
 
 

APPROACHING NEURODYNAMIC COMPLEXITY AND ITS INFORMATION CONTENT 

AS A COMPLEX DYNAMICAL NETWORK 

 

A Thesis 

by 

NANDAN BHARATESH SHETTIGAR  

 

Submitted to the Graduate and Professional School of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE  

 

Chair of Committee,  C. Steve Suh 
Committee Members, Jun Wang 
 Harry Hogan  
Head of Department, Guillermo Aguilar 
 

August 2022 

 

 

Major Subject: Mechanical Engineering 

 

 

Copyright 2022 Nandan Shettigar 

 

 



ii 
 
 

ABSTRACT 

The human brain is a subsystem of nature's macroscopic ensemble whose time-varying 

behaviors serve to optimize the representation, manipulation, and even creation of information 

within its own structure to adapt towards the constraints of the environment. These dynamical 

characteristics serve to optimize the conditions of survival based on evolutionarily developed 

motivations, prior experiences, and instantaneous opportunities. To feasibly and efficiently 

perform these tasks the brain operates on a high degree of complexity resulting in its high level of 

adaptation towards the environment. As a result, the governing laws of nature is embedded in the 

brain's structure. It is infeasible to comprehensively represent these laws from any single 

perspective, therefore, to attain a more comprehensive understanding of how the brain functions 

and changes over time transdisciplinary approaches which consider the brain from multiple 

perspectives are absolutely necessary in painting a more complete picture of brain dynamics. 

Consequently, this study approaches the brain from its fundamental biology and the governing 

laws of physics which can be used to characterize complex network dynamics utilizing the general 

framework for complex networks. This methodology can characterize network dynamics at the 

macroscopic levels using information entropy and at the microscopic levels by establishing the 

dynamical energy level of individual constituent behaviors and their respectively time-varying 

interactions. Furthermore, the dynamic frequency components can be extricated at the microscopic 

and macroscopic level to establish the unique information content of the network (which is a 

product of a unique physical temporal evolution of frequencies). This approach aims to uncover 

the ambiguities in regard to the brains architecture and can not only aid progress in neuroscience 

but can provide a governing new philosophical approach towards assessing the highly nonlinear 

and potentially chaotic character of complex networks, ubiquitous in our world, thus having broad 
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reaching implications. This study provides a preliminary foundational framework to build upon 

towards achieving a deeper understanding towards complexity in the brain and further apply this 

philosophy towards complex network in general. 
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NOMENCLATURE 
 

DOC Degree of Coupling 

EMD Empirical Mode Decomposition 

FT Fourier Transform 

HHT Hilbert-Huang Transform 

IF Instantaneous Frequency 

IMF Intrinsic Mode Function 

LTD Long-Term Depression 

LTP Long-Term Potentiation 

STDP Spike-Timing Dependent Plasticity 

AMPAr  α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid receptor 
 
NMDAr  N-Methyl D-Aspartate receptor 
 
∇μ Electrochemical Gradient 

α Total Cross-Sectional Area of Available and Activated Ion Channels 

J!"#$ Diffusion Flux 

q%&' Charge per ion 

R Gas Constant 

T Temperature 

Z Ion Valency  

F  Faraday’s Constant 

Vi Voltage 

Qi Charge 

Ef Electric force 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Overview 

Nature’s organization is understood by the brain through the underlying patterns of the 

environment’s information content [1, 2]. Through limited observations, this is complex to say the 

least. Such inherent complexity is certainly not random or arbitrary and is governed by 

fundamental immutable physical principles rendering the emergence of intricate configurations of 

systems and subsystems from the macro to the micro scales which vary over time. Often, such 

dynamical complexity produces highly nonlinear or even chaotic behaviors making analysis, 

interpretation and understanding of such phenomena difficult, to say the least. Regardless, the 

brain is remarkably able to adapt and find stability in regard to a wide variety of scenarios by 

comprehending the information posed by the environment and generating a suitable response 

which typically optimizes its probability and conditions of survival. These neurological 

phenomena, along with established scientific fields ranging from biology and chemistry to physics 

and mathematics, are rooted in identifying certain underlying principles (patterns of information 

content as governing laws due to the intrinsic underlying order in highly nonlinear dynamical 

observations in natural phenomena [3]. Thus, the patterns of information content in Nature’s 

organization are not only used by the brain but are qualitatively and quantitatively characterized 

in the established knowledge in our various fields of science and mathematics (e.g., branches of 

biology, chemistry, physics, mathematics, etc.) [4-6].  

Furthermore, this conventional understanding has been developed by isolating various 

system components in highly specific testing and experimental conditions. Thus, foundational 

principles in neuroscience establish certain biological mechanisms of the brain. Furthermore, the 

sciences in general have developed foundational principles from the laws of quantum and classical 
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mechanics to preliminaries in cell and gene theory in biology are developed from this reductionist 

perspective [7]. Hence, a highly detailed understanding of certain individual components in the 

brain and natural phenomena is developed. Neuroscience, technological, medical, and even 

philosophical progress in society has been spearheaded by such approaches resulting in the current 

state of knowledge in society as it stands today.  

Significant progress has been made in the past 200 years; however, more recently it is 

becoming implicitly apparent that a bottleneck of stagnation in progress is occurring. In other 

words, the current reductionist approaches are becoming insufficient and inefficient to sustain the 

next stage of progress [8]. That is because the true nature of natural phenomena in the brain and 

elsewhere rarely entails system components which can be perfectly isolated to manipulate and 

produce behaviors in an idealized experimental (or theoretical) scenario. Natural phenomena entail 

nonlinear macroscopic higher order systems which are composed of smaller-scale subsystems 

created from a variety of interacting components whose cumulative local interactions producing 

the global complexity commonly observed in weather trends, stock market fluctuations, and brain 

dynamics. Further detail upon this will be elaborated upon in future sections. Thus, despite 

significant progress in various fields of society, we are reaching the limitation of how far the 

current methodologies can take us displayed by the various impending bottlenecks limiting 

progress. This is seen in the classic Von Neumann computing architecture which has been the 

framework for computing since the days when vacuum tubes used to serve as transistors. 

Agreeably, computing performance has come a long way with incorporations such as the Harvard 

architecture; however, the fundamental philosophy is the highly similar limiting the maximum 

possible efficiency attainable resulting in bottlenecks for progress [9]. Advancements have 

certainly been achieved in our technological prowess in the past years and with much painstaking 
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effort and manipulation, society can reproduce and manipulate idealized scenarios observed in our 

tools today; however, this may not necessarily be the most efficient route or even a sustainable 

option to continue the propagation of progress in neuroscience and society in general. 

The complex network dynamics exhibited by the brain enables producing far-more 

efficiently operating systems than achievable by current purely reductionist methods. For example, 

the information processing ability of the human brain is comparable to what is achievable by super-

computers. Both are physical systems operating under fundamental constraints; however, power 

consumption of only a few watts by the brain achieves computing performance that rivals (and can 

beat) that of supercomputers which can consume enough power to supply a small city. This all is 

not meant to purely bash on reductionism as these past methodologies have garnered significant 

progress; however, it is clear that additional methodologies beyond pure reductionism is necessary 

for the next stage of progress in neuroscience and society.  

Therefore, despite significant progress in neuroscience in establishing the details of certain 

fundamental physiological components within the human brain over the years, an overall 

understanding of brain dynamics is remarkable rudimentary. Patients with Alzheimer’s, 

Parkinson’s, or even different degrees of depression are given temporary cures which simply 

address symptoms and not the root pathological causes. Approximately 20% of American’s 

experience a form of mental or neurological health conditions as reported by the National Institute 

of Mental Health. Beyond the negative personal impacts, these entail significant economic tolls as 

well. These issues are due to the current understanding of brain dynamics and function which are 

still in its early stages of maturing. This is a limitation to the propagation of research and innovation 

in a wide array of neuroscience applications. Therefore, it is the aims of this study to firmly 

establish that a transdisciplinary perspective upon the human brain is necessary to usher the next 
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stage of progress. Years of adaptations in the environment has embedded the complexity of Nature 

in the brain’s own organization. In other words, evolutionary fine-tuning has directed neural cell 

populations and neural cells (themselves being a composition of subordinate individual parts such 

as protein subtypes and even smaller scale molecular components) to interact with one another 

from the microscopic to the macroscopic scales producing efficient global organizational structure 

observed as the human brain. It is becoming apparent that no one perspective alone is sufficient to 

comprehensively characterize the dynamical complexity present in the human brain, therefore this 

study approaches the brain from a variety of perspectives to attain a more universal understanding 

of neurological phenomena (which may also shed light on the highly nonlinear and sometimes 

chaotic nature of our world in general). Real-world complex systems (composed of smaller-scale 

subsystems which are composed of even smaller-scale constituent parts) such as the brain can be 

modeled as a complex network.  

 

1.2 Literature Review 

Complex networks [10] are ubiquitous in our world. From individual people interacting 

with one another composing social dynamics [11] to birds (or drones) flocking together producing 

self-organized swarm behaviors [12,13]. Such complex networks are macroscopic systems whose 

global behaviors are the result of its local microscopic properties (cumulative interactions between 

individuals). Self-organization [14] encapsulates the mutual collaboration of many individual parts 

to formulate a collective ensemble coordinated global dynamics offering greater chances of 

stability and even survival against external disruptions. Furthermore, despite the obvious 

differences in specific system, the nonlinear dynamical complexity present in emergent self-

organization carries certain universal characteristics which are similar across different specific 
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disciplines [15]. This universality breaks the conventional pure reductionist approach to better 

comprehend complexity through a transdisciplinary perspective [16].__  

Complex networks exhibit similar characteristics and break the lines of separate scientific 

disciplines by unifying diverse seemingly unrelated fields with the underlying universal 

similarities of complexity and chaos [17]. Examples of complex networks are abundant in various 

disciplines. Technological networks such as power grids [18] to swarms of unmanned aerial 

vehicles [19], social networks [20] such as epidemic suppression [21] to political propaganda [22], 

and biological networks such as protein-protein interactions [23] to ecological patterns [24] all can 

be modeled, characterized and even controlled as complex networks provided that the inherent 

system dynamics, nonlinearities and constraints at the global and local levels are accurately 

accounted for. The brain, the focus of this study, is composed of around 100 billion neurons 

coupled with each other with 100 trillion synapses representing a monumental dynamic, 

nonstationary complex network. Due to the sheer size and complexity of the brain regarding its 

large number of individual constituents and possible connections and taking into account the 

dynamic nature of each of these components, the brain is one of the most complex and dynamic 

systems available. Therefore, the proposed methodology for improving the ability to understand 

and comprehend complex neurological phenomena can not only be a cornerstone for propagating 

research in neuroscience, but also a foundational cross-disciplinary framework for the 

characterization and control of complex networks in general which has ubiquitous applications in 

technological, biological, social and natural phenomena only to name a few. The focus of this 

thesis will be upon the human brain; however, it is emphasized that the underlying philosophies 

has far and broad reaching consequences beyond neuroscience which is a target for future studies 

and work.  
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1.2.1 The Brain as a Complex Network  

The human brain is one of the most dynamically intricate networks molded by nature 

capable of performing a wide array of activities effectively and efficiently [25–28]. Operating on 

a high degree of complexity, brain dynamics consist of rapid reconfiguration of network states 

driven by interactions between network constituents to optimize temporal global evolution [29,30]. 

Constituents from the micro to the macro scale, such as neural cells, cluster to brain nuclei, and 

regions interplay with one another to compose an instantaneous, dynamical form of the brain, 

which serves to interact with the environment [31,32]. Brain dynamics are unified across its 

spatiotemporal scales to work in concert to coordinate an instantaneous current representation 

while simultaneously maintaining active recollections and processing of prior experiences, along 

with evolutionary developed, primal, raw, emotional contexts, which can influence future 

trajectories and goals for the brain [33, 34]. Constituent parts or subsystems of a network have 

unique responsibilities in contributing towards the overall time evolution of a network [35,36]. 

Thus, components of the brain cooperate and, in some cases, compete with one another from the 

micro to macro scales to direct and determine temporal evolution of the network’s global behaviors 

[37]. Examples of these include neocortical modulation of amygdala activity to initiate higher-

order cognitive regulation upon potentially fearful stimuli [38]. This interaction illustrates how 

activity produced by limbic regions (amygdala and associated areas), which provide primal 

emotional motivations such as fear, is regulated by contributions from the neocortex, which 

provides more complex forms of information manipulation, rendering higher cognitive thought to 

assess the initial appraisals of emotional response (such as fear) with more logic [39]. Furthermore, 

local activity from these regions are routed to one another via the thalamus, a relay center in the 

brain capable of coupling neocortical activity with a variety of localized subcortical structures. 
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The resulting collaboration (or competition), sways global network trajectory towards a particular 

path [40]. The brain must simultaneously organize and process these various modes of information 

to construct an instinctual network system reaction, ensuring coherent brain behavior. Information 

is physically transmitted via configured patterns of electrophysiological neural activity. Upon 

accomplishing this, the brain can contextualize its network state within the time-varying 

environment. Learning from previous experiences, executing current actions, and preparing future 

expectations consists of these dynamical capabilities, enabling the brain to optimize the variety of 

possible opportunities posed by the time-varying environment, ranging from scavenging food to 

maneuvering social situations and assessing potential sexual partners. 

Naturally, these tasks are highly multidimensional, necessitating the brain to operate with a 

substantial degree of complexity to not only participate but excel at such behaviors [41,42]. 

Furthermore, the brain itself is not a single, one-dimensional entity; it is a multidimensional 

macroscopic network ensemble consisting of smaller-scale constituent parts. Consequently, it is 

the cumulative interactions of these subordinate parts or subsystems that direct global brain 

behaviors towards replicating multidimensional forms that can recognize, interpret, and react by 

generating a desirable system action that influences or manipulates external factors, such as the 

environment or other constituents. Typically, these actions are not arbitrary but correspond to 

attempts to benefit the probability and conditions of an individual’s survival (not excluding 

interactions/relations with external stimuli). To successfully coordinate this, neural architecture 

must be capable of filtering and translating relevant information from the environment in its own 

time-varying structure to comprehend and react to its surroundings [43–47]. Cytoarchitecture of 

the brain can represent this multidimensional variation of information over time within its own 

dynamical form by orchestrating the activity of ensembles of neural populations. Information is 
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encoded within the unique firing patterns of such neural circuitry that represent individual 

recognition, understanding, and action in the environment. Thus, information representation 

capable of storing experiences and underlying motivations, as well as initiating actions, is 

embedded in the dynamical variation of unique patterns of electrical activity in the brain supported 

and modulated by neural, physiology providing stability for these dynamics [48]. 

Controlling the microstate configurations of neural biology corresponds to producing unique 

macrostate emergent behavior or representation of information by altering the interactions of 

unique patterns of local electrical activity, giving rise to diverse global behaviors. Thus, by fine 

tuning the coupling (interactions) between neural cells through various modes of plasticity 

(synaptic, axonal, and dendritic), microstate reconfigurations can modulate and refine macrostate 

behaviors on a variety of time scales corresponding to the speed of the various biological 

mechanisms [49]. The dynamical interplay of billions of neural cells coordinated by trillions of 

connections fosters effective and directed information transfer necessary for undertaking brain 

activities while balancing stability (to maintain a particular global form) and plasticity (being able 

to change, refine, and adapt global forms) [50]. The brain can control and steer the various possible 

configurations of a network to encode information pertinent to its conditions of survival. 

 

1.2.2 Information Representation by the Brain  

Complex information can be expressed physically as a unique composition or pattern of 

dynamical behavior. In the brain, this composition consists of the unique temporal and spatial 

evolution of neural activity [51,52]. Illustrated in the time evolution and distribution of neuron 

action potential firing rates across the brain, neural cells (including glia) are responsible for 

directing this time-varying evolution at the microscopic scale. Furthermore, individual neuron 
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action potentials do not operate in isolation but can influence or be influenced by other connected 

neural agents (individuals to population). If every single constituent were operating with disregard 

to its coupled neighbors, the emergence of higher-order patterned behavior would be difficult to 

produce. However, if agents can coordinate their behaviors, the collective effort is able to much 

better steer and influence global dynamics. Thus, neural individual agents act collaboratively to 

form higher-level neurodynamic rhythms [53]. In other words, the coalescence of individual neural 

firing mediated by connections between individual agents creates larger-scale brain rhythms 

commonly seen in global patterns, such as the bands of frequencies of electrical activity 

(corresponding to the rate and distribution of action potential activations of neurons) in the brain. 

