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ABSTRACT

We compute the second moment of Dirichlet L-functions along a coset at the central point,

achieving an asymptotic result in the q-aspect.

ii



DEDICATION

This dissertation is dedicated to my family: Bonnie and Charles, Brice and Sarah, Brittany and

Jacob, and Hannah and Benjamin. Thank you for your unconditional love and support throughout

this time in my life.

iii



ACKNOWLEDGMENTS

This project would not have been possible without the help and guidance of Matthew Young,

who both suggested this project and constantly shared his expertise to enable me to overcome any

obstacle.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Matthew Young

[advisor], Professor Matthew Papanikolas, and Professor Riad Masri of the Department of Mathe-

matics and Professor Raul Medina of the Department of Entomology. All work for the dissertation

was completed independently by the student.

Funding Sources

Graduate study was supported by a teaching assistantship from Texas A&M University. No

other outside source of funding was provided.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Statement of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Various Bounds & Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Postnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Miscellaneous Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. PROOF OF THEOREM 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Diagonal Term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Remaining Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Off-diagonal Terms When Far Apart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Off-diagonal Terms When Nearby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 CombiningM+

m>n andM−
m>n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 CombiningMm>n andMm<n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. SKETCHING THE PROOFS OF REMAINING THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 A Sketch of the Proof of Theorem 1.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 A Sketch of the Proof of Theorem 1.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



1. INTRODUCTION

Studying the analytic behavior of L-functions inside the critical strip has been a fruitful area

of research in the field of number theory for many years due to the arithmetic information it can

reveal. Two aspects of L-functions which are of particular interest are their power moments and

their rate of growth along the critical line. A classic example of the latter type of result is the Weyl

bound which states that the Riemann zeta function satisfies

ζ(1/2 + it)�ε t
1/6+ε. (1.1)

When it comes to power moments, mathematicians such as Hardy and Littlewood in 1918 and

Ingham in 1926 were studying moments of the Riemann zeta function. However, it wasn’t until

Selberg in 1946 that the field began to turn its attention to moments of Dirichlet L-functions. Sel-

berg produced an asymptotic result for the second moment of Dirichlet L-functions with moduli

q. What Selberg realized that many mathematicians have noticed since is that the true analogue of

studying the Riemann zeta function in the so-called t-aspect is studying Dirichlet L-functions in

the q-aspect. That is to say, an asymptotic result about ζ(1/2 + it) as t→∞ can lead to a similar

result about the Dirichlet L-functions L(1/2, χ) as q →∞, where χ is a primitive character mod-

ulo q.

Heath-Brown published two papers of note in 1978. In [1], he studied the twelfth moment of

the Riemann zeta function, finding that

∫ 2T

T

|ζ(1/2 + it)|12dt�ε T
2+ε, (1.2)

a result which easily recovers (1.1) while also proving that |ζ(1/2 + it)| cannot be too large too

often. Two mathematicians whose work inspired my own looked at the q-analogue of (1.2) in
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particular cases: Nunes investigated L-functions with smooth square-free moduli in [2] while Mil-

ićević and White explored L-functions with odd prime power moduli in [3]. The other 1978 paper

by Heath-Brown more directly influenced my work. In [4], he spends some time examining sums

of the form defined in (2.1). In particular, he produces Lemma 2.1.2. Along with some other tools

such as an approximate functional equation, a dyadic partition of unity, and Poisson summation,

this lemma turns out to be instrumental in bounding the second moment of Dirichlet L-functions

along a coset, a connection that doesn’t seem to have been made before now.

Pushing the work further, by utilizing a Postnikov-type formula in a different range of the

dyadic partition of unity, an asymptotic result can be achieved. This asymptotic result is in fact my

main theorem, but the application of a Postnikov-type formula introduces into the final result aψ,

a constant which requires some pre-introduction. Eager readers can find a more detailed treatment

in the statement and proof of Lemma 2.2.9, but for now, suffice it to say that, when ψ is a Dirichlet

character modulo q and d is a positive integer with d|q and q|d2, aψ is the number (mod q
d
) such

that ψ(1 + dx) = e(
aψdx

q
), where e(x) = e2πix. Additionally, since aψ ∈ Z/(q/d)Z, let’s choose

once and for all that

0 < |aψ| <
q

2d
, (1.3)

where the strict inequalities are later justified by Lemma 2.2.10.

1.1 Statement of Results

Thus, we arrive at the main theorem of my project, split into two cases for the sake of compact-

ness and comparison. However, we will first develop a new notation to convey a hypothesis used

frequently throughout this paper. Recalling that νp(·) denotes the p-adic valuation, let a and b be

positive integers. We will write “a ≺ b” to mean that a and b share all of the same prime factors

and, for any prime p|b, νp(a) < νp(b). Similarly, we will write “a � b” to mean that a and b share

all of the same prime factors and, for any prime p|b, νp(a) ≤ νp(b). Note that a ≺ b implies that
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a|b and a < b, while a � b implies that a|b and a ≤ b.

Theorem 1.1.1. Let q be a positive odd integer, ψ be a primitive even character modulo q, and d

be a positive integer such that d ≺ q and q � d2. Then

∑
χ (mod d)
χ even

|L(1/2, χ · ψ)|2 = MT +O

(
qε
(
d1/4q1/4 +

d

q1/8

))
, (1.4)

where MT is a main term defined by MT = D +A with

D =
ϕ(d)

2

ϕ(q)

q
[log(q) + c0 + 2θ(q)] , (1.5)

A =
ϕ(d)

d

√
q cos

(
2πaψ
q

)
σ0(|aψ|)√
|aψ|

, (1.6)

where c0 is an absolute constant defined in (3.9), θ(q) =
∑

p|q
log p
p−1 , and σα(n) =

∑
d|n d

α.

Recall that q � d2 implies that q ≤ d2. Thus, d1/4q1/4 ≤ d
q1/8

, meaning that the error term in

(1.4) can simplify to O
(
dq−1/8+ε

)
. Moreover, an immediate consequence of this asymptotic result

is that not all of the L-functions in this family can vanish at s = 1/2.

For the next theorem, we will have that d| q
d
, so let bψ be the reduction of aψ (mod d) such that

0 < |bψ| <
d

2
, (1.7)

the strict inequalities again being allowed by the eventual Lemma 2.2.10.

Theorem 1.1.2. Let q be a positive odd integer with (q, 3) = 1, ψ be a primitive even character

modulo q, and d be a positive integer such that d2 � q and q � d3. Then

∑
χ (mod d)
χ even

|L(1/2, χ · ψ)|2 = MT ′ +O

(
qε
(
q1/2

d1/4
+

d

q1/8

))
, (1.8)
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where MT ′ is a main term defined by MT ′ = D +A′ with D as defined in (1.5) and

A′ =


c1 ϕ(d) cos

(
2π(bψ−2aψ(aψ−bψ)2)

q

)
σ0(|bψ |)√
|bψ |

, q ≡ 1 (mod 4)

c2 ϕ(d) sin
(

2π(bψ−2aψ(aψ−bψ)2)
q

)
σ0(|bψ |)√
|bψ |

, q ≡ 3 (mod 4)

(1.9)

where c1 and c2 are real constants with |c1| = |c2| = 1 defined in (3.83) and (3.86), respectively.

