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ABSTRACT

The focus of this thesis will be the development of a tensegrity flywheel with the goal of

minimizing the mass while achieving the desired amount of angular momentum for attitude control

of a spacecraft. Currently, flywheels are designed using a continuum of material to achieve the

desired amount of angular momentum due to the large gyroscopic forces and torques that the

flywheel has to withstand, but this thesis will show that a continuum flywheel is not necessary

to withstand these large gyroscopic forces and torques and still have the capability of meeting

angular momentum and torque requirements. With a discrete approach, a large percentage of mass

can be saved when compared to the current designs because the mass near the continuum wheel’s

spin axis does not contribute significantly to the angular momentum output. If a percentage of the

mass near the center could be moved to the edge and replaced with a high strength to weight ratio

structure, the mass of the flywheel could be reduced and the stored energy could be increased. This

would save a significant amount of money when sending attitude control systems into space that

utilize flywheels such as reaction wheels and control moment gyroscopes. The design proposed

for this thesis will implement tensegrity to reduce the mass of the flywheel when compared to the

current continuum designs. Two separate topologies will be analyzed in both two-dimensional and

three-dimensional space and the results will show that utilizing a tensegrity design can significantly

reduce mass of a flywheel.
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1. INTRODUCTION AND LITERATURE REVIEW

Current flywheels used for control moment gyroscopes (CMGs) or reaction wheels currently

utilize solid designs. The mass near the center of the spin axis of the flywheel does not contribute

much to the angular momentum of the CMG. If this mass could be moved to the edge of the wheel

and be replaced by a high strength to weight ratio structure, the overall mass of the flywheel could

be reduced. This could save money on shipping the CMG systems to space for attitude control.

For example, each flywheel for the CMG system on the ISS weigh 220 lbs [11]. Currently, it costs

about $10,000 to send a pound of mass into space. If even a small percentage of the mass of the

wheel could be reduced, the savings would be significant from shipping costs alone.

The proposed solution to this problem would be to use a tensegrity structure to replace the

removed material since all the members of the structure are only axially loaded. Two different

tensegrity topologies will be analyzed in this thesis. First, the spiral wheel will be analyzed and is

of interest due to its torsional properties. The foundation of the spiral wheel is the Michell truss

which is the optimal structure for cantilevered loads for minimal mass under yielding constraints

[3]. If that structure is taken and rotated around the center it would create a disk. This disk will

be referred to as the spiral wheel. The spiral wheel should be good for torsional loads. The CMG

wheel will experience large centrifugal loads and the spiral wheel has not been analyzed for these

type of loads before. The second configuration to be analyzed will be the bicycle wheel. Different

numbers of spokes and spoke angles will be analyzed to determine which is optimal for minimal

mass subject to the large centrifugal forces and torques.
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Figure 1.1: Conceptual design of the tensegrity CMG

1.1 State of the Art

The optimal flywheel problem was first presented in the late 19th century by Stodola [8]. This

problem was looked at by various people over the next 60 to 70 years. The problem was revitalized

in the 1970s by the energy crises and interest in the optimal flywheel and in rotating disks in

general reached a new high. Energy efficiency was the main driving force in the optimization

process. Today, the state of the art flywheels consist of multi-layer composite rims that are placed

in a vacuum and use magnetic bearings instead of machanical bearings [9]. In these designs the

main driving factor is energy storage and not minimizing the mass of the flywheel itself. Many

computational methods of optimizing a flywheel have been developed such as dividing the flywheel

into separate rings and the thickness of each ring is varied. An optomization process has been

created for the modeling and optimization of heterogeneous flywheels [7]. All of this work has

been done for continuum flywheels.
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This thesis will use tensegrity structures to optimize a flywheel used for CMGs. The difference

for this problem is that the optimization process will aim to minimize mass while maintaining a

certain amount of angular momentum output for the flywheel. This new approach could lead to

a bigger mass savings while maintaining the needed stiffness because the structure will be more

efficient due to all the members being axially loaded only.

1.2 Michell Truss

Michell theory is based upon the fundamental work of Maxwell [2]. Michell built upon the

work of Maxwell and showed the continuum configuration of material that minimized the volume

of the structure under bending loads [3]. This structure is commonly known as the Michell truss.

A discrete solution to this problem was given by Skelton [4]. Recently, work has been done

to extend the two-dimensional theory to three-dimensions for continuum structures subjected to

torsion [5]. The Michell truss and the Michell sphere have been shown to be the optimal structures,

for minimal volume, for bending loads and torsional loads respectively with yielding constraints.

CMGs experience very large centrifugal forces as well as torsional loads that are not accounted for

in the current literature. This thesis will analyze how the spiral wheel responds to these different

loading conditions.

1.3 Bicycle Wheel

Much work has been done on the design of a bicycle wheel. It is very well known how the

bicycle wheel behaves for loading conditions during use on a bicycle. Such as the lateral loads,

the radial loads, and the torsional loads [6]. The stiffness of a bicycle wheel and rim has been

examined in detail [10]. The difference between things that have already been done and what will

be proposed in this thesis is that the radial loads for the normal cases are much larger and point

away from the hub instead of towards it. The stiffness required for such large loads along the radial

direction and the torques that will be applied out of the plane of the wheel need to be examined.

The optimal bicycle wheel when considering these different loading conditions for minimal mass

has not been examined in the past literature and will be examined for this thesis.
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1.4 Comparison Between a Solid Disk and a Hollow Cylinder

A comparison of a solid disk and a hollow cylinder will be done to determine the possible mass

savings between the two when matching some of the design parameters such as radius, angular

rate, and angular momentum. Figure 1.2 and Figure 1.3 depict a hollow cylinder and a solid disk

respectively. The mass of a hollow cylinder is shown in (1.1) where ρ is the density, ∆ is the

thickness, R is the outer radius, and r is the inner radius.

m = πρ∆(R2 − r2) (1.1)

The moment of inertia about the z-axis, I , for the hollow cylinder is shown in (1.2) where the

mass is replaced by (1.2).

I =
1

2
m(R2 + r2) =

1

2
πρ∆(R4 − r4) (1.2)

The angular momentum about the z-axis, h, for the hollow cylinder is shown in (1.3).

h =
1

2
πρ∆ω(R4 − r4) (1.3)

Figure 1.2: A hollow cylinder.

The mass of the solid disk is shown below in (1.4) where ρ̄, ∆̄, and R̄ are the density, thickness,

and radius of the solid disk respectively.
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m̄ = πρ̄∆̄R̄2 (1.4)

The moment of inertia about the z-axis of the solid disk, Ī , is shown in (1.5) with the mass

replaced by (1.4).

Ī =
1

2
m̄R̄2 =

1

2
πρ̄∆̄R̄4 (1.5)

The angular momentum about the z-axis of the solid disk, h̄, is shown in (1.6).

h̄ =
1

2
πρ̄∆̄ω̄R̄4 (1.6)

Figure 1.3: A solid disk.

The goal is to match the angular momentum of the solid disk while saving mass by using a

hollow cylinder with the void replaced with a tensegrity structure. So, setting the angular momen-

tum of both equal to each other, h = h̄, the mass ratio will be solved for to determine what the

limit of the possible mass savings is without the added structure there. After setting the angular

momentum of each wheel equal to the other is shown in (1.7).

1

2
πρ∆ω(R4 − r4) =

1

2
πρ̄∆̄ω̄R̄4 (1.7)

Solving for the density ratio using 1.7 results in 1.8.
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ρ

ρ̄
=

∆̄ω̄R̄4

∆ω(R4 − r4)
(1.8)

The mass ratio is found by dividing 1.1 by 1.4 and the result is shown below in 1.9.

m

m̄
=

πρ∆(R2 − r2)

πρ̄∆̄R̄2
=

ρ∆(R2 − r2)

ρ̄∆̄R̄2
(1.9)

The result of substituting the density ratio into (1.9) is shown below in (1.10), where d = R−r.

This is the mass ratio of the hollow cylinder to the solid disk when setting the angular momentum

of each wheel equal to one another.

m

m̄
(h = h̄) =

ω̄R̄2

ω(R2 + r2)
=

ω̄R̄2

ω(R2 + (R− d)2)
(1.10)

Now if the outer radius of both wheels are set equal to each other, the mass ratio becomes

(1.11).

m

m̄
(h = h̄, R = R̄) =

ω̄R̄2

ω(2R̄2 − 2R̄d+ d2)
(1.11)

If instead the angular momentum and the angular rate of each wheel is set equal to each other,

the mass ratio becomes (1.12).

m

m̄
(h = h̄, ω = ω̄) =

R̄2

R2 + r2
=

R̄2

R2 + (R− d)2
(1.12)

If the angular rate of each wheel is also set equal to each other, the mass ratio becomes (1.13).

m

m̄
(h = h̄, R = R̄, ω = ω̄) =

R̄2

2R̄2 − 2R̄d+ d2
(1.13)

If the outer radius of the wheel is fixed, than 0 < d < R̄. This fact and (1.11), (1.12), and

(1.13) will be used in the following Lemmas.
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Lemma 1. If h = h̄, R = R̄, and ω = ω̄ then

1

2
<

m

m̄
< 1.

Lemma 2. If h = h̄ and R = R̄ then

ω̄

2ω
<

m

m̄
<

ω̄

ω
.

