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ABSTRACT

The study that is discussed in this thesis involves a unique method of quantifying uncertainty

with respect to a classification problem. In essence, the objective involves redefining a materials

classification problem pertaining to deleterious phases with respect to material composition and

temperature as more of a function with inputs and outputs where the output is a probability label of

either classification label that defines the probability of deleterious phases with respect to each of

the aforementioned independent variables. This helps to interpret uncertainty in predictive state-

ments that are assessed in a classification problem. The intention behind this method is to be able

to set this type of system up as an optimization problem in order to maximize the likelihood of a

desired condition, or minimize the likelihood of the undesired condition.

There are two primary approaches used in this study. One involves the use of a Gaussian Pro-

cess Classifier to determine the aforementioned probability and discussing how to properly imple-

ment it and how to apply workarounds needed with the process. The other involves a more direct

investigation of the data in what is called Sectioning and Proportioning, which involves taking the

proportion of classification labels per section of the data to best assess the overall probability trend.

Both of these methods are found to have their strengths and weaknesses, and it is useful to use

both in parallel with one another in order to assess any data that is being investigated while also

interpreting it and adequately projecting the probability estimation as effectively and accurately as

possible.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Concept of Uncertainty

The presence of uncertainty in almost any problem that can be conceived is an important factor

to not only take into consideration but also understand the extent of. According to Chapter 2 of

Uncertainty Quantification of Composite Structures[2], uncertainty can be divided into 3 broadly

defined subcategories: inherent variability, lack of knowledge, and prejudicial uncertainties which

consist predominantly of systematic and random errors. The first and last of these categories can

generally be linked or grouped together more closely than either could be grouped with the second

category. In other words, the second category is an important metric to both keep in consideration

and, as often as possible, should be tracked throughout the process to be able to indicate regions

within the design space of limited understanding. For the sake of simplicity, in this context the

two primary kinds of uncertainties to be considered involve the lack of knowledge, and the lack

of control. The former is fairly self-explanatory, the latter refers to how much inherent variability

exists in the output under certain conditions, examples of this could include any measurement or

human error as well as factors that lie outside of user control.

Arguably, the best way to model a system like this which includes inherent uncertainty in the

output of the data is through a Gaussian process, in which instead of an explicit output that exists

with respect to a set of independent variables expressed as a function y = f(x), instead there exists

a normal distribution as the output as opposed to an explicit output y. This normal distribution

exists in the form of Equation 1.1. The rationale behind this approach is to incorporate an inherent

uncertainty in the system, where at each x location, there exists a range of possible values for the

corresponding y output that could be modeled into a probability distribution with a mean and stan-

dard deviation, which varies with x. These factors, particularly the variance, can vary significantly

with respect to the two aforementioned factors being lack of control and lack of knowledge.

1



p(f |X) = N (f |µ, K) (1.1)

A condition where lack of control is present involves low correlation between x and y. In other

words, if the range of any possible y values given the condition of specific x values is relatively

large, then that generally indicates little correlation between the x independent variable and y

dependent variable. In a practical sense, if adjusting a specific setting does not appear to have

an effect on a desired output, then that is where a process would incur high variance, because

there are a greater number of possibilities in that range. The ideal scenario would be to establish

small ranges of possibilities, because that indicates a high level of control between the independent

variable(s) and the dependent variable in question.

As for lack of knowledge, a new challenge is posed because not only is the level of control

that exists between the independent and dependent variables not established, but any sense of a

distribution is unknown at those conditions. Therefore, the prediction of a normally distributed

range of possibilities under those conditions has to incorporate the lack of knowledge that exists

there, which is compounded on the lack of control. The factors that can help achieve this incor-

porate assumptions based on existing knowledge. One of the most common approaches to finding

this balance is through the use of Bayesian Optimization, an example of which using a simple

mathematical equation can be observed in Fig. 1.1.

Bayesian Optimization in this context is primarily focused around model improvement. Ac-

cording to Chapter 1.1 of A Tutorial on Bayesian Optimization of Expensive Cost Functions[3],

the premise of modeling the aforementioned probability distributions is by assessing the output

as a posterior probability. The way that is created is by setting it proportional to two particular

quantities, prior probability and likelihood, in a setup like what is shown in Equation 1.2, where M

refers to the model and E refers to the evidence.

P (M |E) ∝ P (E|M)P (M) (1.2)
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Figure 1.1: 2D Example of a Bayesian Optimization using an example ground truth function with
new data points queried at each iteration until the model was assessed to have met optimal im-
provement conditions.
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The model, while identifying regions of uncertainty, also incorporates a factor known as an

acquisition function, which is projected as a function of x to identify which value will result in

maximum model improvement if queried and implemented as a more certain data point in the

next iteration. This acquisition function is defined as the probability of improvement according to

Chapter 2.3 of A Tutorial on Bayesian Optimization of Expensive Cost Functions[3]. This process

is defined in Equation 1.3.

PI(x) = P (f(x) ≥ f(x+)) (1.3)

In the context of this particular study, however, rather than optimizing the model through the

iterative use of Bayesian optimization, the objective primarily involves creating a surrogate model

sufficient enough to represent the trend expected by the data given the information available. Be-

cause of this, the acquisition function and the concept of querying new points are not as relevant

in this particular study, at least in its current stage.

1.2 Gaussian Processes

There are a number of different approaches that can be used to find the desired optimal decision

region from mentioned previously. All of the ones used in this particular study, to one extent or

another, use a Gaussian process. To provide some insight in how this process works, it is essentially

a generalized Gaussian probability distribution represented as a relatively ambiguously defined

function of the independent variables[1].

Imagine a simple one-dimensional function that has a single input and single output modeled

as a function y = f(x), where f(x) is not known and may not even be explicitly defined. This

is practical in situations where either the independent variable, x, has limited influence over the

dependent variable, y, and can only be used to reasonably estimate a range of possible values

instead of giving one explicit value. The other scenario where this is useful is in a Bayesian

Optimization process where there is unknown regions of the function space between x and y.

The application of a Gaussian process here is to create a representative, or surrogate, model
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Figure 1.2: left: three samples from the prior probability; right: two datapoints are observed, a
mean prediction trendline with a shaded variance range containing the 3 prior samples projected
as a posterior probability[1]

.

of what the dependent variable is expected to be as a function of the independent variable. This

model is a probability distribution indicating the range of possible y values at any x location. This

distribution is, in this context and in general, normally distributed with an estimated mean and

standard deviation, the value for each exists as a function of x. These values are determined through

a process of assessing the prior and posterior probabilities, a depiction of which is displayed in

Figure 1.2.

In order to model this as a Gaussian process, the intention is to represent this as a probability

function with a mean and standard deviation. In the format of a function, this is quantified in

the form of a mean function and covariance function[1]. The function established is defined in

Equation 1.4.

f(x) ∼ GP (m(x), k(x, x′)) (1.4)

The covariance function acts as a matrix when incorporating multiple different basis functions

in order to establish a surrogate model that emulates Fig. 1.2. In practice, a kernel function is

used in order to establish the covariance between functions. According to Chapter 6 of Pattern
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Recognition and Machine Learning[4], there are a number of different functions that can be used

for this kernel function including but not limited to Radial Basis Function, Squared-Exponential,

Matern, Linear Regression, Automatic Relevance, and Nadaraya-Watson Model. These kernel

functions are incorporated into the gaussian process using Equation 1.5.

f
f∗

 = N

0,

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)


 (1.5)

1.3 Materials Background

The data used in the study of further understanding and incorporating uncertainty into a system

design is through the use of computationally graded alloys, which act as a subclass of functionally

graded materials, or FGMs[5]. These materials are created using a Directed Energy Deposit, or

DED, process which presents the ability to easily change material composition layer by layer by

depositing powders of user specified compositions and solidified using a high energy laser[5].

However, one of the obstacles to this approach is that periodically, material phases can become

present in the micro-structure that lead to undesirable properties or cracking. These kinds of phases

are referred to as deleterious phases, and should be avoided in design from these kinds of materials.

