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ABSTRACT

With the technological advancements made in recent years, more powerful computational ma-

chines are built. The ability to handle large computational problems, both in terms of storage

requirements and processing time has brought the opportunity to simulate complex systems more

accurately than ever. Engineers, in particular, are interested to take advantage of using advanced

computational machines for their design and modeling purposes. Although powerful computers

can model complex systems to predict outcomes, budget allocations remain an issue in design

and optimization tasks. Running large computational problems, simulations or experiments can

be cost-prohibitive in terms of time or computational resources, for example, when highly accu-

rate and reliable results are expected. Therefore, it is desired to spend available computational

resources wisely toward a design goal to avoid running futile calculations.

Recently, Bayesian optimization techniques have been developed and are widely employed

to solve design problems in many engineering fields. The popularity of Bayesian optimization

frameworks comes from the fact that they are able to work with minimal information and use

a heuristic-based search strategy to probe the design space, looking for potentially informative

experiments about optimal designs. Most of the Bayesian optimization frameworks are developed

to use a single model to collect mapping information from design space to objective space and find

the optimal design region, if not exactly a point. However, in cases of high-dimensional design

spaces or complex objective functions, these frameworks still need to evaluate a large number of

designs that can be costly and almost not practical considering computational resource limitations.

Simplified models have been developed to lower the expenses related to evaluations of complex

models but this comes at the price of accuracy loss. A simplified model has a lower fidelity but

is able to give estimations of a quantity of interest at a much lower cost. The potential here is to

employ several of these simplified models to obtain as much information as possible regarding an

expensive complex model, known as the ground truth, by fusing the models and considering the

correlation between the models and the ground truth. This approach opens up new ideas about
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extending Bayesian optimization frameworks to employ multiple sources of information instead of

relying on a single expensive model to achieve a less costly design process.

Although several approaches exist to fuse different sources in multifidelity Bayesian optimiza-

tion frameworks, there are not many of them developed to deal with multi-objective functions. In

many engineering design problems, there are multiple quantities of interest to consider when look-

ing for the optimal design. The issue here is the solution to such design problems is not a single

design but a set of designs to be discovered. This can be computationally demanding owing to the

fact it is searching for a region instead of a single point.

Another issue with Bayesian optimization frameworks is that they tend to underperform when

the dimensionality of the design space increases. While statistical techniques can be employed to

define the most important design variables and discard the remaining unimportant ones to reduce

the dimensionality of the design space, it comes at the price of losing accuracy. Also, it may be

misleading since there is a possibility of having the optimal design laid somewhere close to the

regions ignored to be searched.

The next problem is, most often, there are several design constraints in an engineering design

problem. It is crucial to know the constraints and recognize feasible regions before spending re-

sources to search the design space. Sometimes, the models representing the constraints are also

expensive to query and it is computationally prohibitive to sample a large number of points to iden-

tify the feasibile region boundaries. Additionally, in some problems, a constraint can be in form of

a binary check to see if a condition is satisfied or not. In such cases, there is not a continuous func-

tion to be modeled and check if its values lie within specific bounds. Additionally, the uncertainty

in the feasibility prediction of a design is important in decision making processes once we know

some constraints are known as hard constraints and they should be treated more conservatively.

In this study, we aim to address the issues mentioned above: first, we develop a multifidelity

Bayesian optimization framework suitable to optimize multi-objective functions. The expected

hypervolume improvement is employed as the criterion to look for optimal design regions while

balancing the exploitation of the present system’s information and the exploration of new regions
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in the design space. Second, we propose a novel framework to use an adaptive active subspace

method to efficiently recognize the important directions in the design space to form a lower di-

mensional space and reduce the dimensionality of the problem while it still allows searching all

design variables but in different degrees. Finally, a multifidelity Bayesian classification framework

is proposed to be employed within an optimization framework to solve constrained optimization

problems more efficiently by actively learning the feasible region boundaries beforehand. Shan-

non Entropy definition is used to quantitatively determine the uncertainty, which is usually larger

closer to the boundaries. We show the performance of our proposed frameworks on different test

problems and then, its application to some engineering problems.
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1. INTRODUCTION

The goal in a design problem is to find a set of design variables that minimize or maximize a

property of interest while satisfying some constraints. Due to the complexity of the models created

to represent different real world systems, that usually are in the form of black-box functions, nu-

merical methods are suitable. Lately, Bayesian optimization techniques are getting more attention

than ever and it is seen as a powerful and efficient tool to optimize expensive to evaluate objective

functions. An important advantage of Bayesian optimization frameworks is that they are capable of

working with minimal data. Usually, dealing with black-box functions requires sufficient number

of function evaluations to build the proper mapping from a design space to an objective space and

it needs large amount of computational resources. However, designers are interested to minimize

the number of queries to make less but more informative queries from their models. Bayesian opti-

mization frameworks model a target objective function using surrogate models, usually, Gaussian

process regressions and use acquisition functions, for instance, Expected Improvement (EI) [2]

or Knowledge Gradient (KG) [3, 4], to search the design space to suggest the best next experi-

ment while balancing the exploration versus exploitation of current system’s information about the

optimum design variables.

Optimizing a black-box function can be challenging, particularly if the design space is high-

dimensional. Although heuristic-based search helps in the sense that it searches for the optimal

design more effectively, but still the computational resources to make sufficient queries to obtain a

good estimate of the optimum design can be the bottleneck of any design application. Therefore,

a potential solution to deal with such expensive optimization tasks is to create cheaper models

estimating the same quantity of interest with some simplifying assumptions. The simplifications

made in modeling a ground truth quantity of interest lead to simpler and cheaper models but the

trade-off is they are lower in accuracy or fidelity of the information they provide. Different simpli-

fications create different lower fidelity models, also know as information sources and the designer

is able to extract useful information about the ground truth quantity of interest from each source
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assuming every single information source have some useful information about the ground truth

in some regions in the design space [5, 6, 7, 8]. In presence of multiple information sources, in-

formation fusion techniques are employed to collect information from different sources to build

a fused model that is capable of estimating the ground truth quantity of interest in a less costly

manner. This is possible owing to the fact that information collected from information sources

costs less than directly querying the ground truth. Several different techniques can be employed

to fuse multiple sources of information. Among these are approaches such as Bayesian modeling

averaging [9, 10, 11, 12, 13, 14], the use of adjustment factors [15, 16, 17, 18], covariance intersec-

tion methods [19], and fusion under known correlation [20, 21, 22]. One of the goals in this study

is to employ such information fusion methods to propose more efficient multifidelity optimization

techniques to optimize expensive to evaluate functions.

As of now, multi-information source optimization frameworks are developed mainly to opti-

mize single objective functions. However, when designing real-world systems, usually, there are

multiple properties to consider. For example, in designing aerostructures, one goal can be to mini-

mize the weight but also, minimizing the fuel burn at the same time can be the other objective. The

challenge in multi objective optimization problems is that, mostoften, the objectives are in conflict

with each other and there is not a single solution that optimizes all objectives simultaneously. The

solution to such design applications is a set of designs that are not dominating each other, which

means no design is superior to other designs in that set. This set of non-dominated designs forms

the Pareto front in the objective space. Estimating the Pareto front is a typical approach to find

non-dominated designs and the goal is to improve the approximation of the solution by comparing

the respective Pareto fronts. To have a criteria to compare different solution sets, hypervolume-

based techniques suggest to define a reference point in the objective space, then, the volume be-

tween Pareto front and the reference point is calculated referred to as hypervolume. Note that

since in optimization of multi objective functions, the goal is to discover a region as the solution

and not a single design, more of high fidelity information is needed which can be computation-

ally demanding. There are several techniques to approximating Pareto fronts and followingly, the
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hypervolume in multi-objective optimization problems such as weighted sum approach [23], the

adaptive weighted sum approach [24], normal boundary intersection methods [25], hypervolume

indicator methods [26, 27, 28, 29, 30, 31, 32], and others. The hypervolume indicator technique

is well-suited to expected improvement based algorithms, which have been shown to work well

in presence of multiple information sources (see, e.g., Refs. [33, 34, 6, 35]). Another goal of

this study is to integrate hypervolume indicator improvement within a multi-information source

Bayesian optimization framework to enable efficient optimization of expensive multi objective

functions.

While developing multifidelity Bayesian optimization frameworks offer a more efficient ap-

proach to attack design problems, they may still require a large number of evaluations from in-

formation sources, in particular, if the design space is high-dimensional [36, 37]. Additionally,

Bayesian optimization frameworks tends to underperform in high-dimensional spaces [38]. There-

fore, to address the issues that stem from the curse of dimensionality, methods to reduce the di-

mensionality of the input space can be implemented within design frameworks. A simple idea to

decrease the dimensionality of the input space is to keep the most effective design variables and dis-

card less effective ones, for example, by fixing a value or defining the objective function on a lower

dimensional design space. Among existing dimensionality reduction techniques are Global Sensi-

tivity Analysis and Principal Component Analysis. Global sensitivity analysis determine the im-

portance of each design variable from variation in the objective function [39, 40, 41, 42, 43]. Prin-

cipal component analysis [44] defines a lower dimensional design space by finding the principal

components that take the majority of the variance in the available samples in the high-dimensional

design space to keep as much information as possible [45, 46, 47]. Note that PCA decreases the

dimensionality of the design space by only considering the correlations between design variables

and does not consider the variability of the objective value. Most of the times, a sufficient number

of data is required to use such statistical tests and it may not be accessible for a particular system

due to computational resource limitations.

In this study, we aim to use the Active Subspace Method to reduce the dimensionality of large
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design spaces to solve optimization problems in a more efficient manner [48, 49, 50]. This method,

in contrast to PCA, use the variability of a function to map an objective function to a lower dimen-

sional subspace that captures the largest variability of the objective function. Then, the obtained

subspace, also known as the active subspace, is searched using an acquisition function. Lower

dimensionality of the active subspace makes the learning process in machine learning tasks easier

by reducing the required computational cost and improving the performance of the Bayesian opti-

mization frameworks. Since the active subspace is defined to represent the largest variability of an

objective function, it is considered as a highly informative region in the full design space. As far as

now, there has not been done any significant work to integrate the active subspace method within

multi-information source Bayesian optimization frameworks. Another goal of this study is to build

such a framework to further increase the efficiency and performance of optimization frameworks

in high-dimensional design problems.

In this research, the overall goal is to develop more efficient optimization methods in compar-

ison to the existing ones but dealing with design constraints is the other part of the story. When

performing Bayesian optimization, a more efficient approach is to check the constraints before-

hand to prevent searching infeasible regions and wasting computational resources on utility func-

tion computations and further, real evaluations from information sources or ground truth. In some

cases, the functions representing the constraints may not be computationally cheap to evaluate and

it is not possible to check the feasibility of every single design. A simple approach here is to build

and train surrogate models to allow cheaper way of checking the feasibility. However, it need a

large set of training data to cover the entire design space which is computationally prohibitive to

generate. Another point here is, what if a constraint is not a continuous function and has discrete

values, for example, it just tells if a design passes a constraint or not? To address these issues,

we propose a Bayesian classification framework that uses Gaussian process classification to model

the constraint boundaries and predict the feasibility[51]. While Bayesian optimization frameworks

search for optimal designs, a Bayesian classification framework searches for boundaries to recog-

nize feasible and infeasible regions in the design space. The uncertainty of assigning a label is
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higher in regions closer to boundaries. A quantitative way of comparing the overall uncertainty

of a classifier is to define it as entropy. Therefore, entropy measure can be employed to identify

highly uncertain regions and how it would change if new training data is added. This way, it is

possible to make effective queries from the constraint functions to efficiently learn the boundaries.

A big advantage of using Gaussian process classification is that it provides not only the probability

of feasibility, but also, the uncertainty of the prediction Which is a necessary element in a Bayesian

approach. Due to similarity of Bayesian optimization and Bayesian classification concepts, in this

work, there is the opportunity to develop a multifidelity approach for the classification part as well,

if there are more than one model to represent the same constraint. Our multifidelity Bayesian clas-

sification framework can be implemented within a Bayesian optimization framework to create a

novel framework that is capable of learning the constraints and objective functions efficiently, suit-

able for solving any constraint Bayesian optimization problems in single and multi-information

source systems.

To the best of our knowledge, there have not been any significant works done toward develop-

ing hypervolume indicator-based multi-objective multi-fidelity Bayesian optimization frameworks.

Additionally, multifidelity Bayesian classification frameworks or implementation of the active sub-

space method in multi-information source settings are not widely studied yet. Thus, our goal is

to propose such methods and show their performance by applying them on synthetic functions in

addition to some real-world engineering design problems. In Chapter 2, a multifidelity Bayesian

optimization technique is introduced and its application on designing a dual-phase high-strength

steel is shown. In chapter 3, a multifidelity multi-objective Bayesian optimization framework is

presented and its performance is compared to some similar approaches in a wing design problem.

The implementation of the active subspace method within our multifidelity framework is intro-

duced in chapter 4. The framework is applied to the same material design problem introduced

in chapter 2 and it is shown how it has resulted in a more efficient way of finding the optimal

design region. In chapter 5, Bayesian classification framework and its extension to multifidelity

cases is established. Then, this framework is combined with a multifidelity Bayesian optimization
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framework to allow for optimization in presence of multiple constraints. Again, in an example, it

is emphasized on the advantage of using multiple information sources, but this time, in a Bayesian

classification scheme. Then, the combination of Bayesian classification and Bayesian optimiza-

tion frameworks is applied on designing high-entropy alloys in presence of some constraints. In

the final chapter, we wrap up the works done in this study and discuss possible future works.
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2. BAYESIAN OPTIMIZATION IN MULTI-FIDELITY SETTINGS*

2.1 Overview

Materials design calls for the (inverse) exploitation of Process-Structure-Property (PSP) re-

lationships to produce materials with targeted properties. Unfortunately, most materials design

frameworks are not optimal, given resource constraints. Bayesian Optimization (BO)-based frame-

works are increasingly used in materials design as they balance the exploration and exploitation of

design spaces. Most BO-based frameworks assume that the design space can be queried by a sin-

gle information source (e.g. experiment or simulation). Recently, we demonstrated microstructure-

sensitive design of alloys with a BO framework capable of exploiting multiple information sources.

While promising, the previous framework is limited as it assumes that the optimal microstructure

is always feasible and considers microstructural features as the design space. Herein, we sidestep

this unwarranted assumption and instead consider that chemistry and processing conditions con-

stitute the design space amenable to optimization. We demonstrate the efficacy of our expanded

framework by optimizing the mechanical performance of a ferritic/martensitic dual-phase material

by adjusting composition/processing parameters. The framework uses thermodynamic results to

predict microstructural attributes which are then used to predict the mechanical properties using

a variety of micromechanical models and a microstructure-based finite element model. The final

stage involves implementing model reification and information fusion, and a knowledge-gradient

acquisition function to determine the next best design point and information sources to query. A

detailed discussion of the various components and demonstration of how the framework can be

implemented under three sets of cost-based constraints is presented.

*Reprinted with permission from "Efficiently exploiting process-structure-property relationships in material de-
sign by multi-information source fusion" by D. Khatamsaz, A. Molkeri, R. Couperthwaite, J. James, R. Arróyave, D.
Allaire, and A. Srivastava., 2021. Acta Materialia, Copyright 2021 Acta Materialia Inc. Published by Elsevier Ltd.[37]
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2.2 Introduction

Materials design through ICME approaches [52] calls for the integration of physics (or data [53,

54])-based models and experiments in order to establish quantitative Process-Structure-Property

(PSP) relationships [55], which can then be exploited in order to elucidate the mechanisms by

which the (multi-scale, hierarchical) microstructure of a material responds to external stimuli (i.e.

its property), or the mechanisms by which processing/synthesis conditions alters the way materials

are (hierarchically) organized [56]. By ‘inverting’ such relationships, it is then possible to identify

the combinations of chemistry and processing necessary to produce (multi-scale) microstructures

that meet target measures of performance. [57].

Unfortunately, fully integrated ICME frameworks with quantitative predictive accuracy still

remain out of reach, primarily due to the complex, highly coupled, multi-scale nature of linkages

along the PSP chain. This complexity makes it very difficult to computationally emulate such PSP

chains. Even if one ignores such challenges and focuses instead on much simpler single-scale

or effective models, the explicit integration of multiple tools within a single ICME framework

constitutes a major challenge [58] that has remained mostly unresolved, although limited recent

works [59, 60] have achieved some success in deploying fully integrated PSP model chains to carry

out the design/optimization of materials. Major challenges arise when considering the considerable

cost associated with querying PSP relationships. Recently, closed-loop Bayesian Optimization

(BO) approaches [61], capable of efficiently balancing the exploration and exploitation of materials

design spaces, have already been shown to be quite effective in materials optimization tasks under

resource constraints [62].

A major limitation of most approaches to date is the fact that they tend to use a single model

per linkage along PSP chains. This is an unnecessary restriction as often there are multiple compu-

tational models or information sources to choose from when trying to establish such quantitative

linkages. A further limitation is the fact that most ‘classical’ ICME frameworks are not capable

of directly integrating experimental information into the design/optimization loop, other than for

calibration, validation or verification purposes. Potential valuable experimental information could
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instead be directly incorporated into the ICME framework in a co-design scheme but this remains

largely unexplored. In fact, even state-of-the-art BO-based materials design [61, 62] tends to be

limited to a single probe (experimental or computational) to query specific linkages of the PSP

chain, although other engineering fields have developed sophisticated approaches for the integra-

tion of multiple information sources within optimization schemes [63].

In Refs. [6, 64], a material design framework is developed that addresses most of the issues

highlighted above. In order to avoid explicit I/O interfaces between different models connecting

microstructure to mechanical behavior—for a demonstration problem involving microstructural

design of a dual-phase material—each of the models, including the ‘ground truth’ (in that case a

microstructure-based finite element model) were converted into a Gaussian Process (GP). Since all

models used are attempting to describe the same underlying behavior (i.e. the connection between

microstructural features and mechanical response), it is to be expected that they would exhibit

some degree of correlation among themselves and also with the ‘ground truth’. By exploiting such

statistical correlations through the so-called ‘reification’ process [5, 8], we generated fused models

that were capable of maximizing agreement with available information about the response of the

‘ground truth’ model, while minimizing responses clearly at odds with observations. The fused

model was then used to answer two questions: (i) where to sample next in the design space, and (ii)

which information source should be used to query the design space. To answer those questions, we

constructed experimental utility functions based on the Knowledge Gradient (KG) [65]. In Ref. [6],

it is demonstrated how this multi-information fusion BO framework was more efficient than state-

of-the-art BO approaches that used a single (ground truth) information source. In Ref. [64], it is

further demonstrated that explicitly accounting for the cost of individual information sources was

essential if there are hard constraints imposed on the budget allocated to carry out optimization.

While promising, the previous framework was admittedly limited in that the complete PSP

chains were not exploited and only a microstructure sensitive design problem was addressed, as-

suming that the design space consisted of a universe of microstructures that could in principle be

accessed through suitable processing-chemistry combinations. This is a strong and unwarranted
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assumption, as optimal microstructures may not necessarily be feasible (i.e. accessible through

the available chemistry and/or processing controls). It is thus important to explore possible ways

of extending our multi-information source fusion BO framework in such a way that the design

space consists of degrees of freedom that are truly amenable to modification without concerns on

whether they are feasible or not. Such a framework would then truly realize the ICME program

which relies, as mentioned above, on the exploitation of PSP relationships in order to carry out the

design of materials. Solving such a problem is not trivial as we would have to fuse information

not only in parallel, as we have shown before (all models used connected the same microstructural

input to the same target mechanical response), but also in series, as we would have to provide ex-

plicit connections between processing-chemistry prescriptions and properties/performance through

intermediate microstructure information.

Figure 2.1: Schematic representation of the process-structure-property relationship used for the de-
sign of a dual-phase (ferrite-martensite) steel using our multi-information source fusion Bayesian
optimization framework. Here, χ is the set of input variables with TIA being the intercritical an-
nealing temperature, XC , XSi and XMn being the carbon, silicon and manganese content, respec-
tively, while the targeted output is the strength normalized strain hardening rate, (1/τ) (dτ/dϵpl).

In this work, we expand on our prior multi-information source fusion BO framework to account

for cases in which it is possible to establish, at least in principle, quantitative PSP relationships.

As in the previous works [6, 64], it demonstrates the framework by attempting to optimize the
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performance of a dual-phase steel. In this case, however, the degrees of freedom, amenable for

optimization, that we consider are chemistry and processing (in this simplified case, heat treatment

temperature), rather than microstructure characteristics. In this way we avoid the limitations of our

previous works (and that of others) as in this case the optimum microstructure is always feasible

since, it is a consequence of chemistry and processing protocol. We represent the proposed frame-

work in Fig. 2.1. This framework optimizes the normalized strain hardening rate (1/τ) (dτ/dϵpl)

of a dual-phase (ferrite-martensite) steel by adjusting the composition and heat-treatment temper-

ature of the material. The framework uses a surrogate model of the thermodynamic results to

predict the phase volume fraction and composition in the material microstructure after single-stage

heat-treatment (intercritical annealing followed by quenching). This data is then used to predict

the mechanical properties of the dual-phase material using a variety of micromechanical models

and a high through-put microstructure-based finite element model that utilizes a three-dimension

representative volume element (RVE) of the material microstructure. After obtaining fused models

through reification, the next point to query in the design space as well as the information source

used to query it are determined using the KG acquisition function. What follows is a discussion

of the various components of this framework and a demonstration of how the framework can be

implemented under three separate sets of constraints, related to when queries to the ‘ground truth’

are made.

2.3 Methods

In this part, all ingredients and concepts required to build the framework are discussed in detail.

2.3.1 Connecting Chemistry and Processing to Microstructure

The current work considers a material system that contains C (0.05 − 1 wt%), Si (0.1 − 2

wt%), Mn (0.15− 3 wt%) and Fe being the balance, and is subjected to a single-stage intercritical

annealing heat-treatment at temperatures ranging from 650-850◦C, followed by rapid quenching

to produce a dual-phase (ferrite-martensite) microstructure. The prediction of the microstructure

space is carried out through a surrogate model built from Thermo-Calc™ predictions in the region
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of interest. This surrogate modeling approach was used to ensure that the calculations can be

completed quickly, as well as to ensure that it would be possible to carry out optimization process

on a computing resource without access to Thermo-Calc™ license.

