics-informed neural networks, and particle swarm optimization. Section 3.4 introduces the PSO-

PINN algorithm based on three variants of PSO, plain, PSO-BP, and PSO-BP-CD, whereas Section

3.5 studies PSO-PINN through experimental results using various ODE and PDE benchmarks.

Section 3.6 provides concluding remarks and future directions.

3.3 Background

In this section, we define PINNs and describe the PSO-BP optimization algorithm.

3.3.1 Deep Neural Networks

The feed-forward fully-connected neural network is the basic architecture used in deep learning

algorithms[70]. A fully-connected neural network with L layers is a function fθ : Rd → Rk

described by

fθ(x) = W [L−1]σ ◦ (· · · σ ◦ (W [0]x+ b[0]) + · · · ) + b[L−1] (3.1)

where σ is an entry-wise activation function, W [l] and b[l] are respectively the weight matrices and

the bias corresponding to each layer l, and θ is the set of weights and biases:

θ = (W [0], · · · ,W [L−1], b[0], · · · , b[L−1]) . (3.2)

Among popular choices for the activation function are the sigmoid function, the hyperbolic tangent

function (tanh), and the rectified linear unit (ReLU) [71]. To fit the neural network fθ(x) to data

{(xi,yi)}ni=1, one minimizes a suitable loss function. A popular choice in traditional deep learning

is the mean square error (MSE):

L =
1

n

n∑
i=1

||fθ(xi)− yi||2. (3.3)
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3.3.2 Physics-Informed Neural Networks

Consider a non-linear differential equation of the general form:

N [u(x)] = g(x) , x ∈ Ω ,

u(x) = h(x) , x ∈ ∂Ω ,

(3.4)

where Ω ⊂ Rd, u : Ω→ Rk, N [·] is a differential operator, and g, h : Ω→ Rk specify forcing and

boundary conditions, respectively. We employ a neural network fθ(x) to approximate the unknown

function u(x). The PDE is enforced through the loss function

Lr =
1

nr

nr∑
i=1

||N [fθ(x
r
i )]− g(xr

i )||2, (3.5)

where {xr
i}nr

i=1 ⊂ Ω are collocation points, and N [fθ(x)] is computed accurately using automatic

differentiation methods [72]. The neural network is fitted to the initial and boundary condition h(x)

using a traditional data-fitting loss function:

Lb =
1

nb

nb∑
i=1

||fθ(xb
i)− h(xb

i)||2 (3.6)

where {xb
i}

nb
i=1 ⊂ ∂Ω are initial and boundary points. If there are experimental or simulation data

{(xd
i ,y

d
i )}

nd
i=1 available, they may be included in the usual way through the loss:

Ld =
1

nd

nd∑
i=1

||fθ(xd
i )− yd

i ||2. (3.7)

The previous multi-objective optimization problem is typically solved by simple linear scalar-

ization, in which case the PINN is trained by minimizing the total loss function L:

L = Lr + Lb + Ld . (3.8)

This framework is easily extended to more complex initial and boundary conditions involving
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derivatives of u(x).

3.3.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm [73, 74] is a population-based stochastic

optimization algorithm that emulates the swarm behavior of particles distributed in a n-dimensional

search space [75]. Each individual in this swarm represents a candidate solution. At each iteration,

the particles in the swarm exchange information and use it to update their positions. Particle θt

at iteration t is guided by a velocity determined by three factors: its own velocity inertia βvt, its

best-known position pbest in the search-space, as well as the entire swarm’s best-known position

gbest:

vt+1 = βvt + c1r1(pbest − θt) + c2r2(gbest − θt) , (3.9)

where c1 and c2 are the cognitive and social coefficients, respectively, referred to jointly as the

behavioral coefficients, and r1 and r2 are uniformly distributed random numbers in range [0, 1).

Then the particle position is updated as

θt+1 = θt + vt+1 . (3.10)

Many variations of the PSO algorithm were proposed over time. PSO can be combined with

gradient descent to train neural networks, with the gradients computed efficiently by automatic

differentiation (backpropagation), as was done in [69]. In this algorithm, which was called PSO-BP

by the authors, the particle velocity has an additional component, namely, the gradient vector of the

loss function∇L(θ):

vt+1 = βvt + c1r1(pbest − θt) + c2r2(gbest − θt)− α∇L(θt) , (3.11)

where α is a learning rate. Therefore, the gradient participates in the velocity magnitude and

direction, by an amount that is specified by the learning rate, which helps guide the swarm to a good

local optimum. See Figure 3.1 for an illustration of the PSO-BP update.
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Figure 3.1: The PSO-BP update.

3.4 PSO-PINN Algorithm

In this section, we describe three variants of the PSO algorithm that we use to train PINNs, how

to initialize them, and a few possible ways to summarize the ensemble results.

3.4.1 The PSO variants

We consider the following three variants of the PSO algorithm:

1. PSO - The algorithm in its original form, as described in (3.9) and (3.10).

2. PSO-BP - This version adds a component based on the gradient of the loss function, as

described in (3.11).
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3. PSO-BP-CD In this variant, we introduce a behavioral coefficient schedule. The behavioral

components c1 and c2 in PSO-BP-CD decay linearly according to the iteration number as

follows:

ct+1
k = ctk −

2ctk
n

(3.12)

for k = 1, 2 and t = 1, 2, . . . , n, where n is the total number of iterations.

We propose PSO-BP-CD as a variant of PSO-BP, which puts more weight on the gradient vector

near the end of training, when the swarm should already have zeroed in on a good local optimum,

and less communication between the particles is needed. This allows PSO-BP-CD to be more

effective than the PSO-BP and pure PSO methods in training PINN ensembles, as will be seen in

the experimental results section.

3.4.2 The Algorithm

The PSO-PINN swarm is an ensemble of PINN candidates. Each particle in the swarm is

a vector θ containing the weights and bias of the corresponding PINN. The population Θ of all

particles is randomly initialized, as will be detailed later in Section 3.5.2. The objective function

fθ(·) is the total loss function in (3.8). The pbest vector should be initialized to the values in the

original population Θ, as the particles know nothing but their initial point at this time. The gbest

parameter is equal to the value of θ ∈ Θ that achieves the minimum value of f(θ). After the

initialization step, the updates to the swarm attempt to minimize the expected value of the objective

function. Each particle velocity is updated following (3.11). Despite the use of the gradient update

α∇L(θ) in the previous equation, in practice, the update is made using ADAM optimization [8].

After the velocity update, the particle locations (i.e., the network weights) are updated according

to (3.10). The values of pbest and gbest are updated accordingly. The training loop runs until a

maximum number of iterations is reached. The procedure is summarized in Algorithm 1.

3.4.3 The Ensemble Solution

Besides the fact that swarms are a well-established optimization method, they also provide an

ensemble of solutions. Thus, we can take advantage of the various properties provided by ensembles.
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Algorithm 1: PSO-PINN
Require: α: step size;
Require: β: inertia;
Require: c1, c2: behavioral coefficients;
Require: L: total loss function for the PINN;
Initialize population Θ;
pbest(i)← θi, for i = 1, . . . , |Θ|;
gbest ← argmin θ∈pbest L(θ);
for t = 1, 2, . . . , MAX do:

for i = 1, . . . , |Θ| do:
r1, r2 ← U(0, 1];
V = βV + c1r1(pbest(i)− θi) + c2r2(gbest − θi)
if BP :

V = V + α∇L(θi)
θi = θi + V ;
if L(θi) < L(pbest(i)):
pbest(i)← θi

end
gbest ← argmin θ∈pbest L(θ);
if coefficient_decay:

c1 = c1 − 2c1
t

;
c2 = c2 − c2

t
;

end

This category of learning methods combines several individual models to create a “collective”

solution, which is expected to display improved performance and stability with respect to any of the

individual models. There are different methods to seek the consensus decision in an ensemble [67].

The most straightforward one perhaps would be simply choosing the best-fitted model according to

the loss function. Although this may yield a good model, it could fail due to overfitting. To avoid

this, a better approach exploits the ensemble diversity through model averaging:

f̂(x) =
1

|Θ|
∑
θi∈Θ

fθi(x) . (3.13)
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Uncertainty of the prediction at each point x of the domain can be quantified naturally through the

sample variance:

σ̂2(x) =
1

|Θ| − 1

∑
θi∈Θ

(fθi(x)− f̂(x))2. (3.14)

3.5 Experimental Results

In this section, we study the performance of PSO-PINN empirically, using the three PSO variants

discussed earlier, by means of several classical ODE and PDE benchmarks. In addition, PSO-PINN

ensembles are compared to traditional ensembles of PINNs trained with ADAM gradient descent.

