
ACTIVE ROBOT PERCEPTION FOR OBJECT POSE ESTIMATION

A Dissertation

by

JIE HU

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Prabhakar R. Pagilla

August 2022

Major Subject: Mechanical Engineering

Copyright 2022 Jie Hu

Co-Chair of Committee, Swaroop Darbha
Committee Members, Won-jong Kim

Xingyong Song
Head of Department, Guillermo Aguilar

ABSTRACT

When planning paths for robotic tasks involving interaction with an object, a key piece of infor-

mation needed is the location of the object within the robot workspace. The process of obtaining

the object location (both position and orientation) is referred to as workpiece localization in manu-

facturing, or more generally, object pose estimation. The object pose estimation process typically

consists of two steps: data collection and pose estimation. Each step can be formulated and solved

differently, or even separately, depending on the underlying process, the associated assumptions,

and the work environment of the robot. In this work, an active robot perception framework that

includes both data collection and pose estimation is proposed. The framework includes novel ways

to (1) improve the accuracy of the estimated pose by collecting informative data and (2) plan sub-

sequent sensor views automatically based on previously collected data. The data used in this work

is in the format of point clouds. It is assumed that the 3D Computer-Aided Design (CAD) model

of the target object is available. The object pose is estimated by registering the measured point

clouds and the point clouds sampled from the CAD model.

The proposed active robot perception framework includes two main elements: view planning

and pose estimation. View planning in this work includes generating and selecting sensor views

and determining robot poses. Two sets of methods have been developed under the proposed frame-

work. First, objects are assumed to have planar features, which are utilized for pose estimation.

A plane-based point cloud registration method has been developed. Informative sensor view di-

rections are defined based on the current pose estimation. Regions around the informative sensor

view directions are discretized into voxels. Sensor view candidates are defined for voxels, and

these candidates are further down-selected based on the kinematic feasibility of the robot to reach

those views. A view gain is proposed to select the next-best-view from the view candidates. Sim-

ulations and experiments are conducted to evaluate the effectiveness of the pose estimation and

view planning separately. The second set of methods is agnostic to the object geometries. Point

cloud analysis in terms of quality and quantity is proposed to generate sensor view candidates.

ii

The goal is to increase the estimated pose accuracy by improving the quality and quantity of the

collected point clouds. Techniques from combinatorial optimization are utilized to determine the

sensor views. Constrained nonlinear optimization is employed to calculate the robot poses cor-

responding to the sensor views. Experiments are conducted to evaluate the effectiveness of each

component. The proposed methods are further compared with methods for reconstruction. The

results from these comparisons reveal the differences between data collection for reconstruction

and data collection for pose estimation. Generating sensor views based on the measured data is

shown to have the following benefits: (1) view planning is less dependent on human experience;

(2) sensor views can be generated efficiently and informatively for tasks with high variance; and

(3) selecting sensor views offline to collect point clouds is avoided.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

I would like to first thank my parents for their unconditional support over the years, not only

for my education but in every other possible way. I would also like to thank my advisor, Dr.

Pagilla, for giving me the chance to study and work in the lab. It takes a tremendous amount of

time and resources to guide a Ph.D. student to complete their doctoral studies. You provided me

with everything I needed to focus on my research. Dr. Darbha, it is an honor to have you as my

co-chair. I have learned a lot about optimization from your class and our discussions. I enjoyed

discussing problems with you. I would also like to thank Dr. Kim and Dr. Song for your support

and invaluable feedback on my research. I cannot imagine my time here without my precious

friends. Many thanks to y’all: Peng, Baik Jin, Maulik, Stephine, Mark, Cinthya, Crystal, Gema,

Tiffany, Jay, Zongyao, Yalun, Orlando, and Angel.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This dissertation was supported by a committee consisting of Professors Prabhakar Pagilla,

Swaroop Darbha and Won-jong Kim of the Department of Mechanical Engineering, and Professor

Xingyong Song of the Department of Engineering Technology and Industrial Distribution. All the

work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by the Mechanical Engineering Department of Texas A&M

University in forms of Teaching Assistantship, Fellowship, and by my advisor Dr. Pagilla in the

form of Research Assistantship.

vi

NOMENCLATURE

CAD Computer-aided design

DOF Degrees of Freedom

OLP Offline programming

NBVs Next-best-views

HMLV High-mix, low-volume

HVLM High-volume, low-mix

CMM Coordinate Measuring Machine

SVD Singular value decomposition

ICP Iterative closest point

EGI Extended Gaussian image

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xvi

1. INTRODUCTION. 1

1.1 Challenges in data collection and object pose estimation . 2
1.2 Related work . 4

1.2.1 Workpiece localization . 4
1.2.2 Object pose estimation using point clouds . 7
1.2.3 Robot perception and planning . 9

1.3 Dissertation scope and contributions . 12
1.4 Dissertation outline . 13

2. PRELIMINARIES . 15

2.1 Point cloud processing . 15
2.1.1 Calculation and orientation of normal vectors . 15
2.1.2 Clustering using normal vectors . 17

2.2 Robot kinematics . 18
2.2.1 Forward kinematics. 18
2.2.2 Inverse kinematics . 20

2.3 Optimization. 21
2.3.1 Linear programming. 21
2.3.2 Nonlinear programming . 23

2.4 Motion-force control . 23
2.4.1 Motion-force controller . 24
2.4.2 Implementation in robotic gear chamfering . 24

viii

3. PLANE-BASED POINT CLOUD REGISTRATION . 27

3.1 Problem description and method overview . 27
3.2 Extracting plane segments from point cloud . 29
3.3 Rotation calculation through convex optimization . 31
3.4 Translation calculation . 34
3.5 Extension to nonconvex objects . 34
3.6 Simulation and experimental results . 34

3.6.1 Plane segments identification . 35
3.6.2 Registration comparison . 36

3.7 Conclusions. 40

4. PLANE-BASED NEXT-BEST-VIEW FOR OBJECT POSE ESTIMATION. 41

4.1 Problem description and method overview . 41
4.2 Representative vectors . 42
4.3 Sensor view candidates . 43
4.4 Simulation and experimental results . 47

4.4.1 Representative vectors. 47
4.4.2 Effect of the travel distance discounting factor . 49
4.4.3 Next-best-view and object pose estimation . 50

4.5 Conclusions. 53

5. POINT CLOUD ANALYSIS FOR POSE ESTIMATION . 54

5.1 Point cloud quantity analysis . 54
5.1.1 A motivation example . 54
5.1.2 Point cloud quantity evaluation . 55

5.2 Point cloud quality analysis. 57
5.2.1 A motivation example . 57
5.2.2 Point cloud quality evaluation . 59

5.3 Experiment results . 60
5.3.1 Point cloud quantity analysis . 62
5.3.2 Point cloud quality analysis . 64

5.4 Conclusions. 66

6. VIEW PLANNING BASED ON POINT CLOUD ANALYSIS . 67

6.1 Sensor views from quantity analysis . 67
6.2 Sensor views from quality analysis . 69

6.2.1 A minimum number of sensor views . 69
6.2.2 The optimal sensor views . 70

6.3 Robot pose determination corresponding to sensor views . 72
6.3.1 View angle and joint angle constraints . 72
6.3.2 Sef-collision and self-occlusion avoidance . 72
6.3.3 Visibility constraints. 75

ix

6.3.4 The nonlinear optimization formulations. 76
6.4 Experiment results . 77

6.4.1 Self-collision and self-occlusion analysis . 77
6.4.2 Determination of sensor views . 82
6.4.3 Robot pose determination corresponding to sensor views . 83
6.4.4 Pose estimation comparison . 85
6.4.5 Baseline comparison . 87

6.5 Conclusions. 89

7. CONCLUSIONS AND FUTURE WORK . 91

7.1 Conclusions. 91
7.2 Future work. 92

7.2.1 Extending plane-based registration and next-best-view planning 92
7.2.2 Integrating multiple sensing modalities for pose estimation 92
7.2.3 Learning object geometries . 93
7.2.4 Planning a sequence of views based on the initial point cloud 93

REFERENCES . 94

x

LIST OF FIGURES

FIGURE Page

1.1 Point clouds of Stanford bunny. Partial point cloud can be used to estimate object
pose and complete reconstruction of the object is usually not necessary. 3

1.2 Point clouds of an organizer. Sensor views to increase volume or coverage and the
collected point clouds may not help to increase the pose accuracy if the new point
clouds do not exert additional constraints on the object. 3

1.3 3-2-1 convention method of finding a coordinate transformation [1]. 6

1.4 Sensor planning using a graph [2]. 11

1.5 The active robot perception framework for 3D object pose estimation. 13

2.1 Clustering the point cloud of a cube by applying hierachical clustering on the nor-
mal vectors. 18

2.2 An illustration of a robot arm and the robot based and end-effector frames 19

2.3 Two approaches to construct the coordinate system of a robot arm: using the DH
convention (left) and using the PoE formula (right). Figure adopted from [3]. 20

2.4 Identification of the gear root . 25

2.5 Motion/force control block diagram for gear root identification. 25

3.1 Coordinate frames of the object pose estimation problem through registration. 28

3.2 Two cases with difference intersection areas when characterizing normal clusters
on a unit sphere. The clustered normal vectors in (a) are more compact comparing
to (b). 31

3.3 Extracted plane segments of a convex object by applying the proposed method.
Top: two views of the convex object. Bottom: two views of the plane segments
shown in different colors. 35

3.4 After applying the proposed normal clustering method, the obtained normal vectors
clusters may contain the normal vectors that belong to multiple parallel planes,
such as the numbered 1 and 2 plane segments, 3 and 4 plane segments, and 5, 6
plane segments.. 36

xi

3.5 Parallel plane segments that have the same normal vectors fall into the same clus-
ters on the unit sphere. 37

3.6 Partial point clouds of a convex object used in the registration comparison 38

3.7 The proposed coarse-to-fine registration method. Top left: the initial two point
clouds, red is the CAD point cloud, green is the measured point cloud. Top right:
point clouds after applying the obtained rotation. Bottom right: point clouds after
translating the measured point cloud by the centroid difference. Bottom left: the
result after applying ICP.. 39

3.8 Top: the complete(red) and partial(green) point clouds of the objects used in the
comparison. Bottom: point clouds after registration using Go-ICP (left), our method
(middle), and FGR (right). 39

4.1 System setup: (a) simulation using ROS; (b) experimental setup. Vision sensors are
mounted on the robot end-effector. A 3D printed object is placed in the workspace. . 41

4.2 Generation and evaluation of sensor views. (a) The hatched regions between the
two hemispheres with radius R1 and R2 are considered as the search regions for
the NBVs. Each search region is discretized into many voxels, and the view gain is
calculated for each voxel to determine the view with the largest view gain. The an-
gle φ is determined by the sensor view angle constraint. The sensor view direction
at a voxel (shown as white cube with center Cv in the hatched region) is defined to
be pointing towards the center Or. (b) An example when five representative vec-
tors are generated, five regions are evaluated to select the NBV by considering the
current camera location. 44

4.3 The camera has the freedom to rotate around its z-axis, the desired sensor view di-
rection. The two poses of the end-effector corresponding to oexeyeze and oex′ey

′
ez
′
e

are used to calculate the inverse kinematics. 45

4.4 The generated representative vectors in both simulation and experiments are shown
in orange arrows. For simulations shown in (a)-(b): two/five plane segments are
captured by the sensor in Rviz and segmented, five/two representative vectors (n̂t)
are generated accordingly. For experiments shown in (c)-(d): point clouds from En-
senso are segmented, and two/three representative vectors are generated, respectively. 48

4.5 One plane segment is in the initial sensor view. Comparison of the generated six
views with and without travel distance discounting factor. The initial sensor lo-
cations are the same for two scenarios. The order of the views is indicated in
numbers. The total traveled Euclidean distances are 1.481 m (with discounting
factor) and 2.647 m (without discounting factor). 49

xii

4.6 Two plane segments are in the initial sensor view. Comparison of the generated
five views with and without travel distance discounting factor. The initial sensor
locations are the same for two scenarios. The order of the views is indicated in
numbers. The total traveled Euclidean distances are 1.436 m (with discounting
factor) and 2.266 m (without discounting factor). 50

4.7 Two iterations when applying the proposed localization method: (a) At current
step, three plane segments on the workpiece are not measured, three n̂i are gen-
erated (orange arrows); (b) regions around each n̂i are evaluated, one region is
discarded for that no feasible inverse kinematic solutions for the robot exist; (c) the
selected NBV (red arrow); (d) robot at the NBV, more plane segments are captured . 51

4.8 Two iterations of finding NBVs to localize the workpiece using the experiment
setup: (a)-(c) point clouds and extracted plane segments visualized in Rviz, (d)-(f)
physical workspace and the robotic system corresponding to (a)-(c). 52

5.1 Point cloud quantity increase that improves registration accuracy. 55
5.2 Given the three normal vectors vNc1 ,v

N
c2
,vNc3 that represent the three cluster centers

of the normal vectors set N of a point cloud. The angular spread is defined as the
angle of the cone, which has vNc1 ,v

N
c2
,vNc3 on the cone base . 56

5.3 Point cloud quality changes as the vision sensor moves to different view angle and
view location(left to right). Irregularities in the point clouds are highlighted by red
circles. 58

5.4 Examples of how point cloud quality affects the registration accuracy. 58

5.5 The robotic system utilized to collect point clouds . 61

5.6 3D printed objects used in the experiments, from left to right: gear, impeller, and a
mechanical component. 61

5.7 Point cloud quantity evaluation for cases where one (a), two (b), or three (c) distinct
planes exist in the point clouds. The three clusters obtained based on the normal
vectors are highlighted in three different colors and the angular spreads (in degrees)
are: (a) 39.75, (b) 87.26, (c) 99.92.. 63

5.8 Registration results of the three point clouds shown in Fig. 5.7 by using Go-ICP. 63

5.9 Registration results of the three point clouds of a convex object using Go-ICP. Top
row: point clouds. Middle row: clustered point clouds in different colors. Bottom
row: registration results, the complete point cloud is shown in red. 63

5.10 Point clouds of a gear captured at different sensor view locations. From top to
bottom: point clouds, clustered point clouds, and registration results. 64

xiii

5.11 Point cloud quality evaluation: (a) outliers detected by the statistical criterion are
highlighted in red, the neighbor points number and standard deviation ratio are set
to 20 and 0.1 in the algorithm, (b) outliers detected using the view angle criterion
are highlighted in red, (c) the common outliers of the two criteria, (d) seven clusters
obtained using DBSCAN and shown using circles with geometric centers indicated
using red dots. 65

5.12 Quality evaluation of the point cloud of a gear . 65

5.13 Quality evaluation of the point cloud of a convex object . 65

6.1 Given the three normal vectors vNc1 ,v
N
c2
,vNc3 that represent the three cluster centers

of the normal vectors set N of a point cloud, (a) the angular spread; (b) shows the
proposed view direction vt to increase the angular spread . 68

6.2 Two examples of self-collision of a UR5 robot when the 3rd joint is close to ±π. 73

6.3 An example of self-occlusion of the robotic system. The field-of-view of the sensor
is modeled as a cone. The vision sensor is mounted on the robot end-effector. The
robot base is in the sensor view at the shown robot pose. 74

6.4 The point to be measured, pv, should remain in the sensor view when the sensor
moves to a new view, for which the angle between the vector pv − tee and vee
should be constrained. 75

6.5 Histograms of joint angles of a UR5 robot arm being in self-collision 78

6.6 Histograms of self-collision joint angles of the third, fourth and fifth joint, which
have higher probability of causing self-collisions comparing to other joints. Gaus-
sian distributions are used to find the mean and variance for each peak in the his-
togram. 79

6.7 Explanation of the two peaks of the fourth joint, shown in Fig. 6.6, which should
be avoided.. 79

6.8 Histograms of joint angles that cause self-occlusion during measuring using a vi-
sion sensor . 80

6.9 Histograms of joint angles that cause self-occlusion. Angles for the third, fourth,
and the fifth joints are fitted using Gaussian distributions . 80

6.10 Example of avoiding self-collision by penalizing identified joint angles with high
collision probability. Left: sensor view candidate (red arrow) that puts the robot
in self-collision. Right: the collision-free NBV (green arrow) solved using the
proposed optimization formulation. 81

xiv

6.11 Example of avoiding self-occlusion by penalizing identified joint angles with high
collision probability. Left: sensor view candidate (red arrow) that puts the robot
in self-occlusion. Right: the occlusion-free NBV (green arrow) solved using the
proposed optimization formulation. 81

6.12 The obtained optimal sensor views (red arrows) and the corresponding target areas
in the point cloud to be measured by the sensor. The correspondence between the
sensor view and the target areas are indicated by the same number. View 1 and 3
each covers one cluster, view 2 covers 3 clusters, and view 4 covers 2 clusters.. 82

6.13 Robot poses for quality improvement: (a) four sensor views for quality improve-
ment are shown in red arrows and the identified outliers are colored, (b) the physi-
cal robot and its visualization in Rviz for one solved robot pose, (c) the four point
clouds collected from the four sensor views. 83

6.14 Robot pose for quantity improvement: (a) the obtained robot pose, (2) the initial
point cloud (left), newly collected point cloud at the solved robot pose (middle),
and the merged point cloud (right) . 84

6.15 Point cloud collection and registration of a gear ((a)-(d)) and impeller ((d)-(e)). (a)
and (c) are the initial point clouds, (b) and (c) are the potential sensor views, (c)
and (f) are instances of registrations. 86

6.16 The selected 14 sensor views as seen from two different directions. 88

6.17 Fitness comparison between the proposed method two baselines.. 88

xv

LIST OF TABLES

TABLE Page

3.1 Registration comparison a using convex object in terms of RMSE (mm) and time (s) 38
3.2 Registration comparison using concave objects in terms of RMSE (mm) and time (s). 40

4.1 Workpiece Localization Results (rx,ry,rz,x,y,z) with rotation angles in radian and
translation in mm (S: simulation, E: experiment) . 51

6.1 Registration fitness and RMSE of the mechanical component . 86

xvi

1. INTRODUCTION

Robots have been widely used in manufacturing and automation applications, such as material

handling, surface finishing, and welding, for their repeatability and flexibility in rapidly repur-

posing to different tasks. The research in robotics has accelerated significantly in the last several

decades to develop more intelligent, robust, collaborative, and reliable robots. A typical robotic

operation may include several of the following tasks: modeling, sensing, planning, optimization,

and control. Modeling lays the mathematical foundations for calculations such as kinematics and

dynamics. Sensing provides data for the robot to perceive and interact with the environment. Robot

motions are planned to satisfy the task requirements and constraints of the system. Controllers are

critical to achieving the planned robot motions.

Before planning motions for the robot to interact with an object, the location of the object

within the robot workspace needs to be known. The process of obtaining the object location with

respect to the robot is known as workpiece localization in manufacturing [4] and, more generally,

object pose estimation. This dissertation uses workpiece localization when discussing manufac-

turing tasks and object pose estimation for general application contexts. The requirements on the

object pose accuracy may vary for different applications such as robotic painting, grasping, and

material removal. However, in all these applications, inaccurate object pose can cause quality and

performance problems or even damage to the hardware, such as uneven colors during painting or

non-uniform material removal.

Accurate knowledge of the object pose in the robot workspace is not only necessary but also

beneficial. One such benefit is the reduced downtime by planning and programming trajectories

offline. Robot trajectories can be generated via offline programming (OLP) when the object CAD

model is available, and the location of the object is known. The positions of certain identifiable

features on the CAD model, such as lines and surfaces, can be parameterized in the CAD frame,

then transformed into the known robot (world) frame, based on which robot trajectories can be

generated.

1

For the object pose estimation problem, one could pose two key questions: (1) what is the

strategy to plan a view sequence to collect data? and (2) how to estimate the object pose using

the collected data? Several methods exist in the literature to answer both questions. Planning a

sequence of sensor views to collect data can be formulated as a view planning problem. Tech-

niques have also been developed to estimate object pose using images or point clouds. There is

a growing use of robots to automate processes as robots become more accessible. Both the tasks

that robots are expected to complete and the environments that the robots work in are changing,

usually characterized by environment variations and frequent changes in tasks. Those variations

and changes may bring errors to the known object pose, which would further cause misalignment

between the planned robot trajectories with the target geometries on the physical object if the

workpiece location is not known accurately in advance. Thus, current view planning and pose

estimation methods may not be efficient or even applicable to many robotics manufacturing and

automation applications.

In the remainder of this chapter, we first discuss the challenges in object pose estimation and

data collection when utilizing robots for different tasks where the object pose is not known a priori.

Then, we discuss and review the existing relevant work. Finally, the scope and major contributions

of the dissertation are provided.

