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ABSTRACT

Can the mathematical framework developed for constitutive nonlinearities be extended to arbi-

trary dimensions and capture the structural relationship between forces and displacements? In this

work, the mathematics developed to capture plasticity (i.e., the nonlinear relationship between the

six components of stress and strain) are leveraged to describe general nonlinear force-displacement

responses. Plasticity constitutive models seek to describe the nonlinear relationship between stress

and strain, usually via 1) an additive decomposition of strain, 2) some assumption regarding the

existence of an elastic domain, and 3) evolution equations that govern internal state variables, most

importantly the inelastic strain.

Herein we develop nonlinear substructures to provide a method to describe structural relation-

ships between force and displacement associated with various degrees of freedom essential for

prediction of global response, these being analogous to stresses and strains. We draw inspiration

from linear substructure analysis, a historical structural model order reduction method. Linear sub-

structure analysis reduces the computational order of a discretized structural component from the

full set of degrees of freedom needed to solve a boundary value problem (e.g., the displacements

of all nodes in an FEA mesh) to a predefined and much smaller set of retained degrees of free-

dom, usually via a linear transformation. Given only one initial analysis considering all degrees of

freedom, this technique reduces the computational cost associated with subsequent analyses of the

same component by eliminating degrees of freedom, usually internal to the body, which are not es-

sential for interfacing the component with a larger system/assembly and/or for providing essential

engineering performance information.

In this work, linear substructure analysis is extended to consider general nonlinear responses

by leveraging the mathematical framework developed for computational plasticity. While the lat-

ter provides nonlinear constitutive relationships between six independent stress and strain compo-

nents, we show that the same mathematical formulation can capture similar relations between an

arbitrary number of forces and displacements (i.e., the retained degrees of freedom). The devel-
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oped nonlinear substructure method is then demonstrated by analyzing a sweep morphing wing

comprised of an array of multi-material unit cells at reduced computational cost with less than

15% error.
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NOMENCLATURE

0.1 Mathematical conventions

In this work, the following conventions are used to denote different types of quantities. First,

all scalar variables are italicized while all vector, matrix, and tensor quantities are written as bold

characters. Next, all reduced quantities (i.e., quantities that have been transformed into a reduced

basis) are denoted by a circumflex (e.g., the reduced stiffness matrix K̂). Finally, when possible,

global increments are expressed as subscripts and local iterates are shown as superscripts. How-

ever, other quantities also use subscripts or superscripts; when both are present with respect to one

variable, this clutters the text and thus is omitted. The table located in the box below summarizes

the mathematical conventions used throughout the text.

Mathematical conventions

Description Example

Italic Scalar Effective plastic strain α

Bold Vector, matrix, or tensor Stiffness tensor C

Circumflex Reduced quantity Reduced stiffness matrix K̂

Overdot Rate Plastic strain rate ε̇pl

Symbol Meaning

α Equivalent plastic strain or equivalent plastic displacement

A Cross-sectional area

A Anisotropic influence tensor

Â Anisotropic influence matrix

c Constant

C Constitutive stiffness tensor
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d Distance

ϵ Error metric

ϵ̄ Average error

ε Total strain, infinitesimal strain tensor

εel Elastic strain

εpl Plastic strain

E Material Young’s modulus

E Green-Lagrange strain tensor

f Yield criterion or nonlinear initiation function

F Global force vector

FNL Global nonlinear restoring force vector

F̂ Reduced force vector

F 0
y Yield force

g Initiation function

γ Magnitude of plastic flow

h Hardening function

H Plastic hardening modulus

I Identity matrix

K Global stiffness matrix

K̄ Global linear stiffness matrix

K̂ Reduced stiffness matrix

L Characteristic substructure length

L Decomposition of the anisotropic influence tensor

λ Model parameters

λ Vector of eigenvalues

M Nonlinear smooth hardening modulus

n1, n2 Nonlinear smooth hardening coefficients
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N Number of retained degrees of freedom or training load cases

ϕ Interpolation function

Φ Basis transformation matrix

q Generalized coordinate vector

r Number of retained degrees of freedom

R Residual vector

R Set of real numbers

σ Stress

σ0
y Yield stress

t Simulation time

T Transformation matrix

τ Shear stress

u Global displacement vector

û Reduced displacement vector

ûNL Reduced nonlinear restoring displacement, plastic displacement

w Model weight

x Model input

x Set of possible parameters, design variables

X Response or snapshot matrix

ξ Width of nonlinear displacement

ŷ Model output
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0.2 Abbreviations, Acronyms, and Initialisms

Abbreviation Meaning

AIC Analysis-informed calibration

BCC Body-centered cubic

BDD Balancing domain decomposition

BVP Boundary value problem

CCP Convex cutting plane

CPU Central processing unit

DEAP Distributed evolutionary algorithms in python

DOE Design of experiment

DOF Degree(s) of freedom

EIM Empirical interpolation method

FEA Finite element analysis

FEM Finite element method

FETI Finite element tearing and interconnect

GA Genetic algorithm

KKT Karush-Kuhn-Tucker

LHS Latin hypercube sampling

ML Machine learning

MSE Mean-squared-error

MSFEA Multiscale finite element analysis

MSFEM Multiscale finite element method

NSGA Non-sorting genetic algorithm

PDMS Polydimethylsiloxane

PINN Physics-informed neural network

POD Proper orthogonal decomposition

xi



PSO Particle swarm optimization

RBF Radial basis function

ROM Reduced-order model

RVE Representative volume element

RUV Repeating unit volume

SLSQP Sequential-least-squares quadratic programming

SMA Shape memory alloy

SVR Support vector regression

UAV Unmanned aerial vehicle

UEL Abaqus user element
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1. INTRODUCTION, LITERATURE REVIEW, AND MATHEMATICAL PRELIMINARIES

Structural analysis is arguably the oldest pillar of engineering about which prehistoric hu-

mans gained a primitive understanding. When Homo habilis (or perhaps earlier proto-humans1)

fashioned stone tools with sharpened edges, our hominin ancestors were conducting rudimentary

structural analysis, displaying a “developing understanding of stone’s fracture properties" [2]. Our

deepening knowledge of structural analysis in the thousands of years that followed the first use of

tools has paralleled the development of our species, and that development continues to this day.

Structures are ubiquitous in our lives. From buildings and other infrastructure, to healthcare

devices and modes of transportation, structures play an integral in our world. To better understand

structures, we need to conduct structural analysis. Structural analysis has two main purposes:

1. To predict the global response of some spatial domain (e.g., component, sub-component, or

structural material RVE) with respect to a larger system within which it operates, and

2. to assess if and when local failure will occur within a subdomain.

Additionally, structural analysis provides quantitative performance metrics with which we can as-

sess the quality of each respective structure. These performance metrics may include cost, weight,

or quantities that relate to structural response (material failure, force, deflection, etc.).

Myriad methods exist for structural analysis. The oldest structural analysis method is the phys-

ical experiment. These experiments may be driven by trial and error (such as the experiments to

determine what material works best for spear tips), or, more recently, experiments are driven by

statistical design methods such as Taguchi orthogonal arrays or Latin Hypercube Sampling (LHS)

strategies [3, 4]. When conducting an experiment for each new iteration of structural analysis is

too cost- or time-intensive, we can implement rules of thumb based on prior experience, analytical

methods based on first principles (e.g., conservation laws of energy and momentum), or numerical

1There is not yet scientific consensus for when our ancestors started using tools. While the conventional school of
thought postulates that the creation of the genus Homo coincides with the cognitive development essential for tools,
recent work argues that tool development may have predated Homo habilis by 700,000 years [1, 2].
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methods such as finite element analysis. Analytical methods are applicable to simple structures

and seek closed-form expressions to approximate structural response. Examples include Euler-

Bernoulli beam theory, elasticity solutions, and Castigliano’s theorem of shear flow in closed- and

open-cell sections [5].

When the structure is too complex to be described by an analytical method, we invoke numer-

ical methods that seek an approximation of structural response. Such approximations include the

finite element method, fast Fourier transformations, and other surrogate modeling/machine learn-

ing approaches. We restrict our discussion to the finite element method, as it forms the foundation

of the present work.

The name “finite element method" was coined in 1960 by Clough [6]. Before this, the method

was called the "direct stiffness method" by engineers at Boeing. Finite elements can be interpreted

in two distinct ways. First, you can consider the method to be an extension of standard struc-

tural analysis (e.g., analytical elasticity solutions) where the structure is an assembly of discrete

structural elements. Alternatively, one could view the finite element method as an approximation

technique to solving differential or integral equations. While the first interpretation may be more

comfortable for engineers, considering the finite element method as an approximation technique

introduces questions of convergence, error estimation, and other essential aspects of the method.

Variational principles form the foundation of the finite element method. In 1696, Leibniz

proposed discretizing an unknown equation with piecewise linear components and decreased the

length of the components to obtain the differential equation [7]. Over the next few centuries,

the work of Hilbert, Rayleigh, Ritz, and Galerkin further developed the idea of using the princi-

ple of variations to solve differential equations [8, 9, 10, 11]. Finally, in the early 20th century,

Courant presented a method to approximate differential equations by dividing the problem domain

into triangles and using piecewise linear functions to approximate the solution within each subdo-

main [12]. He demonstrated the “Courant element” as a means to compute the response of a bar

under torsion with a general mesh of triangular elements in 1942. But most of these developments

were constrained to the mathematics community, and engineers were not exposed to these ideas
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until much later.

By the time that Courant presented his mesh-based solution for torsion, engineers were familiar

with using analysis of rod or beam assemblies to solve statically indeterminate problems. With

the advent of computers in the 1940’s and 1950’s, engineers were solving structural mechanics

problems with upwards of 2000 degrees of freedom (DOF). The method, commonly referred to

as Matrix Structural Analysis, proliferated in the aerospace industry; classes and textbooks on the

subject appear in the literature around this time [13]. In 1960, Clough and Wilson wrote a matrix

algebra code with many basic features of modern finite element codes and referred to the method

as “finite elements” [6]. In the next decade, many similar codes appeared on the market and the

modern finite element method was born [14].

However, the relationship between engineering methods and variational methods was still un-

reported in literature. It wasn’t until the late 1960’s before engineers started making the con-

nection between the two fields. Namely, Argyris developed a method rooted in the principle of

variations [15]. Concurrently, Zienkiewicz drove consolidation of the two schools of thought

towards one central method, and countless other mathematicians and engineers followed in his

stead [16, 17, 18].

But why, at the beginning of a lengthy dissertation about nonlinear substructure analysis, are we

discussing the history of the finite element method? First, as we will describe in later sections, the

finite element method forms the basis for the entire body of this present work. Second, the concept

of parallel development from different schools of thought is even more relevant today. In the case

of the finite element method, both mathematicians and engineers were working on similar problems

from different perspectives. Since the formalization of the finite element method, concepts such as

the treatment of nonlinear structures and domain decomposition have had a profound impact on

the further refinement of the method. We will address each of those concepts in turn.

1.1 Nonlinear and adaptive structures

Structural nonlinearities can be attributed to a few main causes. First, large deformations of a

structure may contribute to a change in stiffness as a function of displacement. We will refer to
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large deformations as geometric nonlinearities in this work. Second, the change in stiffness as a

function of material state will be termed material nonlinearities. Material nonlinearities may in-

clude a functional relationship between stiffness and displacement, temperature, or other external

state variable(s). Common examples of material nonlinearities include metal plasticity and elas-

tomeric hyperelasticity. Finally, nonlinearities may arise due to contact between two (or more)

bodies within one structural analysis. In this work, we will concentrate on nonlinearities that arise

due to large deformations and material state with an emphasis on metal plasticity; however, future

work may include consideration of the stiffening consequences of contact as well.

Today, most structural analysis only considers the linear (small deflection) regime, as most

structures are not designed to exhibit large material strains in normal operation. However, non-

linear structural analysis is essential to understand post-failure behavior (e.g., the response of a

metal component after the yield stress is reached). Additionally, certain structures are designed

within the nonlinear regime to maximize performance. For example, limited life structures may be

designed to fail after tens of cycles; considering material yield may produce a better performing

structure over the projected structure lifetime [19].

Alternatively, some structures are inherently nonlinear. For example, consider conformal mor-

phing structures, which can undergo shape change while maintaining a smooth outer mold line,

eliminating the need for compromise between different phases of operation and increasing over-

all performance (e.g., a sweep morphing wing that changes between a long, straight planform for

cruise and a short, swept planform for agile maneuvers shown in figure 1.1). Such structural adap-

tivity generally requires consideration of nonlinear behavior, which may result from the use of

advanced or enabling materials but at a minimum derives from the large geometry changes at play.

A conformal morphing structure can undergo shape change while maintaining a smooth outer

mold line, eliminating the need for compromise between different phases of operation and increas-

ing overall performance (e.g., the sweep morphing wing of figure 1.1 that changes between a long,

straight planform for cruise and a short, swept planform for agile maneuvers). Recently, sweep

morphing wings have been designed, built, and flight-tested as part of a study on adaptive hunter-
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Figure 1.1: The sweep morphing wing used as a case study in this work. Reprinted from [21].

killer unmanned combat air systems [20, 21]. Additionally, prior work has investigated fabricating

this the compliant component out of an array of multimaterial unit cells [22]. We will not dis-

cuss adaptive structures in detail herein; for more information, the curious reader is directed to

comprehensive review papers from literature [23, 24].

Other examples of hierarchical adaptive or reconfigurable structures abound in the literature.

For example, consider the adaptive and reconfigurable structures shown in figures 1.2a and 1.2b.

The adaptive bending cylinder, designed for a morphing air vehicle fuselage or targeting pod,

is comprised of multiple unit cells containing stiff ligaments infilled by a flexible material [26,

27]. This spring-like configuration allows compromise between stiffness and adaptivity, and future

designs could consider the variation of unit cell properties (ligament dimensions, infill porosity,

etc.) as a function of position within the bending cylinder. However, due to the complexity of the

structure and the large deformations and material nonlinearities that may be present, such designs

are computationally intractable with current methods.

Conversely, the Miura-ori origami reconfigurable structure shown in figure 1.2b is designed

for a starkly different function (i.e., area change), but still exhibits an inherent periodicity . These

types of structures have been investigated for energy absorption, self-assembling structures, and

many other applications [28, 29, 30]. Hierarchical design of origami-inspired structures could

enable better performance. However, similar to the bending cylinder, computational design of such

structures is difficult with conventional techniques. In both examples of periodic and hierarchical

adaptive structures, novel methods for solving structural nonlinearities are needed.
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(a) Bending cylinder adaptive aerostruc-
ture.

(b) Cylindrical Miura-ori pattern.
Reprinted from [25].

Figure 1.2: Adaptive and reconfigurable structures sometimes display inherent structural hierarchy
to balance stiffness and flexibility constraints.

Solution of a nonlinear structural system of equations requires iterative methods. Commonly,

the structural response is linearized about a point, the system is solved via conventional methods

(e.g., LU decomposition or similar), and numerical integration is performed to find the next fea-

sible solution. These iterative methods may include Newton’s method, direct iteration, or hybrid

approaches. However, such a solution scheme increases the required computational cost. Many

efforts have focused on various speed-up techniques to reduce this computational cost. Herein, we

will focus on the development of reduced order models for nonlinear structural systems via do-

main decomposition. But first, our attention must turn to the two specific sources of nonlinearity

investigated in this work: nonlinear geometric effects and metal plasticity.

1.1.1 Nonlinear geometric effects

Nonlinear geometric effects are defined as those in with the displacement magnitudes affect

the response of a structure agnostic of material state [17]. Such effects may occur during analysis

considering large displacements (often leading to stiffening), large rotations, or buckling (loss
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of positive stiffness, as during “snap through" events). For example, consider a cantilever beam

with a point load applied at the free end in a direction orthogonal to the initial beam shape. As

the beam deflects, the angle between the slope of the beam at the free end and the applied force

changes; this change in angle is not accounted for in linear finite element analysis. Even with small

displacements but potentially large rotations, nonlinear geometric effects must be considered to

rotate the element stiffness matrices into the correct reference frame (see reference [31]).

Additionally, when displacements reach a significantly large value, the Green-Lagrange strain

tensor could be used in lieu of the typical infinitesimal strain tensor [32]. The Green-Lagrange

tensor Eij for a displacement vector field u on the domain of x can be written as

Eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

2

∂um

∂xi

∂um

∂xj

, (1.1)

where the higher order terms are omitted in the definition of the infinitesimal strain tensor due to

the orders of magnitude differences when small strains are applied. Alternatively,

These higher order terms result in a nonlinear relationship between displacement and force in

the integrated equations even for a linear elastic material [33]. Additionally, these nonlinear terms

eliminate the spurious strains caused by large rotations when the infinitesimal strain-displacement

relation is applied. For these reasons, geometric nonlinearities are very commonly used in analysis

of adaptive structures, where the large deformations and rotations that enable configuration change

must be properly modeled.

1.1.2 Metal plasticity

The industrial revolution ushered in the age of large-scale metal working and steam power.

With respect to these new technologies, engineers had to develop new methods to predict struc-

tural response. Specifically, engineers needed to accurately predict the point at which failure occurs

in metallic structures and understand material response after the point of yield. Between 1880 and

1900, a steam boiler was exploding approximately every 2 days in the United States [34]. Engi-

neers needed a theory for material yield to design safe and efficient pressure vessels. Additionally,
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most railway tracks were manufactured via a steel casting process, resulting in a rough surface

profile. Metal rolling, which requires understanding of material response after yield, resulted in

smoother profiles and thus, faster travel speeds.

The pursuit of knowledge in these two areas led to the creation of plasticity theory. Plasticity

seeks to answer two questions:

1. When does the material yield?

2. After yield, how does the material response evolve?

In this work, we will define yield as the state at which the material stress is no longer linearly

related to the applied strain. Material yield can be described by a yield criterion f(σ), and the

evolution of material response can be described by equations that specifically govern internal state

variables (i.e., not stress or total strain, which may be externally defined).

In 1870, Tresca first proposed that yield was proportional to the maximum shear stress (per-

haps drawing inspiration from Coulomb’s experiments with an iron wire under torsion) [35, 36].

Tresca’s yield criterion can be written as:

f(σ) = 0 =
1

2
(σ1 − σ3)− |τ |max, (1.2)

where |τ |max represents the largest shear stress permissible until elastic loading and σ1 and σ3

correspond to the largest and smallest value of principal stresses, respectively. When the expression

for f(σ) reaches a positive value, material yield is predicted. Additionally, Tresca’s student Levy

proposed that the strain rate ε̇ after yield was proportional to the deviatoric stresses τ :

ε̇− 1

3
tr(ε̇)I = cτ , τ = σ − 1

3
tr(σ)I (1.3)

where I denotes the identity tensor [37]. This system of equations represents one of the first

complete definitions of plastic material response. However, it was ahead of its time; systems of

partial differential equations were thought to be impossible to solve generally. As such, Tresca’s
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work was largely ignored for the next 30 years.

Richard von Mises revised Tresca’s yield theory by proposing that material yield was pro-

portional to the second invariant of the deviatoric stress (also known as the maximum distortion

criterion, or J2 yield) [38]. The von Mises yield criterion can be written as

f(σ) = 0 = (τ1)
2 + (τ2)

2 + (τ3)
2 − 2(σ0

y)
2, (1.4)

where τi denote the principal deviatoric stresses and σ0
y represents the yield stress, a material

constant. The von Mises yield surface can be abstracted to an ellipse in the principle stress plane,

while the Tresca yield surface represents an elongated hexagon that intersects with the von Mises

ellipse at each corner. However, von Mises’ work was still confined to statically determinant

problems until the advent of FEA. However, the J2 yield criterion is now the most widely used

material failure metric. Figure 1.3 depicts example von Mises (left) and Hill (right) yield surfaces

with respect to the first two principal stresses.

Much later, Hill proposed an anisotropic yield criterion in 1948, which captured variance in

material properties with respect to direction [39, 40]:

f(σ) = 0 =
√
σ : Aσ − σ0

y , (1.5)

where A is a fourth-order and positive-symmetric-definite anisotropic influence tensor, a modifier

Figure 1.3: Notional von Mises isotropic (left, shown in green) and Hill anisotropic (right, shown
in blue) yield surfaces in the space of the first two principal stresses. Note that the change in
orientation of the Hill yield surface results in a change in yield stress as a function of stress state.
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that changes the shape and orientation of the von Mises ellipse.2 The inclusion of anisotropic yield

criteria enable plasticity models to capture a wide range of constitutive responses with minimum

modification to the underlying mathematical framework.

The von Mises and Tresca yield criteria formed the basis for computational plasticity, but

further development was needed to accurately described the evolution of material response after

yield. First, a method to monitor the material state was necessary. By the 1940’s, the concept of

additive decomposition of strain was well established [41]. Additive decomposition of strain states

that the total strain can be decomposed into elastic and plastic components:

ε = εel + εpl. (1.6)

The plastic strain εpl represents an internal state variable that corresponds to the current material

state but cannot be measured experimentally. In this way, Hooke’s law can be rewritten for an

isothermal elastoplastic material by solving for the elastic strain εel:

C
(
εel
)
= σ, (1.7)

C
(
ε− εpl

)
= σ, (1.8)

where C denotes the constitutive stiffness matrix. More recent works have proposed a multi-

plicative decomposition of strain for large deformations, but herein we will restrict our discussion

to additive decomposition as it will be shown to be sufficient for most of the example problems

considered; for more information, the reader is referred to Lubliner [42].

To account for work hardening, the phenomenon where the yield stress is increased after yield-

ing, the yield criterion was modified via inclusion of an additional internal state variable. This

increase in yield stress manifests as an isotropic expansion of the yield surface in stress space (see

2Even though the mathematics for computational plasticity rely on tensor calculus, Voigt notation reduces fourth-
order tensor operations to matrix operations for algorithmic implementation.
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figure 1.4). Mathematically, this modification of the yield criterion can be expressed as

f(σ, α) = g(σ)− h(α), (1.9)

where g(σ) represent the stress-based yield criteria previously discussed (equations 1.4 and 1.5)

and h(α) represents an isotropic hardening function that depends on the effective plastic strain.

Many isotropic hardening functions have been proposed in the last 70 years; two examples featured

in this work are isotropic linear hardening and isotropic nonlinear smooth hardening:

h(α) = σy
0 +Hα, (1.10)

h(α) = σy
0 +

1

2
M(ξ + αn1 − (ξ − α)n2), (1.11)

where σy
0 , H , M , ξ, n1, and n2 represent material properties calibrated from experiment.

Alternatively, the yield surface may shift as a function of increasing plastic strain; this phe-

nomenon can be captured via kinematic hardening functions. Many such functions include a so-

called backstress internal state variable that corresponds with the location of the center of the yield

surface. Figure 1.5 depicts the change in yield surface location and its impact on yield stress for

a notional material. Kinematic hardening may also be used to capture anisotropy after yield by

including an analogous hardening stiffness tensor.

Figure 1.4: Isotropic hardening corresponds with an expansion of the yield surface with increasing
plastic strain, which in turn work hardens the material and increases the yield stress.
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With the plastic strain and the change in yield criterion with respect to stress defined, the

prediction of infinitesimal change in plastic strain with respect to an infinitesimal change in stress

becomes paramount for implementation. This prediction relies on formulation of flow rules or

evolution equations, termed such due to the material entering a “flow state." Geiringer and Prager

proposed that plastic strain was generated in a manner proportional to the derivative of the yield

criterion with respect to stress [43]:

ε̇pl = γ
∂f

∂σ
, γ = α̇, (1.12)

where γ is a scalar multiple that specifies that magnitude of plastic strain generated in a particular

increment. This flow rule is denoted an associative flow rule; non-associative flow rules are also

present in literature but are outside the scope of the current study, though they are highlighted as a

key area of future investigation and extension.

With a representation of the incremental change in plastic strain with respect to stress, the

last crucial component for calculation of material state are conditions to ensure solution of the

nonlinear systems of equations. Drawing from the convex optimization community, the Karush-

Figure 1.5: Notional evolution of a yield surface for a material that is assumed to obey kinematic
hardening. Increasing the plastic strain in a certain direction may decrease the yield stress if the
material is unloaded and then re-loaded in a new direction.
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Kuhn-Tucker (KKT) conditions can be invoked in the context of plasticity:

f(σ, α) ≤ 0, γf = 0, γ ≥ 0. (1.13)

The KKT conditions enable computational prediction of the material state, and specify the follow-

ing:

1. Only admissible values of stress σ and effective plastic strain α satisfy the yield criterion to

be less than or equal to zero.

2. If the yield criterion is less than zero, the rate at which effective plastic strain is generated

is zero. Conversely, if the rate of effective plastic strain generation is non-zero, the yield

criterion must be zero.

3. The generation of effective plastic strain is irreversible.

The implementation of the KKT conditions within the aforementioned material model provides a

framework with which to compute the state of plastically deforming materials. Finally, with the

advent of FEA, methods to integrate plasticity within finite element solution algorithms quickly

followed [44, 45].

In summary, a computational plasticity algorithm includes four main components:

1. Equation 1.8: Strain decompositions establish internal state variables that track nonlinear

material state and their relationship with the total strain.

2. Equations 1.4 and 1.5: Yield criteria describe the stress at which nonlinearity initiates, and

how that nonlinearity changes.

3. Equation 1.12: Flow rules provide a relationship between the infinitesimal change in stress

and the corresponding infinitesimal change in internal state variables.

4. Equation 1.13: The Karush-Kuhn-Tucker conditions enable computation of the material

state, assuming the nonlinear process is irreversible.
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An example plasticity model with anisotropic yield and linear hardening is given in the box below

for reference.

Plasticity with anisotropic yield and linear hardening

External state variables Total strain ε, stress σ

Internal state variables Elastic strain εel, plastic strain εpl, effective plastic strain α

Material constants Compliance tensor C , anisotropic influence tensor A,

yield stress σ0
y , hardening modulus H

Strain decomposition C
(
ε− εpl

)
= σ,

Yield criterion f(σ, α) =
√
σ : Aσ − (σ0

y +Hα)

Flow rules ε̇pl = γ ∂f
∂σ

, γ = α̇

KKT conditions f(σ, α) ≤ 0, γf = 0, γ ≥ 0.

In this work, we will leverage the rich existing literature developed for computational plasticity

to predict structural responses instead of material responses. But first, we must address treatment

of domain decomposition in the context of finite element analysis.

1.2 Domain decomposition

Domain decomposition is a method to solve boundary value problems (BVPs) at reduced com-

putational cost [46]. In short, domain decomposition methods partition the original BVP domain

(termed the coarse scale) into several BVPs on smaller domains (termed the fine scale). On the fine

scale, solution is desired and subdomain problems are solved. In turn, the coarse scale provides

global coupling between different subdomains. These subdomains may overlap one another or

may only interact at interfacial regions. Two main classes of domain decomposition methods are

present in literature: iterative and direct.

Iterative domain decomposition methods seek to find preconditioners of the matrix system

of equations at the fine scale.3 Many different preconditioners exist, but common examples are

3A preconditioner B to the system Ax = b approximates A−1 at reduced computational cost.
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the Neumann-Dirichlet and Neumann-Neumann preconditioners. These preconditioners are av-

enues to assist matrix solution algorithms such as conjugate gradient; in this way, iterative do-

main decomposition methods speed up solution of the fine scale discretized BVPs to reduce com-

putational cost of the global BVP solution. Established iterative domain decomposition meth-

ods include Finite Element Tearing and Interconnect (FETI) and Balancing Domain Decomposi-

tion (BDD) [47, 48, 49]. These iterative methods have been demonstrated for a wide range of

physics, including structural mechanics and fluid dynamics [50].

Direct domain decomposition methods find a reduced solution to a matrix system of equation

in one solution step. Also known as substructuring methods, direct domain decomposition meth-

ods commonly reduce the matrix system of equations via the Schur complement, which reduces

a matrix system of equations to an equivalent system explicitly in terms of only select degrees of

freedom [51]. Substructure methods are widely used in structural mechanics and form the founda-

tion of this work; as such, we will discuss them in more detail.

1.2.1 A brief overview of linear substructure analysis

This work describes an extension of substructure analysis to consider general nonlinearities.

Substructure analysis reduces the computational order of a structural analysis by eliminating spe-

cific degrees of freedom that are nonessential via a linear transformation [52, 53]. The component

response is abstracted to a smaller number of boundary, or essential degrees of freedom that are

needed in subsequent analyses. The technique arose as a method to overcome memory limitations

in early computers; in the case of aerospace engineering, the global stiffness matrix associated

with an entire aircraft was too large to be stored in the working memory of a single computer [54].

To accomplish this, engineers developed a method to compute and save the response of various

components (e.g., the fuselage, empennage, cockpit, and wings) in reduced forms for use in other

analyses. Also known as Guyan reduction, superelement analysis, and component mode synthe-

sis, substructuring is widely used for linear static and dynamic analysis and is included in most

commercial finite element packages today [55, 56, 57, 58, 59].

Substructure analysis consists of a matrix transformation that maps structural information from
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eliminated degrees of freedom to retained degrees of freedom, and vice versa. Eliminated degrees

of freedom are those that need not be explicitly calculated in subsequent analyses, while retained

degrees of freedom are crucial for computation regarding a larger assembly potentially comprised

of many substructures. Figure 1.6 depicts a notional example of substructure analysis. In this ex-

ample, a structure is meshed to have a large number of degrees of freedom, but only four corner

nodes are required for subsequent system-level analyses. As such, a substructure can be formu-

lated including only the eight essential degrees of freedom while capturing the response of the

entire body as it relates to the essential degrees of freedom. By reducing the dimensionality of the

governing equations, analysis is now performed by solving only eight simultaneous equations. Fur-

thermore, while this notional example only reduces the complexity by a single order of magnitude,

in more complex analyses, substructures are commonly many orders of magnitude smaller than

the full component. This procedure produces an efficient and exact method for reducing the com-

putational cost of linear structural analysis (i.e., bodies undergoing small displacements where the

entries of the stiffness matrix are constant), but canonical substructure analysis fails to accurately

capture nonlinear effects.

Substructure
8 DOF

Mathematical 
framework for 
relating nodal

responses.

Eliminated

Retained

Full-fidelity FEA
144 DOF

Retain only essential DOF to 
capture global response of body.

Reduce

Sweep morphing wing comprised of 
12 complex unit cells

Figure 1.6: Notional depiction of substructure analysis, in which a sweep morphing wing consists
of 12 complex unit cells. The substructure reduction eliminates select degrees of freedom while
still capturing the entire unit cell response. Note that additional constraints must be applied on the
substructure boundary to prevent gaps between unit cells upon deformation; this is discussed in
more detail in section 3.2.1.2.
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1.2.2 Mathematical description of linear substructure analysis

Mathematically, the linear substructure analysis procedure is as follows:

1. Make an a priori design decision about which degrees of freedom will be retained. The full

system of equations is then rearranged according to that decision:

Ku = F =

Krr Kre

Ker Kee


ur

ue

 =

Fr

Fe

 , (1.14)

where K, u, and F denote the global stiffness matrix, global displacement vector, and global

force vector, respectively. Subscripts r and e denote components of retained and eliminated

quantities, and thus ur represents the critical vector of retained degrees of freedom.

2. Apply a matrix transformation to the global system of equations, which can be derived by

solving the second equation of the partitioned global system for ue then substituting into the

first equation:

TTKT ur = TTFr, (1.15)

where the transformation matrix T is defined as

T =

 I

−K−1
ee Ker

 (1.16)

and I is the square identity matrix dimensioned according to the retained degrees of freedom.

This transformation is known as a Guyan reduction or static condensation; the transformation

can be modified with eigenvectors and is known as component mode synthesis or a Craig-

Bampton transformation to capture the substructure dynamic response [60, 61]. In this work,

Fr and TTKT will be denoted F̂ and K̂, respectively, where F̂ describes the reduced force

vector and K̂ describes the reduced stiffness matrix. Alternatively, K̂ and F̂ can be expressed
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as

K̂ = Krr −KreKee
−1Ker, (1.17)

and

F̂ = Fr −KreKee
−1Fe, (1.18)

respectively. One will note that equation 1.17 is the Schur complement in the context of

retained and eliminated degrees of freedom. The Schur complement can be easily computed

via Gauss-Jordan elimination, but is not shown here [62]. Equation 1.15 can be rewritten

using the aforementioned nomenclature:

K̂ur = F̂. (1.19)

For consistency, the reduced displacement vector ur is denoted û. The reduced finite element

equation is now

K̂û = F̂. (1.20)

3. Solve for the reduced displacement vector:

û = K̂−1F̂ (1.21)

where K̂, û, and F̂ are the reduced stiffness matrix, reduced displacement vector, and re-

duced force vector, respectively.

4. If necessary, recover the entire displacement field of the structure by performing the trans-

formation in reverse:

u = Tû (1.22)

The strain and stress fields can then be computed via traditional methods (e.g., the strain-

displacement relation and specific constitutive law governing the material in question).
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The linear substructure procedure produces exact reduced and full-field solutions due to constant

entries in the stiffness matrix and force vector. A notional example of this reduction procedure is

provided in the box below.

A brief example of linear substructure analysis

L L

A1,E1
A2,E2

x

1 2 3

Figure 1.7: Notional two-element, three degree-of-freedom bar assembly.

To provide a working example of the linear substructure analysis process, consider the three

degree of freedom bar structure shown in figure 1.7. The system of equations to describe the

linear structural behavior can be written in component form as

K11u1 +K12u2 +K13u3 = F1 (1.23)

K21u1 +K22u2 +K23u3 = F2 (1.24)

K31u1 +K32u2 +K33u3 = F3. (1.25)

For this example, imagine that the response of the structure at node 2 is unessential to the

structural analysis problem (e.g., boundary conditions will be applied or reaction forces will

be measured at nodes 1 and 3 only). As such, node 2 is the eliminated degree of freedom,

while nodes 1 and 3 are the retained degrees of freedom. The response of the structure at

node 2 can be condensed to the retained degrees of freedom by solving equation 1.24 for the

eliminated degree of freedom (u2):

u2 =
1

K22

(F2 −K21u1 −K23u3) . (1.26)
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Substituting equation 1.26 into equations 1.23 and 1.25 yields

(
K11 −K12

1

K22

K21

)
u1 +

(
K13 −K21

1

K22

K23

)
u3 = F1 −K12

1

K22

F2 (1.27)(
K31 −K32

1

K22

K31

)
u1 +

(
K33 −K32

1

K22

K23

)
u3 = F3 −K32

1

K22

F2. (1.28)

An astute reader will notice the similarities between the reduced structural equations specific

to this problem (1.27 and 1.28) and those given earlier for general bodies (1.17 and 1.18).

