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ABSTRACT

To support increasing demands for real-time multimedia mobile wireless-network data trans-

missions, there have been considerable the efforts and initiatives from academia, industry, and

standard bodies toward guaranteeing very stringent quality-of-service (QoS) requirements, includ-

ing tightly-bounded end-to-end delay, super-reliability, etc., when designing the next generation

mobile wireless networks. Towards this end, massive Ultra-Reliable Low-Latency Communica-

tions (mURLLC), as one of the 6G standard traffic services, have received tremendous research

attention, while raising several major design issues, including massive connectivity, ultra-low la-

tency, super-reliability, and high energy efficiency. Several promising 6G enablers, such as sta-

tistical delay and error-rate bounded QoS provisioning, cell-free (CF) massive multi-input-multi-

output (m-MIMO), simultaneous wireless information and power transfer (SWIPT), millimeter

wave (mmWave) and Terahertz (THz) band communications, etc., have been developed to support

mURLLC. Specifically, due to potential benefits of favorable propagation and channel hardening,

CF m-MIMO can significantly enhance QoS performance in terms of achievable data rate and en-

ergy efficiency. Moreover, small-packet data communication techniques, such as finite blocklength

coding (FBC), has been proposed to support various massive access techniques for reducing access

latency and decoding complexity at the receivers while guaranteeing stringent QoS requirements

of 6G mURLLC for time-sensitive wireless services. However, how to efficiently integrate the

above new techniques for statistical delay and error-rate bounded QoS provisioning in the finite

blocklength regime is still a challenging and open problem. In addition, However, how to rigor-

ously and efficiently characterize the stochastic dynamics in terms of statistically upper-bounding

FBC-based both delay and error-rate QoS metrics has been neither well understood nor thoroughly

studied before.

To effectively overcome the above-mentioned challenges imposed in supporting 6G mURLLC,

in this dissertation we propose to develop the FBC based statistical delay and error-rate bounded

QoS provisioning schemes over 6G mobile wireless networks for mURLLC traffic. In particular,

ii



we propose to integrate various 6G promising techniques, such as CF m-MIMO, SWIPT, mmWave

and THz-band communication, with FBC for guaranteeing statistical delay and error-rate bounded

QoS provisioning. We develop analytical modeling frameworks and controlling mechanisms for

statistical delay and error-rate bounded QoS provisioning in the non-asymptotic regime. In ad-

dition, we develop a set of new statistical delay and error-rate bounded QoS metrics including

delay-bound-violation probability, QoS-exponent function, and the ε-effective capacity using FBC

over 6G mobile wireless networks. The obtained numerical and simulation results validate and

evaluate our proposed schemes for statistical QoS in supporting mURLLC.
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1. INTRODUCTION

1.1 Background and Motivations

While 5G mobile wireless networks are being widely deployed around the world, researchers

have begun to conceptualize 6G mobile wireless networks to support the unprecedented scenarios

with extremely diverse and challenging quality of service (QoS) requirements. Due to the stochas-

tic nature of wireless fading channels, it is challenging to guarantee both reliability and low-latency

requirements for delay-sensitive wireless multimedia services over 6G mobile wireless networks.

Traditionally, researchers have developed a deterministic network calculus to derive explicit guar-

antees on the maximum delay for wireless data transmissions. However, deterministic network

calculus is not sufficient for characterizing the wireless traffics due to time-varying and stochastic

natures of wireless fading channels.

Towards this way, the delay-bounded QoS theory [1–14] has been proposed and developed

to characterize queueing behaviors in supporting explosively growing demands of time-sensitive

wireless multimedia applications over 5G and the upcoming 6G mobile networks which are de-

fined and detailed in [15–17]. Due to the highly time-varying nature of wireless fading channels,

researchers have proposed the concept of statistical QoS provisioning [8, 18–22], in terms of ef-

fective capacity [12] and delay-bound violation probabilities, in supporting delay-sensitive multi-

media wireless services over mobile wireless networks. Accordingly, how to further extend and

integrate the statistical QoS theory with the emerging wireless techniques to efficiently support and

implement the very stringent QoS requirements for mURLLC in 6G wireless networks, including

extra-tighter delay bound (< 1 ms), super-reliability (> 99.99999%), super-high spectrum and

energy efficiencies, etc., has imposed many new challenging but unsolved problems, which cannot

be tackled with traditional techniques.
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1.1.1 Statistical Delay and Error-Rate Bounded QoS for mURLLC in the Finite Block-

length Regime

As a new and dominating 6G mobile-networks’ service class for time-sensitive traffics, massive

ultra-reliable and low latency communications (mURLLC) [15, 23–26], which integrate URLLC

with massive access, also known as massive connectivity or machine-type communications (mMTC)

as one of the main use-cases of 6G wireless networks, require the massive short-packet data com-

munications to support time-sensitive 6G wireless multimedia services with high wireless-resource

efficiency and low access latency [27]. The major design issue raised by mURLLC is how to sup-

port latency-sensitive multimedia transmissions while guaranteeing the reliability bound overtime-

varying wireless channels. This implies that the traditional Shannon’s theorem with infinite block-

length is no longer feasible under 6G standards. Motivated by this observation, considering finite

blocklength data transmissions with non-vanishing decoding error probability, finite blocklength

coding (FBC) [28–31] has been proposed to support various massive access techniques while re-

ducing the access latency and guaranteeing stringent QoS requirements.

Towards this end, we have developed the statistical QoS provisioning schemes over 6G wire-

less networks to apply FBC technique for supporting low-latency, reliable-connectivity, and high-

scalability requirements by using short-packet data transmissions for supporting 6G wireless real-

time services [32]. In particular, the maximum achievable coding rate using FBC over additive

white Gaussian noise (AWGN) channels has been derived in [33]. The authors of [34] have de-

rived the goodput over AWGN channels and the energy-efficiency spectral-efficiency tradeoff by

using recent results of non-asymptotic coding rate. The maximum achievable data rates using FBC

over quasi-static multiple-input multiple-output (MIMO) based wireless fading channels with and

without the knowledge of channel state information (CSI) have been derived in [35]. The authors

of [31] have investigated different properties of channel codes for a given memoryless wireless

channel with a non-vanishing decoding error probability. However, although small-packet com-

munications used in FBC-based wireless mobile networks are usually employed for massive access

to reduce access latency and decoding complexity, how to upper-bound the decoding error proba-
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bility while supporting 6G mURLLC is still a challenging research topic.

Furthermore, there have been a great deal of research works focusing on investigating the

QoS controlling mechanisms as well as the performance analyses while guaranteeing the stringent

URLLC requirements. The authors of [15] have presented the vision of 6G wireless networks

and proposed a new set of service classes and expose their target 6G performance requirements

for mURLLC. However, previous research works focus on investigating QoS metrics and con-

trolling mechanisms in terms of the delay-bound violating probability without considering the

non-vanishing decoding error probability, which has become a major design issue when design-

ing the next generation wireless network architecture models in supporting mURLLC services.

It is crucial to design and measure wireless network architecture models considering both delay

and error-rate bounded QoS constraints by defining and identifying new statistical QoS metrics

and their analytical relationships, such as delay-bound violation probability, effective capacity,

error probability, outage capacity, etc., especially in practical scenarios using FBC. Unlike mech-

anisms to guarantee the statistical bounded-delay or average delay, how to model statistical delay

and error-rate bounded QoS provisioning for a given constrained decoding error probability in the

non-asymptotic regime, for supporting 6G mURLLC traffic has not been sufficiently resolved.

1.1.2 Emerging 6G Techniques in Supporting mURLLC

Various advanced 5G beyond and 6G techniques, such as cell-free (CF) massive MIMO (m-

MIMO) [36–38], simultaneous wireless information and power transfer (SWIPT) [39, 40], mil-

limeter wave (mmWave) and Terahertz (THz) band communications [41, 42], etc., have been de-

signed to play critically important roles for mURLLC in terms of connecting massive number

of mobile devices without imposing congestions, while guaranteeing very stringent QoS require-

ments, including tightly-bounded end-to-end delay, super-reliability, etc.

1.1.2.1 CF M-MIMO System

To support the massive access imposed by mURLLC, CF m-MIMO [37], where the geograph-

ically distributed APs jointly serve a massive number of mobile devices using the same time-
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frequency resources, has been developed as a promising 6G network architecture for improving the

access reliability while reducing the co-channel interference caused by traditional m-MIMO sys-

tems. Traditionally, the optimal power control is performed at the central processing unit (CPU).

However, the centralized power-control strategies may jeopardize the system scalability and violate

mURLLC requirements as the numbers of APs and mobile users grow significantly. The authors

of [43] have proposed scalable and distributed power control policies for CF m-MIMO systems

to achieve system scalability and mURLLC as the number of mobile users goes to infinity. The

authors of [44] have developed new framework for scalable CF m-MIMO systems, where the com-

plexity and signalling at each AP is finite when connecting a massive number of mobile devices.

The system scalability aspects of CF m-MIMO system are analyzed in [45] and a solution is pro-

posed for data processing, network topology, and power control. There are many new challenges,

including the channel characteristics, stochastic networking behaviors, and user associations, etc.,

as compared with traditional m-MIMO systems. It is crucial to design and characterize the delay

and reliability performances of the CF m-MIMO system for statistical delay and error-rate bounded

QoS provisionings for supporting mURLLC in the finite blocklength regime.

1.1.2.2 SWIPT-Based CF M-MIMO System

One of the challenges that can potentially limit the widespread deployment of mURLLC-

enabled 6G wireless networks is the constrained power/battery supply of the mobile devices. To

solve this problem, taking advantage of the broadcast nature of radio frequency (RF) wave propa-

gation, SWIPT, which transfers both information and power simultaneously to the mobile devices,

has recently gained significant research attention since it can prolong the battery-life of energy-

constrained and low-power-supported mobile devices. Unlike in the information and energy trans-

missions separated receivers, researchers have developed two main low-complexity co-located re-

ceiver structures, i.e., the power-splitting (PS) receiver and the time-switching (TS) receiver for

enabling SWIPT. In the PS receiver, the power and information transfer to the co-located energy

harvesting (EH) and information decoding receivers are simultaneously achieved via a set of power

splitting devices. On the other hand, each transmission block is split into two orthogonal time-slots
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for information and energy transmissions in the TS receiver. The authors of [46] have conducted a

comprehensive survey of the state-of-art techniques based on advances and open issues imposed by

SWIPT. The authors of [47] have analyzed the fundamental tradeoff between transmitting energy

and information over a single noisy line. In addition, ultra reliable cooperative short packet com-

munication schemes have been investigated in [48] with wireless power transfer (WPT) to support

mURLLC.

One of the major bottlenecks for implementing SWIPT is the low harvested energy levels due

to the inherent severe end-to-end path-loss at the receiver. Towards this end, the application of

conventional co-located m-MIMO techniques, where a large number of collocated antennas are

deployed for each AP to simultaneously serve many mobile users in the same time-frequency re-

source, can enhance the performance of SWIPT in terms of the achievable data rate and energy

efficiency due to its benefits of favorable propagation, channel hardening, and aggressive spa-

tial multiplexing gains. In addition, in distributed m-MIMO systems, service antennas are spread

out over a large area, which provide with significantly higher probability of coverage than the

conventional collocated m-MIMO systems, at the cost of increased backhaul networks overhead.

However, the inter-cell interference is becoming the major bottleneck for m-MIMO systems, espe-

cially for the dense mobile wireless networks. To resolve the interference issues in current cellular

networks, as one of the promising 6G network architectures, CF m-MIMO has been developed to

improve the access reliability of massive access while reducing the co-channel interference caused

by traditional m-MIMO systems. One of the important features of CF m-MIMO lies in its op-

erating regime: a huge number of single-antenna APs simultaneously and cooperatively serve a

relatively smaller number of mobile users, performing computationally simple signal processing at

the APs. Due to the closer distance between the APs and mobile devices, integrating SWIPT with

CF m-MIMO systems has a significant potential to offer substantially higher coverage probabil-

ity while minimizing the throughput/energy outage probabilities as compared with the co-located

m-MIMO systems.

However, it is challenging to characterize the stochastic networking/queueing behaviors when
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being integrated with SWIPT-enabled CF m-MIMO architecture models while guaranteeing mURLLC

under statistical delay and error-rate bounded QoS constraints in the non-asymptotic regime. As

a result, how to efficiently integrate SWIPT with CF m-MIMO architecture models and accu-

rately upper-bound the delay-bound violation probability while guaranteeing statistical delay and

error-rate bounded QoS provisionings still remains as a challenging and open problem over 6G

SWIPT-enabled CF m-MIMO mobile wireless networks in the finite blocklength regime.

1.1.2.3 MmWave and THz-band Communication System

The limited available bandwidth for conventional wireless communication systems in the mi-

crowave frequency range motivates the exploration of higher frequency bands in supporting sta-

tistical delay-bounded QoS provisioning for real-time wireless services in supporting mURLLC.

Spurred by the impressive benefits of mmWave techniques, researchers have extensively studied

mmWave communication systems over the last decade. Despite the much higher operation fre-

quency, the available bandwidth is less than 10 GHz, which requires the communication systems to

achieve a spectral efficiency on the order of 100 bits/second/Hz for supporting 1 Terabit-per-second

(Tbps) for 6G wireless network [49, 50]. However, this is several times above the state-of-the-art

for wireless communication systems.

To satisfy the increasing demand for higher-speed wireless communication of current wireless

systems, Terahertz (0.1–10 THz) band communications and wireless networks [41, 42] have been

widely envisioned as the promising 6G wireless techniques to provide wireless mobile devices

with an unprecedentedly large bandwidth, ranging from several tens of GHz up to a few THz,

while satisfying the increasing demand of 100 Gbps and even 1 Tbps data rates [51], while effi-

ciently supporting stringent QoS requirements. However, the large pathloss and molecular noise

introduced by the THz wireless systems may produce transmission errors during the data trans-

missions. Such errors may result in distorted multimedia signals received. As a result, it is crucial

to apply the FBC technique for short-packet data transmissions to support time-sensitive wireless

multimedia services while guaranteeing statistical delay and error-rate bounded QoS provisioning

in the THz band.
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Motivated by the potential of THz technologies, researchers have focused on leveraging the ad-

vantages of nanomaterials, such as graphene [52–55], to implement THz communication systems

into a set of applications. There has been a limited number of studies on the channel characterisa-

tion of THz-band nano-communication systems, which incorporate molecular absorption, spread-

ing loss, and shadowing into a theoretical THz channel model. The authors of [56] have reviewed

the current state-of-the-art technologies and applicability of nano communication in biomedical

application. The authors of [57] have shown that the large bandwidth in the THz band is sus-

ceptible to shadowing and noise. The joint effects of path loss and shadowing for THz wireless

channels have been studied in [58]. The channel modelling of the THz wave propagating and

the corresponding channel capacity modelling with different power allocation schemes for elec-

tromagnetic communications have been studied in [59]. The channel capacity in the THz band is

numerically evaluated by using a new THz-band propagation model with different channel molec-

ular compositions and under different power allocation schemes in [60]. Furthermore, the authors

of [61] have proposed a integrated MIMO antenna system with THz communications by applying

the graphene-based antennas. The authors of [62] have investigated the uplink spectral efficiency

of MIMO systems in large scale MIMO scenario and conventional scale MIMO scenario based

on the models of single walled carbon nano tubes (SWCNTs). Although there are some studies

of the channel models for nano-scale communications in the THz band, how to accurately model

and characterize the relationships among THz-band wireless channel, energy consumption, and

EH models employing FBC based nano-communication still remains as a major challenge in the

THz band while supporting both delay and error-rate bounded QoS provisioning.

1.1.3 Contributions

In this dissertation, to overcome the above mentioned challenges, we propose FBC-based sta-

tistical delay and error-rate bounded QoS provisioning schemes to support mURLLC services over

6G mobile wireless networks. The significant research topics/areas to be explored in details in this

dissertation include:
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• We develop a set of analytical frameworks and controlling mechanisms for statistical delay

and error-rate bounded QoS metrics, tradeoff-functions, and control mechanisms including

ε-effective capacity, delay-bound-violating probability, QoS-exponents functions, and FBC-

based outage-capacity in finite blocklength regime.

• We formulate and solve FBC-based ε-effective energy-efficiency maximization problem by

using iterative algorithm for our proposed statistical delay and error-rate bounded QoS pro-

visioning schemes.

• Given the constrained decoding error probability, we propose and analyze the delay-violation

probability function by applying the Mellin transform over both arrival and service pro-

cesses, while taking into account the statistical delay and error-rate bounded QoS constraints.

• We derive the optimal resource allocation adaptation policies, which play an important role

in the system design and performance analyses for statistical delay and error-rate bounded

QoS in the finite blocklength regime.

• We quantitatively characterize the fundamental tradeoff between harvested energy and ε-

effective capacity and formulate and solve the optimal ε-effective capacity-energy tradeoff

problems.

1.1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 proposes to apply the Mellin

transform to analytically model and characterize stochastic QoS performances in terms of both

delay and error-rate for CF m-MIMO modeling schemes in the finite blocklength regime. Chap-

ter 3 integrates the mmWave user-centric cell-free m-MIMO system with FBC-HARQ technique

over 6G wireless networks for statistical delay and error-rate bounded QoS provisioning. Chap-

ter 4 proposes and develops statistical delay and error-rate bounded QoS provisioning schemes

over SWIPT-enabled CF m-MIMO 6G wireless networks using FBC. Chapter 5 develops FBC-EH

based optimal resource allocation policies for self-powered nano devices in the THz band over

8



wireless nano-networks under statistical delay and error-rate bounded QoS constraints. Chapter 6

summarizes the dissertation and point out future research directions.
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2. STATISTICAL DELAY AND ERROR-RATE BOUNDED QOS PROVISIONING FOR

MURLLC OVER 6G CF M-MIMO MOBILE NETWORKS IN THE FINITE

BLOCKLENGTH REGIME ∗

2.1 Introduction

The statistical delay-bounded QoS theory [8] as well as stochastic network calculus (SNC) [63]

have been proposed as a promising technique to support the explosively growing demands of time-

sensitive wireless multimedia applications over 6G mobile wireless networks. Accordingly, the

concept of effective capacity has been proposed to characterize the statistical delay-bounded QoS

provisioning of time-sensitive wireless multimedia applications over 6G mobile wireless networks.

In addition, mURLLC has been proposed for supporting time-sensitive traffics with massive short-

packet data communications over 6G mobile wireless networks. We have integrated the statistical

QoS provisioning schemes over 6G wireless networks with the FBC technique [30] for supporting

stringent mURLLC requirements, including ultra-low latency, ultra-reliability, and high-scalability

by using short-packet data transmissions [32]. There have been a great deal of research efforts on

applying FBC over 6G mobile wireless networks. However, the problems on how to efficiently em-

ploy the unique nature of the FBC techniques for supporting statistical delay and error-rate bounded

QoS provisioning have been neither well understood, nor thoroughly studied. Consequently, it be-

comes increasingly important to develop the modeling frameworks and corresponding analytical

techniques for the fundamentally charactering the statistical delay and error-rate bounded QoS

provisioning theory.

As a new and dominating type of time/error-sensitive services over 6G wireless networks,

mURLLC has attracted substantial research attention while imposing many new challenges not

encountered before. Towards this end, various advanced promising 6G techniques, such as the CF

∗ c©2021 IEEE. Part of the material presented in this chapter is reprinted with permission from “Statistical De-
lay and Error-Rate Bounded QoS Provisioning for mURLLC Over 6G CF M-MIMO Mobile Networks in the Finite
Blocklength Regime" by X. Zhang, J. Wang, and H. V. Poor, published in IEEE Journal on Selected Areas in Commu-
nications (J-SAC), Vol. 39, No. 3, pp. 652-667, Mar 2021.
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m-MIMO [36], have been designed to play critically important roles in supporting extremely strin-

gent mURLLC requirements in terms of connecting massive number of mobile devices without

imposing congestions. Researchers have shown that the CF m-MIMO framework can support full

scalability at the cost of a modest performance loss compared to the conventional form of the mas-

sive MIMO system. However, it is challenging to characterize the stochastic networking behaviors

when being integrated with CF m-MIMO schemes while guaranteeing mURLLC under statistical

delay and error-rate bounded QoS constraints using FBC. As a result, how to accurately upper-

bound the delay violation probability while guaranteeing statistical delay and error-rate bounded

QoS provisionings for supporting mURLLC still remains as a challenging and open problem over

6G CF m-MIMO mobile wireless networks.

To effectively overcome the above-mentioned challenges, in this chapter we propose to apply

the Mellin transform to analytically model and characterize stochastic QoS performances in terms

of both delay and error-rate for CF m-MIMO modeling schemes in the finite blocklength regime.

In particular, we develop the CF m-MIMO based system models across Rician wireless fading

channels in the finite blocklength regime. Furthermore, we propose and analyze the delay-violation

probability function by applying the Mellin transform over both arrival and service processes,

while taking into account the statistical delay and error-rate bounded QoS constraints. We also

formulate and solve the delay-violation probability minimization problem for our proposed CF m-

MIMO modeling schemes in the finite blocklength regime. Also conducted is a set of simulations

to validate and evaluate our proposed schemes for statistical delay and error-rate bounded QoS

provisioning over 6G CF m-MIMO mobile wireless networks.

The rest of this chapter is organized as follows: Section 2.2 establishes FBC based CF m-

MIMO system models across Rician wireless channels. Section 2.3 derives and analyzes the Mellin

transform over arrival/service processes as well as an upper bound on the delay violation proba-

bility in the finite blocklength regime. Section 2.4 analyzes the delay performance and formulates

and solves the delay violation probability minimization problem for statistical delay and error-rate

bounded QoS provisioning in the finite blocklength regime. Section 2.5 evaluates and analyzes the

11
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Figure 2.1: The system architecture model for 6G CF m-MIMO mobile wireless networks in the
finite blocklength regime.

system performance for our proposed FBC based CF m-MIMO schemes. This chapter concludes

with Section 2.6.

2.2 The CF M-MIMO Based System Models

Consider a CF m-MIMO network model, where each mobile user is served by coherent joint

transmissions from all APs, as shown in Fig. 2.1. Assume that there are Ka randomly located APs

over a large area and Ku mobile users. Assume that each AP is equipped with NT antennas, while

each mobile user is equipped with a single antenna. In addition, time division duplexing (TDD)

mode is assumed to be operated over our proposed 6G CF m-MIMO mobile wireless networks.

All APs are connected to a CPU through backhaul links. Define np as the number of channel uses

for uplink pilot training symbols and nd as the number of channel uses reserved for downlink data

transmissions. Defining n as the total number of channel uses for both uplink pilot training and

downlink data transmission phases, we have n = np + nd.

12



2.2.1 Massive MIMO Based Rician Wireless Fading Channel Model

Considering the propagation effects, the channel’s impulse response vector, denoted by hk,m ∈

CNT×1, between mobile user m and AP k over Rician massive MIMO based wireless fading chan-

nel model can be characterized as follows:

hk,m =
√
βk,mgk,m (2.1)

where βk,m represents the large-scale propagation that includes pathloss and shadowing effects

and gk,m represents the small-scale multipath fading effect which can be modeled using Rician

distribution [64] as follows:

gk,m =

√
κ

κ+ 1
gk,m +

√
1

κ+ 1
g̃k,m (2.2)

where gk,m consists of the component gk,m representing the line of sight (LOS) signals and a

Rayleigh distributed random component g̃k,m representing the non-line-of-sight (NLOS) signals,

and κ > 0 is the Rician factor. Note that κ = 0 corresponds to a Rayleigh fading channel, while

κ → ∞ corresponds to non-fading channel. We can rewrite the Rician massive MIMO based

wireless fading channel model as follows:

hk,m =

√
κ

κ+ 1
hk,m +

√
1

κ+ 1
h̃k,m (2.3)

where hk,m , gk,mβk,m and h̃k,m , g̃k,mβk,m.

2.2.2 Uplink Pilot Training and Channel Estimation

Define the pilot training sequence for mobile user m as φnp
m =

[
φ

(1)
m , . . . , φ

(np)
m

]
∈ C1×np and∥∥φnp

m

∥∥2
= 1, where ‖ · ‖ denotes the Euclidean norm. During the uplink pilot training phase, we

derive the received signal, denoted by Y
np
k ∈ CNT×np , for transmitting np pilot data blocks from

13



mobile user m to AP k as in the following equation:

Y
np
k =

Ku∑
m=1

√
npPphk,mφ

np
m + Nk (2.4)

where Pp is the uplink pilot transmit power at the mobile users and Nk ∈ CNT×np is the AWGN

matrix with zero mean and covariance INT where INT is the identity matrix of size NT. We assume

that the LOS component hk,m given in Eq. (2.3) is perfectly known at both the APs and mobile

users. Accordingly, we only need to estimate the NLOS Rayleigh-distributed random component.

As a result, the received matrix, denoted by Ỹ
np
k , for the NLOS channel estimation can be derived

as follows:

Ỹ
np
k =

Ku∑
m=1

√
npPp

κ+ 1
h̃k,mφ

np
m + Nk. (2.5)

Then, by projecting the received signal Ỹ
np
k onto φnp

m , we obtain:

ỹ
np
k = Ỹ

np
k (φnp

m )H =

√
npPp

κ+ 1
h̃k,m +

Ku∑
m′=1
m′ 6=m

√
npPp

κ+ 1
h̃k,m′ + ñk (2.6)

where (·)H represents the conjugate transpose of a vector and ñk , Nk

(
φ
np
m

)H is an independent

and identically distributed (i.i.d.) Gaussian vector with zero mean and covariance INT . Denote

by H̃k ,
[
h̃k,1, . . . , h̃k,Ku

]
the NLOS component of the channel’s impulse response matrix be-

tween AP k and all mobile users. Define RH̃k
, E

[
H̃k

(
H̃k

)H]
= diag (βk,1, . . . , βk,Ku) as the

covariance matrix of H̃k, where E[·] is the expectation operation and diag(·) represents the diag-

onal matrix. Then, considering the Rician wireless fading channels, we can derive the channel

estimation for our proposed CF m-MIMO schemes as detailed in the following lemma.

Lemma 1. The minimum mean-squared error (MMSE) estimator, denoted by Ĥk, for the NLOS

component of the Rician massive MIMO based wireless fading channel H̃k between AP k and all

14



mobile users is derived as follows:

Ĥk =

√
npPp

κ+ 1
RH̃k

(
npPp

κ+ 1
RH̃k

+ INT

)−1

ỹ
np
k . (2.7)

Proof. Applying the MMSE estimator of H̃k based on the observation of ỹnp
k , we can obtain the

following equation:

Ĥk = E
[
H̃k|ỹ

np
k

]
= RH̃k,ỹ

np
k

(
Rỹ

np
k

)−1 (
ỹ
np
k − E

[
ỹ
np
k

])
+ E

[
H̃k

]
(2.8)

where RH̃k,ỹ
np
k

and Rỹ
np
k

represent the covariance matrices given as follows:


RH̃k,ỹ

np
k

= E
[
H̃k

(
ỹ
np
k

)H]
=
√

npPp

κ+1
RH̃k

;

Rỹ
np
k

= E
[
ỹ
np
k

(
ỹ
np
k

)H]
=

npPp

κ+1
RH̃k

+ INT .

(2.9)

Since E
[
ỹ
np
k

]
and E

[
H̃k

]
are equal to zero, we have

Ĥk =

√
npPp

κ+ 1
RH̃k

(
npPp

κ+ 1
RH̃k

+ INT

)−1

ỹ
np
k (2.10)

which completes the proof of Lemma 1.

As a result, the channel estimation of Rician m-MIMO based wireless fading channel model,

denoted by ̂̂Hk, can be derived as follows:

̂̂
Hk =

√
κ

κ+ 1
Hk +

√
1

κ+ 1
Ĥk. (2.11)

2.2.3 Downlink Finite-Blocklength Data Transmission

We define the transmit signal matrix as Xnd
k ,

[
x

(1)
k , . . . ,x

(nd)
k

]
and receive signal vector ynd

m ,[
y

(1)
m , . . . , y

(nd)
m

]
. Based on the MMSE estimator matrix, denoted by ̂̂Hk =

[̂̂
hk,1, . . . ,

̂̂
hk,Ku

]
, ob-
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tained during the uplink pilot training phase, we can derive the transmitted signal, denoted by x(l)
k ,

for transmitting data block l from AP k to mobile user m by employing conjugate beamform-

ing [36] as follows:

x
(l)
k =

Ku∑
m=1

Wk (Σk)
1
2 s(l)

m , l = 1, . . . , nd (2.12)

where s(l)
m represents the lth transmitted data block to mobile user m, Σk , diag (ηk,1, . . . , ηk,Ku)

is the power allocation coefficient matrix, where ηk,m (m = 1, . . . , Ku) is the power allocation

coefficient for transmitting finite-blocklength data block l from AP k to mobile user m, and Wk is

the downlink precoder from AP k to all Ku mobile users, which is given by

Wk ,
̂̂
Hk

[( ̂̂
Hk

)H ̂̂
Hk

]−1

(Ξk)
1
2 (2.13)

where Ξk = diag (χ1, . . . , χKu) is the normalization matrix such that the columns of Wk have

unit norm and the normalization variable χk with k ∈ {1, . . . , Ku} follows the central chi-square

distribution with (2`) degrees of freedom, where ` = Ka−Ku +1. The probability density function

(PDF) of χk is given as follows [65]:

f`(χk) =
1

Γ(`)
χ`−1
k e−χk (2.14)

where Γ(·) denotes the Gamma function. We have Wk = [wk,1, . . . ,wk,Ku ], where wk,m is the

downlink precoder from AP k to mobile userm (m ∈ {1, . . . , Ku}). In addition, the power control

coefficients need to satisfy the following power constraint at each AP:

1

nd

nd∑
l=1

E
[∥∥∥x(l)

k

∥∥∥2
]
≤ Pd (2.15)

where Pd represents the average transmit power at each AP and x(l)
k is given by Eq. (2.12). Fur-

thermore, as the number of APs Ka grows sufficiently large, the system will experience only small

variations (relative to the average) in the achievable data transmission rate, which is known as the
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channel hardening [66]. As a result, although the instantaneous CSI is not available at the mo-

bile users, E
[
(hk,m)T wk,m

]
can be used to calculate the channel gain, where (·)T represents the

transpose of a vector. Considering Rician wireless fading channels, we derive the received signal,

denoted by y(l)
m , from the kth AP to the mth mobile user for transmitting the lth finite-blocklength

data block as follows [36]:

y(l)
m =

Ka∑
k=1

√
Pdηk,m E

[
(hk,m)T wk,m

]
s(l)
m︸ ︷︷ ︸

DSm

+

√
Pd

{
Ka∑
k=1

√
ηk,m (hk,m)T wk,m−E

[
Ka∑
k=1

√
ηk,m︸ ︷︷ ︸

BUm

× (hk,m)T wk,m

]}
s(l)
m︸ ︷︷ ︸

BUm

+
Ku∑
m′=1
m′ 6=m

Ka∑
k=1

√
Pdηk,m′ (hk,m)T wk,m′s

(l)
m′︸ ︷︷ ︸

UIm′

+n(l)
m (2.16)

where s(l)
m and s(l)

m′ are the signals sent to mobile user m and mobile user m′, respectively; ηk,m and

ηk,m′ are the power allocation parameters for transmitting from AP k to mobile user m and mobile

userm′, respectively; hk,m ∈ C1×NT represents the channel’s impulse response vector from the kth

AP to mobile user m; n(l)
m is the AWGN with zero mean and unit variance; and DSm, BUm, and

UIm′ represent the strength of the desired signal (DS), the beamforming gain uncertainty (BU), and

the interference caused by the m′th mobile user (UI), respectively. Correspondingly, we can derive

the signal-to-noise-plus-interference ratio (SINR), denoted by γm, from the APs to mobile user m

as follows:

γm =
‖DSm‖2

E
[
‖BUm‖2]+

Ku∑
m′=1
m′ 6=m

E
[
‖UIm′‖2]+ 1

. (2.17)

2.3 Statistical Delay and Error-Rate Bounded QoS Provisioning in the Finite Blocklength

Regime

In this section, we derive the Mellin transform over arrival and service processes by using SNC

for our proposed CF m-MIMO schemes given the non-vanishing error probability.
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2.3.1 (nd,Mm, εm)-code

Definition 1 ((nd,Mm, εm)-code). We define a codebook consisting of Mm codewords, denoted

by (c1, . . . , cM), with length nd. We define a message set Mm = {1, . . . ,Mm} and a message

Wm ∈ Mm which is uniformly distributed onMm. Denote by εm the decoding error probability.

We define an (nd,Mm, εm)-code (εm ∈ [0, 1)) as follows:

• An encoder Υ: {1, . . . ,Mm} 7→ CNT×nd that maps the message Wm ∈ Mm to a codeword

Xnd
m with length nd.