The objective of this study is to avoid deleterious phases. To establish how they can be avoided,

first the variables within user control need to be identified. As an example study, one particular set

of data contains phase composition information of 4 different elements: Iron, Nickel, Chromium,

and Titanium. Those are listed along with a corresponding temperature measurement that ranges

from 300K-1800K. This dataset is generated externally through the use of Thermo-Calc software

[6]. The ideal setup of this would be to have multiple forms of test data of materials for this

study. However, considering the relatively statistical scope of this study as well as the extent

of the data necessary for an adequate analysis, the simulation will suffice. The data outputted

through this process involves the 5 aforementioned variables, being the 4 material compositions

plus temperature, and a classifier label of 1 or 0, 1 indicating the presence of a deleterious phase,

and 0 indicating a lack thereof. The objective is to find an optimal decision region that both
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minimizes the uncertainty of the assumption that a deleterious phase will be present at a given

location, while also large enough such that the variable space available to optimize for any other

desired properties in another study is maximized.

1.3.1 Similar Studies

It is viable to observe how Gaussian processes are incorporated in previous studies as well

as in which manner they are utilized. In the article Gaussian Process Surrogates for Modeling

Uncertainties in a Use Case of Forging Superalloys[7], a Gaussian process is implemented to create

a surrogate model to act as a potential replacement for expensive FEM simulation. The rationale

was to accommodate for both the time and computational expense that is required by FEM, and

bypass that through the use of a Gaussian model to acquire a surrogate model fit for the expectation

at each point, which varies with less knowledge at each point. This is a viable study for assessing

the strength and effectiveness of the Gaussian process especially with existing FEM data and the

ability to acquire direct testing results to compare the results of the process with. This, however,

presents an advantage that is not present without a ground truth model since various parameters

have to be modified to fit the expectation accordingly.

According to Gaussian Process Kernel Transfer Enabled Method for Electric Machines Intelli-

gent Faults Detection With Limited Samples[8], the most effective kernel function with the highest

detection accuracy was the Radial Basis Function, or RBF, kernel. This had at least 5% greater

accuracy used than other kernel functions. Therefore, as a kernel study it is reasonable to assume

that the RBF function will suffice as arguably the best kernel function for general use practices

including the application analyzed in this study. However, it is useful to implement others as well

in other applications to see if they perform better in some areas more than others.

The article titled Efficient Global Optimization of Expensive Black-Box Functions[9] discusses

the use of stochastic processes to assess the probability distributions of different possible outcomes

and emphasizes the need to perform cross-validation in order to verify the models. The probability

distributions in this particular study are more unique to quantify because they come in two forms:

the probability of each classification case, and the probability distribution of each corresponding
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probability measurement across each point. The latter of the two is more relevant when measur-

ing proportions from the data directly. Cross-validation is important and used extensively in this

study, particularly because of the limitation that exist in the computational ability of the software

modules. The rationale for cross-validation becomes more important with a limitation of the size

of the training data that is able to be used because it encapsulates a limited scope of the full data.

Therefore, this means multiple scopes have to be run and compared in order to obtain a reasonable

estimate.

8



2. DATA SECTIONING AND PROPORTIONAL MEASUREMENT

2.1 Objective

The objective of this study is to create a probability metric that acts as a function with respect to

the independent variables in a classification problem. This probability metric represents the chance

that one of the two classifications could be true in a binary classification problem. This is a useful

quantification when there is uncertainty present in the data because a simple step function that

assesses whether certain combinations of variables correspond to one binary condition or another

cannot always be conclusive and the possibility is there that the label is inaccurate for a number of

reasons.

One simple example could be a question of basketball skill, for instance. If one wanted to

assess how the independent variable of height corresponded to the probability that the person will

make a majority of baskets they attempt, what kind of trend could be established? If one ran a test

where they took one person 5 feet tall and one person 6 feet tall, and the 6 foot person makes a

majority of baskets out of 10 shots taken while the 5 foot person does not, is that conclusive data

that greater player height will correspond to the condition that a majority of shots taken will be

made successfully? Based on this experiment alone there is nowhere near enough of a test to draw

that conclusion, mainly because the sample size is so small and there are so many possible factors

in play that are not considered in this test that easily correspond to sources of uncertainty. Hand

eye coordination, weight, and overall athleticism are just some of the factors not quantified in this

study that could very well play a factor in the outcome. Some of these factors are more difficult to

quantify than others, especially ones with broad definitions such as overall athleticism.

This may seem like an oversimplification and obvious statement. However, the factors in play

in that oversimplification are found to absolutely be present even with large amounts of knowl-

edge, albeit on a much smaller scale. There are two main factors that are primarily taken into

consideration here; the first is the reliability of the information present from the given samples
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available, the second is the availability of information present from the given samples. These are

important because they correlate to how uncertain the data is. If the given information is not ab-

solutely conclusive, then it has to be inferred then there is a degree of uncertainty present in the

data. Quantifying this is easier in some cases than in others. If the output is a specific value, such

as material yield strength, then that is relatively easy to quantify because one could run a given

number of tests on samples with the same independent variables under analysis and then model

the results as a normal distribution where the mean and standard deviation could be obtained under

those given conditions. In other words, it would be relatively easy to model that system into a

Gaussian process. However, when it is a classification problem where the output is a binary clas-

sification label, such as a case where an assessment is made on whether or not a system works,

then the uncertainty in that prediction is more difficult to quantify and assess and can require some

assumptions to be made.

2.2 Sectioning and Proportioning

This method of assessing the probability as a metric variable in this analysis involves a more

direct approach of sectioning the data and proportioning the samples within. This is a relatively

simplistic approach but for the objective of propagating the probability metric out into the data

to directly find variable regions that correspond to the desirable conditions that the user wants to

obtain, it is useful and also provides some information that cannot be inferred through using a more

thorough albeit automated process like a Gaussian process classifier. To assess this method, the

dataset used contains a classifier label indicating the presence or lack thereof of deleterious phases

corresponding to 4 material compositions: Iron, Nickel, Chromium, Titanium; and an ambient

temperature value. This data contained 50,000 total data points and is produced by a simulation

run from Thermo-Calc software [6].

To start, imagine taking the full proportion of deleterious phases over the entire dataset. This

creates a broad probability metric where the condition is "If a random phase is taken, then there will

be a value P representing the probability that it will be a deleterious phase". The condition assessed

in that probability metric is less important, so one could also create a metric for the opposite
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condition. The only convention to keep in mind is whether or not the identified probability metric

should be minimized or maximized. In this case, since deleterious phases are to be avoided, the

probability of a deleterious phase being true under given conditions should be found at its minimal

values. That said, now that the convention for identifying the probability metric as a proportion

of the data; which is assumed to include some inherent uncertainty, more on that later; the metric

can be split between sections of the data in order to create conditional probability metrics. These

sections of the data appear as subsections of the full dataset as shown in Equation 2.1.

xk = {Xi}s(k+1)
i=k (2.1)

For simplicity purposes, by beginning with one independent variable, Iron in this case for

demonstration purposes, by sectioning iron in two groups, the probability of a deleterious phase

within each interval can be estimated by finding the proportion of deleterious phases that exist

within. The iron variable in this case is sectioned by a composition value within the bounds of

[0,0.5], and [0.5,1]. From there, the proportion of deleterious phases can be assessed within each

condition, where metrics are created that state that where Iron composition is between 0 and 0.5,

the probability of a deleterious phase is P1, and where Iron composition is between 0.5 and 1,

the probability of a deleterious phase is P2. This concept allows for the metric to be propagated

throughout the dataset.

The same practice can be done by sectioning Iron into 5 intervals, 10 intervals, 20, 50, 100,

and so on to further propagate the metric. As the number of intervals increases, the ranges of Iron

values in each interval decreases by scale. This can be shown in Fig. 2.1. For each vector of xk

as defined in Equation 2.1, there exists an equal length classifier label vector denoted as yk, from

which the proportion of deleterious phases can be found using Equation 2.2 where n is the number

of samples per interval and yi is one sample of yk. The way that the classifier is defined is such

that yi = 1 when deleterious and 0 when non-deleterious.
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Figure 2.1: Bar Graphs Displaying the Proportion of Deleterious Phases as a function of Iron
composition ranges with varying intervals. Left: 2 intervals, Middle: 5 intervals, Right: 8 intervals.