In this way, the three degree of freedom system is condensed to two degrees of freedom

and the retained degrees of freedom can be found at (slightly) reduced computational cost.

The full displacement field (e.g., u2) can then be calculated via equation 1.26. Obviously

this reduction technique is used for much higher dimensional spaces in practice, but this

example provides a clear mathematical basis for more complex structures.

Dodds detailed certain rules of thumb for when and where to apply linear substructure analysis

that are still relevant today [63]:

1. Substructures should be used more than once in higher-level analyses. The computational

expense associated with the substructure reduction procedure may exceed that of solving

the full structural problem, so substructures must be used many times to fully exploit the

reduction in computational cost.

2. The retained degrees of freedom must be much smaller than the overall degrees of freedom.

3. The efficiency of substructure analysis is inversely proportional to the amount of field vari-

ables required (e.g., displacements, strains, stresses, etc.).

However, the utility of substructure analysis is waning for many linear problems due to the

advent of user-friendly FEA pre-processors. One key benefit of linear substructure analysis was the

limited data input needed to use a substructure (e.g., fewer nodes and components of the stiffness

matrix to store and input). As Dodds wrote in 1980, “Input data preparation and checking constitute
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a major portion of the analysis effort. Associated costs in terms of engineering manpower usually

exceed by many times the computer charges to perform the analysis for all but the most trivial

problems.” Clearly, this is not the case today. Automated meshing routines, and even automated

model generation, execution, and post-processing features are available in most available FEA

suites. However, the utility of substructure analysis in large assemblies with repeated sub-units, or

in assemblies containing proprietary data, is unchanged.

Additionally, while linear substructure analysis is powerful, in general nonlinear analyses (e.g.,

those considering large deformations, evolving material properties, or contact) this procedure fails.

Myriad methods have been investigated to leverage substructure analysis for nonlinear structural

phenomena; a few select examples are presented in the next section.

1.2.3 Prior extensions of substructure analysis to nonlinear structural analysis

When the entries of the structural stiffness matrix can no longer be represented by constants,

nonlinear solution methods are needed. Nonlinearities may arise due to large deformations, mate-

rial behavior, interactions between multiple geometric components within one analysis (i.e., con-

tact) [17]. While predicting the nonlinear structural response is crucial for accurate performance

assessments, the associated computational cost increases dramatically due to the necessity of it-

erative solution schemes (e.g., direct iteration or Newton solvers). As such, there exists a host of

literature focusing on model reduction schemes for nonlinear structural analysis; herein, we will

restrict the discussion to only the work with direct analogies to linear substructure analysis, but

many more methods exist.

For rate-independent, and path-independent nonlinear structural deformation,4 we seek to find

an operator that maps displacements to forces:

G(u)→ F. (1.29)

4In this work, we restrict our discussion to this limiting case but describe the needed extensions to capture rate-
and path-dependency.
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Often, this mapping takes the form of a stiffness matrix that evolves as a function of displacement:

K(u)u = F. (1.30)

The stiffness matrix may also be a function of other state variables (e.g., temperature, time); as writ-

ten, the force-displacement relationship is the most restrictive. Myriad options exist for reducing

the computational order of equations 1.29 and 1.30 via extensions or applications of substructure

analysis. The most common approaches in literature are:

1. partitioning the geometric domain into linear and nonlinear regions,

2. partitioning the governing equations into linear and nonlinear contributions, and

3. using surrogate modeling or machine learning techniques to find the mapping.

Most historical work on nonlinear substructure analysis is from the civil engineering discipline

(due to the large utility of precomputing a repeating structure), but more recent work has been

investigated for aerospace engineering applications.

1.2.3.1 Geometric partitioning

As early as 1980, researchers started investigating the utility of substructure analysis in non-

linear problems. Many groups partitioned the geometric domain into linear and nonlinear regions

and applied linear substructure analysis for the region that remained linear within a given toler-

ance [64]. This technique decreased the size of the global stiffness matrix to be inverted, but

required a different substructure routine to be applied at every global solution increment. How-

ever, even with the successive substructure routines required, a 15% decrease in computational

time for a problem involving contact was achieved [65].

In many cases, a small region of the analysis domain will undergo nonlinear deformation.

For example, analyses considering assemblies of beams with connecting joints will experience

nonlinear deformation close to the joints. In these scenarios where the locations of nonlinear

deformation are known a priori, the governing equations can be partitioned into linear, interface,
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and nonlinear sets 
KLL KLI KLN

KIL KII KIN

KNL KNI KNN



uL

uI

uN

 =


FL

FI

FN

 , (1.31)

where subscripts L, I, and N correspond to linear, interface, and nonlinear regions, respectively.

Following the procedure outlined in section 1.2.2, the linear domain can be condensed to the

interface degrees of freedom

 K̂II KIN

KNI KNN


 ûI

uN

 =

 F̂I

FN

 , (1.32)

where K̂II is the reduced stiffness matrix and contains the structural contribution of all eliminated

degrees of freedom. After reduction, the resulting system of equations can be solved via traditional

iterative methods. Clearly, for this approach to be computationally efficient, the set of nonlinear

degrees of freedom must be small when compared to the linear degrees of freedom

uN ∈ Rm, uL ∈ Rn, n≪ m. (1.33)

Additionally, the interface set of degrees of freedom uI may also include other specific degrees of

freedom needed for future analysis or post-processing (e.g., critical displacements or connection

points with other components).

In fact, leveraging substructure analysis to solve nonlinear problems has been investigated as a

solution method in and of itself. This method, known as nested dissection, successively performs

substructure reduction until there are no more internal degrees of freedom within the structure.

Then, the full-field response is found by applying the reverse transformation for each reduction.

This method was shown to be orders of magnitude faster and scale more efficiently than skyline-

based strategies.5 In some cases, iteratively performing a substructure reduction at each load step

5Skyline-based methods of solving systems of equations use variable banded storage in lieu of traditional half-
bandwidth storage and are preserved by Cholesky decomposition. These properties are attractive for finite element
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(i.e., nested dissection) can reduce computational costs by a factor of four [68, 69].

Owen et. al applied substructuring to a structural plasticity problem by partitioning the domain

into fully elastic and inelastic regions and solving the inelastic region iteratively [70]. The au-

thors reported a 60-80% decrease in CPU time, but this method relies on user a priori knowledge

of the nonlinear region. Similar reductions in computational cost were reported for a geometri-

cally partitioned analysis of brick masonry and for nested substructures used in an elastoplastic

problem [71, 72] Alternatively, substructuring was also applied to a crack propagation problem

by using the Cholesky method of outer products to form the substructure reduction [73]. Another

drawback to geometrically partitioning the domain for nonlinear structural analyses is that, as the

number of distinct nonlinear regions (and thus, number of substructure domains) increases, re-

solving the interfaces between them becomes the most time-consuming computational procedure

during analysis [74].

Other work has investigated using partitioned substructure analysis to solve nonlinear prob-

lems via concurrent processing or parallelization. Storaasli showed that, in the case of an analysis

in which more than 50% of the computational time was spent in generating the stiffness matrix,

parallelizing the process over a number of separate processors may speed up solution by a fac-

tor of the number of substructures [75]. A similar recent method solves the nonlinear structural

equations by partitioning the domain into parent and child regions for speedup with respect to

parallelization [76].

However, most of the literature cited herein still consider the full-fidelity nonlinear problem,

require iterative substructuring as the nonlinear region grows, and cannot realize any computational

speedup when large regions of the component exhibit nonlinear behavior. Additionally, these

methods aren’t readily integrated into commercial FEA suites, and thus limit widespread use.

solvers, due to the typical variable bandwidth nature of the systems of equations that govern structural finite element
analysis [66, 67].
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1.2.3.2 Mathematical partitioning

As an alternative to leveraging substructure analysis via geometric domain partitioning, many

works partition the governing equations according to linear and nonlinear responses. To partition

the governing equation into linear and nonlinear responses, the following assumption must be

invoked:

Assumption 1. Structures initially obey a linear response given small displacements. For larger

displacements, nonlinearity initiates.

Mathematically, this can be expressed as

G(u)→ K̄u+ FNL = F, (1.34)

where K̄ is the linear stiffness matrix and FNL is denoted the nonlinear restoring force vector.

The nonlinear restoring force describes the portion of the overall structural response that can be

attributed to nonlinear behaviors (e.g., large-strain softening or material nonlinearities). This quan-

tity must be modeled with an accurate functional form to describe the nonlinear restoring force or

its evolution, which depends on the methods used and the physics in question.

Assumption 2. The nonlinear restoring force can be abstracted to the same retained degrees of

freedom via substructure transformation.

Applying a substructure transformation to equation 1.34 yields a general form for the nonlinear

substructure response:

K̂û+ F̂NL = F̂. (1.35)

The current literature approaches approximating the functional form of the reduced nonlinear

restoring force F̂NL via various methods.

The field of non-intrusive reduced order modeling expands the substructure transformation

to include quadratic and cubic terms for use in nonlinear geometric (e.g., large displacement)
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problems:

K̂û+ K̂(2)û⊗ û+ K̂(3)û⊗ û⊗ û = F̂ (1.36)

where 3-D and 4-D matrices K̂(2) and K̂(3) are comprised of constants that must be found ana-

lytically by applying various loading cases [77, 78]. This method has been shown to accurately

capture static and dynamic6 nonlinearities and applied to solve sonic fatigue problems at reduced

computational cost [79, 80]. While non-intrusive reduced order models can recover approximate

stress fields, nonlinear material behavior has not been extensively investigated using this approach.

Additionally, a recent work captured nonlinear responses of structures monotonic loading by

modifying the substructure reduced stiffness matrix by a predetermined constant scalar c. Given a

linear reduced stiffness matrix K̂, nonlinear dependence on displacement is considered via a case

function:

K̂NL =


K̂ if a ≤ t

cK̂ if a ≥ t,

(1.37)

where a and t are variables related to the analysis time step. This method was implemented as an

Abaqus UEL, and represents a lightweight method to capture the response, but is not generaliz-

able [81, 82]. Additionally, as this method only includes a single scalar modifier, full displacement

fields are inaccurately approximated, limiting the utility of the method to analyze failure.

1.2.3.3 Surrogate modeling and machine learning techniques

The examples of nonlinear substructure analysis detailed previously have accounted for nonlin-

ear behavior by slightly modifying the functional form of the substructure reduction. Other efforts

have explored using more advanced computational methods to perform this reduction. Borrowing

from the rich literature in basis reduction methods as well as surrogate modeling techniques, many

other nonlinear substructure methods have been investigated. Herein, we will discuss a select few

examples that leverage proper orthogonal decomposition and machine learning techniques.

Proper orthogonal decomposition (POD) is a method to perform basis reduction by extract-

6The notation shown above in equation 1.36 neglects dynamic effects for consistency with this work.
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ing characteristic eigenmodes from the system response [83, 84]. POD is a widely used reduced

order modeling technique that has found application in fields such as structural dynamics, fluid

mechanics, and nonlinear structural mechanics [85, 86].

The proper orthogonal decomposition approximates the global displacement vector via

u ≈ Φq, (1.38)

where Φ and q represent the projection matrix and generalized coordinates of the structure [87].

Note how the structure of equation 1.38 mirrors that of the substructure displacement transforma-

tion in equation 1.22. Both methods simply represent a change in basis; the substructure transfor-

mation reduces the displacement field to a smaller set of displacements, whereas the POD reduces

the displacement field to a set of generalized coordinates (typically based on the eigenvectors of the

system). As such, the same procedure can be applied (see equation 1.15) to reduce the governing

equations:

ΦTKΦu = ΦTF→ K̂PODq = F̂POD. (1.39)

To derive the projection matrix Φ, a response matrix X is constructed:

X =

[
x1 . . . xn

]
=


x11 . . . x1n

... . . . ...

xm1 . . . xmn

 (1.40)

The response matrix is an m by n matrix and consists of n samples of an m-dimensional vector. In

the context of structural analysis, the response matrix consists of multiple “frames" of displacement

fields. These frames can be from different time steps of the same load path (e.g., different values

of effective tensile strain in a pure tensile load path), or they can be concatenated from multiple

load paths (bending, tension, shear, etc.).

Singular value decomposition is then performed on the response matrix, and a number of eigen-

vectors are retained. The choice of what eigenvectors to retain is made based on the relative
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magnitude of the accompanying eigenvalue; a large relative eigenvalue corresponds to a dominant

deformation mode. The matrix of these eigenvectors forms the projection matrix Φ. In this way,

the projection matrix can be formed of the critical deformation modes that govern the nonlinear

response of a structure.

As there are no restrictions on the dimension of the generalized coordinates q, the dimensions

of the projection matrix can be much larger than the dimensions of the linear substructure trans-

formation. Additionally, the generalized coordinates are not necessarily nodal degrees of freedom,

leading to even greater algorithmic freedom. For these reasons, the POD can capture nonlinear

effects where the linear substructure transformation cannot.

Zhou and Reese leveraged proper orthogonal decomposition (POD) to accurately predict the

elastoplastic response of a beam comprised of multiple substructures coupled via tied contact [88,

89]. This method uses fundamental deformations of the substructure (e.g., pure tension, com-

pression, shear, and bending) to construct the POD and demonstrated less than 5% error when

compared with the full fidelity solution. In the field of computer graphics, POD-based substructur-

ing has been shown to enable efficient computation of bodies undergoing large deformations for

real-time rendering via an extension of Featherstone’s algorithm [90]. Featherstone’s algorithm is

a method to compute the rigid body dynamics of coupled bodies (i.e., bipedal video game avatars

with rigid joints connected by elastic hinges) with a reduced coordinate space [91].

In a similar vein, a method of adding correcting deformation modes was proposed by Chen and

Archer [92]. The deformation modes are based on the eigenvectors of the structure, and a compu-

tational speedup of 5 times was reported. However, this method relies on iterative updates of the

substructure transformation during analysis, and computational efficiency could vary depending

on the particular analysis problem.

Additionally, the empirical interpolation method (EIM) has been investigated [93, 94]. The

empirical interpolation method is a two-stage POD decomposition of both linear and nonlinear

contributions, so it is a close parallel to POD-based substructuring. The EIM has been shown to be

able to capture nonlinear elasticity [95].
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Additional groups have focused on leveraging the power of machine learning to capture non-

linear structural responses at reduced computational cost [96]. In this work, machine learning is

defined as a process of optimizing various parameters related to algorithm performance to mini-

mize approximation error over a set of training data. While a comprehensive history of machine

learning applications in structural mechanics is outside of the scope of this work, herein we will

outline a few key developments that relate to nonlinear substructure methods. Specifically, we will

discuss physics-informed neural networks and the development of “smart finite elements."

The field of physics-informed neural networks (PINNs) attempts to use physical laws (e.g.,

conversation of linear and angular momentum) to better constrain regression predictions into phys-

ically realizable solutions [97]. PINNs have been shown to both discover and solve the govern-

ing partial differential equations for multiple physical phenomena including fluid dynamics and

structural mechanics [98, 99]. In the context of structural mechanics, PINNs have been docu-

mented to predict path-dependent plasticity within 0.5% error as well as learn fundamental con-

stitutive laws (e.g., hyperelasticity, viscoelasticity, or plasticity) at errors approaching machine

precision [100, 101]. Similar work has been completed using convolutional neural networks as

well [102]. Herein, we will focus on the “smart finite element,” which uses support vector regres-

sion (SVR) to approximate the nonlinear structural response of a body [103].

While classification with support vector machines minimizes training error and maximizes the

margin between the decision boundary and training data, SVR minimizes model coefficients such

that the training error satisfies a constraint [104, 105]. For example, given a linear regression model

ŷi = wixi, (1.41)

where ŷ, w, and x are the model outputs, weights, and inputs, respectively, the SVR problem

statement can be written as follows:

min
1

2
||w||2

s.t. |yi − wixi| ≤ ϵ.

(1.42)

29



By use of the so-called “Kernel trick,” the feature space by which data is approximated can be

nonlinear, so long as the feature mapping can be expressed as an inner product [106]. Possible per-

missible kernels include radial basis functions (RBFs), polynomials, and neural network Gaussian

processes.

“Smart finite elements” use SVR with an RBF kernel to approximate the nonlinear restoring

force of a body
n∑

e=1

Aefe(λe) = f(u, t), (1.43)

where e refers to the element number in question, A is the assembly connectivity matrix (that

relates local and global degrees of freedom), fe is the element-wise model prediction of force, λe

are model parameters (element type, material properties etc.), and f(u, t) represents the measured

force as a function of displacement u and time t. The SVR model is provided training data that

contains a range of model parameters (e.g., various Young’s Moduli) and training element forces.

Model reduction is accomplished via feature scaling, which can be thought of as the machine

learning equivalent of a basis transformation. In the case of the smart finite element, feature scaling

is expressed as

fe(λe) = T−1
fe f̂eTλe(λe), (1.44)

where T−1
fe is a mapping that reduces the dimensionality of the output forces via conservation of

linear and angular momentum, f̂e represents the reduced prediction of forces via support vector

regression, and Tλe(λe) is the mapping that reduces the dimensionality of the input displacements

via calculation of co-rotational displacements. Note the visual similarity between equations 1.44

and 1.15; therein lies the main mathematical basis for model reduction. To construct a reduced

order model, we hope to reduce the basis in such a way that balances accuracy and computational

cost. However, equation 1.44 is not the Schur complement of the system, as the dimensions of

both matrix transformations differ.

The smart finite element approach demonstrates the utility of using novel machine learning

techniques in situations where the training data set may be large or high dimensional, as well as
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when there is a highly nonlinear functional relationship between forces and displacements. Each

method discussed has its drawbacks and advantages; for example, non-intrusive ROMs have yet to

consider material nonlinearities, and machine-learning techniques require a very large training set.

Figure 1.8 compares and provides an implementation example for each of the three aforementioned

nonlinear substructure methods.

1.2.4 Comparisons between substructure analysis and other reduced order modeling tech-

niques

Thusfar, we have constrained our discussion to applications or extensions of substructure anal-

ysis only. However, myriad alternative methods exist that seek to accomplish the same goal: suf-

ficiently accurate predictions of structural response at reduced computational cost. Herein, we

outline two related and relevant reduced order modeling methods. Namely, we discuss nonlin-

ear homogenization and multiscale finite element analysis (MSFEA). Indeed, while substructure

analysis occupies a different technical niche than nonlinear homogenization and MSFEA, the sim-

ilarities and differences between the three fields may inspire future symbiotic developments. This

discussion is merely a cursory overview of these advanced topics, but this discussion motivates the

research developments detailed herein.

Figure 1.8: Comparison of three extensions of substructure analysis to consider nonlinear phenom-
ena. Each method requires an additional step to calculate extra terms. See references [77, 88, 103]
for more information.
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1.2.4.1 Nonlinear homogenization

The field of homogenization is a close analog to substructures; in fact, the motivation of both

methods is the same (i.e., to decrease overall computational cost), and the main differences lies

within the length scale of the unit cell/repeating unit. Most micromechanical homogenization

methods aim to provide closed-form constitutive equations for heterogeneous materials [107]. In

this way, homogenization attempts to analyze an equivalent homogeneous solid in place of an in-

homogeneous solid. These inhomogeneous solids can be represented by either a smaller repeating

unit volume or periodic microstructure (RUV), or by a representative volume element of a statisti-

cally homogeneous microstructure (RVE) [108].

In many fields, there are applications in which information about microstructures and macrostruc-

tures is essential for correct understanding of the problem at hand. Homogenization aims to bridge

the gap between the small length scale of microstructure features (e.g., cylindrical composite fibers

embedded within an epoxy matrix) and the large length scale of macroscopic components (e.g., a

composite skin-stringer system). To this end, both problems must be solved, either concurrently

or sequentially. However, certain methods such as periodic homogenization solve the micro- and

macroscale problems concurrently [109]. Periodic homogenization requires distinct scale separa-

tion; the microstructure must be extremely small compared to the macrostructure. Most analytical

homogenization methods such as asymptotic homogenization also require scale separation [110].

1.2.4.2 Multiscale finite element analysis

The multiscale finite element method (MSFEM) is another technique to solve micro- and

macro-scale boundary value problems simultaneously. MSFEM is a technique for heterogeneous,

non-periodic microstructures on several non-separable scales. General responses of non-periodic

microstructures generally are impossible to capture by means of an analytical solution. MSFEM

overcomes scale separation by replacing universal shape functions with problem-dependent shape

functions.

"The true art in numerical homogenization is to identify a localized basis of the generalized
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finite element space to preserve the favourable sparsity and complexity properties of standard

FEMs without affecting the universal accuracy" [111]. Many works in the literature identify fa-

vorable bases to balance computational cost and local accuracy; both traditional Lagrangian shape

functions and bases derived from proper orthogonal decomposition have performed well for wide

ranges of problems [112, 113]. Herein, we will not dwell on the multiscale finite element method,

besides to highlight the similarities between the current work and the existing literature.

In a way, substructure analysis is a subset of MSFEM where the fine scale domain is meshed

with a single element. The basis functions for linear substructure analysis may include the re-

tained degrees of freedom and/or the structural eigenmodes. In this work, we propose using basis

functions that draw inspiration from the mathematical framework of classical plasticity.

1.3 This work

In this work, we develop a nonlinear substructure method to account for general nonlinearities

that can be easily integrated into a design framework. Drawing an analogy from computational

constitutive plasticity models, the proposed nonlinear substructure method accurately captures

nonlinear force-displacement responses of complex components. We borrow the rich literature

developed to capture plasticity (i.e., the nonlinear relationship between the evolution of six compo-

nents of stress and strain and solution algorithms thereof) and extend the mathematical framework

describe general nonlinear force-displacement responses of arbitrary dimension. The method de-

scribed herein will be shown to accurately and efficiently predict purely nonlinear and hysteretic

force-displacement responses and responses that transition from the linear to nonlinear regime.

To contextualize this current research effort with the previously described nonlinear substruc-

ture methods, consider table 1.1. The three main classes of nonlinear substructure methods are

compared against the current work with respect to various aspects of the method. Note that these

comparisons are merely estimates of capabilities and are by no means exhaustive; each method

may be improved in one (or many) respects by further investigation.

First, the number of training cases describes the amount of input “truth” data (e.g., each training

case is represented by an experiment or a high-fidelity finite element analysis) required for accurate
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Table 1.1: The present work fills a niche in the mechanics-based reduced-order modeling
literature by capturing a wide range of nonlinear phenomena with an intuitive framework and
a relatively small sample size.

Non-intrusive
ROM

POD-based
substructure

ML
approaches

This work

Number of training cases 102 101 104 101

Regresses to linear
substructure solution

• ◦ • •
Nonlinear geometric

effects
• • • •

Nonlinear material
effects

• • •
Hysteresis ◦ • ◦
Intuitive ◦ •

Local field variables • • • ◦1

• Formulation satisfies identically◦ Special cases satisfy
1 While not addressed in this work, component failure can be assessed by constructing a second surrogate at

reduced computational cost.

prediction. While machine learning approaches typically require a large training set, non-intrusive

ROMs and POD-based substructures commonly require less than one hundred training cases. In

this work, we seek to develop a method that requires approximately ten training cases to decrease

the initial requisite computational cost.

Second, we seek a method that regresses exactly to the linear substructure solution at small

deflections. This explicit inclusion of the linear substructure solution is crucial to prevent unnec-

essary numerical integration in regions experiencing small deflections while preserving accuracy

in this regime that is so common during structural analysis in design. While non-intrusive ROMs

and machine learning approaches encode the exact linear substructure solution, the nature of the

proper orthogonal decomposition does not necessarily contain the linear substructure solution and

may lead to inefficient and inaccurate computation for applications including small deflections.

Third, we seek a solution that can predict both nonlinear geometric effects and nonlinear mate-
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rial behavior. While the generality of POD-based substructuring and machine learning approaches

enables both methods to predict a wide range of nonlinearities, non-intrusive ROMs fail to cap-

ture nonlinear material behavior due to the assumptions that are invoked to derive the reduced

governing equations.

Fourth, hysteresis (defined as path-dependency in force-displacement space) is crucial for adap-

tive structures design, as many adaptive structures leverage active materials that display constitu-

tive hysteresis. While machine learning approaches can predict path-dependency via the inclusion

of long-short term memory layers, POD-based substructures have not yet been shown to be able to

predict hysteretic structural behavior. In this current work, unloading and hysteretic material be-

havior is not investigated. For a general structure that experiences both nonlinear geometric effects

with nonlinear material behavior, the framework presented herein is unable to accurately predict

unloading. As we assume all nonlinear deformation is dissipative and irrecoverable in nature,

cyclic loading of structures with combined nonlinearities will be poorly approximated. However,

future work including non-associative flow rules and kinematic hardening laws may better predict

these crucial responses.

Fifth, the present work aims to provide a computational framework that is intuitive to future

designers via a transparent model formulation. Both non-intrusive ROMs and machine learning

approaches may be considered black-box models due to the difficulty of extracting physical mean-

ing from calibrated model parameters. Additionally, while POD modes have physical meaning in

the context of dominant deformation modes, understanding these modes require domain-specific

knowledge about spectral decomposition. By leveraging the framework of constitutive plasticity,

we develop a reduced order model wherein the model parameters can be thought of as analogs to

material properties. In this way, we hope that the physical meaning of model parameters can be

more easily understood by future designers.

Finally, to assess component failure, local field variables (e.g., stress and strain) are most com-

monly recovered via recovery of the full displacement field. While all methods described herein

have the ability to recover local field variables (and thus, assess local failure), the present method
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cannot currently assess failure. However, this functionality is outside of the scope of the present

work; in future work, failure can be measured by constructing a second surrogate of local behavior

at reduced computational cost.

In this work, the development and verification of the proposed nonlinear substructure method

is described. This dissertation is organized as follows. Chapter 2 outlines the mathematical basis

of the method, detailing the analogy to computational plasticity and the versatility to capture vari-

ous nonlinear structural responses. Chapter 3 presents implementation details crucial to accurately

and efficiently calibrating nonlinear substructures. As a notional example, we detail the devel-

opment of an eight degree of freedom nonlinear substructure comprised of a square meshed as a

single element exhibiting linear hardening. The computational framework developed for generat-

ing sufficient training data, calibrating nonlinear substructure responses, and verifying substructure

predictions is outlined. To that end, multiple case studies are presented in chapter 4. These case

studies include structures with multiple nonlinearities (e.g., large deformations and material non-

linearities) and complex internal geometries. Finally, future work describing efforts to extend the

current method to many future topics is presented in section 6.
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2. THE ANALOGY OF CONSTITUTIVE PLASTICITY TOWARDS A NONLINEAR

SUBSTRUCTURE METHOD

In this chapter, we formally introduce the analogy of constitutive plasticity and how we may

apply this analogy to develop a new method of nonlinear substructure analysis. First, we discuss

the mathematical model formulation used throughout this work. Next, we outline the solution

algorithms essential for solution of the nonlinear systems of equations. Additionally, the global

finite element analysis framework developed for this work is detailed.

2.1 Model formulation

Recall the four key components for a nonlinear constitutive law that predicts the onset and evo-

lution of plasticity (detailed in section 1.1.2): a strain decomposition that partitions the total strain

into elastic and inelastic contributions, a yield criterion that describes at what strain states inelas-

tic strain evolution initiates, flow rules that govern the nature of inelastic strain evolution after the

yield criterion is engaged, and the Karush-Kuhn-Tucker conditions, which provide a computational

framework to solve the constrained minimization process necessary to predict the current material

state. In this section, we describe how to generalize each of these components to formulate a non-

linear substructure based on the same mathematical framework, and thus solved using the same

existing algorithms.

Figure 2.1 depicts the mathematical analogy that this development of nonlinear substructures

leverages. Constitutive models of metal plasticity seek to describe the nonlinear relationship be-

tween stress and strain via an additive decomposition of strain (Hooke’s Law), an assumption of

an elastic domain (Yield criterion), and evolution equations that govern the evolution of internal

state variables (commonly called the Flow Rule). On the other hand, nonlinear substructures are

a method to describe the nonlinear structural relationship between retained forces and displace-

ments, which may be arbitrary in number but are stresses and strains integrated over the body

geometry. For a nonlinear substructure based on computational plasticity, the four key compo-
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Figure 2.1: Comparison between constitutive modeling of computational plasticity and the math-
ematical framework developed in this work to account for nonlinear substructures. Note that con-
stitutive models consist of a six-dimensional nonlinear system of equations, while nonlinear sub-
structures can be of arbitrary dimension.

nents are a deformation decomposition, a nonlinear initiation criterion, evolution equations, and

the same Karush-Kuhn-Tucker conditions. We will address each of these ingredients in turn.

2.1.1 Deformation decomposition

Recall the reduced and partitioned finite element governing equation (equation 1.35) developed

for non-intrusive reduced order modeling:

K̂û+ F̂NL = F̂, (2.1)

where K̂ represents the linear reduced stiffness matrix, û denotes the reduced displacement vector,

F̂NL describes the reduced nonlinear restoring force vector, and F̂ is the reduced force vector. In

this work, we introduce a nonlinear reduced displacement ûNL such that

F̂NL = −K̂ûNL. (2.2)
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Pre-multiplying equation 2.2 by K̂−1 produces

ûNL = −K̂−1F̂NL. (2.3)

Now, the partitioned and reduced nonlinear finite element equation for static equilibrium1 can be

written as

K̂
(
û− ûNL) = F̂. (2.4)

One can notice the clear similarity between equation 2.4 and Hooke’s law for an isotropic elasto-

plastic material at constant temperature:

C
(
ε− εpl

)
= σ. (2.5)

At this stage, the only unknown is the reduced nonlinear displacement vector. When the nonlin-

ear displacement is found, the reduced system of equations can be solved, capturing the nonlinear

structural response. Note that the reduced nonlinear displacement has no physical meaning and

cannot be mapped to a full-field response; by definition, most nonlinearities such as plasticity are

extremely local phenomena. As such, applying the linear substructure transformation in reverse to

recover the global displacement field would incorrectly predict the global structural nonlinearity

distribution.

Note that boundary conditions are not applied to equation 2.4. Rather, this equation describes

the response of a single substructure. For global finite element analysis, an incremental scheme (cf.

section 2.3) is needed. In this way, global boundary conditions are applied to the global force and

displacement vectors; equation 2.4 relates local substructure forces to substructure displacements.

Herein lies the analogy to computational plasticity. We assume that the structure of interest

obeys linear elastic behavior within a certain region and some nonlinear response outside of that

linear regime and thus, with the correct functional form to describe the nonlinear response, we can

1In this work, we do not address rate-dependency or dynamic effects. However, future work may consider structural
dynamics by drawing from the dense bodies of literature on dynamic substructuring and viscoplasticity [114].
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balance accuracy and computational efficiency. The functional form of the nonlinear displacement

is based on constitutive models for plasticity; instead of calculating stress as a nonlinear function

of strain, the models compute force as a nonlinear function of displacement.

In this way, the mathematics developed for computational plasticity are extended to predict

structural response of systems with arbitrary dimension (compared to the six dimensions of three-

dimensional stress and strain space). The rich body of literature for plasticity can be leveraged to

apply to a wide range of structural responses, and this same concept may apply to other constitutive

modeling frameworks as well (e.g., nonlinear thermoelasticity or hyperelasticity).

This analogy in some cases simplifies calculations, as Voigt notation can be avoided. For ex-

ample, the constitutive stiffness tensor is typically a fourth-order tensor that requires Voigt notation

to perform tensor multiplication. Furthermore, the difference between engineering and true shear

strains require special care while implementing constitutive laws. In the case of nonlinear sub-

structures, implementing new algorithms or model formulations is straightforward and does not

require Voight notation nor the distinction between engineering and true strains. However, while

implementation of a nonlinear substructure may be straightforward, proper selection of functional

forms requires a priori knowledge of structural response.

2.1.2 Nonlinear initiation criterion

The domain in force space in which the body obeys linear elastic behavior is quantified by

the nonlinear initiation criterion. The nonlinear initiation function can be discretized into two

categories: a initiation function g(F̂) dependent on the current reduced force vector and a hard-

ening function h dependent on the effective nonlinear displacement h(α). The nonlinear initiation

function is expressed as

f(F̂, α) = g(F̂)− h(α), (2.6)

and the specific forms of the initiation and hardening functions are described below.

In constitutive plasticity, most nonlinear initiation functions (commonly known as yield func-

tions) leverage a priori knowledge based on experimentally observed phenomenon. The most
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common example is the Mises yield surface (cf. equation 1.4), which assumes plastic deformation

will initiate when the inner product of the deviatoric stress reaches a critical value. As the force

vector does not exhibit the same properties as the stress tensor (i.e., a deviatoric force may not have

any relationship with the point at which nonlinearity initiates for a structure), we seek a general

way to capture nonlinear initiation in structures.

While constitutive plasticity considers material behavior at an infinitesimally small point, sub-

structures must account for nonlinearities due to geometry as well as material behavior. This work

leverages Hill’s anisotropic yield criteria (cf. equation 1.5) to capture structural anisotropic effects

(i.e., initiation of nonlinearity at different force magnitudes depending on the activated degrees of

freedom, as occurs in different directions):

g(F̂) =
√
F̂ · ÂF̂, (2.7)

where Â is defined as the anisotropic influence tensor [39]. The anisotropic influence tensor is con-

strained to be symmetric positive definite; future work may consider applying additional symmetry

conditions based on the material or geometry in question. Note that calculation of the nonlinear

initiation function considering structural anisotropy does not require a double dot product; this is

because the force vector and anisotropic influence tensor are one- and two-dimensional matrices,

respectively.