Recall that d2 � q implies that d2 ≤ q. Thus, d
q1/8
≤ q1/2

d1/4
, meaning that the error term in

(1.8) can simplify to O
(
d−1/4q1/2+ε

)
. Theorem 1.1.2 can be extended with little effort to q such

that (q, 3) 6= 1 if we also have that q � 1
3
d3. Note that, although A′ can be negative, |A′| < D.

Hence, Theorem 1.1.2 is truly an asymptotic result when d ≥ q2/5+ε, as this is when the main term

is larger than the so-called error term. With this in mind, it’s worth noting that this result is not

vacuous as 2
5
< 1

2
. Furthermore, the asymptotic result we get when d ≥ q2/5+ε again shows that

not all of the L-functions in this family can vanish at s = 1/2.

The following is an upper bound on the second moment that serves as a nice warm-up to my

main theorems.

Theorem 1.1.3. Let q be a positive integer, let ψ be a primitive character modulo q, and let d|q.

Then ∑
χ (mod d)

|L(1/2, χ · ψ)|2 � qε
(
d+

(q
d

)1/2)
. (1.10)
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2. PRELIMINARIES

In this section, we will lay the groundwork and develop the tools necessary to prove the theo-

rems just stated in the introduction.

2.1 Various Bounds & Evaluations

First, let’s define the summation studied by Heath-Brown in [4] and cite the associated bound.

Definition 2.1.1. Let χ be a character (mod q), and let h and n be integers. Denote

S(q;χ, h, n) =

q−1∑
m=0

χ(m+ h)χ(m)e(mn/q). (2.1)

Lemma 2.1.2 (Heath-Brown, [4], Lemma 9). Suppose that q is odd, q0|q, and ε > 0. Then

∑
1≤h≤A

∑
1≤n≤B

|S(q;χ, hq0, n)| � (σ0(q)σ−1/4(q))
4q1/2{ABq−1/20 + (qAq0)

1/4(AB/q0)
ε}, (2.2)

and ∑
1≤h≤A

|S(q;χ, hq0, 0)| � (σ0(q))
2q0A. (2.3)

Remark 2.1.3. Lemma 9 in [4] gives a bound of |S(q;χ, 4hq0, n)| for general q. However, it can

be seen by reading through the proof that the result holds for |S(q;χ, hq0, n)| without the 4 if we

add the condition that q be odd.

We next evaluate a particular type of quadratic exponential sum.

Lemma 2.1.4. Let r be a positive odd integer. Let A,B be integers such that (B, r) = 1. Then

∑
u (mod r)

er
(
Au+Bu2

)
= e

(
−4BA2

r

)(
B

r

)
εr
√
r, (2.4)

where eq(x) = e
(
x
q

)
= e

2πix
q , the bar notation indicates the multiplicative inverse modulo r,

(
B
r

)
5



is the Jacobi symbol, and εr =


1, r ≡ 1 (mod 4)

i, r ≡ 3 (mod 4)

.

Proof. By completing the square and applying (3.38) from [5], we can see that

∑
u (mod r)

er
(
Au+Bu2

)
= er

(
−4BA2

) ∑
u (mod r)

er

(
B
(
u+ 2BA

)2)
(2.5)

= e

(
−4BA2

r

)(
B

r

)
εr
√
r.

Another simple lemma to get us warmed up is the evaluation of the following integral using

known Mellin transforms.

Lemma 2.1.5. Let k be a non-zero integer and s be a complex number with−1
2
< <(s) < 1

2
. Then

∫ ∞
0

x−se(kx)
dx√
x

=
Γ(1/2− s)
(2π|k|)1/2−s

(
cos

(
π

2

(
1

2
− s
))

+ i sgn(k) sin

(
π

2

(
1

2
− s
)))

, (2.6)

where sgn(k) =


1, k > 0

−1, k < 0

.

Proof. Let I =

∫ ∞
0

x−se(kx)
dx√
x

. Applying Euler’s formula and rearranging the x results in

I =

∫ ∞
0

x1/2−s(cos(2πkx) + i sin(2πkx))
dx

x
. (2.7)

Because k may be positive or negative, we will scale x by
1

2π|k|
, thus giving us

I = (2π|k|)s−1/2
∫ ∞
0

x1/2−s(cos(x) + i sgn(k) sin(x))
dx

x
(2.8)

since cosine and sine are respectively even and odd. Splitting up the integral gets us

I = (2π|k|)s−1/2
(∫ ∞

0

x1/2−s cos(x)
dx

x
+ i sgn(k)

∫ ∞
0

x1/2−s sin(x)
dx

x

)
. (2.9)
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These integrals can be recognized as the Mellin transforms of cos(x) and sin(x). The hypothesis

that−1
2
< <(s) < 1

2
implies that 0 < <(1/2−s) < 1, meaning we are in the region of convergence

for both Mellin transforms. Therefore, applying the known evaluations of these Mellin transforms

(as can be found in a source such as [6]) will conclude the proof.

As an immediate consequence of this, we have the following corollary.

Corollary 2.1.6. Let k be a non-zero integer and s be a complex number with −1
2
< <(s) < 1

2
.

Then

∫ ∞
0

x−se(kx)
dx√
x

+

∫ ∞
0

x−se(−kx)
dx√
x

= 2
Γ(1/2− s)
(2π|k|)1/2−s

cos

(
π

2

(
1

2
− s
))

(2.10)

2.2 Postnikov

We now motivate a Postnikov formula by first defining a global analogue of the p-adic loga-

rithm. For this, we need the notation a|b∞, which means that there exists a positive integer A such

that a|bA.

Definition 2.2.1. For positive odd integers d and q such that d|q and q|d∞, define the formal power

series in the indeterminate x,

Lq(1 + dx) =
∞∑
k=1

(−1)k+1 d
k

k
xk ∈ Q[[x]]. (2.11)

The importance of the conditions that d|q and q|d∞ is that they guarantee d and q will share all

of the same prime factors. Thus, while the coefficients of this power series are certainly rational

numbers, we can prove something stronger. We will show that all of these coefficients belong to

the set

Rq = {x ∈ Q such that νp(x) ≥ 0 for all p|q}. (2.12)

Note that Rq is a sub-ring of Q due to the p-adic valuation properties of νp(m ·n) = νp(m)+νp(n)

and νp(m + n) ≥ min{νp(m), νp(n)}. Another way to characterize the elements of the ring Rq is

7



to say that, for x ∈ Rq, if x = a
b

with (a, b) = 1, then (b, q) = 1. Therefore, there exists a ring

homomorphism ϕ : Rq → Z/qZ given by

ϕ
(a
b

)
= ab, (2.13)

where the bar notation indicates the multiplicative inverse modulo q. Let’s now show why and how

this can be applied to the coefficients of Lq(1 + dx).

Lemma 2.2.2. Let d and q be positive odd integers such that d|q and q|d∞. For any positive integer

k and any prime p such that p|q,

νp(k) ≤ νp(d
k−1). (2.14)

More generally, for any positive integer A and any prime p such that p|q, there exists a positive

integer N such that νp(k) ≤ νp(d
k−A) for all k ≥ N .

Proof. We have νp(k) ≤ ln(k)
ln(p)
≤ k − 1 ≤ νp(d

k−1), where the last inequality follows from the fact

that d and q share all of the same prime factors. Now, (2.14) follows. In the more general case,

νp(d
k−A) ≥ k − A and νp(k) = O(ln(k)), so there will always exist a large enough choice of N

such that νp(k) ≤ νp(d
k−A) for all k ≥ N .