Therefore, the form of higher order emergence such as local synchronization amongst populations 

of synchronized neural cells and global distribution of multiple synchronous modes (and 

sometimes asynchronous interactions) is essential to better define (and potentially control) overall 

network trajectory.  

Information, encoded in the rate and time evolution of electrical activity in the brain, is 

fueled by patterns of collaborative and competing frequencies of action potentials. Synchronous 

agents collaborate with one another to achieve higher levels of stability and influence while 

asynchronous dynamics compete with each other battling for influence in directing overall network 

directions. These are necessary to consider and filter all forms of relevant information to determine 

what action must be taken to optimize survival in the environment (by exciting and depressing 

respectively relevant and irrelevant information). A helpful analogy follows to aid clarity in how 

information representation is accomplished via patterns of neural activity: fundamental letters in 

the alphabet in particular configurations can produce a large variety of words, and these words 

enable configuration of further complex forms, from sentences to books, conveying information. 
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Similarly, neuron action potentials are a fundamental building block for the dynamical repertoire 

of the brain, enabling higher-level information to be expressed as a unique patterned time evolution 

and spatial distribution of action potential firing. For example, raw sensory information is initially 

converted into electrical impulses capable of being transmitted to the central nervous system for 

further processing. Acquired sensory input is collected and translated into comprehensible 

information in the form of neural firing patterns. Broad information is then functionally segregated 

as specialized regions of the cortex process sensory stimuli to extract relevant features, such as 

visual and auditory information [54]. Upon sensory identification of the state of the environment 

information, the brain incorporates this information to form a global contextualization of the 

network regarding previous experiences and the current situation to determine a suitable response 

[55,56]. In other words, appraisal of external influences allows complex phenomena to be further 

dissected and understood with respect to internal network states. The physical medium for such 

information transfer is via activation of distinct patterns of neural activity.  

From this, brain dynamical responses integrate discretized meaning into fluid 

understanding to formulate a suitable response. In other words, brain organization is structured to 

segregate information (assess sensory input) and integrate information, constructing an instinctual 

network system reaction, ensuring coherent and directed brain behavior [57]. This qualitative form 

is precisely quantified by the unique spatiotemporal spectra of frequencies in the brain representing 

information necessary to process input and contextualize said input with prior memories and 

evolutionary fine-tuned motivations to formulate a desirable system response observed and 

experienced in brain dynamics. 

Qualitatively speaking, information contains meaning and can be physically represented 

[58]. Quantitatively, unique statistical signatures, such as variations of probability distributions 
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(different standard deviations of the normal distribution), define degenerate forms, of which one 

can exist at an instant in time as a physical manifestation to encode distinct forms of information. 

The brain aims to generate unique statistical distributions to identify internal or external stimuli. 

Thus, to differentiate objects and scenarios and annotate meaning towards unique conditions, the 

brain must be capable of producing unique configurations that are able to differentiate one piece 

of information from the next while ensuring survival in a time-dependent environment. In other 

words, the same pattern of neural activity cannot be used to represent two different forms of 

information. Sufficient differentiation (based on the capabilities of the brain) between patterns of 

neural activity is necessary to respectively distinguish different phenomena. This includes 

wielding different dynamical states (spatiotemporal distribution of neural activity) in recognizing 

emotional states, varying from fear to hope to external scenarios, such as predatory or friendly 

encounters. Distinct dynamical states (active network configurations) are necessary to distinguish 

scenarios from storing memories and executing actions to future planning and wielding subcortical 

motivations. Naturally, performing these tasks requires resources in the form of energy. This 

certainly has limitations, as physical energy constraints cannot create a limitless possible 

combination of stable configurations. With respect to energy conservation, hierarchical structures 

confer the efficient ability to organize the brain in a manner optimizing the finite number of 

relevant functional states the brain can morph into from stable physiological structure to produce 

wide-ranging adaptability [59]. Such architecture of complexity for dynamical configurations 

carries unique statistical signatures or characters at an optimal point between changing form and 

maintaining a current state.  In other words, certain fundamental characteristics are held constant 

to minimize energy use while higher resolution refinements are built upon this structure resulting 

in a hierarchical architecture. Therefore, hierarchical structures are conducive towards 
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coordinating state transitions which minimize energy use and maximize the amount of relevant 

information representation. This can optimize information detection (input) and information 

presentation (output) from and towards the external environment (and internal states) in attempts 

to optimize survival. In seeking such unique dynamical configurations, self-similar structures 

emerge in the brain across scales to efficiently produce broadly adaptable dynamic behaviors. Self-

similarity seeks to optimize network stability and plasticity by reinforcing network coupling 

configurations which correspond to efficiently being able to change or adapt dynamics while 

simultaneously maintaining reliable, stable forms in the face of adversity (battling a competitor for 

resources). In other words, a hierarchical structure confers efficient adaptability to the wide range 

of perturbations that may seek to disrupt the brain. Statistically self-similar (or fractal) structures 

can be found throughout the brain, conferring these necessary attributes and ensuring successful 

survival [60]. Qualitatively speaking, this can be thought of as producing the distinctive style or 

personality of an individual brain network in terms of the unique route an individual may choose 

to take in terms of isolating a single path towards a solution to a problem with many possible 

solution routes. In other words, this allows the brain to filter the variety of information present in 

the environment to direct energy towards relevant stimuli and consequently adapt in a way that 

attempts to minimize the action required to change form by holding certain fundamental signatures 

in the brain as statistically similar throughout its spatiotemporal scales. The medium for filtering 

information by the brain is fine-tuned and refined since birth (and even prenatal development) and 

is absolutely important to ensure efficient operation within the environment as there is often 

superfluous amounts or forms of information which may not be relevant (or even distracting) in 

regards towards optimizing the conditions of survival. Fine tuning this information processing 

ability is accomplished through neuroplasticity mechanisms over years and as all dynamic events 
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(time-varying phenomenon), this requires precious energy to perform. To conserve the most 

valuable resource of energy, this fundamental information processing and filtering ability of the 

brain needs to operate upon a self-similar architecture to efficiently fine-tune its underlying 

physiology towards a configuration which optimizes information interpretation and even 

modification from and towards the environment respectively. Optimizing information processing 

through neuroplasticity is observed as the brain performing or seeking tasks which improves its 

conditions of survival. The result of this underlying phenomena is the underlying values, morals, 

principles and in essence “the way of thought” of an individual’s brain network seen by a 

distinctive personality. It is important to note that the brain’s selected distinctive path may not 

necessarily be the absolute theoretical path of least action; however, it is a path chosen based on 

prior successes (through individual experiences or evolutionary fine-tuned configurations in neural 

architecture). Therefore, neural dynamics may not always perform perfect calculations which use 

the absolute theoretical path of least action in performing tasks. However, it is noteworthy that 

despite its imperfections, fundamental architecture of the brain tends towards finding the optimal 

path of least action as this is the asymptotic limit for maximizing efficiency and optimizing 

survival within the environment. Millions of years of evolutionary pruning has likely eliminated 

network configurations which deviate significantly from such efficiency (as they were less likely 

to survive and reproduce due to lower levels of efficiency in neural information manipulation). 

The following paragraphs give an overview of tools and methods which can be used (and have 

been used) to better understand such neurodynamical complexity.  

The concept of information is useful in ascribing meaning entwined with logic towards 

different variations or patterns observed in the environment. As all things in nature, these 

variations of patterns are supported by the underlying energy distribution. In its most fundamental 
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form, energy takes the physical form of quantum particles, and their interactions compose the 

higher-order structured patterns and phenomena ranging from variations of molecular components 

to enzymes, proteins, cellular components to living organisms and even large-scale social networks 

commonly observed. Clearly, the overall amount of information in such a macroscopic system is 

significantly large. In fact, a complete illustration of the underlying information content in the 

environment is not feasible for analysis under reasonable means by the human brain. Despite these 

limitations, the brain is still able to operate, survive and thrive within the environment as it has 

adapted to filter the wealth of available information and devote its precious finite limited resources 

and time towards information which is most relevant to its survival conditions. Thus, brain 

capabilities have been geared towards a variety of relevant phenomena which filter the large 

amounts of available information to extract the most important perceived properties from the 

environment. For example, these include developing abilities which are proficient in select areas 

such as recognizing facial cues that can steer the quality of social encounters and consequently 

sway social status which significantly influences conditions of survival.  

Fundamentally, these computational abilities of the brain are geared around optimizing 

representation, manipulation and even reorganization of information (represented by a unique time 

evolution of underlying frequencies within the brain’s dynamical properties). The ability and 

degree of proficiency in learning new forms or patterns of information and even creating new 

patterns of information efficiently is qualitatively characterized as intelligence. If there were no 

energy constraints, relevant information can be represented by a variety of distinct physical 

configurations; however, energy is finitely distributed. Hence, encoding information by distinct 

physical configurations (which costs energy) must be efficiently done. Therefore, a self-similar 

structure is utilized to efficiently construct the wealth of information the human brain can process 
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as this architecture minimizes creating distinct physical configurations (minimizing energy use). 

It must be noted that despite similarities, a self-similar structure implies small differences and these 

small differences (while minimizing energy use) are manipulated to capture, represent or even 

create new forms of information. Therefore, an optimization point between minimizing energy 

consumption and maximizing information representation is found by the brain. As described 

previously, information is represented via a unique time evolution of frequency response within 

the brain’s dynamics. Different patterns of frequencies in different contexts encode respectively 

distinguishable forms of information. Thus, information capacity is maximized within the energy 

capabilities of the human brain to improve the efficient operation of a neural network within the 

constraints of the environment. The ability of optimizing information representation is at the heart 

of the phenomena of intelligence. A distinct pattern of information can be identified by a network 

macroscopic and microscopic state along with the unique time evolution of the networks 

underlying frequency components at the ensemble (macroscopic) level and constituent 

(microscopic) level. This implies that advancements in producing intelligence (such as creating 

artificial intelligence more like human intelligence or even greater) lies within uncovering the 

intricacies behind the aforementioned phenomena. To summarize the above, as the brain adapts 

within the environment, rather than reorganizing its structure from scratch (for different adaptative 

behaviors), refinements are simply built upon the same fundamental structure rendering a unique 

style or personality for an individual’s neural network to operate efficiently. The quantitative 

underpinning of this phenomena will be described in the later sections.  
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1.2.3 Complex Brain Network Dynamics Characterization   

Concepts from statistical mechanics can define global dynamics by establishing relations 

between the microscopic and macroscopic state. A complex network is indeed a statistical 

mechanical system with energy distributed amongst constituents and their couplings. Therefore, 

the total energy can be defined by a probability distribution function, which changes over time 

with respect to the energy variation of individual ensemble constituents and their connections 

(consequently portraying the global state of the ensemble). The probability distribution of energy 

can be further defined using information entropy (or Shannon entropy) to describe the state of a 

complex network. Hence, stability or instability can be quantified with the corresponding 

information entropy and how it varies or fluctuates over time. Additionally, higher values of 

entropy   correspond to a wider range of distribution, indicating less orchestrated collective 

behavior, whereas the opposite indicates more ordered ensemble dynamics gearing towards 

synchronized behaviors. Thus, information entropy can be used as a quantitative metric to assist 

bridging the character of global network states stemming from local behaviors. A further detailed 

description can be found in the referenced literature [61]. 

Brain dynamics are defined as the global neural processes that direct the network’s 

evolution in time, commonly seen and experienced by the processing of sensory input and 

formulating a corresponding output [62]. These are typically observed in the change of the 

characteristics of the brain seen in the time-varying properties of the cumulative neuronal 

assemblies [63]. Experimental approaches observe this in the electrical activity of groups of 

neurons through electroencephalography (EEG) measurements or blood flow across brain regions 

through blood oxygen level dependency (BOLD) analysis via functional magnetic resonance 

imaging (fMRI) and how these properties change with exposure to new input [64,65]. It must be 
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noted that these methods do not explicitly isolate component neuronal activity. For example, fMRI 

detects changes in blood flow related to brain activity (formally described as BOLD analysis). 

Naturally, as the brain evolves over time, resources are redistributed by altering blood flow, which 

is detectable through fMRI; however, the resolution of this observable change is not sufficient to 

delineate the firing properties and patterns down to the scale of individual neurons. In addition to 

limitations of spatial resolution, fMRI-centered BOLD analysis lacks the temporal resolution to 

identify the time evolution of a neural component’s firing patterns at the millisecond scale [66]. 

On the other hand, it is also difficult to isolate component neural activity at sufficient resolutions 

using EEG, as the detected EEG waveform is a superposition of dynamic electromagnetic activity, 

including local field potentials generated through the cumulative ionic flux in and out of the 

cellular space [67]. Additional techniques using magnetoencephalography (MEG) detect changes 

in magnetic fields resulting from dynamic electrical currents produced in the brain from neuronal 

activities. These represent examples of observed changes in brain structure and function [68]. The 

interpretations of these methods have been refined over the years with the addition of advanced 

techniques [69,70]. Whereas concrete claims remain elusive due to a lack of temporal or spatial 

resolution, a commonly observed theme is that there is no stationary state of the brain [71]. For 

example, classical EEG experiments have framed brains as nonequilibrium systems along with the 

observation that unique patterns of EEG waveforms acquired from the olfactory bulb correspond 

towards information processing of specific odors [72]. These established studies make it apparent 

that the brain does not remain in a static configuration; its form changes to varying degrees over 

time. Therefore, the brain is fundamentally a nonstationary system without an equilibrium point 

that utilizes its biological capabilities to detect, interpret, and respond to the dynamical 

environment. Portions of this complexity are apparent through observable neurodynamic rhythms 
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seen in EEG or fMRI recordings. Despite this recognition, the exact underpinnings of this 

substantial degree of complexity are among the core questions, ambiguities, and mysteries of 

modern neuroscience.  

It must be recognized that significant understanding has been achieved through the earliest 

developments in neuroscience accomplished by Cajal and Broca, along with more recent 

undertakings utilizing the tools developed in network sciences, which have contributed to the 

development of a transdisciplinary perspective. Neuroscience research has been traditionally led 

by animal models, advanced neuroimaging techniques, brain tissue sampling, and separation 

methods [73–75]. These procedures have generated notable accomplishments, such as having a 

fundamental knowledge in identifying neuronal cell-mechanisms, structures, and functions, 

including dendritic and synaptic regulation, to identify and classify individuals, connections, and 

populations of neurons. Conventional approaches in neuroscience have led this progress; however, 

a comprehensive understanding of brain dynamical phenomena is still lacking in terms of how 

local and global cognitive mechanisms interplay simultaneously across multivariate scales.  

A transdisciplinary field of network sciences has emerged over the past 20 years in attempts 

to address complexity in the brain and other complex networks and has met with limited success, 

particularly in helping to realize that a transdisciplinary perspective is necessary to guide the next 

level of progress in neuroscience. A review of the merits and limits of conventional network 

sciences follows. Traditional network science has been spearheaded by graph theory, defining 

individuals in a network as nodes and their interactions as edgewise connections between nodes 

[76]. It is important to note that this is purely a mathematically driven formalism that is not 

necessarily driven by fundamental physical law. Small-world and scale-free network models have 

influenced the development of established network theories over the past 20 years [77 54,55]. For 
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example, graph theory developments have been used to topologically describe networks and have 

been translated into anatomical and functional brain networks [78]. These are suited to capture 

small-world topology, such as highly interconnected hubs and modularity prevalent in the brain 

[79]. Additional topological properties of complex networks, such as hierarchies, centrality, and 

network hub distribution, have also been realized in this process [80]. Using serial reconstructions 

of electron microscopy, a complete connection matrix of the nematode C. elegans has been 

accomplished and described as a small-world network [81]. Furthermore, using combinations of 

physiological and anatomical techniques, multielectrode activity recordings have generated 

reconstructions of cellular networks in the neocortex, and diffusion tensor imaging has developed 

a map for cortical and basal brain gray matter areas [82]. The interplay of these methods has 

inspired a plethora of studies, models, and reviews [83–86]. These archetypes represent 

characteristics observed in networks under limitations. The assumptions underlying these 

limitations for small-world and scale-free networks must be considered when determining real-

world applicability. For example, the network description is time-invariant, which neglects the 

dynamical elements inherent in all complex networks. Misrepresenting the dynamics can lower 

the accuracy of analysis at best or lead to catastrophic failure at worst. If the local interactions in 

a network are static, the global dynamics are adulterated and insufficient. Temporal networks are 

developed in attempts to compensate for this [87]. These models help represent the time-varying 

qualities of network structures, such as multilayer dynamics [88,89]. Whereas these help in 

developing tools better geared towards the dynamical aspects of complex networks, many of these 

methods still are plagued with the limited applicability of graph theory. For example, interactions 

represented by stationary edgewise connections between individuals lack the highly nonlinear 

features present in networks with diverse connections between individuals, groups, and large 



20 
 
 

populations (composed of smaller groups and individuals) [90]. Misrepresentation of this 

fundamental nonlinearity and dynamics renders traditional methods inept for comprehensive 

analysis and control. Additionally, a pure mathematical representation of a network ensures 

quantitative precision; however, the current state of network sciences does not necessarily 

intertwine this foundation with fundamental physical laws, compromising its comprehensive 

accuracy. 