Figure 2.2: Schematic showing representative modeling results along the process-structure-
property chain used herein for the design of a dual-phase (ferrite-martensite) steel. (Bottom left)
Evolution of the martensite volume fraction, fmart, and partitioning of alloying elements among
the two constituent phases with temperature. (Bottom right) Evolution of stress with plastic strain
in a dual-phase material as predicted by microstructure-based finite element model (RVE) and a
variety of micromechanical models.

A detailed description on the construction of the surrogate model can be found in ref. [66].

Briefly, the Thermo-Calc™ model was uniformly sampled in the design space to obtain the austen-

ite volume fraction and composition. The volume fraction of martensite was obtained using the

Koistinen-Marburger equation [67]. This data was fit with a Gaussian Process (GP) model. The

composition and volume fraction of the ferrite phase are defined by a mass balance. This ther-

modynamic surrogate model was linked to the mechanical models (described in the subsequent

section) as shown in Fig. 2.2. As is often the case when using machine learning models, the ac-

curacy of the GP surrogate is ultimately limited by the accuracy of the underlying ground truth as
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well as the ability of the model form itself to reproduce the data used to train it. In general, we have

found [66] that GPs are able to model the outcome of phase equilibria calculations with reasonable

accuracy.

2.3.2 Connecting Microstructure to Mechanical Response

In this work, we assume that we have at our disposal a set of models (or sources of information)

of varying complexity (or computational cost) and fidelity that establish quantitative relationships

between microstructure and properties.. The models specifically take as input the quantitative

features of the dual-phase microstructure in order to predict its mechanical response. For the pur-

pose of demonstration, we consider a microstructure-based finite element model as ‘ground truth’

and a variety of reduced-order and micromechanical models as alternate cheap sources of infor-

mation. All the mechanical models predict the mechanical response of the material by explicitly

incorporating the effect of both the chemistry and processing conditions—resulting in specific

phase constitution—by utilizing the predictions of the Thermo-Calc™ model, Fig. 2.2. Note that

the stress-strain response of a composite dual-phase microstructure can in theory be accurately

modeled using high-fidelity microstructure-based finite element calculations [68, 69, 70]. How-

ever, these calculations are computationally expensive and their direct use in an iterative material

optimization scheme will be prohibitively time consuming. Reduced-order mechanical models

[71, 72, 73] and more sophisticated micromechanical models [74] are computationally cheap, but

this comes at a price, since their many simplifications result in loss of fidelity with regards to the

‘ground truth’—all the mechanical models are briefly described below.

2.3.2.1 Microstructure-based Finite Element Model (Ground truth)

The microstructure-based finite element calculations utilize a three-dimensional RVE of the

dual-phase microstructure to compute the uniaxial tensile stress-strain response of the material

[70, 6, 64]. To this end, we first generate a three-dimensional ferrite grain structure in the RVE

using a simulated annealing process [75] with brick meshing. Next, a fixed number of martensite

particles are nucleated randomly on the ferrite grain boundaries and then grown at a fast rate along
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the grain boundaries and a slow rate along other directions. The growth of the martensite particles

is terminated when the overall volume fraction of the martensite reaches the prescribed target value.

In the final RVE the crystallographic orientations of individual ferrite grains and that of martensite

blocks are smeared out. This results in a composite dual-phase microstructure with two discretely

modeled phases where each phase is modeled as an isotropic elastic-plastic material with Young’s

modulus, E = 200GPa, and Poisson’s ration, ν = 0.3, and constitutive relations (relating stress, τ ,

equivalent plastic strain, ϵpl, and composition, Xp
i , in weight fraction),

τ = τM0 + Cc(X
mart
C )1/3 +KM(ϵpl)n

M

(2.1)

for the martensite phase with τM0 = 400MPa, Cc = 105MPa, KM = 450MPa and nM = 0.06,

and

τ = τF0 + CSi(X
ferr
Si )1/2 + CMn(X

ferr
Mn )1/2 +KF (ϵpl)n

F

(2.2)

for the ferrite phase with τF0 = 200MPa, CSi = 732MPa, CMn = 213MPa, KF = 2200MPa

and nF = 0.5. The constitutive relations in Eqs. (2.1) and (2.2), and the choice of the (represen-

tative) constitutive parameters are based on the assumptions that: (i) the strength of the martensite

phase depends on its carbon content and the martensite phase doesn’t exhibit significant strain-

hardening, and (ii) the ferrite phase is softer than the martensite phase, exhibits significant strain-

hardening and its strength depends on silicon and manganese content.

A typical finite element mesh of the RVE of the dual-phase microstructure employs 27,000

C3D8 brick elements from the ABAQUS/standard element library [76]. In the calculations, fully

periodic boundary conditions are imposed on all six faces of the RVE. Next, to simulate uniaxial

tensile deformation, the RVE is subjected to a monotonically increasing tensile strain along one of

the axis, while maintaining zero resultant forces on the faces normal to the other two axes as in ref.

[69]. Note that since the martensite particles are nucleated at random, different realization of the

same microstructure (i.e. the same overall phase constitution) in the RVE is different. Thus, the
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mechanical response predicted by different realizations of the same microstructure in the RVE is

also slightly different as demonstrated in ref. [64].

2.3.2.2 Reduced-order and micromechanical models (Information sources)

As in refs. [6, 33], low-fidelity models are used as information sources to link material mi-

crostructure to overall mechanical response. The reduced-order mechanical models used here are

based on three assumptions on how the work, stress, and strain partition among the constituent

phases: (i) an isostrain model is built on the assumption that both the constituent phases undergo

the same amount of strain under deformation [71]; (ii) an isostress model is constructed following

the assumption of equal partitioning of stresses among both the phases [72]; and (iii) an isowork

model, that assumes that both the phases undergo the same amount of work of deformation upon

the deformation of the dual-phase microstructure [73]. In addition, we employ two slightly more

sophisticated micromechanical models linking material microstructure to overall mechanical re-

sponse. These models are constructed based on the homogenization schemes proposed in ref. [74].

We refer to the first micromechanical model as the ‘secant method’, where the prediction of overall

mechanical response is based on Hill’s weakening constraint power in a plastically-deforming ma-

trix. The second micromechanical model is referred to as the ‘elastic constraint’ model, which is

based on Kröner’s treatment of the matrix-inclusion system under elastic constraints [74]. All these

reduced-order and micromechanical models use the same constitutive relations given in Eqs. (2.1)

and (2.2) for the two constituent phases.

2.3.3 Material Design Framework

An optimization problem can be written as

x* = argmax
x∈X

f(x), (2.3)

where f is the objective function and x* is the optimal design vector in the feasible input space

X . Oftentimes, the analytical form of the objective function f is unknown or is very expensive

to evaluate through either physical experiments or high fidelity simulations. Indeed, resource
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constraints—i.e. the total budget available to the design campaign—place strong limits on the

number of times the objective function can be queried. In many cases, however, it is likely that

there exist cheaper information sources that can potentially be used to estimate the response of the

much more expensive information source, at varying degrees of fidelity and cost. Such informa-

tion sources could be models constructed with simplifying assumptions or evaluated at much lower

resolution than the ‘ground truth’. In cases in which the ‘ground truth’ is an experiment, the cheap

sources could be (physics-based or machine learning) models, or could be other experiments that

are much faster/cheaper to carry out but that are correlated to the more expensive ‘ground truth’.

Here, we propose a multi-fidelity approach to seek the solution to Eq. (2.3). Assuming that

every source contains some useful information about the quantity of interest—different sources

may approximate the ‘ground truth’ better than others in some regions of the design space—,

we aim to efficiently fuse all these sources in order to estimate the objective quantity of interest as

accurately as possible. Following the previous work [33, 6], we employ a multi-information source

optimization framework. In this approach, the first step is to construct intermediate surrogates for

each of the sources according to the prior knowledge about the connection between the design

space and their response. Here we use GPs as surrogates given their mathematical properties,

including their ability to predict not only the mean value, but also the variance of the quantity

of interest in the design space, and the straightforward manner in which the causal correlation

between points in the design space can be modeled, among others [51]. Using a reification-based

information fusion approach developed in ref. [5, 8], a fused model is built from all the information

sources by exploiting the degree to which they are correlated with each other and with the ‘ground

truth’. The fused model is then used to determine the next design vector and information source to

query. Here, we use the Knowledge Gradient (KG) acquisition function as the utility function to

rank the next best design point to explore, and the best information source to query it, taking into

account the cost of evaluating said information source as well as the uncertainty associated to the

model predictions. This policy balances the exploration of the input space and exploitation of the

current state of knowledge about the objective function, while also accounting for the impact of
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such exploration/exploitation on the available resources.

By fitting GPs to data from previous evaluations of the individual information sources, the prior

GP distribution for each information source is represented as

fGP,i(x) ∼ GP (mi(x), ki(x,x′)) , (2.4)

where ki(x,x
′) is a real-valued kernel function over the input space and mi(x) defines the mean

function. Here, we employ the squared exponential covariance function—note that other kernels

may be used depending on our knowledge of the properties of the design space—as the kernel

function specified as

ki(x,x
′) = σ2

s exp

(
−

d∑
h=1

(xh − x′
h)

2

2l2h

)
, (2.5)

where variables d, σ2
s , and lh are the dimension of the input space, signal variance, and character-

istic length-scale. The latter controls the degree to which two points in the input space, separated

by a specific distance, are correlated. The behavior of the GP surrogate is controlled by these hy-

perparameters and it is necessary to tune them based on the available data. Here, we optimize the

hyperparameters by maximizing the log marginal likelihood.

Assuming Ni evaluations of information source i are available and indicated by {XNi
,yNi
},

where XNi
= (x1,i, . . . ,xNi,i) is the Ni input samples to information source i and yNi

= (fi(x1,i), . . . , fi(xNi,i))

represents the outputs from information source i relatively, the posterior GP distribution of infor-

mation source i at a design point x is given as

fGP,i(x) | XNi
,yNi

∼ N
(
µi(x), σ

2
GP,i(x)

)
, (2.6)

where

µi(x) = Ki(XNi
,x)T [Ki(XNi

,XNi
) + σ2

n,iI]
−1yNi

, (2.7)

σ2
GP,i(x) = ki(x,x)−Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]

−1Ki(XNi
,x), (2.8)
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and for information source i, Ki(XNi
,XNi

) is a Ni×Ni matrix with (m,n) entry as ki(xm,i,xn,i),

and Ki(XNi
,x) is the Ni × 1 vector whose mth entry is ki(xm,i,x). Here, the term σ2

n,i is used to

model observation error for information source i found by experimental data.

We then quantify the discrepancy corresponding to each information source surrogate with

respect to the ‘ground truth’ (i.e. the RVE model) as

σ2
i (x) = σ2

GP,i(x) + σ2
f,i(x), (2.9)

where σ2
f,i(x) is the variance related to the fidelity of information source i, which is added to the

uncertainty associated with the corresponding GP to find the total uncertainty of the information

source surrogate i.

Since all information sources are estimating the same quantity of interest, they are expected

to be correlated to the ‘ground truth’ to varying degrees. Every information source is assumed

to have some useful information about the true objective function. In the proposed approach of

refs. [33, 6], and contrary to conventional multi-fidelity approaches, it is not required to determine

the hierarchy of fidelity according to agreement with the ‘ground truth’, rather all information

sources are brought together into a single fused model. Here, we follow the same approach.

Specifically, for fusion of normally distributed data—which is the case here since the information

sources are represented by GPs—the method presented by ref. [77] is followed. This leads to fused

mean and fused variance estimates at a given design point x as:

E[f̂(x)] =
eTΣ̃(x)−1µ(x)

eTΣ̃(x)−1e
, (2.10)

Var
(
f̂(x)

)
=

1

eTΣ̃(x)−1e
, (2.11)

where e = [1, . . . , 1]T, µ(x) = [µ1(x), . . . , µS(x)]
T are the mean values of S sources, and Σ̃(x)−1

is the inverse of the covariance matrix between the information sources. For example, in the
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presence of two information sources, Eq. (2.10) is defined as

E[f̂(x)] =
(σ2

2 − ρσ1σ2)µ1 + (σ2
1 − ρσ1σ2)µ2

σ2
1 + σ2

2 − 2ρσ1σ2

, (2.12)

where σ2
1 and σ2

2 are the total variances of sources 1 and 2 respectively and the coefficient ρ shows

the correlation between the information sources at a specific point x. To estimate the correlations

between the errors of two information sources i and j, we use reification [8, 5]. First, information

source i is reified and the correlation coefficient is computed as

ρij(x) =
σ2
i (x)

σi(x)σj(x)
=

σi(x)√
(µi(x)− µj(x))

2 + σ2
i (x)

. (2.13)

Then, information source j is reified to estimate ρji(x). Finally, the variance-weighted average

of the two estimated correlation coefficients is computed to estimate the correlation between the

models as

ρ̄ij(x) =
σ2
j (x)

σ2
i (x) + σ2

j (x)
ρij(x) +

σ2
i (x)

σ2
i (x) + σ2

j (x)
ρji(x). (2.14)

The average correlations are used in Eqs. (2.10) and (2.11) to estimate the fused mean and variance.

We use the fused means and variances to construct the fused model. Assuming Nf samples

from the design space X are available, the fused mean vector and the diagonal matrix of fused

variances are µWink(x1:Nf
) and

∑
(x1:Nf

) = diag (σ2
Wink(x1), ..., σ

2
Wink(xn)) respectively. The posterior

predictive distribution of the fused model is specified as

f̂ fused(x) ∼ N (µfused(x),Σfused(x)). (2.15)

Next, the fused GP, which is considered as our best predictive model containing all current knowl-

edge about the ‘ground truth’, is used to determine the next design point and information source to

query. This is done by employing a utility function that considers the cost and the value of such a

query relative to the optimization of the objective function in hand.
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The value-gradient utility, which is a cost-aware KG utility, is used to evaluate different in-

formation sources to compare the amount of knowledge gained about the objective function’s

maximum and the cost to determine which model and design point adds the most value regard-

ing Eq. (2.3). The utility function searches for immediate improvement to the knowledge state of

the system in one step and at the same time looks for the expected improvement in two steps where

it has the highest gradient in knowledge. Using the fused GP and its maximum mean function

value, the immediate expected improvement can be defined.

At a design point x, defining information sources by (i1:N , x1:N , y1:N) with design points and

corresponding objective values for the first N queries and taking f̂ as the posterior distribution of

the fused model, the expected improvement is given as

EI(x) = E

[
max
x′∈X

E[f̂(x′)|i1:N , x1:N , xN+1 = x, y1:N ]−max
x′∈X

E[f̂(x′)|i1:N , x1:N , y1:N ]

]
= E

[
max
x′∈X

E[f̂(x′)|i1:N , x1:N , xN+1 = x, y1:N ]
]
−max

x′∈X
E[f̂(x′)|i1:N , x1:N , y1:N ],

(2.16)

where the last expression can be removed from the expectation operator since it is known when

conditioned on the first N queries. Next, we use KG policy [3, 4, 65] to maximize this expectation.

Defining the value of being at the knowledge state HN as V N(HN) = maxx∈X HN , where the

knowledge state itself is presented by HN = E[f̂(x′)|i1:N , x1:N , y1:N ], the KG as a measure of

expected improvement is

νKG(x) = E[V N+1(HN+1(x))− V N(HN)|HN ], (2.17)

where the design point chosen is the point that maximizes νKG(x). To consider the immediate and

expected improvement, we use the value-gradient utility given as

U = µ∗
fused +max

x∈X
νKG(x). (2.18)

Considering Eq. (2.18), the value-gradient policy chooses the next point to query such that
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value-gradient utility is maximized.

Searching for the next point to query begins by generating Latin hypercube samples (LHS)

from the input space as alternative points. When an alternative point is queried from the GPi,

based on Eq. (2.4), the output is presented as a normal distribution with a mean and variance.

Then, Nq independent samples are drawn out of this normal distribution

f q
i (x) ∼ N (µi(x), σ2

GP,i(x)) for q = 1, . . . , Nq, (2.19)

with f q
i (x) as the sample q for alternate point x and information source i. To calculate the

value-gradient utility for each alternate point, we augment GPi with a sample drawn from GPi

to build the GPtemp,i. This approach assumes that the alternate point and the predicted sample

value are part of the system’s knowledge and a new fused model is created. Using Eq. (2.18), the

value-gradient utility is measured. The process is repeated for all samples drawn from the GPi

for the same alternative point. For every alternative point and information source, the expected

value-gradient utility is calculated by

EU x,i =
1

Nq

Nq∑
q=1

U q
x,i. (2.20)

To consider the cost of querying information sources, the expected utility function can be found

per unit cost. Finally, the alternative point with the highest expected value gradient utility per unit

cost and the information source to which that alternative point was added is chosen for the next

query. This process is repeated and the fused GP is updated until the budget is exhausted or

convergence requirements are fulfilled. Then, by searching the fused GP’s mean function, the

optimum solution of Eq. (2.3) is estimated.

2.3.4 Case studies

There are many ways to approach an optimization problem based on how the search policy

is employed and how the problem is constrained. In our work, three approaches are considered.
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The first two approaches are cost-controlled, but with different triggers to call the RVE model

(or ground truth) and which components of the calculation are considered in the cost. The third

approach has no cost consideration in executing different information sources. For every particular

case-study, five realizations of the entire process are obtained and the results presented are the

averaged values over these five realizations. The three different approaches are described in the

following subsections.

2.3.4.1 Cost Consideration - Iteration Controlled ‘Ground Truth’ Query (CC-IC)

When querying information sources while limited resources are available for the design pro-

cess, it is important to compute the value that each query adds to the system, while also considering

the resources needed to execute the query. For our cost consideration - iteration controlled (CC-IC)

approach, at each step, we select an alternative point and an information source to query that adds

the highest value per unit cost to the system’s state of knowledge. Considering the cost of queries

influence the decision making process with exploitation of the design space being favored over

its exploration. The decision-maker in this case acts conservatively in order to avoid the risk of

wasting the (constrained) resources on highly uncertain queries unless it can expect a very good

‘return on the investment’ of querying that source. To update the model discrepancies, the ‘ground

truth’—i.e. the RVE—is queried once after every ten evaluations of the information sources. In

Table 2.1, the costs assigned to each information source are shown based on their computation

time [64].

Table 2.1: Computational cost of various information sources.

Information source Cost (Seconds) Normalized cost
Isostrain 2.3× 10−4 1
Isostress 1.0× 10−3 4.4
Isowork 4.7× 10−1 2.0× 103

Secant method 8.4× 101 3.7× 105

Elastic constraint 3.6× 101 1.6× 105

RVE 7.2× 103 3.1× 107
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2.3.4.2 Cost Consideration - Cost Controlled ‘Ground Truth’ Query (CC-CC)

We also study a case in which the cost of the entire process is considered. This is referred to

here as the cost consideration - cost controlled (CC-CC) approach. While querying information

sources is costly, so too are constructing GP surrogates and calculating the fused model and utility

function, especially as the number of data points increases over time. We call this the modeling cost

and measure it by calculating the time required for (i) generating alternative points and samples, (ii)

building temporary GPs, (iii) performing the reification process, information fusion, and building

the fused GP, (iv) evaluating the utility function, and (v) deciding on the next point to query. The

measurement of the modeling cost, including the computational cost of the individual sources and

the cost of generating points to sample and selecting the sources to query, is completed on each

iteration and subtracted from the budget.

Additionally, we define a cost-controlled criterion to query the ‘ground truth’ model. Basically,

instead of querying the ‘ground truth’ after a specific number of queries of the (cheaper) informa-

tion sources, a query is made when a specific amount of the budget is spent. This strategy allows

the decision-maker to use the cheaper information sources before querying the expensive ‘ground

truth’ model, as long as it is finding value in querying the cheap information sources. This policy is

in a sense the closest analogue to a realistic materials design campaign, where the budget available

greatly determines the querying (i.e. experimentation or simulation) protocol.

Considering the modeling cost prevents the framework from querying a very large number of

points from the cheaper information sources before querying the ‘ground truth’. For instance,

thousands of queries are needed to pass any defined amount of budget if the isostrain information

source is chosen each time. This has the potential of significantly increasing the overall cost.

By considering the modeling cost, fewer calls to the cheaper models are made, which helps to

moderate the increase in the modeling cost.
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2.3.4.3 No Cost Consideration (NCC)

When the cost of evaluating information sources is not considered as part of the decision mak-

ing process, the system always chooses the alternative point and the information source to query

with the highest expected value gradient utility, no matter how expensive the query is. In other

words, there is no constraint on the decision making process concerning costs. In this approach,

which we refer to as no cost consideration (NCC), the ‘ground truth’ is queried after every ten

information source evaluations in the step to update the model discrepancy terms. This strategy

leads to increased exploration of the design space, thus adding the maximum knowledge from the

evaluation to the system after each update. Although this approach is not considered practical in

real-world optimization problems, it is used as a comparison with the cost-controlled approaches

in the current work.

2.4 Results

We now present the results of applying our material design framework to optimize the nor-

malized strain hardening rate, (1/τ)(dτ/dϵpl) at a plastic strain level of 0.9%, of a dual-phase

(ferrite-martensite) steel by adjusting the composition and heat-treatment temperature of the ma-

terial. The design problem follows the three decision-making policies described in Section 2.3.4.

To compare these decision-making policies, we consider how quickly each case reaches what is

considered as the maximum mechanical property region of the design space. In our previous work

ref. [64], for a fixed material chemistry, the maximum objective value was found to be 30.5, with

a certain level of uncertainty due to stochastic nature of the process—related to the different test

points arising from Latin hypercube sampling. In the current work, we seek to find an objective

value as good as the best in ref. [64] or better. Accordingly, a normalized strain hardening rate

([1/τ ][dσ/dϵ]) greater than 30.5 is considered as the target objective value to reach and this is

shown by the shaded area in Figs. 2.3 and 2.4.

To quantify the uncertainty in the current design process, five realizations of the design process

were generated. Each realization utilized the same initial data and was allowed to run to comple-
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tion. Through this approach we were able to quantify the combined effect of several sources of

uncertainty in the optimization process. The first is that the RVE calculations rely on a stochastic

approach to generate the dual-phase microstructure. As a result, the prediction from RVE calcula-

tion can be different even for the exact same inputs that include volume fraction and composition

of the constituent phases. The next source of uncertainty that needs to be accounted for is the de-

termination of the points at which the KG is evaluated. This is done by Latin Hypercube sampling

and as a result will vary for each realization of the framework. The final source of uncertainty

arises while calculating the KG, since a set of alternate points are sampled randomly from the

normal distribution defined by the GP at the chosen test point. The KG is calculated for all these

alternate points and then averaged. This average KG value is then used when calculating the test

point with the maximum KG. Given the considerable computational cost of the scheme it is not

feasible, at this time, to deconvolute these uncertainty sources, and we are thus only estimating the

total uncertainty and depicting it as shaded uncertainty bounds in Figs. 2.3 and 2.4.