All experiments employ fully-connected architectures, with the hyperbolic tangent activation

function and Glorot initialization of the weights [76]. The main figure of merit used is the L2 error:

L2 error =

√∑NU

i=1 |f̂(xi)− U(xi)|2√∑NU

i=1 |U(xi)|2
. (3.15)

where f̂(x) is the prediction and U(x) is the analytical solution or a high-fidelity approximation

over a test mesh {xi}NU
i=1. All experiments in this section were performed using Tensorflow 2 [77].

3.5.1 A Simple PSO-PINN Example

Fist, we use the 1D Poisson equation to illustrate the PSO-PINN algorithm. Due to its simplicity,

this example allows us to visualize the evolution of training and the results. The 1D Poisson equation

considered here is:

uxx = g(x) , x ∈ [0, 1] ,

u(0) = u(1) = 0 .

(3.16)

where g(x) = −(2π)2 sin(2πx) is manufactured so that the solution is u(x) = sin(2πx). For

this simple problem, we use a relatively shallow architecture consisting of 3 layers of 10 neurons.

The PSO-PINN ensemble was composed by 50 particles and used the proposed PSO-BP-CD

optimization method, with hyperparameter values α = 0.005, β = 0.9, c1 = 0.08, and c2 = 0.5.
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Figure 3.2: Poisson Equation - First row: solutions in the PSO-PINN ensemble as training progresses,
using the PSO-BP-CD method. Second row: Best individual, mean and variance of PSO-PINN
ensemble. Third row: PSO-PINN mean loss error. The grey band is the two-sided 1-standard
deviation region.

We can see in Figure 3.2 the progression of training, and how the PSO-PINN swarm zeros

in on the solution, rather quickly, after only 90 iterations. We can observe that, initially, the

mean is off and the variance is large, which is the desired behavior, as the variance is supposed

to quantify the uncertainty associated with the approximation. As training progresses, the swarm

approaches a consensus, the mean converges to the solution, and the variance simultaneously shrinks

to zero, indicating more confidence in the final result. The PSO-PINN swarm is thus accurate, with

well-calibrated uncertainty quantification.

25



3.5.2 PSO-PINN Performance using Different PSO Variants

In this section, we use classical PDE benchmarks to study the performance of PSO-PINN using

the three PSO variants described in 3.4.1. The number of training iterations was fixed at 2,000,

while the architecture of the neural networks was fixed at 5 layers and 8 neurons per layer. The

ensemble size was kept fixed at 100 neural networks. We kept the same number of initial condition

points, boundary condition points and residual points for all experiments in this section. In all

experiments, we used 1024 evenly spaced points for the initial condition, 512 evenly spaced points

for the boundary conditions, and 1000 residual points randomly distributed over the solution domain

using Latin hypercube sampling.

3.5.2.1 Advection Equation

The advection equation models the transport of a substance by bulk motion of a fluid. In this

example, we are assuming a linear univariate advection equation [78]:

qt + uqx = 0 (3.17)

where u is the constant velocity. The Riemman initial condition is

q(x, 0) =


ql, 0 ≤ x < x0 ,

qr, x0 < x ≤ L .

(3.18)

This simple problem has as solution:

q(x, t) =


ql, 0 ≤ x < x0 + ut ,

qr, x0 + ut < x ≤ L ,

(3.19)

for 0 ≤ t < (L−x0)/u. In other words, the initial discontinuity in concentration is simply advected

to the left with constant speed u.

The parametrization used for the PSO algorithm was β = 0.9, c1 = 0.8 and c2 = 0.5. For
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Figure 3.3: Advection Equation - Evolution of the PSO-PINN ensemble using the PSO-BP-CD
method, showing the mean and two-sided 1-standard deviation of the ensemble.

both the PSO-BP and the PSO-BP-CD methods, the values α = 0.005, β = 0.99, c1 = 0.08,

and c2 = 0.5 were used. Table 3.1 displays the performance of PSO-PINN using the three PSO

variants, which shows that the PSO-BP-CD method produced the best average L − 2 error over

10 independent repetitions of the experiment. The minimum L2 error over the 10 repetitions was

almost identical between the PSO-BP and PSO-BP-CD variants, with slight superiority to the first.

Figure 3.3 displays the evolution of training of the PSO-PINN ensemble using the PSO-BP-CD

method, in one of the 10 tests. We can observe that the PSO-PINN ensemble shows a reasonable

solution after 500 iterations, and has converged at 2000 iterations. As expected, the variance of the

ensemble is largest when the approximation is off and it shrinks to nearly zero upon convergence to

the analytical solution.

3.5.2.2 Burgers Equation

.
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Here we consider the following version of the viscous Burgers equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1]

u(0, x) = − sin(πx) ,

u(t,−1) = u(t, 1) = 0 ,

(3.20)

with kinematic viscosity ν = 0.02/π.

Again, we used the same parametrization for the PSO-BP and the PSO-BP-CD. The values for

α, β, c1 and c2 were set to 0.001, 0.9, 0.08 and 0.05, respectively. For the PSO algorithm we used

0.9, 0.8 and 0.5 for β, c1 and c2, respectively. The results can be see in Table 3.1. It can be seen

that the proposed PSO-BP-CD variant is better, by more than an order of magnitude, than the other

variants. Figure 3.4 illustrates the evolution of training for the PSO-BP-CD variant in one of the

experiments. As in the case of advection, the PSO-PINN ensemble produces, for this much more

complex PDE, a reasonable solution after 500 iterations, and has converged at 2,000 iterations. Note

how the variance is larger when the approximation is farther from the reference solution.
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Figure 3.4: Burgers Equation - Evolution of the PSO-PINN ensemble using the PSO-BP-CD method,
showing the mean and two-sided 1-standard deviation of the ensemble.

3.5.2.3 Heat Equation

Finally, we consider the classical 1D Heat equation. This PDE models temperature dissipation

in a heat-conducting bar:

∂u

∂t
= α

∂2u

∂x2
, x ∈ [0, L], t ∈ [0, 1]

u(0, t) = u(L, t) = 0,

u(x, 0) = sin
(πx
L

)
, 0 < x < L ,

(3.21)

where L = 1 is the length of the bar. The reference solution is u(x, t) = e
π2αt
L2 sin(πx

L
).

For the PSO algorithm we used 0.9, 0.8 and 0.5 for β, c1 and c2, respectively. The same

parametrization was used for the PSO-BP and the PSO-BP-CD, the values for α, β, c1 and c2 were

set to 0.005, 0.99, 0.08 and 0.5, respectively. The results are displayed in Table 3.1, where again we
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can see that the PSO-BP-CD variant performed the best. Figure 3.5 represents the training of the

PSO-PINN for the heat equation. Figure 3.4 illustrates the evolution of training for the PSO-BP-CD

variant in one of the experiments. Once again, the PSO-PINN ensemble produces a reasonable

solution after 500 iterations, has converged at 2,000 iterations, and displays larger variance when

the approximation is farther from the reference solution.

Figure 3.5: Heat Equation - Evolution of the PSO-PINN ensemble using the PSO-BP-CD method,
showing the mean and two-sided 1-standard deviation of the ensemble.

3.5.3 Comparison with Traditional Ensembles of PINNs

In this section we show that PSO-PINN ensembles produce better results than traditional

ensembles of PINNs, trained individually with ADAM gradient descent. For this, we selected two
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Table 3.1: PSO-PINN results comparing the PSO variants, displaying the mean, standard deviation,
and minimum (in parenthesis) of the L2 error of the PSO-PINN combined prediction across 10
independent repetitions of the experiment.