• A decoder D: C1×NT × CNT×nd 7→ {1, . . . ,Mm}, where Ŵm denotes the estimated signal

received at the receiver. The decoder D need to satisfy the following maximum error proba-

bility constraint:

Pr
{
Ŵm 6= Wm

}
≤ εm. (2.18)

In [30], the accurate approximation of the maximum achievable data rate, denoted by Rm (bits

per channel use), with decoding error probability εm with 0 ≤ εm < 1 and coding blocklength,

denoted by nd, for mobile user m in the finite blocklength regime can be determined as follows:

Rm(nd, εm) ≈ C(γm)−

√
V (γm)

nd
Q−1(εm) (2.19)

where Q−1(·) is the inverse of Q-function and C(γm) and V (γm) are the channel capacity and

channel dispersion, respectively, which are given as follows [30]:


C(γm) = log2 (1 + γm) ;

V (γm) = 1− 1
(1+γm)2 .

(2.20)

2.3.2 Stochastic Network Calculus

Consider that each AP is equipped with a QoS-driven first-in-first-out (FIFO) buffer. We define

am(l) as the source rate for transmitting the lth data block to mobile user m and sm(l) as the
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instantaneous service rate over wireless channels for transmitting the lth data block to mobile user

m. Define Am(l) ,
l−1∑
j=0

am(j) as the accumulated source rate for transmitting l data blocks to

mobile user m and Sm(l) ,
l−1∑
j=0

sm(j) as the accumulated service rate over wireless channels for

transmitting l data blocks to mobile user m. Define Qm(l) as the dynamics of queuing process for

transmitting the lth data block to mobile user m, which is given as in the following equation:

Qm(l) = max {Am(l)− Sm(l), 0} . (2.21)

However, in practical scenarios, it is difficult to obtain the statistical characteristics of random

arrival and service processes. As a result, by taking the exponential of arrival and service processes,

we can transform the arrival and service processes, denoted by Am(l) and Sm(l), respectively, in

the bit domain into the exponential domain, i.e., signal-to-noise ratio (SNR)-domain [67] by using

the exponential function given as follows:


Am(l) , eAm(l);

Sm(l) , eSm(l).

(2.22)

Define the Mellin transform, denoted by MX (θm), of a non-negative random variable X as fol-

lows [68]:

MX (θm) , E
[
X (θm−1)

]
(2.23)

where θm > 0 is defined as the QoS exponent. Denoting dth a target delay, we can define the kernel

function K(θm, dth) as follows [67]:

K(θm, dth) ,
MSm(1− θm)dth

1−MAm(1 + θm)MSm(1− θm)
, (2.24)

if the following stability condition holds:

MAm(1 + θm)MSm(1− θm) < 1. (2.25)
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Correspondingly, an upper bound on the delay violation probability, denoted by pm(dth), can be

obtained using the Mellin transform over the arrival and service processes Am(l) and Sm(l) in the

SNR-domain as follows:

pm(dth) ≤ inf
θm>0
{K(θm, dth)} . (2.26)

2.3.3 Statistical Delay and Error-Rate Bounded QoS Provisioning for CF m-MIMO in the

Finite Blocklength Regime

Statistical delay-bounded QoS guarantees [12] [69] have been extensively studied to analyze

queuing behavior for time-varying arrival and service processes. The PDF of SINR γm over Rician

wireless fading channels is given as follows [70]:

fγm(γm) = 2(1 + κ)γme
−(1+κ)γm−κI0

[
2
√
κ(1 + κ)γm

]
(2.27)

where I0[·] is the 0th order modified Bessel function of the first kind.

2.3.3.1 Mellin Transform Over Arrival Process

Assume that the arrivals at all time slots are independent and i.i.d. for each mobile user m,

i.e., the accumulated source rate Am(l) has i.i.d. increments, denoted by am(l), or equivalently

am = am(l) due to am(l)’s being i.i.d. We can derive the Mellin transform over accumulated

arrival process, denoted byMAm(θm), as follows:

MAm(θm) = E

( l∏
j=1

eam(j)

)θm−1
 =

(
E
[
eam(θm−1)

])l
= [Mαm(θm)]l (2.28)

where αm = eam . Assume that the arrival process follows a Poisson distribution with average rate

λm. We can derive the Mellin transform of αm as follows:

Mαm(θm) =
∞∑
i=1

ei(θm−1) (λm)i

i!
e−λm = eλm(eθm−1−1). (2.29)
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2.3.3.2 Mellin Transform Over Service Process

Equations (2.24) and (2.26) show that deriving the closed-form expression of Mellin transform

over service process at mobile user m is important for analyzing the delay violation probability,

which motivates the following theorem.

Theorem 1. Given the statistical delay and error-rate bounded QoS provisioning {θm, εm}, the

Mellin transform over service process, denoted byMSm(1 − θm), of mobile user m over Rician

wireless fading channels in the high-end SNR region can be derived as follows:

MSm(1− θm) = (1− εm) [F1(γ0) + F0(γ0)] + εm (2.30)

where γ0 , e

√
V (γm)
nd

Q−1(εm)
and


F0(γ0) , 2e−κ

κ+1

∞∑
i=0

κi

(i!)2γ (i+ 2, (1 + κ)γ0) ;

F1(γ0) , 2e−κ
[
e−
√
ndQ−1(εm)

] θmnd
(log 2)

∞∑
i=0

κi(κ+1)
θmnd
(log 2)

−1

(i!)2 Γ
(
i+ 2− θmnd

(log 2)
, (1 + κ)γ0

)
,

(2.31)

where log(·) represents loge(·) and γ (a, b) and Γ (a, b) are the lower and upper incomplete Gamma

functions, respectively.

Proof. The proof of Theorem 1 is provided in Appendix A.

Correspondingly, substituting Eqs. (2.28), (2.29), and (2.30) back into Eq. (2.24), we can derive

the closed-form expression of the steady-state kernel K(θm, dth) as follows:

K(θm, dth) =
{(1− εm) [F1(γ0) + F0(γ0)] + εm}dth

1− eλml(eθm−1)(1− εm) [F1(γ0) + F0(γ0)] + εm
. (2.32)

under the stability conditionMAm(1 + θm)MSm(1− θm) < 1.
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2.4 Delay Analyses For Statistical Delay and Error-Rate Bounded QoS Provisioning in the

Finite Blocklength Regime

In the previous Section 2.3, we have investigated an upper on the delay violation probability

using the Mellin transform for a given decoding error probability εm. In this section, assuming the

decoding error probability is a function of {nd, γm}, we derive the delay violation probability in

terms of the average decoding error probability function over Rayleigh wireless fading channels

(κ = 0).

2.4.1 Upper-Bound On the Average Decoding Error Probability Function for CF m-MIMO

in the Finite Blocklength Regime

Consider the case where κ = 0, i.e., the Rayleigh fading channel model. We define [36]

ck,m ,

√
npPpβk,m

Ku∑
m′=1

npPpβk,m′
∥∥∥φnp

m′

(
φ
np
m′

)H∥∥∥2

+ 1

. (2.33)

Considering the massive access scenario with vary largeKa, we can obtain the following equations

by applying the Tchebyshev’s theorem for our proposed CF m-MIMO schemes across Rayleigh

fading channel model [36]:


1
Ka

Ka∑
k=1

(hk,m)T wk,m −
NT

√
npPpPd

Ka

Ka∑
k=1

ηk,m (ck,mβk,mχk)
2 p−−−−→
Ka→∞

0;

1
Ka

Ka∑
k=1

(hk,m)T wk,m′
p−−−−→

Ka→∞
0, ∀m 6= m′,

(2.34)

where the symbol
p−−−−→

Ka→∞
represents the convergence in probability as Ka →∞. The results given

by Eq. (2.34) imply that as Ka → ∞, we only need to consider the desired parts of the received

signal y(l)
m and ignore the noise and interference in the asymptotic analysis. As a result, we can
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show that the SINR γm follows the following distribution:

γm ∼ (NT)2 npPpPd

Ka∑
k=1

ηk,m (ck,mβk,mχk)
2 ∼

Ka∑
k=1

E (ξk,m) (2.35)

where E(ξk,m) is the exponential distribution with its parameter equal to ξk,m, which is given as

follows:

ξk,m ,
1

2 (NT)2 npPpPdηk,m (ck,mβk,m)2 (2.36)

where k ∈ {1, . . . , Ka} and m ∈ {1, . . . , Ku}. We can obtain the decoding error probability

function, denoted by εm (nd, γm), for mobile user m as follows [30]:

εm (nd, γm) ≈ Q

(
C (γm)−Rm√
V (γm) /nd

)
(2.37)

where Q(·) is the Q-function, Rm (bits per channel use) is the achievable data rate, and C (γm)

and V (γm) denote the channel capacity and channel dispersion, respectively, given in Eq. (2.20).

Similar to Eq. (A.1), given the achievable finite-blocklength coding rateRm and the decoding error

probability function εm (nd, γm), we can derive the Mellin transform over service process Sm(l) at

mobile user m as follows:

MSm(1− θm) = Eγm
[
εm (nd, γm) + [1− εm (nd, γm)] e−θmndRm

]
= Eγm [εm (nd, γm)] + {1− Eγm [εm (nd, γm)]} e−θmndRm . (2.38)

Equation (2.38) shows that deriving the average decoding error probability function Eγm [εm (nd, γm)]

is important to obtain the closed-form expression for Mellin transform over service process at mo-

bile user m, motivating the theorem that follows.

Theorem 2. Given the achievable finite-blocklength coding rate Rm, the average decoding error

probability function Eγm [εm (nd, γm)] for mobile user m over 6G CF m-MIMO mobile wireless
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networks in the finite blocklength regime is determined as follows:

Eγm [εm (nd, γm)] ≈1−
Ka∑
k=1

[
1− e−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)]
+

[
1

2
+ ϑm

√
nd
(
eRm − 1

) ]

×

[
Ka∑
k=1

e
−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)
−

Ka∑
k=1

e
−ξk,m

(
2Rm−1+ 1

2ϑm
√
nd

)]
− ϑm

√
nd

×

{(
2Rm−1 − 1

2ϑm
√
nd

)[
Ka∑
k=1

e
−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)]
−

(
2Rm−1

+
1

2ϑm
√
nd

)[
Ka∑
k=1

e
−ξk,m

(
2Rm−1+ 1

2ϑm
√
nd

)]
+

Ka∑
k=1

[
Ei

(
− ξk,m

×
[
2Rm−1 +

1

2ϑm
√
nd

])
− Ei

(
−ξk,m

[
2Rm−1 − 1

2ϑm
√
nd

])]}
(2.39)

where Ei(x) ,
∫∞
−x

e−t

t
dt represents the exponential integral function and ϑm , 1

2π
√

22Rm−1
.

Proof. The proof of Theorem 2 is provided in Appendix B.

In the high-end SNR regime, we have V (γm) = 1 − (1 + γm)−2 → 1. Using Eq. (2.37), we

define the following function:

Φ̃ (nd, γm) , [C (γm)−Rm]
√
nd. (2.40)

Considering the high-end SNR regime, we can derive the average decoding error probability func-

tion as detailed in the following lemma.

Lemma 2. The approximate average decoding error probability function Eγm [εm (nd, γm)] for

mobile user m in the high-end SNR regime is determined as follows:

Eγm [εm (nd, γm)] ≈
√
π

2
√

2nd

Ka∑
k=1

ξk,m exp

{
(ξk,m)2

2nd
− ξk,mνm

}[
1− erf

(
ξk,m√
2nd
−
√
nd√
2
νm

)]
(2.41)

where νm , 2Rm − 1.
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Proof. The proof of Lemma 2 is provided in Appendix C.

2.4.2 Performance Analyses and Rate Adaptation for Statistical Delay and Error-Rate Bounded

QoS Provisioning

Substituting Eqs. (2.29), (2.30), and (2.39) back into Eq. (2.24), we can derive the closed-form

expression for the kernel function K(θm, dth). Correspondingly, we formulate the delay violation

probability minimization problem as follows:

P1 : Ropt
m = arg min

Rm
{pm(dth)} = arg min

Rm
{Km(θm, dth)} . (2.42)

Using Eq. (2.24), we can convert P1 into an equivalent minimization problem P2 as in the follow-

ing equation:

P2 : Ropt
m = arg min

Rm
{MSm(1− θm)}

= arg min
Rm

{
Eγm [εm (nd, γm)] +

[
1− e−θmndRmEγm [εm (nd, γm)]

]}
. (2.43)

The monotonicity of decoding error probability function εm (nd, γm) plays an important role in

analyzing the convexity of P2 given in Eq. (2.42) as detailed in the following lemma.

Lemma 3. The decoding error probability function εm (nd, γm) is a monotonically increasing func-

tion with respect to the achievable data rate Rm for our proposed CF m-MIMO modeling schemes.

Proof. To prove the monotonicity of the decoding error probability function εm (nd, γm), using

Eq. (2.37), we can take the first-order derivative of εm (nd, γm) with respect to Rm as in the follow-

ing equation:
∂εm (nd, γm)

∂Rm

= − 1√
2π
e−

Φ2(nd,γm)
2

[
∂Φ (nd, γm)

∂Rm

]
(2.44)

where Φ (nd, γm) , C(γm)−Rm√
V (γm)/nd

due to Eq. (2.37) and thus its first-order derivative yields the fol-
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lowing equations:

∂Φ (nd, γm)

∂Rm

=
−√nd√

1− 1
(1+γm)2

< 0. (2.45)

Therefore, we have ∂εm(nd,γm)
∂Rm

> 0, which implies that the decoding error probability function

εm (nd, γm) is a monotonically increasing function of Rm, completing the proof of Lemma 3.

Lemma 3 and its proof can help further investigate the convexity of εm (nd, γm) as shown in the

following lemma.

Lemma 4. The block error probability function εm (nd, γm) is convex with respect to the achievable

data rate Rm for each mobile user m.

Proof. Applying Eq. (2.45), we can derive the second-order derivative of the function Φ (nd, γm)

with respect to Rm as follows:

∂2Φ (nd, γm)

∂R2
m

= 0. (2.46)

Using Eqs. (2.37), (2.45), and (2.46) and the fact that Φ (nd, γm) > 0 due to C (γm) > Rm, we

obtain the following equations:

∂2εm (nd, γm)

∂R2
m

=
1√
2π
e−

Φ2(nd,γm)
2

[
Φ (nd, γm)

[
∂Φ (nd, γm)

∂Rm

]2

− ∂2Φ (nd, γm)

∂R2
m

]
> 0 (2.47)

which implies that εm (nd, γm) is a convex function with respect to Rm. Therefore, we complete

the proof of Lemma 4.

Combining and extending Theorem 1, Lemma 3, and Lemma 4 yield the following theorem.

Theorem 3. If the statistical delay and error-rate bounded QoS constraints are characterized by

{θm, εm (nd, γm)} with θm > 0, then the following claims hold for each mobile user m.

Claim 1. The delay upper-bound violation probability minimization problem P2 is strictly con-

vex with respect to the achievable data rate Rm for our proposed CF m-MIMO modeling schemes.
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Claim 2. Our obtained Mellin transform functionMSm(1− θm) over service process satisfies

the following condition:
∂2MSm(1− θm)

∂R2
m

> 0. (2.48)

Claim 3. The unique optimal rate adaptation policy, denoted by Ropt
m , for each mobile user m

in the high-end SNR region is given by the following equation:

Ropt
m ≈ log2


θmnd

(log 2)
Ka∑
k=1

ξk,m

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

) (log 2)
θmnd

−W

−
(log 2)

Ka∑
k=1

ξk,m

θmnd

×

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

exp

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

)(log 2)
θmnd






(2.49)

whereW (·) is the Lambert W function.

Proof. The proof of Theorem 3 is provided in Appendix D.

Remarks on Theorem 3: Claim 1 guarantees the existence of the optimal solution to the opti-

mization problem P2 given by Eq. (2.43) for our proposed CF m-MIMO modeling schemes when

θm > 0. Claim 2 shows that our obtained Mellin transform function over service process can

characterize the convexity of P2. Claim 3 derives the closed-form expression of the optimal rate

adaptation policy Ropt
m as the function of {θm, εm (nd, γm)} for each mobile user m in the high-end

SNR region, which plays the important roles in the system designs and performance analyses for

statistical delay and error-rate bounded QoS provisioning over 6G CF m-MIMO mobile wireless

networks in the finite blocklength regime.
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2.4.3 Maximizing Effective Capacity For Statistical Delay and Error-Rate Bounded QoS

Constraints in the Finite Blocklength Regime

The proposed upper bound on the delay violation probability pm(dth) using SNC characterizes

the small values of the target delay dth. For analyzing fairly long delays, i.e., the tail of delay

distribution, we apply the concept of effective capacity to proximate the delay violation probability

pm(dth), which is defined as follows.

Definition 2. The effective capacity [71], denoted by ECm(θm), is defined as the maximum con-

stant arrival rate for a given service Sm(l) for mobile user m subject to statistical delay-bounded

QoS constraints, which is formally expressed as follows:

ECm(θm) , − lim
l→∞

1

lθm
log
(
Eγ
[
e−θSm(l)

])
. (2.50)

On the other hand, considering the SNC, we can redefine the effective capacity, denoted by

ECm(θm), using the Mellin transform over service process in the SNR-domain as follows:

ECm(θm) , − 1

θm
log (MSm(1− θm)) . (2.51)

Accordingly, we can formulate the optimization problem P3 for statistical delay and error-rate

bounded QoS provisioning {θm, εm (nd, γm)} to maximize the downlink effective capacityECm(θm)

at mobile user m for our proposed CF m-MIMO schemes in the finite blocklength regime as fol-

lows:

P3 : arg max
Rm
{ECm(θm)} . (2.52)

Since log(·) is monotonically increasing, the above maximization problem P3 can be converted
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into an equivalent minimization problem P4 as follows:

P4 : arg min
Rm
{MSm(1− θm)} . (2.53)

which is equivalent to the minimization problem P2 given in Eq. (2.43). Consequently, we can

show that our derived optimal rate adaptation policy Ropt
m given in Eq. (2.49) also maximizes the

effective capacity ECm(θm) given in Eq. (2.51) for mobile user m in the finite blocklength regime

considering the high-end SNR region. Therefore, using Eq. (2.38), (2.41), and (2.49), we can

derive the maximum effective capacity, denoted by ECmax
m (θm), for statistical delay and error-

rate bounded QoS provisioning in supporting mURLLC over 6G CF m-MIMO and FBC mobile

wireless networks in the high-end SNR region as follows:

ECmax
m (θm)≈− 1

θm
log


√
π

2
√

2nd

Ka∑
k=1

{
ξk,m exp

{
(ξk,m)2

2nd
−ξk,mνm

}[
1−erf

(
ξk,m√
2nd
−
√
nd

2
νm

)]}

+

(
1−

√
π

2
√

2nd

Ka∑
k=1

{
ξk,m exp

{
(ξk,m)2

2nd
−ξk,mνm

}[
1−erf

(
ξk,m√
2nd
−
√
nd

2
νm

)]})

×


θmnd

(log 2)
Ka∑
k=1

ξk,m

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)[
1− θm

√
2πnd

2

] (log 2)
θmnd

−W

−
(log 2)

Ka∑
k=1

ξk,m

θmnd

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

×exp

[
(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

) (log 2)
θmnd

]


− θmnd

(log 2)
. (2.54)
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Figure 2.2: The achievable data transmission rate vs. number of APs for our proposed CF m-
MIMO scheme in the finite blocklength regime.

2.5 Performance Evaluations

We use MATLAB-based simulations to validate and evaluate our proposed CF m-MIMO based

schemes for statistical delay and error-rate bounded QoS provisioning in supporting mURLLC

in the finite blocklength regime. Throughout our simulations, we set the number of APs Ka ∈

[50, 900], the number of mobile usersKu ∈ [10, 700], the number of transmit antennasNT ∈ [2, 10],

the uplink pilot transmit power Pp from [1, 10] Watt for each mobile user, the average downlink

transmit power Pd from [1, 40] Watt for each mobile user, and the Rician factor κ from [0, 30].

We set the number of Rician factor κ = 4, the number of uplink channel uses np = 100, the

number of transmit antennas NT = 10, and the decoding error probability εm = 10−6. Compared

with the classical least-square (LS) channel estimator, Fig. 2.2 plots the achievable data transmis-

sion rate with varying numbers of APs Ka for our proposed 6G CF m-MIMO mobile wireless

networks over Rician wireless fading channels in the finite blocklength regime. We can observe

from Fig. 2.2 that the achievable data transmission rate increases with the number of APs. It is

shown in Fig. 2.2 that the MMSE channel estimator performs better than the LS estimator over

Rician wireless fading channels in terms of the achievable data transmission rate. Fig. 2.2 also

shows that the gap between the MMSE estimator and LS estimator increases with Ka, which is

because of the channel hardening effect.
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Figure 2.3: The achievable data transmission rate vs. Rician factor κ for our proposed CF m-
MIMO scheme in the finite blocklength regime.
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Figure 2.4: The CDFs of downlink data transmission rate per user for CF m-MIMO schemes in the
finite blocklength regime.

Setting the number of transmit antennas NT = 10 and the decoding error probability εm =

10−6, Fig. 2.3 depicts the achievable data transmission rate with different Rician factors κ for

our proposed 6G CF m-MIMO mobile wireless networks in the finite blocklength regime. We

can observe from Fig. 2.3 that the achievable data rate increases as the Rician factor κ increases.

Traditionally, the CSI estimation is not good enough when Ka is small, which leads to a low data

rate. For our proposed CF m-MIMO scheme, the channel estimation quality can be significantly

improved with large number of APs Ka.

Now we set the number of APs Ka = 100, the number of downlink channel uses nd = 800, the
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Figure 2.5: The delay violation probability pm(dth) vs. target delay dth for our proposed CF m-
MIMO scheme in the finite blocklength regime.

average downlink transmit power Pd = 20 Watt for each AP, and the Rician factor κ = 2. Fig. 2.4

plots the CDFs of the downlink data transmission rate per user for our proposed CF m-MIMO

schemes in the finite blocklength regime. As shown in Fig. 2.4, the downlink data transmission

rate per user increases with the number of transmit antennas NT. In addition, Fig. 2.4 shows that

a higher multiplexing order Pm is more beneficial for our proposed CF m-MIMO schemes with

larger antenna arrays.

We set the number of APs Ka = 100, the number of transmit antennas NT = 10, and decoding

error probability εm = 10−6. Compared with the traditional Shannon’s theorem which requires

infinite blocklength, Fig. 2.5 plots the delay violation probability pm(dth) with different target

delays dth over Rician wireless fading channels for our proposed CF m-MIMO scheme in the finite

blocklength regime. It is shown in Fig. 2.5 that the delay violation probability pm(dth) decreases

as the target delay dth increases. Fig. 2.5 also shows the delay violation probability increases with

the increased average data arrival rate λm. This is because that the queues can be built up more

quickly with a larger arrival rate.

We set the target delay dth = 5 ms, Rician factor κ = 10, the number of downlink channel

uses nd = 800, the average downlink transmit power Pd = 20 Watt for AP, and decoding error

probability εm = 10−6. Fig. 2.6 depicts the delay in millisecond (ms) with varying average arrival

rates λm over Rician wireless fading channels for our proposed CF m-MIMO scheme in the finite

32



0 5 10 15 20 25 30 35 40 45 50

Average Arrival Rate

0

10

20

30

40

50

60

D
el

ay
 (

m
s)

Bound, 
m

 = 0.1

Sim., 
m

 = 0.1

Bound, 
m

 = 0.001

Sim., 
m

 = 0.001

Figure 2.6: The delay (ms) vs. average arrival rate λm for our proposed CF m-MIMO scheme in
the finite blocklength regime.
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Figure 2.7: The average decoding error probability function εm (nd, γm) vs. achievable coding rate
Rm for our proposed CF m-MIMO scheme in the finite blocklength regime.

blocklength regime, which implies the potential to support massive number of mobile users. We

can observe from Fig. 2.6 that the queuing delay increases as the average arrival rate λm increases.

Fig. 2.6 also shows that the analytical results provide a reasonable upper bound for the actual delay

as obtained from simulations.

We set the number of APs Ka = 100, the number of transmit antennas NT = 10, Rician factor

κ = 0, and the average downlink transmit power Pd = 20 Watt for each AP. Using Eq. (2.39),

Fig. 2.7 depicts the average decoding error probability function Eγm [εm (nd, γm)] with differ-

ent achievable finite-blocklength coding rates Rm for our proposed CF m-MIMO scheme across
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Figure 2.8: The delay violation probability pm(dth) vs. number of APs Ka for our proposed CF
m-MIMO scheme in the finite blocklength regime.

Rayleigh wireless fading channels in the finite blocklength regime. We can observe from Fig. 2.7

that the average decoding error probability function Eγm [εm (nd, γm)] increases as the achievable

finite-blocklength coding rateRm increases. Fig. 2.7 also shows that the gap between the simulated

average decoding error function and the approximate average decoding error function is reasonably

small.

We set the number of transmit antennas NT = 10, Rician factor κ = 0, the number of downlink

channel uses nd = 800, and the average downlink transmit power Pd = 20 Watt. Compared

with the scheme without the optimal rate adaptation (RA), Fig. 2.8 depicts the delay violation

probability pm(dth) with different numbers of APs Ka for our proposed CF m-MIMO scheme in

the finite blocklength regime. We can observe from Fig. 2.8 that the delay violation probability

pm(dth) decreases as the numbers of AP Ka increases. Fig. 2.8 also shows that our proposed

schemes with optimal RA outperform the schemes without applying the optimal RA in terms

of the delay violation probability over 6G CF m-MIMO mobile wireless networks in the finite

blocklength regime.

Given different numbers of mobile users Ku, Fig. 2.9 depicts the block error probability func-

tion εm (nd, γm) with varying blocklengths nd for our proposed CF m-MIMO scheme in the finite

blocklength regime. We can observe from Fig. 2.9 that the performance degradation in terms of

block error probability function εm (nd, γm) with the increasing number of mobile usersKu is mild,
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Figure 2.9: The block error probability function εm (nd, γm) vs. blocklength nd for our proposed
CF m-MIMO scheme in the finite blocklength regime.
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Figure 2.10: The data transmission rate per user vs. number of mobile users Ku for our proposed
CF m-MIMO scheme in the finite blocklength regime.

implying the remarkable potential as well as the strong and robust scalability in supporting massive

access by vast mobile devices over our proposed 6G CF m-MIMO mobile wireless networks.

Setting the number of transmit antennas NT = 2, Rician factor κ = 0, and the average down-

link transmit power Pd = 20 Watt, Fig. 2.10 plots the data transmission rate per user with differ-

ent numbers of mobile users Ku for our proposed CF m-MIMO scheme in the finite blocklength

regime. We can observe from Fig. 2.10 that the data transmission rate per user decreases as the

number of mobile users Ku increases and will finally converge to a certain value, which implies

the potential to support massive number of mobile users. Fig. 2.10 also shows that loose QoS con-
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Figure 2.11: The maximum effective capacity ECmax
m (θm) vs. blocklength nd and QoS exponent

θm for our proposed CF m-MIMO scheme in the finite blocklength regime.

straint (θm = 10−3) and stringent QoS constraint (θm = 0.5) set the upper bound and lower bound

on the data transmission rate per user, receptively.

Figure 2.11 plots the maximum effective capacity ECmax
m (θm) with different blocklengths nd

and QoS exponents θm for our proposed CF m-MIMO scheme in the finite blocklength regime. We

can observe from Fig. 2.11 that the maximum effective capacity ECmax
m (θm) decreases as the QoS

exponent θm increases. Fig. 2.11 also shows that the maximum effective capacity ECmax
m (θm) is

an increasing function of the blocklength nd over 6G CF m-MIMO mobile wireless networks in

the finite blocklength regime.

2.6 Summary

We have developed an analytical model to quantitatively characterize the performance for sta-

tistical delay and error-rate bounded QoS provisioning in supporting mURLLC over 6G CF m-

MIMO mobile wireless networks in the finite blocklength regime. In particular, we have devel-

oped CF m-MIMO based system models. Then, we have applied the Mellin transform to model

and characterize both arrival and service processes, derived the closed-form expressions of the

delay violation probability function, and formulated and solved the delay violation probability

minimization problem for our proposed CF m-MIMO modeling schemes in the finite blocklength

regime. Furthermore, applying our developed system modeling techniques, we have derived the
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closed-form solution for the optimal rate adaptation policy, which plays an important role in the

system design and performance analyses for statistical delay and error-rate bounded QoS provi-

sioning over 6G CF m-MIMO mobile wireless networks in the finite blocklength regime. We also

have conducted a set of simulations to validate and evaluate our proposed CF m-MIMO schemes

and show that our proposed schemes outperform the other existing schemes for statistical delay

and error-rate bounded QoS provisioning in the finite blocklength regime.
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3. STATISTICAL DELAY AND ERROR-RATE BOUNDED QOS PROVISIONING OVER

MMWAVE CELL-FREE M-MIMO AND FBC-HARQ-IR BASED 6G MOBILE

NETWORKS∗

3.1 Introduction

Due to the ultra-low latency and high reliable guarantees of mURLLC, traditional automatic

repeat and request (ARQ) scheme, which requires acknowledgement (ACK) or non-ACK(NACK)

feedbacks, is no longer efficient for supporting delay-sensitive wireless multimedia applications.

Towards this end, researchers have developed hybrid automatic repeat request (HARQ) [72] proto-

cols, including HARQ with incremental redundancy (HARQ-IR) [73] and HARQ chase combining

(HARQ-CC) [74], to adaptively control the transmission rate based on decoding feedbacks. There

has been a great deal of research focusing on the performance analyses of HARQ protocols while

being integrated with FBC. The authors of [75] have compared the link-level system performance

with HARQ-IR and HARQ-CC, and shown that HARQ-IR can significantly improve channel cod-

ing rate as compared with HARQ-CC. The authors of [73] have studied power allocation policies

using HARQ-IR protocol when analyzing reliable downlink data transmissions under QoS con-

straints. The impact of fixed transmission rate, queuing constraints, and hard-deadline limitations

on the throughput has been studied in [76] while applying HARQ-IR protocol.

In addition, for the traditional m-MIMO systems, the cell-center mobile users can achieve

higher data rates compared with cell-edge users, which implies that the latter suffers from a longer

data transmission delay. Thus, at a given time instance, most of the active mobile users are likely

at the cell edge. The fact that “cell-free" networks provide the largest performance gain to these

mobile users demonstrate how effectively it can alleviate inter-cell interference. To reduce the

backhaul overhead, a “user-centric" approach has been proposed for cell-free m-MIMO systems,

∗ c©2020 IEEE. Part of the material presented in this chapter is reprinted with permission from “Statistical Delay
and Error-Rate Bounded QoS Provisioning Over mmWave Cell-Free M-MIMO and FBC-HARQ-IR Based 6G Wire-
less Networks" by X. Zhang, J. Wang, and H. V. Poor, published in IEEE Journal on Selected Areas in Communications
(J-SAC), Vol. 38, No. 8, pp. 1661-1677, August 2020.
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where each mobile user is served by a selected subset of APs which are within the user-centric clus-

ter, which is also known as “user-specific dynamic clustering" developed for cooperative MIMO

based mobile wireless networks. Only the APs that are geographically close to a given mobile user

will be selected and each AP only coordinates its resource allocation policies with the APs that

are in the same user-centric cluster. Two AP selection methods for user-centric cell-free m-MIMO

systems are proposed in [77], including the received-power-based selection and largest-large-scale-

fading-based selection. The authors of [78] have shown that such user-centric cell-free m-MIMO

approach outperforms the pure cell-free m-MIMO approach in terms of achievable rate per-user for

the vast majority of the mobile users in the network. The authors of [79] have studied the downlink

performance of cell-free m-MIMO systems in terms of the minimum rate among all users.

When integrating m-MIMO with mmWave technique, the major design issues, such as accu-

rate channel estimations, have been investigated to reduce the hardware complexity as well as

power consumption over the mmWave m-MIMO based wireless fading channels. To resolve such

problems, the authors of [80] have developed the low-complexity multiuser hybrid analog/digital

precoding algorithms with limited feedbacks. Although the traditional suboptimal approaches for

selecting analog precoder and combiner can avoid exhaustive search, it still suffers from some

high-complexity operations. Due to the sparsity characteristics of mmWave wireless fading chan-

nels, researchers have developed dictionary learning method [81] to solve the hybrid beamforming

optimization problem in a low-complexity way. The authors of [82] have proposed an algorithm

for adapting dictionaries in order to achieve sparse signal representations. Furthermore, when be-

ing integrated with the mmWave technique, the assumptions and analytical results in [36, 79, 83]

for the cell-free m-MIMO systems cannot be directly applied at mmWave frequency bands. The

authors of [84] have introduced and analyzed the user-centric and cell-free system architectures

at millimeter wave frequencies. The authors of [85] have proposed downlink power control algo-

rithms to maximize the global energy efficiency in mmWave user-centric and cell-free m-MIMO

architectures. However, how to efficiently integrate mmWave with cell-free m-MIMO architecture

models in the finite blocklength regime under statistical delay/error-rate bounded constraints is still

39



an open problem.