Lemma 3. If h = h̄ and ω = ω̄ then

1

2

(
R̄

R

)2

<
m

m̄
<

(
R̄

R

)2

.
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2. TWO-DIMENSIONAL DESIGN

This chapter will characterize the nodal and connectivity matrices for both the spiral wheel and

the bicycle wheel, describe the two static load cases that will be analyzed, introduce the algorithm

to minimize the mass of both of the wheel designs subject to an angular momentum constraint,

analyze the sensitivity of the mass and the angular momentum output of each design to the diameter

of the axle, and show the minimum mass results for each design for each load case. The results

show the spiral wheel is the optimal mass structure when compared to the bicycle wheel and a solid

wheel when centrifugal forces or a combination of centrifugal forces and a torque are applied if

there is an angular momentum requirement for the wheel. The results also show that both designs

do not need any compression members and only use tensile members.

2.1 Topology

This section will describe two separate topologies that will be used to design a minimal mass

flywheel in two-dimensions. The nodal matrix and the bar and string connectivity matrices will be

defined for both the spiral wheel and the bicycle wheel, and a rim topology will be defined that will

be augmented with the spiral wheel and the bicycle wheel utilizing the algorithm from Appendix

B.

2.1.1 Spiral Wheel

The foundation of this topology will be the discretized Michell Spiral, which was first described

in [4] and the definition of the Michell Spiral used in that resource will be the same one used here.

The spirals will be described by the angles ϕ and β. These angles are shown below in Figure

2.1. The sequence of lines of length pl, pl+1, ... are connected end to end. The geometry of these

connections can be described as follows when relative to a common origin.

Definition 1. Let rl define a set of radii from a common origin, 0, for l = 0, 1, 2, ..., q − 1. Let pl,

l = 0, 1, 2, ..., q−1, define the lengths of lines beginning at points with radius rl and terminating at

points with radius rl+1. Then a Michell Spiral of order q is defined by the end-to-end connections
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Figure 2.1: A Michell Spiral (q = 4) - "Reprinted from [4]"

of lines of length pl, satisfying,

rl+1 = arl, pl = crl, l = 0, 1, 2, ..., q, (2.1)

where a > 0 and c > 0.

If

a =
sin β

sin (β + ϕ)
, c =

sinϕ

sin (β + ϕ)
(2.2)

then the sequence generates a Michell Spiral as in Figure 2.1. The relations between (a,c) and

(ϕ,β) given above follow from Figure 2.1 by observing that

rl+1 cosϕ+ pl cos β = rl (2.3)

rl+1 sinϕ = pl sin β. (2.4)

To create the spiral wheel topology, the Michell Spiral is rotated about the origin by the angle

2ϕ a total of p times. All the spirals are then mirrored about their radial line from the origin to the
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outermost point of the spiral and the resulting topology is shown in Figure 2.2. Figure 2.2 depicts

how the nodes are numbered and how they are connected by the bars and strings for the spiral

wheel topology. The numbering of the nodes starts on the outermost ring. The numbering on the

first ring goes form 1 to p. The number of times the truss touches the outer rim is p and will be

referred to as the circumferential complexity. The nodes on the next ring starts at p + 1 and goes

to 2p. This happens until the final q+1 ring is reached. The final node would be number p(q+1),

where q is the radial complexity of the wheel.

Figure 2.2: A spiral wheel showing how the nodes, bars, and strings are numbered and how they
are connected

2.1.1.1 Nodal Matrix

The nodes will be defined using the angles ϕ, β, and their radius from the center of the wheel.

Using (2.1) and (2.2) the angles β and ϕ will be solved for in terms of the complexities p and q.

The angle between each outer node is equal to 2ϕ. The total number of angles between nodes is
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2ϕp. This total angle needs to be equal to 2π so that there is an integer value for the number of

times the spirals touch the outer most ring and so there are not any overlapping spirals. Using (2.5),

p is solved for in terms of ϕ and shown in (2.6).

2pϕ = 2π (2.5)

ϕ =
π

p
(2.6)

Using (2.1) and (2.2), the ratio of the outer radius and the inner radius, ρ, of the spiral tensegrity

wheel can be written in terms of the angle β, the angle ϕ, and radial complexity q and is shown in

(2.7).

ρ =
rq
r0

= aq =

(
sin β

sin(β + ϕ)

)q

(2.7)

After using an angle-sum triginometry identity and replacing ϕ with (2.6), the aspect ratio of

the wheel, ρ, can be written as shown in (2.8).

ρ =

(
sin β

sin(β) cos(ϕ) + sin(ϕ) cos(β)

)q

=

(
sin β

sin(β) cos(π
p
) + sin(π

p
) cos(β)

)q

(2.8)

Solving (2.8) for β results in (2.9) shown below.

β = arctan

 sin(π
p
)

ρ−
1
q − cos(π

p
)

 (2.9)

Now the two parameters describing the spiral tensegrity wheel topology β and ϕ are solved

for in terms of the circumferintial complexity and the radial complexity respectively. Since both

complexities can only be integers, this removes a considerable amount of points to check during

the optimization process for minimal mass in the next section.

The numbering of the nodes starts with the outermost ring. The radius of this ring is r0. The

angle between each node on each ring is 2ϕ. So, the first node starts at the angle 0 from the
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horizontal axis and the second will be at the angle 2ϕ and so on until the pth node is at an angle of

2(p − 1)ϕ. The nodal matrix representing nodes one to node p on the first ring is shown below in

(2.10).

R0 =


r0 cos(0) r0 cos(2ϕ) · · · r0 cos(2(p− 1)ϕ)

r0 sin(0) r0 sin(2ϕ) · · · r0 sin(2(p− 1)ϕ)

0 0 · · · 0

 (2.10)

The next set of nodes for the second ring is shown in matrix form below in (2.11). This time

the first node on this ring starts at an angle of −ϕ. The next node is at ϕ and so on until the final

node on this ring is at an angle of 2(p− 1)ϕ. This matrix describes the location of the nodes from

number p+ 1 to 2p.

R1 =


r1 cos(−ϕ) r1 cos(ϕ) · · · r1 cos(2(p− 1)ϕ− ϕ)

r1 sin(−ϕ) r1 sin(ϕ) · · · r1 sin(2(p− 1)ϕ− ϕ)

0 0 · · · 0

 (2.11)

This same pattern continues until the final ring in the structure. The matrix for the final ring is

shown below in (2.12).

Rq =


rq cos(−qϕ) rq cos(2ϕ− qϕ) · · · rq cos(2(p− 1)ϕ− qϕ)

rq sin(−qϕ) rq sin(2ϕ− qϕ) · · · rq sin(2(p− 1)ϕ− qϕ)

0 0 · · · 0

 (2.12)

The final nodal matrix for the entire spiral wheel topology is shown below in (2.13). The total

number of nodes of this structure is equal to (q + 1)p which leads to the size of the nodal matrix

shown in (2.14).

N =

[
R0

... R1
... · · · ... Rq

]
(2.13)
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N ∈ ℜ3×(q+1)p (2.14)

2.1.1.2 Connectivity Matrices

Using the numbering system shown in Figure 2.2, the bar connectivity matrix can be written as

shown in (2.15). The size of each identity matrix is p× p. The size of the bar connectivity matrix

is shown in (2.16).

CT
B =



Ip 0 0 0

−Ip Ip 0 0

0 −Ip
. . . 0

0 0
. . . Ip

0 0 0 −Ip


(2.15)

CT
B ∈ ℜ(q+1)p×qp (2.16)

The string connectivity can be written as shown below in (2.17). The off diagonal identity

matrices are now the matrix J which is shown in (2.18). The size of the string connectivity matrix

is shown in (2.19).

CT
S =



Ip 0 0 0

−Jp Ip 0 0

0 −Jp
. . . 0

0 0
. . . Ip

0 0 0 −Jp


(2.17)
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Jp =



0 · · · 0 1

1 0 0 0

0
. . . 0 0

0 0 1 0


(2.18)

CT
S ∈ ℜ(q+1)p×qp (2.19)

2.1.2 Bicycle Wheel

Figure 2.3 shows the numbering system for the nodes and strings for the bicycle wheel topol-

ogy. This image depicts a spoke arrangement with complexity three (b = 3) and a non-zero spoke

angle, α, coming off the inner circle. The spokes can have several unique spoke angles where the

value depends on the radius of the inner circle, the radius of the outer circle, and the complexity of

the topology. The inner ring of nodes are numbered so that the first half of those nodes would be

on the top half of the axle in three-dimensions. The second half of the inner ring of nodes would be

on the bottom half of the axle in three-dimensions. The outer ring of nodes are numbered so that

the first node will connect to the first node on the inner ring, the second node would be connected

to the second inner ring node, and so on until the last outer ring node. The strings are numbered

by starting at the first node and the string vectors always start at the higher number node and point

towards the lower numbered node.
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Figure 2.3: Bicycle wheel of complexity three with a non-zero spoke angle

2.1.2.1 Nodal Matrix

The total number of inner nodes is equal to 4b. Dividing 2π by 4b results in the angle between

the inner ring nodes and outer ring nodes for the bicycle spokes shown in 2.20.

ϕ =
π

2b
(2.20)

The matrix describing the first set of inner nodes of the bicycle spokes is given below by (2.21),

where r is the radius of the inner ring. The fist node starts at an angle of 0, the second node has an

angle of 2ϕ, and so on until the final node of this set is at an angle of 2(b− 1)ϕ, where ϕ is defined

positive in the counter-clockwise direction.
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NI1 =


r cos(0) r cos(2ϕ) · · · r cos(2(b− 1)ϕ)

r sin(0) r sin(2ϕ) · · · r sin(2(b− 1)ϕ)

0 0 · · · 0

 (2.21)

The matrix describing the second set of inner nodes of the bicycle spokes is given below by

(2.22). The radius to the second set of inner nodes is also r. The fist node starts at an angle of

ϕ, the second node has an angle of 3ϕ, and so on until the final node of this set is at an angle of

(4b− 1)ϕ.

