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ABSTRACT 

Estimating reserves—economically recoverable volumes of hydrocarbons in a company’s 

portfolio—requires forecasting hydrocarbon production, which is prone to significant uncertainty 

and bias. Accurately quantifying this uncertainty is paramount to estimators understanding risk 

and projects meeting expectations.  

Typically, production forecasts are made deterministically using Decline Curve Analysis 

(DCA). However, production forecasts can also be created probabilistically using Probabilistic 

Decline Curve Analysis (PDCA). In recent years, some reserves evaluators have turned to 

multivariate Machine Learning (ML) models to perform deterministic production forecasts, due 

to ML models’ ability to handle large datasets and include properties other than production in the 

forecast. However, these models are deterministic and, to the best of my knowledge, there has 

been no standalone probabilistic adaptation published in the petroleum literature as of yet. 

The aims of this research were to determine if a ML method was probabilistically reliable 

in forecasting production and to determine if the accuracy, probabilistic reliability, predicted 

uncertainty, and computational cost of this method was superior to an existing PDCA method.  

A Gradient Boosting Regressor (GBR) was adapted to generate cumulative production 

predictions by training three separate models for each of the 10%, 50% and 90% quantiles. 

Predictions were made with this Gradient Boosting Regressor with Quantiles (GBRQ) method 

for future months based on the first 12 months of cumulative production history for the training 

wells, the target cumulative production at the forecasted month for the training wells, and the 

first 12 months of cumulative production history for the test wells.  
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Prediction accuracy was measured using the root mean square error (RMSE) between the 

predicted median (P50) and true values as well as between the predicted mean and true values. 

Probabilistic reliability was assessed using calibration plots in which the frequency with which 

actual production values were less than predicted production values at each quantile was plotted 

against the assigned probability. Predicted uncertainty was assessed using an average normalized 

uncertainty window and cost was compared on the basis of computational time. 

The GBRQ method was more accurate at late times, was more probabilistically reliable, 

predicted less uncertainty, and was less computationally intensive than a published Probabilistic 

Decline-Curve-Analysis (PDCA) method for a dataset consisting of 438 conventional wells in 

the Midland Basin. 

The GBRQ methodology can be useful to three groups: (1) reserves estimators, who can 

make point estimates and full forecasts of probabilistic production comparatively fast and with 

probabilistic reliability for large datasets; (2) reserves auditors, who can quickly use this method 

to compare with an auditee’s probabilistic production forecast; and (3) investors and banks, who 

can evaluate asset acquisitions and divestitures with well-calibrated probabilistic production 

forecasts. 
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1. INTRODUCTION 

1.1 Statement and Significance of the Problem 

Reserves estimation is used to quantify the economically recoverable volumes of 

hydrocarbons in a company’s portfolio. This involves forecasting hydrocarbon production, which 

is a process prone to significant uncertainty and biases. Accurately assessing this uncertainty is 

paramount to projects meeting expectations and estimators understanding risks. However, the 

hydrocarbon exploration industry does a poor job of assessing uncertainty. In fact, poor 

assessment of uncertainty has long plagued the U.S. oil and gas industry with overconfidence 

and optimism being especially prevalent (McVay and Dossary 2014). 

One of the older and more well-known studies of overconfidence and optimism in the 

petroleum industry was in Capen’s experiment as part of a Society of Petroleum Engineers (SPE) 

Distinguished Lecturer tour (1976). Capen asked 10 general-knowledge trivia questions to over 

1200 petroleum professionals at local section meetings requiring estimates of a 90% confidence 

interval around the correct answer. Rather than produce a 90% confidence interval, the attendees 

produced, on average, a 32% confidence interval. This interval was narrower than expected and 

showed that the professionals were vastly overconfident. Capen also noted that the predictions 

attendees made tended to be optimistic. Despite observing their estimates to be overconfident, 

attendees did little to adjust their estimates in subsequent answers. Just as many professionals 

were biased in their answers to the general trivia questions, so are they biased in making project 

decisions. Capen pointed to investment underperformance in the petroleum industry and other 

institutions resulting from biased estimations.  
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A quarter century later, Brashear et al. (2001) compared the return on net assets for the 

largest U.S.-based E&P companies to their hurdle rates from 1990 to 2000. The authors found 

that the return on net assets was only 7% for projects with hurdle rates of 15%. The ranking of 

projects using deterministic methods overstated value, understated risk, and misallocated capital, 

according to the authors. Overstated values and understated risks imply overconfidence and 

optimism.  

Fast forward 18 more years and overconfidence and optimism are still consistently present. 

The Wall Street Journal (2019) collected production forecasts and actual production data from 

2014 to 2017 for 16,000 wells in Texas and North Dakota. Companies produced 10% less oil on 

average than their forecasts indicated. One company produced 25% less oil than it forecasted, 

three years in a row. The Wall Street Journal (WSJ) contended that many companies made 

extrapolations based on small clusters of prolific initial wells” while excluding the worst 

performing wells from the forecasts. This could explain why forecasts were so optimistic. 

As a result, banks got tough on shale loans (WSJ 2019). Loan growth in the Permian Basin 

shrunk to 4.8% in the third quarter of 2019, far below the 7.5% average for Texas. Smaller 

operators were not able to handle restricted access to capital. As a result, 274 oil and gas 

producers filed bankruptcy alongside 330 oilfield services and midstream companies (Haynes 

and Boone 2022).  

1.2 Status of the Question 

The best way to measure overconfidence and optimism is to conduct lookbacks and 

compare probabilistic estimates to actual values (Alarfaj and McVay 2020). Since the predictions 

are continuous probabilistic assessments, they are expressed in terms of a cumulative distribution 
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function (CDF). This research uses a conventional CDF, in which the P10 is a low value and the 

P90 is a high value. Using a conventional CDF, the proportion correct at a quantile is the 

proportion of the predicted values that are greater than the actual values (McVay and Dossary 

2014). Thus, the P10 prediction is expected to be greater than the actual value for cumulative 

production only 10% of the time. Following this, a P50 prediction is expected to be greater than 

the actual value 50% of the time and a P90 prediction is expected to be greater than the actual 

value 90% of the time. 

Deviation from perfect reliability results in measurable biases including overconfidence 

and optimism, as mentioned before (McVay and Dossary 2014). Overconfidence means that only 

a subset of the predicted distribution has been sampled and optimism means the distribution has 

shifted towards more desirable outcomes. An example of an estimated distribution that is both 

overconfident and optimistic is shown in Fig. 1.1: 

 

Fig. 1.1—Distribution changes due to overconfidence and optimism (McVay 2015). 

To represent the fraction of the true distribution represented in the estimated distribution, 

the confidence bias parameter was first introduced by McVay and Dossary in 2014. A positive 
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confidence bias parameter represents overconfidence, which is the underestimation of 

uncertainty while a negative confidence bias parameter represents underconfidence, which is the 

overestimation of uncertainty. Since underconfidence is not common, it will not be elaborated on 

in this thesis. Overconfidence bias ranges from zero to one. A value of zero means the entire true 

distribution was sampled while a value of one means a single point estimate was sampled. Fig. 

1.1 shows an estimated distribution in red that is narrower than the true distribution and is thus 

overconfident.  

McVay and Dossary (2014) also introduced the directional bias parameter, which 

represents the shift of the estimated distribution relative to the true distribution. Directional bias 

ranges from negative one to positive one. A value of negative one signifies complete pessimism 

and means only the lowest possible outcomes were considered. A value of positive one signifies 

complete optimism and means only the highest possible outcomes were considered. A value of 

zero means no shift in the outcomes was considered. For value-based assessments, a value of one 

would be a rightward shift and for cost-based assessments, a value of one would be a leftward 

shift. In this case, cumulative production is a value-based assessment, so an optimistic bias 

would be a rightward shift. The rightward shift of the red curve in Fig. 1.1 demonstrates the 

effect of optimism on a distribution. 

These biases can be visualized and measured with a calibration plot in which the 

proportion of correct outcomes is plotted against the probability assigned. As a conventional 

cumulative distribution function is used, this would mean that for a given quantile, the proportion 

correct is the proportion of predictions greater than the actual values. In Fig. 1.2, overconfidence 

bias limits the size of the orange predicted distribution in the associated subplot, and this changes 

the slope of the calibration plot. The orange area in the below subplot represents the area of the 
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full estimated distribution represented in the predicted distribution. As the overconfidence bias 

grows in magnitude, fewer of the values from the original distribution are sampled and this 

causes an associated decrease in slope on the calibration plot. 

 

  

Fig. 1.2—Varying CB effect on full distributions (Modified from Alarfaj and McVay 2020). 