Remark 2.2.3. While Lemma 2.2.2 only guarantees the existence of a positive integer N , the

method of proof shows that a constructive candidate would be the minimal positive integer M

such that k − A ≥ ln(k) for all k ≥ M . This minimal M can be found for a particular positive

integer A using methods of calculus, and an example of future relevance is that M = 5 when

A = 3.

Lemma 2.2.4. We have Lq(1 + dx) ∈ Rq[[x]].

Proof. If we write Lq(1 + dx) =
∞∑
k=1

ckx
k where ck = (−1)k+1dk/k, then we need to show that

ck ∈ Rq for all k. For any prime p such that p|q, (2.14) implies that 0 ≤ νp

(
dk−1

k

)
< νp(ck), for

any k.

8



Now that we have shown that Lq(1 + dx) lives in Rq[[x]] ⊆ Q[[x]], given the ring homomor-

phism ϕ from (2.13), there is an induced ring homomorphism ϕ : Rq[[x]] → (Z/qZ) [[x]] which

maps

ϕ(Lq(1 + dx)) =
∞∑
k=1

ϕ(ck)x
k. (2.15)

By abuse of notation, we may view Lq(1 + dx) as being in (Z/qZ) [[x]] by way of this reduction

map. From this perspective, we may now observe that Lq(1 + dx) is not as infinite as it once

seemed.

Lemma 2.2.5. We have Lq(1 + dx) ∈ (Z/qZ)[x].

Proof. We wish to prove that Lq(1 + dx) has only finitely many coefficients which are non-zero in

Z/qZ. Suppose that {p|q : p is a prime} = {p1, . . . , pr}. Recall that q|d∞ implies that there exists

a positive integer A such that q|dA. By Lemma 2.2.2, we know that there exists a positive integer

Ni for each i = 1, . . . , r such that νpi(k) ≤ νpi(d
k−A) for all k ≥ Ni. Hence, we can take N =

max{N1, . . . , Nr}, and it will follow that Lq(1 + dx) =
N∑
k=1

(−1)k+1 d
k

k
xk in (Z/qZ)[[x]].

This will open the door to discussing various properties of Lq(1 + dx) modulo q, such as the

following periodicity and additivity properties. These lemmas will require two indeterminates, so

we will embed Lq(1 + dx) into (Z/qZ)[x, y] in the obvious way.

Lemma 2.2.6. We have Lq(1 + dx) = Lq
(
1 + d(x+ q

d
y)
)

in (Z/qZ)[x, y].

Proof. Using polynomial substitution, we may evaluate

Lq
(

1 + d
(
x+

q

d
y
))

=
∞∑
k=1

(−1)k+1 d
k

k

(
x+

q

d
y
)k

(2.16)

=
∞∑
k=1

(−1)k+1

k
(dx+ qy)k. (2.17)

9



For k ∈ {1, 2, . . .}, applying the binomial theorem and isolating the j = 0 term gives

(−1)k+1

k
(dx+ qy)k =

(−1)k+1

k

k∑
j=0

(
k

j

)
(dx)k−j(qy)j (2.18)

=
(−1)k+1

k
(dx)k + q

[
(−1)k+1

k∑
j=1

(
k

j

)
dk−jqj−1

k
xk−jyj︸ ︷︷ ︸

∈(Z/qZ)[x,y]

]
. (2.19)

This final claim that the indicated expression is in (Z/qZ)[x, y] follows from the facts that d|q and

(2.14) holds for any prime p such that p|q, as well as our abuse of notation via (2.15).

Lemma 2.2.7. We have Lq((1 + dx)(1 + dy)) = Lq(1 + dx) + Lq(1 + dy) in (Z/qZ)[x, y].

See pages 79-80 of [7] for more details.

Proof. We have the well-known additive property for the real logarithm function:

log((1 + dx)(1 + dy)) = log(1 + dx) + log(1 + dy). Hence, the power series expansions of these

two expressions are equal wherever they both converge, meaning that all of their corresponding

coefficients are equal. Thus, since Lq(1 + dx) matches the power series expansion of the real

logarithm (reduced modulo q via (2.15)), this property also holds for Lq(1 + dx).

Thanks to Lemma 2.2.5, we will be able to substitute Lq(1 + dx) into an exponential function

without ever introducing a notion of convergence but while maintaining the periodicity and addi-

tivity properties outlined in Lemmas 2.2.6 and 2.2.7. We now observe how Lq(1 + dx) behaves

with respect to various moduli.

Lemma 2.2.8. Let q be a positive odd integer and d be a positive integer such that d|q.

(1) If q|d∞, then Lq(1 + dx) ≡ dx (mod (q, d2)).

(2) If (q, 3) = 1 and q|d3, then Lq(1 + dx) ≡ dx− 2(dx)2 (mod q).

10



Proof. Recall that Lq(1 + dx) =
∞∑
k=1

(−1)k+1 d
k

k
xk ∈ (Z/qZ)[x]. Expanding this out gives

Lq(1 + dx) = dx− 1

2
(dx)2 +

1

3
(dx)3 − d3

( 1

4
dx4 − 1

5
d2x5 + . . .︸ ︷︷ ︸

∈(Z/qZ)[x]

)
. (2.20)

The claim that the tail of this series is still a polynomial with coefficients in Z/qZ after factoring

d3 follows from Lemma 2.2.2, or more specifically the observations in Remark 2.2.3. Elaborating

on the details, since k − 3 ≥ ln(k) for all k ≥ 5, we may choose N = 5 from Lemma 2.2.2.

However, since q is odd, 1
4

= 2
2 in Z/qZ, so we could also pick N = 4. Lastly, because d|q

overall and either q|d∞ in (1) or q|d3 in (2), d and q share all of the same prime factors, so it must

be that either (q, 3) = 1 or 3|d. Therefore, by their respective hypotheses, both statements follow

immediately.

We are now ready to state and prove our Postnikov formula.

Lemma 2.2.9. Let q be a positive odd integer and d be a positive integer such that d|q and q|d∞.

There exists a unique group homomorphism a : ̂(Z/qZ)∗ → Z/(q/d)Z, ψ 7→ aψ, such that a

Postnikov-type formula holds: for each Dirichlet character ψ modulo q and x ∈ Z we have

ψ(1 + dx) = eq(aψLq(1 + dx)). (2.21)

Proof. Consider the reduction modulo d map

(Z/qZ)∗ → (Z/dZ)∗, (2.22)

and denote its kernel byK. Since d and q share all of the same prime factors,K =
{

1 + dx : x (mod q
d
)
}

,

so |K| = q
d
. Consider the map f : K → S1 defined by

f(1 + dx) = eq(Lq(1 + dx)). (2.23)
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The function f is well-defined by Lemmas 2.2.5 and 2.2.6. Furthermore, f is a group homo-

morphism by Lemma 2.2.7. Thus, f is a character on K, and we claim that f has order q
d

in

K̂. Indeed, if p is a prime such that p| q
d
, then we have f(1 + dx)q/dp = eq

(
q
dp
Lq(1 + dx)

)
=

edp (Lq(1 + dx)) = edp(dx) = e(x
p
), by Lemma 2.2.8 since dp|(q, d2). Hence, K̂ is cyclic and

generated by f . Therefore, every element of K̂ is of the form fa for some a (mod q
d
). In particular,

ψ is a character on (Z/qZ)∗, so restricting ψ to K makes it an element of K̂. Thus, there exists a

unique aψ (mod q
d
) such that ψ|K = faψ , which is equivalent to the Postnikov formula.

