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ABSTRACT 

Effective drought monitoring relies upon accurate long-term estimates of 

precipitation. Stage IV precipitation estimates provide a high spatial and temporal 

resolution that is effective for short-term applications, but in long-term periods useful for 

drought monitoring, compounding biases can reduce its accuracy. Errors in the dataset 

include beam blockage, mean field and range dependent, and two-dimensional biases. 

This study improves upon a three-step bias adjustment methodology that corrects for the 

Stage IV biases east of the Rocky Mountains, adds a fourth step to remove 

discontinuities caused by independent analyses, determines an optimal interpolation 

method for adjusting the data, and assesses the performance of each step within different 

regions and accumulation periods. Beam blockage is identified using image filtering and 

ridge detection software, then adjusted using unblocked data. Mean field and range 

dependent biases are adjusted using radar estimates, normal precipitation, and rain 

gauges. Discontinuities are adjusted with an inverse distance weighting (IDW) method 

that blends the data. Two-dimensional biases are adjusted using gauge-radar biases that 

are interpolated to the entire precipitation field. Extensive testing of the performance is 

done using a combination of data withholding and comparison of radar estimates to 

gauges.  

The Stage IV bias adjustments generally result in lower root mean square error 

(RMSE), median absolute error (MAE) and median bias (MB) compared to gauges. The 

largest improvements are seen in gauge-based adjustments, which include the mean field 

and range dependent and two-dimensional steps, and in regions where there are fewer 
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gauges and greater variations in seasons. The smallest improvements and cases of 

increased error arise in radar-based adjustments, which include the beam blockage and 

discontinuity adjustment steps. When testing interpolation methods, IDW is optimal 

versus inverse distance weighting squared (IDW2) and ordinary kriging (OK) for its 

lower error and computational expense.  
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1. INTRODUCTION  

 

Effective drought monitoring is of critical importance to the public because it can 

allow decision makers to respond quickly and reduce drought impacts (NIDIS 2006). A 

crucial aspect of improving monitoring is precipitation estimation, but it can be 

inaccurate due to low and uneven rain gauge spatial resolution and radar estimation 

biases and errors. Combining gauge observations with radar estimates can improve 

quantitative precipitation estimates (QPE) used in drought monitoring and overcome the 

low spatial resolution of gauges. Additionally, satellites can aid in filling in data gaps. 

However, wind, tipping errors, and under catchment in gauges, precipitation type errors 

and temporal resolution in satellites, and beam blockage, mean field, range dependent, 

and two-dimensional biases reduce the accuracy of precipitation estimations. This study 

improves upon a three-step methodology by McRoberts and Nielsen-Gammon 

(McRoberts and Nielsen-Gammon 2017, McRoberts 2014) to adjust for radar biases. 

Additionally, extensively quality controlled rain gauges and an optimal interpolation 

method are used to combine the radar and gauge estimates. The result is an improved 

QPE for use in drought monitoring.  

  This study uses Stage IV precipitation estimates east of the Rocky Mountains as 

the QPE data to improve upon, as well as quality controlled (QC) rain gauges to 

compare and aid in bias correction adjustments. Then, the improved bias correction 

methodology is tested at each step in order to quantify the improvements and optimize 

the input parameters. The steps for the bias corrections include a beam blockage, mean 
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field and range dependent, radar domain discontinuity, and two-dimensional step. For 

the radar-based adjustments, which are the beam blockage and radar domain 

discontinuity steps, the radar estimates are compared with corresponding rain gauges to 

assess performance. For the gauge-based steps, the mean field and range dependent and 

two-dimensional steps, data withholding is used to assess performance. Additionally, in 

the two-dimensional step, a series of data withholding tests are run to determine an 

optimal interpolation method and parameters to use in its adjustment between ordinary 

kriging (OK), inverse distance weighting (IDW), and inverse distance weighting squared 

(IDW2). With the optimized steps of the correction methodology, the Stage IV data is 

adjusted. Using the output, seasonal, one-year and three-year accumulation periods are 

tested in regions of high and low topographic relief, different climate characteristics, and 

high and low gauge observation density in order to quantify the performance of the 

correction methodology in different conditions. The results of this study demonstrate 

that the bias correction methodology improves QPE data, and the performance varies 

with respect to accumulation period, region, topographical features, and gauge 

observation density. The benefits of these improvements and tests can help improve QPE 

data for drought monitoring.  
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2. BACKGROUND AND HYPOTHESES 

Drought is a recurring natural disaster that can devastate civilizations and 

ecosystems with a deficit of rainfall. The American Meteorological Society describes 

drought as “A period of abnormally dry weather sufficiently long enough to cause a 

serious hydrological imbalance” (AMS 2019). Its occurrences can bring water shortages, 

agricultural damages, ecological disasters, and costly economic losses. Five common 

categories of drought that exist are meteorological, hydrological, agricultural, 

socioeconomic, and ecosystem drought. Meteorological drought is a result of a reduction 

in precipitation over a prolonged period, hydrological drought is when surface or 

subsurface water supplies are reduced over a prolonged precipitation deficit, agricultural 

drought is a result of a dryness at a critical time in the growing season, socioeconomic 

drought is a result of supply and demand changes related to drought, and ecological 

drought is when ecosystems are harmed due to drought (Hao et al. 2017, Heim 2002). 

Different drought indices exist for each category in order to provide information on 

drought conditions. Index definitions can vary for different drought types, but 

precipitation deficits are a prominent feature of each. As the climate warms, droughts 

will become more frequent and prolonged, which increases the need for more reliable 

and timely warnings in order for decision makers to adequately respond and aid in 

recovery (Mukherjee et al. 2018, Hayes et al. 2012). In order to improve the reliability 

and timeliness of drought monitoring, the accuracy of precipitation measurements must 

be improved. The work in this project will help improve drought monitoring by 
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correcting Stage IV estimated precipitation datasets through a series of radar bias 

corrections.   

 Numerous drought monitoring indices are already available for quantifying 

severity and impact, but they are subject to different definitions of drought depending on 

the index. Due to the different types and broad definition of drought, it is difficult to 

have a universal drought index (Heim 2002). For example, the Palmer drought severity 

index (PDSI) and the Z index can be derived from the same data, but the PDSI may be 

better suited for hydrological drought while the Z index performs better for 

meteorological and agricultural drought (Quiring 2009). In addition to indices, 

assessment and evolution of drought can be monitored using land surface models (LSM). 

Soil moisture, evapotranspiration, precipitation, and streamflow are examples of drought 

related parameters that can be simulated with LSMs. In order to effectively detect and 

quantify drought, these parameters must be accurately depicted.  

Satellites and their instruments are an invaluable observation source for aiding in 

drought monitoring because they can view drought impacts and measure moisture-

related variables. They are able to provide near real-time monitoring, consistent records, 

and high spatial resolution across the globe (AghaKouchak 2015). Satellites measure a 

wide variety of variables including evapotranspiration, soil moisture, precipitation, snow 

cover, vegetation, surface temperature, evaporation, water storage, and land cover 

(AghaKouchak 2015). These measurements can be used as drought indicators and 

assimilated into models. Commonly used satellites include the Soil Moisture Active 

Passive (SMAP), Gravity Recovery and Climate Experiment (GRACE), and the Soil 
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Moisture and Ocean Salinity (SMOS). SMAP retrievals are able to provide top layer soil 

moisture estimates and soil-moisture-based drought indices (Mladenova et al, 2019, Liu 

et al. 2017). However, SMAP performance may vary with respect to different climate 

regimes and vegetation, which can lead to inconsistent drought monitoring (Mishra et al. 

2017). GRACE is effective at monitoring terrestrial water storage and detecting drought 

occurrence and severity, but its spatial and temporal resolution makes it difficult to find 

flash-drought and local variations (Li et al. 2019, Thomas et al. 2014, Houburg 2012). 

Finally, SMOS can determine changes in soil moisture from heavy precipitation well, 

but it is prone to errors in measuring light precipitation and drying too quickly after 

rainfall events (Blankenship et al. 2016, Shellito et al. 2016). These examples are just a 

few of the many pros and cons to satellite measurements for drought monitoring. As 

technology progresses, there will be an abundance of new and more accurate ways to 

classify drought (AghaKouchak 2015). 

In addition to satellite measurements, rain gauges and radar precipitation 

estimates are essential for drought monitoring. Rain gauges give in-situ observations 

while radars fill in gaps of information between the gauges. These methods are subject to 

numerous errors that can lead to inaccurate measurements. Rain gauges are prone to 

under catchment caused by wind, tipping losses, splashing, and mechanical errors 

(Legates 2000, Hunter 1996). Rain gauges are assumed to be “ground truth” because 

they directly measure rainfall, but since they are point estimates, they are not 

representative of spatially continuous data (Yilmaz et al. 2005). Errors in radar 

precipitation estimates are caused by beam blockage, range dependent and mean field 
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biases, improper Z-R relationships, hardware calibration, ground clutter, and bright 

banding (Jayakrishnan et al. 2004, Steiner et al. 1999, Ciach and Krajewski 1999). Radar 

estimated precipitation has high spatial resolution, but its values are derived from 

reflectivity-rain rate (Z-R) relationships, so estimates can vary based on the different 

relationships. An advantageous way to incorporate the “ground truth” of gauge 

observations and high spatial resolution of radars, as well as minimize each of their 

respective errors is through merging. Interpolation methods like kriging with external 

drift (Rabiei and Haberlandt 2015), kriging for uncertain data (Cecinati et al. 2017), as 

well as IDW (Foehn et al. 2018) can be used to combine gauges with radar data in order 

to increase precipitation estimate accuracy. Since drought can vary on local scales, 

successful drought monitoring depends on high spatial resolution measurements.  

The measurement data for drought variables are important for use in data 

assimilation systems, LSMs, and drought indices. For example, the North American 

Land Data Assimilation Phase II (NLDAS II) product is used as an input forcing dataset 

for LSMs in CONUS (Xia et al. 2012a, Xia et al. 2012b). Its forcing data is extensive, 

providing over 40 years of information at hourly intervals. The LSMs associated with it 

are Noah, Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and 

Mosaic. Most of the forcing data is derived from the North American Regional 

Reanalysis (NARR), which includes temperature, specific humidity, wind speed, surface 

pressure, incoming solar and longwave radiation, and precipitation (Xia et al. 2012a, Xia 

et al. 2012b). Limitations with NLDAS II include its coarse resolution with grid spacing 

of 15km, possible quality control issues with input rain gauges, improper blending with 



 

7 

 

NARR, and real-time latency. Reliability of LSMs and drought indices rely on 

meteorological data, so it is crucial that the forcing data is accurate. 

 Modeling relies on high quality input data. One of the weaknesses of this data is 

the depiction of high-resolution rainfall accumulation. Commonly, Stage IV quantitative 

precipitation estimates (QPE) made by National Centers for Environmental Prediction 

(NCEP) are used in modeling for its high spatial and temporal resolution. From 2002 to 

the present, Stage IV QPEs produce hourly and 6-hourly mosaicked maps 

from the 12 River Forecast Centers (RFC) at a spatial resolution of 4km, and they are 

made up of merged data from 140 radars and approximately 5500 rain gauges (Lin and 

Mitchell 2005).  The original Stage IV product was designed for assimilation into 

weather forecast models to improve precipitation forcing, but it is useful for other 

applications such as intercomparison to satellite QPE, flash flood forecasting, ecological 

applications, and drought monitoring (Eldardiry 2017, Nelson et al. 2016). Limitations 

of Stage IV data include tendencies to underestimate heavy and overestimate light 

rainfall (Westcott et al. 2008), have missing data and grid coverage errors leading to 

erroneously low values (Case et al. 2013), and contain the major radar biases including 

beam blockage, range dependent and mean field, and two-dimensional biases. Because 

Stage IV is mostly used for real-time and short-range flood analysis, its long-term biases 

and errors are often not strongly considered during the RFC QC phase. The biases are 

difficult to identify in the short term but can have severe impacts in long-term 

applications. The use of Stage IV in drought monitoring is challenging with these errors 

due to the nature of drought occurring on longer timescales.  
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 Beam blockage is one of the sources of error in Stage IV QPEs. This error is 

caused by an obstruction to the radar beam, which leads to a systematic underestimation 

of precipitation beyond the blockage along the beam. When there is a blockage in a radar 

domain and a beam hits it, the beam is scattered and absorbed at the obstacle, then the 

returned power from targets beyond the obstacle is diminished or nonexistent, which 

leads to the underestimated rainfall values (Krajewski et al. 2006). Beam blockages are 

most often caused by complex terrain, tall buildings, trees, water towers, and cell towers, 

and they generally occur at the lowest elevation angles (Overeem et al. 2009, Bech et al. 

2003). The lowest elevation angles of the radar beam provide the best estimates of 

precipitation, which makes it crucial to correct for these biases (Baeck and Smith 1998). 

In order to produce accurate Stage IV QPEs, beam blockages must be identified and 

corrected. 

 Mean field and range dependent biases are another common source of error for 

Stage IV QPEs. Mean field biases are caused by errors in radar calibration and 

inaccurate Z-R relationships. Radar calibration errors are a result of changes over time to 

the radar constant C related to components, such as the transmitter, receiver, and antenna 

system (Villarini and Krajewski 2010b). Errors caused by Z-R relationships are 

associated with mischaracterized drop size distributions within storms (Anagnostou et al. 

1998). Range dependent biases can be attributed to the vertical profile of reflectivity 

(VPR) effect, which is related to changes in precipitation intensity with height 

(Krajewski et al. 2011). As the beam height increases at longer ranges from the radar, 

hydrometeors with different properties can be sampled, which leads to different 



 

9 

 

estimates in surface precipitation. Range dependent errors can also be caused by 

attenuation, partial beam filling, and overshooting of low clouds at longer ranges 

(Villarini and Krajewski 2010a). Corrections to both mean field and range dependent 

errors can be done through comparison of the radar field and rain gauges.  

 Discontinuities at the boundaries of each radar domain can be an unintended 

consequence of the beam blockage and mean field and range dependent bias 

adjustments. These discontinuities occur because each radar domain is independently 

analyzed leading up to this point. For example, if one radar domain is adjusted 

downwards and the neighboring one is adjusted upwards away from each other, the grid 

cells that border each other will have a larger difference in precipitation estimates after 

the adjustments are performed. Visually, this creates a discontinuity that clearly shows a 

line between the two radar domains. In order to correct for this, the magnitude of the 

discontinuity is calculated, then the grid cells are either increased or decreased at an 

inverse distance depending on which side is higher or lower than the discontinuity. This 

correction is performed in this study.  

 Two-dimensional biases are another source of error within Stage IV QPEs. These 

errors occur because precipitation microphysics vary in space, where the Z-R 

relationship may perform better in certain situations than others. The errors are small in 

shorter accumulation periods but can be pronounced in longer ones. Additionally, 

independent analyses for each RFC and radar domain can further exacerbate two-

dimensional biases. In order to correct for the biases, the entire precipitation field is 
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considered rather than individual radar domains, and reliable gauge data is incorporated 

through the use of interpolation.  

 In order to correct for biases in Stage IV QPEs, a three-step correction 

methodology was developed by McRoberts and Nielsen-Gammon (McRoberts and 

Nielsen-Gammon 2017, McRoberts 2014). This methodology first detects and corrects 

for beam blockage that leads to an underestimation in precipitation amount. The 

detection is done by separating each radar domain into multiple annuli, fitting a low-pass 

Fourier series to long term QPEs in each annulus, and flagging cells that are largely 

different from their neighboring cells. If there is a dense area of flagged cells beyond a 

distance in a radar radial, the beam is considered to be blocked. This is corrected using 

radar estimated accumulations of unblocked nearby cells. The next step corrects for 

mean field and range dependent biases. This is done by calculating the observed bias 

between radar and rain gauges, then modeling these biases as a function of range for 

each radar. Cells are grouped according to distance from the radar, and a composite bias 

is calculated. A single model is made from the resulting calculations and takes the form 

of a simple linear fit. Then, the grid cells are adjusted accordingly. Finally, the 

methodology adjusts for residual two-dimensional biases that were not already 

accounted for in the other steps. The biases computed in the previous step are 

interpolated to the entire precipitation field using Ordinary Kriging, then the data are 

adjusted based on the interpolation. The results of this correction methodology give a 

new QPE in near real time that is more accurate and representative of the precipitation 

field. This can help improve drought monitoring because the datasets are high resolution 
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both spatially and temporally, and areas with sparse in-situ measurements are better 

estimated.  