The symmetric positive definite anisotropic influence tensor requires calibration of numerous

structural parameters. Specifically, the number of unique parameters to be found is

N(N + 1)

2
, (2.8)

where N denotes the number of retained degrees of freedom for the substructure. Calibration of

these parameters will be addressed in section 3.2.

The form of the hardening function is determined based on a priori knowledge of substructure

response. In this work, we consider both linear isotropic hardening and nonlinear smooth harden-
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ing. Linear isotropic considers isotropic expansion of the nonlinear initiation surface proportional

to the effective nonlinear displacement:

h(α) = F y
0 +Hα, (2.9)

where F y
0 and H are defined as the yield force and hardening stiffness, respectively. When consid-

ering a substructure modeled with linear isotropic hardening, the hardening stiffness must be found

via calibration. Nonlinear smooth hardening considers a smooth transition between the linear and

nonlinear regimes:

h(α) = F y
0 +

1

2
M(ξ + αn1 − (ξ − α)n2). (2.10)

The smoothness of transition between linear and nonlinear regimes is defined by n1 and n2, which

are defined as smooth hardening coefficients. Similarly, the width of the nonlinear region (i.e.,

the maximum amount of nonlinear deformation allowed) is described by ξ while M defines the

hardening stiffness. This functional form requires the aforementioned four model parameters to be

found via calibration.

2.1.3 Evolution equations

In this work, we assume the evolution of internal state variables are governed by an associative

flow rule. Associativity implies that the change in the nonlinear displacement is directly propor-

tional to the partial derivative of the nonlinear initiation function with respect to the reduced force:

˙̂uNL = γ
∂f

∂F̂
; (2.11)

future work may investigate the application of developed non-associative flow rules, as there is

no guarantee (or even suggestion) that structural nonlinearities may be associative. However, the

present work focuses on associativity due to simplicity, and we will show the capability of asso-

ciative flow rules to capture select nonlinear structural responses.

In the case of a structure assumed to exhibit anisotropic yield, the evolution equation governing
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generation of nonlinear reduced displacement can be expressed as

˙̂uNL = γ
∂f

∂F̂
= γ

ÂF̂√
F̂ · ÂF̂

. (2.12)

In the present work, this relation holds regardless of the hardening function, as the evolution equa-

tion only depends on the partial derivative of the nonlinear initiation function with respect to the

reduced force. Thus, equation 2.12 applies to structures assumed to obey both linear isotropic

hardening and nonlinear smooth hardening.

2.1.4 KKT Conditions

Finally, solution of the nonlinear system of equations is governed by the Karush-Kuhn-Tucker

conditions, which state that the effective nonlinear displacement can only increase, the nonlinear

initiation function must always be less than or equal to zero, and the product of the change of the

effective nonlinear displacement and nonlinear initiation function must always equal zero:

γ ≥ 0, f(F̂, α) ≤ 0, γf = 0. (2.13)

The aforementioned framework, drawn from an analogy to classical plasticity, provides a versatile

toolbox with which to capture general nonlinear deformations (i.e., by implementing various forms

of nonlinear initiation functions and/or evolution equations).

To emphasize the versatility of using the mathematics developed for classical plasticity as a

framework to accurately model general structural nonlinearities, consider the force displacement

responses shown in figure 2.2. The mathematics described in figure 2.1 can account for a wide

range of phenomenon, represented notionally by the gray shaded area; any sort of structural soft-

ening can be modeled with various forms of constitutive models. Three distinct nonlinear re-

sponses are shown: asymptotic hardening, nonlinear softening, and nonlinear smooth hardening.

Asymptotic hardening can be used to predict plasticity in metal structures and nonlinear softening

resembles the response of metal forms in compression [115]. Nonlinear smooth hardening is for-
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Figure 2.2: Notional force-displacement responses that represent complex materials and can be
captured by the mathematical framework developed for computational plasticity.

mulated for shape memory alloy modeling but can approximate the response of an infilled metal

lattice [116, 117]. These complex responses can be easily modeled within the given framework;

the only difference between the three is in the functional description of the nonlinear initiation

function. Herein, we will discuss substructure model formulations that consider linear hardening

and nonlinear smooth hardening.

With the establishment of the four key components of a nonlinear substructure algorithm, the

system of equations must be discretized with respect to displacement. Displacement-controlled

nonlinear structural solvers are chosen in this work due to their ubiquity in commercially devel-

oped finite element suites. Next, we will discuss nonlinear solution algorithms to calculate the

current state variables (reduced force vector, reduced nonlinear displacement vector, and effective

nonlinear displacement) as a function of applied displacement. We will invoke algorithms used in

computational plasticity.
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2.2 Plasticity solution algorithms

In the context of computational plasticity, algorithms must determine local stress and local

tangent stiffness given the current2 (and previous) total strain increment. The solution is iteratively

found for time t = t0 to t = tf . Additionally, due to the additive decomposition of strain, find the

current local stress is dependent on finding the current increment of plastic strain. Mathematically,

this can be expressed as

σn = C
(
εn − εpln

)
. (2.14)

More specifically, solution of the current plastic strain increment relies on integration of the flow

rule for the change in plastic strain that satisfies the global finite element solver and the yield

criterion. The local tangent stiffness tensor can be calculated via the derivative of the current stress

vector with respect to the current strain vector:

∂σ

∂ε
=


C el if elastic,

C pl if plastic.
(2.15)

For nonlinear substructures, we must solve for analogous quantities in structural space. Non-

linear substructure solution algorithms must find the current reaction force vector and current tan-

gent stiffness matrix given the current and previous displacement vectors. The incremental sub-

structure governing equation locally can be expressed as

K̂
(
ûn − ûNL

n

)
= F̂n. (2.16)

Note that this equation is only sufficient for solution of the local substructure state; global inte-

gration into a finite element suite also requires calculation of the tangent stiffness matrix. The

substructure tangent stiffness matrix is calculated via the derivative of the current reduced force

2In this work, global increments are expressed as subscripts. For example, σn denotes the current stress at time
t = tn
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vector with respect to the current reduced displacement vector:

∂F̂

∂û
=


K̂ if linear

K̂NL if nonlinear,
(2.17)

where K̂NL represents the nonlinear tangent stiffness matrix of each substructure. In this work,

we once more draw an analogy to computational plasticity. As most published computational

plasticity models analytically define expressions for the tangent stiffness tensor, we can leverage

these developments for this work.

The current increment in nonlinear displacement can be solved via explicit or implicit integra-

tion. The increment in nonlinear displacement can be expressed via the general trapezoidal rule

and assuming a global discretization in time and an associative flow rule as

ûNL
n+1 = ûNL

n +∆λ

[
(1− γ)

∂f

∂F̂

∣∣∣∣
tn

+ γ
∂f

∂F̂

∣∣∣∣
tn+1

]
. (2.18)

In the previous equation, γ defines the integration method.

When γ is chosen to equal 0, explicit (or Forward Euler) integration is performed. Explicit

schemes estimate the current increment of nonlinear displacement only using the current increment

of total displacement. In this way, explicit integration schemes are relatively easy to implement

and require only a single functional evaluation to estimate the current structural state. However,

these schemes lack sufficient accuracy in highly nonlinear problems or any guarantees with respect

to convergence and solution error is cumulative with respect to simulation time. Additionally, in

the context of nonlinear substructures, explicit schemes are only feasible if the nonlinear initiation

criterion f(F̂, α) is invertible. As many nonlinear substructure load paths exhibit high degrees of

nonlinearity and non-proportionality,3 explicit schemes are not discussed herein.

Instead, we leverage fully implicit integration schemes (sometimes referred to as Backward

3Proportional loading is defined as a load path where the loading direction ∂f

∂F̂
is constant. Due to the inherent

complexity of general structures, proportional loading cannot be guaranteed in all but the simplest cases.
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Table 2.1: Comparison of the three integration algorithms discussed herein.

Solution scheme Explicit Convex cutting plane Closest point projection
Ease of implementation Good Fair Poor
Accuracy Poor Fair Good
Computational cost Good Fair Poor

Euler methods) wherein γ is equal to 1. As such, the increment in plastic displacement can be

expressed as

ûNL
n+1 = ûNL

n +∆
∂f

∂F̂

∣∣∣∣
tn+1

. (2.19)

Implicit integration schemes feature unknown quantities on both sides of the equation, and thus

require iterative solution methods. Three common iterative solution methods exist in the computa-

tional plasticity literature: Fixed point iteration (also referred to as Direct Iteration), convex cutting

plane (also known as a Newton-Raphson solver), and closest point projection (also know as New-

ton’s method). While closest point projection offers the best guarantee of convergence, it requires

calculation of a matrix inverse for each iterate and thus is very computationally expensive. Closest

point projection may be investigated in future work in cases with severe non-proportionality. A

table comparing explicit integration, convex cutting plane, and closest point projection is given in

table 2.1

Herein we will focus on the convex cutting plane algorithm, as this integration scheme offers

a convenient balance of accuracy and efficiency. The convex cutting plane algorithm assumes

that the direction of nonlinear displacement correction in reduced force space is normal to the

nonlinear surface at the current iteration, which is a slight relaxation of closest point projection.

Mathematically, this relaxation can be expressed as

∂f

∂F̂

∣∣∣∣(k+1)

≈ ∂f

∂F̂

∣∣∣∣(k) , (2.20)

which eliminates the need for a matrix inversion at every iterate, and is notably identically accurate

in the case of proportional loading.
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The current iterate in nonlinear displacement can be found via the chain rule

F̂
(k+1)
n+1 = F̂

(k)
n+1 +∆F̂

(k)
n+1 = F̂

(k)
n+1 +

(
F̂

(k+1)
n+1 − F̂

(k)
n+1

)
(2.21)

and expansion of the term for nonlinear displacement:

F̂
(k+1)
n+1 = F̂

(k)
n+1 +

[
F̂n +

(
α
(k+1)
n+1 − αn

) ∂f

∂F̂

∣∣∣∣(k+1)
]
−

[
F̂n +

(
α
(k)
n+1 − αn

) ∂f

∂F̂

∣∣∣∣(k)
]
. (2.22)

After canceling the equal and opposite nonlinear displacement and effective nonlinear displace-

ment terms, we are left with the following expression:

F̂
(k+1)
n+1 = F̂

(k)
n+1 + α

(k+1)
n+1

∂f

∂F̂

∣∣∣∣(k+1)

− α
(k)
n+1

∂f

∂F̂

∣∣∣∣(k) . (2.23)

Note that this equation is a function of the normal to the yield surface at the next (k + 1) iteration,

and is equivalent to the derivation for closest point projection.

To relax the system of equations, we invoke equation 2.20 and assume that the current yielding

direction is equivalent to the yielding direction from the previous iterate. This relaxation simplifies

the required mathematical operations for a small loss in accuracy for most load paths. As such, the

nonlinear displacement vector can be rewritten:

F̂
(k+1)
n+1 = F̂

(k)
n+1 +

(
α
(k+1)
n+1 − α

(k)
n+1

) ∂f

∂F̂

∣∣∣∣(k) . (2.24)

We denote the difference in effective nonlinear displacement ∆αk
n+1 and substitute this definition

into the above expression:

F̂
(k+1)
n+1 = F̂

(k)
n+1 +∆α

(k)
n+1

∂f

∂F̂

∣∣∣∣(k) . (2.25)

Now, the system of equations may be solved via evaluation of the difference in effective nonlinear

displacement and the previous yield direction. These evaluations depend on the particular func-

tional form of the nonlinear substructure; herein, we will derive the specific convex cutting plane
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algorithm for two functional forms:

1. anisotropic yield and linear isotropic hardening and

2. anisotropic yield and nonlinear smooth hardening.

2.2.1 Convex cutting plane algorithm for nonlinear substructures

For each global reduced displacement increment, the convex cutting plane algorithm is imple-

mented in the following manner. First, the trial force is calculated based on the current displace-

ment increment and previous nonlinear displacement increment:

F̂ = K̂(ûn+1 − ûNL
n ). (2.26)

This trial force and the previous value for the effective nonlinear displacement is then used to com-

pute the current nonlinear initiation function. For a nonlinear substructure including anisotropic

yield and linear hardening, the nonlinear initiation function for the current increment is

f̌(F̂, αn) =
√
F̂ · ÂF̂− (F y

0 +Hαn). (2.27)

Alternative, the nonlinear initiation function for anisotropic and nonlinear smooth hardening is

f̌(F̂, αn) =
√

F̂ : ÂF̂−
(
F y
0 +

1

2
M (ξ + αn1

n − (ξ − αn)
n2)

)
. (2.28)

If the calculated nonlinear initiation function is less than or equal to zero, there is no nonlin-

earity predicted in the current increment. As such, the trial force is taken as the true force, and all

nonlinear state variables are transferred with no change.

If the calculated nonlinear initiation function is greater than zero, nonlinearity is predicted

within the current increment and the corrected reduced force vector and nonlinear state variables

must be updated. This initiates the convex cutting plane algorithm. First, partial derivatives of

nonlinear initiation function with respect to both effective nonlinear displacement and reduced
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force are computed. For substructures considering anisotropic yield and linear isotropic hardening,

these crucial partial derivatives can be calculated as

∂f

∂α

(k)

= −H,
∂f

∂F̂

(k)

=
ÂF̂√
F̂ · ÂF̂

∣∣∣∣∣
(k)

, (2.29)

while substructures considering nonlinear smooth hardening exhibit a different partial derivative

of the nonlinear initiation criterion with respect to effective plastic displacement:

∂f

∂α

(k)

= −1

2
M
(
n1α

n1−1 + n2α
n2−1

)∣∣∣∣(k) . (2.30)

The key differences between convex cutting plane algorithms for different hardening formulations

only arise in steps 3 and 8 in algorithm 1. Therein lies the beauty of leveraging the mathemat-

ics developed for computational plasticity for nonlinear substructures; a wide range of different

responses can be predicted via slight modifications of the integration algorithm.

With crucial partial derivatives computed, the nonlinear correction ∆α(k) is found to map the

current yield surface to the structural state:

∆α(k) =
−f

∂f
∂α
− ∂f

∂F̂
· K̂ ∂f

∂F̂

∣∣∣∣∣
(k)

(2.31)

The nonlinear correction is used to calculate the increment in nonlinear displacement

∆ûNL(k) = ∆α
∂f

∂F̂

∣∣∣∣(k) , (2.32)

and the state variables are updated

ûNL(k+1) = ûNL(k) +∆ûNL(k), α(k+1) = α(k) +∆α(k), F̂(k+1) = F̂(k) − K̂
∂f

∂F̂
∆α

∣∣∣∣(k) . (2.33)

Finally, convergence is assessed via two criteria; the nonlinear initiation function must be close to

zero (typically 1E-5 in this work), and the nonlinear correction must be also close to zero (typically
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1E-7 in this work). If both tolerances are met, an admissible state of nonlinear state variables has

been found, global state variables are updated, and the global displacement vector advances to the

next increment. If the tolerances are not met, the new nonlinear initiation function is computed and

the convex cutting plane algorithm repeats. This process repeats until convergence is attained, or

a maximum number of local iterations is reached. The convex cutting plane with anisotropic yield

and linear isotropic hardening is presented in algorithm 1.

The current tangent stiffness matrix is required for computation of the global system of equa-

tions. Performing the partial derivative of reduced force vector with respect to reduced displace-

ment vector yields

∂F̂

∂û
= K̂NL =

(
K̂− K̂[ÂF̂]⊗ K̂[ÂF̂]

[ÂF̂] · K̂[ÂF̂]− ∂f
∂α
[F̂ · ÂF̂]

)
, (2.34)

where A⊗B represents an outer product between matrices A and B.

Evaluation of the current substructure tangent stiffness matrix can also be determined via nu-

merical approximation (i.e., central differencing or similar). Figure 2.3 depicts the components of

the tangent stiffness matrix as calculated via central differencing (shown in blue) and those calcu-

lated via equation 2.34. It can be seen that very few discrepancies exist between the two methods;

in this work, the analytical methods are leveraged to minimize computational expense. However,

future work may leverage numerical methods depending on the complexity of the substructure

functional form.

2.3 Global finite element analysis

The previous sections addressed computation of nonlinear substructure response in a local

context (i.e., determination of the reaction force and nonlinear state variables as a function of

applied displacement). However, as the main benefit of substructures is the subsequent computa-

tional speedup when substructures are included in future analyses, global finite element analysis

is paramount. Recall Dodd’s rules of thumb for leveraging substructure analysis: Substructures

should be used more than once in higher-level analyses. The computational expense associated
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Algorithm 1 Convex Cutting Plane with Linear Hardening

1: procedure LINEAR HARDENING RETURN MAPPING ALGORITHM(ûn+1, û
NL
n , αn)

2: Calculate trial force:
F̂ = K̂(ûn+1 − ûNL

n )

3: Calculate trial nonlinear initiation function:

f̌(F̂, αn) =
√

F̂ : ÂF̂− (F y
0 +Hαn)

4: if f̌(F̂, αn) ≤ 0 then
5: Update all n+ 1← n, F̂n+1 = F̂
6: else ▷ Enter return mapping algorithm
7: Initialize iteration: k = 0, ûNL(0) = ûNL

n , α(0) = αn

8: Compute intermediary quantities:

∂f

∂α

(k)

= −H,
∂f

∂F̂

(k)

=
ÂF̂√
F̂ · ÂF̂

9: Calculate nonlinear correction:

∆α(k) =
−f

∂f
∂α
− ∂f

∂F̂
: K̂ ∂f

∂F̂

∣∣∣∣∣
(k)

10: Calculate increment in nonlinear displacement:

∆ûNL(k) = ∆α
∂f

∂F̂

∣∣∣∣(k)
11: Update state variables:

ûNL(k+1) = ûNL(k) +∆ûNL(k), α(k+1) = α(k) +∆α(k), F̂(k+1) = F̂(k) − K̂
∂f

∂F̂
∆α

∣∣∣∣(k)
12: Check convergence
13: if

∣∣∣f(F̂(k+1), α(k+1))
∣∣∣ ≤ tol1 and

∣∣α(k+1) − α(k)
∣∣ ≤ tol2 then

14: Update all global state variables:

F̂n+1 ← F̂(k+1), ûNL
n+1 ← ûNL(k+1), αn+1 ← α(k+1)

15: Update n+ 1← n
16: else
17: Update all k ← k + 1
18: go to 9
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Figure 2.3: Comparison of the substructure tangent stiffness matrix computed via analytical means
(e.g., equation 2.34) versus central differencing.

with the substructure reduction procedure may exceed that of solving the full structural problem,

so substructures must be used many times to fully exploit the reduction in computational cost [63].

In this section, we will detail how a substructure is integrated within a larger global finite

element framework. We first describe the differences between conventional finite elements and

substructures, in the context of global finite element analysis. Then, we outline global solution

methods that are used in this work. Finally, we detail the in-house global finite element solver

developed for nonlinear substructure development in this work.

2.3.1 Comparing conventional finite elements and substructures

For global nonlinear finite element analysis, the solution is iteratively found for time t = t0

to t = tf (similar to a local plasticity algorithm). At each global increment, the global stiffness

matrix and force vector are initialized based on the previous solution. Then, the local material

state is solved (i.e., the current stress state and current constitutive tangent stiffness matrix at each

element integration point), these current integration point state estimates are integrated over the

element geometry (via Gauss Quadrature or similar), and the element tangent stiffness matrix is
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added to the global stiffness matrix. For finite element analysis considering nonlinear material

effects, these operations represent significant computational effort, as each determination of local

material state requires a numerical integration process like the convex cutting plane algorithms

detailed above. Note that determination of the local material state requires solution of the system

of 6 nonlinear equations that describe the relationship between local stress and local strain. For

analysis of a complex, finely meshed geometry, this can require thousands of convex cutting plane

evaluations, significantly impacting run time.

After the global stiffness matrix is assembled, the current global boundary conditions are im-

posed and the global system of equations are solved. Then, the global error is changed against a

predefined tolerance and the solution either advances to the next global increment in time or the

entire process is repeated until convergence is attained or a maximum number of global iterations

is reached. The conventional nonlinear finite element analysis scheme is presented in the flowchart

of figure 2.4.

To illustrate the requisite computational expense of a global finite element solution with mate-

rial nonlinearities, consider a structure that is meshed with 1,000 elements (Nelem). For this thought

experiment, assume each element contains Nint = 4 distinct element integration points (which is

typical for two-dimensional linear square full integration elements). Furthermore, assume each

determination of local integration point material state requires 4 convex cutting plane iterations

(NCCP = 4), which is a low estimate for highly nonlinear problems. Finally, assume that global

solution within tolerance is achieved within Nglobal = 4 global iterations (again, a conservative es-

timate) and that the analysis requires use of Ntime = 100 distinct points in time. For this example

structure, the number of distinct material point evaluations (i.e., convex cutting plane iterations) is

NMP = NtimeNglobalNCCPNintNelem = (100)(4)(4)(4)(1000) = 6.4E6. (2.35)

For a simple structure with only 1,000 elements, nonlinear material analysis requires over six mil-

lion functional evaluations. Clearly, as the structure of interest becomes more complex, nonlinear
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Figure 2.4: Conventional nonlinear finite element analysis consists of solving each local state and
performing local integration (e.g., Gauss quadrature) for every element. For large systems, this
loop is a computational bottleneck.

analysis becomes increasingly computationally expensive. Substructure analysis can theoretically

reduce the number of required functional evaluations be several orders of magnitude, as will be

shown herein.

Alternatively, nonlinear finite element analysis considering substructures replaces the element

loop with a similar loop that determines each substructure state (i.e., the reaction forces, substruc-

ture nonlinear state variables, and substructure tangent stiffness matrix). Determination of the

local substructure state requires solution of the system of nonlinear equations that are dimensioned

according to the number of retained degrees of freedom per substructure (e.g., eight degrees of

freedom for a two-dimensional square with each corner node retained). The substructure tangent
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stiffness matrix is then added to the global stiffness matrix and global boundary conditions and

global solution proceeds identically as in traditional finite element analysis (see figure 2.5). In this

way, leveraging substructure analysis eliminates the local determination of stress at integration

points and the required integration of stress over the entire element. Effectively, substructures are

pre-integrated elements that directly compute the nonlinear relationship between applied displace-

ment and resulting reaction forces at the nodes.

This pre-integration can contribute to significant computational speedup. For example, con-

sider a structure that is comprised of 10 distinct substructures and analyzed for 100 distinct time

points. Assume that each determination of local substructure state requires 8 convex cutting plane

iterations (a high estimate), and global solution also requires 8 iterations. This analysis will re-

quire the following number of distinct determinations of substructure state via a convex cutting

plane algorithm, or similar

NSS = NtimeNsubNCCPNglobal = (100)(10)(8)(8) = 6.4E4, (2.36)

where Nsub describes the number of substructures in the analysis. Evidently, the same analysis

requires 2 orders of magnitude fewer functional evaluations, and that reduction will scale with the

amount of substructures integrated within the analysis. Additionally, substructures can be inserted

into a larger analysis and coupled with conventional finite elements, offering speedup for targeted

components based on a priori knowledge. However, correct global solution algorithms are still

needed, and are discussed in the next section.

2.3.2 Global solution methods

When the global system of equations is assembled with contributions from each distinct sub-

structure (i.e., the current tangent stiffness matrix and any residual forces), the global governing

equations must be solved iteratively as well. Options for global solution mirror those for local so-

lution; direct iteration and Newton’s method are two options commonly used in literature. Herein,

we will focus our attention on a generalized Newton’s method, which is a first-order approxima-
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Figure 2.5: Nonlinear finite element analysis using substructures only requires solving the local
substructure states, which reduces the computational cost by many orders of magnitude and skips
local element integration.

tion of the Newton’s method solver. For generality, we omit any mention of reduced force and

displacement vectors, but the reader should notice that the same solution methods are applicable

to any nonlinear system of equations.

To solve the global system of equations, we introduce the concept of a residual vector R(u),

which is the difference between the product of current stiffness matrix and displacement vector

and the force vector, which in a true equilibrium state could be written as:

R(u) = K(u)u− F = 0. (2.37)

A converged solution produces a residual vector of zero, and for implementation, convergence is
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attained when the residual vector is equal to zero within a chosen tolerance. With the introduction

of a residual vector, the generalized Newton’s method proceeds as follows.

First, we formulate an initial guess displacement vector u0. This initial guess vector is com-

monly zero, but can be tuned towards the displacement at the previous solution for better con-

vergence. With the initial guess vector, the current tangent to the force-displacement curve is

computed and second order terms are omitted due to computational expense. The current tangent

is equal to

K(u0) +
∂K

∂u0

u0, (2.38)

where K(u0) is the current tangent stiffness matrix comprised of all substructure tangent stiffness

matrices, and the partial derivative of the tangent stiffness matrix with respect to displacement is

neglected due to the associated computational expense. With the current tangent approximated,

the zero of the tangent line is found by rearranging the following:

K(u0)u1 +R(u0)−K(u0)u0 = 0, (2.39)

which yields the displacement increment towards solution ∆u0:

∆u0 = u1 − u0 = − [K(u0)]
−1R(u0). (2.40)

Then, the displacement is updated via

u1 = ∆u0 + u0 (2.41)

and the tangent is recomputed with u1.

This process repeats until both the residual vector and current displacement increment are be-

low certain tolerances. The generalized Newton’s solver used in this work is presented in algo-

rithmic form below. Note that for material nonlinearities, there is not one functional form for the

stiffness matrix as a function of displacement; for example, an elastoplastic material with linear
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hardening will exhibit a bilinear force-displacement relationship. As such, the governing equation

must be discretized in time (i.e., all of the displacement vectors u become change in displacement

vectors ∆u). However, as most global finite element solvers already consider an incremental form

of the global system of equations, this is commonly accounted for.

In this work, we use both an in-house finite element solver for initial development of nonlin-

ear substructure formulations, and a commercial code (the finite element suite Abaqus, which will

be addressed in section 5.2). The generalized Newton’s method is compatible with both imple-

mentations, through in the latter its details are lost within the hidden aspect of the precompiled

proprietary code.

2.4 Chapter summary

In this chapter, we have described the analogy of computational plasticity to nonlinear sub-

structure analysis leveraged in this work. We have described the four key components (deforma-

tion decomposition, nonlinear initiation function, evolution equations, and Karush-Kuhn-Tucker

conditions) essential for prediction of nonlinear substructure response. Additionally, numerical

integration methods for calculating nonlinear state variables as a function of current displacement

were described. Integration of the aforementioned numerical integration methods within a global

finite element scheme were detailed, and finally a method to constrain substructure boundaries

based on a priori assumptions was outlined.

With this mathematical framework, nonlinear substructure response can be predicted. How-

ever, we still need to describe the computational engineering process that enables these predictions.

This computational process will be discussed in the following chapter and consists of training data

generation, substructure calibration, and verification stages.

Main findings for the analogy of computational plasticity

This chapter has multiple findings:

1. By partitioning the reduced finite element equations (equation 1.35) and assuming the

existence of a reduced nonlinear displacement ûNL, the governing equations resemble
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Algorithm 2 Substructure Assembly Solution
1: for n = 1 : N do
2: Update incremental displacement boundary conditions:

∆Un|l = (Un −Un−1) |l ∀ l ∈ L

▷ L ≡ list of specified displacement boundary conditions.
3: Update incremental force boundary conditions:

∆Fn|m = (Fn − Fn−1) |m ∀m ∈M

▷ M ≡ list of specified force boundary conditions.
4: Initialize iteration arrays: U(1) = U(0) = Un−1, u

NL(0) = uNL
n−1, α

(0) = αn−1

5: for r = 1 : maxIter do
6: for i = 1 : numElem do
7: Map current and previous global displacements onto local element.

U(r−1) → û(r−1), U(r) → û(r), u
NL(r−1)
i → ûNL(r−1), α

(r−1)
i → α(r−1)

8: Call UEL Routine:

ûNL(r), α(r), F̂(r), K̂(e)
(
û(r)
)
= UEL

(
û(r), û(r−1), ûNL(r−1), α(r−1)

)
9: Store nonlinear state variables: ûNL(r) → u

NL(r)
i , α(r) → α

(r)
i

10: Add element contribution to global stiffness matrix and global force vector:

K̂(e)
(
û(r)
)
→ K

(
U(r)

)
, F̂(r) → F(r)

11: Construct global incremental residual vector:

∆R(r) = −(F(r) − Fn−1 −∆Fn)

12: Apply global incremental displacement boundary conditions:

{K
(
U(r)

)
,∆Un|l} → K∗ (U(r)

)
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13: Solve global incremental system:

∆U(r) =
[
K∗ (U(r)

)]−1
∆R(r)

14: Update global displacement vector:

U(r+1) = ∆U(r) +U(r)

15: if r = 1 then
16: Set all displacement increment boundary conditions to zero.
17: for j = 1 : NU do

∆Un|l = 0|l ∀ l ∈ L

18: Check displacement increment residual. ϵU = ||∆U(r)||1
||∆U(1)||1

19: if ϵU < tol then
20: Update all global variables: U(r) → Un, F

(r) → Fn, u
NL(r) → uNL

n , α(r) → αn

21: go to 1
22: else r ← r + 1, go to 5

those of classical plasticity and thus the same mathematical framework can be used to

predict structural nonlinearities.

2. The versatility and extensive published literature that exists for classical plasticity

modeling can be leveraged, and a wide variety of structural responses can be captured.

3. The resulting reduced system of equations (when compared to full-fidelity finite ele-

ment analysis) may offer a two-order-of-magnitude factor of computational speedup

by replacing many costly element operations with one substructure operation.
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3. ENGINEERING IMPLEMENTATION OF THE NONLINEAR SUBSTRUCTURE

METHOD

Thusfar, we have discussed the mathematical framework of the current nonlinear substructure

method. However, this mathematical framework requires a computational workflow for imple-

mentation. This computational workflow consists of four distinct stages: training data generation,

model formulation, substructure calibration, and verification. To help elucidate the utility of gener-

ality of the developed computational workflow, we will use the structure depicted in the box below

as an example throughout this chapter.

Example geometry and material properties

Figure 3.1: Notional square geometry and associated material properties used in the example
throughout this chapter.

Throughout the chapter, we use a notional substructure of a two-dimensional square geom-

etry with eight retained degrees of freedom. This example structure measures one meter

for both in-plane dimensions and is meshed with a single reduced-order plane stress quadri-

lateral element (Abaqus element code CPS4R) of thickness 0.1 meters. Additionally, the

square is assumed to obey isotropic linear hardening, with a Young’s modulus of 20 GPa,

Poisson’s ratio of 0.33, yield stress of 350 MPa, and hardening modulus of 3 GPa.

The developed nonlinear substructure computational workflow consists of four main stages (de-
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picted graphically in figure 3.2). First, during the training data generation stage, force-displacement

histories corresponding to the retained degrees of freedom are recorded via a variety of methods.

Then, based on phenomenological response as seen in training data and a priori knowledge about

plasticity-based models (e.g., associative vs. non-associative evolution equations or isotropic vs.

kinematic hardening), a specific substructure model formulation is chosen. Next, given sufficient

force-displacement histories to reasonably predict the general structural response, the combination

of substructure model parameters are found via calibration. Finally, the calibrated substructure

response is verified or validated on an external data set. We will address stages one, three, and four

in more detail herein; stage two was discussed in chapter 2.

3.1 Stage 1: Training data generation

Once again, we draw an analogy to computational plasticity (or, more generally, computational

mechanics as a whole) to describe methods of training data generation. When calibrating a con-

stitutive model for a specific material, one typically conducts experiments where a test coupon is

subjected to a specific state of stress or strain (uniaxial tension, biaxial tension, or flexure, to name

a few examples). For simple isotropic materials, one experiment is typically sufficient to calibrate

the necessary material properties used in future analyses (e.g., Young’s Modulus and Poisson’s

Ratio). However, for complex anisotropic materials that have different responses depending on the

material orientation, multiple experiments are required to accurately compute the material prop-

erties. These experiments can be conducted by specifying either stress or strain, and measuring

the other quantity (with obvious extensions to other external state variables such as temperature or

magnetic fields).

For a nonlinear substructure, the same process is required to find accurate substructure param-

eters (e.g., components of the anisotropic influence matrix or the hardening stiffness). Instead of

specifying a stress or strain state, the displacement or force state of the retained degrees of free-

dom is specified, and the energetic conjugate is measured. Then, with the specified and measured

quantities recorded, the substructure parameters can be found (the process for finding substructure

parameters will be detailed in section 3.2). In this work, displacement histories are specified via
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Figure 3.2: Myriad options exist for computational implementation of the nonlinear substructure
method discussed herein. In this work, we concentrate on the components highlighted in gray, but
future work may consider different permutations.
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proportional displacement increments to generate a “table” of force-displacement pairs for each

retained degree of freedom. However, because of the large amount of substructure parameters

associated with the inherent anisotropy of structures, one “experiment" is rarely sufficient. As

such, we rely on techniques developed for design of experiments (DOE) to determine the specific

displacement or force states.

Herein, we concentrate on training data generated via “virtual experiments” (e.g., force-displacement

histories at the retained degrees of freedom extracted from high-fidelity FEA). However, training

data could instead be generated via physical experiments of the specific structure of interest. For

complex unit cells that will comprise a larger hierarchical structure, experiments can be performed

on the unit cell scales and used to inform a nonlinear substructure; in this way, the finite element

model of the unit cell need never be created. This is particularly advantageous when the unit

cells in question exhibit behavior that would be difficult to replicate in FEA. Instead of investing

significant computational effort to create a high-fidelity FEA model of the complex unit cell, the

nonlinear substructure can instead be calibrated with training data directly from experiment and

used in subsequent design studies.

In this work, we will consider two distinct methods for training data generation: Latin hyper-

cube sampling (LHS), and Analysis-Informed Calibration (AIC). Note that these two methods are

not the only possible avenues of generating training data; methods such as Gaussian Processes

have been documented in literature as well [118]. Additionally, other DOE techniques such as

full-factorial or fractional factorial arrays may provide enough training data, but may not span the

input space sufficiently (for example, Taguchi orthogonal arrays assume no interactions between

input variables, which may not be correct for even the simplest structure). Thus, we focus on LHS

and AIC methods in this work.