Problem PSO variant L2 error

Advection
PSO 0.1177± 0.0714 (0.0391)

PSO-BP 0.0234± 0.0017 (0.0212)
PSO-BP-CD 0.0232± 0.0016 (0.0213)

Burgers
PSO 0.4197± 0.0711 (0.2819)

PSO-BP 0.1470± 0.0826 (0.0579)
PSO-BP-CD 0.0125± 0.0502 (0.0057)

Heat
PSO 0.3974± 0.0834 (0.2617)

PSO-BP 0.0068± 0.0020 (0.0027)
PSO-BP-CD 0.0051± 0.0026 (0.0023)

particularly hard examples, in order to fully appreciate the improvement over traditional ensembles

afforded by the communication among particles in the PSO-PINN ensemble (the members of

traditional ensembles do not communicate). In both benchmarks, the PSO-BP-CD variant is used

with the PSO-PINN.

3.5.3.1 Forced Heat Equation

This benchmark features a 1D forced heat equation:

∂u

∂t
− ∂2u

∂x2
= 1 + x cos(t) x ∈ [−1, 1], t ∈ [0, 1]

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=1

= sin(t),

u(x, 0) = 1 + cos(2πx) .

(3.22)

This problem has an exact solution, given by

u(x, t) = 1 + t+ e−4π2t cos(2πx) + x sin(t) . (3.23)

In this benchmark, we set set the number of initial, boundary, and residual points to 1024,

512, and 512, respectively. We used 20 neural networks of 5 hidden layers of 8 neurons in both
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Figure 3.6: Forced Heat Equation - Results obtained by the PSO-PINN and conventional (ADAM)
PINN ensembles at the end of training.

PSO-PINN and traditional ADAM ensembles, which are trained for 2,000 iterations. For the

PSO-PINN training the values for α, β, c1 and c2 were set to 0.005, 0.99, 0.08 and 0.5, respectively.

The ADAM parameters were set as follows: α = 0.001, β1 = 0.99, β2 = 0.999.

Figure 3.6 displays the solution obtained by the PSO-PINN and ADAM ensembles at the end of

training, where the approximation displayed is the mean of the ensemble, as before. It is clear that

the PSO-PINN solution is close to the analytical solution, while the ADAM solution is rather poor.

After running over 10 independent repetitions the L2 error obtained by the PSO-PINN solution was

0.014 ± 0.006, while the error for the ADAM ensemble was 0.102 ± 0.005.
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3.5.3.2 The Allen-Cahn Equation

The Allen-Cahn is a nonlinear reaction-diffusion PDE, which is used in phase-field models

of the evolution of phase separation in a multi-component metal alloy. The Allen-Cahn equation

considered here is:

∂u

∂t
−D

∂2u

∂x2
− 5(u− u3) = 0, x ∈ [−1, 1], t ∈ [0, 1]

u(−1, t) = u(1, t) ,

∂u

∂x

∣∣∣∣
x=−1

= −∂u

∂x

∣∣∣∣
x=1

,

u(x, 0) = x2 cos(πx) ,

(3.24)

where D = 0.0001 is the diffusivity coefficient. The Allen-Cahn PDE is a challenging benchmark

for PINNs due to sharp space and time transitions in its solutions and the periodic boundary

condition. In order to deal with the latter, the PINN boundary loss term has to be modified, as

specified, e.g., in [51].

In this experiment, we set set the number of initial, boundary, and residual points to 256, 400, and

2000, respectively. In addition to these data, we use 2000 data points randomly sampled throughout

the spacial-temporal domain using Latin hypercube method. We used 100 neural networks of

5 hidden layers of 8 neurons in both PSO-PINN and traditional ADAM ensembles, which are

trained for 2,000 iterations. We used the same parametrization described in Section 3.5.3.1 for the

PSO-PINN and the ADAM training.

Over 10 independent repetitions of the experiment, the PSO-PINN ensemble achieved and L2

error of 0.093 ± 0.032, while the ADAM ensemble achieved 0.327 ± 0.029. The results at the end

of training for one of the repeated experiments are displayed in Figure 3.7. We can observe that the

PSO-PINN ensemble had converged to the reference solution, while the ADAM ensemble had not.
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Figure 3.7: Allen-Cahn Equation - Results obtained by the PSO-PINN and conventional (ADAM)
PINN ensembles at the end of training.
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3.5.4 Discussion

The experimental results displayed promising results for PINN training using swarm intelligence

and ensemble models. It was seen in Section 4.2 that both PSO-BP and PSO-BP-CD show superior

results to using a basic PSO algorithm. This is no doubt due to the extra information contained in

the gradient of the function. We also observed that PSO-BP-CD, the variant we proposed in this

paper, performed better than PSO-BP, especially in the case of the nonlinear Burgers benchmark.

PSO-PINN provides the advantages of an ensemble approach, allowing the use of the mean

of the ensemble as the predictor and its variance as a measure of the corresponding prediction

uncertainty. However, PSO-PINN has clear advantages over a standard ensemble of PINNs trained

with ADAM, as seen in the results of Section 4.3. The PSO-PINN ensembles are more precise

and converge faster, with well-calibrated variance, leading to a greater confidence in the solution.

This no doubt results from the fact that there is communication between the PINNs in a PSO-PINN

swarm, while the traditional ensemble the PINNs do not communicate.

Setting the hyperparameters of the PSO-PINN ensemble, i.e., α, β, c1, and c2, is a model

selection problem comparable to setting the correct learning rates and initialization in training a

deep neural neural network. Indeed, the hyper parameter α is directly comparable to the learning

rate used in traditional gradient descent. We observed in our experimental results that suitable

hyperparameter values were fairly consistent across experiments. Also, there was no need to set a

schedule for the learning rate hyperparameter α, as is usually needed in traditional gradient descent

algorithms

3.6 Conclusion

In this paper, we proposed PSO-PINN, a particle-swarm optimation methodology for training

physics-informed neural networks. PSO-PINN can be employed with any variant of PSO; here, we

proposed PSO-BP-CD, a modification of the existing hybrid PSO-gradient descent PSO-BP method,

which puts more weight on the gradient descent component as training progresses. PSO-BP-CD

was observed in our experiments to be the best-performing variant of PSO for use with PSO-PINN.
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PSO-PINN produces an ensemble of PINN solutions, which allows variance estimation for

quantifying the uncertainty in the prediction. A more considerable degree of agreement among

the PINNs leads to small variance and a higher degree of confidence in the predicted values. Our

experimental result indicate a clear advantage of PSO-PINN over traditional ensembles of PINNs.

Other ensemble techniques, such as stacking [79] and snapshot [80], could be readily introduced

into the PSO-PINN framework to produce even better predictions and uncertainty quantification.

As an ensemble approach, PSO-PINN incurs a larger computational cost than training a single

PINN. However, some of the cost could be mitigated by using parallelization. There are out-of-the-

shelf implementations in TensorFlow to parallelize tensors calculations, and PSO-PINN is already

taking advantage of that. Nevertheless, there is room for improvement, mainly regarding distributed

training strategies. Such procedures would allow PSO-PINN to distribute its training across multiple

GPUs, clusters, multiple machines, or even Cloud TPUs.

Some other aspects of swarm optimization are yet to be explored, such as multi-objective

optimization, which would be quite suitable for PINNs, since its total loss function is nothing more

than a scalarization of multiple losses (often minimized as the sum of the losses). Using distributing

computing strategies will unleash further improvements in scalability and new approaches for

optimization. Future work will explore these and other improvements in the PSO-PINN methodology

in order to tackle more challenging problems, including inverse mapping for the determination of

equation parameters and solving high-dimensional problems with unobserved boundary conditions.

36



4. EXTENDING THE PSO-PINN: THE MULTI-OBJECTIVE AND MULTI-MODAL

APPROACHES

4.1 Abstract

The PSO-PINN is a swarm strategy for training PINNs, it aims to mitigate the gradient descent

difficulties when dealing with PDEs with irregular solutions. Additionally, it takes advantage of

the ensemble properties to yield robust predictions with quantified uncertainty. In this paper, we

propose two distinct versions for this method, namely Multi-Objective PSO-PINN and Multi-Modal

PSO-PINN. The first one acknowledges the PINN as a multi-objective problem and handles the

PSO-PINN training as such. This approach unleashes a new paradigm to deal with PINNs, allowing

the analysis of the problem and to find out if the model-driven and the data-driven portions of

the PINN are in agreement. The latter promotes a desirable characteristic of the PSO-PINN, the

diversity of the solutions. The Multi-Modal approach enforces multiple local optima during the

training, guaranteeing a solution composed of a diverse ensemble.