To effectively overcome the above-mentioned challenges, in this chapter we integrate the

mmWave user-centric cell-free m-MIMO system with FBC-HARQ technique over 6G wireless

networks. In particular, we establish mmWave user-centric cell-free m-MIMO based system mod-

els. Then, we apply the dictionary learning method to design a low-complexity beam-training

algorithm for solving the beam-training optimization problem. We also apply FBC-HARQ pro-

tocol to determine the channel capacity as well as error probability using FBC. Based on the in-

formation theoretic results in QoS theory, we characterize QoS metrics in terms of error probabil-

ity and derive the corresponding effective capacity function for our proposed FBC-HARQ based

mmWave cell-free m-MIMO schemes. We also conduct a set of simulations to validate and eval-

uate our proposed mmWave user-centric cell-free m-MIMO schemes by implementing statistical

delay/error-rate bounded QoS provisioning in the finite blocklength regime.

The rest of this chapter is organized as follows: Section 3.2 establishes mmWave user-centric

cell-free m-MIMO based system models. Section 3.3 designs the dictionary learning based beam-

training algorithm. Section 3.4 derives the channel capacity and error probability using FBC-

HARQ protocol. Section 3.5 derives and analyzes statistical delay/error-rate bounded QoS metrics

and effective capacity function in the finite blocklength regime. Section 3.6 evaluates and analyzes

the system performance for our proposed FBC-HARQ based mmWave user-centric cell-free m-

MIMO schemes. The chapter concludes with Section 3.7.

3.2 The Network Architecture and System Models

3.2.1 The MmWave User-Centric Cell-Free m-MIMO System Architecture

Consider an mmWave user-centric cell-free m-MIMO network model, where each mobile user

is served by coherent joint transmissions from a selected subset of APs which are within the user-

centric cluster. Fig. 3.1 shows the system modeling for our proposed mmWave cell-free m-MIMO

and FBC-HARQ based 6G multimedia mobile wireless networks. We assume that each AP is

equipped with NT antennas and LT RF chains (NT > Ku, NT ≥ LT, and LT < Ku). Define G(k)
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Figure 3.1: The system modeling for our proposed mmWave cell-free m-MIMO and FBC-HARQ
based 6G multimedia mobile wireless networks.

as the group of mobile users served by the kth AP, where |G(k)| = LT < Ku. Define K(m) as the

cluster APs that serve mobile user m.

3.2.2 The MmWave User-Centric Cell-Free m-MIMO Based System Models

As shown in Fig. 3.2, each time interval is divided into the following three phases:

1. Large-scale beam-training phase: Each AP chooses an optimal RF precoder and selects a

group of mobile users G(k) with the best channel quality;

2. Small-scale uplink training phase: Mobile users send uplink pilot symbols to the APs, then

each AP estimates the wireless channels to all mobile users based on the received pilot

symbols;

3. Downlink finite-blocklength data transmission phase: The APs use the knowledge of channel

estimation obtained in the previous small-scale uplink training phase, precode, and transmit

the finite-blocklength data to mobile users under HARQ-IR protocol, as shown in Fig. 3.2.

HARQ-IR protocol will be discussed in detail in Section 3.4.

Define nd as the number of channel uses reserved for transmitting L equal-length downlink-

data blocks with n̂ symbols each for implementing HARQ-IR protocol, i.e., nd = Ln̂.
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Figure 3.2: Frame structure with large-scale beam-training, small-scale uplink training, and finite-
blocklength downlink data transmission phases using HARQ-IR protocol in mmWave user-centric
cell-free m-MIMO scheme, where L is the number of finite-blocklength data blocks for the down-
link data transmission using HARQ-IR protocol and n̂ is the blocklength of each data block using
HARQ-IR protocol.

B.1 Large-Scale Beam-Training Phase

The goal of large-scale beam-training phase is to develop an efficient algorithm to design an

optimal RF precoder FR,opt
k,m ∈ CNT×LT and user selection group G(k). Define an equivalent chan-

nel’s impulse response vector, denoted by h̃k,m, between the kth AP and mobile user m as in the

following equation:

h̃k,m = hk,mFR
k,m (3.1)

where hk,m ∈ C1×NT represents the channel’s impulse response vector from the kth AP to mobile

user m and FR
k,m ∈ CNT×LT is the analog precoder from AP k to mobile user m. Correspondingly,

we can formulate the maximization problem P5 which selects the best mobile user and the optimal

precoding matrix
{
mopt,FR,opt

k,m

}
as follows:

P5 :
{
mopt,FR,opt

k,m

}
= arg max

{m,FR
k,m}

{∥∥hk,mFR
k,m

∥∥2

F

}
(3.2)
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s.t. C1: FR
k,m ∈ F c, ∀m;

C2:
∥∥FR

k,mFB
k,m

∥∥2

F
= 1, ∀m, (3.3)

where ‖M‖2
F is the Frobenius norm of matrix M, which is defined as

√
Tr ((M†)M), (·)† denotes

the Hermitian transpose of a matrix, Tr(·) denotes the trace of a matrix, FB
k,m is the digital precoder

from AP k to mobile user m, and F c = {fc(1), . . . ,fc(NT)} is the beam steering codebook stored

at the APs, given by

fc(i) =
1√
NT

[
1, e

π
(
−1+

(2i−1)
NT

)
, . . . , e

π(NT−1)
(
−1+ 2i−1

NT

)]T
(3.4)

for i = 1, . . . , NT where  =
√
−1. Note that the vector fc(i) has the same structure as the antenna

array’s response vector. To solve the above optimization problem P5, we can apply the exhaustive

search method. However, the complexity of such exhaustive search method is too high, especially

for m-MIMO scenario. Accordingly, we design low-complexity suboptimal beam-training algo-

rithm to solve P5 and the corresponding user selection method in Section 3.3.

B.2 Small-Scale Uplink Training Phase

Define the pilot training sequence from all Ku mobile users as sm ,
[
s

(1)
m , . . . , s

(np)
m

]
and

‖sm‖2
F = 1. During the small-scale uplink training phase, we can derive the received signal,

denoted by y(l)
k , at the kth AP for transmitting the lth training data block as in the following

equation:

y
(l)
k =

Ku∑
m=1

√
Pph̃k,ms

(l)
m + n

(l)
k , l = 1, . . . , np (3.5)

where Pp is the uplink pilot transmit power from each mobile user to the AP; s(l)
m denotes the pilot

training signal sent from mobile user m to the kth AP; h̃k,m represents the equivalent channel’s

impulse response vector between mobile user m and the kth AP, given in Eq. (3.1); and n(l)
k is the

AWGN with zero mean and variance σ2. Then, we can derive the MMSE channel estimation as
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follows:

ĥk,m =

Eh̃k,m

[
h̃k,m

(
h̃k,m

)†]
Ku∑
m=1

(
FR
k,m

)† Ehk,m

[
hk,m (hk,m)†

]
FR
k,m + σ2IKu

=

∥∥∥(FR
k,m

)† Ehk,m

[
hk,m (hk,m)†

]
FR
k,m

∥∥∥2

Ku∑
m=1

(
FR
k,m

)† Ehk,m

[
hk,m (hk,m)†

]
FR
k,m + σ2IKu

(3.6)

where ‖ · ‖ is the norm of a matrix, Eh̃k,m
[·] is the expectation over h̃k,m, and IKu is the identity

matrix of size Ku.

B.3 User-Centric Downlink Finite-Blocklength Data Transmission Phase

We define the transmit signal matrix as Xnd
m ,

[
x

(1)
m , . . . ,x

(nd)
m

]
and receive signal vector as

ynd
m ,

[
y

(1)
m , . . . , y

(nd)
m

]
, respectively. Considering Rayleigh block-fading channel, we can derive

the received signal, denoted by ynd
m ∈ C1×nd , from the kth AP to the mth mobile user for transmit-

ting nd finite-blocklength data blocks as follows:

ynd
m =

∑
k∈K(m)

hk,mFR
k,mFB

k,m (Ωk,m)
1
2 Xnd

m +
Ku∑
m′=1
m′ 6=m

∑
k∈K(m′)

hk,mFR
k,m′F

B
k,m′ (Ωk,m′)

1
2 Xnd

m′ + nm

(3.7)

where Xnd
m and Xnd

m′ are the signals sent to mobile user m and mobile user m′, respectively;

FR
k,m ∈ CNT×LT and FR

k,m′ ∈ CNT×LT are the analog precoders for mobile user m and mobile

user m′, respectively; FB
k,m ∈ CLT×NT and FB

k,m′ ∈ CLT×NT represent the digital precoders for

mobile user m and mobile user m′, respectively; Ωk,m ∈ CNT×NT and Ωk,m′ ∈ CNT×NT denote

the power allocation matrices which allocate total transmit power among NT streams at the kth

AP to mobile user m and mobile user m′, respectively; and nm is the AWGN with zero mean

and covariance Indσ
2. Define Ωk,m , diag

{
ω

(1)
k,m, . . . , ω

(NT)
k,m

}
as the power allocation matrix,

where diag{·} represents the diagonal matrix. In addition, we normalize the precoding matrices
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as
∥∥FR

k,mFB
k,m

∥∥2

F
= 1. As a result, the received signal at mobile user m can be rewritten as in the

following equation:

ynd
m =

∑
k∈K(m)

h̃k,mFB
k,m (Ωk,m)

1
2 Xnd

m +
Ku∑
m′=1
m′ 6=m

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2 Xnd

m′ + nm. (3.8)

In addition, we can determine the SINR, denoted by γm, for mobile user m as follows:

γm =

∑
k∈K(m)

∥∥∥h̃k,mFB
k,m (Ωk,m)

1
2

∥∥∥2

∥∥∥∥∥∥
Ku∑
m′=1
m′ 6=m

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥∥
2

+ σ2

. (3.9)

3.3 Dictionary Learning Based Low-Complexity Hybrid Precoder Design

Although the traditional suboptimal methods for selecting analog precoder and combiner can

avoid exhaustive search, it still involves some high-complexity matrix operations. Due to the

sparsity characteristics of mmWave wireless fading channels, we apply the dictionary learning

method [81] to solve the optimization problem in a low-complexity way. During the dictionary

learning based beam-training phase, using Eq. (3.4), we can define the following over-complete

beam steering codebook for the RF precoder to achieve the sparse representation for solving the

optimization problem P5:

f̃c(i) =
1√
NT

[
1, e

π
(
−1+

(2i−1)
MT

)
, . . . , e

π(NT−1)
(
−1+ 2i−1

MT

)]T
(3.10)

for i = 1, . . . ,MT whereMT > NT. Thus, we can rewrite the beam-training codebook at the APs as

F̃ c =
{
f̃c(1), . . . , f̃c(MT)

}
. Such an over-complete matrix introduces redundancy to the original

beamforming codebook matrix, improving both flexibility and capability of sparse representation.

Using the singular value decomposition (SVD), the channel’s impulse response vector hk,m can be
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decomposed as follows:

hk,m = Uk,mΣk,m (Vk,m)† (3.11)

where the columns of Uk,m is the left singular vector of hk,m; Σk,m denotes the diagonal ma-

trix containing the singular values of hk,m; and the rows of (Vk,m)† represent the right singu-

lar vectors of hk,m. Define an optimal precoder matrix as Fopt
k,m , Vk,m. Then, we define

Dk,m , [Dk,1, . . . ,Dk,Ku ] as the dictionary of beamforming codewords learned from large-scale

beam-training phase at AP k for mobile user m. Motivated by P5, we need to minimize the “dis-

tance" between the layered precoder
{
FR
k,m,F

B
k,m

}
and an optimal precoder Fopt

k,m. As a result,

converting P5, we can formulate the following maximization problem P6 by using the concept of

the Fubini-Study distance [86]:

P6 : arg max
{m,FR

k,m,F
B
k,m}

{∥∥∥(Fopt
k,m

)†
FR
k,mFB

k,m

∥∥∥} (3.12)

subject to constraints C1 and C2 given in Eq. (3.3), where ‖·‖ denotes the Euclidean norm. To solve

the maximization problem P6, we can formulate an equivalent optimization problem to minimize

the Frobenius norm of the error between the two precoders. Accordingly, the maximization prob-

lem P6 can be reconstructed as the following overall error minimization problem P7 for designing

an optimal beam-training codebook for our proposed cell-free mmWave m-MIMO schemes:

P7 : arg min
{m,FR

k,m,F
B
k,m}

{∥∥Fopt
k,m − FR

k,mFB
k,m

∥∥
F

}
(3.13)

subject to constraints C1 and C2 given in Eq. (3.3). Correspondingly, using the dictionary learning

approach, we can reformulate problem P7 into an equivalent minimization problem P8 as follows:

P8 : arg min
{m,Dk,m,F

B
k,m}

{∥∥Fopt
k,m −Dk,mFB

k,m

∥∥
F

}
(3.14)

46



s.t. C3:
∥∥∥FB

k,m

(
FB
k,m

)†∥∥∥
0

= LT, ∀m;

C4:
∥∥Dk,mFB

k,m

∥∥2

F
= 1, ∀m, (3.15)

where ‖M‖0 represents the `0-pseudo-norm that counts the number of non-zero entries in matrix

M. For our dictionary learning based beam-training algorithm, our goal is to minimize the object

function given in Eq. (3.14) iteratively. To solve the minimization problem P8, we need to proceed

with the following stages. 1) Sparse coding stage: We fix the dictionary Dk,m and find the best

matrix FB
k,m by applying any suitable approximation pursuit method. In this chapter, we apply the

orthogonal matching pursuit (OMP) algorithm [87]. 2) Dictionary update stage: In the dictionary

update stage, the algorithm searches for a better dictionary by updating one column at a time.

During each iteration, all columns in Dk,m is fixed except [Dk,m]:,i, where [Dk,m]:,i represents the

ith column of matrix Dk,m. Also, [Dk,m]:,i and the corresponding matrix FB
k,m are updated for

achieving the minimum overall representation error in the optimization problem P8 at the end of

each iteration. We define D
(`)
k,m and F

(`,B)
k,m as the updated dictionary and the sparse representation

matrix after `th iteration, respectively. Algorithm 1 is the pseudo-code outlining our proposed

dictionary learning based beam-training algorithm.

Assume that the sparse coding stage is perfectly conducted, we can retrieve the best approx-

imations to FR
k,m that contains no more than e0 non-zero entries. In this case, when fixing the

dictionary Dk,m, the overall representation error given in Eq. (3.14) will be decreased after each

iteration. In addition, during the dictionary update stage, an additional reduction or no change in

the overall representation error is guaranteed, while not violating the constraints. As a result, such

series of iterations ensures a monotonic overall representation error reduction, which indicates that

the convergence to a local minimum is guaranteed.

3.4 The HARQ-IR Protocol in the Finite Blocklength Regime

Unlike the traditional ARQ protocol, HARQ protocol enables receiver to exploit the received

information from previous HARQ transmission rounds to increase the successful decoding prob-
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Algorithm 1 Dictionary Learning Based Beam-Training Algorithm
Input: Ku, LT, and NT

Initialization: Set the initial dictionary D
(0)
k,m = F̃ c ∈ RNT×MT ,FR

k,m = ∅,Gk = ∅, and ` = 1
Dictionary Learning:
repeat

Sparse coding stage:
for m = 1 : Ku do

Use OMP method to determine F
(`,B)
k,m for each example [Dk,m]:,i

Select the best matrix F
(`,B)
k,m and the strongest user with the corresponding best precoder

F
(`,B)
k,m by solving arg min

{m,FB
k,m}

{∥∥Fopt
k,m −Dk,mFB

k,m

∥∥
F

}
Gk = Gk

⋃
{mopt}

end for
Dictionary update stage:
for i = 1 : MT do

Update F
(`,B)
k,m and D

(`)
:,i using Eq. (3.14)

end for
Set `← `+ 1

until convergence

ability of a data packet. Define Mm as the total bits of data packet that is intended to be trans-

mitted for mobile user m. Each downlink finite-blocklength codeword with length nd is di-

vided into L blocks of n̂ symbols for implementing HARQ-IR protocol, i.e., nd = Ln̂ (see

Fig. 3), and will be transmitted consecutively in the following time slots. Accordingly, we de-

fine the codeword with length L finite-blocklength data blocks as Xnd
m ,

[
X

(1)
m , . . . ,X

(L)
m

]
, where

X
(l)
m ,

[
x

(n̂(l−1)+1)
m , . . . ,x

(n̂l)
m

]
for l = 1, . . . , L. Under HARQ-IR protocol, if the received data

packet can be successfully decoded at the receiver, an ACK will be sent back to the transmitter,

and the corresponding data packet will be removed from buffer. Otherwise, a NACK is sent back

to the transmitter and another data block will be transmitted until the codeword is successfully

decoded at the receiver or the maximum number of transmissions for the packet is reached. By

using the dictionary learning based beam-training precoder design given by Algorithm 1, we can

characterize the channel capacity as well as the error probability using our proposed HARQ-IR

based mmWave user-centric cell-free m-MIMO system models.
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We apply the threshold decoding rule [88], i.e., i
(
Xn̂l
m;yn̂lm , h̃k,m

)
> βm, where βm , log Mm−1

2

denotes the decoding threshold and i
(
Xn̂l
m;yn̂lm , h̃k,m

)
is defined as the information density for the

codeword of finite blocklength n̂l, which can be expressed as follows:

i
(
Xn̂l
m;yn̂lm , h̃k,m

)
=

1

n̂lNT

n̂l∑
j=1

im,j ,
1

n̂lNT

n̂l∑
j=1

log
P
y

(j)
m |h̃k,m,x

(j)
m

(
y

(j)
m |h̃k,m,x(j)

m

)
P
y

(j)
m |h̃k,m

(
y

(j)
m |h̃k,m

) (3.16)

where log(·) represents loge(·), yn̂Nlm is the received signal with length n̂l, P
y

(j)
m |h̃k,m,x

(j)
m

and P
y

(j)
m |h̃k,m

denote the conditional probabilities, and im,j denotes the random variable with the same distribu-

tion of the information density i
(
Xn̂l
m;yn̂lm , h̃k,m

)
. In addition, using HARQ-IR protocol, we can

define the initial transmission rate, denoted by Rm,in, for mobile user m as follows:

Rm,in ,
logMm

n̂
bits/channel use. (3.17)

Accordingly, the data transmission rate, denoted by Rm,l, for transmitting data block l to mobile

user m can be defined as follows:

Rm,l ,
logMm

n̂l
=
Rm,in

l
bits/channel use. (3.18)

Under the dependence testing (DT) bound, previous results [30] have shown that there exists

an (n̂l,Mm, εm,l)-code and average error probability, denoted by εm,l, not exceeding the following

constraint:

εm,l ≤Eh̃k,m

[
Pr

{
i
(
Xn̂l
m;yn̂lm , h̃k,m

)
< log

(
Mm − 1

2

)}

+
Mm − 1

2
PrP

Y
n̂l
m |h̃k,m

(
i
(
Xn̂l
m;yn̂lm, h̃k,m

)
> log

(
Mm − 1

2

))]
(3.19)

where yn̂lm follows the same distribution as the output signal yn̂lm and is independent of the input

signal Xn̂l
m. When calculating the average decoding error probability, we consider two different
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error events, i.e., miss-detection error and confusion error. Using the Berry-Esseen Theorem [89],

we can derive the miss-detection error probability which is given in the first term on the right-hand

side in Eq. (3.19) as follows:

Pr
{
i
(
Xn̂l
m;yn̂lm , h̃k,m

)
< log

(
Mm − 1

2

)}
= Q

 n̂lCm
(
h̃k,m

)
− log

(
Mm−1

2

)√
n̂lVm

(
h̃k,m

)


− 2

(
log 2√

2π
+B1

)
1√
n̂l

(3.20)

where Q(·) is the Q-function, Cm
(
h̃k,m

)
denotes the channel capacity, Vm

(
h̃k,m

)
is the channel

dispersion, and

B1 =
6S
[
i
(
Xn̂l
m;yn̂lm , h̃k,m

)]
[
Vm

(
h̃k,m

)] 3
2

(3.21)

where S[·] is the third moment operator. Furthermore, according to [30], we can obtain the fol-

lowing confusion error probability which is given in the second term on the right-hand side in

Eq. (3.19):

Mm − 1

2
Pr
{
i
(
Xn̂l
m;yn̂lm , h̃k,m

)
≥ log

(
Mm − 1

2

)}

= Eh̃k,m

exp

{
−

n̂l∑
j=1

im,j

}
1{ n̂l∑

j=1
im,j>log(Mm−1

2 )
}
 ≤ 2

(
log 2√

2π
+B2

)
1√
n̂l

(3.22)

where

B2 =
1

Vm

(
h̃k,m

)(12S
[∣∣∣i(Xn̂l

m;yn̂lm , h̃k,m

)
− Eh̃k,m

[
i
(
Xn̂l
m;yn̂lm , h̃k,m

)] ∣∣∣]). (3.23)

Correspondingly, we can obtain the average decoding error probability, denoted by εm,l, for data

packets with length n̂l under HARQ-IR protocol over mmWave cell-free m-MIMO based 6G mul-
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timedia mobile wireless networks as follows:

εm,l ≤ Q

 n̂lCm
(
h̃k,m

)
− log

(
Mm−1

2

)√
n̂lVm

(
h̃k,m

)
+

B1 +B2√
n̂l

≈ Q

 n̂lCm
(
h̃k,m

)
− log

(
Mm−1

2

)√
nK/NT

+
B1 +B2√

n̂l
. (3.24)

Using Taylor’s expansion for inverseQ function, we can derive an upper bound on the finite block-

length coding rate for our proposed mmWave cell-free m-MIMO schemes as in the following

equations:

logMm

n̂l
≤ Cm

(
h̃k,m

)
−

√√√√Vm

(
h̃k,m

)
n̂l

Q−1

(
εm,l −

B1 +B2

n̂l

)

≈ Cm

(
h̃k,m

)
−

√√√√Vm

(
h̃k,m

)
n̂l

Q−1 (εm,l) +O

(
1√
n̂l

)
(3.25)

where f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0

such that |f(x)| ≤ Mg(x) for all x ≥ x0. As a result, for our proposed (n̂l,Mm, εm,l)-code, we

can derive the approximate decoding error probability for transmitting data packet of length n̂l to

mobile user m under perfect CSI as follows:

εm,l ≈ Q

√√√√ n̂

lVm

(
h̃k,m

) (lCm (h̃k,m)−Rm,in

) (3.26)

where Rm,in is the initial data transmission rate for mobile user m, specified by Eq. (3.17).

Considering the non-vanishing error probability, it is challenging to derive the closed-form

expression of the channel capacity for our proposed mmWave user-centric cell-free m-MIMO

schemes compared with the traditional m-MIMO schemes. In the following Lemma 5, we give

the concrete expression to derive an lower bound on the channel capacity Cm
(
h̃k,m

)
for our pro-
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posed mmWave user-centric cell-free m-MIMO schemes in the finite blocklength regime.

Lemma 5. A lower bound on the channel capacity Cm
(
h̃k,m

)
for our proposed mmWave user-

centric cell-free m-MIMO and FBC-HARQ based 6G mobile wireless networks can be derived as

follows:

Cm

(
h̃k,m

)
≥Eh̃k,m

[
log2

(
det

((
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†)
+
(
h̃k,m

)†
h̃k,m

))]

− Eh̃k,m

[
log2 det

((
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†))]
(3.27)

where det(·) is the determinant of a matrix and

Ξk,m ,

(
Eh̃k,m

[
hk,m

Ku∑
m′=1

∑
k∈K(m′)

FR
k,m′F

B
k,m′Ωk,m′

(
FR
k,m′F

B
k,m′

)†
(hk,m)†

]
+ σ2

)−1

. (3.28)

Proof. The proof is provided in Appendix E.

Traditionally, it is challenging to derive the closed-form expression of the channel dispersion

for mmWave cell-free m-MIMO schemes in the finite blocklength regime. We can derive an upper

bound on the channel dispersion Vm
(
h̃k,m

)
for our proposed FBC-HARQ based mmWave user-

centric cell-free m-MIMO scheme as summarized in Theorem 1.

Theorem 4. An upper bound on the channel dispersion Vm
(
h̃k,m

)
for our proposed mmWave

user-centric cell-free m-MIMO and FBC-HARQ based 6G mobile wireless networks can be speci-

fied as follows:

Vm

(
h̃k,m

)
≤ 8n̂l

3Pm
σ4

Eh̃k,m


∥∥∥∥∥∥∥∥

Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥∥∥∥
2 + 2

. (3.29)

Proof. The proof is provided in Appendix F.
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3.5 Statistical Delay/Error-Rate Bounded QoS Guarantees Through Effective Capacity in

the Finite Blocklength Regime

In this section, by using the decode error probability function given in Eq. (3.26) in the previous

section, we can then characterize the analytical relationship between the statistical delay/error-rate

bounded QoS metrics/schemes and decode error probability function. In addition, we derive the

corresponding effective capacity function under HARQ-IR protocol for our proposed mmWave

user-centric cell-free m-MIMO schemes in the finite blocklength regime.

3.5.1 Statistical Delay/Error-Rate Bounded QoS Metrics Under Constant Arrival Rate in

the Finite Blocklength Regime

Denote by Nl the number of HARQ-IR retransmissions, where 1 ≤ Nl ≤ L. For our proposed

HARQ-IR protocol, we define ak,m(l) as the source rate for transmitting the lth data block from

the kth AP to mobile user m and sk,m(l) as the instantaneous data transmission rate over wireless

channels for transmitting the lth data block from the k AP to mobile user m. Define Am(Nκ) =∑
k∈K(m)

Nκ−1∑
l=0

ak,m(l) as the accumulated source rate for transmitting the κth message to mobile user

m and Sm(Nκ) =
∑

k∈K(m)

Nκ−1∑
l=0

sk,m(l) as the accumulated data transmission rate over wireless

channels for transmitting the κth message to mobile user m. Define Qm(Nκ) as the dynamics

of queuing process for transmitting the κth message to mobile user m, which is given as in the

following equation:

Qm(Nκ) = max {Am(Nκ)− Sm(Nκ), 0} . (3.30)

Define Um(Nκ) , Am(Nκ) − Sm(Nκ). We can rewrite the queuing process for transmitting the

κth message to mobile user m as in the following equation:

Qm(Nκ) = max {0, Um(Nκ), Um(Nκ) + Um(Nκ − 1), . . . } . (3.31)

Assume that the average data arrival rate, denoted by µk,m, is a constant. Then, given the decode

error probability function εm,Nκ for Nκ number of HARQ-IR retransmissions in Eq. (3.26), the
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delay-bounded QoS constraint of mobile user m for transmitting Nκ data blocks can be derived as

follows:

Pr

(⋃
Nκ

{Qm(Nκ) > Qm,th}

)
= Pr

(⋃
Nκ

{
Nκ∑
l=1

Um(l) > Qm,th

})

≈ ηm (µk,m, εm,Nκ) e−θ
con
m (µk,m,εm,Nκ)Qm,th (3.32)

where
⋃

is the or operation, θcon
m (µk,m, εm,Nκ) is defined as the QoS exponent function considering

the constant average arrival rate scenario, and ηm (µk,m, εm,Nκ) is the probability that queue is non-

empty. Note that the pair of functions {ηm (µk,m, εm,Nκ) , θcon
m (µk,m, εm,Nκ)} are functions of the

source rate µk,m and the decoding error probability εm,Nκ , which depend on the channel condition

and decoding process.

On the other hand, we can characterize the queuing delay of the buffer for the κth message as

Dm(Nκ). First, using Eq. (3.32), we can derive the bound for the steady-state delay distribution

in terms of the delay violation probability, denoted by εq,m, given the decode error probability

function εm,Nκ in Eq. (3.26) as follows:

εq,m = Pr

(⋃
Nκ

{Dm(Nκ) > Dm,th}

)
≈ ηm (µk,m, εm,Nκ) e−θ

con
m (µk,m,εm,Nκ)Rm,NκDm,th (3.33)

where Dm,th is the delay bound for mobile user m and Rm,Nκ denotes data transmission rate for

transmitting the κth message for mobile user m, specified by Eq. (3.18). Remarks: Compar-

ing Eq. (3.32) with its equivalent Eq. (3.33), we obtain the following relationships: Qm,th =

Rm,NlDm,th. Then, based on the derivations in [90], we can characterize the estimated analyti-

cal relationship between the functions {ηm (µk,m, εm,Nκ) , θcon
m (µk,m, εm,Nκ)} as follows:


ηm(µk,m,εm,Nκ)
θcon
m (µk,m,εm,Nκ)

= E [Dm(Nκ)] ;

ηm (µk,m, εm,Nκ) = Pr {Qm(Nκ) > 0} .
(3.34)
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Accordingly, the expectation of the delay process can be derived as in the following equation:

E [Dm(Nκ)] = E

Am(Nκ)− Sm(Nκ)∑
k∈K(m)

µk,m

 . (3.35)

SinceAm(Nκ) and Sm(Nκ) are independent of each other, we can determine the value of E [Am(Nκ)]

when Nκ →∞. Using the Central Limit Theorem, we get

E [Am(Nκ)] =
∑

k∈K(m)

µk,m. (3.36)

In order to derive the expected value of the accumulated process Sm(Nκ), using Eqs. (3.17)

and (3.18), we have

E [Sm(Nκ)] = n̂E [Rm,Nκ ] = n̂E
[
Rm,in

Nκ

]
. (3.37)

To derive the average number of HARQ-IR retransmissions E [Nκ], we derive the probability that

the number of HARQ retransmission rounds when Nκ = l as in the following equation:

Pr {Nκ = l} =



Pr
{
A0

}
− Pr

{
A1

}
, for l = 1;

Pr
{

l−1⋂
ι=1

{
Aι
}}
− Pr

{
l⋂

ι=1

{
Aι
}}

, for 1 < l < L;

Pr
{
L−1⋂
l=1

{
Al
}}

, for l = L,

(3.38)

where
⋂

is the and operation andAl (l = 1, . . . , L) denotes the event that the received data packet

cannot be decoded correctly at the end of lth HARQ retransmission round. Correspondingly, the

average number of HARQ-IR retransmissions E [Nκ] can be upper-bounded as follows:

E[Nκ] =
L∑
l=1

lPr {Nκ = l} = Pr
{
A0

}
+

L−1∑
l=1

Pr

{
L−1⋂
l=1

{
Al
}}

≤ 1 +
L−1∑
l=1

Pr
{
Al
}
≈ 1 +

L−1∑
l=1

εm,l (3.39)
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where Pr
{
A0

}
= 1 and εm,l ≈ Pr

{
Al
}

is the approximate decoding error probability after lth

HARQ retransmission round for mobile user m given by Eq. (3.26).

The probability that buffer is non-empty is similar to the probability that the received SINR falls

below a certain specified threshold, i.e., the decoding error probability at the receiver [91]. Due to

the fact that the non-empty buffer probability also considers the effect of packet accumulation in

the queue, the non-empty buffer probability is larger than the decoding error probability, i.e.,

ηm (µk,m, εm,Nκ) ≥ εm,L (3.40)

where εm,L is the decoding error probability after L HARQ retransmission rounds for mobile user

m, specified by Eq. (3.26) when Nκ = L. Using Eqs. (3.34), (3.35), (3.39) and (3.40), we can

obtain the following equation that characterizes the analytical relationship between the decoding

error probability and the QoS exponent function considering the constant average data arrival rate

scenario:

θcon
m (µk,m, εm,Nκ) ≈ εm,L

1−Rm,in

[ ∑
k∈K(m)

µk,m

(
1 +

L−1∑
l=1

εm,l

)]−1 (3.41)

where Rm,in is the initial transmission rate for mobile user m given by Eq. (3.17). Note that

the above Eq. (3.41) implies that there exists an analytical relationship between the decoding er-

ror probability function and the QoS exponent function using FBC-HARQ protocol in the finite

blocklength, i.e., given the error-rate constraints, we can them characterize the delay-bounded QoS

exponent function θcon
m (µk,m, εm,Nκ) for our proposed mmWave user-centric cell-free m-MIMO

schemes in the finite blocklength regime.
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3.5.2 Statistical Delay/Error-Rate Bounded QoS Metrics Under Random Arrival Rate in

the Finite Blocklength Regime

3.5.2.1 Discrete-Time Markov Model

Consider a two-state discrete-time Markov model for which the transition probability matrix,

denoted by Jm, is given as in the following equation:

Jm =

 pm,11 pm,12

pm,21 pm,22

 (3.42)

where pm,11 and pm,22 represent the probabilities that data source remains in the ON state and OFF

state, respectively, in the next time slot and pm,12 and pm,21 are the probabilities of transitioning

to a different state in the next time slot. In the OFF state of the discrete-time Markov model, no

data arrives from the source, while in the ON state, data arrives at rate µk,m for mobile user m.