As a preliminary step to set up the design problem, it is important to study how the prior

belief about the ‘ground truth’ result provided to the system can affect the final results. This prior

information is defined as the number of initial RVE evaluations (or ‘ground truth’ information)

used to train the intermediate GP for the RVE information source. The goal is to use an initial

training set size that sufficiently adds information while avoiding any extra expense on generating

unnecessarily large initial training data sets.

The results of the parametric study conducted to address this question are presented in Ta-

ble 2.2. Specifically, the effect of different initial training set sizes of the RVE on iterations and

cost required to reach the initial ‘guess’ maximum objective value is investigated. The parametric

study was carried out using the NCC decision-making policy, where during the optimization, the

RVE is queried every ten iterations or queries to the cheaper information sources. The cost shown

is divided into cost of generating the initial training set and the cost incurred during the optimiza-

tion process. The final objective value reached for all the cases is the maximum normalized strain

hardening rate found after reaching 300 iterations. We observe that from an initial training set size
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Table 2.2: Comparing the number of iterations and cost incurred to find the initial ‘guess’ maxi-
mum objective value of 30.5 for various initial training set sizes i.e. RVE results. The parametric
study was carried out using the NCC decision-making policy. The final objective values obtained
after reaching 300 iterations are also presented.

RVEs used to train Iterations to exceed Cost (ks) Final objective
Initial Optimization known max Initial Optimization value reached

10 14 141 72 110.811 31.6071
20 17 171 144 137.106 31.3176
40 8 81 288 60.921 32.6166
70 8 81 504 60.921 32.7012

100 5 51 720 37.326 32.0356

of 20 to 40, the iterations needed to reach the ‘guess’ maximum objective value decreases by half.

However, as we increase the size of the initial training set from 40 to 70, we observe no significant

change in the number of iterations required to reach the objective value and it is thus a waste of re-

sources to generate training sets greater than 40. Similarly, we do not see any major improvement

in the final objective value reached at the end of the optimization by increasing the initial training

set from 40 to 70. A similar effect is observed when a training set size of 100 is considered. There-

fore, to balance the cost of training and optimization, for all calculations presented hereafter, we

use an initial training set size of 40 RVE points.

Figure 2.3 compares the performance of three decision-making policies described in Sec-

tion 2.3.4. To this end, the maximum objective value found by each optimization process at end

of an iteration is plotted. As seen in Fig. 2.3, after about 50 iterations, all approaches come up

with better design points resulting in higher objective values. Basically, after a certain number of

evaluations from lower fidelity models, the system is learning about the location of the maximum

of the ‘ground truth’ model and evolves toward more and more optimal design points.

We note from this figure that the performance of both the NCC and CC-IC policies is similar.

Out of all three policies, the NCC policy explores more since it is the least conservative. The

CC-IC policy, on the other hand, prefers to exploit the current system knowledge rather than to

explore highly uncertain regions. The CC-CC policy, which considers the calculation of the full
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modeling cost in addition to the information source cost, affects the decision making process in

that it shows slower convergence to the target properties. This is likely due to the variable number

of iterations between RVE calls, which influences how extensively the framework is exploring the

design space. Additionally, by defining the cost-controlled calls to the RVE model, we let the

system exhaust the cheap information sources before each call, allowing for more exploration of

the design space. However, we balance the number of queries from the cheap information sources

by considering the modeling cost as well in this policy. Note that for a fixed number of iterations,

the CC-CC policy is not calling the RVE as much as the other policies. Thus, due to the fewer calls

to the RVE, it makes sense that the CC-CC policy does not reach high objective values as fast as

the NCC and CC-IC policies.

Figure 2.3: Comparing the maximum objective value found through the optimization process as
a function of number of iterations for different decision-making policies: No Cost Consideration
(NCC), Cost Consideration - Iteration Controlled (CC-IC) and Cost Consideration - Cost Con-
trolled (CC-CC) ‘ground truth’ query.

Since the number of calls to the RVE and the number of information sources queried in each

policy are different, every policy obtains an optimal solution (with respect to our target) at different

overall cost. A comparison is done between all policies, Fig. 2.4, in order to show the objective

value obtained as a function of the cost. The cost is calculated based on the time required to
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complete the defined number of iterations in kiloseconds (ks). As shown in Fig. 2.4, the CC-CC

policy is suggesting significantly better design points than NCC and CC-IC policies at the same

cost. As stated before, the advantage of the CC-CC policy is that it favors the extraction of the

most information out of a cheap source before querying the RVE. The CC-CC policy is thus the

most cost-effective one, which is important in cases in which there are hard constraints the budget

available to carry out the design. These cases are the norm rather than the exception in the context

of materials design.

Figure 2.4: Comparing the maximum objective value found through the optimization process as a
function of total cost for different decision-making policies: No Cost Consideration (NCC), Cost
Consideration - Iteration Controlled (CC-IC) and Cost Consideration - Cost Controlled (CC-CC)
‘ground truth’ query.

To study the results in more detail, we investigate how each policy proceeds to an estimation

of the optimal design point. Knowing that our framework employs multiple information sources to

estimate the quantity of interest, the resource constraints on the decision-making process can have a

large impact on how information sources are queried. By tracking the calls to different information

sources during the optimization procedure, we can understand when and which information source

had the highest value for Eq. (2.3) subject to the resource constraints of the given approach (CC-IC,

CC-CC, and NCC). These results are shown in Fig. 2.5.
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Figure 2.5: The progression of calls to different information sources as a function of the number of
iterations for (a) No Cost Constraint (NCC), (b) Cost Constrained - Iteration Controlled (CC-IC)
and (c) Cost Constrained - Cost Controlled (CC-CC) optimization procedures.

From Fig. 2.5(a), it seems that the NCC policy favors the querying of the design space through

the isostress reduced order model at the beginning of the optimization process. We note that this

is not the cheapest source. Over time, the amount of knowledge gained from querying this source

reaches a stage of diminishing returns. At this stage, the framework begins querying the isowork

model—still not the cheapest source. As the optimization progresses, the NCC policy ends up

encouraging the querying of the design space through all the available information sources. This

is an expected result since there are no cost constraints and there is thus no penalty based on the

information source queried. This behavior also reinforced the idea that this policy results in a more
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exploratory behavior, as the framework can utilize information from all sources more consistently.

We note, however, that since the more expensive information sources are queried more compared

to CC-IC and CC-CC policies, this approach will be considerably more expensive than the cost-

constrained policies. A final observation to make is that, despite the fact that the micro-mechanical

models (i.e. ‘secant method’ and ‘elastic constraint’) are more sophisticated than the simpler

isostress approximation, the framework favors, by far, querying from this cheaper source, perhaps

because the system has ‘discovered’ that it can make very useful inferences about the ‘ground

truth’ by querying this cheap, and perhaps less accurate, source.

In a similar fashion to the NCC policy (Fig. 2.5(a)), the CC-IC (Fig. 2.5(b)) and CC-CC

(Fig. 2.5(c)) policies favor querying the isostress information source first, followed by the isos-

train approximation—these are the cheapest information sources available. Although the isostress

approximation is more expensive than the isostrain model, the system initially finds more value in

querying the former. After some iterations, however, the value—i,e, the ratio of information gained

per cost—of the isostrain information source increases relative to the isostress approximation. We

note that when the framework follows the CC-CC policy (Fig. 2.5(c)), the transition in favor of the

isostrain approximation (cheaper than the isostress model by a factor of∼4) happens faster, as this

is the most effective strategy to follow under hard resource constraints.

Considering the cost difference between the cheapest and most expensive information sources,

the value of the information obtained from the more expensive information sources must be con-

siderably higher to have a higher cost adjusted value in comparison to the cheaper information

sources. As such, the framework is expected to exhaust all the information from the cheaper

sources before moving on to the more expensive sources. In fact, it can be seen that none of the

micro-mechanical models is queried at all under CC-IC and CC-CC and the isowork information

source is only queried under CC-IC at the very last stages of the process.

A major challenge of any optimization framework is to detect when convergence has been

reached. In this very specific case, the problem is even more challenging, as the evaluation of

the ‘ground truth’ has a degree of noise arising from the stochastic nature of the process. The
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Figure 2.6: Evolution of the Wasserstein Metric for the full four-dimensional input space and each
of the individual dimensions, temperature (TIA), carbon (C), manganese (Mn) and silicon (Si)
as a function of the number of iterations for No Cost Constraint (NCC), Cost Constrained - Cost
Controlled (CC-CC) and Cost Constrained - Iteration Controlled (CC-IC) optimization procedures.

framework is thus expected to converge into a region, rather than a single point, in the design

space. One possible approach to observe how the framework is able to approach the optimal point

(or region) in the design space is to utilize the Wasserstein metric, also referred to as the Earth

mover’s distance. The Wasserstein metric can be understood as a distance function between two

probability distribution functions in a given metric space. A more complete description of the

theory and properties of the Wasserstein metric can be found in ref. [78]. This metric has been

used in many applications, such as comparing the color distribution in images [79, 80], measuring

the mixing and convergence of Markov Chains [81, 82] and as the loss function for the training of

Generative Adversarial Neural Networks [83].
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Here, we compute the Wasserstein metric between multiple one-dimensional distributions to

understand how the framework approaches the optimal point or region in the multi-dimensional

design space. To this end, we first compute the Euclidean distance between the current best point

(that corresponds to the maximum of the fused GP) and a reference point. The reference point

is taken to be χ0 = [0.3, 0.3, 0.3, 0.3] in the unit hypercube design space. As the optimization

progresses, the evolving distance between the current best point and the reference point form a

distribution. We use the distribution of the distance in the four-dimensional space as well as the

distributions of its projection along the individual dimensions to compute the Wasserstein metric.

Specifically, starting from iteration 20, we take the 20 distance measurements prior to the iteration,

split them into two sets of 10 each, and then compare the two sets using the Wasserstein metric. As

the process converges, the Wasserstein metric is expected to approach zero, provided the sample

size is large enough. In our case, having 10 samples per distribution means that the metric will be

noisy even close to convergence. Here, we consider that a measure of convergence corresponds

to a condition in which the Wasserstein metric maintains an almost constant value over multiple

iterations.

As can be seen in Fig. 2.6, the Wasserstein metric computed from the distribution of the dis-

tance in the full four-dimensional input space show that the three different optimization policies

have similar convergence (or lack thereof) patterns. However, the evolution of the Wasserstein

metric computed from the distributions of the projections of the distance along the individual

dimensions does provide a better understanding of the optimization process. These show quite

clearly that all three methods converge rapidly in the temperature ‘dimension’. In other words, the

framework finds the optimal temperature very quickly. The next design input to reach convergence

is the amount of carbon in the steel, followed by the manganese concentration. We note, however,

that the silicon signal is very noisy and there is no indication of convergence. The slower conver-

gence of manganese and non-convergence in silicon is somewhat expected since both elements do

not play a significant role in controlling the normalized strain hardening rate of the material.

Finally, after all the evaluations are done and the system has built the final fused models, the
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fused models mean functions are searched to find the highest objective value they suggest. How-

ever, the predicted objective value is not important in itself, but rather, the corresponding design

point is more valuable. The optimal design point suggested by all three approaches is compared

with the predictions of a single PSP chain involving thermodynamic calculations coupled with

microstructure-based finite element calculations (RVE) in Fig. 2.7. In the figure, the contour plots

show the variation of the maximum objective value where the maximum is taken over two (hid-

den) design variables, χ3 and χ4, for a given set of values of the remaining two (displayed) design

variables, χ1 and χ2, i.e. max [fχ1,χ2 (χ3, χ4)], with χ1 and χ2, as obtained from the predictions

of the aforementioned single PSP chain. Similarly, two out of four optimal design variables sug-

gested by all three approaches are plotted at a time in Fig. 2.7. As expected, the CC-CC policy

still makes predictions slightly different than the NCC and CC-IC policies. This may be because

with a fewer number of queries from the RVE, the system has made less corrections to the fused

model prediction compared to NCC and CC-IC policies. On the other hand, both the NCC and

CC-IC policies are predicting the optimal design point very closely to the ‘true’ optimal design

point. Furthermore, from the chemistry/processing (design) space exploration plots in Fig. 2.7 it

can be noted that the true optimal solution is not unique. For example, in Fig. 2.7(a), we see that an

objective value of (1/τ) (dτ/dϵpl) ≈ 32 has multiple solution in temperature and carbon space, i.e.

the optimal solution is a region in the temperature and carbon space. Similarly, in Figs. 2.7(b) and

2.7(c) we see that the solution in temperature and manganese space, and temperature and silicon

space, respectively, is also not unique.

2.5 Discussion

In this chapter, we expanded on our prior work [6, 64] on multi-information source fusion

BO framework to account for the material design space that are truly amenable to modifications

without concerns on whether they are feasible or not. Note that while promising, a microstructure

discovered by only considering material microstructure as design space can be optimal in principle

but may not be accessible in practice. We have demonstrated our framework by optimizing the per-

formance of a material with material chemistry and processing conditions as the design space, thus
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Figure 2.7: The optimal design point corresponding to the maximum objective value found by the
three optimization processes, No Cost Constraint (NCC), Cost Constrained - Cost Controlled (CC-
CC) and Cost Constrained - Iteration Controlled (CC-IC), are overlaid on the contour plots of the
normalized strain hardening rate (objective) in the design space (temperature, carbon, manganese
and silicon) generated by extensively exploring the ‘ground truth’ process-structure-property mod-
eling chain involving thermodynamic calculations coupled with microstructure-based finite ele-
ment calculations (RVE).

truly realizing the ICME paradigm. Specifically, we have utilized our material design framework

to optimize the strength normalized strain hardening rate (a single metric that provides an indi-

cation of the ductility and formability ) of a dual-phase (ferrite-martensite) material by adjusting

the composition and heat-treatment temperature of the material. The framework utilized a surro-

gate model of the thermodynamic results to predict the phase volume fraction and composition

in the material microstructure post single-stage heat-treatment (intercritical annealing followed by

quenching), which was then used to predict the mechanical properties of the dual-phase material

using a variety of micromechanical models (as cheap information sources) and a high throughput
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microstructure-based finite element model (as expensive ‘ground truth’).

The material design framework developed herein was tested under three different conditions.

These conditions were shown to affect how quickly the framework attained a sufficiently high

value of the objective function and the information sources that were used to achieve that solution.

For example, it was seen that when comparing the NCC (no cost considetation) to the CC-IC

(cost consideration-iteration controlled) or CC-CC (cost consideration-cost controlled) policies,

the NCC policy was able to utilize all the information sources while the other policies only favored

queries from the cheaper models. The results indicate that querying extensively from all models

leads to an increased exploration of the design space. This, however, may not be desired for real

life design problems where it is often necessary to obtain an optimum material composition within

a tight budget constraint. In this regard, it is worth mentioning that when studying different policies

by comparing the amount of cost they have incurred and the objective values they have obtained,

the CC-CC policy showed significantly better performance by using less resources compared to the

other two policies. This highlights the value in extensively extracting information out of cheaper

information sources.

One big challenge in the optimization of an unknown design space is how to ascertain that

the solution obtained from the optimization framework has converged. To address this challenge,

we utilized the distance of the suggested optimal design point to a fixed reference point at every

iteration in order to track the convergence of the framework. This convergence is strongly tied to

the influence that a given dimension(s) in the input space has on the final objective function. For

example, in problem at hand, temperature and carbon have the biggest influence on the objective

function and it is to be expected that the solution subspace corresponding to these to input variables

converges relatively fast. On the other hand, silicon and manganese only have a weak influence

on the objective, thus it is expected that a rather broad range of their values can lead to similar

values of the objective function—the design space is almost degenerate with respect to silicon and

manganese, once an optimal region within the temperature-carbon ‘slice’ has been identified. This

makes the optimization of those two parameters extremely challenging, and highly ‘oscillatory’.
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The fact that not all the dimensions in the problem are equally influential (recall Fig. 2.6)

points to a possible strategy to make this framework even faster and more efficient: find and follow

directions (i.e. subspaces) in the design space along which the objective function changes the

most. This approach, known as the active subspace method [50], decomposes the design space in

such a way that at any time only the most ‘influential’ or ‘active’ subspaces are considered when

trying to find the optimum in a multi-dimensional space. Effectively, this approach would reduce

the dimension of the problem, accelerating the rate at which the solution is approached. As hinted

above, in this problem we would expect that such an active subspace search would hone in on the

temperature-carbon subspace prior to refining the optimization by exploiting the manganese and/or

silicon coordinates. A multi-information source fusion BO framework with active subspace search

will be presented in chapter 4.
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3. MULTI-INFORMATION SOURCE BAYESIAN OPTIMIZATION OF

MULTI-OBJECTIVE FUNCTIONS*

3.1 Overview

Multi-objective optimization is often a difficult task owing to the need to balance competing

objectives. A typical approach to handling this is to estimate a Pareto frontier in objective space by

identifying non-dominated points. This task is typically computationally demanding owing to the

need to incorporate information of high enough fidelity to be trusted in design and decision-making

processes. In this chapter, we present a multi-information source framework for enabling efficient

multi-objective optimization. The framework allows for the exploitation of all available informa-

tion and considers both potential improvement and cost. The framework includes ingredients of

model fusion, expected hypervolume improvement, and intermediate Gaussian process surrogates.

The approach is demonstrated on a test problem and an aerostructural wing design problem.

3.2 Introduction

When estimating a ground truth quantity of interest, for example, fuel burn for an aircraft or

a particular material property, we can often consider different mathematical formulations of the

analysis or prediction. This, in addition to experimental data and expert opinion, can give rise to

the ability to use multiple different sources of information for the estimation task at hand. The dif-

ferent assumptions made lead to differing levels of fidelity among the sources, as well as different

costs, both in terms of time and monetarily. In the presence of multiple sources of information, we

seek analysis and design processes that exploit the extra information that would not be present if

only a single source were available. The opportunity is the efficient selection of which information

source to query and where to query it on the basis of cost and potential for improvement in the

estimation of a quantity of interest. To do so, we employ a Bayesian optimization framework well-

*Reprinted with permission from "Bayesian Optimization of Multi Objective Functions Using Multiple Informa-
tion Sources" by D. Khatamsaz, L. Peddareddygari, S. Friedman, and D. Allaire., 2021. AIAA Journal, Copyright
2021 by the American Institute of Aeronautics and Astronautics, Inc.[84]
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suited to the optimization of black-box functions. These approaches generally use an acquisition

function to search the design space effectively and efficiently through the tradeoff of exploration

and exploitation. The challenge is ensuring proper fusion of information as it becomes available

and a need for a rapid capability for moving from prior predictive information to posterior predic-

tive information without necessarily executing a true information source. The standard practice of

using Gaussian processes within Bayesian optimization frameworks as updatable surrogates pro-

vides an avenue for efficiently incorporating information source fusion within the search process.

We exploit this here. We also note here that our goal is to estimate and optimize properties or other

performance metrics of real systems. There is therefore, a notion of ground truth, which is the true

quantity being estimated, which is likely only observable with noise. Often, this ground truth is

represented as the information that can be acquired from the highest fidelity information source.

This assumption may be reasonable in some circumstances, particularly if the information source

is an experiment with the realized system. Here, we keep the term ground truth to ensure that the

overall goal is clear, and we use our highest fidelity information source as a proxy for that ground

truth. In the previous chapter, we handled the case where ground truth is measured with noise.

Here, we do not include the noise in the ground truth for clarity, but the framework we present can

incorporate this if known.

While a multi-information source capability can be applicable to a wide variety of contexts,

our focus here is on multi-objective optimization. Previous works in this area, particularly with

emphasis on multifidelity methods, includes for example, an efficient global optimization (EGO)

approach based on the use of a hypervolume indicator or surrogate models creating for every ob-

jective [85]. In Ref. [86], a point-by-point approach is employed that considers the ends of the

estimated the Pareto front in an effort to obtain better solutions via single objective optimizations.

In Ref. [87] encourages the use of standard multi-objective evolutionary algorithm introduced in

Refs. [88, 89] to apply on the lower fidelity information source to build a surrogate model to

search and obtain a Pareto front. Then, the high fidelity information source is evaluated at those

non-dominated designs to correct the surrogate model associated to the lower fidelity information
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source. A similar approach is suggested in Ref. [90] using a surrogate model built with samples

from a low fidelity information source to search the design space for potential non-dominated

designs. A high fidelity information source is then evaluated at those design points and the approx-

imation of the Pareto front is obtained by optimizing a cokriging model constructed with these new

evaluations.

In this chapter, we present a novel framework for exploiting available information sources

to identify non-dominated points in objective space to estimate the true Pareto front of a given

problem. To handle fusion of information sources, we incorporate model reification introduced

in [5], which builds off [22, 77]. Model reification is a fusion technique that learns correlations

among information sources and guards against overconfidence that can occur when nearly identi-

cal sources are used. This fusion process is also non-hierarchical and allows fidelity to vary over

a design space. To enable rapid assessment of posterior predictive information, we use Gaussian

processes as intermediate surrogate models that may be temporarily updated with candidate query

points [51, 91, 5, 34]. To drive candidate query points toward the Pareto front, we use the ex-

pected hypervolume improvement metric presented in [92]. The approach presented in Ref. [92]

provides an exact means of calculating the expected hypervolume improvement. This leads to an

efficient computational process since a closed-form expression can be used to find the expected

hypervolume improvement (EHVI). Overall, our novel Bayesian multi-information source multi-

objective optimization framework can exploit multiple non-hierarchical information sources in an

efficient manner that produces higher quality Pareto fronts at less computational expense than cur-

rent available methods. This is achieved via combined use of model reification based information

fusion within a Bayesian optimization paradigm over a set of available information sources where

querying is directed by an easily computable closed-form acquisition function based on the EHVI.