4.2 Introduction

The Scientific Machine Learning [81] field has gotten tremendous traction in the last years,

especially in the Physics-Informed Neural Networks (PINNs) [82, 46, 47, 83, 84]. Although

the idea of Physics-informed Machine Learning has been firstly explored almost three decades

ago [85], recent advancements in high processing computational methods [86], and particularly in

the automatic differentiation algorithms [87, 88, 89], have attracted great attention to PINNs. The

method have emerged as an alternative to the numerical methods solvers for Partial Differential

Equations (PDE), introducing the great advantage of including collected data into the model. Thus,

unlike typical data-driven techniques, PINNs take into account prior information of the physical

understanding in the problem domain.

Nevertheless, adjusting the PINN mechanisms to find an optimal spot in the range between a

PDE solver and a fully data-driven approach is not a straightforward task. To date, it is commonly
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performed by adjusting the weights on the loss function. A work that can be made manually,

based on the user’s familiarity with the problem [90], or using adaptive weights [51]. Another

reported weakness is how fragile the method might be in facing more complex problems [91, 15, 16],

especially when solving “stiff” PDEs [92], with solutions that contain sharp space or transitions [15].

The PSO-PINN [93] is a novel training method for PINNs, proposed to mitigate the often

reported fragility against "stiff" PDEs. Using a hybrid optimization method, combining gradient

descent and meta-heuristics, this method has proven to successfully solve a range of PDEs, including

"stiff" PDEs. Also, it takes advantage of ensemble techniques to generalize better when dealing

with noisy data. Like many population-based heuristic optimizations, the Particle Swarm Optimiza-

tion (PSO) [55] algorithm is expandable enough to contemplate different application scenarios.

Indeed, there are a number of proposed variations on the algorithm to contemplate Multi-Objective

problems [94, 95] and Multi-Modal optimization [96, 97].

In this paper, we explore the potential of Multi-Objective Optimization for solving PINNs,

specifically adapting the PSO-PINN algorithm to deal with the PINN losses independently. We

propose a new approach for choosing the extent of the influence of the analytical model and the

available data in the neural network model. Instead of determining it before the training, this new

approach allows the practitioner to simultaneity train the model over the many possible objectives

and select the best suited for the problem after a post-training analysis.

We also attend to a particular deficiency of PSO-PINN. Although the algorithm was designed to

use ensemble methods to improve the generalization properties of the solution, it is always liable to

full convergence. In this case, even though there is still a population of results, the particles would

be so close to each other that it may be seen as a unique solution. To avoid such a scenario, we

propose to use Multi-Modal Optimization in order to forcibly find multiple local optima in the PINN

loss surface. These local optima, in turn, may yield a better solution when presented to problems

with missing physics or noisy data.

The remainder of this paper is organized in the following sections. Section 4.3 brings some

related work and advancements on the field. Section 4.4, the preliminaries, describes the theoretical
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framework where this work is based upon. Section 4.5 introduces the Multi-Objective PSO-PINN

and explore some of its features through a couple of examples. The Section 4.6 introduces the

Multi-Modal PSO-PINN and addresses its capabilities. Finally, the Section 4.7 concludes the paper

discussing the advantages and limitations of the proposed methods and lists possible future works.

4.3 Related Work

Physics-Informed Neural Networks (PINNs) [46] have shown remarkable success in a variety

of problems modeled by partial differential equations [47, 48]. This technique has the appealing

property of integrating machine learning and physical laws. Therefore, the final model is not solely

data-driven, but it uses partial differential equations as prior information. In the last few years

PINNs are widely expanding into various real-world problems, such as fluid mechanics [84, 90, 98],

material science [99, 100] and biomedical engineering [101, 102, 103, 104]. There is also an

enormous variety of techniques and approaches for building, training and evaluating PINNs [53,

83, 54, 105, 93]. Fundamentally, the PINN framework consists in modeling a PDE into a Deep

Learning model, using the PDE constraints as the losses guiding the network training (see more

details in section 4.4.2). Usually, all these losses are aggregated together, and the resulting gradient

is used to update the weights of the neural network incrementally.

Alternatively, one can deal with the training of multiple losses using Multi-Objective Opti-

mization (MOO) [106, 107]. This approach yields a space of possible solutions in the approximated

Pareto Front [108]. Dealing with PINNs as a MOO problem also allows new training strategies,

where portions of the loss can be optimized in turns, similar to what is done in Multi-Task Learning

(MTL) [109, 110].To some extent, there are works on PINNs [111, 112], but most of them are

restricted to MTL.

There reported attempts to use MOO for Deep Learning [113, 114, 115, 116]. However, deep

networks are a challenging domain to MOO, considering how computationally expensive it could

be. The two most typical approaches are somewhat costly; they would either train multiple models

for populating the Pareto Optimal Front or rely on large parameter dependencies of hyper-networks.

There is also another family of techniques for tackling multiple solutions, the Multi-Modal
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Optimization(MMO) [117, 118, 119]. Instead of finding multiple objectives in the loss function,

this approach picks multiple local and global optima.

Particle Swarm Optimization (PSO) [55, 120] is a well known algorithm for metaheuristic

optimization with notably versions for dealing with MOO [121, 94, 95] and MMO [96, 97]. The

PSO algorithm is widely used in numerous applications, including deep neural network training [56,

57, 58, 59, 60], for both training [122, 123, 124] and network hyper-parametrization [125, 126].

The PSO-PINN [93] is an implementation of the PSO algorithm particularly designed to reduce

the pathological behavior of gradient-based optimization on PINNs. In addition, it is capable of

using the ensemble properties of the swarms to promote a solution with good generalization and

also quantify the uncertainty related to such a solution.

4.4 Preliminaries

In this section, we provide a basic survey of deep neural networks, PINNs, and optimization

methods. The models and the definitions described in this section will contribute as a solid base

when explaining the methods, experiments and results ahead.

4.4.1 Deep Neural Networks

Given enough hidden neurons and sufficient training, multi-layer feed forward networks are

universal approximators[49]. This outstanding property let this family of algorithms evolve in what

is called today’s deep learning algorithms[70]. Usually, the topology consists in a feed-forward

fully-connected network, the basic architecture for deep learning. A fully-connected neural network

with L layers is a function fθ : Rd → Rk described in Equation 4.1. This function is composed

essentially by three components, the weights, bias and activation functions. Among popular choices

for the activation function are the sigmoid function, the hyperbolic tangent function (tanh), and the

rectified linear unit (ReLU) [71].

fθ(x) = W [L−1]σ ◦ (· · · σ ◦ (W [0]x+ b[0]) + · · · ) + b[L−1] (4.1)
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where σ is an entry-wise activation function, W [l] and b[l] are respectively the weight matrices and

the bias corresponding to each layer l, and θ is the set of weights and biases:

θ = (W [0], · · · ,W [L−1], b[0], · · · , b[L−1]) . (4.2)

This framework allows the approximation of fθ(·) to any arbitrary function g : Rd → Rk. The

method for building this approximation is called training and it is typically guided by a loss function

L : Θ× T → R. Among others, a popular choice in deep learning is the Mean Square Error(MSE):

L(θ, x) = |fθ(x)− y|2, (4.3)

where y ∈ Rk is the target value. Several other loss functions have been proposed in the last

decades, where a particular choice may drastically change the behavior of the neural network

model [127].

Calculating f(x) and L(θ, x) is commonly called the forward propagation. It will provide

enough information for the subsequently phase, the back propagation. During the back propagation,

the network’s weights and bias are updated based on the gradient of the error given by the loss

function:

θt+1 = θt − α
∂L(θt, x)

∂θt
(4.4)

where θt denotes the learnable parameters of the neural network at iteration t in gradient descent and

α is the learning rate. Again, there were numerous gradient-based optimization methods proposed

in the last years [7, 8, 128].

4.4.2 Physics-Informed Neural Networks

Consider a non-linear partial differential equation (PDE) of the general form defined on a

bounded spatio-temporal domain {Ω ∈ Rn, [0, T ]}:
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N [u(x, t)] = f(x, t), x ∈ Ω, t ∈ [0, T ]

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T ]

u(x, 0) = h(x), x ∈ Ω

(4.5)

where Ω ⊂ Rn, u : Ω→ Rk, and N [·] is a spatio-temporal differential operator. The boundary

of the domain is restricted by ∂Ω. And the source, boundary condition, and initial condition are

defined by f(·), g(·), and h(·), respectively.