Using the transition probability matrix Jm, we can derive the steady state probability of ON state,

denoted by pm,ON, as follows [92]:

pm,ON =
1− pm,11

2− pm,11 − pm,22

. (3.43)

Accordingly, we can characterize the average source rate as follows:

E [Am(Nκ)] =

∑
k∈K(m)

µk,m(1− pm,11)

2− pm,11 − pm,22

. (3.44)

Similar to Eq. (3.41), we can derive the QoS exponent function, denoted by θDM
m (µk,m, εm,Nκ), for

discrete-time Markov model as follows:

θDM
m (µk,m, εm,Nκ) ≈ εm,L

1− Rm,in(2−pm,11−pm,22)∑
k∈K(m)

µk,m(1−pm,11)

(
1+

L−1∑
l=1

εm,l

) . (3.45)
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3.5.2.2 Markov Fluid Model

Consider data arrival as a continuous-time Markov process. We can derive the transition rate

matrix, denoted by Gm, of data arrival process as follows:

Gm =

 −υm,1 υm,1

υm,2 −υm,2

 (3.46)

where υm,1 > 0 and υm,2 > 0 are the transition rates between ON state and OFF state. Then, we

can derive the steady state probability of ON state as follows:

pm,ON =
υm,1

υm,1 + υm,2
. (3.47)

Accordingly, we can characterize the average source rate as follows:

E [Am(Nκ)] =

∑
k∈K(m)

µk,mυm,1

υm,1 + υm,2
. (3.48)

Similarly, we can derive the QoS exponent function, denoted by θMF
m (µk,m, εm,Nκ), for Markov

Fluid model as follows:

θMF
m (µk,m, εm,Nκ) ≈ εm,L

1− Rm,in(υm,1+υm,2)∑
k∈K(m)

µk,mυm,1

(
1+

L−1∑
l=1

εm,l

) . (3.49)

3.5.3 Effective Capacity Under HARQ-IR Protocol in the Finite Blocklength Regime

We define the asymptotic log-moment generating function [93], denoted by ΛUm(θm), ofUm(Nκ)

as follows:

ΛUm(θm) , lim
Nκ→∞

1

Nκ

log
{
E
[
eθmUm(Nκ)

]}
. (3.50)
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Since ak,m(l) and sk,m(l) are independent of each other, we have ΛUm(θm) = ΛAm(θm)+ΛSm(−θm),

where ΛAm(θm) and ΛSm(θm) are the asymptotic log-moment generating functions of the accumu-

lated source process Am(Nκ) and the accumulated channel process Sm(Nκ), respectively. For a

given QoS exponent θm, the processes Sm(Nκ) andAm(Nκ) need to satisfy the following equation:

ΛAm(θm) = −ΛSm(−θm). (3.51)

The effective capacity [3] is defined as the maximum constant arrival rate that a given service

process can support in order to guarantee a QoS requirement specified by θm. Considering the non-

vanishing error probability, it is challenging to derive the closed-form expression of the effective

capacity for our proposed mmWave user-centric cell-free m-MIMO schemes using the HARQ-IR

protocol. In the following Theorem 5, we give the concrete expression to derive a closed-form

expression on the effective capacity ECm(θm) for our proposed mmWave user-centric cell-free m-

MIMO schemes under statistical delay/error-rate bounded QoS constraints in the finite blocklength

regime.

Theorem 5. If the statistical delay/error-rate bounded QoS constraints are specified by Eqs. (3.50)-

(3.51), then the effective capacity ECm(θm) for our proposed mmWave user-centric cell-free m-

MIMO and FBC-HARQ based 6G mobile wireless networks is given by the following equation:

ECm(θm) =
Rm,in

2

(
1+

L−1∑
l=1

εm,l

) +
Rm,in

2

√√√√√√
1(

1+
L−1∑
l=1

εm,l

)2 +
2n̂ log (εq,m)

Dm,th

(
L−1∑
l=1

(2l−1)εm,l−
(
L−1∑
l=1

εm,l

)2
)

(3.52)

where Rm,in is the initial transmission rate specified by Eq. (3.17), εq,m represents the delay vio-

lation probability given by Eq. (3.33), εm,l is the probability that the received data packet cannot

be decoded at the end of lth HARQ retransmission round for mobile user m, which is given in

Eq. (3.39), and Dm,th is the delay bound for mobile user m.
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Proof. Given statistical delay and error-rate bounded QoS constraints, we can exploit the definition

of the effective capacity and obtain the following equation:

ECm(θm) = −ΛSm(−θm)

θm
= − lim

Nκ→∞

1

θmNκ

log

E

e−θm ∑
k∈K(m)

Nκ−1∑
l=0

sk,m(l)

 . (3.53)

Then, using the Central Limit Theorem, we can rewrite the effective capacity ECm(θm) when

Nκ →∞ as in the following equation [94]:

ECm(θm) =
E [Sm(Nκ)]

2n̂
+

1

2n̂

√
(E [Sm(Nκ)])

2 −
2n̂ (− log (εq,m))

Dm,th
Var [Sm(Nκ)] (3.54)

where

Var [Sm(Nκ)] =
(n̂Rm,in)

2

Var [Nκ]
. (3.55)

Accordingly, we can derive the variance of Nκ as follows:

Var[Nκ] = E
[
N2
κ

]
− (E [Nκ])

2 ≈
Nκ∑
l=1

l2Pr {Nκ = l} −

(
1 +

Nκ−1∑
l=1

εm,l

)2

= 1 +
Nκ−1∑
l=1

(2l + 1)Pr

{
l⋂

ι=1

{
Aι
}}
−

(
1 +

Nκ−1∑
l=1

εm,l

)2

≤ 1 +
Nκ−1∑
l=1

(2l + 1)Pr
{
Al
}
−

(
1 +

Nκ−1∑
l=1

εm,l

)2

≈ 1 +
Nκ−1∑
l=1

(2l + 1)εm,l −

(
1 +

Nκ−1∑
l=1

εm,l

)2

=
Nκ−1∑
l=1

(2l − 1)εm,l −

(
Nκ−1∑
l=1

εm,l

)2

.

(3.56)

Using Eqs. (3.54) and (3.56), we can obtain the expression for effective capacity ECm(θm) as

given by Eq. (3.52), which completes the proof of Theorem 5.
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Figure 3.3: The average data transmission rate per user vs. number of mobile users Ku in the finite
blocklength regime.

3.6 Performance Evaluations

We use simulations to validate and evaluate our proposed mmWave user-centric cell-free m-

MIMO based schemes in the finite blocklength regime under HARQ-IR protocol. Throughout our

simulations, we set the total bits of the required data packet Mm = 108 bits, the average transmit

power Pm can be choose from [1, 30] Watt for each mobile user, the number of APs Ka = 1000,

the number of mobile users Ku ∈ [10, 300], the pilot signal transmit power Pp can be choose from

[1, 5] Watt for each mobile user, the number of transmit antennas NT ∈ [100, 800], the number

of RF chains LT ∈ [5, 40], the number of entries of the over-complete beam steering codebook

MT ∈ [200, 1000], and the maximum number of HARQ retransmission rounds L ∈ [5, 20].

We set the number of transmit antennas NT = 400, the number of RF chains LT = 10, and

the number of entries of the over-complete beam steering codebook MT = 600, the maximum

number of HARQ retransmission rounds L = 10, the blocklength n̂ = 600. Compared with the

mmWave m-MIMO based cellular schemes, Fig. 3.3 depicts the average data transmission rate

per user with different numbers of mobile users Ku for our proposed mmWave cell-free m-MIMO

schemes. We can observe from Fig. 3.3 that the average data transmission rate per user increases

with the number of mobile users for both cellular and cell-free schemes. Fig. 3.3 also shows that

with a higher average transmit power at the APs, a better average data transmission rate per user

61



0 5 10 15 20 25 30 35 40

Average Data Rate per User

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Cell-Free, K
u
 = 20

UC Cell-Free, K
u
 = 20

Cell-Free, K
u
 = 8

UC Cell-Free, K
u
 = 8

Figure 3.4: The CDFs of downlink data transmission rate per user in the finite blocklength regime.

can be achieved. It is shown in Fig. 3.3 that our proposed mmWave cell-free m-MIMO schemes

outperform the traditional mmWave m-MIMO based cellular schemes in terms of the average data

transmission rate per user.

Using the same settings as in Fig. 3.3, Fig. 3.4 plots the cumulative distribution functions

(CDFs) of the downlink data transmission rates per user for our proposed mmWave user-centric

cell-free m-MIMO schemes compared with the traditional cell-free m-MIMO schemes. We can

observe from Fig. 3.4 that there is always a crossing point between the CDF curves corresponding

to the user-centric (UC) cell-free approach and the traditional cell-free approach. As shown in

Fig. 3.4, the Y-coordinate of the crossing point is far below 0.5 in both Ku = 20 and Ku = 8

scenarios. This indicates that for the majority of mobile users, our proposed mmWave user-centric

cell-free m-MIMO schemes outperform the traditional mmWave m-MIMO based cellular schemes

in terms of the CDFs.

We set the number of mobile usersKu = 20, the number of RF chains LT = 10, and the number

of entries of the over-complete beam steering codebook MT = 600. Compared with the discrete

Fourier transform (DFT) based processing scheme [95], Fig. 3.5 depicts the MMSE performance

with respect to the beam-training duration for our proposed mmWave user-centric cell-free m-

MIMO scheme. As shown in Fig. 3.5, the DFT based processing scheme requires much more

training time compared with our proposed dictionary learning based beam-training algorithm for
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Figure 3.6: The MMSE performance vs. SINR (dB) for our proposed schemes.

achieving the same MMSE performance. We can observe from Fig. 3.5 that for our proposed

dictionary learning based beam-training algorithm and DFT based processing scheme, we can

achieve better MMSE performance with more transmit antennas NT over mmWave user-centric

cell-free m-MIMO based 6G mobile wireless networks.

Setting the number of mobile users Ku = 20, the number of transmit antennas NT = 100,

the number of RF chains LT = 10, and the number of entries of the over-complete beam steering

codebook MT = 600, Fig. 3.6 plots the MMSE performance with different values of SINR for our

proposed mmWave user-centric cell-free m-MIMO schemes in comparison with the Least Square

(LS) based channel estimation scheme and DFT based processing scheme. As shown in Fig. 3.6,
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Figure 3.7: The AoA estimation error vs. number of RF chains at the AP LT for our proposed
mmWave user-centric cell-free m-MIMO schemes.

our proposed dictionary learning based beam-training algorithm outperforms the LS based channel

estimation scheme and DFT based processing scheme in terms of the MMSE performance even

in very noisy environment (small SINR environment). Fig. 3.6 also shows that when the value of

SINR is small, i.e., the noise is large, the gaps among different curves are relatively small compared

with large SINR environment. This indicates that since the accuracy of channel estimation is

limited mostly by noise in low SINR environment, different channel estimation methods only has

a small influence on the MMSE performance.

We set the number of mobile users Ku = 20 and the number of entries of the over-complete

beam steering codebookMT = 600. Fig. 3.7 depicts the average AoA estimation error with varying

numbers of RF chains at the AP LT for our proposed mmWave user-centric cell-free m-MIMO

schemes in comparison with the hybrid design based adaptive channel estimation scheme proposed

in [96]. As shown in Fig. 3.7, the average AoA estimation error for our proposed dictionary

learning based beam-training algorithm is always less than 10◦, which is independent from the

number of RF chains at the AP LT and mobile users LR. Fig. 3.7 also shows that our proposed

dictionary learning based beam-training algorithm outperforms the hybrid design based adaptive

channel estimation scheme in terms of the average AoA estimation error.

We set the number of mobile users Ku = 20, the number of entries of the over-complete

beam steering codebook MT = 1000, the blocklength n̂ = 600, the number of transmit anten-
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Figure 3.8: The average number of HARQ-IR retransmissions E [Nκ] vs. SINR (dB) under HARQ-
IR protocol in the finite blocklength regime.

nas NT = 800, and the number of RF chains LT = 20. Using the function of E [Nκ] derived

in Eq. (3.39), Fig. 3.8 plots the average number of HARQ-IR retransmissions E [Nκ] with dif-

ferent values of SINR under HARQ-IR protocol for our proposed mmWave user-centric cell-free

m-MIMO schemes in the finite blocklength regime. We can observe from Fig. 3.8 that for a given

maximum number of HARQ retransmission rounds L, E [Nκ] is a decreasing function of the SINR.

This implies that as SINR increases, the average decoding error probability decreases, which re-

sults in the decreased value of E [Nκ]. Also, as shown in Fig. 3.8, we can achieve a higher value of

E [Nκ] with a larger number of the maximum HARQ retransmission rounds L, which validates the

analytical results specified in Eq. (3.39).

Setting the number of mobile users Ku = 20, the number of RF chains LT = 20, the maxi-

mum number of HARQ retransmission rounds L = 25 and SINR to be 5 dB, Fig. 3.9 depicts the

average number of HARQ-IR retransmissions E [Nκ] with varying values of the blocklengths n̂

under HARQ-IR protocol for our proposed mmWave user-centric cell-free m-MIMO schemes in

the finite blocklength regime. We can observe from Fig. 3.9 that for a given number of transmit

antennas NT, E [Nκ] decreases as the blocklength n̂ increases, and will finally converge to one

as n̂ → ∞, which means that as n̂ → ∞, we only need one HARQ retransmission round for a

successful decoded message at the receiver. This observation obtained from Fig. 3.9 implies that

as the codeword of length n̂ gets larger, the average decoding error probability decreases, which
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Figure 3.9: The average number of HARQ-IR retransmissions E [Nκ] vs. blocklength n̂ under
HARQ-IR protocol for mmWave user-centric cell-free m-MIMO schemes.
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Figure 3.10: The QoS exponent function vs. SINR (dB) under HARQ-IR protocol in the finite
blocklength regime.

results in the decreased value of E [Nκ], verifying the analytical results specified in Eqs. (3.26)

and (3.39).

Then, we set the number of mobile usersKu = 20, the blocklength n̂ = 600, and the number of

transmit antennasNT = 500. Compared with the discrete-time Markov arrival rate model, Fig. 3.10

plots the QoS exponent function with different values of SINR under HARQ-IR protocol using the

average constant arrival rate model and the random arrival rate model in the finite blocklength

regime. Fig. 3.10 shows that the QoS exponent function increases with higher value of the SINR.

We can observe from Fig. 3.10 that we can achieve a higher value of the QoS exponent function

66



0 500 1000 2000 2500 30001500

Blocklength  

0

5

10

15

20

25

30

Q
o

S
 E

x
p

o
n

en
t 

F
u

n
ct

io
n

L = 5, Constant rate

L = 5, Random rate

L = 15, Constant rate

L = 15, Random rate

L = 25, Constant rate

L = 25, Random rate

Figure 3.11: The QoS exponent function vs. blocklength n̂ under HARQ-IR protocol in the finite
blocklength regime.

by setting a larger number of the maximum HARQ retransmission rounds L, which validates the

analytical results specified in Eq. (3.41).

Now we set the number of mobile users Ku = 20, the number of entries of the over-complete

beam steering codebook MT = 700, the maximum number of HARQ retransmission rounds L ∈

{5, 15, 20}, SINR to be 10 dB, and the number of transmit antennas NT = 500. Using the QoS

exponent function derived in Eqs. (3.41) and (3.45), Fig. 3.11 depicts the QoS exponent function

with varying values of the blocklengths n̂ under HARQ-IR protocol for our proposed mmWave

cell-free m-MIMO schemes in the finite blocklength regime. Fig. 3.11 shows that for a given value

of L, the QoS exponent function is an increasing function of the blocklength n̂, which is consistent

with the analytical results specified in Eq. (3.41).

We set the number of mobile users Ku = 20, the number of entries of the over-complete

beam steering codebook MT = 800, the blocklength n̂ = 600, the number of transmit antennas

NT = 600, and the number of RF chains LT = 20. Fig. 3.12 plots the effective capacity ECm(θm)

with different numbers of the maximum HARQ retransmission rounds L under HARQ-IR proto-

col for our proposed mmWave user-centric cell-free m-MIMO schemes in the finite blocklength

regime. We can observe from Fig. 3.12 that as the number of the maximum HARQ retransmission

rounds L increases, the effective capacity ECm(θm) decreases and will finally converge to a cer-
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Figure 3.13: The effective capacity ECm(θm) vs. delay bound Dm,th and blocklength n̂ under
HARQ-IR protocol for our proposed mmWave user-centric cell-free schemes in the finite block-
length regime.

tain value. In addition, Fig. 3.12 shows that with a large/loose delay bound Dm,th, or equivalently

a large/loose buffer-size overflow threshold Qm,th, we can achieve a larger value of the effective

capacity ECm(θm), which verifies the analytical results specified in Eq. (3.52).

Setting the number of mobile users Ku = 20, the number of entries of the over-complete

beam steering codebook MT = 800, the number of transmit antennas NT = 600, the number

of RF chains LT = 20, the maximum HARQ retransmission rounds L = 10, and SINR to be

15 dB, Fig. 3.13 depicts the effective capacity ECm(θm) with varying delay bounds Dm,th and
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blocklengths n̂ under HARQ-IR protocol for our proposed mmWave cell-free m-MIMO schemes

in the finite blocklength regime considering both perfect CSI and imperfect CSI scenarios. We

can observe from Fig. 3.13 that the effective capacity ECm(θm) increases as the blocklength n̂

gets larger and will eventually converge to a certain value, which is consistent with the analytical

results specified in Eq. (3.52) in Theorem 5.

3.7 Summary

We have proposed the system models which efficiently integrate HARQ-IR protocol with FBC

over mmWave user-centric cell-free m-MIMO based 6G mobile wireless networks. In particu-

lar, we have established mmWave user-centric cell-free m-MIMO-based system models. Then,

we have designed dictionary learning based beam-training algorithm for solving the low-complex

beamforming optimization problem. We also have characterized channel capacity, channel disper-

sion, and block error probability under HARQ-IR protocol using FBC. Based on the information

theoretic results in QoS theory, we have derived QoS metrics in terms of error probability and

corresponding effective capacity function for our proposed FBC-HARQ based mmWave cell-free

m-MIMO schemes. We also have conducted a set of simulations to validate and evaluate our pro-

posed mmWave user-centric cell-free m-MIMO schemes by implementing statistical delay/error-

rate bounded QoS provisioning in the finite blocklength regime.
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4. STATISTICAL DELAY AND ERROR-RATE BOUNDED QOS FOR SWIPT OVER CF

M-MIMO 6G NETWORKS Using FBC ∗

4.1 Introduction

Taking advantage of the broadcast nature of RF wave propagation, researchers have developed

the concept of SWIPT [40, 97] for prolonging the battery-life or to serve as an alternative power

source of energy-constrained, low-power wireless devices. There have been a number of works

focusing on investigating the SWIPT technique to support mURLLC. In particular, the authors

of [98] have analyzed the performance of a non-orthogonal SWIPT-enabled system using FBC and

derived novel analytical expressions for the end-to-end average block error probability. The authors

of [99] have analyzed a WPT system with finite blocklength and finite power/battery supply under

Nakagami-m wireless fading channels. The authors of [100] have characterized the fundamental

limits of SWIPT in terms of the information-energy capacity region in the non-asymptotic regime.

The authors of [101] have investigated the rate-energy tradeoff and the decoding error probability-

energy tradeoff for SWIPT systems in the finite blocklength realm.

In addition, CF m-MIMO system use advanced backhaul to achieve coherent processing across

geographically distributed APs, in order to provide uniformly high-quality service for all mobile

users in the network. Due to the closer distance between the APs and mobile devices, integrating

CF m-MIMO with SWIPT can significantly improve the coverage probability while minimizing

the throughput as well as energy outage probabilities as compared with the traditional co-located

m-MIMO systems.

Since CF m-MIMO has been shown to be much more robust to shadow against the corre-

lated small/large-scale fading as compared with the co-located m-MIMO systems [36], the CF

m-MIMO can significantly boost the performance gains of SWIPT. Although there has been a

∗ c©2021 IEEE. Part of the material presented in this chapter is reprinted with permission from “Statistical Delay
and Error-Rate Bounded QoS Provisioning for SWIPT Over CF M-MIMO 6G Wireless Networks Using FBC" by X.
Zhang, J. Wang, and H. V. Poor, published in IEEE Journal of Selected Topics in Signal Processing (J-STSP), Vol. 15,
No. 5, 1272-1287, August 2021.
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sizeable volume of research works on integrating SWIPT with co-located massive MIMO, only

a limited number of research works have focused on investigating SWIPT-driven CF m-MIMO

based system models. In particular, the performance of SWIPT-driven CF m-MIMO schemes has

been characterized in [102]. The authors of [103] have shown that the achievable energy-rate trade-

off of SWIPT can be significantly enhanced by employing the CF m-MIMO technique. A secure

SWIPT-enabled CF m-MIMO system is presented in [104]. However, how to efficiently integrate

SWIPT with CF m-MIMO architecture models while supporting mURLLC traffics in the finite

blocklength regime is still an open problem over 6G wireless networks.

To effectively overcome the above-mentioned challenges, in this chapter we propose and de-

velop statistical delay and error-rate bounded QoS provisioning schemes over SWIPT-enabled CF

m-MIMO 6G wireless networks in the finite blocklength regime. In particular, we establish the

SWIPT-enabled CF m-MIMO based system models through employing FBC. We also quantita-

tively characterize the fundamental tradeoff between harvested energy and ε-effective capacity for

statistical delay and error-rate bounded QoS provisioning. Furthermore, we formulate and solve

the optimization problems for the tradeoff between the ε-effective capacity and harvested energy

under both TS and PS protocols by developing the joint optimization algorithms in supporting 6G

mURLLC. Also conducted is a set of simulations to validate and evaluate our proposed schemes

over SWIPT-enabled CF m-MIMO based 6G wireless networks.

The rest of this chapter is organized as follows: Section 4.2 establishes SWIPT-enabled CF

m-MIMO based system models. Section 4.3 formulates and solves the optimization problems for

the tradeoff between downlink ε-effective capacity and harvested energy. Section 4.4 formulates

and solves the joint optimization problems for the tradeoff between uplink ε-effective capacity and

harvested energy. Section 4.5 evaluates and analyzes the system performances for our proposed

SWIPT-enabled CF m-MIMO schemes. The chapter concludes with Section 4.6.

4.2 The System Models

Figure 4.1 shows the system architecture model for our proposed SWIPT-enabled CF m-MIMO

6G wireless networks, where each mobile device is served by coherent joint transmissions from all
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Figure 4.1: The system architecture model for our proposed SWIPT-enabled CF m-MIMO based
6G wireless networks in the finite blocklength regime, where nu is the number of channel uses for
the uplink data transmission phase and α and ρ are the TS and PS factors, respectively.

APs. We adopt the TS and PS receivers at the mobile devices.We assume that the system operates

in a time-slotted fashion, where time is divided into frames. Each frame is divided into three

main orthogonal phases, i.e., uplink pilot training, downlink SWIPT transmission, and uplink data

transmission, as follows.

1. Uplink pilot training phase: The mobile devices send pilot signals to the APs for channel

estimation during the uplink pilot training phase over np channel uses;

2. Downlink SWIPT phase: By adopting the TS and PS receivers, the downlink SWIPT phase

is divided into two sub-phases based on the TS factor, denoted by α, and PS factor, denoted

by ρ. As shown in Fig. 4.1, in the first downlink power transfer sub-phase, the mobile

devices harvest energy from the APs over αnd channel uses by using TS protocol. Each

mobile device performs as a pure EH receiver and harvests energy from the APs. In the

second downlink information transfer sub-phase, the remaining (1 − α)nd channel uses are
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allocated for simultaneous downlink information transfer by using PS protocol with the PS

factor ρ.

3. Uplink data transmission phase: Define nu as the number of channel uses for the uplink

data transmission from the mobile devices to the APs. During the uplink data transmission

phase, each mobile device transmits the finite-blocklength data to the APs using the energy

harvested in the previous downlink SWIPT phase.

4.2.1 Uplink Pilot Training

We consider the small-scale Rayleigh fading vector gk,m ∼ CN (0, INT). The uplink pilot train-

ing phase is similar to Section 2.2.2 in Chapter 2. Denote by Hk ,
[
(hk,1)T , . . . , (hk,Ku)

T
]T
∈

CÑT×1 the channel’s impulse response vector between AP k and all mobile users. Define Rhk,m ,

E
[
hk,m (hk,m)H

]
as the covariance matrix of hk,m. Applying the MMSE estimator of hk,m based

on the observation of the received signal ỹnp
k , we can obtain the estimated channel’s impulse re-

sponse matrix, denoted by ĥk,m, between AP k and mobile user m as follows:

ĥk,m = E
[
hk,m|ỹ

np
k

]
= Rhk,m,ỹ

np
k

(
Rỹ

np
k

)−1 (
ỹ
np
k − E

[
ỹ
np
k

])
+ E [hk,m] (4.1)

where Rhk,m,ỹ
np
k

and Rỹ
np
k

represent the covariance matrices given as follows:


Rhk,m,ỹ

np
k

= E
[
hk,m

(
ỹ
np
k

)H]
=
√
npPpRhk,m ;

Rỹ
np
k

= E
[
ỹ
np
k

(
ỹ
np
k

)H]
= npPpRhk,m + INT .

(4.2)

Since E
[
ỹ
np
k

]
and E [hk,m] are equal to zero, we have

ĥk,m =
√
npPpRhk,m

(
npPpRhk,m + INT

)−1
ỹ
np
k . (4.3)
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4.2.2 Downlink Energy Harvesting Model in the Finite Blocklength Regime

We can derive the harvested energies, denoted by ETS
m and EPS

m , for TS and PS receivers at

mobile device m, respectively, during the downlink SWIPT phase as follows:


ETS
m = αndTsPdζ

∣∣∣∣ Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣ ;
EPS
m = ndTsPdρζ

∣∣∣∣ Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣ , (4.4)

where ζ ∈ (0, 1) is the energy conversion efficiency, Ts is the duration of each channel use, and

Pd is the power for downlink transmission at the APs. Observing from Eq. (4.4), in addition to the

channel gain, the amount of harvested energy depends on the PS and TS factors ρ and α. Then,

we can derive the total harvested energy, denoted by Em, for the joint TS-PS protocol at mobile

device m during the downlink SWIPT phase as follows:

Em = ETS
m + (1− α)EPS

m . (4.5)

The charging state of battery,denoted byBm, at mobile devicem before the next uplink information

transmission phase is given by

Bm = min {Bmax, Em} (4.6)

whereBmax is the pre-defined maximum storable energy at the mobile device. Then, the remaining

energy, denoted by Er,m, at mobile device m for the next uplink data transmission phase is derived

as follows:

Er,m = Bm − (1− α)ndTsPc (4.7)

where Pc is the circuit and baseband processing power consumption. Without loss of generality,

we assume that Pc is a constant. If the harvested energy during the downlink SWIPT phase is

insufficient for the next uplink data transmission, there will be an outage, resulting in data trans-

mission failure. Otherwise, all the remaining energy will be used for data transmissions in the next
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phase.

4.2.3 Downlink Data Transmission in the Finite Blocklength Regime

4.2.3.1 Wireless Downlink Data Transmission Model

Denote by ñd = (1 − α)nd the downlink data blocklength during the downlink information

transfer sub-phase. We define the transmit signal matrix as X ñd
k ,

[
x

(1)
k , . . . ,x

(ñd)
k

]
at AP k for

transmitting ñd data blocks where x(l)
k (l = 1, . . . , ñd) is the transmit signal vector for the lth data

block. Define receive signal vector as yñd
d,m ,

[
y

(1)
d,m, . . . , y

(ñd)
d,m

]
at mobile device m. Based on the

MMSE estimator ĥk,m, we can derive the transmitted signal with length ñd at AP k by employing

conjugate beamforming [36] as follows:

X ñd
k =

√
(1− ρ)Pd

Ku∑
m=1

√
ηk,mbk,ms

ñd
m (4.8)

where sñd
m represents the transmitted signal vector for mobile device m, bk,m ∈ CNT×1 is the

precoder vector that AP k assigns to mobile users m, which is given as follows:

bk,m =
ĥk,m√

E
[∥∥∥ĥk,m∥∥∥2

] (4.9)

and ηk,m is the downlink power allocation coefficient for transmitting from AP k to mobile device

m, which is chosen to satisfy the following power constraint at each AP:

Ku∑
m=1

ηk,mνk,m ≤ 1 (4.10)

where

νk,m , E
[∣∣∣ĥk,m∣∣∣2] . (4.11)

75



Then, we can derive the received downlink signal, denoted by yñd
d,m, at the mth mobile device as

follows:

yñd
d,m =

Ka∑
k=1

(hk,m)HX ñd
k +wñd

d,m

=
√

(1− ρ)Pd

Ka∑
k=1

√
ηk,m(hk,m)Hhk,ms

ñd
m +

√
(1− ρ)Pd

×
Ka∑
k=1

 Ku∑
m′=1
m′ 6=m

√
ηk,m′(hk,m′)

Hhk,ms
ñd
m′

+wñd
d,m (4.12)

where sñd
m and sñd

m′ are the signals sent to mobile device m and mobile device m′, respectively;

ηk,m and ηk,m′ are the downlink power allocation coefficients for transmitting from AP k to mobile

device m and mobile device m′, respectively; and wñd
d,m is the AWGN with zero mean and unit

variance at mobile device m. Correspondingly, we can derive the downlink SNR, denoted by γd,m,

at mobile device m as follows:

γd,m= (1− ρ)Pd

∣∣∣∣∣E
[
Ka∑
k=1

√
ηk,m(hk,m)Hbk,m

]∣∣∣∣∣
2
(1− ρ)Pd

Ku∑
m′=1

E

∣∣∣∣∣
Ka∑
k=1

√
ηk,m′(hk,m′)

Hbk,m

∣∣∣∣∣
2


− (1− ρ)Pd

∣∣∣∣∣E
[
Ka∑
k=1

√
ηk,m(hk,m)Hbk,m

]∣∣∣∣∣
2

+ 1


−1

. (4.13)

Note that the SNR function given in Eq. (4.13) can be used to investigate the system performance

for both TS and PS protocols. By setting α 6= 0 and ρ = 0, we can derive the SNR function for the

TS protocol. On the other hand, setting α = 0 and ρ 6= 0, we can derive the SNR function for the

PS protocol. When α 6= 0 and ρ 6= 0, Eq. (4.13) can be used to characterize the SNR for a joint

TS-PS protocol.
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4.3 Downlink ε-Effective Capacity and Harvested Energy Tradeoff Optimization for Statis-

tical Delay/Error-Rate Bounded QoS Using FBC

The effective capacity function only guarantees statistical delay-bounded QoS constraints with-

out considering reliability requirements due to finite-blocklength data transmissions. Therefore,

the traditional queuing behavior and effective capacity measurement approaches are no longer ap-

propriate for our proposed performances modeling schemes. Correspondingly, we need to derive

a new analytical model for characterizing statistical QoS metrics for upper-bounding both delay

and error-rate to support mURLLC services. Integrating the statistical delay-bounded QoS pro-

visioning theory and the FBC theory, we propose a novel definition of the ε-effective capacity as

follows.

Definition 3. For an (nd,Mm, εd,m)-code, the downlink ε-effective capacity, denoted by ECε,TS
d,m ,

for mobile user m under TS protocol is defined as the maximum constant arrival rate for a given

service process considering the non-vanishing decoding error-probability ε subject to statistical

delay and error-rate bounded QoS constraints, which is formally expressed as follows:

ECε,TS
d,m , − 1

θm
log
{
Eγd,m

[
εd,m + (1− εd,m) e−θm(1−α)ndTsRd,m

]}
. (4.14)

The goal of this section is to formulate and solve the ε-effective capacity maximization prob-

lems for statistical delay and error-rate bounded QoS provisioning over our proposed SWIPT-

enabled CF m-MIMO based 6G mobile wireless networks to obtain the boundaries of ε-effective

capacity-energy region under both TS and PS protocols in the finite blocklength regime.

4.3.1 TS Protocol

Previous works have shown the optimal transmission strategies for the maximum power trans-

fer and information transfer are in general different [105, 106]. The rate-energy (R-E) tradeoff is

a very effective way to fundamentally characterize the performance of SWIPT-enabled schemes.