In Fig. 1.3, directional bias shifts the distribution in the below subplot, and this results in 

a vertical translation on the calibration plot. Assuming an overconfidence bias of 0.5 in which 

the original distribution shown in orange is truncated, an increase in directional bias results in an 

upward translation of the line on the calibration plot while a decrease in directional bias results in 

a downward translation.   
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Fig. 1.3—Varying DB effect on full distributions (Modified from Alarfaj and McVay 2020). 

McVay and Dossary (2014) demonstrated with simulation that even moderate levels of 

overconfidence and optimism could result in as much as 30% to 35% average reduction from 

estimated to realized portfolio values (Alarfaj and McVay 2020). Therefore, reliably measuring 

these biases is very important in measuring and understanding associated impacts on portfolios. 

Accurate production forecasting is necessary so economic expectations are met 

throughout a well’s life. Early in the life of a well when there is an absence of data to create 

reservoir simulations or geologic models, production forecasting is typically performed using an 

empirical decline curve model in a process known as Decline Curve Analysis (DCA). The most 

frequently used method in the oil and gas industry is the Modified Arps model due to its 
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simplicity in application and general industry-wide understanding, according to Li, Billiter, and 

Tokar (2021): 

𝑞𝑞 = � 𝑞𝑞𝑖𝑖(1 + 𝑏𝑏𝐷𝐷𝑖𝑖𝑡𝑡)−1/𝑏𝑏, 𝑡𝑡 ≤ 𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙
𝑞𝑞𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒[−𝐷𝐷𝑙𝑙𝑖𝑖𝑙𝑙(𝑡𝑡 − 𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙)], 𝑡𝑡 > 𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙

 ................................................................................... (1) 

𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙 =
𝐷𝐷𝑖𝑖

𝐷𝐷𝑙𝑙𝑖𝑖𝑙𝑙
−1

𝑏𝑏𝐷𝐷𝑖𝑖
 ................................................................................................................................. (2) 

𝑞𝑞𝑙𝑙𝑖𝑖𝑙𝑙 = 𝑞𝑞𝑖𝑖 �
𝐷𝐷𝑙𝑙𝑖𝑖𝑙𝑙
𝐷𝐷𝑖𝑖
�
1/𝑏𝑏

 ....................................................................................................................... (3) 

Decline curve models, however, are typically applied deterministically; that is, 

uncertainty is not typically quantified. To quantify uncertainty, Probabilistic Decline Curve 

Analysis (PDCA) has been pursued as a topic of research. Jochen and Spivey (1996) introduced 

a bootstrap method and Cheng et al. (2010) developed a Modified Bootstrap Method (MBM) for 

probabilistic production forecasting. Gong et al. (2014) expanded on this work by creating a 

Bayesian probabilistic methodology using Markov-chain Monte Carlo (MCMC) coupled with 

Arps’  DCA to quantify uncertainty in production forecasting. Kuzma et al. (2014) also created a 

generative model (GM) with the aim of simulating real noise and artifacts in the production 

history. While these methods have been shown to generate probabilistically well-calibrated 

forecasts in certain applications, computational times are slow: 30 seconds per well for the Gong 

et al. MCMC PDCA and three to five minutes per well for the Cheng et al. MBM PDCA method. 

The Kuzma et al. paper does not provide computational detail nor enough evidence of 

probabilistic calibration. These methods also face the same problems as with decline curves. 

That is, parameters for a model are fit to a well’s production history and generate a smooth 

prediction curve. However, this does not consider underlying reservoir signals, such as 
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boundaries not seen in the production data, production from other wells, and interactions with 

other wells.  

As technology progressed to handle more data, forecasters began using multivariate 

Machine Learning (ML) methods to forecast or assist in forecasting production. ML methods are 

divided into supervised and unsupervised learning with the main difference being the use of 

labels for data to provide context in supervised learning algorithms. The labels split the data into 

features and targets, which provides supervised learning algorithms a channel in which to learn 

the relationship between the two entities. Supervised learning algorithms can further be divided 

into classification and regression in which classification algorithms classify testing data into 

various categories and regression algorithms identify a relationship between dependent and 

independent variables.  

Clustering, association, and dimensionality reduction are examples of unsupervised 

learning algorithms with at least one energy exploration application of identifying spatial 

importance in well location for production forecasting (Harris 2014). Linear regression, logistic 

regression, support vector machines, random forests, artificial neural networks, and gradient 

boosting regression are examples of supervised learning algorithms. One application in 

production forecasting has been to use a neural network to investigate the pattern between 

selected reservoir and hydraulic fracture parameters and decline parameters for a logistic growth 

model (Li and Han 2017). This method also employed principal component analysis, a form of 

unsupervised learning, to quantify variance in the principal component space and the key factors 

that influence production rate.  
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Another application has been to learn the posterior distribution of model parameters for a 

transient hyperbolic DCA model given production data and a specification of prior beliefs 

(Fulford et al. 2016). Another unique application has been to forecast cumulative production 

using one year of cumulative production and geographic, wellbore, spacing, and completions 

properties as well as a dynamic production rescaling method (Li, Billiter, and Tokar 2021).  

In these ML applications, the accuracy of deterministic production forecasts improved 

when compared to conventional decline curve models. Uncertainty was quantified in only one 

paper (Fulford et al. 2016), which used a ML algorithm to identify parameters for the transient 

hyperbolic model. The paper used the same PDCA method as Gong et al. (2014) with the simple 

addition of a regression algorithm to learn the prior distribution of decline curve model 

parameters. This means the same pitfalls of PDCA, that is, fitting smooth models that do not 

capture underlying reservoir signals or include production from other wells, is present even in 

the only application of machine learning to assist in probabilistic production forecasts.  

In conclusion, PDCA methods reliably quantify uncertainty but are computationally 

intensive and do not capture underlying reservoir signals or production from other wells in the 

forecast. ML methods have been developed to forecast production, but none function as 

standalone probabilistic methods. The Fulford et al. (2016) application of ML assisted PDCA in 

finding a prior distribution of decline curve parameters, so the same limitations that apply to 

PDCA also apply to those authors’ analysis. The ability for ML methods to capture underlying 

reservoir signals and production from other wells is also a handicap. Production forecasts cannot 

be made past times for which there is no production in other wells. There is a need for a 

standalone probabilistic ML method that can reliably assess uncertainty in production forecasts. 
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1.3 Research Objectives 

The objectives of this thesis were to determine if a Gradient-Boosting-Regressor ML 

regression method was probabilistically reliable in forecasting production and to determine if the 

accuracy, probabilistic reliability, predicted uncertainty, and computational cost of this ML 

method was superior to an existing PDCA production forecasting method. 
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2. METHODOLOGY 

2.1 General Steps 

 The steps for conducting my research were as follows: 

1. Gathered production data. In this case with limited availability of data, only publicly available 

data were used. The wells needed to be in the same reservoir, produce primarily oil or gas, and 

either consist of all vertical or all horizontal wells. In my work, only vertical oil producing wells 

were chosen. The dataset also must have at least 40 wells with more than 20 months of 

production history to have been considered. The first dataset contained 40 wells with at least 21 

months of production history and the second dataset contained 438 wells with at least 21 months 

of production history 

2. Preprocessed the data. Ensured that just production data were included, then removed ramp-up 

and downtime production data, as is common in production forecasting. Production rate data are 

converted to cumulative production data and arranged into features and targets for the GBRQ 

method. Time data were converted to elapsed time with the removal of ramp-up and downtime 

production.  

3. Generated predictions for a specific month using the GBRQ and PDCA methods. 

4. Generated a calibration plot for each method using the predictions generated from Step 3 to 

compare accuracy, probabilistic reliability, predicted uncertainty, and computational cost. 

5. Repeated steps three and four to make predictions for each month. 
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2.2 Metrics for Comparison 

As mentioned before, accuracy, probabilistic reliability, predicted uncertainty, and 

computational cost made up the basis for comparison. 

Accuracy was measured using the root mean square error (RMSE) between the predicted 

median (P50) and true values, as well as between the predicted mean and true values where the 

mean was estimated using Swanson’s rule. Production data are typically distributed lognormally 

with a right skew. A distribution of cumulative production for the Midland dataset at Month 440 

shows exactly this behavior below (Fig. 2.1). The mean was 30,704 STB while the median was 

23,206 STB, verifying the right skew of the distribution.  

 

Fig. 2.1—Histogram of Month 440 cumulative production (Midland dataset). 

Probabilistic reliability was assessed using calibration plots in which the frequency of 

actual production values less than the predicted production values at each quantile was plotted 

against the estimated probability.  
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From calibration plots, the calibration score, biases, and coverage ratio can be calculated. 