We have chosen a Bayesian optimization paradigm here because the problems we seek to address

involve data-driven optimization. That is, our objective function estimates, as computed by avail-

able information sources, are analytically unknown and must be learned during search. While

there are other optimization strategies, such as model management approaches of Refs. [93] and
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[94] and model fusion approaches of Refs. [35] and [95], Bayesian optimization is viewed as a

superior computational strategy when tasks of exploration and exploitation must be traded off as

discussed in Ref. [96]. Our approach is demonstrated on a test problem with a two-dimensional

input space. We then demonstrate our approach on an aerostructural wing design problem in-

volving a 17-dimensional input space. These input space dimensions stress the limits of typical

Gaussian process regression modeling, and our approach is still shown to perform well. In each

demonstration, we consider two objectives, however, this is not a limitation of the work.

3.3 Background

Our multi-information source optimization approach for multiple objectives employs Gaus-

sian processes as intermediate surrogate models and fuses information using the process of model

reification. We describe each of these ingredients in turn in this section. We then conclude this

section with background on a general multi-objective optimization formulation based on the Pareto

frontier, which is how we approach such problems here. Once we have established the necessary

ingredients of our approach, we move to a description of our formal hypervolume indicator based

framework for multi-information source multi-objective optimization in Sec. 3.4. Gaussian process

regression and information fusion from multiple sources are discussed in detail in chapter 2, there-

fore, in this section, the main focus is on other parts required in our framework for optimization of

multi-objective functions.

3.3.1 Multi-Objective Optimization

A multi-objective optimization problem can be defined as

minimize {f1(x), ..., fn(x)}, x ∈ X (3.1)

where f1(x), . . . , fn(x) are the objectives and X is the feasible design space. Throughout this

chapter, we develop unconstrained approaches, however, the inclusion of penalty terms could be

considered for constraint handling. Another possibility for constraint handling could involve the

construction of a Lagrangian, where the objective is the EHVI and constraints are incorporated in
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the usual fashion. This could provide a means for evaluating the Karush-Kuhn-Tucker conditions

within the Bayesian optimization framework and open avenue for exciting future work in algorith-

mic development aimed pursuing the satisfaction of these conditions. For problems such as (5.9), it

is usually the case that no single point optimizes each individual objective simultaneously. To deal

with this, approaches based on the creation of a scalar objective using utility theory are common,

as well as approaches based on finding non-dominated solutions approaching the Pareto frontier.

We focus on the latter here. For this case, optimal solutions, y, to a multi-objective problem with

n objectives are denoted as y ≺ y′, and are defined as

{y : y = (y1, y2, . . . , yn), yi ≤ y′i ∀ i ∈ {1, 2, . . . , n}, ∃ j ∈ {1, 2, . . . , n} : yj < y′j} (3.2)

where y′ = (y′1, y
′
2, . . . , y

′
n) denotes any possible objective output. The set of y ∈ Y , where Y

is the objective space, is the Pareto front of the problem. This is shown conceptually for a bi-

objective problem in Fig. 3.1. All points on the Pareto front are non-dominated. Our approach,

which is common in the literature, is thus to find the Pareto front as efficiently as possible for a

given multi-objective optimization problem.

Figure 3.1: All points on the red line are non-dominated and constitute the solution set.
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There are many techniques in use for approximating Pareto frontiers for multi-objective op-

timization problems. Among these are the weighted sum approach [23], the adaptive weighted

sum approach [24], normal boundary intersection methods [25], hypervolume indicator meth-

ods [26, 27, 28, 29, 30, 31, 32], and others. The hypervolume indicator approach is well-suited

to expected improvement based algorithms, which have been shown to work well in a multiple

information source setting (see, e.g., Refs. [33, 34, 6, 35]). Thus, our approach proposes the in-

corporation of hypervolume indicator improvement within a multi-information source querying

framework. Hypervolume indicator approaches are based on the concept of a hypervolume in ob-

jective space. These hypervolumes are measured relative to a fixed reference point and the enclosed

volume between the approximated set of Pareto points and the reference point is computed. The

concept is shown notionally in Fig. 3.2. Here, the shaded area is the hypervolume to be computed.

In general, if a given set of points has a higher hypervolume than another set, then the given set

is a better estimator of the Pareto front. Hypervolume indicator algorithms seek to maximize the

hypervolume in objective space so as to best approximate the Pareto front. Thus, the value of new

query points can be estimated (using prior predictive distributions if using Gaussian processes) by

measuring the expected improvement in the hypervolume that would occur given the query takes

place. In Fig. 3.2, the shaded area in blue shows the amount of increase in hypervolume when a

new non-dominated point is found and added to the solution set.

3.4 Approach

Bayesian optimization is an optimization technique aimed at learning what is needed about an

underlying black-box function to efficiently optimize it (see e.g., Refs. [97, 98, 99, 100]. As such,

Bayesian optimization methods seek to trade off the tasks of exploration and exploitation. These

methods traditionally employ Gaussian process surrogate models that can be temporarily updated

to assess the quality of a candidate query point. This quality is measured by an acquisition function,

such as expected improvement, probability of improvement, the knowledge gradient, and others.

Our multi-objective optimization approach here treats information sources as black-boxes and uses

the EHVI acquisition function. Thus, our proposed method is one of Bayesian optimization.
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Figure 3.2: The blue shaded region corresponds to the hypervolume improvement due to adding
point A to the solution set.

Generally, our approach is based on determining, with available prior information, where to

query and what source to query to maximize the hypervolume indicator while being budget aware.

To achieve this, we make use of the updatable Gaussian process surrogates described previously for

each information source. These surrogates can be used as prior predictive distributions that can be

temporarily updated with potential query locations that result in potential changes to the hypervol-

ume indicator. By searching over the space of potential query locations and potential information

sources with these prior predictive surrogates, we are able to efficiently identify the next best query

to execute. Once this query is executed, all surrogates (including correlation information) may be

updated, and then can serve as prior predictive distributions for the next iteration. In this section,

we describe in detail our approach to achieving this. We begin with the necessary preliminaries

regarding the fast calculation of the expected hypervolume improvement (EHVI) [101] within a

multi-information source framework. This discussion follows largely from Ref. [92] where more

details can be found if desired. We then describe our algorithm for multi-information source multi-

objective optimization. In Sec. 3.5 we demonstrate the use of this framework on a test problem

and an aircraft wing design problem.
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3.4.1 Preliminaries

Following Ref. [92] for the development of the fast computation of EHVI, we present here

our implementation within a multi-information source setting. We begin by considering a current

solution set, S , of non-dominated points in objective space at some point during a multi-objective

optimization process. The dominated hypervolume, denoted asH(S), can then be computed given

S and a reference point. Improvement to the hypervolume due to adding a new solution vector y

is then defined as

HI(y,S) = H(S ∪ y)−H(S) (3.3)

IfHI(y,S)> 0, then y is in the non-dominated region of S and can be used to update the solution

set. Otherwise, there is no improvement over H(S) by adding y and the query adds no value. In

the context of Bayesian optimization, y is a random output of a probabilistic model related to a

potential solution in the design space. Hence, HI(y,S) is also a random variable. Therefore, it is

possible to calculate its expected value, which is the EHVI. Comparing EHVI values for different

potential solutions in the design space and finding the maximum EHVI leads to an information-

economic querying policy that ensures maximum gains are achieved in each successive query. In a

multi-information source context, however, the different cost of querying each source should also

be taken into account.

The formula for calculating EHVI as outlined in [102] is given as

E[HI(y)] =

∫
U

P (y ≺ y′)dy′ (3.4)

where P (y ≺ y′) is the probability that y′ is dominating y and U is the dominated hypervolume.

In our context, this can be computed in closed-form as will be shown below. Given that we have

independent Gaussian process models for every objective for each information source, the posterior

predictive output of each model given the data is a random variable identified as yi ∼ N (µi, σ
2
i )

where i ≤ m and µi, σ
2
i are the mean and variance of the ith objective accordingly (note, we have

not included information source specific indices here for notational clarity). For a new potential

44



solution in the design space, we have the following equation:

P (y ≺ y′) =
m∏
i=1

Φ

(
y′i − µi

σi

)
(3.5)

where Φ is the cumulative distribution function of the standard normal random variable. Details

regarding the closed-form expression of Eq. (3.4) along with a fast approach to compute the hy-

pervolume associated with a solution set can be found in Refs. [92, 102, 103, 104, 105].

3.4.2 Multi-information Source Multi-Objective Optimization Framework

Using the Gaussian process as the surrogate model for each objective and EHVI as the acqui-

sition function, we can perform Bayesian optimization to approximate a solution set for a multi-

objective optimization problem. It is necessary to notice that the model discrepancies are changing

whenever new information is found about the ground truth by querying the information sources.

The model discrepancy is defined as the difference between the predicted value of the model built

with data from an information source and the model built with the available data from ground

truth for a specific design space point. Therefore, model discrepancies should be updated regu-

larly. However, querying the ground truth to update its surrogate model is costly. Thus, we need

to define a condition for when to query the ground truth. Such a condition can be, for example,

when a certain number of updates have been made to available information sources, or also when

a specific amount of the total allotted budget is spent. This method allows the decision maker to

query cheap information source more between ground truth queries if it finds the cheap informa-

tion source is still providing useful knowledge about the ground truth. This is inline with expected

intuition regarding the exploitation of cheap information sources given their nearly negligible cost

in comparison to expensive sources and ground truth itself.

Algorithm 1 presents our overall framework. Our procedure to optimize a multi-objective func-

tion is established assuming the function has m objectives, and there are n information sources of

differing fidelity available to provide information about the ground truth. Here, the ground truth is

the highest fidelity information source for estimating a quantity of interest. This could, for exam-

45



Algorithm 1 Multi-Objective Bayesian Optimization
1: construct GP1 to GPm given available data from the ground truth
2: for i from 1 to n do
3: for j from 1 to m do
4: construct GPj,i for objective (j) of the information source (i) given the data
5: end for
6: end for
7: fuse models and construct the initial Pareto front
8: while available budget > 0 do
9: X-sample set←− Latin Hypercube Sampling

10: for k from 1 to n do
11: for s from 1 to size(X-sample set) do
12: Y-sample←− query X-samples from GP1k to GPmk

13: construct temporary GPs by updating GP1k to GPmk using sample s
14: updated_fused_values←− fuse other models with the updated one
15: generate test_samples using fused_means and fused_variances
16: improvement(s,k)←− EHVI(test_samples,updated_fused_values,Pareto front)
17: end for
18: end for
19: X = sample to be queried , V = Information Source(IS) to query from ←−

Max(improvement)
20: Y = (y1, ...ym) = IS(V)(X)
21: update GP1,V to GPm,V using X and Y
22: fuse models
23: U←− query a randomly generated set of design points from fused model
24: find non-dominated vectors in U to update Pareto front
25: if requirements to query ground truth is met then
26: G←− a set of design points with arbitrary size distributed along the Pareto front
27: YG←− query set G from the ground truth
28: update GP1 to GPm

29: update model discrepancies
30: fuse models and update the Pareto front
31: end if
32: end while
33: fuse models to construct fusedGP1 to fusedGPm

34: U ←− query a randomly generated set of design points from fused models
35: S ←− find non-dominated vectors in U to update the Pareto front
36: X ←− the design space corresponding to non-dominated set S

ple, be a real world experiment on a realized system, or a validated high fidelity simulation model

(often with associated uncertainty, which do not incorporate here without loss of generality). We
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assume that the querying of ground truth is the most expensive means of acquiring information

about. Expense here could mean runtime, cost, or other resource. While it is possible that ground

truth may not be the most expensive information source to query, we do not consider that scenario

here. The first step involves the construction of Gaussian processes (GPs) and to create the ini-

tial Pareto front. This can be established by finding non-dominated design points of initial data

available from the ground truth. Next, the fusion step takes place, which involves the previously

described model reification process. This is followed by the generation of candidate query points

which are tested for EHVI potential given the current set of GPs. The best candidate (query point

and information source) is selected and executed. This is followed by another fusion step given the

new information. The budget condition is then checked, which would lead to a ground truth query

or a check on whether the budget is exhausted. The term budget refers to the resources available

to run a new experiment and limits the total number of evaluations. The budget can be defined,

for example, as the computational time in simulations or the total money granted to design exper-

iments in a laboratory. If the budget is exhausted, the process terminates with a final analysis of

the estimated Pareto front from the fused GP, which leads to subsequent evaluations of best points

from the ground truth. If the budget is not exhausted, the process resamples candidate points and

repeats. A ground truth evaluation is triggered after spending a specified amount of budget on

evaluating lower fidelity information sources. When this occurs the ground truth is queried, its GP

is updated, and then all other GPs are updated (owing to a change in the discrepancies and corre-

lations given new ground truth information). The budget exhaustion condition is then checked and

the process proceeds as previously described from this point. A complete flow chart of this process

is provided in Fig. 3.3.

Algorithm 2 Querying the Ground Truth
1: divide the most updated Pareto front into N slices
2: construct a smooth Gaussian process for each slice given data points in the slice
3: P ←− choose the closest point to the Gaussian process mean in each slice
4: PY ←− query the design points corresponding to P from the ground truth
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When the decision to query ground truth is made based on the budget condition set by expert

opinion, a certain number of points, N , are considered as potential queries. Although choosing

larger values of N results in more information gain and higher accuracy to estimate the model

discrepancies, it is not necessarily desirable since the ground truth is an expensive to evaluate

function or experiment. Hence, a trade-off should be considered in assigning a value to N . For

the purposes of the demonstration cases that follow in Sec. 3.5, we have set N = 10 for the test

function and N = 4 for the OpenAeroStruct demonstration, however, the study of this parameter

is a topic of future work. Algorithm 2 presents our ground truth querying strategy.

Figure 3.3: Procedure flow of the proposed framework. The ground truth query requirement can
be meeting a certain number of iterations or spent budget.

3.5 Application and Results

To evaluate the performance of our proposed algorithm, we have applied it on a test function

from Ref. [106]. This is referred to as Poloni’s two objective test function, which maps points

from a two dimensional design space to a two dimensional objective space. A comparison between

the optimal Pareto front associated with the problem and the approximated Pareto front is made

to show the effectiveness of the algorithm. To apply the concept of multi-fidelity approach in
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optimizing the test function, we have constructed two other functions close to the test function by

changing the coefficients and constants. The test function itself is considered ground truth. We

follow the demonstration of our framework on the test function with its application to an aircraft

wing design problem using OpenAeroStruct [107]. We describe the software and the problem for

this application in Sec. 3.5.2.

We note here that our proposed optimization approach is stochastic in nature, and thus, in-

volves uncertainty from a few different sources. The result is that the results are also stochastic

in nature. The sources of uncertainty include the use of different training sets to build the initial

Gaussian processes, the random nature of how we generate candidate design points to be tested,

and the sample-based nature of the fusion process employed. To account for these uncertainties

we present the results for several different simulations using different initializations and candidate

point locations. We show this uncertainty in the form of 95% empirical confidence intervals in the

relevant figures.

3.5.1 Poloni’s test function

Poloni’s two objective function is a 2-dimensional input test function defined as:

minimize : f1(x1, x2) = 1 + (A1 −B1(x1, x2))
2 + (A2 −B2(x1, x2))

2

minimize : f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2,

where
− π ≤ x1, x2 ≤ π

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1(x1, x2) = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2(x1, x2) = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2).

Figure 3.4 shows the optimal versus final estimation of the Pareto front and the hypervolume.

Since there is no closed form solution for Poloni’s test problem, the optimal Pareto front and its
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hypervolume are found by exhaustive search. The optimal Pareto front here matches those reported

in Refs. [108, 109]. The estimated Pareto front is found using the knowledge of lower fidelity

models about the ground truth. Looking at the hypervolume values, it is showing the hypervolume

is increasing as a result of improved estimation of the Pareto front admitting that the budget is

spent effectively. The budget here is set to 100 to limit the total number of information source

evaluations and is used to inform the system when to trigger the ground truth evaluation if needed.

The cost of querying the low fidelity and medium fidelity models are set to 1 and 2 units of cost

respectively. These values were chosen to ensure adequate use of the information sources. In a

practical setting, these values would be computed via resource usage (such as actual runtime). The

hypervolume is initially computed using randomly generated data points with a training set of size

20 for every simulation.

Figure 3.4: The optimal and estimated Pareto front and hypervolume averaged over 30 replications.
The reference point is (70,70).

A significant improvement is achieved before spending the first 10% of the budget. This was

achieved largely through the exploitation of the cheaper lower fidelity model. Note that the ground

truth is queried each time 10 units of cost is spent to update model discrepancy and hypervolume
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on a regular basis.. We present a similar result and the information source query history for the

OpenAeroStruct demonstration in Sec. 3.5.2. The diminishing returns in hypervolume are expected

given that finding new non-dominated points becomes more difficult as more points are found.

Many previous works have used Poloni’s test function to measure the performance of their

proposed approaches. For example, Ref. [109] proposes a method using differential evolution.

Their result show they have found the optimal Pareto front after 600 function evaluations. Also, in

Ref. [108], it is reported that 2500 function evaluations are used to cover the estimated Pareto front

close to the optimal Pareto front found using exhaustive search. In Ref. [110], a genetic algorithm

approach is taken using populations of more than 500 for 250 generations to obtain the optimal

Pareto front. Our proposed method is generally outperforming each of these prior approaches.

Here, our method using a total of 100 function evaluations with an additional set of less than 100

evaluations from lower fidelity information sources (which are considered much cheaper than the

ground truth, though in general, this would be problem specific). This difference in the necessary

number of evaluations emphasizes the efficiency gains achieved by our method while maintaining

high quality Pareto front estimates.

3.5.2 OpenAeroStruct Demonstration

OpenAeroStruct is an open-source software developed in NASA’s OpenMDAO framework [111],

which can be used for fast tightly coupled aerostructural design optimization. The framework im-

plements the coupled adjoint method to compute the aerostructural derivatives used for efficient

gradient-based optimization. As noted in Ref. [107], OpenAeroStruct combines a vortex lattice

method (VLM) and 1-D finite element analysis using six degrees of freedom 3-D spatial beam ele-

ments to model lifting surfaces [112, 107]. A common aerostructural single objective optimization

problem is the fuel burn minimization problem using the Breguet range equation. Structural mass

minimization of the wing is also frequently considered and thus is used as a second objective in

demonstrating our proposed multi-information source multi-objective optimization framework.

The OpenAeroStruct application, as described in Ref. [107], uses the Breguet range equation

to compute the fuel burn as a function of structural weight and aerodynamic performance. Design
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variables consist of twist distributions, spar thickness distributions, and planform variables such

as skin thickness, thickness over cord ratio, and angle of attack. The first four variables are 4-

dimensional as four control surfaces were considered for the wing. Hence, the problem has a

17-dimensional design space. Constraints in the standard problem ensure lift equals weight, and

that structural failure does not occur.

Figure 3.5: A wing with the aerodynamic and structural Meshes [1].

The mesh in the OpenAeroStruct is defined by the number of the spanwise and chordwise

points. The fidelity of each model depends on the number of points used to define the lifting

surface. A model with a finer mesh is considered to have higher fidelity compared to a model with

a coarser mesh. We use three different mesh resolutions in this demonstration to serve as three

different multi-fidelity information sources.

The different mesh sizes and costs are shown in Table 3.1, where Numy is the number of span-

wise points and Numx is the number of chord-wise points. The low fidelity mesh was chosen

to ensure meaningful results and the high fidelity mesh was chosen through a mesh refinement

analysis that ensured adequate convergence. In Fig. 3.6, the three different meshes are shown. The

cost of evaluating each model is based on the computational runtime of a single query.

We applied our approach of multi-information source multi-objective optimization on this two-
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Figure 3.6: Illustration of the meshed wing with different fidelity models. The number of meshes
in each model is presented in Table 3.1.

Table 3.1: Mesh sizes and costs for different fidelity models

Fidelity level Numy Numx Cost (seconds)
Low 15 3 1.9

Medium 35 11 45.1
High (Ground truth) 55 19 283.9

objective OpenAeroStruct problem with three information sources taking the highest fidelity one

as the ground truth. As mentioned earlier, our objective here is to minimize both fuel burn and

wing mass by controlling 17 design variables. We assumed a budget of 2000 seconds of compu-

tational time on lower fidelity information sources for this demonstration. The results are shown

in Fig. 3.7, where random points are shown in blue to show the objective space (these are not part

of the algorithm and are for visualization only), the green points are those points selected by our

approach with the fused GP, and the red points are the non-dominated green points that have been

evaluated with the ground truth (that is, the final step of our algorithm). The figure reveals that

our approach has done well in identifying the non-dominated region in the objective space for this

17-dimensional problem. Note that the Pareto front for this problem is not spread along a large

region of the objective space. This is expected based on the shape of the objective space as shown
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by the randomly queried point.

Figure 3.7: Final estimation of the Pareto front from the fused model non-dominated designs shown
in red and green stars respectively.

In Fig. 3.8, the hypervolume is updated during the optimization process each time 100 seconds

of computational time is spent on evaluating the lower fidelity information sources. This choice

results in regular updating of the discrepancy terms. A careful study of the optimal allocation

to lower fidelity information sources and ground truth estimates is a topic of future work. We

note here that this is not always a clear resource tradeoff since often computation is measured in

runtime and physical experiments may need to be measured in monetary units as well as time. The

objectives are normalized using the upper limit known for each objective. Since both objectives

have large values, differences in hypervolumes might not be sensible and normalization helps to see

the changes clearly. The reference point should be dominated by all points in the objective space

and here it is fixed as (1.1, 1.1). The most significant changes in the hypervolume quantity is made

when spending the first 10% of the budget (as was seen in the previous test case as well). Beyond

that, there are improvements in the hypervolume but the returns are diminishing as expected.

Figure 3.9 reveals the cumulative sum of queries from any information source plotted against
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Figure 3.8: Estimated hypervolume with respect to the cost averaged over 30 independent simula-
tions with different starting points.

overall iteration, where iteration is defined as it was previously. As depicted in the figure, initially,

the low fidelity information source has been queried much more than the medium fidelity informa-

tion source. After some number of iterations (about 120 in this case), the value of the low fidelity

source has diminished enough that some queries to the higher fidelity source are now necessary.

This continues until the budget is exhausted. We see in this case that the low fidelity source contin-

ues to be queried as well. This is due to the fact that as higher fidelity information is obtained, the

correlations between the low and higher fidelity sources are updated, which results in a possible

renewed value in lower fidelity information. This was the case here.