Having formally introduced aψ, we will need the following lemma in order to conclude that aψ

is coprime to q/d as a consequence of ψ being primitive.

Lemma 2.2.10. Let q be a positive odd integer, ψ be a primitive character modulo q, and d be a

positive integer such that d|q and q|d∞. Then (aψ,
q
d
) = 1.

Proof. Firstly, if d = q, then aψ is trivially 0 and the conclusion holds. When d 6= q, for the sake

of contradiction, assume that all of the hypotheses hold but (aψ,
q
d
) > 1. Thus, there exists a prime

p such that p|aψ and p| q
d
. Note that d and q share all the same prime factors, so p| q

d
implies that

p2|q, which further implies that q|( q
p
)2. Thus, (q, ( q

p
)2) = q. Using Lemma 2.2.9 and statement (1)

of Lemma 2.2.8, both with q
p

playing the role of d, observe that, for y ∈ Z,

ψ

(
1 +

q

p
y

)
= eq

(
aψLq

(
1 +

q

p
y

))
(2.24)

= eq

(
aψ

(
q

p
y

))
(2.25)

= e

(
aψ
p
y

)
= 1. (2.26)

Moreover, for any r ∈ Z such that (r, q) = 1, we have ψ
(
r +

q

p
y

)
= ψ(r)ψ

(
1 +

q

p
yr

)
= ψ(r).

Therefore, ψ has a smaller periodicity of q/p, contradicting the assumption that ψ is a primitive

character modulo q.
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2.3 Miscellaneous Lemmas

In the course of this paper, we encounter sums of the form

Sq,d(ψ, k) :=
∑

u (mod q
d
)

ψ(1 + du)eq(dku). (2.27)

Using Postnikov, we can evaluate such sums given similar conditions to the ones we’ve enforced

thus far.

Lemma 2.3.1. Let q be a positive odd integer with (q, 3) = 1, ψ be a primitive character modulo

q, and d be a positive integer such that d2|q and q|d3. Also, let k be an integer. Then

Sq,d(ψ, k) = e

(
2aψ(k + aψ)2

q

)(
−2aψ
q/d2

)
εq/d2
√
q (2.28)

if k ≡ −aψ (mod d), and Sq,d(ψ, k) = 0 otherwise. In particular, Sq,d(ψ, 0) = 0.

Proof. By Lemma 2.2.9, we have

Sq,d(ψ, k) =
∑

u (mod q
d
)

eq(dku+ aψLq(1 + du)). (2.29)

By statement (2) of Lemma 2.2.8, this can truncate as

Sq,d(ψ, k) =
∑

u (mod q
d
)

eq
(
dku+ aψ

(
du− 2(du)2

))
(2.30)

=
∑

u (mod q
d
)

eq/d
(
(k + aψ)u− 2aψdu

2
)
. (2.31)

Since q/d2 is an integer by hypothesis, we may shift the sum by q/d2 to reveal that either this sum

13



vanishes or else k ≡ −aψ (mod d). Then,

Sq,d(ψ, k) =
∑

u (mod q
d
)

eq/d2

((
k + aψ
d

)
u− 2aψu

2

)
(2.32)

= d
∑

u (mod q

d2
)

eq/d2

((
k + aψ
d

)
u− 2aψu

2

)
. (2.33)

Because ψ is primitive, Lemma 2.2.10 gives us that (aψ,
q
d
) = 1, and so aψ 6= 0 since d2|q implies

that d| q
d
. Firstly, this tells us that Sq,d(ψ, 0) = 0 since 0 ≡ −aψ (mod d) would contradict aψ being

coprime to q/d. Secondly, this allows us to apply Lemma 2.1.4, thus concluding the proof.

The following approximate functional equation for the product of two Dirichlet L-functions is

a variation of a theorem found in [5].

Lemma 2.3.2 (Iwaniec-Kowalski, [5], Theorem 5.3). Let χ be a primitive even character modulo

q. Let G(s) be any function which is holomorphic and bounded in the strip−4 < Re(s) < 4, even,

and normalized by G(0) = 1. Then

L(1/2, χ)L(1/2, χ) = 2
∑
m,n≥1

χ(m)χ(n)√
mn

V

(
mn

q

)
(2.34)

where V (x) is a smooth function defined by

V (x) =
1

2πi

∫
(1)

G(s)

s

γ(1/2 + s)2

γ(1/2)2
x−sds (2.35)

and

γ(s) = π−s/2Γ
(s

2

)
. (2.36)

This next lemma encompasses the opening moves to prove both Theorem 1.1.1 and Theorem

1.1.2.

Lemma 2.3.3. Let q be a positive odd integer, ψ be a primitive even character modulo q, and d be

14



a positive integer such that d ≺ q. Then

∑
χ (mod d)
χ even

|L(1/2, χ · ψ)|2 = ϕ(d)
∑
±

∑
m≡±n (mod d)

(mn,q)=1

ψ(m)ψ(n)√
mn

V

(
mn

q

)
, (2.37)

with V as defined in (2.35).

Proof. LetM =
∑

χ (mod d)
χ even

|L(1/2, χ · ψ)|2. Since L(1/2, χ) = L(1/2, χ),

M =
∑

χ (mod d)
χ even

L(1/2, χ · ψ)L(1/2, χ · ψ). (2.38)

The character χ · ψ is primitive modulo q because ψ is primitive modulo q and d ≺ q, meaning d

has all of the same prime factors as q but with a strictly smaller power of each. More obviously,

χ · ψ is even since it is the product of two even characters. Thus, applying Lemma 2.3.2 results in

M =
∑

χ (mod d)
χ even

2
∑
m,n≥1

χ(m)ψ(m)χ(n)ψ(n)√
mn

V

(
mn

q

)
. (2.39)

As a common trick to detect the parity of a character, observe that

χ(1) + χ(−1)

2
=


1, χ is even

0, χ is odd
. (2.40)

Hence, it follows that

M =
∑
±

∑
m,n≥1

ψ(m)ψ(n)√
mn

V

(
mn

q

) ∑
χ (mod d)

χ(m)χ(±n). (2.41)

Finally, using the orthogonality relation for Dirichlet characters, we may conclude the proof.

In the course of proving both Theorem 1.1.1 and Theorem 1.1.2, it will be necessary to explain
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where each main term comes from. For instance, the subsequent lemma shows where D in (1.5)

originates from.

Lemma 2.3.4. Let q be a positive integer, and let V be as defined in (2.35). Then

∑
(n,q)=1

1

n
V

(
n2

q

)
=
ϕ(q)

q

[
1

2
log(q) + γ0 + γ′(1/2) + θ(q)

]
+O(q−1/2+ε), (2.42)

where γ0 is Euler’s constant.