Towards this end, the R-E tradeoff has been extensively studied in the previous literatures consid-
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Figure 4.2: The downlink ε-effective capacity-energy region of different SWIPT receivers for the
case of no power adaptation using FBC.

ering infinite blocklength using Shannon’s second theorem. For our proposed SWIPT-enabled CF

m-MIMO based schemes, we apply the FBC technique and characterize the downlink ε-effective

capacity-energy tradeoff for statistical delay and error-rate bounded QoS provisioning in support-

ing mURLLC with non-vanishing decoding error probability. There have been a number of works

focusing on investigating the rate-energy tradeoff curves for implementing SWIPT technique in

the finite blocklength regime to support mURLLC. In particular, the authors of [100] have char-

acterized the fundamental limits of SWIPT in terms of the information-energy capacity region in

the non-asymptotic regime. The authors of [101] have investigated the rate-energy tradeoff and

the decoding error probability-energy tradeoff for SWIPT systems in the finite blocklength realm.

However, the previous research works have not analyzed the information-energy tradeoff by taking

into account the statistical delay and error-rate QoS provisioning, which is an importing issue for

supporting the mURLLC services. Therefore, we focus on investigating the optimal ε-effective

capacity-energy tradeoff problems for SWIPT-enabled schemes for statistical delay and error-rate

bounded QoS provisioning to support mURLLC with non-vanishing decoding error probability.

Considering the case of no power adaptation, Fig. 4.2 plots the downlink ε-effective capacity-

energy region for both TS and PS receivers compared with the ideal receiver, which is assumed to

be able to decode information and harvest energy from the same signal simultaneously [107, 108].
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As shown in Fig. 4.2, the downlink ε-effective capacity-energy region for TS and PS receivers is a

concave-shape region. We can observe from Fig. 4.2 that a PS receiver outperforms a TS receiver

in terms of the downlink ε-effective capacity-energy tradeoff.

In this chapter, we focus on investigating the optimal ε-effective capacity-energy tradeoff prob-

lems for SWIPT-enabled schemes with power allocation. Thus, taking into account both TS factor

and power allocation coefficient, we define the downlink ε-effective capacity-energy region, de-

noted by CECε,TS
d,m−ETS

m
, under TS protocol for statistical delay and error-rate bounded QoS provision-

ing in the finite blocklength as follows:

CECε,TS
d,m−ETS

m
,

⋃
0≤ηk,m≤1,∀k

0≤α≤1

{(
ECε,TS

d,m , E
TS
m

) ∣∣∣ECε,TS
d,m ≤ −

1

θm

× log
{
Eγd,m

[
εd,m + (1− εd,m) e−θm(1−α)ndTsRd,m

]}
,

ETS
m ≤ αndTsPdζ

∣∣∣∣∣
Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣∣
}
. (4.15)

Since the optimal tradeoff between the maximum downlink ε-effective capacity and harvested

energy is characterized by the boundary of the downlink ε-effective capacity-energy region, it is

important to characterize all the boundary pairs of downlink ε-effective capacity and harvested

energy. We can formulate the following optimization problem for our proposed SWIPT-enabled

CF m-MIMO based schemes to obtain the boundaries of downlink ε-effective capacity-energy

region under TS protocol in the finite blocklength regime:

P9 : arg max
{α,nd,ηk,m,∀m,k}

{
Ku∑
m=1

ECε,TS
d,m (θm)

}
(4.16)
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s.t. C5 : ETS
m ≥ Emin; (4.17)

C6 :
Ku∑
m=1

ηk,mνk,m ≤ 1; (4.18)

C7 : 0 < α < 1, (4.19)

whereEmin is the minimum required harvested energy. Then, we can convert P9 into the following

equivalent minimization problem:

P10 : arg min
{α,nd,ηk,m,∀m,k}

{
Ku∑
m=1

Eγd,m

[
εd,m + (1− εd,m) exp

{
− θm(1− α)ndTsRd,m

}]}
(4.20)

subject to the same constraints C5, C6, and C7 given by Eqs. (4.17), (4.18), and (4.19), respectively.

The optimization problem P10 given by Eq. (4.20) is challenging in terms of finding the global

optimal solution due to highly-coupling among variables. To overcome such issue, an alternative

optimization technique can be developed in an efficient manner where an improved solution is

obtained at each step of iteration with guaranteed convergence by applying the successive convex

approximation (SCA) techniques. By using the SCA techniques, we do not need to characterize the

joint convexity across all variables, and instead, we can only characterize the convexity for each

given individual variable when fixing the other variables in our proposed optimization problems

to make the complexity-analysis problem feasible. Therefore, to solve the optimization problem

P10, we characterize the convexity of the objective function in P10 as detailed in the following

theorem.

Theorem 6. If the harvested energy ETS
m is characterized by Eq. (4.4), then the following claims

hold for our proposed SWIPT-enabled CF m-MIMO based schemes in supporting statistical delay

and error-rate bounded QoS provisioning under TS protocol in the finite blocklength regime.

Claim 1. Given fixed downlink power allocation coefficient ηk,m and downlink data blocklength
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Algorithm 2 : Joint Optimization Algorithm Under TS Protocol for solving P10 in Eq. (4.20)

Input: Ka,Ku,M, np, βk,m,Pp,Pd, θm, Ts, Emin

Initialization: ` = 0 and
{
α(0), n

(0)
d , η

(0)
k,m

}
Repeat

Step 1:

Solve argmin
nd

{
Ku∑
m=1

F (γd,m)

}
in Eq. (4.20), denote the solution by n(`+1)

d

if n(`+1)
d is an integer then
n

(`+1)
d → n

opt
d

else

n
(`+1)
d = arg min

nd∈{nfloor
d ,ncell

d }

{
Ku∑
m=1

F (γd,m)

}
, where nfloor

d =
⌊
n

opt
d

⌋
and ncell

d =
⌈
n

opt
d

⌉
end if

Step 2:

Solve argmin
α

{
Ku∑
m=1

F (γd,m)

}
in Eq. (4.20), denote the solution by α(`+2)

Step 3:

Solve arg min
ηk,m,∀m,k

{
Ku∑
m=1

F (γd,m)

}
in Eq. (4.20), denote the solution by η(`+3)

k,m

`← (`+ 1)
Repeat Step 1–Step 3 until the solution converges

nd, the objective function in P10 is convex in α when εd,m ∈ (0, 0.5) and nd > nTS
d,th, where

nTS
d,th ,

1

(1− α)

 Q−1(εd,m)

C (γd,m)− C(γd,m)
4(1−α)θmndTsC(γd,m)+1


2

. (4.21)

Claim 2. Given fixed TS factor α and downlink power allocation coefficient ηk,m, the objective

function in P10 is convex in nd when εd,m ∈ (0, 0.5).

Claim 3. Given fixed TS factor α and downlink data blocklength nd, the objective function in

P10 is convex in ηk,m when εd,m ∈ (0, 0.5).

Proof. The proof is provided in Appendix G.

Remarks on Theorem 6: Theorem 6 implies that there exists a local optimal solution to the

minimization problem P10 when the other two variables are fixed. Therefore, the minimization
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problem P10 can be efficiently solved by applying the SCA techniques with an iterative search

method. In particular, we start with the initialized values of the TS factor, denoted by α(0), down-

link data blocklength, denoted by n(0)
d , and downlink power allocation coefficient, denoted by η(0)

k,m.

In Step 1, we formulate a local problem aiming at minimizing the objective function in P10 over

nd. We solve this local minimization problem and determine the optimal downlink data block-

length, denoted by nopt
d , to P10. In Step 2, based on nopt

d , we repeat the same process for new local

problem to minimize the objective function in P10 over the TS factor α. In Step 3, based on nopt
d

and α derived in the previous Step 1 and Step 2, we repeat the same process to solve the local prob-

lem to minimize the objective function in P10 over ηk,m. We repeat Step 1–Step 3 until the solution

converges. We define n(`)
d , α(`), and η(`)

k,m as the downlink blocklength, TS factor, and downlink

power allocation coefficient in the `th iteration (` = 0, 1, 2, . . . ), respectively. We develop an iter-

ative algorithm as shown in Algorithm 2 to solve the optimization problem P10 for our proposed

SWIPT-enabled CF m-MIMO based schemes under TS protocol in the finite blocklength regime.

To analyze the convergence of the above Algorithm 2, it is easy to show that the optimal value

of each local problem is definitely not lower than the optimal value of the original problem given

by Eq. (4.20). According to [102], the convergence of Algorithm 2 is therefore guaranteed, i.e.,

at least a local optimal solution can be achieved. Note that according to Theorem 6, the objective

function in P10 is smooth and differentiable in {α, nd, ηk,m} in the feasible set, and the objective

function in P10 is convex in α, nd, and ηk,m, respectively, when the other two variables are fixed.

Therefore, it is easy to show that the local optimal solution is unique, thus, it is also the global

optimal solution.
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4.3.2 PS Protocol

Considering the PS protocol, we define the downlink ε-effective capacity-energy region, de-

noted by CECε,PS
d,m−EPS

m
, as follows:

CECε,PS
d,m−EPS

m
,

⋃
0≤ηk,m≤1,∀k

0≤ρ≤1

{(
ECε,PS

d,m , E
PS
m

)∣∣∣ECε,PS
d,m ≤−

1

θm
log
{
Eγd,m

[
εd,m+(1−εd,m) e−θmndTsRd,m

]}
,

EPS
m ≤ ndTsPdρζ

∣∣∣∣∣
Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣∣
}

(4.22)

whereECε,PS
d,m is the downlink ε-effective capacity under PS protocol. As a result, we can formulate

the following optimization problem for our proposed SWIPT-enabled CF m-MIMO based schemes

under PS protocol in the finite blocklength regime:

P11 : arg max
{ρ,nd,ηk,m,∀m,k}

{
Ku∑
m=1

ECε,PS
d,m (θm)

}
(4.23)

s.t. C5, C6;

C8 : 0 < ρ < 1. (4.24)

Then, we can convert P11 into the following equivalent minimization problem:

P12 : arg min
{ρ,nd,ηk,m,∀m,k}

{
Ku∑
m=1

Eγd,m

[
εd,m + (1− εd,m) e−θmndTsRd,m

]}
(4.25)

subject to the same constraints C5, C6, and C8 given by Eqs. (4.17), (4.18) and (4.24), respectively.

Similar to Theorem 6, the optimization problem P12 given by Eq. (4.25) is challenging in terms of

finding the global optimal solution due to highly-coupling among variables. We apply an alterna-

tive optimization technique in an efficient manner where an improved solution is obtained at each

step of iteration with guaranteed convergence by applying the SCA techniques. Therefore, to solve
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the optimization problem P12, we need to characterize the convexity of the objective function in

P12 as detailed in the following theorem.

Theorem 7. Given fixed power allocation coefficient ηk,m and downlink blocklength nd, the objec-

tive function in P12 specified by Eq. (4.25) is convex in the PS factor ρ for our proposed SWIPT-

enabled CF m-MIMO based schemes under PS protocol in the finite blocklength regime when

εd,m ∈ (0, 0.5) and nd > nPS
d,th, where

nPS
d,th ,

9

V (γd,m)

[
Q−1(εd,m)(log 2)

(1 + γd,m)2

]2

. (4.26)

Proof. The proof is provided in Appendix H.

Remarks on Theorem 7: Similar to Theorem 6, Theorem 7 implies that there exists a local

optimal solution to the minimization problem P12 when the other two variables are fixed. It is

easy to show that the local optimal solution is unique, thus, it is also the global optimal solution.

Therefore, P12 can be efficiently solved by using the similar approach as described in Algorithm 2.

4.4 Joint Uplink ε-Effective Capacity and Harvested Energy Tradeoff for Statistical Delay/Error-

Rate Bounded QoS Using FBC

4.4.1 Uplink Data Transmission in the Finite Blocklength Regime

During the uplink data transmission phase, all Ku mobile devices simultaneously transmit their

data to the APs using the energy harvested from the previous downlink SWIPT phase. We can

derive the uplink transmit power, denoted by Pm, from mobile device m to the APs as follows:

Pm =
Er,m

nuTs
. (4.27)

We can derive the received signal, denoted by Y nu
u,k , from all mobile devices to AP k as follows:

Y nu
u,k =

Ku∑
m=1

√
ηu,mPmhk,mqnu

m +W nu
u,k (4.28)
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where ηu,m is the uplink power allocation coefficient for mobile device m, W nu
u,k ∈ CNT×nu is the

AWGN matrix with zero mean and covariance INT×nu at AP k, and qnu
m is the signal transmitted by

mobile device m, which need to satisfy the following constraint:

E
[
‖qnu

m ‖
2] = 1. (4.29)

Then, after the conjugate precoder at the AP, the processed uplink signal, denoted by ru,m, at the

CPU from mobile device m can be derived as follows:

ru,m =
Ka∑
k=1

(
ĥk,m

)H
Y nu
k =

Ku∑
m′=1

Ka∑
k=1

√
ηu,m′Pm′

(
ĥk,m

)H
hk,m′q

nu
m′ +

Ka∑
k=1

(
ĥk,m

)H
wnu

u,k.

(4.30)

Correspondingly, we can derive the uplink SNR, denoted by γu,m, at AP k as follows:

γu,m = ηu,mPm

∣∣∣∣∣E
[
Ka∑
k=1

(ĥk,m)Hhk,m

]∣∣∣∣∣
2


Ku∑
m′=1

ηu,m′Pm′E

∣∣∣∣∣
Ka∑
k=1

(ĥk,m′)
Hhk,m

∣∣∣∣∣
2


−

∣∣∣∣∣E
[
Ka∑
k=1

(ĥk,m)Hhk,m

]∣∣∣∣∣
2

ηu,mPm + E

∥∥∥∥∥
Ka∑
k=1

ĥk,m

∥∥∥∥∥
2


−1

. (4.31)

4.4.2 Joint Uplink Resource Allocation Optimization for Statistical Delay and Error-Rate

Bounded QoS Provisioning Using FBC

Define the uplink ε-effective capacity, denoted by ECε,TS-PS
u,m (θm), under joint TS-PS protocol

for mobile device m as follows:

ECε,TS-PS
u,m (θm) =− 1

θm
log

{
Eγu,m

[
εu,m + (1− εu,m) e−θmnuTsRu,m

]}
(4.32)
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where εu,m is the uplink decoding error probability for mobile device m and Ru,m is the uplink

coding rate, which is given as follows:

Ru,m = C (γu,m)−

√
V (γu,m)

nu
Q−1(εu,m) (4.33)

where C (γu,m) and V (γu,m) are the uplink channel capacity and channel dispersion, respectively.

Considering the joint TS-PS protocol, we define the uplink ε-effective capacity-energy region,

denoted by CECε,TS-PS
u,m −ETS-PS

m
, as follows:

CECε,TS-PS
u,m −ETS-PS

m
,

⋃
0≤ηk,m≤1,∀k

0≤α≤1
0≤ρ≤1

{(
ECε,TS-PS

u,m , ETS-PS
m

)
:

ECε,TS-PS
u,m ≤ − 1

θm
log
{
Eγu,m

[
εu,m+(1−εu,m) e−θmnuTsRu,m

]}
,

Em ≤ αndTsPdζ

∣∣∣∣∣
Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣∣
+ (1− α)ndTsPdρζ

∣∣∣∣∣
Ka∑
k=1

Ku∑
m′=1

√
ηk,m′

(
ĥk,m′

)H
hk,m

∣∣∣∣∣
}
.

(4.34)

The max-min power control optimization is a centralized algorithm for guaranteeing a uniform

SINR for all mobile devices. However, if an mobile device suffers from a bad channel gain and ex-

periences poor SINR, the ε-effective capacity for all the other mobile devices will be compromised.

Therefore, taking into account both the downlink harvested energy and uplink transmit power con-

straints, we formulate a distributed joint uplink resource allocation optimization problem for our

proposed SWIPT-enabled CF m-MIMO based schemes under a joint TS-PS protocol in the finite

blocklength regime as follows:

P13 : arg max
α,ρ,nd,nu,

ηk,m,ηu,m,∀m,k

{
Ku∑
m=1

ECε,TS-PS
u,m (θm)

}
(4.35)
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s.t. C5− C8;

C9 : γu,m ≥ γth, ∀m; (4.36)

C10 : 0 ≤ ηu,m ≤ 1, ∀m, k, (4.37)

where γth is the SNR threshold for all mobile devices. Then, the above optimization problem can

be reformulated into the following equivalent minimization problem:

P14 : arg min
α,ρ,nd,nu,

ηk,m,ηu,m,∀m,k

{
Ku∑
m=1

Eγu,m

[
εu,m + (1− εu,m) e−θmnuTsRu,m

]}
(4.38)

subject to the same constraints C5-C10 given by Eqs. (4.17) (4.18), (4.19), (4.19), (4.24), and (4.37),

respectively. Since Theorem 6 and Theorem 7 have shown that F (γd,m) is convex in α, ρ, and nd,

ηk,m respectively, we can easily obtain that the objective function in problem P14 is convex with

respect to nd and ηu,m, respectively, when the other parameters are fixed. Therefore, the opti-

mization problem P14 specified by Eq. (4.38) is a convex optimization problem and thus can be

efficiently solved by applying the SCA techniques with an iterative search method, which is similar

to Algorithm 2.

4.5 Performance Evaluations

We use simulations to validate and evaluate our proposed SWIPT-enabled CF m-MIMO based

schemes in the finite blocklength regime. Throughout our simulations, we set the number of APs

Ka = 100, the number of mobile devices Ku = 50, the duration of each channel use Ts = 10 µs,

the energy conversion efficiency ζ = 0.5, the uplink pilot transmit power Pp = 20 dBm, and the

downlink transmit power Pd = 80 dBm.

We set the downlink blocklength error probability εd,m = 1 × 10−6. Using Eq. (G.9), Fig. 4.3

plots the second-order derivative ∂2F (γd,m) /∂α2 as a function of the downlink SNR γd,m for

our proposed SWIPT-enabled CF m-MIMO scheme using FBC. Fig. 4.3 shows that the second-

order derivative ∂2F (γd,m) /∂α2 increases as the SNR γd,m increases. In the high SNR region, we

observe from Fig. 4.3 that ∂2F (γd,m) /∂α2 > 0, which implies that the objective function in P10
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Figure 4.3: The second-order derivative ∂2F (γd,m) /∂α2 vs. SNR γd,m for our proposed SWIPT-
enabled CF m-MIMO scheme using FBC with the TS factor α = 0.9.
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Figure 4.4: The downlink blocklength threshold nTS
d,th vs. TS factor α for our proposed SWIPT-

enabled CF m-MIMO scheme under TS protocol using FBC.

specified by Eq. (4.20) is convex with respect to the TS factor α. Thus, Theorem 6 holds in the high

SNR scenario. Fig. 4.3 also shows that ∂2F (γd,m) /∂α2 is an increasing function of the downlink

blocklength nd. This implies that a smaller value of nd and a larger value of nd set an lower

bound and upper bound on the second-order derivative of the auxiliary function ∂2F (γd,m) /∂α2,

respectively.

Using the downlink data blocklength threshold in Eq. (4.21), Fig. 4.4 depicts the threshold on
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downlink blocklength nTS
d,th as a function of TS factor α for our proposed SWIPT-enabled CF m-

MIMO scheme under TS protocol in the finite blocklength regime. Fig. 4.4 shows that the threshold

on downlink blocklength nTS
d,th increases as the TS factor α increases. Fig. 4.4 also shows that the

threshold on downlink blocklength nTS
d,th is a decreasing function of SNR γd,m. We can observe from

Fig. 4.4 that the value of nTS
d,th increases from 0.92 to 23.68 as the value of TS factor increases from

0 to 0.9 when the SNR is 10 dB. Since the authors in [30] have shown that the data transmission

rate is quite accurate when the blocklength is as short as 100, the downlink blocklength threshold

nTS
d,th � 100 would automatically hold for n > nTS

d,th, especially in the high SNR scenario, which

validates Theorem 6.

In addition, using the downlink data blocklength threshold in Eq. (4.26), Fig. 4.5 plots the

threshold on downlink blocklength nPS
d,th as a function of the SNR γd,m for our proposed SWIPT-

enabled CF m-MIMO scheme under PS protocol in the finite blocklength regime. Fig. 4.5 shows

that the threshold on downlink blocklength nPS
d,th decreases as the SNR γd,m increases. Fig. 4.5 also

shows that the threshold on downlink blocklength nPS
d,th is a decreasing function of the decoding

error probability εd,m. We can observe from Fig. 4.5 that the value of nPS
d,th decreases from 4.67

to 0 as the value of SNR γd,m increases from 0 to 15 dB when the decoding error probability

εd,m = 1 × 10−6. Since the data transmission rate is quite accurate when the blocklength is as

short as 100 [30], the downlink blocklength threshold nPS
d,th would automatically hold for n > nPS

d,th,

which validates Theorem 7.

Setting the blocklength error probability εd,m = 1×10−6, Fig. 4.6 plots the downlink ε-effective

capacity as a function of TS factor α for our proposed SWIPT-enabled CF m-MIMO scheme using

FBC. We can observe from Fig. 4.6 that the downlink ε-effective capacity is a decreasing function

of TS factor α. In addition, Fig. 4.7 depicts the downlink ε-effective capacity as a function of

both the TS factor α and QoS exponent θm for our proposed SWIPT-enabled CF m-MIMO scheme

using FBC. We can observe from Fig. 4.7 that the downlink ε-effective capacity decreases as the

decoding error probability εd,m increases. Fig. 4.7 also shows that the downlink ε-effective capacity

is a decreasing function of QoS exponent θm, which implies that a smaller θm (θm → 0) and
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Figure 4.6: The downlink ε-effective capacity vs. TS factor α for our proposed SWIPT-enabled
CF m-MIMO scheme using FBC.

a larger θm (θm → ∞) lead to an upper bound and lower bound on the downlink ε-effective

capacity, respectively.

Setting the blocklength error probability εd,m = 1×10−6, Fig. 4.8 plots the downlink ε-effective

capacity as a function of PS factor ρ for our proposed SWIPT-enabled CF m-MIMO scheme in the

finite blocklength regime. We can observe from Fig. 4.8 that the downlink ε-effective capacity is a

decreasing function of PS factor ρ and is an increasing function of downlink data blocklength nd.
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Figure 4.7: The downlink ε-effective capacity vs. TS factor α and QoS exponent θm for our
proposed SWIPT-enabled CF m-MIMO scheme using FBC.
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Figure 4.8: The downlink ε-effective capacity vs. PS factor ρ for our proposed SWIPT-enabled CF
m-MIMO scheme using FBC.

Fig. 4.8 also shows that the gap between the curves when nd = 600 and nd = 800 is negligible for

large θm. This is because the downlink ε-effective capacity goes to zero when the delay-bounded

QoS constraint is very stringent, i.e., θm →∞.

Setting the downlink blocklength nd = 1000, downlink blocklength error probability εd,m =

1 × 10−6, and uplink blocklength error probability εu,m = 1 × 10−3, Fig. 4.9 depicts the uplink

ε-effective capacity as a function of harvested energy for our proposed SWIPT-enabled CF m-
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Figure 4.9: The uplink ε-effective capacity vs. harvested energy for our proposed SWIPT-enabled
CF m-MIMO scheme using FBC.

MIMO scheme using FBC. We can observe from Fig. 4.9 that the uplink ε-effective capacity is an

increasing function of uplink data blocklength nu. Fig. 9 shows that the uplink ε-effective capacity

becomes negligible at the same operating point when α = 0, ρ = 0, and nu ∈ {800, 1000, 1200}.

This is due to the fact that when α = 0 and ρ = 0, the entire downlink SWIPT phase are allocated

for downlink information transfer, thus the mobile devices cannot harvest energy. On the other

hand, when α, ρ→ 1, the harvested energy becomes a maximum since the mobile devices perform

energy harvesting for the entire downlink SWIPT phase. As a result, the uplink ε-effective capacity

is an increasing function of the harvested energy.

4.6 Summary

We have proposed and developed statistical delay and error-rate bounded QoS provisioning

schemes over SWIPT-enabled CF m-MIMO 6G wireless networks in the finite blocklength regime.

In particular, we have developed SWIPT-enabled CF m-MIMO based system models using FBC.

Taking into account both the harvested energy and transmit power constraints, we have formu-

lated and solved the optimization problems for the tradeoff between the ε-effective capacity and

harvested energy for both downlink SWIPT and uplink data transfer phases under statistical delay

and error rate bounded QoS provisioning in supporting mURLLC. We have conducted a set of
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simulations to validate and evaluate our proposed SWIPT-enabled CF m-MIMO schemes subject

to statistical delay and error-rate bounded QoS constraints in the finite blocklength regime.
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5. OPTIMAL RESOURCE ALLOCATIONS FOR STATISTICAL QOS TO SUPPORT

MURLLC OVER FBC-EH BASED 6G THZ WIRELESS NANO-NETWORKS ∗

5.1 Introduction

Over the last decades, the limited available bandwidth for communication systems in the mi-

crowave frequency range motivates the exploration of higher frequency bands in supporting sta-

tistical delay-bounded QoS provisioning. Towards this end, researchers have proposed THz-band

communications and wireless networks for supporting provide an unprecedentedly large band-

width, while satisfying diverse mURLLC requirements.

However, the large pathloss and molecular noise introduced by the THz wireless systems may

produce transmission errors during the data transmissions, resulting in distorted multimedia signals

received. There are a few studies in the literature which investigate the THz-band communications

in supporting various QoS requirements for delay-sensitive wireless applications. Previous works

have presented a holistic vision of 6G systems for the 6G-driven applications, performance met-

rics, and new service classes such as THz, mURLLC, QoS metrics, etc. [15]. However, previous

works mainly focus on analyzing specific QoS requirements, while the statistical QoS provisioning

based THz-band communications in supporting mURLLC have neither been well understood nor

thoroughly studied.

By leveraging the advantages of nanomaterials, THz wireless networks with nano-architectures

can alleviate the spectrum scarcity and feasibly achieve ultra-high data-rates up to 1 Tbps, while

taking into account constraints of scalability, dimension, topology, processing-power, storage, en-

ergy capacities, etc. One of the major constraints of wireless nano-networks is the severely limited

energy that can be accessed by nano devices. As a result, researchers have investigated the EH

techniques over THz band wireless nano-networks. However, the conventional EH techniques,

∗ c©2021 IEEE. Part of the material presented in this chapter is reprinted with permission from “Optimal Resource
Allocations for Statistical QoS Provisioning to Support mURLLC Over FBC-EH-Based 6G THz Wireless Nano-
Networks" by X. Zhang, J. Wang, and H. V. Poor, published in IEEE Journal on Selected Areas in Communications
(J-SAC), Vol. 39, No. 6, pp. 1544-1560, June 2021.
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such as solar and wind power, cannot be utilized in wireless nano-networks due to technology

limitations. Novel nano-scale EH techniques have been investigated to harvest energy from vari-

ous resources, such as vibration and blood sugar, to address the energy scarcity problem for nano

devices. The authors of [109] have conducted detailed studies of EH techniques, energy sources,

storage technologies, and the examples of applications and network deployments for EH based

nano sensors. Optimal energy management policies for EH based sensor nodes have been pro-

posed in [110]. Although there are some studies of the EH and energy consumption models for

nano-scale communications, how to accurately model and characterize the relationships among

THz-band wireless channel, energy consumption, and EH models employing FBC based nano-

communication still remains as a major challenge in the THz band while supporting both delay

and error-rate bounded QoS provisioning.

To effectively overcome the above-mentioned challenges, in this chapter we develop FBC-EH

based optimal resource allocation policies for self-powered nano devices in the THz band over

wireless nano-networks under statistical delay and error-rate bounded QoS constraints. Particu-

larly, we establish THz-band wireless communications model, EH model, and FBC based channel-

coding model. Then, we analyze the interference, channel capacity, and channel dispersion func-

tions in the THz band using FBC. Considering statistical delay and error-rate bounded QoS provi-

sioning, we formulate and solve the ε-effective capacity maximization problem for our proposed

statistical delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH

based 6G THz wireless nano-networks. Simulations are conducted, which evaluate and validate

our proposed schemes in the THz band over FBC-EH-based wireless nano-networks.

The rest of this chapter is organized as follows: Section 5.2 establishes THz-band nano commu-

nication system models. Section 5.3 characterizes the interference, channel capacity, and channel

dispersion in the THz band using FBC. Section 5.4 formulates and solves the ε-effective capacity

maximization problem under statistical delay and error-rate bounded QoS provisioning in the fi-

nite blocklength regime in the THz band. Section 5.5 evaluates the system performance for our

proposed schemes in the THz band in the finite blocklength regime. The chapter concludes with
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Figure 5.1: The system architecture model for our proposed FBC-EH-based wireless nano-
networks in the THz band, where a is the radius of the THz-band covered region, b is the radius of
the blind area, and n is the codeword blocklength used in FBC.

Section 5.6.

5.2 The System Models

Fig. 5.1 shows the system architecture model for our proposed FBC-EH-based wireless nano-

networks in the THz band, where for each THz-band covered region in a circled area, a is the

radius of the THz-band covered region and b is the radius of a very small blind area (b � a),

and there is one nano receiver and (K + 1) self-powered nano transmitters, without the use of

nano-batteries, randomly distributed within the THz-band covered region, which follows a spatial

Poisson process with an arrival-rate intensity equal to λ nodes/cm2 [111]. Consider the THz-band

covered region, denoted by A(a) ⊆ R2, with radius a. Without loss of generality, we consider that

the nano receiver is located at the center of the THz-band covered region A(a). We can derive the

probability of finding (K + 1) nano transmitters in the THz-band covered region A(a) as follows:

Pr{(K + 1) nano transmitters in A(a)} =
[λ‖A(a)‖φ](K+1)

(K + 1)!
exp [−λ‖A(a)‖φ] (5.1)
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where ‖A(a)‖φ denotes the area of the THz-band covered region A(a). Denote by rk (k =

1, . . . , (K + 1)) the transmission distance from the self-powered nano transmitter k, as shown

in Fig. 5.1, to its assigned nano receiver within the THz-band covered region, which is a random

variable. Then, we can formulate the PDF of the distribution of transmission distance rk, denoted

by fD(rk), from the nano transmitter k to its nano receiver of interest within the THz-band covered

region as follows [112]:

fD(rk) =


2rk
a2−b2 , for b < rk < a;

0, otherwise.
(5.2)

5.2.1 THz-Band Channel Model

5.2.1.1 Path Loss Model

In our proposed THz-band channel model, both the spreading loss and shadow fading char-

acteristics of the transmission medium are considered as the main sources of signal attenuation.

In the THz band, the path-loss is mainly characterized by the spreading loss and the molecular

absorption loss [59]. The total path loss, denoted by Hk (f, rk), in the THz band for nano device k

can be derived as follows [59]:

Hk (f, rk) = Hk,spread(f, rk)Hk,abs(rk) (5.3)

where Hk,spread(f, rk) and Hk,abs(rk) represent the spreading loss and molecular absorption atten-

uation, respectively, at transmission distance rk and operating frequency f , which are defined as

follows: 
Hk,spread(f, rk) = c

4πfrk
;

Hk,abs(rk) = exp
(
−αabsrk

2

)
,

(5.4)

where c is the speed of light in free space and αabs is the medium absorption coefficient, which

depends on the molecular composition in the channel along the transmission path. Then, we can

derive the received power, denoted by Ppathloss,r(rk), at the nano receiver with the transmission
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distance rk due to pathloss as follows:

Ppathloss,r(rk) = S(f)

(
c

4πfrk

)2

e−αabsrk (5.5)

where S(f) is the power spectral density of the transmitted pulse. In addition, we can derive the

received power, denoted by Pshadow,r(rk), from nano transmitter k to its nano receiver with the

transmission distance rk due to shadowing as follows [113]:

Pshadow,r(rk) = (rk)
−η G10

ξk
10 (5.6)

where G denotes the channel gain constant, η is the path loss exponent, ξk is a random variable

which represents the shadow fading characteristics of the transmission medium. Note that the pa-

rameters of the path-loss and shadowing models can be extracted based on empirical measurements

or Monte Carlo simulations. According to the Central Limit Theorem, the shadow fading variable

ξk can be considered as a normal distributed random variable with zero mean and standard devia-

tion σ, i.e., ξk ∼ N (0, σ2). Then, we can derive the total received power, denoted by Ptotal(rk), at

the nano receiver across the transmission distance rk from the nano transmitter k as follows:

Ptotal(rk) = (rk)
−η G10

ξk
10S(f)

(
c

4πfrk

)2

e−αabsrk . (5.7)

5.2.1.2 Noise Model

The noise in the THz band is mainly contributed by the molecular absorption noise, which

is caused by vibrating molecules [59, 114]. The total power of the molecular absorption noise,

denoted by Nk(rk), in the THz band is composed of the background noise, denoted by Nb, and the

self-induced noise, denoted by Nk,s(rk), which is given as follows [115]:

Nk(rk) = Nb +Nk,s(rk) (5.8)
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where 
Nb = B(T0, f)

(
c√

4πf0

)2

;

Nk,s(rk) = S(f) (1− e−αabsrk)
(

c
4πfrk

)2

,

(5.9)

where T0 is the reference temperature of the medium, f0 is the design centre frequency, and

B(T0, f) is the Planck’s function, which is given by [116]

B(T0, f) =
2hπf 3

c2

(
e

hf
kBT0 − 1

)−1

(5.10)

where kB is the Boltzmann’s constant and h is the Planck constant. We can observe from Eq. (5.9)

that the background noise Nb depends on the temperature and composition of the medium. On the

other hand, the self-induced noise Nk,s(rk) depends on the transmitted signal.