For this study, adjustments are made to the three-step correction methodology in 

order to fix beam blockage identification and adjustment errors, remove radar domain 

discontinuities, and increase the efficiency of the mean field and range dependent and 

two-dimensional bias scripts. In the beam blockage identification algorithm, there are 

issues with the grid point flagging. Figure 2.1 shows two different Fourier series fits 

used for the flagging procedure within the KABR radar domain for the 36-month 

accumulation period ending December 2012. Annuli 3 and 13 represent the HRAP grid 

points and their percent of normal (PoN) values for all azimuth angles in the 30-39km 

and 130-139km annuli respectively. The Fourier fit for annulus 3 is a better 

approximation than at annulus 13. One reason for the difference in fits is that annulus 13 

 

Figure 2.1: Comparison between short-range annulus (left) and long-range annulus 
(right) and their Fourier fits and flagging. Improper flagging can occur due to less 
availability of grid points at longer ranges.  
 



 

12 

 

has gaps of available grid points in certain azimuth angles, such as the 0-30-, 130-170-, 

and 280–330-degree gaps. Certain azimuth angles may not contain grid points at further 

annuli because the radar domains are not circular. At longer ranges, this can cause 

certain azimuth angles to not have grid points within them. The wide gaps in data create 

a discontinuity that the Fourier series may improperly estimate. In a poor fit like in 

annulus 13, grid cells near the data gaps may be flagged for appearing anomalously low 

compared to the fit. This can lead to unblocked beams being flagged as blocked, and 

vice versa. Figure 2.2 shows the effects of improper flagging. The red circle in the left 

PoN image is the location of a beam blockage in the KABR domain. However, the 

yellow points in the right image are flagged grid points. If incorrect beams are flagged, 

the resulting corrections can increase the estimates at unblocked beams by a difference 

approximately equal to the distance from the Fourier fit to the erroneously flagged grid 

points. The adjustment to this step in the correction methodology addresses this by using  

 

Figure 2.2: Percent of Normal for KABR 36-month accumulation ending December 
2012. The circled area in red is a blocked beam, but the flagged beams are in yellow.  
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image filtering to find radar beam-like features, then applying an adjustment. In addition 

to increasing the efficiency of the mean field and range dependent step and the two-

dimensional step, a radar domain discontinuity adjustment is executed in between the 

two steps. The discontinuity corrections increase or decrease PoN values along each 

radar domain boundary in order to remove discontinuities that may exist. Finally, the 

two-dimensional step is tested using inverse distance weighting (IDW) and inverse 

distance weighting squared (IDW2) along with Ordinary Kriging (OK) to determine the 

best performing interpolation method to use in its adjustment. The final radar estimated 

precipitation analysis will ideally agree closely with the gauge estimates. This is an 

appropriate goal because gauge networks are made up of independent observations and 

thus, should be free of spatially dependent biases, which can help reduce the biases 

associated with Stage IV QPEs (McRoberts 2014). All of the steps and their changes will 

be discussed further in the methods section. 

 Most prior studies have focused on improving QPEs for the purpose of short-

term events, like flooding and weather forecasting. Little work has been done using the 

high spatial and temporal resolution benefits of Stage IV QPE for improving drought 

monitoring. The work in this study will evaluate how well each step in the three-step 

correction methodology by McRoberts and Nielsen-Gammon performs relative to raw 

Stage IV data. Additionally, evaluation of multiple interpolation methods will be 

performed for different QPE accumulation periods using the corrected data to determine 

the optimal interpolation method for the two-dimensional adjustment. The benefits of 

this analysis will be to better understand the performance of the bias correction methods, 
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and to quantitatively evaluate its performance on different time scales and interpolation 

methods. The applications of this will be useful for assimilation into drought models and 

monitors so that the input precipitation information is more accurate. The existing 

literature on Stage IV QPEs and drought monitoring motivates the testing of the 

following hypotheses:  

1. QPE data will be improved with extensively tested interpolation methods. 

2. Overall, Ordinary Kriging will perform better than Inverse Distance Weighting 

and Inverse Distance Weighting Squared. 

3. Regions with fewer gauges and greater topographic relief will benefit more from 

the corrections.  

4. Bias adjustments using gauge-based adjustments will perform better than those 

only using radar. 
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3. DATA AND METHODS 

 

3.1. Radar Data 

The NWS Stage IV QPE data are analyzed for the period of 2005 through 2020 

over the region east of -103°W in CONUS. This time period is selected because it is the 

full length of temporally complete data in which all steps of the bias correction can be  

 

Figure 3.1: The study area (gray) and radar domain boundaries (blue) for this study.  
 

applied. The western extent of the study region avoids the Rocky Mountains because the 

complex topography causes numerous cases of beam blockage in the low elevation 
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angles, and many stratiform rain or snow events could go undetected (Maddox et al. 

2002). Figure 3.1 shows the location and domains of all radars used in this study. All 

radar domains (blue lines) within the gray shaded region are adjusted and tested in this 

study. Because the KCYS, KPUX, and KFDX domains do not completely fit within the 

study area, the bias adjustment calculations are performed for their entire domains, and 

only the grid points that are east of -103°W are used. Additionally, the Parameter-

Elevation Regressions on Independent Slopes Model (PRISM) from 1981 to 2010 

climate normals are aggregated to 1 to 36-month totals as a comparison to the Stage IV 

QPE. Both the Stage IV and PRISM data are projected on the Hydrologic Rainfall 

Analysis Project (HRAP) coordinate system, which is a polar stereographic projection 

with an approximately 4-km resolution (Fulton et al. 1998). The radar estimated PoN is 

from the Stage IV QPE divided by the PRISM normal value at the corresponding HRAP 

grid point.  

3.2. Rain Gauge Data 

Rain gauges used in this study are selected based on reliability and data 

availability. Figure 3.2 shows the locations of every gauge that is used in this study. The 

gauges that are used are from the Weather-Bureau-Army-Navy (WBAN), Cooperative 

Observer Network (COOP), Federal Aviation Administration (FAA), World 

Meteorological Organization (WMO), International Civil Aviation Organization 

(ICAO), Global Historical Climatology Network (GHCN), and National Weather 

Service (NWS) networks. These networks are assumed to be reliable because they are 

frequently monitored and are quality controlled. The daily rainfall values for the gauges 
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are aggregated to create the same accumulation periods as the radar estimates of 1 to 36-

months. In order to compare the gauge accumulations to the radar estimates, each gauge 

is assigned to the HRAP grid ID for which they are located. Using this information, 

radar-gauge bias and gauge PoN are calculated for use in the bias adjustment 

methodology. To ensure that the bias adjustments can be compared accurately, extensive  

 

Figure 3.2: The locations of every gauge used in this study.  
 

quality control is performed in order to remove spurious values. The gauge quality 

control method uses information from both the gauges and Stage IV precipitation. Two 

equations are developed to determine the minimum and maximum allowable gauge PoN. 
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For a given gauge, the PoN is calculated and compared to the radar PoN at its respective 

grid point. Equation 1 calculates the minimum and equation 2 calculates the maximum 

threshold PoN for the gauge. The values q, a, r, and b are constants that are determined  

min 𝑃𝑜𝑁 = 𝑞 ∗ (𝑟𝑎𝑑𝑎𝑟 𝑃𝑜𝑁 − 𝑎)        (1) 

max 𝑃𝑜𝑁 = 𝑟 ∗ (𝑟𝑎𝑑𝑎𝑟 𝑃𝑜𝑁 + 𝑏)        (2) 

from testing. If the gauge PoN falls outside of this range, it is considered to be an outlier 

and dropped. These equations were developed by considering how the gauge and radar 

PoN should be approximately related. Since the gauges are the “ground truth” in this 

study, the equations account for variations above and below the radar PoN. However, the 

radar PoN values are used because it is reasonable to assume that the expected gauge 

value should be close to the radar value. The results and values of the constants are 

presented in section 3.4.  

3.3. Bias Adjustment Procedure 

The bias adjustment procedure is adjusted from the original methods presented 

by McRoberts and Nielsen-Gammon (McRoberts and Nielsen-Gammon 2017, 

McRoberts 2014). The necessary changes include an improved beam blockage detection 

algorithm, more efficient mean field and range dependent and two-dimensional 

adjustments, and a newly added radar domain discontinuity adjustment. The procedure 

starts with use of Python scripts to download the radar, rain gauge, and HRAP grid 

metadata. The data are then aggregated to monthly values because drought monitoring 

requires longer term data. Additionally, the gauge data is assigned the HRAP grid ID 

that it is located within. With the grid information, the gauge and radar values are paired 
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so that they can easily be compared. Once the sorting is complete, the beam blockage 

correction script is run. The algorithm detects, then corrects for beam blockage for all 

accumulation periods within every radar domain in the study area. Then, the beam 

blockage corrected data is run through the mean field and range dependent bias script. 

The mean field and range dependent biases are calculated on a seasonal basis, then 

adjusted for all accumulation periods. With this output, the radar domain discontinuity 

correction script is run. The goal of this step is to either increase or decrease the PoN 

values along radar domain boundaries in order to remove discontinuities that may exist 

at those locations. Finally, the beam blockage, mean field and range dependent, and 

radar domain discontinuity corrected QPEs are run through the two-dimensional bias 

script to account for any remaining biases in the data. This adjustment relies on 

optimally interpolated QC gauge data. Additionally, the two-dimensional step considers 

the precipitation field as a whole rather than individual radar domains. The results of the 

bias adjustment procedure create Stage IV datasets for 1-to-36-month accumulation 

periods. The output datasets for each step and time period are evaluated in this study. 

Step 1, the beam blockage correction methodology, first inputs the raw Stage IV 

36-month radar estimated accumulations at a given radar domain. The 36-month period 

is selected in order to minimize Type I and Type II errors (McRoberts 2014). Type I 

errors occur when low values of precipitation due to random variability in shorter time 

periods get mistaken with beam blockage. Type II errors occur when spatial variations 

versus precipitation amount is too large. A period of 36-months is optimal because it is 

long enough to overcome random variability in short time scales, but short enough to 
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account for possible changes with time. With this data, the grid points are sorted by 

ascending range from the radar and the azimuth angle is calculated for each point. From 

there, the grid point PoN is calculated, then converted to an image using scikit-image 

processing in Python. The goal of the image processing is to use ridge detection to find 

beam blockages. Ridge detection is able to select curves that are local maxima relative to 

neighboring pixels in an image (Sato et al. 1998). Multiple filters exist to detect different 

types of ridges, and for this study, Sato filtering is selected. The Sato filter has the ability 

to detect continuous, curvilinear ridges then calculate the fraction of the whole image 

that contains such features. Additionally, different smoothing factors ranging from 0.1 to 

10 can be applied to the ridge features. Through testing, the smoothing factor for this 

study is 0.5. The results of the testing are shown in section 4.1.  

In order to attempt to differentiate between potential beam blockage and noise in 

the filtered image, a series of tests are run. First, the algorithm searches in 0.1° wide 

radials around the entire domain. The radial width of 0.1° is selected in order to easily 

detect subtle changes in linearity within the pixels of the filtered image. Then, the image 

pixel values are checked. If there are non-zero values within a radial, this means a ridge 

is detected. If a ridge is detected, two additional tests are run in order to determine if the 

ridge is due to beam blockage, and if it is, where the blockage begins. The first test 

determines if the ridge is due to beam blockage by calculating the correlation between 

the range of the grid cells and their filtered value. If a detected ridge is due to beam 

blockage, the filtered value will increase with range. If the correlation is greater than 

0.50, the entire beam is flagged for beam blockage. The minimum correlation of 0.50 
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can easily determine most beam blockage occurrences; however, it can also pick up 

noise if the radial has multiple grid cells with increasing values at increasing ranges. If 

this test determines that beam blockage exists in the radial, then the second test is 

conducted. This test determines the location where the blockage begins. This is 

accomplished with step detection using convolution. In a radial with beam blockage, 

there will be a sharp increase in the Sato filtered pixel values as a function of range 

where the blockage starts. The convolution method can detect these sharp increases, 

which are called peaks. If a peak is detected at a range greater than 10km from the radar, 

the range of the peak is the starting point for the blockage, and all cells beyond that point 

are flagged. If no peak is detected, the entire radial is flagged. Because the values of the 

pixels of the detected ridges are calculated as a fraction of the whole image, radar 

domains with several beam blockages and additional noise can make it difficult to 

 

Figure 3.3: PoN image ending December 2012 with beam blockage flagging detected by 
Sato image filtering (left) and Sato ridge detection filtering of the PoN image (right).   
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identify a peak because of the pervasiveness of the non-zero pixels and their small 

values.  

Figure 3.3 shows an example of the beam blockage identification. The selected 

domain is KABR, and the accumulation period is from the 36-months ending in 

December 2012. The right image is the 36-month PoN Sato filtering output, and the left 

image is the resulting beam blockage flagging. The bright, white linear feature towards 

the northeast is a blocked beam. The other white colors in the image are noise. The 

resulting adjustments from the flagging in this domain only adjust the definite beam 

blockage. Compared to the original beam blockage adjustment methodology, this 

method adjusts the beams differently, which can result in less error if improper beams 

are flagged. Instead of determining the magnitude of adjustment based on a Fourier fit, 

the adjustment in this methodology averages neighboring grid points. For each flagged 

grid cell, the adjusted value is equal to the mean of the 6 closest unflagged grid cells. It 

is fair to assume that a blocked grid cell will have similar estimated precipitation to its 

neighbors because of the long accumulation period. The original algorithm’s erroneous 

adjustments lead to beams becoming much higher relative to their neighbors, while this 

method smooths the data in cases where too many grid cells are flagged. Fortunately, 

radials that are adjusted when beam blockage does not exist and vice versa can still be 

corrected in the other steps of the bias adjustment algorithm. Finally, once the 36-month 

adjustment for all of the flagged grid cells is determined, the percent increase between 

the unadjusted and adjusted beam blockage values are calculated, then applied to all 

accumulation periods leading up to the 36-months. It is assumed that the magnitude of 
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the beam blockage is approximately the same in the preceding 1-to-35-month 

accumulation periods because the obstruction is likely to be the same. 

Step 2 is the mean field and range dependent adjustment algorithm. The mean 

field and range dependent biases are calculated using the output from the beam blockage 

adjustment. This methodology uses information from both the radar and rain gauge 

accumulations. For a given radar domain, four different adjustment factors are calculated 

for every HRAP grid point based on seasons where December, January, and February 

are winter, March, April, and May are spring, June, July, and August are summer, and 

September, October, and November are fall. Seasonal calculations are performed 

because the mean field and range dependent biases can vary by seasons depending on 

the location due to climatological features. For example, in the high plains, deep, 

convective cells are more likely in the spring and summertime, but shallow, stratiform 

rainfall or snow is more likely in the fall and winter. In deep, convective cells, large 

biases may exist due to extreme rain rates and hail contamination (Villarini and 

Krajewski, 2009). Wintertime biases are often caused by bright banding and 

overshooting of the beam. Additionally, differences in drop size distributions between 

the seasons are challenging to account for in Z-R relationships (Villarini and Krajewski 

2010b).  In order to calculate the adjustment factors at each grid point, equation 3 is 

developed using information from both the radar estimated and gauge observed 

precipitation, and it is calculated separately for each season. Equation 3 is as follows:  

𝑝𝑛𝑒𝑤(𝑟) = 𝑝(𝑟) ∗ (𝑝𝑠𝑛(𝑟)
𝑝𝑠(𝑟)

) ∗  𝑝𝑔    (3) 
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The value, 𝑝(𝑟), is the average radar estimated precipitation as a function of range. This 

is calculated by averaging every radar estimate for all occurrences of a given season in 

the study period at each possible grid point range from the radar within a domain. The 

ratio in the middle is 𝑝𝑠𝑛(𝑟), the smoothed average PRISM normal precipitation as a 

function of range, and 𝑝𝑠(𝑟), the smoothed average radar precipitation as a function of 

range. The value, 𝑝𝑠𝑛(𝑟), is a smoothed curve of 𝑝𝑛(𝑟), the average PRISM normal 

precipitation as a function of range. The calculation of 𝑝𝑛(𝑟) is similar to 𝑝(𝑟), except 

the normals are used instead of the estimates. The value, 𝑝𝑠(𝑟), is a smoothed curve of  

𝑝(𝑟). The term, 𝑝𝑔, is the average gauge PoN, which is calculated by taking the average 

of all gauge PoN observed for the entire study period in the given radar domain. The 

smoothing is performed using a Savitzky-Golay filter, where the window length is 10% 

of the number of grid points in a given radar domain, and the order of the polynomial is 

three. The result, 𝑝𝑛𝑒𝑤(𝑟), is the new average radar estimated precipitation as a function 

of range for the entire study period. From 𝑝𝑛𝑒𝑤(𝑟), the adjustment factor for each range 

can be calculated as shown in equation 4. The result from this calculation gives factors at 

each range that can multiplied by the grid cell values that are located at the same ranges. 