Proof. Applying the definition of V gives us

∑
(n,q)=1

1

n
V

(
n2

q

)
=

1

2πi

∫
(1)

ζq(1 + 2s)qs
G(s)

s

γ(1/2 + s)2

γ(1/2)2
ds, (2.43)

where ζq(u) = ζ(u) ·
∏
p|q

(
1− 1

pu

)
. To evaluate this asymptotically, we want to shift the contour

to the line (−1/2 + ε). We will pick up a residue at s = 0 which we can calculate by computing

the Laurent expansion of each factor in the integrand. Firstly,

ζ(1 + 2s) =
1

2s
+ γ0 +O(s). (2.44)

Secondly, denote ηq(s) =
∏
p|q

(
1− 1

p1+2s

)
. Then ηq(0) =

∏
p|q

(
1− 1

p

)
=
ϕ(q)

q
, and by loga-

rithmic differentiation,
η′q
ηq

(0) = 2
∑
p|q

log(p)

p− 1
= 2θ(q). Hence,

ηq(s) = ηq(0)

(
1 + s

η′q(0)

ηq(0)
+O(s2)

)
(2.45)

=
ϕ(q)

q

(
1 + 2sθ(q) +O(s2)

)
. (2.46)

We also have that

qs = 1 + s log(q) +O(s2) (2.47)
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and
G(s)

s
=

1

s
+O(s) (2.48)

since G is even and G(0) = 1. Lastly,

γ(1/2 + s)2

γ(1/2)2
= 1 + 2sγ′(1/2) +O(s2). (2.49)

Combining all of these Laurent expansions, we can find the Laurent expansion of the integrand

in (2.43) about s = 0. We can then find the coefficient of the s−1 term, this being the residue at

s = 0. After shifting the contour to the line (−1/2 + ε), we can trivially bound the integral by

O(q−1/2+ε), thus concluding the proof.
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3. PROOF OF THEOREM 1.1.2

The focus of this section will be proving Theorem 1.1.2. The reason for passing over Theorem

1.1.1 is that the proof is very similar, except in some ways which make it simpler, as will be

outlined in Section 4.1. Likewise, the proof of Theorem 1.1.3 will essentially use a subset of the

tools used to prove Theorem 1.1.2, so we will only sketch a proof in Section 4.2.

3.1 Diagonal Term

Since d2 � q implies that d ≺ q, we may apply Lemma 2.3.3 to

M =M(ψ) :=
∑

χ (mod d)
χ even

|L(1/2, χ · ψ)|2, (3.1)

which will immediately bring us to

M = ϕ(d)
∑
±

∑
m≡±n (mod d)

(mn,q)=1

ψ(m)ψ(n)√
mn

V

(
mn

q

)
. (3.2)

As per the law of trichotomy, we will decomposeM into three terms:

M =Mm=n +Mm>n +Mm<n, (3.3)
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where

Mm=n := ϕ(d)
∑
±

∑
n≡±n (mod d)

(n,q)=1

1

n
V

(
n2

q

)
, (3.4)

Mm>n =Mm>n(ψ) := ϕ(d)
∑
±

∑
m>n≥1

m≡±n (mod d)

ψ(m)ψ(n)√
mn

V

(
mn

q

)
, (3.5)

Mm<n =Mm<n(ψ) := ϕ(d)
∑
±

∑
n>m≥1

m≡±n (mod d)

ψ(m)ψ(n)√
mn

V

(
mn

q

)
. (3.6)

Lemma 3.1.1. Let q be a positive odd integer and d be a positive integer such that d � q. Then

Mm=n =
ϕ(d)

2

ϕ(q)

q
[log(q) + 2(γ0 + γ′(1/2)) + 2θ(q)] +O(dq−1/2+ε). (3.7)

Proof. Observe that we cannot simultaneously have n ≡ −n (mod d) and (n, q) = 1 since q is

odd and d has all of the same prime factors as q. Therefore, the “diagonal term” contribution from

m = n gives

Mm=n = ϕ(d)
∑

(n,q)=1

1

n
V

(
n2

q

)
. (3.8)

Applying Lemma 2.3.4 will conclude the proof.

Referring back to D from (1.5), note that it has just been revealed that

c0 = 2(γ0 + γ′(1/2)). (3.9)

3.2 Remaining Setup

As for the remaining main term and error terms, let’s focus on the case where m > n since

interchanging m and n amounts to only a conjugation in the character ψ. That is to say, we have

the symmetry

Mm<n(ψ) =Mm>n

(
ψ
)
. (3.10)
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Applying a dyadic partition of unity to (3.5) results in

Mm>n =
∑∑
M,Ndyadic

ϕ(d)√
MN

∑
±

∑
m>n≥1

m≡±n (mod d)

ψ(m)ψ(n)WM,N(m,n) (3.11)

where

WM,N(m,n) =

√
MN

mn
V

(
mn

q

)
η
(m
M

)
η
( n
N

)
(3.12)

with W (j,k)(m,n)�j,k M
−jN−k and supp(WM,N(m,n)) ⊆ [M, 2M ]× [N, 2N ].

Let’s first consider the terms with m ≡ n (mod d), that is

M+
m>n :=

∑∑
M,Ndyadic

ϕ(d)√
MN

∑
m>n≥1

m≡n (mod d)

ψ(m)ψ(n)WM,N(m,n). (3.13)

Thus, we may parametrize m = n + dl with l ≥ 1 since m > n. Applying this substitution, we

denote

B+
m>n(M,N) :=

∑
l≥1

∑
n≥1

ψ(n+ dl)ψ(n)WM,N(n+ dl, n), (3.14)

so that

M+
m>n =

∑∑
M,Ndyadic

ϕ(d)√
MN

B+
m>n(M,N). (3.15)

3.3 Off-diagonal Terms When Far Apart

We will eventually split the dyadic summations ofM+
m>n into two ranges depending on whether

M and N are nearby or far apart. These ranges will be defined in Section 3.5, but in the meantime,

we will develop two different methods, each of which we will be applied in one of the two ranges.

Let’s start with the method which will be useful when M and N are far apart.

We wish to apply Poisson summation to the outer sum of B+
m>n(M,N). However, first we will
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observe some properties of the function

W+
n,d(l) := WM,N(n+ dl, n), (3.16)

namely that

supp(W+
n,d(l)) ⊆

[
M − n
d

,
2M − n

d

]
(3.17)

and

W (j)(l)�j

(
M

d

)−j
. (3.18)

Once we apply Poisson summation, we will end up with the Fourier transform of this W function,

so let’s now record some properties of Ŵ for future use.

Proposition 3.3.1. Let q and A be positive integers. If W (x) is a function with support in an

interval of length A that satisfies W (j)(x) �j A
−j , then

∣∣∣Ŵ (x)
∣∣∣ � A and Ŵ (x) decays rapidly

for x� qε

A
and any ε > 0.

These properties follow directly from integration by parts and the given hypotheses, so the

proof will be omitted. Now, let’s set our goal for this section.