P =
1

n

n∑
i=1

yi (2.2)

2.2.1 Multi-dimensional Sectioning

Now that the sectioning process has been introduced, it is time to expand the number of dimen-

sions used in this process. When multiple independent variables are considered in a study like this,

there are multiple sections that can be made. Starting with the one-dimensional sectioning process,

one could limit a variable such as Iron composition to be within a set of bounds in any given in-

terval, but all other variables still have full range of possible values that fit within the established

constraints. In other words, there still remains a high degree of ambiguity when it comes to the

number of external factors that could be influencing any variables used in this study. Therefore, to

reduce that ambiguity the sectioned are expanded into a greater dimensional space.

Starting with a two-dimensional approach, in this case Iron and Nickel, in each interval of Iron

that was established in the one-dimensional approach, the same number of intervals for the second

independent variable, Nickel, can be taken and the proportional measurement of deleterious phases

within each found and denoted with respect to each interval. This creates a sort of two-dimensional

step function where the proportional measurement, used to estimate the probability of a deleterious
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Figure 2.2: Two-Dimensional Projection of Compositions Iron and Chromium along with their
corresponding acceptable(blue) or deleterious(orange) classifier label shown with a grid indicating
100 total intervals of variable ranges within which the proportional measurements of deleterious
phases can be found.

phase being present, is the output from each interval. This process is illustrated in Fig. 2.2. This

process can be expanded into 3, 4, and even 5 dimensions. However, it is important to note that

many of the intervals in this projection are empty. The reason for those intervals being empty is

because they exist within a space that violates the constraint boundary of the variables used in this

study, which is an important factor to keep in mind.
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2.2.2 Constraint Boundary

Given that the variables of Iron and Nickel as well as Chromium and Titanium represent ma-

terial compositions, a constraint exists in this study where each of the 4 compositions have to sum

to 1, it would be impossible not to. When sectioning the variable space, this can prove to be a

challenge, especially when it comes to assessing uncertainty with the proportional measurements

taken from each. In the prior two-dimensional example it is relatively easy to assess this given

that it exists within a linear boundary that bisects the variable space into 2 equal sized regions. In

this case is a simple line of y = -x, in which samples cannot exist to the right or above that line.

The main consideration is how this constraint boundary intersects any of the intervals used in this

study. Fortunately, in this two-dimensional case it only affects the intervals that exist along the

line y = -x as displayed in Fig. 2.2, within each there is only a 50% intersection of the constraint

boundary. This comes into greater consideration when assessing the reliability of the proportional

measurement within that specific interval, more detail on that later.

As the dimensionality of this sectioning process increases, however, the type of intersection

that the constraint boundary will have with the interval will become much more difficult to deter-

mine, especially when the dimensionality exceeds 3 dimensions, in which case the visibility of the

process becomes impractical. Unlike the two-dimensional example, it wouldn’t be as simple of a

case of where each interval that sits on the boundary line has an equal and easy to see fraction of

intersection with the constraint boundary. In 3 and 4 dimensions it can and is found to vary from

interval to interval. Therefore, when it comes to assessing this fraction of intersection within each

interval, it is practical to have a general convention for how to accomplish this. One relatively

simplistic method that uses this same sectioning concept can be useful for this.

The way that this sectioning approach would work is that within each interval section estab-

lished previously, first and foremost each one has to be assessed to ensure that samples exist within,

otherwise it is neglected entirely. After that, within each section the user can create multiple sub-

sections using the same approach as before on a smaller scale. However, the only difference in this

case is that instead of assessing the proportion of deleterious phases within each subsection, the
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constraint boundary is assessed in each subsection. The way this constraint boundary functions is

very problem specific, and will change with changing dimensionality of the interval sections. In

this case, since all 4 compositions have to sum to 1, a case where all 4 compositions are present

will be assessed. The only factor sought after in this case is whether or not the subsection contains

the constraint boundary. Each subsection is defined by a lower bound and an upper bound for all

the independent variables in the test. When there are 4 variables, the condition is met under the

circumstance shown in Equation 2.3, where C is the conditional label for each subsection, n is the

number of variables used, xL refers to the lower bound vector of each independent variable, and

xU refers to the upper bound. However, when less than 4 variables are used, or when less than all 4

compositions in this study are used, then the boundary condition is slightly different where instead

of ensuring fit, the objective is to only look for conditions where both bounds are greater than 1,

because when they are less than there still exists an unbounded third and/or fourth variable that can

reach that value. A 2D representation of how this works can be seen in Fig 2.3.

C =


1, if

∑
xL < 1,

∑
xU > 1, n = 4

1, if
∑

xL < 1, n < 4

0, otherwise

(2.3)

From here, the fraction of intersection between each interval and the constraint boundary can be

assessed. Using Equation 2.3, one could generate a C conditional value for each of the subsections

present in each interval. For example, if there were 100 subsections, then there would be 100

corresponding C values, each being equal to 1 or 0. From there, the intersection fraction can

be assessed for each interval by taking the sum of all the C values and dividing it by the total

number of subsections using Equation 2.4, where F is the intersection fraction, n is the number of

subsections, i is the subsection index.

F =
1

n

n∑
i=1

Ci (2.4)

15



Figure 2.3: Two-Dimensional Subsection plot with 100 sub-intervals within the interval from 0.4
< Fe < 0.5 and 0.5 < Ni < 0.6. Blue indicates that the sub-interval satisfies the constraint boundary,
whereas Orange indicates that the sub-interval does not.

This process is repeated for each of the original section intervals originally established. While

this process presents a relatively rough estimation for the fraction of intersection between each in-

terval and the constraint boundary, it can converge onto the true value as the number of subsections

increases. Imagine the use of block shaped pixels to create an image, the smaller in size they are

the greater detail that exists in the image. However, the extent to which this is created has to be

taken into consideration with the capabilities of the software being used. If the four composition

variables are taken into consideration with 10 intervals each, then that creates 104, or 10,000 in-

tervals, with however many subsections in each interval that lies within the constraint boundary.

Increasing the number of subsections will significantly increase the computation time to find the

fraction of intersection with the constraint boundary for each. So if the need to be thorough is not

as important, or a relatively rough estimation will suffice, then a relatively smaller number of sub-

sections that don’t drastically increase computation time beyond reason will be acceptable. This

fraction of intersection becomes more relevant when determining the reliability of the probability
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metric created from each interval, more on that later.

2.3 Minimum Effective Section

As was previously expressed, the size of the sections created in this process can be scaled from

2 large sections that bisect the data to 100 small sections that propagate the probability metric into

smaller margins. However, based on the scope of the data available, there is a limitation to how

small these margins can effectively go. This concept is similar to the practice of histogram smooth-

ing [10] in that the ground truth model is assumed to be a smooth curve fit, and the data distribution

used should represent that as best as possible while also propagating as much of the probability

metric as possible. The difference here is that instead of using this concept for a histogram repre-

sentation of a probability distribution, it is used to assess the probability metric estimated at each

interval by the proportional measurement. This is where the limitation of how much the available

data shows the user comes into effect the most.

The ideal scenario would be that at any specific combination of independent variables with

common values, or at least in close enough proximity to one another, produces enough test result

points such that an adequate probability estimation under those specific conditions can be assessed.

However, the challenge here is that data is not readily available in that kind of proximity. Therefore,

in order to assess a reasonable probability estimation under those conditions, the proximity region

has to be widened enough such that it includes enough points to be able to assess an estimated

probability metric from the proportion of deleterious phases within each interval.

Finding this minimum effective section could be an optimization problem in another study.

The main objective in this study is to ensure that the sections of data used are as small as possible

while still containing enough points to make an adequate prediction of the probability metric. If

the intervals are small enough such that they only contain a single digit number of points, then

a major limitation is presented on the study because there is very little margin for error in those

conditions, and the possible proportion values that can come from a small number of data points is

limited. For example, in an interval that only contains 2 data points, the only possible proportion

values that can be found are either 1, 0.5, or 0.
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Having so many of these limited range values in the greater variable space after the fact make it

so that the metric is not sufficiently patterned out, and a reasonable estimation of the ground truth

probability metric that is being sought after cannot be obtained when the intervals are this small.

Not to mention, a higher number of intervals also means longer computation time to the point

where solutions couldn’t be obtained within a reasonable time frame. In other words, they could

be made small enough such that they could take several hours or even a day to produce results,

ones that would be unreliable in this case given the scope of the data available.