For example, if equation 3 is calculated for winter, then the factors calculated in  

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  1 − (𝑝(𝑟)−𝑝𝑛𝑒𝑤(𝑟))
𝑝(𝑟)

     (4) 

equation 4 are applied to all grid point radar estimated values with the corresponding 

range that fall within the winter months. Once all of the seasonal factors are calculated 

and applied, the seasonal accumulation periods can be summed in order to compute 

longer accumulation periods.  
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 Step 3 is the radar domain discontinuity adjustment. The radar domain 

discontinuity step relies upon the beam blockage and mean field and range dependent  

 

Figure 3.4: Raw (left), beam blockage adjusted (middle), and mean field and range 
dependent adjusted (right) Stage IV data for a central US location for the one-year 
accumulation period (mm) ending December 2019. 
 

corrections. Figure 3.4 illustrates the radar domain discontinuity problem. The figure 

shows three different radar estimated precipitation images where the left is the raw Stage 

IV, the middle is the beam blockage adjusted, and the right is the mean field and range 

dependent corrected data for the one-year accumulation period ending December 2019. 

It can be seen in the figure that distinct lines appear at -92.5°W in the north-south and 

approximately 40°N in the west-east directions in the mean field and range dependent 

corrected data. These are an example of discontinuities at the edges of multiple radar 

domains. One cause of this is from anisotropies in the raw Stage IV data (McRoberts 

2014). Each River Forecast Center (RFC) produces independent daily analyses of the 

Stage IV data. Differences that exist in the analyses between each RFC can lead to 

biases. In the short-term, the biases are minimal but can compound as the accumulation 
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periods increase. If an individual radar is biased low and a neighboring radar is biased 

high, the compounding biases will lead to a low estimate directly next to a high estimate, 

which creates a discontinuity. Another cause is from the adjustments leading up to the 

discontinuities. Both the beam blockage and mean field and range dependent 

adjustments are done independently for each radar domain in one-dimension. This leads 

to residual two-dimensional biases, and the discontinuities are the most prominent 

example of this type of bias. These discontinuities are undesirable because it implies 

sharp differences of precipitation at the edges of different radar domains, which is 

inaccurate at longer accumulation periods. It is desirable to remove these discontinuities 

because it can help increase the accuracy of the precipitation field. In order to smooth 

the discontinuities, average PoN along the boundaries are calculated and adjusted using 

an IDW method. Equations 5 and 6 show how the IDW method is calculated for the case 

where one side of a discontinuity is lower than the other, and one is higher than the other 

respectively. Both equations are calculated for individual grid points from 0km to 25km  

𝑃 = (𝑃𝑜𝑁 − (
𝐷𝑖𝑠𝑐𝑜𝑛𝑡

2⁄
𝐷

𝐷0⁄
)) ∗ 𝑛𝑜𝑟𝑚𝑙    (5) 

𝑃 = (𝑃𝑜𝑁 + (
𝐷𝑖𝑠𝑐𝑜𝑛𝑡

2⁄
𝐷

𝐷0⁄
)) ∗ 𝑛𝑜𝑟𝑚𝑙    (6) 

away from the discontinuity. The variables are the same in each equation, where P is the 

new radar estimated precipitation value, PoN is the percent of normal of the grid point, 

D is the distance the grid point is from the discontinuity, 𝐷0 is a reference distance, and 

norml is the normal precipitation value for the grid point. The purpose of the reference 
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distance is to make the distances dimensionless, and for this study, the value is 1km. For 

example, if the average PoN along boundary 1 is 1.10 and 0.90 along boundary 2, there 

is a discontinuity of 0.2. The equations increase the PoN on the lower side and decreases 

the higher side for grid points up to 25km from the discontinuity. The 25km radius from 

each boundary was arbitrarily selected as an appropriate distance because the IDW 

calculations cause infinitesimal changes beyond this range. By using the blending 

method, the discontinuities at radar domain boundaries can be removed and the IDW 

method prevents new discontinuities from forming. This method helps improve the 

precipitation estimates because it reduces the high and increases the low biases which 

minimizes each of their respective errors.  

Step 4 adjusts for the remaining biases in the corrected data by using the two-

dimensional adjustment methodology. The input for this step is the beam blockage, 

mean field and range dependent, and boundary discontinuity corrected data and QC 

gauges. The biases that remain could be from compounding errors and those as a result 

of considering each domain independently. Unlike the prior adjustments, the two-

dimensional adjustment is done for the entire precipitation field rather than 

independently at each radar. This adjustment first calculates the bias between all gauges 

and their respective grid cell estimate. Then, this bias is interpolated to the entire study 

area using an optimal interpolation method. The method with the lowest error and least 

amount of bias for all accumulation periods is tested between OK, IDW, and IDW2. 

Additionally, the number of known points to consider in the interpolation calculations is 

tested for an optimal value. Finally, the interpolated field is added to the input radar 
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estimated field to get the adjusted values. This procedure is run for every tested 

accumulation period in this study.  

3.4. Data Analysis Methods 

Using the boundary corrected mean field and range dependent adjustment data, 

OK, IDW, IDW2 are tested in the two-dimensional adjustment to determine which 

method produces the lowest error. All of these methods calculate weights from 

surrounding known values in order to interpolate, but their approaches differ. OK 

calculates variograms using spatial autocorrelation at different distances from the point 

in question. This method is beneficial because it automatically accounts for clustering 

and can take directional bias into account, but its complexity and computational expense 

can be a drawback (Gentile et al. 2013). In this study, OK with a spherical, exponential, 

gaussian, power, hole-effect, and linear model are tested. For IDW and IDW2, weights 

are only based upon the distances from the point in question to the known points, where 

IDW2 places a higher importance on nearby points. These methods are simple and 

straightforward, but they are not smoothed (Gentile et al. 2013). One of the main 

differences between OK, and IDW and IDW2 is the way that the known values are 

handled. With IDW and IDW2, the analyses are required to exactly agree with the 

known points at their locations. For OK, it assumes that the known points have random 

error, so exact agreement at the locations of the known points is not required.  

This study analyzes the accuracy of each interpolation method on different time 

scales because performance can vary temporally. Rainfall accumulation periods are 

tested using seasonal, one-year, and three-year accumulation periods where winter, 
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spring, summer, and fall are the seasons, December through November are the years, and 

the aggregates from December 2005 through November 2008 and subsequent 36-month 

groupings are the three-year periods. Long accumulation periods are the main focus of 

this study due to the goal of improving Stage IV estimates for drought monitoring. The 

interpolation performance and biases across different seasons vary due to climatological 

differences in each season such as precipitation type and intensity, and the structure of 

convection and stratiform events. Additionally, short-term errors can compound as the 

accumulation period increases to one and three-year periods. As part of the assessments, 

this study determines the reliability of each interpolation method in the different time 

periods, as well as select the top performers for each time period. It is desirable to use 

the same method for all cases for simplicity.  

Extensive data withholding tests are run in order to help determine the 

performance of the interpolation methods and the accuracy of other tests in this study 

like gauge QC parameters and determination of the western extent of the study area. This 

method first works by randomly withholding a certain amount of known data points. In 

this study, the known data points are gauge observations and 20% are withheld. Then, 

statistics are calculated between the withheld points and base analysis points in question. 

For example, in testing the performance of the two-dimensional bias adjustment, the 

base analysis would be the boundary blended mean field and range dependent adjusted 

data. The root mean square error (RMSE), median absolute error (MAE), and median 

bias (MB) are the calculated statistics for this study. The median based statistics are 

useful for their resistance to outliers. Then, the non-withheld points are run through the 
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analysis that is being tested. Using the two-dimensional bias correction example, the bias 

between the gauge and radar estimates at the non-withheld points would be interpolated 

to the HRAP grid. From the output, the RMSE, MAE, and MB are calculated at the 

locations of the withheld points between the observed and newly estimated values. The 

performance is determined by the difference in the pre-analysis and post-analysis 

statistics. The goal is to find the analysis with the greatest reduction in RMSE and MAE, 

and the value closest to 0 for the MB for each test. For each test, the data withholding is 

run with two different randomly withheld points in order to determine if the results are 

consistent using different gauges. Finally, for non-gauge-based tests and adjustments, no 

gauges are withheld in testing the error statistics because gauges are not used to calculate 

the analysis. 

The gauge QC parameters are tested using data withholding, where IDW with 30 

neighboring points in each grid point calculation is the interpolation method. This 

method is selected because it has a small computational expense. The 30 neighboring 

points are used because it is enough points to sample in all directions from an unknown 

point, but not enough points to sample at distances too far away. Additionally, the input 

radar data is the beam blockage corrected data, which is used because it is the step 

before gauge data is necessary for adjustment. Because the gauges involved in the 

withholding are not QC’d, the data withholding process is modified. The modification 

tests the interpolation values with all of the withheld points, then again with the QC 

applied using the values being tested. This modification can help determine if the 

performance is consistent between different gauges. The procedure for testing the four 
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constants in equation 1 is as follows: r and b are held constant for the duration of the test 

using 1.2 and 0.4 respectively. These values are selected because the resulting gauges 

appeared the most reasonable to the eye. Then, q is tested using multiple values while a 

is held constant using a value of 0.1. Once this run is complete, the optimal value of q is 

selected, then a is tested while holding q constant. Finally, the optimal value of a is 

selected, then the test is rerun for both constants to check if the optimal values remain 

the same. The testing for equation 2 is performed the same way, except q and a are held 

constant for the duration using their optimal values and r and b are the constants in 

question.  

The results for the gauge QC equation constant testing are shown in figure 3.5. 

The solid lines indicate that all withheld points are used (non-QC) in the RMSE, MAE, 

and MB calculations, and the dashed lines indicate that the QC is applied to the withheld 

points. The optimal values are the ones that minimize the RMSE and MAE and have the 

MB closest to zero. For the optimal q value, 0.7 is selected. The non-QC RMSE starts to 

increase, the non-QC MAE flattens then increases, and both MB lines increase above 

this value. There are small improvements in QC RMSE and MAE above 0.7, but they 

are not large enough to justify the increasing error in the other metrics. Using this 

optimal q value, the optimal a value is tested and determined to be 0.2. The non-QC 

RMSE remains approximately the same beyond this point. Additionally, both MAE lines 

increase and both MB become more negative beyond this point. Finally, for the equation 

2 variables, r and b, there is very little change in error and bias throughout all of the 

tested values. This suggests that equation 1 in the QC plays a bigger role in reducing the 
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Figure 3.5: The RMSE (blue), MAE (orange), and MB (green) of constants q (upper 
left), a (upper right), r (lower left), and b (lower right). Solid lines are before, and dashed 
lines are after the QC is applied to the withheld gauges. 
 

outliers in the gauges. This is an expected result because gauges are more likely to 

underestimate relative to the radar than overestimate. The values of r and b are selected 

to be 1.2 and 0.2 respectively. These are selected because of the small dip in MAE 

leading up to the values. Figure 3.6 shows an example of how the gauge QC works. The  
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Figure 3.6: Gauge PoN versus radar PoN for the three-year accumulation period ending 
December 2020 before (left) and after (right) the gauge QC is applied.  
 

scatterplots show the gauge PoN versus the radar PoN for the three-year accumulation 

period ending in December 2020, where the left image is before and the right is after the 

QC is applied. It can be seen that most of the removed points are those where the gauge 

PoN values are lower than the minimum acceptable PoN. Additionally, when applying 

the gauge QC, approximately 8% of the gauges are removed. The QC gauges are used in 

all steps that require gauge data and data withholding.   

The study area extent testing is performed in order to determine how far west the 

study area can be without drastically reducing the radar estimate accuracy from the 

effects of the Rocky Mountains. The raw Stage IV data is the input analysis, and QC 

gauges are used for comparison with the analysis. Because gauges are not used in the 

input analysis, the raw Stage IV and gauges can be directly compared without 

withholding. The results from the comparison are shown in figure 3.7, where the average  
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Figure 3.7: The average RMSE (left), MAE (middle), and MB (right) for each tested 
western longitude extent. 
 

RMSE, MAE, and MB for each tested longitude are shown from left to right. For the 

RMSE and MAE, the errors decrease quickly between -110°W and -105°W, then flatten 

out. The MB remains fairly constant between -110°W and -107°W, then gradually 

decreases. The goal for this study is to use the largest possible study area while 

maintaining a low error. Because of this, -103°W is selected as the western extent. This 

extent does not have the lowest RMSE, MAE, or MB, but the tradeoff of selecting a 

smaller study area for a minimal improvement in error is not justifiable. Each step in the 

bias correction methodology is performed within the bounds of this study area.  

The metrics for determining accuracy are applied across four different study 

regions. The overall study region is shown in Figure 3.1, which includes all of the 

CONUS east of 103°W. The western CONUS is not included because the topography 

causes more reliance on digital elevation models and rain gauges rather than radars. This 
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study also assesses the accuracy of the QPEs across different subregions. Figures 3.8, 

3.9, and 3.10 show different subregions based on similar spatial characteristics. The 

subregions in figure 3.8 are selected for similarities in climatological characteristics. For 

example, errors in radar estimates and gauges may be higher in the northern plains 

(green) due to frozen precipitation and high wind. Figure 3.9 shows selected subregions 

based on the sum of the effective observation density per 10 square kilometers. The 

effective observation ratio is calculated by dividing the amount of gauge observations by  

 

Figure 3.9: Subregions selected based on similar climatological characteristics. These 
regions are the Plains (green), Northeast (orange), Southwest (Red), and Southeast 
(blue). 
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the total possible number of observations in the study period for 36-month periods. The 

periods used are for the 36-month totals ending December 2008, 2011, 2014, 2017, and  

 

Figure 3.8: Study regions selected based on the effective observation ratio per 10 square 
kilometers. The regions are the five different shades of purple.  
 
2020. The longest accumulation period in this study is used because gauges that are 

available at the longest accumulation period are also complete for all of the shorter 

periods. There are five different classes of effective observation density in Figure 3.9. 

These classes are selected based on the geometric interval. This method calculates the 

sum of squares, minimizes them, then selects classes in a way that makes the number of  
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Figure 3.9: Subregions selected based on terrain. The green areas are mountainous 
regions, and the gray regions are not. 
 

observations in each class approximately equal (ESRI 2022). Since the radar estimates 

are compared with gauges, the amount of available gauge data can influence the 

performance of the bias correction and interpolation methods. Finally, figure 3.10 selects 

two regions based on terrain. The green polygon is a modified version of the Federal 

Aviation Agency (FAA) designated mountainous area (Durham and Haviland 2020). 

The modification occurs in the Mohawk Valley in central New York, where the FAA 

map has a gap in the polygon in it, but for this study, it is filled in. The valley is filled in 

because radar beams can still be blocked due to the neighboring mountains. The rest of 
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the map is considered non-mountainous. The mountainous areas can lead to less reliable 

results due to the higher likelihood of beam blockages. The previously discussed 

statistics and time periods are applied to the entire study area and subregions. 
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4. RESULTS 

 

4.1. Beam Blockage Adjusted Results  

The results of the performance of step 1, the beam blockage adjustments, are 

discussed in this section. Because the adjustments are radar based and do not consider 

gauge accumulations, there is no gauge withholding in the determination of 

performance. In order to calculate the performance between the unadjusted and adjusted 

data, the RMSE, MAE, and MB are taken at grid cells that are flagged and adjusted for 

beam blockage and their corresponding gauges. Additionally, the same metrics are 

calculated at the grid points that are not adjusted in order to show the magnitude of the 

beam blockage improvements relative to the unflagged grid cells. First, the results of the 

input parameter testing for the beam blockage adjustment algorithm will be shown. The 

tested parameters are the smoothing factor (𝜎), and the minimum correlation of the Sato 

filter pixel values with range. Then, this section will show the differences between the 

raw Stage IV and beam blockage corrected data for the entire study area for the three-

year, one-year, and seasonal accumulations. Then, the results of the performance in the 

similar climatological characteristics and mountainous versus non-mountainous 

subregions are shown. Finally, the strengths and weaknesses of the algorithm are 

discussed.  

 The optimal input parameters for step 1 are determined through a series of tests. 