The calibration score was given by Lichtenstein and Fischhoff (1977): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆 (𝐶𝐶𝑆𝑆) = 1
𝑁𝑁
∑ 𝐶𝐶𝑡𝑡(𝐶𝐶𝑡𝑡 − 𝑆𝑆𝑡𝑡)2𝑇𝑇
𝑡𝑡=1  .......................................................................... (4) 

where N is the total number of responses, nt is the number of times the response was used, rt is 

the probability assigned, ct is the proportion of items greater than the actual for the probability 

assigned, and T is the total number of response categories used. A perfectly calibrated model has 

a calibration score = ((0.9-0.9)2 + (0.5-0.5)2 + (0.1-0.1)2)/3 = 0. The calibration score includes the 

effects of both confidence bias and directional bias. Thus, it was the primary metric for 

comparing probabilistic reliability. 

The confidence and directional biases can be observed from calibration plots as changes 

in slope and vertical translations respectively. However, they can also be directly calculated. 

Alarfaj and McVay (2020) developed equations to relate slope m and intercept a of a calibration 

plot to confidence bias (CB) and directional bias (DB) as follows: 

𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂 = 1 −𝑚𝑚 .............................................................................................................................. (5) 

𝐷𝐷𝐶𝐶𝑂𝑂𝑂𝑂 =  2𝑎𝑎
1−𝑚𝑚

− 1 .......................................................................................................................... (6) 

𝐶𝐶𝐶𝐶𝑈𝑈𝑂𝑂 =  1
𝑚𝑚
− 1 .............................................................................................................................. (7) 

𝐷𝐷𝐶𝐶𝑈𝑈𝑂𝑂 = 1 −  2𝑎𝑎
1−𝑚𝑚

 .......................................................................................................................... (8) 

The subscript OC represents overconfidence while the subscript UC represents 

underconfidence.  
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Coverage ratio represents the portion of the distribution of actual values sampled in the predicted 

distribution and is the inverse of confidence bias. This can be calculated as 𝐶𝐶𝐶𝐶 = 𝑐𝑐90−𝑐𝑐10
90−10

, where 

c90 is the proportion of items greater than the actual for an assigned probability of 90% and 

likewise for c10. A perfect coverage ratio would be 1. 

The following is an example for measuring the biases. Fig 2.2 below is a sample 

calibration plot of synthetic data. 

 

Fig. 2.2—Example calibration plot. 

The above data points represent P10, P50, and P90 estimates. More specifically, the x 

coordinates represent the probability assigned while the y coordinates represent proportion of 

predictions greater than the actual values at the assigned probability. The predictions for the 10th 

percentile in this case turned out to be greater than the actual value 15% of the time (10,15), the 

predictions for the 50th percentile were greater than the actual 47% of the time (50,47), and the 
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predictions for the 90th percentile were correct 85% of the time (90,85). The anticipated 

probability range for the P90-P10 interval was 90 – 10 = 80%, but the actual range was 85 – 15 = 

70%. The narrower actual range means underestimation of uncertainty and thus overconfidence. 

This is verified by using Eq. 5 to calculate CBOC as 1 – 0.875 = 0.125. This small positive value 

verifies the presence of subtle overconfidence. Directional bias DBOC can be calculated with   

Eq. 6 as 2(.0525)
0.125

− 1 =  −0.16. This means the predictions were slightly pessimistic.  

Predicted uncertainty was assessed using an average normalized uncertainty window. 

This was found by calculating the difference between the P90 and P10 values divided by the P50 

value and averaging for all the wells at a given month. This quantifies how much uncertainty is 

forecasted. If two methods have equal accuracy and probabilistic reliability, the method with less 

predicted uncertainty is the superior probabilistic method. 

Cost was compared on the basis of computational time. The method that takes less 

computational time is preferable.  
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3. COMPARISON OF THE RELIABILITY OF GBRQ AND PDCA 

3.1 Data Acquisition and Cleaning 

There were two datasets analyzed: a 130 well set from the DJ Basin and a 448 well set 

predominantly from the San Andres Formation in the Permian Basin. The 130 well dataset will 

hereafter be referred to as the “DJ dataset” and the 448 well dataset will hereafter be referred to 

as the “Midland dataset.” Both datasets consisted of publicly available data gathered from 

Enverus. As downtime and ramp-up time were removed, production history for available wells 

was compressed. This resulted in fewer wells with at least 21 months of production history. 

Given that the vast majority of the 130 wells in the DJ dataset had histories shorter than 21 

months due to them being unconventional, the final well count was 40 out of 130 with at least 21 

months of production history. There were even fewer wells with at least 24 months (or two 

years) of production history, so the forecast on the DJ dataset was limited to 21 months. The 

Midland dataset had significantly more wells with longer production histories. There were 438 

wells that had at least 24 months of production history and 270 wells that had at least 440 

months. The DJ dataset was useful to see how the GBRQ and PDCA methods performed on 

small dataset sizes while the Midland dataset was useful for comparing the two methods at 

longer forecast lengths. The concentration of wells for the Midland dataset is shown by orange 

dots in Fig. 3.1. 
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Fig. 3.1—Midland dataset before area of interest filter. 

It is obvious that two wells are not geographically close to the other wells. This may 

indicate they are in a different reservoir. In fact, the well to the southwest of the main cluster is 

17.6 miles away from the southernmost well in the cluster while the southeastern well is 24.8 

miles from the southernmost well in the cluster. The other wells are less than two miles from 

each other, so it is obvious that these two wells should be removed from the analysis. The area of 

focus then becomes the 448 closely grouped wells (Fig. 3.2). Of these 448 wells, 438 have at 

least 21 months of production history, which is necessary for comparison with the DJ dataset. 
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Fig. 3.2—Midland dataset after area of interest filter. 

Once the area of interest filter is applied, production data characteristics were examined. 

The Midland dataset essentially consisted of six different types of behavior (Fig. 3.3). Out of 438 

wells, the vast majority of wells in the dataset behaved similar to wells 127188628 in the top 

right and 127663805 in the bottom right, the only difference being a short steep initial decline in 

the top right well. Fewer than five wells behaved like 127240426 in the middle left with a spike 

in noise while declining from middle to late times. Fewer than five wells also behaved similar to 

127312421 in the middle right with significant noise at middle times only. About 15 wells 

experienced a spike in production at 260 months similar to well 127178493 in the top left, which 

could indicate the beginning of some effort to enhance production at the field level, such as 

artificial lift. No significant jumps in production were observed at other times besides Month 

260. Lastly, well 127363981 in the bottom left is a standalone case of a significant step change at 

Month 110. This does not occur in other wells.  
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Fig. 3.3—Representative production cases for Midland dataset. 

These representative cases demonstrate that while most wells experienced long-term 

exponential decline without significant noise or interruption, the dataset contains outlier cases 

that add uncertainty to production forecasts. 
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3.2 Data Preprocessing 

The DJ dataset consists of monthly oil production rate vs time data while the Midland 

dataset consists of monthly oil, gas, and water production rate vs time data as well as activity 

status. For this research, only monthly oil production rate vs time data were needed. Since 

Python was used to do the analysis, production data were filtered using the Pandas library. 

Next, as is commonly performed with traditional DCA, ramp-up production (q before qmax) 

and downtime (q = 0) were removed. The DJ dataset consisted of much higher production, so 

downtime was removed using a minimum of 200 STB/M instead of zero flow rate. Next, feature 

and target selection were performed so that the GBRQ method could identify the relationship 

between the features (predictor variables) and targets (response variables). The 12 features in this 

case were the first 12 months of cumulative oil production and the target was the month 

forecasted to. In other words, one year of production history was used to forecast to various point 

estimates of cumulative production in the future. Fig. 3.4 shows the structure of the preprocessed 

data. The first unlabeled column is well number, the next 12 columns are the 12 features, and the 

last column is an example target of Month 440. 
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Fig. 3.4—Dataframe ready for GBRQ analysis. 

3.3 Generate Predictions 

3.3.1 Gradient Boosting Regressor with Quantiles (GBRQ) 

A Gradient Boosting Regressor (GBR) is a supervised machine learning regression 

algorithm that constructs an additive model in forward stages, which can be trained with various 

differentiable loss functions. Each stage involves fitting a decision tree to the negative gradient 

of the loss function. In layman’s terms, a weak learner, which is usually a decision tree, is trained 

and predicted on the training data and the residuals between the prediction and training data are 

used to train the next decision tree. The weight coefficients of the next decision tree are fit to the 

residuals of the previous tree and new predictions are made with accompanying residuals. The 

process continues with the new residuals being used to train the weight coefficients of the next 

tree. Fig. 3.5 shows this process.  
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Fig. 3.5—Diagram of a Gradient Boosting Regressor (Siakorn, Wikimedia Commons). 

Boosting is designed to create strong learners from weak learners. In the context of 

machine learning, weak learners are marginally better than random guessing. While it may seem 

logical to begin with a strong learner, this limits the learning process and introduces significant 

bias, which is not ideal. Boosting contrasts with bootstrap aggregation, or “bagging,” which is 

common for algorithms such as random forest. Bagging involves the creation of many decision 

trees that sample with replacement from the original distribution of data and the results are 

aggregated into a final model (Fig. 3.6). Bagging limits learning because new trees do not learn 

from older trees. In boosting, successive trees are built from previous trees, which all learn in 

conjunction as opposed to in isolation. This results in computational and accuracy improvements.  
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Fig. 3.6—Diagram of bagging (Siakorn, Wikimedia Commons). 