NI2 =


r cos(ϕ) r cos(3ϕ) · · · r cos((4b− 1)ϕ)

r sin(ϕ) r sin(3ϕ) · · · r sin((4b− 1)ϕ)

0 0 · · · 0

 (2.22)

The angle the spokes make with respect to the tangential line from the inner ring will be called

the spoke angle, α. This angle must be between 0 and π
2
. This is shown below in Figure 2.4.

Figure 2.4: The angle of the spoke relative to the hub and the limits of its magnitude

16



The matrices describing the outer nodes along the rim of the bicycle wheel are shown below in

(2.23) and (2.24), where R is the radius of the outer ring or the rim of the wheel.

NO1 =


R cos(0 + 2iϕ) R cos(2ϕ− 2iϕ) · · · R cos(2(b− 1)ϕ+ 2iϕ)

R sin(0 + 2iϕ) R sin(2ϕ− 2iϕ) · · · R sin(2(b− 1)ϕ+ 2iϕ)

0 0 · · · 0

 (2.23)

NO2 =


R cos(ϕ+ 2iϕ) R cos(3ϕ− 2iϕ) · · · R cos((4b− 1)ϕ+ 2iϕ)

R sin(ϕ+ 2iϕ) R sin(3ϕ− 2iϕ) · · · R sin((4b− 1)ϕ+ 2iϕ)

0 0 · · · 0

 (2.24)

The angle index, i, can be any positive integer including zero as long as (2.25) is less than or

equal to π
2
.

α = arctan

(
R sin(2iϕ)

R cos(2iϕ)− r

)
(2.25)

The final nodal matrix describing all the nodes for the bicycle wheel topology is given below

in (2.26) and the size of this matrix is shown in (2.27).

N =

[
NI1 NI2 NO1 NO2

]
(2.26)

N ∈ ℜ3×8b (2.27)

2.1.2.2 Connectivity Matrices

Using the numbering system shown in Figure 2.3, the string connectivity matrix can be written

as follows. The columns of the matrix shown below in (2.28) represent the vectors of each string

and the rows represent the nodes of the structure. For this specific topology, the matrix is made of
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an identity matrix of size 4b and a negative identity matrix of the same size placed below it. The

size of this matrix is a 8b×4b matrix where b is the complexity of the topology and is shown below

in (2.29).

CT
S =

 I4b

−I4b

 (2.28)

CT
S ∈ ℜ8b×4b (2.29)

2.1.3 Rim Type 1

Figure 2.5 shows the numbering system for the nodes and bars for the bicycle rim topology.

This image shows a complexity of two (q = 6). The angle between each node is ϕ and that angle

is shown in the same figure. The numbering system for the bars starts from the second node and

points towards the first node for bar one. The numbering continues counter clock-wise around

the polygon in the same fashion by starting from the higher numbered node and pointing to the

lower number node until the last bar in the polygon. This last bar starts at the first node and points

towards the last node and this is done to keep the direction of the bar vectors consistent.
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Figure 2.5: Bicycle rim topology of complexity 6

2.1.3.1 Rim Type 1 Nodal Matrix

The matrix describing all the nodes for the bicycle rim topology is given by (2.34) and the size

of the matrix is shown in (2.31). The radius of the circle that the nodes are attached to is R. The

fist node starts at an angle of 0, the second node has an angle of ϕ, and so on until the final node

of this set is at an angle of (q + 1)ϕ, where ϕ is defined to be positive in the counter-clockwise

direction.

N =


R cos(0) R cos(ϕ) · · · R cos((q + 1)ϕ)

R sin(0) R sin(ϕ) · · · R sin((q + 1)ϕ)

0 0 · · · 0

 (2.30)

N ∈ ℜ3×(q+2) (2.31)
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2.1.3.2 Rim Type 1 Connectivity Matrix

The numbering system shown in Figure 2.5 is used to write the connectivity matrix for the bars

of the bicycle rim topology. Using that numbering system leads to (2.32). A diagonal of ones

are placed on the main diagonal of the matrix and negative ones are placed on the off diagonal as

shown. For the last bar, a negative one is placed in the top right corner of the matrix. The size of

this matrix is shown below in (2.33).

CT
B =



1 0 0 −1

−1 1 0 0

0
. . . . . . 0

0 0 −1 1


(2.32)

CT
B ∈ ℜ(q+2)×(q+2) (2.33)

2.1.4 Rim Type 2

Figure 2.6 shows the numbering system for the nodes and bars for the second bicycle rim

topology. This image shows a complexity of two (q = 2). The angle between each node is ϕ

and that angle is shown in the same figure. This rim is created by taking an n-sided polygon and

duplicating it and rotating the duplication such that the nodes split the angles between nodes of the

first polygon in two. The nodes are then connected along the circumference by more bars. This

rim type is only used for the centrifugal force and tangential force due to torque load case for the

bicycle wheel. The bicycle wheel is not stable for that load case when using rim type 1.
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Figure 2.6: Bicycle rim type 2 topology of complexity 2

2.1.4.1 Rim Type 2 Nodal Matrix

The matrix describing all the nodes for the bicycle rim topology is given by (2.34) and the size

of the matrix is shown in (2.31). The radius of the circle that the nodes are attached to is R. The

fist node starts at an angle of 0, the second node has an angle of ϕ, and so on until the final node

of this set is at an angle of (4q − 1)ϕ, where ϕ is defined to be positive in the counter-clockwise

direction.

N =


R cos(0) R cos(ϕ) · · · R cos((4q − 1)ϕ)

R sin(0) R sin(ϕ) · · · R sin((4q − 1)ϕ)

0 0 · · · 0

 (2.34)

2.1.4.2 Rim Type 1 Connectivity Matrix

The numbering system shown in Figure 2.6 is used to write the connectivity matrix for the bars

of the bicycle rim type 2 topology. Using that numbering system leads to (2.35). The size of this

matrix is shown below in (2.36).
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CT
B =



1 0 0 0 −1 1 0 0 −1 0

−1 1 0 0 0 0 1 0 0 −1

0
. . . . . . 0 0 −1 0

. . . 0 0

0 0
. . . . . . 0 0

. . . 0
. . . 0

0 0 0 −1 1 0 0 −1 0 1


(2.35)

CT
B ∈ ℜ4q×8q (2.36)

2.2 Static Load Cases

This section will discuss the two static load cases that will be applied to each of the wheels

discussed in the previous section. The forces that will be discussed are really dynamic forces, but

they will be applied at a snapshot in time. The first load case will be the centrifugal forces applied

to each node of the structure due to the wheel spinning about its own axle. The second load case

will be the centrifugal forces and the tangential forces due to the change in rotational velocity from

the torque applied to the axle of the wheel. For each wheel, the mass of the rim (shown in blue in

the images below) is evenly divided by the number of nodes that are coincident with the rim. For

each wheel, each of the string masses are divided by two and placed at each of the two nodes that

defines each string. The external force matrix, W, will be shown below for each of the load cases

for each of the wheels.

2.2.1 Spiral Wheel

2.2.1.1 Centrifugal Force

The mass of the rim will be split evenly between the p number of nodes that lie on the circle

with radius equal to r0. The mass of each string is divided by two and the mass is distributed to

the two nodes the string is connected to. For the first set of nodes, this is done by taking the total

mass of the strings that lie between r0 and r1, which will be referred to as mstotal1
, and dividing by

the total number of strings that lie between those radii which is equal to 2p. The centrifugal force
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on each node that lies on that circle is shown below in (2.37), where ω is the angular rate about the

axle of the wheel.

c0 =
r0ω

2

p

(
mr +

mstotal1

2

)
(2.37)

For the nodes that lie on the circle with radius equal to r1, the total mass of the strings between

r1 and r2 and the total mass of the strings between r0 and r1 are both divided by 2p. These total

masses will be referred to as mstotal2
and mstotal1

respectively. The centrifugal force on each node

that lies on that circle is shown below in (2.38).

c1 =
r1ω

2

2p

(
mstotal1

+mstotal2

)
(2.38)

Following the procedure for (2.38), a general equation for the centrifugal force can be written

for the nodes that are within the outer radius of the wheel. The radius rq is not considered since

those nodes are fixed to the axle of the wheel. Shown below in (2.39), is the general equation.

cq−1 =
rq−1ω

2

2p

(
mstotalq−2

+mstotalq−1

)
(2.39)

The external force matrix for this load case is shown below in (2.40). This is compiled by taking

the scalar equations derived in this section and multiplying by the corresponding segmentation of

N where each column of N is now a unit vector. The final segmentation of the external force matrix

is equal to zero due to the nodes on the axle being fixed.