We define xnk ∼ N (0,P) as the transmit signal vector from nano transmitter k, where P is the

average transmit power for the nano device, and ynk ,
[
y

(1)
k , . . . , y

(n)
k

]
as the receive signal vector.

Accordingly, we can derive the received signal, denoted by ynk , for transmitting n data blocks from

nano transmitter k to its nano receiver in the THz band in the finite blocklength regime as follows:

ynk =
√
Ptotal(rk)x

n
k +

K+1∑
i=1,i 6=k

√
Ptotal(ri)x

n
i + nk (5.11)

where Ptotal(rk) and Ptotal(ri) are the received signal powers at the nano receiver across the trans-

mission distances rk and ri from nano transmitters k and i, respectively, as specified by Eq. (5.7),

xnk and xni represent the transmitted signals from nano transmitter k and i, respectively, ri is the

transmission distance from the nano transmitter i to its assigned nano receiver, and nk denotes the

absorption noise with power given by Eq. (5.8).

5.2.2 EH Model for Piezoelectric Nanogenerators

Recently, researchers have developed the piezoelectric nanogenerators [117] [118] for con-

verting mechanical energy into electrical energy, as shown in Fig. 5.2. Due to the low energy

consumption of nano devices over a short distance in the THz band, the energy harvested from
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Figure 5.2: The piezoelectric nanogenerator model in the THz band.

the environment should be sufficient to power the nano devices. Without loss of generality, we as-

sume that all harvested energy can be stored in the nanocapacitor. We can derive the stored energy,

denoted by Ecap, in the nanocapacitor after a number of cycles, denoted by ncyc, as follows [119]:

Ecap(ncyc) =
1

2
Ccap [Vcap(ncyc)]

2 (5.12)

where Ccap and Vcap(ncyc) are the total capacitance and voltage function of the nano-capacitor,

respectively. Then, the voltage function Vcap(ncyc) of the charging nanocapacitor can be derived as

follows:

Vcap(ncyc) = Vg

[
1− exp

(
−
ncyctcyc

RgCcap

)]
= Vg

[
1− exp

(
−
ncyc∆Q

VgCcap

)]
(5.13)

where Vg represents the generator voltage, Rg is the resistor, tcyc is the time between consecutive

cycles, and ∆Q is the amount of electric charge obtained from one cycle. We can derive the

maximum energy, denoted by Emax
cap (ncyc), stored in the nanocapacitor as follows:

Emax
cap (ncyc) =

1

2
Ccap (Vg)

2 . (5.14)

Furthermore, the energy harvesting rate, denoted by λeh, in Joule/second can be computed as a

function of the current energy Ecap(ncyc) in the nano-capacitor and the increment in the energy of
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the nano-capacitor, denoted by ∆E, which is given as follows [120]:

λeh =
Vg∆Q

tcyc

[
exp

(
−

∆Qncyc

VgCcap

)
− exp

(
−

2∆Qncyc

VgCcap

)]
. (5.15)

5.3 The THz-Band Wireless Channel Modeling in The Finite Blocklength Regime

In this section, we characterize the functions of aggregate interference, channel capacity, chan-

nel dispersion, and the ε-effective capacity, respectively, in supporting mURLLC over FBC-EH

based 6G THz wireless nano-networks.

5.3.1 The Aggregate Interference Modeling for the THz-Band Channels

Using Eqs. (5.7) and (5.8), we can derive the SINR function, denoted by γ(l)
k (r) (l = 1, . . . , n),

between nano transmitter k and its nano receiver for transmitting the lth data block in the THz

band as follows:

γ
(l)
k (r) =

PkPtotal(rk)

N
I

(l)
k

(r) +Nk(rk)
(5.16)

where r represents the vector of distances rk (k = 1, 2, . . . , (K + 1)) between nano transmitter k

and its nano receiver, N
I

(l)
k

(r) is the aggregate interference power, and Nk(rk) is the noise power.

To guarantee the successful reception of the transmitted symbol at the nano receiver, the received

SINR should be larger than a threshold, denoted by γth, i.e., γ(l)
k (r) ≥ γth. We have

Pk (rk)
−η G10

ξk
10S(f)

(
c

4πfrk

)2

e−αabsrk

Nk(rk) +N
I

(l)
k

(r)
≥ γth. (5.17)

We can derive the aggregate interference, denoted by I(l)
k (r), at the nano receiver for transmitting

the lth data block in the THz band as follows:

I
(l)
k (r) =

K+1∑
i=1,i 6=k

√
Pi (ri)−η G10

ξi
10S(f)

(
c

4πfri

)
e−

αabsri
2 +Ni(ri). (5.18)
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Due to the high density of wireless nano-networks, i.e., as K → ∞, we can invoke the Central

Limit Theorem and assume that the aggregate interference can be modeled as a Gaussian random

process, i.e., I(l)
k (r) ∼ N

(
Er[I

(l)
k (r)],Var

I
(l)
k

(r)
)

, where Er[I
(l)
k (r)] and Var

I
(l)
k

(r) are the mean

and variance of the aggregate interference, respectively, and Er[·] is the expectation operation with

respect to r. We derive the closed-form expressions for characterizing the mean Er[I
(l)
k (r)] and

the variance Var
I

(l)
k

(r), respectively, of the aggregate interference in the following theorem.

Theorem 8. If the aggregate interference I(l)
k (r) is given by Eq. (5.18) for our proposed THz-

band channel model, then the mean and variance of the aggregate interference between nano

transmitter k and its nano receiver in the THz band over wireless nano-networks are characterized

by the following two claims, respectively.

Claim 1. The mean Er[I
(l)
k (r)] of the aggregate interference is accurately estimated by its

lower-bound as follows:

Er[I
(l)
k (r)] ≥

2λπa2Λ
√
P
(

2
αabs

)1− η
2

a2 − b2

[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]
(5.19)

where γ(·, ·) is the lower incomplete Gamma function and

Λ ,
c
√
GS(f)

4πf
. (5.20)

Claim 2. The variance Var
I

(l)
k

(r) of the aggregate interference is approximated as follows:

Var
I

(l)
k

(r) ≈ 6λπa2Λ2P(αabs)
−η

a2 − b2
[γ (−η, aαabs)− γ (−η, bαabs)] +

K+1∑
i=1,i 6=k

Ni,b +
2λπa2Λ2

a2 − b2

×

[
log
(a
b

)
− Ei (−αabsa) + Ei (−αabsb)

]
−
(

2λπa2C

a2 − b2

)2

P
(

2

αabs

)2−η

×
[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]2

. (5.21)

Proof. The proof is provided in Appendix I.
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Remarks on Theorem 8: The expressions derived in Theorem 8 for the mean and variance of

the aggregate interference play the important roles in modeling the channel capacity and channel

dispersion over our proposed THz-band wireless nano-networks.

5.3.2 The Channel Capacity Modeling Over the THz Band in the Finite Blocklength Regime

Leveraging the Shannon Limit Theorem, we can derive the channel capacityC(rk,Pk) in terms

of the mutual information I(xnk ,y
n
k ) for our proposed statistical delay and error-rate bounded QoS

provisioning in supporting mURLLC over FBC-EH based 6G THz wireless nano-networks as

follows:

C(rk,Pk) = sup
PXn

k
(xnk )

{I(xnk ,y
n
k )} (5.22)

where PXn
k
(xnk) is the input symbol probability and I(xnk ,y

n
k ) is the mutual information, which is

given as follows:

I(xnk ,y
n
k ) = E [i(xnk ;ynk )] =

1

n
E
[
log2

(
PY nk |Xn

k
(ynk |xnk)

QY nk
(ynk )

)]
. (5.23)

The theorem that follows bellow derives the closed-form expression for the upper-bound to accu-

rately approximate the channel capacity C(rk,Pk) given by Eq. (5.22) over the THz band in the

finite blocklength regime.

Theorem 9. The upper-bound on the mutual information I(xnk ,y
n
k ) given by Eq. (5.23) for our

proposed statistical delay and error-rate bounded QoS provisioning in supporting mURLLC over

FBC-EH based 6G THz wireless nano-networks is given as follows:

I(xnk ,y
n
k ) ≤ 1

2
log2

[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
− (log2 e)

[
Pk [Ptotal(rk) + 1]

N
I

(l)
k

(r) +Nk(rk)

]
.

(5.24)

Proof. The proof is provided in Appendix J.

Remarks on Theorem 9: While it is infeasible to derive the exact closed-form expression for the
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channel capacity C(rk,Pk) in terms of the mutual information for our proposed statistical delay

and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based 6G THz

wireless nano-networks in the finite blocklength regime, Theorem 9 yields the accurate upper-

bound for the mutual information I(xnk ,y
n
k ) derived in Eq. (5.24) is an accurate approximation

for the channel capacity C(rk,Pk) given by Eq. (5.22), which provides with practically very use-

ful designing guidance for engineering, modeling, and evaluating our proposed statistical delay

and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based 6G THz

wireless nano-networks in the finite blocklength regime.

5.3.3 The Channel Dispersion Modeling for the THz Band Communications in the Finite

Blocklength Regime

Generally speaking, it is challenging to derive the closed-form expression of the channel dis-

persion for the nano-communications schemes in the THz band using FBC. However, leveraging

some mathematical manipulations, we can obtain the tight upper-bound for the channel dispersion

V (rk,Pk) for our proposed statistical delay and error-rate bounded QoS provisioning schemes in

supporting mURLLC over FBC-EH based 6G THz wireless nano-networks as summarized in the

following theorem.

Theorem 10. The upper-bound on the channel dispersion V (rk,Pk) for our proposed statistical

delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based 6G

THz wireless nano-networks is given as follows:

V (rk,Pk) ≤8n(log2 e)
2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]
. (5.25)

Proof. The proof is provided in Appendix K.

Remarks on Theorem 10: The upper-bound on the channel dispersion V (rk,Pk) given in

Eq. (5.25) proved in Theorem 10 is important to derive the maximum achievable coding rate

R(n, rk,Pk), and thereafter, the ε-effective capacity ECε(θk), and finally, solve the joint opti-

mization problem for resource allocations to support our proposed statistical delay and error-rate
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bounded QoS provisioning for mURLLC over FBC-EH 6G THz wireless nano-networks which

are to be investigated in the following section.

5.4 Joint Optimal Resource Allocation for Our Proposed Statistical Delay and Error-Rate

Bounded QoS Provisioning for mURLLC Over FBC-EH 6G THz Wireless Nano-Networks

In this section, we derive the optimal resource allocation policies for our proposed statistical

delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based 6G

THz wireless nano-networks.

5.4.1 The Set of EH Constraints in the THz Band

5.4.1.1 Transmit Power Constraint

Due to the limitation of the energy harvested at the nanogenerator, we can derive the minimum

required energy, denoted by Pmin, for transmitting one data packet at each self-powered nano

device as follows:

Pmin = ζkPk + Pcircuit (5.26)

where ζk is the reciprocal of drain efficiency of power amplifier and Pcircuit consists of two compo-

nents, i.e., power consumption of the transmitter circuit and the receiver circuit, which is indepen-

dent of the transmission distance. Then, we can derive the relationship between harvested energy

after ncyc cycles and the minimum required energy for transmitting a data packet with length n as

follows:

1

2
Ccap [Vcap(ncyc)]

2 ≥ n (ζkPk + Pcircuit) . (5.27)

Plugging Eq. (5.13) into Eq. (5.27), we have

1

2
Ccap

{
Vg

[
1− exp

(
−
ncyc∆Q

VgCcap

)]}2

≥ n (ζkPk + Pcircuit) . (5.28)
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Accordingly, we can derive a lower bound on the number of cycles ncyc for self-powered nano

devices as in the following inequation:

ncyc ≥ −
CcapV g

∆Q
log

[
1−

√
2n

CcapV g

(ζkPk + Pcircuit)

]
. (5.29)

According to Eq. (5.29), to guarantee the effective value of a lower bound on ncyc, we have

√
2n

CcapV g

(ζkPk + Pcircuit) ≤ 1. (5.30)

Correspondingly, we can derive an upper-bound on the transmit power Pk for the self-powered

nano transmitter k as follows:

Pk ≤
CcapV g

2nζk
− Pcircuit

ζk
. (5.31)

5.4.1.2 Energy Harvesting Rate Constraint

To derive the EH rate constraint, first we need to calculate the energy consumption rate, denoted

by λec, of each self-powered nano device as follows:

λec < PknC(rk,Pk). (5.32)

As a result, the energy consumption rate λec should not be greater than the energy harvesting rate

λeh given in Eq. (5.15), i.e., λec ≤ λeh. Then, using Eq. (5.15) and (5.32), we can derive an

upper-bound on the transmit power Pk for our proposed statistical delay and error-rate bounded

QoS provisioning in supporting mURLLC over FBC-EH based 6G THz wireless nano-networks

as follows:

Pk ≤
Vg∆Q

nC(rk,Pk)tcyc

[
exp

(
−

∆Qncyc

VgCcap

)
− exp

(
−

2∆Qncyc

VgCcap

)]
. (5.33)
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5.4.2 Joint Optimal Resource Allocation for Our Proposed Statistical Delay and Error-Rate

Bounded QoS Provisioning for mURLLC Over FBC-EH 6G THz Wireless Nano-

Networks

The function of ε-effective capacity ECε(θk) depends on the transmit power Pk and block-

length n. To maximize the ε-effective capacity ECε(θk) while guaranteeing the EH constraints

among self-powered nano devices for our proposed statistical delay and error-rate bounded QoS

provisioning in supporting mURLLC over FBC-EH based 6G THz wireless nano-networks, we

can formulate the optimization problem P15 subject to the EH constraints given by Eqs. (5.31)

and (5.33) as follows:

P15 : arg max
{n,Pk}

ECε(θk) (5.34)

s.t.: C11 :R(n, rk,Pk) ≈ C(rk,Pk)−
√
V (rk,Pk)

n
Q−1(εk); (5.35)

C12 :Pk ≤ min

{
CcapV g

2nζk
− Pcircuit

ζk
,

Vg∆Q

nC(rk,Pk)tcyc

[
exp

(
−

∆Qncyc

VgCcap

)
−exp

(
−

2∆Qncyc

VgCcap

)]}
;

(5.36)

C13 :Pk ≥
1

(rk)
−η G10

ξk
10S(f)

γth

(
Nk(rk) +N

I
(l)
k

(r)
)

(
c

4πfrk

)
e−

αabsrk
2

2

; (5.37)

C14 :Pk > 0. (5.38)

Equivalently, we can derive a minimization problem P16 as follows:

P16 : arg min
{n,Pk}

Erk

εk + (1− εk) exp

{
− θkn

[
C(rk,Pk)−

√
V (rk,Pk)

n
Q−1(εk)

]}
(5.39)

subject to the same constraints given in C12, C13, and C14 which are specified by Eqs. (5.36), (5.37),

and (5.38), respectively, in optimization problem P15. In order to solve the minimization problem
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P16, we define an utility function F (n, rk,Pk) as follows:

F (n, rk,Pk) , nR(n, rk,Pk). (5.40)

Then, by plugging Eq. (5.40) back into Eq. (5.39), we can rewrite the ε-effective capacity as fol-

lows:

ECε(θk) , −
1

θk
log
(
Erk
[
εk + (1− εk) e−θkF (n,rk,Pk)

])
. (5.41)

We can formulate a new maximization problem P17, which is equivalent to P16, for our proposed

statistical delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH

based 6G THz wireless nano-networks as follows:

P17 : arg max
{n,Pk}

F (n, rk,Pk) (5.42)

subject to the same constraints given in C12, C13, and C14 which are specified by Eqs. (5.36), (5.37),

and (5.38), respectively, in optimization problem P15. To analyze the monotonicity of problem

P17, we investigate the first-order derivative of the function F (n, rk,Pk) with respect to the block-

length n when εk ∈ (0, 0.5) as follows:

∂F (n, rk,Pk)
∂n

=
∂nC(rk,Pk)

∂n
−
∂
[√

nV (rk,Pk)Q−1(εk)
]

∂n

= C(rk,Pk)−
√
V (rk,Pk)Q−1(εk)

2
√
n

= R(n, rk,Pk) +

√
V (rk,Pk)Q−1(εk)

2
√
n

> 0. (5.43)

As a result, the optimization problem P17 specified by Eq. (5.42) is a monotonically increasing

function of blocklength n when the error probability εk ∈ (0, 0.5). Then, the theorem that follows

bellow characterizes the concavity of the optimization problem P17 with respect to the transmit

108



power Pk.

Theorem 11. Let the error probability be εk ∈ (0, 0.5) for our proposed statistical delay and error-

rate bounded QoS provisioning in supporting mURLLC over FBC-EH based 6G THz wireless

nano-networks and define the minimum blocklength, denoted by nmin, as the function of εk, Pk,

Ptotal(rk), N
I

(l)
k

(r), and Nk(rk) as follows:

nmin ,
2 [Q−1(εk)]

2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]

[Ptotal(rk)]
4 . (5.44)

If the blocklength n satisfies following condition for nmin given by Eq. (5.44):

n > nmin, (5.45)

then the optimization problem P17 specified by Eq. (5.42) is strictly concave with respect to the

transmit power Pk.

Proof. To prove this theorem, we need to proceed with the following two steps.

Step 1. We take the first-order derivative over the utility function F (n, rk,Pk) specified in

Eq. (5.40) with respect to the transmit power Pk as follows:

∂F (n, rk,Pk)
∂Pk

=
∂
[
nC(rk,Pk)−

√
nV (rk,Pk)Q−1(εk)

]
∂Pk

=
∂[nC(rk,Pk)]

∂Pk
−
∂
[√

nV (rk,Pk)Q−1(εk)
]

∂Pk

=
nPtotal(rk)

2(log 2)
[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
] − n(log2 e)

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]

−
√

2n(log2 e)Q
−1(εk)√

Pk +N
I

(l)
k

(r) +Nk(rk)
. (5.46)

Step 2. We take the second-order derivative of the function F (n, rk,Pk) with respect to the
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transmit power Pk as follows:

∂2F (n, rk,Pk)
∂P2

k

=

√
2n(log2 e)Q

−1(εk)

2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
] 3

2

− n [Ptotal(rk)]
2

2(log 2)
[
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)
]2 .

(5.47)

Applying the fact of Ptotal(rk) < 1 into Eq. (5.47), we get:

∂2F (n, rk,Pk)
∂P2

k

=

√
2n(log2 e)Q

−1(εk)

2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
] 3

2

− n [Ptotal(rk)]
2

2(log 2)
[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
]2

≤
√

2n(log2 e)Q
−1(εk)

2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
] 3

2

− n [Ptotal(rk)]
2

2(log 2)
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]2

=

√
2nQ−1(εk)

√
Pk +N

I
(l)
k

(r) +Nk(rk)− n [Ptotal(rk)]
2

2(log 2)
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]2

=

(√
nnmin − n

)
[Ptotal(rk)]

2

2(log 2)
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]2 (5.48)

where nmin is given by Eq. (5.44). Applying the condition: n > nmin specified by Eq. (5.45) into

Eq. (5.48), which implies that (
√
nnmin − n) < 0, and thus we can obtain the following equation:

∂2F (n, rk,Pk)
∂P2

k

< 0. (5.49)

Therefore, we complete the proof for Theorem 11.

Remarks on Theorem 11: Theorem 11 implies that if the finite blocklength is lower-bounded

by the minimum blocklength nmin given by Eq. (5.44), then there exists the unique optimal power

allocation policy that maximizes the ε-effective capacity in the THz band in the finite blocklength

regime. Note that nmin is proportional to noise and interference power, and the decoding error

probability εk but inversely proportional to the total received power Ptotal(rk). These observations

are expected because the more noisy and interfered channels warrant the longer coding block-
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length for the more powerful channel-coding error-control performance. Then, the theorem that

follows bellow derives the closed-form expressions of the optimal transmit power for our proposed

schemes.

Theorem 12. If the blocklength n > nmin, which is given by Eq. (5.44), for our proposed statisti-

cal delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based

6G THz wireless nano-networks, then depending on whether the SINR falls into the high-SINR,

medium-SINR, and low-SINR regimes, the optimal transmit power policies are given by the follow-

ing three claims, respectively.

Claim 1. If the SINR falls into a high-SINR regime, which is defined as follows:

PkPtotal(rk)� N
I

(l)
k

(r) +Nk(rk), (5.50)

then the optimal power allocation policy for the high-SINR regime, denoted by POPT,H
k , at nano

transmitter k is given as follows:

POPT,H
k =

n

2

Q−1(εk) +

{[
Q−1(εk)

]2
+ (log 2) (λ1 − λ2) + n

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]} 1
2


−2

.

(5.51)

Claim 2. If the SINR falls into a low-SINR regime, which is defined as follows:

PkPtotal(rk)� N
I

(l)
k

(r) +Nk(rk), (5.52)

then the optimal power allocation policy for the low-SINR regime, denoted by POPT,L
k , at nano

transmitter k is given as follows:

POPT,L
k =

2nQ−1(εk)(log 2) (λ2 − λ1)− 2n+nPtotal(rk)

2

[
N
I
(l)
k

(r)+Nk(rk)

]


2 −NI
(l)
k

(r)−Nk(rk). (5.53)
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Claim 3. If the SINR falls into the medium-SINR regime between the high-SINR and low-SINR

regimes specified by Eqs. (5.50) and (5.52), respectively, then the optimal power allocation policy

for the medium-SINR regime, denoted by POPT,M
k , at nano transmitter k is given as follows:

POPT,M
k =

n

2

Q−1(εk) +

{[
Q−1(εk)

]2
+ (log 2) (λ1 − λ2)

+ n

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]} 1
2


−2

−
N
I

(l)
k

(r) +Nk(rk)

Ptotal(rk)
. (5.54)

Proof. The proof is provided in Appendix L.

Remarks on Theorem 12: Conditioning on blocklength n is lower-bounded by nmin and de-

pending on whether the SINR falling into which one of the three high-regime, medium-regime, or

low-regime, Theorem 12 derives the three closed-forms solutions for the three corresponding opti-

mal transmit power policies, respectively, for our proposed statistical delay and error-rate bounded

QoS provisioning in supporting mURLLC over FBC-EH based 6G THz wireless nano-networks.

To ensure the optimality of the resource allocation policy for the optimization problem P17,

we also need to update the Lagrange multipliers λ1 and λ2 through iteration. In this chapter, we

employ the gradient projection method [121] to achieve the renewal of shadow prices due to its

faster convergence towards a local extremum compared with other nongradient methods. We define


Pmax
k ,min

CcapV g
2nζk

− Pcircuit
ζk

, Vg∆Q

nC(rk,Pk)tcyc

[
exp

(
−∆Qncyc

VgCcap

)
− exp

(
−2∆Qncyc

VgCcap

)];

Pmin
k , 1

(rk)−ηG10
ξk
10 S(f)

γth

(
Nk(rk)+N

I
(l)
k

(r)

)
(

c
4πfrk

)
e−

αabsrk
2

2

.

(5.55)

Denote by l the number of current iteration and consider λ(l)
1 and λ(l)

2 the Lagrange multipliers at

the lth iteration, respectively. To be specific, the Lagrange multipliers λ(l)
1 and λ(l)

2 can be updated
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Algorithm 3 FBC-EH Based Joint Optimal Resource Allocation Policy
Input: a, b, B,K, tcyc,∆Q, Vg, Ccap, Lmax, Pcircuit, λ, and γth

Initialization: l = 0 and P(0)
k = P

for l = 1, l ≤ Lmax do
Step 1: Calculate the energy consumption rate by using Eq. (5.32)
if n > nmin then

if PkPtotal(rk)� N
I

(l)
k

(r) +Nk(rk) then

Calculate the transmit power P(l)
k that maximize the function F (n, rk,Pk) in the high-

SINR regime by using Eq. (5.51)
else if PkPtotal(rk)� N

I
(l)
k

(r) +Nk(rk) then

Calculate the transmit power P(l)
k that maximize the function F (n, rk,Pk) in the low-

SINR regime by using Eq. (5.53)
else

Calculate the transmit power P(l)
k that maximize the function F (n, rk,Pk) by using

Eq. (5.54)
end if

end if
Step 2: Determine n(l) to increase the FBC-based ε-effective capacity EC(l)

ε (θk)
if l = Lmax then
POPT
k ← P(l)

k and nOPT
k ← n

(l)
k , ∀POPT

k ∈
{
POPT,H
k ,POPT,M

k ,POPT,L
k

}
end if
Update the Lagrange multipliers λ(l)

1 and λ(l)
2 as specified by Eq. (5.56) l← (l + 1)

end for
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as follows: 
λ

(l+1)
1 =

[
λ

(l)
1 + τ1 (Pmax

k − Pk)
]+

;

λ
(l+1)
2 =

[
λ

(l)
2 + τ2

(
Pk − Pmin

k

)]+

,

(5.56)

where [a]+ = max{a, 0} and τ1 and τ2 are the positive step sizes. Define Lmax as the maximum

iteration number. Denote by n(l), P(l)
k , and EC

(l)
ε (θk) the blocklength, transmit power, and ε-

effective capacity at the lth iteration, respectively. Define nOPT
k as the optimal blocklength and also

we define POPT
k ∈

{
POPT,H
k ,POPT,M

k ,POPT,L
k

}
as the general notation of the optimal power allocation

policy for nano transmitter k in the THz band. To solve the optimization problem P15, we develop

the FBC-EH based optimal resource allocation policy as shown in Algorithm 3 for our proposed

statistical delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH

based 6G THz wireless nano-networks.

5.5 Performance Evaluations

We use MATLAB-based simulations to validate and evaluate our proposed FBC-EH based

6G THz wireless nano-networks under statistical delay and error-rate bounded QoS provisioning.

Throughout our simulations, we set the bandwidthB = 1 THz, the radius of the THz-band covered

region a = 5 m, the radius of the blind area b = 5 mm, the reference temperature T0 = 310K, and

the SINR threshold γth = 10 dB. In light of the state-of-the-art in molecular-electronics, we set the

total signal energy to be 500 pJ, which is independent of the power spectral distribution. For our

proposed THz-band FBC-EH-based nano-communication schemes, we set the generator voltage

Vg = 0.42 V, total capacitance Ccap = 176 µF, the amount of electric charge per cycle ∆Q = 3.63

nC, and the average time between vibrations tcyc = 0.02 sec [119] [120].

Figure 5.3 plots the aggregate interference power as a function of the nano node density λ for

our proposed schemes. We can observe from Fig. 5.3 that the aggregate interference first increases

and finally converges to a certain value as the node density λ increases. This implies that compared

to the interference, the effect of molecular absorption noise is of the secondary importance for our

proposed THz-band wireless nano-networks as K → ∞. Fig. 5.3 also shows that given the same
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Figure 5.3: The aggregate interference power (dBm) vs. node density λ in the THz band.
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Figure 5.4: The SINR (dB) vs. transmission distance rk in the THz band in the finite blocklength
regime.

node density λ, the aggregate interference decreases at higher frequency f . This implies that the

path loss is proportional to the square of frequency f and the absorption coefficients are usually

larger at higher frequency in the THz band.

Setting the frequency f = 1 THz, using Eq. (5.16), Fig. 5.4 plots the SINR γ
(l)
k (r) as a function

of the transmission distance rk for our proposed schemes. We can observe from Fig. 5.4 that the

SINR γ
(l)
k (r) first decreases and then converges to a certain value as the transmission distance rk

increases. This implies that with a shorter transmission distance, we have a lower path loss, which

leads to a larger value of the SINR. Fig. 5.4 shows that the SINR γ
(l)
k (r) decreases as the node
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Figure 5.5: The channel capacity C(rk,Pk) vs. blocklength n in the THz band in the finite block-
length regime.

density λ increases, indicating that the node density is limited for the practical applications of

wireless nano-networks.

Using Eqs. (5.22) and (5.24), Fig. 5.5 depicts the channel capacity C(rk,Pk) with different

blocklengths n in the THz band for our proposed schemes. As shown in Fig. 5.5, the channel

capacity C(rk,Pk) increases as the blocklength n increases. Fig. 5.5 also shows that the channel

capacity C(rk,Pk) decreases as the transmission distance rk increases.

Figure 5.6 depicts the ε-effective capacityECε(θk) as a function of both transmit power Pk (pJ)

and transmission distance rk in the THz band. We can observe from Fig. 5.6 that there exists an

optimal transmit power POPT
k that maximizes the ε-effective capacity ECε(θk). Fig. 5.6 also shows

that the optimal transmit power POPT
k depends on the transmission distance rk. With the increase

of the transmission distance, the value of the optimal transmit power POPT
k decreases in order to

achieve the maximum ε-effective capacity ECε(θk). In addition, setting the frequency f = 0.1

THz and the transmission distance rk = 0.5, Fig. 5.7 plots the ε-effective capacity ECε(θk) as a

function of both blocklength n and QoS exponent θk for our proposed schemes. We can observe

from Fig. 5.7 that a smaller QoS exponent θk achieves a larger value of ε-effective capacityECε(θk)

in the THz band. This implies that a smaller QoS exponent θk → 0 and a larger QoS exponent

θk →∞ set an upper bound and lower bound on the ε-effective capacity, respectively.
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Figure 5.6: The ε-effective capacity ECε(θk) vs. transmit power Pk and transmission distance rk
in the THz band in the finite blocklength regime.

Figure 5.7: The ε-effective capacity ECε(θk) vs. blocklength n and QoS exponent θk in the THz
band in the finite blocklength regime.

5.6 Summary

We have developed the optimal resource allocation policies to maximize the ε-effective ca-

pacity in the THz band over EH-based wireless nano-networks in the finite blocklength regime

for statistical delay and error-rate bounded QoS provisioning. In particular, we have established

EH-based THz-band nano-communication system models in the finite blocklength regime. Then,

we have analyzed the THz-band aggregate interference, channel capacity, and channel dispersion

functions using FBC. Considering statistical delay and error-rate bounded QoS provisioning, we
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have formulated and solved the ε-effective capacity maximization problem for our proposed statis-

tical delay and error-rate bounded QoS provisioning in supporting mURLLC over FBC-EH based

6G THz wireless nano-networks. Simulation results are included, which validate and evaluate our

proposed schemes in the THz band over wireless nano-networks.
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6. CONCLUSIONS

To support the unprecedented wireless applications with extremely diverse and challenging

QoS requirements, the statistical delay and error-rate bounded QoS provisioning emerge as one

of the key promising techniques to characterize queueing behaviors for guaranteeing stringent 6G

mURLLC requirements. The objective of this dissertation was to design and analyze the analytical

modeling frameworks and controlling mechanisms for statistical delay and error-rate bounded QoS

provisioning over 6G mobile wireless networks in the non-asymptotic regime. This chapter sum-

marizes the achieved research contributions of this dissertation and proposes some future research

directions.

6.1 Summary of the Dissertation

In Chapter 1, we have introduced and motivated the problems. We have considered the prob-

lems of the statistical delay and error-rate bounded QoS provisioning for next generation mobile

wireless communications and networks in the finite blocklength regime. In Chapter 2, we have

developed analytical modeling schemes to precisely characterize the delay and error-rate bounded

QoS performances considering non-vanishing decode error probability over 6G CF m-MIMO mo-

bile wireless networks in the finite blocklength regime. In particular, we have developed FBC-

based system models and applied the Mellin transform to characterize both arrival and service pro-

cesses for our proposed CF m-MIMO modeling schemes. Then, we have formulated and solved

the delay violation probability minimization problem and obtain the closed-form solution of the

optimal rate adaptation policy, which plays the important roles in system design and performance

analyses for statistical delay and error-rate bounded QoS provisioning over 6G CF m-MIMO mo-

bile wireless networks.

In Chapter 3, we have proposed statistical delay and error-rate bounded QoS provisioning ar-

chitectures/schemes over mmWave user-centric CF m-MIMO and FBC-HARQ based 6G wireless

mobile networks. In particular,we establish the comprehensive mmWave user-centric CF m-MIMO
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based system models. We also apply HARQ-IR protocol to determine the channel capacity and

characterize the QoS metrics in terms of error probability. Based on the information theoretic

results in QoS theory, we have derived QoS metrics in terms of error probability and correspond-

ing effective capacity function for our proposed FBC-HARQ based mmWave cell-free m-MIMO

schemes.