The optimization of ML algorithms involves minimizing the loss function. A loss 

function measures how far a prediction is from the true value. The GBR model can be used with 

different loss functions: squared error, absolute error, huber, and quantile. The quantile loss 

function was used as it can quantify uncertainty by making predictions fit to different quantiles. 

The quantile loss function is defined as follows: 

𝐿𝐿(𝑦𝑦𝑖𝑖𝑝𝑝, 𝑦𝑦𝑖𝑖) = 𝑚𝑚𝐶𝐶𝑚𝑚 [𝑄𝑄(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑝𝑝), (𝑄𝑄 − 1)(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑝𝑝)] .................................................................... (9) 

where L(yip,yi) is the loss function, yi is the actual value at the ith data point, yip is the predicted 

value at the ith data point, Q is the quantile, and max refers to the max value within the brackets. 

Since Q is between zero and one, the first term is positive and dominates when underpredicting 

while the second term is positive and dominates when overpredicting. When trying to predict the 

median (Q = 0.5), both terms are penalized equally. When 0.5 < Q < 1, underpredictions are 

penalized more heavily, and when 0 < Q < 0.5, overpredictions are penalized more heavily. 
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Gradient boosting uses the residuals of the previous iteration to train the decision tree in the next 

iteration, but these residuals will be fit to quantiles instead of the exact value. This allows the 

GBR method to generate predictions for a quantile.  

In probabilistic estimates of production, the analyst performing forecasts is commonly 

interested in the P10, P50, and P90 values. These correspond to the 10th percentile, 50th 

percentile, and 90th percentile likelihood of production on a cumulative distribution function. The 

GBR model by itself can only fit to one quantile, so three GBR models must be created. These 

three models made up the GBRQ approach.  

Besides the features and targets, which are used to train the model parameters, 

hyperparameters are used to control the learning process. Normally in ML model training, the 

dataset is split into one training and one testing fold (as well as one validation fold in some 

applications). The model is trained on the training fold and tested on the testing fold and 

hyperparameters are tuned to achieve the most accurate predictions. However, the goal in this 

case is to achieve reliable probabilistic calibration and not necessarily highest accuracy. 

Furthermore, the effects of hyperparameter tuning on probabilistic calibration have not been 

properly established and a link may not exist. In initial testing, the three different GBR models at 

different quantiles had different sets of hyperparameters optimized for accuracy, which changed 

depending on how the data were split. Intuitively, it does not make sense to have different 

hyperparameters for different quantiles of the same dataset. After tuning model hyperparameters 

for accuracy, an increase in calibration score was observed. Thus, given these observations and 

concerns, the default hyperparameters of a 0.1 learning rate, 100 decision trees, subsample 

fraction equal to one, and three nodes were used and no hyperparameter tuning was done. 
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Rather than use a conventional approach with one training and one testing split to 

generate predictions, a process known as Cross Validation Prediction was used. The data were 

randomly and equally split into 10 folds. The model was trained on nine folds and made 

predictions on the outlying testing fold. The same splits were maintained, but a different fold was 

then used as the testing fold. Ultimately, the process was repeated until each fold was the 

outlying testing fold once and thus predictions were made for every single well in the dataset 

(Fig. 3.7). This process was applied to each of the three GBR models so that there were P10, 

P50, and P90 predictions for each well. The Cross Validation Prediction process makes sure that 

the splitting of the data does not control the outcomes of training and testing, which is important 

for skewed datasets like this one (Fig. 2.1). The entire process from importing the data to 

generating predictions is detailed in Fig. 3.8. 

 

Fig. 3.7—Diagram of cross validation (Siakorn, Wikimedia Commons). 
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Fig. 3.8—Summary of GBRQ process. 

Fig. 3.9 and Fig. 3.10 show the P10, P50, and P90 predictions for cumulative production 

plotted against the actual values for all wells in the DJ and Midland datasets, respectively. The x 

axis represents the actual cumulative production for Month 21 while the y axis represents the 

predicted cumulative production for Month 21. The x and y axes range from 30,000 STB/D to 

190,000 STB/D for the DJ dataset and from zero STB/D to 45,000 STB/D for the Midland 

dataset. The red datapoints represent predictions for the P10 model, the blue datapoints represent 

predictions for the P50 model, and the green datapoints represent predictions for the P90 model. 

The dotted black unit-slope line helps gauge accuracy. The closer to the line a P50 prediction is, 

the closer that prediction is to the actual value and thus the more accurate that prediction is 

(assuming the P50 is quantity used to measure accuracy). While the usual goal of training a 
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deterministic machine learning model is to generate predictions as close to the actual values as 

possible, the goal of creating a probabilistically reliable model differs. In the case of Fig. 3.9 and 

Fig. 3.10, a perfect probabilistically calibrated approach would mean the green dots are above 

the dotted black unit-slope line 90% of the time, the blue dots are above the line 50% of the time, 

and the red dots are above the line 10% of the time. The predictions for the DJ dataset (Fig. 3.9) 

appear to be less well behaved than the predictions for the Midland dataset (Fig. 3.10). The poor 

behavior in the DJ dataset predictions can be attributed to the fewer number of wells in the DJ 

dataset as compared with the Midland dataset, which is less information for the GBRQ model to 

use during training. Since all other wells were taken into account when generating predictions, 

the Midland dataset has significantly more information for fitting quantile predictions than the 

DJ dataset. 

 

Fig. 3.9—GBRQ predictions for DJ dataset. 
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Fig. 3.10—GBRQ predictions for Midland dataset.  

The reliability of these predictions was checked in Section 3.4 with calibration plots by 

plotting the proportion of predictions greater than actual vs the probability assigned. 
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3.3.2 Probabilistic Decline Curve Analysis (PDCA) 

As mentioned before, analytical models that are typically applied for decline curve 

analysis are deterministic. Jochen and Spivey (1996) and Cheng et al. (2010) developed 

bootstrap methods to generate probabilistic production forecasts in single wells based on DCA 

models of existing production. When tested on a sample dataset of 100 oil and gas wells, it was 

found that the Cheng et al. method covered 80% of the true incremental production over the P90-

P10 range for incremental production while the Jochen and Spivey method only covered 40% of 

the true incremental production over the same range of incremental production. In an ideal 

scenario, 80% of the true incremental production is covered over the P90-P10 range and thus the 

Cheng et al. Modified Bootstrap Method (MBM) was much closer to ideal coverage. However, 

the MBM developed by Cheng et al. requires a least-squares fit for each well at each month with 

each fit requiring multiple Newton iterations. This means each well requires three to five minutes 

to calculate probabilistic production forecasts. Gong et al. (2014) have since created a Bayesian 

method, which can quantify reserves uncertainty as reliably as the MBM by combining Markov-

chain Monte Carlo (MCMC) simulation with Arps’ DCA. Since this method is faster and just as 

reliable as the MBM, this was used as a benchmark for comparison to the GBRQ method rather 

than the MBM. 

The MCMC method requires an iterative process to calculate a Markov chain that 

contains the desired posterior distribution. Since the posterior distribution of parameters is 

unknown, using the Metropolis-Hastings algorithm is needed to directly sample from a proposal 

distribution. This proposal distribution consists of parameters for Arps decline curves. Although 

other decline curve methods are readily available, the Arps method is the mostly widely used and 

understood method in the petroleum industry and has been in use for over 70 years, thus the Arps 
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method was used. Specifically, a single segment hyperbolic decline model without a terminal 

exponential decline was used. This might be a problem for Midland dataset at very late times 

when wells have the possibility of interfering with one another. The bounds for the parameters in 

the prior distribution were chosen to be 0.01 < qi < 1,000,000, 0.0001 < Di < 50, and 0 < b < 2, 

where qi is in STB/D, Di is in 1/years and b is dimensionless. These ranges were chosen to be 

wide enough so that any reasonable initial parameter values were included.  

At each step s in the Markov Chain, a candidate θproposal is drawn from the proposal 

distribution. The probability that this candidate is accepted (θs = θproposal) is α and the probability 

of rejection (θs = θs-1) is α – 1 where: 

𝛼𝛼 = min [1,
𝜋𝜋�𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑦𝑦�𝑞𝑞�𝜃𝜃𝑝𝑝−1�𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝜋𝜋�𝜃𝜃𝑝𝑝−1�𝑦𝑦�𝑞𝑞�𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜃𝜃𝑝𝑝−1�
] ............................................................................. (10) 

The MCMC method consists of the following steps: 

0. Set s = 1 and ln(qi), ln(Di), and b equal to the least-squares best fit. 

1. Generate a sample θproposal  [ln(qi), ln(Di), and b] from the proposal distribution. 

2. Calculate acceptance ratio by use of Eq. 10. 

3. Generate a random number between zero and one. 

4. If the random number is less than the acceptance ratio, accept θproposal (i.e., θs = θproposal). 

Otherwise, θs = θs-1. 