First, the algorithm is run three times using three different values of 𝜎: 0.1, 0.5, and 1, 

while holding the minimum correlation constant at 0.5. Then, the three different 
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correlation values are tested: 0.4, 0.5, and 0.6 while holding sigma at 0.1. Only the three-

year accumulations are tested because the adjustments are determined using these 

periods. Additionally, the results are generated for the entire study area. Table 1 shows 

the results of the 𝜎 value testing. The error metrics are the differences between the step 1 

Step 1 vs Raw Stage IV Errors Using Different 𝝈 

𝜎 Value RMSE 
 

MAE MB 

0.1 -0.0041 -0.0015 0.0359 

0.5 -0.0219 -0.0104 0.0401 

1.0 -0.0009 -0.0006 0.0365 

Table 1: Step 1 minus the raw Stage IV PoN error metrics testing different smoothing 
values (𝜎) while holding the minimum correlation at 0.5.  
 

and raw Stage IV data errors. A negative RMSE and MAE represents a decrease in error, 

and a positive MB represents an increase in bias due to the adjustments. It can be seen 

that the greatest decreases in error occur when 𝜎 is equal to 0.5. Also, this is the value 

with the greatest increase in bias. Because beam blocked cells are negatively biased, it is 

advantageous to select the parameter that increases the values. Using 0.5 as 𝜎, the 

differences in error between the step 1 and raw Stage IV data are shown for the three  

Step 1 vs Raw Stage IV Errors Using Different Correlations 

Correlation 
Value 

RMSE 
 

MAE MB 

0.4 -0.0057 -0.0031 0.0312 

0.5 -0.0219 -0.0104 0.0401 

0.6 -0.0192 -0.0079 0.0433 

Table 2: Step 1 minus the raw Stage IV error metrics testing different correlation values 
while holding 𝜎 at 0.5. 
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tested correlations in table 2. The greatest decreases in error occur when the correlation 

is 0.5, and the greatest increase in bias is when the correlation is 0.6. However, the 

difference in MB between the 0.5 and 0.6 correlations are small, so 0.5 is the selected 

value because it has the greatest improvement in error. With the optimal 𝜎 and 

correlation values, step 1 is run for all accumulation periods for the full study area.  

The performance of step 1 is tested within the full study region at different 

accumulations. The results of the testing at the locations of the grid points that are 

adjusted are shown in table 3. The values in the table are representative of the average of  

Step 1 vs Raw Stage IV Errors for the Full Study Area at Adjusted Locations 

Accumulation 
Period 

Raw 
RMSE 

 

Step 1 
RMSE 

 

Raw 
MAE 

Step 1 
MAE 

Raw MB Step 1 
MB 

Three-Year 0.1835 0.1413 0.0958 0.0843 -0.0172 -0.0009 

One-Year 0.1857 0.1637 0.1012 0.0943 -0.0127 0.0079 

Winter 0.2903 0.2916 0.1455 0.1433 -0.0069 0.0135 

Spring 0.2144 0.1998 0.1144 0.1122 0.0040 0.0226 

Summer 0.2293 0.2077 0.1273 0.1239 -0.0221 -0.0043 

Fall 0.2089 0.1901 0.1112 0.1094 -0.0262 -0.0075 

Season Avg. 0.2353 0.2219 0.1243 0.1219 -0.0129 0.0060 

Table 3: Step 1 versus raw Stage IV RMSE, MAE, and MB for all the adjusted locations 
within the full study area at all accumulation periods. Bolded numbers indicate an 
improvement in Step 1 versus the raw Stage IV data.  
 

the given statistic for the entire study period for each accumulation. For example, the 

three-year winter RMSE is the average of all RMSE calculations for every 36-month 

period between 2005 and 2020. Additionally, if a number is in bold, it indicates that the 

adjustment led to an improvement over the raw data. For all of the results in table 3, 
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there are small differences in the original versus the adjusted data. Additionally, it was 

expected that the errors would decrease for all accumulations, however the results 

partially follow that hypothesis. The RMSE decreases for every accumulation except for 

the winter. The MAE, however, improves in all accumulations. When considering MB, 

the adjustments increase the biases for every accumulation. The adjusted MB is closer to 

zero in all of the periods except for winter and spring relative to the raw data, but the 

negatively biased beam blocked cells are increased for every period. To further diagnose 

Step 1 Flagged vs Unflagged Grid Cell Errors for the Full Study Area 

Accumulation 
Period 

No Flag 
RMSE 

 

RMSE 
Change 

 

No Flag 
MAE 

MAE 
Change 

No Flag 
MB 

MB 
Change 

Three-Year 0.1375 0.9173 0.0775 0.6284 0.0167 0.4808 

One-Year 0.1552 0.7213 0.0875 0.5036 0.0216 0.6005 

Winter 0.2741 -0.0802 0.1348 0.2056 0.0214 0.7208 

Spring 0.1947 0.7411 0.1058 0.2558 0.0329 0.6435 

Summer 0.201 0.7632 0.1161 0.3035 0.0276 0.3581 

Fall 0.182 0.6988 0.0982 0.1384 -0.0041 0.8461 

Season Avg. 0.213 0.6008 0.1137 0.2264 0.0195 0.5833 

Table 4: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells.  
 

the performance of the flagging of the beam blocked cells and how well the algorithm 

performs, the results in table 4 show the magnitude of improvement for each metric from 

the step 1 adjustments relative to the unflagged grid cell metrics. The closer the adjusted 

metrics are to the unflagged grid cell metrics, the better the performance. A value of 1.0 

would mean that the adjustment error matches the unflagged grid cell error. Overall, the 



 

43 

 

magnitude of improvement in RMSE after step 1 is greater than 60%, except for the 

winter. The MAE improvements are smaller, but none are lower than 13%. Finally, the 

MB sees large improvements across all accumulations.  

In order to identify how step 1 performs in different regions, the data are tested 

using the subregions selected based upon similar climatological characteristics for all 

three accumulations. It is expected that the results of the performance will vary based on 

the region and seasons because differences in precipitation type and intensity can exist. 

The three-year accumulation performance is shown in table 5. It can be seen that the 

RMSE decreases for every region. Additionally, the MAE decreases everywhere except  

Three-Year Step 1 vs Raw Stage IV Errors in Climate Regions 

Three-Year Raw 
RMSE 

 

Step 1 
RMSE 

Raw   
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1 
MB 

Plains 0.1805 0.1685 0.1042 0.1102 0.0369 0.0635 

Southwest 0.1546 0.1322 0.0880 0.0750 -0.0030 -0.0067 

Northeast 0.2003 0.1375 0.1105 0.0844 -0.0396 -0.0105 

Southeast 0.1467 0.1289 0.0885 0.0774 -0.0463 -0.0301 

Table 5: Step 1 versus the raw Stage IV RMSE, MAE, and MB for the subregions 
selected based on similar climatological characteristics for the three-year accumulation 
period. Bolded numbers indicate an improvement in Step 1 versus the raw Stage IV data. 
 

for the plains. For the MB, only the northeast and southeast biases move closer to zero, 

but the plains values increase, which follows the pattern of the adjustments increasing 

the bias for the full study area results in table 3. The three-year change in error metrics 

after step 1 is applied is shown in table 6 for the climatologically based subregions. For 

every RMSE, the magnitude of improvement is greater than 60%, which is similar to the  
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Three-Year Step 1 Change in Adjustment Relative to Unflagged Grid Cells 

Three-Year No Flag 
RMSE 

 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.1635 0.7058 0.1006 -1.666 0.0760 0.6803 

Southwest 0.1182 0.6153 0.0659 0.5882 0.0106 -0.2720 

Northeast 0.1334 0.9387 0.0779 0.8006 0.0244 0.4546 

Southeast 0.1190 0.6425 0.0686 0.5577 -0.0103 0.4500 

Table 6: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells in the 
climatological subregions for the three-year period.  
 

results for the full study area. Additionally, most MAE values show improvement except 

for the plains. Finally, the plains, northeast, and southeast show large improvements in 

bias. The southwest MB, however, decreases, which goes against the pattern of step 1  

One-Year Step 1 vs Raw Stage IV Errors in Climate Regions 

One-Year Raw 
RMSE 

 

Step 1 
RMSE 

Raw   
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1 
MB 

Plains 0.1989 0.1913 0.1188 0.1179 0.0520 0.0683 

Southwest 0.1470 0.1396 0.0831 0.0805 0.0004 0.0089 

Northeast 0.2041 0.1602 0.1071 0.0962 -0.0224 0.0047 

Southeast 0.1651 0.1471 0.1038 0.0940 -0.0703 -0.0363 

Table 7: Step 1 versus the raw Stage IV RMSE, MAE, and MB for the subregions 
selected based on similar climatological characteristics for the one-year accumulation 
period. Bolded numbers indicate an improvement in step 1 versus the raw Stage IV data. 
 

increasing the MB. For the one-year accumulation in table 7, the results follow a similar 

pattern as the three-year except the MAE in every region is improved. The adjustments 

at the shorter accumulations are the same percent difference as those in the three-year, so 
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small differences in error could exist due to subtle changes in blockage strength. Table 8 

shows the one-year change in error metrics after step 1 is applied for the climatological 

One-Year Step 1 Change in Adjustment Relative to Unflagged Grid Cells 

One-Year No Flag 
RMSE 

 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.1827 0.4691 0.1074 0.0789 0.0738 0.7477 

Southwest 0.1393 0.9610 0.0792 0.6667 0.0095 0.9340 

Northeast 0.1477 0.7783 0.0878 0.5647 0.0220 0.6103 

Southeast 0.1336 0.5714 0.0781 0.3813 -0.0115 0.5782 

Table 8: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells in the 
climatological subregions for the one-year period.  
 
subregions. The results differ from those in table 6, where the plains have a smaller 

RMSE improvement, but a larger MAE improvement. Additionally, the southwest rather 

than the northeast has the largest RMSE and MAE improvements. Finally, the errors 

within the seasonal accumulations are shown in tables 9 and 10, where table 9 tests the 

adjustment performance and table 10 quantifies the magnitude of the adjustments 

relative to the unflagged grid cells. The plains subregion consistently has the highest 

error out of the subregions for all accumulations, and the cold months have the highest 

error. Only the southern RMSE and MAE values show improvement within the winter. 

Additionally, the MB is increased for every region in the winter, but only the southern 

ones get closer to zero. The springtime errors decrease for all regions except for the 

northeast MAE, but the southeast MB is the only one that moves closer to zero. The 

biases, however, all increase following the adjustment. In the summer, the RMSE and  
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Seasonal Step 1 vs Raw Stage IV Errors in Climate Regions 

Winter Raw 
RMSE 

Step 1 
RMSE 

Raw 
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1   
MB 

Plains 0.4621 0.4715 0.3116 0.3418 0.2146 0.2650 

Southwest 0.1828 0.1782 0.1063 0.0995 -0.0379 -0.0315 

Northeast 0.2467 0.2476 0.1383 0.1506 0.0340 0.0574 

Southeast 0.1875 0.1770 0.1219 0.1070 -0.0838 -0.0598 

Spring Raw 
RMSE 

Step 1 
RMSE 

Raw 
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1   
MB 

Plains 0.2369 0.2320 0.1361 0.1359 0.0787 0.0972 

Southwest 0.2010 0.1897 0.1068 0.1017 0.0048 0.0082 

Northeast 0.2157 0.1862 0.1153 0.1184 0.0036 0.0314 

Southeast 0.1821 0.1748 0.1179 0.1119 -0.0623 -0.0330 

Summer Raw 
RMSE 

Step 1 
RMSE 

Raw 
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1   
MB 

Plains 0.2119 0.2117 0.1154 0.1156 0.0103 0.0227 

Southwest 0.2136 0.2086 0.1385 0.1291 0.0213 0.0344 

Northeast 0.2435 0.2000 0.1324 0.1244 -0.0592 -0.0356 

Southeast 0.2187 0.2053 0.1391 0.1273 -0.0600 -0.0285 

Fall Raw 
RMSE 

Step 1 
RMSE 

Raw 
MAE 

Step 1 
MAE 

Raw   
MB 

Step 1   
MB 

Plains 0.2124 0.2056 0.1196 0.1237 0.0311 0.0457 

Southwest 0.1744 0.1748 0.1016 0.1006 -0.0127 -0.0032 

Northeast 0.2149 0.1720 0.1171 0.1063 -0.0428 -0.0176 

Southeast 0.2042 0.1917 0.1103 0.1097 -0.0691 -0.0496 

Table 9: Step 1 versus the raw Stage IV RMSE, MAE, and MB for the subregions 
selected based on similar climatological characteristics for the seasonal accumulation 
periods. Bolded numbers indicate an improvement in step 1 versus the raw Stage IV 
data. 
 

MAE are improved in every region like the spring, except for the plains MAE. In 

addition to the southeast, the northeast MB moves closer to zero. Finally, the fall has the  
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Seasonal Step 1 Change in Adjustment Relative to Unflagged Grid Cells 

Winter No Flag 
RMSE 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.4026 -0.1579 0.2375 -0.4075 0.1654 -1.024 

Southwest 0.1896 -0.6764 0.0990 0.9315 -0.0340 1.6410 

Northeast 0.2315 -0.0592 0.1366 -7.2352 0.0520 1.3000 

Southeast 0.1716 0.6603 0.0996 0.6681 -0.0453 0.6233 

Spring No Flag 
RMSE 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.2222 0.3333 0.1284 0.0259 0.0838 3.6274 

Southwest 0.1896 0.9912 0.0989 0.6455 0.0145 0.3505 

Northeast 0.1755 0.7338 0.1024 -0.2403 0.0356 0.8687 

Southeast 0.1704 0.6239 0.0978 0.2985 -0.0096 0.5559 

Summer No Flag 
RMSE 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.2116 0.6667 0.1221 0.0298 0.0516 0.3002 

Southwest 0.1985 0.3311 0.1171 0.4392 0.0464 0.5219 

Northeast 0.1871 0.7712 0.1123 0.3980 -0.0044 0.4306 

Southeast 0.1934 0.5296 0.1162 0.5152 0.0151 0.4194 

Fall No Flag 
RMSE 

RMSE 
Change 

No Flag 
MAE 

MAE 
Change 

No Flag   
MB 

MB 
Change 

Plains 0.1987 0.4963 0.1088 -0.3796 0.0411 1.4600 

Southwest 0.1721 -0.1739 0.0922 0.1063 -0.0053 1.2837 

Northeast 0.1625 0.8187 0.0949 0.4864 -0.0109 0.7899 

Southeast 0.1775 0.4681 0.0999 0.0576 -0.0299 0.4974 

Table 10: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells in the 
climatological subregions for the seasonal periods.  
 

most regions with improved biases, and it mostly has decreases in error. The biases for 

all seasons increase with the adjustment, but the unadjusted fall biases are the most 
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negative. Overall, the performance of the beam blockage algorithm within the different 

regions is seasonally dependent. In table 10, the causes of the increase in errors can be 

identified. In the winter, the southern regions showed improvement relative to the 

unadjusted data, however, every RMSE difference is further from the unflagged grid cell 

RMSE. This suggests that the increases in error can be attributed to biased data being 

incorporated into the adjustment calculations. Another potential issue with the algorithm 

can be seen when the change magnitudes are greater than 1. This suggests a possible 

error in identifying blocked beams, however, the adjustment calculations are performed 

on the 36-month period and may degrade as the accumulation periods decrease in length. 

Incorporation of rain gauge data in the next steps of the bias adjustment methodology 

can help adjust for these errors.  

The final tested subregions are the mountainous versus non-mountainous regions.  

Step 1 vs Raw Stage IV Errors in Mountainous Region 

Accumulation 
Period 

Raw 
RMSE 

 

Step 1 
RMSE 

 

Raw 
MAE 

Step 1 
MAE 

Raw 
MB 

Step 1 
MB 

Three-Year 0.1588 0.1423 0.1033 0.1035 -0.0532 -0.0217 

One-Year 0.1590 0.1565 0.1055 0.1092 -0.0374 -0.0108 

Winter 0.2176 0.2323 0.1456 0.1576 -0.0103 0.0012 

Spring 0.1831 0.1847 0.1111 0.1154 -0.0148 0.0095 

Summer 0.2013 0.1935 0.1264 0.1256 -0.0444 -0.0248 

Fall 0.1832 0.1791 0.1174 0.1147 -0.0628 -0.0479 

Season Avg. 0.1952 0.1971 0.1249 0.1281 -0.0335 -0.0160 

Table 11: Step 1 versus the raw Stage IV RMSE, MAE, and MB for the mountainous 
region at all accumulation periods. Bolded numbers indicate an improvement in step 1 
versus the raw Stage IV data. 
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It is expected that the adjustments will more greatly improve the data in the non-

mountainous over the mountainous region because there is less likely to be widespread 

beam blockages in a non-mountainous radar domain, so identification of the blockages is 

easier, and the adjustment is more likely to use less biased grid cells. It is also important 

to note that the entirety of the mountainous region is within the southeast and northeast 

subregions. Using the same testing methods as the climatological subregions, table 11 

shows the results of step 1 versus the raw Stage IV data at the adjusted grid cells for all 

accumulations in the mountainous region. For all accumulations, the dataset becomes 

more positively biased with the adjustments, where the MB moves closer to zero in 

every accumulation. The RMSE improves in every accumulation except winter and 

spring, but the MAE only improves in the summer and fall. Like the previous beam 

blockage adjustment errors, the colder months do not see improvement with the  

Step 1 Change in Adjustment Relative to Unflagged Grid Cells in Mountainous  

Accumulation 
Period 

No Flag 
RMSE 

 

RMSE 
Change 

 

No Flag 
MAE 

MAE 
Change 

No Flag 
MB 

MB 
Change 

Three-Year 0.1297 0.5670 0.0766 -0.0074 -0.0080 0.6969 

One-Year 0.1451 0.1798 0.0864 -0.1937 -0.0107 0.9962 

Winter 0.2169 -21.00 0.1309 -0.8163 -0.0012 1.2637 

Spring 0.1728 -0.1553 0.1005 -0.4056 0.0047 1.2461 

Summer 0.1848 0.4727 0.1118 0.0547 -0.0199 0.8000 

Fall 0.1703 0.3178 0.1020 0.1753 -0.0389 0.6234 

Season Avg. 0.1862 -0.2111 0.1113 -0.2352 -0.0137 0.8838 

Table 12: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells in the 
mountainous region for all periods.  
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adjustment over the raw data. When looking at the change in the step 1 adjusted data 

relative to the unflagged grid points in the mountainous region in table 12, the results 

show variable performance. The longer accumulations show large improvements in 

RMSE, but the other errors move further away from the unflagged grid cell errors. 