3.1.1 Latin hypercube sampling

Latin hypercube sampling (LHS) is a popular method for experimental design that combines

randomness and order [4, 119]. By definition, LHS schemes are designed to be space filling (i.e.,

combinations of input variables are evenly spaced). Additionally, LHS arrays generalize easily
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to higher dimensions (i.e., the number of retained degrees of freedom in the case of nonlinear

substructures).

LHS arrays are created by partitioning the input space into N partitions, where N denotes the

specified number of unique combinations to be analyzed. Then, design points (i.e., combinations

of input variables) are found by placing a single point to occupy each partition in the input space.

These design points are randomly located in the local “hypercube." A two-dimensional example

of an LHS array with 5 design points is depicted in figure 3.3. LHS arrays are attractive for

experimental design considering expensive functional evaluations, because they guarantee a space-

filling array agnostic of the number of samples specified (compare this to a full-factorial array,

where the number of samples is given by the number of levels raised to the power of the design

space dimensionality).

x1

x 2

x2x1

0 1

1

0

Sample

1
2
3
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0.51
0.92
0.05
0.76

Figure 3.3: Example LHS array in two dimensions with 5 samples or design points.

In this work, an LHS array of size ten is commonly used. While ten samples may not accu-

rately characterize the wide range of diverse structural responses possible, especially when most

substructures in this work are specified to retained eight degrees of freedom, a ten-experiment

LHS array is assumed to balance computational cost and accuracy. See appendix B for more de-

tails about the tradeoff between calibration accuracy and required computational cost, though very
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high accuracy for simple examples will be shown in 3.2.

The randomly generated LHS array specifies all retained degree of freedom displacements for

a pre-determined number of load cases. Given the input displacements for each degree of freedom

and each load case, the resulting reaction forces are then measured as a function of time via high-

fidelity FEA. These force-displacement histories form the training data set that is then used for

subsequent calibration. The box below describes the LHS array and resulting force-displacement

histories used for our notional example of a single-element square; in this example with ten load

cases and eight retained degrees of freedom, the resulting LHS array is an eight-by-ten matrix of

displacements.

Note that the randomness of LHS arrays may result in non-physical structural responses. For

example, hourglass modes may be triggered in the single reduced-integration element investigated

herein. These spurious deformation modes will not be able to be captured with the current frame-

work, but herein we investigate this simple example for the purposes of testing the following hy-

pothesis only: can the mathematics of a constitutive plasticity model be extended to capture a

structural nonlinearity? To that end, a reduced integration element is used despite its clear defi-

ciencies and lack of relevance for hierarchical structures design. These spurious responses could

be avoided by filtering during pre-processing or changing the element formulation.

Example Latin Hypercube Sampling Calibration

The example single element square structure is subjected to a randomly generated LHS array

of displacements of size ten, resulting in ten unique training load cases (i.e., vectors of eight

final displacements corresponding to the eight retained degrees of freedom) for subsequent

calibration. The input displacements are bound based on the maximum effective strain; in

this example, the input displacements are bound via:

ûs ∈ [−0.05l, 0.05l], (3.1)

where ûs denote the specified displacements and l denotes the characteristic length of the
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substructure (1 m in this example). Finally, another unique LHS array comprises the testing

data set which can be used for hold-out validation (discussed in more detail in section 3.3.1).

Effective plastic strain contours for all training and testing load cases are depicted in fig-

ure 3.4.

0

14

Equivalent
Plastic Strain, %

Training Set Testing Set

Figure 3.4: Equivalent plastic strain contours for the training and testing data sets of the
example LHS-based calibration. Recall that each domain is represented by a single reduced-
integration quadrilateral element, thus the lack of solution gradients in a given structure.

3.1.2 Analysis-informed calibration

The aforementioned Latin hypercube sampling scheme aims to fully characterize the general

substructure response with respect to all possible input displacements. However, for design of

hierarchical structures, the individual unit cells are only subjected to a small subset of possible in-

put displacements. As such, analysis-informed calibration specifically calibrates the substructure

towards the displacements that each unit cell will most likely actually experience during loading.

This concept has been investigated for prior work; Zhou and Reese calibrated POD-based substruc-

tures using fundamental deformation modes (e.g., tension, compression, bending, and shear) [88].

However, calibrating a nonlinear substructure based on fundamental deformation modes assumes

linear superposition with respect to each distinct deformation mode. While this assumption holds
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for POD, the mathematical framework based on constitutive plasticity violates this assumption.

In this work, we determine approximate substructure training displacements by analyzing the

hierarchical structure of interest with simple placeholder substructure unit cells (commonly single-

element squares). The displacements of each placeholder unit cell are then used to form the dis-

placements specified for training, and the complex substructure is then subjected to each individual

load case. In this way, multiple different complex substructures can be trained to best approximate

the response of a unit cell within a hierarchical structure, enabling heterogeneous arrays of sub-

structures. Additionally, as the hierarchical structure only need be analyzed once, and with simple

placeholder unit cells, computational cost is minimized.

Approximating the displacements that complex substructure unit cells will experience by a

simple placeholder is assumed to be realistic. Clearly, this same technique would not extend to

force-specified training data, but in this work we concentrate on displacement-specified cases. Fu-

ture work will investigate the validity of this assumption with more complex hierarchical structure

analysis. Additionally, the same concept can be applied to structures comprised of a single sub-

structure. For example, consider an SMA torque tube that actuates a morphing device. In this

instance, the SMA torque tube can be trained via all possible applied loadings (pure torsion, com-

bined tension-torsion, etc.). The calibrated substructure can then be inserted in future system-level

analyses with reduced computational cost. In this work, we use the case study of a sweep morphing

wing to motivate hierarchical structural design.

The specific sweep morphing wing analyzed in this work is assumed to have a compliant area

on the inboard trailing edge. Herein, we assume that the compliant region is comprised of twelve

distinct unit cells, each of which will be modeled as a different substructure. The high-lift and loiter

configurations for this example are shown in figure 3.5. Morphing between the two cases requires

a structure that is flexible in shear but stiff in response to out-of-plane loading. Additionally,

the combined tension-shear in-plane loading may require an array of different substructures (i.e.,

different materials or geometries depending on the location of the substructure within the array)

to best balance in-plane flexibility and out-of-plane stiffness against a spatially variable transverse
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pressure field.

Figure 3.5: Designing a hierarchical structure comprised of many discrete unit cells may offer a
compromise between flexibility in shear and out-of-plane stiffness.

In this work, the morphing action between high-lift and loiter configurations is abstracted to

a structural boundary value problem via combined tension-shear boundary conditions. The entire

array is assumed to measure three meters in width and four meters in height, with each inte-

gral substructure resembling a square with one meter characteristic lengths and an out-of-plane

thickness of 0.1 m. The upper-left corner of the assembly is displaced 0.7 m and 0.5 in the x−

and y−directions, respectively. The upper-right corner of the assembly is displaced 0.7 m in the

x−direction, but fixed in the y−direction. The bottom edge of the assembly is fixed in both x and

y and the non-zero applied boundary conditions are interpolated between each corner to simulate

being coupled to the UAV body. A graphical depiction of the boundary conditions used in this

work is shown in figure 3.6.

This specific example can demonstrate the utility of the present work because each unit cell

experiences a different local load condition. Additionally, as the displacement field is heteroge-

neous and this problem lacks scale separation, previously mentioned techniques such as numerical
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Figure 3.6: The boundary conditions applied to the sweep morphing wing exhibit combined
tension-shear behavior of varying magnitude, leading to a diverse range of responses within the
substructures.

homogenization would fail to produce realistic results. Finally,this problem is inherently nonlinear,

as the boundary conditions demand for each unit cell to experience finite rotations.

With the assembly layout and boundary conditions defined, generation of the training data

required for analysis-informed calibration can be performed. This is accomplished by analyzing

a representative design with the assembly-level boundary conditions applied. Subsequently, the

local displacement fields for each substructure are extracted and applied to single unit cells. In

this way, analysis-informed calibration creates a dataset where the training data is based on the

application in which instantiations of the substructure will be integrated. The analysis-informed

calibration scheme is discussed in more detail in the box below.
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Example analysis-informed calibration training data generation

The example single element square structure is inserted into a representative assembly-level

analysis; in this case, the assembly-level analysis mimics a sweep morphing wing. With

the resulting displacement field for the entire assembly found (requiring one finite element

analysis), the corresponding displacement field for each substructure then forms the training

data set. In this example, analysis-informed calibration provides 12 training load cases.

Contours of maximum principal strain for the assembly-level analysis and resulting analysis-

informed calibration load cases are depicted below.
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Figure 3.7: Maximum principal strain contours for each analysis-informed calibration load
case.

Analysis-informed calibration aims to provide a targeted data set with which the optimal set

of substructure model parameters can be found. It is hypothesized that this targeted data set of

force-displacement histories will enable better predictions of this specific assembly-level analysis.

However, this training data generation scheme may overfit the data towards solution of the chosen

assembly-level analysis. As such, one must use the Latin hypercube sampling scheme if the same

substructure calibration is to be used in a wide range of different assembly-level analyses. In this

next section, we will address the techniques used to find the optimal combination of substructure

model parameters, termed calibration in this work.
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3.2 Stage 3: Calibration of substructure model parameters

The training data generation stage produces various force-displacement histories for each re-

tained degree of freedom towards the second step in the present nonlinear substructure framework:

calibration. In this work, calibration denotes the process of finding the combination of substruc-

ture model parameters to best approximate the linear or nonlinear force-displacement histories

from the training data set. Each unique substructure (i.e., different geometry or constituent ma-

terials) requires a separate calibration process. Herein, we discuss the procedure for calibrating

general substructure responses.

Recall the two nonlinear substructure model formulations discussed in chapter 2: anisotropic

yield with linear isotropic hardening and anisotropic yield with nonlinear smooth hardening; specifics

of each are given in tables 3.1 and 3.2, respectively. Model parameters that need be calibrated nu-

merically are shown in blue (e.g., Â and H for anisotropic yield and linear isotropic hardening),

while the force at which nonlinearity initiates F 0
y is displayed in green to denote the fact that it

is approximated analytically (see section 3.2.1.1 for more details). As the anisotropic influence

matrix Â is dimensioned according to the number of substructure retained degrees of freedom and

is constrained to be positive symmetric definite, the number of free variables required for definition

of the anisotropic influence matrix is
n(n+ 1)

2
, (3.2)

when structural symmetries are neglected (cf. section 6.2.3.2). The number of free variables

required for definition of the hardening function is one and four for linear isotropic hardening

and nonlinear smooth hardening, respectively. Clearly, determination of the components of the

anisotropic influence tensor suffers from the curse of dimensionality; in the case of an eight re-

tained degree of freedom system, thirty-six components must be found.

Herein, we draw inspiration from the existing parameter identification literature for determin-

ing free variables in constitutive laws. Then, we define error metrics used to assess quality of

accuracy between substructure prediction and training data. Finally, we describe optimization pro-
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Table 3.1: Nonlinear substructure model formulation for a structure assumed to exhibit anisotropic
yield and linear isotropic hardening.

Deformation Decomposition K̂ (û− ûNL) = F̂,

Nonlinear initiation criterion f(F̂, α) =
√
F̂ · ÂF̂− (F 0

y +Hα)

Flow rules ˙̂u
NL

= γ ∂f

∂F̂
, γ = α̇

KKT conditions f(F̂, α) ≤ 0, γf = 0, γ̇ ≥ 0.

Table 3.2: Nonlinear substructure model formulation for a structure assumed to exhibit anisotropic
yield and nonlinear smooth hardening.

Deformation decomposition K̂ (û− ûNL) = F̂,

Nonlinear initiation criterion f(F̂, α) =
√

F̂ · ÂF̂− (F y
0 + 1

2
M(ξ + αn1 − (ξ − α)n2))

Flow rules ˙̂u
NL

= γ ∂f

∂F̂
, γ = α̇

KKT conditions f(F̂, α) ≤ 0, γf = 0, γ̇ ≥ 0.

cedures that assist in a more efficient search of this multi-dimensioned input space (i.e., the space

of all combinations of substructure model parameters).

3.2.1 Parameter identification

“For nonlinear systems, the computations needed to establish any complete constitutive law

are formidable indeed." [120]. While written in the 1960’s, Hill’s conclusion is still true today.

Furthermore, establishing a complete description of a nonlinear substructure model has the poten-

tial to be even more intensive, as the number of parameters to be found increases with increasing

retained degrees of freedom squared. Thankfully, a rich body of literature exists for parameter

identification of constitutive laws; what follows is a brief summary of common methods that apply

to our intentional structural analogy.

Numerical parameter identification typically involves minimizing an error ϵ over a set of possi-

ble parameters x. This error is based on the difference between model prediction and experimental

or computational training data. Some groups have used mean-squared-error between the respec-

tive force vectors, while other methods define error as difference between prescribed forces and
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product of stiffness matrix and displacement [121, 122, 123]. Error is based on the predicted and

measured forces in this work. Additionally, minimization is typically accomplished via optimiza-

tion, which will be discussed in section 3.2.3. In the case of nonlinear substructure analysis, the

linear substructure response is first characterized and then forms the basis for calibration of the

nonlinear model parameters.

3.2.1.1 Linear response determination

The linear substructure response is extracted via a concurrent linear substructure operation (via

static condensation or a similar method; in this work, the Abaqus command *SUBSTRUCTURE

GENERATE is used). This operation produces the system reduced stiffness matrix K̂ that is used as

the basis for the nonlinear substructure formulation. Finally, initiation of nonlinearity is measured

for each sample by measuring the force residual between the linear solution and the nonlinear

finite element result. For use in future nonlinear calibration efforts, the yield force F 0
y is set to

the maximum approximated value across all samples (the reader is referred to the algorithm below

for more specifics). This quantity appears solely in the nonlinear initiation function and shares

dependencies with the anisotropic influence tensor and the scaling of nonlinear displacement; the

approximation of the yield force is merely to bound other design variables. With the training and

testing data sets created and the linear substructure response calibrated, the nonlinear substructure

response must be calibrated.

Algorithm 3 Yield Force Calculation
1: for i = 1 : N do ▷ Iterate over each of N training load cases.
2: for t = 1 : tf do ▷ Iterate over the recorded force-displacement history.
3: if ||K̂ût − F̂t|| > tol then ▷ Measure the residual from the linear prediction.
4: ||F̂t|| → F̂ y

i ▷ Record the force vector at which nonlinearity initiates.
5: go to 1
6: max (F̂y)→ F y

0 ▷ Record the maximum approximated yield force.

75



Figure 3.8: The structural response of a body varies with the boundary conditions applied.

3.2.1.2 Constraining edge displacement

In this work, we are interested in developing a method to accurately and efficiently predict the

structural response of arrays assembled from multiple substructures. Retained degrees of freedom

are chosen to be the minimal set of degrees of freedom to describe the body; commonly, in the

case of a square initial geometry (with varied internal materials and complex internal geometry),

the four corner nodes are retained. In the case of a two-dimensional part assumed to obey plane-

stress or plane-strain behaviors, this results in an eight degree-of-freedom substructure. However,

when the structure is comprised of many (≈1E3) individual elements, the structural response will

drastically differ depending on the shape of the substructure boundary.

For example, consider the structure depicted in figure 3.8. This structure is meshed with four

square elements, and for subsequent analyses 6 nodes (and 12 degrees of freedom) are retained.

If this substructure is part of a larger assembly and the substructure boundary is constrained, the

linear substructure response will be different than if the substructure boundaries are allowed to de-

form. Because the linear response is different, consideration of admissible boundary deformations

must be included in determination of the linear reduced stiffness matrix K̂. Herein, we compare

two different methods to find the linear reduced stiffness matrix: a two-step condensation process
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Figure 3.9: An approximate reduced stiffness matrix can be found by considering master degrees
of freedom and interface degrees of freedom.

and the “direct stiffness method” described by Whitcomb and Woo [124].

The two-step condensation process is reminiscent to the process detailed for geometric parti-

tioning in section 1.2.3.1. As an example, we will use a square structure meshed with four elements

shown in figure 3.9. The governing structural equations are partitioned into eliminated degrees of

freedom uE (shown in red), interface degrees of freedom uI (shown in blue), and retained degrees

of freedom uR (shown in green). Mathematically, this can be represented as:


KEE KEI KER

KIE KII KIR

KRE KRI KRR



uE

uI

uR

 =


FE

FI

FR

 . (3.3)

For the example structure, the total displacement vector exists in the 18-dimensional space of real

numbers, which is the union of the spaces of eliminated, interface, and retained degrees of freedom:

u ∈ R18, u ∈ RE ∪ RI ∪ RR. (3.4)

The first step in the condensation process is to perform a standard substructure reduction on

the eliminated degrees of freedom. The resulting governing equation now just considers interface

and retained degrees of freedom, but includes the stiffness contribution of the eliminated degrees
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of freedom:  K̂II K̂IR

K̂RI K̂RR


uI

uR

 =

 F̂I

F̂R

 . (3.5)

For the above example, this substructure reduction decreases the dimensionality of the displace-

ment vector by two, as there is only one eliminated node in two-dimensional space:

û ∈ R16, û ∈ RI ∪ RR. (3.6)

This reduction from the full set of degrees of freedom to the interface and retained degrees of

freedom can be accomplished via traditional methods using the Schur complement; in this work

we use the Abaqus *SUBSTRUCTURE, GENERATE command, but other methods exist.

The second condensation modifies the governing equations to solely consider the retained de-

grees of freedom by a similar transformation T:

û = Tũ, (3.7)

where û describes the retained and interface degrees of freedom, while ũ denotes the retained

degrees of freedom only: uI

uR

 = T

[
uR

]
. (3.8)

This transformation T contains geometric constraints on the interface degrees of freedom as a

function of the retained degrees of freedom. Note that this transformation is different than the

typical substructure transformation. As such, the final system of equations written in terms of the

retained degrees of freedom only:

K̃ũ = F̃. (3.9)

To determine the correct geometric transformation T, we will draw from conventional inter-

polation functions commonly used in finite element analysis. Herein, we will consider linear in-
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terpolation functions. In the context of substructures in this work, linear interpolation functions

assume that substructure boundaries remain straight throughout deformation. Mathematically, the

geometric transformation consists of n vectors describing the interpolation functions:

T = [ϕ1, ϕ2, · · · ϕn] , (3.10)

where ϕ describes the interpolation function and n denotes the number of retained degrees of

freedom. Assuming linear deformation at the substructure boundary, the interpolation functions

can be expressed as:

ϕ1i =
xb − xi

xb − xa

, ϕ2i =
xi − xa

xb − xa

, (3.11)

where x denotes the independent geometric coordinate (i.e., the x-coordinate on a horizontal edge

or the y-coordinate on a vertical edge) and subscripts b, a, and i denote the end, start, and current

coordinate location on the edge in question, respectively.

For example, consider the left edge of the substructure in figure 3.9 (degrees of freedom 1-3).

Assuming linear deformation at the boundary, the specific transformation expression can be written

as: 
û1

û2

û3

 =


1 0

0.5 0.5

0 1


û1

û3

 . (3.12)

Intuitively, this relation states that the displacement of the interface degree of freedom û2 will be

constrained to be the average of the two retained degrees of freedom û1 and û3. This same proce-

dure can account for an arbitrary number of interface degrees of freedom. Additionally, irregular

initial geometries can be constrained by mapping to a master element similar to the procedure

in linear finite element analysis [18]. Herein, we will restrict our investigation to square initial

geometries, but future work may consider only initial geometries depending on the needs of the

particular analysis problem.

Alternatively, the linear reduced stiffness matrix K̂ can be found by subjecting the structure to
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a series of boundary conditions. This method, termed the direct stiffness method, is much faster for

large systems (i.e., structures with more than 2000 DOFs) as it avoids large matrix multiplication

operations and large file input/output operations. The direct stiffness method relies on the physical

definition of a stiffness matrix: the resulting force due to a prescribed displacement.

In this way, the a row of the reduced stiffness matrix can be determined by measuring the

reaction force at all degrees of freedom when one degree of freedom is prescribed a non-zero

displacement. This process repeats for all degrees of freedom (i.e., analyzing the structure with

each degree of freedom perturbed separately), and thus the entire stiffness matrix can be found.

Mathematically, the direct stiffness method can be written for one row of the reduced stiffness

matrix as

K̂j,1 =
F̂j

û1

, (3.13)

where û1 denotes the non-zero prescribed displacement.

This same process can be extended to consider fine meshes with interface degrees of freedom.

In these cases, the interface degrees of freedom are displaced according to the interpolation from

the “master" degrees of freedom, all reaction forces at interface degrees of freedom are measured,

and then the reduced forces are computed by applying the geometric transformation T:

F̂ = TTF. (3.14)

This inner product is much more computationally efficient than the full basis transformation, and

for large systems the direct stiffness method is orders of magnitude faster than the two-stage con-

densation approach.

Clearly, both methods discussed herein can be extended to many different boundary interpo-

lation functions. For example, if the retained degrees of freedom are the nodal translations and

rotations at each corner, Hermite cubic functions can be implemented. Conversely, if three nodes

are retained on a face or edge, quadratic interpolation functions can be leveraged. Additionally,

other methods of interpolation such as Kriging, Radial Basis Functions, or Class-Shape Transfor-
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mations can be similarly integrated within the current framework [125, 126, 127]. The choice of

boundary interpolation function relies on balancing adequate approximation of deformation and

calibration complexity; in this work, we will restrict ourselves to linear interpolation functions for

the purpose of straightforward demonstration.

3.2.2 Error metrics

To assess the quality of a particular calibration, an error metric must be used. In this work,

three distinct error metrics were investigated, although others could be more appropriate depending

on the substructure in question. Conventional error metrics (also referred to as distance metrics)

should satisfy the following three attributes:

1. Non-negativity, which states that the error ϵ for any two observations p and q must satisfy

ϵ(p, q) ≥ 0. (3.15)

2. Symmetry, which states that the error between observations p and q is equal to the error

between observations q and p:

ϵ(p, q) = ϵ(q, p). (3.16)

3. The triangle inequality, which states that the error between two observations must be less

than or equal to the sum of two errors that include an intermediate point:

ϵ(p, q) ≤ ϵ(p, r) + ϵ(r, q). (3.17)

Additionally, error metrics specific to the present work should exhibit the following properties

for ease of understanding and broad applicability.

1. Normalized: The error metric must be bound on O(1), or lower. This is crucial for providing

an intuitive error metric. While not every error metric in this work is normalized, this prop-

erty can be addressed in the future via post-processing (e.g., normalizing the error metric by
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a worst-case calibration prediction).

2. Distribution-agnostic: As there is no guarantee that the substructure calibration will produce

a dataset that is normally distributed, the chosen error metric must not include any assump-

tions about statistical distribution.

3. Robust to outliers: In this work, we are concerned with matching substructure response over

the entire spectrum of possible deformations. If an error metric is not robust to outliers,

the calibrated solution may overly penalize certain individuals that perform well for a wide

range of deformations, but fail to predict one distinct case (or, in the extreme, one single data

point).

4. Agnostic of sample size: As the calibration and training data generation schemes may rely

on different force- or displacement increment sizes, the error metric must be able to measure

the distance between datasets of different size. This may be handled by appropriate pre-

processing of the training data or calibration prediction via interpolation.

In this work, three distinct error metrics are discussed: the Minkowski distance, the Haus-

dorff distance, and relative error. The Minkowski distance ϵ between vectors p and q is defined

mathematically as:

ϵ =

(
n∑

i=1

|pi − qi|m
) 1

m

, (3.18)

where m denotes a user-specified power. When m equals two, the Minkowski distance is identical

to the Euclidean distance. Alternatively, the Minkowski distance where m equals a very large

number is the so-called infinity norm, which penalizes outliers more. In this work, a Minkowski

distance where m equals two is used for calibration, while a factor of m equals one is used for

verification. This metric is robust to outliers, normalizable via inclusion of additional scaling

factors, but requires the data sets p and q be of the same dimension. To accomplish this, the

testing data set is interpolated to match the training data set before error analysis. Additionally,

to extend the Minkowski distance to two dimensions, each dimension must be analyzed separately
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(e.g., compute the mean of the error in both the x- and y-directions).

Alternatively, the Hausdorff distance can be used, which is defined as the maximum distance

from a point in set to the closest point in the other set. Mathematically, this can be expressed as:

ϵH(p, q) = max

{
sup
p∈p

d(p,q), sup
q∈q

d(p, q)

}
.

The Hausdorff distance can be computed agnostic of sample size or dimension. However, it is by

definition an outlier metric (i.e., only one point forms the basis of the metric). Additionally, con-

sistent normalization is infeasible, as the maximum Hausdorff distance approaches infinity. While

the Hausdorff distance is not discussed in this work, its use may benefit certain applications or sub-

structures. As such, it is included within the computational framework for future consideration.

Finally, for a simple normalized error metric, the relative error between substructure prediction

and finite element results can be used. Mathematically, the relative error is defined as

ϵ =

∣∣∣∣p− q

q

∣∣∣∣ , (3.19)

where p denotes the substructure prediction and q denotes the finite element result. While this

metric is also susceptible to outliers, it is commonly used as a first-order measure of agreement

and is used in this work to measure accuracy for assembly verification (discussed in section 3.3.2).

In the case of substructure calibration, displacements or forces are specified at all retained de-

grees of freedom. The energetic conjugate to the specified quantity is used to assess error between

a particular substructure prediction and the associated training data. For calibration, the chosen

error metric is then manipulated based on the amount of load cases tested and other normalization

techniques, and forms the cost function for optimization of the substructure parameters. Depending

on the chosen calibration error metric, the resulting substructure solution may differ. For example,

implementing a Hausdorff distance or infinity norm may result in a solution that penalizes outliers.

Future work may investigate a wide range of possible error metrics; in this work, we restrict our

discussion to the mean squared error. Now, we turn our attention to optimization routines that

83



are leveraged to find the optimal set of substructure parameters to best approximate substructure

response.

3.2.3 Optimization

With the error metric selected, calibration requires optimization over the substructure param-

eters to minimize such error. Because the space of possible parameter combinations is so large,

careful attention must be paid to find a globally optimal result. To that end, we consider a hybrid

optimization approach comprised of a population-based heuristic optimization method followed

by a gradient-based iterative algorithm. We will discuss each stage in the hybrid approach herein.

Population-based heuristic optimization algorithms are methods to search the design space via

rules of some proposed logic rather than via calculation of gradients or Jacobian matrices. As

such, these methods may be computationally inefficient and require many functional evaluations.

However, population-based heuristics are applicable to arbitrary, black-box functions and exam-

ples such as genetic algorithms (GA) or particle swarm optimization (PSO) have been shown to

find sufficient global optima in a wide range of applications [128, 129, 130, 131, 132]. In the con-

text of the present nonlinear substructure work, we use a genetic algorithm (specifically, NSGA

implemented in DEAP) to explore the large initial parameter space to hopefully converge on a

point near the global optimum [133, 134]. But, because the true global optimum is not guaranteed

to be found via this heuristic method, we rely on a gradient-based algorithm to conduct a focused

search in the region of the GA-specified optimum.

Gradient-based iterative methods attempt to find an exact solution to the mathematical opti-

mization problem; example algorithms include sequential-least-squares quadratic programming,

steepest descent, and conjugate gradient approaches [135, 136, 137, 138]. These methods typi-

cally require fewer functional evaluations but may not find the global solution, instead converging

on local minima that satisfy optimality conditions. For this work, the initial evaluation point x0

is informed by the genetic algorithm to avoid local minima as much as possible. As analytic gra-

dients are impossible to derive generally for nonlinear substructure calibration (e.g., no analytical

expression exists for ∂ϵ/∂x), gradients are approximated using central differencing. We leverage
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the SLSQP algorithm implemented in SciPy herein [139].

Throughout this work, single-objective optimization algorithms are used, with penalty con-

straints on individuals that fail during analysis (e.g., the convex cutting plane algorithm fails to

find an admissible force state). However, future work may investigate multi-objective optimization

approaches such the non-dominated sorting genetic algorithm (NSGA-III), especially for analysis-

informed calibration [140, 141, 142]. One can imagine, for an assembly-level analysis with varied

loadings applied (e.g., an array of substructures in which certain unit cells experience pure shear

while other experience pure tension), the optimal set of parameters would vary as a function of ap-

plied loading. Multi-objective optimization may be an option to better find and store parameter sets

that could be used to better fit these diverse response instead of calibrating a single substructure

that best minimizes mean error.

3.2.4 Nonlinear response calibration used in this work

The substructure nonlinear response is calibrated via the hybrid optimization scheme described

to determine the best model parameters based on the chosen substructure functional form and train-

ing data. Optimization parameters (e.g., population size, mutation rate, etc.) are chosen according

to prior knowledge and accepted best practices, and are detailed for each specific example. The fit-

ness function of a specific calibration is determined by a normalized root-mean-squared error (i.e.,

a normalized Minkowski distance where m = 2) of the substructure predicted force vector versus

the training data force vector for all considered load cases. Mathematically, this can be expressed

as:

ϵ =
1

m

1

r

m∑
j=1

1

max||F̂FEA
∗j ||

√√√√ 1

n

n∑
i=1

(
F̂pred

ij − F̂FEA
ij

)2
, (3.20)

where m and n denote the size of the training set and the number of data points extracted from

each training load case, respectively, F̂pred
ij describes the force vector predicted by the substructure

for each data point in the training set, and F̂FEA
ij describes the force vector recorded via FEA for

each data point in the training set. Additionally, r denotes the number of retained degrees of

freedom for the substructure of interest, and max||F̂FEA
∗j || represents the maximum measured force
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magnitude for a particular load case. While the normalization factors m, r, and n do not change

the optimization result, they are crucial to produce an error metric reminiscent of a percent error.

The maximum measured force magnitude, however, is needed to equally weight each load case

with respect to the rest of the training set.

Future work may investigate the sensitivity of substructure calibration on error metric. Chang-

ing normalization strategies to bias calibrated solutions towards load cases with higher force mag-

nitudes may provide more accurate substructures depending on the problem of interest. Leveraging

other error metrics such as the infinity norm or Hausdorff may penalize outlier solutions more, and

thus drive the optimization towards a solution that better fits the entire training set.

For the purposes of calibration, optimization free variables consist of any substructure model

parameter that is not calculated in the linear characterization step. These parameters fall into two

categories: nonlinear initiation variables and hardening variables. Nonlinear initiation variables

determine the coefficients of the anisotropic influence tensor. To guarantee positive symmetric

definiteness of the anisotropic influence tensor, the following relation is implemented:

Â =
1

2
(L+ LT) + cλI. (3.21)

In this equation, L is a lower triangular matrix whose components denote the yield variables, c

is a constant of value greater than unity (1.25 is used in the present work), and λ is the smallest

eigenvalue of the following:

λ = min
(
[L+ LT]λ = λx

)
(3.22)

This decomposition is used to ensure positive definiteness of the anisotropic influence tensor, all

yield variables are bounded between -1 and 1, and the possible values approximately lie within

a normal distribution about 0. Note that these variable bounds are only possible with accurate

approximation of the yield force during the linear characterization step. Additionally, due to the

nature of the present decomposition, the bounds of the yield variables do not strictly correspond to

the bounds of the anisotropic influence tensor. Hardening variables are bounded by realistic limits
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based on the training data collection and are problem specific.

3.2.5 Local solution scaling

In some problems, it is important to scale input displacements to ensure that output forces are

all of the same magnitude. In constitutive plasticity, as the mathematics relate strains to displace-

ments, everything has the same units and order of magnitude. For a general structural response,

we lose that guarantee; many situations exist where the forces or displacements for certain de-

grees of freedom will be orders of magnitude larger than others. Two examples of this would be

a substructure whose retained degrees of freedom contain both displacements and rotations, and

a substructure that has a geometric aspect ratio much greater than one. With substructures that

relate displacements and rotations to forces and moments, the need for scaling is evident due to

discrepancies in units; displacements are a length and on the order of the characteristic part di-

mensions, while rotations are always O(1). Herein we will only discuss substructures that capture

displacements and rotations; geometric aspect ratios greater than one will be addressed in future

work.

In this work, order of magnitude discrepancies between displacements and rotations are ac-

counted for during pre-processing. The ideal system will have all scaled degrees of freedom

bounded on [-1,1]. This allows for the substructure model parameters (e.g., Â, ξ) to be bounded

on the same interval, and it allows for displacements and rotations to have the same power in terms

of nonlinearity initiation. To that end, the maximum force and moment in the training data set

is recorded and used to normalize the error for each specific degree of freedom in the calibration

stage. Mathematically, this can be expressed as:

ϵ =
1

m

m∑
j=1

1

F̂
max
j

√√√√ 1

n

n∑
i=1

(
F̂pred

ij − F̂FEA
ij

)2
, (3.23)

Additionally, the maximum displacement and rotation for each degree of freedom is recorded

and used to normalize the training data set. This allows the substructure routine to operate on

normalized quantities O(1); an unscaled force is returned, preserving the true order of magnitude in
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question. Scaling both displacement and force vectors at different points allows for equal weighting

of both types of deformation as well as uniform bounding of substructure model parameters.

3.2.5.1 Example calibrations

To demonstrate the calibration process, the notional eight degree of square structure is used as

an example. The mathematical optimization statement for calibration is

min
x

ϵ̄ (3.24)

x ∈ [0, 1] (3.25)

where the error ϵ̄ is defined to be the average mean squared error over the training set (cf. equa-

tion 3.20). Additionally, the design variables x denote the normalized values for substructure

parameters (i.e., components of the anisotropic influence tensor and hardening stiffness).

Herein, we discuss calibrations based on both aforementioned training data generation meth-

ods: Latin hypercube sampling and analysis-informed calibration. In both cases, a genetic algo-

rithm (NSGA) with 1000 members was executed over 50 generations. All other parameters such

as mutation or crossover rate were set to the analysis defaults. Subsequently, the best genetic algo-

rithm solution was used as the initial guess to a gradient-based optimization algorithm (SLSQP),

which was specified to search for a maximum of 1000 iterations.

The components of the parameterized anisotropic influence tensor (e.g., L from equation 3.21)

were bound to lie between negative one and one. Additionally, the hardening stiffness H was

bound to lie between 1E5 and 1E9; these values were chosen based on a priori knowledge. Fi-

nally, the yield force was approximated using the analytical method previously mentioned (cf.

section 3.2.1.1), but multiplied by a factor of two to ensure that the bounds of the parameterized

anisotropic influence tensor lay between negative one and one.