WC =

[
c0R̂0

... c1R̂1
... · · · ... cq−1R̂q−1

... 0
]

(2.40)

An example of the unit vector segmentation is shown below in (2.41). This example uses (2.10)

where each column is now a unit vector. This is done for all other segmentations of (2.13) as well.
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R̂0 =


cos(0) cos(2ϕ) · · · cos(2(p− 1)ϕ)

sin(0) sin(2ϕ) · · · sin(2(p− 1)ϕ)

0 0 · · · 0

 (2.41)

Figure 2.7: Spiral wheel with the centrifugal forces applied statically

2.2.1.2 Centrifugal Force And Tangential Force Due To Torque

The mass of the rim and the strings is distributed to the nodes of the wheel in the same manner

as for the centrifugal forces. The tangential force, due to applied torque on the axle of the wheel,

for the nodes that lie on that circle that has a radius equal to r0 is shown below in (2.42), where τ
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is the torque applied about the axle of the wheel and I is the sum of the inertia of the rim and the

strings.

t0 =
r0τ

pI

(
mr +

mstotal1

2

)
(2.42)

The tangential force on each node that lies on the circle with a radius equal to r1 is shown

below in (2.43).

t1 =
r1τ

2pI

(
mstotal1

+mstotal2

)
(2.43)

The general equation for the tangential force can be written for the nodes that are within the

outer radius of the wheel. The radius rq is not considered since those nodes are fixed to the axle of

the wheel similar to the centrifugal force. Shown below in (2.44), is the general equation.

tq−1 =
rq−1τ

2pI

(
mstotalq−2

+mstotalq−1

)
(2.44)

The external force matrix for the tangential force is shown below in (2.45). This is compiled by

taking the scalar equations derived in this section and multiplying by the corresponding segmen-

tation of N where each column of N is now a unit vector. The final segmentation of the external

force matrix is equal to zero due to the nodes on the axle being fixed. The unit vectors are rotated

ninety degrees so that the tangential force is perpendicular to the centrifugal force. This is done

by pre-multiplying the unit vectors by the direction cosine matrix for a ninety degree rotation, D,

for either a positive or negative rotation depending on the direction of the applied torque about the

axle of the wheel.

WT =

[
t0DR̂0

... t1DR̂1
... · · · ... tq−1DR̂q−1

... 0
]

(2.45)

The total external force matrix for this load case is given by adding (2.40) to (2.45) and is

shown below in (2.46).
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W = WC + WT (2.46)

Figure 2.8: Spiral wheel with the centrifugal forces and tangential force due to torque applied
statically

2.2.2 Bicycle Wheel

2.2.2.1 Centrifugal Force

The mass of the rim will be split evenly between the 4b number of nodes that lie on the circle

with radius equal to R. The mass of each string is divided by two and the mass is distributed to the

two nodes the string is connected to. This is done by taking the total mass of the strings, mstotal ,
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and dividing by the total number of strings which is equal to 4b. The centrifugal force on each

node that lies on that circle is shown below in (2.47), where ω is the angular rate about the axle of

the wheel.

c =
Rω2

4b

(
mr +mstotal

)
(2.47)

The external force matrix for this load case is shown below in (2.48). This is compiled by taking

the scalar equations derived in this section and multiplying by the corresponding segmentation of

N where each column of N is now a unit vector. The first two segmentations of the external force

matrix are equal to zero due to the nodes on the axle being fixed.

WC =

[
0 0 cN̂01 cN̂02

]
(2.48)

An example of the unit vector segmentation is shown below in (2.49). This example uses (2.23)

where each column is now a unit vector. This is done for the other segmentation of outer nodes as

well.

N̂O1 =


cos(0 + 2iϕ) cos(2ϕ− 2iϕ) · · · cos(2(b− 1)ϕ+ 2iϕ)

sin(0 + 2iϕ) sin(2ϕ− 2iϕ) · · · sin(2(b− 1)ϕ+ 2iϕ)

0 0 · · · 0

 (2.49)
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Figure 2.9: Bicycle wheel with the centrifugal forces applied statically

2.2.2.2 Centrifugal Force And Tangential Force Due To Torque

The mass of the rim and the strings is distributed to the nodes of the wheel in the same manner

as for the centrifugal forces. The tangential force, due to applied torque on the axle of the wheel,

for the nodes that lie on that circle that has a radius equal to R is shown below in (2.50), where τ

is the torque applied about the axle of the wheel and I is the sum of the inertia of the rim and the

strings.

t =
Rτ

4bI

(
mr +mstotal

)
(2.50)

The external force matrix for the tangential force is shown below in (2.51). This is compiled by
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taking the scalar equation derived in this section and multiplying by the corresponding segmenta-

tion of N where each column of N is now a unit vector. The first two segmentations of the external

force matrix are equal to zero due to the nodes on the axle being fixed. The unit vectors are rotated

ninety degrees so that the tangential force is perpendicular to the centrifugal force. This is done

by pre-multiplying the unit vectors by the direction cosine matrix for a ninety degree rotation, D,

for either a positive or negative rotation depending on the direction of the applied torque about the

axle of the wheel.

WT =

[
0 0 tDN̂01 tDN̂02

]
(2.51)

The total external force matrix for this load case is given by adding (2.48) to (2.51) and is

shown below in (2.52).

W = WC + WT (2.52)
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Figure 2.10: Bicycle wheel with the centrifugal forces and tangential force due to torque applied
statically

2.3 Algorithm To Minimize Mass Subject To An Angular Momentum Constraint

An algorithm to minimize the mass of a tensegrity wheel subject to the static equilibrium

equation and an angular momentum constraint will be presented in this section. A flowchart of the

algorithm is shown in Figure 2.11. The next sections will describe each box of this flowchart in

detail.
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Figure 2.11: Flowchart describing the algorithm to minimize the mass of a tensegrity wheel

2.3.1 Varying The Topology Parameters

The algorithm begins by picking the topology parameters. For the spiral wheel, the parameters

p and q are chosen. The radial complexity must be equal to or greater than one. The circumfer-

ential complexity p must be greater than or equal to three for stability. For the bicycle wheel, the

complexity b and the spoke angle index can be varied and a pair is chosen at the beginning of the

algorithm. Both the complexity of the bicycle wheel and the spoke angle index must be greater

than or equal to one. For each of the topologies, the rim topology discussed in 2.1.3 is augmented

utilizing the algorithm presented in Appendix B. After the algorithm finishes for the chosen pair,

other pairs can be chosen to compare the minimum mass to find the overall minimum mass to find

the optimal topology configuration for both the spiral wheel and the bicycle wheel.

2.3.2 Guessing On The Rim Mass

After a topology has been defined, a guess for the rim mass is needed to determine the forces

that will be applied on the nodes along the circumference of the structure from the centrifugal

forces. An angular momentum output is chosen based upon the control needs for the spacecraft.

This angular momentum requirement will be referred to as h̄. The angular momentum of the rim

is equal to the inertia of the rim multiplied by the angular rate. For a thin hoop, the inertia is equal

to the mass of the rim multiplied by the outer radius squared and is shown below in (2.53).
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h̄ = Iω = mrr
2
0ω (2.53)

The angular rate is chosen by the control needs of the spacecraft and restrictions on the dimen-

sions of the flywheel itself. Solving for the mass of the rim results in (2.54). This will serve as the

initial guess for the rim mass for the algorithm and will change on each iteration of the algorithm

until convergence.

mr =
h̄

ωr20
(2.54)

2.3.3 Minimizing The Mass Of The Structure

The mass minimimization process will be taken form Theorem 6.1 from [1] and will be sum-

marized here. First consider a tensegrity system described by (2.55) - (2.57).

B = NCT
B (2.55)

S = NCT
S (2.56)

Sγ̂CS −Bλ̂CB = W (2.57)

Suppose the system is at an equilibrium in the given configuration N with an external force

W . The minimal mass structure under a yield stress constraint is given by the solution of the linear

problem shown below

minimize
x

m̄ = cTx, subject to Ax = w and x ≥ x0, (2.58)

where
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x = [λ1 · · ·λnb
|γ1 · · · γns ]

T (2.59)

cT = [cb1 · · · cbnb
|cs1 · · · csns

] (2.60)

A = [−(CT
B ⊗ I3)B̂ (CT

S ⊗ I3)Ŝ] (2.61)

where cbi = ρbib
2
i /σbi , csi = ρsis

2
i /σsi , B̂ = b.d.(b1, · · · , bnb

), Ŝ = b.d.(s1, · · · , sns), and x0 ≥

0 is a constant vector. Cross-section area of each member is given by (2.61), and the total mass m

is given by the sum of the mass of the bars and the strings shown below in (2.62).

m = mb +ms =

nb∑
i=1

ρbiAbibi +
ns∑
i=1

ρsiAsisi (2.62)

where bi = ||bi||, si = ||si|| are the lengths of the members of the bars and strings respectively

and ρbi and ρsi are the mass densities. The initial force matrix W only has forces on the outer

nodes of the structure for both the spiral wheel and bicycle wheel topologies. For the bicycle

wheel, the force matrices that were derived will remain the same, but for the spiral wheel the force

matrices will be reduced to (2.63) and (2.64) shown below.

WC =

[
c0R̂0

... 0
... · · · ... 0

]
(2.63)

WT =

[
t0DR̂0

... 0
... · · · ... 0

]
(2.64)

Now the linear programming problem can be solved and the minimum mass for the chosen

loading condition is found. Now that the mass of the strings are known, the mass of the structure

can be taken into account in the force matrix.
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2.3.4 Equate Maximum String Mass For All Strings In Each Segmentation

Depending on the load case, the mass of the strings after the minimization process could be

unsymmetrical. For example, for the centrifugal plus torque load case the strings that take the

tangential force load will have a higher mass than the strings that would take the load if the torque

was applied in the opposite direction. To rectify this, the max mass of all the strings for each

segmentation is taken and the mass of all the strings in that segmentation are set equal to that

maximum value.

2.3.5 Applying Forces On All Nodes

After the mass of each string is found from the mass minimization process in the previous

section, forces can be applied to every node of the structure using the mass of the structure itself.

After these forces are added, the mass minimization problem is solved again. This will result

in a different mass for the strings and the new added mass will need to be accounted for again.

This process is performed iteratively until the mass of the structure changes within some specified

tolerance. Once the difference between successive iterations is within that tolerance, the algorithm

continues to the next block in the diagram.