2.3.1 Correlation between Sample Count and Constraint Boundary Interface

For the purpose of this study, the convention is that approximately 50 points per interval is

reasonable enough. The actual range of sample count between intervals varies quite significantly,

a lot of which depends heavily on how much each interval intersects the constraint boundary. In

other words, the intersection that exists between the constraint boundary and each interval makes

up the space in which sample points are able to be present. The balance of these two factors allows

for identifying regions of higher data density and lack thereof, which is hard to take into account

directly in a classification approach. In order to take both of these factors into account, a direct

proportionality is considered between the two factors because with a larger region of data point

availability, the greater the number of data points could theoretically be present in that interval.

This is a direct one to one correlation, which is deemed acceptable because if you imagine

bisecting a cube in two, then half of the space is available, within which half the amount of points

out of the total number of points assuming uniform distribution could theoretically be present. By

bisecting it again, then that goes from half the number of points to now a quarter of the total number

of uniformly distributed points. Therefore, with that convention, a factor can be established that

assesses how much data exists within a given point considering both the number of data points

and the constraint boundary intersection. This factor can be displayed in Equation 2.5, where A

is the sought after factor for any given interval, N is the number of sample points in the same

corresponding interval along with F as the fraction of intersection with the constrant boundary

previously established in Equation 2.4.
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A =
N

F
(2.5)

The actual numerical value of this factor is less important, as it is intended to be used as

a scaling factor to assess the reliability of the proportion measurement as a probability metric

estimate, more on that later.

2.4 Gaussian Process Regression

One important factor to keep in mind is that the proportion of deleterious phases per interval

cannot be automatically assumed to be an exact representation of the probability of deleterious

phases under the same conditions. In other words, there is some inherent uncertainty in those

measurements. Quantifying that uncertainty, however, is a challenge because as a classification

problem, it is difficult to assess the probability metric in a way that wouldn’t be present if it was

some arbitrary number. If it were some arbitrary number, then determining the uncertainty would

be relatively easy because it can be assumed that at each point there exists a normal distribution of

values for which a probability distribution with a mean and standard deviation could be established.

That is not the case for an actual probability metric because it is derived from output data that is

explicitly a classifier label of 1 or 0. Because of this, the definition of the uncertainty at each

measurement is arbitrary and requires some assumption.

The use of a Gaussian process in this case can be useful at not just incorporating that uncer-

tainty, but also create a metric that serves as more of a direct y = f(x) function of each independent

variable rather than a step function as defined previously. To provide some background, a Gaus-

sian process essentially represents a probability distrbution at each variable location showcasing a

normal distribution of possible values that an output can be given the conditions established by the

independent variables[1]. This normal distribution can be observed in Equation 2.6 for any given

combination of independent variables xk. In other words, f(x) is a surrogate model that represents

a probability value.
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p(f(xk)) = N (µk, σ
2
k) (2.6)

When it comes to creating the surrogate model using the Gaussian Process Regression ap-

proach, first and foremost the intention is to develop a new set of data points with the probability

metric as opposed to the original set of data points with a classifier label since this is a regres-

sion approach. The original data points are incorporated into a similar study that will be analyzed

in the subsequent chapter using a Gaussian Process Classifier. This study involves a more direct

regression approach. Therefore, in order to accomplish that, it is important to have an explicit rep-

resentation of the independent variable vector corresponding to each proportion value from each

interval. This is unique to each individual section because since the interface between each section

and the constraint boundary varies by section, more so with increasing dimensionality.

2.4.1 Center Point Representation

The best way to describe this independent variable vector that corresponds to each probability

metric is essentially a center of mass of all of the data points within each interval. This is an

important factor to quantify correctly because if a general assumption is made then the surrogate

model created will be significantly off especially since a number of cases could have results that lie

outside the constraint boundary. Each previously established interval is defined by a lower bound

and upper bound or each independent variable. The next step in this process is to transition this

from a step function per interval to more of a smooth curve function fit. Therefore, the first step

in that is to have the proportion measurement set at the point that represents the center of mass in

each interval.

The easiest and arguably most accurate way to determine the center of mass has to do with

the samples present within each interval themselves rather than the available sample space because

that can help accommodate non-uniform distributions of samples within each interval. Fortunately,

this is as simple of a process as averaging each of the variables of all of the data points within

each interval. This is deemed to be acceptable for two reasons: first, the result fits the constraint
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boundary of each material composition summing to 1, and second, by averaging each of the data

points present one can effectively arrive at a midpoint of the data within each interval. This process

can be demonstrated by Equation 2.7.

xkm =

∑
xk
nk

(2.7)

2.4.2 Reliability

As was mentioned previously, the reliability of the data within each interval is a factor that has

to be taken into account. This is where that factoring in occurs. One of the most difficult factors

to take into consideration is assessing the uncertainty in each of the probability metric predictions

from the use of proportional measurements. As previously stated, this is not a system in which

numerical outputs are used that can be easily formatted into a normal probability distribution at

each point, this is essentially creating a normal distribution at each point using a probability metric

itself. That fact alone means that certain conditions have to be satisfied, most importantly the fact

that the probability metric has to be between 0 and 1, no exceptions. Additionally, it means that

the uncertainty is very arbitrarily defined with this metric. Because of this, certain factors have to

be taken into consideration.

The reliability of the data is one of those factors; this is previously quantified using the A value

from Section 2.2.2. It is mentioned that the actual value of the factor is less important, the reason

is because in this context it is used as a scaling factor for the error. The convention for this is

very arbitrary and could be modeled in a number of different possible ways to see the effect that

it has on the surrogate model. To recap from before, the reliability factor is a ratio between the

number of data points in any given interval along with the fraction of intersection between that

same corresponding interval and the constraint boundary. This allows for a proper assessment of

how much available data exists in any given interval, and the reasonable assumption is that the more

data available there is, the more accurate the proportional measurement will be when representing

the probability metric in the data.

21



In this study, the scaling factor is directly applied to an arbitrary error estimation, which is

user-defined and can be adjusted based on how it affects the surrogate model. In the convention

used in this study, a linear relationship is used, which is essentially as simple of a function as ε =

-ar + b, where r is the reliability factor, b is the intercept, and a is the coefficient which is multiplied

to the reliability factor. These coefficients are ambiguously defined but they do have to be scaled

accordingly. Since these errors are for probability estimations, they are limited in their scale and

should generally expect a maximum value of 0.1, which can be scaled accordingly to observe the

effects on the output. However, the minimum has to be no less than 0 no matter what, which makes

this convention more important to established.

One other factor to consider is that the linear relation is based on assumption. In practice, it

it worthwhile to consider other error scaling factors as well, including quadratic and exponential

scaling. This falls into the category of future work to investigate in order to further establish this

method to see if the convention is feasible for various applications, especially in comparison to a

classifier approach. That said, one convention that should remain consistent is that the error should

always decrease with increasing reliability of the data per interval because of the presumption

that the more data available, the more confidently the probability under those conditions can be

assessed based on the proportion, the less potential error there would be.

2.4.3 Temperature Dependency

The fifth variable under this study, which has not been focused on as much in this study up to

this point, is the temperature value. This is because the effect that temperature has on the output is

relatively unique in comparison to that of the four compositions, and this can be observed directly

from the proportion measurements directly. As a variable that differs from composition and one

that is not bounded by an explicit constraint boundary, it is difficult to incorporate this into the study

interchangeably with any of the material compositions. Additionally, from initial classifier testing,

incorporating temperature was found to cause the classifier to produce a poor fit, more on that in

Section 3. However, because of that, temperature was not incorporated into this study initially. In

this process, using the same interval procedure as before, temperature is easy to incorporate as a
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fifth variable in the study. That said, it is important to take the results of the original 4 variable

sections into consideration, particularly the proportional measurements.

Arguably the most important observation made from this practice, which carries directly into

the observations from the subsequent classification approach, is the fact that within a substantial

number of the material composition based intervals, there exists a proportional measurement of

deleterious phases equal to 100%. This means that the variable temperature has no effect on the

output probability in this case. However, in other cases, temperature does have an effect. This is

a unique application because, in essence, temperature only acts as a step function where its effect

on the probability metric will only be present under certain conditions. The next step involves

assessing those conditions, which takes place in the subsequent classification chapter.
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3. GAUSSIAN PROCESS CLASSIFICATION

3.1 Background information

The approach used here is arguably more efficient and thorough than the prior sectioning and

proportioning approach from Chapter 2 in that instead of going through the step by step process

of deriving a probability metric and inputting that into a Gaussian process regressor, instead this

jumps right into using the Gaussian process from the start. This process involves the use of a

Gaussian process classifier to determine the aforementioned probability metric and use it as a

way to separate the data based on variable regions to identify an optimal decision region for both

binary classification conditions. Using the same data as before, the Thermo-Calc deleterious phase

labeled data under the 4 material compositions and temperature vector [6], these two conditions

are classified as acceptable and deleterious. Therefore, the objective of this study is to find a region

within which the probability of a deleterious phase is reasonably low enough for design purposes

but also as large as possible to maximize the possible space that can be used for other forms of

optimization.