In Chapter 4, we have proposed and developed statistical delay and error-rate bounded QoS

provisioning schemes over SWIPT-enabled CF m-MIMO 6G wireless networks in the finite block-

length regime. In particular, we have established SWIPT-enabled CF m-MIMO based system mod-

els by using FBC. Taking into account both the harvested energy and transmit power constraints,

we have formulated and solved the optimization problems for the tradeoff between the ε-effective

capacity and harvested energy for both downlink SWIPT and uplink data transfer phases under

statistical delay and error rate bounded QoS provisioning in supporting mURLLC.

In Chapter 5, we have proposed optimal resource allocation policies to achieve the maximum

ε-effective capacity in the THz band over FBC-EH-based nano-networks. Particularly, we estab-

lish nanoscale system models and characterize wireless channel models in the THz band using

FBC. We have also analyzed the THz-band aggregate interference, channel capacity, and channel

dispersion functions using FBC. Considering statistical delay and error-rate bounded QoS pro-

visioning, we formulate and solve the ε-effective capacity maximization problem under several

different EH constraints for our proposed schemes in supporting mURLLC over FBC-EH based

6G THz wireless nano-networks.

6.2 Further Works

6.2.1 Statistical Delay and Error-Rate Bounded QoS Provisioning in Finite Blocklength

Regime

There are still many challenges on how to characterize and model the queuing/reliability per-

formance over various wireless fading channels in guaranteeing statistical delay and error-rate

bounded QoS constraints in the finite blocklength regime. The relationship between the maximum
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achievable coding rate and the FBC-based outage capacity function over the wireless fading chan-

nels considering different 6G architecture models is still an open problem in the finite blocklength

regime. To overcome these problems, the novel FBC-based statistical delay and error-rate bounded

QoS system frameworks and architectures need to be developed for analyzing the relationship be-

tween delay violation probability and decoding error probability in the finite blocklength regime. It

is also needed to reformulate and solve the cross-layer ε-effective capacity maximization problem

and derive optimal resource allocation policies using FBC. Further possible difficulties include the

non-convexity issues for various optimization problems, which may need convert non-convex op-

timization problems into convex optimization problems, before obtaining the closed-form expres-

sions for the maximum ε-effective capacity, either in the forms of approximation or performance-

bound expressions if the accurate closed-form solutions are not feasible.

6.2.2 Promising Candidate Techniques for Beyond 5G and Future-Generation Multimedia

Mobile Wireless Networks

As the technical pillar foundations of 5G and beyond multimedia mobile wireless networks, the

emerging advances, evolutions, and developments of key promising techniques continue as time

goes. This is because there are always new challenges coming up with each advance and progress

of beyond 5G multimedia mobile wireless networks, which need to be overcome by developing

new candidate techniques and frameworks. The state-of-the-art techniques and frameworks keep

on advancing every day, which are also creating a great deal of new research areas, topics, and

realms, and may also yield new research funding opportunities for the future generations of mul-

timedia mobile wireless networks. As it is hard to discuss all possible emerging techniques and

frameworks due to lack of space in this research proposal, I would like to pin-point some of these

beyond 5G promising candidate techniques and frameworks which I believe need our immediate

research attention from both academic and industry standpoints. I plan to continue tackling the fol-

lowing new or emerging techniques (in fact, I have already obtained some initial research results in

some of them): (1) CF m-MIMO, (2) edge computing, (3) WiFi and D2D offloading, (4) THz-band

wireless communications, (5) intelligent reflection surface (IRS)-assisted unmanned aerial vehicle
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(UAV) communications, (6) SWIPT, (7) big data and information-centric multimedia mobile wire-

less networks, etc. My research endeavours in the above areas will include: developing wireless

fading channel model, designing the proposed network architectures, characterizing cross-layer

design and optimization policies, establishing test-beds and simulation packages to validate and

evaluate the newly proposed and developed research schemes, models, and architectures, etc.

6.2.3 Machine Learning and Deep Learning Based Mobile Wireless Networks

Machine learning is the adaptive computational methodologies for improving computer-controlled

decision system’s performance by detecting and describing consistencies and patterns in training

data. On the other hand, mobile wireless networks have to be predictive, proactive, and antici-

patory to ensure URLLC requirements. However, the growing diversity and complexity of mo-

bile network architectures has made it difficult to monitor, allocate, and manage wireless net-

work resources. During the last decades, embedding various machine learning techniques into

upcoming mobile wireless networks is drawing significant research attention. However, due to

the dynamically changing environments and stochastic mobility patterns of each mobile user, it is

challenging to model machine-learning based wireless network architectures. To overcome these

problems, I plan to apply machine learning/deep learning into various 5G and beyond promising

candidate techniques to bridge the gap between communities of machine learning/deep learning

algorithms, mathematical solutions, and 5G and beyond candidate techniques, frameworks, and

applications. Instead of using centralized machine learning, I plan to continue further develop-

ing the collaborative-learning based system architecture models, which enables distributed servers

with storing and computing capabilities to collaboratively learn the CSI, user demands, and mobil-

ity patterns of the mobile devices, while guaranteeing the statistical delay and error-rate bounded

QoS provisioning. I also plan to design the collaborative-learning based algorithms for optimizing

the resource allocations of the mobile devices and WiFi APs.
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APPENDIX A

PROOF OF THEOREM 1

Considering the decoding error at the receiver, we can derive the Mellin transform over service

process as follows:

MSm(1− θm) = Eγm
[
εm + (1− εm)e−θmndRm(nd,εm)

]
=

∫ ∞
0

[
εm + (1− εm)e−θmndRm(nd,εm)

]
fγm(γm)dγm (A.1)

where Eγm [·] is the expectation operation with respect to γm. We define

fm(nd, εm) ,
1 + γm

exp
(√

V (γm)
nd

Q−1(εm)
) . (A.2)

Given the decoding error probability εm, the data rate Rm(nd, εm) could become smaller than zero

when the SINR is below a certain threshold γth [122]. As a result, the achievable data rate can be

rewritten as follows:

Rm(nd, εm) = max {log2 (fm(nd, εm)) , 0} . (A.3)

Accordingly, we can obtain the following equation:

MSm(1− θm) = (1− εm)

{∫ ∞
0

[fm(nd, εm)]−
θmnd
(log 2) fγm(γm)dγm + F0(γm)

}
+εm

=(1−εm)


∫ ∞
γ0

 1 + γm

exp
{√

V (γm)
nd

Q−1(εm)
}

− θmnd

(log 2)

fγm(γm)dγm + F0(γ0)

+εm

(A.4)

137



where

F0(γ0) ,
∫ γ0

0

2(1 + κ)γme
−(1+κ)γm−κI0

[
2
√
κ(1 + κ)γm

]
dγm. (A.5)

Then, we can expand the Bessel function into an infinite series and obtain the following equa-

tion [123]:

F0(γ0) = 2e−κ
∫ γ0

0

γme
−(1+κ)γm

∞∑
i=0

κi(κ+ 1)i+1 (γm)i

(i!)2
dγm

=
2e−κ

κ+ 1

∞∑
i=0

κi

(i!)2
γ (i+ 2, (1 + κ)γ0) . (A.6)

We define the following equation:

F1(γ0) ,
∫ ∞
γ0

 1 + γm

e

√
V (γm)
nd

Q−1(εm)

−
θmnd
(log 2)

2(1 + κ)γme
−(1+κ)γm−κI0

[
2
√
κ(1 + κ)γm

]
dγm

= 2e−κ
∫ ∞
γ0

 1 + γm

e

√
V (γm)
nd

Q−1(εm)

−
θmnd
(log 2)

γme
−(1+κ)γm

∞∑
i=0

κi(κ+ 1)i+1 (γm)i

(i!)2
dγm. (A.7)

In the high-end SNR region (γm � 1), the channel dispersion V (γm) → 1. Correspondingly, we

can rewrite Eq. (A.7) as follows:

F1(γ0) = 2e−κ
∞∑
i=0

κi(κ+ 1)i+1

(i!)2

∫ ∞
γ0

(γm)i+1− θmnd
(log 2) e−(1+κ)γmdγm

= 2e−κ
[
e−
√
ndQ−1(εm)

] θmnd
(log 2)

∞∑
i=0

κi(κ+ 1)
θmnd
(log 2)

−1

(i!)2
Γ

(
i+ 2− θmnd

(log 2)
, (1 + κ)γ0

)
.

(A.8)

Therefore, by substituting Eqs. (A.6) and (A.8) back into Eq. (A.4), we can obtain the results in

Eq. (2.30), which completes the proof of Theorem 1.
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APPENDIX B

PROOF OF THEOREM 2

To derive the average decoding error probability function, first we introduce an approximation

of the Q-function as follows:

Q

(
C (γm)−Rm√
V (γm) /nd

)
≈ Ψ(γm) (B.1)

where the function Ψ(γm) is given as follows [124]:

Ψ(γm) =


1, γm ≤ ζm,l;

1
2
− ϑm

√
nd
(
γm − 2Rm−1

)
, ζm,l < γm < ζm,u;

0, γm ≥ ζm,u,

(B.2)

where ϑm , 1

2π
√

22Rm−1
, ζm,l , 2Rm−1 − 1

2ϑm
√
nd

, and ζm,u , 2Rm−1 + 1
2ϑm
√
nd

. Taking expectation

over Eqs. (2.37) and (B.2), we can obtain the following equation:

Eγm [εm (nd, γm)] ≈Fγm
(

2Rm−1− 1

2ϑm
√
nd

)
+

[
1

2
+ ϑm

√
nd
(
eRm−1

)][
Fγm

(
2Rm−1+

1

2ϑm
√
nd

)

− Fγm

(
2Rm−1 − 1

2ϑm
√
nd

)]
− ϑm

√
nd

∫ 2Rm−1+ 1
2ϑm

√
nd

2Rm−1− 1
2ϑm

√
nd

γmfγm(γm)dγm

(B.3)

where Fγm(γm) is the cumulative probability function (CDF) of SINR γm. Using Eqs. (2.35)

and (2.36), we can derive the CDF of SINR as follows:

Fγm(γm) = 1−
Ka∑
k=1

(
1− e−ξk,mγm

)
. (B.4)
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Plugging Eq. (B.4) back into Eq. (B.3), we obtain:

Eγm [εm (nd, γm)] ≈1−
Ka∑
k=1

[
1− e−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)]
+

[
1

2
+ ϑm

√
nd
(
eRm − 1

) ]

×

[
Ka∑
k=1

e
−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)
−

Ka∑
k=1

e
−ξk,m

(
2Rm−1+ 1

2ϑm
√
nd

)]
− ϑm

√
nd

×

{(
2Rm−1− 1

2ϑm
√
nd

)[ Ka∑
k=1

e
−ξk,m

(
2Rm−1− 1

2ϑm
√
nd

)]
−
(

2Rm−1+
1

2ϑm
√
nd

)

×

[
Ka∑
k=1

e
−ξk,m

(
2Rm−1+ 1

2ϑm
√
nd

)]
+

Ka∑
k=1

∫ 2Rm−1+ 1
2ϑm

√
nd

2Rm−1− 1
2ϑm

√
nd

e−ξk,mγm

γm
dγm

}
.

(B.5)

Then, using the definition of exponential integral function, we can obtain Eq. (2.39), completing

the proof of Theorem 2.
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APPENDIX C

PROOF OF LEMMA 2

Using the Chernoff bound, we have Q(x) ≤ 1
2
e−

x2

2 if x ≥ 0. We can derive an upper bound on

the average decoding error probability function Eγm [εm (nd, γm)] for mobile userm in the high-end

SNR regime as follows:

Eγm [εm (nd, γm)] =

∫ ∞
0

Eγm
[
Q
(

Φ̃ (nd, γm)
)]
fγm(γm)dγm

≤ 1

2

∫ ∞
0

Eγm
[
e−

Φ̃2(nd,γm)
2

]
fγm(γm)dγm (C.1)

where fγm(γm) is the PDF of the SINR γm over Rayleigh wireless fading channels, which is given

as follows:

fγm(γm) =
Ka∑
k=1

ξk,me
−ξk,mγm . (C.2)

Then, using Eq. (2.20), we can obtain:

Eγm
[
e−

Φ̃2(nd,γm)
2

]
= Eγm

[
e−

nd(log2(γm+1)−Rm)2

2

]
=

∫ ∞
0

e−
nd(log2(γm+1)−Rm)2

2 fγm(γm)dγm. (C.3)

Since we can easily show that Φ̃ (nd, γm) is concave in γm. As a result, we can derive a lower

bound on the function Eγm
[
e−

Φ̃2(nd,γm)
2

]
when Φ̃ (nd, γm) is replaced by its Taylor expansion at

any point. Using the Taylor expansion of Φ̃ (nd, γm) at γm = νm, we can obtain the following

equation:

Eγm
[
e−

Φ̃2(nd,γm)
2

]
≥
∫ ∞

0

Ka∑
k=1

e−
nd
2

(γm−νm)2

ξk,me
−ξk,mγmdγm. (C.4)
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Letting tm ,
√

nd
2

(γm − νm), we have

Eγm
[
e−

Φ̃2(nd,γm)
2

]
≥
√

2

nd

Ka∑
k=1

ξk,me
−ξk,mνm

∫ ∞
−
√
nd√
2
νm

e−(tm)2

e
−
√

2ξk,m√
nd

tmdtm

=

√
2

nd

Ka∑
k=1

ξk,me
−ξk,mνm

∫ ∞
−
√
nd√
2
νm

e
(ξk,m)

2

2nd e
−
(
tm+

ξk,m√
2nd

)2

dtm. (C.5)

Letting t̃m , tm+
ξk,m√

2nd
, we can derive a lower bound on the function Eγm

[
e−

Φ̃2(nd,γm)
2

]
as follows:

Eγm
[
e−

Φ̃2(nd,γm)
2

]
≥
√

2

nd

Ka∑
k=1

ξk,m exp

{
(ξk,m)2

2nd
− ξk,mνm

}∫ ∞
ξk,m√

2nd
−
√
nd√
2
νm

e−(t̃m)
2

dt̃m

=

√
π

2
√

2nd

Ka∑
k=1

{
ξk,m exp

{
(ξk,m)2

2nd
− ξk,mνm

}[
1−erf

(
ξk,m√
2nd
−
√
nd√
2
νm

)]}
(C.6)

where erf(x) , 2√
π

∫ x
0
e−t

2
dt is the error function. As a result, by plugging Eq. (C.6) back into

Eq. (C.1), we can obtain Eq. (2.41), which completes the proof of Lemma 2.
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APPENDIX D

PROOF OF THEOREM 3

For presenting convenience, we start with Claim 2.

Claim 2. To analyze the convexity of the minimization problem P2, we apply the chain rule for

second-order derivative and obtain the following equation:

∂2MSm(1− θm)

∂R2
m

=
∂2MSm(1− θm)

∂ε2m (nd, γm)

[
∂εm (nd, γm)

∂Rm

]2

+
∂MSm(1− θm)

∂εm (nd, γm)

∂2εm (nd, γm)

∂R2
m

.

(D.1)

To analyze the convexity of the Mellin transform over service processMSm(1− θm), first we need

to investigate the following equations when θm > 0:


∂MSm (1−θm)

∂εm(nd,γm)
= 1− e−θmndRm > 0;

∂2MSm (1−θm)

∂ε2m(nd,γm)
= 0.

(D.2)

Then, using Eq. (2.47) and (D.2), we can show that ∂2MSm (1−θm)

∂R2
m

> 0, completing the proof of

Claim 2 in Theorem 2.

Claim 1. Applying the sufficient conditions for convexity, we can prove that the Mellin trans-

form function MSm(1 − θm) is strictly convex with respect to the achievable data rate Rm for

θm > 0, completing the proof of Claim 1 in Theorem 2.

Claim 3. Due to the property of strict convexity and uniqueness of optimal solutions [125],

there exists the unique optimal rate adaptation policy Ropt
m that minimizes problem P2 for each

mobile user m when θm > 0. Taking the first-order derivative of the Mellin transform function
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MSm with respect to Rm, we can obtain the following equation:

∂MSm(1− θm)

∂Rm

=
∂Eγm [εm (nd, γm)]

∂Rm

− ∂Eγm [εm (nd, γm)]

∂Rm

e−θmndRm − {1− Eγm [εm (nd, γm)]}

× θmnde
−θmndRm . (D.3)

Setting ∂MSm (1−θm)

∂Rm
= 0, we have

∂Eγm [εm (nd, γm)]

∂Rm

(
1− e−θmndRm

)
− {1− Eγm [εm (nd, γm)]} θmnde

−θmndRm = 0. (D.4)

We can rewrite Eq. (D.4) as follows:

eθmndRm − 1 =
θmnd (1− Eγm [εm (nd, γm)])

∂Eγm [εm(nd,γm)]

∂Rm

. (D.5)

Using Eqs. (2.44) and (2.45), we can obtain the following equation:

Rm =
1

θmnd
log

{
1 +

θmnd (1− Eγm [εm (nd, γm)])
∂Eγm [εm(nd,γm)]

∂Rm

}

=
1

θmnd
log

1 +
θm
√

2πnd {1− Eγm [εm (nd, γm)]}

Eγm
[
e−

Φ2(nd,γm)
2

(
1√

1− 1

(1+γm)2

)]
 (D.6)

where Eγm [εm (nd, γm)] is given by Eq. (2.39). In the high-end SNR regime, we have V (γm) =

1 − (1 + γm)−2 → 1. Using the Chernoff bound, we have Q(x) ≤ 1
2
e−

x2

2 when x ≥ 0. Applying
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Eq. (D.6), we can obtain the following equation:

Rm =
1

θmnd
log

1 +
θm
√

2πnd

{
1− Eγm

[
Q
(

Φ̃ (nd, γm)
)]}

Eγm
[
e−

Φ̃2(nd,γm)
2

]


≥ 1

θmnd
log

1 +

θm
√

2πnd

(
1− Eγm

[
1
2
e−

Φ̃2(nd,γm)
2

])
Eγm

[
e−

Φ̃2(nd,γm)
2

]


=
1

θmnd
log

1 + θm
√

2πnd


1

Eγm
[
e−

Φ̃2(nd,γm)
2

] − 1

2


 . (D.7)

Then, plugging Eq. (C.6) back into Eq. (D.7), we have:

Rm ≈
1

θmnd
log

1 + θm
√

2πnd

−
1

2
+

√
2nd√
π

[
Ka∑
k=1

ξk,m exp

{
(ξk,m)2

2nd
− ξk,mνm

}

×
{

1− erf
(
ξk,m√
2nd
−
√
nd√
2
νm

)}]−1


. (D.8)

Since the error function −1 ≤ erf(x) ≤ 1, we can remove the error function from Eq. (D.8) and

obtain the following equation:

eθmndRm ≈ 1− θm
√

2πnd

2
+

2θmnd
Ka∑
k=1

ξk,m

{
exp

{
(ξk,m)2

2nd
− ξk,mνm

}}−1

. (D.9)

Substituting νm = 2Rm − 1 back into Eq. (D.9), we have

eθmndRm −
Ka∑
k=1

 2θmnde
ξk,m2Rm

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}
 ≈ 1− θm

√
2πnd

2
(D.10)
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where ξk,m is given by Eq. (2.36). Let zm ,
Ka∑
k=1

ξk,m2Rm . We have

(
Ka∑
k=1

ξk,m

)− θmnd
(log 2)

(zm)
θmnd
(log 2) − 2θmnde

zm

{
Ka∑
k=1

[
ξk,m exp

{
(ξk,m)2

2nd
+ ξk,m

}]}−1

≈ 1− θm
√

2πnd

2
. (D.11)

Then, solving for the θmnd
(log 2)

th root on both sides of Eq. (D.11), we can obtain:

(
Ka∑
k=1

ξk,m

)−1

zm − e
zm

(log 2)
θmnd

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

≈
[
1− θm

√
2πnd

2

] (log 2)
θmnd

.

(D.12)

Let z̃m , zm
(log 2)
θmnd

. After some algebra manipulations, we have

(log 2)
Ka∑
k=1

ξk,m

θmnd

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

ez̃m

≈ z̃m −
(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)[
1− θm

√
2πnd

2

] (log 2)
θmnd

. (D.13)

Then, multiplying the following expression on both sides of Eq. (D.13):

e−z̃m +
(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)[
1− θm

√
2πnd

2(log 2)

] (log 2)
θmnd

 , (D.14)
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we can obtain:

(log 2)
Ka∑
k=1

ξk,m

θmnd

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

exp

{
(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)

×
(

1− θm
√

2πnd

2

) (log 2)
θmnd

}

≈

z̃m − (log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

) (log 2)
θmnd

 exp

{
− z̃m +

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)

×
(

1− θm
√

2πnd

2

) (log 2)
θmnd

}
. (D.15)

Therefore, using the Lambert W function [126], we can derive the approximate optimal rate adap-

tation policy Ropt
m for our proposed FBC based CF m-MIMO schemes in the high-end SNR region

as follows:

Ropt
m ≈ log2


θmnd

(log 2)
Ka∑
k=1

ξk,m

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

) (log 2)
θmnd

−W

−
(log 2)

Ka∑
k=1

ξk,m

θmnd

 2θmnd
Ka∑
k=1

ξk,m exp

{
(ξk,m)

2

2nd
+ ξk,m

}


(log 2)
θmnd

× exp

(log 2)

θmnd

(
Ka∑
k=1

ξk,m

)(
1− θm

√
2πnd

2

) (log 2)
θmnd




. (D.16)

Thus, we complete the proof of Claim 3 in Theorem 3.
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APPENDIX E

PROOF OF LEMMA 5

To derive a lower bound on the channel capacity, we first need to analyze the mutual informa-

tion I
(
Xn̂l
m;yn̂lm |h̃k,m

)
as follows [127]:

I
(
Xn̂l
m;yn̂lm |h̃k,m

)
= H

(
Xn̂l
m|h̃k,m

)
−H

(
Xn̂l
m|yn̂lm , h̃k,m

)
(E.1)

where H(·) represents the function of information entropy. We can derive H
(
Xn̂l
m|h̃k,m

)
in

Eq. (E.1) as follows:

H
(
Xn̂l
m|h̃k,m

)
= log2 (πeINT ) . (E.2)

Then, define X̂n̂l
m as the linear MMSE estimate of Xn̂l

m given yn̂lm and h̃k,m. Correspondingly, using

the suboptimal beam-training precoders FR
k,m and FB

k,m derived in Algorithm 1, we can obtain the

following equation:

X̂n̂l
m =

(
h̃k,m

)†
Ξk,my

n̂l
m (E.3)

where

Ξk,m ,

(
Eh̃k,m

[
hk,m

Ku∑
m′=1

∑
k∈K(m′)

FR
k,m′F

B
k,m′Ωk,m′ ×

(
FR
k,m′F

B
k,m′

)†
(hk,m)†

]
+ σ2

)−1

. (E.4)

Correspondingly, we can derive an upper bound on the conditional entropy H
(
Xn̂l
m|yn̂lm , h̃k,m

)
as

in the following equation:

H
(
Xn̂l
m|yn̂lm , h̃k,m

)
≤ Eh̃k,m

[(
Xn̂l
m − X̂n̂l

m

)(
Xn̂l
m − X̂n̂l

m

)†]
= log2

(
πedet

(
INT −

(
h̃k,m

)†
Ξk,mh̃k,m

))
. (E.5)
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Then, plugging Eqs. (E.2) and (E.5) back into Eq. (E.1), we can derive a lower bound on the mutual

information I
(
Xn̂l
m;yn̂lm |h̃k,m

)
as follows [128]:

I
(
Xn̂l
m;yn̂lm |h̃k,m

)
≥ log2 (πeINT )− log2

(
πedet

(
INT −

(
h̃k,m

)†
Ξk,mh̃k,m

))
≥ log2

(
det

(
INT +

(
h̃k,m

)†(
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†)−1

h̃k,m

))
.

(E.6)

Accordingly, we can derive a lower bound on the channel capacity as follows:

Cm

(
h̃k,m

)
= Eh̃k,m

[
max

p
Xn̂lm |h̃k,m

{
I
(
Xn̂l
m;yn̂lm |h̃k,m

)}]

≥ Eh̃k,m

[
log2

(
det

(
INT +

(
h̃k,m

)†(
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†)−1

h̃k,m

))]

= Eh̃k,m

[
log2

(
det

((
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†)
+
(
h̃k,m

)†
h̃k,m

))]

− Eh̃k,m

[
log2

(
det

(
(Ξk,m)−1 − h̃k,m

(
h̃k,m

)†))]
(E.7)

which is a lower bound on the channel capacity Cm
(
h̃k,m

)
as shown in Eq. (3.27). Therefore, we

complete the proof of Lemma 5.
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APPENDIX F

PROOF OF THEOREM 4

To derive an upper bound on the channel dispersion V (n̂Nl), we need to proceed with the

following steps. First, we start with variance as in the following equation:

Var
[
i
(
Xn̂l
m;yn̂lm , h̃k,m

)]
= Var

log

Pyn̂lm |h̃k,m,Xn̂l
m

(
yn̂lm |h̃k,m,Xn̂l

m

)
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

)


≤ 2
(

Var
[
log
(
Pyn̂lm |h̃k,m,Xn̂l

m

(
yn̂lm |h̃k,m,Xn̂l

m

))]
+ Var

[
log
(
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

))])
(F.1)

where Var[·] represents the variance. Second, using the beam-training precoder FB
k,m derived in

Algorithm 1, we can apply the Poincará inequality to derive the following equation:

Var
[
log
(
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

))]
≤Eh̃k,m

[∥∥∥∇ log
(
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

))∥∥∥2

∣∣∣∣∣Xn̂l
m

]

=
1

σ2
Eh̃k,m

∥∥∥∥∥∥Eh̃k,m

 Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′(Ωk,m′)

1
2 Xn̂l

m′

∣∣∣∣∣yn̂lm
− yn̂lm

∥∥∥∥∥∥
2∣∣∣∣∣∣Xn̂l

m

. (F.2)

Third, we define

Eh̃k,m

 Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2 X̂n̂l

m′

 ,Eh̃k,m

 Ku∑
m′=1

∑
k∈K(m′ )̃

hk,mFB
k,m′(Ωk,m′)

1
2 Xn̂l

m′

∣∣∣∣∣yn̂lm
.

(F.3)
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Accordingly, we can have:

Var
[
log
(
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

))]
≤ 1

σ2
Eh̃k,m

∥∥∥∥∥∥yn̂lm −
Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2 X̂n̂l

m′

∥∥∥∥∥∥
2∣∣∣∣∣∣Xn̂l

m



≤ 2

σ2
Eh̃k,m

∥∥yn̂lm ∣∣Xn̂l
m

∥∥2

∣∣∣∣∣∣∣∣∣X
n̂l
m

+
2

σ2
Eh̃k,m

∥∥∥∥∥∥
Ku∑
m′=1

∑
k∈K(m′ )̃

hk,mFB
k,m′(Ωk,m′)

1
2 X̂n̂l

m′

∥∥∥∥∥∥
2 ∣∣∣∣∣∣Xn̂l

m



≤ 6n̂lPm
σ4

Eh̃k,m

∥∥∥∥∥∥
Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥∥
2+4Eh̃k,m

[∥∥∥nm
σ2

∥∥∥2

∣∣∣∣∣Xn̂l
m

]

=
6n̂lPm
σ4

Eh̃k,m

∥∥∥∥∥∥
Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥∥
2+ 4n̂l. (F.4)

Following the similar procedures for obtaining Var
[
log
(
Pyn̂lm |h̃k,m

(
yn̂lm |h̃k,m

))]
in Eq. (F.4), we

can derive an upper bound on Var
[
log
(
Pyn̂lm |h̃k,m,Xn̂l

m

(
yn̂lm |h̃k,m,Xn̂l

m

))]
for all Xn̂l

m ∈ Mm as

follows:

Var
[
log
(
Pyn̂lm |h̃k,m,Xn̂l

m

(
yn̂lm |h̃k,m,Xn̂l

m

))]
≤ 6n̂lPm

σ4
Eh̃k,m

∥∥∥∥∥∥
Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥∥
2

+ 4n̂l (F.5)

Finally, substituting Eqs. (F.4) and (F.5) back into Eqs. (F.1), we can derive an upper bound on the

channel dispersion Vm
(
h̃k,m

)
as follows:

Vm

(
h̃k,m

)
≤ 8n̂l

(
3Pm
σ4

Eh̃k,m

[∥∥∥∥∥
Ku∑
m′=1

∑
k∈K(m′)

h̃k,mFB
k,m′ (Ωk,m′)

1
2

∥∥∥∥∥
2]

+ 2

)
(F.6)

which is Eq. (3.29), completing the proof of Theorem 4.
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APPENDIX G

PROOF OF THEOREM 6

We proceed with the proof by showing Claim 1, Claim 2, and Claim 3, respectively.

Claim 1. To characterize the convexity of the objective function in P10 given by Eq. (4.20)

with respect to the TS factor α, first we define two auxiliary functions as follows:


F (γd,m) , Eγd,m

[
εd,m + (1− εd,m) e−θm(1−α)ndTsRd,m

]
;

F1(γd,m) , (1− α)Rd,m = (1− α)C (γd,m)−
√

(1−α)V (γd,m)
nd

Q−1(εd,m).

(G.1)

Thus, we have

F (γd,m) = Eγd,m

[
εd,m + (1− εd,m) e−θmndTsF1(γd,m)

]
. (G.2)

Second, we can derive the first-order derivative of the auxiliary function F (γd,m) with respect

to the TS factor α as in the following equation:

∂F (γd,m)

∂α
=
∂F (γd,m)

∂F1(γd,m)

∂F1(γd,m)

∂α
(G.3)

where

∂F (γd,m)

∂F1(γd,m)
= Eγd,m

[
− (1− εd,m) e−θm(1−α)ndTsRd,mθmndTs

]
< 0 (G.4)

and

∂F1(γd,m)

∂α
= −C (γd,m) +

√
V (γd,m)

nd

Q−1(εd,m) (1− α)−
1
2

2
. (G.5)

Third, using chain rule, we derive the second-order derivative of F (γd,m) with respect to the
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TS factor α as follows:

∂2F (γd,m)

∂α2
=
∂2F (γd,m)

∂ [F1(γd,m)]2

[
∂F1(γd,m)

∂α

]2

+
∂F (γd,m)

∂F1(γd,m)

∂2F1(γd,m)

∂α2
(G.6)

where

∂2F (γd,m)

∂ [F1(γd,m)]2
= Eγd,m

[
(1− εd,m) e−θm(1−α)ndTsRd,m (θmndTs)

2

]
> 0 (G.7)

and
∂2F1(γd,m)

∂α2
=

√
V (γd,m)

nd

Q−1(εd,m) (1− α)−
3
2

4
. (G.8)

Since when Q−1(εd,m) > 0 for εd,m ∈ (0, 0.5), we can obtain ∂2F1(γd,m)/∂α2 > 0.

Then, by plugging Eqs. (G.7) and (G.8) back into Eq. (G.6), we have

∂2F (γd,m)

∂α2
= θmndTs

[
− C (γd,m) +

√
V (γd,m)

nd

Q−1(εd,m)

2
(1− α)−

1
2

]2

−

√
V (γd,m)

nd

Q−1(εd,m) (1− α)−
3
2

4

= θmndTs

{
[C (γd,m)]2 +

V (γd,m) [Q−1(εd,m)]
2

4nd (1− α)
− C (γd,m)

√
V (γd,m)

nd
Q−1(εd,m)

× (1− α)−
1
2

}
−

√
V (γd,m)

nd

Q−1(εd,m) (1− α)−
3
2

4

>θmndTs

{
[C (γd,m)]2 − C (γd,m)

√
V (γd,m)

nd
Q−1(εd,m) (1− α)−

1
2

}

−

√
V (γd,m)

nd

Q−1(εd,m) (1− α)−
3
2

4
. (G.9)

Using Eq. (2.19), we get

√
V (γd,m)

(1− α)nd
Q−1(εd,m) = C (γd,m)−Rd,m. (G.10)
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Thus, plugging Eq. (G.10) back into Eq. (G.9), we can obtain the following equation:

∂2F (γd,m)

∂α2
>θmndTs

{
[C (γd,m)]2 − C (γd,m)

[
C (γd,m)−Rd,m

]}
− C (γd,m)−Rd,m

4(1− α)

= θmndTsC (γd,m)Rd,m −
C (γd,m)−Rd,m

4(1− α)

=
1

Rd,m

[
θmndTsC (γd,m) +

1

4(1− α)
− C (γd,m)

4(1− α)Rd,m

]
(G.11)

Based on Eq. (2.19), we can obtain that

C (γd,m)

Rd,m
<

C (γd,m)

C (γd,m)−
√

1
(1−α)nd

Q−1(εd,m)
. (G.12)

Thus, plugging Eq. (G.12) back into Eq. (G.11), we have

∂2F (γd,m)

∂α2
>

4(1− α)

Rd,m

4(1− α)θmndTsC (γd,m) + 1− C (γd,m)

C (γd,m)−
√

1
(1−α)nd

Q−1(εd,m)


=

4(1− α)

Rd,m

 C (γd,m)

C (γd,m)−
√

1
(1−α)nTS

d,th
Q−1(εd,m)

− C (γd,m)

C (γd,m)−
√

1
(1−α)nd

Q−1(εd,m)


(G.13)

where nTS
d,th is given by Eq. (4.21). Applying the condition: nd > nTS

d,th into Eq. (G.13), which

implies that
[
(1− α)nTS

d,th

]− 1
2 > [(1− α)nd]

− 1
2 , and thus we can obtain the following equation:

∂2F (γd,m)

∂α2
> 0. (G.14)

Therefore, the objective function in P10 specified by Eq. (4.20) is convex with respect to the TS

factor α when εd,m ∈ (0, 0.5) and the constraint nd > nTS
d,th is satisfied, which completes the proof

of Claim 1 in Theorem 6.