Without dispute, these advancements have led to significant developments in 

understanding human brain physiology and function; however, the consensus in the literature and 

scientific community is that a comprehensive fundamental and intuitive understanding is still 

amiss for human brain phenomena. Progress is limited, as the complete characterization and 

interpretation of coupled neuron activity is still in its rudimentary stage, and the current practices 

are not able to capture a comprehensive picture of the ensemble of neurons within the human brain. 

This barrier prevents advanced progress in neuroscience research, pathology, and a general, 

intuitive understanding of brain functional processes. A prime reason for this is that these methods 

either do not have the resolution needed to analyze the detail within the brain or they do not 

comprehensively account for the inherent time-varying nature of the neurons and their respective 

dynamic connections. Additional impediments in this challenge are not only due to brain intricacy 

but also the sheer size and scale of complexity of the human brain. With around 100 billion neurons 

and 100 trillion connections, mapping out a comprehensive dynamic model of the human brain 

remains an elusive asymptotic goal with the current methodologies. Simply put, the conventional 

practices are not made to address the grandiosity present in brain dynamics described previously. 

Therefore, a new method from a unified perspective with the capability of analyzing the 

characteristics of the spatiotemporal spectra of dynamical brain physiology is imperative to attain 
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a more comprehensive qualitative and quantitative understanding of neurological phenomena. A 

truly modern outlook on the brain surveying and observing its biological evolution under the 

physical constraints and laws of nature is amiss. Therefore, this study aims to provide a 

transdisciplinary perspective on the human brain in the hopes to inspire truly universal, 

comprehensive studies upon the brain to help aid progress in neuroscience.  

 

1.3 Research Objectives and Deliverables 

Therefore, the motivation of this study is to investigate the human brain to attain a deeper 

recognition of its underlying complexity in terms of its biological mechanisms and the governing 

laws of physics which determine the character of time-varying phenomena in nature. Therefore, a 

transdisciplinary approach is necessary to ensure the relevant physiology and governing physical 

laws are properly (and feasibly) accounted for to compose a more comprehensive illustration of 

brain dynamics and behavior. Furthermore, the knowledge and philosophies attained from this 

study can provide valuable information to fields beyond neuroscience. Apart from its implications 

in neuroscience, a deeper comprehension of the nonlinear dynamical complexity of the brain can 

be applied upon real world macroscopic network systems which entail highly nonlinear and even 

chaotic characteristics. A comprehensive, universal, and intuitive methodology upon such 

macroscopic complexity is sorely amiss with the current practices. As aforementioned, real-world 

phenomena rarely entail specific experimentally or theoretically idealized isolated individual 

components. Experimental conditions can be replicated in real-world applications with much 

painstaking (or even inefficient) energy expenditure. However, macroscopic dynamics seen in the 

time-evolution of real-world complex network systems entail of a variety of diverse interactions 

components with complex structures across hierarchical scales (from the micro to the macro levels) 
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rendering highly efficient performance displayed in the operation of brain dynamical physiology. 

Thus, a new approach is necessary to understand and even control such complex architectures 

which can be manipulated to improve the efficiency of society’s current technological prowess 

and even philosophical ideologies. Efficiency is of paramount importance. In a world of finite 

distribution of resources, the degree of efficient distribution of resources ultimately dictates the 

quality and standards of overall societal living conditions and consequently, the degree of human 

suffering and happiness. Insight upon the details between the emergent properties of intelligence 

exhibited by the brain can elucidate on how to improve the efficient organization of information 

prevalent in a variety of disciplines.  

Hence the implication and scope of this study are general to ultimately investigate the 

efficient biophysical complexity within the human brain to provide the foundational knowledge 

necessary towards optimizing the efficiency of our current practices. The established research and 

knowledge achieved in neuroscience is vast to say the least. It is infeasible to capture all of this 

information; therefore, the scope of this study is to focus on the most essential points to form a 

foundational approach which can be built off of for future further refined studies. The main 

findings are to be quantitative equations based on fundamental physical principles to represent the 

dynamical biology within the brain. This model is unique and diverges from the methodologies of 

previously attempts at characterizing the brain. Therefore, the deficiencies prevalent in these prior 

attempts will be resolved upon the completion of the proposed foundational model of the brain.  

Furthermore, these equations will be implemented in a numerical computational simulation and 

analysis of the generated data and results will be displayed to precisely pinpoint tools and patterns 

of information using a quantitative metric of time-frequency characteristics. Hence, the feasibility 

of the proposed approach (including the quantitative equations and metrics) upon the human brain 
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will be displayed by the analysis of the results. Furthermore, the exact analysis of different patterns 

of information will be displayed by a unique patterned time evolution of the frequency components 

of a network at different levels (microscopic and macroscopic). This is to show that encoding of 

information is physically represented by a distinct time-evolution of frequency components. 

Encoding different forms of information is naturally done by correlating different types of time-

frequency components as the same physical patterns in the same context cannot be utilized to 

represent different forms of information.  
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2. METHODOLOGY AND APPROACH 

2.1 General Framework for Complex Networks 

To address this, a novel methodology to characterize and control the brain as a complex 

dynamical network is proposed in the following using the general framework for dynamic complex 

networks as follows. Complex dynamical networks are systems whose collective emergent global 

properties are the result of the nonlinear culmination of its local individual constituent behaviors 

and their dynamic couplings. The individual (local) constituents which compose the network 

ensemble exhibit dynamic, nonstationary behaviors and are coupled with each other to generate 

an amalgamation of overall (global) synchronous and asynchronous emergent patterns based on a 

desired objective and physical system constraints. The individual constituents and their respective 

couplings are intrinsically dynamic and transient with a particular degree of variance in the time 

and frequency domains. This dynamic nature of the local system properties is the foundational 

basis that allows the global collective properties of the system to have a high degree of adaptability 

and robustness to complex, time-varying environments or external perturbations to maintain the 

overall system stability and accomplish specific goals or tasks. In regard to the human brain, this 

pertains to how neuroplasticity, synaptic plasticity and even neurogenesis regulate the transient 

organization of neuron ensembles and their respective coupling strengths. From these arise 

complex functions such as learning and the storage and recall of information through the 

adaptation of synaptic coupling strength between neurons. This is a foundational basis for 

encoding information in the physical form of the creation of new thought, the ability to learn and 

memory retention and recollection. Likewise, other functions such as the processing of external 

sensory stimulus, sleep regulation including rapid eye moment (REM) sleep, involuntary body 

functions (temperature, breathing, blood pressure, heart rate regulation etc.), and the actuation of 
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physical movement are the results of the dynamic nature of neurons and their respective time-

varying couplings. Consequently, a comprehensive understanding of a wide-array of human brain 

functions can be achieved if these neuronal dynamics are incorporated at the local and global 

levels. To actualize this, neural network system stability, characterization and control can be 

quantitively and qualitatively classified by implementing concepts from statistical mechanics 

which can characterize the local (microscopic) and global (macroscopic) system properties along 

with local and global system constraints simultaneously. Therefore, a relationship between the 

ensemble level (macroscopic) and individual constituent level (microscopic) must be defined to 

establish how the cumulative nonlinear interactions across scales (from the micro to macro levels) 

produces the emergent behaviors commonly observed in complex networks.  

Thus, the exact configuration of a network structure is classified by the interconnectivity 

amongst the constituents of a network ensemble. These local connections (or couplings) must be 

dynamic to produce time-dependent global ensemble properties. Dynamic (time-varying) 

properties are fueled by energy. Thus, coupling strength (the magnitude of influence a constituent 

has upon another), must be defined fundamentally in terms of energy for all networks operating 

under the constraints of nature. Therefore, the local time-varying couplings in addition to the 

individual constituent dynamics can be defined in terms of energy. This establishes the network 

properties of energy at the microscopic level. 

Due to limitations on resources, it is not feasible to determine ensemble dynamics by time 

integration of every single individual constituent behavior and interaction. Hence, an alternative 

option which has lower computational demands is necessary to create a much more feasible 

approach towards analyze real-world macroscopic networks with significant degrees of 

complexity.  



26 
 
 

Therefore, additional constraining factors at the global ensemble level is necessary to more 

comprehensively define network architectures. It is known that the cumulative energy of individual 

constituent behaviors and their connections results in a global networks probability distribution of 

energy. This feature can constrain and define macroscopic level network properties. Thus, the 

energy fluctuation for each individual constituent and their respective couplings must be 

constrained by the overall network's probability distribution of energy at all times. Furthermore, 

this ensemble level network property can be quantified by calculating the corresponding 

information entropy. Thus, information entropy can serve as a quantitative metric to define and 

constrain the global level network dynamical state. Therefore, ensemble level (macroscopic) 

emergent network properties can be determined using information entropy. The exact value of 

information entropy and the properties of its variation over time defines a unique state and 

temporal evolution of the emergent ensemble level network properties. Hence, information entropy 

and its variation over time can be used to determine, classify and target a global network state. As 

information entropy is a function of the distribution of energy, the underlying local constituents' 

behaviors and interactions within the network must be allowed to evolve and change within the 

constraint of information entropy (and how entropy changes over time). In other words, the local 

levels of energy for individual constituents and their dynamic couplings can only fluctuate amongst 

energy values which are confined by the global networks probability distribution of energy that is 

defined by information entropy. On the one hand, information entropy and its variation over time 

defines the emergent dynamical state of a network. On the other hand, information entropy is a 

function of the probability distribution of energy. Therefore, for a network system, local individual 

constituent time-varying behaviors and coupling dynamics must be constrained to particular 
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energy values that obey the constraints within the global ensemble’s probability distribution of 

energy.  

To summarize, all network systems evolution over time is fueled by energy. This 

macroscopic distribution of energy is not arbitrary but is normally distributed. Furthermore, the 

information entropy of the corresponding distribution of energy is a quantitative metric to define 

the overall dynamical state of a network ensemble. Therefore, upon establishing the information 

entropy of a network ensemble, the resulting distribution of energy can be found. Finally, 

constituent and connection strength energy levels must be allowed to fluctuate within this normal 

distribution as defined by information entropy. Thus, to incorporate the general framework 

correctly upon a dynamic complex network, the network must be defined in terms of energy. Hence 

a detailed understanding of the time-varying underlying biological mechanisms is necessary to 

feasibly characterize the energy distribution in a brain network.  

The distribution of energy, and its respective information entropy, is a global network 

property to determine the dynamical state of a network whose underlying local constituents and 

their interactions are intrinsically nonstationary with a particular degree of variance in the time 

and frequency domains. This dynamic nature of the local system properties is the foundational 

basis that allows the global collective properties of the system to have a high degree of adaptability 

and robustness to complex, time-varying environments or external perturbations to maintain the 

overall system stability and accomplish specific goals or tasks. Thus, to apply this logic upon the 

brain, an understanding of the brain’s fundamental local properties and how they change over time 

is necessary.  
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2.2 Biological Preliminaries 

In human brain neural networks, this time-dependent process of adapting local 

configurations occurs in the form of synaptic plasticity [91] which is the change of connection 

strength (degree of coupling) between neurons over time (a more in-depth biological review is 

presented in later sections). The change of synaptic strength (analogous to connection strength) 

changes the interactions between the dynamics of individual neurons (neural firings rates) by 

adjusting the efficacy of neural information transfer (i.e., synaptic transmission). The connections 

between neurons are referred to as synapses and the presynaptic neuron is responsible for 

transmitting information while the postsynaptic neuron receives the transmitted information 

through its receptors. Therefore, the synaptic strength is a combination of how effective these two 

aspects function together. It is noteworthy that synaptic plasticity is one form of modulating 

coupling strength between brain network constituents. There are other forms of neuroplasticity 

which can occur on larger scale structures such as dendrites, axons and even groups of axonal 

fibers. For the scope of this study and this section, the focus is on synaptic plasticity; however, in 

the later sections other forms of plasticity will be discussed. In regards, to synapses, information 

is transmitted by the release of neurotransmitters by the presynaptic neuron. These bind onto the 

receptors of postsynaptic neuron, triggering an influx of ions which control the voltage of the cell 

and effect the probability of the postsynaptic neurons firing patterns. The change in the efficacy of 

synaptic transmission is bidirectional and can result in long-term potentiation (LTP, the increase 

in synaptic transmission) or long-term depression (LTD, decrease in synaptic transmission) [92]. 

This change of interaction between local neurons (interaction of individual neural firings) leads to 

a respective change in global dynamics by changing collective neural frequency firing rates [93]. 

The chaotic [94] dynamics represented by a change in the bandwidth of neural frequencies allow 
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for adaptations to external or internal stimuli which can result in the higher-level manifestations 

such as, evolutionarily adaptive behaviors, the solidification of memories and the formation of 

higher cognitive thought [95]. This changes the particular clusters of neurons which synchronize 

their firings thus altering the rate of activation of different neural circuits resulting in a modulation 

of the emergent asynchronous band of neural frequencies in the brain (the different emergent brain 

waves and their frequency components). These global system adaptations are the results of the 

nonlinear interaction of microscopic nodal dynamics in terms of information transmitted and 

received between constituents in a neural network. Long term synaptic plasticity refers to the 

bidirectionally adjustment of synaptic strength by increasing or decreasing connectivity leading to 

long-term potentiation (LTP) or long-term depression (LTD) respectively. Presynaptic plasticity 

controls an increase or decrease in neurotransmitter release while postsynaptic plasticity facilitates 

of the number and permeability of the receptors. The amount of information transfer is proportional 

to the amount of neurotransmitter release and the cumulative permeability of the postsynaptic 

receptors. Therefore, presynaptic and postsynaptic plasticity mechanisms consequentially control 

the change in the efficacy of information transmission and reception between neurons. By this, 

synaptic plasticity adapts the connection strength between two neurons to influence a change in 

global neural system dynamics and encode information. The connection strength is proportional 

to the magnitude of influence a neurons dynamic has on its coupled neurons. A brief overview on 

neuron physiology [96] follows for clarity and a detailed explanation will be conducted in the later 

sections. Neurons have semipermeable membranes which allow them to control their membrane 

potential in terms of voltage by controlling the influx and efflux of ions from the extracellular to 

intracellular space through ion channels. Neurons maintain an electrochemical gradient through 

having higher K+ intracellular concentrations and higher extracellular Na+ , Cl- , and Ca++, ionic 
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concentrations. This electrochemical gradient serves as the driving force for ionic flux in and out 

of the membrane which controls the overall membrane potential of the cell. Therefore, neurons 

communicate through voltage impulses (action potentials) through the transport of ions by ion 

channels across the cell membrane which result in sharp membrane potential depolarization and 

repolarizations activated at the cell body (soma) and travel in one direction along the axons of 

neurons to their axon terminals. At the axon terminals, synapses form the connection to the 

dendrites of different neurons (in general). Synapses serve as the medium for neural 

communication and the synaptic cleft consists of the presynaptic and postsynaptic sites. The 

presynaptic sites consist of the presynaptic membrane which is the point where action potentials 

traveling along the axon of neurons arrive to trigger the release of neurotransmitters into the 

synaptic cleft. The postsynaptic sites, built off the dendrites of neurons, consists of 

neurotransmitter receptors on the postsynaptic membrane. Released neurotransmitters from the 

presynaptic site bind to their respective neurotransmitter receptors on the postsynaptic sites and 

results in the processing of information in the form of excitatory or inhibitory postsynaptic voltage 

potentials. This refers to the increase or decrease in postsynaptic membrane potential. Thus, 

postsynaptic neurons receive information from neurons in the form of voltage changes through 

postsynaptic receptors. The dendrites collect these postsynaptic potentials relayed from the axons 

of connected neurons across synapses and this results in the overall change of the membrane 

potential of the neuron.  