2.3.6 Total Angular Momentum

The total angular momentum of the wheel will now be calculated to be compared to the an-

gular momentum constraint. To do this, the total moment of inertia of the wheel must be derived

including the rim, strings, and axle. The total angular momentum is shown below in (2.65) for

both the spiral wheel and the bicycle wheel.

h = (Is + Ir + Ia)ω (2.65)

2.3.6.1 Moment Of Inertia Of The Spiral Wheel

The total moment of inertia of the strings of the spiral wheel is shown below in (2.66).
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Is =
ns∑
i=1

1

12
msi∥si∥

2 +

q∑
j=1

1

4
mstotalj

(rj−1 + rj)
2 (2.66)

The moment of inertia of the rim of the spiral wheel is shown below in (2.67).

Ir = mrr
2
0 (2.67)

The moment of inertia of the axle of the spiral wheel is shown below in (2.68).

Ia =
1

2
mrr

2
q (2.68)

2.3.6.2 Moment Of Inertia Of The Bicycle Wheel

The total moment of inertia of the strings of the bicycle wheel is shown below in (2.69).

Is =
ns∑
i=1

1

12
msi∥si∥

2 +
1

2
msi(r +R)2 (2.69)

The moment of inertia of the rim of the bicycle wheel is shown below in (2.70).

Ir = mrR
2 (2.70)

The moment of inertia of the axle of the bicycle wheel is shown below in (2.71).

Ia =
1

2
mrr

2 (2.71)

2.3.7 Loop Exit Criteria

Once the absolute value of the difference between the angular momentum constraint and the

total angular momentum of the wheel is within a specified tolerance, the loop exits and the final

design of the wheel for the specified topology configuration is completed. The criteria is shown

below in (2.72). If the criteria is not met, the algorithm caries on to the next step.
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∣∣h̄− h
∣∣ < ϵ (2.72)

2.3.8 New Rim Mass Guess

If the total angular momentum is greater than the angular momentum constraint, then the initial

rim mass guess is decreased. If the total angular momentum is less than the angular momentum

constraint, then the initial rim mass guess is increased. The initial rim mass guess is multiplied by

the ratio of the angular momentum constraint divided by the total angular momentum of the wheel

shown below in (2.73)

mri+1
=

h̄

h
mri (2.73)

2.4 Results

Using the algorithm developed in the previous section, the spiral tensegrity wheel and the bicy-

cle wheel were optimized. The inputs into the algorithm were chosen to match the flywheel from

the CMGs on the ISS from the introduction chapter as closely as possible. The table shown below

lists the input parameters for the dimensions of the wheel, the angular momentum requirement, the

angular rate of the wheel, and the torque that is applied to the wheel. The inner radius of the wheel

was chosen to be as small as possible due to the mass optimal wheel having the smallest possible

axis.
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Table 2.1: Input parameters for the topology optimization

Parameters Values

ω̄ (RPM) 6600

h̄ (N*m*s) 4760

R (m) 0.37

rq/r (m) 0.01

τ (N*m) 258

Two different material combinations between the rim and the strings were used. The first com-

bination (Selection #1) uses Type 321 Stainless Steel for the rim and Spectra Fiber for the strings.

The material properties for this selection is shown below in Table 2.2. The second combination

(Selection #2) uses tungsten alloy K1850 for the rim and Ti-6Al-4V (Grade 5) titanium for the

strings shown below in Table 2.3. The material selection not only results in a difference of mass

for both topologies and both load cases, but also results in a difference in complexity for the opti-

mal structure.

Table 2.2: Material combination selection #1

Parameters Values

ρs 0.97e3 kg
m3

σs 3000e6 Pa

ρb 8.00e3 kg
m3

σb 415e6 Pa
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Table 2.3: Material combination selection #2

Parameters Values

ρs 4.43e3 kg
m3

σs 880e6 Pa

ρb 18.50e3 kg
m3

σb 655e6 Pa

For the centrifugal force load case, the spiral wheel is more mass optimal compared to the

bicycle wheel. This result seems counter intuitive at first. One would think the mass optimal

structure for forces radially outwards would be a structure where the tensile members are also

oriented radially outwards from the spin axis. This would be true if not for the angular momentum

constraint on the optimization process. The reasons for this is the center of mass of the strings of

the spiral wheel are further from the spin axis than the bicycle wheel strings.

The spiral wheel is also the mass optimal structure compared to the bicycle wheel for the

centrifugal force and torque load case. This result was expected due to the ideal torque properties

from the Michell Truss. The increase in mass is small in comparison to the centrifugal force load

case. The centrifugal forces are significantly more important than the torque.

The tables shown in the following subsections show the optimal complexity highlighted in

green. For some cases, multiple cells are highlighted. For these cases, there are multiple complex-

ity combinations that have the same minimal mass. The lowest complexity was chosen since that

would be the cheapest wheel to manufacture. In future work, other reasons could determine which

of the optimal complexity pairs would be chosen such as dynamic properties or restrictions needed

for deployability of the wheels. The blank cells in the table correspond to complexity pairs that

violate any of the geometric constraints presented earlier in the chapter. The cells filled with ’NS’

or no solution are complexity pairs where the structure does not have a static equilibrium for that
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particular load case. The only table that has ’NS’ in some cells is for the bicycle wheel when a

torque is applied and the complexity pair is one in which the strings are oriented radially outwards

from the spin axis. Gradient tables are shown below to demonstrate how the mass of the wheel

changes with respect to the topology parameters.

2.4.1 Spiral Wheel

2.4.1.1 Centrifugal Force (Material Property Selection #1)

Table 2.4: Final mass of the rim for the spiral wheel (centrifugal force load case / selection #1)
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Table 2.5: Gradient table for the rim mass of the spiral wheel (centrifugal force load case / selection
#1)

Table 2.6: Final mass of the strings for the spiral wheel (centrifugal force load case / selection #1)
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Table 2.7: Gradient table for the string mass of the spiral wheel (centrifugal force load case /
selection #1)

Table 2.8: Final total mass of the spiral wheel (centrifugal force load case / selection #1)
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Table 2.9: Gradient table for the total mass of the spiral wheel (centrifugal force load case / selec-
tion #1)

Figure 2.12: Optimal topology of the spiral wheel (centrifugal force load case / selection #1)

42



2.4.1.2 Centrifugal Force (Material Property Selection #2)

Table 2.10: Final mass of the rim for the spiral wheel (centrifugal force load case / selection #2)

Table 2.11: Gradient table for the rim mass of the spiral wheel (centrifugal force load case /
selection #2)
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Table 2.12: Final mass of the strings for the spiral wheel (centrifugal force load case / selection
#2)

Table 2.13: Gradient table for the string mass of the spiral wheel (centrifugal force load case /
selection #2)
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Table 2.14: Final total mass of the spiral wheel (centrifugal force load case / selection #2)

Table 2.15: Gradient table for the total mass of the spiral wheel (centrifugal force load case /
selection #2)
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Figure 2.13: Optimal topology of the spiral wheel (centrifugal force load case / selection #2)
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2.4.1.3 Centrifugal Force And Torque (Material Property Selection #1)

Table 2.16: Final mass of the rim for the spiral wheel (torque and centrifugal load case / selection
#1)

Table 2.17: Gradient table for the rim mass of the spiral wheel (torque and centrifugal load case /
selection #1)
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Table 2.18: Final mass of the strings for the spiral wheel (torque and centrifugal force load case /
selection #1)

Table 2.19: Gradient table for the string mass of the spiral wheel (torque and centrifugal force load
case / selection #1)
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Table 2.20: Final total mass of the spiral wheel (torque centrifugal force load case / selection #1)

Table 2.21: Gradient table for the total mass of the spiral wheel (torque centrifugal force load case
/ selection #1)
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Figure 2.14: Optimal topology of the spiral wheel (torque and centrifugal force load case / selection
#1)
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2.4.1.4 Centrifugal Force And Torque (Material Property Selection #2)

Table 2.22: Final mass of the rim for the spiral wheel (torque and centrifugal load case / selection
#2)

Table 2.23: Gradient table for the rim mass of the spiral wheel (torque and centrifugal load case /
selection #2)
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Table 2.24: Final mass of the strings for the spiral wheel (torque and centrifugal force load case /
selection #2)

Table 2.25: Gradient table for the string mass of the spiral wheel (torque and centrifugal force load
case / selection #2)
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Table 2.26: Final total mass of the spiral wheel (torque centrifugal force load case / selection #2)

Table 2.27: Gradient table for the total mass of the spiral wheel (torque centrifugal force load case
/ selection #2)
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Figure 2.15: Optimal topology of the spiral wheel (torque and centrifugal force load case / selection
#2)
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2.4.2 Bicycle Wheel

2.4.2.1 Centrifugal Force (Material Property Selection #1)

Table 2.28: Final mass of the rim for the bicycle wheel (centrifugal force load case / selection #1)

Table 2.29: Gradient table for the rim mass of the bicycle wheel (centrifugal force load case /
selection #1)
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Table 2.30: Final mass of the strings for the bicycle wheel (centrifugal force load case / selection
#1)

Table 2.31: Gradient table for the string mass of the bicycle wheel (centrifugal force load case /
selection #1)
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Table 2.32: Final total mass of the bicycle wheel (centrifugal force load case / selection #1)

Table 2.33: Gradient table for the total mass of the bicycle wheel (centrifugal force load case /
selection #1)
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Figure 2.16: Optimal topology of the bicycle wheel (centrifugal force load case / selection #1)