For each example discussed in the boxes below, force-displacement histories for the best and

worst training load case are shown. Furthermore, equivalent plastic strain contours and applied

displacement vectors for the best and worst training load cases are displayed. Implications of
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calibration accuracy as a function of applied displacement are discussed.

Example calibration based on Latin hypercube sampling

The example single element square structure is calibrated based on the training data gener-

ated via Latin hypercube sampling (see section 3.1.1).
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Figure 3.10: Force-displacement histories for the worst training load case. The red line
denotes the substructure prediction, while the blue dots denote the FEA solution.

Figure 3.10 depicts force-displacement histories for each retained degree of freedom for the

training load case that, after calibration, had the worst error. It can be seen that the substruc-

ture prediction approximates the initiation of nonlinearity to a high degree of accuracy, but a

slight error accumulates as applied normalized displacement increases. This slight error may

be due to a sub-optimal value of the hardening stiffness H; alternatively, the present model

formulation may restrict the substructure from fully capturing the structural nonlinearities

present within the body.
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Figure 3.11: Equivalent plastic strain contours and applied displacement vectors for the
worst training load case

Figure 3.11 depicts equivalent plastic strain contours and applied displacement vectors for

the worst training case. Note that the colorbar is normalized over the entire training data

set, so this load case experienced a relatively high magnitude of equivalent plastic strain.

As errors propagate with increasing applied displacement, it is no surprise that the worst

training case also exhibits large amounts plastic strain. This magnitude of plastic strain

is most likely due to the applied displacement vectors applying loading reminiscent of an

increase in volume. For this load case, the applied displacement vectors are all contribute

constructively to the generation of effective plastic strain.

Contrast this force-displacement response and resulting substructure prediction with the best

training load case (shown in figure 3.12). The onset of nonlinearity is still predicted with

almost negligible error and the hardening slope predicts the force-displacement response

after nonlinearity initiates very closely. In fact, the substructure solution predicts finite

element response with near-negligible error.
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Figure 3.12: Force-displacement histories for the best training load case. The red line de-
notes the substructure prediction, while the blue dots denote the FEA solution.

Additionally, this load case highlights the versatility of leveraging classical plasticity to cap-

ture nonlinear structural responses. A slight nonlinear softening response is seen in certain

force-displacement histories (for example, consider the x-displacement of any node). While

the model formulation is not based on a hardening law that accounts for material soften-

ing, the interaction between anisotropic influence tensor and hardening stiffness allows the

substructure to capture these complex responses.

Finally, consider the equivalent plastic strain contours and applied displacement vectors for

the best training case, shown in 3.13. As the plastic strain accumulated is among the low-

est in the training data set, this further reinforces the hypothesis that errors propagate. The

lower magnitude of generated plastic strain may be due to the applied displacements; in this

load case, two of the four displacements apply a loading reminiscent to a pure rotation. Pure

rotations produce no strain at small displacements (and spurious strains at large displace-

ments when not considering nonlinear geometric effects), and thus the magnitude of plastic

strain is low.
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Figure 3.13: Equivalent plastic strain contours and applied displacement vectors for the best
training load case.

In summary, the calibration based on training data generated via Latin hypercube sampling

was able to predict diverse loading with less than 0.1% error. While errors propagate at

large magnitudes of applied displacement, in this example the errors were still very small

compared to the resulting force. Additionally, the substructure is able to predict complex

nonlinear responses such as structural softening.

When considering the training data set as a whole, the substructure accurately predicts the

nonlinear response. The errors for each training load case are presented in figure 3.14. All load

cases exhibit an error of under 0.1%, with an overall mean error of 0.04%.
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Example calibration based on analysis-informed calibration

The example single element square structure is calibrated based on the training data gener-

ated via analysis-informed calibration (see section 3.1.2).
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Figure 3.15: Force-displacement histories for the worst analysis-informed calibration load
case. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.

Figure 3.15 depicts the worst calibration for this training dataset. It can be seen that while the

substructure accurately predicts the onset of nonlinearity, the hardening stiffness is poorly

approximated in cases with severe nonlinear softening (cf. the response at node one). How-

ever, even in light of the errors, the substructure prediction still represents similar trends as

to those shown in the training data. Note that the nodes that exhibit zero displacements are

a product of the specific analysis-informed calibration loading; the bottom nodes are con-

strained against to replicate fixturing of the adaptive wing component with the UAV body.

These numerical zeros may also contribute to higher error, as calibration and finite element

data exhibit different degrees of precision.
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Figure 3.16: Force-displacement histories for the best assembly-informed calibration load
case. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.

Similar trends can be seen with the best calibration, depicted in figure 3.16. However, in

this case, the magnitude of discrepancy between training data and substructure prediction

is considerably lower, leading to lower error. The degree of accuracy may be related to the

presence of non-zero displacements at all retained degrees of freedom. All options will be

investigated in future work. However, despite the systemic error, the substructure is shown

to be able to approximate severe structural softening and complex nonlinearities, albeit on a

structure meshed with a single element.
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Figure 3.17: Maximum principal strain contours for the worst and best analysis-informed
calibration load cases.
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Figure 3.18: Training errors for analysis-informed calibration.

Finally, consider the maximum principal strain contours for the worst and best analysis-

informed load cases, shown in figure 3.17. Again, we see that the worst calibration corre-

sponds to the load case with highest applied strain (in this case, load case 3 from figure 3.7).

Additionally, the best calibration result is from a region where a lower magnitude of strain-

generating displacement is applied, resulting in lower error. In summary, although the sub-

structure cannot capture the exact force-displacement response of these complex load cases,

it still is able to predict the overall response to a high degree of accuracy.

Figure 3.18 depicts training errors for the 12 analysis-informed calibration load cases. Note

that lighter colors denote higher error, while darker colors denote lower error. It can be seen that

the first three load cases (corresponding to the elements on the bottom of the assembly) have the

worst error. Additionally, load cases 6, 9, and 12 have the next-worst errors. These elements are

located on the right side of the assembly, and are experiencing slightly different loading than the

rest of the structure. The other load cases exhibit errors up to an order of magnitude lower than the

worst load cases, and these magnitudes correspond to the order of magnitude seen with calibration

based on Latin hypercube sampling arrays. However, as seen in figures 3.16 and 3.15, these errors

still correspond to the substructure capturing bulk nonlinear effects. The average mean squared

error for analysis-informed calibration is 3.7%, which is a full two orders of magnitude higher

than the calibration based on Latin hypercube sampling. This large discrepancy between training

data generation methods is most likely due to edge effects in the analysis-informed calibration case

and will be investigated in future work.
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3.3 Stage 4: Verification of substructure response

The discussion in the previous section demonstrated the ability of the present nonlinear sub-

structure method to capture nonlinear structural responses across eight force and displacement

components using a framework originally developed for six (i.e., for stress and strain). However,

when considering use of a calibrated substructure within a design framework, merely fitting to

training data is not enough. The calibrated substructure must be able to either predict general

force-displacement responses, or predict the response of an assembly comprised of multiple dis-

crete substructures.

To that end, we discuss two methods to verify the accuracy of calibrated substructures. When

calibrating based on training data generated via Latin hypercube sampling arrays, hold-out vali-

dation is implemented. While validation is typically used in the mechanics literature to describe

a model that accurately predicts physical response of a structure (e.g., an experiment), we use

hold-out validation herein following the machine learning literature from which it is based. Alter-

natively, in the case of a calibrated substructure with analysis-informed calibration, we compare

directly to the assembly-level high-fidelity FEA result. Both approaches are discussed in more

detail herein.

3.3.1 Hold-out validation

When conducting calibration with training data generated via Latin hypercube sampling, a

strategy to assess how well the substructure prediction generalizes to unseen data is needed. Com-

paring against unseen data prevents overfitting (i.e., where the model predicts the training data

very well, but fails to approximate the new response accurately). In the context of Latin hyper-

cube sampling calibrations, we seek the solution that best approximates all possible substructure

deformations.

To that end, we leverage hold-out validation, which is the process of reserving a subset of data

not used during the calibration phase and then calculating the testing error based on this subset of

data. Hold-out validation is preferable for larger datasets. While other strategies such as cross-
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validation exist in literature, they are not used herein due to the computational cost associated with

calibration. For example, generation of high-fidelity of FEA training data requires approximately

10 minutes of computation on a standard workstation, but calibration of the model requires ap-

proximately 300 minutes. As such, it is much more advantageous to generate additional FEA data

with which to test.

In this work, we use a different Latin hypercube sampling array of dimension ten for the testing

set. Upon completion of the calibration process, we test the optimal solution by applying the

displacements of the testing set and measuring the difference between substructure prediction and

finite element result. The error metric is identical to that used in calibration, and such provides

easy comparisons.

Figure 3.19 depicts the testing and training errors for the Latin hypercube sampling calibration.

It can be seen that the testing set has a higher error qualitatively, and this fact is reinforced when

comparing the mean training and testing errors. The training set exhibited a final error of 0.044%,

while the testing set exhibited a final error of 0.049%. This increase in testing error may indicate

slight overfitting of the data to the training set, and may be improved in future work by increasing

the size of the training set (see appendix B) or modifying the model formulation (e.g., adding more

parameters).

However, when considering the force-displacement histories the worst testing load case (de-

picted in figure 3.20), the larger errors do not cause drastic deviations in predicted response. As

with the training set, the substructure prediction slightly overpredicts the point at which nonlin-

earity initiates, and then compensates with an underprediction of hardening stiffness. These over-

shoots and undershoots are slight, which give confidence of the substructure accuracy to general

cases.

Equivalent plastic strain contours and applied displacement vectors for the worst testing load

case are depicted in figure 3.21, and again similar trends are seen with respect to the relationship

between plastic strain and applied displacement. The load case in question exhibits approximately

10% equivalent plastic strain and a loading reminiscent of a combined shear-tension. This rela-
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Figure 3.19: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.
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Figure 3.20: Force-displacement histories for the worst testing load case. The red line denotes the
substructure prediction, while the blue dots denote the FEA solution.

98



0

14

Equivalent
Plastic Strain, %

Figure 3.21: Equivalent plastic strain contours and applied displacement vectors for the worst
testing load case

tively large amount of plastic strain generation would cause errors to propagate as a function of

displacement.

Similar trends can be seen when inspecting the best testing load case, force-displacement his-

tories of which are depicted in figure 3.22. Once again, the substructure prediction slightly over-

predicts onset of nonlinearity and underpredicts the hardening stiffness. However, the magnitudes

of the over- and undershoots are proportionally lower for this load case. Additionally, once again

we can note that the substructure can capture structural softening.

Additionally, when considering equivalent plastic strain contours and applied displacement

vectors for the best testing load case, similar trends as before are seen. This load case exhibits a

relatively small value of equivalent plastic strain compared to the rest of the dataset. This trend

confirms the hypothesis that smaller applied displacements will result in a better fit, as the sub-

structure remains in the linear regime for a longer duration. However, this could be generalized

for future work to only subject substructures to a similar amount of equivalent plastic strain, if

that is the dominating physical process. In most cases, displacement- or force-controlled analyses

dominate, and thus are chosen as the basis for the training and testing sets.

3.3.2 Comparing an assembly of substructures to high-fidelity FEA

In the case of analysis-informed calibration, there can exist no hold-out testing set, as the

calibration load histories are specifically defined based on the hierarchical structure of interest. Of

course, one could reserve a subset of the analysis-informed calibration load cases to serve as a
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Figure 3.22: Force-displacement histories for the best testing load case. The red line denotes the
substructure prediction, while the blue dots denote the FEA solution.
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Figure 3.23: Equivalent plastic strain contours and applied displacement vectors for the best testing
load case.
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Figure 3.24: Equivalent plastic strain contours for the sweep morphing wing example comprised
of an array of single elements. In this section, we discuss the agreement between substructure
prediction and finite element response by comparing the force and displacement magnitudes of
nodes 17-20.

testing set, but this would be based on the assumption that each subset is similar in applied loading

or displacement. Generally, this is not the case, as diverse global loading produces substructures

that experience vastly different local loading. As such, we must compare directly to high-fidelity

FEA to verify the response of analysis-informed calibration substructures. Additionally, we can

compare the responses of these substructures to the substructures calibrated with Latin hypercube

sampling to assess the utility of each method. For quantitative comparison, we use a normalized

Minkowski error on the force magnitude where m = 1 for each node j:

ϵj =
1

n

1

max ||F̂FEA
j ||

n∑
i=1

∣∣∣||F̂pred
ij || − ||F̂FEA

ij ||
∣∣∣ , (3.26)

where n denotes the number of sample points and max ||F̂FEA
j || represents the largest force magni-

tude for the node in question over the time history simulated. We use a Minkowski distance with

a factor of m = 1 due to the dimensionality of the quantities of interest to facilitate normalization

towards an error metric similar to an average percent error.
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To that end, the example assembly-level analysis is conducted with the in-house finite element

solver described in section 2.3. However, the elements now constitute calibrated substructures

instead of traditional elements. The results produced by the substructure FEA are then compared

to traditional FEA with respect to difference in force magnitude at each node. For the example

assembly-level analysis, there exist twenty global nodes; herein we will discuss the agreement of

the nodes on the top surface of the assembly in more detail. As a reminder of the sweep morphing

wing example that we use in this work, equivalent plastic strain contours and labeled nodes of

interest are depicted in figure 3.24

Figure 3.25 depicts the substructure prediction in red and finite element response in blue for

these four nodes in question. Similar trends are seen in the assembly-level verification as were seen

in hold-out validation. Once again, the substructure overpredicts the force at which nonlinearity

initiates, and then underpredicts the hardening stiffness. However, agreement between substructure

and finite element response can be seen, lending confidence towards using the present method for

future design.
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 3.25: Substructure prediction (shown in red) and high-fidelity finite element response
(shown in blue) of four select nodes for the sweep morphing example considering a single-element
square calibrated via analysis-informed calibration.
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Figure 3.26: Normalized Minkowski error in reaction force magnitude for each node of the
analysis-informed calibration substructure, where darker colors denote lower error. Note that
omitted nodes are those that exhibit no reaction force during loading (i.e., displacement bound-
ary conditions are not applied).

Figure 3.28 depicts the normalized Minkowski error for each node in the assembly on which

a boundary condition is applied. Note that the omitted nodes are interior to the structure, have no

boundary conditions applied, and thus comparisons in force are meaningless. Clearly, the worst

errors (which correspond to the largest deviations over the entire force-displacement history at the

node) are generated at the bottom four nodes. These nodes are fixed in the x- and y-directions

during analysis, and the associated substructures also comprise the regions of highest effective

plastic strain (and thus, worst calibration). As such, it is no surprise that these nodes are the worst-

performing. Accuracy typically improves with increasing node number, which corresponds with

decreasing effective strain and confirms the earlier hypothesis.

Figure 3.27 depicts force-displacement histories of substructure response based on Latin hyper-

cube sampling and finite element results. Interestingly, the Latin hypercube sampling calibration

clearly outperforms the aforementioned analysis-informed calibration. Once again, similar trends

in structural response and error are seen, but in lower magnitudes of error than those exhibited

by the analysis-informed calibration. These results demonstrate that, for some analyses, a Latin

hypercube array provides a sufficiently diverse training set to capture loading associated with a

specific hierarchical array.
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 3.27: Substructure prediction (shown in red) and high-fidelity finite element response
(shown in blue) of four select nodes for the sweep morphing example considering a single-element
square calibrated via Latin hypercube sampling.
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Figure 3.28: Normalized Minkowski error in reaction force magnitude for each node of the
analysis-informed calibration substructure, where darker colors denote lower error. Note that
omitted nodes are those that exhibit no reaction force during loading (i.e., displacement bound-
ary conditions are not applied).

This conclusion is further reinforced when inspecting the normalized Minkowski errors for the

Latin hypercube sampling-based calibration (depicted in figure 3.28). Similar trends are noticed;

for example, error decreases with increasing node number. The Latin hypercube sampling-based

calibration more accurately predicted the assembly-level analysis than the analysis-informed cali-

bration itself.

This discrepancy may be due to a number of factors. First, the analysis-informed calibration

may have converged to a local minima prematurely, and thus re-run calibration may produce better

results. Additionally, the analysis-informed calibration may have hit the design variable bounds.

Also, the nature of the error metric may have not been able to capture the precise nature of softening

to near-zero reaction forces, and the presence of those load cases may have polluted the training

data set. Regardless, these results indicate that both methods are viable for future investigation

with more complex structures reminiscent of those used in hierarchical design.

3.4 Chapter summary

In this chapter, we have discussed the computational workflow that allows implementation of

the nonlinear substructure method based on classical plasticity. This computational workflow con-

sists of four main stages: training data generation, substructure model formulation, calibration, and

verification. Two distinct methods for training data generation were detailed: Latin hypercube sam-

pling, and analysis-informed calibration. The calibration stage involves minimizing error between
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substructure prediction and training data by optimizing the substructure model parameters. In this

work, we discussed many different possible error metrics and optimization methods that could

be used, but the bulk of the work used the mean-squared-errors of reaction forces and optimized

via a GA-SLSQP hybrid approach. Finally, verification strategies include hold-out validation and

comparison to high-fidelity FEA of substructure assemblies.

Throughout the chapter, we used a square geometry meshed with a single element to guide dis-

cussion and provide a tangible example of the methods used herein. While this example structure

does not offer any utility in terms of computational speedup (i.e., being a one-substructure repre-

sentation of a single linear element), it provides confidence that a nonlinear substructure framework

based on classical plasticity can predict nonlinear structural effects of dimension greater than six.

In this way, this chapter is novel because it is one of the first uses of a modeling framework ini-

tially developed for constitutive laws to be applied to a structure; this concept can be, and will be,

extended to more complex geometries, material models, and potentially physics.

The calibration procedure was seen to predict general nonlinear force-displacement relation-

ships with less than 0.1% average error. For the single-element, eight degree of freedom square

example, the analysis-informed calibration training data produced a worse fit due to the strong

nonlinearities associated with the example loading. Regardless, the nonlinear substructure method

can capture main trends and structural softening; in future work, the calibration method can be

improved to decrease calibration error for these strong nonlinearities. Both training generation

methods also provided a dataset for a relatively robust calibration. While the testing error for the

Latin-hypercube sampling-based calibration was slightly higher than the corresponding training

error, this overfitting did not result in poor performance when the calibrated substructure was in-

tegrated into a larger assembly. In future work, methods to avoid overfitting may be investigated

by increasing the load cases for training data, modifying the optimization technique, or leveraging

cross-validation instead of hold-out validation.

Interestingly, the Latin-hypercube sampling-based calibration outperformed the analysis-informed

calibration when both calibrated substructures were analyzed for the assembly-level load case.
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This was unexpected, because the assembly-level load case itself provides the training data for

analysis-informed calibration. It is hypothesized that the Latin-hypercube sampling-based calibra-

tion produced a more robust fit, and the strong nonlinearities associated with the analysis-informed

calibration data set may have negatively influenced the calibration process. This phenomenon will

be investigated in more detail in future work.

Main findings for implementation of a nonlinear substructure method

This study has multiple findings:

1. The mathematical framework developed for classical plasticity can be integrated with

substructure analysis to capture nonlinear force-displacement responses of arbitrary

dimension. Furthermore, this framework can capture complex nonlinear responses

such as structural softening with little to no change in the model formulation.

2. Training data generation can be accomplished via traditional design of experiment

techniques (e.g., Latin hypercube sampling arrays) or via Analysis-informed calibra-

tion. Both methods produce datasets that can be used to calibrate a nonlinear sub-

structure with reasonable accuracy (<10% mean error).

3. An array of nonlinear substructures can be integrated into a larger analysis, and the

resulting response closely resembles high-fidelity FEA at decreased computational

cost.
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4. CASE STUDIES AND APPLICATIONS OF THE NONLINEAR SUBSTRUCTURE

METHOD

The previous chapter demonstrated the ability of the present nonlinear substructure method to

capture nonlinear force-displacement relationships. However, the example single element, eight

degree of freedom does not demonstrate the utility of the method, as there is no reason to per-

form model reduction on such a simple structure. Thus, more attention must be paid to complex

structures to understand the benefits of such a model order reduction method. In this chapter,

we describe multiple case studies of substructure calibration and verification for structures with

complex internal geometries, multiple materials, and multiple nonlinearities.

To that end, we investigate three distinct structures for model reduction herein. All three struc-

tures are square unit cells, with stiff, beam-like internal geometries infilled with a flexible material

(e.g., PDMS). This class of structure is chosen due to widespread interest for use in adaptive

structures and energy absorption applications [26, 27, 117, 143, 144]. Consider the hierarchical

adaptive structure shown in figure 4.1; the present study is the first step towards using the nonlinear

substructure method for design of such structures.

The three specific structures in this work are depicted in figure 4.2. On the left, the BCC

lattice truss represents a traditional hierarchical structure with equal load-bearing capability in all

directions. In the center, the chiral structure is chosen due to the potential of tension/compression

asymmetry, as it comprises of a BCC lattice truss with an integral circular geometry. Finally,

the right structure represents a reentrant geometry that may exhibit zero or negative Poisson ratio

with tensile loading in the vertical direction. While these complex structural properties are not

investigated in detail herein, they can exhibit diverse responses that we hope to capture with the

nonlinear substructure method.

In this chapter, we follow the same procedure as outlined in chapter 3. For each structure, we

generate training data based on Latin hypercube sampling and analysis-informed calibration.1 With

1The analysis-informed calibration data set is based on the displacement field found in section 3.1.2 to demonstrate
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Figure 4.1: Bending cylinder adaptive aerostructure with unit cell hierarchy, which is used as in-
spiration for the present study. The nonlinear substructure method can be used to pre-compute the
response of various unit cells which can be integrated into a larger analysis at reduced computa-
tional cost.

the recorded training data, calibration via hybrid optimization is conducted. Then, the accuracy of

each substructure calibration is verified via hold-out validation and/or comparison to high fidelity

FEA.

Each case study investigated herein includes at least 2 distinct nonlinearities. For all cases,

we assume that each unit cell undergoes nonlinear geometric effects (NLGEOM in the Abaqus fi-

nite element suite). The stiff internal geometries are modeled as a material that exhibits nonlinear

smooth hardening plasticity (see figure 4.3a for the material stress-strain curve). For the first set of

cases, the flexible infill material is assumed to be linear elastic, with an elastic modulus of 3 MPa

and Poisson’s ratio of 0.33. Next, we assume that the flexible infill material obeys hyperelastic

constitutive laws (see figure 4.3b). Specifically, the hyperelastic material is assumed to resemble

Sylgard 184, a common PDMS material with well-documented constitutive behavior [145]. Addi-

tionally, each unit cell is meshed to contain more than 1000 reduced-integration linear plane stress

elements (CPS4R element code in Abaqus) and exhibits a characteristic length of 1 meter.

We retain the eight degrees of freedom that correspond to the corner nodes of each square do-

the utility of the method. Only one assembly-level FEA analysis comprised of simple structures is required to derive
the necessary load cases for calibration.
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(a) Lattice substructure geome-
try. (b) Chiral substructure geome-

try.
(c) Reentrant substructure ge-
ometry.

Figure 4.2: Unit cell geometries for the three investigated substructures. In each figure, the blue re-
gion represents a flexible infill material (e.g., PDMS) and the gray region represents a stiff material
that exhibits nonlinear smooth hardening plasticity. The four corner nodes are retained for each
substructure, and a linear constraint is imposed on each unit cell edge. Note that finite element
meshes are not shown for clarity, but each unit cell is meshed with approximately three thousand
plane stress elements.

main, and we assume the four unit cell edges remain straight after deformation (cf. section 3.2.1.2).

In each case, a substructure model formulation considering anisotropic yield and nonlinear smooth

hardening is used. The complete model formulation is given in the box below. For these eight

retained degree of freedom systems, there are a total of forty nonlinear substructure parameters to

be found; these parameters are highlighted in blue in the box below and include:

1. The components of L that define Â via equation 3.21,

2. The hardening stiffness M ,

3. Smooth hardening coefficients n1 and n2, and

4. The width of the nonlinear region ξ.
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(a) Material stress-strain response corresponding
to nonlinear smooth hardening, which is used to
model the stiff reinforcement in each unit cell.
The final point at 2 GPa was added to prevent
perfect plasticity during generation of training
data.
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(b) Hyperelastic material response used to model
the flexible infill in section 4.2. This material
response corresponds to Sylgard 184, and relies
on data adapted from reference [146].

Figure 4.3: Nonlinear material stress-strain responses used for the case studies in this chapter.

Model formulation with anisotropic yield and nonlinear smooth hardening.

Deformation Decomposition K̂ (û− ûNL) = F̂,

Yield Criterion f(F̂, α) =
√

F̂ · ÂF̂− (F y
0 + 1

2
M(ξ + αn1 − (ξ − α)n2))

Flow rules ˙̂u
NL

= γ ∂f

∂F̂
, γ = α̇

KKT conditions f(F̂, α) ≤ 0, γf = 0, γ̇ ≥ 0.

We compare the accuracy of Latin hypercube sampling-based calibration and analysis-informed

calibration to high-fidelity FEA in each case. In total, we investigate twelve distinct calibrations in

this work. Table 4.1 provides all of the unique calibrations and where they are located in the text.

For brevity, results and discussion for the reentrant unit cell are presented in appendix C.

4.1 Case studies involving nonlinear geometric effects and plasticity

In this section, we discuss the case studies investigated incorporating nonlinear geometric ef-

fects and metal plasticity. For each calibration, we will first detail the best and worst training

load cases and describe possible reasons for why the substructure model formulation accurately
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Table 4.1: In this chapter, twelve distinct substructure calibrations are discussed. This table pro-
vides the section location of each calibration within the text. Note that Latin hypercube sampling
and analysis-informed calibration are abbreviated as LHS and AIC, respectively.

Geometry Investigated Nonlinearities Training Data Generation Method
LHS AIC

Lattice NLGEOM, plasticity 4.1.1.1 4.1.1.3

NLGEOM, plasticity,
hyperelasticity

4.2.1.1 N/A

Chiral NLGEOM, plasticity 4.1.2.1 4.1.2.3

NLGEOM, plasticity,
hyperelasticity

4.2.2.1 N/A

Reentrant NLGEOM, plasticity C.0.1.1 C.0.1.3

NLGEOM, plasticity,
hyperelasticity

C.0.2.1 N/A

(or inaccurately) captured the force-displacement response. Additionally, the entire training and,

if applicable, testing set errors are provided for more insight on the validity of using nonlinear sub-

structures with the specific material and geometric combination investigated. Finally, at the end of

this section, we aggregate all of the data presented and provide conclusions, lessons learned, and

possible improvements that could be made for more accurate calibration.

4.1.1 Lattice truss

The lattice structure is calibrated with both Latin hypercube sampling and analysis-informed

calibration methods. For each calibration, the hybrid optimization scheme described in section 3.2.3

is utilized. Each optimization included a genetic algorithm with 1000 members in a population

evolved for 50 generations followed by a gradient-based optimization (SLSQP) with 1000 maxi-

mum iterations. The results for each calibration are discussed herein.

4.1.1.1 Calibration via training data generated with Latin hypercube sampling

Training and testing Latin hypercube sampling arrays of size ten are generated via high-fidelity

FEA. Figure 4.4 depicts the best training load case in force-displacement space of each retained

degree of freedom. The substructure solution is shown as a solid red line, while the training data
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Figure 4.4: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

is shown as blue dots. It can be seen that the calibrated substructure response accurately captures

the nonlinearities within the square, with negligible error in all retained degrees of freedom.

Contrast that previous result with the worst training load case depicted in figure 4.5. While the

substructure accurately predicts the onset of nonlinearity with respect to most degrees of freedom,

the hardening stiffness is poorly approximated in all retained degrees of freedom. This error may

by due to a number of factors. The bounds of the hardening stiffness M may have restricted and

not allowed the optimizer to explore more optimal regions of the design space.

Second, the combination of nonlinear geometric effects and plasticity may have led to phe-

nomenon that the substructure model formulation is unable to predict. As the substructure model

formulation is based on small-strain plasticity, the mathematics may be incompatible with the

mathematical basis of large-displacement finite element analysis. As such, the substructure would

be unable to capture these effects, as they are not reminiscent of a conventional elastoplastic stress-

strain response.
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Figure 4.5: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution. This poor prediction will motivate future developments to refine the calibra-
tion methodology as well as investigate alternative substructure model formulations (e.g., non-
associativity).

Finally, the difference between substructure model prediction and finite element training data

may be due to the diverse range of responses that the lattice truss structure may experience. Due to

the assumed dimension of the substructure (eight retained degrees of freedom), the reduction from

the full possible space of displacements down to merely eight displacements may be too severe

of a reduction with the current model formulation. As such, the substructure model formulation

may not have sufficient parameters to find the optimal fit for all load cases; in fact, with the current

model formulation, there may not exist one singular solution that can accurately capture every

load case. To ameliorate this in future work, concepts such as kinematic hardening, multi-surface

plasticity, and non-associative flow rules may be investigated.

Figure 4.6 depicts contours of maximum principal strain for the best and worst training load

cases as previously mentioned. Note that the worst training load case (figure 4.6b) exhibits much

lower strain in the stiffening member compared to the infilled section. Additionally, the areas of
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Figure 4.6: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.

the stiffening member that experience the most strain are subjected to loading reminiscent of a can-

tilever beam under bending or a column experiencing a buckling load.2 Contrast this bending- or

buckling-dominated strain to the best training load case depicted in figure 4.6a. The best training

load case exhibits much more uniform strain on average, regardless of the region. While there are

strain concentrations in the upper-right corner of the unit cell, these aren’t expected to meaning-

fully contribute to the overall force-displacement response of the structure. Because the unit cell is

experiencing similar strain throughout, this loading is more reminiscent of stretch-dominated load-

ing. In stretch-dominated load cases, the unit cell as a whole responds similarly to an elastoplastic

material, and thus the current substructure model formulation can capture the force-displacement

response with high accuracy.

4.1.1.2 Calibration verification based on hold-out validation

To verify the ability of this calibrated substructure to capture general force-displacement re-

sponses, hold-out validation was implemented. A testing set of size ten was created using high-

fidelity FEA and seeded by a separate Latin hypercube sampling array. Figures 4.7 and 4.8 depict

2In this work, we define buckling as a sudden large structural deformation due to a small increase in load. Con-
sideration of metal plasticity and the presence of the elastomeric infill material may decrease the effect of buckling,
and thus restricts conclusions that can definitively state if this response is buckling or merely bending. As such, we
state that either cause may lead to poor calibration results. Additionally, the presence of varying degrees of buckling or
bending may change the evolution of nonlinearity as a function of increasing displacement. To accurately capture these
complex responses, the substructure model formulation may require modifications such as the inclusion of anisotropic
kinematic hardening or non-associative flow rules.
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Figure 4.7: Force-displacement histories for the best testing load case, as specified by Latin hy-
percube sampling. The red line denotes the substructure prediction, while the blue dots denote the
FEA solution.

the best and worst testing load cases, respectively. Similar accuracy for the substructure prediction

can be seen, with the substructure occasionally predicting the onset of nonlinearity quite well, but

then failing to match the hardening stiffness upon increasing nonlinearity.

For the best testing load case in figure 4.7, nodes two and four are displaced to experience

significant nonlinear force-displacement responses, while nodes one and three exhibit much lower

reaction forces and near-linear force-displacement behavior. Conversely, the worst testing load

case in figure 4.8 shows nodes all retained nodes experiencing significant nonlinear responses, to

the point of severe structural softening with respect to nodes two and four. Clearly, the substructure

prediction fails to predict this softening behavior.

These errors can be explained when inspecting the logarithmic strain contours for each re-

spective load case, depicted in figure 4.9. In both cases, the nonlinear responses are due to dis-

placements reminiscent of bending or buckling. However, the two load cases exhibit significantly

disparate testing errors.
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Figure 4.8: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

The reason for these discrepancies may lie in the lack of symmetry with respect to substruc-

ture model parameters. In the current model formulation, the anisotropic influence tensor has no

constraints on it with respect to geometry; each parameter to fully definite this positive-symmetric-

definite matrix is independently found. However, the linear reduced stiffness matrix absolutely ex-

hibits an underlying symmetry that is connected to material and geometric symmetries in the part in

question. Due to this lack of symmetry in the anisotropic influence matrix coefficients, seemingly

similar load cases can produce different force-displacement responses, and lead to the discrepan-

cies shown here. In future work, these discrepancies may be reduced by including consideration

of geometric symmetries during the calibration process.

Regardless, the substructure model formulation still can capture bulk responses of a unit cell

with a complex geometry, large deformations, and plastic material behavior. While the hardening

stiffness as an isotropic quantity may not be sufficient to capture all variance in responses and

the independence of each anisotropic influence matrix coefficient may lead to different responses
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Figure 4.9: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration. Note that the deformation of figure 4.9a is approximately
the mirror image of that in figure 4.9b.

depending on orientation, the current formulation still achieves reasonable accuracy. The onset of

nonlinearity is well captured, and many load cases produce a near-perfect fit.

Figure 4.10 depicts numerical values for training and testing errors for the lattice truss structure

based on Latin hypercube sampling. Note that darker colors describe load cases with lower error.

Evidently, the training data set exhibits lower error on average (average normalized mean squared

error = 2.1%), but still some load cases exhibit a poor fit. The testing data set mean squared

error is calculated to be 3.05%, which denotes that the substructure model may have been slightly

overfit to the training data, and this could be avoided by increasing the size of both training and

testing set. Additionally, testing load case three failed to converge in the convex cutting plane

algorithm, which is also indicative of overfitting. By implementing algorithmic enhancements

such as geometric symmetries, anisotropic kinematic hardening, and non-associative flow rules,

calibration accuracy can be improved.
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Figure 4.10: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.
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4.1.1.3 Analysis-informed calibration

In the previous section, we demonstrated the ability of the nonlinear substructure method to

capture the bulk force-displacement responses for lattice truss unit cells undergoing general load-

ing, as specified by a Latin hypercube sampling array. But can the analysis-informed calibration

technique produce better fits over a targeted training set for use in one specific assembly-level anal-

ysis? In this section, we discuss calibration based on a training data set derived from the sweep

morphing wing example (see section 3.1.2). The training data once again consists of twelve distinct

load cases with no load cases held out for verification.