Additionally, the MB shows changes greater than 1 in the winter and spring. The 

changes in error and bias suggest that the flagging does not always perform well in the 

mountainous region as expected. Tables 13 and 14 are calculated the same way as tables 

11 and 12, except they represent the non-mountainous results instead. The errors of the  

Step 1 vs Raw Stage IV Errors in Non-Mountainous Region 

Accumulation 
Period 

Raw 
RMSE 

 

Step 1 
RMSE 

 

Raw 
MAE 

Step 1 
MAE 

Raw MB Step 1 
MB 

Three-Year 0.1775 0.1409 0.0926 0.0839 -0.0139 0.0026 

One-Year 0.1900 0.1647 0.1003 0.0933 -0.0080 0.0110 

Winter 0.3024 0.3012 0.1445 0.1404 -0.0053 0.0178 

Spring 0.2190 0.2018 0.1146 0.1110 0.0077 0.0288 

Summer 0.2335 0.2099 0.1290 0.1232 -0.0209 -0.0005 

Fall 0.2129 0.1916 0.1106 0.1082 -0.0191 -0.0015 

Season Avg. 0.2415 0.2258 0.1243 0.1204 -0.0094 0.0111 

Table 13: Step 1 versus the raw Stage IV RMSE, MAE, and MB for the non-
mountainous region at all accumulation periods. Bolded numbers indicate an 
improvement in step 1 versus the raw Stage IV data. 
 

adjustments are lower, and the magnitude of improvement is larger in the non-

mountainous compared to the mountainous regions. The non-mountainous region RMSE 

and MAE improves for every accumulation period, but the MB only moves closer to 

zero in the three-year and summer accumulations. The MB in the mountainous region is 
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generally more negative and greater in magnitude than the non-mountainous region. 

When looking at the changes relative to the unflagged grid cells in table 14, the results 

show success in the algorithm. Every metric shows that the step 1 adjustment errors  

Step 1 Change in Adjustment Relative to Unflagged Grid Cell in Non-Mountainous 

Accumulation 
Period 

No Flag 
RMSE 

 

RMSE 
Change 

 

No Flag 
MAE 

MAE 
Change 

No Flag 
MB 

MB 
Change 

Three-Year 0.1402 0.9812 0.0779 0.5918 0.0316 0.3626 

One-Year 0.1564 0.7529 0.0877 0.5555 0.0306 0.4922 

Winter 0.2825 0.0603 0.1356 0.4606 0.0255 0.7500 

Spring 0.1975 0.8000 0.1070 0.4736 0.0379 0.6986 

Summer 0.2032 0.7788 0.1169 0.4793 0.0349 0.3655 

Fall 0.1813 0.6740 0.0973 0.1804 0.0065 0.6875 

Season Avg. 0.2164 0.6254 0.1141 0.3823 0.0260 0.5790 

Table 14: Unflagged grid cell RMSE, MAE, and MB versus the magnitude of the 
improvement after the step 1 adjustment relative to the unflagged grid cells in the non-
mountainous region for all periods. 
 

become closer to the unflagged grid cell errors. Overall, the beam blockage algorithm 

leads to larger improvements in magnitude and better flagging performance in the non-

mountainous versus the mountainous region.  

Overall, the beam blockage adjustments generally lead to improvements over the 

raw Stage IV data by reducing the error and positively increasing negative biases. Figure 

4.1 shows the radar estimated precipitation before and after step 1 is applied in the 

southeast US for the three-year accumulation through November 2020. The left image is 

before the adjustment, the middle image is after the adjustment, and the right image 

shows the magnitude of the adjustments for each grid cell. A noteworthy feature is that 
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Figure 4.1: Radar estimates before step 1(left), after step 1 (middle), and the magnitude 
of the adjustment for each blocked beam for the three-year accumulation period through 
November 2020.  
 

most of the beams that appear to be blocked are adjusted. There are numerous beam 

blockage examples, like the ones in north-central Tennessee, the northeast corner of 

Mississippi, and northern Georgia. After step 1 is applied, these blockages appear to be 

corrected as shown in the middle and right images. A weakness of the algorithm, 

however, is the adjustment of wide beam blockages. There are a handful of examples of 

wide beam blockages in figure 4.1, especially in Tennessee and Kentucky. In the 

adjustments, there are still faint reductions of estimated precipitation within the wide 

beams relative to the neighboring grid cells, but the errors appear to be smaller in 

magnitude. The wide beams generally appear in areas with complex topography, and the 

mountainous region results suggest that the algorithm struggles with this. Finally, figure 

4.2 shows the difference in gauge-radar biases from after and before step 1 is applied for 
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Figure 4.2: The difference between the gauge-radar bias after and before step 1 for three-
year precipitation through November 2020. 
 

the same region and accumulation period as figure 4.1. Only the pairs that change from 

the adjustment are shown. Every point in the map is a positive value, which indicates 

that the radar estimates are all increased. The remaining biases in the beam blockage 

adjusted dataset can be addressed in the later steps of the bias adjustment methodology. 
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4.2.  Mean Field and Range Dependent Adjustment Results 

The results of the performance of step 2, the mean field and range dependent 

adjustments, are discussed in this section. Because rain gauges are used in the 

adjustment calculations, data withholding tests are conducted to determine the error 

metrics. The gauges are first quality controlled, then 20% of them are randomly withheld 

and the RMSE, MAE, and MB are calculated between the withheld gauge PoN and the 

original analysis PoN at those locations. The original analysis for this step of the bias 

correction algorithm is the output from step 1. With the remaining gauges, the mean 

field and range dependent analysis is run for every grid point, then the error metrics are 

calculated again at the withheld locations with the newly calculated analysis. This 

section will first show the differences between step 1 and step 2 for the entire study area 

for the three-year, one-year, and seasonal accumulations. Then, the results of the 

performance in the similar climatological characteristics, mountainous versus non-

mountainous, and effective observation density subregions are shown for each 

accumulation. Finally, the strengths and weaknesses of the algorithm are  

discussed.  

 The performance of step 2 is first tested for the entire study region at all 

accumulations. Table 15 shows the step 1 versus the step 2 RMSE, MAE, and MB using 

the withheld gauges. For every accumulation, the RMSE and MAE improve after step 2 

is applied. Additionally, the MB is improved for every accumulation. The adjustments in 

step 1 led to increases in MB, but with the incorporation of gauge data, some of the 

adjustments in step 2 led to decreases in MB. Despite the adjustments being tested and  
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Step 2 vs Step 1 Errors for the Full Study Area 

Accumulation 
Period 

Step 1 
RMSE 

 

Step 2 
RMSE 

 

Step 1 
MAE 

Step 2 
MAE 

Step 1 
MB 

Step 2 
MB 

Three-Year 0.1451 0.1275 0.0738 0.0697 -0.0182 -0.0046 

One-Year 0.1696 0.1566 0.0847 0.0807 -0.0245 -0.0023 

Winter 0.2314 0.2296 0.1347 0.1204 0.0398 0.0027 

Spring 0.1830 0.1690 0.1122 0.0991 0.0352 -0.0013 

Summer 0.1908 0.1795 0.1171 0.1089 0.0296 0.0176 

Fall 0.1710 0.1676 0.1035 0.0953 -0.0035 -0.0012 

Season Avg. 0.1940 0.1864 0.1169 0.1039 0.0253 0.0045 

Table 15: Step 2 versus step 1 RMSE, MAE, and MB for the full study area at all 
accumulation periods. Bolded numbers indicate an improvement in the step 2 versus step 
1. 
 

applied seasonally, the magnitude of the improvements is similar for each accumulation. 

The greatest improvement in RMSE is in the summer, and the smallest is in the winter. 

This is similar to how the step 1 adjustments performed. Errors in wintertime 

adjustments can be related to frozen precipitation within certain gauges. The winter, 

however, has a much larger improvement in MAE relative to the step 1 adjustments.  

 The performance of step 2 for the different subregions selected based on similar 

climatological characteristics is shown. Performance is expected to vary between the 

regions due to their different climatological features. Table 16 shows the results between 

the step 1 and step 2 data at the withheld gauge locations within the climatological 

subregions for the three-year accumulation. Like the results in table 15, the errors in step 

2 are improved over the errors in step 1. Additionally, the MB is reduced for every 

region except for the southwest. The plains have the highest error out of every 
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Three-Year Step 2 vs Step 1 Errors in Climate Regions 

Three-Year Step 1 
RMSE 

 

Step 2 
RMSE 

Step 1   
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2 
MB 

Plains 0.1659 0.1325 0.0985 0.0775 0.0609 -0.0127 

Southwest 0.1212 0.1159 0.0663 0.0645 0.0043 0.0053 

Northeast 0.1396 0.1303 0.0756 0.0688 0.0100 -0.0098 

Southeast 0.1229 0.1218 0.0711 0.0643 -0.0198 0.0057 

Table 16: Step 2 versus step 1 RMSE, MAE, and MB for the subregions selected based 
on climatological characteristics for the three-year accumulation period. Bolded numbers 
indicate an improvement in step 2 versus step 1. 
 

subregion, but they also have the greatest improvement following the adjustment. The 

southwest has the least amount of improvement out of the regions. For the one-year  

accumulation in table 17, the results follow a similar pattern as those in table 16. 

One-Year Step 2 vs Step 1 Errors in Climate Regions 

One-Year Step 1 
RMSE 

 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2 
MB 

Plains 0.1837 0.1493 0.1077 0.0846 0.0700 -0.0022 

Southwest 0.1444 0.1400 0.0789 0.0781 0.0069 0.0102 

Northeast 0.1558 0.1453 0.0870 0.0796 0.0184 -0.0016 

Southeast 0.1414 0.1401 0.0804 0.0789 -0.0169 0.0070 

Table 17: Step 2 versus step 1 RMSE, MAE, and MB for the subregions selected based 
on climatological characteristics for the one-year accumulation period. Bolded numbers 
indicate an improvement in the adjusted versus unadjusted data. 
 

Interestingly, the MB in the southwest increases in both the three-year and one-year 

accumulations. Finally, the seasonal accumulation testing results are shown in table 18. 

Generally, the results show that the adjustments improve the estimates, however, the  
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Seasonal Step 2 vs Step 1 Errors in Climate Regions 

Winter Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

Plains 0.3055 0.2950 0.2075 0.1589 0.1336 0.0129 

Southwest 0.1768 0.1758 0.1066 0.1012 -0.0351 0.0079 

Northeast 0.2156 0.1911 0.1346 0.1180 0.0515 -0.0102 

Southeast 0.1714 0.1705 0.1037 0.0970 -0.0435 -0.0047 

Spring Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

Plains 0.2037 0.1703 0.1256 0.1030 0.0816 -0.0003 

Southwest 0.1837 0.1803 0.0997 0.0973 0.0144 0.0079 

Northeast 0.1703 0.1609 0.1020 0.0979 0.0322 -0.0145 

Southeast 0.1651 0.1644 0.0988 0.0968 -0.0089 0.0080 

Summer Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

Plains 0.1998 0.1730 0.1220 0.1046 0.0564 0.0015 

Southwest 0.1917 0.1851 0.1195 0.1148 0.0487 0.0316 

Northeast 0.1842 0.1747 0.1116 0.1050 -0.0034 0.0166 

Southeast 0.1878 0.1852 0.1156 0.1151 0.0196 0.0292 

Fall Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

Plains 0.1856 0.1805 0.1092 0.1034 0.0307 -0.0063 

Southwest 0.1655 0.1661 0.0923 0.0908 -0.0097 0.0059 

Northeast 0.1588 0.1529 0.0951 0.0893 -0.0152 -0.0050 

Southeast 0.1730 0.1723 0.0993 0.0964 -0.0309 0.0053 

Table 18: Step 2 versus step 1 RMSE, MAE, and MB for the subregions selected based 
on climatological characteristics for the seasonal accumulation periods. Bolded numbers 
indicate an improvement in step 2 versus step 1. 
 

magnitude of the improvements is seasonally dependent. The plains in the winter have 

the highest error of any region at any time. The RMSE, MAE, and MB are improved for 
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every season, but the improvements in the warmer months are much larger than in the 

colder months. The southwest sees improvements for all metrics except for the fall 

RMSE. Additionally, the MB is decreased in the warmer months, but increased in the 

cooler months. The northeast and southeast MB, like in the southwest, does not 

consistently decrease across the seasons. The northeast MB increases in the summer and 

fall, and the southeast MB decreases in all seasons except for the winter. The RMSE and 

MAE is improved for every accumulation in these regions as well.  

The step 2 adjustments are tested in the mountainous versus the non-mountainous 

subregions using the same methods as the prior tests. Table 19 shows the results of step  

Step 2 vs Step 1 Errors in Mountainous Region 

Accumulation 
Period 

Step 1 
RMSE 

 

Step 2 
RMSE 

 

Step 1 
MAE 

Step 2 
MAE 

Step 1 
MB 

Step 2 
MB 

Three-Year 0.1349 0.1284 0.0758 0.0722 -0.0157 -0.0042 

One-Year 0.1568 0.1419 0.0861 0.0843 -0.0111 -0.0008 

Winter 0.2132 0.1976 0.1343 0.1232 0.0073 -0.0068 

Spring 0.1687 0.1545 0.1007 0.1019 0.0049 -0.0042 

Summer 0.1784 0.1765 0.1129 0.1063 -0.0013 0.0106 

Fall 0.1655 0.1600 0.0983 0.0961 -0.0265 0.0015 

Season Avg. 0.1815 0.1722 0.1113 0.1066 -0.0039 0.0003 

Table 19: Step 2 versus step 1 RMSE, MAE, and MB for the mountainous region for all 
accumulation periods. Bolded numbers indicate an improvement in step 2 versus step 1. 
 

1 versus step 2 for the mountainous region. There is a reduction of error between step 1 

and step 2 for every accumulation except for the spring MAE, and the MB is improved 

for all periods except for the summer. Like the other tests, the winter has the highest 
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errors and the greatest improvements. In the summertime, the MB has a large increase. 

This was also observed for the northeast and southeast in the summer, which is where 

the entirety of the mountainous region is located. The non-mountainous region 

results are shown in table 20. Overall, the errors are higher in the non-mountainous 

regions. Unlike the mountainous region, the winter RMSE increases, and the MB is  

Step 2 vs Step 1 Errors in Non-Mountainous Region 

Accumulation 
Period 

Step 1 
RMSE 

 

Step 2 
RMSE 

 

Step 1 
MAE 

Step 2 
MAE 

Step 1 
MB 

Step 2 
MB 

Three-Year 0.1502 0.1270 0.0785 0.0681 0.0023 -0.0046 

One-Year 0.1759 0.1589 0.0893 0.0791 0.0279 0.0033 

Winter 0.2404 0.2454 0.1355 0.1203 0.0428 0.0039 

Spring 0.2051 0.1894 0.1156 0.0952 0.0425 0.0017 

Summer 0.2036 0.1817 0.1258 0.1119 0.0367 0.0190 

Fall 0.1834 0.1771 0.1073 0.1008 0.0143 -0.0019 

Season Avg. 0.2081 0.1969 0.1204 0.1091 0.0341 0.0057 

Table 20: Step 2 versus step 1 RMSE, MAE, and MB for the non-mountainous region 
for all accumulation periods. Bolded numbers indicate an improvement in step 2 versus 
step 1. 
 

improved for every accumulation. Additionally, the MB for every accumulation is 

reduced. Another noteworthy feature is that every MB is more positive in the non-

mountainous region compared to the mountainous. This shows that the gauge estimates 

of precipitation are higher than the radar in the mountainous regions and the radar 

estimates are higher in the non-mountainous regions. 