1.1 Challenges in data collection and object pose estimation

There are known methods in both computer vision and robotics literature to address the data

collection problem, such as methods from active perception, next-best-views (NBVs), and view

planning. However, these methods have been designed mainly for 3D reconstruction and explo-

ration of unknown spaces. Two key differences exist in how point clouds are collected in recon-

struction and pose estimation. First, one collects an expansive set of point clouds to increase the

coverage of the object to capture all the object features for reconstruction. Full coverage of the ob-

ject is not necessary for pose estimation. Data collection can stop when the desired pose accuracy

is reached. An example is shown in Fig. 1.1; partial point clouds of the Stanford bunny1 can be

1Stanford bunny: http://graphics.stanford.edu/data/3Dscanrep/

2

http://graphics.stanford.edu/data/3Dscanrep/

Figure 1.1: Point clouds of Stanford bunny. Partial point cloud can be used to estimate object pose
and complete reconstruction of the object is usually not necessary.

Figure 1.2: Point clouds of an organizer. Sensor views to increase volume or coverage and the
collected point clouds may not help to increase the pose accuracy if the new point clouds do not
exert additional constraints on the object.

used to estimate its pose and complete reconstruction may not be necessary. Second, current meth-

ods for reconstruction generate sensor view candidates either uniformly or randomly. A sequence

of sensor views is planned by selecting views from these candidates. However, there are two po-

tential issues when generating view candidates in such a manner. On the one hand, the generated

view candidates may not be informative for pose estimation since volume or coverage increase

does not necessarily increase the registration accuracy. An example is shown in Fig. 1.2; the new

point clouds may not exert additional constraints on the object to improve the pose accuracy. On

the other hand, the effectiveness of the previously generated view candidates may deteriorate when

the object location is different from the location at which these view candidates were generated.

Strategies to generate and optimize sensor views need to be developed for pose estimation when

the object location is not known accurately.

There is also considerable existing work to solve the object pose estimation problem. The un-

3

derlying assumptions and complexity of the pose estimation problem may differ when working in

different environments, such as structured vs. unstructured, dynamic vs. static, etc. In structured

manufacturing environments, one could work with high-volume, low-mix (HVLM) or high-mix,

low-volume (HMLV) workpieces. For HVLM workpieces, customized fixtures are usually utilized

when mounting a workpiece in the robot workspace. Thus, the nominal workpiece location is usu-

ally assumed to be known a priori. Contact measurements can be employed to localize workpieces

to the desired accuracy. However, for HMLV workpieces, custom fixtures are costly, and human-

assisted data collection is usually required, which is time-consuming, tedious, and inefficient under

potential object variations. In unstructured environments, the existing studies usually focus on the

challenges in pose estimation due to clutters and occlusions [5]. Various methods using images

or point clouds to estimate object poses have been developed [6] with a focus on utilizing point

cloud registration for pose estimation. Assuming the point clouds are available, most current point

cloud registration methods focus on developing robust algorithms to handle noisy point clouds.

However, the registration accuracy can also be potentially improved by collecting point clouds that

are less noisy and more informative. Further, the current estimate of the pose provides rich infor-

mation to collect more data. Indeed, data collection is not stopped until the pose is estimated to

an acceptable accuracy in practice. This dissertation describes some novel methods developed to

address the aforementioned challenges in data collection and pose estimation.

1.2 Related work

This section reviews related work in the following areas: (1) workpiece localization and object

pose estimation and (2) robot perception and view planning for data collection.

1.2.1 Workpiece localization

The workpiece localization problem may be defined as follows: a workpiece is placed in the

work cell using fixtures, and a local coordinate frame is attached to the workpiece. Assuming

an initial estimation of the workpiece location is known (nominal workpiece location), find the

transformation from the robot frame to the workpiece frame such that the position and orientation

4

of the workpiece can be obtained. In this research, we assume the workpieces to be rigid bodies.

Depending on how the workpiece frame is defined, we can divide workpiece localization meth-

ods into two categories: direct measurement and feature matching. Direct measurement refers to

the process of measuring the locations of some features on the workpiece or on the fixtures that

are used to constrain or localize the workpiece and constructing a local coordinate frame by using

the measured features. A priori knowledge of the workpiece is assumed, such as which planes

forming the workpiece are orthogonal to each other, etc. Feature matching assumes that a CAD

model of the workpiece is available. A nominal position of the workpiece is assumed to be known,

and the CAD model is placed at the nominal location in the robot frame. Thus, the positions of

the features on the CAD model are also known in the robot frame. After measuring some features

on the workpiece that can be measured, a transformation can be calculated by matching the CAD

model features with the measured features. Thus, feature positions on the physical workpiece are

calculated by transforming the corresponding features on the CAD model by applying the obtained

transformation. In this case, the workpiece frame is implicitly defined by the CAD model frame.

First, consider the widely used direct measurement approach in localizing workpieces when

fixtures are used. If a workpiece has three orthogonal surfaces, then we can measure three points

on one surface, two points on another surface that is orthogonal to the first surface, and another

point on the surface that is orthogonal to both surfaces, which is referred to as the 3-2-1 principle

[7]. If the coordinates of the measured six points are already in the machine/world frame, such

as when using a Coordinate Measuring Machine (CMM) or CNC machine, then after constructing

the workpiece coordinate frame with the intersection point of these three surfaces as the origin,

the transformation between the workpiece frame and the robot frame is obtained. However, if the

measured data is in the sensor frame, another transformation from the sensor frame to the robot

frame is required. The 3-2-1 principle is still used in machining to localize workpieces because

of its simplicity in localizing workpieces with orthogonal surfaces. Six physical locators corre-

sponding to six measuring points are needed to constrain the workpiece. Other variations, such

as 4-1-1, 4-2-1, and N-2-1, are also used for workpieces with different geometries, and dimen-

5

Figure 1.3: 3-2-1 convention method of finding a coordinate transformation [1]

sions [7]. Fixtures can be customized to meet the machining requirements; a detailed review of

the state-of-the-art fixtures in manufacturing is provided in [7]. The 3-2-1 principle is sensitive to

surface conditions and measurement errors due to the use of orthogonal surfaces. The localization

accuracy predominantly depends on the machined locators and measuring errors, and to a large

extent, it can be considered a fixture design problem.

In this dissertation, we consider workpiece localization by employing the feature matching

approach, which has some similarities to the registration problem in computer vision. There are

several differences between the workpiece localization problem and the registration problem. As

considered in the computer vision literature, registration is typically treated as a part of the recogni-

tion problem – identifying the type of the object from a given set of objects and finding its position

and orientation. While registration is more of a “by-product” of the recognition process, workpiece

localization has to be considered by itself in robotic manufacturing [8]. Besides, in recognition,

the initial estimation of the workpiece location is not assumed to be known while it is a reason-

able assumption for the workpiece localization problem in manufacturing [1, 9]. Thus, global

minimization is required for registration in most cases, while local minimization is adequate for

workpiece localization [10]; the correspondence between measured data and CAD model features

needs to be identified first in recognition while this relationship is assumed to be known in work-

piece localization [11, 12, 8, 13, 14, 1]. Due to these assumptions in computer vision, some early

work focused on approximating 3D objects using planes or polyhedra and using search methods

6

such as tree search and clustering to identify the correspondence between the approximated planes

to recognize and locate 3D objects [15, 16, 14, 17, 11, 12, 18].

The workpiece localization problem has been mostly formulated as a least squares problem: A

set of features P = {pi}, i = 1, . . . , n on the physical workpiece are measured and known in the

robot frame Cw. Given the corresponding featuresQ = {qi}, i = 1, . . . , n on the CAD model with

known position/orientation in the local coordinate frame Cm and the transformation Tm
w between

Cm and Cw is known, find the rigid body transformation matrix that minimizes the sum of the

distances between the measured features P to their correspondent features in Q. The correspon-

dent features, for example, could be low-level features such as points, lines, edges, boundaries, or

high-level features such as curvatures, straight dihedrals, etc. [8]. A variety of methods based on

Singular Value Decomposition (SVD) can be found in [19, 20, 21, 22, 23, 24, 25, 26]. Besides,

a near-optimal probing strategy that can determine the best set of points from a given points pool

was provided in [9]. Similarly, a near-optimal/optimal probing strategy was proposed in [27, 28]

to decide on probing locations and the number of points to measure since both affect the local-

ization accuracy. Recently, a localization strategy that combines active sensing and contact-based

workpiece localization was described in [29]; a probing strategy is selected based on the expected

information gain associated with that strategy, and automatic localization of the workpiece is ob-

tained by updating the belief of the transformation between the local coordinate frame assigned to

the workpiece and the machine/fixed frame.

1.2.2 Object pose estimation using point clouds

The output of object pose estimation is a transformation matrix that describes the translation

and orientation of the object coordinate system with respect to a reference coordinate system. In

computer vision, images and point clouds have been used for object pose estimation. Point clouds

are used in this work due to the wide availability of vision sensors that generate point clouds. In

the following, we review existing pose estimation methods using point cloud registration.

Similar to the workpiece localization problem, the calculation of the transformation between

two point clouds is straightforward when the correspondences between the two sets of points are

7

known.

One well-known method is the Iterative Closest Point (ICP) [30] and its variants [31, 32, 33].

The ICP algorithm iterates between finding the point correspondences and calculating the trans-

formation using the correspondences. The obtained transformations from the ICP algorithm are

usually local minima. Generalized-ICP is proposed in [32] to model locally planar surfaces in the

scanned point cloud and the model point cloud, and this approach is reported to be more robust to

incorrect correspondences. An ICP variant based on sparsity inducing norms is proposed in [31]

to reduce the sensitivity to outliers and missing data. Another variant based on uniform sampling

of normal vectors is proposed for the registration of nearly-flat meshes with small features in [33].

Other ICP variants are also classified and evaluated in [33].

One attempt to find the global transformation is by utilizing optimization techniques. One

improvement of the ICP is the Go-ICP [34] which uses branch-and-bound techniques to find the

global optimum. However, the computation time is significantly higher when compared to other

ICP variants. Mixed-integer programming has also been used to find the correspondences in point

cloud registration by relaxing the rotation matrix using McCormick relaxation [35] and convexi-

fication of rotation matrix constraints [36]. Convex semidefinite relaxation is utilized to reformu-

late the registration problem in [37], which returns global solutions when matching two isometric

shapes.

Extensive efforts have been devoted to develop methods for finding the correspondences be-

tween two sets of points. One branch of methods addresses the problem by defining descriptors

for each point and a metric to quantify the closeness between the descriptors. Points that have the

closest descriptor values are considered as correspondences. The most well-known descriptors in-

clude: Spin images [38], which represent oriented points with 2D images that contain local surface

patches, Fast point feature histograms (FPFH) [39], which uses histograms to describe the local

geometries, Signature of Histograms of OrienTations (SHOT) [40], a four-dimensional feature that

parametrizes geometrical relation of an oriented surface-point pair is proposed in [41]. Oriented

point pairs are utilized to form a global model description in [42]. Learning based methods have

8

also been developed to learn descriptors that can be utilized for point cloud registration. A de-

scriptor is learned by using a local volumetric patch in [43]. A deep learning network is proposed

that leverages the alignment and attention mechanisms to learn feature correspondences from GPS

and inertial navigation system (GPS/INS)is proposed in [44]. A voxelized smoothed density value

(SDV) representation is utilized in the convolutional layers to learn 3D rotation invariant descrip-

tor in [45]. Some other learning based methods have also been proposed to register point clouds.

A 3D fully-convolutional network is used to compute the proposed fully-convolutional geomet-

ric features in [46] to find geometric correspondences. The Deep closest point (DCP) approach

is proposed in [47], which embeds point clouds into a high-dimensional space and using atten-

tion module to encode contextual information. In [48], the Lucas & Kanade (LK) algorithm is

modified to be used with PointNet [49] to learn features for point cloud registration. A method

called PoseCNN is proposed in [5] to estimate the decoupled 3D translation and rotation based on

semantic labeling. A review of pose estimation methods using point clouds can be found in [6].

1.2.3 Robot perception and planning

In workpiece localization, the number and locations of the measured points on the workpiece

affect the localization accuracy in the workpiece localization problem; a planning strategy for tak-

ing measurements is thus necessary [27, 28, 50]. As proposed in [27], both locations of probing

and the number of probing points affect the reliability and performance of the workpiece local-

ization algorithm; based on the localization accuracy analysis, a maximum determinant planning

strategy was proposed and a reliability analysis was conducted to determine the sufficient sample

size needed to reduce the uncertainty of the localization error to a given value. A sampling point

planning method was proposed in [28] to minimize the influence of workpiece surface errors on the

localization accuracy. Six frame-invariant norms were proposed to quantify localization accuracy.

Then, two criteria were designed to reflect the sensitivity of the localization accuracy to sampling

errors at measuring points. Given a point set, the sample point planning problem was formulated

as a combinatorial problem (select a subset of points from a given set), and solved by a floating

forward searching algorithm. It was also observed that due to data saturation effect, if the number

9

of sampling points is large enough, the effect of optimization will be insignificant.

Most of the workpiece localization research has assumed a set of measured points is already

available, and planning is based on that given point set. This approach has many issues: it is time-

consuming to obtain good quality data in practice, the given data points may not be adequate to

describe the object, and may require an experienced human operator to collect this existing data.

In this dissertation, we do not assume data are available a priori and use tools in active perception

and view planning to dynamically determine measuring locations to collect the data needed. There

are several benefits of this approach, including (1) only measuring the required amount of data for

localization, avoiding computation of redundant data; (2) automatic data collection using active

perception negates the need for an expert human operator for data collection. In order to do so,

relations between localization accuracy and sensor views need to be established, as well as the

criteria used to evaluate the sensor views. We briefly review the related developments and technical

tools behind active perception and view planning in the literature.

The concept of Active perception was originally defined in [51] as "an intelligent data acqui-

sition process", and "an agent is an active perceiver if it knows why it wishes to sense, and then

chooses what to perceive, and determines how, when and where to achieve that perception" [52].

Active perception includes five components related to data acquisition: why, what, how, when, and

where. Thus, "An actively perceiving agent is one which dynamically determines the why of its

behavior and then controls at least one of the what, how, where and when for each behavior" [52].

Each of the five components corresponds to a set of problems to be solved, and a significant num-

ber of methods are available in the existing literature to address them. For example, active control

of the actuators or other parts of the robotic system, active control of the sensors and sensor pa-

rameters for the current tasks, active selection of sensor poses that are most appropriate for the

current tasks, etc. Readers are referred to [52] for a detailed discussion of the five components and

a review of active perception. The main inspiration from active perception is to use the information

of the collected data as feedback to determine the robot motion for further data collection.

View planning studies consider how to decide the sensor views for a given task while consider-

10

Figure 1.4: Sensor planning using a graph [2].

ing the associated requirements and constraints. Many view planning studies have focused on 3D

modeling, reconstruction, inspection, and exploration [53, 54, 55, 56, 57, 58, 59, 60, 61]. The two

main components of view planning are generating the candidate views and evaluating those views.

The candidate views can be sampled randomly [55], uniformly on a hemisphere around the point

of interest [56], or using frontiers (the boundary between known free space and unknown space)

[62, 61]. The criteria for evaluating views include (1) view overlap, and shadow effects [53]; (2)

occlusion, percentage of overlap for registration, amount of new surface (using ray tracing), and

the travel distance from the current sensor location [55]; entropy reduction or information gain

[58, 57]; and unmapped volumes or uninspected visible surfaces [59]. Examples of using voxel

maps generated based on available CAD models to plan the scanning process in inspections can

be found in [63, 64]. Incident angle has been used in view planning for reconstruction to evaluate

voxel quality [65] and determine scanning direction [66]. Vertices that have large incident angles

are removed in [67]. In stead of evaluating meshes or voxels, incident angle is used to predict if

points are outliers using a dynamic angle interval in this work.

The constraints used in the view planning problem can result from the limits on sensors, robots,

workpiece, and environment (work cell in manufacturing). Due to hardware limitations, factors

such as resolution, field-of-view, view angle, field-of-depth, and light source need to be considered

when using vision sensors [68, 69]. For example, the sensor field-of-view could constrain the

11

entire object to be not contained within the view of the sensor, the view angle limits the maximum

angle formed between the surface normal and sensor beam. When sensors are mounted on a robot,

kinematics and reachability should be considered. Occlusion of the workpiece due to other objects

within the field of view could be another issue to consider.

Other related work includes approaches that rely on visibility maps, modeling the sensing

process as a stochastic process, using graph theoretic techniques. The concept of a visibility map

was defined in [70] by considering the geometry of the tool, which helps in reducing the setup

times by exploiting the potential overlap between visibility maps. In [71], estimation of the 3D

object position was formulated as statistical estimation of the geometric primitives (line, sphere,

plane) that were used to model the target object. Probability distribution functions of the measured

geometric primitives were used to formulate the noise mechanisms in measurements and modeling

to calculate the maximum likelihood estimates of the parameters for geometric primitives. Bayes

rule is also used to estimate the position and orientation of an object in a model-based active

perception and sensing planning in [72]. A graph-based merging algorithm was proposed for the

reconstruction phase during inspection in [73]. Views are modeled as vertices and are connected

by edges. Each edge is assigned a weight representing the traveling cost for sensor placement

planning in [2]; see Fig. 1.4 for an illustration of the approach.

1.3 Dissertation scope and contributions

This dissertation studies the object pose estimation problem and the associated view planning

problem for data collection. In this regard, it proposes an active robot perception framework whose

elements are illustrated in Fig. 1.5. Methods have been developed for each of the components in the

proposed framework. The goal is to estimate the object pose to a desired accuracy. The collected

data is evaluated to generate potential views, which are informative view directions to collect data

in order to improve estimated pose accuracy. The robot motions corresponding to the sensor views

are solved by reconciling the potential conflicts between the desired sensor views and constraints

from the hardware. The main contributions of this dissertation are:

• A novel plane-based point cloud registration method utilizing convex optimization is pro-

12

Figure 1.5: The active robot perception framework for 3D object pose estimation

posed.

• A plane-based NBVs strategy for object pose estimation is proposed.

• A point cloud quality predictor based on view angle is proposed.

• Several strategies for sensor view generation are developed based on point cloud quality

and quantity analysis. These strategies rely on novel formulations of the set cover and

mixed-integer problems for point cloud quality improvement and generating sensor views

to increase point cloud quantity

• A constrained nonlinear optimization formulation for solving the inverse kinematics is pro-

posed; this provides the feasibility of achieving robot motion from the current view to the

next best view and calculates the robot joint angles required for a given set of sensor views.

1.4 Dissertation outline

Chapter 2 provides the preliminaries for the development of the proposed methods, including

robot kinematics, point cloud registration, optimization, and motion-force control. Robotic gear

chamfering is utilized to illustrate how motion-force control can be employed to reduce workpiece

13

location uncertainties, which also motivates the development of the active perception methods for

object pose estimation. Chapter 3 presents the point cloud registration method based on planar

features (plane segments in point clouds). The proposed method formulates the registration as an

optimization problem, which can be solved to obtain the rotation and plane-to-plane correspon-

dences. The developed plane-based registration method can estimate the object pose from point

cloud registration and provide information for view planning to measure more planes. Chapter 4

presents the proposed NBVs method. Informative directions are defined based on the registration

result by utilizing the algorithm proposed in Chapter 3. A view gain is proposed to evaluate view

candidates to determine the NBVs to measure useful plane segments for pose estimation. Chap-

ter 5 provides a set of point cloud analysis methods for sensor view generation. The goal is to

design methods for objects that do not have planar features. Point clouds are analyzed in terms of

quality and quantity to identify the locations in the point cloud that require further measurements

and to what extent the point cloud is adequate for registration. The analysis lays a foundation for

sensor view generation and view planning, which is discussed in the following chapter. Chapter 6

presents the strategies to generate and plan sensor views based on the analysis from Chapter 5.

This chapter focuses on finding the sensor views and associated robot configurations to improve

the collected point clouds in terms of quality and quantity. Optimization techniques are utilized to

find the minimum number of sensor views and solve inverse kinematics to find the corresponding

robot joint angles. Chapter 7 provides the conclusions of this dissertation and future work.

14

2. PRELIMINARIES

This chapter provides the preliminaries for the developed methods in the active robot percep-

tion framework, including point cloud processing, robot kinematics, optimization, and motion-

force control. Point cloud processing not only provides important information that is used in

generating sensor view candidates but also for obtaining the accurate object pose. Robot kine-

matics is fundamental to calculating the feasible robot configurations for sensor view candidates.

Optimization techniques are used to solve multiple problems, including finding the sensor views,

registering point clouds, and solving the inverse kinematics. In addition, motion-force control and

its implementation in robotic chamfering are briefly discussed; the robotic chamfering application

motivated the workpiece localization problem and the active perception approach as a solution to

that problem.

2.1 Point cloud processing

This section presents the point cloud processing techniques involved in the proposed methods.

In order to use the raw point clouds obtained from the vision sensors, some key processing tech-

niques are necessary, such as the normal vector calculation, consistent normal vector orientation,

point cloud segmentation, and normal vector clustering (or point cloud clustering based on normal

vectors).

2.1.1 Calculation and orientation of normal vectors

Normal vectors of a point cloud contain the orientation information of the surfaces from which

the points are sampled. Normal vectors have been used in multiple occasions throughout this

work, such as finding plane segments in a point cloud, registering two point clouds that contain

plane segments, and finding sensor view candidates to measure the object.