2.4.2.2 Centrifugal Force (Material Property Selection #2)

Table 2.34: Final mass of the rim for the bicycle wheel (centrifugal force load case / selection #2)
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Table 2.35: Gradient table for the rim mass of the bicycle wheel (centrifugal force load case /
selection #2)

Table 2.36: Final mass of the strings for the bicycle wheel (centrifugal force load case / selection
#2)
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Table 2.37: Gradient table for the string mass of the bicycle wheel (centrifugal force load case /
selection #2)

Table 2.38: Final total mass of the bicycle wheel (centrifugal force load case / selection #2)
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Table 2.39: Gradient table for the total mass of the bicycle wheel (centrifugal force load case /
selection #2)

Figure 2.17: Optimal topology of the bicycle wheel (centrifugal force load case / selection #2)

61



2.4.2.3 Centrifugal Force And Torque (Material Property Selection #1)

Table 2.40: Final mass of the rim for the bicycle wheel (torque and centrifugal force load case /
selection #1)

Table 2.41: Gradient table for the rim mass of the bicycle wheel (torque and centrifugal force load
case / selection #1)

62



Table 2.42: Final mass of the strings for the bicycle wheel (torque and centrifugal force load case
/ selection #1)

Table 2.43: Gradient table for the string mass of the bicycle wheel (torque and centrifugal force
load case / selection #1)
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Table 2.44: Final total mass of the bicycle wheel (torque and centrifugal force load case / selection
#1)

Table 2.45: Gradient table for the total mass of the bicycle wheel (torque and centrifugal force load
case / selection #1)
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Figure 2.18: Optimal topology of the bicycle wheel (torque and centrifugal force load case / selec-
tion #1)
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2.4.2.4 Centrifugal Force And Torque (Material Property Selection #2)

Table 2.46: Final mass of the rim for the bicycle wheel (torque and centrifugal force load case /
selection #2)

Table 2.47: Gradient table for the rim mass of the bicycle wheel (torque and centrifugal force load
case / selection #2)
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Table 2.48: Final mass of the strings for the bicycle wheel (torque and centrifugal force load case
/ selection #2)

Table 2.49: Gradient table for the string mass of the bicycle wheel (torque and centrifugal force
load case / selection #2)
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Table 2.50: Final total mass of the bicycle wheel (torque and centrifugal force load case / selection
#2)

Table 2.51: Gradient table for the total mass of the bicycle wheel (torque and centrifugal force load
case / selection #2)
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Figure 2.19: Optimal topology of the bicycle wheel (torque and centrifugal force load case / selec-
tion #2)

2.5 Joint Mass Penalty

Adding mass to the joints would increase the mass of each wheel. Enough mass would need

to be used so that the joints are strong enough to endure the loads to manufacture the wheels. A

joint mass penalty was not added to the results shown in the previous section. With that increase

in mass the mass of either the rim or the strings or both would need to decrease so that the angular

momentum of the wheel doesn’t overshoot the requirement. This should result in a slight increase

in the overall mass than what was presented in the previous section. Although the spiral wheel

has more joints than the bicycle wheel the overall results on which wheel is more optimal should

remain the same. The reasoning is the same as why the spiral wheel is mass optimal compared to

the bicycle wheel when there is an angular momentum constraint. The mass increase due to the
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joints increases the inertia of the spiral wheel more so than the bicycle wheel.

2.6 Summary

The two-dimensional mass optimized design for a flywheel for use in a reaction wheel is per-

formed in this chapter. First, two separate topologies were defined by deriving their connectivity

matrices and nodal matrices. Two rim topologies were defined to combine with the spiral wheel

and bicycle wheel topologies. Second, the two static load cases were defined for both the spiral

and bicycle wheel topologies. The centrifugal force load case and the centrifugal force plus torque

load case external force matrices were defined. Third, the algorithm created to minimize the mass

of the wheel subject to an angular momentum constraint was outlined. Finally, the results from

the algorithm were outlined for both topologies that influence the topology choices for the three-

dimensional design of the wheel. The results show that for the two-dimensional wheel, the spiral

tensegrity wheel is approximately 45-49% less massive compared to the flywheels used for the

CMGs on the ISS for similar design constraints. The design of the wheel will be carried out in the

next chapter to explore if the mass savings are still significant in three-dimensions.
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3. THREE-DIMENSIONAL DESIGN

This chapter will characterize the nodal and connectivity matrices for a combination of the

spiral wheel, bicycle wheel, and rim topologies discussed in Chapter 2. The load case utilizing the

combination of the centrifugal forces and the forces due to an out of plane torque will be analyzed.

The results in this chapter will show the combination of the spiral wheel and the bicycle wheel is a

more optimal structure for minimal mass when compared to a solid wheel when a combination of

centrifugal forces and torque are applied.

3.1 Topology

This section will describe one topology that will be used to design a minimal mass CMG in

three-dimensions. The nodal matrix and the bar and string connectivity matrices will be defined

for both the spiral wheel and the bicycle wheel. These topologies will be augmented with the rim

topology from Chapter 2 utilizing the algorithm from Appendix B. The angle between nodes for

the spiral wheel and the bicycle wheel will be set equal with one multiplied by a positive integer.

The circumferential complexity of the spiral wheel will be equal to a coefficient multiplied by the

complexity of the bicycle wheel. This eliminates one degree of freedom in the optimization process

as well as keeps an even spacing between the nodes that lie on the rim of the wheel. This allows the

rim topology to easily be augmented with the combination of the spiral wheel and bicycle wheel.

Shown below in (3.1) is the angle between nodes for the spiral wheel, ϕS , set equal to the angle

between nodes for the bicycle wheel, ϕB, multiplied by a positive integer, j. This integer allows

freedom between the two complexities while keeping an equal spacing between the nodes that lie

on the rim of the wheel.

jϕS = ϕB (3.1)

Substituting ϕS and ϕB with (2.6) and (2.20) respectively results in (3.2) shown below.
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jπ

p
=

π

2b
(3.2)

Solving for p results in (3.3).

p = 2jb (3.3)

The angle between nodes will now lose the subscript for this chapter and will only be referred

to as ϕ.

3.1.1 Spiral Wheel

The nodal and connectivity matrix for the spiral wheel will be the same as it was in the previous

chapter. As seen in the results section from the previous chapter, the spiral wheel is more optimal

than the bicycle wheel when only centrifugal forces are applied or when centrifugal forces plus a

torque are applied for two-dimensions. For this reason the only strings in the x/y plane for this

three-dimensional topology will be from the spiral wheel. For out of plane stiffness, the bicycle

wheel topology will be used.

3.1.2 Bicycle Wheel

For out of plane stiffness, the three-dimensional bicycle wheel will be used. Figure 2.3 shows

the numbering system for the nodes and strings for the bicycle wheel topology in three-dimensions.

This image depicts a spoke arrangement with complexity three (q = 3) and a zero spoke angle, α,

coming off the inner circle. Since the spiral wheel is more optimal for torques about the longitudi-

nal axis of the wheel, the spoke angle will be set to zero in three-dimensions. Just like the bicycle

wheel in two-dimensions, the inner ring of nodes are numbered so that the first half of those nodes

would be on the top half of the axle. The second half of the inner ring of nodes will be on the

bottom half of the axle. All of the inner node matrices and outer node matrices are different due to

the axle having a non-zero length and the spoke angle being set to zero. The connectivity matrix

will be exactly the same as it was in two-dimensions.
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3.1.2.1 Nodal Matrix

The matrix describing the first set of inner nodes of the bicycle spokes is given below by (3.4),

where L is the length of the axle.

NI1 =


r cos(0) r cos(2ϕ) · · · r cos(2(q − 1)ϕ)

r sin(0) r sin(2ϕ) · · · r sin(2(q − 1)ϕ)

L
2

L
2

· · · L
2

 (3.4)

The matrix describing the second set of inner nodes of the bicycle spokes is given below by

(3.5).

NI2 =


r cos(ϕ) r cos(3ϕ) · · · r cos((4q − 1)ϕ)

r sin(ϕ) r sin(3ϕ) · · · r sin((4q − 1)ϕ)

−L
2

−L
2

· · · −L
2

 (3.5)

The matrices describing the outer nodes along the rim of the bicycle wheel are shown below in

(3.6) and (3.7). These equations differ from the ones in Chapter 2 because the spoke angle index

is set to zero.

NO1 =


R cos(0) R cos(2ϕ) · · · R cos(2(q − 1)ϕ)

R sin(0) R sin(2ϕ) · · · R sin(2(q − 1)ϕ)

0 0 · · · 0

 (3.6)

NO2 =


R cos(ϕ) R cos(3ϕ) · · · R cos((4q − 1)ϕ)

R sin(ϕ) R sin(3ϕ) · · · R sin((4q − 1)ϕ)

0 0 · · · 0

 (3.7)

3.2 Static Load Cases

This section will discuss the static load case that will be applied to the three-dimensional wheel

discussed in the previous section. The load case will consist of centrifugal forces and an out of
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plane force perpendicular to the x/y plane due to changing the direction of the angular momentum

vector. The mass of the rim (shown in blue in the images below) is evenly divided by the number

of nodes that are coincident with the rim. Each of the string masses are divided by two and placed

at each of the two nodes that defines each string. The external force matrix, W, will be shown

below for each of the load cases for each of the wheels.