The final tested subregions are based upon the five effective observation density 

classes. It is expected that the regions with more gauge observations will have lower  
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Three-Year Step 2 vs Step 1 Errors in Gauge Density Regions 

Three-Year 
Effective 

Obs. Density 

Step 1 
RMSE 

 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

0.0-12.0 0.1880 0.1461 0.1044 0.0930 0.0477 -0.0049 

12.01-16.00 0.1379 0.1326 0.0836 0.0697 0.0335 0.0124 

16.01-28.00 0.1427 0.1251 0.0786 0.0705 0.0215 -0.0044 

28.01-64.0 0.1329 0.1206 0.0742 0.0655 0.0123 -0.0062 

64.01+ 0.1237 0.1224 0.0702 0.0640 -0.0015 -0.0052 

Table 21: Step 2 versus step 1 RMSE, MAE, and MB for the subregions selected based 
on effective observation density for the three-year accumulation period. Bolded numbers 
indicate an improvement in step 2 versus step 1. 
 

error and greater improvements compared to the areas with less observations. Table 21 

shows the results of the errors between step 1 and step 2 at the withheld gauge locations  

One-Year Step 2 vs Step 1 Errors in Gauge Density Regions 

One-Year 
Effective 

Obs. Density 

Step 1 
RMSE 

 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

0.0-12.0 0.2197 0.1742 0.1269 0.1054 0.0632 0.0031 

12.01-16.00 0.1628 0.1516 0.0933 0.0829 0.0381 0.0158 

16.01-28.00 0.1572 0.1417 0.0873 0.0801 0.0262 0.0002 

28.01-64.0 0.1494 0.1374 0.0830 0.0736 0.0160 0.0004 

64.01+ 0.1429 0.1403 0.0803 0.0795 0.0137 0.0102 

Table 22: Step 2 versus step 1 RMSE, MAE, and MB for the subregions selected based 
on effective observation density for the one-year accumulation period. Bolded numbers 
indicate an improvement in step 2 versus step 1. 
 

for the three-year accumulation for each effective observation density class. Every 

metric shows improvement between step 1 and step 2 except for the MB in the final  
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Seasonal Step 2 vs Step 1 Errors in Gauge Density Regions 

Winter Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

0.0-12.0 0.3047 0.3191 0.1717 0.1696 0.0153 0.0193 

12.01-16.00 0.2498 0.2634 0.1387 0.1258 0.0089 0.0033 

16.01-28.00 0.2320 0.2196 0.1374 0.1162 0.0316 -0.0005 

28.01-64.0 0.2108 0.1882 0.1223 0.1066 0.0172 -0.0015 

64.01+ 0.1925 0.1711 0.1140 0.1086 0.0009 0.0041 

Spring Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

0.0-12.0 0.2504 0.2146 0.1562 0.1266 0.0771 0.0169 

12.01-16.00 0.2014 0.1854 0.1187 0.1107 0.0485 0.0107 

16.01-28.00 0.1840 0.1658 0.1080 0.0960 0.0418 0.0003 

28.01-64.0 0.1677 0.1572 0.0984 0.0919 0.0255 -0.0029 

64.01+ 0.1652 0.1640 0.1035 0.0949 0.0122 -0.0048 

Summer Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1 
MB 

Step 2   
MB 

0.0-12.0 0.2307 0.2004 0.1445 0.1259 0.0806 -0.0056 

12.01-16.00 0.1989 0.1894 0.1268 0.1173 0.0560 0.0259 

16.01-28.00 0.1959 0.1816 0.1170 0.1083 0.0299 0.0217 

28.01-64.0 0.1851 0.1715 0.1131 0.1046 0.0246 0.0119 

64.01+ 0.1741 0.1730 0.1035 0.1013 0.0148 0.0261 

Fall Step 1 
RMSE 

Step 2 
RMSE 

Step 1 
MAE 

Step 2 
MAE 

Step 1   
MB 

Step 2   
MB 

0.0-12.0 0.2263 0.2101 0.1304 0.1227 0.0282 0.0066 

12.01-16.00 0.1989 0.1894 0.1268 0.1173 0.0560 0.0259 

16.01-28.00 0.1669 0.1665 0.0948 0.0935 -0.0019 -0.0037 

28.01-64.0 0.1647 0.1631 0.0941 0.0908 -0.0118 -0.0032 

64.01+ 0.1551 0.1573 0.0883 0.0871 -0.0031 0.0024 

Table 23: Step 2 versus step 1 RMSE, MAE, and MB for the seasonal effective 
observation density regions. Bolded numbers indicate an improvement in step 2. 
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class. The grid points in the first class expectedly have the highest errors, but they also 

benefit the most from the improvements. The magnitudes of the improvements in the 

fifth class are the smallest, but their overall errors are the lowest. When looking at the 

one-year accumulation in table 22, the results follow the same pattern. As the effective 

observation density increases, the amount of improvement decreases. Additionally, 

every MB is reduced in both the three-year and one-year accumulations. Finally, when 

considering the seasons, there are differences with the performance of the algorithm. 

Like many of the prior adjustments, the winter errors are the highest and do not always 

improve between the original and the adjusted data. Gauge errors in the winter can be 

related to frozen precipitation. The RMSE increases within the first two classes instead 

of decreases like the three-year and one-year accumulations. The MB also only improves 

in the second, third, and fourth classes. Unlike the other accumulations, the MB 

increases in the first and fifth class. The spring is the only season where every metric 

shows improvement with the adjustments. It is also the only season where every MB 

decreases. For the step 2 adjustments as a whole, the spring performs well. The errors in 

the summer follow a similar pattern as the spring, except the MB does not improve for 

the fifth class. Finally, the fall is the season with the least amount of error. Like the other 

accumulations with the least amount of error, the magnitudes of the improvements are 

small compared to the higher error accumulations.  

Overall, the adjustments in step 2 result in improvements over step 1. When 

considering the errors for the entire study region, the adjustments successfully reduce 

both the RMSE and MAE for all accumulations. The MB is improved in most cases as 
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well. Figure 4.3 shows maps of before and after the adjustment, and the difference 

between step 2 and step 1 for the southeast US for the three-year precipitation through 

November 2020. The adjustments are equal in magnitude within the same ranges around 

 

Figure 4.3:  Radar estimates before step 2(left), after step 2 (middle), and the magnitude 
of the adjustments for the three-year accumulation period through November 2020.  
 

the radar, which appear as circles. The mean field and range dependent biases are 

roughly equal with range, so this shows success in the algorithm. One weakness with the 

algorithm is the development of lines of discontinuity at the edges of the radar domain 

boundaries. A prominent example in the figure occurs in southeast Ohio, where there is a 

sharp discontinuity between green and orange colors. These lines occur because the 

adjustments are performed independently for each radar, and this error will be adjusted 

in the next step of the methodology. Finally, figure 4.4 shows the difference between 

after and before the step 2 adjustment in gauge-radar pair biases. The blue and red colors 

indicate that the radar estimated value increases and decreases respectively relative to  
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Figure 4.4: The difference between the gauge-radar bias after and before step 2 for three-
year precipitation through November 2020. 
 
the gauge value. It can be seen that alike colors tend to cluster in regions corresponding 

to radar domains. For example, the large area of red points indicating that the step 2 

adjustment led to decreases in the radar estimated precipitation in southwest Ohio 

corresponds to the KILN radar domain. Overall, many of the differences are large. The 

remaining adjustments in the methodology focus on radar domain boundaries and the 

precipitation field as whole.  
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4.3. Radar Domain Discontinuity Adjustment Results  

The results of step 3, the radar domain discontinuity adjustments, are discussed 

in this section. The RMSE, MAE, and MB are calculated for the three-year, one-year, 

and seasonal accumulations for the entire study area, climatological subregions, and 

mountainous versus non-mountainous regions. The effective observation density classes 

are not considered because the adjustments are entirely radar based. Additionally, no 

gauges are withheld in the error calculations. Finally, the errors are only calculated at the 

locations of the grid cell and gauge pairs that were adjusted, which are those within 25 

km of every radar domain boundary.  

The errors between the step 2 and step 3 adjustments are calculated for the full 

study area for all three accumulation periods. It is expected that the adjustments will 

result in improvements, but the changes will be small because of the IDW method. Table 

24 shows the results of these calculations at the locations of the grid points that were  

Step 3 vs Step 2 Errors for the Full Study Area 

Accumulation 
Period 

Step 2 
RMSE 

 

Step 3 
RMSE 

 

Step 2 
MAE 

Step 3 
MAE 

Step 2 
MB 

Step 3 
MB 

Three-Year 0.1183 0.1167 0.0691 0.0680 0.0004 0.0003 

One-Year 0.1350 0.1335 0.0790 0.0780 0.0030 0.0028 

Winter 0.2062 0.2052 0.1177 0.1163 0.0055 0.0061 

Spring 0.1713 0.1694 0.0972 0.0964 0.0008 0.0014 

Summer 0.1811 0.1790 0.1079 0.1071 0.0104 0.0097 

Fall 0.1723 0.1712 0.0977 0.0969 -0.0001 -0.0002 

Season Avg. 0.1825 0.1810 0.1050 0.1040 0.0041 0.0042 

Table 24: Step 3 versus step 2 RMSE, MAE, and MB for all accumulation periods for 
the full study area. The bolded numbers indicate an improvement in step 3 versus step 2. 
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adjusted. Overall, the changes in error and bias are small between step 2 and step 3. The 

three-year and one-year accumulations show improvement for every metric. 

Additionally, the RMSE and MAE for every season and the summer MB are improved. 

The changes in MB for the winter, spring, and fall move further away from zero, but the 

differences from the unadjusted data are small. Unlike the prior steps of the bias 

adjustment procedure, the changes across all time periods are similar in magnitude.  

The results of the step 3 adjustments for the climatological subregions are 

discussed for each accumulation. Table 25 shows the results between step 2 and step 3 

for the three-year accumulation period. Every metric shows improvement for every  

Three-Year Step 3 vs Step 2 Errors in Climate Regions 

Three-Year Step 2 
RMSE 

 

Step 3 
RMSE 

Step 2   
MAE 

Step 3 
MAE 

Step 2   
MB 

Step 3 
MB 

Plains 0.1219 0.1194 0.0710 0.0694 -0.0090 -0.0089 

Southwest 0.1137 0.1106 0.0636 0.0628 0.0120 0.0114 

Northeast 0.1209 0.1187 0.0725 0.0716 -0.0017 -0.0003 

Southeast 0.1158 0.1152 0.0678 0.0677 0.0056 0.0050 

Table 25: Step 3 versus step 2 RMSE, MAE, and MB for the three-year accumulation 
period for the climatological subregions. The numbers in bold indicate an improvement 
in step 3 versus step 2.  
 

subregion. The magnitudes of the improvements are smallest in the southeast, and the 

other regions have similarly sized improvements. Additionally, the plains region has the 

highest RMSE, but the northeast has the highest MAE. This is different from the pattern 

of the plains always having the highest error in the prior adjustments. The northern 

regions are also the only negatively biased regions. The one-year adjustments are shown 
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One-Year Step 3 vs Step 2 Errors in Climate Regions  

One-Year Step 2 
RMSE 

 

Step 3 
RMSE 

Step 2 
MAE 

Step 3 
MAE 

Step 2   
MB 

Step 3 
MB 

Plains 0.1394 0.1374 0.0838 0.0827 -0.0055 -0.0046 

Southwest 0.1299 0.1289 0.0746 0.0740 0.0168 0.0149 

Northeast 0.1349 0.1330 0.0819 0.0803 -0.0010 -0.0005 

Southeast 0.1316 0.1308 0.0766 0.0765 0.0067 0.0058 

Table 26:  Step 3 versus step 2 RMSE, MAE, and MB for the one-year accumulation 
period for the climatological subregions. The numbers in bold indicate an improvement 
in step 3 versus step 2.  
 

in table 26. Like the three-year accumulation, every metric for every region shows 

improvement between step 2 and step 3. The plains region has the highest RMSE and 

MAE, which follows the pattern observed in the prior adjustments. The magnitudes of 

the adjustments are also more similar than in the three-year accumulation between the 

regions. Like in the three-year accumulation, the MB is negative in the north and 

positive in the south. The seasonal results are shown in table 27. In the winter, the 

RMSE and MAE for all of the regions and the MB in the northeast are improved. The 

plains region has the highest overall error by a wide margin and the southeast has the 

lowest. Interestingly, the positive biases are in the western and the negative biases are in 

the eastern regions. Similarly, the spring shows improvement for every RMSE and 

MAE. The MB is improved in two of the regions as well. The differences in the 

unadjusted and adjusted errors are similar across the regions, though the overall errors 

are much closer than in the winter. In the summer and fall, improvements occur in every 

region except for the northeast MB. The summer is the only season where the southwest, 
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Seasonal Step 3 vs Step 2 Errors in Climate Regions 

Winter Step 2 
RMSE 

Step 3 
RMSE 

Step 2 
MAE 

Step 3 
MAE 

Step 2   
MB 

Step 3   
MB 

Plains 0.2668 0.2658 0.1713 0.1706 0.0470 0.0481 

Southwest 0.1770 0.1764 0.1044 0.1039 0.0091 0.0105 

Northeast 0.1945 0.1930 0.1203 0.1192 -0.0075 -0.0069 

Southeast 0.1649 0.1636 0.0957 0.0947 -0.0095 -0.0100 

Spring Step 2 
RMSE 

Step 3 
RMSE 

Step 2 
MAE 

Step 3 
MAE 

Step 2   
MB 

Step 3   
MB 

Plains 0.1779 0.1760 0.1048 0.1037 0.0045 0.0043 

Southwest 0.1763 0.1742 0.0960 0.0947 0.0062 0.0069 

Northeast 0.1588 0.1566 0.0967 0.0943 -0.0095 -0.0099 

Southeast 0.1657 0.1646 0.0967 0.0956 0.0074 0.0065 

Summer Step 2 
RMSE 

Step 3 
RMSE 

Step 2 
MAE 

Step 3 
MAE 

Step 2 
MB 

Step 3   
MB 

Plains 0.1771 0.1748 0.1066 0.1061 -0.0147 -0.0145 

Southwest 0.1822 0.1792 0.1098 0.1088 0.0306 0.0279 

Northeast 0.1750 0.1732 0.1058 0.1040 0.0139 0.0144 

Southeast 0.1839 0.1831 0.1135 0.1134 0.0244 0.0241 

Fall Step 2 
RMSE 

Step 3 
RMSE 

Step 2 
MAE 

Step 3 
MAE 

Step 2   
MB 

Step 3   
MB 

Plains 0.1876 0.1861 0.1093 0.1085 -0.0083 -0.0074 

Southwest 0.1655 0.1653 0.0920 0.0918 0.0120 0.0118 

Northeast 0.1549 0.1526 0.0949 0.0932 -0.0016 -0.0026 

Southeast 0.1693 0.1684 0.0983 0.0982 0.0059 0.0048 

Table 27: Step 3 versus step 2 RMSE, MAE, and MB for the seasonal accumulation 
periods for the climatological subregions. The numbers in bold indicate an improvement 
in step 3 versus step 2.  
 
instead of the plains, has the highest overall error. Additionally, the plains region is 

negatively biased for both seasons and the only positive northeast bias is in the summer. 

The mountainous versus the non-mountainous subregions are the final tested  
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Step 3 vs Step 2 Errors in Mountainous Region 

Accumulation 
Period 

Step 2 
RMSE 

 

 Step 3 
RMSE 

 

Step 2 
MAE 

Step 3 
MAE 

Step 2 
MB 

Step 3 
MB 

Three-Year 0.1256 0.1240 0.0762 0.0757 -0.0071 -0.0061 

One-Year 0.1413 0.1398 0.0854 0.0837 -0.0035 -0.0051 

Winter 0.1938 0.1918 0.1227 0.1203 -0.0102 -0.0101 

Spring 0.1676 0.1660 0.1013 0.0991 -0.0084 -0.0087 

Summer 0.1797 0.1783 0.1112 0.1103 0.0055 0.0042 

Fall 0.1653 0.1637 0.0990 0.0988 -0.0053 -0.0064 

Season Avg. 0.1766 01749 0.1085 0.1071 -0.0046 -0.0053 

Table 28: Step 3 versus step 2 RMSE, MAE, and MB for all accumulation periods for 
the mountainous region. The numbers in bold indicate an improvement in step 3 versus 
step 2.  
 

subregion for the step 3 adjustments. Tables 28 and 29 show the results between step 2  

and step 3 for all of the accumulation periods in the mountainous and non-mountainous  

Step 3 vs Step 2 Errors in Non-Mountainous Region 

Accumulation 
Period 

Step 2 
RMSE 

 

 Step 3 
RMSE 

 

Step 2 
MAE 

Step 3 
MAE 

Step 2 
MB 

Step 3 
MB 

Three-Year 0.1169 0.1153 0.0678 0.0667 0.0010 0.0009 

One-Year 0.1337 0.1322 0.0780 0.0771 0.0041 0.0039 

Winter 0.2085 0.2076 0.1168 0.1156 0.0085 0.0094 

Spring 0.1715 0.1696 0.0965 0.0959 0.0025 0.0030 

Summer 0.1806 0.1784 0.1074 0.1069 0.0132 0.0124 

Fall 0.1733 0.1722 0.0976 0.0971 0.0012 0.0011 

Season Avg. 0.1835 0.1820 0.1046 0.1039 0.0064 0.0065 

Table 29: Step 3 versus step 2 RMSE, MAE, and MB for all accumulation periods for 
the non-mountainous region. The numbers in bold indicate an improvement in step 3 
versus step 2. 
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regions respectively. The RMSE and MAE are improved for every accumulation in both 

regions, and the magnitudes of their improvements are similar. The adjustments and 

periods of improvement differ when considering the MB between the two regions. The 

three-year and summer MB are improved for both regions, and the improvements differ 

for the other time periods. Additionally, the MB is negative in the mountainous and 

positive in the non-mountainous regions for every accumulation. This pattern is also 

observed in the prior bias adjustments. Overall, the adjustments help improve the 

discontinuities in both the mountainous and non-mountainous regions. Remaining biases 

can be addressed in the two-dimensional adjustment. 