Figure 4.11 depicts the force-displacement responses for each retained degree of freedom of the

best analysis-informed calibration load case. The substructure response, shown in red, accurately

predicts the onset of nonlinearity and stiffness after nonlinear initiation, leading to a very accurate

fit. Some solution bisection (i.e., where the intermediate hardening stiffness is poorly captured, but

the start and end of the force-displacement response is close) is seen with nodes two and four. This

phenomenon may be due to the optimization attempting to minimize overall error using a model

unable to truly fit the nonlinear softening response. As such, the substructure roughly approximates

the force-displacement response by effectively drawing a straight line through the mean value after

nonlinearity initiates. Even with this discrepancy, the quality of this fit could be integrated within

a design framework with manageable error.

Conversely, consider the force-displacement response of the worst analysis-informed calibra-

tion load case shown in figure 4.12. The substructure significantly underpredicts the reaction force

in almost every single retained degree of freedom. This discrepancy may be due to the inclusion of

nonlinear geometric effects in the analysis, as the degrees of freedom that correspond to the worst

fits do not exhibit behavior reminiscent of an elastoplastic material.

This conclusion is further reinforced when inspecting the maximum principal strain contours

for both load cases discussed. The worst load case corresponds to the unit cell located in the

upper-right corner of the assembly and is the load case that experiences the most bulk rotation.

As large rotations produce spurious forces in small-deformation analysis (which the substructure
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Figure 4.11: Force-displacement histories for the best load case, as specified by analysis-informed
calibration. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.
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Figure 4.12: Force-displacement histories for the worst load case, as specified by analysis-
informed calibration. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution. This poor prediction can be improved by implementing a co-rotational displace-
ment formulation, constraining calibration of the anisotropic influence tensor to obey geometric
symmetries, and investigating different substructure model formulations.
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Figure 4.13: Maximum principal strain contours for the best and worst training load cases, as
specified by analysis-informed calibration.

model formulation is based upon), these spurious forces could lead to inaccurate results and poor

calibrations. It is hypothesized if the reduced stiffness matrix is rotated and strain-generating

displacements are isolated and applied to calculate forces, this calibration will improve. This topic

is discussed more in future work (see section 6.2.3.3).

Finally, consider the errors for each analysis-informed calibration load case, which are depicted

graphically in figure 4.14. It can be seen that the first three load cases, as well as load cases nine and

twelve perform the worst. This same trend was noticed with the single element square example

(cf. section 3.2.5.1), and may be due to the vastly different loading applied on each. The mean

error for analysis-informed calibration is calculated to be 4.14%, which is almost twice as poor

as the Latin hypercube sampling calibration. Again, these trends are consistent with the single

element square calibration, but may be improved by implementing a co-rotational displacement

formulation considering, symmetries within the determination of the anisotropic influence tensor,

or leveraging non-associative flow rules in the substructure model formulation.
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Figure 4.14: Training errors for analysis-informed calibration.
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4.1.2 Chiral unit cell

In this section, we discuss calibration based on training data generated with Latin hypercube

sampling and analysis-informed calibration. Relevant trends of each type of calibration are high-

lighted, and areas for future improvement are detailed.

4.1.2.1 Calibration via training data generated with Latin hypercube sampling

Calibration was conducted for a training set of dimension ten. The optimization parameters

(e.g., population size, number of generations, and maximum number of gradient-based iterations)

are all held constant from the lattice truss calibration.

Figures 4.15 and 4.16 depict the best and worst training load cases, respectively. The red line

denotes the calibrated substructure prediction, while the blue dots represent training data from

high-fidelity FEA. It can be seen that the substructure predicts the finite element response with

much lower error in both cases when compared to the lattice truss unit cell; the only discrepancies

appear in the worst training cases at high applied displacements. However, these discrepancies are

much less significant, and the substructure model formulation is shown to capture both the force

at which nonlinearity initiates and the hardening stiffness after nonlinear initiation. These results

provide a accurate reduced-order model that could be used in future design studies. The improved

calibration error may be due to the inclusion of the circular stiffening element, which may prevent

the onset of bending- or buckling-dominated force-displacement responses that were present in the

lattice truss unit cell.

Figure 4.17 depicts maximum principal strain contours for the best and worst training load

cases. Note that the best training load case exhibits a slightly more homogeneous strain field

throughout the unit cell; this homogeneity may contribute to a better overall fit. However, while

the worst training load case causes a heterogeneous strain field, the substructure can still predict

this behavior very well. Additionally, as the training and testing load cases exhibit very similar bulk

deformations, these calibration results could be improved by implementing symmetry constraints

on calibration of the anisotropic influence tensor.
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Figure 4.15: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

0.000 0.001 0.002
1.5

1.0

0.5

0.0

0.5

1.0

1.5
1e6

0.04 0.02 0.00 0.015 0.010 0.005 0.000 0.04 0.02 0.00

0.04 0.02 0.00
1.5

1.0

0.5

0.0

0.5

1.0

1.5
1e6

0.00 0.02 0.04 0.06 0.04 0.02 0.00 0.000 0.002 0.004 0.0060.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 1

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 3

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 4

0.0 0.2 0.4 0.6 0.8 1.0
Norm. Displacement, [m]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

ea
ct

io
n 

Fo
rc

e,
 [N

]

Figure 4.16: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.17: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.

4.1.2.2 Verification based on hold-out validation

Verification of substructure response is completed by measuring the error between the cali-

brated substructure and finite element results from a testing data set. The testing data set is speci-

fied to be a separate Latin hypercube array of dimension ten. Figures 4.18 and 4.19 depict the best

and worst testing load cases, respectively. Once more, the substructure prediction is shown as a

solid red line and the finite element testing data is denoted by blue dots. The calibrated substructure

can accurately capture these general load cases, with accumulating error at higher applied displace-

ments. Interestingly, the substructure consistently underpredicts the hardening stiffness in all cases

where error is noticeable; this may be due to the specified bounds on the hardening stiffness M

or poor approximation of the force at which nonlinearity initiates F 0
y . However, even with the

documented discrepancies, these results are sufficient to conclude that the substructure model for-

mulation can accurately describe a chiral unit cell modeled to exhibit nonlinear geometric effects

and metal plasticity.

Figure 4.20 depicts maximum principal logarithmic strain contours for the best and worst test-

ing load cases. The best testing load case, shown on the left, exhibits a lower average logarithmic

strain when compared with the worst testing load case. In both cases, the inherent symmetry or
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Figure 4.18: Force-displacement histories for the best testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.19: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.20: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration.

reflections present in this chiral geometry are evident. However, the differences between the two

load cases and how they contribute to quality of calibration are somewhat unknown at this time;

while adding symmetry constraints may improve calibration, the exact reasons behind calibration

quality are convoluted by the complexity of both training data generation and calibration specifics

(e.g., optimization methods).

Finally, the testing and training mean-squared errors are depicted graphically in figure 4.21. In

these figures, darker colors denote lower error. Once again, note the order of magnitude differ-

ence between these error calculations and the errors from the previous section (cf. figure 4.10);

this difference is a direct consequence of the difference in reaction force magnitude, and should

not be construed as a metric of calibration quality. Clearly, the training data set (shown on the

right) exhibits a lower average error, which is calculated to be 1.67%. The testing average error is

calculated to be 2.34%, which indicates a slight overfit with respect to the training data. Regard-

less, based on the qualities of fits shown in the previous figure, this calibration is demonstrated to

accurately capture general nonlinear force-displacement responses for future design studies.
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Figure 4.21: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.

4.1.2.3 Analysis-informed calibration

The previous section demonstrated the ability of the present nonlinear substructure method to

capture general force-displacement responses for the chiral unit cell. Herein, we discuss the ability

of this method to capture specific force-displacement responses based on the sweep morphing wing

example (cf. 3.1.2). All twelve load cases were analyzed in high-fidelity FEA, and the resulting

force-displacement histories formed the training set for this calibration. Once again, optimization

specifics were held constant.

Figures 4.22 and 4.23 depict the best and worst load cases from the analysis-informed calibra-

tion training data set. Again, for the best training load case, the substructure is shown to predict the

force at which nonlinearity initiates and the stiffness after nonlinear initiation with a high degree

of accuracy. The discrepancies between substructure prediction and training data are slight, and

these discrepancies occur at large applied displacements. However, the worst load case once again
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Figure 4.22: Force-displacement histories for the best load case, as specified by analysis-informed
calibration. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.

drastically underpredicts the reaction force, a result most likely due to finite rotations of the load

case in question.

Figure 4.24 depicts maximum principal strain contours for the best and worst analysis-informed

calibration load cases. The worst load case exhibits more of a pure-rotation bulk motion, which is a

consequence of where this load case is located within the assembly (i.e., this load case corresponds

to the top-right unit cell of the sweep morphing wing). As a consequence of these differences, the

substructure calibration cannot accurately capture both responses.

Finally, consider the mean squared errors for each analysis-informed calibration load case, as

shown in figure 4.25. Note the bounds on the colorbars; the analysis-informed calibration exhibits

a minimum error that is a full order of magnitude higher than that of the Latin hypercube sampling

calibration. In fact, the average error for analysis-informed calibration is calculated to be 4.75%

(compare to 1.67% for the Latin hypercube sampling calibration). However, this large discrepancy

may not be indicative of worse quality of calibration, but rather a result of larger reaction force
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Figure 4.23: Force-displacement histories for the worst load case, as specified by analysis-
informed calibration. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.24: Maximum principal strain contours for the best and worst training load cases, as
specified by analysis-informed calibration.
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Figure 4.25: Training errors for analysis-informed calibration.

magnitudes in the training load cases (1E6 in some cases for analysis-informed calibration). With

respect to the errors as a function of load case, similar trends are noted as the previous studies. The

first three load cases, and load cases six, nine, and twelve all exhibit worse errors than the rest of

the training data set. This may be due to the large reaction forces experienced at the base of the

structure, and due to significant substructure rotation that is not currently considered in the model

formulation.

4.1.3 Summary of case studies involving nonlinear geometric effects and plasticity

In this section, four distinct calibrations have been discussed, and the results of two additional

calibrations are presented in appendix C. Three unique unit cells with complex internal geometry

have been analyzed and modeled to exhibit nonlinear geometric deformations and metal plastic-

ity. All three unit cells exhibited similar training errors with respect to calibration method (e.g.,

training data generated via Latin hypercube sampling and analysis-informed calibration). Similar

calibration accuracy gives confidence that the nonlinear substructure method discussed herein can

capture the complex force-displacement responses associated with a variety of different geometric

unit cells.

All errors, as well as the relevant percent changes are given in table 4.2. The train-test per-

cent increase is calculated by comparing the LHS training and testing errors, while the LHS-AIC

percent increase is calculated by compared the LHS training error with the AIC error. Evidently,

analysis-informed calibration consistently produces higher errors for each investigated unit cell

geometry. Additionally, the train-test percent increase ranges from 40% to 119%, which denotes
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Table 4.2: Average mean squared errors and relevant percent changes for each calibration.

Geometry LHS training
error

LHS testing
error

Train-test
percent in-
crease

AIC error
LHS-AIC
percent in-
crease

Lattice 2.1% 3.1% 50 4.1% 97%

Chiral 1.7% 2.34% 40 4.2% 147%

Reentrant 1.6% 3.5% 119 5.0% 213%

significant overfitting of the LHS-based calibration. These errors may be improved by increasing

the size of training data, parameterizing the input displacement space in a different way, or per-

forming multi-objective optimization to find different calibrated substructures depending on the

location within the greater assembly.

However, the calibrations described in this section demonstrate the utility of the present method

towards accurately and efficiently predicting nonlinear force-displacement responses for unit cells

with complex geometries and multiple nonlinearities. This study can form the basis for continued

work in this area to improve calibrations, and thus efficient design studies of similar hierarchical

structures. Now, we will investigate the ability of the present method to capture two distinct mate-

rial nonlinearities within the same substructure: metal plasticity and elastomeric hyperelasticity.

4.2 Case studies involving nonlinear geometric effects, plasticity, and hyperelasticity

In this section, we discuss continued calibration efforts towards capturing three sources of

force-displacement nonlinearity within the structure. Specifically, the three sources of nonlinearity

are large deformations, metal plasticity, and elastomeric hyperelasticity. The lattice truss structure,

chiral structure, and reentrant structure are once again used as case studies for multi-material unit

cells with complex internal geometry.

For the lattice truss and chiral structures, both Latin hypercube sampling-based calibration and

analysis-informed calibration were conducted. Due to the poor accuracy of the reentrant structure

when it was modeled to exhibit large deformations and metal plasticity, analysis-informed calibra-

tion is neglected. However, calibration based on Latin hypercube sampling is still conducted for
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the reentrant structure to compare rough trends of substructure accuracy with respect to unit cell

geometry (cf. appendix C).

The lattice truss structure calibrations are presented first, followed by discussion of the chiral

structure calibrations. For brevity, the reentrant structure calibrations are provided in appendix C.

In each case, the hybrid optimization scheme presented in 3.2.3 is used for substructure identifica-

tion. The genetic algorithm included 1000 members per population evolved over 50 generations,

which is followed by a gradient-based algorithm constrained to 1000 maximum iterations. For

each example described herein, two error metrics are used to measure accuracy: Minkowski error

(which is not normalized) and relative error.

4.2.1 Lattice truss

The lattice truss is meshed to include approximately 1000 reduced-integration, plane stress

quadrilateral elements (CPS4R element code). Herein, we discuss calibration via Latin hypercube

sampling, verification based on hold-out validation, and conclude with the results from analysis-

informed calibration.

4.2.1.1 Calibration via training data generated with Latin hypercube sampling

A Latin hypercube array of dimension ten constitutes the training data set. Figures 4.26

and 4.27 depict force-displacement histories for the best and worst training load cases, respec-

tively. For the best load case, the substructure appears to accurately predict both the force at which

nonlinearity initiates and the hardening stiffness matrix as the nonlinearity evolves. There are no-

ticeable over- and underpredictions of the reaction force with respect to select degrees of freedom.

This is most likely due to the presence of hyperelasticity, and the increasing stress generation (and

thus, reaction force generation) at high strains. Due to the generation of hyperelastic strains, the

current substructure model formulation cannot capture these two distinct phenomenon. However,

these differences in the best training load case are slight, and could be neglected in a design pro-

cess.

Conversely, the worst load case only displays accuracy with respect to three of the eight re-
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Figure 4.26: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

tained degrees of freedom. With the force-displacement histories of degrees of freedom not well

predicted, the substructure over- and underpredicts the reaction forces at approximately equal reg-

ularity, indicating that the hardening stiffness may have been poorly formulated for this problem.

Additionally, the anisotropic influence matrix may have been incorrectly bounded and thus limited

the search space. However, these results are somewhat to be expected, as the unit cell exhibits

strong nonlinearities and force-displacement responses that may not resemble classical plasticity

stress-strain responses.

Consider the maximum principal strain contours for the best and worst training load cases,

depicted graphically in figure 4.28. The worst training load case exhibits a heterogeneous strain

field, and the applied displacement results in the stiff ligament in the lower-left corner experiencing

a bending or buckling load. This load, combined with the heterogeneous strain field and combined

material nonlinearities, contribute to the poor fit. Conversely, the applied displacement for the best

training load case results in a strain field that is almost symmetry about the horizontal centerline
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Figure 4.27: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

of the unit cell. This symmetry, and the absence of bending loads within the stiff ligaments, result

in a force-displacement response reminiscent of classical plasticity, and thus a sufficient nonlinear

substructure calibration.

4.2.1.2 Verification based on hold-out validation

The testing dataset is created via a separate Latin hypercube sampling array of dimension ten.

Figures 4.29 and 4.30 depict the force-displacement histories corresponding to the best and worst

testing load cases. Regardless, in both cases, a relatively poor fit is observed. In both cases, the

onset of nonlinearity is not well-approximated, and the ensuing hardening stiffness also contributes

to increasing error. This poor fit can be attributed to either significant overfitting to the training

data set, or the inability of the current substructure model formulation to generalize to arbitrary

displacement fields.

Maximum principal strain contours for the best and worst testing load cases are depicted in
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Figure 4.28: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.
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Figure 4.29: Force-displacement histories for the best testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.30: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution. This poor calibration result may be improved by implementing different sub-
structure model formulations (e.g., kinematic hardening and/or non-associative flow rules).

figure 4.31. Interestingly, the best calibration exhibits a relatively homogeneous strain field with

respect to each unit cell constituent material and minimal bending of the stiff ligaments. The re-

sulting poor fit (even in the best load case) may be indicative of model overfitting, as it would be

expected that the substructure model formulation could capture this type of response with suffi-

ciently low error. The contours for the worst calibration exhibit fairly strong heterogeneity, which

may explain the poor fit.

Finally, the mean squared error for each load case in the testing and training set is depicted

graphically in figures 4.32a and 4.32b, respectively. Once again, darker colors denote lower error,

and lighter colors describe load cases with higher errors. Clearly, the training set exhibits a lower

mean error (calculated to be 1.8E5), while the testing set mean error is calculated to be 2.1E5. This

higher mean error indicates that there exists a slight overfitting phenomenon within the calibration,

which could be ameliorated by increasing the size of the training data set.
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Figure 4.31: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration.
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(a) Testing errors for the Latin hypercube
sampling array.
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Figure 4.32: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.
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4.2.2 Chiral structure

The chiral unit cell is meshed to include approximately 1000 reduced-integration, plane stress

quadrilateral elements (CPS4R element code). Herein, we discuss calibration via Latin hypercube

sampling, verification based on hold-out validation, and conclude with the results from analysis-

informed calibration.

4.2.2.1 Calibration via training data generated with Latin hypercube sampling

A Latin hypercube array of dimension ten constitutes the training data set. Figures 4.33

and 4.34 depict force-displacement histories for the best and worst training load cases, respectively.

Clearly, the substructure model prediction can approximate the force-displacement response of the

chiral structure with a much higher accuracy than the lattice truss structure. In both the best and

worst training load cases, the onset of nonlinear initiation is well predicted. While the worst train-

ing load case displays noticeable error with increasing applied displacement, these errors are much

smaller than similar phenomenon in the cross structure, and this accuracy would be appropriate for

integration within a design problem.

Figure 4.35 depicts maximum principal strain contours for the best and worst training load

cases. Interestingly, even though there is significant heterogeneity in the strain field for the best

load case, the substructure is able to predict the complex response. Additionally, there exists an

inherent symmetry within the strain field of the worst load case, which indicates calibration results

could be improved by accounting for this symmetry within the parameter identification process. In

light of these high-accuracy predictions and the associated strain contours, it is hypothesized that

the chiral unit cell exhibits a higher resistance to stiff ligament bending due to the smaller effective

length of each ligament, and the presence of the circular stiff structure in the center of the unit cell.

4.2.2.2 Verification based on hold-out validation

The testing dataset is created via a separate Latin hypercube sampling array of dimension

ten. Figures 4.36 and 4.37 depict the force-displacement histories corresponding to the best and

worst testing load cases. Once again, the chiral substructure prediction vastly outperforms the
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Figure 4.33: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

0.04 0.02 0.00

2

1

0

1

2

1e5

0.015 0.010 0.005 0.000 0.00 0.02 0.04 0.02 0.01 0.00

0.04 0.02 0.00

2

1

0

1

2

1e5

0.010 0.005 0.000 0.010 0.005 0.000 0.00 0.02 0.040.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 1

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 3

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 4

0.0 0.2 0.4 0.6 0.8 1.0
Norm. Displacement, [m]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

ea
ct

io
n 

Fo
rc

e,
 [N

]

Figure 4.34: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.35: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.

cross substructure prediction qualitatively. While there is noticeable error in the worst testing

load case, the force at which nonlinearity initiates is well-predicted, and only slight errors in the

hardening stiffness exist. Interestingly, the hardening stiffness is consistently overpredicted in

the worst testing load case, which may signify that the substructure parameter bounds need to be

relaxed to accurately capture the hardening stiffness. However, despite these errors, the results

for this unit cell indicate that this substructure calibration may be sufficiently accurate for future

design efforts.

Maximum principal strain contours for the best and worst training load cases are depicted in

figure 4.35. While both load cases exhibit considerable heterogeneity in the strain fields, there

exists a symmetry about the horizontal unit cell centerline that may have contributed to a more

accurate fit. However, these contours show that the current substructure model formulation can

accurately capture the force-displacement response that results from these complex, multimaterial

unit cells.

Finally, the mean squared error for each load case in the testing and training set is depicted

graphically in figures 4.39a and 4.39b, respectively. Once again, darker colors denote lower er-

ror, and lighter colors describe load cases with higher errors. Clearly, the training set exhibits a

lower mean error, which is calculated to be 4.0E3, while the testing mean error is calculated to be

5.4E3. While this significant increase in error between training and testing sets may indicate model

overfitting to the training case, the resulting force-displacement predictions show that the current

model formulation can capture general responses. Additionally, the worst error actually appears in
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Figure 4.36: Force-displacement histories for the best testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.37: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure 4.38: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration.

the training data set, so the testing data set is well-approximated by the calibrated substructure.

4.2.3 Summary of case studies involving nonlinear geometric effects, plasticity, and hyper-

elasticity

In this section, the two unit cell geometries considering two material nonlinearities and non-

linear geometric effects are calibrated via both Latin hypercube sampling and analysis-informed

calibration. Once again, the chiral structure exhibits the lowest error, while the lattice truss struc-

ture and reentrant structure exhibit higher errors due to worse calibrations and higher orders of

magnitude of average reaction force. All errors, as well as the relevant percent changes are given

in table 4.3. The train-test percent increase is calculated by comparing the LHS training and testing

errors, while the LHS-AIC percent increase is calculated by compared the LHS testing error with

the AIC error. Across the board, the resulting errors are higher for the cases including hyperelas-

ticity when compared to the errors from the previous section. However, the percent by which the

training error increases for the testing error actual is lower, which signifies less overfitting. This

decrease may not signify a more robust fit; rather, the calibration may be just slightly less accurate

for all possible load cases.

Despite these errors, the drawbacks to the current method are well understood and can be over-

come by implementing a number of enhancements that are discussed in future work. Especially,

the chiral structure is able to be captured by the current model formulation. This result signifies

that the nonlinear substructure concept has the ability to capture a wide range of nonlinearities for

145



1
2

3
4

5
6

7
8

9
10

Lo
ad

 C
as

e

6.2e+03

5.2e+03

3.7e+03

5e+03

2.8e+03

2.7e+03

6.6e+03

7.7e+03

8.3e+03

6.1e+03

103

104

(a) Testing errors for the Latin hypercube
sampling array.

1
2

3
4

5
6

7
8

9
10

Lo
ad

 C
as

e

5.9e+03

4.5e+03

2.8e+03

1e+04

3e+03

3.6e+03

5.4e+03

1.2e+03

1.3e+03

2e+03

103

104

(b) Training errors for the Latin hypercube
sampling array.

Figure 4.39: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.

complex unit cells.

Table 4.3: Average mean squared errors and relevant percent changes for each calibration consid-
ering elastomeric hyperelasticity.

Geometry LHS training error LHS testing error Train-test percent in-
crease

Lattice 1.8E5 2.1E5 17

Chiral 4.0E4 5.4E4 35

Reentrant 1.1E5 1.6E5 45

4.3 Investigating the ability to calibrate many parameterized unit cells

The developed nonlinear substructure method is motivated by efficient and accurate design of

hierarchical assemblies comprised of heterogeneous unit cells. Efficient design of such structures
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may require calibration of many different unit cells to provide a so-called substructure library

from which the designer can perform “plug-and-play” design at drastically reduced computational

cost. To that end, two unit cell properties for the chiral structure were varied, and the effect

of these different unit cell design variables on calibration accuracy is discussed. In this study,

the outer radius and infill modulus are both varied to form a full-factorial design of experiment;

a graphical representation of all investigated unit cells is depicted in figure 4.40. By varying

properties corresponding to infill and stiffening regions, we hope to assess the ability of the current

nonlinear substructure method to generalize over a larger design space.

Calibration was performed sequentially on each distinct unit cell, but is “embarrassingly par-

allelizable.” As each calibration is independent of one another, the processes could be parallelized

and allocated separate computational resources. This would enable nine (or more, if available

computational resources allow) calibrations to be executed simultaneously with minimal loss in

efficiency. In this way, a designer could conduct any entire parameterized calibration overnight (as

the calibration process takes six hours as a worst-case estimate).

In this section, analysis-informed calibration is used to allow comparison across different com-

binations of unit cell design variables as each calibration considers the same displacement-based

training load cases. We discuss the trends of calibration accuracy as a function of design variable,

and possible extensions to more complex applications. For brevity, only the calibration errors are

discussed, but force-displacement responses follow similar trends as those presented in section

4.1.2.3.

Once again, we use the sweep morphing wing as the sample assembly-level analysis herein (cf.

section 3.1.2). Each calibration considers a training data set of all twelve load cases, and consisted

of a hybrid optimization scheme with a genetic algorithm followed by a gradient-based procedure.

Normalized Minkowski errors for each calibration as a function of training load case and pa-

rameterization variables are shown in figure 4.41. The mean normalized errors are depicted as

dashed black lines, while individual load case errors are represented with bars. Note that, to stay

consistent with prior discussion, the bars are colored such that darker colors denote load cases
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Figure 4.40: In this section, we investigate the effect of changing unit cell material and geometry
on calibration accuracy. In total, nine distinct chiral unit cells are calibrated via training data
generated from Latin hypercube sampling and analysis-informed calibration.
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with lower errors. It can be seen that there are no significant trends in mean normalized error

with respect to changing design variables; all calibrations result in a mean error within 0.5%. This

consistency may be indicative of the ability of the current nonlinear substructure method; one cal-

ibration method may be able to capture a wide range of different unit cells with no changes to the

design variable bounds, optimization parameters, etc.

Figure 4.41: Calibration error as a function of analysis-informed calibration load case and geomet-
ric and material design variables. The mean Minkowski error for each distinct unit cell is depicted
as a dashed line, and listed within each subsection.

However, interesting trends can be seen when inspecting the individual load case errors as

a function of design variable. While no trends can be seen as a function of increasing Young’s

modulus (i.e., the rows in figure 4.41), there appears to be a shift in worst calibration load cases

as the outer radius of the chiral unit cell increases. For small outer radii, the worst load cases are

located along the right edge of the assembly (i.e., load cases 6, 9, and 12). As the outer radii grows,

these worst load cases shift to load cases 1-3 (which correspond to the unit cells located along the

bottom edge of the assembly).

These trends may indicate two things. First, the change in load case error may be a result of the
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heuristic nature of calibration; for certain calibrations, the randomness of the optimization process

may bias the solution towards finding an optimal in certain locations. However, as the trends are

consistent across Young’s modulus, this most likely is not the case. Alternatively, there may be a

particular deformation, caused by the increase in stiff material, that is harder to capture with the

current nonlinear substructure formulation. As the outer radius increases, the amount of plasticity

generated upon deformation increases as well; this increase may result in the calibration being

unable to find an optimal solution.

This study demonstrates the ability of the present nonlinear substructure method to capture a

wide range of different unit cell geometric and material combinations, and may enable future de-

sign studies at reduced computational cost. Future investigation of calibration error as a function

of unit cell design variables is needed. Do the substructure design variables (e.g., the anisotropic

influence matrix Â and hardening stiffness M ) scale proportionally with unit cell design variables?

In this study, no such correlation was found; however, in future work, each calibration may be bi-

ased towards a preliminary “master” calibration, and thus enable creation of a surrogate model that

describes the change of substructure design variables as a function of unit cell design variable. This

would enable use of substructures to a wider range of problems, as the unit cell design variables

could then be approximated as continuous.

4.4 Chapter summary

In this chapter, we detailed a number of case studies to investigate the ability of the present

nonlinear substructure method to calibrate a reduced order model that captures complex nonlinear

force-displacement responses. Three distinct unit cell geometries were investigated: a lattice truss,

a chiral structure, and a reentrant structure. Each unit cell was comprised of a stiff region that was

modeled to exhibit metal plasticity and a flexible region that was modeled to exhibit either linear

elasticity or hyperelasticity. Additionally, all unit cells were modeled with nonlinear geometric

effects (e.g., large deformations). Each combination of nonlinearities considered and unit cell

geometry was calibrated via the methods described in chapter 3.

For most case studies, the load cases that exhibited a deformed shape reminiscent of bending
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and/or buckling were poorly captured. Bending and buckling are especially difficult to generalize,

as a slight difference in initial load case may lead to a wide variation in structural response (i.e.,

consider the force-displacement response of a vertical column vs. a column with a slight defect).

This relationship between the deformation mode and calibration accuracy may indicate that the

current model formulation (i.e., the nonlinear initiation criterion or the evolution equations) does

not have the flexibility to capture these diverse responses. However, these deficiencies motivate

future investigation in this area, to broaden possible applicability of the current method.

Additionally, for all of the case studies, calibrations for the chiral structure exhibited the low-

est average error, while calibrated lattice truss and reentrant substructures predicted significantly

disparate responses when verified against high-fidelity finite element data. These discrepancies is

most likely due to the chiral structure exhibiting force-displacement responses more reminiscent

of classical plasticity stress-strain curves, while the lattice truss and reentrant geometries produced

force-displacement responses that the current model formulation was unable to accurately cap-

ture. Additionally, calibration via training data generated with Latin hypercube sampling arrays

displayed significant overfitting (represented by a much larger average error for the testing data

set when compared to the average training error). However, in each case, select load cases were

well captured, so these results give confidence towards better calibrations in the future. Ultimately,

however, the utility of the present method lies in its ability to accurately predict the response of

substructure assemblies. We will investigate this in the next chapter.
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5. EXTENSIONS TO SUBSTRUCTURE ARRAYS OF COMPLEX UNIT CELLS WITH

MULTIPLE NONLINEARITIES AND INTEGRATION WITH A COMMERCIAL FEA

SUITE

The previous chapter and an accompanying appendix provided a comparative study of sub-

structure calibration for three distinct unit cell geometries exhibiting multiple nonlinearities (e.g.,

nonlinear geometric effects and metal plasticity). However, simply calibrating a single substructure

does not provide any benefit in terms of computational efficiency by itself. Recall Dodds’ first rule

of thumb for when and where to apply linear substructure analysis: “Substructures should be used

more than once in higher-level analyses. The computational expense associated with the substruc-

ture reduction procedure may exceed that of solving the full structural problem, so substructures

must be used many times to fully exploit the reduction in computational cost." [63] To that end,

in this section, we analyze arrays of calibrated substructures and compare force-displacement his-

tories of the substructure prediction to high-fidelity finite element responses. We assess both the

accuracy and computational efficiency of the substructure prediction to demonstrate the utility of

the present method.

Additionally, the work discussed thusfar has focused on predictions made by the in-house finite

element solver (cf. section 2.3). However, this in-house solver restricts the utility of the present

method to simple boundary conditions, assembly-level arrangements, and simplistic global solu-

tion capabilities. In section 5.2, we discuss efforts towards developing an Abaqus User Element

(UEL) for greater ease of use and application. The developed UEL is verified with single-element

cases and then applied to compute the response of substructure arrays. This new capability is foun-

dational towards use of the present nonlinear substructure method within a design framework, as

the UEL can be inserted into a variety of other analyses and associated design studies with minimal

user input.

152



5.1 Verification of substructure arrays comprised of heterogeneous unit cells

To demonstrate the accuracy and efficiency of the present nonlinear substructure method, arrays

of heterogeneous unit cells are analyzed. In this section, we compare substructure predictions with

finite element results for two heterogeneous unit cells: the lattice truss and the chiral structure; the

re-entrant structure is not investigated due to poor unit cell calibrations (see appendix C). Both the

lattice truss and chiral unit cells are assumed to exhibit nonlinear geometric effects and plasticity;

the relevant calibration details are provided in sections 4.1.1.1 and 4.1.2.1, respectively. Finally, the

accuracy of calibration via training data created with Latin hypercube sampling is compared with

analysis-informed calibration for each structure. The sweep morphing wing example (see 3.1.2) is

once again leveraged to provide a complex nonlinear response within each unit cell.

5.1.1 Lattice truss array

Figure 5.1 depicts maximum principal strain and effective plastic strain contours for the sweep

morphing array comprised of lattice truss unit cells. Note the spatial gradients of both strain

quantity. In the bottom-left corner of the array, both maximum principal strain and effective plastic

strain is the largest; the magnitudes of each quantity decrease as a function of position towards the

upper-right corner. Additionally, note that only two stiff ligaments in each lattice truss unit cell

are experiencing plastic strain. The plastic strain is generated in the lower-left and upper-right stiff

ligaments, which corresponds with the effective diagonal tensile loading that is applied to each unit

cell.

This analysis was conducted in Abaqus considering unit cells that were meshed to contain ap-

proximately one thousand elements each (for a total of twelve thousand elements in the assembly).

The full analysis completed in approximately 297 seconds. Clearly, if one were to attempt to con-

duct a design study of this array (e.g., different unit cells in different location), the current analysis

would lead to high computational cost. The design of a more complex array as needed for a more

realistic study would quickly become intractable. While certain techniques can be leveraged to

accelerate Abaqus analyses (parallelization, judicious choice of recorded information, adaptive so-
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(a) Maximum principal strain contours.
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Figure 5.1: Contours of maximum principal strain and effective plastic strain for the sweep mor-
phing wing example comprised of lattice truss unit cells. Note the heterogeneity of both quantities
with respect to location within the assembly.

lution methods, etc.), these analyses will still complete in roughly the same order of magnitude

of time. Herein, we compare the nonlinear substructure response to the full-fidelity finite element

response in terms of both accuracy and efficiency.

5.1.1.1 Verification of substructures calibrated via Latin hypercube sampling arrays

The calibration based on Latin hypercube sampling training data, discussed in section 4.1.1.1,

is integrated with the in-house finite element code (cf. section 2.3) and subjected to identical

boundary conditions as the full native mesh analysis shown in figure 5.1. Using twenty equal

global increments in displacement, two local increments, and a maximum number of global so-

lution iterations of twenty, the analysis completes in approximately 0.5 seconds. This represents

an approximate 600 times speedup compared to the full-fidelity analysis when you disregard the

computational cost of calibration (approximately 2 hours).