3.2.1 Centrifugal Force And Torque

The centrifugal force portion of the external force matrix for the three-dimensional wheel will

be equal to the two-dimensional spiral wheel external force matrix other than adding the mass from

the added bicycle strings into c0 shown below in 3.8. The equations for c1 through cq−1 remain

unchanged as well as the external force matrix for the centrifugal forces, WC .

c0 =
r0ω

2

p

(
mr +

mstotal1
+msbicycle

2

)
(3.8)

The torque applied to the wheel is now applied out of the plane as if the wheel was being

used as a CMG. The force on the nodes due to this torque is only applied to the nodes that lie

on the outer rim of the wheel instead of to every node like in the two-dimensional case. This is

due to the nodes of the spiral portion of the wheel being unable to be in equilibrium when a force

perpendicular to the plane the wheel lies in is applied. In reality, the strings that make up the spiral

portion of the wheel would have some bending stiffness that could accommodate these out of plane

forces. The bending stiffness of the strings is not modeled, but these forces are much smaller than

the centrifugal forces and even the out of plane forces applied to the nodes on the outer rim. It is

assumed that the increase of mass of the wheel due to these out of plane forces is negligible.

The mass of the rim and the strings is distributed to the nodes of the wheel similarly as in

Chapter 2 for the spiral wheel, but now with the addition of the mass of the bicycle strings. The

force is now dependent on the perpendicular distance from the axis the wheel is being torqued

about. For the equations to follow, it is assumed that axis is the y-axis of the wheel. The minimal

mass results are independent of the choice of axis. The out of plane force for the nodes that lie on
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the circle that has a radius equal to r0 is shown below in (3.9).

t0 =
τ

pI

(
mr +

mstotal1
+msbicycle

2

)
(3.9)

WT =

[
0 t0 0

]T [
N11 , N12 , · · · , N1p , 0

]
(3.10)

3.3 Results

Using the algorithm developed in the previous chapter, the three-dimensional tensegrity wheel

was optimized. The inputs into the algorithm were chosen to match the flywheel from the CMGs

on the ISS from the introduction chapter as closely as possible. The table shown below lists the

input parameters for the dimensions of the wheel, the angular momentum requirement, the angular

rate of the wheel, and the torque that is applied to the wheel. The inner radius of the wheel was

chosen to be as small as possible due to the mass optimal wheel having the smallest possible axis.

The length of the axle was chosen arbitrarily, but intuitively the axle length would be as short as

possible for minimal mass for this optimization process. Although this might not be the case when

the dynamics of the wheel are considered since the out of plane stiffness would be a function of

the axle length.

Table 3.1: Input parameters for the topology optimization

Parameters Values

ω̄ (RPM) 6600

h̄ (N*m*s) 4760

R (m) 0.37

rq/r (m) 0.01

τ (N*m) 258

75



Two different material combinations between the rim and the strings were used. The first com-

bination (Selection #1) uses Type 321 Stainless Steel for the rim and Spectra Fiber for the strings.

The material properties for this selection is shown below in Table 3.2. The second combination

(Selection #2) uses tungsten alloy K1850 for the rim and Ti-6Al-4V (Grade 5) titanium for the

strings shown below in Table 3.3. The material selection not only results in a difference of mass

for both topologies and both load cases, but also results in a difference in complexity for the opti-

mal structure.

Table 3.2: Material combination selection #1

Parameters Values

ρs 0.97e3 kg
m3

σs 3000e6 Pa

ρb 8.00e3 kg
m3

σb 415e6 Pa

Table 3.3: Material combination selection #2

Parameters Values

ρs 4.43e3 kg
m3

σs 880e6 Pa

ρb 18.50e3 kg
m3

σb 655e6 Pa

The tables shown in the following subsections show the optimal complexity highlighted in
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green. For material property selection #2, the optimal complexity for the circumferential complex-

ity is small. The algorithm only applies forces to the nodes on the rim that are connected to the

strings. In reality, there would be forces applied to the rim in between these points. The bending

moment due to these forces is not accounted for. The box highlighted yellow is a topology with

slightly more mass, but with more points attached to the rim and would more closely match the

assumption that a bending moment isn’t applied to any of the members. The blank cells in the table

correspond to complexity pairs that violate any of the geometric constraints presented earlier in the

chapter. The cells filled with ’NS’ or no solution are complexity pairs where the structure does not

have a static equilibrium for that particular load case. The only table that has ’NS’ in some cells is

for the bicycle wheel when a torque is applied and the complexity pair is one in which the strings

are oriented radially outwards from the spin axis.

3.3.0.1 Centrifugal Force And Torque (Material Property Selection #1)

Table 3.4: Final mass of the rim for the three-dimensional wheel (selection #1)

77



Table 3.5: Gradient table for the rim mass of the three-dimensional wheel (selection #1)

Table 3.6: Final mass of the strings for the three-dimensional wheel (selection #1)
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Table 3.7: Gradient table for the string mass of the three-dimensional wheel (selection #1)

Table 3.8: Final total mass of the three-dimensional wheel (selection #1)
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Table 3.9: Gradient table for the total mass of the three-dimensional wheel (selection #1)

Figure 3.1: Optimal topology of the three-dimensional wheel (top view / selection #1)
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Figure 3.2: Optimal topology of the three-dimensional wheel (side view / selection #1)
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3.3.0.2 Centrifugal Force And Torque (Material Property Selection #2)

Table 3.10: Final mass of the rim for the three-dimensional wheel (selection #2)

Table 3.11: Gradient table for the rim mass of the three-dimensional wheel (selection #2)
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Table 3.12: Final mass of the strings for the three-dimensional wheel (selection #2)

Table 3.13: Gradient table for the string mass of the three-dimensional wheel (selection #2)
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Table 3.14: Final total mass of the three-dimensional wheel (selection #2)

Table 3.15: Gradient table for the total mass of the three-dimensional wheel (selection #2)
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Figure 3.3: Optimal topology of the three-dimensional wheel (top view / selection #2)

Figure 3.4: Optimal topology of the three-dimensional wheel (side view / selection #2)
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3.4 Prestress Considerations

So far prestress has not been considered for the strings. Like a bicycle wheel, the strings could

be prestressed before any loads are applied. This would increase the stiffness of the wheel, but

also increase the mass. The bicycle wheel strings could be prestressed independently of the spiral

wheel strings to increase the out of plane stiffness for example. In the future, when the stiffness of

the wheel is considered, the amount of prestress will be an important variable to consider.

3.5 Volume Comparison

Assuming the flyhweel on the ISS is flat and made of stainless steel with the same density

as the stainless steel chosen for the tensegrity wheel, the thickness of the ISS flywheel should be

approximately 0.03 meters. The axle length chosen for the tensegrity wheel is 0.2 meters. The

mass of the tensegrity wheel decreases as the axle length is decreased, but the out of plane stiffness

would also decrease. At the moment the ISS flywheel takes up less volume than the tensegrity

flywheel, but when the stiffness of the tensegrity flywheel is considered the actual needed axle

length will be found. At this time it is difficult to make an accurate volume comparison between

the two wheels.

3.6 Summary

The three-dimensional mass optimized design for a flywheel for use in a CMG is performed in

this chapter. One topology was defined by combining the spiral and bicycle wheel topologies from

the previous chapter using their connectivity matrices and nodal matrices. The first rim topology

from the previous chapter was re-used for the three-dimensional wheel. Second, the static load

cases were defined. A combination of centrifugal force and an out of plane torque was applied

to the wheel. Finally, the results from the algorithm were outlined. The results show that for the

three-dimensional wheel, the tensegrity wheel is approximately 45-49% less massive compared to

the flywheels used for the CMGs on the ISS for similar design constraints.
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4. CONCLUSION

The goal of designing a flywheel for a reaction wheel or a CMG that can produce equivalent

levels of angular momentum and torque while reducing the mass was achieved. The connectivity

matrices and the nodal matrix were derived for the bicycle wheel, spiral wheel, and rim. After the

topologies were defined, the force matrices were defined for two different loading conditions for

each of the different wheel designs. An algorithm to minimize the mass of the topologies subject

to the loading conditions that were defined was created. Finally, the algorithm was used for several

complexity combinations and the minimal mass results were presented. More steps need to be

taken in the future to bring this design from the mass optimized structure presented to a physical

flywheel that can be used with as much confidence as the current solid flywheel designs. The

flexible body dynamics of the mass optimized structures should be examined. It should be expected

that the mass values presented will increase due to the dynamic loads, but there is significant

flexibility in the choice of complexities for the topologies. If the optimal topology from the quasi-

static loads has natural frequencies that are near the frequency of the forcing functions that the

flywheel will experience, there are other topology options that do not substantially increase the

optimal mass. The next step would be to build and test the final topology design. This step would

be needed to verify the accuracy of the analysis and as a proof of concept that a tensegrity flywheel

is capable of producing outputs that match those of the solid flywheel with significant mass savings.
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APPENDIX A

TENSEGRITY TOPOLOGY REPRESENTATION

Tensegrity topologies are defined by a nodal matrix, bar connectivity matrix, and string con-

nectivity matrix. The figure below shows an arbitrary tensegrity system. The red lines represent

strings or members that can only take tension and the blue lines represent bars or members that can

take tension or compression. Let the ith column of the matrix N be the three-dimensional vector

ni corresponding to the ith node in the network. Each of the nb bars will have an assigned vector

name (bi , i = 1 , · · · , nb). The same is done for each of the ns strings (si , i = 1 , · · · , ns).

Let the ith column of the bar matrix B be the bar vector bi that lies along the length of the ith bar.

Similarly, the ith column of the string matrix S be the string vector si that lies along the length

of the ith string. The connectivity matrices are defined as follows, define the elements of the bar

connectivity matrix CB to be [CB]ij = −1 if the bar vector bi is directed away from the node nj ,

[CB]ij = 1 if the bar vector bi is directed towards the node nj , and [CB]ij = 0 if the bar vector

bi is not connected to the node nj . The string connectivity matrix CS is constructed the same way

using the string vectors si.