The PINN approach to solve a given PDE consists in training a deep neural network uθ(x, t)

(with a set of learnable parameters θ) in order to approximate the solution u(x, t) of the PDE. This

task can be accomplished by manufacturing the losses in a way to respect the PDE’s definition.

Therefore, we would have multiple losses depicting the restrictions of the given PDE. Bellow we

have the governing equation, the boundary conditions, and the initial conditions into the training

losses for the neural network:

Lr(θ,xr, tr) =
1

Nr

Nr∑
n=1

|N [uθ(x
n
r , t

n
r )]− f(xn

r , t
n
r )|2 (4.6)

Lb(θ,xb, tr) =
1

Nb

Nb∑
n=1

|uθ(x
n
b , t

n
b )]− g(xn

b , t
n
b )|2 (4.7)

L0(θ,x) =
1

N0

N0∑
n=1

|uθ(x
n
0 , 0)]− h(xn

0 )|2 (4.8)

where Lr is the PINN residual loss on collocation training points {xn
r , t

n
r }Nr

n=1 sampled randomly

in the domain {Ω, [0, T ]}, Lb is the boundary condition loss on boundary points {xn
b , t

n
b }

Nb
n=1, and

L0 is the initial condition loss on initial points {xn
0 , 0}

N0
n=1. Also, if there is any data-points for the

problem, it can be readily incorporated as another loss component:

Ld(θ,xd, td) =
1

Nd

Nd∑
n=1

|uθ(x
n
d , t

n
d)]− yn)|2 (4.9)
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where Ld in the data loss resulted from the dataset {[xn
b , t

n
b ], y

n}Nb
n=1. The resultant loss function

used for training the PINN is often defined as the simple sum of the individuals losses:

Lθ = Lr(θ,xr, tr) + Lb(θ,xb, tb) + L0(θ,x0, t0) + Ld(θ,xd, td) (4.10)

Some authors, however, proposed diverse strategies for weighted sum approaches [129, 130].

Thus, forcing the PINN to satisfy its restrictions more closely. This approach is particularly suitable

for PDEs describing time-irreversible processes, where the solution has to be approximated well

early. In this case, a larger weight may be applied to initial condition loss (L0(θ)), compelling the

PINN to tightly observe this restriction.

L(x, t) =
U∑
i

ωiLi(θ,xi, ti) (4.11)

Where U is the set of losses for a given problem, following the examples here we have U =

[r, b, 0, d]. Since we are dealing with PINNs, we have i ≥ 2 and Li(θ,x, t) : Θ×X × T → R.

Lastly, there are adaptive weighted methods [16, 131, 51], where the weights for the individual

losses are updated during the training. These weighting methods are somehow related to multi-

purpose deep neural network training [132, 133].

4.4.3 Multi-Objective Optimization

The main goal during the PINN’s training is to degrade each one of the Losses (defined in the

Equations 4.6 to 4.9) to a minimum possible value. Although the PINNs commonly use scalarization

methods to aggregate all the losses into a single value, it is a clear example of Multi-Objective

Optimization. Instead of using equations 4.10 and 4.11 to guide the optimization of the θ parameters

of the PINN[134], one can jointly minimize the set of L loss functions, following the Equation 4.12,

where each objective focuses on minimizing the expectation for all the respective loss functions:
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θ∗ = argminθE(x,t){L1(θ,x1, t1),

L2(θ,x2, t2),

... ,

Ln(θ,xn, tn)}

(4.12)

Unfortunately, finding the optimal value for θ∗ is an arduous task, and often there is no single

solution able to optimize all losses L(·) simultaneously. However, there is a set of θ∗ optimal

solutions for each individual Loss. These solutions compose the Pareto Front. The following two

definitions are used to build the Pareto Front (where n is the given number of loss functions):

Definition 1(Pareto dominance). A solution θ∗ dominates another solution θ (denoted as θ∗ ≺ θ)

if and only if:

• θ∗ is not worse than θ in any objective, i.e.: Li(θ
∗,x, t) ≤ Li(θ,x, t) ∀i ∈ {1, 2, 3, ..., n}.

• θ∗ is better than θ in at least one objective, i.e.: ∃i ∈ {1, 2, 3, ..., n} : Li(θ
∗,x, t) < Li(θ,x, t)

Definition 2 (Pareto optimality). A solution θ∗ is Pareto optimal if it is not dominated by any

other solution. Therefore, the set of all Pareto optimal solutions is defined as P := {θ ∈ Θ | ∄θ′ ∈

Θ : θ′ ≺ θ}. Meanwhile, the Pareto front F is the n-dimensional manifold of the objective values

of all Pareto optimal solutions F := L(θ) ∈ L | θ ∈ P , where L = {L1,L2,L3...,Ln}.

The goals in a MOO problem are often conflicting. Thus the Pareto front may work as a tool to

select the best model according to the objectives of main interest. The set of Pareto non-dominated

models is composed of solutions that cannot improve any objective without degrading at least one

of the remaining objectives. That particular setup comes in handy when it is needed to compromise

in order to prioritize between solutions.

However, that might not be the case on most of PINNs. Theoretically, the restrictions applied

on the differential operator must respect and adhere to each other, resulting in a concave curve of

solutions with respect to the objectives, which allows the user shape the Pareto front according
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to the loss weights [135]. In such circumstances, the Pareto may be degradable to zero, thereby

the total loss as defined in Equation 4.10 would completely satisfy the objective equation and its

restrictions.

Nonetheless, this is an unlikely scenario for real-conditions experiments. On the one hand, it

might be hard to precisely determine all the prior information required to mount the differential

equation beforehand. Also, when dealing with datasets, one is always subject to noisy measurements

and missing data. The loss weighting could be yet another issue, as the pre-defined weights are

susceptible to investigator bias [136]. In such cases, a MOO approach may be more suitable than

the traditional PINN, there is a further discussion on this topic in the Section 4.5.

4.4.4 Multi-Modal Optimization

The training of a Deep Learning model is a guided search throughout the domain Θ, as it

minimizes L(θ,x), θ ∈ Θ. Typically, there is a limit to this approximation when the solution is

too closely related to a particular set of data, thus losing its generality. This behavior is commonly

called overfitting, and it is a well-known weakness in many Machine Learning techniques.

Multi-Modal Optimization (MMO) algorithms can locate multiple global optima in a single

run. Since it does not seek a single global optima θ to minimize L(θ,x), the idea is to find a set of

solution candidates θ∗ ∈ Θ that locally minimize the function result in isolated peak regions. When

applied to Deep Neural Networks, MMO may be a convenient method to tackle the bias-variance

tradeoff [137]. One can use ensemble techniques with high-variance models (such as Deep Neural

Networks), to get a better generalization and thus avoiding the overfitting.

Definition 3 (Multi-Modal Minimization Problem). Let v be the local minima θ∗1, ..., θ
∗
v of the

total loss function L in Θ. Ordering these optima in f(θ∗1) ≤ ... ≤ f(θ∗l ) ≤ h ≤ ... ≤ f(θ∗v), the

multi-modal minimization problem would approximate the set
⋃l

i=1{θ∗i }.

Note the addition of the variable h as a threshold in order to avoid possible poor quality local

optima. It gives the flexibility to model the problem statement from find all local optima (h =∞)

to find only the global optimum (h = f(θ∗1), and thus reducing the problem to a single optimization

problem). The choose of h is usually given by the characteristics of one particular problem [138].
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Most authors classifies MMO algorithms into two categories, the one-stage MMO and the two-

stage MMO. The two-stage algorithms are called this way due to a previous step done before the

optimization, they split up the candidate models before hand, usually using clustering algorithms,

and then perform sub-clusters searches in the many sub-groups. On the other hand, the one-

stage MMO algorithms dynamically arrange the population according a particular metric (such

as the euclidean distance [139] or the gravitational force [140]), avoiding any need for previous

arrangement of the candidate solutions. Although usually one-step MMO algorithms are easier to

understand and implement, they typically are not as efficient as two-step algorithms [141, 142, 143].