 The step 3 adjustments help remove the discontinuities caused by the beam 

blockage and mean field and range dependent bias adjustments. For every region and 

accumulation, the RMSE and MAE are improved between steps 2 and 3. The MB is  

 

Figure 4.5: Radar estimates before step 3 (left), after step 3 (middle), and the magnitude 
of the adjustments for the three-year accumulation period through November 2020.  
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improved in most cases as well. Variations in the magnitude of the improvements 

between the seasons can be attributed to the adjustments being calculated independently 

for each accumulation. Figure 4.5 shows an example of the three-year precipitation 

estimates through November 2020 before and after the step 3 adjustment, and the 

magnitude of each adjustment. The before adjustment image on the left has multiple 

prominent radar domain discontinuities. One example is the discontinuity in southeast  

 

Figure 4.6: The difference between the gauge-radar bias after and before step 3 for three-
year precipitation through November 2020. 
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Ohio in the southwest to northeast direction. The middle image, which shows the 

precipitation estimates after the step 3 adjustment, no longer shows prominent 

discontinuities, including the one in Ohio. The right image shows how the adjustments 

work. The side that is less than the other is increased and the side that is greater than the 

other is decreased at an inverse distance. The adjustments are greatest near the boundary, 

then they quickly fade away at longer distances. The process shown in the right image is 

done for every accumulation and every radar domain boundary within the study area. 

Finally, figure 4.6 shows how the difference after and before the step 3 adjustment in the 

gauge-radar pair biases. It can be seen that the adjustments follow radar domain 

boundaries, where the greatest changes in the negative direction are next to the greatest 

changes in the positive direction. Additionally, the magnitude of the adjustments is 

generally smaller than those in the previous steps. The remaining biases in the Stage IV 

precipitation dataset will be addressed for the precipitation field as whole by 

incorporating gauge data through interpolation.  

4.4. Two-Dimensional Adjustment Results 

The calculations and results of the performance of step 4, the two-dimensional  

adjustments, are discussed in this section. First, the three interpolation methods, IDW, 

IDW2, and OK are tested in order to determine the optimally performing method to use 

in the step 4 algorithm. Then, using the optimal interpolation method, the step 4 

algorithm is tested for whether the adjustments should be calculated independently for 

each accumulation period or aggregated from the seasonal accumulations. Finally, the 
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step 4 algorithm is run for the full study region using the optimal accumulation period 

calculations. Data withholding is used for all of the analyses in this section, which are 

the determination of the optimal interpolation method, testing of the accumulation period 

calculations, and performance of the step 4 algorithm because rain gauges are used in the 

adjustments. This section will first show the results of the interpolation method errors, 

and the results of the accumulation period calculations. Then, the performance of the 

step 4 adjustments will be discussed for the full study area, climatological subregions, 

mountainous versus non-mountainous regions, and the different effective observation 

density classes for the three-year, one-year, and seasonal accumulations. 

 The performance of the IDW, IDW2, and OK interpolation methods are 

discussed. Because these methods consider the values of the closest points in the 

estimation of a given grid point, the number of neighboring points to use in the 

calculations are tested. The selected points are from 10 to 50 in increments of 10. The 

range of values of 10 to 50 are used because they are the least computationally expensive  

RMSE for Interpolation Methods Using Different Numbers of Points 

RMSE IDW  IDW2 
 

OK 
Exponential 

OK 
Spherical 

OK  
Linear 

OK Hole-
Effect 

OK  
Power 

10 points 0.1121 0.1177 0.1145 0.1146 0.1149 0.1146 0.1149 

20 points 0.1104 0.1157 0.1140 0.1142 0.1145 0.1141 0.1141 

30 points 0.1099 0.1150 0.1140 0.1149 0.1149 0.1142 0.1142 

40 points 0.1097 0.1145 0.1142 0.1153 0.1153 0.1144 0.1144 

50 points 0.1098 0.1143 0.1144 0.1156 0.1156 0.1145 0.1145 

Table 30: RMSE for each tested interpolation method and model for 10 to 50 points for 
the three-year accumulation period. Bolded numbers indicate the lowest error in each 
column.   
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and the increments of 10 are used because there are small differences in error in shorter 

increments. Additionally, there are five different OK models tested: exponential, 

spherical, linear, hole-effect, and power. Tables 30, 31, and 32 show the RMSE, MAE, 

and MB respectively for the interpolation methods using between 10 and 50 points for 

MAE for Interpolation Methods Using Different Numbers of Points  

MAE IDW  IDW2 
 

OK 
Exponential 

OK 
Spherical 

OK  
Linear 

OK Hole-
Effect 

OK  
Power 

10 points 0.0653 0.0667 0.0657 0.0656 0.0657 0.0655 0.0657 

20 points 0.0645 0.0658 0.0657 0.0661 0.0664 0.0659 0.0664 

30 points 0.0646 0.0652 0.0658 0.0664 0.0667 0.0658 0.0667 

40 points 0.0644 0.0654 0.0654 0.0661 0.0665 0.0657 0.0665 

50 points 0.0645 0.0654 0.0658 0.0665 0.0668 0.0659 0.0667 

Table 31: MAE for each tested interpolation method and model for 10 to 50 points for 
the three-year accumulation period. Bolded numbers indicate the lowest error in each 
column.   
 

the three-year accumulation. Only the three-year accumulation is shown because the 

results are similar for the other accumulations. Table 30 shows that IDW has the lowest 

MB for Interpolation Methods Using Different Numbers of Points 

MB IDW  IDW2 
 

OK 
Exponential 

OK 
Spherical 

OK  
Linear 

OK Hole-
Effect 

OK  
Power 

10 points -0.0107 -0.0086 -0.0081 -0.0081 -0.0081 -0.0078 -0.0081 

20 points -0.0114 -0.0093 -0.0088 -0.0086 -0.0085 -0.0084 -0.0086 

30 points -0.0117 -0.0095 -0.0083 -0.0082 -0.0083 -0.0083 -0.0083 

40 points -0.0114 -0.0097 -0.0081 -0.0078 -0.0082 -0.0082 -0.0081 

50 points -0.0115 -0.0098 -0.0076 -0.0077 -0.0076 -0.0076 -0.0076 

Table 32: MB for each tested interpolation method and model for 10 to 50 points for the 
three-year accumulation period. Bolded numbers indicate the bias closest to zero.   
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overall error of all the tested methods. Additionally, the use of 40 points in the 

calculations perform the best. The IDW results are similar in table 31. It has the lowest  

overall MAE, and its optimal number of points is 40. The OK models, however, each 

perform best using 10 points rather than 20 points when considering table 31 versus 

table 30. Finally, the results in table 32 show that OK is the least biased interpolation 

method and IDW is the most biased. Each OK model has nearly the same MB as well. 

When considering all three metrics, IDW using 40 points has the lowest RMSE and 

MAE, but OK using 50-points is the least biased. The least biased IDW calculation uses 

only 10 points. With the given information, the selected interpolation method for the step 

4 adjustments is IDW using 30-points. This method is selected because it is a 

compromise of having low overall error while minimizing the effects of the greater 

negative bias. Additionally, the computational expense of IDW is much less than OK.  

 The step 4 accumulation periods are tested using two different methods. The first 

method applies the adjustment to the seasonal accumulations, then aggregates them to 

obtain the one-year and three-year accumulations. The second method calculates and 

applies the adjustments independently for each accumulation. In the first method, the 

gauge-radar biases are calculated for every seasonal accumulation, then they are 

interpolated to the entire study area and added to the existing radar estimates. The one-

year and three-year accumulations are obtained by summing the results of the seasonal 

analyses. For the second method, the gauge-radar biases and interpolations are 

performed independently for each accumulation. The one-year and three-year 

accumulations are obtained using the results of their respective interpolations rather than 
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the sum of the seasonal analyses. The goal of testing the accumulation periods is to 

determine the best performing method. The reduction of computational expense is a 

benefit of aggregating the shortest accumulations to obtain the longer accumulation 

estimates. Table 33 shows the results between the aggregated and independently run data  

Aggregated vs Independent Two-Dimensional Analysis Errors 

Accumulation 
Period 

Aggregated 
RMSE 

 

Independent 
RMSE 

Aggregated 
MAE 

Independent 
MAE 

Aggregated 
MB 

Independent 
MB 

Three-Year 0.1170 0.0800 0.0371 0.0358 0.0004 -0.0100 

One-Year 0.1031 0.0807 0.0389 0.0384 -0.0029 -0.0077 

Table 33: RMSE, MAE, and MB of the aggregated versus independent accumulation 
period estimates for the three-year and one-year periods.  
  
for the three-year and one-year accumulations. For both accumulations, the 

independently run adjustments have a lower RMSE and MAE compared to the 

aggregated calculations. The aggregated calculations, however, are less biased overall. 

Because the error reductions are larger than the increase in bias, the independent 

accumulation period calculations are used for the step 4 adjustment.  

 The step 4 adjustments are performed using the data from step 3 as the input, and 

the interpolation method is IDW using 30 points. The results between steps 3 and 4 for 

the full study area at all accumulations is shown in table 34. It can be seen that the 

RMSE and MAE are reduced for all accumulations. The magnitudes of the 

improvements are also greater than those prior to this step. When considering the bias, it 

becomes more negative for every accumulation period. This is likely due to the gauge 

data being incorporated. The only MB that moves closer to zero occurs in the summer. 

However, the magnitude by which the bias moves further away from zero is generally   



 

77 

 

Step 4 vs Step 3 Errors for the Full Study Area 

Accumulation 
Period 

Step 3 
RMSE 

 

 Step 4 
RMSE 

 

Step 3 
MAE 

Step 4 
MAE 

Step 3 
MB 

Step 4 
MB 

Three-Year 0.1165 0.1005 0.0687 0.0561 -0.0035 -0.0079 

One-Year 0.1338 0.1162 0.0788 0.0654 0.0032 -0.0076 

Winter 0.2064 0.1801 0.1158 0.0960 0.0025 -0.0086 

Spring 0.1684 0.1464 0.0966 0.0794 0.0007 -0.0039 

Summer 0.1787 0.1565 0.1075 0.0886 0.0138 -0.0025 

Fall 0.1684 0.1454 0.0965 0.0770 -0.0023 -0.0047 

Season Avg. 0.1805 0.1571 0.1036 0.0852 0.0037 -0.0049 

Table 34: Step 4 versus step 3 RMSE, MAE, and MB for all accumulation periods for 
the full study area. The bolded numbers indicate an improvement in step 4 versus step 3. 
 

small. Overall, the decreases in error are large across the full study area. 

 The performance of the step 4 adjustments within the different climatological 

subregions are discussed. The results comparing steps 3 and 4 for the three-year 

accumulation for the climatological subregions is shown in table 35. Like in the full  

Three-Year Step 4 vs Step 3 Errors in Climate Regions 

Three-Year Step 3 
RMSE 

 

Step 4 
RMSE 

Step 3   
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4 
MB 

Plains 0.1222 0.0982 0.0755 0.0534 -0.0111 -0.0090 

Southwest 0.1086 0.0951 0.0638 0.0536 0.0034 -0.0097 

Northeast 0.1175 0.1057 0.0688 0.0581 -0.0022 -0.0049 

Southeast 0.1120 0.1006 0.0647 0.0601 0.0039 -0.0090 

Table 35: Step 4 versus step 3 RMSE, MAE, and MB for the three-year accumulation 
period for the climatological subregions. The bolded numbers indicate an improvement 
step 4 versus step 3. 
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study area results, the RMSE and MAE are both substantially reduced for each region. 

However, a difference is that the MB increases for the plains, which is the only 

instance where the MB becomes more positive after the adjustment. The plains, like in 

the prior results, has the largest improvement. Additionally, it has the lowest MAE 

following the adjustment. For the one-year climatological subregion results in table 36,  

One-Year Step 4 vs Step 3 Errors in Climate Regions 

One-Year Step 3 
RMSE 

 

Step 4 
RMSE 

Step 3   
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4 
MB 

Plains 0.1384 0.1140 0.0836 0.0650 -0.0038 -0.0090 

Southwest 0.1293 0.1140 0.0763 0.0642 0.0108 -0.0070 

Northeast 0.1334 0.1188 0.0795 0.0679 0.0005 -0.0052 

Southeast 0.1293 0.1158 0.0756 0.0665 0.0084 -0.0085 

Table 36: Step 4 versus step 3 RMSE, MAE, and MB for the one-year accumulation 
period for the climatological subregions. The bolded numbers indicate an improvement 
in step 4 versus step 3. 
 

the RMSE and MAE improvements behave similarly as those in table 36, but the MB 

changes are different. The MB in every region becomes more negative after the 

adjustments, and the southwest and northeast see improvement. The seasonal results are 

shown in table 37. In the winter, the plains have the greatest improvement in error and 

MB. In the spring, the southwest has the highest overall error instead of the plains. 

However, the plains still benefit the greatest from the adjustments. Additionally, the MB 

in the northeast increases, which goes against the pattern seen in the other 

accumulations. Every metric shows improvement in the summer except for the plains 

MB. This season also has the most positively biased unadjusted data. Finally, the fall  
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Seasonal Step 4 vs Step 3 Errors in Climate Regions 

Winter Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

Plains 0.2664 0.2262 0.1659 0.1283 0.0284 -0.0073 

Southwest 0.1761 0.1498 0.1043 0.0803 0.0064 -0.0124 

Northeast 0.1888 0.1697 0.1113 0.0985 -0.0071 -0.0076 

Southeast 0.1672 0.1538 0.0962 0.0834 -0.0072 -0.0052 

Spring Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

Plains 0.1709 0.1418 0.1092 0.0788 0.0058 -0.0026 

Southwest 0.1761 0.1578 0.0969 0.0843 0.0075 -0.0044 

Northeast 0.1585 0.1364 0.0954 0.0759 -0.0105 -0.0038 

Southeast 0.1626 0.1478 0.0969 0.0847 0.0007 -0.0096 

Summer Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

Plains 0.1731 0.1451 0.1054 0.0828 -0.0032 -0.0038 

Southwest 0.1809 0.1633 0.1102 0.0924 0.0236 -0.0022 

Northeast 0.1725 0.1513 0.1054 0.0888 0.0184 0.0005 

Southeast 0.1861 0.1677 0.1154 0.0993 0.0263 -0.0059 

Fall Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

Plains 0.1780 0.1452 0.1034 0.0778 -0.0080 -0.0060 

Southwest 0.1611 0.1451 0.0911 0.0790 0.0086 0.0006 

Northeast 0.1524 0.1321 0.0915 0.0737 -0.0057 -0.0059 

Southeast 0.1724 0.1563 0.0962 0.0838 0.0008 -0.0066 

Table 37: Step 4 versus step 3 RMSE, MAE, and MB for the seasonal accumulation 
periods for the climatological subregions. The bolded numbers indicate an improvement 
in step 4 versus step 3. 
 

adjustments behave similarly as those in the winter and spring. When considering the 

adjustments overall, the magnitudes of improvement for the RMSE and MAE increase as 
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the length of the accumulation period decreases. The bias also becomes more negative in 

nearly every accumulation period and region.  