The normal vector of a point on a surface is the unit vector that is perpendicular to the surface

at that point. One can: (1) reconstruct the surfaces using the collected point clouds and calculate

the normal vectors using the constructed surfaces, or (2) estimate the normal vectors directly using

15

the points. The latter strategy (2) is employed in this work. The normal vector of each point is

estimated locally by using a neighborhood of points. The problem is then equivalent to finding the

normal vector to a plane fitted using the neighborhood of points, which can be solved by using the

Principal Component Analysis (PCA) approach. For a point and its k neighbor points pi, denote

the centroid of the k points as p̄. Then, the covariance matrix of the k points is defined as:

1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T . (2.1)

The eigenvector corresponding to the smallest eigenvalue of the covariance matrix is selected as the

normal vector to the fitted plane, which is the estimated normal vector of the point. Implementation

details, including how to define such a neighborhood, can be found in libraries such as Open3D1

and PCL2.

An issue arises when calculating the normal vector using a neighborhood of points if points lie

on sharp edges and areas with large curvatures. One can choose to either (1) remove the points that

belong to sharp edges prior to normal vector calculation or (2) design algorithms that are robust to

sharp edges. One example of detecting the sharp edges in a point cloud is discussed in [74], which

is based on the covariance analysis of a neighborhood of points. Denote the three eigenvalues of

the covariance matrix as λ0, λ1, and λ2, where λ0 ≤ λq ≤ λ2. Define the surface variance as:

αk(p) =
λ0

λ0 + λ1 + λ2
(2.2)

which is used to determine if a point p belongs to an edge. Another approach to identifying points

that belong to edges is via the use of Gauss map [75], which is based on clustering of the normal

vectors on a unit sphere. Normal vectors can be calculated using points that do not belong to sharp

edges. The plane segmentation method proposed in this work also has the effect of filtering the

points that belong to sharp features. One example of algorithms that are robust to point clouds

1Open3D: http://www.open3d.org/
2Point Cloud Library (PCL): https://pointclouds.org/

16

containing sharp features is the method proposed in [76], which is based on a robust version of

Randomized Hough Transform (RHT).

Another issue when calculating the normal vectors of a point cloud using the PCA approach is

the orientations of the normal vectors. The normal vector of a fitted plane can take either of the

two directions that are 180◦ apart if no additional information is given. In this work, the normal

vectors of the point clouds are expected to be pointing toward the outside of the object consistently.

When the camera location at which the point cloud is collected is available, one can use the camera

location to orient the normal vectors. When the camera location is not available, a method referred

to as the consistent tangent plane was proposed in [77]. The consistent tangent plane orientation is

formulated as a graph optimization problem, which is solved by using an approximation algorithm.

In practice, this method is found to be computationally heavy when the point cloud is dense.

2.1.2 Clustering using normal vectors

The distribution of the normal vectors of a point cloud on a unit sphere contains important

information about the geometry of the object, such as the existence of planar or sharp features.

Further, if the object has a convex shape, a point on the object surface and a point on the unit

sphere (the normal vector of the point) have one-to-one correspondence. The normal vectors of a

plane are mapped to the same point. The following are several techniques that can be utilized to

cluster the normal vectors of a point cloud.

K-means clustering: k-means clustering is a common method that divides a set of data into k

clusters by putting each data point into the cluster with the nearest mean [78]. Since normal vectors

distribute on a unit sphere, additional normalization is required when applying k-means to ensure

the cluster centroids are still on the unit sphere [79].

Hierarchical clustering: Hierarchical clustering seeks to build a hierarchy of clusters [80]

which results in a dendrogram. The clustering strategy can be divided into two categories: ag-

glomerative and divisive. The clustering of the point cloud of the three surfaces of a cube by

applying Hierarchical agglomerative clustering (HAC) is shown in Fig. 2.1. Notice that for con-

cave objects, HAC may not identify segments correctly. In the next chapter, a method that is based

17

Figure 2.1: Clustering the point cloud of a cube by applying hierachical clustering on the normal
vectors.

on Extended Gaussian Image (EGI) is presented.

2.2 Robot kinematics

This section provides a brief summary of the kinematics of a robot arm. More detailed and

systematic discussions of the kinematics of rigid body mechanisms, representations of position,

and orientation can be found in [4, 3, 81].

Figure 2.2 presents an illustration of a robot arm and the robot base frame and the end-effector

frame. The forward kinematics of a robot refers to the calculation of the end-effector pose (posi-

tion and orientation) given the robot joint angles. The inverse kinematics of a robot refers to the

calculation of the robot joint angles given the end-effector pose.

2.2.1 Forward kinematics

The forward kinematics provides the position and orientation of the end-effector given the joint

angles. Denote the robot base frame as obxbybzb and the robot end-effector frame as oexeyeze. The

position of the end-effector is represented using a vector pe ∈ R3, and the orientation of the end-

effector is represented using a matrix Re
b ∈ SO(3). Further, the position and the orientation of the

18

Figure 2.2: An illustration of a robot arm and the robot based and end-effector frames

end-effector can be combined into one homogeneous matrix:

Te
b =

Re
b peb

0 1

 (2.3)

For a robot arm with n joints, denote the joint angles as q,q ∈ Rn. The forward kinematics refers

to the problem of finding Te
b given q, or Te

b(q).

The calculation of Te
b depends on how the coordinate system of the robot is constructed. Two

commonly adopted approaches are: the Denavit–Hartenberg (DH) convention [82] and the Product

of Exponentials (PoE) formula [3]. The illustrations of the two approaches are shown in Fig. 2.3.

When using the DH convention, each robot joint is assigned a coordinate frame following a set of

rules. Then, the transformations between adjacent coordinate frames are utilized to calculate the

transformation from the robot base frame to the robot end-effector, Te
b. The PoE formula is based

on the exponential coordinate representations of rigid body motions. A fixed coordinate frame

is defined at the base of the robot ob, and a frame is attached to the end-effector oe. Te
b can be

calculated using the transformation betweenOb andOe when all robot joints are at home positions,

M, and the joint angles q. The DH convention requires the minimum number of parameters to

describe the robot kinematics. For an n-joint robot arm, 4n parameters are required. The PoE

19

Figure 2.3: Two approaches to construct the coordinate system of a robot arm: using the DH
convention (left) and using the PoE formula (right). Figure adopted from [3].

representation requires 6n parameters. The PoE approach only requires a home coordinate frame

and an end-effector coordinate frame while the DH convention assigns one coordinate frame to

each robot joint [3].

2.2.2 Inverse kinematics

The inverse kinematics provides the joint angles corresponding to the given position and orien-

tation of the end-effector. Therefore, calculating the inverse kinematics of the robot can be more

involved compared to the forward kinematics. Typical questions that are answered are: (1) does

there exist a solution? (2) how many solutions? (3) does there exist a closed-form solution?

Closed-form solution: Closed-form solutions are usually preferred because the calculation is

fast, and all possible solutions can be found. However, it may be difficult to compute the closed-

form solutions for most robot configurations. Most industrial robot arms are designed such that

closed-form solutions exist for fast inverse kinematics calculation [4]. Closed-form solution meth-

ods can be divided into two categories: algebraic and geometric methods. Algebraic methods

usually identify the significant equations and manipulate those equations into a solvable form [4].

Geometric methods usually decompose the spatial problem into separate planar problems and solve

the individual problems using algebraic manipulations [4]. One widely used software that finds

20

closed-form inverse kinematics solutions for serial chains is the Ikfast3.

Numerical methods: Oftentimes, numerical methods are used for inverse kinematics since they

are not robot dependent, even though numerical methods are slower and usually do not allow

computing all solutions [4]. The most common numerical methods include: symbolic elimination

methods, continuation methods, and iterative methods [4]. Some commonly used iterative methods

include Newton-Raphson [3], nonlinear programming techniques [83], inverse Jacobian methods

(including Jacobian transpose, pseudoinverse method, damped least-squares methods) [84]. In

this work, the inverse kinematics of the robot needs to be solved to find the robot configurations

(joint angles) that satisfy the system constraints while orienting the sensor along the desired view

directions.

2.3 Optimization

This section presents the concepts of the optimization techniques that have been used in this

dissertation.

2.3.1 Linear programming

A linear programming problem is an optimization problem that has a linear objective function

and linear equality and inequality constraints. Denote the decision variables and parameters of the

linear programming problem as x,x ∈ Rn, A, b and c are the coefficients of the objective function

and the linear inequality constraints. The canonical form of the linear programming problem is the

following:

min
x∈Rn

cTx

s.t Ax ≤ b

x ≥ 0

(2.4)

The linear assignment problem and the set cover problem are two classical problems [85] that can

be formulated as linear programming problems with binary or integer decision variables.

Assignment problem: The assignment problem is a classical combinatorial optimization prob-

3Ikfast: http://openrave.org/docs/latest_stable/interface_types/

21

http://openrave.org/docs/latest_stable/interface_types/

lem that can be stated in the following general form: A number of agents and a number of tasks are

to be matched. Each task can be assigned to at most one agent, and one agent can be assigned to at

most one task. Each assignment incurs some cost. The goal is to assign as many tasks as possible

while minimizing the total cost of the assignments. When the number of the tasks is equal to the

number of agents, the problem is called balanced assignment. Otherwise, it is called unbalanced

assignment. The problem is called linear assignment if the total cost of all assignments is equal to

the sum of the costs of each assignment.

Formally, we are interested in the linear assignment problem: given a set of agentsA = {ai, i =

1, · · · , L}, and a set of tasks T = {tj, j = 1, · · · , K}. The cost of assigning agent ai to task tj is

cij . Define the assignment variables xij such that xij = 1 if agent ai is assigned to task tj . Find the

assignments that minimizes the total cost while satisfying the following constraints:

min
(i,j)∈A×T

xijcij

s.t.
K∑
j=1

xij = 1,∀i

L∑
i=1

0 ≤ xij ≤ 1,∀j

(2.5)

The constraints are such that each agent has only one task, and each task is assigned to at most one

agent. In the considered problem, the number of agents is no greater than the number of tasks.

Set cover problem: A set is a collection of distinct objects, a set of sets is a set, or referred as

a set family. A set cover is a set of subsets whose union has all members of the universe. For a

set system with the universe being U and the set of all subsets being S, i.e., ∪S∈SS = U , each

subset is associated with a weight c : S → R+. The task is to find a set cover of (U,S) the union

of which is equal to the universe, i.e., a subfamily R ⊂ S such that ∪R∈R = U [85]. As can

be seen, the set cover problem can be formulated as an integer linear program. The problem of

finding a minimum number of sensor views to cover the target areas on the object is formulated

as a minimum weight set cover problem. When the decision variables have a combination of

22

continuous and integer values, the problem is called a mixed-integer linear programming problem,

which has the following form:

min
x∈Rn

cTx

s.t. Ax ≤ b

xi ∈ Z, for some i

(2.6)

2.3.2 Nonlinear programming

A nonlinear programming problem is an optimization problem with at least one of the con-

straints, or the objective function is nonlinear. Let n,m, p be positive integers and f(x), hi(x), gj(x)

be real-valued functions. A general nonlinear programming problem has the following form:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 ∀i ∈ 1, · · · ,m

hj(x) = 0 ∀j ∈ 1, · · · , p

(2.7)

The inverse kinematics problem of calculating the joint angles for a given sensor view candidate is

formulated as a constrained nonlinear optimization problem. When some of the decision variables

take integer values, the problem becomes a mixed-integer nonlinear programming problem. The

proposed point cloud registration method by using plane segments is formulated as a mixed-integer

nonlinear optimization problem.

2.4 Motion-force control

Some manipulation tasks require the application of controlled motions along certain directions

as well as controlled forces along other directions. One example of such tasks is that a robot

holding a pen is asked to write on a whiteboard. The desired motion in the plane of the whiteboard

is specified as well as the desired contact force between the pen and the whiteboard. The general

approach to designing a motion-force controller is first presented. The development of a motion-

force controller for robotic chamfering of gears is then discussed.

23

2.4.1 Motion-force controller

The basic idea in designing a motion-force controller is to design controllers for desired mo-

tions and forces separately. Denote the number of Cartesian degrees-of-freedom (DOF) as N ,

an N -tuple vector that selects which Cartesian DOF are under force control as S (by setting the

element in the tuple as 1). The control signal for the i-th joint τi is [86]:

τi =
N∑
j=1

{Γij(si∆fj) + Ψij(1− si)∆xj} (2.8)

where δfj is the force error in the j-th DoF, δxj is the position error in the j-th DoF, Γij and Ψij

are the functions to generate control signals using the force and position errors, respectively, and

si is the i-th element in the selection vector S. Control laws such as computed torque, PID can be

applied to generate the control signals.

2.4.2 Implementation in robotic gear chamfering

Gear chamfering is the process of removing sharp edges on gear teeth for both safety and

increasing the funtionality of the gears. Currently, specialized gear chamfering machines exist.

But the chamfering is done manually for large size gears due to the limitations in the workspace of

the chamfering machines.

The accurate location of the gear in the robotic work cell is required in order to obtain even

chamfers with desired sizes. However, uncertainties in the location of gears with respect to the

robot always exist in practice due to how the gear is mounted in the work cell fixture. A novel

chamfering method, duel-edge chamfering, based on a hybrid motion-force control to identify the

gear center and gear root positions is proposed in [87]. Based on this identification, we employed

a novel force/motion strategy that can simultaneously chamfer two edges of the adjacent gear

teeth. This section briefly summarizes the designed hybrid motion-force controller for the gear

root identification∗.

∗Reprinted with permission from "Dual-edge robotic gear chamfering with registration error compensation" by
Jie Hu, Prabhakar Pagilla, 2021, Robotics and Computer-Integrated Manufacturing, 69, 102082. c©2021 by Elsevier.

24

Figure 2.4: Identification of the gear root

Figure 2.5: Motion/force control block diagram for gear root identification

For the control of the gear root identification process as illustrated in Fig. 2.4, motion and

force are controlled simultaneously. The control block diagram in Fig. 2.5 broadly illustrates the

motion/force control strategy employed for gear root identification. The initial motion direction

(n ∈ R3) and the force control direction (n⊥ ∈ R3) are determined by the initial Cartesian position

X0 (denoted as point P0 in Fig. 2.4) of the end-effector in the designated area and the gear center

position O, where n and n⊥ are unit vectors along xp and yp, respectively. Referring to Fig. 2.4,

while the end-effector moves towards the gear center along xp direction (which points to the gear

center) at a constant velocity (vd) during the gear root identification, the motion perpendicular to

xp is regulated by the force control law with zero as the force setpoint. Force control is activated

once the end-effector makes contact with a gear edge and the force sensor registers a non-zero

contact force. Once the contact is established at Point P1, the desired motion of the end-effector is

25

along the line joining P1 and the gear center. A hybrid impendance type force control is employed

so that the motion evolves along the gear edge; the force control law utilizes proportional action

on three measured variables along the yp direction: position error, velocity error, and force error.

The detailed strategy to calculate the control input u (robot joint velocity vector) is provided

in Algorithm 1. The gear root is found when the resultant contact force reaches at the preset

threshold f . When the end-effector slides on the gear tooth contour, the desired Cartesian velocity

of the end-effector ẋ is calculated by using three parts, vn, ω, and vctrl ∈ R. The direction of vn

is along the nominal motion direction with magnitude of vd. vctrl is the velocity scalar along the

perpendicular motion direction, and is calculated according to the control law by using the current

force error, displacement, and velocity of the end-effector that are projected on the perpendicular

direction. The states of the robot such as the joint positions and joint velocities are accessed from

the robot controller to calculate the end-effector positions and velocities X, Ẋ in Cartesian space.

The control input u to the robot is calculated using the current Jacobian J and the desired Cartesian

velocity input ẋ. More detailed discussions and experiment results can be found in [87, 88].

Algorithm 1: Gear root identification

Input: X0,O,X, Ẋ,vd, Fd, T, kd, kv, kf , f
Output: Xroot, R

root
base

Initialization: n =
−−→
X0O
‖X0O‖ , n⊥ · n = 0, ω = 0,

a = 0, vctrl = 0;
while ‖ Fm ‖< f do

update X, Ẋ, Fm;
vn ← vd · n;
a← −kd(X−X0) ·n⊥− kvẊ ·n⊥+ kf (Fm · n⊥−Fd);
vctrl ← vctrl + aT ;
v⊥ ← vctrl · n⊥;
ẋ← [vn + v⊥, ω];
u = J−1ẋ;
maintain loop time(T);

end
Xroot ← X;Rroot

base

26

3. PLANE-BASED POINT CLOUD REGISTRATION

This chapter presents a point cloud registration method that utilizes plane segments in the point

clouds. The motivation comes from the observation that many engineered parts have planar fea-

tures and that geometric features such as planes can serve as natural connections between pose

estimation and view planning. The plane-based next-best-view, which will be discussed in the next

chapter, utilizes the registration results to generate and select sensor views. The problem is first

formulated, and an overview of the method is provided. A novel plane segmentation method is

presented. A convex optimization problem is formulated to solve the plane-to-plane correspon-

dence and the rotation matrix between two point clouds. The translation is solved using different

methods for convex and nonconvex-shaped objects. The proposed registration method is further

compared with the state-of-the-art registration algorithms. Simulation and experimental results are

provided∗.

3.1 Problem description and method overview

Consider the workpiece shown in Fig. 3.1, where the frames corresponding to the robot base,

vision sensor, nominal workpiece, and actual workpiece, are given by Cw, Cs, Cc, and Ca, respec-

tively, and their corresponding origins are given by Ow, Os, Oc, and Oa. Our goal is to obtain

the workpiece pose by finding the homogeneous transformation from Oc to Oa. We assume the

workpieces have at least three planes whose normal vectors are neither co-planar nor parallel. We

use plane segments to localize workpieces because engineered workpieces in manufacturing usu-

ally have plane segments, and the transformation can be calculated for two sets of plane segments.

Both the CAD model point cloud and the measured point clouds from the vision sensor are pro-

cessed to extract plane segments. While the CAD model point clouds can be segmented offline,

the measured point clouds are segmented online sequentially. In order to find the transformation

∗ c©2021 IEEE. Part of this chapter is reprinted with permission from Jie Hu, Prabhakar Pagilla, Swaroop Darbha,
"A Novel Method for the Localization of Convex Workpieces in Robot Workspace Using Gauss Map", IEEE Confer-
ence on Decision and Control, December, 2021.

27

Figure 3.1: Coordinate frames of the object pose estimation problem through registration

from Oc to Oa, one needs to find the plane-to-plane correspondence between measured plane seg-

ments and the CAD model plane segments, that is, for each plane segment in the set S ′, find the

corresponding plane segment from the set S.

The proposed registration method includes three main tasks: extracting plane segments, find-

ing the correspondence between the measured plane segments and the CAD model plane segments,

calculating the transformation between two point clouds. The calculation of the rotation and trans-

lation is decoupled. For the development of the methods, the workpiece is assumed to be convex

shape. Adaptations to nonconvex shape workpieces are further discussed. The plane segments in

the point clouds are first identified and extracted using the proposed method. Each plane segment

can be represented by the normal vector, centroid, and the signed distance to the coordinate ori-

gin. An optimization problem is formulated and solved to find the correspondence along with the

rotation between the point clouds. For the calculation of the translation for convex shape work-

pieces utilizes Singular Value Decomposition (SVD). For nonconvex shape workpieces, a two-step

registration based on ICP is applied.

28

3.2 Extracting plane segments from point cloud

In this section, we present a method to identify the plane segments in a point cloud and extract

the key information to represent such plane segments. The method is used to process both the

measured point clouds and the point cloud sampled from the CAD model. The key idea is to project

the normal vectors of a point cloud on a unit sphere. Since the points on a plane segment have

the same normal vector when there is no computation errors, each plane segment is mapped into a

point on the unit sphere. Considering the errors in calculating the normal vectors and measurement

errors, a plane segment will be mapped into a compact area on the unit sphere. Extracting plane

segments is equal to identify such compact areas on the unit sphere.

Algorithm 2: Normal vectors clustering
Result: Rg = {rgi}
Initialization: δ = C, rsll, rslu, Rg,Rg′ = ∅;
while δ 6= 0 do

for rsl = rsll; rsl < rslu; rsl = rsl + 1 do
for pix ∈ Pixels do

nbs← getNeighbors(pix);
if any(nbs) ∈ Rg then

largest_region(Rg)←pix;
else

Rg←new_region(pix)
end

end
δ = ||Rg| − |Rg|′|;
Rg′ =Rg;

end
end

The key steps of the proposed method are the following: (i) calculating normal vectors for

every point using the k-nearest-neighbor method; (ii) project the normal vectors to a unit sphere

and find the clusters using the proposed method; (iii) characterize the size of each cluster and find

the compact clusters that are considered to represent plane segments. Many open source libraries

29

have implementations for the normal calculation of a point cloud that can be used in Step (i). In

this work, we use the implementation provided in Open3D library [89]. For Step (ii), one needs to

discretize the unit sphere into patches with equal areas, and merging adjacent patches to represent

the mapped normal vectors that belong to a surface region on the object. The discussion of the

discretization or tessellation of unit sphere can be found in [90]. In this work, HEALPix1 [91]

library is used to discretize the unit sphere into curvilinear quadrilaterals (referred to as the pixels

in the library) of equal sizes. The size of the pixel can be controlled by setting the resolution

parameter in the software. In this work, the resolution parameter is increased gradually until the

obtained cluster number stops changing to avoid inappropriate clustering due to the selection of

resolution. For each resolution, we first filter out the pixels that have normal vectors less than a

threshold, which are considered as noises. Adjacent areas are merged to form multiple regions.