For the above analysis, a possible question is what if there was only one information source

available to estimate the quantities of interest in this design problem. To address this question,

another experiment is designed to compare the results between the multi-fidelity approach and

the single fidelity approach. We have considered the single fidelity optimization task using the

medium fidelity information source. The Gaussian process built for the information source is taken

as the predictor model and there is no fusion of information and a fused model in the single fidelity

optimization case. Fig. 3.10 shows the hypervolume averaged over 30 simulations for each case in a

normalized objective space with different starting points. The multi-fidelity approach outperforms
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Figure 3.9: The cumulative sum of queries from each information source is shown. We query one
information source at each iteration.

the single fidelity approach since it has access to more information about the ground truth. This

result shows the low fidelity information source contribution to provide useful information about

the quantity of interest in the multi-fidelity configuration.

The next step is to compare the effectiveness of different algorithms proposed to do multi-

objective optimization task. Here, we have compared the results of NSGA-II[113, 114, 115],

ParEGO[116, 117], and EHVI methods on optimizing the OpenAeroStruct design problem. We

will not present the whole algorithms here but interested readers can find details regarding these

approaches and implementations in the references above.

In general, the ParEGO algorithm is an extended version of the efficient global optimization

(EGO) algorithm initially introduced in [98] for global optimization of single objective expensive

black-box functions. The EGO algorithm is a surrogate based method and searches for new solu-

tions using the expected improvement criterion. At each iteration, a set of random solutions are

generated in a Latin hypercube or any other space filling design and the solution which maximizes

the expected improvement will be queried from the expensive function to update the surrogate

model. To extend the method for optimizing multi-objective functions, one approach is to com-

bine all objectives into a single objective using parameterized scalarizing weight vectors [117]. In
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Figure 3.10: Comparing the estimated hypervolume in single fidelity and multi-fidelity approaches
averaged over 30 independent replications of simulations.

NSGA-II, a non-dominated sorting is done over the available data or in terms of genetic point of

view, population, and they are given a rank according to their non-domination level. New pop-

ulation are generated according to their front rank trying to find new non-dominated solutions.

Readers are referred to [113, 114] for more details.

NSGA-II and ParEGO are not set up to take advantage of multiple information sources and

they are employed to optimize one function. However, as these algorithms might need to query a

large number of points from the function directly, optimizing the ground truth does not make sense

with respect to the cost of each query. The goal is to see how they perform if the same amount of

resources are available for all methods. Consequently, the optimization is done over the medium

fidelity information source to allow reasonable number of queries from the function.

The hypervolume estimations in Fig. 3.11 show the improvement achieved by our EHVI-based

approach. Note, the starting point for every simulation is different, thus, we have included the

uncertainty region even for the initial hypervolume. The EHVI approach has the advantage to

come up with a good estimation of the optimal Pareto front meaning a larger hypervolume much

faster than the other approaches. Therefore, in highly budget-constrained experiments, it finds

solutions closer to the optimal Pareto front. Although it is seen that the estimated hypervolumes
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Figure 3.11: Our proposed approach using EHVI has outperformed other methods obtaining larger
hypervolume. Values show the averaged hypervolume over 30 independent simulations.

might converge when more resources are available, since they have enough budget to search the

space, the EHVI is still suggesting better solutions to the problem. Also, the NSGA-II approach is

building up the Pareto front gradually and will likely reach the EHVI and ParEGO estimations of

the hypervolume at higher costs.

In Fig. 3.12, we demonstrate the results of using our multi-information source approach ver-

sus a single information source approach using EHVI as the acquisition function, as well as the

ParEGO and NSGA-II methods. Here, a representative result from the 30 simulations is used

to show the results of the different algorithms. We see from the figure the multi-information

source approach dominates the other approaches. In some cases, it is possible that the ParEGO

and NSGA-II provide a better solution (say in a different choice among the 30 simulations), how-

ever, as shown in Fig. 3.11 our method is performing better on average.
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Figure 3.12: Pareto fronts obtained using different methods.
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4. INTEGRATION OF ACTIVE SUBSPACE METHOD IN BAYESIAN OPTIMIZATION OF

MULTI-INFORMATION SOURCE SYSTEMS*

4.1 Overview

Materials design calls for an optimal exploration and exploitation of the process-structure-

property (PSP) relationships to produce materials with targeted properties. In chapter 2, we de-

veloped and deployed a closed-loop multi-information source fusion (multi-fidelity) Bayesian Op-

timization (BO) framework to optimize the mechanical performance of a dual-phase material by

adjusting the material composition and processing parameters. While promising, BO frameworks

tend to underperform as the dimensionality of the problem increases. Herein, we employ an adap-

tive active subspace method to efficiently handle the large dimensionality of the design space of

a typical PSP-based material design problem within our multi-fidelity BO framework. Our adap-

tive active subspace method significantly accelerates the design process by prioritizing searches in

the important regions of the high-dimensional design space. A detailed discussion of the various

components and demonstration of three approaches to implementing the adaptive active subspace

method within the multi-fidelity BO framework is presented.

4.2 Introduction

Integrated Computational Materials Engineering (ICME) – based material design [52] relies on

solving the inverse problem connecting target properties/performance metrics to material chem-

istry and processing. This connection is established through (forward) process-structure-property

(PSP) relationships [55, 119], which are in turn established through physics- or machine learning-

based models [53, 54, 120] and/or experimental data. The solution to this inverse problem entails

the exploration and exploitation of PSP relationships to identify the required chemistry-processing

combinations that yield desired properties [56]. Practical implementation of ICME frameworks re-

*Reprinted with permission from "Adaptive Active Subspace-based Efficient Multifidelity Materials Design" by
D. Khatamsaz, A. Molkeri, R. Couperthwaite, J. James, R. Arróyave, A. Srivastava, and D. Allaire., 2021. Materials
and Design, Copyright 2021 Published by Elsevier Ltd.[118]
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quires addressing three major challenges: the need to exlicitly connect the different models along

the PSP chain; the considerable cost associated with the evaluation of each of the models/linkages;

and the potentially large dimensionality of the design space.

A significant amount of work has been done to address the first challenge, at least in the con-

text of microstructure sensitive materials design, which aims to uncover optimal microstructures

that meet specific performance objectives by focusing exclusively on the microstructure-property

space [121, 122, 123, 124, 36, 125]. While promising, this approach assumes that the design

space consists of a universe of microstructures that are all feasible, potentially, through suitable

chemistry-processing combinations. This is an unwarranted assumption as there is no guarantee

that an optimal microstructure is feasible, in the sense that it can be attained through an adequate

processing protocol. To date, there has been some measure of success in the deployment of fully

integrated PSP model chains for materials design[60, 37]. However, this is not a trivial task largely

due to the complex, highly coupled, multi-scale nature of the linkages along the PSP chain [58].

To address the second challenge associated with the considerable cost of querying the PSP

relationships, the materials design community has focused on the development and deployment of

closed-loop Bayesian Optimization (BO) frameworks to efficiently explore and exploit the material

design space [61, 62, 6, 64, 126, 37]. These frameworks seek a balance between exploration

and exploitation in order to efficiently arrive at optimal materials solutions. These approaches

are suitable and have been used successfully in both simulation-driven and experiment-centered

materials design problems.

The third challenge, however, has largely remained unaddressed. This is despite the fact that,

more often than not, the design space is large, [36, 37] and BO frameworks tend to underperform

as the dimensionality of the problem increases [38]. It is certainly possible to carry out statistical

tests to determine the most influential design variables in any optimization task and then to focus

exclusively on those degrees of freedom during the design process. However, this requires suffi-

cient data connecting design inputs to design outputs. Thus, there is a need for techniques that can

effectively locate the most important (and/or informative) design regions to increase the efficiency
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of the materials design process. These efficiency gains can be more pronounced if these potentially

productive design regions can be identified with limited data in an adaptive manner, while more

information about the design space is gained in the course of exploring/exploiting it [127, 128].

There are techniques to deal with the curse of dimensionality that stems from large design

spaces, usually by defining a representative response surface in a lower-dimensional space while

maintaining the relationship between the design variables as much as possible. For instance, global

sensitivity analysis is used to measure the importance of different design variables in the variation

of a quantity of interest [39, 40, 41, 42, 43]. This approach assigns a nominal value to the design

variables that have little effect on the objective and perform the optimization over the remain-

ing design variables. Approximating a subspace of the original large design space is also among

the most common approaches to dimensionality reduction and can be used to represent data in

a lower-dimensional space to ease machine learning objectives, increase the efficiency of opti-

mization tasks [129, 130], aid in model reduction [131], or facilitate optimal control of dynamic

systems [132]. Another technique in dimensionality reduction is the Principal Component Analy-

sis (PCA) [44], which linearly projects a large dimensional dataset onto a lower-dimensional space

[45, 46, 47] while trying to keep as much information as possible by determining the principal com-

ponents that capture a majority of the variance in the data. PCA has been employed for microstruc-

ture sensitive design to build models to predict (mechanical) properties using a lower-dimensional

representation of the complex material microstructure [133, 134, 135, 136, 137, 138, 139, 140].

Note that PCA simply decreases the dimensionality of the design space by considering the correla-

tions among design variables, without accounting for the connection between the design variables

and the quantities of interest amenable to optimization. In a PSP-based materials design problem,

where the focus is on optimizing the performance metrics by exploring material chemistry and

processing options, directly decreasing the dimensionality of the design space without accounting

for the design objectives may not be feasible.

Herein, we employ an adaptive active subspace method [48, 49, 50] to efficiently handle the

large dimensionality of the design space of a typical PSP-based materials design problem within
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our recently developed closed-loop multi-information source fusion (multi-fidelity) BO framework

[37]. Specifically, we demonstrate the efficacy of this framework by optimizing the stress, τ , nor-

malized strain hardening rate, dτ/dϵpl, at an arbitrary equivalent plastic strain, ϵpl = 0.9%, of

a dual-phase material (ferrite-martensite steel) by adjusting the content of the alloying elements

C, Mn and Si in the Fe-based alloy, and the processing condition, i.e., the intercritical annealing

temperature, T. The normalized strain hardening rate, (1/τ) (dτ/dϵpl), is a useful mechanical per-

formance metric, and a higher value of this parameter indicates better ductility and formability of

the material. In the design framework, we utilize the thermodynamic results to predict the chem-

istry and composition of the constituent phases after the single-stage heat-treatment (intercritical

annealing followed by quenching) [126, 37]. This information is then used to predict the mechan-

ical performance of the dual-phase material using a variety of (reduced-order) micromechanical

models referred to as Isotress, Isostrain, Isowork, Secant method and Elastic constraint, and a high

through-put microstructure-based finite element model that utilizes a three-dimensional represen-

tative volume element (RVE) of the material microstructure [64, 37]. All these models, low fidelity

micromechanical models, as well as high fidelity microstructure-based finite element models (re-

ferred to as RVE and assumed to be the ‘ground truth’) are treated as information sources. We

represent the response of each information source as Gaussian process surrogates and fuse them

using standard approaches for the fusion of normally distributed data.

Our approach to implementing the adaptive active subspace method within the multi-fidelity

BO framework is schematically shown in Fig. 4.1. The active subspace method is a technique

to look for the directions in the design space for which a function has the largest variability. By

forming a subspace using those directions, an approximation of the function is obtained on a lower-

dimensional space referred to as the active subspace [49]. Thus, increasing the efficiency of the

design process by more effectively searching for the optimal solution within the high-dimensional

design space [50, 48]. In the context of materials design, the function is the PSP relationship

that is being evaluated, and the basic idea is to find the directions in the design space (T, C, Mn,

and Si) that give the largest variation in the objective value (normalized strain hardening rate) by
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using the available data at every stage of the optimization task. The directions suggesting larger

variation than a user-specified value then form the active subspace. Following this, we employ a

knowledge gradient acquisition function to determine the ‘next best point’ to evaluate within the

active subspace. In order to obtain the true input values for the ‘next best point,’ the chosen point

in the active subspace must be inversely mapped to the true design space. Since there is no unique

solution for this inverse mapping problem, a second BO step is performed to determine the ‘next

best point’ in the true design space. At this stage, a decision about which information source (low

fidelity micromechanical model) to query is also made by temporarily updating each information

source and comparing their results. Finally, the PSP relationship is evaluated at this ‘best point’

using the thermodynamic-based model and the selected micromechanical model to estimate the

objective value.

4.3 Methods

Here, our objective is to maximize the the stress, τ , normalized strain hardening rate, dτ/dϵpl,

i.e. (1/τ) (dτ/dϵpl) at an arbitrary equivalent plastic strain, ϵpl = 0.9%, of a dual-phase material.

The dual-phase material system considered is a ferritic-martensitic steel which is produced by sub-

jecting the material system composed of Fe, C, Mn and Si to a single-stage intercritical annealing

heat treatment followed by rapid quenching. Therefore, our optimization problem aims to find the

values of the intercritical annealing temperature, T, and C, Mn and Si content of the Fe-based alloy

that correspond to the maximum value of the (1/τ) (dτ/dϵpl).

In chapter 2, we addressed the optimization problem discussed above with a multifidelity BO

framework to incorporate the response of different mechanical models, which enabled the collec-

tion of information about the optimum design in a less costly manner in comparison to employing

a finite element model alone. The multifidelity aspect of the approach was used to exploit the

fact that in most materials design problems we have available several different models that can

potentially be used to estimate a quantity of interest. These models are usually based on different

physics-based and numerical assumptions, which leads to models with varying expense in terms

of computational resources required for a query to the model and varying fidelity. The exploitation

64



Figure 4.1: Implementation of adaptive active subspace method within a multifidelity Bayesian
Optimization (BO) framework. The basic idea is to find the active subspace, i.e., the directions
in the material design space – intercritical annealing temperature (T), and alloying elements C,
Mn, and Si – that give the largest variation in the mechanical property (normalized strain harden-
ing rate) by using the available data at every stage of the optimization task. Next, the process -
structure-property (PSP) relationship is mapped to the active subspace, and the first step of the BO
framework is applied to find the ‘next best point’ to evaluate within the active subspace. The ‘next
best point’ is then mapped back to the original design space by implementing a second BO step.
Finally, the PSP relationship is evaluated at this best point using the thermodynamic-based model
and the selected micromechanical model to estimate the objective value. This new data is added to
the framework for the next iteration.

of each possible model, or information source, was achieved via an information fusion process de-

scribed in Refs. [8, 5]. While the overall multifidelity BO approach was shown to be more efficient

than traditional BO approaches, the process can still be computationally impractical when applied

over large design spaces. Here, to address this challenge, we consider the application of adap-

tive dimensionality reduction in the context of our multifidelity BO framework using the active

subspace method, which is described in detail below in Section 4.3.1.

Figure 5.3 illustrates the steps in our proposed adaptive active subspace-based multifidelity

BO framework. The framework starts by reducing the dimensionality of the design space and
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Figure 4.2: Flowchart of the proposed approach. At the start of every iteration, the active subspace
is found and all data are projected onto it. Then, the first step of BO is applied over this active
subspace. The best design candidate is mapped back to the full dimensional design space, resulting
in a solution subspace. The second step of BO then is applied over this subspace to select the best
design and information source to query.

projecting all evaluated designs to a lower dimensional design space (the current active subspace),

and then two steps of Bayesian optimization are executed. The first step of BO is applied over the

active subspace to find a best design candidate to query in the lower dimensional space. Next, the
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obtained design is inverse mapped to the full dimensional design space, which results in a subspace

of potential solutions of the inverse problem. The second step of BO is applied over this subspace

to obtain the next design and information source to query.

In every step of the Bayesian optimization process, we use surrogate models to estimate the

expected objective values of design points that have yet to be evaluated. In a multifidelity setting,

we therefore have multiple surrogate models to construct (one for each information source) and

for use in predicting design points not yet queried. Since every information source contains useful

data regarding the expensive objective function to be optimized, we also employ a fusion technique,

known as model reification [8, 5, 141] to fuse data from all information sources to obtain a fused

predictive model to estimate the expensive objective function. This fused model encompasses our

current state of knowledge during the design process. An update to any of the information sources

results in a fused model update representing the system’s new state of knowledge. During every

iteration, we generate a set of potential design points using a space filling technique, for example,

Latin hypercube sampling, evaluate them from each information source’s surrogate model and

temporarily update the fused model. We then use an acquisition function to quantify the expected

change in the system’s knowledge about the maximum objective value when evaluating that design

point from the information source. The next design point to be evaluated is then selected by

choosing the information source and design point that resulted in the largest expected change in

the system’s knowledge of the maximum objective value.

In the following subsections, we describe the active subspace method in detail and then differ-

ent strategies and implementation options of the framework, which are then used in the presentation

of results in Section 4.4. Other concepts and ingredients of the framework such as microstructure

space prediction, mechanical response prediction, Gaussian process regression, information fusion,

and knowledge gradient are well discussed in chapter 2.

4.3.1 Active Subspace

The active subspace method is a technique to look for the directions in the design space for

which a function has the largest variability. By forming a subspace using those directions, an ap-
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proximation of a function is obtained on a lower dimensional space called the active subspace.

The advantage of constructing a subspace to approximate a function is that learning a subspace of

the original high-dimensional design space is easier [50, 48]. This advantage leads to significant

efficiency gains, speeding up the optimization in design applications and reducing resource usage

[142]. Briefly, the idea is to find the directions in the design space which contain the largest varia-

tion in the objective value. In other words, a new coordinate system is built based on eigen vectors

of the space with eigenvalues defining how strong the variation of the objective value is when

moving toward that direction. The matrix U has n eigen vectors corresponding to the first n largest

eigen vectors and is called the transformation matrix. Other eigen vectors are stored in matrix V

which defines an orthogonal space to the active subspace. Any design point in the original design

space can be transformed to the active subspace using the transformation matrix:

z = UTx (4.1)

The function g represents the original function f in the active subspace as

g(z) = g(UTx) ≈ f(x) (4.2)

Now, we seek to learn the objective function g in the active subspace instead of the original

objective function f on the design space X . A detailed discussion on how to compute the active

subspace associated with an objective function is presented in Ref. [50]

After performing the Bayesian optimization over the active subspace and once a candidate

point, z∗ which is the projection of x∗ in the high-dimensional space, is selected, it needs to be

mapped back to the original design space. This allows the second step of the optimization to

identify the best point and information source to query. The challenge here is that there are an

infinite number of high dimensional vectors that have the same projection to the point in the lower

dimensional space. Therefore, we propose a method to overcome this problem.

Using the definition of orthogonality of eigen vectors of a symmetric matrix, which is the
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covariance matrix calculated to obtain the eigen vectors, any eigen vector in matrix V is orthogonal

to any eigen vector in the transformation matrix U or in general, the active subspace. Consequently,

any linear combination of eigen vectors in matrix V is orthogonal to the active subspace. Thus, by

writing the equation of vectors created by the linear combination of orthogonal eigen vectors to

the active subspace which pass from the design point selected in the first step of optimization, x∗,

we are able to generate an infinite number of design points in the higher dimensional space with

the same projection to the active subspace.

Assuming the original design space has m dimensions and the active subspace has n dimen-

sions, the matrix V will have m− n eigen vectors. An orthogonal vector to the active subspace is

given as
−→
P =

m−n∑
k=1

ak
−→e k, (4.3)

where ak is a random number that for simplicity, is generated from 0 to 1 and−→e k is an eigen vector

in V. Then using the orthogonal vector
−→
P and x∗, the corresponding design point in the high-

dimensional space to z∗, the equation of the linear subspace passing through x∗ and orthogonal to

the active subspace is given by

x(1)− x∗(1)

P(1)
=

x(2)− x∗(2)

P(2)
= . . . =

x(m)− x∗(m)

P(m)
= t (4.4)

where a design vector in m-dimensional design space, x = [x(1), x(2), . . . , x(m)]T, is found by

solving m sub-equations for a given t. All design vectors obtained in this step satisfy the relation

z∗ = UTx. Although all generated design vectors satisfy the relations mathematically, the con-

straint here is to have all m design variables in the bounds defined by the designer. Therefore,

before generating random t values, its range of variability should be specified. First, by replacing

the lower bound for every design variable in sub-equations in equation (4.4), m different values

are obtained for t

tlow,i =
lb(i)− x∗(i)

P(i)
, 1 ≤ i ≤ m (4.5)
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and the same calculations are done for the design variable upper bounds

tup,i =
ub(i)− x∗(i)

P(i)
, 1 ≤ i ≤ m (4.6)

Next, to have all design variables within the bounds, the lower bound for t from 2m values

found is the closest value to zero between all negative t values and the upper bound is the closest

value to zero between all positive t values. This way, it is guaranteed that all the design variables

will remain in their bounds when being mapped back to the m-dimensional design space for any

random t generated. Note that since a linear subspace can be expanded in any direction starting

from x∗, it is ensured that t can take both negative and positive values. Finally, a set of samples in

the original design space is generated, Xf , by mapping back the design point z∗. The acquisition

function is then employed for the second time to find the best design to be evaluated next.

4.3.2 Strategies and Implementation

There are different strategies available for combining the concept of Bayesian optimization of

multifidelity systems and the active subspace method. We consider three such strategies here.

The first approach is to build the active subspace upon the ground truth response surface (GT

active subspace). The intention behind this decision is to focus on searching the subspace directly

related to the design space of the highest fidelity model. At the beginning of every iteration, the

ground truth active subspace is formed and all data from other information sources are projected

to this subspace. This results in new models defined on a lower dimensional design space. The

Bayesian optimization framework is then exploited to search this lower dimensional design space

looking for the best potential design to be evaluated to provide the most information about the

optimum design.

The point that maximizes the acquisition function value is then selected as the next-best point to

evaluate. This point is then mapped back to the original high-dimensional space. Since there are an

infinite number of possible solutions when mapping from a low-dimensional to high-dimensional

design space, the Bayesian optimization approach is repeated for this solution set. From this

70



optimization approach, the next-best design point and an information source are chosen to be

queried.

The second approach is to transform all information sources to the active subspace of the tem-

porary updated information source (TUIS active subspace). In this context, instead of transforming

to the active subspace at the beginning of every iteration, transformations are done every time an

information source is temporarily updated. Therefore, different active subspaces corresponding to

each information source are taken into account and the system might find an information source

suggesting larger variation in the objective value and by extension the fused model. Thus, it is

likely that a more informative point may be identified. By transforming all active subspaces asso-

ciated with each information source together in turn, the performance of other information sources

in different active subspaces is investigated as well. This results in investigating all information

sources and fused models in different active subspaces, resulting in a more informative decision

making process.