The Gaussian process in this case uses a portion of Bayes theory where the output is the pos-

terior probability which is derived based on the prior probability and a likelihood function. In a

regular design problem that uses a Gaussian process, the prior probability can be assessed as a

normal distribution present based on the data available whereas the likelihood function is a quan-

tification on how likely the data at any given point is. The process of determining the posterior

probability can be indicated in Equation 3.1 where M refers to a model and E refers to the evi-

dence, which therefore allows for the conditional probability of the evidence given the model to be

joined with the probability of the model to determine the posterior probability[3].

P (M |E) ∝ P (E|M)P (M) (3.1)

In a classification problem, this process is slightly redefined to fit a probability metric, in which
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it incorporates the probabilities of the classification conditions. In a binary classification problem

this is relatively easy because there are only two possible conditions. In essence, this helps to scale

the posterior probability such that it represents a probability metric for one or both classification

conditions depending on how the process is set. This can be observed in Equation 3.2, where C

refers to the total number of classifier conditions and c refers to the classifier index[1].

p(y|x) = p(y)p(x|y)∑C
c=1 p(Cc)p(x|Cc)

(3.2)

3.2 Implementation

In this instance, a Gaussian process classifier module from scikit-learn is used in order to

generate a probability metric and decision region output from the data. In order to configure this

algorithm, a factor known as the kernel has to be inputted in order to set up the covariance matrix

for the Gaussian process[11]. In setting up the covariance matrix, kappa is used as a parametric

kernel function as represented in Equation 3.3.

K = κ(X,X) (3.3)

κ(xi, xj) = exp(−d(xi, xj)
2

2l2
) (3.4)

The Radial Basis Function, or RBF, is used in this instance as the kernel function along with a

starting multiplier that is user defined and can be changed. This function can be shown in Equa-

tion 3.4[11]. The benefit of this process is that the kernel will converge onto an optimal value

through an iterative process that is automated. The only factor that needs to be user-defined is

the multiplier. In order to create a condition that will accommodate this requirement, a counter

needs to be in place that finds a condition under which if the fit is not ideal or the kernel is unable

to converge properly, then it can detect that condition and set a new starting value for the kernel

multiplier, there can be a couple of counters in place to detect this occurrence and try a couple of
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Figure 3.1: 2D Plots of Varying Sample Counts projected over Compositions Iron and Nickel.
Left: 50 Data Points, Middle: 500 Data Points, Right: 5000 Data Points.

different multipliers to obtain more desirable results. This can be entirely user defined.

The crucial part of this study is inputting data into the Gaussian Process Classifier. The data

used in this study contains 50,000 points, which is extensive enough such that, given the disposable

tools, will override the classifier given its shear number and make it such that no output is able to

be computed and instead the module will produce an error. Additionally, one of the additional

risks of this is that with a large number of data points, the module will produce an output that

assumes a more random distribution and less patterning because of the greater volume of data

points that overlap with one another. In other words, in this type of classification problem the

presumption is that both conditions have an inherent degree of uncertainty in the prediction, which

means that there will be overlap between the two optimal decision regions and an error region.

One of the challenges in this, however, is that with increasing numbers of data points, the amount

of points that exist in those overlap regions increase substantially. An example of this occurrence

can be shown in Fig. 3.1, where as the number of data points increase, the amount of overlap

between decision regions increases as well. Therefore, in order to accommodate this limitation, a

workaround has to be put in place that balances both the overall pattern while limiting the number

of points in overlap such that the classifier can still produce an output representative of the full

pattern while not overloaded or over-fit.
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3.2.1 Training the Classifier

In order to properly train the classifier with this limitation, the number of training points used

needs to be selected with both the balance of displaying a pattern representative of the full dataset

while also small enough such that it doesn’t override the classification algorithm or present enough

overlap such that a random assortment is assumed. This exact number could be used as an op-

timization factor in another study. However, for the sake of this study the intention is to find

something that works. The training points inputted into the classifier must meet the condition of

xk ⊂ X, where X is the full dataset. Through trial and error, a value of 500 was found to suf-

fice when used as a number of training data points for the scikit-learn Gaussian Process Classifier

Module[11]. However, when using a number of 500 to create a surrogate model that is supposed

to fit a pattern in which 50,000 total data points are present, not to mention to assess a reasonable

predictive condition for those regions, it could be argued that the extent of the training data is not

enough at this scale. With the technological limitation imposed as well, this merits the needs for a

workaround.

In order to create this workaround, first the outputs of the Gaussian Process Classifier have to

be assessed. There are two of interest in this case, one is the probability metric for each classifi-

cation condition generated by the Gaussian process classifier, the other is the accuracy score. This

accuracy score is a way of assessing how well the classifier fits the data, or in other words it can be

expressed as shown in Equation 3.5, where ε is the error and S is the Accuracy Score. This quantity

is one that, should be maximized as much as reasonably possible. The layout of this workaround

can be shown in Fig. 3.2.

S = 1− ε (3.5)

The theory being tested in the workaround in order to both accommodate the technological

limitation while also including enough training data to adequately represent the pattern is to run

multiple Gaussian process classifiers on independent random sections of the data with equal length,
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Figure 3.2: Step by step layout of the workaround created for the GPC Ensemble in order to
interpret high quantities of data that the software cannot process all at once.
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in this case 500 samples, and average the probability metrics outputted by each. The number of

these sections is dependent on how large of a training data set the user desires; for instance, if

10,000 training data points are desired, then with an input sample size of 500 that creates 20 runs

through the Gaussian process classifier. The intention behind this method is to mitigate over-fitting

to a subsection of the data that has limitations on how well the overall pattern is represented.

Given the available disposable tools, this is deemed a sufficient approach and arguably a more

accurate result than one that could be attempted by running substantially larger quantities of data

through the classifier algorithm with the same tools. This workaround is commonly referred to

in established study as an ensemble of Gaussian process classifiers, or in other words a GPC

Ensemble.

One technique that was used in this study was a random sampling of 500 data points without

replacement out of the total number of allotted training points that would be continuously selected

at that volume until all of the training data points were now grouped in randomly selected subsets

of 500 points each. The intention behind this was to encapsulate the full extend of the data without

either missing any points or having points repeat in subsets too often. However, as future work it

would be worthwhile to sample with replacement so as to include a form of bagging in order to

cross-reference the data points within each classifier within the ensemble in order to create a sort

of blending effect between them.

Additionally, the number of independent variables used when creating the classifier ensem-

ble creates a major difference. This presents the very reason why the temperature variable was

not originally incorporated into this study as was previously mentioned. Theoretically, one would

imagine that the more variables used in a study, the more controlled factors identified and the more

of an explicit function can be established. However, that is not found to be the case in this instance.

Instead, the observation is that the accuracy score from using the classifier that incorporated tem-

perature was significantly lower than that which only incorporated the 4 material compositions.

This presents a relatively unique challenge, especially since from only implementing the classifi-

cation process the user would generally not be able to understand why that is happening without
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investigating the data.

Fortunately, the Sectioning and Proportioning method used in Chapter 2 does indicate a pos-

sible explanation for why that occurs. One significant observation was that when the sectioning

process was done using only the 4 composition variables, there were a substantial number of inter-

vals within which the proportional measurement was 100%. In other words, all of the data points

within those intervals were deleterious due to the material compositions. That means within those

regions, temperature has virtually no effect on the presence of deleterious phases. Therefore, con-

ditionally, within those regions there would be no correlation between temperature and the proba-

bility of deleterious phases, there is no pattern there, just complete randomization. Because of that,

when combining that data within the fully deleterious regions with the rest of the data, where tem-

perature has been observed to affect the presence of deleterious phases, it becomes really difficult

to model the relationship between temperature and the probability of a deleterious phase. Hence,

whenever it is incorporated, the output classifier is found to be low scoring and primarily shows a

random assortment of data points. This can be observed in 2-dimensional projections with respect

to each material in Fig 3.3 and Fig 3.4. As can be seen, the plot without temperature incorpora-

tion has relatively good separability of the data and clear pattern, whereas with the temperature

incorporation there is no clear pattern and a near completely random assortment.