Clearly, the utility of the current nonlinear substructure method exists only when multiple

assembly-level analyses are conducted. If the computational cost of calibrating a substructure and

integrating that calibrated substructure within assembly-level analyses are considered together, the
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present method results in a computational speedup when analyzed more than 25 times. That is

to say, if this structure was integrated within a design framework, after 25 functional evaluations,

the nonlinear substructure method discussed herein would be faster than analyzing fully meshed

unit cells in the traditional manner using full-fidelity FEA. In the context of a large-scale design

effort driven by algorithms such as genetic algorithms, 25 functional evaluations would comprise

less than one generation of analyses. In this way, when design and optimization of a hierarchi-

cal structure is considered, the nonlinear substructure method would provide linearly increasing

computational benefits as a function of the size of optimization.

Figure 5.2 depicts force-displacement magnitudes for the four nodes on the top of the assem-

bly. The blue dots denote full-fidelity finite element data, while the red line denotes the nonlin-

ear substructure prediction. Clearly, the nonlinear substructure fails to predict the correct force-

displacement curvature present at node 17. This discrepancy may due to a number of factors. First,

this nonlinear substructure was calibrated with training data generated via Latin hypercube sam-

pling, and thus the calibrated substructure may not have experienced the same magnitude of applied

displacement as seen in this assembly-level analysis. Second, the substructure predicts almost per-

fect plasticity upon nonlinearity initiation; this error is most likely due to incorrect calibration of

the anisotropic influence matrix. As error increases with increasing applied displacement, it is ex-

pected that the unit cells attached to the nodes that experience large displacements may not fully

capture the nonlinear response. Additionally, as this result is in fact an aggregation of the response

of many calibrated substructures (e.g., in the load path from the fixed lower boundary to the node

17 of interest), the error from each substructure could compound and produce the inaccurate results

seen in figure 5.2a. In this case, it is likely that one unit cell attached to left edge of the assembly

is predicted to exhibit large nonlinear effects, and thus pollutes the data on this particular node but

does not effect the rest of the structure.

However, consider the force-displacement magnitudes for nodes 18, 19, and 20. In these cases,

the nonlinear substructure assembly can predict the response of this complex structure within suf-

ficient error, especially for node 20. The force magnitude at which nonlinearity initiates is slightly
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 5.2: Substructure prediction (shown in red) and high-fidelity finite element response (shown
in blue) of four select nodes for the sweep morphing example considering a lattice truss substruc-
ture calibrated via Latin hypercube sampling. This poor prediction of assembly-level response
may be improved by implementing a co-rotational displacement formulation or exploiting symme-
try conditions to efficiently calibrate the anisotropic influence tensor.
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overpredicted at nodes 18 and 10, but the hardening stiffness after nonlinearity initiation is cap-

tured very well. These results indicate that the Latin hypercube sampling-based calibration can

produce nonlinear substructures that approximate assembly-level response. The discrepancies be-

tween substructure prediction and full-fidelity response are well understood and could be improved

by improving the substructure calibration methodologies (e.g., adding corotational displacement

formulations and symmetry constraints). Additionally, these results highlight an important rule of

the present nonlinear substructures method: the quality of calibration begets assembly-level ac-

curacy. Because the Latin hypercube sampling-based calibration displayed significant errors with

respect to select training and testing load cases, there will be errors that accumulate and propogate

in assembly-level analyses using that same calibrated nonlinear substructure. However, these re-

sults indicate the utility of the present method towards hierarchical structures design, and identify

areas of future improvement.

Minkowski errors for each node with a non-zero reaction force are depicted graphically in

figure 5.3. Inspecting the trends with, clearly the nodes on the bottom edge (nodes 1-4) and the

upper left corner (node 17) exhibit poor fits. These poor fits are most likely due to the large

applied displacements (and thus, large effective unit cell strains) that the associated substructures

experience. The errors improve as a function of y-displacement in the assembly, with the top nodes

(nodes 18-20) exhibiting errors almost one order of magnitude lower than the bottom nodes. This

may be due to lower effective unit cell strains. Interestingly, these nodes are associated with unit

cells that experience the most bulk rotation, so much better agreement between finite element data

and substructure prediction is slightly unexpected. But, in this case, the dominating factor for error

may be merely applied strain, and as such the top nodes would be well-predicted. Clearly, the

response at node 17 is an outlier in terms of assembly-level accuracy, and the root cause of this

error must be investigated in future work.
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Figure 5.3: Minkowski error in reaction force magnitude for each node of the Latin hypercube
sampling substructure, where darker colors denote lower error. Note that omitted nodes are those
that exhibit no reaction force during loading (i.e., displacement boundary conditions are not ap-
plied).
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5.1.1.2 Verification of analysis-informed calibration

The analysis-informed calibration, discussed in section 4.1.1.1, is integrated with the in-house

finite element code (cf. section 2.3) and subjected to identical boundary conditions as the full-

fidelity analysis shown in figure 5.1. Using twenty equal global increments in displacement, two

local increments, and a maximum number of global solution iterations of twenty, the analysis

once again completes in approximately 0.5 seconds. Note that this analysis-informed calibration is

based on displacement histories derived from the single element square analysis (cf. section 3.1.2);

in this way, the full-fidelity assembly analysis of the complex square need not be conducted during

design.

Figure 5.4 depicts force-displacement magnitude histories for the nodes located on the top edge

of the assembly. The red line denotes the substructure calibrated via assembly-informed calibra-

tion, while the blue dots describe the finite element response. Interestingly, when compared to

the results from the calibration based on Latin hypercube sampling, the trends are almost mirror

images of one another. In the analysis-informed calibration case, the final magnitude of force for

node 17 is well-captured, although slight solution bisection occurs (and was seen during calibra-

tion). Conversely, the substructure underpredicts the reaction force magnitudes for nodes 18, 19,

and 20. This trend was also noted during calibration, so this result reinforces the overarching trend

of the present nonlinear substructure methods: the quality of calibration begets the assembly-level

accuracy.

Minkowski errors for each relevant node are depicted graphically in figure 5.5, where lighter

colors denote higher error. In this analysis, the nodes attached to the substructure which exhibited

the worst calibration error exhibit relatively high errors for both metrics (nodes 19 and 20). This

substructure experiences the most bulk rotation, so these errors may be decreased by including a

corotational displacement formulation. Similar trends with respect to the bottom edge nodes are

also seen; this nodes experience the largest reaction forces in the structure, and thus the associated

unit cells experience the largest effective strain. As such, these nodes perform quite poorly with

respect to Minkowski error.
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 5.4: Substructure prediction (shown in red) and high-fidelity finite element response (shown
in blue) of four select nodes for the sweep morphing example considering a lattice truss substruc-
ture calibrated via analysis-informed calibration.
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Figure 5.5: Minkowski error in reaction force magnitude for each node of the analysis-informed
calibration substructure array, where darker colors denote lower error. Note that omitted nodes are
those that exhibit no reaction force during loading (i.e., displacement boundary conditions are not
applied).
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5.1.2 Chiral array

Figure 5.6 depicts contours of maximum principal strain and effective plastic strain for the

sweep morphing wing assembly comprised of chiral unit cells. Similar trends with respect to

the relationship between strain magnitude and location can be seen. Clearly, the unit cell in the

lower-left corner exhibits the largest magnitude of both maximum principal strain and effective

plastic strain. Additionally, the unit cell in the upper-right corner exhibits the lowest average

principal strain and almost no equivalent plastic strain. While similar bulk trends are seen when

compared to the assembly comprised of lattice truss structures, the individual strain contours are

obviously different. The chiral structure still localizes plastic strain on the lower-left and upper-

right ligaments within each unit cell, but the presence of the circular stiff section complicates the

strain field. Additionally, each ligament appears to develop plastic strain regions at the interface

with the circular section. This may be the reason for better quality fits throughout this study; the

presence of strain concentrations minimize the change of bulk ligament bending and instead, the

unit cell response resembles a stiff beam attached to the circular section via an elastoplastic hinge.

0
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Logarithmic Strain, %

(a) Maximum principal strain contours.

0

20

Equivalent
Plastic Strain, %

(b) Effective plastic strain contours.

Figure 5.6: Contours of maximum principal strain and effective plastic strain for the sweep mor-
phing wing example comprised of chiral unit cells. Note the heterogeneity of both quantities with
respect to location within the assembly.
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This analysis was conducted in Abaqus considering unit cells that were meshed to contain

approximately one thousand elements (for a total of twelve thousand elements in the assembly).

The full analysis completed in approximately 384 seconds. Herein, we compare the nonlinear

substructure response to the full-fidelity finite element response in terms of both accuracy and

efficiency.

5.1.2.1 Verification of substructures calibrated via Latin hypercube sampling arrays

Force-displacement magnitude histories for the nodes located on the top edge of the assembly

are depicted in figure 5.7. Slightly better agreement between substructure prediction and finite

element results can be seen compared to the assembly of lattice truss unit cells, but overall similar

trends can be seen. In particular, while the substructure prediction at node 17 does not exhibit pre-

mature plasticity, it cannot capture re-stiffening at high applied displacements. This re-stiffening

behavior is most likely due to nonlinear geometric effects, and thus the current model formula-

tion is unable to accurately capture these responses. However, with the addition of a co-rotational

displacement formulation and consideration of unit cell symmetries within the calibration process,

these results can be improved.

Minkowski errors for each relevant assembly node are depicted graphically in figure 5.8. Once

again, similar trends with respect to error as a function of assembly node location can be seen.

The nodes attached to the bottom of the assembly (nodes 1-4) exhibit an order of magnitude higher

Minkowski error when compared to most other nodes. While nodes 1-4 exhibit higher errors, these

may still be manageable for design purposes.

5.1.2.2 Verification of analysis-informed calibration

Figure 5.9 depicts force-displacement histories for nodes 17-20, which are located on the top

edge of the assembly. The red line denotes the prediction of the substructure calibrated via analyis-

informed calibration, while the blue dots represent the finite element response. The onset of nonlin-

earity is well captured, and but differences in hardening stiffness appear at larger applied displace-

ments. Additionally, the substructure prediction once again is unable to predict the re-stiffening
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 5.7: Substructure prediction (shown in red) and high-fidelity finite element response (shown
in blue) of four select nodes for the sweep morphing example considering a chiral substructure
calibrated via Latin hypercube sampling.

29.43% 27.27% 28.41% 28.02%

12.23% 9.08%

9.87% 8.41%

5.60% 4.31%

5.72% 4.96% 3.73% 8.58%

0%

10%

20%

Figure 5.8: Minkowski errors in reaction force magnitude for each node of the Latin hypercube
sampling substructure, where darker colors denote lower error. Note that omitted nodes are those
that exhibit no reaction force during loading (i.e., displacement boundary conditions are not ap-
plied).
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behavior seen in node 17, but similar to the analysis-informed calibration of the lattice truss unit

cells, solution bisection is seen.
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 5.9: Substructure prediction (shown in red) and high-fidelity finite element response (shown
in blue) of four select nodes for the sweep morphing example considering a chiral substructure
calibrated via analysis-informed calibration.

Figure 5.10 depicts Minkowski and relative errors for each relevant node in the assembly. First,

the errors for nodes 1-4 (which correspond to the bottom edge of the assembly) actually exhibit

higher Minkowski errors than the Latin hypercube sampling analog. Furthermore, the right edge
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of the substructure assembly seems to be poorly captured; this is exactly opposite of both the Latin

hypercube sampling assembly and analysis-informed calibration results. However, these results

may enable future assembly-level design efforts.
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Figure 5.10: Minkowski error in reaction force magnitude for each node of the analysis-informed
calibration substructure array, where darker colors denote lower error. Note that omitted nodes are
those that exhibit no reaction force during loading (i.e., displacement boundary conditions are not
applied).

5.1.3 Summary of assembly-level verification of nonlinear substructure response

In this section, we provided two examples of assembly-level verification of nonlinear substruc-

ture response; a similar analysis was conducted for the re-entrant unit cell but is not shown for

brevity. Average errors for each unit cell geometry and calibration method are given in table 5.1.

Only slight differences exist between the overall mean error for both the lattice truss and chiral unit

cell assemblies. While the substructure is approximately twice as poor at predicting the re-entrant

substructure, this is most likely due to the large geometric nonlinearities present in the unit cell.

This analysis can clearly show the lack of utility in using the analysis-informed calibration method

in its current form; in all three cases, only marginal improvements can be seen when compared to

Latin hypercube sampling. However, analysis-informed calibration may still be useful to bound fu-

ture Latin hypercube sampling analyses; in this way, the analysis can provide insight into the type

of deformation that the substructures will experience (e.g., the approximate nature and magnitude

of deformation, be it pure tensile or otherwise).
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Table 5.1: Average errors for both lattice truss, chiral, and re-entrant assemblies.

Geometry Chiral Lattice Truss Re-entrant
Latin hypercube sampling 13.2% 11.9% 21.6%
Analysis-informed calibration 12.0% 11.8% 20.4%

Furthermore, verification of assembly-level response can provide estimates of computational

speedup for the present nonlinear substructure method. For this example comprised of 12 indi-

vidual substructures, implementing substructure analysis in lieu of full-fidelity FEA can decrease

computational cost by a factor of 600 or more. When accounting for the computational cost asso-

ciated with calibration, the present analysis starts to offer speedup after 25 functional evaluations.

For most large-scale design and optimization algorithms, 25 functional evaluations is well below

the typical amount (for example, substructure calibration nominally consists of 50,000 functional

evalulations per optimization). This type of speedup may provide enabling capabilities towards

hierarchical structures design.

5.2 Integration of the nonlinear substructure method with a commercial FEA suite

All prior discussion of assembly-level substructure verification has been restricted to imple-

mentation of the present method within the in-house global finite element solver (cf. section 2.3).

However, this in-house solver greatly restricts the applicability of calibrated substructures, as the

solver was purpose-built for the verification problems discussed previously. To demonstrate the

true utility of the method and enable future design efforts, integration within a commercial finite

element software suite is essential.

This integration may enable the following benefits to the current work. First, a wider range of

boundary conditions can be applied, as the current in-house solver restricts the user to only nodal

forces, nodal displacements, or a combination thereof. Second, commercial finite element solvers

include much more robust global solution methods and efficient time-stepping algorithms, while

the current in-house solver relies on fixed incrementation and the generalized Newton’s method

discussed in section 2.3. Third, the purpose-built nature of the in-house solver does not allow easy
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integration of substructures within larger assemblies of full-fidelity parts (also known as instances).

One could imagine the utility of analyzing a large assembly of parts with a substructure represent-

ing a crucial, but computationally expensive component. This functionality is not supported in the

custom code. Last, implementing the nonlinear substructure method within a commercial code can

enable wider dissemination of the method to the engineering analysis community.

To that end, the nonlinear substructure method is implemented into the software suite Abaqus

as a user element (UEL). [58] Abaqus user elements are user-defined subroutines written in C or

Fortran that compute output forces as a function of input displacements and other internal state

variables (in the case of nonlinear substructures, the plastic displacement ûNL and effective plastic

displacement α). Each UEL must also provide the current element tangent stiffness matrix and

energies for global solution. As the element tangent stiffness matrix can be derived analytically

(see figure 2.3) and the internal strain energy can be approximated as half the dot product of force

and displacement, the nonlinear substructures UEL can be implemented with minimal mathemat-

ical changes as compared to the calibration routine. In fact, conversion from python to Fortran

comprised the major effort with respect to developer effort.

In this section, we discuss verification of the herein developed UEL for the nonlinear substruc-

ture method. The recommended procedure for element verification from Abaqus is conducted,

and prior UEL literature for various applications is leveraged. [147, 148] First, the response of a

single element is verified with respect to both applied forces and applied displacements. Next, the

sweep morphing wing is analyzed as an assembly of nonlinear substructure user elements, and the

resulting UEL response is compared with full-fidelity finite element analysis and the in-house finite

element solver.

5.2.1 Verification of single-element response

Single-element UEL response is conducted by applying either force- or displacement boundary

conditions and measuring the energetic conjugate to the boundary condition (e.g., if displacement

is applied, force is measured). The single-element square nonlinear substructure (calibration de-

tails are provided in section 3.2.5.1) is chosen as the verification case to minimize conflation of
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Figure 5.11: Reaction force contours for the nonlinear substructure UEL (left) and Abaqus plane-
stress element (right) with one non-zero displacement boundary condition applied.

calibration error and UEL implementation bugs. Note that due to the inherent calibration error that

exists with the chosen substructure, exact matches are not expected. Instead, we verify substruc-

ture response by measuring linear response to assess an exact match, then identify trends and errors

that would be reminiscent of calibration errors in the nonlinear region.

In total, four verification analyses are completed. First, a single non-zero displacement bound-

ary condition is applied and the reaction forces are measured. Figure 5.11 depicts reaction force

contours for both UEL prediction and plane-stress element response. There exists a slight differ-

ence between the two contours; this is a symptom of calibration error. As the candidate substruc-

ture was not calibrated to this exact load case, the resulting reaction forces are expected to exhibit

slight errors. However, the contours show accuracy when comparing against the “true" solution.

Next, a single non-zero force boundary condition is applied with all other degrees of freedom

constrained in displacement. Contours of both UEL prediction and plane-stress element response

are depicted in figure 5.12. In this case, there is minimal noticeable qualitative error between the

two methods, providing confidence that this implementation is robust with respect to this degree

of freedom. Similar conducted for all other retained degrees of freedom, but are not shown here

for brevity.

With each singular degree of freedom response verified, the system of equations must be in-

spected. This is accomplished by analyzing the structure with two non-zero displacement boundary

conditions and two non-zero force boundary conditions in separate computations. Contours of each
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Figure 5.12: Displacement contours for the nonlinear substructure UEL (left) and Abaqus plane-
stress element (right) with one non-zero force boundary condition applied and all other degrees of
freedom fixed in displacement.

0

50

Reaction force
magnitude, MN

Figure 5.13: Reaction force contours for the nonlinear substructure UEL (left) and Abaqus plane-
stress element (right) with two non-zero displacement boundary conditions applied.

respective energetic contour are shown in figures 5.13 and 5.14. While the displacement contours

show near-perfect qualitative agreement, the reaction force seems to be drastically underpredicted

by the UEL. However, this is due to calibration error and not cause for concern. After repeating

the process for all combinations of two degree-of-freedom systems, the full system of equations

and assembly connectivity can be verified by analyzing the substructure with the sweep morphing

wing example (cf. section 3.1.2).

5.2.2 Verification of assembly-level response

An assembly of twelve distinct substructures is analyzed and compared to the plane-stress finite

element response. Displacement contours for each respective method are shown in figure 5.15.

Once again, the UEL (shown on the right) displays qualitative agreement with the full-fidelity

response. However, this is to be expected, and the applied boundary conditions fully constrain the
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Figure 5.14: Displacement contours for the nonlinear substructure UEL (left) and Abaqus plane-
stress element (right) with two non-zero force boundary conditions applied and all other degrees
of freedom fixed in displacement.

outer surface of the assembly.

To truly verify the assembly-level substructure response, the reaction force contours are shown

in figure 5.16. While slight discrepancies exist between the two methods, these are again symptoms

of the slight calibration errors and not indicative of any underlying implementation deficiencies.

Note that select substructures and elements display zero reaction force throughout the entire part;

this is due to the global solver localizing reaction forces at select nodes that are tied to other co-

located nodes, and not a flaw in computation.

The force-displacement histories for each top node are also compared quantitatively with pre-

dictions from the in-house finite element solver and plane stress Abaqus response and depicted

graphically in figure 5.17. In each case, the differences between the three implementations are

almost unnoticeable. In fact, the only discrepancies that exist between the in-house prediction

and UEL prediction actually indicate lower overall error when compared to plane stress Abaqus

response. This decrease in error is most likely due to the more stringent and efficient global solu-

tion methods; while the in-house solver only relies on a displacement increment residual, Abaqus

checks displacement, force, and moment residual for each increment and thus leads to better con-

vergence. It is expected that this trend of slightly better assembly-level prediction will continue for

more complex substructures as well and is another benefit of implementing the current method as

a UEL.
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Figure 5.15: Displacement contours for the Abaqus plane-stress elements (left) and nonlinear sub-
structure UEL (right).
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Figure 5.16: Reaction force contours for the Abaqus plane-stress elements (left) and nonlinear
substructure UEL (right).
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(a) Node 17.
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(b) Node 18.
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(c) Node 19.
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(d) Node 20.

Figure 5.17: Substructure prediction via the in-house finite element solver (shown in red), sub-
structure prediction via the Abaqus UEL (shown in green), and high-fidelity finite element response
(shown in blue) of four select nodes for the sweep morphing example considering a single-element
square substructure calibrated via analysis-informed calibration.
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5.3 Chapter summary

In this chapter, steps towards integrating the present nonlinear substructure method within a

design workflow for hierarchical or adaptive structures were detailed. Using the calibrated sub-

structures described in chapter 4, assembly-level analysis of the sweep morphing wing example

was conducted for homogeneous arrays comprised of the unit cells discussed previously. The

results from this assembly-level analysis were compared with full-fidelity finite element results

with respect to both accuracy and efficiency. For both investigated unit cells (lattice truss and chi-

ral structures), a central tenet of assembly-level accuracy emerged: calibration accuracy begets

assembly-level accuracy. The lattice truss substructure displayed noticeable error during both

calibration methods (e.g., calibration via training data generated from Latin hypercube sampling

arrays and analysis-informed calibration), and thus the resulting analysis of the sweep morphing

wing example also displayed significant error between substructure prediction and full-fidelity fi-

nite element analysis.

However, as the chiral substructure calibration exhibited much lower overall error for both

methods, the resulting assembly-level analysis also displayed low error. This assembly-level er-

ror may enable future design studies, and serves to demonstrate the utility of the present method.

Furthermore, analysis of a substructure assembly can reduce computational cost by a factor of

600 compared to full-fidelity analysis for this 12-substructure array. When considering the com-

putational cost associated with calibration, the present nonlinear substructure method will begin

to enable overall speedup if the assembly-level analysis is conducted more than 25 times. For

typical design problems, 25 distinct functional evaluations falls well below the minimum num-

ber required for optimization convergence, so the current method may afford significant efficiency

improvements over traditional finite element analysis.

The nonlinear substructure method was also implemented as an Abaqus user element (UEL) to

enable additional benefits of the technique. User elements can provide access to a host of com-

mercial finite element capabilities such as robust global solution methods and the ability to insert

substructures into a larger analysis comprised of both substructures and full-fidelity finite element
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parts. The herein developed user element was verified according to recommended techniques, and

the sweep morphing wing example was used to quantitatively compare substructure prediction

via UEL, substructure prediction via the developed in-house finite element solver, and full-fidelity

FEA. The UEL displayed decreased global error when compared to the in-house solver, most likely

due to the more robust global solution methods inherent to Abaqus. This new development may

enable wider adoption of the nonlinear substructure method detailed, and thus is the cornerstone

to this dissertation.
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6. CONCLUSIONS AND POTENTIAL FUTURE DIRECTIONS OF RESEARCH

In this chapter, we summarize the main ideas and findings presented in each chapter in turn.

First, we review the motivation of this work and the existing literature on nonlinear substructure

analysis. Then, the analogy to classical plasticity is discussed and the potential implications on

reduced-order structural modeling are detailed. With this analogy, necessary implementation de-

tails are reviewed and a square meshed as a single finite element is used as a notional example to

demonstrate the potential utility of the current method. Next, the method is extended to consider

structures with complex internal geometries and multiple nonlinearities; conclusions with respect

to the accuracy and efficiency of the present nonlinear substructure method are detailed. Finally,

the structures with complex internal geometries are analyzed as an array of many unit cells and the

method is integrated within a commercial finite element suite for future design efforts.

Afterwards, we discuss a number of potential avenues for future work. As the present method is

the first known application of a classical plasticity framework for reduced-order structural model-

ings, there exist many areas of improvement and future exploration. Based on the results discussed

herein, we divide these future directions into four parts that mirror the organization of this doc-

ument: identification of a functional form, modifications to training data generation, calibration

enhancements, and integration within a design framework. Each area is detailed in turn.

6.1 Conclusions by section

Chapter summaries and conclusions that can be drawn are presented below.

6.1.1 Introduction, literature review, and mathematical preliminaries

Structural analysis, defined in this work as the process of computing forces that result from

an applied displacement (or vice versa), is crucial to understand and design an engineering com-

ponent. This analysis is commonly accomplished via the finite element method, in which the

component domain is discretized to form a matrix system of equations that relate displacements

to forces. For simple structures, the stiffness matrix is constant and thus the force-displacement
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relationship is linear. However, in cases where large deformations or changes in material state are

present, this force-displacement relationship evolves as a function of displacement and is termed

to be nonlinear. Nonlinear finite element analysis (FEA) is computationally expensive, as it re-

quires iterative solution methods (e.g., Newton’s method) at intermediate points to investigate this

evolution of force as a function of displacement.

Nonlinearities may arise due to large deformations (termed nonlinear geometric effects), changes

in material state (termed material nonlinearities), or contact with another component during analy-

sis. We focus on nonlinear geometric effects and material nonlinearities; specifically, we consider

metal plasticity as the foundation for this work. The computational framework to predict metal

plasticity arose during the industrial revolution, and this framework seeks to describe when met-

als exhibit nonlinear stress-strain relationships and how this relationship evolves with increasing

strain. Many plasticity frameworks consist of a strain decomposition, a yield criterion, flow rules

that govern the evolution of strain with respect to stress, and conditions for solution. We draw an

analogy from this plasticity framework to apply to general nonlinear structures, which is discussed

in chapter 2.

One special class of nonlinear structures includes adaptive or reconfigurable structures. Adap-

tive and reconfigurable structures are becoming increasingly relevant in aerospace applications as

we attempt to seek greater performance with fewer compromises. Examples of adaptive structures

are morphing wings and origami-inspired reconfigurable structures. Due to the inherent nonlinear-

ity present in these complex structures, rigorous and holistic design is computationally intractable

with the conventional finite element method.

However, many adaptive and reconfigurable structures exhibit a hierarchical nature, in which

the overall component is comprised of many smaller repeating, graded, or varied substructures as-

sembled together in an array. To efficiently analyze these complex hierarchical structures, we can

turn to domain decomposition methods to potentially compute the response of each substructure

separately. Domain decomposition methods for structural analysis aim to find a reduced basis for

the input displacement space that accurately maps to the resulting forces. In this work, we dis-
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cussed a number of domain decomposition strategies including proper orthogonal decomposition

(POD) and multiscale FEA (MSFEA), but focus our attention on substructure analysis.

Substructure analysis is a historical method for domain decomposition in which the structural

system of equations are reduced to a much smaller set of equations described by the retained de-

grees of freedom. These retained degrees of freedom, chosen judiciously for use in other analyses,

contain relationships between the specific degree of freedom and all other eliminated degrees of

freedom. In this way, the dimensionality of the structural analysis can be greatly reduced, speeding

computation. However, historical substructure analysis relies on the assumption that the structure

in question will remain linear; in this work, that assumption does not hold. Efforts to extend sub-

structure analysis to the nonlinear domain exist in literature, either by geometric or mathematical

partitioning the structure of interest. Common nonlinear substructure methods that leverage math-

ematical partitioning of the governing equations include non-intrusive reduced order modeling,

POD-based substructuring, and “smart finite elements.” In this work, we seek to develop another

method for nonlinear substructuring that also leverages mathematical partitioning, but also draws

an analogy to computational plasticity modeling to balance efficiency and accuracy.

6.1.2 The analogy of constitutive plasticity towards a nonlinear substructure method

In this chapter, we extend the mathematical framework developed for constitutive plasticity

(e.g., a strain decomposition, a yield criterion, flow rules, and conditions for solution that govern

irrecoverable generation of plastic strain) to the structural domain. This extension is accomplished

by manipulating the reduced and partitioned governing equation for a structure (cf. equation 1.35)

and assuming that the nonlinear contribution can be approximated by the product of the reduced

stiffness matrix and a so-called nonlinear displacement vector. The evolution of the nonlinear

displacement (denoted ûNL) is described by the mathematical framework developed for constitutive

plasticity; herein, we establish a deformation decomposition, nonlinear initiation function, and

evolution equations. The conditions for solution (e.g., the KKT conditions) remain the same for

both constitutive plasticity modeling and the present nonlinear substructure method.

The versatility and flexibility of this mathematical framework is described. By drawing in-
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spiration from the dense body of literature that exists for constitutive plasticity, diverse structural

force-displacement relationships such as softening, nonlinear hardening, and anisotropy can be

captured with small changes to the functional forms considered. Additionally, published local

plasticity solution algorithms for solving the nonlinear system of equations (e.g., convex cutting

plane) can be easily adapted for use in the structural domain. The current tangent stiffness matrix

can also be derived, speeding computation.

This tangent stiffness matrix can be integrated within a global finite element solver, and the

implications of using nonlinear substructures in lieu of traditional finite elements are discussed.

Orders of magnitude in computational speedup can be achieved by replacing many costly element

operations with one costly substructure operation. In summary, plasticity modeling assumes the

existence of a linear domain, a point at which nonlinearity occurs, and some evolution of that

nonlinearity. Many structures exhibit similar responses, so the same mathematical framework can

be leveraged to efficiently capture these relationships as well.

6.1.3 Engineering implementation of the nonlinear substructure method

The analogy to constitutive plasticity is then implemented within a computational framework.

This computational framework is divided into three main stages: training data generation, calibra-

tion of substructure model parameters, and verification of substructure response. We will detail the

methods for each stage herein.

Training data generation consists of recording various force-displacement histories for each

retained degree of freedom. These various histories form a load case, and all training load cases

are used for subsequent calibration of substructure model parameters. All load cases in this work

consist of synthetic data via finite element analysis, but future work may consider the inclusion of

experimental data as well. Two distinct methods for training data generation are presented herein:

Latin-hypercube sampling, and data generated via analysis-informed calibration. Latin-hypercube

sampling arrays provide a balance between randomness and order to no training load case is re-

peated elsewhere in the set. Conversely, analysis-informed calibration extracts substructure applied

displacements from the eventual analysis in which the substructures will be used and these specific
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load cases form the training data set.

Calibration of substructure model parameters requires an optimization routine that minimizes

error in force between substructure prediction and the training data for each applied displace-

ment. In this work, we discuss numerous error methods that were investigated, but focus on the

Minkowski error. Optimization seeks to find the optimal combination of substructure parame-

ters (e.g., components of the anisotropic influence tensor Â), and leverages a hybrid optimization

scheme to balance global and local search qualities.

Finally, verification of substructure response can be accomplished via hold-out validation or

comparing an assembly of substructures to high-fidelity FEA. Hold-out validation consists of mea-

suring the error between calibrated substructure prediction and another data set that the substruc-

ture was not calibrated to. Comparing an assembly of substructures to high-fidelity FEA requires

integration of calibrated substructures within a global FEA framework (cf. section 2.3), and then

differences in predicted response are measured.

Throughout this chapter, the example of an elastoplastic square geometry meshed as a single

element was used. Both training data generation methods were conducted, and subsequent cal-

ibration was performed. While the Latin hypercube sampling-based calibration exhibited lower

training error when compared to analysis-informed calibration, significant testing error was doc-

umented. This testing error may be a symptom of slight overfitting during calibration. However,

when both calibrations were then inserted into a global FEA and compared with finite element

prediction, both solutions exhibited less than 1% error. This low error provides confidence in the

utility of the present nonlinear substructure method.

6.1.4 Case studies and applications of the nonlinear substructure method

The previous chapter confirmed the validity of our analogy to constitutive plasticity for cap-

turing structural nonlinearities in simple components. In this chapter, we seek to investigate the

utility of using the current nonlinear substructure method for predictions of structural response in

complex components. To this end, three different multi-material unit cells with complex internal

geometries are investigated: a lattice truss structure, a chiral structure, and a re-entrant structure.
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For each unit cell geometry, calibration via training data generated by Latin hypercube arrays is

compared to analysis-informed calibration. Additionally, the presence of multiple nonlinearities is

investigated; nonlinear geometric effects are considered and hyperelasticity is modeled with select

examples. In all, 9 distinct calibrations are discussed, and many conclusions can be drawn from

the results.

First, the chiral unit cell displayed significantly lower calibration error throughout all investi-

gated conditions. This may be due to the addition of stiff geometric features that made the resulting

force-displacement responses resemble classical stress-strain responses for constitutive plasticity,

and the fact that the dominant physics was the evolution of plasticity. For the lattice truss and re-

entrant unit cells, other physics appeared to be dominant (e.g., ligament bending, hyperelasticity),

and thus the current nonlinear substructure model formulation was unable to accurately predict

these responses.

Second, calibration based on training data generated via Latin hypercube sampling arrays ap-

peared to outperform analysis-informed calibration for each investigated case. This is most likely

due to the severe nonlinearities and heterogeneous loading applied for the example hierarchical

sweep morphing wing; the more severe the nonlinearities and the more diverse the structural re-

sponse, the more difficult substructure calibration becomes. However, the realistic comparison

between the two training data generation methods is to compare the predicted responses for the

particular global analysis, which is discussed in the next chapter.

Last, although many errors existed in the calibrated substructure predictions for the lattice truss

and re-entrant unit cells, these errors are well-understood and methods for improving prediction are

available. For example, inclusion of a co-rotational displacement formulation may allow substruc-

tures to better predict nonlinear geometric effects by minimizing the generation of spurious forces

due to rigid body rotation. Additionally, modification of the nonlinear substructure formulation

to include concepts such as non-associative flow rules, anisotropic hardening, and multi-surface

plasticity may enable better predictions.
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6.1.5 Extensions to substructure arrays of complex unit cells with multiple nonlinearities

and integration with a commercial FEA suite

Finally, with unit cell calibration investigated, and accurate results for select substructures, we

can now analyze arrays comprised of complex unit cells and compare the substructure prediction

with finite element response. In this chapter, two distinct substructure arrays were analyzed for the

sweep morphing wing example: the lattice truss unit cells and the chiral unit cells. Both calibration

methods previously discussed were compared herein.