The last approach is to let every information source operate in its own active subspace inde-

pendently (Independent active subspaces). In this case, when a design point is to be evaluated,

it should be transformed to the corresponding active subspace first. Again, all the processes ex-

plained earlier remain the same. This approach offers a cheaper framework in comparison to the

second approach since the number of transformations and modeling time will be decreased.

4.4 Results and Discussions

We implement an adaptive active subspace method to efficiently handle the large dimension-

ality of the design space of a typical PSP-based material design problem within our recently de-

veloped closed-loop multifidelity BO framework. Here, we demonstrate the obtained results from

utilizing three approaches discussed earlier to implement the adaptive active subspace method

within the multifidelity BO framework. For comparison purposes, the multifidelity BO framework

developed in chapter 2 that does not take advantage of the active subspace method (referred here

as the standard approach or Std) is also considered.

Fig. 4.3 shows how quickly each method attained progressively higher objective values as a
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function of the number of iterations. All models are initialized with 10 random points in the design

space. The results are the average of 5 replicas with different initializations, and the filled region

shows the 95% confidence intervals. At the end of every iteration, the system chooses a point and

an information source to query. Then, after every 10 iterations, the best estimation of the optimal

solution suggested by the fused model is evaluated from the ground truth model.

There are some important conclusions that can be drawn from these results. First, the ac-

tive subspace approach improves the performance of the optimization significantly as each of

these methods leads to faster improvement in the objective and reaches the optimal design region

more quickly than traditional multi-information source BO. This is because the active subspace

approaches search more effectively over lower dimensional regions in the design space by adap-

tively locating the regions of largest variation (i.e., the most active regions) in the objective value.

Therefore, greater jumps in the objective value are observed when the active subspace method is

implemented. Next, using the TUIS active subspace method results in slower improvement rates

as compared with the GT and Ind approaches. This is related to the need to construct more active

subspaces in this approach and force possible deleterious connections between information sources

in these temporary subspaces. Employing the independent active subspaces, or Ind approach for

each information source has similar performance to using the Ground Truth active subspace, or

GT approach. In both approaches we see superior improvement in the objective as compared with

the traditional approach and the TUIS approach. Finally, at iteration 200, all methods have arrived

at the optimum design region and there is no advantage of using a particular strategy beyond this

point. This is to be expected as each method has acquired enough information at this point in its

respective approach to accurately approximate the ground truth objective. Overall, superior im-

provement rates of the active subspace approaches are associated with the ability of these methods

to avoid costly exploration in less important regions of the high-dimensional design space in the

early stages of the optimization process.

Although comparing the progression toward the optimum design region based on the number

of function evaluations gives a sense of the effectiveness of queries made by employing the active
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Figure 4.3: Estimated optimum objective value as a function of (a) iteration and (b) time. (a)
The active subspace methods using Ground Truth (GT), Temporary Updated Information Source
(TUIS), and Independent (Ind) active subspaces have been shown to outperform the Standard (Std)
approach without applying the active subspace method. (b) In terms of computational cost, the
active subspace approaches are again superior. The computational cost accounts for modeling,
active subspace and knowledge gradient calculations in addition to the function evaluations. Using
the TUIS active subspace is slightly more expensive due to the larger number of active subspace
calculations and transformations required. The results are obtained from 5 different initializations
and the mean and 95% confidence intervals are shown.

subspace method, a more thoughtful comparison is to compare the time required for each approach

to reach a target value. In this case, we consider the cost of modeling, including updating and

evaluating the Gaussian processes, calculation of the active subspaces and knowledge gradient

in addition to the function evaluations done during the optimization process. In Fig. 4.3(b), we

have illustrated the objective value attained and time required for each approach. These results

suggests that using the active subspace method, in particular the GT active subspace or Ind active

subspace approaches, results in higher objective values in less computational time in comparison

to the standard multifidelity or multi-information source optimization. On the other hand, using the

TUIS active subspace approach shows little to no improvement, which is related to the number of

active subspace computations and transformations made in a single iteration. While these results

show that the conventional multifidelity approach performs as well as the active subspace approach
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after a certain amount of time, the active subspace approaches provide significant improvement in

the results at early stages of the process. In addition to this, the active subspace approach also

shows lower variability in the results—this last aspect is very important as low uncertainty is a

desired attribute of any design framework.

We note here that the uncertainty (or variance) in the results stem from several sources. First of

all, we have used different training sets for initialization of the models, so each iteration starts from

different initial conditions. Second, we have modeled the information sources using a stochastic

process, namely Gaussian process models. These probabilistic models predict the objective value

with normally distributed uncertainty in the prediction. In addition, at every stage of the optimiza-

tion, we generate random samples using Latin hypercube sampling. Therefore, for each different

run, there will be different samples to evaluate as candidate design points. Finally, the ground truth

function in this particular design application, RVE, is noisy and can provide different objective val-

ues for the same design input [37]. The confidence intervals in Fig. 4.3 show the total uncertainty

since differentiating between each source of uncertainty was not practical.

We are also interested in knowing which are the active subspaces that are preferred at every

stage of the design process and what design variables are contributing most in the active subspace

formation. The different algorithms used in the current work lead to diverse active subspace con-

figurations and subsequently selections of information sources. In Fig. 4.4, the cumulative sum of

the times every active subspace is chosen has been plotted. The labels show the primary design

variables that the active subspace is composed of. As such, the labels indicate the dimensionality

of an active subspace and which design variables will be searched preferentially. In other words,

all design variables participate and are searched in a particular active subspace, but to different

degrees. In Fig. 4.4 only the main participants of each active subspace are shown and are included

in the labels. Note that, the ground truth is queried every 10th iteration and the corresponding

active subspace will be updated accordingly. Figure 4.4(a) shows that when using the GT active

subspace, the system initially starts searching the carbon space, then it searches the magnesium

space, and finally, the temperature space.
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Figure 4.4: Number of times a design variable has contributed to form the active subspace. (a) us-
ing Ground Truth (GT) active subspace (b) using Temporary Updated Information Source (TUIS)
active subspace (c) using Independent (Ind) active subspaces. While Si is not showing any contri-
bution in forming the ground truth active subspace, in the other cases, a variety of design variable
combinations are participating to build the active subspace.

The same results when using the TUIS and Independent active subspace approaches are shown

in Fig. 4.4(b) and 4.4(c). The point here is that the one-dimensional active subspaces are preferred

over the higher dimensional active subspaces. This shows that the system finds more value in

searching active subspaces mainly composed of one important design variable at a time, and, once

the information from the single design variables is exhausted, the system starts searching subspaces

with main contributions from a combination of design variables. However, these active subspaces

are still smaller than the original design space.

While Fig. 4.4 provides useful information about important design variables at every iteration
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in different case studies, it is beneficial to look at how much other variables are participating in

the active subspace formation. As mentioned earlier, active subspaces are built upon the most

effective directions in the design space that considers the change in all design variables but in

different degrees. These directions are the eigen vectors of the covariance matrix defined as

C ≈ 1

M

M∑
i=1

∇xf(xi)∇xf(xi)
T (4.7)

assuming M samples are evaluated from the function f previously and the gradient is calcu-

lated numerically using a finite difference method. This is done since the function is a ‘black-box’

and there is no closed-form expression for the gradient. Once the eigen vectors and the associated

eigenvalues are found, a single vector is formed using the linear combination of all eigen vectors,

each multiplied by their eigenvalue to emphasize the strength of each variable toward a particular

direction. At every iteration, we will have a 4-dimensional vector showing the effective partici-

pation of every variable based on a scalar value. Since we are not able to show a 4-dimensional

space, a simple mathematical projection of the 4-dimensional space to 2-dimensional space was

used. This projection allows us to graphically show the distribution of active subspaces within the

design space. These results are shown in Figure 4.5.

Every point on these projection plots corresponds to a point in the 4-dimensional space. The

projections allow us to show the locations of each of the pure 1D, 2D and 3D subspaces (labeled

on the figure). The actual subspaces that are used in the calculations for the three approaches are

plotted in relation to these. The labels of each of these subspaces is determined by the magnitude

of the eigenvalues, where an eigenvalue greater than 0.5 assigns that input dimension to the label.

As illustrated in Fig. 4.5, this approach to labeling allows the points to deviate quite significantly

from the pure subspaces, however, the clusters are still visible. We can also quite easily observe

that all approaches mostly use 1D and 2D subspaces in the calculations. This is a promising result

since it shows that the active subspace approach is operating as expected. We also observe that

very few unique subspaces are used in the GT-subspace approach which is likely a result of only

using the active subspace of the ground truth model. Both the Individual and TUIS active subspace
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Figure 4.5: Distribution of active subspaces within the design space. A 2-D projection over the
4-D design space (a) using Ground Truth (GT) active subspace (b) using Temporary Updated
Information Source (TUIS) active subspace (c) using Independent (Ind) active subspaces.

approaches show a much broader selection of active-subspaces, with many 2D subspaces also

being utilized. As a final note, these differences in the active-subspaces used in the optimization

does not appear to significantly affect the optimization process, as shown in the results above. The

importance of this result is that the use of an active subspace approach is not dependent on the

active-subspaces that are used in the optimization.

The contribution of the information sources in the optimization process and the number of

queries made from each information source can show which lower fidelity models are providing

more valuable knowledge about the optimum design in different case studies. Additionally, since

every information source can have a different active subspace, that changes over time as more data

is added to the model, the selection of the information source to query is directly affecting results

in Fig. 4.5. It is thus interesting to know about the participation of the information sources as well.
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Figure 4.6 shows the cumulative number of times an information source is queried based on the

iterations. At every iteration, only a single information source is queried.

Figure 4.6: Number of queries from different information sources and the ground truth (RVE).
(a) using Ground Truth (GT) active subspace (b) using Temporary Updated Information Source
(TUIS) active subspace (c) using Independent (Ind) active subspaces. the isostress and elastic con-
straint models highly contributing to provide valuable information regarding the optimum design
in all approaches.

Figure 4.6 suggests that for all cases, the isostress and elastic constraint information sources

have been selected more than any other information source. It shows that these two models have a

smaller discrepancy with the ground truth model around the optimum design point in comparison

to the other information sources. In this chapter, the focus is on how using active subspace ap-

proach results in a more efficient and faster search for the optimal designs in the initial iterations.

78



Therefore, at every iteration, we let the system query the best information source providing the

highest information value to the system about the optimal design regardless of how much such

queries costs.
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5. MULTI-OBJECTIVE MULTI-INFORMATION SOURCE CONSTRAINED BAYESIAN

OPTIMIZATION*

5.1 Overview

Bayesian Optimization (BO) has emerged as a powerful framework to efficiently explore and

exploit materials design spaces. To date, most BO approaches to materials design have focused on

the materials discovery problem as if it were a single expensive-to-query ‘black box’ in which the

target is to optimize a single objective (i.e., material property or performance metric). Also, such

approaches tend to be constraint agnostic. Here, we present a novel multi-information BO frame-

work capable of actively learning materials design as a multiple objectives and constraints problem.

We demonstrate this framework by optimally exploring a Refractory Multi-Principal-Element Al-

loy (MPEA) space, here specifically, the system Mo-Nb-Ti-V-W. The MPEAs are explored to op-

timize two density-functional theory (DFT) derived ductility indicators (Pugh’s Ratio and Cauchy

pressure) while learning design constraints relevant to the manufacturing of high-temperature gas-

turbine components. Alloys in the BO Pareto-front are analyzed using DFT to gain an insight

into fundamental atomic and electronic underpinning for their superior performance, as evaluated

within this framework.

5.2 Introduction

Improved gas-turbine engine (GTE) technology requires the continued development of high-

temperature materials with higher strength and creep resistance at operational temperatures. The

current materials of choice for use in such extreme operating conditions are Ni-based superal-

loys [144]. As gas-turbine efficiency can be improved by increasing the inlet temperature to

the engine [145], there is a motivation to operate gas turbine engines at increasingly elevated

temperatures. Currently, Ni-based superalloys operate at temperatures approaching their melting

*Reprinted with permission from "Multi-Objective Materials Bayesian Optimization with Active Learning of De-
sign Constraints: Design of Ductile Refractory Multi-Principal-Element Alloys" by D. Khatamsaz, B. Vela, P. Singh,
D. Johnson, D. Allaire, and R. Arróyave., 2022. Acta Materialia, Copyright 2022 Acta Materialia Inc. Published by
Elsevier Ltd.[143]
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temperatures(∼ 0.9 Tm) [146]. Novel gas turbine technologies require metallic materials that can

perform at temperatures exceeding 1150°C, beyond which nickel-based superalloys are unable to

perform due to inherent limitations from their melting temperatures [144]. While sophisticated

cooling systems, such as cooling channels [147], thermal barrier coatings [148], and engineering

of thermal conductivity [148], have been employed in the design of modern jet turbine blades, Ni-

based superalloys are quickly approaching their operational limit, spurring exploration for novel,

ultrahigh-temperature materials.

Recently, refractory multi-principal-element alloys (MPEAs) have garnered much attention as

an emerging class of high-temperature materials. MPEAs consist of several alloying components

(typically 4 or more) with concentrations ranging from 5 to 35 at.%, whereas conventional alloys

rely on a single predominant constituent. Refractory MPEAs generally form body-centered-cubic

(bcc) solid solutions [149] that have been shown to possess high-temperature properties compa-

rable to those of the current Ni-based superalloys [150]. The compositional complexity of these

refractory MPEAs creates opportunities to design alloys with unique properties, such as high-

temperature yield strength [150], low density [151], creep resistance [152], and oxidation resis-

tance [153]. However, while refractory MPEAs may satisfy performance constraints at elevated

temperatures, due to the ductile-to-brittle-transition temperature of these alloys, many are brittle at

room temperature and thus not machinable. The extreme difficultly associated with processing re-

fractory alloys has historically limited their development [154]. In fact, room temperature ductility

is a significant bottleneck in the development of refractory MPEAs [155]. For this reason we pro-

posed a novel framework capable of multi-objective Bayesian optimization and active learning of

multiple constraint boundaries in order to optimize for ductility in refractory MPEAs while under

GTE relevant design constraints.

With the advent of Integrated Computational Materials Engineering (ICME), it has become

possible solve the inverse problem and design alloys with tailored properties [52]. ICME relies on

simulation in tandem with experiments to build linkages along the process-structure-property per-

formance (PSPP) chain. Performance constraints are often defined in terms of materials properties.
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In turn, these materials properties are dictated by the structure of the material. Finally, the struc-

ture of the material is determined by the processing conditions used to realize the material. When

inverted, these linkages can guide the search for alloys that meet certain performance constraints.

Thus within an ICME framework, refractory MPEAs can be designed, in principle, with ductility

in mind.

Other works where Bayesian optimization is used within the ICME paradigm include exam-

ples of mutli-objective optimization, optimization under unknown constraints, and active learning

to reduce the design space. Regarding multi-objective optimization, Solomou et al. [62] demon-

strated tri-objective Bayesian optimization for the design of precipitation hardened shape memory

alloys, simultaneously optimizing for austenitic finish temperature, specific thermal hysteresis (de-

fined by the difference of austenitic finish temperature and martensitic start temperature), and the

maximum transformation strain. Regarding Bayesian optimization under constraints, Griffiths et

al. [156] were able to optimize drug-like molecules while under the constraint that said molecules

must be valid molecular structures. The Bayesian optimization was performed over the latent space

of a variational autoencoder that encoded the molecular structure of candidate designs. The authors

used Bayesian Neural Network (BNN) classifiers that would output the probability of a point in

the latent space being mapped to a valid molecular structure or not. Optimization was then carried

out in feasible regions of the design space. Regarding active learning to reduce the design space,

using the e-PAL framework, Jablonka et al. [157] were able to use active learning to efficiently

estimate the Pareto-front during the multi-objective design of polymers for dispersant applications.

The polymers were designed for optimal adsorption free energy, dimer free energy barrier, and ra-

dius of gyration. The polymer design space was iteratively reduced as e-PAL classified points as

either likely dominated or likely Pareto optimal, actively learning the Pareto-front. The framework

converges when all remaining points are classified as dominated (disregarded) or Pareto optimal.

In this chapter, we present a novel framework to perform multi-objective Bayesian optimization

under unknown constraints. The framework is capable of actively learning the constraint bound-

aries as well as iteratively reducing the design space by discerning between feasible and infeasible
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design regions. We seek to computationally link structure to property in refractory MPEAs by op-

timizing well-known ductility indicators, i.e., Pugh’s ratio and Cauchy’s pressure. The framework

is benchmarked by designing ductile refractory MPEAs while under two constraints (density and

solidus temperature) relevant to gas turbine application as a case study. Furthermore, a detailed

DFT calculations is done on predicted MPEAs to assess underlying features driving ductility and

its origin. While this work is limited to ductility, there exists opportunity to account for more

objectives and constraints.

5.2.1 Design Objectives and Constraints

A known ductility indicator in refractory MPEA design is the valence electron concentration

(VEC), as shown to be true theoretically [158] and experimentally [155]. A low VEC will promote

shear failure and suppress cleavage failure in bcc-based alloys due to shear instability introduced

by decreasing VEC [158]. It is a common MPEA design rule that that refractory alloys with

low VECs are more ductile than those with higher VECs. For example, driven by the fact that

equimolar HfNbTiZr and HfNbTaTiZr alloys are known to be ductile, Sheikh et al.[155] minimized

the VEC in the HfNbTaTiZr alloy space under the constraint that the alloy be single-phase bcc. This

constraint was encoded by the enthalpy of mixing and the atomic size mismatch, which are known

indicators of the stability of the bcc solid-solution phase. The authors identified and synthesized

Hf0.5Nb0.5Ta0.5Ti1.5Zr which had an elongation at fracture of 18.8%. While the VEC is useful in

identifying ductile alloys in a HTP manner, it does not explicitly account for elasticity in the crystal

structure of the alloy. This points toward the inability of such metrics to find the most ductile alloys,

therefore, indicators that capture the crystalline elasticity of an alloy are needed.

The ductility/brittleness of MPEAs can also be encoded by metrics derived from the elastic

properties of alloys, such as the Pugh’s ratio and the Cauchy pressure. These two indicators of

ductility have been used extensively in the design of ductile MPEAs [159, 160, 161]. For pure

crystalline metals, the Pugh’s ratio is defined as the ratio of the bulk modulus over the shear mod-

ulus (B/G). This ratio encodes the competition between resistance to plastic deformation (G) and

the fracture strength (B); Thus B/G captures the extent of the plastic range without fracture [162].
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Pettifor [163] proposed Cauchy pressure as an indicator of intrinsic ductility/brittleness, which is

the difference of two elastic constants C12 and C44. A positive Cauchy pressure indicates non-

directional metallic bonds resulting in intrinsic ductility of the crystal, whereas a negative Cauchy

pressure corresponds to directional bonds and results in an intrinsically brittle crystal structure.

Both indicators can be estimated with high-fidelity DFT frameworks at great computational cost.

However, as the MPEA composition space is combinatorically vast, sufficient exploration of the

space is intractable using conventional (computational or experimental) approaches.

Furthermore, while a given alloy may be ductile, its other properties may not be appropriate for

GTE applications. For example, a ductile alloy may be too dense (ρ < 11 g/cc) for use in aviation.

Likewise, an alloy that is optimized for ductility may have too low of a solidus temperature (Ts <

2000°C) for use inside the hot-zones of GTEs. While we do not wish to optimize for these two

properties, we still must classify alloys based on whether they meet said constraints. Therefore, to

explore effectively this vast design space for ductile alloys while under design constraints related

to GTE application, and under resource constraints due to the high cost of the DFT truth-model,

intelligent optimization schemes capable of balancing resources between optimization and classi-

fication are needed. This classification step essentially aims to discover the feasible alloy space

amenable for further optimization.

5.2.2 Multi-Information Source, Constraint-Aware Bayesian Optimization

Limitations on computational resources is a bottleneck in solving optimization problems in

engineering applications. Many of engineering systems are in the form of black-box objective

functions that require numerical approaches to search the input space for designs corresponding to

optimum values of the quantities of interest. Among the proposed approaches for such design ap-

plications are Bayesian optimization (BO) techniques. Bayesian techniques offer a more efficient

optimization by employing a heuristic-based search and, more importantly, the ability to update

the system’s state of knowledge continuously as new observations are introduced to the system.

Furthermore, in many instances in materials engineering, several models are available that

represent the same system of interest. These models are based on different assumptions and/or
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simplifications, and thus differ in fidelity and cost of evaluation. These models are treated as

sources that provide useful information about a quantity of interest and are thus called information

sources. In Refs. [37, 118, 141, 6, 33], it has been shown that employing multi-information sources

in multi-fidelity BO frameworks offers a more robust and efficient approach to implement in design

applications in comparison to single model optimization techniques.

In multi-information source BO, the assumption is that every source contains useful informa-

tion regarding optimum design; thus, accurately fusing these sources results in a fused model that

can mimic the response of the highest-fidelity model, known as the ground truth, enabling the

search of the design space for the optimum design at no considerable computational cost. As later

developments of the works [37, 118, 141, 6, 33], in Ref. [84], a novel framework is proposed

that is capable of optimizing multiple objectives in multi-fidelity settings. In many engineering

applications, there are several quantities of interest to be optimized simultaneously that urges the

need for multi-objective optimization techniques. In Ref. [84], it has been shown that single fi-

delity approaches either using a BO framework or other techniques such as ParEGO and genetic

algorithms are outperformed computationally when multiple sources of information contribute to

provide information about the quantities of interest.

Regarding classification (or identification of a materials feasible space), a challenge in con-

strained optimization problems is correctly recognizing the feasible regions and their boundaries.

Although sometimes checking the feasibility of a design input is done at no considerable costs, for

example, by simply inserting the design variables into a analytical equation, there exist cases that

constraints are defined by computationally expensive models which makes it impractical to verify

the feasibility of every single design by querying their respective models. Therefore, constructing

cheaper machine learning models to represent the constraints can reduce the overall cost of solving

a constrained optimization problem.

A natural choice is to use surrogate models and information-theoretic approaches to learn the

constraint models and accurately estimate their value at different locations in the input space [164].