4.5 Multi-Objective PSO-PINN

By design, a PINN could behave as a purely PDE-solver as well as adopt fully data-driven

comportment. This is an outstanding property from PINNs, capable of putting the method to a

whole new level when compared with the traditional ways of modeling physical systems. It leads

to a flexible framework where the user can determine their confidence degree in each piece of

information on the problem. Furthermore, it allows them to expand the information insights hidden

in the data through the physics model, a procedure often known as inverse problems [46, 144, 145].

Despite this, adjusting the PINN mechanisms to find an optimal spot in the range between

completely model-driven and fully data-driven is not a straightforward task. Often the data losses

and the physics-based losses have notorious disparity in their values, which may lead to a poor

approximation to the solution. Commonly, this fine tune is done by adjusting the weights of the loss

function. Indeed, this adjustment is essential for setting up a well-working PINN.

The balance between model-driven and data-driven behavior is usually defined before the

PINN training. It is generally done by using a trial-and-failure approach to determine appropriate

weights [90], or during the training through self-adaptive methods [16, 131, 51]. Whatever the

choice, it may imply a problematic situation, as the user generally has precarious conditions to

choose these weights. Missing knowledge of the underlying physical system may incur in a poorly

defined PDE, and lacking information on the dataset may compromise the data-driven search. At

this point, a good setting for the PINN is hardly made with confidence.
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Here, we propose using MOO to change this paradigm. Instead of choosing between model or

data driven approaches before/during the training, we propose to make this selection after training.

We can take advantage of the Pareto front created by most of the MOO algorithms to analyse

possible solutions according to their spot on it. Notice that a MOO approach may be employed by a

number of optimizations strategies, but it is particularly suitable for the PSO-PINN algorithm. First,

its innate decentralized behavior facilitates the search in a multiple objective dimension. Second, it

already keep track of a population of solutions, a small change on the algorithm can also keep track

on the positions belonging to the Pareto front.

A few modifications are required in order to adapt the PSO-PINN to a MOO approach. First

we need to create a detached archive of best positions. This archive should hold the all optimal

positions (according to the definitions on section 4.4.3) visited during the training. These positions

are the Pareto front, and it will serve as a collection of gbest, the global optima. At each iteration,

the algorithm randomly chooses the gbest among the positions in the archive, since all of them are

theoretically equally suitable solutions.

The update of the pbest values must follow the rules defined in Section 4.4.3 as well. A particle

should move to a new position only if the new position is as good as the old one for all objectives,

and better in at least one of the objectives. That is the minimal condition to guarantee the movement

is not hurting any of the objectives.

Another major modification is the removal of the gradient-based component. Since now we are

dealing with multiples objectives, supposedly holding no distinction in importance, a gradient-based

approach would be prohibitive. First, there would be a number of gradient vector, and the size of this

vector would be as large as the number of objectives. It is well known how the increase of gradients-

vector may harm the optimization process. Also, there would be a considerably computational cost

related to compute multiple gradients after each iteration.

There is a caveat when adopting a multi-objective approach to solve PINNs, as solutions to

differential equations are usually not unique. If that is the case and the residual loss stands alone in

an individual objective dimension, the PINN’s solution will probably lie down in the first feasible
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solution, not adhering to the physical constraints previously established. Here, we propose to

aggregate the residual and boundary losses to avoid such a situation. This way, we reduce the PDE

freedom keeping the flexibility to set the multiple objectives according to each problem’s needs.

The next examples address this issue and make clear how this hack works.

4.5.1 The Poisson Equation

The Poisson Equation is a famous PDE broadly employed in many fields of theoretical physics.

Although this problem is usually found in three-dimensional Cartesian coordinates, here we re-

stricted it to a single dimension. This way it would better accomplish its objective as a toy example

for the Multi-Objective PSO-PINN analysis. Therefore, for the extent of this example, we have

limited it as an elliptic Ordinary Differential Equation defined by:

∂2u

∂x2
= g(x) (4.13)

With x ∈ [0, 1] and the following boundary conditions u(0) = u(1) = 0. We manufactured g(x)

so that u(x) = sin(2πx). Also, we added a few data points, for better illustrate the capabilities

of the Multi-Objective approach. There are used six evenly spaced data points over the specified

interval [0, 1].

The total loss for the PSO-PINN was split into a vector of two positions, the first one in charge

to track the error related to the analytical information and the second one responsible for the

data-driven portion of the training:

L(θ,x) = [Lr(θ) + L0(θ,x0),

Ld(θ,xd)]

(4.14)

This example was intentionally designed to simulate a real case scenario, where the PINN user

do not have full knowledge of the equation ruling the physical phenomena or may have noise on his

measurements of the experiment. For the first scenario, let’s say the user mistakenly considered
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u(x) = sin(2πx)/2 instead of it’s true form. For the second one, the noisy data scenario, a random

noise uniformly distributed on the range [0.0, 0.5) was inject to the data points. We had purposely

introduced such gross errors to have a better contrast on the predictions, thus a easier understanding

of the Multi-objective Optimization capabilities.

Both of the Poisson problems cases were solved using the same parametrization. The neural

network architecture was composed by one input neuron, ten layers of three neurons and an output

neuron. There were a hundred particles in the population and they were trained for ten thousands

iterations. The PSO parameters β, c1, and c2 were set to 0.99, 0.008 and 0.05, respectively.

The Figure 4.1 illustrates the results for both experiments. On the left, the noisy physics example

and on the right the noisy data one. The first row has both the Pareto fronts, with the extreme

solutions marked in red. The second and third rows represent the solutions given by these extreme

solutions. The second row shows the best solution for the analytical objective and the third row

shows the best solution for the data-driven objective.

As expected, the solution with less data loss was better in a scenario with missing physics,

and the solution with less analytical loss was better in the scenario with noisy data. But another

interesting finding lies on the influence from the other objectives, the best solution for the analytical

loss in the noisy physics example does not fit entirely to the modified equation (u(x) = sin(2πx)/2),

it borrows some information from the correct fitted data solution. The same thing happens the other

way around, where the best data solution for the set trained with noisy data has a good fit in some

extent of the solution.
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Figure 4.1: Multi-Objective PSO-PINN solutions for Poisson Equation – The results depicted are
for two independent training. On the left column, a Multi-Objective PSO-PINN was trained with
good data but noisy physics, i.e., a bad choice of coefficients for the PDE. On the right column, the
Multi-Objective PSO-PINN was trained with a noisy dataset. On the top row, the Pareto fronts for
each scenario. Each point on the Pareto front represents a neural network, and in the second and
third row, we have the best solution to each dimension. This solution is also marked in red on the
Pareto front.
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4.5.2 The Heat Equation

Here, we use one of the most popular forms of the Diffusion equation, the heat equation. It

is a famous PDE, with many known variants applied to a variety of fields, such science, applied

mathematics and engineering. This particular case consider the cooling of a one-dimensional rod

with an initial temperature distribution and Dirichlet boundary conditions on both rod ends. The

systems dynamics, initial and boundary conditions are following the specifications found in [146].

The dissipation of the temperature in an iron rod, is given by the following equation:

∂u

∂t
= α

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1] (4.15)

The temperature of the rod u(x, t) is a function of the position x over the time t, and α is the

parametrization coefficient, commonly known as thermal diffusivity constant. The constraints for

this equation, the initial (IC) and boundary (BC) conditions, are given by:

u(0, t) = u(1, t) = 0,

u(x, 0) = sin
(nπx

L

)
, 0 < x < L

(4.16)

where L = 1 is the length of the bar, n = 1 is the frequency of the sinusoidal initial conditions.

As defined here, this problem is well-posed and has a unique solution:

u(x, t) = e
−n2π2αt

L2 sin(
nπx

L
) (4.17)

As said before, the simple accommodation of the losses to the MOO framework (as defined

in 4.12) would not suffice. Disconnected to any constraints, the equation 4.15 can assume infinite

solutions, in fact, any constant would be a feasible solution.

Therefore, the multi-objective for this experiment are defined by the loss vector (following the
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definitions from equations 4.6 to 4.9):

Lθ = {[Lr(θ,xr, tr) + L0(θ,x0)],

[Lb(θ,xb, tb) + Ld(θ,xd, td)]}
(4.18)

Notice that we may use as many objectives as wanted for this problem, but in sake of simplicity

we kept the objectives in a two dimensional vector. The first one containing the sum of the residual

and original loss. The second is the sum of the boundaries and data losses.