The merging process is described in Algorithm 2. In Algorithm 2, Rg is the set that includes all

the regions rgi on the unit sphere, rsll, rslu are the lower and upper bound of the resolution, Rg′ is

the previous cluster set, δ is the size difference between the obtained sets, Pixels is the set of all

the pixels at a given resolution rsl. The algorithm stops when the obtained cluster number stops

increasing.

To characterize the sizes of the obtained regions, we fit a plane using the normal vectors of each

cluster, and look at the intersection between the plane and the unit sphere. For a plane segment on

a workpiece, the cluster of the normal vectors should be compact, i.e., the intersection of the fitted

plane and the unit sphere should have small area, which is the criterion we have adopted in this

work to identify plane segments in a point cloud. Two cases with difference intersection areas are

shown in Fig. 3.2

Once the clusters on the unit sphere that correspond to the plane segments in the point cloud are

identified, the points in the point cloud that correspond to the normal vectors in each cluster can be

extracted by using the indices of the points. The normal vector, centroid, and the signed distance

can also be calculated by using the extracted points that represent a plane segment. Next, we

1HEALPix: http://healpix.sourceforge.net

30

Figure 3.2: Two cases with difference intersection areas when characterizing normal clusters on a
unit sphere. The clustered normal vectors in (a) are more compact comparing to (b).

discuss the method to find the plane-to-plane correspondence using the identified plane segments

and the normal vectors.

3.3 Rotation calculation through convex optimization

Assuming a set of normal vectors corresponding to the plane segments from the measured

point cloud is: N ′ = {n′i, i = 1, · · · , K}, and the set of normal vectors from the CAD model

point cloud is N = {nj, j = 1, · · · , L}, and L ≥ K. The problem of finding the correspondence

for each n′i from N and calculating the rotation matrix R ∈ SO(3) that rotates N to N ′ can be

formulated as the following problem. Define a binary variable Xij to indicate the correspondence

relation between nj ∈ N and n′i ∈ N ′. Xij = 1 indicates that nj is the correspondence to n′i,

and 0 otherwise. Then we have: n′i = R
∑K

j=1Xijnj . The solution to the following optimization

problem gives R and Xij:

min
R,Xij

L∑
i=1

‖n′i −R
K∑
j=1

Xijnj‖2 (3.1)

31

subject to the following constraints:

Xij ∈ {0, 1} (3.2)∑
j

Xij = 1,∀i (3.3)∑
i

Xij ≤ 1,∀j (3.4)

R ∈ SO(3) (3.5)

Each normal vector of the measured plane segment should have and only have one correspon-

dence from the CAD model plane segments normals, and each of the normals from the CAD model

can have at most one correspondence in the measured plane normals. These two constraints are

reflected by Eq. (3.3) and (3.4). Further, the above optimization problem is non-convex due to the

following reasons: (1) the constraint that R ∈ SO(3) is non-convex, and (2) the product of Xij

with the rotation matrix R causes non-convexity. In order to make the problem tractable, we use

the following two relaxations: (1) relax the constraint that R ∈ SO(3) to be that R is in the convex

hull of SO(3) matrices (indicated by conv SO(3)), and (2) lifting the product of Xij and R using

the McCormick relaxation [92]. The resulting formulation is the following:

min
A,Xij

L∑
i=1

(2− 2(n′i)
T

K∑
j=1

Mijnj) (3.6)

subject to the following constraints:

−Xij ≤ mij
pq ≤ Xij (3.7)

rpq +Xij − 1 ≤ mij
pq ≤ rpq −Xij + 1 (3.8)

A � 0 (3.9)

Xij ∈ {0, 1} (3.10)∑
j Xij = 1,∀i (3.11)∑
iXij ≤ 1,∀j (3.12)

32

A =

1− r11 − r22 + r33 r13 + r31 r12 − r21 r23 + r32

r13 + r31 1 + r11 − r22 − r33 r23 − r32 r12 + r21
r12 − r21 r23 − r32 1 + r11 + r22 + r33 r31 − r13
r23 + r32 r12 + r21 r31 − r13 1− r11 + r22 − r33

(3.15)

where:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

and Mij is defined as:

Mij =

r11Xij r12Xij r13Xij

r21Xij r22Xij r23Xij

r31Xij r32Xij r33Xij

For each element mij

pq in Mij: mij
pq = rpqXij, p, q ∈ {1, 2, 3}, we apply the McCormick relaxation

based on the two constraints:−1 ≤ rpq ≤ 1, 0 ≤ Xij ≤ 1. we have:

−Xij ≤ mij
pq ≤ Xij (3.13)

rpq +Xij − 1 ≤ mij
pq ≤ rpq −Xij + 1 (3.14)

Matrix A in Eq.(3.15) is defined based on the definition of the convex hull of SO(3) in [93]:

conv SO(3) = {R ∈ R3×3 : A4×4 � 0}. The reformulated optimization problem is easier to solve

for a lower bound of the original non-convex problem. After solving the correspondence problem,

the rotation R is also known. A solution to the relaxed problem may not always result in R ∈

SO(3); a simple projection to SO(3) can be performed using the solution of Orthogonal Procrustes

problem [19].

33

3.4 Translation calculation

The translation remains to be calculated for the two point clouds to be registered. For objects

with convex shapes, the normal vectors of each plane segment is projected onto the unit sphere as a

separate cluster, i.e., the clusters on the unit sphere and the plane segments in the object have one-

to-one correspondence. Thus, we can use the solved correspondence and the plane information to

calculate the translation. Assuming the signed distances for the obtained measured plane segments

are d′i, and dj for the plane segments from the CAD model, then the following least-squares prob-

lem is solved by using Singular Value Decomposition (SVD) to calculate the translation t between

the CAD model data and the measured data:

min
t∈R3

L∑
i=1

‖d′i − (
K∑
j=1

Xijdj + 〈
K∑
j=1

Xijnj, t〉)‖2 (3.16)

3.5 Extension to nonconvex objects

When the objects are not convex, the one-to-one correspondence between the normal vector

clusters on the unit sphere and the plane segments on the object does not exist. Plane segments

that have the same or close normal vectors could be projected onto the same or adjacent pixels

on the unit sphere, which can lead to the clustering of different plane segments into one. The

incorrect plane segmentation will also generate erroneous rotations and translations. For this type

of object, the following registration strategy is used: applying the proposed strategy to extract

plane segments and solve the rotation, bringing the measured point cloud and the CAD model

point cloud to coarse alignment utilizing the solved rotation and applying translation based on

the centroid difference between the point clouds. ICP is applied to bring the point clouds to fine

alignment.

3.6 Simulation and experimental results

The following results are presented: effectiveness of extracting plane segments using the pro-

posed method for both concave and convex objects, the comparison of registration results of the

34

Figure 3.3: Extracted plane segments of a convex object by applying the proposed method. Top:
two views of the convex object. Bottom: two views of the plane segments shown in different
colors.

proposed method and two state-of-the-art registration algorithms: Go-ICP [94] and Fast Global

Registration (FGR) [95]. Some of the results are published in [36].

3.6.1 Plane segments identification

Figure 3.3 shows two views of the extracted plane segments by applying the proposed algo-

rithm. The object has eight planes in total. The extracted planes are highlighted in different colors.

As shown in the figure, all plane segments have been identified correctly. Additionally, it is ob-

served that the points on the edges are removed during the clustering process. The reason is that

the normal vectors on the edges are either clustered into the pixels of the adjacent plane segments,

or mapped onto pixels that are considered as noises and filtered due to the small number of normal

vectors. A similar finding is reported in [75], in which Gauss map is utilized to detect sharp edges.

Figure 3.4 and Fig. 3.4 are two examples when applying the algorithm to concave objects.

These object models are obtained from Fusion360 dataset2 and MCB dataset3. The object in

Fig. 3.4 has several plane segments that are parallel, as numbers in the figure. The parallel planes

2Fusion360: https://github.com/AutodeskAILab/Fusion360GalleryDataset
3MCB: https://mechanical-components.herokuapp.com

35

Figure 3.4: After applying the proposed normal clustering method, the obtained normal vectors
clusters may contain the normal vectors that belong to multiple parallel planes, such as the num-
bered 1 and 2 plane segments, 3 and 4 plane segments, and 5, 6 plane segments.

are thus identified as the same cluster, which are highlighted using the same color. Figure 3.5

shows another example of the segmentation of a concave object. For applications in which paral-

lel planes have to be distinguished and separated, segmentation based on Euclidean distance can

be further applied into the pipeline. However, the proposed segmentation method aims to find

the correspondences and rotation between two point clouds. The rotation can still be calculated

correctly even when the normal vectors of one region belong to multiple plane segments, as long

as the same clustering process is applied to both the CAD point cloud and the measured point

cloud. Notice that when symmetry exists, the rotation will be ambiguous, but the ambiguity also

exists for many existing point cloud registration algorithms. Registration results are included in

the following section.

3.6.2 Registration comparison

This section provides the registration comparison of the proposed plane-based registration and

two other state-of-the-art registration algorithms: Go-ICP [94] and Fast Global Registration (FGR)

[95] using both convex objects and concave objects.

36

Figure 3.5: Parallel plane segments that have the same normal vectors fall into the same clusters
on the unit sphere.

We first present the registration results for a convex object. The rotation and translation are

calculated separately in the proposed method. A sample of registration results is provided. The

registration results are analyzed using two metrics: fitness and inliers Root Mean Square Error

(RMSE). Fitness is defined as the ratio of the number of inliers to the total points. The inlier RMSE

is calculated based on the Euclidean distances between the inliers and their correspondences. Point

cloud 1-3 are partial point clouds sampled from the entire point cloud, as shown in Fig. 3.6. Point

cloud 4-6 are point cloud 1-3 with 3D Gaussian noise. The standard deviation of the Gaussian

distribution is set to 0.003. Five trials with random transformations are conducted. A random

rotation is obtained by generating a random rotation axis (a unit vector) and a random angle in the

range of [−π, π]. A random translation is obtained by generating a random 3D vector, each element

is in the range of [−0.5, 0.5] m. The average fitness, RMSE and time are reported in Table 3.1.

For point cloud 1-3 (data 1-3 in Table 3.1) that have no noises, FGR outperforms the pro-

posed method and GO-ICP in terms of computation time and RMSE. The proposed method has

higher fitness and lower computation time comparing to Go-ICP. Comparing to FGR, the proposed

method has higher computation time but equal registration fitness. When noises are added to the

37

Figure 3.6: Partial point clouds of a convex object used in the registration comparison

Table 3.1: Registration comparison a using convex object in terms of RMSE (mm) and time (s)

Data
Go-ICP FGR Proposed

Fitness RMSE Time Fitness RMSE Time Fitness RMSE Time
1 0.885 0.91 431.24 1.0 0.003 3.36 1.0 0.34 5.86
2 0.739 1.28 18.17 1.0 0.018 3.17 1.0 0.11 5.44
3 0.084 1.27 159.91 1.0 0.002 3.49 1.0 0.21 5.87
4 0.823 1.11 29.34 0.388 1.36 3.66 0.997 0.86 6.99
5 0.988 1.08 20.37 0.519 1.37 4.20 0.986 1.09 7.85
6 0.806 1.20 331.31 0.060 1.38 4.26 0.995 1.0 7.57

point clouds (data 4-6 in Table 3.1), the proposed method maintains high fitness (> 0.98) with

slightly increased computation time comparing to registering using point clouds without noises.

The registration fitness when using FGR is decreased significantly even though the computation is

faster than the proposed method and Go-ICP. Registration using Go-ICP has higher fitness when

compared to FGR but with significantly longer computation time.

We also compare the proposed plane-based point cloud registration method with Go-ICP and

FGR using two sets of data from two nonconvex objects, which are shown in Fig. 3.8. The sensor

data is collected offline using the vision sensor Ensenso N35 which is mounted on a UR5 robot.

The proposed method for nonconvex objectis a two-step coarse-to-fine registration. Figure 3.7

provides an example of the two steps. After registration, fitness and RMSE are utilized to evaluate

the registration results.

Table 3.2 includes the registration results when using point clouds of the two concave objects.

Data 1-3 are the point clouds from the object shown in the first row in Fig. 3.8. Data 4-6 are

38

Figure 3.7: The proposed coarse-to-fine registration method. Top left: the initial two point clouds,
red is the CAD point cloud, green is the measured point cloud. Top right: point clouds after
applying the obtained rotation. Bottom right: point clouds after translating the measured point
cloud by the centroid difference. Bottom left: the result after applying ICP.

Figure 3.8: Top: the complete(red) and partial(green) point clouds of the objects used in the com-
parison. Bottom: point clouds after registration using Go-ICP (left), our method (middle), and
FGR (right).

39

Table 3.2: Registration comparison using concave objects in terms of RMSE (mm) and time (s).

Data
Go-ICP FGR Proposed

Fitness RMSE Time Fitness RMSE Time Fitness RMSE Time
1 0.701 0.64 79.77 0.202 1.74 1.62 0.786 1.16 2.25
2 0.666 0.65 70.77 0.197 1.77 1.88 0.721 1.14 1.47
3 0.959 0.59 33.82 0.174 1.79 2.17 0.864 0.92 2.80
4 0.865 0.60 233.98 0.510 1.53 2.02 0.872 1.12 1.26
5 0.877 0.59 63.80 0.348 1.78 1.54 0.804 1.21 0.96
6 0.878 0.59 68.26 0.284 1.82 1.32 0.888 1.05 0.98

the point clouds from the object shown in the third row in Fig. 3.8. For both sets of data, our

registration method is faster than Go-ICP, has lower registration errors than FGR.

3.7 Conclusions

In this chapter, a plane-based registration method is developed. The benefits of the proposed

registration method are twofold: (1) provide a new point cloud registration approach based on plane

segments that utilizes convex optimization, and (2) provide an interface for plane-based NBVs for

data collection. The proposed plane segmentation methods based on normal vector clustering on

the unit sphere are proven to be effective for convex objects in the sense that planar features on the

object can be detected, and the point clouds can be segmented correctly. The segmentation method

can also be applied to nonconvex objects with the caveat of clustering plane segments that have the

same or close normal vectors into the same segment. The proposed segmentation method is still

applicable with the proposed registration method if the segmentation is applied to both the point

cloud from the CAD model and the measured point cloud. The next chapter discusses how the

registration result can be used to define informative sensor views to measure more plane segments

to improve registration accuracy.

40

4. PLANE-BASED NEXT-BEST-VIEW FOR OBJECT POSE ESTIMATION

This chapter presents one next-best-view method to measure planes on the object for pose es-

timation, which uses the plane-based registration result that developed in the previous chapter.

The goal of the developed view planning method is to find sensor view directions that lead to the

measure of more plane segments in order to increase the point cloud registration accuracy. The

problem and method overview is first provided. Determining the NBVs consists of two compo-

nents: (1) defining informative view directions and sensor view candidates, and (2) selecting from

the sensor view candidates the NBVs based on the proposed criterion. Simulation and experi-

mental results are provided to show the effectiveness of determining informative view directions,

generating sensor view candidates, finding the NBVs, and the improved point cloud registration∗.

4.1 Problem description and method overview

Figure 4.1: System setup: (a) simulation using ROS; (b) experimental setup. Vision sensors are
mounted on the robot end-effector. A 3D printed object is placed in the workspace.

The considered robotic system setup is shown in Fig. 4.1. The sensor is mounted on the robot

end-effector. The object is placed in the robot workspace to be localized. At least three planar
∗ c©2021 IEEE. Part of this chapter is reprinted with permission from Jie Hu, Prabhakar Pagilla, Swaroop Darbha,

"A Novel Method for the Localization of Convex Workpieces in Robot Workspace Using Gauss Map", IEEE Confer-
ence on Decision and Control, December, 2021.

41

features that are parallel exist on the object. The robot arm places the sensor at multiple locations

to collect point clouds by measuring the object. Collected point clouds are utilized to estimate

the object pose by using the proposed registration method discussed in the previous chapter. The

next-best-view problem in this context is to find the next best sensor view that can measure more

planar features on the object such that the plane-based registration results can be improved.

The proposed method for the NBV problem is decomposed into the following three steps:

(1) determination of informative sensor views, (2) determination of possible view directions and

positions (Cartesian location of the sensor), and (3) NBV selection from among the possible views.

To address (1), the extracted plane segments from both the measured point clouds and the CAD

model point cloud, along with the current registration result, are utilized. In order to find potential

sensor view directions and sensor positions, the robot workspace is discretized into voxels. Each

voxel is associated with a sensor view candidate, which fully defines an end-effector pose. Inverse

kinematics is used to check if a solution exists for such a sensor view candidate. Sensor view

candidates with inverse kinematics solutions are further evaluated using the proposed view gain to

determine the next-best-view to measure plane segments from Sc1.

4.2 Representative vectors

Denote the set of current measured plane segments as S ′1 = {s′m,m = 1, . . . , K1} and the set

of predicted correspondences from the CAD model using the proposed method as S1 = {sm, sm ∈

S,m = 1, . . . , K1}. The complement set of S1, Sc1 = {sl, sl ∈ S, sl /∈ S1} contains the planes from

the CAD model that do not have matched measured planes yet. Then, the NBV problem is equal to

finding sensor views that best capture the unmeasured plane segments in Sc1. The view directions

along which either new plane segments can be captured or the already captured plane segments

can be measured again to obtain a more accurate plane model are referred to as the representative

vectors. Defining such vectors is necessary to indicate the regions of interest in the robot work

space, which facilitates the evaluation of sensor view candidates.

Denote the normal vectors corresponding to the plane segments that we intend to measure as nt,

which are expressed in the object local frame, and the representative vectors as n̂t, t = 1, 2, . . . , T ,

42

which are defined in the robot base frame. The goal is to find n̂t that represents nt so that the

planar feature corresponding to nt can be measured when the sensor view is aligned with (or close

to) n̂t. Note that T = |Sc1| = L−K1 if only unmeasured plane segments are considered.

We use the following approach to compute n̂t using nt. Let nm and n′m, respectively, be the

normal vectors corresponding to plane segments sm ∈ S1 and s′m ∈ S ′1. Denote M1 = [. . .nm . . .]

as the matrix whose columns are nm and M′
1 = [. . .n′m . . .] is the matrix whose column vectors

are n′m. Denote M†
1 as the pseudoinverse of matrix M1, and bm as the m-th row vector of M†

1.

Denote fq and f ′q, respectively as the basis vectors of the null space of M1 and M′
1. Let Q denote

the dimension of M′
1; note that Q is either 1 or 2. We generate a set of representative vectors

N = {n̂t, t = 1, . . . , T}, using the following equation:

n̂t =

∑K1

m=1 α
t
mn
′
m +

∑Q
q=1 β

t
qf
′
q, if rank(M′

1) < 3∑K1

m=1 α
t
mn
′
m, if rank(M′

1) = 3

(4.1)

where αtm = 〈bm,nt〉 and βtq = 〈fq,nt〉. Notice that the term
∑K1

m=1 α
t
mn
′
m is a linear combination

of the measured plane normal vectors. The coefficients of the combinations are determined by

expressing the corresponding CAD model normal vectors using the measured normal vectors as

bases. The term
∑Q

q=1 β
t
qf
′
q contains information of the CAD model normal vectors in the null

space of M′
1. Without uncertainties, n̂t = Rnt, where R is the rotation matrix obtained through

point cloud registration. The generated representative vectors are utilized to evaluate sensor view

candidates.

4.3 Sensor view candidates

With the defined representative vectors, which represent the directions along which the sensor

can measure more planes, we proceed to define sensor view candidates, and a view gain as a

criterion to select among all the possible sensor view candidate the next-best-view.

One can choose to randomly sample a set of sensor views as candidates or uniformly sample

a specific region. Further, since the sensor is mounted on the robot end-effector, a sensor view

43

Figure 4.2: Generation and evaluation of sensor views. (a) The hatched regions between the two
hemispheres with radiusR1 andR2 are considered as the search regions for the NBVs. Each search
region is discretized into many voxels, and the view gain is calculated for each voxel to determine
the view with the largest view gain. The angle φ is determined by the sensor view angle constraint.
The sensor view direction at a voxel (shown as white cube with center Cv in the hatched region) is
defined to be pointing towards the center Or. (b) An example when five representative vectors are
generated, five regions are evaluated to select the NBV by considering the current camera location.

candidate is only valid if an inverse kinematics solution exist such that the robot can place the

sensor at the view candidate position and along the view candidate direction. The method presented

here relies on the discretization of the robot workspace into voxels, and defining sensor view

candidates for each voxel, followed by checking the inverse kinematics feasibility of each view

candidate.