 The results for the performance of the step 4 adjustments for the mountainous 

versus the non-mountainous regions are discussed. Tables 38 and 39 show the results of  

Step 4 vs Step 3 Errors in Mountainous Region 

Accumulation 
Period 

Step 3 
RMSE 

 

 Step 4 
RMSE 

 

Step 3 
MAE 

Step 4 
MAE 

Step 3 
MB 

Step 4 
MB 

Three-Year 0.1210 0.1083 0.0709 0.0611 -0.0080 -0.0052 

One-Year 0.1370 0.1208 0.0841 0.0695 -0.0015 -0.0052 

Winter 0.1892 0.1715 0.1157 0.0995 -0.0180 -0.0062 

Spring 0.1617 0.1431 0.0966 0.0845 -0.0109 -0.0034 

Summer 0.1808 0.1602 0.1086 0.0967 0.0119 -0.0045 

Fall 0.1616 0.1420 0.0938 0.0808 -0.0105 -0.0108 

Season Avg. 0.1733 0.1542 0.1037 0.0904 -0.0069 -0.0062 

Table 38: Step 4 versus step 3 RMSE, MAE, and MB for all accumulation periods for 
the mountainous region. The numbers in bold indicate an improvement in step 4 versus 
step 3. 
 

the mountainous and non-mountainous step 3 versus step 4 data for all accumulation 

periods respectively. The RMSE and MAE are reduced for every accumulation period 

for both regions. The error is higher in the mountainous regions for the three-year, one-

year, and summer accumulations, and the remaining seasons have higher errors in the 

non-mountainous regions. When considering MB, the mountainous values are more 

negative than the non-mountainous values. The adjustments in the full study area and the 

climatological subregions lead to more negatively biased data, but this is not the case for 

the three-year, winter, and summer accumulations in the mountainous region. The non- 



 

81 

 

Step 4 vs Step 3 Errors in Non-Mountainous Region 

Accumulation 
Period 

Step 3 
RMSE 

 

 Step 4 
RMSE 

 

Step 3 
MAE 

Step 4 
MAE 

Step 3 
MB 

Step 4 
MB 

Three-Year 0.1158 0.0991 0.0683 0.0554 -0.0027 -0.0084 

One-Year 0.1332 0.1153 0.0781 0.0649 0.0041 -0.0081 

Winter 0.2091 0.1815 0.1160 0.0958 0.0056 -0.0093 

Spring 0.1691 0.1467 0.0968 0.0789 0.0028 -0.0042 

Summer 0.1781 0.1556 0.1071 0.0874 0.0138 -0.0022 

Fall 0.1692 0.1457 0.0949 0.0765 -0.0011 -0.0039 

Season Avg. 0.1814 0.1574 0.1037 0.0847 0.0053 -0.0049 

Table 39: Step 4 versus step 3 RMSE, MAE, and MB for all accumulation periods for 
the non-mountainous region. The numbers in bold indicate an improvement in step 4 
versus step 3. 
 

mountainous MB, however, becomes more negatively biased in every accumulation 

following the adjustments. Overall, the magnitudes of the adjustments between the two 

regions are similar. The errors between the two regions following all of the adjustments 

are closer in value compared to the raw Stage IV data as well. 

 The results for the performance of the step 4 adjustments within the effective  

observation density subregions are discussed. It is expected that the regions having a 

higher gauge density will have the lowest error. Tables 40, 41, and 42 show the results of 

the step 3 versus step 4 adjustments within the effective observation density subregions 

for the three-year, one-year, and seasonal accumulations respectively. Like in the other 

regions, every RMSE and MAE is improved after the adjustment. Additionally, the MB 

is improved in the first and second class, and for all classes in the summer. The overall  

 



 

82 

 

Three-Year Step 4 vs Step 3 Errors in Gauge Density Regions 

Three-Year 
Effective 

Obs. Density 

Step 3 
RMSE 

 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

0.0-12.0 0.1447 0.1151 0.0986 0.0685 0.0076 -0.0026 

12.01-16.00 0.1176 0.1028 0.0700 0.0594 0.0037 -0.0028 

16.01-28.00 0.1136 0.0997 0.0673 0.0567 -0.0039 -0.0078 

28.01-64.0 0.1115 0.0972 0.0653 0.0528 -0.0081 -0.0118 

64.01+ 0.1118 0.0944 0.0674 0.0536 -0.0046 -0.0150 

Table 40: Step 4 versus step 3 RMSE, MAE, and MB for the three-year accumulation 
period for the effective observation density subregions. The bolded numbers indicate an 
improvement in step 4 versus step 3. 
 

errors tend to decrease as the effective observation density increases, however, there are 

instances where the fourth class performs better than the fifth. The overall bias tends to 

One-Year Step 4 vs Step 3 Errors in Gauge Density Regions 

One-Year 
Effective 

Obs. Density 

Step 3 
RMSE 

 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

0.0-12.0 0.1678 0.1380 0.1058 0.0806 0.0135 -0.0079 

12.01-16.00 0.1364 0.1202 0.0795 0.0670 0.0141 -0.0041 

16.01-28.00 0.1324 0.1157 0.0792 0.0665 0.0026 -0.0060 

28.01-64.0 0.1238 0.1090 0.0730 0.0616 0.0006 -0.0087 

64.01+ 0.1311 0.1111 0.0784 0.0608 0.0043 -0.0094 

Table 41: Step 4 versus step 3 RMSE, MAE, and MB for the one-year accumulation 
period for the effective observation density subregions. The bolded numbers indicate an 
improvement in step 4 versus step 3. 
 

become more negative as the effective observation density increases. This is expected 

because gauges are negatively biased compared to radar, so the incorporation of more 
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Seasonal Step 4 vs Step 3 Errors in Gauge Density Regions 

Winter Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3  
MB 

Step 4   
MB 

0.0-12.0 0.2908 0.2478 0.1820 0.1420 0.0265 0.0033 

12.01-16.00 0.2159 0.1800 0.1299 0.1054 0.0399 0.0067 

16.01-28.00 0.2043 0.1837 0.1167 0.1019 0.0040 -0.0050 

28.01-64.0 0.1878 0.1625 0.1071 0.0893 -0.0002 -0.0110 

64.01+ 0.1749 0.1487 0.1099 0.0802 0.0046 -0.0106 

Spring Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

0.0-12.0 0.2159 0.1800 0.1299 0.1054 0.0399 0.0067 

12.01-16.00 0.1788 0.1590 0.1013 0.0878 0.0162 0.0016 

16.01-28.00 0.1673 0.1465 0.0962 0.0800 0.0011 -0.0027 

28.01-64.0 0.1538 0.1339 0.0916 0.0745 -0.0060 -0.0088 

64.01+ 0.1632 0.1379 0.0951 0.0711 -0.0040 -0.0070 

Summer Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3 
MB 

Step 4  
MB 

0.0-12.0 0.1999 0.1744 0.1253 0.1031 -0.0003 -0.0065 

12.01-16.00 0.1859 0.1666 0.1127 0.0989 0.0226 0.0109 

16.01-28.00 0.1792 0.1546 0.1078 0.0877 0.0134 -0.0025 

28.01-64.0 0.1711 0.1508 0.1027 0.0851 0.0117 -0.0048 

64.01+ 0.1740 0.1506 0.1049 0.0833 0.0225 0.0011 

Fall Step 3 
RMSE 

Step 4 
RMSE 

Step 3 
MAE 

Step 4 
MAE 

Step 3   
MB 

Step 4   
MB 

0.0-12.0 0.2106 0.1762 0.1265 0.0944 0.0096 -0.0031 

12.01-16.00 0.1694 0.1485 0.0967 0.0854 0.0130 0.0028 

16.01-28.00 0.1632 0.1430 0.0947 0.0772 -0.0032 -0.0043 

28.01-64.0 0.1602 0.1378 0.0893 0.0734 -0.0063 -0.0067 

64.01+ 0.1566 0.1318 0.0892 0.0718 -0.0014 -0.0094 

Table 42: Step 4 versus step 3 seasonal RMSE, MAE, and MB for the effective 
observation density subregions. The bolded numbers indicate an improvement in step 4. 
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gauges will make the bias more negative. For every accumulation period, the first class 

benefits the most from the adjustments. This pattern is also observed with the step 2 

results. One difference between the step 4 versus the step 2 adjustments is the magnitude 

of the error reduction as the effective observation density increases. In the step 4 

adjustments, the magnitude of the improvements remains roughly the same in classes 

two through five while the magnitudes decrease as the classes increase in the step 2 

adjustments. Finally, similar seasonal variations persist, where the winter has the highest  

 

Figure 4.7: Radar estimates before step 4 (left), after step 4 (middle), and the magnitude 
of the adjustments for the three-year accumulation period through November 2020. 
 

error, the spring has the lowest, and the summer and fall behave similarly. 

 The step 4 adjustments led to large improvements over the input data for all  

study regions. The selected interpolation method is less computationally expensive 

compared to OK, and it has a lower RMSE and MAE, but a more negative bias. The 
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decreasing MB in most adjustments reflects that feature of the IDW, but the greater error 

improvements over OK makes the IDW selection justifiable. Figure 4.7 shows the three-  

 

Figure 4.8: The difference between the gauge-radar bias after and before step 4 for three-
year precipitation through November 2020. 
year radar estimated precipitation images through November 2020 for before and after 

step 4, and the magnitude of the adjustments. The adjustment difference image shows 

that step 4 generally decreased the radar estimates. This is seen in the results by the 

decreasing biases after the adjustment. Additionally, the adjustments are large compared 
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to the prior steps. Finally, figure 4.8 shows the gauge-radar pair bias differences between 

the adjustment image in figure 4.7, the gauge-radar pairs generally have decreasing radar 

values. The output data after the step 4 adjustment is an improved Stage IV dataset over 

the raw data.   
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5. CONCLUSIONS 

This study introduces and evaluates a revised methodology for adjusting biases in 

Stage IV precipitation data for the purpose of drought monitoring in the U.S. east of the 

Rocky Mountains based on work done by McRoberts and Nielsen-Gammon (McRoberts 

and Nielsen-Gammon 2017, McRoberts 2014). First, a new method that corrects for 

beam blockages is introduced using image filtering and ridge detection. The aim of this 

was to improve upon potential flagging errors in the original adjustment method. Next, a 

mean field and range dependent bias adjustment methodology based upon seasonal 

calculations and gauge accumulations is discussed. Then, discontinuities that develop at 

the edges of each radar domain due to the first two steps are adjusted using an IDW 

method. Finally, after extensive testing of IDW, IDW2, and OK, the remaining two-

dimensional biases are adjusted using interpolated gauge-radar bias data. The 

performance of each step of the bias adjustment methodology is assessed by calculating 

errors of the Stage IV estimates relative to reliable gauge data for the full study region, 

subregions based on similar climatological characteristics, mountainous versus non-

mountainous areas, and for the mean field and range dependent and two-dimensional 

analyses, subregions based on the effective observation density of gauges.  

 The four hypotheses that are tested in this study are discussed in section 2. In 

short, they are (1) QPE data will be improved with an optimally selected interpolation 

method, (2) OK will be the best performing interpolation method, (3) regions with low 

gauge density and high topographic relief will benefit the most from the adjustments, 

and (4) adjustments using gauge-based adjustments will perform better than those only  
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using radar. The results of each one is discussed in the following paragraphs.  

 Hypothesis 1 is tested in the two-dimensional step of the bias adjustment 

methodology by calculating the RMSE, MAE, and MB for the adjusted data versus the 

radar domain discontinuity adjusted data. Every single RMSE and MAE show 

improvement after the two-dimensional adjustment, and many of the biases are reduced 

as well. Hypothesis 1 is supported when considering the consistent decreases in error. 

When comparing the raw Stage IV data to the two-dimensional adjusted data with the 

optimally selected interpolation method, there is a large improvement. For example, in 

the adjusted three-year accumulation period in table 34 versus the original data in table 

3, there is a decrease in the PoN RMSE by 0.0376, a decrease in MAE by 0.0364, and 

the MB moves closer to zero by 0.0108. The magnitudes of the improvements are 

similar for the other tested accumulation periods as well. For this, hypothesis 1 is 

supported because the QPE data is improved when considering every metric that is used 

in this study. The results in tables 30, 31, and 32 suggest that the other tested 

interpolation methods could have improved the data as well because the errors are close 

in value to those of the optimal IDW method. However, the greatest improvement in the 

QPE data is achieved through use of the IDW with 30 points.  

 Hypothesis 2 is tested using data withholding tests for IDW, IDW2, and OK and 

its different models for varying numbers of points to consider in the calculations. It was 

believed that OK would perform the best out of the three interpolation methods because 

of its ability to account for clustering and to take directional bias into consideration 

(Gentile et al. 2013). However, the results in tables 30, 31, and 32 generally do not 
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support OK being the best performing method. When considering the RMSE and MAE 

in tables 30 and 31 respectively, hypothesis 2 is not supported because IDW consistently 

performs better than OK. However, hypothesis 2 can be partially supported because OK 

is consistently less biased than IDW and IDW2 as shown in table 32. In addition to the 

slightly higher errors seen in OK versus IDW, the other drawback is the computational 

expense of OK. For this reason, OK is not the optimal interpolation method for the two-

dimensional adjustment in this study.  

 Hypothesis 3 is tested using the different subregions for this study. The first part 

of it, gauge density, is only tested in the mean field and range dependent and two-

dimensional adjustment steps because these are the only adjustments that use gauge data. 

In the mean field and range dependent effective observation density subregion tests, 

hypothesis 3 is supported because the regions with the least number of gauges have the 

largest improvement. For the same test in the two-dimensional adjustments, the results 

follow a similar pattern, though, the magnitudes of improvement are greater across all 

regions compared to the mean field and range dependent adjustment tests. The 

topographic relief part of hypothesis 3 is tested in the mountainous versus non-

mountainous results for each step of the bias adjustment methodology. The greatest 

improvements in both error and bias for all steps are generally seen in the non-

mountainous region, which does not support hypothesis 3. However, there are still 

consistent improvements within the mountainous region for all steps of the bias 

adjustment methodology.  
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 In addition to the mountainous versus non-mountainous and gauge effective 

observation density subregions, there are variations with the performance of the bias 

adjustment methodology within the climatological subregions. For most of the tests, the 

plains subregion has the largest error and a positive bias. This region also has the least 

number of gauges. Steps 2 and 4, the gauge-based correction steps, helped substantially 

decrease the errors and reduce the bias in this region. Compared to the other subregions, 

the plains benefitted the most from the adjustments. The northeast subregion also has 

some of the highest errors out of the subregions. Like the plains, its highest errors are 

seen in the warmer months. These two regions experience more frozen precipitation than 

the southwest and southeast subregions. The southern regions have their highest errors in 

the warmer months, which is opposite from the northern ones. The variations in climate 

features like precipitation type and intensity can cause errors to differ by region.  

 Hypothesis 4 is tested by calculating the error metrics for each step of the bias 

adjustment methodology using the same gauges. The radar-based adjustments are 

performed in steps 1 and 3, and the gauge-based adjustments are performed in steps 2 

and 4. Figure 5.1 shows the RMSE, MAE, and MB for each step of the bias adjustment 

methodology for all three accumulation periods. The gauges used for comparison are 

constant for each calculation. The selected gauges are withheld gauges used in the 

testing of steps 2 and 4. In the RMSE and MAE graphs, there is a decrease in error after  

each step. However, the smallest changes occur after steps 1 and 3, and the largest occur 

after steps 2 and 4. This helps support hypothesis 4 because the gauge-based adjustments 

have the largest decreases in error in these calculations. When considering the MB, the  
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Figure 5.1: RMSE, MAE, and MB for each step and accumulation period for the full 
study period and area. The gauges used for comparison are the same for each 
calculation. 
 

results are mixed. Every MB moves further from 0 after step 1 is applied. However, only 

the seasonal MB moves further from zero after step 3. For the gauge-based adjustments, 

the largest improvement in MB occurs after step 2 is applied. However, the step 4 

adjustment results in the largest movement away from 0, but the data is less biased than 

the raw data. For this, hypothesis 4 is partially supported. The gauge-based 

improvements result in the largest decreases in error, and overall, a decrease in bias.  

 The 4-step bias adjustment methodology presented in this study can be useful to 

drought monitoring applications because it helps to improve the accuracy of long-term 

Stage IV radar estimated precipitation. The performance of the adjusted data for the full 

study area is much improved over the raw Stage IV data. For the smaller subregions 

tested in this study, variations in performance exist. For decision makers, it is important 

to consider the region and accumulation period when using the bias adjusted dataset 
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because the estimates perform differently in certain situations. Despite the variations in 

performance that exist, the bias adjusted dataset performs better in every tested 

circumstance than the raw dataset.  

 Future work for this study can address shortcomings and expand upon the region. 

One main shortcoming in the algorithm is with wide beam blockages. Overall, beam 

blockage adjustments result in improvements, but the wider beam blockages still faintly 

appear in the radar estimated precipitation images. Another shortcoming that can be 

improved upon is the negative biases after the two-dimensional adjustment. The testing 

and incorporation of different interpolation methods can help address this issue because 

IDW is negatively biased in this study. Future work can also aim to expand the extent of 

the study area. The current size is large, but much of the country is left out and many of 

the western regions are prone to severe drought. Finally, future work should rerun the 

entire an analysis using the PRISM normals from 1991-2020 in order to account for 

some of the effects of climate change.  
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