For this experiment, we set the thermal diffusivity constant α = 0.4 as the reference solution.

Also, we added a uniformly distributed noise in the range [0.0, 0.3) for all data in the problem, this

includes original points, boundary points and data points. The neural-net architecture was composed

by two input neurons (for x and t), followed by six layers hidden with eight neurons each, and a

single output representing u(x, t). The PSO parameters β, c1, and c2 were set to 0.99, 0.008 and

0.05, respectively.

In Figure 4.2 are displayed different solutions through the Pareto front. In the first row is the

solution that optimize the first objective of Lθ, i.e. argminθ[Lr(θ,xr, tr) +L0(θ,x0)]. The second

row is the solution closest to the absolute zero. Since all the losses must be bigger than zero, we

can achieve this using
∑Lθ

i Li. The third and last row is the best optimization for the data loss,

argminθ[Lb(θ,xb, tb) + Ld(θ,xd, td)].

The solution in the first row, the one minimal value found for the original and residual losses,

had a good fit to the proposed PDE. It does not completely fit to the analytical solution, mostly

due to the heavy noise in all data sources. Even though it is the optimal solution for PINN Loss, it

suffers influence from the other losses in the Loss vector (4.18). After all, the algorithm has just one

population. In the third row, the minimum data loss, although the solution had a good generalization

for the data points, it was compromised by the noisy data points. Lastly, there is the second row,

which depicts the solution with the minimum sum of all objective losses. This solution is deemed

the elbow point for all the Pareto Front, as we can see in Figure 4.3. We couldn’t say it is the best

solution since, by definition, all solutions in the Pareto Front are equally good, but we might say the
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Figure 4.2: Multi-Objective PSO-PINN solutions for the Heat Equation – Each row represents one
of the solutions found in the Pareto Front (Figure 4.3). On top, the solution that minimizes the first
loss from the Loss vector. In the middle, we have the solution most close to zero, one that minimizes
the sum of all in (4.18). In the last row is the best solution for the boundary and data losses.

one particular solution on the elbow point holds the best balance among the objectives.

Notice that in a real case scenario, we couldn’t say with one would be the better solution for this

problem. At this point, the only thing we have for fact is that the data points are in disagreement with

the analytical solution. It could be either caused by sensors out of calibration or by bad coefficients

on the PDE. A possible approach for this situation would be using the PINN to solve the inverse

form of the problem [99, 145, 147].
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Figure 4.3: The Pareto front of the Multi-Objective PSO-PINN solutions for the Heat Equation.

4.6 Multi-Modal PSO-PINN

One of the biggest challenges in pattern recognition is to train a model avoiding overfitting it. In

other words, there are two conflicting objectives while training a model, to create a well-fitted model

for a given phenomenon while keeping it with enough generalization power to perform correctly in

the face of new unseen data. There are many strategies to deal with it, but one of particular interest

is the employment of ensembles. The idea behind it is to take advantage of many different models to

keep a good level of generalization over the problem. This is one of the premises of the PSO-PINN,

leveraging the pool of possible solutions in the population to avoid overfitting. This presumption

may not be satisfied, though, when the swarm is fully converged. In this situation, even though the

swarm is stationed in a presumably good local optimum, there is a high risk that this position is not

well-suited for all samples, especially the unseen data.

The Multi-Modal approach aims to prevent this situation by forcibly splitting the population

into a number of sub-swarms, consequently reaching different local optima after training. To reach

this objective, a number of modifications were made to the PSO-PINN algorithm. First, for the

multi-modal version, the original population is clustered using the k-means algorithm [148], making

it a two-step multi-modal optimization. Also, during the training, we created checkpoints to remove
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the sub-swarms converging to bad local optima, with no reposition. This is done using two criteria,

(1) removing sub-swarms not decreasing the total loss over iterations and (2) removing sub-swarms

outperformed when compared to the others. We intentionally reduce the iteration between the

sub-swarms to a minimum, facilitating scalability and making it easier to create strategies for

distributed computing.

For the experiments described in this section, we set k to a tenth of the population size, thus

forcing the swarm to create 10 sub-swarms. This number may vary for different problems, network

architectures, and population sizes. We also kept the number of removal checkpoints the same as

k, totaling ten checkpoints for the experiments described in this section. It is valid to point out

that removal is not mandatory at these checkpoints. The removal only happens if the sub-swarm is

notably falling in the conditions mentioned before.

This section follows covering two examples. The first one, the Helmholtz equation, aims to

illustrate the comportment, properties, and performance of the Multi-Modal PSO-PINN. In the

second example, the Allen-Cahn equation, we intentionally introduced some noisy data points. This

second experiment was designed to evaluate how well the Multi-Modal PSO-PINN can generalize

over uncertainty.

4.6.1 The Helmholtz Equation

The Helmholtz Equation is a time-independent PDE largely used to describe the behavior of

wave and diffusion processes (although it can easily be extended to physical models for both space

and time). In the general form, the time invariant equation can be described as follows:

∂2u

∂x2
+

∂2u

∂y2
= −k2u (4.19)

In this particular example, we employ the Helmholtz equation to model evolution in a 2D spatial

domain (x, y) whose result belongs to the closed-form analytical solution:

u(x, y) = sin(a1πx) sin(a2πy) (4.20)
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Resulting in a slightly change in the general form of the the PDE:

∂2u

∂x2
+

∂2u

∂y2
+ k2u− f(x, y) = 0 (4.21)

with the following Dirichlet boundary conditions:

u(−1, y) = u(1, y) = 0

u(x,−1) = u(x, 1) = 0

x ∈ [−1, 1], y ∈ [−1, 1]

(4.22)

The f(x, y) term is responsible for enforcing the PDE to the desired particular case, and it is

described as follows:

f(x, y) = −(a1π)2 sin(a1πx) sin(a2πy)

−(a2π)2 sin(a1πx) sin(a2πy)

+k2 sin(a1πx) sin(a2πy)w

(4.23)

For this example we adopted a1 = 1, a2 = 4, and k = 1, to allow the comparison to the

Helmholtz PDE results reported in [15] and [51]. We have sampled 25 points over the boundaries,

given a total of 100 boundary points. For the residual, we selected 1000 collocation points from the

mesh of the two dimensions x ∈ [−1, 1], y ∈ [−1, 1].

In order to better visualize the benefits and improvements of the multi-modal approach, we

solved this problem using the PSO-PINN multi-modal training and the PSO-PINN algorithm as

proposed in [93]. Both of the training observed exactly the same parametrization. The neural

network architecture was composed of two input neurons representing the dimensions (x, y),

followed by six hidden layers of 20 neurons each and an output neuron for the PDE solution. The

models were trained for 6000 iterations with the following values for β, c1, c2, and α, respectively:
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0.999, 0.0008, 0.005, and 0.0001.

Figure 4.4: Multi-Modal PSO-PINN solutions for the Helmholtz Equation – On top, the PSO-PINN
solution. Bellow, the Multi-Modal PSO-PINN solution.

We can see in Figure 4.4 that both solutions have a good fit to the Exact solution. Notice that one

of the main properties of PSO-PINN is give not only the solution, but also the related uncertainty to

the solution. Thus, there certainly are particles better fitted to the solution within the population,

but we opted to use the average solution as result, with two standard deviations measuring the

uncertainty related to each point in the solution domain space. Also, we lay emphasis on the exact

solution being covered by the uncertainty boundaries, which reinforces the goals of PSO-PINN

approach. Notwithstanding, these results are comparable to the solutions reported in [15] and [51],

especially if we take into account that we used only 6k first order optimization iterations against 20k
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(10k first order optimization plus 10k second order optimization) and 40k (first order optimization)

from these works, respectively.