5. s = s+1. If s is less than maximum chain length, go to step 1. 

In terms of synthetic realizations, 1000 were used. Relative error decreased with increasing 

number of MCMC iterations and it was noticed that an acceptable level of error was reached 

with 1000 iterations. Further increases in iterations resulted in very small incremental gains with 
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large increases in computational time. Other model inputs include 12 months of production 

history, logarithmic regression, a triangular distribution with noninformative priors for the qi and 

Di parameters and a triangular distribution of informative priors for b estimated from 197 Barnett 

Shale Gas wells. Fig. 3.11 and Fig. 3.12 show predicted cumulative production values at month 

21 plotted against the actual cumulative production at Month 21. The red dots represent P10 

predictions, the blue dots represent P50 predictions, and the green dots represent P90 predictions. 

The dotted black line represents a scenario in which the predicted values are the exact same as 

the actual values. The predictions seem to follow a unit-slope more closely than the GBRQ 

predictions. To quantify the difference in bias and calibration, calibration plots are shown and 

discussed in Section 3.4. 

  

Fig. 3.11—PDCA predictions on DJ dataset. 
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Fig. 3.12—PDCA predictions on Midland dataset. 
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3.4 Generate Calibration Plots 

3.4.1 DJ dataset 

The predictions for cumulative production at Month 21 for the DJ dataset in Section 3.3 

were converted to calibration plots. To create these plots, the proportion of predictions greater 

than actual values is plotted against the probability assigned for 10%, 50%, and 90% 

probabilities. Fig. 3.13 shows the calibration plot for the GBRQ predictions on the DJ dataset at 

Month 21. Upon inspection, the calibration plot is not well calibrated due to the obvious 

difference in slope and translation between the actual values and perfect calibration line. Since 

the slope was less than one, the predictions were overconfident. The overconfidence bias can be 

calculated as CBOC = 1 – 0.59 = 0.41 from Eq. 5. There is a vertical translation downwards and 

the directional bias can be calculated as DBOC = 2*(.1698)/0.41 – 1 = -0.17 using Eq. 6. This 

calculation quantifies the pessimism. Thus, the model is both moderately overconfident and 

slightly pessimistic for this dataset at 21 months.  
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Fig. 3.13—GBRQ calibration plot (DJ dataset). 

Fig. 3.14 shows the calibration plot for the PDCA predictions on the DJ dataset at Month 

21. The PDCA CS score of 0.02354 was higher and thus worse than the GBRQ CS score of 

0.01958. The calibration curve is translated downwards, and the slope of the best fit line is 

exactly one. The calibration score is higher than that of the GBRQ method. The downwards 

vertical translation indicates pessimism while the slope of one indicates no confidence bias, since 

CBOC = 1 – 1 = 0. However, this would mean the directional bias is undefined since using Eq. 6 

would yield a divide-by-zero error. This would violate the assumptions of the confidence and 

directional bias equations laid out by Alarfaj and McVay (2020) and would thus potentially yield 

infinite pessimism. Thus, the PDCA model has no confidence bias but yields significant 

pessimism for this dataset. 
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Fig. 3.14—PDCA calibration plot (DJ dataset). 

It is obvious that both calibration plots are not well-calibrated both from initial inspection 

and from calculations of confidence and directional biases. Since Gong et al.’s PDCA 

implementation with 197 wells achieved very good probabilistic calibration and since machine 

learning models benefit from larger datasets, the same experiment was run on the larger dataset, 

the 438 well Midland dataset. 
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3.4.2 Midland dataset 

Fig. 3.15 shows the calibration plot for the GBRQ predictions on the Midland dataset at 

Month 21. The calibration score of 0.00102 for the Midland dataset was a significant 

improvement over the calibration score of 0.01958 for the DJ dataset. It seems there is very 

slight overconfidence with almost non-existent vertical translation or directional bias. The 

overconfidence bias can be calculated as CBOC as 0.10 from Eq. 5 and DBOC = 0.128 from Eq. 6. 

Negligible optimism is visible in the calibration plot and confirmed by Eq. 6. Thus, the GBRQ 

model is slightly overconfident and slightly optimistic for this dataset at 21 months.  

 

Fig. 3.15—GBRQ calibration plot (Midland dataset). 

Fig. 3.16 shows the calibration plot for the PDCA predictions on the Midland dataset at 

Month 21. Upon inspection, this calibration plot is also much better calibrated than the 

predictions for the DJ dataset counterpart. The calibration score of 0.00255 is a significant 

improvement over the calibration score of 0.02354 for the DJ dataset. Although not clear what 
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the confidence bias is by looking at the graph, slight optimism is indicated by a vertical shift 

upwards in the actual values. The overconfidence bias can be calculated as CBOC = -0.02 from 

Eq. 5. The negative value indicates very little underconfidence and thus Eq. 8 must be used to 

calculate DBUC = 1 - 2*(.03)/-0.02 = 4. At extremely low values of confidence bias, assumptions 

were again violated for the equations in Alarfaj and McVay (2020); the directional bias value is 

outside the bounds of complete pessimism and complete optimism. From this analysis, the 

PDCA model is both slightly underconfident and optimistic for this dataset at 21 months.  

 

Fig. 3.16—PDCA calibration plot (Midland dataset). 
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3.4.3 Model Comparisons 

The results of the model comparisons for the DJ dataset are summarized in Table 1. 

 Metric GBRQ PDCA 

Accuracy RMSE Mean (STB) 16271.8782 2739.4306 

RMSE P50 (STB) 13214.0156 2843.0427 

Probabilistic 
Reliability 

Calibration Score 0.0195 0.0235 

Coverage Ratio 0.5937 1 

Confidence Bias 0.4062 0 

Directional Bias -0.1641 -1.276E15 

Uncertainty Average Normalized 
Uncertainty Window 0.1543 0.416 

Cost Computational Time (min) <1 55 

Table 1—GBRQ vs PDCA statistics for DJ dataset at Month 21 (40 wells). 

Recalling that the GBRQ calibration plot (Fig. 3.13) was moderately overconfident and 

slightly pessimistic while the PDCA calibration plot (Fig. 3.14) contained no confidence bias 

and was significantly pessimistic, there is now a quantitative basis for comparison. The 

calibration score for the GBRQ method is lower than that of the PDCA method. This means the 

GBRQ model is overall better probabilistically calibrated for the DJ dataset. The moderate 

overconfidence and slight pessimism of the GBRQ model was thus less biased overall when 

compared to the lack of confidence bias and significant pessimism from the PDCA model. Recall 

that the coverage ratio measures the fraction of the true distribution sampled in the predicted 

distribution. As a general rule for probabilistic models, a coverage ratio of one means 100% of 

the true distribution was sampled in the predicted distribution, which is ideal for a probabilistic 

model. This is the same as saying the model had no confidence bias. The coverage ratio was 
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much less than one for the GBRQ method and exactly one for the PDCA method, meaning the 

PDCA method had superior coverage. The RMSE scores for the mean and median of the GBRQ 

were much higher than those of PDCA, indicating more accurate predictions of the true value by 

the mean and median of PDCA. The GBRQ method also predicted far less uncertainty than the 

PDCA method shown as a smaller average normalized uncertainty window. This is likely due to 

the inclusion of more information in the predictions as the GBRQ method considers production 

from other wells. If reliably assessing uncertainty, the uncertainty should decrease as more 

relevant information is included in the forecast. Lastly, the computational time was significantly 

less for the GBRQ than the PDCA. For the DJ dataset of 40 wells, the GBRQ method was 

overall better calibrated, less uncertain and faster while the PDCA method had better coverage 

and was more accurate. 

The results of the calibration plot analysis for the Midland dataset are summarized in 

Table 2. 

 Metric GBRQ PDCA 

Accuracy RMSE Mean (STB) 3137.1667 479.3413 

RMSE P50 (STB) 2206.3841 468.1139 

Probabilistic 
Reliability 

Calibration Score 0.001 0.0025 

Coverage Ratio 0.9046 1.0274 

Confidence Bias 0.0953 -0.0274 

Directional Bias 0.1277 2.8889 

Uncertainty Average Normalized 
Uncertainty Window 0.484 0.5373 

Cost Computational Time (min) <1 324 

Table 2—GBRQ vs PDCA statistics for Midland dataset at Month 21 (438 wells). 
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For the 438-well Midland dataset, calibration score for the GBRQ model was less than 

the score for the PDCA model. This means the GBRQ was overall better calibrated for this 

dataset as well. The GBRQ model was slightly overconfident and slightly optimistic while the 

PDCA model was slightly underconfident and significantly optimistic. The PDCA model again 

had a coverage ratio closer to one than the GBRQ model. The RMSE for the mean and median of 

the GBRQ model were significantly greater than the RMSE values for the PDCA model, 

meaning that PDCA again had more accurate predictions. The GBRQ also had a lower average 

normalized uncertainty window meaning less uncertainty was predicted. Lastly, the 

computational time was again significantly lower for GBRQ while PDCA increased significantly 

due to the large addition of data.  