Claim 2. To characterize the convexity of the objective function in P10 given by Eq. (4.20)

with respect to the downlink data blocklength nd, first we define the auxiliary function, denoted by
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F2(γd,m), as follows:

F2(γd,m) , ndRd,m = ndC (γd,m)−
√
ndV (γd,m)

1− α
Q−1(εd,m). (G.15)

Second, we derive the first-order derivative of the auxiliary function F (γd,m) with respect to

the downlink data blocklength nd as follows:

∂F (γd,m)

∂nd
=
∂F (γd,m)

∂F2(γd,m)

∂F2(γd,m)

∂nd
(G.16)

where

∂F (γd,m)

∂F2(γd,m)
= Eγd,m

[
− (1− εd,m) e−θm(1−α)ndTsRd,mθm(1− α)Ts

]
< 0 (G.17)

and

∂F2(γd,m)

∂nd
=C (γd,m)−

√
V (γd,m)

1− α
Q−1(εd,m) (nd)

− 1
2

2
. (G.18)

Third, using chain rule, we derive the second-order derivative of F (γd,m) with respect to nd as

follows:

∂2F (γd,m)

∂(nd)2
=

∂2F (γd,m)

∂ [F2(γd,m)]2

[
∂F2(γd,m)

∂nd

]2

+
∂F (γd,m)

∂F2(γd,m)

∂2F2(γd,m)

∂(nd)2
(G.19)

where

∂2F (γd,m)

∂ [F2(γd,m)]2
= Eγd,m

[
(1− εd,m) e−θm(1−α)ndTsRd,m [θm(1− α)Ts]

2

]
> 0 (G.20)

and

∂2F2(γd,m)

∂(nd)2
= −

√
V (γd,m)

1− α
Q−1(εd,m) (nd)

− 3
2

4
. (G.21)
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Since when Q−1(εd,m) > 0 for εd,m ∈ (0, 0.5), we can obtain ∂2F2(γd,m)/∂(nd)
2 > 0. Therefore,

we can obtain ∂2F (γd,m) /∂(nd)
2 > 0, implying that the objective function in P10 specified by

Eq. (4.20) is convex with respect to the downlink data blocklength nd when εd,m ∈ (0, 0.5), which

completes the proof of Claim 2 in Theorem 6.

Claim 3. Similar to the proof of Claim 2, we can easily show that the second-order derivative

∂2F (γd,m) /∂(ηk,m)2 > 0, implying that the objective function in P10 specified by Eq. (4.20) is

convex with respect to the downlink power allocation coefficient ηk,m when εd,m ∈ (0, 0.5). Thus,

we complete the proof of Claim 3 in Theorem 6.
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APPENDIX H

PROOF OF THEOREM 7

To characterize the convexity of the objective function in P12 specified in Eq. (4.25) with

respect to the PS factor ρ, first we can derive the first-order derivative of the auxiliary function

F (γd,m) with respect to the PS factor ρ as follows:

∂F (γd,m)

∂ρ
=
∂F (γd,m)

∂Rd,m

∂Rd,m

∂ρ
(H.1)

where
∂F (γd,m)

∂Rd,m
= Eγd,m

[
− (1− εd,m) e−θmndTsRd,mθmndTs

]
< 0 (H.2)

and
∂Rd,m

∂ρ
=
∂C (γd,m)

∂ρ
− Q−1(εd,m)

2
√
ndV (γd,m)

∂V (γd,m)

∂ρ
. (H.3)

Second, using chain rule, we derive the second-order derivative of F (γd,m) with respect to the

PS factor ρ as follows:

∂2F (γd,m)

∂ρ2
=
∂2F (γd,m)

∂ [Rd,m]2

[
∂Rd,m

∂ρ

]2

+
∂F (γd,m)

∂Rd,m

∂2Rd,m

∂ρ2
(H.4)

where
∂2F (γd,m)

∂ [Rd,m]2
= (1− εd,m) (θmndTs)

2 e−θmndTsRd,m > 0. (H.5)

Since ∂2F (γd,m) /∂ [Rd,m]2 > 0 and ∂F (γd,m) /∂Rd,m < 0, to determine whether ∂2F (γd,m) /∂ρ2 >

0 in Eq. (H.4), it is equivalent to determine whether ∂2Rd,m/∂ρ
2 < 0.

In addition, to determine whether ∂2Rd,m
∂ρ2 < 0, first we obtain the second-order derivatives of

the downlink channel capacity C (γd,m) and channel dispersion V (γd,m) with respect to the PS
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factor ρ, respectively, as follows:

∂2C (γd,m)

∂ρ2
=− 1

(log 2) (1 + γd,m)2

(
∂γd,m

∂ρ

)2

+
∂2γd,m

∂ρ2

1

(log 2) (1 + γd,m)
(H.6)

and

∂2V (γd,m)

∂ρ2
= − 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2
. (H.7)

Then, using Eqs. (H.6) and (H.7), we obtain the second-order derivative of Rd,m with respect to

the PS factor ρ as follows:

∂2Rd,m

∂ρ2

=
∂2C (γd,m)

∂ρ2
+
Q−1(εd,m)

4
√
nd

[V (γd,m)]−
3
2

[
∂V (γd,m)

∂ρ

]2

−Q
−1(εd,m)

2
√
nd

[V (γd,m)]−
1
2
∂2V (γd,m)

∂ρ2

= − 1

(log 2) (1 + γd,m)2

(
∂γd,m

∂ρ

)2

+
1

(log 2) (1 + γd,m)

∂2γd,m

∂ρ2
+
Q−1(εd,m)

4
√
nd

[V (γd,m)]−
3
2

×

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2

]2

− Q−1(εd,m)

2
√
nd

× [V (γd,m)]−
1
2

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+
∂2γd,m

∂ρ2
2 (1 + γd,m)−3

]

= − 1

(log 2) (1 + γd,m)2

(
∂γd,m

∂ρ

)2

+
1

(log 2) (1 + γd,m)

∂2γd,m

∂ρ2
− Q−1(εd,m)

2
√
nd

[V (γd,m)]−
1
2

×

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2

]{
1− 1

2V (γd,m)

×

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2

]}
. (H.8)

Second, we can rewrite the SNR function given by Eq. (4.13) as follows:

γd,m =
(1− ρ)γ1,m

(1− ρ)γ2,m + 1
(H.9)
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where
γ1,m = Pd

∣∣∣∣E [ Ka∑
k=1

√
ηk,m(hk,m)Hbk,m

]∣∣∣∣2 ;

γ2,m = Pd

Ku∑
m′=1

E
[∣∣∣∑Ka

k=1

√
ηk,m′(hk,m′)

Hbk,m

∣∣∣2]− Pd

∣∣∣∣E [ Ka∑
k=1

√
ηk,m(hk,m)Hbk,m

]∣∣∣∣2 .
(H.10)

Using Eq. (4.13), we characterize the first-order and second-order derivatives of γd,m with respect

to the PS factor ρ as follows:


∂γd,m
∂ρ

= −γ1,m

[(1−ρ)γ2,m+1]2
;

∂2γd,m
∂ρ2 = −2γ1,mγ2,m

[(1−ρ)γ2,m+1]3
.

(H.11)

Plugging Eq. (H.11) back into Eq. (H.8), we can obtain:

∂2Rd,m

∂ρ2
<− 1

(log 2) (1+γd,m)2

(
∂γd,m

∂ρ

)2

+
1

(log 2) (1+γd,m)

∂2γd,m

∂ρ2
− Q−1(εd,m)

2
√
nd

[V (γd,m)]−
1
2

×

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2

]
. (H.12)

Then, in order to guarantee ∂2Rd,m
∂ρ2 < 0, it is sufficient to have

− 1

(log 2) (1 + γd,m)2

(
∂γd,m

∂ρ

)2

+
1

(log 2) (1 + γd,m)

∂2γd,m

∂ρ2

<
Q−1(εd,m)

2
√
nd

[V (γd,m)]−
1
2

[
− 6 (1 + γd,m)−4

(
∂γd,m

∂ρ

)2

+ 2 (1 + γd,m)−3 ∂
2γd,m

∂ρ2

]
(H.13)

which leads to the following inequality:

1

(log 2) (1 + γd,m)

∂2γd,m

∂ρ2
− Q−1(εd,m)√

ndV (γd,m)
(1 + γd,m)−3 ∂

2γd,m

∂ρ2

<
1

(log 2) (1 + γd,m)2

(
∂γd,m

∂ρ

)2

− 3Q−1(εd,m)√
ndV (γd,m)

(1 + γd,m)−4

(
∂γd,m

∂ρ

)2

(H.14)
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Then, we get

[
1

(log 2) (1 + γd,m)
− Q−1(εd,m)√

ndV (γd,m)
(1 + γd,m)−3

]
∂2γd,m

∂ρ2

<

[
1

(log 2) (1 + γd,m)2 −
3Q−1(εd,m)√
ndV (γd,m)

(1 + γd,m)−4

](
∂γd,m

∂ρ

)2

. (H.15)

Since ∂2γd,m/∂ρ
2 < 0 and Q−1(εd,m) when εd,m ∈ (0, 0.5), to guarantee Eq. (H.15) holds, it is

equivalent to show that the following inequalities hold:


1

(log 2)(1+γd,m)
− Q−1(εd,m)√

ndV (γd,m)
(1 + γd,m)−3 > 0;

1

(log 2)(1+γd,m)
2 − 3Q−1(εd,m)√

ndV (γd,m)
(1 + γd,m)−4 > 0.

(H.16)

which leads to the following inequalities:


√
ndV (γd,m) >

Q−1(εd,m)(log 2)

(1+γd,m)
2 ;√

ndV (γd,m) >
3Q−1(εd,m)(log 2)

(1+γd,m)
2 .

(H.17)

Thus, using Eq. (H.17), we can obtain the lower bound on the downlink data blocklength to guar-

antee ∂2Rd,m/∂ρ
2 < 0 as follows:

nd >
9

V (γd,m)

[
Q−1(εd,m)(log 2)

(1 + γd,m)2

]2

. (H.18)

Finally, we can obtain ∂2Rd,m
∂ρ2 < 0. Therefore, we obtain ∂2F (γd,m) /∂ρ2 > 0, implying that the

objective function in P12 specified by Eq. (4.25) is convex with respect to the PS factor ρ when

εd,m ∈ (0, 0.5). Thus, we complete the proof of Theorem 7.
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APPENDIX I

PROOF OF THEOREM 8

To derive the closed-form expressions for the mean and variance of the aggregate interference,

we prove Claim 1 and Claim 2, respectively, for this theorem as follows.

Claim 1. We can derive the mean of aggregate interference Er[I
(l)
k (r)] between nano node k

and its nano receiver in the THz band over wireless nano-networks as follows:

Er[I
(l)
k (r)] = Er

[
K+1∑

i=1,i 6=k

√
PiPtotal(ri)

]
. (I.1)

Then, in order to calculate the mean of aggregate interference Er[I
(l)
k (r)], first we need to calculate

the expression function given in the right-hand-side of Eq. (I.1) as follows:

Er

[
K+1∑

i=1,i 6=k

√
PiPtotal(ri)

]
= Er

[
K+1∑

i=1,i 6=k

√
Pi (ri)−η G10

ξi
10S(f)

(
c

4πfri

)
e−

αabsri
2

]

= ΛEr

[
K+1∑

i=1,i 6=k

√
Pi10

ξi
10F (ri)

]
(I.2)

where Λ is given by Eq. (5.20) and

F (ri) , r
− η

2
−1

i e−
αabsri

2 . (I.3)

Then, we need to calculate the function Er

[
K+1∑

i=1,i 6=k

√
Pi10

ξi
10F (ri)

]
. Assuming that random num-

berK interfering nano nodes (transmitters) is equal to κ, we can obtain the conditional expectation
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function as follows [129]:

Er

[
K+1∑

i=1,i 6=k

√
Pi10

ξi
10F (ri)

∣∣∣∣K=κ

]
=

K+1∑
i=1,i 6=k

Er

[√
Pi10

ξi
10F (ri)

∣∣∣∣K=κ

]
=κEri

[√
Pi10

ξi
10F (ri)

]
≥κEri

[√
Pi10

ξi
10

]
Eri [F (ri)] = κ

√
PEri [F (ri)] (I.4)

where Eri [·] is the expectation operation with respect to ri and

Eri [F (ri)] =

∫ a

b

r
− η

2
−1

i e−
αabsri

2 fD(ri)dri =
2

a2 − b2

∫ a

b

r
− η

2
i e−

αabsri
2 dri

=
2
(

2
αabs

)1− η
2

a2 − b2

∫ αabsa
2

αabsb
2

r
− η

2
i e−ridri

=
2
(

2
αabs

)1− η
2

a2 − b2

[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]
. (I.5)

In addition, using the spatial Poisson process, we can obtain the mean and variance of the number

of interfering nano nodes K as follows:


E[K] = λπa2;

Var(K) = λπa2,

(I.6)

where E[·] and Var(·) are the standard expectation and variance operations, respectively. Corre-

spondingly, using Eqs. (I.5) and (I.6), we can obtain the following equation:

Er

[
K+1∑

i=1,i 6=k

√
Pi10

ξi
10F (ri)

]
≥ E [K]

√
PEri [F (ri)]

=
2λπa2

√
P
(

2
αabs

)1− η
2

a2 − b2

[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]
.

(I.7)

As a result, by plugging Eq. (I.7) back into Eq. (I.2), we can characterize the mean of aggregate
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interference Er[I
(l)
k (r)] as follows:

Er[I
(l)
k (r)] ≥

2λπa2Λ
√
P
(

2
αabs

)1− η
2

a2 − b2

[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]
(I.8)

which is Eq. (5.19). Thus, we complete the proof for Claim 1 in Theorem 8.

Claim 2. We can derive the variance of the aggregate interference Var
I

(l)
k

(r) for our proposed

THz-band nano-communication schemes as follows:

Var
I

(l)
k

(r) = Er

[(
I

(l)
k (r)

)2
]
−
(
Er[I

(l)
k (r)]

)2

(I.9)

where

Er

[(
I

(l)
k (r)

)2
]

= Er

[
K+1∑

i=1,i 6=k

PiPtotal(ri) +Ni(ri)

]
+2Er

[
K+1∑

i=1,i 6=k

i−1∑
j=1

√
PiPjPtotal(ri)Ptotal(rj)

]
.

(I.10)

To obtain the variance of aggregate interference by Var
I

(l)
k

(r), first we need to obtain the following

equation:

Er

[
K+1∑

i=1,i 6=k

PiPtotal(ri)

]
= Er

[
K+1∑

i=1,i 6=k

Pi (ri)−η G10
ξi
10S(f)

(
c

4πfri

)2

e−αabsri

]

= Λ2Er

[
K+1∑

i=1,i 6=k

Pi10
ξi
10 F̃ (ri)

]
(I.11)

where

F̃ (ri) , (ri)
−η−2e−αabsri . (I.12)

Since the transmission power Pi is upper-bounded by P , we can then obtain the conditional ex-
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pectation function as follows:

Er

[
K+1∑

i=1,i 6=k

Pi10
ξi
10 F̃ (ri)

∣∣∣∣K = κ

]
= κEri

[
Pi10

ξi
10 F̃ (ri)

]
≥ κEri

[
Pi10

ξi
10

]
Eri
[
F̃ (ri)

]
= κPEri

[
F̃ (ri)

]
(I.13)

where

Eri
[
F̃ (ri)

]
=

∫ a

b

(ri)
−η−2e−αabsrifD(ri)dri

=
2

a2 − b2

∫ a

b

(ri)
−η−1e−αabsridri =

2(αabs)
−η

a2 − b2

∫ aαabs

bαabs

(ri)
−η−1e−ridri

=
2(αabs)

−η

a2 − b2
[γ (−η, aαabs)− γ (−η, bαabs)] . (I.14)

Using Eqs. (I.6), (I.11), and (I.14), we can obtain the following inequation:

Er

[
K+1∑

i=1,i 6=k

PiPtotal(ri)

]
≥2λπa2Λ2P(αabs)

−η

a2 − b2

[
γ (−η, aαabs)− γ (−η, bαabs)

]
. (I.15)

We also need to show that the following equations hold true:

Er

[
K+1∑

i=1,i 6=k

Ni(ri)

]
= Er

[
K+1∑

i=1,i 6=k

(Ni,b +Ni,s(ri))

]
=

K+1∑
i=1,i 6=k

Ni,b + Er

[
K+1∑

i=1,i 6=k

Ni,s(ri)

]

=
K+1∑

i=1,i 6=k

Ni,b + Er

[
K+1∑

i=1,i 6=k

S(f)
(
1− e−αabsri

)( c

4πfri

)2
]

=
K+1∑

i=1,i 6=k

Ni,b + Λ2Er

[
K+1∑

i=1,i 6=k

F̂ (ri)

]
(I.16)

where

F̂ (ri) , (ri)
−2
(
1− e−αabsri

)
. (I.17)
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Similarly, we can obtain the conditional expectation function as follows:

Er|K

[
K+1∑

i=1,i 6=k

F̂ (ri)

∣∣∣∣K = κ

]
= κEri

[
F̂ (ri)

]
(I.18)

where Er|K[·] represents conditional expectation operations and

Eri
[
F̂ (ri)

]
=

∫ a

b

(ri)
−2
(
1− e−αabsri

)
fD(ri)dri

=
2

a2 − b2

∫ a

b

1− e−αabsri

ri
dri

=
2

a2 − b2

[
log
(a
b

)
− Ei (−αabsa) + Ei (−αabsb)

]
. (I.19)

Similar to Eq. (I.15), we can obtain the following equation:

Er

[
K+1∑

i=1,i 6=k

F̂ (ri)

]
=

2λπa2

a2 − b2

[
log
(a
b

)
− Ei (−αabsa) + Ei (−αabsb)

]
. (I.20)

Furthermore, due to the high density of wireless nano-networks, we assume that the distances

ri (i = 1, . . . , K + 1 and i 6= k) between its nano receiver and all interfering nano nodes are

approximately the same. As a result, we get

Er

[
K+1∑

i=1,i 6=k

i−1∑
j=1

√
PiPjPtotal(ri)Ptotal(rj)

]
≥ Λ2E [K]Eri

[
Pi10

ξi
10 F̃ (ri)

]
≥ 2λπa2Λ2P(αabs)

−η

a2 − b2
[γ (−η, aαabs)− γ (−η, bαabs)] .

(I.21)

Therefore, plugging Eqs. (I.15) and (I.21) back into Eq. (I.10), we can obtain the following equa-
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tion:

Er

[(
I

(l)
k (r)

)2
]
≈ 6λπa2Λ2P(αabs)

−η

a2 − b2

[
γ (−η, aαabs)− γ (−η, bαabs)

]
+

K+1∑
i=1,i 6=k

Ni,b +
2λπa2Λ2

a2 − b2

×

[
log
(a
b

)
− Ei (−αabsa) + Ei (−αabsb)

]
. (I.22)

Consequently, substituting Eq. (I.22) back into Eq. (I.9), we can derive the approximate variance

of aggregate interference Var
I

(l)
k

(r) as follows:

Var
I

(l)
k

(r)≈ 6λπa2Λ2P(αabs)
−η

a2 − b2
[γ(−η, aαabs)−γ(−η, bαabs)] +

K+1∑
i=1,i 6=k

Ni,b +
2λπa2Λ2

a2 − b2

[
log
(a
b

)
− Ei (−αabsa) + Ei (−αabsb)

]
−
(

2λπa2C

a2 − b2

)2

P
(

2

αabs

)2−η

×
[
γ
(

1− η

2
,
αabsa

2

)
− γ

(
1− η

2
,
αabsb

2

)]2

(I.23)

which is Eq. (5.21). Thus, we complete the proof for Claim 2 in Theorem 8.
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APPENDIX J

PROOF OF THEOREM 9

To derive the upper-bound given by Eq. (5.24) on the mutual information I(xnk ,y
n
k ) given by

Eq. (5.23) to accurately approximate the channel capacity C(rk,Pk) given by Eq. (5.22), we need

to proceed with the following four steps.

Step 1. We need to derive the conditional distribution function PY nk |Xn
k

(ynk |xnk) as follows:

PY nk |Xn
k

(ynk |xnk) =
1[

2π
(
N
I

(l)
k

(r) +Nk(rk)
)]n

2

exp

−
∥∥∥ynk − E

[
I

(l)
k (r)

]
In − xnk

∥∥∥2

2
[
N
I

(l)
k

(r) +Nk(rk)
]

 (J.1)

where ‖ · ‖ is the Euclidean norm and In is the identity matrix with size n.

Step 2. To derive the modified information density i(xnk ;ynk ), we apply the mean and variance

of interference derived in Eqs. (5.19) and (5.21) and select the reference output distribution for the

THz wireless channel as QY nk
(ynk ) ∼ N

(
E
[
I

(l)
k (r)

]
In,
(
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
)

In

)
.

Step 3. Using Eqs. (5.23) and (J.1), we derive the modified information density i(xnk ;ynk ) as
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follows:

i(xnk ;ynk )=
1

n
log2


[
2π
(
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)
)]n

2[
2π
(
N
I

(l)
k

(r) +Nk(rk)
)]n

2

exp

−
∥∥∥ynk−E [I(l)

k (r)
]

In − xnk
∥∥∥2

2
[
N
I

(l)
k

(r) +Nk(rk)
]


× exp


∥∥∥ynk − E

[
I

(l)
k (r)

]
In

∥∥∥2

2
[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
]



=
1

n
log2


[
2π
(
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)
)]n

2[
2π
(
N
I

(l)
k

(r) +Nk(rk)
)]n

2

+


∥∥∥ynk − E

[
I

(l)
k (r)

]
In

∥∥∥2

PkPtotal(rk) +N
I

(l)
k

(r) +Nk(rk)

−

∥∥∥ynk − E
[
I

(l)
k (r)

]
In − xnk

∥∥∥2

N
I

(l)
k

(r) +Nk(rk)

(log2 e)

2n

=
1

2
log2

[
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
+

(log2 e)

2n


∥∥∥ynk−E [I(l)

k (r)
]

In

∥∥∥2

PkPtotal(rk) +N
I

(l)
k

(r) +Nk(rk)

−

∥∥∥ynk − E
[
I

(l)
k (r)

]
In − xnk

∥∥∥2

N
I

(l)
k

(r) +Nk(rk)

. (J.2)

Using Eq. (5.11), we obtain the following equation:

i(xnk ;ynk ) =
1

2
log2

[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
+

(log2 e)

2n

[∥∥∥∥∥√Ptotal(rk)x
n
k

+
K+1∑

i=1,i 6=k

√
Ptotal(ri)x

n
i +nk−E

[
I

(l)
k (r)

]
In

∥∥∥∥∥
2{
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)

}−1

−

∥∥∥∥∥√Ptotal(rk)x
n
k +

K+1∑
i=1,i 6=k

√
Ptotal(ri)x

n
i + nk − E

[
I

(l)
k (r)

]
In − xnk

∥∥∥∥∥
2

×

{
N
I

(l)
k

(r) +Nk(rk)

}−1]
. (J.3)

Step 4. Using Eqs. (5.23) and (J.3), we can derive an upper-bound on the mutual information
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I(xnk ,y
n
k ) as follows:

I(xnk ,y
n
k ) =E

1

2
log2

[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
+

(log2 e)

2n

{∥∥∥∥∥√Ptotal(rk)x
n
k

+
K+1∑

i=1,i 6=k

√
Ptotal(ri)x

n
i + nk−E

[
I

(l)
k (r)

]
In

∥∥∥∥∥
2{
PkPtotal(rk)+N

I
(l)
k

(r) +Nk(rk)

}−1

−

∥∥∥∥∥√Ptotal(rk)x
n
k+

K+1∑
i=1,i 6=k

√
Ptotal(ri)x

n
i + nk − E

[
I

(l)
k (r)

]
In − xnk

∥∥∥∥∥
2

×

{
N
I

(l)
k

(r) +Nk(rk)

}−1}
≤ 1

2
log2

[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
+

(log2 e)

n

E

[∥∥∥√Ptotal(rk)x
n
k

∥∥∥2

+

∥∥∥∥∥
K+1∑

i=1,i 6=k

√
Ptotal(ri)x

n
i −E

[
I

(l)
k (r)

]
In

∥∥∥∥∥
2

+‖nk‖2

]{
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)

}−1

−E

[∥∥∥√Ptotal(rk)x
n
k

∥∥∥2

+

∥∥∥∥∥
K+1∑

i=1,i 6=k

√
Ptotal(ri)x

n
i−E

[
I

(l)
k (r)

]
In

∥∥∥∥∥
2

+‖nk‖2+‖xnk‖
2

]

×

{
N
I

(l)
k

(r) +Nk(rk)
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=
1

2
log2

[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)

N
I

(l)
k

(r) +Nk(rk)

]
− (log2 e)

[
Pk [Ptotal(rk) + 1]

N
I

(l)
k

(r) +Nk(rk)

]
(J.4)

which is Eq. (5.24), completing the proof for Theorem 9.
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APPENDIX K

PROOF OF THEOREM 10

To derive the upper-bound on the channel dispersion V (rk,Pk), we need to proceed with the

following two steps.

Step 1. We start with variance of the modified information density i(xnk ;ynk ) as in the following

equation:

V (rk,Pk) = Var [i(xnk ;ynk )] =
1

n
Var
[
log2

(
PY nk |Xn

k
(ynk |xnk)

QY nk
(ynk )

)]
≤ 2

n

{
Var
[
log2

(
PY nk |Xn

k
(ynk |xnk)

)]
+ Var

[
log2

(
QY nk

(ynk )
)] }

(K.1)

where Var[·] represents the variance operation.

Step 2. We can apply the Poincará inequality to derive the following equation:

Var
[
log2

(
PY nk |Xn

k
(ynk |xnk)

)]
≤ E

[∥∥∇ log2

(
PY nk |Xn

k
(ynk |xnk)

)∥∥2
]

(K.2)
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where∇ is the Nabla operator. Then, to calculate the function∇ log2

(
PY nk |Xn

k
(ynk |xnk)

)
, we have

∇ log2

(
PY nk |Xn

k
(ynk |xnk)

)
=

(log2 e)

PY nk |Xn
k

(ynk |xnk)
∇PY nk |Xn

k
(ynk |xnk)

=
(log2 e)

PY nk |Xn
k

(ynk |xnk)

M∑
m=1


1

M

[
2π
(
N
I

(l)
k

(r) +Nk(rk)
)]−n

2

×∇ exp

−‖y
n
k − E

[
I

(l)
k (r)

]
In − xnk(m)‖2

2
[
N
I

(l)
k

(r) +Nk(rk)
]




=
(log2 e)

PY nk |Xn
k

(ynk |xnk)

M∑
m=1


1

M

[
2π
(
N
I

(l)
k

(r) +Nk(rk)
)]−n

2

×
(
xnk(m) + E

[
I

(l)
k (r)

]
In − ynk

)

× exp

−
∥∥∥ynk − E

[
I

(l)
k (r)

]
In − xnk(m)

∥∥∥2

2
[
N
I

(l)
k

(r) +Nk(rk)
]




= (log2 e)
{
E [xnk |ynk ] + E

[
I

(l)
k (r)

]
In − ynk

}
(K.3)

where xnk(m) is the encoded signal from message m ∈M with length n at nano transmitter k. Let

us define:

x̂nk , E [xnk |ynk ] . (K.4)

Accordingly, using the average power constraint, we can obtain the following equation:

Var
[
log2

(
PY nk |Xn

k
(ynk |xnk)

)]
≤ (log2 e)

2E
[∥∥∥x̂nk + E

[
I

(l)
k (r)

]
In − ynk

∥∥∥2
]

≤ 2(log2 e)
2

{
E
[
‖x̂nk‖

2]+ E
[∥∥∥ynk − E

[
I

(l)
k (r)

]∥∥∥2
]}

= 2(log2 e)
2
{
nPk + n

[
N
I

(l)
k

(r) +Nk(rk)
]}

= 2n(log2 e)
2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]
. (K.5)
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Similarly, we can derive the function Var
[
log2

(
QY nk

(ynk )
)]

as follows:

Var
[
log2

(
QY nk

(ynk )
)]
≤ 2n(log2 e)

2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]
. (K.6)

Therefore, plugging Eqs. (K.5) and (K.6) back into Eq. (K.1), we get:

V (rk,Pk) ≤ 8n(log2 e)
2
[
Pk +N

I
(l)
k

(r) +Nk(rk)
]

(K.7)

which is Eq. (5.25), completing the proof for Theorem 10.
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To derive the closed-form solutions to the optimization problem P17, we can formulate its

Lagrange function, denoted by J , as follows:

J =n

[
C(rk,Pk)−

√
V (rk,Pk)

n
Q−1(εk)

]
+ λ1 (Pmax

k − Pk) + λ2

(
Pk − Pmin

k

)
(L.1)

where λ1 and λ2 are the Lagrange multipliers associated with the EH constraints C12 and C13

which are specified by Eqs. (5.36) and (5.37), respectively, in optimization problem P15. Then,

we can obtain the following Karush-Kuhn-Tucker (KKT) conditions:



∂J
∂Pk

= nPtotal(rk)

2(log 2)

[
PkPtotal(rk)+N

I
(l)
k

(r)+Nk(rk)

]−n(log2 e)

[
Ptotal(rk)+1

N
I
(l)
k

(r)+Nk(rk)

]
−

√
2n(log2 e)Q

−1(εk)√
Pk+N

I
(l)
k

(r)+Nk(rk)
−λ1+λ2

= 0;

λ1, λ2 > 0.

(L.2)

Using the first part of Eq. (L.2), we can obtain the following equation:

nPtotal(rk)

2
[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
] − √

2nQ−1(εk)√
Pk +N

I
(l)
k

(r) +Nk(rk)

= (log 2) (λ1 − λ2) + n

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]
. (L.3)

To derive the optimal power allocation policy for nano transmitter k, we prove Claim 1, Claim 2,

and Claim 3, respectively, for this theorem as follows.

Claim 1. Considering the high-SINR regime, we have PkPtotal(rk)� N
I

(l)
k

(r)+Nk(rk). Since
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Ptotal(rk) < 1, we can obtain:

Pk � N
I

(l)
k

(r) +Nk(rk). (L.4)

As a result, we can convert Eq. (L.3) in the high-SINR regime into the following equation:

n

2Pk
−
√

2nQ−1(εk)√
Pk

= (log 2) (λ1 − λ2) + n

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]
. (L.5)

By solving Eq. (L.5), we obtain the optimal power allocation policy POPT,H
k for the high-SINR

regime as given in Eq. (5.51).

Claim 2. In the low-SINR regime, we have PkPtotal(rk)� N
I

(l)
k

(r) + Nk(rk). As a result, we

can convert Eq. (L.3) in the low-SINR regime into the following equation:

nPtotal(rk)

2
[
N
I

(l)
k

(r) +Nk(rk)
] − √

2nQ−1(εk)√
Pk +N

I
(l)
k

(r) +Nk(rk)
=(log 2) (λ1−λ2)+n

[
Ptotal(rk) + 1

N
I

(l)
k

(r)+Nk(rk)

]
.

(L.6)

By solving Eq. (L.6), we can obtain the optimal power allocation policy POPT,L
k for the low-SINR

regime as given in Eq. (5.53).

Claim 3. If the SINR falls into the medium-SINR regime between the high-SINR and low-

SINR regimes, specified by Eqs. (5.50) and (5.52), respectively, then using Eq. (L.3), we can

obtain the following equation:

nPtotal(rk)

2
[
PkPtotal(rk) +N

I
(l)
k

(r) +Nk(rk)
] − √

2nPtotal(rk)Q
−1(εk)√

PkPtotal(rk) +N
I

(l)
k

(r) +Nk(rk)

= (log 2) (λ1 − λ2) + n

[
Ptotal(rk) + 1

N
I

(l)
k

(r) +Nk(rk)

]
. (L.7)

By solving the above Eq. (L.7), we can obtain the optimal power allocation policy for the medium-

SINR regime POPT,M
k as given in Eq. (5.54). Therefore, we complete the proof for Theorem 12.
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