Lemma 3.3.2. With B+
m>n(M,N) as defined in (3.14), we have

B+
m>n(M,N) = A+

m>n(M,N) +O

(
Nq1/2+ε

d

)
, (3.19)

where

A+
m>n(M,N) =

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ+
n,d

(
−bψd
nq

)
. (3.20)

Proof. First, reversing the order of summation in (3.14) and applying Poisson summation in the
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variable l gives us

B+
m>n(M,N) =

∑
n≥1

ψ(n)

d
q

∑
j∈Z

∑
u (mod q

d
)

ψ(n+ du) e

(
dju

q

)
Ŵ+
n,d

(
dj

q

) . (3.21)

Scaling u by n results in

B+
m>n(M,N) =

d

q

∑
n≥1

∑
j∈Z

(n,q)=1

Ŵ+
n,d

(
dj

q

) ∑
u (mod q

d
)

ψ(1 + du) e

(
djnu

q

)
, (3.22)

where the innermost sum can be recognized as Sq,d(ψ, jn) from (2.27). Hence, applying Lemma

2.3.1 yields

B+
m>n(M,N) =

(
−2aψ
q/d2

)
εq/d2

d
√
q

∑
n≥1

∑
j 6=0

jn≡−aψ (mod d)

Ŵ+
n,d

(
dj

q

)
e

(
2aψ(jn+ aψ)2

q

)
, (3.23)

where the condition (n, q) = 1 is now accounted for by jn ≡ −aψ (mod d). Since aψ ∈ Z/(q/d)Z

and d| q
d
, let aψ ≡ bψ (mod d) for bψ ∈ Z/dZ such that

0 < |bψ| <
d

2
, (3.24)

where the inequalities can be strict thanks to Lemma 2.2.10. The contribution from jn = −bψ

gives us A+
m>n(M,N), while we will use ET to denote the remaining terms. Thus, we currently

have

|ET | ≤ d
√
q

∑
n≥1

∑
j 6=0

jn≡−aψ (mod d)
jn6=−bψ

∣∣∣∣Ŵ+
n,d

(
dj

q

)∣∣∣∣ . (3.25)

Recalling (3.17) and (3.18), Proposition 3.3.1 tells us that the overall contribution to ET from

|j| > q1+ε

M
can easily be accounted for by O (q−2022). We also have that the variable n naturally

satisfies n � N . Therefore, if we let k = jn, then the non-negligible contribution comes from

|k| � Nq1+ε

M
, and for each k, the number of ways to factor k = jn 6= 0 is at most kε′ ≤ qε. Hence,
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applying the bound from Proposition 3.3.1, we arrive at

ET � q−2022 + qε

(
M
√
q

∑
0<|k|�Nq1+ε

M
k≡−aψ (mod d)

k 6=−bψ

1

)
� Nq1/2+ε

d
. (3.26)

At (3.13), we began considering only the terms with m ≡ n (mod d). If we similarly define

M−
m>n :=

∑∑
M,Ndyadic

ϕ(d)√
MN

∑
m>n≥1

m≡−n (mod d)

ψ(m)ψ(n)WM,N(m,n), (3.27)

and parametrize m = −n+ dl so that

M−
m>n =

∑∑
M,Ndyadic

ϕ(d)√
MN

B−m>n(M,N), (3.28)

with

B−m>n(M,N) =
∑
l≥1

∑
n≥1

ψ(−n+ dl)ψ(n)WM,N(−n+ dl, n), (3.29)

then it’s just a matter of bookkeeping to see that a very similar result is possible. This time,

W−
n,d(l) := WM,N(−n+ dl, n) (3.30)

has the same derivative bounds and has support in an interval of the same length as W+
n,d(l), so

Proposition 3.3.1 will have the same effect, and when we apply Lemma 2.27 this time, it will be to

Sq,d(ψ,−jn). Therefore, it is without proof that we state the following lemma.

Lemma 3.3.3. With B−m>n(M,N) as defined in (3.29), we have

B−m>n(M,N) = A−m>n(M,N) +O

(
Nq1/2+ε

d

)
, (3.31)
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where

A−m>n(M,N) =

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ−
n,d

(
bψd

nq

)
. (3.32)

3.4 Off-diagonal Terms When Nearby

Returning to (3.14), we now wish to consider the complementary range where M and N are

nearby. To do this, we’ll first define the function

W+
dl (n) := WM,N(n+ dl, n), (3.33)

observing that

supp(W+
dl (n)) ⊆ [N, 2N ] (3.34)

and

W (j)(n)�j N
−j. (3.35)

Now, let’s state our objective for this section.

Lemma 3.4.1. With B+
m>n(M,N) as defined in (3.14), we have

B+
m>n(M,N)� qε

(
Mq1/2

d3/2
+
M1/4N

q1/4

)
. (3.36)

Proof. Applying Poisson summation to (3.14) in the variable n gives us

B+
m>n(M,N) =

∑
l≥1

1

q

∑
k∈Z

∑
u (mod q)

ψ(u+ dl)ψ(u) e

(
ku

q

)
Ŵ+
dl

(
k

q

) (3.37)

=
1

q

∑
l≥1

∑
k∈Z

Ŵ+
dl

(
k

q

) ∑
u (mod q)

ψ(u+ dl)ψ(u) e

(
ku

q

)
. (3.38)

Recalling (3.34) and (3.35), Proposition 3.3.1 tells us that
∣∣∣Ŵ+

dl (x)
∣∣∣ � N and Ŵ+

dl (x) decays
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rapidly for x � qε

N
. Thus, the overall contribution to B+

m>n(M,N) from |k| > q1+ε

N
can be

accounted for byO (q−2022). Applying the bound for Ŵ+
dl and restricting our summations simplifies

things to

B+
m>n(M,N)� q−2022 +

N

q

∑
1≤l�M

d

∑
0≤|k|� q1+ε

N

∣∣∣∣∣∣
∑

u (mod q)

ψ(u+ dl)ψ(u) e

(
ku

q

)∣∣∣∣∣∣ , (3.39)

since the variable l naturally satisfies l � M
d

, just as m � M . The innermost sum can be

recognized as S(q;ψ, dl, k) from (2.1). Thanks to a symmetry in both l and k, we may apply

Lemma 2.1.2, first extracting the k = 0 term and then bounding the rest. This results in

B+
m>n(M,N)�MNq−1+ε +

N

q

∑
1≤|l|�M

d

∑
1≤|k|� q1+ε

N

∣∣∣∣∣∣
∑

u (mod q)

ψ(u+ dl)ψ(u) e

(
ku

q

)∣∣∣∣∣∣ (3.40)

� qε
(
Mq1/2

d3/2
+
M1/4N

q1/4
+
MN

q

)
. (3.41)

Finally, since M ≤ q, we have that MN
q
≤ M1/4N

q1/4
, so we can drop the last term.

Out of a convenience which will become evident in Section 3.5, we’d like to includeA+
m>n(M,N)

in this previous result, in spite of the fact that it does not naturally manifest using the methods of

this section.

Lemma 3.4.2. With B+
m>n(M,N) as defined in (3.14), we have

B+
m>n(M,N) = A+

m>n(M,N) +O

(
qε
(
Mq1/2

d3/2
+
M1/4N

q1/4

))
, (3.42)

where

A+
m>n(M,N) =

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ+
n,d

(
−bψd
nq

)
. (3.43)
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Proof. Notice that

|A+
m>n(M,N)| ≤ d

√
q

∑
n|bψ

∣∣∣∣Ŵ+
n,d

(
−bψd
nq

)∣∣∣∣ . (3.44)

Recalling from (3.17), (3.18), and Proposition 3.3.1 that
∣∣∣Ŵ+

n,d

(
−bψd
nq

)∣∣∣� M
d

, we get that

A+
m>n(M,N)� qε

(
M

q1/2

)
(3.45)

since σ0(x) � xε and bψ < q. Finally, observe that d2 � q implies d ≤ q1/2, so we will always

have that M
q1/2

< Mq1/2

d3/2
. Therefore, it is a valid choice to add A+

m>n(M,N) to the conclusion of

Lemma 3.4.1, thus concluding this proof.