As the lattice truss calibration was poor (but the current model deficiencies are well under-

stood), the resulting response of a substructure array also exhibited considerable error when com-

pared to the finite element response. This confirms a tenet of the current nonlinear substructure

method: the quality of unit cell calibration begets accuracy in analysis of arrays. Conversely, arrays

of chiral substructures exhibited very low error with respect to force magnitude, giving confidence

in the utility of the method for future design efforts. Throughout all analyses, significant computa-

tional speedup between substructures and FEA was documented. For the analysis of 12 unit cells,

the nonlinear substructure method discussed herein provided a 600X speedup and a three order of

magnitude reduction in floating point operations.

Additionally, as the current array substructure predictions are conducted with an in-house

global finite element solver, an Abaqus user element was formulated and described. This capability

allows greater access to robust global FEA solvers, enables more widespread use, and permits sub-

structures be inserted into larger analyses comprised of conventional finite element analysis. The

developed user element was verified by computing the response of a single-element square and

comparing to a traditional finite element, as well as analyzing an array of many substructures. In

both cases, the developed user element displayed high accuracy between Abaqus and the in-house

code, verifying the specific implementation herein. Additionally, due to the robust global solvers,

the resulting error between substructure prediction and finite element result is even lower than the

in-house analog. These results, along with the findings above, give confidence towards integrating

the developed nonlinear substructure method within a design framework; opportunities for future
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enhancements are myriad and discussed in more detail in the next section.

6.2 Future directions

6.2.1 Identification of a functional form

6.2.1.1 Comparison to traditional surrogate modeling methods

This work has established the potential utility of using plasticity-based reduced order modeling

frameworks for nonlinear structural analysis. However, to fully vet the quality of the prior state-

ment, a rigorous benchmarking study to compare to existing reduced order modeling or surrogate

modeling methods must be completed. In addition to the POD-based substructure and smart finite

element methods mentioned in the text, the nonlinear substructure must be tested against other

POD-based methods such as the empirical interpolation method (EIM) [93, 94]. The empirical in-

terpolation method is a two-stage POD decomposition of both linear and nonlinear contributions,

so it is a close parallel to the current work. The EIM has been shown to be able to capture nonlinear

elasticity [95]. Finally, the nonlinear substructure method must be compared again state-of-the-art

machine learning techniques.

6.2.1.2 Modification of plasticity-inspired formulation

There are numerous potential enhancements that can be made to the plasticity-inspired model

formulation. We discuss a few in more detail below.

1. Include kinematic hardening/anisotropic hardening. In many calibrations (cf. chapter 4), the

force at which nonlinearity initiates was well-captured, but the current substructure model

formulation failed to accurately the hardening stiffness during nonlinear evolution for all load

cases. This may be due to our assumption of isotropic hardening, and could be ameliorated

by including anisotropic kinematic hardening.

Inclusion of kinematic hardening may be crucial for modeling structural unloading. The

current nonlinear substructure method has only been tested to capture force-displacement

responses with no cyclic load paths. Due to the plasticity-inspired formulation, unloading
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would result in an elastic response related to the linear reduced stiffness matrix. However,

this initial linear response would be incorrect for structures undergoing nonlinear geomet-

ric deformation; in this work, we assume all nonlinear deformation is irrecoverable, but in

general this assumption is incorrect.

To model structural unloading, two forms of hardening and nonlinear deformation need to

be introduced. In this way, irrecoverable deformation could be predicted by isotropic linear

hardening (via the effective plastic displacement α state variable) and recoverable nonlinear

deformation may be captured by anisotropic kinematic hardening (via a state variable rem-

iniscent of backstress). Of course, introduction of another state variable would increase the

number of substructure parameters to be found, and should be performed only after calibra-

tion processes are more robust.

2. Investigate other forms of hardening functions. Herein, we restricted our study to only two

hardening functions. Nonlinear smooth hardening was primarily chosen to show the ability

of the nonlinear substructure method to account for a complex functional form with minimal

modifications. However, future work may investigate power law hardening or asymptotic

hardening to better fit training data.

3. Explore the applicability of non-associative flow rules. Associative flow rules, used in this

work, assume that the underlying mechanism dissipates internal energy. However, nonlin-

ear geometric effects do not dissipate internal energy, and thus may be poorly captured by

leveraging associative flow rules.

4. Extend the current method to coupled temperature-displacement elements. While we have

restricted our discussion herein to purely mechanical substructuring, the concept of using

a Schur complement to reduce the problem dimensionality is mathematical in nature. As

such, there exists literature on coupled temperature-displacement substructures [149]. The

existing literature could be extended to consider nonlinear thermomechanical problems (i.e.,

problems in which the material properties are a function of temperature).
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6.2.2 Modifications to training data generation

6.2.2.1 Experimental data input

In this work, we only investigated synthetic training data generated via high fidelity FEA. How-

ever, the concept of only measuring displacement or force select points lends itself to experimental

data input. For example, if the model of an experiment needs to be inserted into another analysis,

the current nonlinear substructure formulation can readily calibrate to the input experimental data.

Extending this one step farther, if complex unit cells are fabricated and tested for design of a larger

array, calibrating a nonlinear substructure to this unit cell for future design efforts may be less

computationally intensive (on the user) than developing a full-fidelity finite element model that

can accurately capture the mechanics. As such, the substructure can be calibrated directly from

experimental unit cell data and then used in subsequent design workflows. Of course, the inclusion

of experimental data may introduce uncertainty into the training data, but that topic will not be

addressed herein.

6.2.2.2 Further investigation of analysis-informed calibration

Analysis-informed calibration in its present form considers the applied displacements for all

unit cells as load cases for calibration. However, for larger arrays of substructures, this quickly

will become computationally infeasible. Alternatively, one could generalize the many different

load cases into a smaller number of fundamental deformation modes that the substructures will

experience.

For example, consider the infilled bending cylinder depicted in figure 6.1. Although each unit

cell of the structure is experiencing a different loading condition, these different loading conditions

can be classified into three main categories. The cylinder centerline experiences bending, while the

right and left sides are under compression and tension, respectively. With these three fundamental

load cases, analysis-informed calibration may find an accurate solution that could apply to all of

the unit cells in the entire structure.

This reduction in training load cases may be particularly enabling, as it would reduce the
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Figure 6.1: There are three fundamental deformation modes in a bending cylinder analysis.

amount of training data required, while also reducing the objective space from many load cases to

just a few. The method of extracting fundamental deformation modes is similar to that proposed by

Zhou and Reese [88]; however, with this method we do not apply all six fundamental deformations

and instead restrict ourselves to only the deformations that appear in the analysis of interest. Of

course, training to all six fundamental deformation modes should be investigated as well.

6.2.2.3 Parallelization

Many elements of the current nonlinear substructure implementation framework are massively

parallelizable. For example, training data generation can be accomplished by parallelizing the

required FEA for each load case in training and testing set. In this work, we used the ad hoc

method of parallelizing in Abaqus by conducting analyses of multiple disconnected parts (these

being the substructures subjected to each load case). However, a balance between conducting

all training data generation in one analysis and parallelizing each generation analysis separately

must be sought. The Abaqus *MANIFEST command may be an avenue for improvement, as this

command allows for multiple nonlinear load cases to be applied sequentially without input file

processing.

Additionally, calibration itself can be parallelized by predicting the substructure response based
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on the design variables of each individual. While the current calibration procedure considers each

individual serially, this process could be modified for considerable speedup in the future.

6.2.3 Calibration enhancements

6.2.3.1 Predicting failure and damage

The nonlinear substructure method in its current form only completes one of the two pur-

poses of structural analysis. While the method can provide the relationship between forces and

displacement, it cannot assess local failure at any point. However, this can be accomplished by

incorporating additional surfaces that relate input displacements to a measure of failure such as a

safety factor. With similar training data generation processes, additional data would be recorded

that corresponds to the local stress or strain state. With this data, a wide range of surrogate mod-

eling methods (including drawing another analogy to plasticity) could be leveraged to provide a

model for failure. Additionally, by tracking the accumulated plastic displacement and mapping

that displacement to the stiffness, progressive damage may be investigated for softening upon un-

loading.

6.2.3.2 Implementing symmetry constraints

The current calibration procedure to find the optimal combination of substructure parameters

assumes that each symmetric component of the anisotropic influence matrix Â is independent.

This assumption results in a very large design space over which the optimization algorithm must

search. However, consider the heat maps for a sample calibrated anisotropic influence matrix and

the corresponding reduced stiffness matrix K̂ shown in figure 6.2. As these two quantities cor-

respond to a square substructure meshed as a single element, there exists significant symmetry in

the reduced stiffness matrix. Do those same symmetries exist for the anisotropic influence tensor?

Furthermore, can these symmetries be derived by proper consideration of the part geometry?

Consider a single element square with an applied displacement at one degree of freedom and all

other degrees of freedom fixed. Clearly, agnostic of the degree of freedom at which the non-zero

displacement is applied, nonlinearity will initiate at the same resultant force. This is a consequence

186



(a) Heatmap of the components of a cali-
brated anisotropic influence matrix Â.

(b) Heatmap of the components of the reduced stiffness
matrix K̂.

Figure 6.2: While there exist inherent symmetries for the reduced stiffness matrix K̂, the same
symmetries do not appear naturally in a calibrated anisotropic influence matrix Â. Future work
may investigate the use of rotation and reflection operations to impose these symmetries and de-
crease the number of substructure parameters needed to fully define the anisotropic influence ma-
trix.

of the inherent substructure symmetry, and may be applied to more complex geometries. By lever-

aging the concepts used to derive the number of independent material constants based on planes

of symmetry, the number of independent components of the anisotropic influence matrix may be

reduced. This reduction would ensure solution consistency with respect to substructure rotation or

reflection operations, while also enabling the optimization algorithm to conduct a more thorough

search over the design space.

6.2.3.3 Including a co-rotational displacement formulation

As mentioned in the case studies including nonlinear geometric effects (cf. section 4.1.1.3 and

others), the current substructure formulation fails to accurately predict the resulting forces when

rigid body rotations are applied. This deficiency can be overcome by implementing a co-rotational

displacement formulation, which computes the strain-inducing displacement vector given a total

displacement vector. The strain-inducing displacement vector can be computed by subtracting the

approximate rigid body motion from the applied displacement vector. What follows is also pre-
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sented with more detail in the Abaqus theory manual, specifically in the section for large-rotation

substructures [58]. Herein, we briefly outline the required procedure and highlight the specific op-

erations needed to integrate this co-rotational formulation within the current computational frame-

work.

The strain-inducing reduced displacements û are calculated for a node via

u = x− x0 −R(X−X0), (6.1)

where x and X describe the current and original positions of the node in question, x0 and X0

denote the current and original coordinates of an average point within the substructure, and R

describes the rigid body rotation matrix. In the case of the current nonlinear substructure method,

this average point can be computed by finding the center of the unit cell. The rotation matrix R

can be calculated by establishing a coordinate axes that aligns with the select substructure degrees

of freedom and recording the change in configuration as a function of applied displacement.

With the strain-inducing reduced displacements û and rotation matrix R computed, the reduced

stiffness matrix can be rotated:

K̂rot = RK̂RT. (6.2)

This rotated reduced stiffness matrix K̂rot can now be used in computing the resulting forces based

on the strain-inducing reduced displacements û in the traditional manner:

K̂rotû = F̂. (6.3)

This modification would only influence the initial computation of stiffness matrix for each sub-

structure; for all other calculations, the same methodology as previously outlined would apply.

6.2.3.4 Investigating the uniqueness of a calibrated substructure

All substructure calibrations discussed herein were reduced to exhibit eight degrees of free-

dom (i.e., x- and y- displacement magnitudes at each corner node). However, by extending the
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concept of strain-inducing displacements discussed in the previous section, these eight degrees of

freedom are not independent. Every eight-dimensional displacement vector can be reduced to a

six-dimensional displacement vector with one node fixed in the x- and y-directions. This resulting

strain-inducing displacement vector can then be used as the retained degrees of freedom and the

substructure can be calibrated as a six-dimensional system.

Reducing the substructure dimension from eight to six has large implications on the complexity

of parameter identification; the number of free parameters that need be found would be reduced

from at least 37 to at least 22. This large reduction could be particularly enabling for more thorough

searches of the design space, and may result in more accurate substructure calibrations. Addition-

ally, due to the non-uniqueness of the current substructure calibration (where many combinations

of substructure parameters may predict identical responses), this reduction may ensure uniqueness

and thus, better convergence during calibration.

Additionally, due to the current substructure model formulation for certain nonlinear initiation

functions (in this work, nonlinear smooth hardening), there may exist many identical solutions

depending on the relative values of the anisotropic influence tensor Â and hardening stiffness M .

When the effective plastic displacement α is zero, the nonlinear initiation criterion for anisotropic

yield and nonlinear smooth hardening is

f(F̂, α = 0) =
√

F̂ · ÂF̂− (F y
0 +

1

2
Mξ1−n2). (6.4)

Following the same convention as chapter 3, blue quantities represent parameters found via opti-

mization while green denotes parameters approximated analytically. Clearly, depending on values

for all substructure parameters, this current initiation function may predict yield at the same ap-

plied force. This non-uniqueness may lead to calibration difficulties and should be investigated in

more detail in the future.
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6.2.3.5 Modifying interpolation functions for substructure boundaries

When applying the nonlinear substructure method described herein to unit cells meshed to con-

tain thousands of finite elements, the substructure boundaries were constrained to remain straight

lines to prevent Poisson effects and gaps opening up between coincident substructures within an ar-

ray. This linear constraint was adapted from the work of Whitcomb and Woo (see reference [124]),

and could be easily extended to other interpolation functions based on the retained degrees of free-

dom. For example, if three nodes were retained for each substructure edge, a quadratic interpola-

tion function could be integrated. Alternatively, if rotations at each corner were retained, Hermite

cubic functions could be leveraged. Finally, this concept could extend beyond conventional in-

terpolation functions to a wide variety of functions such as radial basis functions or class-shape

transformations. With each specific interpolation function, consideration of additional calibration

parameters or internal state variables would be critical. However, this could improve the accuracy

of the resulting substructure prediction.

6.2.3.6 Performing multi-objective optimization for analysis-informed calibration

During the analysis-informed calibration process detailed in this work, one scalar error metric

was used as the cost function to determine the best singular substructure calibration that could

approximate the response of each unit cell within the array. But, in some cases with very diverse

loading, a single substructure calibration may not sufficiently capture all load cases. Instead, one

could leverage multi-objective optimization to find the best set of calibrations that approximate the

vector of load case errors.

This could improve the subsequent substructure predictions in two ways. First, if two load cases

share similar characteristics, the resulting optimal combination of substructure parameters would

in turn be very similar. This would be a method to reduce the number of needed analysis-informed

calibration load cases. Second, if many diverse combinations of substructure parameters best fit

different load cases, the particular calibration could be used for only that unit cell location. This

method may greatly increase accuracy, and would be easily implemented by using multi-objective
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algorithms designed for large objective spaces such as NSGA-III [140, 142].

6.2.4 Integration of the nonlinear substructure method with a design framework

6.2.4.1 Bi-level optimization and concurrent material/structural optimization

Bi-level optimization considers design problems where two distinct scales are evident. The

larger scale often considers categorical design variables (e.g., I-beams, T-beams, etc.), while the

smaller scale considers categorical and continuous design variables that are specific to each upper

level design variable [150]. In these problems, the overall topology is most often fixed. To solve

the entire problem, approaches consider solving each lower-level optimization for a specific upper

level configuration (i.e., for a given layout of I- and T-beams, return the optimal design variables),

while some approximate the upper-level problem by a surrogate [151, 152, 153]. However, current

methods in this field may lead to prohibitively long run times for problems with computation-

ally expensive functional evaluations and approximation methods across many various categorical

variables lack generality.

Concurrent material/structural optimization is similar to bi-level optimization, but most often

is used in a topology optimization scheme [154]. In this approach, a structural design problem is

investigated at the micro- and macro-scale and optimal topologies are found for both. For each

functional evaluation, the candidate microstructures are analyzed and then homogenized for use in

the macro-scale problem. Some works parameterize candidate microstructures by certain design

variables, then use performance metrics as a macrostructure search space [155]. Additional works

leverage level-set optimization to find optimal topologies at both scales [156]. This field is well

developed and promising for concurrent micro- and macro-structure design, but may suffer from

long run times in highly nonlinear problems.

The present nonlinear substructure method can enable more efficient global analysis of these bi-

level or concurrent material/structural optimization problems. All candidate unit cells can be pre-

calibrated and then stored in a database for use in the optimization procedure. In this way, design

with nonlinear substructures can increase the overall efficiency by only needing to numerically
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verify the optimal result and avoiding costly assembly-level analyses for each individual design.
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APPENDIX A

EVOLUTION OF A CALIBRATED SOLUTION

In this work, calibration comprised of a hybrid optimization scheme. First, a genetic algorithm

with 1000 population members was evolved for 100 generations. Subsequently, the best individual

was then used as a initial guess for a gradient-based optimization with 1000 maximum gradient

evaluations. Optimization parameters such as population size were chosen to prevent premature

calibration conclusion. Each parameter could be tuned for a sizable reduction in computational

cost, but for this work, we concentrated on attaining the best calibrated solution with little regard

for superfluous evaluations.

As an example of this, consider the training error history as a function of optimization dura-

tion depicted in figure A.1. Specifically, this calibration corresponds to the single element square

example (cf. chapter 3) with Latin Hypercube Sampling training data. The trends displayed for

this calibration are consistent across all investigated unit cells and both training data generation

methods.

It can be seen that the majority of improvement occurs in the first 20 generations, while the

solution stops improving by approximately the 50th generation. Additionally, the gradient-based

optimization solution slightly improves performance as well; in some cases, this final improve-

ment represents a 10% decrease in training error. However, with these trends, it can be seen that

most calibrations will attain very similar results with only 50 generations (and thus, could approx-

imately halve the required computational effort). As such, most calibrations discussed in this work

considered a genetic algorithm evolved for 50 generations. Future work should investigate more

advanced optimization techniques to find the best balance of computational cost and accuracy.
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Figure A.1: Relative error as a function of optimization progress.
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APPENDIX B

EFFECT OF TRAINING SET SIZE ON OVERFITTING

To investigate the effect of training set size on calibration accuracy and computational cost, the

chiral unit cell was calibrated via training data generated with Latin Hypercube Sampling arrays of

three distinct sizes. Specifically, LHS arrays of size 5, 10, 20, and 40 were used as training data for

three distinct calibrations. In each case, An LHS array of size 5 was used for hold-out validation.

Note that each training and each testing set comprised a unique LHS array to prevent data leaking.

Calibration accuracy is measured by comparing training and testing errors for each case. Com-

putational cost is assessed via timing the calibration process, which was held constant as a genetic

algorithm with 1000 members over 50 generations followed by a gradient-based optimizer with

1000 maximum gradient evaluations.

Table B.1 shows the effect of training set size on calibration overfitting and computational cost.

Overfitting is assessed by measuring the difference between training and testing errors and normal-

izing by the training error. Each increase in training size decreases the percent increase in testing

error by upwards of an order of magnitude, but also substantially increases the computational cost.

However, the small percent increase that corresponds to calibration via a training set of 20 indi-

cates that future work should use larger training sets (compared to LHS arrays of dimension 10

commonly used in this work due to limitations in computational cost). Furthermore, a training

set of 40 exhibits a decrease in error between training and testing sets (note that the larger error

magnitudes for this study are an artifact of the heuristic nature of calibration and not indicative

of a relationship between accuracy and training set size). For this example, a training set size of

20 appears to appropriately balance overfitting and overall run time. A similar study should be

conducted for each new unit cell to determine the optimal training set size that balances robustness

and computational cost.
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Table B.1: Calibration accuracy and computational cost for each LHS-based calibration of the
chiral unit cell.

Training set size Training error Testing error Percent increase Run time
(hrs)

5 2.93E4 17.3E4 491 2.3

10 5.53E4 7.36E4 32.9 3.2

20 5.29E4 5.43E4 2.7 6.9

40 6.87E4 6.68E4 -2.7 12.4
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APPENDIX C

REENTRANT UNIT CELL CASE STUDY

C.0.1 Re-entrant structure with metal plasticity and large deformations

In this section, the re-entrant unit cell is analyzed with calibration based on Latin hypercube

sampling and analysis-informed calibration. The optimization specifics were set to be constant

throughout the study and are consistent with other work (e.g., 1000 members in each population

over 50 generations with 1000 maximum gradient-based iterations). Relevant trends of each type

of calibration are highlighted, and areas to improve calibration accuracy are detailed.

C.0.1.1 Calibration via training data generated with Latin hypercube sampling

A Latin hypercube array of size ten was used to form the training set. Figures C.1 and C.2

depict force-displacement histories for the best and worst training load cases after calibration. The

red line denotes the substructure prediction while the blue dots describe the finite element training

data. For the best training case, the substructure is able to predict the nonlinear force-displacement

response with relatively high accuracy across all retained degrees of freedom.

However, when considering the worst training load case (cf. figure C.2), the substructure dras-

tically underpredicts the reaction force in the y-degree of freedom for all degrees of freedom.

Underprediction of the training data may signify two things. First, the model may not include the

flexibility to model such diverse nonlinearities that the structure exhibits (e.g., metal plasticity and

large strains within the flexible material). To ameliorate this, the model may be modified to include

more advanced mathematics from plasticity such as kinematic hardening, anisotropic hardening,

or multi-surface yield criterion. Second, the optimization may have been restricted in the search

space to not find a better globally optimal result. Future optimizations may need to tune design

variable bounds to fully capture the entire search space, but that is outside the scope of this work.

Maximum principal strain contours for the best and worst training load cases are depicted in

figure C.3. The stiff structure in the best load case appears to carry more load than the stiff struc-
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Figure C.1: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure C.2: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure C.3: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.

ture in the worst load case. Additionally, the strain field is slightly more homogeneous for the best

load case. The most prominent feature in the worst load case is the strain concentration in the

flexible infilled region at the top of the unit cell. This strain concentration is due to extension of

the top edge, and may contribute significantly to the force-displacement response of the structure.

Additionally, top edge extension would impose a load condition reminiscent of bending on the stiff

ligaments, which may produce force-displacement responses that the substructure model calibra-

tion would be unable to predict. This incompatible deformation mode is most likely the cause for

a poor fit after calibration.

However, the substructure response still predicts bulk nonlinearities with low accuracy in some

cases. The force at which nonlinearity initiates is well-predicted across the training set, but the

hardening function may need to be modified to accurately capture bending deformation in each

stiff region. Additionally, calibration results may improve if symmetry conditions were imposed

on the anisotropic influence tensor.

C.0.1.2 Verification based on hold-out validation

To verify the robustness of the Latin hypercube sampling calibration for general deformations,

hold-out validation is implemented. The testing data set consists of a separate Latin hypercube

sampling array of dimension. Figures C.4 and C.5 depict force-displacement histories for the best
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Figure C.4: Force-displacement histories for the best testing load case, as specified by Latin hy-
percube sampling. The red line denotes the substructure prediction, while the blue dots denote the
FEA solution.

and worst testing load cases. For the best testing load case, the force-displacement response is

well-predicted with respect to most degrees of freedom, but the substructure prediction does not

fully capture the hardening stiffness. However, the point at which nonlinearity initiates is still well-

predicted; the errors accumulate at higher displacement magnitudes. This compounding error may

be due to the inability of the hardening function to capture the diverse nonlinear force-displacement

reponses.

Conversely, the testing load case exhibits conflicting responses; the finite element data is over-

predicted with respect to five degrees of freedom. This response further highlights the lack of

variance of the hardening function. However, this result still may enable design, as the conflicting

errors may cancel each other out when considering magnitudes of forces.

Figure C.6 depicts maximum principal strain contours for both aforementioned testing load

cases. In both cases, significant heterogeneity in the strain field is seen, which may have resulted

in the relatively poor fits. These complex strain fields may have resulted in force-displacement re-
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Figure C.5: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

sponses not reminiscent of nonlinear smooth hardening plasticity, and thus the substructure model

formulation may have been unable to capture these responses accurately.

Finally, mean squared errors for both testing and training data sets are given graphically in

figure C.7. The average training error is calculated to be approximately 1.6%, while the average

testing error is approximately 3.5%. This large increase in testing error may be indicative of

calibration overfitting, and is cause for concern for use of this calibrated substructure in future

design efforts. However, the drawbacks to the current method are well understood, and future

modifications will improve performance.
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Figure C.6: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration.
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Figure C.7: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.
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C.0.1.3 Analysis-informed calibration

Analysis-informed calibration was conducted with respect to the sweep morphing wing ex-

ample (cf. section 3.1.2). In total, twelve load cases form the training set. Figures C.8 and C.9

depict force-displacement histories for the best and worst analysis-informed calibration load case,

respectively. The substructure predicts the best load case with near-negligible error, which both

the force at which nonlinearity initiates and the hardening stiffness captured well. While there is

some solution bisection seen, these discrepancies are almost unnoticeable in the context of the full

response.

Alternatively, the worst load case displays significant error in hardening stiffness, with the sub-

structure solution unable to predict macro responses with respect to four degrees of freedom. These

errors may arise due to the shear loading that this unit cell experiences, which is shown in figure

C.10. As the unit cell shears, the flexible material contributes significantly to the overall reaction

force, leading to a response that the current model formulation is unable to predict. Compare that

response to the maximum principal strain contours of the best load case, which exhibits loading

more reminiscent of pure tension with a bulk rotation superimposed. While the bulk rotation may

contribute to the error at large displacements, the pure tension loading is easily captured by the cur-

rent model formulation. Overall, the drawbacks of the current model formulation are clear when

inspecting these calibration results.

Finally, consider the mean squared errors of each analysis-informed calibration load case

shown in figure C.11. Once again, similar trends are seen with respect to the unit cell locations and

resulting calibration errors. The unit cells located on the bottom and right sides of the assembly ex-

hibit the highest calibration error, while the internal unit cells exhibit the lower errors. This is most

likely due to the shear and applied rotation that contribute to force-displacement responses that are

not compatible with the current substructure model formulation. The average mean squared error

is calculated to be 4.96%, which is more than twice the average mean squared error of the testing

set for Latin hypercube sampling. This result is consistent with the previous unit cells, and should

be used to inform future calibration efforts.
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Figure C.8: Force-displacement histories for the best load case, as specified by analysis-informed
calibration. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.
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Figure C.9: Force-displacement histories for the worst load case, as specified by analysis-informed
calibration. The red line denotes the substructure prediction, while the blue dots denote the FEA
solution.
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Figure C.10: Equivalent plastic strain contours for the best and worst training load cases, as speci-
fied by analysis-informed calibration.
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Figure C.11: Training errors for analysis-informed calibration.
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C.0.2 Re-entrant structure with metal plasticity, elastomeric hyperelasticity, and large de-

formations

The re-entrant unit cell is meshed to include approximately 1000 reduced-integration, plane

stress quadrilateral elements (CPS4R element code). Herein, we discuss calibration via Latin

hypercube sampling, verification based on hold-out validation, and conclude with the results from

analysis-informed calibration.

C.0.2.1 Calibration via training data generated with Latin hypercube sampling

A Latin hypercube array of dimension ten constitutes the training data set. Figures C.12 and

C.13 depict force-displacement histories for the best and worst training load cases, respectively.

The substructure, shown in red, does not accurately predict the evolution of force with respect

to displacement, even in the best training load case. While the results are somewhat close to

the training data, the force at which nonlinearity initiates is poorly captured, and thus leads to

increasing error with increasing applied displacement. The same phenomenon continues with

respect to the worst training case; while the correct force-displacement history is predicted for half

of the retained degrees of freedom, the hardening stiffness is poorly approximated, contributing to

large amounts of error.

The contours of maximum principal strain, shown in figure C.14, shed some light on the reasons

for poor calibration in both cases. For the best training load case, the deformation resembles almost

a pure rotation with minimal resulting strain. Due to this rotation, spurious reaction forces may be

predicted by the substructure, thus polluting the data set. This error could be avoided by including

a corotational displacement formulation, which is detailed in future work. Additionally, the worst

training load case displays significant strain localization on the left edge of the unit cell, which

could contribute to the poor fit. However, despite these errors, the drawbacks to the current model

formulation are well understood, and future calibration efforts could produce much more accurate

fits by adding a corotational formulation and integrating symmetry constraints within the parameter

identification process.
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Figure C.12: Force-displacement histories for the best training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.

0.00 0.01 0.02 0.03

3

2

1

0

1

2

3

1e6

0.000 0.005 0.010 0.015 0.010 0.005 0.000 0.000 0.005 0.010

0.015 0.010 0.005 0.000

3

2

1

0

1

2

3

1e6

0.04 0.02 0.00 0.00 0.01 0.02 0.03 0.04 0.02 0.000.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 1

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 3

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 4

0.0 0.2 0.4 0.6 0.8 1.0
Norm. Displacement, [m]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

ea
ct

io
n 

Fo
rc

e,
 [N

]

Figure C.13: Force-displacement histories for the worst training load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure C.14: Maximum principal strain contours for the best and worst training load cases for the
Latin hypercube sampling calibration.

C.0.2.2 Verification based on hold-out validation

The testing dataset is created via a separate Latin hypercube sampling array of dimension ten.

Figures C.15 and C.16 depict the force-displacement histories corresponding to the best and worst

testing load cases. The best testing load case exhibits near-negligible error between the substruc-

ture prediction and finite element result. Although slight errors exist at large applied displacements,

these errors constitute a small percentage of the overall reaction force and could be neglected dur-

ing design. Conversely, the worst testing load case exhibits much larger qualitative error with

respect to every retained degree of freedom. The force at which nonlinearity initiates is poorly

approximated, and the hardening stiffness diverges from the true solution by a large magnitude. In

fact, certain retained degrees of freedom exhibit the exact opposite bulk response when compared

to the finite element result (e.g., the substructure predicts softening when hardening is occuring).

These errors are most likely due to the inability of the current substructure model formulation to

capture the diverse response, as well as slight overfitting in the training data.

Maximum principal strain contours for the best and worst training load cases are depicted in

figure C.14. The worst testing load case exhibits considerable strain localization in the flexible

material regions near the stiff members; this large strain gradient may have contributed to the

large errors between substructure prediction and finite element result. Additionally, the worst

testing load case appears to impose a deflection that resembles pure shear; this pure shear loading

may not be feasible for the current model formulation to capture. Conversely, the best calibration
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Figure C.15: Force-displacement histories for the best testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure C.16: Force-displacement histories for the worst testing load case, as specified by Latin
hypercube sampling. The red line denotes the substructure prediction, while the blue dots denote
the FEA solution.
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Figure C.17: Maximum principal strain contours for the best and worst testing load cases for the
Latin hypercube sampling calibration.

appears to be either pure tension or compression, leading to a better result. Additionally, the lower

magnitude of principal strain denotes the presence of weak nonlinearities, compared to the strong

nonlinearities associated with approximately 20% strain in some unit cell regions.

Mean squared errors for both testing and training sets are depicted graphically in figure C.18.

While similar trends in terms of average error are seen (e.g., the average training error is 1.1E5

while the average testing error is 1.6E5), the lowest error actually occurs in the testing data set.

This signifies that the substructure model formulation can predict general load cases, but not all

cases considered in its current form. Once again, these results may improve with a corotational

formulation and symmetry constraints during parameter identification.
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(a) Testing errors for the Latin hypercube
sampling array.
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Figure C.18: Training and testing errors for the Latin hypercube sampling-based calibration. Dark
colors denote lower error, while lighter colors describe load cases that exhibited higher error.
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APPENDIX D

INVESTIGATING CALIBRATED SUBSTRUCTURE RESPONSE FOR PLANE STRAIN

ELEMENTS

The present work has demonstrated the feasibility to accurately calibrate a model based on

classical plasticity for plane stress elements only. In this appendix, we investigate the ability of

the current formulation to capture force-displacement responses for structures meshed with other

element types. Specifically, the single-element square (cf. section 3) is meshed with reduced-

integration plane strain elements and reduced-integration shell elements (Abaqus element code

CPE4R). For this example, only one load case is used as the training data set to investigate the

ability of the current model formulation to capture these force-displacement responses. The sub-

structure is assumed to obey anisotropic yield and isotropic linear hardening.

Figure D.1 depicts the force-displacement contours of the calibrated substructure prediction

when compared to the finite element training data. One will notice that while the force-displacement

responses for degrees of freedom that correspond with the x-direction (i.e., the top row of subfig-

ures), the substructure fails to predict the force at which nonlinearity initiates for forces in the

y-direction. In fact, the finite element response predicts stiffening upon generation of plasticity.

This discrepancy is due to the results of the plane strain assumption.

The plane strain assumptions are as follows:

ε33 = ε31 = ε32 = 0, σ33 ̸= 0, (D.1)

Non-zero out-of-plane stress (e.g., σ33) results in a stiffening response in the y-direction as well.

This stiffening cannot be captured in the current substructure model formulation, as we assume

that tangent stiffness after yield is always lower than the elastic tangent stiffness. For this reason,

the current model formulation fails to capture plane strain responses.

229



0.06 0.04 0.02 0.00

7.5

5.0

2.5

0.0

2.5

5.0

7.5
1e7

0.00 0.02 0.04 0.06 0.00 0.05 0.10 0.00 0.02 0.04 0.06

0.075 0.050 0.025 0.000

7.5

5.0

2.5

0.0

2.5

5.0

7.5
1e7

0.04 0.02 0.00 0.0000 0.0002 0.0004 0.0006 0.015 0.010 0.005 0.0000.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 1

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 2

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 3

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Node 4

0.0 0.2 0.4 0.6 0.8 1.0
Norm. Displacement, [m]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

ea
ct

io
n 

Fo
rc

e,
 [N

]

Figure D.1: Force-displacement histories for the plane strain load case. The red line denotes
the substructure prediction, while the blue dots denote the FEA solution. Plane strain elements
cannot be used with the current formulation, but this is not a large drawback of the method as most
adaptive structures are thin, membrane-like structures and plane strain is not applicable.
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