The postsynaptic neuron integrates the cumulative postsynaptic potentials received by its 

synapses from the presynaptic neurons which results in the overall postsynaptic neuron membrane 

potential (which has implications on the activation of neural firings). The initiation of action 

potentials (firing) of neurons is done by controlling the voltage of the cellular membrane potential. 
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The neurons resting membrane potential is held at ~ - 70 mV and if it receives sufficient excitatory 

postsynaptic potentials to elevate the membrane potential of the cell to a threshold voltage (~ -55 

mV), an action potential is triggered. Excitatory or inhibitory postsynaptic potentials respectively 

increase or decrease the probability of activation of an action potential in the postsynaptic cell by 

bring the membrane potential of the cell closer or further from the threshold voltage. If activated, 

action potentials consequently travel along the axons to release neurotransmitters in their synaptic 

clefs which relay information to the dendrites of connected neurons in the form of excitatory or 

inhibitory postsynaptic potentials influence the probability of the firing of those neural action 

potentials. This is how information can be communicated throughout a network, through the firing, 

reception and transmission of electrical impulses by action potentials. These biological 

mechanisms and how they pertain to the magnitude and change of information transfer will be 

further elaborated upon in the later sections. Consequently, the synapse is the medium for 

information transfer between neurons by the transmission and reception of neurotransmitters. This 

can be qualified as the combination of neurotransmitter flux density by the presynaptic sites and 

the magnitude of reception by the number and permeability of the receptors on the postsynaptic 

site. Changing the efficacy of information transfer (i.e., changing the combined flux of 

neurotransmitters and their reception) is the basis of synaptic plasticity by changing the interaction 

between individual neurons. Therefore, this change in degree of coupling over time is the 

foundational basis for adaptation (i.e., the reorganization of a systems microscopic properties 

which correspond to stable global system dynamics.). 

An understanding of how local individual dynamics effect coupled constituents and these 

local interactions influence the global organization of nodal behaviors is essential for a more 

comprehensive understanding of the stochastic nature of complex networks. The interactions 
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between individuals can be viewed, described and understood as the efficacy of information 

transfer between nodes in a complex network. Therefore, defining the degree of coupling in terms 

of how effectively information is transferred, is essential. General parameters to define this is how 

transmissive and receptive nodes in a network are. For neurons in the human brain, this unfolds as 

the cumulation of the flux of neurotransmitters by the presynaptic neuron and their reception by 

the receptors of the postsynaptic neuron. As briefly mentioned before, neural dynamics occur via 

the modulation of cellular membrane potentials in terms of voltage fluctuations. The cell 

membrane is semipermeable and lined with ion channels which (upon activation) allow for the 

influx and efflux of ions to change the membrane potential in response to stimuli from presynaptic 

neurons. At resting states, an electrochemical gradient is established. Typically, this results in 

elevated intracellular K+ concentration and a higher extracellular Ca++, Na+, and Cl-, 

concentrations. The electrochemical gradient serves as the driving force for passive ionic influx 

and efflux (which controls the membrane potential of the cell) upon the activation (opening) of 

cellular ion channels. Additionally, this gradient results in a resting potential. Neurotransmitters 

from presynaptic neurons bind on the receptors of the postsynaptic cell which activate the opening 

of chemically gated ion channels that allow the influx of ions causing excitatory or inhibitory 

postsynaptic potentials. Specific neurotransmitters bind to specific receptors which can result in 

the influx (or efflux) of positively or negatively charged ions thereby controlling the voltage of the 

cell with excitatory or inhibitory stimuli. If the neuron is sufficiently excited to a threshold voltage 

an action potential is triggered by the opening of Na+ voltage-gated channels. Due to the previously 

established electrochemical gradient (a higher extracellular Na+ concentration), Na+ flows inside 

the cell resulting a sharp depolarization. Once the membrane potential is sufficiently depolarized, 

voltage-gated K+ channels open. As there is a higher intracellular K+ concentration, K+ flows out 
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of the cell resulting in a cellular repolarization. This activated action potential starts at the cell 

body and travels along the axon of the neuron by the influx and efflux of Na+ and K+ respectively. 

Once the action potential reaches the axonal terminals, it arrives at the presynaptic membrane and 

activates the opening of voltage gated calcium channels. From the established Ca++ electrochemical 

gradient, Ca++ flows inside inducing the exocytosis of vesicles containing neurotransmitters by the 

binding of these vesicles on the presynaptic membrane to release neurotransmitters into the 

synaptic cleft. The amount of neurotransmitter release is proportional to the availability of a pool 

of readily releasable vesicles within the presynaptic membrane and the intracellular concentration 

of Ca++. A higher concentration of Ca++ and higher amount of readily releasable vesicles 

(containing) neurotransmitters subsequently results in a higher concentration of neurotransmitters 

in the synaptic cleft. Furthermore, the concentration of neurotransmitters is affected by their 

diffusion out of the synaptic cleft into the ambient extracellular space, their degradation by 

enzymes and their reuptake by the presynaptic neuron to be reused for future vesicular release. As 

the neurotransmitters diffuse across the synapse, they bind to their specific neurotransmitter 

receptor on the postsynaptic membrane. Based on the type of neurotransmitters, this activates the 

opening of specific chemically gated voltage channels allowing for the influx of specific ions that 

can raise or lower the membrane potential (i.e., generate the excitatory or inhibitory post synaptic 

potential) based on the difference of voltage between the type of ion (K+, Cl-, Na+, Ca++, etc.) and 

the membrane potential. The influx of ions is a product of the number and permeability of 

receptors. A higher number and permeability of receptors results in a higher influx of ions which 

creates a greater magnitude increase in change of membrane potential and vice versa. The total 

number of receptors changes over time with respect to the transient change in intracellular 

postsynaptic Ca++ concentration. A higher intracellular Ca++ concentration results in an increase in 
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the number of receptors. Furthermore, the permeability of receptors is voltage dependent. 

Therefore, their availability for the influx of ions is nonstationary and depends on the membrane 

potential of the cell. The modulation of the efficacy of information transfer between neurons by 

adjusting the aforementioned mechanisms alters how local neuronal dynamics interact to 

reorganize their configurations and produce desirable adaptive group behaviors. This is done by 

changing the magnitude of neurotransmitter flux density and its reception in the synapse between 

two neurons. These two factors determine the efficacy of information transmitted and received 

between coupled neurons. As the field of neuroscience is constantly changing and developing with 

new research, the proposed equations provide a conceptual framework as a foundational basis to 

model and refine upon with further discoveries for more accurate brain simulations (or even 

experimental implementation). 

 

2.3 Nonlinear Biological Interactions 

This section will express the nonlinear nature of local interactions and how these contribute 

towards global network properties. After this section, details on global network properties 

(including the form and structures of higher order neurodynamic complexity) will be reviewed in 

detail. For now, the global state of brain phenomena is a time-varying ensemble, consistently 

changing to different degrees in accordance with factors within and without. Thus, brain 

phenomena are consistently nonstationary to different degrees in accordance with different 

environmental perturbations navigated through nonlinear interactions, propelling a wide repertoire 

of dynamics [97]. The properties of these local interactions determine global form and function. 

Therefore, to better understand the macroscopic brain, one must begin first with the brain’s 

auxiliary local interactions. As they cumulatively dictate global function, local interactions 
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represent physical connections (or interactions) that deem the magnitude and direction of influence 

one agent has on another in a network and can be viewed as degrees of coupling [98]. These local 

interactions between connecting agents, regions, and subnetworks in the brain allow smaller-scale 

subsystems to coordinate with one another, composing coherent global forms by promoting 

coordinated local interactions, which engender stable global brain dynamics [99,100]. Thus, 

dynamical overall brain activity is nurtured through flexible configuration of local connectivity 

capable of generating a diverse variety of brain behaviors [101]. These include axonal architectures 

[102] with adaptive myelination [103], complex configurations of dendritic branching [104] and 

dendritic spine morphology [105], as well as the dynamic synapse [106], housing a multitude of 

pre- and postsynaptic mechanisms [107]. Importantly, each of these mechanisms is nonstationary 

and capable of dynamically influencing neural interactions along a wide range of spatiotemporal 

scales. Thus, local interactions range from (1) microscopic interactions between individual neurons 

and glial cells to (2) interplay between clusters of nuclei in the brain to (3) mesoscopic relations 

between different regions of the brain, to highlight a select few (out of the many scales in the 

brain). The cumulation of these interactions, along with others not mentioned or yet to be 

discovered, is built to fine-tune connections between local brain regions operating on a variety of 

temporal and spatial scales. Due to these diverse factors of coupling, which can change on a variety 

of time scales, interactions are fundamentally nonlinear in the time-domain. Furthermore, 

nonlinearity, observed in the dynamical interactions amongst a wide distribution of neural 

frequencies, engenders highly nonlinear characteristics simultaneously in the frequency domain. 

Moving forward, these produce highly nonlinear characteristics in overall spatiotemporal brain 

dynamics, enabling the unprecedented level of network reconfiguration observed and experienced 

in the human brain. Thus, the simultaneous nonlinearity in the time and frequency domains elicits 
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signature characteristics of chaos, which are essential for rapid reconfiguration of brain network 

states [108]. It must be borne in mind that the level of global complexity in the brain is a product 

of its local nonlinearities at the fundamental level. In other words, the flexible nature of the 

connections (interactions) between individual parts of a brain network across its many scales and 

modes of operation provides the network with multiple routes to efficiently and effectively 

reorganize itself to detect, interpret, and react within its environment. The following will provide 

an overview of the biological mechanisms which steer the nature of local nonlinear interactions 

(culminating into complex global emergence). 

 

2.3.1. Synaptic Plasticity 

The following is a biological review of the various modes of connectivity and plasticity in 

the brain engendering nonlinear interactions. Although by no means exhaustive, our review 

represents a fundamental foundation with references that convey the necessary important 

takeaways, that is, the variety of biological mechanisms for connectivity and how they can change 

over time to support dynamic brain function. Synapses are not stationary over time. They are 

highly dynamic, entailing a variety of presynaptic and postsynaptic mechanisms capable of 

changing over time to fine tune the overall efficacy of synaptic transmission and corresponding 

synaptic strength [109,110]. Thus, synaptic plasticity confers the highest-resolution modus 

operandi in the brain for controlling and modulating interactions between constituents with the 

smallest temporal and spatial scales possible. Presynaptic plasticity includes modulation of 

presynaptic intracellular Ca++ concentrations. This is primarily controlled by the function of 

voltage-gated calcium channels, which, when activated upon an incoming action potential, allow 

for the influx of Ca++ inside the cellular presynaptic domain. Correspondingly, Ca++ serves as a 



37 
 
 

secondary messenger [111]. As calcium has a high reactivity with a variety of substances, it serves 

as the ideal secondary messenger to relay information. Thus, biological form manipulates Ca++ 

reactivity to engender binding affinity upon different calcium-binding proteins. In the presynaptic 

cell, calcium forms a large signaling complex with SNAREs and associated proteins, triggering 

the binding of synaptic vesicles (containing neurotransmitters) with the membrane and consequent 

release of neurotransmitters within the vesicles [112]. Thus, regulation of voltage-gated calcium 

channels in the presynaptic domain has a significant influence on synaptic strength [113]. 

Furthermore, residual Ca++ from prior activity can influence vesicle release [114]. The quantal 

release of neurotransmitters freely diffuses across the synaptic space. Diffusion of 

neurotransmitters implies that they stochastically bind upon receptors in the postsynaptic domain. 

Probability of neurotransmitter binding is dependent on total amount or concentration of 

neurotransmitters [115]. Larger amounts of released neurotransmitters result in a higher 

concentration of neurotransmitters in the synaptic space, corresponding to an increase in the 

probability of greater numbers of activated receptors, resulting in an interaction with greater 

magnitude between pre and postsynaptic cells. Therefore, factors such as Ca++ concentration 

modulate synaptic strength by influencing vesicle release and, correspondingly, the total quantal 

number of released neurotransmitters. Furthermore, within the presynaptic domain, a pool of 

readily releasable vesicles is maintained to, as the name suggests, be released at a moment’s notice 

upon action potential arrival (triggering Ca++ influx and consequent release of vesicles) to pervade 

the synaptic cleft with neurotransmitters. If these stores are exhausted by repetitive, higher-than-

normal action potential firing, this may result in an overall decrease in the number of vesicles 

released, consequently reducing the concentration of neurotransmitters and vice-versa; factors that 

replenish or sustain a larger pool of readily releasable vesicles can increase the concentration of 
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neurotransmitters [116]. Extrapolating from this, synaptic strength can be influenced by factors 

that control the concentration of neurotransmitters in the synaptic cleft. Thus, enzymatic 

machinery responsible for reducing the neurotransmitter concentration in the synaptic cleft to 

reduce the neurotransmitter activation time also influences the time course of synaptic strength 

[117]. This is an essential mechanism to terminate a signal, thereby offering additional degrees of 

flexibility in fine tuning synaptic dynamics.  

Furthermore, there are multiple neurotransmitter reuptake mechanisms (or 

neurotransporters) responsible for removing neurotransmitters in the synaptic cleft [118]. These 

can also be utilized for future neurotransmitter release; thus, while influencing the concentration 

of neurotransmitters in the synaptic cleft, they can also alter the storage of readily releasable 

vesicles, consequently influencing the possible concentrations of neurotransmitters in the future. 

Reuptake can be undertaken by neurons and glia cells alike and is driven by neurotransporters, 

which can offer additional degrees of freedom to modulate synaptic connection strength by altering 

neurotransmitter concentrations [119,120]. Additionally, it must be recognized that non-neuronal 

glia cells (such as astrocytes [121]) can also modulate synaptic transmission [122,123]. Their 

importance, along with that of other types of glial cells, such as astrocytes, oligodendrocytes, and 

microglia, has recently come to light, and as research progresses, this further illuminates the 

importance of a variety of cells (having clear dynamical roles) previously considered to have 

relatively stationary roles in the dynamical ensemble of a neural network [124–126].  

Synaptic strength modulation by postsynaptic mechanisms is accomplished by controlling the 

availability and number of receptors on the synaptic site. A greater number of available receptors 

results in a higher probability that freely diffused neurotransmitters 1) bind upon receptors and 2) 

elicit a post synaptic response. In other words, receptor amount and availability are directly 
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correlated with synaptic strength. Therefore, postsynaptic plasticity mechanisms operate by 

modulating the properties of postsynaptic receptors. Receptor subtypes such as AMPAr and 

NMDAr play significant, dynamical roles in controlling factors such as receptor expression and 

availability [127]. Intracellular Ca++ concentrations once again play a large role as secondary 

messengers in modulating the expression of receptors. CaMKII and calcineurin are two examples 

of calcium-binding proteins, where the former typically initiates phosphorylation, typically 

resulting in long-term potentiation (synaptic strengthening), whereas the latter initiates 

dephosphorylation events that often lead to long-term depression (weaking of synapses) [128,129]. 

Of utmost relevance to synaptic plasticity, the intracellular Ca++ concentration regulates the 

expression of receptors. A higher Ca++ concentration increases the probability of Ca++ binding and 

activating protein units, resulting in AMPAr exocytosis [130]. A larger number of AMPAr results 

in a greater cumulative cross-sectional available area of receptors. Ergo, the flux of ions across the 

membrane multiplied by the cumulative greater cross-sectional area of the receptors (due to 

AMPAr exocytosis) results in an overall larger increase in postsynaptic potential, that is, a greater 

level of influence between neuron cells through a stronger degree of coupling [131].  

NMDAr Mg++ blockage and relief of blockage via membrane potential excitation are at the core 

of controlling the direction and magnitude of plasticity [132]. This is based on temporal correlation 

of presynaptic and postsynaptic neuron firings [133]. Thus, the timing of interactions between 

presynaptic and postsynaptic neurons determines the overall amount of available NMDAr 

(relieved of Mg++ blockage). This is reflected by Hebbian learning rules illustrated through spike-

timing-dependent plasticity (STDP). The general takeaway is that neurons that fire together wire 

together by increasing their mutual coupling strength [134]. The subtlety of this phenomenon has 

been pruned over time, and whereas the popularization of STDP clarifies how temporal correlation 
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of pre- and postsynaptic firing coincidence directs synaptic strength, it must be understood that 

this is a simplification of the actual underlying molecular and cellular mechanisms [135,136]. 

Although this simplification can be a helpful analogy, neglecting the fundamental details obscures 

the full repertoire of nonlinear dynamics supplanted by synaptic mechanisms. Imprecise truncation 

of the local nonlinear interactions renders severe alterations in global form and function, as 

opposed to more comprehensive incorporation of the full repertoire of nonlinear local interactions.  

When a postsynaptic cell fires after the presynaptic cell, there are greater numbers of unblocked 

NMDAr on the postsynaptic site that increase the overall receptor cross-sectional area for this 

uniquely Ca++ permeable receptor. Therefore, if presynaptic neuron firing releases 

neurotransmitters that diffuse across the synaptic site at the time when NMDAr are unblocked, 

ligand activation of the NMDAr results in an increased level of Ca++ influx. Consequently, 

intracellular Ca++ levels rise, increasing the probability of Ca++ secondary messengers activating 

AMPAr exocytosis. In some situations, different subtypes of AMPAr increase on the membrane 

that are also permeable to Ca++, thereby increasing the probability of elevated Ca++ levels [137]. 