Just like last time, we can follow through the proofs of Lemmas 3.4.1 and 3.4.2 accounting for

the negative in B−m>n(M,N). We would define

W−
dl (n) := WM,N(−n+ dl, n), (3.46)

which has the same derivative bounds and has support in an interval of the same length as W+
dl (n),

and we’d instead recognize S(q;ψ,−dl, k) when applying Lemma 2.1.2. Therefore, we will again

state this similar lemma without proof.

Lemma 3.4.3. With B−m>n(M,N) as defined in (3.29), we have

B−m>n(M,N) = A−m>n(M,N) +O

(
qε
(
Mq1/2

d3/2
+
M1/4N

q1/4

))
, (3.47)

where

A−m>n(M,N) =

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ−
n,d

(
bψd

nq

)
. (3.48)

26



3.5 CombiningM+
m>n andM−

m>n

As defined, and as the notation should suggest,

Mm>n =
∑
±

M±
m>n. (3.49)

Then it’s also true that

Mm>n =
∑∑
M,Ndyadic

ϕ(d)√
MN

∑
±

B±m>n(M,N). (3.50)

However, before discussing howM+
m>n andM−

m>n will combine, we will first need to focus on a

smaller piece of the puzzle.

Lemma 3.5.1. With W+
n,d(l) as defined in (3.16) and W−

n,d(l) as defined in (3.30), we have that

∑∑
M,Ndyadic

1√
MN

∑
n|bψ

(
Ŵ+
n,d

(
−bψd
nq

)
+ Ŵ−

n,d

(
bψd

nq

))
=

√
q

d

e
(
− bψ

q

)
2

σ0(|bψ|)√
|bψ|

. (3.51)

Proof. Let

W =
∑∑
M,Ndyadic

1√
MN

∑
n|bψ

(
Ŵ+
n,d

(
−bψd
nq

)
+ Ŵ−

n,d

(
bψd

nq

))
. (3.52)

Retracing the definitions from (3.16) and (3.30) back to (3.12), we have

W±
n,d(l) = WM,N(±n+dl, n) =

√
MN

(±n+ dl)n
V

(
(±n+ dl)n

q

)
η

(
±n+ dl

M

)
η
( n
N

)
. (3.53)

After applying the Fourier transforms and evaluating the dyadic partition of unity, we arrive at

W =
∑
n|bψ

∫ ∞
−n/d

1√
(n+ dy)n

V

(
(n+ dy)n

q

)
e

(
bψdy

nq

)
dy

+
∑
n|bψ

∫ ∞
n/d

1√
(−n+ dy)n

V

(
(−n+ dy)n

q

)
e

(
−bψdy

nq

)
dy. (3.54)
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We next scale y by n in both integrals to produce

W =
∑
n|bψ

∫ ∞
−1/d

1√
1 + dy

V

(
n2(1 + dy)

q

)
e

(
bψdy

q

)
dy

+
∑
n|bψ

∫ ∞
1/d

1√
−1 + dy

V

(
n2(−1 + dy)

q

)
e

(
−bψdy

q

)
dy. (3.55)

We now make the substitution qx = 1+d ·y in the first integral and the substitution qx = −1+d ·y

in the second, resulting in

W =

√
q

d
e

(
−bψ
q

) ∑
n|bψ

∫ ∞
0

V (n2x) (e (bψx) + e (−bψx))
dx√
x
. (3.56)

Applying the definition of V (x) (found in (2.35)) and reversing the order of integration gives

W =

√
q

d
e

(
−bψ
q

) ∑
n|bψ

∫ ∞
0

(
1

2πi

∫
(1)

G(s)

s

γ(1/2 + s)2

γ(1/2)2
(n2x)−sds

)
(e (bψx) + e (−bψx))

dx√
x

(3.57)

=

√
q

2πid
e

(
−bψ
q

) ∑
n|bψ

∫
(1)

G(s)

s

γ(1/2 + s)2

γ(1/2)2
n−2s

(∫ ∞
0

x−s (e (bψx) + e (−bψx))
dx√
x

)
ds.

(3.58)

We can shift the contour of the outer integral to the line (1/4) so that −1
2
< <(s) < 1

2
, allowing us

to apply Corollary 2.1.6 and resulting in

W =

√
q

πid
e

(
−bψ
q

) ∑
n|bψ

∫
(1/4)

G(s)

s

γ(1/2 + s)2

γ(1/2)2
n−2s

Γ(1/2− s)
(2π|bψ|)1/2−s

cos

(
π

2

(
1

2
− s
))

ds.

(3.59)

Applying the definition of γ(s) (found in (2.36)) and rearranging some terms will produce

W =

√
qe
(
−bψ
q

)
πid
√

2π|bψ|Γ(1/4)2

∫
(1/4)

G(s)Γ

(
1

4
+
s

2

)2

Γ(1/2− s) cos
(π

4
− πs

2

)∑
n|bψ

(
2|bψ|
n2

)s
ds

s
.

(3.60)
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Using the formulas

Γ(2z) =
1√
2π

22z−1/2Γ(z)Γ(z + 1/2) (3.61)

for 2z = 1
2
− s,

Γ(z)Γ(1− z) =
π

sin(πz)
(3.62)

for z = 3
4
− s

2
, and

cos(z) = sin(z + π/2) (3.63)

for z = π
4
− πs

2
, it can be shown that this integrand is an even function, thanks as well to a symmetry

in the pairs of divisors of bψ. Therefore, twice the value of this integral is the same as 2πi times

the residue at s = 0. Therefore, since G(0) = 1 and Γ(1/2) =
√
π, this concludes the proof.

Using Lemmas 3.3.2, 3.3.3, 3.4.2, and 3.4.3, we will now begin to combine our cases.

Lemma 3.5.2. WithMm>n(ψ) as defined in (3.5), we have

Mm>n(ψ) = Am>n(ψ) +O

(
qε
(
q1/2

d1/4
+

d

q1/8

))
, (3.64)

where

Am>n(ψ) =

(
−2aψ
q/d2

)
εq/d2 ϕ(d)

e
(

2aψ(aψ−bψ)2−bψ
q

)
2

σ0(|bψ|)√
|bψ|

. (3.65)

Proof. We will begin by following through on something that was previously alluded to, that is

splitting the dyadic summations of Mm>n into two ranges depending on whether M and N are

nearby or far apart. We will now reveal that the cutoff for these two ranges is M = d1/2N .