For the Midland dataset, the GBRQ method was better calibrated and faster while the 

PDCA method had more accurate predictions of the actual values. Since the two methods were 

close in calibration, the predicted uncertainty could be compared directly. The GBRQ method 

predicted less uncertainty than the PDCA method. Thus, the GBRQ and PDCA methods 

outperformed each other in the same metrics regardless dataset size when forecasting to 21 

months of cumulative production given 12 months of forecast history.  
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3.5 Longer Forecast Times 

The analysis was extended to other forecasted months. This was not possible for the DJ 

dataset because there was a lack of wells with adequate production history to extend the forecast 

beyond 24 months. Thus, analysis for other forecast target months was done using the Midland 

dataset. 

The GBRQ method was used to generate probabilistic predictions for each month for each 

well in the Midland dataset (Fig. 3.17) for the same representative wells in Fig. 3.3. The PDCA 

method was also used to generate rate-time production profiles, which were converted to 

cumulative production profiles (Fig. 3.17) simply by summing the rate values of successive 

months. The thick black profile represents actual cumulative production, the green profile 

represents P90 predictions, the blue profile represents P50 predictions, and the red profile 

represents P10 predictions. Since the GBRQ predictions incorporated cumulative production for 

other wells at each month, those profiles were noisy. The PDCA predictions were based on 

decline curve models, so those profiles were smooth. To enhance readability, the GBRQ 

predictions were smoothed using a five-month-rolling average.  

The same cases were visualized in Fig. 3.18 on semi-log production-rate-vs-time plots. 

Since the GBRQ method predicted cumulative production, the production-rate profile was 

calculated by differentiating the cumulative-production profile; however, the initial rate 

calculations were far too noisy. Instead, the production rate was calculated using the five-month-

rolling average applied first to the cumulative data and then a 15-month-rolling average applied 

to the calculated rate data. This mixture of smoothing was determined through trial and error and 

resulted in production rate profiles that were much more readable. Since the PDCA models 

predicted smooth decline curves, they were plotted directly. The legend for each sub plot was the 
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same as in Fig. 3.17 except for the inclusion of an additional actual production profile that was  

calculated and smoothed in the same way as the GBRQ profiles. 

Well 127178493 in the top left of Fig. 3.17 and Fig. 3.18 was representative of wells with 

enhancement to production rate around the 260-month mark (Fig. 3.18). The GBRQ P90 profile 

overpredicted, the P50 profile fit closely, and the P10 profile underpredicted the actual 

production profile (Fig. 3.17). The PDCA profiles had similar behavior. The P50 profile of the 

GBRQ prediction did a better job of picking up the enhancement to production rate because the 

GBRQ method included cumulative production data from other wells with a similar 

enhancement to production.  

Well 127188628 in the top right of Fig. 3.17 and Fig. 3.18 was representative of wells that 

experienced steep initial decline in production rate followed by an exponential decline, as shown 

by the linear decline of the actual production profile (Fig. 3.18). The PDCA P10 profile 

underpredicted, the P50 profile fit closely and subsequently underpredicted at later times, and the 

P90 profile overpredicted the actual production profile (Fig. 3.17). The GBRQ P10 profile stayed 

close to the actual profile while the P50 and P90 profiles overpredicted the actual production 

profile.  

Well 127240426 in the middle left of Fig. 3.17 and Fig. 3.18 was representative of wells 

with significant oscillations in decline after Month 260 (Fig. 3.18). The GBRQ P10 profile 

underpredicted, the P50 profile fit closely, and the P90 profile overpredicted the actual 

production profile (Fig. 3.17). The GBRQ P10 and P50 profiles began to trend upward at later 

times. The PDCA P10 and P90 profiles behaved similarly, but the P50 profile overpredicted the 

actual production profile.  
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Well 127312421 in the middle right of Fig. 3.17 and Fig. 3.18 was representative of wells 

with heavy oscillations in production rate and very shallow decline (Fig. 3.18). The GBRQ P10 

profile underpredicted, the P50 profile fit closely, and the P90 profile slightly overpredicted the 

actual production profile (Fig. 3.17). All three PDCA profiles vastly overpredicted by assuming 

an exponential decline.  

Well 127363981 in the bottom left of Fig. 3.17 and Fig. 3.18 was representative of a single 

unique well with some form of production enhancement early in the well’s life (Fig. 3.18). All 

three GBRQ profiles overpredicted before the enhancement (Fig. 3.17). After the enhancement, 

the P10 underpredicted, the P50 closely fit, and the P90 overpredicted the actual production 

profile. The PDCA model acted in the opposite manner with the P10, P50, and P90 profiles 

underpredicting, closely fitting, and overpredicting the actual production profile, respectively, 

before the enhancement. After the enhancement, all three PDCA profiles underpredicted. This is 

because the PDCA model was only fit to the first 12 months of production before the 

enhancement was performed. On the other hand, GBRQ incorporated late-time production from 

other wells and was able to pick up on the enhancement. 

Finally, well 127663805 in the bottom right of Fig. 3.17 and Fig. 3.18 was representative 

of wells with no significant noise or initial steep decline (Fig. 3.18). These wells also had much 

larger cumulative production over well life (Fig. 3.17). The GBRQ P10 and P50 profiles 

underpredicted while the P90 profile slightly overpredicted when compared to actual production. 

The PDCA P10 and P50 profiles behaved similarly. However, the PDCA P90 profile slightly 

underpredicted when compared to actual production. Since these wells had larger production 

values, the predictions for the GBRQ method included cumulative production data for wells with 

less production and caused the P10 and P50 profiles to vastly underpredict the actual values. The 
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informative prior distribution for b values in the PDCA method seemed to work well for the 

other representative cases but, it seems to have caused underpredictions in this case. 

 

 

Fig. 3.17—Cumulative production predictions for representative cases of Midland dataset. 
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The semi log production rate profiles in Fig. 3.18 show the noise in actual production rate better 

as well as the enhancements in production more clearly. The PDCA method did a solid job 

forecasting smoothed profiles when enhancements to production were not present. In cases with 

enhancements to production, the PDCA method underpredicted with all three profiles. The 

GBRQ method was able to pick up the enhancements to production due to the inclusion of 

cumulative production from other wells, but was significantly noisier than the PDCA method. 

While these figures quantify uncertainty, they do not quantify bias. Furthermore, the models 

were forecast to 440 months of production, which was a little more than half the 790 months of 

production history some of the other wells in the Midland dataset contained. The reason for not 

plotting all of the history is discussed in the next section. 
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Fig. 3.18—Semi-log production rate predictions for representative cases of Midland 

dataset. 
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3.6 Forecast Length Limits of Midland dataset 

As mentioned before, the well counts of the datasets were limited by available production 

history for a hindcast. The DJ dataset consisted of 90 out of 130 wells with fewer than 21 months 

of production history, so the dataset was limited to just 40 wells. The Midland dataset consisted 

of 10 out of 448 wells with fewer than 21 months of production history and was thus limited to 

438 wells. As more production history was required to perform hindcasts at later months, there 

were fewer wells in the dataset with adequate production history. Fig. 3.19 is a plot of well count 

vs months of production history available for the Midland dataset.  

 

Fig. 3.19—Well count vs months of available production history (Midland dataset). 

The dataset begins with 438 wells available at 21 months forecasted. As the number of 

months required for a hindcast increased, the number of wells with available production 

decreased more and more rapidly until eventually reaching a steep decline between 450 to 550 

months and a sudden drop at 640 months. Note also that the number of wells decreased from 297 
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to 97 between 450 and 550 months. It was noted before that both the GBRQ and PDCA models 

performed much better for the Midland dataset than the DJ dataset, primarily due to the increase 

in available data in the Midland dataset. To further examine the relationship between more wells 

and better performance, predictions were generated with the GBRQ model at each month 

between 21 and 800, calibration plots were generated from those predictions, and a calibration 

score was calculated at each month (Fig. 3.20). The model was well calibrated as represented by 

low calibration scores until the rapid decline in well count beginning after Month 450. The 

calibration scores then increased rapidly and indicated the negative effect of a drop in well count 

on model calibration. 

 

Fig. 3.20—Calibration score vs forecasted month (GBRQ Midland dataset). 

The same calibration plots at each month were used to calculate coverage ratio (Fig. 