To avoid searching the entire robot workspace, which is inefficient, a search region around the

workpiece is first defined. A hemispherical region of radius R1 is chosen to avoid robot collision

with the workpiece and also satisfy the minimal distance requirement of the sensor for taking mea-

surements. Further, vision sensors usually can measure objects that are within a certain distance

range, for which another sphere with radius R2 is defined, and is concentric with the sphere with

radius R1. The hemispherical shell between the two hemispheres of radius R1 and R2 with center

Or represents the region that satisfies the sensing range, as shown in Fig. 4.2(a).

Next, only regions around representative vectors are defined as regions of interest for defining

view candidates, which further reduces the computation cost. Cones of angle φ with vertex at Or

and axes as the representative vectors are generated. The angle φ models the view angle constraint

44

Figure 4.3: The camera has the freedom to rotate around its z-axis, the desired sensor view di-
rection. The two poses of the end-effector corresponding to oexeyeze and oex′ey

′
ez
′
e are used to

calculate the inverse kinematics.

of the sensor that gives good view quality of the plane segments. The physical meaning of φ is

that the sensor views that have angle smaller than φ with n̂t are considered to be able to measure

the plane segment represented by n̂t. For each n̂t, we have such a cone, and the desired sensor

locations to capture n̂t lie in the search regions, the intersection of the hemispherical shell and the

cones (shown as the hatched regions in Fig. 4.2(a)).

Now, we discretize the search regions into voxels (cubes) using Octomap [96]. For each voxel,

we define a sensor view candidate. The position of each sensor view candidate is the center of the

voxel, and the view direction points towards Or from the voxel center. These are the sensor view

candidates to be further evaluated.

Since some sensor view candidates may not be feasible for the robot, the kinematic feasibility

of each sensor view candidate is checked by calculating the inverse kinematics of the robot at that

location. When searching for inverse kinematics, the six degree-of-freedom (DoF) of the robot

end-effector should be defined. Without loss of generality, assume the z-axis of the sensor frame

represents the sensor view direction. Since only the z-axis of the sensor frame is defined, the

robot end-effector has the degree-of-freedom to rotate around the z-axis of the sensor frame if

45

the sensor z-axis is not aligned with the last rotation axis of the robot. Thus each sensor view

candidate is rotated by 18◦ until a valid inverse kinematics solution is obtained or the accumulated

rotation angle reaches 360◦, as shown in Fig. 4.3. If a valid inverse kinematics solution is obtained,

self-collision of the robot is further checked using libraries from Moveit1.

After defining the sensor view candidates and checking the inverse kinematics feasibility and

self-collision, next step is to find the best sensor view. The following view gain is proposed, which

provides the balance between the travelling distances of the end-effector and how close a sensor

view direction is with all the n̂t:

G(cv) =
T∑
t=1

xt

(
1− d(cee, cv)

2R2

)
〈cv −Or, n̂t〉 (4.2)

where cv is the voxel centroid, cee is the current sensor location, d(cee, cv) is the Euclidean distance

between cee and cv, xt is a binary variable that represents the view angle constraint φ of the vision

sensor. xt = 1 if 〈cv −Or, n̂t〉 ≥ cos(φ), and 0 otherwise.

The proposed view gain is inversely proportional to the distance to be traveled by the end-

effector from its current position to the next potential view. The closeness of the view direction

with each n̂t is quantified by the angle between the view direction and each n̂t, which indicates

how well the sensor can capture the planes that n̂t represent. The view with the largest view gain is

selected as the NBV. Note that d(cee, cv)/2R2 discounts the view gain by using the travel distance.

Thus, the view gain expressed in (4.2) as the sum over all identified view directions represents to

what extent the planes associated with n̂t can be seen at a voxel.

Figure 4.2(b) provides an example showing the five generated representative vectors n̂1-n̂5

when five plane segments are to be measured, five corresponding regions are discretized and eval-

uated considering the current camera location using the view gain. The NBV is a sensor view

that can measure the most number of planes represented by n̂1-n̂5 while considering the traveling

distance.

1Moveit: https://moveit.ros.org/

46

https://moveit.ros.org/

4.4 Simulation and experimental results

Numerical simulations and real-time experiments are conducted with a UR5 robot to evalu-

ate the proposed strategy. The numerical simulation environment consists of the UR5 robot arm

with a simulated Kinect sensor mounted on the robot flange. The Kinect sensor can measure the

workspace and generate point cloud data. Software modules available in Robot Operating System

(ROS), such as Gazebo and Rviz, are used for motion planning, point data processing (filtering,

voxelizing, etc.) and visualization. For experiments, a 3D sensor (Ensenso N35) is mounted on

the UR5 robot end-effector. A 3D workpiece (green in color) is placed on the table in the robot

workspace; this workpiece has eight plane segments with one plane not visible because of resting

on the workbench. The simulation environment and experimental setup are shown in Fig. 4.1. The

proposed strategy is applicable with any sensors whose outputs are point clouds. The background

point clouds in both numerical simulations and experiments are removed by applying a filter since

the robot workspace and robot base location are known. The actual workpiece location is obtained

by probing the workpiece using the robot at several locations. Some of the results are published in

[36, 97].

4.4.1 Representative vectors

Figure 4.4 shows four cases where different number of representative vectors are generated in

both simulations and experiments. Notice that the cases shown are for different individual initial

views. In Fig. 4.4(a) and (b), two and five plane segments were extracted from the point clouds with

blue arrows representing the normal vectors of the plane segments; representative vectors (orange)

were then obtained by using the predicted plane-to-plane correspondence. The same strategy was

applied in the experiments. In Fig. 4.4(c) and (d), five and four plane segments were extracted

from the captured point clouds from Ensenso sensor, two and three representative vectors were

generated based on the predicted correspondence by using the proposed registration method.

47

Figure 4.4: The generated representative vectors in both simulation and experiments are shown
in orange arrows. For simulations shown in (a)-(b): two/five plane segments are captured by the
sensor in Rviz and segmented, five/two representative vectors (n̂t) are generated accordingly. For
experiments shown in (c)-(d): point clouds from Ensenso are segmented, and two/three represen-
tative vectors are generated, respectively.

48

Figure 4.5: One plane segment is in the initial sensor view. Comparison of the generated six
views with and without travel distance discounting factor. The initial sensor locations are the same
for two scenarios. The order of the views is indicated in numbers. The total traveled Euclidean
distances are 1.481 m (with discounting factor) and 2.647 m (without discounting factor).

4.4.2 Effect of the travel distance discounting factor

Numerical simulation results are provided to demonstrate the effect of the travel distance dis-

counting factor in the proposed view gain. NBVs were selected for the sensor to measure all seven

visible plane segments of the workpiece.

Figures 4.5 and 4.6 present the generated view sequences (NBVs) of two cases where one plane

segment is visible to the sensor initially (Fig. 4.5) and two plane segments are visible to the sensor

initially (Fig. 4.6). For this simulation, one plane segment is only considered fully measured if

the angle between its normal vector and the sensor is within the view angle constraint (φ). As a

result, there are totally six views in Fig. 4.5 and five views in Fig. 4.6. Note that in practice, plane

segments may still be measured even if their normal vectors are with angles larger than (φ) with

the sensor view direction but the quality of the obtained point cloud may deteriorate. For each

case, the views generated when travel distance discounting factor is considered are compared with

49

Figure 4.6: Two plane segments are in the initial sensor view. Comparison of the generated five
views with and without travel distance discounting factor. The initial sensor locations are the same
for two scenarios. The order of the views is indicated in numbers. The total traveled Euclidean
distances are 1.436 m (with discounting factor) and 2.266 m (without discounting factor).

the views when travel distance is not discounted. For the same number of views (six for Fig. 4.5

and five for Fig. 4.6), the view sequences are more compact and total traveling distances are much

shorter (1.481 m and 2.647 m for Fig. 4.5, 1.436 m and 2.266 m for Fig. 4.6) when the travel

distance discounting factor is included for both two cases, indicating the necessity of discounting

the travel distance in evaluating view gain.

4.4.3 Next-best-view and object pose estimation

Results of work space evaluation and the obtained NBV are presented here. The effectiveness

of the proposed view gain is checked by the newly measured plane segments when the sensor is

moved to the NBV.

The voxels in the search regions are evaluated using Eq.(4.2). Figure 4.7 provides an ex-

ample of the proposed localization process. Four plane segments (blue arrows) were obtained

in Fig. 4.7(a), and three representative vectors were generated as shown in orange arrows. As

50

Figure 4.7: Two iterations when applying the proposed localization method: (a) At current step,
three plane segments on the workpiece are not measured, three n̂i are generated (orange arrows);
(b) regions around each n̂i are evaluated, one region is discarded for that no feasible inverse kine-
matic solutions for the robot exist; (c) the selected NBV (red arrow); (d) robot at the NBV, more
plane segments are captured

Table 4.1: Workpiece Localization Results (rx,ry,rz,x,y,z) with rotation angles in radian and trans-
lation in mm (S: simulation, E: experiment)

Data
Initial misalignment Localization Errors

Rotation Translation Rotation (·1e-3) Translation
S1 (0.2, 0.2, 0.2) (20, 20, 20) (0.5,1.0,0.4) (1.18,3.43,2.33)
S2 (0.3, 0.3, 0.5) (20, 20, 20) (1.0,0.2,2.0) (2.23,2.7,0.47)
S3 (0.2, 0.2, 0.2) (50, 50, 50) (1.7,0.4,0.2) (1.17,2.19,1.71)
S4 (0.3, 0.3, 0.5) (50, 50, 50) (1.1,0.5,2.6) (2.69,1.27,2.52)
E1 (0.2, 0.2, 0.2) (20, 20, 20) (9.2, 1.8, 0.7) (6.44,0.17,0.38)
E2 (0.3, 0.3, 0.5) (20, 20, 20) (1.2,20.4,18.8) (0.5,2.12,0.15)
E3 (0.2, 0.2, 0.2) (50, 50, 50) (8.4,4.2,8.3) (7.45,1.39,1.14)
E4 (0.3, 0.3, 0.5) (50, 50, 50) (9.8,4.6,3.7) (1.50,3.72,4.75)

51

Figure 4.8: Two iterations of finding NBVs to localize the workpiece using the experiment setup:
(a)-(c) point clouds and extracted plane segments visualized in Rviz, (d)-(f) physical workspace
and the robotic system corresponding to (a)-(c).

shown in Fig. 4.7(b), regions around the representative vectors were evaluated using the view gain.

Since one representative vector is not feasible to the robot, only two clusters of voxels are shown

in Fig. 4.7(b). The visualization of the view gain of each voxel in the search region uses tools

from [98]. The view gain decreases when the voxel color changes from blue to green. Thus, the

obtained NBV shown in Fig. 4.7(c) (the red arrow) is selected since the voxel is closer to the cur-

rent sensor location and also leads to measuring new plane segments. In Fig. 4.7(d), the robot

moved to the NBV and the sensor measured a new plane segment.

The nominal workpiece locations are set to multiple different values with respect to the actual

workpiece in both simulation and experiments, and a sample of results are provided in Table 4.1

(indicated by "Initial misalignment"). Figure 4.8 shows two iterations of the localization experi-

ment.

Relatively larger translation errors are observed in the experimental results when compared to

the results from numerical simulations. Several potential reasons include: (1) the errors in the

extrinsic camera parameters during hand-eye calibration; (2) the errors in the robot kinematic pa-

rameters; and (3) the errors in the actual workpiece locations in the robot base frame. In particular,

52

robot kinematic uncertainties seems to play a larger role in these errors, and the localization accu-

racy also changes when the sensor views are at different locations in the robot workspace since the

measured point clouds are transformed into the robot base frame and merged before segmentation.

4.5 Conclusions

This chapter has presented a plane-based next-best-view planning strategy for automatic object

pose estimation. The goal is to estimate object pose by using vision sensing and to strategically

obtain measurements. The plane-based point cloud registration method is used to generate repre-

sentative vectors, which has been shown to indicate informative sensor view directions to measure

more planar features on the object from both simulation and experimental results. The data collec-

tion process during pose estimation has been carried out sequentially by finding the NBVs under

the proposed view gain criterion. The shorter total traveling distance, along with the measure-

ment of additional plane segments after each NBV, indicates the efficacy of the proposed NBV

strategy. Results from both numerical simulations and experiments for various object location sce-

narios show that the proposed strategy is effective in estimating the object pose. The following two

chapters present view planning strategies that do not rely on the planar features of the objects.

53

5. POINT CLOUD ANALYSIS FOR POSE ESTIMATION

The point cloud registration and the next-best-view method for pose estimation presented in

the previous two chapters require the object to have planar features. In this chapter, strategies

that are agnostic to the shape of the object are developed to evaluate the collected point clouds in

order to determine informative sensor view directions. Specifically, we analyze both the quantity

and quality of the collected point clouds. Quantity analysis provides sensor views to collect more

point clouds whereas quality analysis pinpoints locations in the current point cloud that should

be measured again. We present simulation results showing the correlation between point cloud

quantity/quality and registration accuracy, which motivates and guides the proposed point cloud

evaluation criteria. The next chapter presents how the point cloud analysis is utilized to plan

sensor views for point cloud collection∗.

5.1 Point cloud quantity analysis

5.1.1 A motivation example

This section uses examples to show the correlation between the point cloud quantity and the

point cloud registration accuracy. The point cloud registration accuracy is quantified by two values:

the fitness of registration and the Root Mean Square Errors (RMSE) of the inlier points. The reg-

istration algorithms are state-of-the-art, including the partial-to-complete registration algorithms.

The goal is to show that increasing point cloud quantity works across different registration algo-

rithms. Thus registration results serve as motivation for generating sensor views by increasing

point cloud quantity.

Figure 5.1(a) shows the 3D object and the sampled complete point cloud used for simulation.

Figure 5.1(b) is one case where the initial point cloud cannot be registered well with the complete

point cloud. The rotation error when expressed in axis-angle representation is 3.14 rad, translation

∗ c©2022 IEEE. Part of this chapter is reprinted with permission from Jie Hu, Prabhakar Pagilla, "View planning
for object pose estimation using point clouds: an active robot perception approach", IEEE Robotics and Automation
Letters, July, 2022.

54

Figure 5.1: Point cloud quantity increase that improves registration accuracy.

errors are [-0.016, -0.001,-0.075] meter along the x-, y-, z- axis. Figure 5.1(d) shows the point

cloud with increased quantity and registered point clouds with rotation error of 0.003 rad, transla-

tion errors [-1.0, -0.2,-0.1] mm, which indicates the improvement in the point cloud registration.

However, Figure 5.1(c) presents one case where the registration accuracy was not increased

even though the point cloud quantity is increased. The increased part of the point cloud is high-

lighted in the circle. The registration has rotation error of 3.05 rad, translation errors of [-0.9,

-1.0,-0.5] mm.

The fact that the increased point cloud is parallel to the rest of the point cloud can be the

cause that registration is not improved, which highlights that the data collection strategy for 3D

reconstruction and pose estimation should be different: while 3D reconstruction seeks to increase

the coverage of the entire object, point cloud that helps registration is more important for object

pose estimation. To this end, we introduce a criterion for point cloud quantity evaluation. The

sensor views to increase the value of the criterion is expected to increase registration accuracy.

5.1.2 Point cloud quantity evaluation

Angular spread was first mentioned in[90]. The angular spread of a tessellated cell of a unit

sphere is equal to the angle of the cone formed by the cell when connected to the center of the

sphere. For a point cloud P , the normal vectors can be calculated using the method introduced in

Chapter 2. In this work, angular spread is extended to be used with a point cloud. Denote the set

55

Figure 5.2: Given the three normal vectors vNc1 ,v
N
c2
,vNc3 that represent the three cluster centers of

the normal vectors set N of a point cloud. The angular spread is defined as the angle of the cone,
which has vNc1 ,v

N
c2
,vNc3 on the cone base

of normal vectors N is grouped into three clusters N = {N1, N2, N3} by applying the spherical K-

means algorithm1 [79]. The centers of the three clusters are given by the unit vectors vNc1 ,v
N
c2
,vNc3

and the weights of the clusters (ratio of number of normal vectors in a cluster to the total number of

normal vectors) are given by wc1 = |N1|
|N | , wc2 = |N2|

|N | , and wc3 = |N3|
|N | . We define the angular spread

of N , αN , as angle of the cone that has the unit sphere center as the apex, and the base defined by

vNc1 ,v
N
c2
,vNc3 , as illustrated in Fig. 5.2.

Remark: The goal of the quantity analysis is to determine how well the collected point clouds

can constrain the object. Since three vectors are adequate to span the 3D space, one can choose to

define a matrix that has the normal vectors of a point cloud as row vectors and use the rank and

singular values of the matrix as indicators of the point cloud quantity. However, the calculation

of the matrix rank is prone to errors in the normal vectors. Instead, we study the distribution of

normal vectors of a point cloud by clustering the normal vectors into three clusters. The defined

angular spread uses the three cluster centers as an indicator of the point cloud quantity, which is

less affected by noisy data. Thus αN can be considered as the geometric counterpart of the rank of

the matrix formed by all ni: it quantifies the spread of ni. When vNc1 ,v
N
c2
,vNc3 are equal, αN = 0,

corresponding to the matrix having rank of 1.

Another way of quantifying the point cloud quantity is to study the tetrahedron formed by the

unit sphere center o and the three cluster centers: ovNc1v
N
c2
vNc3 . The volume of ovNc1v

N
c2
vNc3 can serve

as a measure of the point cloud quantity.

1Implementation of the algorithm can be found at: https://github.com/jasonlaska/spherecluster

56

5.2 Point cloud quality analysis

Another factor that affects the point cloud registration accuracy is the quality of the point

clouds. The quality of a point cloud can be interpreted as the noise level in the point cloud or the

percentage of points that represent the surfaces from which they are captured. Point cloud with low

noise level is considered to have high quality. Thus, the emphasis of quality evaluation is to find

out the locations in the point cloud that require additional measurements to improve the quality and

potentially improve the registration accuracy. We first present the correlation between point cloud

quality and registration accuracy to both motivate and lay the foundation for the development of

the method. The following are some important definitions:

• inliers: points that reflect the surfaces from which they are sampled

• outliers: points that do not reflect the surfaces from which they are sampled

• point cloud quality: degree to which the points reflect the object geometries, or the number

of inliers

• problematic areas: areas in the point cloud that have poor qualities

5.2.1 A motivation example

One example is shown in Fig. 5.3. The results are from an Ensenso stereo camera N35 mounted

on the flange of a UR5 robot. Point clouds from physical sensors are used instead of adding

artificial noises to reflect the realistic irregularities in practice. Figure 5.3 shows examples of how

the obtained point cloud quality is affected by the sensor view and sensor location. The point cloud

on the left is the initial point cloud. One surface is not complete and has disconnected holes. As

the sensor moved to another location and the sensor view changed, the incomplete surface had

dense point clouds with fewer outliers. But another surface was captured with poor quality, which

was improved by moving the sensor to the third location. The obtained point cloud is shown in

the right figure. This example shows how the point cloud quality can be improved by continuously

changing the vision sensor.

57

Figure 5.3: Point cloud quality changes as the vision sensor moves to different view angle and
view location(left to right). Irregularities in the point clouds are highlighted by red circles.

Figure 5.4: Examples of how point cloud quality affects the registration accuracy.

As can also be seen from Fig. 5.3, the quality of the point cloud can be affected by the holes on

the surface and distortions on the edges. Both cases of quality issues can be effectively mitigated

by changing the sensor locations and view directions.

Figure 5.4 shows the registration results of the above three point clouds by using Go-ICP. Two

criteria are used to evaluate the registration accuracy since the ground truth location of the object

are not known: fitness and the RMSE. Fitness represents how many points in the measured point

cloud is matched with a correspondence in the complete point cloud whereas inlier RMSE indicates

the average Euclidean distances between the point correspondences. The fitness and inlier RMSE

for the registration from the left to the right are: 0.904 and 1.2, 0.918 and 1.2, 0.994 and 0.7,

indicating that point cloud quality affects the accuracy of the registration.

Now the task is to identify the locations in the point cloud that need to be measured again, i.e.,

the problematic locations in the point cloud, and how to generate sensor views in order to measure

the locations to reduce the outliers and increase registration accuracy.

58

Remark: Causes of the quality issues in the point clouds can come from various sources, such

as the placement of the vision sensor, light conditions, object surface texture, reflections, etc. This

work analyzes how the placement of the vision sensor affects the point cloud quality and how to

improve the quality by changing the vision sensor location, which is discussed in the next chapter.

5.2.2 Point cloud quality evaluation

We first define the criteria that are used to find the problematic areas for a point cloud. The

proposed criteria can also be used to filter the outliers and generate sensor views to measure the

problematic areas.