While this is an observation from attempting both with and without temperature, and observing

the results, for repeatability purposes in different applications it is important to establish a conven-

tion for how to select specific independent variables to use in a classification study. The best way

to run this is to run through every possible number and combination of independent variables into

the classifier algorithm and find which configuration produces the highest scoring classifier based

on the same metric established in Equation 3.5.

3.3 Filtering

The first approach used when working with the classifier was to filter the data based on regions

that have high probability of failure. The advantage to this approach is to establish a more direct

specification of the variable ranges that lie within an optimal decision region rather than a more
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Figure 3.3: 2D Plots of the output probability of failure from the GPC ensemble with respect to
each material composition along with their original labels: Blue = Acceptable, Orange = Deleteri-
ous. This Classifier ensemble was created with the 4 compositions and temperature incorporated.

31



Figure 3.4: 2D Plots of the output probability of failure from the GPC ensemble with respect to
each material composition along with their original labels: Blue = Acceptable, Orange = Deleteri-
ous. This Classifier ensemble was created with only the 4 compositions incorporated.

32



automated process produced directly by the Gaussian process classifier, which essentially means

that the only presentable results exist by essentially creating a classifier ensemble in which the

user would input any new testing points for which an output condition would be produced. Part

of the desired deliverables of this study is to more explicitly define a range of possible values that

would satisfy the intended purpose. With one or two dimensions it is relatively easy because the

user could either specify a single one-dimensional variable range that works, or a combination of

variable ranges that work in two dimensions. With increasing dimensionality this output becomes

a lot more complicated both in terms of the ability to compute it but also in terms of the ability to

interpret it.

Using a One-Dimensional approach to data filtering is arguably the easiest way to get started

and understand this process, the only trade-off is that the output is more limited. By looking back at

the right plot in Fig. 3.3, there is decent separability of the two conditions but for each distribution

it is difficult to observe any explicit trends between the concentration of deleterious phases and

each individual material composition, with the possible exception of Nickel, albeit slight. In any

case, a new convention has to be applied in order to properly assess the available data. Using a

similar sectioning approach as was previously presented in Chapter 2, the data in specified intervals

could be averaged and projected as a more explicit trend.

3.3.1 Averaging

In order to establish a more clear trend between each independent variable and the distribution,

an approached is used that is very similar to the sectioning and proportioning approach described

in Chapter 2. The only difference in this approach being that instead of finding the proportion

of deleterious phases within each interval, all of the probability values that exist in each interval

are averaged in order to create an expectation of what the probability would be under the variable

conditions within each interval[12]. The number of intervals follows a similar convention where

they need to be small enough to assess the probability conditions sufficiently, but large enough

such that they don’t converge onto a section with too few data points. This can be observed in

Fig. 3.5.
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Figure 3.5: 2D Plots projecting the average probability in each interval given 100 1-dimensional
interval sections with respect to each of the 4 independent composition variables. The oppositely
labeled data were averaged separately to observe any differences in trends with blue = acceptable
and orange = deleterious. The green horizontal line represents the total proportion of deleterious
phases.
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In order to see any differences present in the probability value distributions between the dele-

terious and non-deleterious labeled data, the full data was split into those two groups with respect

to their original label with the average probability measurements being found for both cases. This

was primarily done in order to see if one group’s expected probability had a different relation with

each composition than the other. One observation of this process is that the probability of failure

for the samples that were labeled acceptable appeared to stagnate more while the probability of

failure for the samples that were labeled deleterious appeared to display more of a pattern with

respect to each composition. The next step was to determine the filtering criteria.

3.3.2 Criteria

The criteria for data filtering essentially represents an assessment of what factors cause dele-

terious phases. In a one-dimensional search, this is essentially looking for ranges of compositions

that are deemed to cause deleterious phases and cut them out of the data, producing a filtered

dataset that has that source of a cause of deleterious phases eliminated. There are a number of

different ways that this problem could be approached. The first, and easiest, approach to use is

one-dimensional filtering, where explicit ranges of each independent variable are specified in the

filtered region. This process can be accomplished with either one filter region at a time or all at

once. The result of one feature filter being applied with respect to composition Nickel can be

displayed in Fig. 3.6.

The way these regions are specified is by condition. As can be seen in Fig. 3.5, there exists

a green horizontal line that represents the total proportion of deleterious phases in the existing

dataset. This is established as the filtering criteria, for which any range of averaged data with a

probability expectation exceeds the total proportion of deleterious phases is filtered out, since in

that case it is deemed to be a source of deleterious phases. The reason this was deemed acceptable

is because the convention can be used iteratively as opposed to being user-defined each time.

This filtering process can be completed using one material at a time and iteratively in succession

where the total proportion is reassessed for each iteration and reestablished as the new filtering

criteria. One important factor to take into consideration here is that the order in which the material
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Figure 3.6: 2D Plots projecting the filtered data points with respect to Nickel based on the previ-
ously established criteria from Fig. 3.5 probability in each interval. The data labels are consistent
with blue = acceptable and orange = deleterious.
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composition is filtered makes a difference, because as sources are filtered with respect to one

composition, the results that are projected with respect to the other compositions will change,

particularly the overall probability of failure that exists in each composition.

Therefore, when the averaged probabilities per interval are computed for a second time, they

will differ from that of the first because a section of the points have been filtered out, which changes

the projections across each of the other independent variables. Therefore, because of this, the order

in which compositions are filtered makes a difference. The only way to know which will produce

an optimal result, which includes a region with a balance between lowest proportion of deleterious

phases in the filtered data and highest number of points within the filtered data, is to run through

every possible order of composition filtering and compare the results. The challenge with that

approach is that running through each possible order takes a substantially long time to compute

and therefore is more impractical in comparison to alternatives. Alternatively, all 4 features can be

filtered at once to arrive at an outcome that is perhaps not the optimal result but can be achieved

the quickest.

3.3.3 Higher Dimensions

While running this method as a one-dimensional practice is the easiest way to understand how

the filtering concept works, it is definitely far from the best process to use because it is very limited

in its ability to determine conditional probability estimations. While the averaged probability value

per interval works sufficiently well at estimating how the probability of a deleterious phase being

present will change with respect to each independent variable, it still maintains high variance which

means that samples do exist within those filtered regions that are still usable under other conditions.

However, those conditions cannot be found using a one-dimensional filtering approach. Therefore,

the intention is to expand the filtering process into multiple dimensions, where this time instead

of being one-dimensional sectioning, averaging, and filtering it instead becomes a grid search for

spaces that contain an average probability that exceeds the total proportion of deleterious phases.
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3.4 Decision Region

Switching objectives, while the intention of including the filtering process, in theory, is prac-

tical from the perspective of user interpretation of being able to assess conditions of a decision

boundary directly, the result of an optimal decision boundary can be assessed much more quickly

and easily just through applying the classifier ensemble directly and filtering the data based on

the probability outputs from that, where any point that is classified as having greater than a 50%

chance of a deleterious phase is filtered out. This automatically interprets conditional decision

regions based on one another, which eliminates the problems with the filtering procedure of both

neglecting those conditional regions and taking a high computation time. However, the decision

region, while optimal, still contains a level of uncertainty that would be insufficient for a practical

application. This goes back to the original classifier setup where temperature was not originally

incorporated because of how it resulted in a poorly fit classifier.

In order to further converge onto an optimal decision region with minimal uncertainty, there are

two approaches that can be used. The first involves setting the filtering criteria from the probability

outputs with respect to a lower threshold. However, a more practical approach, which incorporates

the previously uninvestigated variable of temperature, should be incorporated into the next steps.