Furthermore, intracellular Ca++ concentrations can be modulated by internal release of calcium 

from intracellular stores. These can be controlled by metabotropic receptor activation [138]. 

Additionally, multiple types of receptors are expressed, offering a variety of mechanisms across a 

range of time scales. Of these, ionotropic and metabotropic receptors [139] are some of the most 

prevalent and widely studied. Ionotropic receptors (or ligand-gated ion channels) typically operate 

on a shorter time scale, whereas metabotropic (or G-protein-coupled receptors) have longer 

activation times and work over a longer time-period due to the additional metabolic steps necessary 

in between agonist binding and elicited postsynaptic response via ion flux. The variety of receptors 

operating on different time scales further engenders nonlinear interactions amongst constituents. 
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There is a wide multitude of forms of synaptic plasticity used in a variety of brain regions. The 

objective of this paper is not to provide a comprehensive description of all these forms but simply 

to provide the general foundations for the various modes of synaptic plasticity in the brain; 

references [140–143] provide more comprehensive reviews of synaptic plasticity. Magnitude of 

interaction is determined by concentration of neurotransmitters and cumulative availability of 

receptors. Direction of interactions (excitatory or inhibitory) is typically controlled by the type of 

neurotransmitter released. Thus, factors that influence these parameters control synaptic strength. 

As synapses are housed on axonal and dendritic structures, their properties also have significant 

influence on synaptic strength. 

 

2.3.2. Axonal and Dendritic Structural Plasticity 

Axonal and dendritic physiology further provide additional degrees of freedom to modulate 

connections between neural agents via structural plasticity [145,146]. For example, synapses are 

housed on dendritic spines, which offer stability to the synapse while supplying it with essential 

resources to support its activity. Thus, dendritic spine growth must follow synaptic dynamics. 

Should a synapse be particularly active, dendritic spine growth must increase to support a power-

hungry synapse and vice-versa [147]. Dendritic spines provide structural support to synapses and 

can supply necessary resources which help in facilitate dynamical receptor functions (e.g., 

modulating receptor expression). Furthermore, dendritic spines help transmit electrical signals to 

the neuron’s cell body, helping process input further. On the presynaptic end, axonal boutons also 

support presynaptic sites to supply synapses with resources, such as neurotransmitters, thus 

supporting synaptic strength [148]. Furthermore, dendritic branching [149] offers additional 

degrees of computation to neurons, increasing the degree of freedom with which neural 
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connectivity can maneuver. Axons confer additional methods for plasticity on a larger scale 

[150,151]. The axon is responsible for transmitting an action potential from cell body to axon 

terminal at its presynaptic sites. Myelin sheaths, produced by oligodendrocytes, are insulating 

layers encompassing axons made of protein and fatty substances that coat the axon to speed up 

action potential transmission through saltatory conduction. Naturally, the distribution of myelin 

carries significant implications for the temporal evolution of signal transmission throughout the 

brain. Axonal arborization can be particularly extensive, connecting a variety of brain regions. 

Hence, manipulating the signal transmission speed along axonal white matter tracts by controlling 

the distribution of myelin confers the ability to drastically change firing pattern interactions 

between relatively larger-scale (with reference to synaptic mechanisms) brain regions [152]. This 

from of plasticity is highly prevalent to adaptation in the adult brain [153]. Adaptive myelin 

plasticity modulates the growth and formation of myelin along axon bundles throughout cortical 

regions to modulate the speed and efficacy of information transfer. In other words, this can change 

the character of spatiotemporal frequencies of brain activity. High-resolution synaptic connections 

have been pruned through earlier experiences, restricting how flexible conformation changes can 

occur at this level. However, adaptive myelination is a form the adult brain commonly uses to 

refine signal transmission, albeit at a lower spatiotemporal resolution. This explains how young 

children, with fresh synapses, can learn new concepts to such a high level of resolution. Adults are 

still capable of learning through adaptive myelination; however, due to synaptic pruning in their 

youth, the resolution of detail that they can learn is not as refined. For example, an adult can learn 

a new language; however, it will be far more difficult to learn and achieve the subtleties of a native 

language speaker’s accent.  
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The direction of such interactions is typically determined by the type of neurotransmitter 

used. For example, glutamate is used in excitatory neurotransmission, whereas GABA is used in 

inhibitory interactions. Furthermore, neurotransmitters can elicit modulatory responses. These can 

entail a combination of excitatory and inhibitory action [154,155] by being able to release multiple 

neurotransmitter types.  

It must be noted that the preceding mechanisms are only the tip of the iceberg, providing a 

fundamental foundation to describe the various levels of intricate, detailed manipulation in neural 

connections fueling the emergence of complex brain dynamics. For a more comprehensive review 

where this subject matter is the main focus, the literature referenced above is recommended. In the 

context of this work, it is important to recognize that the variety of biological connectivity entails 

a wide range of capabilities in precisely fine tuning the nature of nonlinear dynamic interactions 

across the dynamical hierarchy of the brain. 

Furthermore, previous studies have established a preliminary qualitative understanding 

regarding the underlying biological machinery of the brain. However, to develop further refined 

insights, these qualitative biological interactions must be quantitatively expressed to precisely 

encapsulate the inherent nonlinearity and coupling. This can enable further progress by addressing 

current limitations. For example, current methods lack the resolution and quantitative precision of 

enumerating global brain dynamics. A theoretical, numerical model describing coupling at the 

level of synapses can aid in providing a more precise quantitative description. As these global 

properties are a result of the nonlinear couplings between constituents, defining the degree of 

coupling (measure of influence between constituents) can aid in producing refined models and, 

consequently, a deeper understanding of the brain.  
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2.3.3 Local Interaction Induces Global Characteristics 

As described, there is a broad distribution of plasticity mechanisms influencing functional, 

structural, temporal, and spatial behavior of neural interactions from the micro to macro scale. 

Furthermore, these mechanisms are not implemented in isolation but incorporated simultaneously, 

enabling different degrees of maneuverability in connection strength and direction. Consequently, 

these local interactions are highly nonlinear [156]. When combining these various components, 

global network dynamics are consequently nonlinear and, when undergoing complex dynamical 

evolutions, can display chaotic characteristics [157]. These are necessary for fluid multivariable 

adaptation, as the environment consists of a variety of nonstationary conditions requiring complex 

physiological form to not only ensure survival but to optimize conditions of survival (e.g., 

subcortical motivations, steering the quality of life, and gauging reproduction thresholds). 

Evolutionary adaptation has encoded a fundamental configuration for neural connectivity within 

the brain, resulting in its natural hierarchical order from birth. Life experiences over time fine tune 

neural connectivity with adaptive plasticity mechanisms to mold the adult brain. This refines a 

neural network’s instinctive response to environmental stimuli in attempts to optimize its survival.  

From a higher-level perspective, global brain dynamics are the processes that steer the network to 

adapt within the constraints of nature. These are not static in time but highly time-variant from the 

micro to macro scale, structured in intricate layers of modular connectivity, allowing for 

coordinated, efficient, dynamic organization [158–162]. Therefore, unique microstate 

configurations (the exact individual behaviors of network constituents and the degree coupling 

between these network nodes produced by physiological configurations) determine the global 

macrostate emergent forms. Thus, the brain is a highly adaptive network whose characteristics 

change over time to interact with a nonstationary environment. Adaptation entails changing the 
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global properties of a network system over time in response to varying external input posed by 

environmental conditions. These macroscopic dynamics exhibit transitions from distinct states of 

global brain function to ensure stability (i.e., survival) in accordance with external situations. 

Different environmental scenarios, such as scavenging for resources, such as food and water; 

reading social communication cues; fight or flight response towards predators; sleep; and abstract 

conceptual thinking, necessitate a variety of distinct global brain functions created by respective 

microstate configurations of cumulative local neuron interactions [163]. As previously mentioned, 

the variety of macroscopic distributions (global brain states) is the result of the microscopic 

configurations of the ensemble’s constituents, i.e., the cumulative behaviors and interactions 

between neurons mediated through their connections with one another, which regulate neural 

dynamical activity. Therefore, brain macrostate transitions in the form of adaptations to new 

environmental stimuli are also facilitated by changing the respective microstate configurations. In 

other words, this corresponds to changing the biological mechanisms between neurons and glia 

cells by changing the expression or availability of receptors between neurons or adjusting the 

concentration of neurotransmitters in the synapse. This is similar to how global phase transitions 

are facilitated by a change in the interactions between molecular constituents [164]. Brain network 

state transitions are directed by modulating the strength of synaptic and structural couplings 

between neurons, steering the magnitude and direction of local neuronal interactions that culminate 

into emergent dynamical trajectories [165]. The governing philosophy of a brain network is that 

the global level forms and their changes over time are the result of the local-level dynamical 

interactions of the constituents that compose the ensemble. Hence, the particular microstate 

configurations in terms of the exact myelin distribution across white matter fiber tracts, dendritic 

branching, and spine characteristics, along with synaptic efficacy determined by the product of 
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neurotransmitter concentration and receptor availability, cumulatively engender highly nonlinear 

connectivity. These relationships between network constituents are highly nonlinear and 

recursively couple upon one another across the temporal and spectral scales of brain activity 

capable of producing chaotic characteristics. 

 

2.4 Complex Global Multimodal Synchronization from Local Properties 

The hallmark of a brain network or any dynamically evolving macroscopic system is the 

ability to orchestrate collective, larger-scale action by coordinating constituent behaviors, 

generating higher-order levels of influence and stability (as opposed to isolated, uncoordinated 

individual actions). Interactions between network agents permit coordination of self-organized 

emergence. Furthermore, the highly nonlinear local properties of interactions allow for stable 

creation of a wide range of dynamical coupling levels. On the higher-order global levels, this 

enables flexible creation of a wide repertoire of neuronal circuit types necessary to determine the 

overall configuration and character of collective, larger-scale network states. Local interactions 

enable coordination in the form of creating larger-scale forms via gradients of constructive 

influences (mutually creating a stronger presence together) or destructive influences (interactions 

that inhibit one another) by controlling the alignment of individual action with reference to each 

other. For a multiagent network system with the sheer scale and complexity of the brain, ensuring 

stability or wide-ranging adaptability is directed by fundamental self-organizational principles that 

promote coordination (in the form of constructive or destructive interactions) amongst individual 

network components to achieve global network configurations that resonate towards external 

influences. Accordingly, interactions between multiple agents foster coordination and neuronal 

collaborations, which set the stage for global dynamical presence (from local collaboration). In 
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other words, interactions between neurons through their various modes of connectivity drive forms 

of emergence and self-organization. Hence, individual local individual component neural action, 

through collaboration with other agents, culminates into global brain rhythms and oscillatory 

activity, which have been recognized and established as hallmarks of brain activity for decades. 

Therefore, the particular configurations of connectivity across the brain determine how local neural 

activity interacts to respectively produce unique compositions of overall global network trajectory 

(quantitatively recognized as nonperiodic behavior [166]. Furthermore, it is known that the 

cumulative neural interactions compose a brain ensemble’s collective global form in terms of 

neurodynamical oscillations of electrical activity supported by brain physiology. However, a 

detailed underpinning of how such global behavior is produced through local interactions remains 

ambiguous. Conventional studies emphasize local configurations, such as small-worldness and 

modularity, denoting respectively short average path length with high local connectivity and 

modularity describing dense intrinsic connectivity within a module, with sparse, weaker 

connections between multiple modules [167,168]. The idea that rich-club hubs  (heavily connected 

nodes) promote global communication among modules has also been proposed, identifying a 

similar organization in a variety of neuronal systems ranging from the C. elegans nematode to the 

human brain [169,170]. Furthermore, this characterization suggests that structural architecture of 

the brain compromises wiring cost and its necessary computational ability. Additionally, a 

hierarchical organization promotes the effective and efficient function of such structures. Thus, 

past methods have identified the stationary emerged global form using small-world and high 

modularity descriptions, with scholars hypothesizing as to why such emergence occurs. However, 

this still does not explicitly identify how such complex global organization emerges in the brain. 

Furthermore, it does not comprehensively define the dynamical transition between these 
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stationarily defined states. In other words, a fundamental understanding of how complex dynamic 

collective organization is accomplished through local interactions in the brain is sorely lacking. 

Furthermore, a small-world and modular structural configuration is not explicitly correlated with 

the dynamical function of the brain in the previously mentioned literature. Small-worldness is 

ubiquitous in a variety of networks throughout nature. Simply recognizing this in the brain, 

therefore, does not elucidate significant unique meaning in neuroscience advancing our 

comprehension of the brain [171]. What it does imply, however, is that there are fundamental 

universal laws that govern the nature of complex networks, including the brain. However, a broad 

assessment of small-worldness does not explicitly convey why such emergence occurs and is 

necessary to support complex the collective dynamics observed in the brain and complexity in 

general. Therefore, in the following, section, we aim to provide a more detailed understanding as 

to how global dynamical brain phenomena fundamentally emerge from local configurations, as 

well as how this structural form is necessary to maintain stability towards a variety of internal and 

external scenarios by engendering a variety of complex functional spatiotemporal phenomena, a 

hallmark of healthy brain activity. This has yet to be clearly identified in the brain and must be 

fully understood to sustain progress in neuroscience. Understanding synchronization would help 

to assess the emergence of the broad spectrum of neurodynamical frequencies across scales [172].  

 

2.4.1 Synchronization  

The context of synchronization phenomena provides a backdrop for understanding how 

such emergent self-organization can occur [173]. Synchronization is a fundamental form of 

collective organization where local interactions amongst oscillators, biological or otherwise, result 

in coordinated global behaviors [174,175]. Emergence of this form typically carries a higher level 
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of influence and stability as opposed to the uncoordinated actions of isolated individuals. 

Characteristics of synchronization amongst a population of oscillators are determined in the brain 

by the physical connections through which neural cells interact. Thus, plasticity mechanisms that 

can modulate the magnitude and direction of local network interactions can control the global, 

self-organized forms of synchronization. Synchronization was first formally observed in the 17th 

century in the undulatory interactions of pendulums placed within close vicinity of each other. 

Regardless of asynchronous start times, two pendulum clocks, when placed next to each other 

mounted on a beam, synchronized their oscillations exactly in phase with each other. Their 

individual motions were not isolated but coupled to one another via the physical mount they were 

placed upon. Thus, individual oscillatory motions of each pendulum were transmitted as vibrations 

through the physical mount, interacting with one another. Through interactions, a dominant, 

emergent frequency of synchronized physical action was displayed by the oscillators. In this 

scenario, physical coupling led to the constructive and destructive wave interferences, resulting in 

an emerged synchronized frequency. Over time, further research was conducted to characterize 

biological oscillators and how this mutual interaction could be used to produce stronger group 

collective efforts, increasing probability of survival, as the oscillatory rates amongst a population 

of coupled nodes is typically normally distributed about a center frequency [176].  

Synchronization is ubiquitous in nature, as it allows for the creation of global patterns of 

coordinated movement at a particular frequency (rate of oscillation over time) [177,178]. Self-

organization emerges from the cumulative interactions of numerous constituents. Therefore, 

synchronization is a type of interaction amongst a population of agents who align their individual 

behaviors by adapting their coupling strengths to constructively amplify their dynamics as a group. 

This is an efficient method for creating global organization, as multiple agents’ collaboration 
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directed towards a common goal can accomplish a task with more stability and persuasion than 

uncoordinated individual actions. This constructive interaction creates a stronger collective 

presence as a group capable of withstanding larger external disruptions and with greater influence 

to steer overall network dynamics.  

Strongly coupled neural cells have a greater level of influence upon each other. They can 

more significantly sway the inherent probabilistic nature of action potential firing in one another. 

Such neurons can align their dynamics to amplify the activity of their firing frequency, which has 

a greater probability of influencing other coupled constituents and their behaviors. With larger 

numbers of synchronized neural oscillators, the amplified action potential frequency is much more 

capable of altering the trajectory of the global network, as opposed to isolated, undirected 

individual neuron activity. Therefore, self-organization in the form of synchronization amongst 

neural cell bodies is a common pattern observed in oscillators to produce stable dynamics that can 

have heightened impact on molding global network behaviors or better withstanding external and 

internal attacks. From these, it is observed that synchronization is one of the most fundamental 

means of creating global order in multicomponent systems. By adjusting the frequency of 

individual neural firings by adapting the connectivity between constituents, neurons can 

effectively shift their frequency timings to align their phases and collaboratively produce higher 

and more stable levels of influence in a neural network. In the human brain, the active adaptation 

of coupling strength between neurons is accomplished through synaptic and structural plasticity 

mechanisms [179]. 