Given a point cloud P = {pi, i = 1, . . . ,pi ∈ R3}, which is collected using a vision sensor

under sensor view direction vs,vs ∈ R3. Denote the set consisting of the normal vectors corre-

sponding to the point cloud by N = {ni, i = 1, . . .}. Note that P,N,vs are defined in the same

coordinate frame. We develop a set of quality criteria to evaluate the point cloud quality and label

each point as either inlier, points that meet this quality criteria are saved for pose estimation, or

outlier, points that do not meet this criteria. Denote the set of outlier points as Pb. The positions

and normal vectors of outlier points are used to find sensor views such that outlier points can be

measured again to improve the point cloud quality.

Incidence angle is defined as the angle between the sensor view and the surface normal direc-

tion. Incidence angle has been used in reconstruction to evaluate voxel quality [65], determine

scanning direction [66], and remove mixed or discontinuous pixels [67]. In this work, dynamic

incident angle intervals are used to identify outliers in the point clouds.

We consider two independent criteria to evaluate the quality of every point in the point cloud.

(1) View angle criterion: the incidence angle θi, defined as θi = ∠(−vs,ni), lies in a preferred

interval [θl, θu] within which the obtained point cloud is expected to closely represent the measured

surface. We propose to employ a different interval for each point cloud that can better identify

outliers. Denote the minimum and maximum angle between vNc1 ,v
N
c2
,vNc3 and vs as θvl and θvu. δc is

a small constant. Denote θ′l = max{θl, θvl − δc}, θ′u = min{θvu + δc, θu}. The interval [θ′l, θ
′
u] can

be chosen dynamically for each measured point cloud. (2) Statistical criterion [89]: the average

59

Euclidean distance of a point to its neighbors, d̄(pi, Pk(pi)), is less than a value, where Pk(pi)

is the set of k-nearest-neighbors of pi, Pk ⊆ P . The view angle criterion captures the preferred

sensing cone of a given vision sensor for better sensing quality. Points that have larger average

distance from its neighbors than the average distance across the entire point cloud are discarded

for the current pose measurement when using the statistical criterion; however, the information

from these points and their normals are utilized to obtain additional sensor views. Thus, the set of

inlier points is defined as:

Pg = {pi|pi ∈ P, θi ∈ [θl, θu], d̄(pi, Pk(pi)) ≤ d0} (5.1)

where d0 is the average distance between a point and its neighbor in the entire point cloud. The set

of outlier points is given by Pb = P \ Pg. While not used for point cloud registration, Pb contains

important information to determine additional sensor views to measure the problematic areas to

improve the point cloud quality. In order to determine the sensor views, we need to determine the

target position and orientation for the sensor to measure. For the target position, points in Pb are

clustered based on the density of points by using DBSCAN [99]. Denote se, e = 1, . . . , as the

obtained clusters and the set of all clusters to be Sb = {se, e = 1, · · · }; note that Pb = ∪se. Then

we use the cluster center and cluster normal to generate sensor views instead of using points.

The reasoning behind employing the above two criteria for point cloud evaluations is as follows.

When using the statistical criterion, inliers might be identified as outliers if the neighborhood size

and variance parameters are not set properly in the algorithm. When using the view angle criterion,

inlier points on the edges tend to be identified as outliers if normals are not calculated accurately.

The common outliers resulting from both criteria has provided a better estimate of the outliers,

which was corroborated experimentally.

5.3 Experiment results

This section presents the results of point cloud evaluation in terms of both quality and quantity.

For this evaluation, the sensor was manually placed in different views to collect multiple point

60

Figure 5.5: The robotic system utilized to collect point clouds

Figure 5.6: 3D printed objects used in the experiments, from left to right: gear, impeller, and a
mechanical component.

clouds that can represent cases in which the quality and quantity evaluations are effective, i.e.,

identify outliers and check if the point cloud is adequate for pose estimation. The robotic system

used in the experiments is shown in Fig. 5.5, which consists of a UR5 robot arm, an Ensenso

camera, and a 3D printed object. The host computer runs Ubuntu 18. Both the camera and the robot

are connected to the computer through Ethernet. The robot is controlled by the host computer using

the Robot Operating System (ROS) Melodic. Three different objects are used in the experiments

61

(see Fig. 5.6). These object models are obtained from Fusion360 dataset2 and MCB dataset3. Some

of the results are published in [100].

5.3.1 Point cloud quantity analysis

Examples are provided to show that the increase of angular spread is a good prediction for

point cloud registration accuracy. Thus, it is reasonable to generate sensor views that increase the

angular spread of the collected point cloud.

Fig. 5.7 shows three point clouds collected from different sensor views. The point clouds

are clustered based on normal vectors with clusters highlighted in different colors. Figure 5.7(a)

indicates the point cloud is not enough to fully constrain the object for pose determination. Fig-

ure 5.7(b) indicates that the point cloud quantity is theoretically adequate to estimate the object

pose, but some object areas are not well-defined along certain directions (normal vectors corre-

sponding to the light green colored points). In Fig. 5.7(c), points are distributed relatively evenly

and cover the entire object, which will lead to better pose estimation. These experimental results

indicate that the angular spread is a good indicator for evaluating the quantity of the point cloud

and for predicting how well the point cloud can be used to estimate the object pose. The registra-

tion results for the above three point clouds are shown in Fig.5.8. The fitness and inlier RMSE are

used to evaluate the registration accuracy. The fitness and inlier RMSE for the point clouds from

the left to the right are: 0.887 and 1.2, 0.928 and 1.1, 0.954 and 0.59.

Another examples of three point clouds of different quantity are shown in Fig. 5.9. The angular

spread for the three point clouds are (from left to right): 70.3, 71.7, and 73.1 degrees. The fitness

and inlier RMSE are: 0.932 and 1.3, 0.999 and 0.6, 0.999 and 0.5. The results show that the

increase of the angular spread indicates (or predicts) the improvement in registration even though

the changes in the angular spread is not as significant when compared to the example in Fig. 5.9.

The changes in the angular spread depends on the geometry of the object and the initial point cloud.

The top row of Fig. 5.10 shows two point clouds of a gear collected at two different sensor

2Fusion360: https://github.com/AutodeskAILab/Fusion360GalleryDataset
3MCB: https://mechanical-components.herokuapp.com

62

Figure 5.7: Point cloud quantity evaluation for cases where one (a), two (b), or three (c) distinct
planes exist in the point clouds. The three clusters obtained based on the normal vectors are
highlighted in three different colors and the angular spreads (in degrees) are: (a) 39.75, (b) 87.26,
(c) 99.92.

Figure 5.8: Registration results of the three point clouds shown in Fig. 5.7 by using Go-ICP.

Figure 5.9: Registration results of the three point clouds of a convex object using Go-ICP. Top
row: point clouds. Middle row: clustered point clouds in different colors. Bottom row: registration
results, the complete point cloud is shown in red.

63

Figure 5.10: Point clouds of a gear captured at different sensor view locations. From top to bottom:
point clouds, clustered point clouds, and registration results.

locations. The calculated angular spreads are 74.4◦ (left) and 74.8◦ (right). The registration fitness

and RMSE are: 0.917 and 0.9, 0.913 and 0.9, respectively. This example shows that the similarities

in the point clouds collected from symmetric objects leads to the low variance in the angular

spreads of the point clouds, for which reason, the point cloud quality analysis is an important

addition to the quantity analysis.

5.3.2 Point cloud quality analysis

The effectiveness of the proposed quality evaluation method is tested by using point clouds

collected using vision sensor to verify the effectiveness of the proposed method in practice.

Figure 5.11 shows the point clouds collected from one sensor view and the quality evaluation by

using the statistical criterion and the view angle criterion. The outlier points under each criterion

is highlighted in red, and the common set of points using the two criteria is shown in (c).The

64

Figure 5.11: Point cloud quality evaluation: (a) outliers detected by the statistical criterion are
highlighted in red, the neighbor points number and standard deviation ratio are set to 20 and 0.1
in the algorithm, (b) outliers detected using the view angle criterion are highlighted in red, (c) the
common outliers of the two criteria, (d) seven clusters obtained using DBSCAN and shown using
circles with geometric centers indicated using red dots.

Figure 5.12: Quality evaluation of the point cloud of a gear

Figure 5.13: Quality evaluation of the point cloud of a convex object

65

clusters obtained using DBSCAN are highlighted in (d) in different colors. The statistical criterion

detects large areas with significant number of inliers, while the view angle criterion identifies most

edges as outlier points which is due to the inaccurate normal vectors on sharp edges when using

a neighborhood of points for calculation. The combination of the two criteria identify holes and

irregularities in the point clouds while reducing false positive outliers, as shown in Fig. 5.11(d).

Figure 5.12 and Fig. 5.13 present two other examples of point cloud quality evaluation. The

outliers identified are highlighted in red. From the left to the right are the results of: statistical

outlier criterion, view angle criterion, common point set of the two, clustered outliers in different

colors. The common set of outliers can reflect the areas on the point clouds that are not measured

under the sensor’s preferred view angle range The gear has more identified outliers comparing to

the convex object.

5.4 Conclusions

This chapter presents methods to analyze the collected point clouds in terms of quality and

quantity, which will be utilized to generate informative sensor views for view planning. The ef-

fectiveness of the quantity criterion, angular spread, is shown through the increased registration

results (fitness and RMSE) when using the point clouds of different quantities collected using the

vision sensor. The proposed quality analysis criteria can identify the areas in the point clouds that

have irregularities across different objects. It is observed that the object geometry and the initial

point cloud affect to what degree the registration results can be improved by increasing the point

cloud quantity or quality. The relative effectiveness of quantity and quality analysis may vary.

Point clouds collected from objects with symmetric features usually can constrain the six DoF of

the object, and objects with small surface curvatures may have fewer irregularities, which indicates

the proposed quantity and quality analysis is complementary.

66

6. VIEW PLANNING BASED ON POINT CLOUD ANALYSIS

This chapter presents the strategies to generate and plan sensor views based on the point cloud

analysis to improve the point cloud quality and quantity. The generation of sensor view candi-

dates is formulated as optimization problems instead of the uniform sampling strategy used in

Chapter 4. Robot configurations corresponding to the sensor views are solved by formulating a

constrained nonlinear optimization problem, which reconciles the potential conflicts between the

constraints from the robot kinematics and the sensing requirements. Experimental results are pro-

vided to demonstrate the effectiveness of each component. Two other view planning strategies are

compared with the proposed method in terms of the effectiveness of improving estimated object

poses∗.

6.1 Sensor views from quantity analysis

For a given point cloud and its angular spread, the task is to find the sensor views that increase

the angular spread such that the registration accuracy can be increased. We used the three dominant

normal vectors (the centers of the three normal vector clusters) to calculate the angular spread in

Chapter 5. The strategy to increase the angular spread and collect point clouds that are in favor of

registration is to increase the number of points from the surfaces that the measured normal vector

with the least weight represent (vN
p1

). The proposed method is to first find the resultant direction

of the collected normal vectors and the least weighted normal vector, then define a sensor view

direction based on the two vectors.

The goal of the quantity analysis is to obtain a sensor view direction(s), vt, that provides a

larger angular spread αN than the current point cloud. Without loss of generality, assume wc1 ≤

wc2 ≤ wc3 . We propose the following strategy to increase αN . Let na = wc1v
N
c1

+wc2v
N
c2

+wc3v
N
c3

.

Let R denote the plane normal to na, vNp1 denote the projection of vNc1 on R, which is further

∗ c©2022 IEEE. Part of this chapter is reprinted with permission from Jie Hu, Prabhakar Pagilla, "View planning
for object pose estimation using point clouds: an active robot perception approach", IEEE Robotics and Automation
Letters, July, 2022.

67

Figure 6.1: Given the three normal vectors vNc1 ,v
N
c2
,vNc3 that represent the three cluster centers of

the normal vectors set N of a point cloud, (a) the angular spread; (b) shows the proposed view
direction vt to increase the angular spread

normalized to unit length, and γ is a scalar such that nt = (‖na‖tanγ)vNp1 . The sensor view to

increase the angular spread is selected as vt = −(na + nt), which is illustrated in Fig. 6.1(b).

The physical explanation of the above defined NBV for increasing the angular spread of a point

cloud is to represent the current normal vectors using the resultant vector, then deviate γ angle

from the resultant vector along the direction that has the smallest weight, to measure surfaces

with normal vectors in the neighborhood of the direction with the smallest weight. Notice that

sensor views to increase point cloud quantity by using the other two vectors vc2 and vc3 and their

projections on R (vNp2 , vNp3) can be defined in a similar manner:

vt2 = −(na + ‖na‖tanγ)vNp2) (6.1)

vt3 = −(na + ‖na‖tanγ)vNp3) (6.2)

The three sensor views can be sorted in an ascending order based on the weights of the cluster

centers such that the sensor views corresponding to clusters with less weights will have higher

priorities.

68

6.2 Sensor views from quality analysis

In this section, we develop a method to determine a set of sensor views to measure the areas

on the object with identified outliers to collect new point clouds with higher quality. The goal is

to obtain point clouds of the problematic areas with fewer outliers for better registration results.

The task of finding sensor views to measure a given set of clusters of outliers Sb is decomposed

into two subtasks: (1) find the minimum number of sensor views that can measure Sb, (2) find the

values of the sensor views. For (1), the problem is formulated as a minimum set cover problem,

the solution of which gives which clusters in Sb can be measured from one sensor view. For (2),

the problem is formulated as a mixed-integer problem, the solution of which gives the values of

the sensor views. We first introduce the generation of subsets and the formulation of a minimum

set cover problem, then present the mixed-integer problem formulation.

6.2.1 A minimum number of sensor views

While the maximum number of views is equal to the number of clusters in Sb, i.e., measuring

each cluster with one different sensor view, we are interested in determining the minimum number

of sensor views since multiple clusters may be measured simultaneously. In order for some clusters

to be measured with good quality simultaneously, we first define two necessary conditions that a

combination of clusters have to satisfy. The first condition corresponds to respecting an incidence

angle constraint; specifically, clusters are expected to be measured within a smaller incidence angle

interval [θsl , θ
s
u] since we are interested in specific regions on the object. The second condition is

that the distance between any clusters is within a threshold; this ensures that clusters that are

beyond a certain threshold distance are not included in the same view. Notice that the incidence

angle interval defined here is different from the view angle interval [θl, θu] which is determined by

the hardware, while [θsl , θ
s
u] is a user-specified interval decided based on the geometry complexity,

size and other conditions. We choose θsl and θsu such that θsl ≥ θl, θ
s
u ≤ θu. Even though the two

conditions do not guarantee that the clusters will be measured with good quality, they are necessary

but not sufficient conditions.

69

Formally, let Vl denote a set of sensor views to measure the clusters in Sb. We aim to find

V ∗l such that the size of Vl is minimized, and each v∗l ∈ V ∗l is optimized with respect to the

clusters to be measured. First denote the set of all possible combinations of clusters se ∈ Sb as

C = {Cf , f = 1, . . .}, where each Cf is a combination of some se. For a Cf ⊆ C, the maximum

angle between any two cluster normals in Cf is denoted as θmax(Cf), the maximum Euclidean

distance among the clusters in Cf is denoted as dmax(Cf). Define Cv as the set of all combinations:

Cv = {Cf |Cf ∈ C, θmax(Cf) ≤ (βl − δl), dmax(Cf) ≤ dc}, where dc is the allowed maximum

distance among the clusters. Notice that the generation of the subsets can be tuned based on the

application requirements, object geometries, etc., and is the key to the minimum set cover problem

since the sensor views directly depend on the clusters to be measured. Thus, the cover is minimum

with respect to the two necessary conditions to be satisfied by the clusters.

The minimum set cover problem is the following: given the subsets Cf ∈ Cv, and the universe

Sb. Find the minimum set cover, C∗. The solution gives the minimum number of views to cover

Cv, or equivalently, all points in Pb, and all clusters in Sb.

6.2.2 The optimal sensor views

Given the minimum number of views and the sets of clusters for each view to measure, we

proceed to find the optimal sensor view values to measure the corresponding set of clusters. Views

are optimal in the sense that all clusters are to be measured under the preferred incidence angle

range [θl, θu]. We formulate and solve mixed-integer problems to find such sensor views to measure

the subsets in C∗, which is described below.

Denote the set of clusters that needs to be covered by sensor view va as Ca, Ca ∈ C∗. Denote

the normal vectors of the clusters in Ca as {naj , j = 1, . . . , |Ca|}, and the geometric center of Ca

as pa. The weight of each cluster in Ca is waj , the ratio of the number of points in the cluster to

the total number of points in the point cloud P . Let xaj be a binary variable, xaj = 1 indicates the

cluster corresponding to naj is viewed within the preferred incidence angle interval, and xaj = 0

otherwise. Then, in order to determine the view to measure all clusters in Ca under the preferred

70

angle interval, the following problem is formulated:

v∗a = max
va∈R3

|Ca|∑
j=1

xajwaj (6.3)

subject to the following constraints:

vTa va = 1 (6.4)

xajδl ≤ xaj∠(−va,naj) ≤ βl, ∀j (6.5)

The constraint in (6.5) can be written as:

1 +
xaj

cosβl
naj · va ≤ 0, ∀j

1 +
xaj

cos(xajδl)
naj · va ≥ 0, ∀j. (6.6)

The view angle constraints that were used to determine the combinations in Cv ensure the

existence of a solution to the above optimization problem, which will provide a view that can

measure all the clusters in Ca within the preferred view angle interval. Subsequently, all pairs of

(pa,v
∗
a) are used to calculate corresponding robot poses.

The constraints in equation (6.6) contain the multiplication of integer variable xaj and contin-

uous variables va. We can consider two techniques to solve the optimization problem with such

constraints. The first one is to use solvers that gives the global optimal solutions, such as Alpine1

[101]. The second technique is to relax the term (xajva) using McCormick envelope [92], and

decompose the problem into mixed-integer linear programs and non-linear programs. An imple-

mentation can be found in Pyomo2 [102, 103].

1Alpine: https://github.com/lanl-ansi/Alpine.jl
2Pyomo: http://www.pyomo.org/

71

6.3 Robot pose determination corresponding to sensor views

In Chapter 4, sensor view candidates are generated based on the discretized search regions

around the object, and followed by checking the inverse kinematics feasibility and collision. The

approach presented here is to formulate a nonlinear optimization problem while considering all the

constraints of the system. The advantages are: (1) avoiding explicitly defining end-effector poses,

(2) avoiding discretizing and evaluating the robot work space, which are inefficient.

The constraints to be considered in the problem formulation include: (1) self-collision of the

robotic system and self-occlusion caused by the robot being partially visible to the sensor; (2)

visibility constraints: the object should remain in the sensor view when the sensor is at the new

view; (3) minimum and maximum distance between the sensor and the object, which is intended to

satisfy the field-of-distance constraint of the sensor and for safety. Denote the set of potential views

to increase the point cloud quality and quantity as V = V ∗l ∪ Vt. Let a robot pose be given by its

joint coordinate vector q, where q ∈ Rn for a robot with n joints. Denote the forward kinematics

of the robot arm as T(q) ∈ SE(3). Without loss of generality, assume that the robot end-effector

z-axis is aligned with the sensor view direction, which is denoted as vee and is given by the first

three elements of the third column of T. Denote the sensor position as tee ∈ R3 which is given by

the last column of T. The current robot pose is q0. Each of the constraints are discussed in detail.

6.3.1 View angle and joint angle constraints

Denote the maximum allowable angle between vee and v as η, vee · v ≥ cos η. Let h1 =

cos η−vee ·v. Let the r-th joint have a specified range of motion with upper and lower joint angle

limits of qur and qlr, that is, the r-th element of q should be within the interval [qlr, q
u
r]. Let n such

joint limit constraints be expressed as h2(q) ≤ 0.

6.3.2 Sef-collision and self-occlusion avoidance

We present a self-collision avoidance strategy based on simulating self-collision offline and

analyzing the self-collision robot poses. The motivation behind this approach is that joint angles

when the robot is in self-collisions depend on the structure of the robot arm as well as the end-

72

Figure 6.2: Two examples of self-collision of a UR5 robot when the 3rd joint is close to ±π.

effector geometries. Joint angles that tend to cause self-collision should be avoided. Thus, we

intend to find out the joint angles that frequently cause self-collision and formulate penalties in

the optimization objective function to avoid these joint angles. Self-collision can be checked after

solving the joint angles. This strategy is inspired by the method proposed in [104]. Two examples

of a UR5 in self-collision are shown in Fig. 6.2.

There are two steps in the proposed self-collision avoidance strategy. The first step is to find

the joint angles that cause self-collisions. This is done by randomly sampling the configuration

space of the robot and checking for self-collision. The second step is to identify the joints and

joint angles that cause frequent self-collisions. The joint angles for each joint when the robot is in

self-collision are plotted to find potential distribution patterns. If the distribution is even, i.e., no

significant peaks, then the joint is less possible to cause self-collisions. Joint angles corresponding

to the peaks in the distributions are considered to have higher possibilities to cause self-collision

and should be avoided. Assume the robot arm has n joints, pi, i = 1, · · · , n peaks are found in

the self-collision angles distributions. We use the following loss function to keep robot away from

those joint angles:

gsc =
n∑
i

pn∑
pi

a1e
−b1(θi−θpi)

2

(6.7)

where a1, b1 are the parameters used to control the distribution of the exponential functions, θpi

are the joint angles to avoid. Notice that the proposed strategy is to avoid joint angles that can

potentially cause self-collisions. Thus, self-collision checking is still needed after solving the

73

Figure 6.3: An example of self-occlusion of the robotic system. The field-of-view of the sensor is
modeled as a cone. The vision sensor is mounted on the robot end-effector. The robot base is in
the sensor view at the shown robot pose.

optimization problem.