3.5 Temperature Dependency

The way the temperature measurement factors into the output of this study is not consistent

and therefore difficult to project adequately. As was shown from the sectioning and proportioning

approach in Chapter 2, there are a substantial number of regions bases solely on the 4 material

compositions within which the probability of a deleterious phase being present is estimated to be

100%, which means that regardless of what value temperature is within those regions, the phase

will always be outputted as a deleterious phase. Hence, temperature has no effect on the output

within those regions, which means that any trend between those two variables in those regions

would be completely random. However, as explained in Computational Design of Compositionally

Graded Alloys for Property Monotonicity[5], thermal expansion is one of the factors in play that
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Table 3.1: Table measurements of proportions of deleterious phases per interval with respect to 3
specified composition ranges and temperature ranges.

will influence the properties and phases present, meaning that there has to be some cause between

increased temperature and undesirable properties.

Therefore, through the use of the sectioning and proportioning approach from chapter 2 where

ranges of temperature values are established in intervals and projected with respect to each previ-

ously established interval based on the 4 compositions, the observation displays a decrease in the

overall proportion of deleterious phases within smaller temperatures of regions within which the

total proportion of deleterious phases are less than 100%. An example of this involving 3 specific

intervals across multiple temperature ranges can be observed in Table 3.1 This indicates a condi-

tional secondary effect that temperature has on the output, where it only changes the result under

certain conditions. Therefore, this has to be incorporated.

When implementing the approach within the context of the GPC ensemble method, there are

two main approaches used. The first involves a one size fits all hard cutoff temperature which is

optimally spaced such that the false positive and false negative errors are minimized using Bayes

Theory[3]. The second involves implementing a second GPC ensemble to be implemented after

the first which incorporates temperature.
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3.5.1 Hard Cut-off

The hard cutoff approach is relatively easy to implement given that, at its core, the procedure

can be as simple as the user specifying a maximum allowable temperature value and filtering the

rest of the data accordingly, such that all data points with a temperature value above that maximum

threshold are filtered out. Optimizing this to minimize error from both sides, however, can prove

to be a challenge. Therefore, it is worthwhile to incorporate a form of Bayes theory in this case.

Recall from Equation 3.1 the approach of multiplying the prior probability with a likelihood

function. In this case, both of those quantities have to be identified with respect to the data.

Starting with the prior probability, this can be assessed using the same proportioning ap-

proached used previously and applied to the two specific regions that exist both above and below

the temperature threshold. In other words, it essentially presents a conditional probability that

states "The probability of a deleterious phase existing is P(E), given that the condition of the points

within that subset all meet the criteria of being below the specified temperature threshold". The

likelihood function, which is applied to the prior probability to create a posterior probability es-

timate, is represented by the proportion of samples that fit on either side of the specified cutoff

temperature. This value will scale with respect to the value set at the cutoff temperature.

In order to find the optimal value, a sufficient approach involves doing an iterative search to

minimize the expected error. This approach is described in a step by step format in Fig. 3.7. To

visualize how the error is minimized more directly, a plot representing the posterior probabilities

and the area under the curve shown as the error can be seen in Fig. 3.8

3.5.2 Second Classifier

This process is very straightforward, it essentially is a repetition of the original classification

process with the incorporation of temperature into the classifier algorithm. This second classifier

ensemble is applied to the optimal decision region from the original classifier ensemble. This

time it includes all four material compositions and the corresponding temperature, as opposed to

originally where it just consisted of the four material compositions.
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Figure 3.7: Step by Step Process displaying how to find the optimal cut-off temperature using
Bayes Theory.
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Figure 3.8: Optimal Error found by iteratively searching for a temperature value for which the
false positive and false negative values would be minimized.

The reason why it is able to account for the temperature in this instance when it wasn’t before

can be theorized as having to do with the observation found in Chapter 2 with the sectioning

and proportioning method where for composition ranges that contained 100% deleterious phases,

the temperature would have had no effect on the output. However, since with the original GPC

ensemble, that combination of material compositions would have been filtered out, which could

explain why temperature is successfully integrated into the second round GPC ensemble.

This is able to converge onto an optimal decision region that produces less of a false positive

error than the hard cut-off temperature method because it incorporates conditional cases where the

max allowable temperature would change with respect to each material composition. However,

while it does produce a region with the most minimal uncertainty attainable from this study, it

still has enough uncertainty particularly around the decision region such that there still exists some

probability of failure. To lower it further, more methods will have to be employed, or the proba-

bility metric outputted by the classifier will need to be filtered with respect to a lower allowable

threshold.
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4. CONCLUSIONS AND FUTURE WORK

4.1 Results

In conclusion, both of the methods under analysis in this study have their advantages and

disadvantages and, as future work, could be more integrated with one another. The most signifi-

cant benefit to the sectioning and proportioning method involved a more direct investigation and

measurement of exactly how each variable affects the output, which in this case is how likely a

deleterious phase is to exist under certain conditions. Whereas applying a classifier directly is able

to more thoroughly and with greater certainty predict a probability estimation, it does not take

those aforementioned factors into as much consideration and it is also difficult to infer any extent

of uncertainty in the predictions.

When comparing the results of the two classifiers, surprisingly the results of the approach that

involves a Gaussian process regression of the proportional measurements of the sectioned data is

closer than anticipated to the estimate found via direct Gaussian process classification. With further

development of this approach and testing in various applications, a convention with the sectioning

and proportioning approach could be found to have substantial validity.

4.1.1 Sectioning and Proportioning

The most substantial takeaway from this study, which could not be inferred from the classifier

approach, was the ability to identify the exact scope and thoroughness of the existing data as well as

identify the way that data is distributed throughout the sections. This is a factor that is very difficult

and often near impossible to identify through just inputting a subsection defined as training data

into a Gaussian process classifier. It is also very easy to apply, it is a relatively simple approach of

just taking a fraction of deleterious phases over total number of phases and applying that fraction

to intervals of the data defined by variable ranges.

The process of defining interval size and reliability is very useful for identifying how much

information is present at any given location of the data. The overall distribution of data within
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the sample space is something that can often be overlooked especially with high quantities of

samples like with this dataset containing 50,000, that said it is able to identify areas of limited

knowledge or understanding, especially when there is already implied uncertainty to begin with.

In this dataset it can be seen through this kind of search that the data distribution is most certainly

not uniform throughout the entire sample space. There are numerous regions that are found to

have a greater sample point density than others. This, in essence, corresponds to the amount of

confidence that can be had in the predictions. After all, a generally acceptable convention is that

the more information present in any given case, the more confident are any conclusions that can be

drawn from it.

The implementation of a Gaussian process regressor to generate a probability metric that exists

as more than a step function and also incorporates uncertainty in the predictions does still have

a ways to go in order to prove to be a viable approach, which is a strong argument in favor of

using the classifier approach in this instance. One of the most significant factors that is relevant in

this instance is error estimation, which can make a significant difference in the generation of the

surrogate model, and without a ground truth to compare the results to it becomes difficult to assess

in terms of its validity, especially when projected across multiple dimensions.

However, one of the weaknesses of the Gaussian process regressor, which primarily has to do

with the error estimation, is that based on the data distribution it cannot always sufficiently predict

a surrogate model that properly encapsulates the scope of the data as seen from the proportional

measurements. If there exists a higher point density around a particular output and the error estima-

tion is loose, then the surrogate model is more likely to interpret the data points with less density as

erroneous or noise, and the result will be substantially offset from them. The way to accommodate

for this is to have a lower error estimation, however that requires the assumption that the data at

that point is more certain without any way of verifying. An example of this occurrence is shown

in Fig. 4.1 and Fig. 4.2, where two surrogate models are generated with the same parameters and

based on the same type of data with the exception of one has more samples than the other.
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Figure 4.1: Proportional Measurements per interval compared alongside their corresponding re-
gression estimations. Blue = Proportional measurement, Orange = Regression Output.

Figure 4.2: Proportional Measurements per interval compared alongside their corresponding re-
gression estimations. These plots contain a greater quantity of sample points that are more heavily
concentrated in certain areas of the sample space than the ones in Fig. 4.1. Blue = Proportional
measurement, Orange = Regression Output.
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4.1.2 GPC Filtering

The disadvantages of this section significantly outweigh the benefits mainly because of the

substantially long computation time it takes to run thoroughly in comparison to the validity of the

results. The one significant benefit that comes from using this approach is providing a more direct

user-interpretable version of the results as opposed to setting it as an automated process for which

assessments over possible material and temperature combinations of samples would need to be run

through the classifier and assessed directly by the machine to determine its viability. However, the

disadvantage here is that when many conditional cases are assessed such that the identified viable

design space is maximized, so many dimensions are used and so many conditional variable ranges

are present such that it makes more sense to automate it because the user-interpretability decreases

substantially with more thoroughly established decision regions dependent on multiple variables.