An example of how to construct the nodal matrix and connectivity matrices for a specific

tensegrity system will be shown below. First, a choice on how to number the nodes of the system

is required. The numbering can be arbitrary, but there is usually a good choice for the numbering

to allow for connectivity matrices that are structured in a more aesthetically pleasing way. For this

example, the nodes are numbered as shown in the figure below. The bar vectors and string vector’s

directions need to be specified and the directions for this example are shown below in the figure.

To create the nodal matrix N , the node vectors are placed in numbered order in each column

and is shown below. Each nodal vector is a 3× 1 vector.

N =

[
n1 n2 n3 n4

]
(A.1)
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Figure A.1: Tensegrity System.

Figure A.2: Tensegrity System Example.

The rows of the bar connectivity matrix CT
B represent the nodes of the system and the columns

represent the directions of the bar vectors. For b1 you would place a 1 in the first row and the first

column since the tip of that vector is connected to the first node and you would put a −1 in the

third row and first column because the tail is connected to the third node and you would put zeros

in the rest of the rows of the first column. Then you would start with b2 in the second column and

so on. Using the system shown in the figure above the corresponding bar connectivity is shown in
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(A.2).

CT
B =



1 0 0 1

0 1 1 0

−1 −1 0 0

0 0 −1 −1


(A.2)

The same process is used to create the string connectivity matrix CT
S and the resulting matrix

is shown in A.3.

CT
S =



1 0

−1 0

0 1

0 −1


(A.3)
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APPENDIX B

ALGORITHM FOR COMBINING TENSEGRITY TOPOLOGIES

An algorithm for combining the structures of two different tensegrity topologies will be pre-

sented in this section. The usefulness of this algorithm will be shown in an example and will also

be used for the bicycle topology to combine the structure of the spokes with the structure of the

rim. The inputs to this algorithm will be the nodal matrix, bar connectivity, and string connectivity

of the first and second structure. The outputs will be a single nodal matrix, bar connectivity, and

string connectivity that were created by augmenting the inputs in a specified way dictated by this

algorithm.

The first step of this algorithm is to augment the nodal matrices of the first structure and the

second structure N 1 and N 2 respectively. This is done by searching for common nodes between

the two structures. Let N 1 = [n1,n2, · · · ,nk] and let N 2 = [n
′
1,n

′
2, · · · ,n

′
m] where k and m are

the number of nodes in N 1 and N 2 respectively. The duplicate nodes are deleted from N 2, so after

the search for the matching nodes say that n1 = n
′
3 and n3 = n

′
1, this would mean that n′

1 and n
′
3

are deleted from the nodal matrix of the second structure and is now N 2 = [n
′
2,n

′
4, · · · ,n

′
m−nd

]

where nd is the number of deleted nodes. The nodes in N 2 are then renumbered starting after

the last index of N 1, so N 2 = [nk+1,nk+2, · · · ,nk+m−nd
]. Now the two nodal matrices are

augmented together to form one nodal matrix for the structure N = [n1,n2, · · · ,nk+m−nd
].

The second step is to augment the bar and string connectivity matrices together with the new

nodal structure. The • in each entry in the connectivity matrices can be a 1, −1, or 0. The two

connectivity matrices shown below in B.1 and B.2 correspond to the fist structure and the second

structure that will be combined.
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CT
B1

=



b1 b2 b3 ··· bnb

n1 • • • · · · •

n2 • • • · · · •

n3 • • • · · · •
...

...
...

...
...

...

nk • • • · · · •


(B.1)

CT
B2

=



b
′
1 b

′
2 b

′
3 ··· b

′

n
′
b

n
′
1 • • • · · · •

n
′
2 • • • · · · •

n
′
3 • • • · · · •
...

...
...

...
...

...

n
′
m • • • · · · •


(B.2)

Now you would pick out the rows of the second connectivity matrix that correspond with

matching nodes from the first structure. The same nodes will be kept as the matching nodes from

the previous paragraph, so that n1 = n
′
3 and n3 = n

′
1. These rows are highlighted red and shown

below in B.3.

CT
B2

=



b
′
1 b

′
2 b

′
3 ··· b

′

n
′
b

n
′
1 • • • · · · •

n
′
2 • • • ... •

n
′
3 • • • ... •
...

...
...

...
...

...

n
′
m • • • · · · •


(B.3)

Now the rows that correspond to the matching nodes are removed from the bar connectivity

of the second structure and augmented into the bar connectivity for the first structure by placing
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them into the rows that represent the matching nodes and are added as new columns representing

new bars. The rows that do not correspond to a matching node are filled in with zeros in the added

columns. This is shown below in B.4. The rest of the rows that were not removed from the second

connectivity matrix are shown below in blue in B.5.

CT
B1

=



b1 b2 b3 ··· bnb
bnb+1 bnb+2 bnb+3 ··· b

nb+n
′
b

n1 • • • · · · • • • • · · · •

n2 • • • · · · • 0 0 0 · · · 0

n3 • • • · · · • • • • · · · •
...

...
...

...
...

... 0 0 0 · · · 0

nk • • • · · · • 0 0 0 · · · 0


(B.4)

CT
B2

=



b
′
1 b

′
2 b

′
3 ··· b

′

n
′
b

n
′
2 • • • · · · •

n
′
4 • • • · · · •

n
′
5 • • • · · · •
...

...
...

...
...

...

n
′
m−nd

• • • · · · •


(B.5)

The blue rows from B.5 are then augmented into the first bar connectivity matrix by placing

them in the newly created columns below the last row of the original first bar connectivity matrix.

The indexes corresponding to the old columns and the new rows are filled in with zeros. The news

rows start their indexing after the last index from the original rows. This is shown below in B.6
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CT
B1

=



b1 b2 b3 ··· bnb
bnb+1 bnb+2 bnb+3 ··· b

nb+n
′
b

n1 • • • · · · • • • • · · · •

n2 • • • · · · • 0 0 0 · · · 0

n3 • • • · · · • • • • · · · •
...

...
...

...
...

... 0 0 0 · · · 0

nk • • • · · · • 0 0 0 · · · 0

nk+1 0 0 0 · · · 0 • • • · · · •

nk+2 0 0 0 · · · 0 • • • · · · •

nk+3 0 0 0 · · · 0 • • • · · · •
...

...
...

...
...

...
...

...
...

...
...

nk+m−nd
0 0 0 · · · 0 • • • · · · •



(B.6)

This final bar connectivity matrix will represent the combined topology of the first and second

structures. This will now be simply referred to as CT
B. The final step is to search for columns in CT

B

that have non-zero values in the same rows. The duplicate columns are deleted so that there are not

duplicate bars in the same locations. The number of the duplicate bars that are deleted start at the

largest number, so if b2 and b7 are duplicate than b7 is the one deleted. The augmentation process

for the string connectivity matrices is performed in the same manner as for the bar connectivity

matrices. The algorithm presented in this section is summarized below and will be referred to as

Algorithm 1.

Algorithm 1 Inputs: N 1,C
T
B1
,CT

S1
,N 2,C

T
B2
,CT

S2
Outputs: N ,CT

B,C
T
S .

1: Search for common nodes between the two structures.
2: Delete common nodes from N 2.
3: Rename nodes in N 2 and augment N 1 with N 2 to create N .
4: Augment CT

B1
with CT

B2
to create CT

B.
5: Augment CT

S1
with CT

S2
to create CT

S .
6: Delete common columns from | CT

B |.
7: Delete common columns from | CT

S |.

95



B.1 Example

An example will be shown to demonstrate the algorithm for combining topologies. Shown

below are two separate tensegrity structures that will be combined. The numbering of the nodes,

bars, and strings is arbitrary.

Figure B.1: Two tensegrity structures with numbering shown.

Now taking the two tensegrity structures shown above, lets look at an example demonstrating

the algorithm. Now the nodal matrix and the connectivity matrices need to be augmented so that

the structures are combined into one. The first step is to search for common nodes between the two

structures. Looking at the figure below, it is easy to see that n2 = n
′
3 and n4 = n

′
1.

Figure B.2: Two tensegrity structures that share a two common nodes.

96



For this example, the inputs for Algorithm 1 are:

N 1 = [n1,n2,n3,n4] (B.7)

CT
B1

=



1 0 0 1

0 1 1 0

−1 −1 0 0

0 0 −1 −1


(B.8)

CT
S1

=



1 0

−1 0

0 1

0 −1


(B.9)

N 2 = [n
′

1,n
′

2,n
′

3,n
′

4] (B.10)

CT
B2

=



1 0 0 1

0 1 1 0

−1 −1 0 0

0 0 −1 −1


(B.11)

CT
S2

=



1 0

−1 0

0 1

0 −1


(B.12)

The outputs for Algorithm 1 are:
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N = [n1,n2,n3,n4,n5,n6] (B.13)

CT
B =



1 0 0 1 0 0 0

0 1 1 0 −1 0 0

−1 −1 0 0 0 0 0

0 0 −1 −1 0 0 1

0 0 0 0 1 1 0

0 0 0 0 0 −1 −1


(B.14)

CT
S =



1 0 0 0

−1 0 0 1

0 1 0 0

0 −1 1 0

0 0 −1 0

0 0 0 −1


(B.15)

The final structure is shown below in Figure B.3 with the new numbering for the nodes, bars,

and strings.
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Figure B.3: One tensegrity structure with new numbering for nodes, bars, and strings.
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