Self-occlusion can be checked by considering the sensor view as a rigid cone and then checking

the robot system for collision. An illustration is provided in Fig. 6.3. The same sampling and

analysis strategy for self-collision can be used for self-occlusion. In practice, self-collision and

self-occlusion can be combined for a given robotic system. Similar to the self-collision checking

analysis, assume the robot arm has n joints, hi, i = 1, · · · , n peaks are found in the self-occlusion

angles distributions. We use the following loss functions to keep robot away from those joint

angles:

gso =
n∑
i

hn∑
hi

a2e
−b2(θi−θhi)

2

(6.8)

where a2, b2 are the parameters used to control the distribution of the exponential functions, θhi are

the joint angles to be avoided.

74

Figure 6.4: The point to be measured, pv, should remain in the sensor view when the sensor moves
to a new view, for which the angle between the vector pv − tee and vee should be constrained.

6.3.3 Visibility constraints

Constraints related to object visibility need to be considered, including object-in-view con-

straint and field-of-distance constraint. In order for a point on the object, pv, to be in the sensor

view, the following condition has to be satisfied (see Fig. 6.4):

cos

(
βv − δv

2

)
≤ 〈pv − tee,vee〉
|pv − tee| · |vee|

(6.9)

To impose this constraint, we choose an angle φ such that φ ≤ 1
2
(βv − δv) and consider the

constraint hoiv ≤ 0 where

hoiv = cosφ− 〈pv − tee,vee〉
|pv − tee| · |vee|

. (6.10)

For quality improvement, one can choose pv as the cluster center, i.e., pv = paj . The constraint

that the sensor has to be at a minimum distance away from the object, for both safety and satisfying

the field-of-distance requirement can be expressed as:

hfod = max{dfod, ds} − ‖tee − pv‖2 ≤ 0 (6.11)

75

where dfod is the minimum distance for the sensor to measure the object, and ds is the user specified

safety distance between the sensor and the object.

6.3.4 The nonlinear optimization formulations

Two objective functions are considered:

f1(q) = ‖q0 − q‖2 (6.12)

and:

f2(q) = ‖q0 − q‖2 + gsc(q) + gso(q) (6.13)

The first objective function is to find the robot pose (q) that is closest to the current robot pose for

each desired v ∈ V such that: (1) the actual sensor view vee is aligned with the desired sensor

view v up to an allowed deviation, (2) the object to be measured is in the sensor view when the

robot moves to a new pose, and (3) the sensor is at a safe distance from the object. The second

objective further penalizes the joint angles that cause self-collision and self-occlusion.

With the above definitions, we formulate the following optimization problem to solve for q:

q∗ = min
q∈Rn

f(q) (6.14)

subject to the constraints:

h1(vee,v) ≤ 0 (6.15)

h2(q) ≤ 0 (6.16)

hoiv(vee, tee,pv) ≤ 0 (6.17)

hfod(tee,pv) ≤ 0 (6.18)

where f = f1, or f = f2. Solving the above problem gives the robot pose that is closest to the

current robot pose for each v ∈ V . The effectiveness of utilizing f1 and f2 are shown separately in

76

experiments. The sensor views can be sorted by a predefined priority such that the next-best-view

can be chosen as the first solved robot pose corresponding to the prioritized sensor views. For

example, the sensor views to improve the point cloud quality can have higher priority over the

sensor views to increase the point cloud quantity for symmetric objects or objects that have large

surface curvatures. But for objects that have large flat features, sensor views for increasing point

cloud quantity in terms of angular spread can be prioritized. Further, multi-threading can be used

to speed up the calculation by assigning each sensor view to a thread.

6.4 Experiment results

We present results for each of the discussed aspect and component. The system setup is shown

in Fig. 5.5. Some of the results are published in [100].

6.4.1 Self-collision and self-occlusion analysis

This section presents the self-collision and self-occlusion analysis of a UR5 robot mounted

with a Ensenso N35 sensor after applying the proposed method. The sensor view is modelled

as a cone with base and height being 0.5 m. 200 thousand robot poses are sampled to find the

self-collision and self-occlusion poses, and the corresponding joint angles are recorded.

Figure 6.5 shows the histograms of the angles of the six joints when the robot is in self-collision.

The mean and standard deviation of the number of self-collision poses for the six joints are (from

the first to the sixth joint): 99.5 ± 25.6, 99.5 ± 22.1, 99.5 ± 105.1, 99.5 ± 64.5, 99.5 ± 30.2,

99.5±10.1. Among the six joints, the first, second, and sixth joint have relatively even distribution,

while the third and the fourth joints have two significant peaks. The mean and standard deviation

of the two peaks of the third joint are: (-3.12, 0.33), (3.15, 0.33). The mean and standard deviation

of the two peaks of the fourth joint are: (-3.14, 1.22), (3.15, 1.24). The sixth joint being the

least significant for self-collision is straightforward: no self-collision will arise when rotating the

end-effector, thus every joint value for the sixth joint has equal probability of (or nor) causing

self-collision. The same explanation applies to the first and second joint. Figure 6.6 further shows

the third and the fourth joint angle distributions. The two peaks of the third joint correspond to the

77

Figure 6.5: Histograms of joint angles of a UR5 robot arm being in self-collision

two configurations shown in Fig. 6.2. Similarly, the two peaks of the fourth joint can be explained

in Fig. 6.7, which is due to the mechanical design of the robot arm. Thus, the corresponding joint

angles should be avoided.

The joint angle distributions for self-occlusion is shown in Fig. 6.8. The third, fourth, and the

fifth joint have significant peaks, and are also fitted using Gaussian distribution. The differences

between the less significant joints (such as the first, second and the sixth) and the more signifi-

cant joints (such as the third, fourth and fifth) can be explained the same way as in self-collision

analysis. Notice that the joint angle distributions when the robot is in self-occlusion are subject to

change when the sensor is mounted differently.

After identifying the joint angles that should be avoided for self-collision and self-occlusion

avoidance, the effectiveness of including penalties in the optimization problem (6.14) is evaluated

by choosing the sensor views that will cause self-collision or self-occlusion and checking if the

solved robot poses are free of self-collision and self-occlusion. Figure 6.10 shows an example of

finding a robot pose that is self-collision free when the sensor view candidate causes self-collision.

The penalties of joint angles with high collision probability in objective function (6.13) drive the

78

Figure 6.6: Histograms of self-collision joint angles of the third, fourth and fifth joint, which have
higher probability of causing self-collisions comparing to other joints. Gaussian distributions are
used to find the mean and variance for each peak in the histogram.

Figure 6.7: Explanation of the two peaks of the fourth joint, shown in Fig. 6.6, which should be
avoided.

79

Figure 6.8: Histograms of joint angles that cause self-occlusion during measuring using a vision
sensor

Figure 6.9: Histograms of joint angles that cause self-occlusion. Angles for the third, fourth, and
the fifth joints are fitted using Gaussian distributions

80

Figure 6.10: Example of avoiding self-collision by penalizing identified joint angles with high
collision probability. Left: sensor view candidate (red arrow) that puts the robot in self-collision.
Right: the collision-free NBV (green arrow) solved using the proposed optimization formulation.

Figure 6.11: Example of avoiding self-occlusion by penalizing identified joint angles with high
collision probability. Left: sensor view candidate (red arrow) that puts the robot in self-occlusion.
Right: the occlusion-free NBV (green arrow) solved using the proposed optimization formulation.

81

Figure 6.12: The obtained optimal sensor views (red arrows) and the corresponding target areas in
the point cloud to be measured by the sensor. The correspondence between the sensor view and
the target areas are indicated by the same number. View 1 and 3 each covers one cluster, view 2
covers 3 clusters, and view 4 covers 2 clusters.

robot away from self-collision poses. The effect on self-occlusion avoidance is shown in Fig. 6.11.

Notice that when self-occlusion is modeled using rigid body collision, self-occlusion and self-

occlusion, and be combined into one checking process.

6.4.2 Determination of sensor views

One point cloud of the mechanical component in Fig. 5.6 is selected to evaluate the proposed

methods to find a minimum number of sensor views (see Fig. 6.12). The point cloud is representa-

tive in the sense that it contains both adjacent outlier clusters and outlier clusters that are far away

in terms of the Euclidean distance. When applying the proposed methods, adjacent clusters should

be measured with the same sensor view whereas clusters that are far away should be measured

from different sensor views. In Fig. 6.12, outliers are grouped into seven clusters. A minimum of

four sensor views are obtained to cover all seven clusters; dc is set to 0.05 m, and θsl = 5, θsu = 65

degrees. The three clusters that are numbered "2" satisfy both the defined distance and incidence

angle constraints and one sensor view is assigned to measure the three clusters simultaneously. The

cluster numbered "1" is away from the rest six clusters, so one additional sensor view is generated.

The same strategy is applied to clusters and views numbered "3" and "4". Notice that the number

of minimum views depend on dc and θsl −θsu. For objects with complex geometries and small sizes,

82

Figure 6.13: Robot poses for quality improvement: (a) four sensor views for quality improvement
are shown in red arrows and the identified outliers are colored, (b) the physical robot and its visu-
alization in Rviz for one solved robot pose, (c) the four point clouds collected from the four sensor
views.

dc can be set to a small value to avoid potential occlusions caused by the object. θl and θu can also

be set to small values to account for the light conditions and object surface reflections.

6.4.3 Robot pose determination corresponding to sensor views

The objective function (6.12) is utilized to calculate the robot poses corresponding to the sensor

views. A point cloud collected from a initial sensor view is chosen to evaluate the effectiveness

of finding robot poses corresponding to the generated sensor views to improve quality and quan-

tity (see Fig. 6.13 and Fig. 6.14). Five robot poses are solved for five sensor view candidates.

Four views to improve the point cloud quality are shown in Figure 6.13, and one view to increase

quantity is shown in Figure 6.14. The numbered sensor views and colored clusters in Fig. 6.13(a)

match with the numbered and circled clusters in Fig. 6.13(c). The effectiveness of the proposed

method can be ascertained from two aspects: (1) for each sensor view, we have solved one robot

pose successfully, and (2) the collected point clouds shown in Fig. 6.13(c) indicate significant qual-

ity improvement, that is, the holes and irregularities in the four regions are reduced significantly.

83

Figure 6.14: Robot pose for quantity improvement: (a) the obtained robot pose, (2) the initial point
cloud (left), newly collected point cloud at the solved robot pose (middle), and the merged point
cloud (right)

84

Similarly, a robot pose that corresponds to the sensor view to increase the point cloud quantity is

solved successfully, as shown in Figure 6.14. The point cloud collected from the new sensor view

indicates the quantity improvement that benefits the pose estimation, as shown in Fig. 6.14(b).

6.4.4 Pose estimation comparison

The proposed active perception method is further evaluated by using the changes in pose esti-

mation accuracy. The initial point clouds and the merged point clouds after applying the proposed

method are used in the point cloud registration to obtain the object pose. In order to reflect the

changes in registration brought by the changes in the point clouds, we choose Go-ICP for regis-

tration which gives the global optimal transformations [34]. The fitness and RMSE are used to

quantify the registration (pose estimation) accuracy. A sample of the registration results of the

mechanical component in Fig. 5.6 is provided in Table 6.1. Six experiments with different initial

sensor locations were conducted and point clouds were obtained; increase in fitness is observed for

five of the six (sets 2, 3, 4, 5, 6) point clouds after both quantity and quality improvement, and one

(Set 1) has decreased fitness after moving to new sensor views. Point cloud sets 2, 3, 4, and 5 have

decreased RMSE with data from quantity improvement, and sets 2, 3, and 4 have decreased RMSE

with data from quality improvement. The average fitness increase after quantity improvement is

49.3%, and 21.0% increase after quality improvement. The decreased fitness in Set 1 is due to

newly introduced outliers. The relative fitness increase depends on various factors: quality and

quantity of initial point clouds and geometries and sizes of the objects.

Besides fitness and RMSE, we also observed that point clouds with improved quality require

less registration time. One such example is shown in Fig. 6.15(a-c). After moving to the new sensor

views for point cloud quality improvement, the registration time is reduced from 86.1 s when using

the initial point cloud to an average of 18.5 s when using the updated point clouds from the five

sensor views. The changes in registration fitness and RMSE for the gear are very small with the

initial fitness being 0.998 and RMSE being 0.85 mm. The small changes in fitness and RMSE can

be explained by the geometry of the gear: the concavity and symmetry of the gear teeth make it

easier to collect point clouds for pose estimation. The pose estimation results using an impeller are

85

Table 6.1: Registration fitness and RMSE of the mechanical component

Data Fitness RMSE Data Fitness RMSE
Set 1 (IN) 0.999 0.65 Set 4 (IN) 0.409 1.81
Set 1 (QT) 0.995 0.77 Set 4 (QT) 0.998 0.77
Set 1 (QL) 0.997 0.66 Set 4 (QL) 0.428 1.76
Set 2 (IN) 0.920 1.10 Set 5 (IN) 0.425 1.74
Set 2 (QT) 0.992 0.79 Set 5 (QT) 0.994 0.96
Set 2 (QL) 0.994 0.81 Set 5 (QL) 0.996 8.8
Set 3 (IN) 0.914 1.25 Set 6 (IN) 0.888 1.15
Set 3 (QT) 0.993 0.78 Set 6 (QT) 0.906 1.17
Set 3 (QL) 0.999 0.66 Set 6 (QL) 0.909 1.15

IN: initial point cloud; QT: point cloud with quantity im-
provement; QL: point cloud with quality improvement

Figure 6.15: Point cloud collection and registration of a gear ((a)-(d)) and impeller ((d)-(e)). (a) and
(c) are the initial point clouds, (b) and (c) are the potential sensor views, (c) and (f) are instances
of registrations.

86

shown in Fig. 6.15(d-f). The fitness of registration increased from the initial 0.897 to an average of

0.990 of the four sensor views, and RMSE has decreased from 1.5 mm to an average of 0.87 mm.

And the registration time decreased from 22.03 s to 16.88 s.

6.4.5 Baseline comparison

The proposed method is compared with two other view planning methods used in reconstruc-

tion: random view selection (Baseline 1) and view planning based on unexplored volume (Baseline

2). For Baseline 2, the sensor view is selected based on the information gain calculated using the

voxel entropy, which has been proposed and used in [105, 106, 107]. The region around the ob-

ject is discretized into voxels using Octomap [108]. The occupancy probability of each voxel is

updated based on the measured point clouds with the same hit and miss probabilities as defined

in [107]. At each step, ray casting is used to estimate the voxels to be seen by each of the 14

views, each view is scored using the utility function based on the entropy of voxel occupancy. The

methods from both Baselines choose views from a set of offline selected views. After placing the

object in the robot workspace, we manually chose 14 sensor views from which our vision sensor

can output point clouds with good quality for a fair comparison. The 14 sensor views also cover

all the regions on the object that are visible to the robot. Figure 6.16 shows the selected 14 sensor

views selected.

The three methods were compared under two sets of experiments: (1) the robot starts at the

same initial location (Location 1), each of the three methods is applied K times to generate sensor

views and collect point clouds, the registration fitness of the collected point clouds at each step are

compared; (2) the same workflow is applied by using the three methods but the object is rotated

by a random angle and translated by a small distance (less than 0.01 m) from the location in (1),

denoted as Location 2. The objective of (2) is to test the robustness of the three methods when the

object location changes, which happen frequently when working with HMLV parts. Note that in

practice, one can stop the data collection when the registration fitness reaches a desired threshold.

But to examine the performance of the methods with more data, we generated K views. The

selection of K depends on the size of the object. For our experiments, K is set to five.

87

Figure 6.16: The selected 14 sensor views as seen from two different directions.

Figure 6.17: Fitness comparison between the proposed method two baselines.

88

The left figure in Fig. 6.17 shows the registration fitness of the five views when the object is

at Location 1. The fitness of the proposed method reaches 0.9 at the second view and maintains

at a constant level (around 0.932). The registration fitness at the fifth step of the two Baselines

are slightly below that of our method, which indicates observing unexplored volume does not

necessarily increase the data that benefits pose estimation. The right figure in Fig. 6.17 shows

the registration fitness of the three methods when the object is at Location 2. Our method leads

to a fitness of 0.904 at the fifth step while the fitness of the other two methods fluctuated. The

fluctuation of the fitness of the Baselines can be explained by the fact that surfaces of the object

may not be measured from preferred view angle, which affects the quality of the collected point

clouds. But our method can generate views based on the analysis of the current point clouds, thus

is more robust, especially when working with HMLV parts. The results of this comparison also

highlighted the importance of incorporating a feedback mechanism in generating sensor views and

the need to reduce the reliance on offline selected views.

The average computation time for each of the components are the following: (1) point cloud

quality analysis: 2.72 s; (2) generate sensor views for point cloud quality improvement: 1.12 s;

(3) point cloud quantity analysis and view generation: 0.42 s; (4) solving the inverse kinematics:

less than 1 s. Note that the time required for point cloud analysis depends on both the size and the

quality of the point cloud. The time required for solving the inverse kinematics depends on the

number of sensor views, current robot joint angles, etc.

6.5 Conclusions

An active robot perception framework has been proposed for pose estimation in robotic appli-

cations. Three key problems associated with this framework have been formulated, and methods

to solve them are provided: evaluating the collected point clouds in terms of quality and quantity,

determining sensor views to improve the point cloud quality and quantity, and finding robot poses

corresponding to the desired sensor views. The effectiveness of the proposed solutions has been

shown through various experimental results on three different objects. The point cloud evaluation

methods provided potential view directions to collect point clouds. Robot poses that can orient

89

the sensor along the desired directions to collect better point clouds for pose estimation have been

obtained by solving the nonlinear optimization problem. The improvement of the registration ac-

curacy in terms of fitness and RMSE indicated the overall effectiveness of the active perception

framework for pose estimation. The comparison of our method with the two Baselines showed

that the sensor views generated from our method are more informative for pose estimation, and the

method is more robust when working on HMLV tasks.

90

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This dissertation proposed an active robot perception framework to solve the object pose esti-

mation problem. The novelty of the work lies in treating the data collection and pose estimation as

an integral part of the developed active perception framework. Point cloud registration is utilized

for pose estimation. Data collection for pose estimation has been formulated as a view planning

problem. Methods for both pose estimation and data collection have been developed. This disserta-

tion has provided two novel view planning strategies to advance automatic object pose estimation:

one requires engineered objects having planes from which data can be obtained and processed and

the other based on improving the data for accurate pose estimation without any requirements on

the object geometry.

Plane-based point cloud registration and plane-based next-best-view are first developed for en-

gineered objects containing planar geometric features. With the goal of using features that have

geometric meanings for registration and designing view planning strategies to collect these geo-

metric features, the proposed registration, and view planning methods have formed a closed loop,

i.e., the perception is active. The effectiveness of the proposed registration algorithm has been

tested on both convex and concave objects. Simulation and experiment results have shown the

effectiveness of the plane-based next-best-views. The same approach can be further extended to

develop view planning strategies for other geometric primitives.

To expand the proposed active robot perception framework to objects that do not have planar

features, a view planning strategy that is agnostic to object geometry and registration algorithm

has been developed. Informative sensor view candidates have been generated to improve the point

cloud quality and quantity based on the proposed point cloud analysis methods. Robot poses are

determined by solving constrained nonlinear optimization problems instead of checking the vox-

els in the discretized robot workspace for kinematic feasibility. The effectiveness of the proposed

91

solutions has been shown through various experimental results on different objects. The improved

registration accuracy has validated the effectiveness of the view planning strategy. The advantages

of employing the proposed active robot perception for pose estimation are further shown via com-

parison with two other view planning methods: generated sensor views are more informative for

pose estimation, sensor view generation is less dependent on human intervention and more robust

to the changes in object location. The proposed active perception framework is flexible in the sense

that it can be combined with other point cloud registration methods.

Object pose estimation is fundamental to most robotic applications. Sensing and perception

are critical gateways for robots to interact with the real world. Designing active robot perception

strategies for object pose estimation has been shown to be both necessary and beneficial.

7.2 Future work

There are still many open problems when estimating object pose via active robot perception.

Some of the key problems are summarized in the following.

7.2.1 Extending plane-based registration and next-best-view planning

The idea behind plane-based registration and next-best-view planning can be potentially ex-

tended to include other geometric primitives. Collecting data that can be directly used in the

registration algorithm is more efficient for pose estimation.

7.2.2 Integrating multiple sensing modalities for pose estimation

Tactile and visual sensing are both important sensing modalities that can be made active. Hy-

brid motion-force control, which is utilized in the robotic gear chamfering example, can be po-

tentially integrated into the developed active robot perception framework. Contact measurements

generate sparse data as opposed to the dense data from visual sensing but is insensitive to light

conditions. Combining sensing modalities can potentially be more robust and can estimate object

poses with desired levels of accuracy.