This was the first approach used in this study, hence why it is more imperfect than newer

versions. That said, the most valuable lesson that came out of this study was the idea of taking

intervals and finding probability averages within to establish an expression for what the expected

probability of a deleterious phase is under certain conditions. This idea is what led to the sec-

tioning and proportioning approach as a more direct method without the prior incorporation of

a classifier algorithm and the research, experimentation that has involved that. This method is

what inadvertently set the stage for an approach that, with further study and experimentation and

perhaps expansion into other applications, could have the potential to be an effective approach at

solving these kinds of problems. The iterative filtering approach based on a Gaussian process clas-

sifier output, however, appears to be at a dead end in terms of its feasibility. The concepts of data

filtering and sectioning, however, merit further incorporation and investigation.

4.1.3 Temperature Dependent GPC

This approach is, at this stage of the study, the most effective and straightforward approach

when it comes to arriving at a viable solution. The main observation from this stage, however,

is that there is enough uncertainty around the decision boundary such that it becomes difficult to
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Table 4.1: The results of each of the classifier ensembles applied in terms of the proportion of
deleterious phases in the existing data as well as the number of samples present in each version of
the data.

infer a large decision region with minimal uncertainty based solely on the classifier itself. Because

of this, the optimal decision region still contains a substantial amount of false positive error that,

in an ideal circumstance, would be reduced further. The original data metrics along with the

corresponding probability estimations are shown in Table 4.1.

In order to further reduce this false positive error, the filtering criteria based on the probability

of failure has to be reduced to gradually lower amounts. The same can be done for the original

classifier as well. The trade off with that is that the usable feature space is further reduced. How-

ever, for the purpose of reducing the probability of failure to below a desirable threshold such as

1%, that would be the most viable approach given this method in its current state.

4.2 Comparison of Results

By using the Gaussian process regressor established in the sectioning and proportioning ap-

proach and applying it to the full dataset, a projection can be obtained overall that appears to

behave very similarly to the projection resultant from the Gaussian process classifier ensemble

approach. While the results of the Gaussian process classifier ensemble method can still be con-

sidered the superior approach in terms of its ability to converge onto an optimal decision region,

the regression of proportional measurements was seen to be an effective approach when it comes

to finding a decision region and quantifying the probability. The comparison of the results of these

two approaches in terms of both the number of samples and the proportion of deleterious phases

after each stage are shown in Table 4.1 and Table 4.2. A more direct projection of the regression
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Table 4.2: The results of each of the the regression outputs of the sectioned proportional measure-
ments applied in terms of the proportion of deleterious phases in the existing data as well as the
number of samples present in each version of the data.

results can be seen in Fig. 4.3.

With some further development and implementation into other applications, this approach

could be established as a usable convention moving forward. One of the key advantages that

are present in this approach is the ability to investigate the scope of the data directly. The disad-

vantage, however, comes in the form of the fact that various conventions of this approach including

but not limited to the size and number of variables used in each section of the data within which

proportional measurements are taken is very problem specific and as of right now the established

method of finding those parameters is through trial and error.

4.3 Next Steps

The next steps for this study primarily involves further development of the gaussian process

regressor approach that incorporates the proportion measurements from the sectioning and propor-

tioning method, particularly with respect to the error estimator. The main reason why sectioning

and proportioning is deemed useful from this attempt is because the direct investigation and mea-

surements of proportions that can be obtained from it do present useful information about the data

incorporated into this study that is not obtained solely through the use of using the data to train the

classifier. It would be useful to further investigate the process of regressing the proportion results

into a surrogate model to represent the probability metric for which the intent of this study is to

quantify.
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Figure 4.3: 2D Plots of the output probability of failure from the Gaussian Process Regression Out-
put of the Sectioned Proportional Measurements with respect to composition Iron along with their
original labels: Blue = Acceptable, Orange = Deleterious. Left Plot: Classifier with 4 compositions
and temperature incorporated; Right Plot: Classifier with only the 4 compositions incorporated.
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The hope with this is that if a general convention can be established that works not just for this

application but has potential for multiple different applications then that presents a viable tool to be

used for future studies not just as an alternate means of uncertainty quantification in classification

problems but also optimizing to ensure that a certain condition is met. However, there still exists a

ways to go to arrive at that point. The most important factor to establish is error estimation, which

is still ambiguously defined and based on assumption at this point.

Additionally, as far as classification is concerned, a more thorough convention has to be es-

tablished and trials using different kinds of classifiers such as Support Vector Machine(SVM) and

Known Neural Networks(KNN) are worth implementing in order to compare the findings from

them to the findings of the Gaussian Process Classifier and see which could generate.

As for the Gaussian Process, one other factor that wasn’t heavily investigated in this particular

study but would be a worthwhile secondary area of investigation would be to modify the kernel

function that is used. The function that was used in this approach was a radial basis function.

However, that is certainly not the only function that can be used in this case. It would be worth

attempting other forms of the kernel function to observe any changes in the execution of this

process as a secondary future study as well.

One of the rationales behind the methods introduced in this study is to investigate and showcase

ways to interpret mass amounts of data with more commonly available tools and software. For a

more in depth and thorough investigation more advanced computational software with higher pro-

cessing capacity could be useful in order to not run into the problem of too much data overloading

the module. However, that also depends on how exact the investigation is intended to go as well,

and if there is a way to make easier to use and more readily available tools work for the intention

of what is sought after to accomplish, then that may still suffice in a number of applications.

Lastly, in this instance with temperature incorporated as a secondary conditional variable, it

is worthwhile to further investigate ways to incorporate this more directly. With the classifier ap-

proach a secondary step had to be taken in order to find another more optimal decision region. The

disadvantage to this is that since it is already active on the original filtered region, there were many
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sections filtered out which could have been found to be potentially been viable parts of the optimal

decision region if temperature was incorporated more directly. This presents an additional rationale

for regressing the sectioning and proportioning output, since that is based on direct measurements,

in theory the output would be able to accomodate that in a way that the classifier ensemble wasn’t

able to initially.
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APPENDIX A

SECTIONING AND PROPORTIONING APPENDIX

The full outputs from the Gaussian Process Regression across the full sample space are dis-

played in the following figures. Each output is projected over each material composition in a

1-dimensional projection.
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Figure A.1: Probability Estimations based on the Gaussian Process Regression over the entire
sample space projected over Fe.

Figure A.2: Probability Estimations based on the Gaussian Process Regression over the entire
sample space projected over Ni.
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Figure A.3: Probability Estimations based on the Gaussian Process Regression over the entire
sample space projected over Cr.

Figure A.4: Probability Estimations based on the Gaussian Process Regression over the entire
sample space projected over Ti.
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APPENDIX B

CLASSIFICATION APPENDIX

B.1 Pre and Post Classifier Filtering

The full outputs from the Gaussian Process Classifiers across the full sample space are dis-

played in Fig. B.1. Each output is projected over each material composition in a 1-dimensional

projection.

The projected results of the optimal decision region found by the original classifier are dis-

played in Fig. B.2

B.2 Post Temperature Incorporation

The projected results of the optimal decision region found after the hard cut-off temperature

threshold is applied to the filtered data are displayed in Fig. B.3

The projected results of the optimal decision region found after the second classifier with tem-

perature incorporated is applied to the filtered data are displayed in Fig. B.4
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Figure B.1: Probability Estimations based on the Gaussian Process Classifier over the entire sample
space projected over each material composition. Blue = Acceptable Phase, Orange = Deleterious
Phase.
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Figure B.2: Filtered Probability Estimations based on the Gaussian Process Classifier over the
entire sample space projected over each material composition. Blue = Acceptable Phase, Orange
= Deleterious Phase.
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Figure B.3: Filtered Probability Estimations based on the original Gaussian Process Classifier over
the entire sample space and any samples that exist below the hard cut-off temperature threshold
projected over each material composition. Blue = Acceptable Phase, Orange = Deleterious Phase.
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Figure B.4: Filtered Probability Estimations based on the Gaussian Process Classifier over the
entire sample space and the second classifier within which temperature is incorporated projected
over each material composition. Blue = Acceptable Phase, Orange = Deleterious Phase.
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