However, it might be unnecessary to model the constraint over the entire input space as the bound-
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ary separating the feasible and infeasible regions is what is truly of importance. Thus, in this

study, we propose a Bayesian classification (BC) framework that uses classifiers and an active

learning technique to effectively learn the constraint boundaries and recognize the feasible regions

via checking the class memberships of any locations in the input space. Similar to multi-fidelity

BO frameworks, in classification problems, there may exist several information sources that model

the same constraint. Thus, we introduce our classification framework in form of a multi-fidelity

BC configuration. Then, by coupling this multi-fidelity BC framework with the multi-objective

multi-fidelity Bayesian framework introduced in [84], we create a design framework that actively

learns the constraint boundaries and guides the search toward the optimum design by recognizing

the feasible regions.

Here, we make further developments to the multi-objective, multi-fidelity BO framework in-

troduced in Ref. [84] and propose a novel approach to solve constrained-design problems. Specif-

ically, we deploy this framework in the Mo-Nb-Ti-V-W system, an exemplary MPEA system. By

balancing the need to learn the constraint boundaries more accurately with improving the system’s

knowledge about the optimum values of quantities of interest, our proposed framework is able to

make decisions about the best action to take at every stage of the process.

5.3 Methods

5.3.1 Gaussian Process Regression

In the context of BO, surrogate models are employed to model the behavior of objective func-

tions and to represent a cheaper source to estimate the objective values associated to different de-

sign inputs and then calculate the expected gains regarding a potential design evaluation at much

lower computational costs without the need to call the objective function directly.

We have implemented Gaussian process regression (GPR) to model objective functions [51].

Gaussian process models are powerful tools for probabilistic modeling purposes. They are easy

to manipulate and simple to update as new observations are made available. In multi-fidelity BO

frameworks, there are several sources to estimate the same quantity of interest at different fidelity
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levels, each providing key piece of information about the ground-truth quantity of interest. In

presence of multi-information sources, several Gaussian processes are constructed to represent the

response surface of these information sources.

Following Refs. [33] and [6], we assume we have available some set of information sources,

fi(x), where i ∈ {1, 2, . . . , S}, that can be used to estimate the quantity of interest, f(x), at

design point x. These surrogates are indicated by fGP,i(x). Assuming there are Ni evaluations of

information source i denoted by {XNi
,yNi
}, where XNi

= (x1,i, . . . ,xNi,i) represents the Ni input

samples to information source i and yNi
= (fi(x1,i), . . . , fi(xNi,i)) represents the corresponding

outputs from information source i, then the posterior distribution of information source i at design

point x is given as

fGP,i(x) | XNi
,yNi

∼ N
(
µi(x), σ

2
GP,i(x)

)
(5.1)

where
µi(x) = Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]

−1yNi

σ2
GP,i(x) = ki(x,x)−Ki(XNi

,x)T

[Ki(XNi
,XNi

) + σ2
n,iI]

−1Ki(XNi
,x)

(5.2)

where ki is a real-valued kernel function over the input space, Ki(XNi
,XNi

) is the Ni × Ni ma-

trix whose m,n entry is ki(xm,i,xn,i), and Ki(XNi
,x) is the Ni × 1 vector whose mth entry is

ki(xm,i,x) for information source i. We have also included the term σ2
n,i, which is used to model

observation error for information sources based on experiments. Without loss of generality, we

employ the squared exponential covariance function as the kernel function specified as

ki(x,x
′) = σ2

s exp

(
−

d∑
h=1

(xh − x′
h)

2

2l2h

)
(5.3)

where d is the dimensionality of the input space, σ2
s is the signal variance, and lh, where h =

1, 2, . . . , d, is the characteristic length-scale that indicates the correlation strength between the

points within the dimension h. The parameters σ2
s and lh associated with each information source

can be estimated by maximizing the log marginal likelihood.
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When using multiple information sources to estimate a ground truth quantity of interest, it is

important to quantify the uncertainty in the response of the information sources with respect to

the ground truth, which is defined as the discrepancy term to compensate for the lower fidelity

estimation of the ground truth quantity of interest. We quantify the total variance that captures

both the variance associated with the Gaussian process representation and the quantified variance

associated with the fidelity of the information source over the input space, as

σ2
i (x) = σ2

GP,i(x) + σ2
f,i(x) (5.4)

where σ2
f,i(x) is the variance related to the fidelity of information source i that can be estimated

from, for example, expert opinion or available real-world data.

5.3.2 Gaussian Process Classification

Similar to optimization problems, Bayes’ theorem can be employed to calculate the joint prob-

ability p(y,x), where y is the class label, in classification problems:

p(y|x) = p(y)p(x|y)∑C
c=1 p(Cc)p(x|Cc)

(5.5)

A challenge of Gaussian process classification (GPC) that is not present in Gaussian process re-

gression is that of non-Gaussian likelihoods in GPC. To overcome this, following Ref. [51], we

use a discriminative GPC approach that seeks to model p(y|x) directly, which avoids the need to

specify prior distributions over p(y) and the specification of class-conditional densities, p(x|Cc).

Discriminative GPCs are probabilistic classifiers that predict the probability of belonging to a class

by placing a Gaussian process prior over a latent function f(X) and computing the posterior dis-

tribution at a desired location x [51, 165]. Here, we are not interested in the values of the latent

function, but it is used to conveniently formulate the classifier. This latent function is responsible

to connect the input to the output, where the output is class membership probability. Consequently,

we need the latent function posterior distribution respectively. The Laplace approximation algo-

88



rithm is employed that utilizes Gaussian approximation to the posterior of the latent variables.

The approximated posterior is then used to obtain the class membership distribution, where Monte

Carlo sampling is done to estimate the class membership probability. Similar to the construc-

tion of Gaussian process regressions, assuming we have available some set of information sources

i ∈ {1, 2, . . . , S} with Ni labeled samples, the latent function fi(x) has a multivariate normal

distribution defined by

µi(x) = Ki(XNi
,x)T [Ki(XNi

,XNi
)]−1f(X)

Σi(x) = ki(x,x)−Ki(XNi
,x)T

[Ki(XNi
,XNi

)]−1Ki(XNi
,x)

(5.6)

The class label predictions are obtained by sampling from the calculated posterior distribution

and passing the samples through a sigmoid function σ, for example, the logistic sigmoid, to ensure

the output is bounded to [0,1]. Then the mean of the obtained distribution is the class membership

probabilities.

In the context of BC and learning purposes, the uncertainty associated to the predictions are es-

sential in calculation of an expected utility value. Note that this is the distinguishing characteristic

of the Gaussian process classification as a probabilistic model in comparison to other classification

techniques that makes GPC well-suited for probabilistic frameworks and learning purposes. A

more detailed discussion is presented in [51].

5.3.3 Information Fusion of Multiple Sources

Assuming that every information source participating in the optimization process contains

some useful information regarding the ground truth quantity of interest, the goal is to accurately

fuse the information provided by these information sources to approximate the quantity of interest

as accurately as possible at much lower costs in comparison to evaluating the ground truth objective

function [5, 6, 7, 8].

Several approaches exist for fusing multiple sources of information, such as Bayesian model-
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ing averaging [9, 10, 11, 12, 13, 14], the use of adjustment factors [15, 16, 17, 18], covariance

intersection methods [19], and fusion under known correlation [20, 21, 22].

Our assumption is that every information source contains useful information regarding the

ground truth quantity of interest and as more information sources are incorporated into a fusion

process, the expectation is to have the variance of the quantity of interest estimates decreased.

This is not necessarily the case for all of the aforementioned fusion techniques with the exception

of fusion under known correlation. Unlike most traditional multi-fidelity approaches [93, 91, 166,

167, 168, 169, 170, 171], in our approach, we do not assume a hierarchy of information sources and

our goal is optimization with respect to ground truth and not optimization with the highest fidelity

source. Therefore, determining correlations prior to fusion is essentially important. To estimate the

correlation coefficients between information sources, we use the reification process introduced in

Refs. [5, 8]. In reification process, a pair of information sources are selected each time and they are

reified (’made real’) in turn, which means one information source is assumed to be the true model

and the deviation of the second information source with respect to the reified model is calculated.

These calculated deviations are used to obtain the correlation between the mean squared errors

of the information sources. The covariance matrix is formed after the reification is done over

each pair of information sources. Readers are encouraged to check Refs. [5, 6, 7, 8] for detailed

discussion on how the correlation estimation is performed. In case of known correlations between

the discrepancies of information sources, the fused mean and variance at a particular design point

x are defined as [22]

E[f̂(x)] =
eTΣ̃(x)−1µ(x)

eTΣ̃(x)−1e
(5.7)

Var
(
f̂(x)

)
=

1

eTΣ̃(x)−1e
(5.8)

where e = [1, . . . , 1]T is a S dimensional column vector of ones, µ(x) = [µ1(x), . . . , µS(x)]
T given

S models, and Σ̃(x)−1 is the inverse of the covariance matrix between the information sources. A

more detailed discussion on this fusion technique and some examples of its implementation are

presented in Refs. [77, 172, 5, 141, 64, 50, 33, 37].
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5.3.4 Multi-Objective Optimization

A multi-objective optimization problem can be defined as

minimize {f1(x), ..., fn(x)}, x ∈ X (5.9)

where f1(x), . . . , fn(x) are the objectives and X is the feasible design space. In multi-objective

optimization problems, it is usually the case that there is no single solution that optimizes all

objectives simultaneously. Thus, the solution to such design problems is a set of non-dominated

designs that are not superior to each other, forming the Pareto-front in the objective space. In this

case, optimal solutions, y, to a multi-objective optimization problem with n objectives are denoted

as y ≺ y′, and are defined by

{y : y = (y1, y2, . . . , yn), yi ≤ y′i ∀ i ∈ {1, 2, . . . , n}, ∃ j ∈ {1, 2, . . . , n} : yj < y′j} (5.10)

where y′ = (y′1, y
′
2, . . . , y

′
n) denotes any possible objective output. The set of y ∈ Y , where Y is

the objective space, is the Pareto-front of the problem.

There are several techniques to employ to estimate the Pareto-front in multi-objective optimiza-

tion problems such as weighted sum approach [23], the adaptive weighted sum approach [24], nor-

mal boundary intersection methods [25], hypervolume indicator methods [26, 27, 28, 29, 30, 31,

32], and others. In the context of BO, and working with expected improvement- based algorithms,

the hypervolume indicator approaches are well-suited as they allow for introducing a single random

variable, combining multiple random variables (here, objective values), to consider the uncertainty

of all other variables as a whole. Thus, in a BO framework, a hypervolume indicator can be the

target variable to be optimized. The idea is to define the volume between the estimated Pareto-front

and a fixed point in the objective space as the hypervolume and relate the expected improvement

associated to each objective value to the total hypervolume and calculate the expected hypervol-

ume improvement. We follow the work proposed in Refs. [84, 105] for BO of multi-objective
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functions in presence of multiple information sources. An in-depth discussion on the calculation

of the expected hypervolume improvement can be found in the mentioned references and [92].

5.3.5 Active Learning in Bayesian Classification

Using GPCs to label the samples, there are uncertainty associated to the label predictions that

also shows how uncertain is the classifier about the label at a particular location. The class mem-

bership Y is a random variable indicated by a distribution P . In general, we look for a measure

that shows the degree of uncertainty based on the given distribution for class memberships. A

convenient option is using discrete entropy to calculate the uncertainty in the label predictions:

H(Y ) = −
k∑

i=1

pi log(pi) (5.11)

where there are k classes and pi is the probability of belonging to class i. Higher values of entropy

shows the larger uncertainty of the classifier about the label of a sample. Thus, we look forward to

query samples and update the classifiers at locations where the classifier is highly uncertain about

the true label.

An issue when using entropy as a measure of uncertainty is that in the case of multi-class clas-

sification, it is possible that the classifier is only uncertain about the memberships in, for example,

two classes and is highly certain about the other class memberships that may be unimportant. This

is the case when the entropy is still high, and it does not provide any information about the con-

fidence on some class memberships. To address this issue, following Ref. [173], we can take the

"Best versus second Best" approach. This technique only considers the top two uncertain class

memberships and measures the uncertainty based on the difference between the two probabilities.

For our constrained BO, we only perform binary classification since we are using classifiers

to separate the feasible and unfeasible regions. In this case, our problem reduces to finding the

samples closest to the classifier’s predicted constraint boundary. In other words, the samples with

the smallest difference between class membership probabilities are chosen to be queried from the

constraints to update the classifier and learn about the true constraint boundary.
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5.3.6 Truth model – Density Functional Theory

The truth model in the multi-objective optimization side framework was queried through the

DFT-based KKR (Korringa-Kohn-Rostoker Green’s function) method, in which the coherent-potential

approximation (CPA) accounts properly for direct configurational average over chemical disor-

der [174], concomitantly with the charge self-consistency required within the standard DFT. One of

the objectives, i.e., bulk moduli, used by the framework were calculated by employing a gradient-

corrected exchange-correlation functional (PBE) [175]. Additionally, the Warren-Cowley short-

range order (SRO, given as αµν(k;T )) of the designed compositions were calculated as imple-

mented within DFT-KKR-CPA linear-response theory to analyze the ordering tendencies found in

the final compositions [176, 177, 178].

blackThe structural optimization to estimate local-lattice distortion (LLD), a ductility metric of

designed compositions in Table 5.1, were performed using the DFT method as implemented within

the Vienna Ab initio Simulation Package [179, 180, 181, 175]. The Perdew-Burke-Ernzerhof

(PBE) generalized gradient approximation (GGA) functional [175] was employed for geometrical

relaxations with total-energy and force convergence criteria of 106 eV and 0.01 eV/Å, respectively.

To mimc MPEAs within a finite cell, supercells were designed using SCRAPs [182] – SuperCell

Random APproximateS. We chose two SCRAP sizes, (i) 128 atoms for design 1, and (ii) 160 atoms

for design #2 to #7 in Table 1. The largest possible supercells were used to avoid size effects [183].

The Brillouin zone integration in charge self-consistency and ionic relaxtion were performed on

1×1×1 using Monkhorst-Pack method [184] with a plane-wave cutoff energy of 520 eV, where

the effect of the core electrons and interaction between the nuclei and the valence was treated by

the projector-augmented wave (PAW) [185, 186].

The DFT-KKR-CPA is expensive to query. blackTherefore, computationally inexpensive alter-

natives, e.g., rule-of-mixtures approximation, are needed for both the Pugh’s ratio and the Cauchy

pressure to explore the objective space. In this work, to estimate the Pugh’s ratio cheaply, we

express the bulk and shear modulus in terms of the Poisson ratio. We then calculate the weighted

average of the elemental Poisson ratio to evaluate Equation 5.12, where i iterates along all N el-
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ements in the design space, νi and xi is the Poisson ratio of the ith element, respectively. For the

Cauchy pressure, we calculate the weighted average of C12 and C44 elastic constants and find their

difference according to Equation 5.13.

B/G =
2(1 +

∑N
i=1 νixi)

3(1−
∑N

i=1 νixi)
(5.12)

Cpres =
N∑
i=1

C12xi −
N∑
i=1

C44xi (5.13)

5.3.7 Thermodynamic Simulation

The truth model in the classification side of the framework was queried through a high fi-

delity CALculation of PHase Diagrams (CALPHAD) based simulation scheme. Equipped with

the MPEA specific TCHEA5 thermodynamic database, Thermo-Calc’s equilibrium simulation was

used to query both the density and the solidus temperature. The integration of these models within

this automated framework was achieved using the Thermo-Calc API, TC-Python. These thermo-

dynamic equilibrium simulations are relatively expensive to query, As such, cheaper alternatives

are required to explore the constraint space. The rule-of-mixtures was used as a cheap alternative

to the CALPHAD truth model for both density and solidus temperature.

5.4 Results

5.4.1 Multi-Fidelity Bayesian classification

In this work, we use Gaussian process classification (GPC) to model the constraint boundaries

to distinguish the feasible and unfeasible regions in the design space (binary classification). A

BC framework employs entropy measure to determine the uncertainty and search for the best next

experiment to query the constraints and update corresponding GPCs to decrease the labeling uncer-

tainty the most. Similar to multi-fidelity BO frameworks introduced in Refs. [84, 141, 6, 37], a BC

framework can be designed in multi-fidelity settings. There may exist several models to represent

the same constraint with different fidelity levels and evaluation costs. Using the reification process
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followed by fusion of multiple sources introduced in Refs. [5, 22, 77], a fused classifier can be

constructed for each constraint that accurately models the constraint boundary using information

gained from different sources. To show how a multi-fidelity BC approach is able to determine

the constraint boundaries more accurately and efficiently, a test problem is designed and shown in

Fig. 5.1. The highest fidelity model represents the true boundary while there are also two lower

fidelity models to estimate the boundary between regions ‘A’ and ‘B’.

Figure 5.1: 2 Dimensional classification test problem. The space is divided into regions ’A’ and
’B’. Two lower fidelity models estimate the true boundary.

In Fig. 5.2, the results of employing the BC framework in single- and multi-fidelity settings

have been shown. While the black curve is the true boundary that is desired to be recognized,

the blue curve shows the classifier’s estimation of the boundary with 95 % confidence intervals.

Red dots are the locations in the input space queried in the BC process to update the classifiers

and decrease the uncertainty of classification. They show the estimated constraint boundary after

20, 50, and 100 queries from the highest fidelity model. After every 10 queries to lower fidelity

models, a fused model is constructed and the design closest to the boundary is chosen to be queried

from the highest fidelity model. The closer a design is to the estimated boundary, the larger the
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Figure 5.2: Boundary estimation results using single and multi fidelity Bayesian classification
approaches. True constraint boundary (in black) versus estimated constraint boundary with 95 %
confidence intervals (in blue). Red dots show where the framework has chosen to query. (a) and
(d): 20 queries. (b) and (e): 50 queries. (c) and (f): 100 queries.

classifier uncertainty is about its class membership. Note that the boundary is where the classifier

assigns the probability of class memberships very close to 50 % in case of binary classification.

As seen in Fig. 5.2, employing multiple sources to represent the same constraint has improved

the performance of the classifier significantly. Not only it has estimated the true boundary more

accurately with narrower confidence intervals, but also it has done so with a smaller number of

queries from the highest fidelity model. Plus, the queried locations show how more effectively

the framework is able to make highly informative queries to help in determining the constraint

boundary.

5.4.2 Proposed design framework

Fig. 5.3 illustrates the flowchart of the proposed design framework to solve constrained opti-

mization problems. Here, the BO and BC frameworks are coupled to build a larger configuration
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Figure 5.3: Flowchart of design framework. This flowchart shows the main steps in the design
framework. Gaussian process regressions (GPRs) model the objective function and Gaussian pro-
cess classifiers (GPCs) model the constraint boundaries.

that wisely and optimally makes decisions about improving the system’s knowledge regarding the

optimum design while learning the constraint boundaries to recognize the feasible design region.

In the BO part of this design framework, the most up-to-date fused classifiers are used to

determine the feasible regions and prevent the framework to search unfeasible regions. Therefore,

before spending any computational resources to test a set of generated samples to search for the

best next experiment, fused classifiers determine if all samples are feasible. If not, the unfeasible

samples will be removed and new samples are generated until we find the desired number of

feasible samples to test. To make decision on feasibility of a design, we used µ − 2σ > 0.5 to
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guarantee at least 95 percent confidence in predictions. One can change this confidence interval

accordingly, depending on how hard (or difficult) is a constraint. Then, Expected HyperVolume

Improvement (EHVI) is employed as the utility function to search for promising designs to query

and increase the hypervolume the most and improve the estimation of the Pareto-front [92].

In the BC component of the framework, to actively learn the constraint boundaries and increase

the accuracy of the fused classifiers, an entropy measure is used to gauge the uncertainty in labeling

the samples. Since we do binary classification to label samples as either feasible or unfeasible,

the problem is reduced to finding the closest samples to the predicted constraint boundary by

classifiers. At every iteration of the framework, a decision has to be made between querying the

objective functions and thus improving the optimum value of a quantity of interest (hypervolume in

case of multi objective optimization) or querying the constraints and updating classifiers to increase

the accuracy of fused classifiers.

To balance the decision between these two options, the expected relative change to the optimum

value of an objective (i.e. the expected hypervolume improvment) is calculated and is compared to

the relative change in entropy if we update the constraints. This is done by temporarily augmenting

the samples determined as the best next experiment and observing the changes in the corresponding

values. By comparing the observed relative changes in each case, the framework chooses the

action that adds the most value to the system. Note that in both the BO and BC components,

multiple information sources may have been employed to represent every objective function and

every constraint. Thus, the selected samples are augmented to the GPR or the GPC corresponding

to the selected information source.

5.4.3 Material Design Process

The design framework depicted in Fig. 5.3 has been employed to solve the aforementioned

alloy design problem. There are two objectives defined in the problem to be maximized: Pugh’s

ratio and Cauchy pressure. These objectives encode the intrinsic ductility of candidate alloys.

There are two GTE-relevant constraints that must be satisfied: solidus temperature and density of

the candidate alloys. The solidus temperature for any composition should be greater than 2000°C
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such that the alloy can withstand the hot-zone inside GTEs. Furthermore, the density should be

less than 11 g/cm3 such that the alloy is light enough for application in aviation. The design space

is 5-dimensional (including temperature). Candidate alloys can consist of permutations and com-

binations of the following five elements: Mo, Nb, Ti, V, and W. The Thermo-Calc thermodynamic

equilibrium model was used as the truth-model that represents the solidus and density constraints.

For each constraint, there exists a low order rule-of-mixture approximation. Regarding the objec-

tive functions, there are also two models available, one as the lower fidelity information source

that is inexpensive to query and responds in a few seconds. Then, a high fidelity KKR model was

used as the ground truth (see Methods section). Being computationally demanding, the KKR-

model was queried after every 10 queries from the lower fidelity information source to update the

discrepancy of the low fidelity model and correct its estimation of the objective values.

First remark: We would like to note that the design constraints (solidus temperature and

density) are relatively easy to estimate using conventional computational thermodynamic tech-

niques. It would thus be possible to simply carry out a high-throughput exploration of the ma-

terials space [187] and simply select the feasible region without any active learning step. The

purpose of this exercise is to demonstrate the integration of the discovery of the feasible space

within a materials optimization framework. This capability would be significant in the case of

‘real world’ closed-loop materials discovery tasks in which the discovery of the feasible region in

a materials design space is highly non-trivial and dependent on exhaustive experimental charac-

terization. For example, the discovery of alloys with acceptable oxidation resistance and optimal

mechanical performance may depend on actual experimental oxidation studies. Our framework is

agnostic regarding the nature of the information sources used and thus can easily be adapted to

fully experimental or hybrid experimental/computational settings.