Therefore, starting at (3.50), we have

Mm>n =
∑∑
M,Ndyadic
M≥d1/2N

ϕ(d)√
MN

∑
±

B±m>n(M,N) +
∑∑
M,Ndyadic
M<d1/2N

ϕ(d)√
MN

∑
±

B±m>n(M,N). (3.66)

Since we are in the case where m > n, the first term is when M and N are far apart, so we will

apply Lemmas 3.3.2 and 3.3.3, and the second term is when M and N are nearby, so we will apply
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Lemmas 3.4.2 and 3.4.3. Doing so will result in

Mm>n =
∑∑
M,Ndyadic
M≥d1/2N

ϕ(d)√
MN

{∑
±

A±m>n(M,N) +O

(
Nq1/2+ε

d

)}

+
∑∑
M,Ndyadic
M<d1/2N

ϕ(d)√
MN

{∑
±

A±m>n(M,N) +O

(
qε
(
Mq1/2

d3/2
+
M1/4N

q1/4

))}
. (3.67)

Distributing into each pair of curly brackets, it becomes clear that we can reassemble the dyadic

sums in the first terms while keeping them split in the second, yielding

Mm>n = Am>n +
∑∑
M,Ndyadic
M≥d1/2N

O

(
N1/2q1/2+ε

M1/2

)
+
∑∑
M,Ndyadic
M<d1/2N

O

(
qε
(
M1/2q1/2

N1/2d1/2
+

N1/2d

M1/4q1/4

))
,

(3.68)

where

Am>n =
∑∑
M,Ndyadic

ϕ(d)√
MN

∑
±

A±m>n(M,N). (3.69)

It remains to be shown that Am>n = Am>n(ψ), but first we will choose the summands which

respectively maximize each of the dyadic sums in (3.68), giving us

Mm>n = Am>n +O

(
qε
(
q1/2

d1/4
+

d

q1/8

))
, (3.70)

recalling for the last term that m > n and MN � q. Now, focusing on Am>n, we currently have

Am>n =
∑∑
M,Ndyadic

ϕ(d)√
MN

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ+
n,d

(
−bψd
nq

)

+
∑∑
M,Ndyadic

ϕ(d)√
MN

(
−2aψ
q/d2

)
εq/d2

d
√
q
e

(
2aψ(aψ − bψ)2

q

)∑
n|bψ

Ŵ−
n,d

(
bψd

nq

)
. (3.71)

Therefore, applying Lemma 3.5.1 will show that Am>n = Am>n(ψ), thus concluding the proof.
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Recall the symmetry described in (3.10). By this simple fact, we get the following lemma for

free.

Lemma 3.5.3. WithMm<n(ψ) as defined in (3.6), we have

Mm<n(ψ) = Am<n(ψ) +O

(
qε
(
q1/2

d1/4
+

d

q1/8

))
, (3.72)

where

Am<n(ψ) =

(
−2aψ
q/d2

)
εq/d2 ϕ(d)

e
(

2aψ(aψ−bψ)
2−bψ

q

)
2

σ0(|bψ|)√
|bψ|

. (3.73)

3.6 CombiningMm>n andMm<n

From Lemma 2.2.9, it follows that the general relationship between aψ and aψ is that

aψ ≡ −aψ (mod q/d). (3.74)

However, recalling the range of aψ fixed back in (1.3), we will actually have

aψ = −aψ. (3.75)

These same properties will be inherited by bψ thanks to the range fixed in (3.24), so crucially,

bψ = −bψ. (3.76)

Thus, from Lemmas 3.5.2 and 3.5.3, we get that

Mm>n +Mm<n = A′ +O

(
qε
(
q1/2

d1/4
+

d

q1/8

))
, (3.77)
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where

A′ =
(
−2aψ
q/d2

)
εq/d2 ϕ(d)

e
(

2aψ(aψ−bψ)2−bψ
q

)
2

σ0(|bψ|)√
|bψ|

+

(
2aψ
q/d2

)
εq/d2 ϕ(d)

e
(
bψ−2aψ(aψ−bψ)2

q

)
2

σ0(|bψ|)√
|bψ|

.

(3.78)

Since any odd square must be 1 (mod 4), q ≡ q/d2 (mod 4), so

εq = εq/d2 . (3.79)

On the other hand, the Jacobi symbol
(
·
p

)
is multiplicative, and

(
−1
p

)
= ε2p, so

(
−2aψ
q/d2

)
=

(
−1

q/d2

)(
2aψ
q/d2

)
= ε2q/d2

(
2aψ
q/d2

)
= ε2q

(
2aψ
q/d2

)
. (3.80)

Therefore, if q ≡ 1 (mod 4), then

A′ =
(

2aψ
q/d2

)
ϕ(d)

e
(
bψ−2aψ(aψ−bψ)2

q

)
+ e

(
− bψ−2aψ(aψ−bψ)2

q

)
2

σ0(|bψ|)√
|bψ|

(3.81)

=

(
2aψ
q/d2

)
ϕ(d) cos

(
2π(bψ − 2aψ(aψ − bψ)2)

q

)
σ0(|bψ|)√
|bψ|

. (3.82)

Referring back to (1.9), this shows that

c1 =

(
2aψ
q/d2

)
. (3.83)

If instead q ≡ 3 (mod 4), then

A′ =
(
−2aψ
q/d2

)
ϕ(d)

ie
(
bψ−2aψ(aψ−bψ)2

q

)
− ie

(
− bψ−2aψ(aψ−bψ)2

q

)
2

σ0(|bψ|)√
|bψ|

(3.84)

=

(
2aψ
q/d2

)
ϕ(d) sin

(
2π(bψ − 2aψ(aψ − bψ)2)

q

)
σ0(|bψ|)√
|bψ|

. (3.85)
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Referring again back to (1.9), this shows that

c2 =

(
2aψ
q/d2

)
. (3.86)

Thus, the A′ we found here perfectly matches the A′ in (1.9). Therefore, combining this with

Lemma 3.1.1, we have proved Theorem 1.1.2.
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4. SKETCHING THE PROOFS OF REMAINING THEOREMS

4.1 A Sketch of the Proof of Theorem 1.1.1

In the proof of Theorem 1.1.1, the earliest difference in comparison to the proof of Theo-

rem 1.1.2 is in Section 3.3. The condition that q � d2 means that, after applying the Postnikov

formula from Lemma 2.2.9 in Lemma 2.3.1, we can use statement (1) of Lemma 2.2.8 rather

than statement (2). This will eliminate the need for Lemma 2.1.4, and we will instead get that

jn ≡ −aψ (mod q/d). Thus, since q
d
≤ d in this theorem, there is no need to define bψ. From here

on out, the answer will look a little different, but the methods are the same, if not simpler. The new

cutoff in the proof of Lemma 3.5.2 is Mq1/2 = Nd3/2, andMm>n combines withMm<n without

breaking into cases. This concludes the sketch of this proof.

4.2 A Sketch of the Proof of Theorem 1.1.3

Because Theorem 1.1.3 does not fix the parity of ψ and sums over all χ from the beginning, we

would never need to apply the trick in (2.40). Thus, we would not have the “ ± ” to worry about

throughout the proof, though the function V (x) in Lemma 2.3.2 would now depend on the parity

of χ · ψ. Lemma 3.1.1 still holds, but since we only care about bounding the second moment, a

corollary would be that

Mm=n � dqε. (4.1)

From Lemma 3.4.1, we know how to bound B+
m>n(M,N) and thusM+

m>n(ψ) in (3.15), that is

M+
m>n(ψ) = qε

∑∑
M,Ndyadic

O

(
M1/2q1/2

N1/2d1/2
+

N1/2d

M1/4q1/4

)
. (4.2)

This bound performs best when M and N are balanced, so in the proof of Theorem 1.1.3, we can

decide in the beginning to only apply one dyadic partition of unity and choose the summand which

maximizes that dyadic sum, which amounts to letting M = N = q1/2 here. Therefore, since we
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won’t have separate cases for “± ” in this proof, we have

Mm>n(ψ)� qε
(
q1/2

d1/2
+

d

q1/8

)
, (4.3)

which when combined with (4.1) and the symmetry (3.10), concludes the sketch of this proof.
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