Furthermore, this mechanism changes the degree of coupling (connection strength) and 

alters the frequency of synchronization (rate of neuronal firing) by which different forms of 

information are encoded.  Thus, synchronization is a desirable form of organization to provide 



51 
 
 

order amidst highly nonlinear and potentially chaotic brain phenomena [180,181]. This is an 

efficient method for creating global organization, and such dynamical phenomena are supported 

by highly interconnected nodes, resulting in small-world structures. Highly interconnected nodes 

representing a particular module synchronized about a particular center frequency confer an 

efficient mode of collective organization, conserving wiring costs. This can explain the dynamical 

form and function of a structural population or cluster of highly interconnected neural cells. 

Synchronization can make an explicit local correlation between structural configuration and 

dynamical function (frequency of neural potential firing) [182]. As synchronization is a 

foundational building block for creating unified order amongst a population of neural cells, a richer 

understanding of synchronization can aid in better comprehension of complex phenomena, such 

as perception and even consciousness [183]. Quantifying synchronization in terms of frequency 

can aid in attempts to bind different perceptual features processed in the brain with mathematical 

precision [184,185]. A description follows in the next sections of how synchronization is used as 

a foundational local element to create further complex global forms in the brain.  

 

2.4.2. Multimodal Synchronization 

Whereas the previous can explain the emergence of a single mode of action capable of 

being represented by a respective frequency, the brain needs to operate on additional degrees of 

freedom to meet the variety of environmental needs, necessitating further developed complexity. 

The external environment is often complex, with multiple variables perturbing a network system 

at different time scales, requiring the simultaneous processing and activation of different 

spatiotemporal behaviors. For survival, these diverse conditions necessitate higher ranges of 

adaptability encompassing diverse temporal and spectral scales. Therefore, whereas 
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synchronization is a fundamental form of collective organization amongst numerous individuals 

(typically at one or a limited scale), brain complexity necessitates multiple forms of collective 

organization (across multiple scales) to direct the various modes of information internally encoded 

in the wealth of evolutionarily gifted underlying motivations in subcortical structures to more 

recently developed cognitive manipulations housed in the neocortex [186–188]. Synchronization 

gives insight into how small-scale interactions can produce large-scale behaviors capable of 

accomplishing specific tasks with a larger persuasion to withstand adversity through 

environmental disruption to maintain local stability. However, the magnitude and direction of this 

local influence at any one point in time is limited. Broad-bandwidth adaptation, or stability in a 

variety of scenarios, is produced through higher degrees of complexity. As the brain is responsible 

for simultaneously performing multiple tasks and handling internal and external dynamics, 

multiple modes of synchronization emerge to take appropriate actions across different temporal 

scales to incur broad-bandwidth stability [189]. Hence, at the cost of more expansive and diverse 

forms of wiring, brain physiology produces high-modularity structures capable of supporting 

multiple local modes of synchronization. The cumulative interactions of multiple modes of 

localized synchronous activity are necessary to produce the rich repertoire of the global ensemble 

of brain activity. Thus, clusters of synchronized populations of neurons are necessary to reliably 

perform tasks, relay information, or interpret sensory stimulus while withstanding a range of 

external or internal perturbations [191,192]. Brain nuclei, neuronal assemblies, and circuitry 

responsible for specialized roles in relaying unique patterns of neural activity with larger levels of 

collective influence emerged through these fundamental characteristics. Mutual interactions of 

multiple agents are driven by synchronization to create influential coordination (indicated by 

higher-power spectral response at a given frequency), which can be directed to initiate or trigger 
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communication between brain regions. Through a simple analysis of EEG or fMRI fluctuations, it 

is obvious that there is no one dominant global frequency of synchronization. However, there is a 

diverse distribution of multiple modes of synchronization at nonstationary amplitudes and 

frequencies interacting with one another to perform the beautiful dynamical evolution observed 

and experienced in the brain. Potentiation or depression of neural connections through plasticity 

mechanisms allows for changing of the amplitude of rhythms in the population of neurons to 

project their frequency information (AP firing rate) at altered spectral powers [193]. Furthermore, 

these projections alter the dynamics of larger-scale recipient neural assemblies and can gain 

enough collective strength to influence other cortical regions by recruiting synchronous 

neurodynamics. Thus, individual neuron firing can influence the firing patterns of other neurons 

across scales [194] if met with sufficient excitatory actions.  

This increases the range of dynamical abilities for the brain, as synchronous populations of 

neural oscillators project information to excite or inhibit one another, competing for influence in 

directing global network trajectories. Different modes in certain configurations can represent 

different forms of information, from generating basic emotions from sleep or hunger to more 

complex forms in higher-order thoughts. Based on sensory input from the environment, along with 

internal interactions, a dominant pattern of neural activity emerges corresponding to a selected 

global network configuration, which corresponds to optimizing network stability. The coalescence 

of this neural firing mediated by connections (or interactions) between neurons creates such larger-

scale brain rhythms commonly seen in global patterns, such as the frequencies of electrical activity 

in the brain. Naturally morphing this band of frequencies into a variety of possible distributions is 

difficult; however, certain hallmarks of nonlinearity and chaos enable highly effective and efficient 

reconfiguration of a neural spectral bandwidth by manipulating chaotic bifurcations towards 
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desirable transient states [195]. Thus, this dynamical flow of information representation as neural 

action potentials is not arbitrary but highly patterned, with rich underlying order that requires a 

hierarchical, multimodal form to efficiently coordinate rich dynamical phenomena. Efficient 

organization of this renders highly effective levels of computation, performance, and precision in 

multidimensional execution driven by biological wave interference constrained by the subtlety of 

neural action potentials [196,197].  

 

2.4.3 Complex Forms of Self-Organization 

Self-organization through multimodal synchronization directs this macroscopic ensemble 

as specialized populations of neurons synchronize to particular frequencies across the scales of the 

brain, producing global, asynchronous, multimodal neural frequencies (i.e., neurodynamic brain 

waves) [198,199]. The time-varying frequencies of these populations are modulated through the 

respectively dynamic interactions of connected constituents. Furthermore, different modes at 

respective spatiotemporal scales serve to encode dynamical information in terms of time-varying 

frequencies of brain activity to interpret, react to, and survive in an environment that also contains 

a variety of spatiotemporal perturbations [200]. These processes interact with one another to 

produce a bandwidth of neural frequencies (brain waves) that attempt to optimize interactions with 

external disturbances imposed by the environment. Brain physiology and anatomy facilitate these 

dynamical characteristics to ensure the flexibility of the neural ensemble to locally synchronize 

while also being able to globally influence the synchronous firing rate (frequency) of other neural 

populations through connectivity (e.g., properties of axonal arborization, dendritic branching, and 

synaptic efficacy) [201,202]. These are necessary to maintain stability amidst external attacks by 

adjusting the power of different frequency responses to excite or inhibit information via neural 
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signals, resulting in the performance of adaptive behaviors. Certain neural populations are 

synchronized to corresponding frequencies [203]. The unique interactions of these 

multicomponent dynamics enable modulation of frequency distribution and amplitude to encode 

different types of information [204,205]. Environmental interactions generally incorporate a 

variety of diverse phenomena, necessitating unique forms of information to distinguish certain 

attributes, i.e., distinguishing different frequencies of light, spatial curvatures, sounds, and moods 

of thought [206]. Consequently, a unique multimodal distribution of neural frequencies across the 

spatial and temporal scales quantifies the dynamical form of information representation. The 

cumulative interference of these spectra throughout the brain results in the overall composition of 

brain dynamics. The manifestation of previous experiences, current representation, and future 

trajectories is stochastically embedded within these spatiotemporal spectra [207]. Furthermore, the 

objective of the brain is to refine its possible instantaneous frequency distributions to optimize its 

performance in the environment. Thus, the overall goal of the brain is to steer its instantaneous 

spatiotemporal distribution of frequencies over time to optimize its conditions of survival by 

adjusting its interaction within the environment. This includes planning for future expectations 

based on previous experiences. Furthermore, these dynamical characteristics are supported by the 

evolutionarily fine-tuned microstate configurations of a neural network whose coupling 

configurations are further pruned by earlier developmental experiences, resulting in a unique 

physiological structure and thus the distribution of myelin, axonal, and dendritic organizations, 

along with the synaptic efficacy observed in the hierarchical and functionally specialized regions 

of the brain. Illustrated in specialized regions of the brain, these enable the coordinated emergence 

of synchronous populations responsible for unique roles in transmitting certain patterns of neural 

activity that collaborate in composing the overall behavior of the brain [208].  
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Thus, the brain can be conceptualized as a complex information processing unit, molding its neural 

physiology as an analog neural network [209]. Processing information through a medium of 

intricately coupled local action potential interactions (culminating into complex global 

trajectories), neural circuitry orchestrates interactions across the hierarchical scales of the brain, 

which combine individual action into collective group order. The latter is typically seen in overall 

brain activities and behaviors and can be quantified by multiphase, multiscale structures. In the 

context of memory, different scales of memory structures (working memories and past historical 

memories) are embedded across spatial scales (from the micro to the macro) and are dynamically 

observed at different frequencies (high to low). The range of dynamical frequencies are seen in 

brain behaviors from circadian rhythms occurring on the scale of days to cellular interactions 

operating on the scale of milliseconds. To encode different forms of information (from memories, 

or overall shifts in brain behavior), the pattern of dynamical frequencies orchestrated by the brain 

must be modified.  

These modifications are facilitated through the nonlinear connections between constituents 

in a network [210,211]. Changing local connections (interactions) and their strength between 

neurons collectively incurs a shift in the global brain state to a potentially more stable (adaptable) 

form. Changing the degree of coupling between nodes can alter the spatiotemporal characteristics 

of information flow by altering neuron synchronization characteristics. In other words, this steers 

the information content of the brain, directing the trajectory of a neural network. As new signals 

from the environment change the input into the brain, different neural circuitries are activated to 

represent the new information and relay this throughout the brain [212]. As mentioned previously, 

this changes the time-varying properties of neural firing in the brain. Hence, over time, dynamical 

neural frequencies can establish different synaptic weight distributions across cortical regions 
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[213,214]. On a more general sense, the overall connectivity distribution (controlled by axonal and 

dendritic structures) can also be manipulated to further refine information representation (via 

altered neurodynamic spectra). This results in different modes of synchronization and a 

fundamentally distinct spatiotemporal distribution of neural frequencies. Qualitatively, we feel this 

fundamentally distinct state as the encoding of memories and experiences by our neural network. 

Furthermore, these can alter subcortical neural connections, slowly fine-tuning habits and personal 

preferences over time. The brain’s mode of encoding information in the spatiotemporal dimensions 

of brain behavior involves adapting its frequency response accomplished by modifying the variety 

of locally synchronized clusters, producing global asynchronous dynamics capable of integrating 

the variety of information a brain network considers when directing its collective form [215]. There 

is no static state of the brain. The trajectory of a dynamical brain network is consistently being 

steered by different frequency components of neural firings (projected by synchronized nuclei) 

interacting and controlling the distribution of the spectral bandwidth, producing brain behavior.  

 

2.4.4 Examples Observed in the Brain 

To initiate sleep, the cortex inhibits afferent higher-frequency neural activity that is 

typically routed from the thalamus and activated by other brain regions. This assists the brain to 

inhibit afferents and the tendency towards falling asleep by reducing the power of higher-

frequency neural oscillations and increasing the power of lower-frequency delta rhythms [216]. 

Transitioning into this spatiotemporal distribution of frequencies results in a global transition 

towards sleep. Processing and generation of information occurs over time to detect, interpret, and 

act within the environment [217]. Additionally, these neural frequencies serve to potentiate or 

inhibit information to excite or depress characteristics that determine global network stability. 
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Therefore, the frequency spectrum of brain rhythms serves to encode and propagate needed 

temporal brain behavior by processing environmental input and generating a global response.  

Hippocampal memory index theory also illustrates how dynamical information exchange via 

spatiotemporal frequencies can be used to encode information to store memories. Neocortical 

activity projects and encodes unique connectivity configurations in the hippocampus. These can 

be stored and served as an index to the pattern of the respective neocortical activity by which 

higher-order thoughts encode the unique connectivity configuration. Thus, future scenarios can 

potentially activate this index, which, in turn, activates the corresponding neocortical patterns, 

resulting in an active retrieval of these memories [218]. This allows the brain to revisit past 

spatiotemporal distributions of frequencies (i.e., previous memories). Furthermore, due to the 

considerable manipulation of information by the neocortex, upon revisiting these prior memories, 

higher cognitive thought can review these situations they performed and potentially administer 

reappraisal to these memories [219]. Reappraisal is a method of reconfiguring these connections, 

which can enable an individual to potentially learn from prior memories and better adapt in the 

future (based on potential previous mistakes). Furthermore, this can reconfigure connectivity 

throughout the global distribution of the brain between the neocortex and other limbic regions. 

Across these regions, hierarchical, modular, and fractal brain organization emerges to facilitate 

multimodal neural synchronization [220]. Such cytoarchitecture exhibits regions of statistical-self 

similarity to efficiently support the emergence of multiple modes of synchronous populations seen 

in repeated clusters of highly interconnected modalities [221,222]. In the cortex, this allows the 

brain to segregate sensory input into discernable and useful meaning as different modes at different 

spatiotemporal frequencies encoding information. Furthermore, a self-similar configuration allows 

the brain to reuse fundamental architectures and dynamical forms to conserve energy in 
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reproducing a variety of different brain states. This self-similar recursion of neural structures is 

also identified in the columnar organization of the neocortex, giving rise to higher levels of 

efficient information manipulation necessary to sustain fluid higher-order thought. Additionally, 

the entire domain of the brain (spatially and temporally) does not have identical degrees of self-

similarity [223]. Different regions can have different degrees or dimensions of fractality necessary 

to support individual responsibilities. Modular brain hierarchies compose these regions to integrate 

respective information, forming appropriate brain dynamical responses [224]. This complexity is 

dynamically apparent in the brain through the emergence of bands of synchronized neural 

frequencies, each mode processing its respective received information and transmitting it to 

influence its coupled constituents, which cumulatively manifest into the dynamical structure of the 

brain. Specialized brain regions with unique roles and responsibilities collaborating with one 

another emerge from these properties. Each region consists of multiple modalities structured in 

unique ways to perform distinct roles. These regions communicate with one another to steer the 

global network evolution. Quantitively, this is represented by the bandwidth of neural frequencies 

(i.e., the frequency components of global brain rhythms) observed in different spatial regions of 

the brain. Dynamically, these produce brain waves from the delta, theta, alpha, beta, and gamma 

ranges, spanning from below 4 Hz to above 30 Hz, highlighting the variation in the spatiotemporal 

scales of a dynamical complex brain network [225]. Functionally and anatomically distinct brain 

regions with specialized capacities emerge from these principles. Therefore, multimodal functional 

integration is typically observed as the interaction of different frequencies (corresponding to the 

representation of forms of information). Large-scale integration producing a dynamical brain state 

is conducted through the coalescence of different frequencies mutually interacting to produce a 

bandwidth of neural frequencies at any one point in time. It is noteworthy that to maintain stability, 
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this band of frequency responses must be able to constructively interact with each other and 

environmental perturbations to optimize the probability of survival. In other words, unique 

synchronized modalities and systems with distinct roles emerge in a mutually beneficial 

relationship with each other to nurture a global composition of neural frequencies, which serves to 

constructively interfere with the disruptions imposed by the environment [226]. 