One may think of the solution depicted in Figure 4.4 as a contradictory result. After all, how

the solution of the uni-modal PSO-PINN can have a larger deviation when compared with the

multi-modal solution, assumedly composed of many different local minima. This happens because

although they are converging in the same local minima, the particles of the uni-modal PSO-PINN

are in sub-optimal positions in the same valley. The Figure 4.5 illustrates it well. It is a heatmap

representing the euclidean distance between the particles in the population. Notice the scale changes

between each snapshot (the initial positions, and the positions at the end of the training of the

PSO-PINN and the multi-modal PSO-PINN), these values are the distance in the many-dimensional

(d = 2181, the length of θ) and may vary given the network architecture. Also, the number of

particles is reduced in the Multi-Modal PSO-PINN, since the remotion of sub-swarms is one of the

steps of the algorithm.

There is a remarkable particle in the PSO-PINN solution, around the 50th position we can

clearly see a darker line symbolizing other particles surrounding this one. That might be the gbest,

the very best particle of the swarm, influencing the movement of all the other particles. At this

point, the swarm is not yet fully converged, as advisable for avoiding overfitting (which would not

be the case, of course, since this example is not dealing with sub-sampling or noisy data, but still a

characteristic of the algorithm).

On the other hand, we have the at least four local optima covered in the Multi-Modal PSO-PINN

solution. Even though these sub-swarms are well separated in the search domain, we can still see

there is a good convergence on their solutions.
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Figure 4.5: Population Euclidean Distance for Helmholtz Equation.

4.6.2 The Allen-Cahn Equation

The Allen-Cahn reaction-diffusion PDE is often used in material engineering, typically found

in phase-field models to simulate the phase separation process in the microstructure evolution of

metallic alloys [149, 150]. Here, we consider the Allen-Cahn equation as described in [51]:

∂u

∂t
= D

∂2u

∂x2
+ 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1] (4.24)

with the following initial and boundary conditions:

u(x, 0) = x2 cos(πx)

u(−1, t) = u(1, t)

∂u

∂x
(t,−1) = ∂u

∂x
(t, 1)

(4.25)

To allow a direct comparison to the result reported in [93], we kept D = 0.0001. We also

follow the same parametrization, network architecture, and a number of iterations. The only change,

though, is in the population size. We increased the population from 20 particles to 100 particles

since the Multi-Modal approach requires a certain population size in order to split it into sub-swarms.

To keep the comparison fair, we re-made the experiment, using 100 particles in the population.
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The Table 4.1 lists all the L2 errors, and variances for the solution found using an ADAM

ensemble, the original PSO-PINN method, and the Multi-Modal PSO-PINN. Figure 4.6 help us

to visualize how these results are manifested in the solution. The solid blue line represents the

analytical solution for (4.24). Each row represents the solution (dashed red line) using an ensemble

of conventional PINNs (running ADAM optimization), the PSO-PINN swarm, and the Multi-Modal

PSO-PINN, respectively. The thin lines represent the individuals’ solutions within each ensemble,

while the grey shadow depicts two standard deviations along the predicted solutions.

Although there are several particles with good results in the ADAM ensemble, the high variance

and a large number of non-fitted solutions made it an ill-suited method for using ensemble methods.

The PSO-PINN had a better consensus among its solutions, but some high-variance zones in the

prediction prevented the algorithm from yielding a high-fidelity solution. Despite the difference

in the population size, these results are in agreement with the reports in [93]. The Multi-Modal

PSO-PINN was able to efficiently solve this issue, decreasing the L2 error and variance, which

reflects a good fit to the Analytical solution.

Table 4.1: Allen-Cahn equation results. Errors and variance for each optimization strategy adopted
in this experiment.

L2 Error Var
ADAM Ensemble 2.15e-01 1.96e-01
PSO-PINN 7.32e-02 1.46e-02
Multi-Modal PSO-PINN 5.80e-02 1.14e-02
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Figure 4.6: Results of the Allen-Cahn Equation – On top, the solution from an ensemble composed
by conventional PINNs using ADAM optimization. Followed by the PSO-PINN solution and the
Multi-Modal PSO-PINN solution.
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4.7 Conclusion

In this paper, we introduced powerful training strategies for Machine Learning ensemble training.

In particular, we extended the PSO-PINN algorithm, taking full advantage of the swarm properties

inherited from the PSO. Here we presented the Multi-Objective and the Multi-Modal PSO-PINN to

better explore the training for PINNs. These two approaches intend to tackle different potentials

of the PINNs. The first one, the Multi-Objective PSO-PINN, intends to assist the training when

it comes to setting the influence from the analytical model and training data. The Multi-Modal

PSO-PINN aims to have better diversity after the training process. It enforces the PSO population

to split itself in sub-swarms, yielding a solution composed of multiple local optima.

The Multi-Objective PSO-PINN can be used to appraise the problem and define how the prior

information and the available data would best benefit the training. Much is said about the elasticity

of PINNs, which are capable of bouncing between a strict mathematical PDE solver to a more

yielding data-driven approach. Till now, this property was partially explored, most often relying

on the weighting of the Total Loss function. The approach described here yields a set of Pareto

non-dominated solutions, where the better one can be chosen based on how well-defined the terms

are. For example, if there is known the dataset is considerably noisy, one may choose a model

respecting more the physical constraints. On the other hand, if for some reason, the environment

is not well defined on the PDE, or the PDE parameters are loosely fitted, one can choose a more

data-driven solution.

The Multi-Modal PSO-PINN, on the other hand, improves the performance of the PSO-PINN

algorithm. Not only it consistently finds solutions better fitted to the problems, but it also reduces

the uncertainty levels related to the prediction. This characteristic is partially explained by the

diversity of the swarm’s population. During the training, this population is enforced to find many

local optima resulting in robust solutions, especially when exposed to noisy data or missing physics.
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5. CONCLUSION

The main focus of this dissertation was neural network training algorithms for Deep Learning.

This topic has shown evident growth in the last decade, supporting several advancements in a diverse

range of applications from science and engineering to business, law, and entertainment. During this

time, we saw the rise of several new approaches for creating, training, and evaluating Deep Learning

methods. Here, we contributed new methods to this environment, creating new architectures and

improving the training process of deep neural networks. The major contributions are the gGAN and

the PSO-PINN. The first is a novel method to apply GANs in bioinformatics, particularly designed

to the genetic field. In the former, we propose a new algorithm for deep neural network optimization

remarkably suited for PINNs (although robust enough to be applied in other domains).

The method proposed in Chapter 2, i.e., the gGAN architecture, is a new approach to deal with

the limited genetically labeled data available. Creating genetic datasets is usually an expensive and

time-demanding task requiring a good amount of human labor, as it involves patient recruitment,

laboratory work, and bioinformatics expertise. It provides a means to create synthetic genetic data,

a most valuable asset to studies that require several experimental phases consuming genetic data.

Also, it modifies the usual perspective on GANs: in addition, to generate labeled genetic profiles, it

also provides a self-aware classifier. While the labeled output of the discriminator predicts whether

the individual with the corresponding genetic profile is likely to develop the disease, the unlabeled

output predicts whether the genetic profile is real or synthetic. Given a real genetic profile, if

the gGAN classifies it as not real (i.e., synthetic), we can infer that it most likely never had seen

anything similar to that sample before, and thus it is not appropriate for prediction by the model.

The Particle-Swarm Optimization technique to train PINNs (PSO-PINN), described in Chapter

3, aims to mitigate a reported pathological behavior of gradient-based optimization when applied

to PDEs with irregular solutions. PSO-PINN relies in an ensemble of PINN solutions, which

allows robust predictions with quantified uncertainty (heavily grounded in the variance estimation).

Comprehensive experimental results show that PSO-PINN, using a modified PSO algorithm with
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a behavioral coefficient schedule, outperforms other PSO variants for training PINNs, as well as

PINN ensembles trained with standard ADAM.

In Chapter 4, we propose the Multi-Objective and the Multi-Modal versions of the PSO-PINN.

The Multi-Objective PSO-PINN changes the current paradigm of PINNs, allowing the users to

train the PINN for multiple objectives in parallel and analyze the results after training. The Multi-

Modal PSO-PINN aims to increase the accuracy and reduce the uncertainty related to the PINNs

solution. This is done by promoting the diversity of solutions in the swarm population. Also, the

Multi-Modal PSO-PINN algorithm was designed to satisfy requirements for distributed computing,

which resulted in a highly parallelizable technique, allowing massive computation and distributed

processing strategies. This can boost the search space of the algorithm, as new particles are added to

the swarm. The distributed computing strategies would then allocate this population across multiple

GPUs, clusters, and machines.
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