3.21). The dotted blue line represents perfect coverage. Coverage ratio of the GBRQ model 

increased towards perfect coverage until dropping severely at the same time of 450 months.  
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Fig. 3.21—Coverage ratio vs forecasted month (GBRQ Midland dataset). 

The same calibration plots were used to calculate confidence bias (Fig. 3.22). Confidence 

bias, which has an inverse relationship with coverage ratio, did not change significantly with 

greater forecasted months until experiencing significant noise as well count plummeted. 
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Fig. 3.22—Confidence bias vs forecasted month (GBRQ Midland dataset). 

Fig. 3.23 shows the directional bias variation with forecasted month and was created in 

the same way as previous plots. The blue line represents complete optimism while the red line 

represents complete pessimism. The black dots represent the directional bias values. Other than 

unusual noise at 370 and 600 months, there was no trend in directional bias. In other words, the 

drop in well count at later times did not seem to influence directional bias. 
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Fig. 3.23—Directional bias vs forecasted month (GBRQ Midland dataset). 

Fig. 3.24 shows the RMSE between the mean of the predictions and actual values in 

black, as well as the RMSE between the median of the predictions and actual values in red. The 

mean of the predictions was calculated using Swanson’s rule as previously mentioned. The plot 

shows that the median was a more accurate predictor of production than the mean and that both 

RMSE values increased steadily with longer forecast period until experiencing a sudden drop 

followed by noise when reaching the well count drop at 450-500 months.  
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Fig. 3.24—RMSE vs forecasted month (GBRQ Midland dataset). 

Fig. 3.25 shows the average normalized uncertainty window as a function of the month 

forecasted to.  This window is a measure of predicted uncertainty, so the smaller the window the 

less uncertainty the model predicts, which is preferred. Values increased steeply then stayed 

around 0.8 up to 450 months before dropping quickly. The values then declined rapidly starting 

at 550 months.  
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Fig. 3.25—Uncertainty window vs forecasted month (GBRQ Midland dataset). 

The significant drop in well count after Month 440 caused irregularities in nearly all the 

measures of GBRQ predictions. Thus, comparison between the GBRQ and PDCA methods was 

limited to the interval from zero to 440 months. 

3.7 GBRQ vs PDCA (Midland dataset) 

The GBRQ and PDCA models were compared over a forecast time interval of 21 to 440 

months. The PDCA model generated predictions for Months 21, 24, 36, 60, 120, 240, 360, and 

440 using 12 months of production history. This is because the PDCA method took hours as 

opposed to seconds to run each case and this way important trends in statistics for the PDCA 

method could still be observed without computational time being an inhibitor. The GBRQ 

method generated predictions for each month between Month 21 (438 wells) and Month 440 

(297 wells).  Fig. 3.26 to Fig. 3.30 show metric comparisons vs forecast month, tables of 

statistics at each key time are presented in APPENDIX A, and calibration plots for the PDCA 
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and GBRQ runs at each key time are presented in APPENDIX B and APPENDIX C, 

respectively. 

Fig. 3.26 shows calibration score for both methods. The GBRQ method is shown in black 

and the PDCA method is shown in red. The PDCA method has a higher calibration score over 

the entire forecast period and is thus less well calibrated overall compared to the GBRQ method.  

 

 

Fig. 3.26—Calibration score vs forecasted month (GBRQ vs PDCA). 

Fig. 3.27 shows coverage ratio for both methods. The associated colors for GBRQ and 

PDCA are the same as in Fig. 3.26 with the addition of a blue dotted line to show perfect 

coverage. The PDCA method had close to a perfect coverage ratio for very early forecast times 

before dropping and staying below the GBRQ method until Month 440. These initial perfect 

coverage ratios were consistent with the analysis on the DJ dataset, but the more complete 
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analysis shows that the GBRQ method had better coverage than the PDCA method for forecast 

times after Month 24.  

 

Fig. 3.27—Coverage ratio vs forecasted month (GBRQ vs PDCA). 

Fig. 3.28 shows confidence bias for both methods. Confidence bias has an inverse 

relationship with coverage ratio. The PDCA method has a similar inverse trend of very low 

confidence bias at early times followed by a larger confidence bias than the GBRQ method until 

Month 440. This matched the behavior in Fig. 3.27. 
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Fig. 3.28—Confidence bias vs forecasted month (GBRQ vs PDCA). 

Fig. 3.29 shows directional bias for both methods. The colors for the GBRQ method are 

the same as in the figures above with the addition of a dotted blue line to represent complete 

optimism and a dotted red line to represent complete pessimism. The GBRQ method had no 

trend in directional bias and stayed close to zero until experiencing noise around Month 370. The 

PDCA method experienced very high optimism at early times (due to near-zero confidence bias) 

and trended downwards towards no directional bias at late times. The PDCA method had greater 

directional bias than the GBRQ method for almost the entire duration of the forecast period.  
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Fig. 3.29—Directional bias vs forecasted month (GBRQ vs PDCA). 

Fig. 3.30 shows the RMSE for the mean and median for both methods. The RMSE for the 

mean is shown as small black circles for the GBRQ method and large red circles for the PDCA 

method while the RMSE for the median is shown as smaller black triangles for the GBRQ 

method and large red triangles for the PDCA method. The RMSE for the median was more 

accurate for the GBRQ method with both errors trending upwards steadily over the entire 

forecast period. The RMSE’s for the PDCA method were indistinguishable until Month 240 

when the median became more accurate. At Month 360 the mean becomes more accurate and at 

Month 440 the median again becomes more accurate. Thus, neither the mean nor median can be 

deemed superior to the other for the PDCA method. The PDCA method is more accurate than the 

GBRQ method prior to Month 120 while the GBRQ method is much more accurate after Month 

120. The GBRQ method is more accurate after Month 120 likely due to the GBRQ method’s 
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ability to incorporate long-term production of other wells at later forecast times. The PDCA 

method does not have this ability. 

 

Fig. 3.30—RMSE (P50 and mean) vs forecasted month (GBRQ vs PDCA). 

Finally, Fig. 3.31 shows the average normalized uncertainty window for both methods as 

a function of forecast length. The PDCA uncertainty window increased rapidly at first then 

increased at a shallower slope at later times. The GBRQ method also increased rapidly at first, 

but increased only slightly after about 120 months. The GBRQ method predicted less uncertainty 

throughout the forecast period and significantly less uncertainty at large forecast times because 

of the inclusion of cumulative production information from other wells. The GBRQ method 

incorporates more information than the PDCA method. If you are reliably assessing uncertainty, 

then as you add more relevant information, the uncertainty should decrease. 
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Fig. 3.31—Average normalized uncertainty window vs forecasted month (GBRQ vs 

PDCA). 

In summary, predictions with the GBRQ method were overall better calibrated (with 

correspondingly better calibration scores and coverage ratios as well as lower confidence and 

directional biases) over the entire 21-440 month forecast period. The GBRQ method also had 

greater accuracy for both the mean and median after about Month 120 and had lower predicted 

uncertainty over the entire forecast period than the PDCA method. The GBRQ method generated 

the forecasts for all wells in the forecast period in 45 min while the PDCA method took over 

three and a half hours, plus additional post-processing time to calculate metrics. The GBRQ 

method was also limited by available production history. It was only able to forecast to a month 

in which other wells already had production history. The decline models in the PDCA method do 

not have this limitation. Lastly, the inclusion of wells with enhancements to production, initial 
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steep declines, and oscillations in production made the GBRQ profiles much noisier than the 

PDCA profiles. 

The GBRQ method could be useful to reserves estimators who would like to make fast 

and reliable probabilistic forecasts. Reserves auditors can also use this method to generate a 

probabilistic forecast of production to compare with an auditee’s forecast. Lastly, investors and 

banks can create probabilistic production forecasts for asset acquisition and divestiture 

evaluation. 
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4. LIMITATIONS AND FUTURE WORK 

4.1 Limitations 

The inputs for both models were limited to 12 months of production history in the DJ and 

Midland datasets. The GBRQ method was also limited to default hyperparameters for the initial 

weak learner and the PDCA method was limited to using Arp’s decline model. The earliest 

forecast was to Month 21 and the latest was Month 440 for the Midland dataset because of the 

well count drop. Computational time was also a constraint for the PDCA method, which 

prevented a full realization of analysis at each month like the GBRQ method. Lastly, the time 

used was elapsed time from initial production, but this limited the ability of the GBRQ model to 

identify possible field-wide effects at the same date on multiple wells. 

4.2 Future Work 

Future research should include using production histories other than 12 months for 

predicting future performance. This has already been performed for PDCA (Gong et al. 2014) in 

which improvements in accuracy and probabilistic reliability were noted with increasing length 

of history. Thus, this should be done with the GBRQ method. 