Globally, canonical circuits are recursively exercised to facilitate the flow of synchronous 

and asynchronous neural activity at different frequencies to compose ensemble brain cell 

dynamics. A modular organization facilitates the formation of different modes of synchronization 

[227]. These smaller units (modules) are where similar neural circuitry is iteratively repeated, 

forming a columnar organization, allowing for basis multimodal synchronous activity throughout 

modules enabling effective information transfer across scales [228]. Different modules (at 

different synchronized frequencies) can interact with one another to influence dynamical 

characteristics, thereby further processing information across scales. A structure of this nature 

allows for segregation or integration of complex, multi-scaled information, as previously 

mentioned. This fundamental cytoarchitecture is implemented from the micro to macro scales of 

the brain. That is, nuclei of brain regions and larger-scale structures serve unique roles and 

collaborate with one another through their interactions to produce a global dynamical brain state 

similar to how microscale columnar modules produce multiple modes of synchronous neural 

activity and interact with one another to process information. Thus, statistical self-similarity is 

exhibited across scales of the brain [229]. Spatially, this is observed in modular organization of 

neural populations, resulting in larger-scale brain nuclei and consequently producing different 

brain regions with respective degrees of statistical self-similarity. For example, the most recently 

evolutionarily developed part of the brain, the neocortex, is responsible for higher cognitive 
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thought [230]. This largest part of the cerebral cortex is organized into multiple layers of 

interconnected neural populations to facilitate efficient information transfer necessary to drive 

flexible conscious thought [231]. This region will have a different degrees of fractal dimension for 

respectively unique tasks (represented by distinguishable forms of information). The different 

lobes of the cortex are responsible for processing different types of information (sensory input, 

such as sight or touch, and sending out physical action output). Each type of sensory input is 

inherently composed of multiple components. Consequently, multicomponent inputs are 

segregated by cortical structure to discern valuable meaning with reference to what the brain 

already knows. After relevant information is extracted and understood by the brain, this dynamical 

organization of the cortex integrates this information with meaning attached to it to formulate an 

appropriate collective response. The brain interprets this information as a unique distribution of 

neural firing frequencies over time to understand the environment. Sensory input, in the form of a 

unique pattern of activity, interacts with cortical structures, eliciting a unique response by 

interacting with and then activating a unique pattern of neural firing frequencies. Unique synaptic 

weights (or microstate coupling configurations) create this macroscopic distribution of 

frequencies. As previously mentioned, these different forms of information are encoded via 

multiple modes of synchronized neural frequencies [232,233]. Different frequencies bifurcate to 

segregate information and contrastingly coalesce to integrate information. Thus, the organization 

of cortical physiology is responsible for accomplishing these tasks and interpreting and 

transmitting information. This distinct spatial organization created by layers of highly 

interconnected neurons facilitates the generation of synchronized neural firings amongst highly 

coupled clusters and fosters the interplay of multiple modes of synchronized neural clusters 

generating complex spatiotemporal neurodynamics [234]. Furthermore, these neocortical 
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dynamics are also influenced by subcortical activities. The neocortex receives sensory information 

routed from the thalamus [235,236]. These excitatory projections encode specific forms of 

information in signal attributes, such as the frequencies of action potential excitations. Upon this, 

a preliminary assessment of sensory input is generated. Consequently, the cortex can send 

projections back to the thalamus to process higher-order cognitive manipulation, which allows 

different layers of cortical connectivity to process information together. Furthermore, through the 

thalamus, the neocortex can send or receive information to and from subcortical structures (e.g., 

limbic regions, such as the amygdala) through higher-order relays to influence underlying 

motivation, emotion, bias, and perception [237,238]. Thus, thalamocortical and corticothalamic 

loops represent one example of how different regions of the brain collaborate with one another 

[239]. Importantly, the basis for information transmission by these regions is synchronized neural 

action potential activities. Additionally, these processes are modulated through the degree of 

coupling between constituents, by which the spectral power of neural activity is controlled across 

spatiotemporal scales over time. Therefore, structural and synaptic plasticity mechanisms excite 

(or depress) connectivity, propagating (or inhibiting) frequencies of synchronized populations 

recursively across the modular spatiotemporal organization of the brain. The interplay of these 

mechanisms allow for potentiating or inhibiting certain behaviors. These collectively produce (and 

adapt if need be) the multimodal dynamical ensemble of the brain. In other words, neural 

physiology is responsible for simultaneously providing stability to neural brain dynamics and 

degrees of plasticity when global dynamics must change or refine its organization [240,241]. 

Perhaps one of the most frequently observed brain characteristics representing how different 

regions of the brain communicate and interact with each other is neuronal ensemble oscillations 

(resulting from neural AP interactions), producing the vast degree of complexity in 
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neurodynamical phenomena [242]. The temporal correlation of activity across these brain regions 

(from the micro to macro scale) determines how strongly certain functional configurations are 

reinforced from the possible range of configurations produced by physiological structure. 

Multimodal synchronization allows for the complex algorithmic manipulation of information by 

creating centralized regions responsible for unique roles. For example, neuromodulator systems 

work in concert with one another to direct higher cognitive thought in prefrontal cortex activity 

[243]. These incorporate noradrenergic, dopaminergic, serotonergic, and cholinergic systems 

influencing each other while projecting and receiving signals to their respective targets. Having 

multiple systems responsible for specialized roles and coordinating their action amongst gives 

higher degrees of freedom for a system to encode information into meaning to perform a task. 

Together, these shape prefrontal cortex activity, which consists of a variety of subregions that send 

and receive information (via the thalamus) to and from other subcortical structures, from motor 

and sensory systems to memory and motivational state processing sites [244]. The magnitude, 

direction, and rate of these global spectral signals are manifestations of local constituent 

interactions. 

The brain incorporates multiple mechanisms in performing a variety of tasks and 

effectively changing these tasks in accordance with its environment. These include initial appraisal 

of sensory input, discerning meaning from processing this information, and planning future action 

(or thought) based on the understood meanings. For example, as an individual is reading and taking 

in sensory input, the brain is simultaneously transforming the images of words into semantic 

meaning and cross referencing this information with previously known conceptions and new 

innovative ideas. (It is noted that this does not consider the simultaneous regulation of basic 

physiological processes, such as heart rate and circadian rhythms, to more complex refining of 
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subcortical motivations and primal instincts.) Clearly, the brain’s complexity serves a necessary 

purpose of performing a variety of tasks briefly elucidated above. This enables integration of the 

vast amount of information present in the brain encoding personal experience, as well as previously 

embedded evolutionary adaptation constituting inherent predisposition to formulate a coherent 

system response encrypted and administered through the characteristics of spatiotemporal 

dynamical neural firing [245]. Sensory input is translated into meaning via a unique pattern of 

neural firing. The neurodynamic rhythms influence and interact with other brain regions, eliciting 

a sufficient response.  

Furthermore, the structural network configuration produced by brain physiology must be 

functionally degenerate [246]. In other words, particular structural configurations must be capable 

of supporting a wide repertoire of functional dynamics to support brain function with respect to 

various environmental scenarios. These are supported by intricate structural configurations fine-

tuned through developmental and experiential plasticity. Studies have identified this structural–

functional degeneracy [247]; however, a clear explanation of how a single functional dynamical 

global state is selected out of the many possible states is lacking, and why this structural–functional 

degeneracy is necessary for the brain to reconfigure and adapt rapidly is unclear.  

 

2.5 Defining the Brain Quantitatively 

To be clear, a precise characterization of the brain in terms of quantitative metrics is 

absolutely necessary to develop a comprehensive understanding of the brain which can inspire 

progress in developing therapeutics or even support the implementation of brain machine 

interfaces.  Thus, the global state of the brain can be described in terms of the emergent oscillations 

of neural activity [248]. This system is consistently perturbed by internal and external stimuli. 
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Internal stimuli can be patterns of local activity that interact with critical regions, gain influence, 

and threaten to sway the overall neural network trajectory for better or worse. This can be 

qualitatively observed as an individual thought that inspires significant change or, in pathological 

conditions (e.g., hallucinations, schizophrenia) where internal disruptions are not properly 

mitigated, may lead to network collapse [249,250]. External stimuli are typically in the form of 

sensory input. Processing of a variety of sensory information is accomplished by encoding raw 

sensory stimuli as unique patterns of neural activity that can trigger unique distributions in global 

neural activity [251]. This quantitative form encodes understanding, behaviors, and reactions in 

the global network. For example, sensory systems are hierarchically organized to extract relevant 

multicomponent information. Hierarchical organization is conducive to facilitating interactions 

between multiple frequencies of neural activity and is thus capable of efficiently harboring, 

processing, and morphing spatiotemporal spectra of activity across scales [252]. Sensory input, 

once converted into patterned electrical activity, thus activates unique compositions of the 

spatiotemporal spectra activity, encoding unique sensory information. Consequently, different 

types of sensory information are expressed as different spatiotemporal patterns of neural activity. 

These inherent variations, small differences in initial conditions of different types of sensory 

information, can elicit dramatic deviations in the processed results. Identification of an 

environmental scenario is represented by a particular pattern of activity, which is a construct of 

multimodal synchronous neural populations [253]. This composition of frequencies and various 

amplitudes (conveying sensory information) interacts with the activity of other brain regions 

(which are also producing a unique composition of neural frequencies and amplitudes). The 

consequent quasi-biological wave interference produces an emergent neurodynamical form of 

activity corresponding to reaction towards sensory input. In reaction to a threat in the environment, 
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this can produce spatiotemporal neural activity correlated with a fight-or-flight response. Small 

variations in initial sensory input and internal motivations, once processed throughout the cortical 

structure, result in the possible emergence of a variety of functional states corresponding to a 

possible fight-or-flight reaction. This selection of functional states occurs for a variety of scenarios, 

from simply deciding what foods to eat to determining a response in a social scenario. 

Additionally, the possible selected states may be chosen based on free-energy minimization 

principles to optimize network efficiency by conserving precious energy and maximizing 

productivity [254]. Furthermore, brain network structure degeneracy is limited [255]. Only a finite 

number of functional states can be represented (due to energy limitations); however, fine tuning 

of structural physiologies through plasticity mechanisms can enable the brain to refine its possible 

functional states and learn new configurations. Encoding new configurations (via plasticity 

mechanisms) occurs at a cost; however, utilizing a hierarchical structure can maximize the number 

of functional states that can emerge from a selected coupling configuration throughout a neural 

network. Naturally, selecting which structural configurations are necessary is dependent upon 

which functional states efficiently optimize an individual’s survival. It is noteworthy that this 

reaction is almost instantaneous, as an instinctual response is orchestrated upon immediate 

detection of sensory stimuli. Thus, this is a highly efficient way to rapidly produce a global system 

response immediately upon interacting (or interfering) with the environment. Due to the resolution 

limitations of biological figures such as the brain, the response is not instantaneous, as there is 

always an inherent temporal lag in the brain network processing, interpreting, and reacting to the 

environment. Despite this, global system response occurs on the scale of milliseconds. 

Thus, brain physiology refines its form through neuroplasticity to better adapt its degenerate 

functional dynamical forms, that is, its instantaneous spatiotemporal distribution of frequencies. 
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For example, the particular configuration of connectivity in evolutionarily older brain systems, 

such as the limbic regions, quantitatively provides different patterns of neural activity, which are 

qualitatively felt as aspects of emotional processing capable of projecting influential information 

upon the cerebral cortex and swaying the higher-order processing of emotion [256,257]. Complex 

forms of information manipulation accomplished by the neocortex allow for review of such 

fundamental raw emotions to better reconfigure towards a logical assessment should this lead to 

more optimal survival conditions. Orchestrating a complete physical reaction takes less than a 

second [258]. Purely cognitive reactions (mentally recognizing an environmental scenario) can 

take even less time.  

Such agglomerations of different forms of neural activity mutually interact with each other 

to manipulate the flow of information in an attempt to direct a beneficial collective ensemble 

response. This entails creating a network structure which is capable of higher degrees of adaptation 

(in accordance with unique environmental situations) to better optimize all the opportunities 

external conditions may pose. Qualitatively, this can be thought of as the different aspects of 

consideration an individual recognizes when deciding what action or route to take. The harmony 

of these multimodal processes is essential to efficiently direct the trajectory of the ensemble 

towards obtaining dynamic stability in time with respect to the dynamical environment. In other 

words, these specialized modes of synchronization do not work in isolation but co-operate with 

each other with specialized roles to process and relay relevant information throughout the brain. 

Cross-modal reliance causes the distribution of synchronized frequencies to be highly sensitive to 

external and internal influences and changes [259]. For example, a slight variation in information 

transfer in one cortical area (new sensory stimulus) modifies the interactions with other cortical 

and subcortical regions. Thus, through cross-modal reliance, new information being transmitted 
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by a particular modality can have a cascading, rippling effect across the spatiotemporal scales of 

a network, which influences the reorganization of the macroscopic ensemble’s frequency response, 

resulting in a global configuration towards a (in healthy brain function) desirable state [260].   

Multimodal synchronization, observed as multiple frequencies of neural clusters mutually 

interacting, results in highly complex and nonlinear behaviors [261,262]. Scenarios ranging from 

chimera states to neuronal avalanches to explosive higher-order simultaneous synchronous and 

asynchronous states in dynamical networks are highly critical states that stem from different 

spatiotemporal scales of synchronization present in the brain [263,264]. The criticality of these 

states (stemming from the inherent nonlinear nature of the brain) is necessary to enable effective 

adaptation by changing the distribution of multimodal activity to better adapt to new deviations in 

a situation that necessitates a different form of emergent brain dynamics to maintain stability [265]. 

In critical states, certain perturbations or influences can bifurcate frequency responses and trigger 

neuronal avalanches [266,267]. In pathologies, these are not regulated and can rapidly deteriorate 

the state of the brain. However, in normal cognitive function, this is directed to produce a new 

brain state that is adaptable to the new environmental disturbances. Therefore, environmental input 

not resonating with the current state of the brain can engender network deterioration due to highly 

nonlinear and critically dynamic forms breaking down the previous functional states, allowing for 

new functional states to take place. If directed properly, transitions can be facilitated effectively to 

rapidly adapt brain form and function to create desirable configurations. Fight-or-flight response, 

high-pressure social communication, or simply waking up from a deep sleep in response to a loud 

noise are examples of global transitions that are highly nonlinear and effectively directed in most 

healthy brain networks [268]. There do exist certain pathologies that compromise the biological 
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mechanisms of brain function preventing the effective facilitation of these dynamical transitions 

[269].  

Thus, the local degree of couplings between neurons controls global brain dynamics by 

changing the interactions between neural firings resulting in potentiating or depressing 

information. Increasing the degree of coupling (stronger connection) can reinforce particular 

patterns of neural frequencies to result in an increase in the influence of the corresponding spectral 

response in the global bandwidth of neural frequencies. Contrastingly, neural firings can also 

diminish the influence of certain spectral responses by depressing certain connectivity’s. The 

emergence of these types is mediated by different degrees of coupling (interactions) to project or 

inhibit information based on whether it is desirable for the survival of the collective. Thus, 

broadband collaboration between constituents is the fundamental basis for complex behaviors 

commonly seen in the interplay of neural frequencies throughout the time evolution of a network 

ensemble. Neurons coordinate their individual actions with one another through their interactions 

to produce macroscopic oscillations across the spatiotemporal scales of the human brain. Based on 

assessment of the produced macroscopic interactions with the environment (in the form of how 

successful the brains distribution of neural activity is in accomplishing a task), neuroplasticity 

mechanisms can alter couplings to further refine the global distribution of neural activity if 

necessary (if performance improvement or change is needed). 

Hence, a bandwidth of neural frequencies (quantifying the dynamical state of the brain) is simply 

the interaction of multiple synchronous clusters representing different components of information 

across the scales of the brain. The combined collaboration and competition amongst these 

dynamics produce the emergent dynamical features of the brain. Time-varying properties that 

dictate the trajectory of a neural network’s behaviors are determined by the microstate 
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configurations of connectivity (degree of neuronal coupling distribution). The exact character of 

synapses, dendrites, axonal architectures, and myelin distribution, along with other physiological 

factors controlling coupling in a brain network, determine how individual components, from single 

cells to clusters and regions of the brain, interact with one another to manifest the overall 

dynamical form of the brain. An emerged frequency distribution of the brain, produced by its 

cumulative subordinate interactions, serves to interact with the external environment. Resulting 

environmental interactions are processed by the brain to assess its own performance and administer 

changes if needed to better manipulate its dynamical repertoire for seizing opportunities posed by 

the environment. Environmental opportunities may change at a moment’s notice, necessitating the 

brain to shift its frequency distribution (spatiotemporal spectra of neural action potentials). 

Consequently, changing the bandwidth instills degrees of nonlinearity, including route-to-chaos 

[270]—both are dynamical evolution characterized by bifurcation of spectral response. 

Relationships between network constituents are highly nonlinear and recursively couple upon one 

another across the temporal and spectral scales of brain activity, capable of producing chaotic 

characteristics. Despite experiencing dynamic instability to different degrees, the brain is 

remarkably adaptable to finding stability. Therefore, uncovering the fundamental nature of how 

the brain maneuvers its “route to chaos” can be applied to a plethora of real-world systems that 

exhibit nonlinear and chaotic characteristics. Instability is typically characterized by 

unprecedented levels of change in the system. Typically, such a high degree of changes is viewed 

as undesirable, as bifurcation increases the probability of system instability. However, if instability 

is controlled, the degrees of changes can facilitate highly efficient reorganization towards a 

desirable state. The brain manipulates its high degrees of nonlinearity in its favor. From a plasticity 

point of view, these can enable the brain to rapidly reconfigure and adapt to new scenarios more 
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effectively than a highly statically stable network system with strongly reinforced configurations 

(as it may be more difficult to break out of these prior conventions and adapt to a new global state). 