The framework was run over 2,000 iterations. Regardless of how much is learned about the

constraint boundaries, the last 500 iterations are allocated to perform only optimization to improve

the estimated Pareto-front. In later works, an adaptive technique will be taken to increase the

weights over optimization than classification as the number of iterations increase.
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Figure 5.4: Final results of introduced material design problem (a) Queried samples from the
KKR model in the objective space. Final estimation of the Pareto-front shows 7 non-dominated
designs. (b) Improvement in hypervolume of the estimated Pareto-front as a function of iteration.
Note that the hypervolume value is depended on the chosen reference point in the objective space,
thus, the change in hypervolume is a better indication of making improvements to the Pareto-front
estimation.

The results are depicted in Figure 5.4. In part (a), queried designs from the KKR model are

shown in the objective space and the color map shows the order that queries are made. There are

total of 284 queries made from the KKR model, where 229 are made in the last 500 iterations.

The final estimation of the Pareto-front consists of 7 non-dominated designs. In Table 5.1, the

design values corresponding to the estimated Pareto-front are specified. In part (b), the change

in hypervolume of the estimate Pareto-front as number of iteration is depicted. As the number

of iteration increases, the change in hypervolume value gets smaller. Furthermore, it takes more

number of iterations to see further improvements in the hypervolume value, however, by allocating

the last 500 iteration for optimization purposes, more improvements are made. This essentially

shows that as we move toward the final iterations, it is worth to invest on optimization and make the

final improvements possible to the solutions. An important point here is that all queried samples are

satisfying both solidus temperature and density constraints, which shows how by actively learning

the constraint boundaries and using classifiers, querying unfeasible designs is prevented. Tests
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show that about 20 % of the randomly sampled designs violate at least one of the constraints.

Table 5.1: Non-dominated designs corresponding to the Pareto-front in Fig. 5.4. Compositions
reported in atomic percentage.

Composition elements Mo Nb Ti V W
Design 1 0.014 0.738 0 0.233 0.015
Design 2 0.0330 0.8080 0.0090 0.0890 0.0610
Design 3 0.0100 0.7460 0.0050 0.0910 0.1480
Design 4 0.0110 0.6840 0.0150 0.2740 0.0160
Design 5 0.1140 0.7350 0.0010 0.1490 0.0010
Design 6 0.0150 0.8410 0.0550 0.0010 0.0880
Design 7 0.0140 0.7550 0.0160 0.2020 0.0130

Fig. 5.5 illustrates the cumulative number of actions taken at every iteration. Out of 2,000

iterations, 634 iterations are dedicated to perform BO which means 634 queries are made from

lower fidelity model. The KKR model is queried in batch of maximum of 5 designs after every 10

queries to the lower fidelity model. To find the batch of designs to be queried from the KKR model,

first, a set of query candidates are generated and then their expected hypervolume improvement is

calculated. Note that the objective values at every location in the design space are estimated by

GPRs that provide normal distributions as the estimation. Then, samples with positive expected

hypervolume improvement are kept and clustered by solving a k-medoid problem. Finally, the

medoids (i.e. actual points belonging to a cluster in the design space that are maximally separated

from other clusters) of these clusters are queried from the KKR model. This approach assures a

good distribution of the queried samples all over the space that helps to fully discover the non-

dominated region.

Out of 1,366 queries from the constraints, 1,189 queries are made from the density function.

The reason that the framework struggles to identify the density constraint could be the complex

shape of feasible and unfeasible regions, making it challenging to recognize the boundary. How-

ever, the results show that the framework has learned enough to confidently recognize the feasible

regions.
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Figure 5.5: Cumulative number of operations as a function of iteration. For most number of
iterations, the framework has decided to query the density model and update its classifier. It is
an indication of the complexity of the density constraint boundary and the framework struggles to
learn it and reduce the classifier’s uncertainty in labeling the design inputs.

5.5 Discussion

5.5.1 HTP Brute Force Analysis to Evaluate Framework Classification

In order to assess the utility of using such an classification framework, we benchmarked the

BC of refractory MPEA space against a traditional HTP ‘brute-force’ approach. In this brute-

force approach the density and solidus temperature constraints were queried at increments of 5

at.% considering unary to quinary systems, resulting in 10,626 queries in total. However, with

the BC framework, only 1,366 queries were needed to find the boundary in the constraint space,

dramatically improving the tractability of the problem as the total number of queries over the

potentially feasible space was reduced by close to a factor of nine. Querying these expensive

information sources is beneficial as it can better elucidate how well the classification aspect of the

framework actually performs in this refractory MPEA space.

In order to visualize how composition affects the constrained properties (solidus temperature

and density) in this 5-dimensional refractory MPEA space, we rely on a dimensionality reduction

technique known as t-distributed stochastic neighbor embedding (tSNE). Each point represents

an alloy with a distinct composition. In tSNE embeddings, points that are close to each other in
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high dimensional space are plotted close to each other in 2-dimensional space. Points colored in

Fig. 5.8c are alloys that contain 50% or more of a particular element. Points closer to the corners

of this "pentagonal" shape approach unary compositions. For example, points near the red corner

of the tSNE are rich in vanadium; The point on the "corner" represents pure vanadium. Points

along the edge connecting the red and blue regions are Mo-V binaries. The inner regions of the

tSNE represent the refractory MPEA space. We would like to point out that this representation is

mostly qualitative as tSNE embeddings only preserve the local structure of the dataset, while being

agnostic with regard to its global structure.

The light blue stars represent the 7 alloys that lie on the Pugh’s Ratio-Cauchy Pressure Pareto-

front. These alloys are in the Niobium-rich region of the tSNE. Their location in this tSNE em-

bedding provides a visualization of where in the refractory MPEA space the Pareto-front lies. The

location of Pareto-front in the refractory MPEA space is not completely unexpected, as Nb has a

relatively low VEC of 5. However, according the prevailing VEC theory of ductility in refractory

MPEAs [155], Ti-rich alloys are expected to be the most ductile in this region as Ti has a VEC

of 4, the lowest in the alloy space. However, in Figs. 5.6a and 5.6b, Ti-rich regions have solidus

temperatures below 2273 K, violating the solidus constraint. The reason the framework converges

on Nb-rich alloys instead of Ti-rich alloys is further demonstrated in Fig. 5.6 where the property

space is plotted. In Fig. 5.6a the VEC is plotted against the solidus. Many of the Ti-rich alloys

(depicted as squares) fall beneath the 2273 K constraint. In Fig. 5.6b, the Ti-rich alloys that do pass

the solidus constraint do not have a large a Pugh’s ratio as the Nb-Rich alloys (depicted as stars).

While not as ductile as Ti-rich alloys, most Nb-rich alloys pass the density and solidus constraints.

The classification side of the proposed framework was able to recognize the Ti-rich region of the

design space as infeasible by querying the solidus information source only 177 times.

Second remark: We would also like to point out that our design setting is truly agnostic with

regard to the complexity of the alloy space. Rather than focusing on high-complexity compositions,

our framework optimized a set of property targets, subject to application specific design constraints.

Whether such compositions are located within the "high entropy" alloy space is immaterial when
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trying to discover optimal alloys with a target application in mind. It is the view of the authors

that property/constraint-aware and "entropy" agnostic exploration of High Entropy Alloy spaces is

a more productive research program as compared to approaches that focus on alloy complexity as

the sole objective of the alloy design task.

Figure 5.6: t-SNE projection of the MoNbTiVW alloy space. Colored points in the reference em-
bedding (right) denote alloys that contain alloys that contain 45% or more of a particular element.
The solidus temperature is plotted on the same embedding (right). Likewise, the density is plotted
on the embedding (left).

5.5.2 DFT analysis of Pareto-front-selected Refractory MPEAs

The seven Nb-V rich alloys in Table 5.1 with superior mechanical properties that comprise the

Pareto-front were selected for further analysis using DFT. Singh et al. [188] has shown that the

ability of an alloy to resist local distortion and compositional changes have direct impact on duc-

tility. However, the understanding of these features controlling distortion and local compositional

changes is currently not discussed well. We performed detailed DFT calculations [174, 176, 179]

of stability (formation energy), distortion factor and local distortion (atomic displacements), and

short-range order (local chemical fluctuations) on design compositions.

Generally, refractory materials have very high moduli in the bcc phase because of their low
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Figure 5.7: t-SNE projection of the MoNbTiVW alloy space. Colored points in the reference em-
bedding (right) denote alloys that contain alloys that contain 45% or more of a particular element.
The solidus temperature is plotted on the same embedding (right). Likewise, the density is plotted
on the embedding (left).

compactness. The interaction between these elements are weaker than other crystal structures

such as in fcc materials. Therefore, the ductility is definitely an issue, which helps a material to

sustain against permanent (large) deformation under a tensile loading at room temperature without

fracturing. In Fig. 5.8a-b, we plot BM of design compositions with respect to Nb-V composition

(in atomic-fraction) and phase stability. The calculated BM was found in the moderate range in

Fig. 5.8a, similar to highly ductile fcc-based materials; moreover, each compositions were in the

desired MPEA stability range (-150 meV-atom−1 <Eform <65 meV-atom−1) [178].

In Fig. 5.8c, we plotted distortion metric with respect to scalar displacement, where most com-

positions show minimal local distortion except #7 that has both large distortion metric and local

atomic displacement. Our findings suggest that the distortion factor may further get increased with

temperature due to non-uniform local contraction and expansion in different regions with differ-

ent atomic sizes, which may lead to large thermal strain in local lattices. In Fig. 5.8d, we found
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Figure 5.8: DFT analysis of thermodynamics and structural properties. (a,b) We plotted bulk-
moduli with respect to atomic-fraction (Nb+V) and formation-enthalpy (Eform).The structural
analysis of key mechanical properties responsible for ductility in Refractory MPEAs, (a) local-
lattice distortion with respect to (c) static-displacement, and (d) valence electron count difference
in bcc alloys.

elemental compositions can be tuned to alter local atomic displacement that correlates well with

ductility in refractory MPEAs [188]. To provide more detail, we plot distortion metric [188] with

respect to difference of VEC (∆V EC) of bcc alloys in Fig. 5.8d. The dashed line horizontal to

x-axis shows the separation between ductile and brittle materials based on the atomic distortion

criterion. Clearly, highly ductile materials are expected to have low distortion as found in fcc

alloys.

Furthermore, defects are very common to refractory alloys, which are detrimental for ductility.

Notably, it has been reported that the presence of tungsten up to 5 at.% in refractory-based MPEAs

[183] either slows down or stops the formation of new defects, moreover, high-vacancy migration

energy of heavier elements also slows down the diffusion of defects. Although our framework

was not optimized for defect related properties, the presence of small to moderate at.% molybde-

num/tungsten further affirms that new designed compositions in Table 5.1 satisfy critical feature
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requirements for ductility. This understanding of low defect concentration in tungsten based alloys

can be helpful as the defect creation and propagation into crystal phase make them more fragile at

higher strains, which is not desired for high-temperature applications.

The disorder has been shown to induce change in the DOS at/near electronic Fermi energy

[189], which can be interpreted as the effect of disorder and electron correlation. The transition-

metal-based refractory MPEAs are among the candidate alloys due to the presence of their partially

filled d-bands. In Fig. 5.9a, we plot the value of total DOS (TDOS) at the Fermi-level. We found

an interesting trend where #2 and #7, despite having the same TDOS values at the Fermi-level,

show opposite trends in energy stability. To understand this contrast, we plot total density of

states for both the alloys in full energy range (-6 eV to 3 eV). Despite being energetically stable

#2 shows an unstable peak at the Fermi-level while #7 shows valley in density of states, and this

feature in DOS has been found to correlate well with the alloy stability [190]. But we do not

know if this small but finite change in DOS structure at the Fermi-level has any severe impact on

thermodynamic behavior or charge fluctuations at finite temperature. The SRO analysis can give

us useful information related to local change of chemical compositions, which is a critical aspect

of ductile materials.

The local chemical fluctuations [191], if significantly large, may affect the synthesis of sin-

gle phase alloy and mechanical properties, therefore, we believe understanding change in local

response, i.e., short-range behavior (SRO), can give useful guideline regarding minimizing pro-

nounced changes of chemical composition. The SRO theory [176] uses local atomic interaction to

predict local chemical behavior, this is important as changes in chemical composition has a strong

connection with interaction of alloying elements.

In Fig. 5.9c,d, we plot the SRO for #2 and #7 MPEAs to reflect on temperature dependent

changes in their chemical behavior. Both the alloys in Fig. 5.9c-d show clustering trend below

spinodal temperature (Tsp) driven by Mo-W pairs. An absolute instability to ko mode [176] occurs

below Tsp, where [α(−1)(ko;Tsp)]
IJ
µν=0. For ko=(000), the alloy is unstable to segregation (atomic

or vacancy clustering), rather than local ordering. Interestingly, we found that the #7 shows com-
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peting ordering (B2 (H=111) type) mode while clustering (Γ) mode is slightly stronger, i.e., Γ =

(000) peak compete with finite ko peak. The most unstable SRO mode for both the alloys with

large chemical fluctuation has the largest peak in αµν(ko;T > Tsp) at wavevector ko for a specific

Mo-W pairs in the solid-solution phase.

The DOS values at Fermi energy for #2 and #7 MPEAs are almost same but their electronic-

structure in Fig. 5.9b at the Fermi energy are quite different, where #2 has has small peaks. The

finite peak at Fermi energy is the reason for thermodynamic instability towards clustering despite

its energy stability (Eform (#2)=-12 meV-atom−1). The prediction of clustering indicates weak

interaction among alloying elements both at higher temperature and below Tsp, i.e., small or no

charge fluctuation in disorder phase.

Except for design composition #7 in Table 5.1, the DFT analysis indicates the ductility for all

other design compositions. The small lattice distortion, weak charge fluctuation, and possibility of

low defect concentration in W based alloys [183] of predicted compositions is strong indication that

the design framework is able to capture the useful structure-property trend in refractory MPEAs

critical for GTEs application.

The machinability of refractory MPEAs is a major bottleneck in their development and deploy-

ment as structural materials in GTEs. However, with ICME approaches, GTE-amenable refractory

MPEAs can be designed with ductility in mind. This can be achieved by optimizing for ductility in-

dicators, such as the Pugh’s Ratio and Cauchy Pressure, while under GTE relevant constraints such

as the density and the solidus temperature. The Pugh’s Ratio and Cauchy Pressure can be estimate

with DFT methods; likewise, the density and solidus constraints can be queried by Thermo-Calc’s

thermodynamic equilibrium simulations, classifying points as feasible based on whether they sat-

isfy both constraints. However, due to the vast nature of the MPEA design space and the high

computational cost of these models, computational resources must be allocated in such a way that

optimization of objectives is balanced with classification of meeting constraints.

The results from our framework show significant promise in the use of multi-objective and

classification frameworks within an ICME methodology for materials design. Most notably, the
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Figure 5.9: Electronic-structure and short-range order and analysis. (a) Total DOS at Fermi energy
for MPEAs in Table 1. (b) The total density of states (DOS) plot for two key design compositions
from the shaded region in (a), i.e., #2 and #7 . (b) The total density of states, and (c,d) short-range
order for #2 and #7.

results showed that the proposed multi-information source BO framework is capable of efficiently

exploring high-dimensional materials design spaces under multiple objective targets. Regarding

classification, our novel framework (with 1,366 queries) is around 8 times faster than the traditional

HTP “brute-force” approaches (with 10,626 queries), a huge improvement in terms of resource

allocation.

While the proposed framework has been implemented and deployed in an in silico platform,

the overall principle is truly source-agnostic. Each information source for both objectives and con-

straints is transformed into a Gaussian Process representation. Therefore, this approach can po-

tentially be deployed for the efficient exploration and exploitation of materials spaces in physical

closed-loop materials discovery platforms. With the exponential increase in interest of materials

community towards autonomous materials discovery platforms, we believe that the frameworks

like one proposed here will provide a useful direction to develop novel material discovery plat-

forms.
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6. CONCLUSIONS AND FUTURE WORK

In this dissertation, different frameworks have been developed and proposed to increase the

efficiency of Bayesian optimization frameworks.

In chapter 2, a multi-information source Bayesian optimization is deployed to solve engineer-

ing design problems in presence of multiple sources of information. These sources are lower in

accuracy or fidelity, but cheaper to evaluate with respect to the ground truth model. Since all these

models are estimating the same quantity of interest, it is assumed that there exists some degree

of correlation between these models and the ground truth. Using the reification process, the cor-

relation between the information sources is estimated, then, by fusing the information obtained

from different sources, a fused Gaussian process is obtained that enables accurate prediction of the

ground truth quantity of interest. Knowledge gradient is employed as the utility function to eval-

uate possible knowledge gains of designs yet to be queried from a variety of information sources.

In any iteration of the framework, an information source and a design that maximizes the utility

function are chosen to be queried. The method was shown to be robust when subjected to various

resource constraints that imposed restrictions on how the framework would query the expensive

high-fidelity ground truth. It was found that these constraints played an important role in how

different information sources were queried by the framework. The results demonstrate that in the

case where we do not consider the actual computational cost of each information source and do

not impose any budgetary constraint, the framework has a tendency to exhaustively explore the

available information sources. On the other hand, when we impose tight budget constraints, the

framework extensively extracts the information out of cheaper information sources and is still able

to provide a reasonable prediction of the optimum design space.

In chapter 3, the multi-information source Bayesian optimization is extended to enable the op-

timization of multi-objective design problems. In realistic engineering problems, it is often the

case that a set of objectives to be optimized simultaneously. However, the challenge is these objec-

tives usually compete against each other and there is not a single solution to such design problems
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optimizing all objectives at the same time instead, a region is considered as the solution set with

no design superior to others. The methodology proposed in this chapter seeks to exploit all avail-

able information sources for efficiently identifying non-dominated points in the objective space

as a means of estimating the true Pareto front. The approach was based on the fast evaluation of

the expected hypervolume improvement through the use of temporarily updated Gaussian process

surrogate models of each information source. The process also incorporates model reification to

fuse new information rigorously as it becomes available through proper accounting for correlation

between the sources. This study concludes that multi-information source Bayesian optimization

approaches to directing efficient querying when the budget is constrained can be effective ways

of estimating the Pareto front of a multi-objective problem. In particular, the ability to rapidly

query lower-fidelity sources while accounting for their correlation with higher-fidelity sources and

ground truth has enabled efficient (less than 10% of the budget for the problems studied here)

identification of promising regions for non-dominated point searching. Then, improvement over

the Pareto front estimation is shown when more information sources are available. Any infor-

mation source can provide useful information about the quantity of interest that is not accessible

from other information sources. Finally, the performance of the proposed approach is compared

to two other well-known multi-objective optimization approaches, called ParEGO and NSGA-II.

The results demonstrate the effectiveness of the current approach in budget-constrained situations.

Chapter 4 is discussing a dimensionality reduction technique to be employed within multi-

information source Bayesian optimization frameworks. There, it is suggested strategies to equip a

multifidelity Bayesian optimization framework with a gradient-based active subspace approach to

address the issue of underperforming Bayesian optimization frameworks when the dimensionality

of the design space increases. We have demonstrated this framework on a microstructure-sensitive

design problem. Although employing a multifidelity Bayesian optimization approach alone results

in less costly design procedures, exploring a high-dimensional design space could still be costly

and thus, efficiency gains are desired in this regard. The results suggest that by taking advantage of

incorporating the active subspace method in the multifidelity Bayesian optimization frameworks,
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with fewer function evaluations, it is possible to obtain a better estimation of the optimal design

faster. This is due to the active subspace method prioritizing searches in the important regions in the

high-dimensional design space and representing the data on the lower dimensional active subspace

that ease the curse of dimensionality problem. By investigating different strategies to use the active

subspace method in a multifidelity Bayesian optimization framework, it has been shown that the

Ground Truth and Individual Active Subspace approach performed better than the conventional

multifidelity Bayesian optimization approach. Therefore, these two methods can be beneficial to

reach a target objective value faster with larger initial steps toward the optimum design. While we

have applied this approach to a very specific class of materials design problems, the framework has

wider applicability, as it is often the case that in materials design problems only a small fraction of

the degrees of freedom are active at any one time.

Finally, in chapter 5, a framework is developed to handle constrained optimization problems.

In previous chapters, different frameworks are proposed suggesting more efficient approaches to

designing complex systems. However, there were no constraints imposed in any of the engineer-

ing problems solved. In presence of design constraints, it is vital to recognize the boundaries to

correctly determine the feasible regions and spend the computational resource more efficiently.

This is addressed by developing a multifidelity framework to be implemented within optimization

frameworks that can handle the constraints by learning the feasibility boundaries efficiently. Sim-

ilar to a Bayesian optimization framework, a Bayesian classification framework is proposed that

uses Gaussian process classification to model the constraint boundaries. Entropy measure is used

as the utility function to search for the best information source and design to be queried for a more

accurate boundary estimation. The decrease in entropy can be a sign of getting more accurate pre-

dictions of feasibility. Similar to multi-information source Bayesian optimization, the reification

technique is used to fuse multiple information sources and obtain a fused classifier for a highly

efficient estimation of constraint boundaries. The results show significant promise in the use of

multi-objective and classification frameworks within an ICME methodology for materials design.

Most notably, the results showed that the proposed multi-information source BO framework is ca-
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pable of efficiently exploring high-dimensional materials design spaces under multiple objective

targets.

In conclusion, in this study, it is shown how our multifidelity approach is capable of efficiently

optimizing single and multi-objective functions. In the case of high-dimensional design space,

where the Bayesian optimization frameworks tend to underperform, and a larger number of func-

tion evaluations is needed in search of optimal designs, we used the active subspace method to

identify more important subspaces in the design space based on the objective function variation

to suggest easier learning and searching process in machine learning tasks. Finally, we proposed

a multifidelity Bayesian classification/optimization framework to handle constrained design prob-

lems by efficiently learning the constraint boundaries. Future works in this area can be extending

the optimization frameworks to optimize over the problem space, for example, by evolving infor-

mation sources as we learn more about the entire system and each information source. Another

possibility is to develop multi-objective optimization frameworks to employ the active subspace

method to quickly recognize the regions highly contributing to obtaining larger hypervolumes so

that better Pareto fronts are discovered with less computational expenses. Finally, in constructing

the Gaussian process for Bayesian optimization or Bayesian classification, a fixed kernel is used

to estimate the correlation between data in the space, however, exploring kernel spaces makes it

possible to choose a specific kernel considering the nature of the objective function at particular

locations in the space.
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