The GBRQ method can also include data other than production data in its forecast of future 

cumulative production. The additional data could include completion data, as well as geologic 

and petrophysical properties. As mentioned before, actual time should also be included as an 

input.  

The effect of changing hyperparameters on probabilistic reliability and other metrics would 

also be a useful future study. 
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5. CONCLUSIONS 

For the 438-well, conventional-oil-well dataset in the Midland basin, the GBRQ ML method 

was clearly superior to the PDCA method. The GBRQ method was better calibrated than the 

PDCA method. Calibration scores were lower, coverage ratio was superior, overconfidence was 

lower, and optimism was lower. The PDCA method made more accurate predictions for the first 

half of forecast length (fewer than 120 months), but the GBRQ method made more accurate 

predictions for the second half (greater than 120 months). The GBRQ method also predicted less 

uncertainty than the PDCA method. The GBRQ method created full forecasts in significantly 

less time than the PDCA method. The GBRQ method was also able to perform a probabilistic 

production forecast for a single month in seconds, which was an option the PDCA method did 

not have.  

The GBRQ method had very noisy forecasts when compared to the PDCA method. This was 

because the PDCA method utilizes decline curve models while the GBRQ method utilizes a 

separate ML model for each month of predicted future cumulative production. Because the 

GBRQ method incorporates cumulative production from other wells at the future predicted 

month of interest, it (1) is able to better predict long-term production, including changes in future 

production trends, than the DCA-based PDCA method, and (2) predicts lower uncertainty than 

the PDCA method because it is incorporating more information into the prediction than the 

PDCA method, which considers only the historical production for each well in forecasting 

production. However, this feature of the GBRQ—incorporating cumulative production from 

other wells at the future predicted month of interest—is also a disadvantage in that it cannot 

forecast past the date for which production data is available from analogous wells, while the 

DCA-based method can forecast as far into the future as desired.  
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NOMENCLATURE 

Acronyms 

CDF Cumulative Distribution Function 

DCA Decline Curve Analysis 

E&P Exploration and Production 

EN Elastic Net 

GBR Gradient Boosting Regressor 

GBRQ Gradient Boosting Regressor with Quantiles 

MAE Mean Absolute Error 

MBE Mean Bias Error 

MBM Modified Bootstrap Method 

MCMC Markov Chain Monte Carlo 

ML Machine Learning 

MM Multi-Model 

MSE Mean Squared Error 

PDCA Probabilistic Decline Curve Analysis 
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Symbols - Units 

b Hyperbolic Exponent (Loss Ratio), Dimensionless 

CS Calibration Score 

ct Proportion of items greater than the actual for the probability assigned 

Di Nominal Decline Rate at time 0, 1/t 

Dlim Terminal Nominal Decline Rate when t ≥ tlim, 1/t 

L(yi,yip) Loss Function 

nt Number of times the response was used 

N Total number of responses 

Q Quantile 

q Instantaneous Production Rate at time t, STB/D 

qi Instantaneous Production Rate at time 0, STB/D 

qlim Instantaneous Production Rate at time tlim, STB/D 

qmax Maximum Instantaneous Production Rate, STB/D 

rt Probability assigned in calibration score 

T  Total number of response categories used 

t Time, months 
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tlim Time when Nominal Decline decreased from Di to Dlim, months 

x Variable for Normalized Uncertainty Window 

xstd Standardized Variable for Normalized Uncertainty Window 

yi Actual Value in Loss Function 

yip Predicted Value in Loss Function 

Greek Variables 

μ Mean 

σ Standard Deviation 

Subscripts 

i Initial 

stdStandardized 
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APPENDIX A – STATISTICS FROM GBRQ VS PDCA RUNS 

 Metric GBRQ PDCA 

Accuracy RMSE Mean (STB) 3174.472 633.103 

RMSE P50 (STB) 2432.988 650.839 

Probabilistic 
Reliability 

Calibration Score 0.0015 0.0017 

Coverage Ratio 0.888 1.016 

Confidence Bias 0.112 -0.016 

Directional Bias -0.014 4.19 

Uncertainty Average Normalized 
Uncertainty Window 

0.4929 0.5677 

Cost Computational Time (min) <1 324 

Table A.1—GBRQ vs PDCA statistics - 24 months. 

 Metric GBRQ PDCA 

Accuracy 
RMSE Mean (STB) 4351.587 1872.888 

RMSE P50 (STB) 3267.756 1823.169 

Probabilistic 
Reliability 

Calibration Score 0.0007 0.0025 

Coverage Ratio 0.927 0.924 

Confidence Bias 0.073 0.076 

Directional Bias 0.115 1 

Uncertainty Average Normalized 
Uncertainty Window 0.5227 0.6242 

Cost Computational Time (min) <1 222 

Table A.2—GBRQ vs PDCA statistics - 36 months. 
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 Metric GBRQ PDCA 

Accuracy 
RMSE Mean (STB) 6296.343 4015.468 

RMSE P50 (STB) 4661.871 4134.244 

Probabilistic 
Reliability 

Calibration Score 0.0003 0.0024 

Coverage Ratio 0.944 0.918 

Confidence Bias 0.056 0.082 

Directional Bias 0.069 0.993 

Uncertainty Average Normalized 
Uncertainty Window 0.6373 0.7242 

Cost Computational Time (min) <1 223 

Table A.3—GBRQ vs PDCA statistics - 60 months. 

 Metric GBRQ PDCA 

Accuracy RMSE Mean (STB) 9883.658 9619.81 

RMSE P50 (STB) 7285.771 9735.615 

Probabilistic 
Reliability 

Calibration Score 0.0001 0.0029 

Coverage Ratio 0.972 0.89 

Confidence Bias 0.029 0.109 

Directional Bias 0.417 0.75 

Uncertainty Average Normalized 
Uncertainty Window 

0.7683 0.9096 

Cost Computational Time (min) <1 313 

Table A.4—GBRQ vs PDCA statistics - 120 months. 
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 Metric GBRQ PDCA 

Accuracy 
RMSE Mean (STB) 14151.951 16544.374 

RMSE P50 (STB) 10621.609 18425.043 

Probabilistic 
Reliability 

Calibration Score 0.0007 0.0016 

Coverage Ratio 0.934 0.911 

Confidence Bias 0.066 0.089 

Directional Bias 0.055 0.617 

Uncertainty Average Normalized 
Uncertainty Window 0.7877 1.1093 

Cost Computational Time (min) <1 228 

Table A.5—GBRQ vs PDCA statistics - 240 months. 

 Metric GBRQ PDCA 

Accuracy 
RMSE Mean (STB) 19565.12 60617.775 

RMSE P50 (STB) 15590.773 57914.065 

Probabilistic 
Reliability 

Calibration Score 0.0004 0.0023 

Coverage Ratio 1.007 0.901 

Confidence Bias -0.007 0.099 

Directional Bias 1.333 0.455 

Uncertainty Average Normalized 
Uncertainty Window 0.8281 1.2764 

Cost Computational Time (min) <1 228 

Table A.6—GBRQ vs PDCA statistics - 360 months. 
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 Metric GBRQ PDCA 

Accuracy 
RMSE Mean (STB) 21953.519 42675.656 

RMSE P50 (STB) 18645.714 48392.494 

Probabilistic 
Reliability 

Calibration Score 0.0005 0.0025 

Coverage Ratio 0.939 0.903 

Confidence Bias 0.06 0.097 

Directional Bias 0 0.381 

Uncertainty Average Normalized 
Uncertainty Window 0.7791 1.3388 

Cost Computational Time (min) <1 141 

Table A.7—GBRQ vs PDCA statistics - 440 months. 
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APPENDIX B – CALIBRATION PLOTS FROM PDCA RUNS 

 

Fig. B.1—PDCA calibration plot - 21 months. 

 

Fig. B.2—PDCA calibration plot - 24 months. 
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Fig. B.3—PDCA calibration plot - 36 months. 

 

Fig. B.4—PDCA calibration plot - 60 months. 
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Fig. B.5—PDCA calibration plot - 120 months. 

 

Fig. B.6—PDCA calibration plot - 240 months. 
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Fig. B.7—PDCA calibration plot - 360 months. 

 

Fig. B.8—PDCA calibration plot - 440 months. 

 



 

76 

 

APPENDIX C – CALIBRATION PLOTS FROM GBRQ RUNS 

 

Fig. C.1—GBRQ calibration plot - 21 months. 

 

Fig. C.2—GBRQ calibration plot - 24 months. 
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Fig. C.3—GBRQ calibration plot - 36 months. 

 

Fig. C.4—GBRQ calibration plot - 60 months. 
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Fig. C.5—GBRQ calibration plot - 120 months. 

 

Fig. C.6—GBRQ calibration plot - 240 months. 
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Fig. C.7—GBRQ calibration plot - 360 months. 

 

Fig. C.8—GBRQ calibration plot - 440 months. 
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