92

7.2.3 Learning object geometries

The CAD models of the objects are utilized in pose estimation when registering point clouds.

Similar to the idea of collecting point clouds that benefit registration, offline learning using the

object CAD models can be potentially used to select regions on the object that lead to more accurate

registration results. Thus, informative sensor view candidates for pose estimation can be generated.

7.2.4 Planning a sequence of views based on the initial point cloud

The point cloud analysis of quality and quantity is used to generate sensor view candidates. The

next-best-view is selected to either improve the quality or the quantity of the collected point clouds.

Since multiple sensor view candidates can be generated after analyzing the point cloud, a sequence

of sensor views can be planned. The overlap between the sensor views can be predicted by using,

for example, ray casting to choose the set of sensor views that have minimal overlap. The obtained

views can be further sequenced by formulating the sequencing problem as a Traveling Salesman

Problem (TSP) from which one obtains the optimal view sequence.

93

REFERENCES

[1] K. C. Sahoo and C. H. Menq, “Localization of 3-D objects having complex sculptured

surfaces using tactile sensing and surface description,” Journal of Manufacturing Science

and Engineering, Transactions of the ASME, vol. 113, no. 1, pp. 85–92, 1991.

[2] S. Y. Chen and Y. F. Li, “Automatic Sensor Placement for Model-Based Robot Vision,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, pp. 393–408,

2 2004.

[3] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University Press, 2017.

[4] B. Siciliano and O. Khatib, Springer handbook of robotics. springer, 2016.

[5] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network

for 6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.

[6] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from object local-

ization, object pose estimation to grasp estimation for parallel grippers: a review,” Artificial

Intelligence Review, vol. 54, no. 3, pp. 1677–1734, 2021.

[7] A. Gameros, S. Lowth, D. Axinte, A. Nagy-Sochacki, O. Craig, and H. R. Siller, “State-of-

the-art in fixture systems for the manufacture and assembly of rigid components: A review,”

12 2017.

[8] L. Shao and R. A. Volz, “Methods and strategies of object localization,” in Proceedings

of the NASA Conference on Space Telerobotics, p. 229, National Aeronautics and Space

Administration, 1989.

[9] Z. Xiong, M. Y. Wang, and Z. Li, “A Near-Optimal Probing Strategy for Workpiece Local-

ization,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 668–676, 2004.

[10] G. Schleth, A. Kuss, and W. Kraus, “Workpiece localization methods for robotic welding –

a review,” 50th International Symposium on Robotics, ISR 2018, pp. 50–55, 2018.

94

[11] O. D. Faugeras and M. Hebert, “A 3-D recognition and positioning algorithm using geomet-

rical matching between primitive surfaces,”

[12] O. D. Faugeras and M. Hebert, “The Representation, Recognition, and Locating of 3-D

Objects,” The International Journal of Robotics Research, vol. 5, no. 3, pp. 27–52, 1986.

[13] Z. Li, J. Gou, and Y. Chu, “Geometric algorithms for workpiece localization,” IEEE Trans-

actions on Robotics and Automation, vol. 14, no. 6, pp. 864–878, 1998.

[14] K. T. Gunnarsson and F. B. Prinz, “CAD Model-Based Localization of Parts in Manufactur-

ing,” Computer, vol. 20, no. 8, pp. 66–74, 1987.

[15] W. E. L. Grimson and T. Lozano-Pérez, “Model-Based Recognition and Localization from

Sparse Range or Tactile Data,” The International Journal of Robotics Research, vol. 3, no. 3,

pp. 3–35, 1984.

[16] W. E. L. Grimson and T. Lozano-Pérez, “Localizing Overlapping Parts by Searching the

Interpretation Tree,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. PAMI-9, no. 4, pp. 469–482, 1987.

[17] S. J. Gordon and W. P. Seering, “Realtime Part Position Sensing,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 10, no. 3, pp. 374–386, 1988.

[18] R. C. Bolles and P. Horaud, “3DPO: A Three-Dimensional Part Orientation System,” tech.

rep.

[19] P. H. Schönemann, “A generalized solution of the orthogonal procrustes problem,” Psy-

chometrika, vol. 31, pp. 1–10, 3 1966.

[20] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point

Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5,

pp. 698–700, 1987.

[21] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Jour-

nal of the Optical Society of America A, vol. 4, p. 629, 4 1987.

95

[22] N. J. Higham, “The symmetric procrustes problem,” Tech. Rep. I988.

[23] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form solution of absolute

orientation using orthonormal matrices,” Journal of the Optical Society of America A, vol. 5,

p. 1127, 7 1988.

[24] S. Umeyama, “Least-Squares Estimation of Transformation Parameters Between Two

Point Patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,

pp. 376–380, 1991.

[25] M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-D location parameters using dual

number quaternions,” CVGIP: Image Understanding, vol. 54, pp. 358–367, 11 1991.

[26] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating 3-D rigid body transformations:

A comparison of four major algorithms,” Machine Vision and Applications, vol. 9, no. 5-6,

pp. 272–290, 1997.

[27] Z. Xiong, M. Y. Wang, and Z. Li, “A computer-aided probing strategy for workpiece lo-

calization,” in Proceedings - IEEE International Conference on Robotics and Automation,

vol. 3, pp. 3941–3946, 2003.

[28] L. M. Zhu, H. G. Luo, and H. Ding, “Optimal measurement point planning for workpiece

localization,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), vol. 2, pp. 1562–1567, 2004.

[29] B. Saund, S. Chen, and R. Simmons, “Touch based localization of parts for high precision

manufacturing,” in Proceedings - IEEE International Conference on Robotics and Automa-

tion, pp. 378–385, Institute of Electrical and Electronics Engineers Inc., 7 2017.

[30] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

[31] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest point,” in Computer

graphics forum, vol. 32, pp. 113–123, Wiley Online Library, 2013.

96

[32] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.,” in Robotics: science and systems,

vol. 2, p. 435, Seattle, WA, 2009.

[33] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in Proceedings

third international conference on 3-D digital imaging and modeling, pp. 145–152, IEEE,

2001.

[34] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-icp: A globally optimal solution to 3d icp point-

set registration,” IEEE transactions on pattern analysis and machine intelligence, vol. 38,

no. 11, pp. 2241–2254, 2015.

[35] G. Izatt, H. Dai, and R. Tedrake, “Globally optimal object pose estimation in point clouds

with mixed-integer programming,” in Robotics Research, pp. 695–710, Springer, 2020.

[36] J. Hu, P. R. Pagilla, and S. Darbha, “A novel method for the localization of convex work-

pieces in robot workspace using gauss map,” in 2021 60th IEEE Conference on Decision

and Control (CDC), pp. 2143–2148, 2021.

[37] H. Maron, N. Dym, I. Kezurer, S. Kovalsky, and Y. Lipman, “Point registration via efficient

convex relaxation,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–12, 2016.

[38] A. E. Johnson and M. Hebert, “Using spin images for efficient object recognition in cluttered

3d scenes,” IEEE Transactions on pattern analysis and machine intelligence, vol. 21, no. 5,

pp. 433–449, 1999.

[39] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registra-

tion,” in 2009 IEEE international conference on robotics and automation, pp. 3212–3217,

IEEE, 2009.

[40] S. Salti, F. Tombari, and L. Di Stefano, “Shot: Unique signatures of histograms for surface

and texture description,” Computer Vision and Image Understanding, vol. 125, pp. 251–264,

2014.

97

[41] E. Wahl, U. Hillenbrand, and G. Hirzinger, “Surflet-pair-relation histograms: a statistical

3d-shape representation for rapid classification,” in Fourth International Conference on 3-D

Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings., pp. 474–481, IEEE, 2003.

[42] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient and

robust 3d object recognition,” in 2010 IEEE computer society conference on computer vision

and pattern recognition, pp. 998–1005, Ieee, 2010.

[43] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser, “3dmatch: Learn-

ing local geometric descriptors from rgb-d reconstructions,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 1802–1811, 2017.

[44] Z. J. Yew and G. H. Lee, “3dfeat-net: Weakly supervised local 3d features for point cloud

registration,” in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 607–623, 2018.

[45] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match: 3d point cloud match-

ing with smoothed densities,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 5545–5554, 2019.

[46] C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966, 2019.

[47] Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point cloud

registration,” in Proceedings of the IEEE/CVF International Conference on Computer Vi-

sion, pp. 3523–3532, 2019.

[48] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Pointnetlk: Robust & efficient point

cloud registration using pointnet,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pp. 7163–7172, 2019.

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d

classification and segmentation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 652–660, 2017.

98

[50] Z. Y. Jia, J. W. Ma, F. J. Wang, and Y. M. Ding, “Investigation of a measurement scheme

based on IGES,” Measurement: Journal of the International Measurement Confederation,

vol. 47, pp. 658–668, 1 2014.

[51] R. Bajcsy, “Active Perception,” Proceedings of the IEEE, vol. 76, no. 8, pp. 966–1005,

1988.

[52] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Autonomous

Robots, vol. 42, no. 2, pp. 177–196, 2018.

[53] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated three-dimensional

object reconstruction and inspection,” ACM Computing Surveys (CSUR), vol. 35, no. 1,

pp. 64–96, 2003.

[54] P. S. Blaer and P. K. Allen, “Data acquisition and view planning for 3-d modeling tasks,” in

2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 417–422,

IEEE, 2007.

[55] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “View planning for 3d object recon-

struction with a mobile manipulator robot,” in 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 4227–4233, IEEE, 2014.

[56] R. Monica, J. Aleotti, and S. Caselli, “A kinfu based approach for robot spatial attention and

view planning,” Robotics and Autonomous Systems, vol. 75, pp. 627–640, 2016.

[57] S. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza, “An information gain formula-

tion for active volumetric 3d reconstruction,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), pp. 3477–3484, IEEE, 2016.

[58] Z. Meng, H. Qin, Z. Chen, X. Chen, H. Sun, F. Lin, and M. H. Ang, “A two-stage optimized

next-view planning framework for 3-d unknown environment exploration, and structural

reconstruction,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1680–1687, 2017.

99

[59] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon path

planning for 3d exploration and surface inspection,” Autonomous Robots, vol. 42, no. 2,

pp. 291–306, 2018.

[60] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient autonomous exploration

planning of large-scale 3-d environments,” IEEE Robotics and Automation Letters, vol. 4,

no. 2, pp. 1699–1706, 2019.

[61] E. Vidal, N. Palomeras, K. Istenič, N. Gracias, and M. Carreras, “Multisensor online 3d

view planning for autonomous underwater exploration,” Journal of Field Robotics, vol. 37,

no. 6, pp. 1123–1147, 2020.

[62] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997

IEEE International Symposium on Computational Intelligence in Robotics and Automation

CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pp. 146–

151, IEEE, 1997.

[63] F. A. R. Martins, J. G. García-Bermejo, E. Zalama, and J. R. Perán, “An optimized strat-

egy for automatic optical scanning of objects in reverse engineering,” Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 217,

pp. 1167–1171, 8 2003.

[64] F. A. R. Martins, J. G. García-Bermejo, E. Z. Casanova, and J. R. Perán González, “Auto-

mated 3D surface scanning based on CAD model,” Mechatronics, vol. 15, pp. 837–857, 9

2005.

[65] N. A. Massios, R. B. Fisher, et al., A best next view selection algorithm incorporating a

quality criterion, vol. 2. Department of Artificial Intelligence, University of Edinburgh,

1998.

[66] C. Mehdi-Souzani, F. Thiébaut, and C. Lartigue, “Scan planning strategy for a general digi-

tized surface,” 2006.

100

[67] A. E. Johnson, R. Hoffman, J. Osborn, and M. Hebert, “A system for semi-automatic mod-

eling of complex environments,” in Proceedings. International Conference on Recent Ad-

vances in 3-D Digital Imaging and Modeling (Cat. No. 97TB100134), pp. 213–220, IEEE,

1997.

[68] E. Zussman, H. Schuler, and G. Seliger, “Advanced manufacturing Technolo lu Analysis

of the Geometrical Features Detectability Constraints for Laser-Scanner Sensor Planning,”

tech. rep.

[69] K. Tarabanis, R. Y. Tsai, and P. K. Allen, “Analytical Characterization of the Feature De-

tectability Constraints of Resolution, Focus, and Field-of-View for Vision Sensor Planning,”

CVGIP: Image Understanding, vol. 59, pp. 340–358, 5 1994.

[70] T. C. Woo and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Con-

trol,” CIRP Annals - Manufacturing Technology, vol. 39, pp. 451–454, 1 1990.

[71] R. M. Bolle and D. B. Cooper, “On Parallel Bayesian Estimation And Recognition For

Large Data Sets, With Application To Estimating 3-D Complex-Object Position From Range

Data,” in Computer Vision for Robots (O. D. Faugeras and R. B. Kelley, eds.), vol. 0595,

p. 90, SPIE, 6 1986.

[72] R. Eidenberger, T. Grundmann, W. Feiten, and R. Zoellner, “Fast parametric viewpoint

estimation for active object detection,” in IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, pp. 309–314, 2008.

[73] W. Sheng, N. Xi, M. Song, and Y. Chen, “Graph-based surface merging in CAD-guided

dimensional inspection of automotive parts,” Proceedings - IEEE International Conference

on Robotics and Automation, vol. 3, pp. 3127–3132, 2001.

[74] D. Bazazian, J. R. Casas, and J. Ruiz-Hidalgo, “Fast and robust edge extraction in unor-

ganized point clouds,” in 2015 international conference on digital image computing: tech-

niques and applications (DICTA), pp. 1–8, IEEE, 2015.

101

[75] C. Weber, S. Hahmann, and H. Hagen, “Sharp feature detection in point clouds,” in 2010

Shape Modeling International Conference, pp. 175–186, IEEE, 2010.

[76] A. Boulch and R. Marlet, “Fast and robust normal estimation for point clouds with sharp

features,” in Computer graphics forum, vol. 31, pp. 1765–1774, Wiley Online Library, 2012.

[77] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface reconstruc-

tion from unorganized points,” in Proceedings of the 19th annual conference on computer

graphics and interactive techniques, pp. 71–78, 1992.

[78] J. MacQueen et al., “Some methods for classification and analysis of multivariate obser-

vations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, vol. 1, pp. 281–297, Oakland, CA, USA, 1967.

[79] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra, and G. Ridgeway, “Clustering on the unit

hypersphere using von mises-fisher distributions.,” Journal of Machine Learning Research,

vol. 6, no. 9, 2005.

[80] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and knowledge discovery

handbook, pp. 321–352, Springer, 2005.

[81] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to robotic manipulation.

CRC press, 2017.

[82] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based on

matrices,” 1955.

[83] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved solving of generic

inverse kinematics,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids), pp. 928–935, IEEE, 2015.

[84] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and

damped least squares methods,” IEEE Journal of Robotics and Automation, vol. 17, no. 1-

19, p. 16, 2004.

102

[85] B. H. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimization, vol. 1. Springer,

2011.

[86] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” 1981.

[87] J. Hu and P. R. Pagilla, “Dual-edge robotic gear chamfering with registration error compen-

sation,” Robotics and Computer-Integrated Manufacturing, vol. 69, p. 102082, 2021.

[88] J. Hu and P. R. Pagilla, “A novel force and motion control strategy for robotic chamfering

of gears,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8710–8715, 2020.

[89] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data processing,”

arXiv:1801.09847, 2018.

[90] B. K. P. Horn, “Extended gaussian images,” Proceedings of the IEEE, vol. 72, no. 12,

pp. 1671–1686, 1984.

[91] A. Zonca, L. Singer, D. Lenz, M. Reinecke, C. Rosset, E. Hivon, and K. Gorski, “healpy:

equal area pixelization and spherical harmonics transforms for data on the sphere in python,”

Journal of Open Source Software, vol. 4, p. 1298, Mar. 2019.

[92] G. P. McCormick, “Computability of global solutions to factorable nonconvex programs:

Part i—convex underestimating problems,” Mathematical programming, vol. 10, no. 1,

pp. 147–175, 1976.

[93] J. Saunderson, P. A. Parrilo, and A. S. Willsky, “Semidefinite descriptions of the convex hull

of rotation matrices,” SIAM Journal on Optimization, vol. 25, p. 1314–1343, Jan 2015.

[94] J. Yang, Z. Cao, and Q. Zhang, “A fast and robust local descriptor for 3d point cloud regis-

tration,” Information Sciences, vol. 346, pp. 163–179, 2016.

[95] Q.-Y. Zhou, J. Park, and V. Koltun, “Fast global registration,” in European conference on

computer vision, pp. 766–782, Springer, 2016.

103

[96] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An ef-

ficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots, vol. 34,

pp. 189–206, 4 2013.

[97] J. Hu, P. R. Pagilla, and S. Darbha, “The next-best-view for workpiece localization in robot

workspace,” in 2021 IEEE/ASME International Conference on Advanced Intelligent Mecha-

tronics (AIM), pp. 1201–1206, 2021.

[98] A. Makhal and A. K. Goins, “Reuleaux: Robot base placement by reachability analysis,”

in 2018 Second IEEE International Conference on Robotic Computing (IRC), pp. 137–142,

IEEE, 2018.

[99] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering

clusters in large spatial databases with noise.,” in kdd, vol. 96, pp. 226–231, 1996.

[100] J. Hu and P. R. Pagilla, “View planning for object pose estimation using point clouds: an

active robot perception approach,” IEEE Robotics and Automation Letters, 2022. accepted.

[101] H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar, “An adaptive, multivariate parti-

tioning algorithm for global optimization of nonconvex programs,” Journal of Global Opti-

mization, 2019.

[102] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L. Nicholson, J. D. Siirola, J.-P.

Watson, and D. L. Woodruff, Pyomo–optimization modeling in python, vol. 67. Springer

Science & Business Media, third ed., 2021.

[103] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving mathematical

programs in python,” Mathematical Programming Computation, vol. 3, no. 3, pp. 219–260,

2011.

[104] D. Rakita, B. Mutlu, and M. Gleicher, “Relaxedik: Real-time synthesis of accurate and

feasible robot arm motion.,” in Robotics: Science and Systems, pp. 26–30, Pittsburgh, PA,

2018.

104

[105] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa, “Efficient next-best-scan planning for

autonomous 3d surface reconstruction of unknown objects,” Journal of Real-Time Image

Processing, vol. 10, no. 4, pp. 611–631, 2015.

[106] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A comparison of volumetric infor-

mation gain metrics for active 3d object reconstruction,” Autonomous Robots, vol. 42, no. 2,

pp. 197–208, 2018.

[107] M. Lauri, J. Pajarinen, J. Peters, and S. Frintrop, “Multi-sensor next-best-view planning

as matroid-constrained submodular maximization,” IEEE Robotics and Automation Letters,

vol. 5, no. 4, pp. 5323–5330, 2020.

[108] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An

efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots, 2013.

Software available at https://octomap.github.io.

105

https://octomap.github.io

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Challenges in data collection and object pose estimation
	Related work
	Workpiece localization
	Object pose estimation using point clouds
	Robot perception and planning

	Dissertation scope and contributions
	Dissertation outline

	Preliminaries
	Point cloud processing
	Calculation and orientation of normal vectors
	Clustering using normal vectors

	Robot kinematics
	Forward kinematics
	Inverse kinematics

	Optimization
	Linear programming
	Nonlinear programming

	Motion-force control
	Motion-force controller
	Implementation in robotic gear chamfering

	Plane-based point cloud registration
	Problem description and method overview
	Extracting plane segments from point cloud
	Rotation calculation through convex optimization
	Translation calculation
	Extension to nonconvex objects
	Simulation and experimental results
	Plane segments identification
	Registration comparison

	Conclusions

	Plane-based next-best-view for object pose estimation
	Problem description and method overview
	Representative vectors
	Sensor view candidates
	Simulation and experimental results
	Representative vectors
	Effect of the travel distance discounting factor
	Next-best-view and object pose estimation

	Conclusions

	Point cloud analysis for pose estimation
	Point cloud quantity analysis
	A motivation example
	Point cloud quantity evaluation

	Point cloud quality analysis
	A motivation example
	Point cloud quality evaluation

	Experiment results
	Point cloud quantity analysis
	Point cloud quality analysis

	Conclusions

	View planning based on point cloud analysis
	Sensor views from quantity analysis
	Sensor views from quality analysis
	A minimum number of sensor views
	The optimal sensor views

	Robot pose determination corresponding to sensor views
	View angle and joint angle constraints
	Sef-collision and self-occlusion avoidance
	Visibility constraints
	The nonlinear optimization formulations

	Experiment results
	Self-collision and self-occlusion analysis
	Determination of sensor views
	Robot pose determination corresponding to sensor views
	Pose estimation comparison
	Baseline comparison

	Conclusions

	Conclusions and future work
	Conclusions
	Future work
	Extending plane-based registration and next-best-view planning
	Integrating multiple sensing modalities for pose estimation
	Learning object geometries
	Planning a sequence of views based on the initial point cloud

	REFERENCES