Therefore, characteristics of instability exhibited by bifurcation of dynamics represented in the 

brain through the criticality of neural activity are manipulated by the brain to enable its proficient 

ability to adapt. This is further exhibited by the various modes of functional forms a neural network 

can assume from a fundamental physiological structure capable of performing a wide range of 

activities. Neural bifurcations are effectively directed towards rapidly reconfiguring the 

spatiotemporal distribution of frequencies in the brain toward a state that is better able to adapt in 

the environment. The number of possible network configurations is very large, to say the least. 

However, the brain isolates, refining a finite number of network configurations using a canonical, 

self-similar pattern and structure across its temporal and spatial scales. This directly corresponds 

to the statistically self-similar fractal nature of the brain. In qualitative terms, this directly 

correlates with the unique style, personality, or character of a brain network in terms of having a 

fundamental go-to protocol, method or philosophical way of thought (unique pattern of neural 

activity), which is administered recursively upon the variety of scenarios the environment poses. 

Self-similarity across the multivariate scales of the brain is therefore essential in supporting 

efficient dynamical transitions by directing chaotic bifurcations in its own hierarchical structure to 

effectively filter information throughout the scales of the brain while conserving resources through 

a self-similar organization [271,272]. 

 

2.6 Summarizing Points 

The aforementioned information serves as a general overview of our understanding of how 

brain form and function changes over time within the constraints of nature. This review is by no 
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means complete. For example, the exact form of emerged spatiotemporal brain dynamics is 

unknown. According to literature reviews, brain structure and physiology enlist small-world 

structures to create multiple modalities of highly connected populations internally synchronizing 

and externally interacting with other populations in aperiodic characteristics. Hence, this biological 

structure engenders fundamental dynamical building blocks of synchronized neural populations. 

When these pieces are put together from the micro to the macro scales of the brain in unique 

configurations (gifted by evolutionary fine tuning) and molded by developmental and experiential 

plasticity, simple local activity can coordinate complex higher-order global forms, directing the 

trajectory of a brain network. Structurally observed in high-degree modularity, functionally, this 

enables the interaction of multiple modes of synchronized clusters. Local fundamental building 

blocks center around respective single-frequency components interacting with one another to 

create complex spectral distributions (multiple-frequency components). This spectral distribution 

inherently changes over time to support survival needs. Different regions of the brain have 

different connectivity configurations, enabling production of unique patterns of neural activity. 

Consequently, the amalgamation of these structures from the most fundamental constituent to the 

global level of the brain produces a unique spatiotemporal spectral distribution with an aperiodic 

trajectory that encodes information in the brain, incorporating abilities to (1) acquire and process 

sensory input and (2) initiate response (not necessarily physical). Quantitatively, this can be 

represented in terms of the spatiotemporal distribution of neural action potential frequencies, 

where the evolution of this distribution over time encapsulates the dynamical state of the brain. 

Therefore, brain dynamics (experienced and observed) can be concisely, consistently, and 

precisely defined as how this functional spatiotemporal distribution of neural activity morphs over 

time with the support of fundamental neural biological mechanisms. Global neural activity is not 
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random but highly ordered and supported by hierarchical structures. This form is recursively 

implemented from the micro to the macro scale and allows the brain to effectively produce 

complex forms of information representation (by composing unique spatiotemporal trajectories of 

neural dynamics), enabling performance of a wide range of activities while efficiently consuming 

precious resources necessary to sustain such dynamics. Furthermore, these forms entail self-

similarity to optimize energy consumption in balancing and keeping certain network attributes 

similar (minimizing energy expenditure) while being required to change other network attributes 

(to adapt in the environment). Hence, a potential solution towards addressing neurodegenerative 

diseases and implementing brain–machine interfaces is to administer active control upon a neural 

network’s spatiotemporal distribution of frequencies. Moving towards a more general step, 

effectively administering control of the complexity present in the brain can also provide insights 

towards the nature of complexity in our universe.  

Due to our lack of understanding of the nature of brain dynamics and resolution limitations of 

current approaches, the precise form of the brain’s spatiotemporal distribution of activity has yet 

to be comprehensively defined or modeled. The precise understanding of the following remains 

unclear: (1) what is the exact temporal evolution of neural activity in one region of the brain (for 

example, the thalamus routing information from the amygdala) and (2) how this interacts with the 

temporal activity of another region of the brain (the neocortex), producing emergent neurodynamic 

frequencies qualitatively observed or experienced as processing and acting upon fearful stimuli 

elicited from the amygdala. It is known that these are produced through the fundamental 

coalescence of individual neural activity coupled nonlinearly upon one another. However, to attain 

an improved understanding of brain dynamical phenomena and potentially administer active 

control, a more precise definition is necessary. Specifically, this means being able to (1) 
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mathematically represent a spatiotemporal spectral distribution of neural activity and (2) establish 

a governing dynamical law that can describe how such distribution changes over time. 

Mathematical representation ensures precision and entwining this with fundamental physical laws 

governing dynamical interactions ensures the creation of a comprehensive model that can 

comprehensively encapsulate complexity in the brain. A more precise interpretation not only 

renders higher levels of comprehension towards the subtleties behind spatiotemporal spectral 

distribution of neural activity but can also enable active control of such phenomena towards more 

desirable trajectories. 
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3. PRELIMINARY BRAIN NETWORK MODEL AND DATA ANALYSIS 

Naturally, the dynamical biophysical complexity of the brain incorporates a variety of 

topics necessitation transdisciplinary collaboration from a variety of fields to compose a more 

comprehensive understanding. Fulfilling this completely is not feasible within the scope of this 

master’s thesis; however, this work is written in the hope that it provides convincing information 

(along with a solid foundational start to build upon) to ignite transdisciplinary collaboration that 

can more completely characterize the brain in future work which has far reaching consequences 

beyond neuroscience as well.  

To begin, one the most relevant dynamical property of the brain is its ability to compose 

unique waveforms and patterns of neural frequency (aforementioned as the instantaneous 

spatiotemporal bandwidth of neural frequencies). This time-varying property is in the form of 

voltage fluctuations and is the product of the cumulative nonstationary interactions of neural cells. 

Thus, modeling these local interactions between constituent neuron cells is an essential first step 

in being able to construct a global depiction (and potential control) of brain dynamics.  

The following section will display a dynamical equation to model the postsynaptic potential 

voltage fluctuations of a neuron cell due to presynaptic interactions.  

 

3.1 Quantifying Dynamical Local Coupling 

With the established preliminaries above, it is apparent that the first step in creating a 

preliminary brain network model is to determine the dynamical interactions between individual 

constituents. Local constituents in the global brain can occur on a variety of scales from different 

regions of the brain, subnetworks down to different populations or clusters of neural cells to even 

individual neuronal constituents (if we keep going further we reach the scales of sub-clusters of 
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proteins down to individual molecules and their constituent atomic parts). However, due to finite 

limitations on resources; we will begin starting with an individual neuron cell and quantifying its 

dynamics in terms of its voltage fluctuations due to interactions with other connected neuron cells 

as a start. The governing equations below will focus on excitatory glutamate neurotransmitter 

driven interactions between neurons with special consideration and use of AMPAr and NMDAr 

as data is most widely available for this biological machinery. This will be the focus for the current 

model and provide as a foundation for future studies to be built upon.   

Coupling strength, or interaction magnitude, at the synapse is determined by a combination 

of highly nonlinear processes, such as 1) the concentration of neurotransmitters in the synaptic 

cleft and 2) the total number and availability of receptors on the postsynaptic site. Neurotransmitter 

binding upon receptors is not deterministic but inherently stochastic. Therefore, the concentration 

of neurotransmitters in the synaptic cleft and the total number of available receptor binding points 

on the postsynaptic membrane can be used to generate a probability of receptor activation.  

The concentration of neurotransmitters in the synaptic cleft can be approximated by considering 

1) the amount of neurotransmitters released due to presynaptic depolarization and consequent 

vesicle exocytosis, 2) approximate rate of neurotransmitter degradation by enzymes in the synaptic 

cleft, and 3) the rate of neurotransmitter reuptake by transporter mechanisms. From studies 

identifying these parameters [273-275], the approximate volume of neurotransmitters (NT() can 

be found. Consequently, an approximate volume of the synaptic cleft (S() can also be determined. 

The volume of neurotransmitters divided by the volume of the synaptic cleft gives a probability 

ratio that a neurotransmitter will contact a postsynaptic site. Furthermore, a probability ratio 

calculation on the postsynaptic site is necessary to determine the probability that a neurotransmitter 

will make contact and bind upon a receptor on the postsynaptic site. Thus, the overall cross-
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sectional area of receptors (α) divided by the overall cross-sectional area of the post-synaptic site 

(S)) can determine a probability ratio of contacting a postsynaptic receptor. It must be noted that 

for this study, only ligand-gated ion channels (ionotropic receptors) from the AMPA and NMDA 

subtypes are considered. Metabotropic (or G-protein coupled receptors) are not included for this 

study and is the topic for future work. Thus, the probability ratio of 1) there being a receptor on 

the post synaptic site is multiplied by the probability ratio of 2) there being a neurotransmitter 

within the synaptic volume to calculate a probability of neurotransmitter binding and activating a 

receptor. This culminates into P* shown in equation (1), the probability of a neurotransmitters 

within the synaptic cleft making contact and assumed to bind upon a receptor on the postsynaptic 

site.  

  

P* =
R)
S)
∗ 	
NT(
S(
			 

 

(1) 

 

Therefore, the calculated probability above is multiplied by the maximum cross-sectional area of 

a receptor type to determine the overall cross-sectional area of receptors which are allowing for 

the influx of ions. The area of activated and unblocked NMDAr  (α+,-.) numerical equation will 

be shown later to incorporate the effects of Mg++ blockage. For now, the cross-sectional area of 

NMDAr which receive a neurotransmitter is signified by A+,-.; however, this does not 

incorporate the effects of Mg++ blockage yet. Therefore, the expression for α+,-. is not shown 

yet. α/)$ terms correspond to the overall cross-sectional area of the receptor type on the post 

synaptic cleft. This is approximated by the average cross-sectional area for one receptor multiplied 
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by the average number of receptors housed in a synapse whose approximate values are found from 

a variety of experimental approaches [276-278]. These are shown in equations (2). 

 

α.,0. =		 P* ∗ 	α/)$_.,0.	 

 

A+,-. =		 P* ∗ 	α/)$_+,-. 

 

α = α.,0. +	α+,-. 

 

 

 

 

(2) 

 

 

The probability of receptor activation can be expressed in terms of the total cross-sectional 

area of receptors that allow for the influx of ions. Using fundamental diffusion principles 

formulated through Fick’s laws [279], the flux of ions can be quantified regarding the established 

electrochemical gradient between the intra and extracellular space. Thus, the flux of ions 

multiplied by the total cross-sectional area of receptors corresponds to the total amount of ion 

influx across the membrane. Incorporating this value with the electrochemical gradient, temporal 

iteration time and charge for corresponding ion species summed over all synaptic points can 

represent the voltage fluctuations of a neuron over time. Equation (3) provides a preliminary 

governing dynamical equation to quantify coupling in terms of postsynaptic potentials. This can 

serve as foundational coupling law to determine whether a neuron will fire or not based on its 

synaptic inputs. Voltage (V%), the energy per unit charge at the next time step, is equal to the voltage 

at the previous time step plus the summation (over all synapses and ion species respectively for 

connected neural cells) product of the electrochemical gradient (∇μ) in [ 2&#"3
/&"

 ].; the total cross-
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sectional area of the open ligand-gated channel (α) in [ m4].; the flux of ions per area per unit 

time,	[J!"#$]  ; and the charge per ion species, [q%&'].  This coupling law defines the dynamical 

voltage fluctuations of a neuron with reference to its synaptic inputs. Furthermore, this coupling 

law will be applied to the ion flux regarding K+, Na+ and Ca++ for this preliminary brain network 

model. Additionally, the term within the summation signifies the magnitude or strength of 

interaction between neurons. In other words, this part of the equation determines the magnitude of 

voltage fluctuation a single neuron has due to the interactions with it coupled constituent neuron 

cells.  

V%(t + 1) = V%(t) +78
∇µ ∗ α ∗ J!"#$ ∗ Δt

q%&'%&'

5

6

			 

 

(3) 

 

The electrochemical gradient (∇μ) corresponds to the free energy available to be converted into 

work due to the combined imbalance in the chemical and electrical gradient with respect to the 

intra and extracellular spaces [280].  

∇µ = RT ∗ ln =
c&#7
c%'

? + Z ∗ F ∗ V% 
  
(4) 
 

 
In the above equation (4), the right-hand side of the electrochemical gradient for an ion species 

corresponds to the chemical gradient where the interior of the logarithm term encompasses the 

ratio of the extracellular ion concentration (c&#7)  to the intracellular ion concentration (c%')	for a 

particular ion species. R stands for the gas constant and T stands for temperature. This gives the 

chemical gradient in units of [ 2&#"3
/&"

 ]. The left-hand side of the equation incorporates the electrical 

gradient also in units of [ 2&#"3
/&"

 ] where Z is the valency of the ion species, F is faradays constant 
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and Vi is the voltage potential of the membrane. Cumulatively, addition of these two terms gives 

the overall electrochemical gradient.  

Equation (5) below signifies J!"#$ in units of [ /&"
6∗/! ] and is derived from Fick’s first law of 

diffusion. 

J!"#$ = D=
∂Ψ
∂x? 

 

(5) 

 

In the equation above, D stands for the diffusion constant for a particular ion species and the partial 

derivative term correspond to the concentration gradient for that ion species.  It must be recognized 

that the electrochemical gradient and flux due to diffusion are relatively stationary. Hence, the 

term that relatively represents the dynamical nature of coupling to a higher degree is α, the overall 

cross-sectional area of activated receptors shown in equation (6). For the scope of this study, this 

incorporates the overall cross-sectional area of activate ligand gated channels, particularly for 

AMPA and NMDA receptors as their behaviors and implications in synaptic plasticity are most 

widely studied and known. Consequently, realistic modeling of their behaviors and implications 

in modulating coupling strength via plasticity mechanisms is far more feasible.  

 

α = α.,0. +	α+,-. (6) 

 

This term is fundamentally nonlinear, as it is equal to the total cross-sectional area of the open 

ligand-gated channels, which is simultaneously dependent on pre- and postsynaptic mechanisms, 

such as the concentration of neurotransmitters which probabilistically bind upon postsynaptic 
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receptors that may or may not have a voltage-dependent Mg++ blockage (for the NMDAr in 

particular).  

To incorporate the effects of Mg++ blockage upon the NMDAr, the following equation (7) is used 

which incorporates an approximate location of Mg++ ion blockage to determine the overall cross-

sectional area of available NMDAr. 

α+,-. =	A+,-. ∗ (1 −	
y

y/)$
)  

(7) 

 

Upon negative membrane potentials, the Mg++ ion is attracted deep within the NMDAr ion channel 

resulting in blocking ionic flow. The full depth of the deep site of the NMDAr where the Mg++ ion 

blocks the ion channel is defined as y/)$. The location of the Mg++ ion is defined as y. A+,-. 

corresponds to the total cross-sectional area of NMDAr (regardless of availability). Thus, it can be 

observed when the location of the Mg++ ion (y) is equal to the full depth of the deep site of the 

NMDAr (y/)$), 9
9"#$

	will equal unity (1) and the right-hand side will be zero rendering the 

available area of the NMDAr also equal to zero signifying blockage of ion flow. Consequently, 

when the location of the Mg++ ion is not at the deep site of the NMDAr, 9
9"#$

 will become smaller 

than 1 (and grow even smaller as the Mg++ ion gradually starts to unblock the NMDAr) causing 

the overall availability of the NMDAr to approach its maximum value. To accurately represent 

this, dynamical equations based on electrical force between Mg++ ions and the neural membrane 

are shown below which can be used to find the position (y) of the Mg++ ion. First, the electrical 

force (Ef) in Newtons must be calculated as shown below using Coulomb’s Law [Error! R

eference source not found.] in equation (8).  
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Ef = 	K
q%&'Q/3/:*)'3

r4  
 

(8) 

 

Charge of the membrane (Q/3/:*)'3) in coulombs can be calculated using the capacitance (C) of 

the membrane [Error! Reference source not found.] by its voltage in equation (9).  

Q/3/:*)'3 = 	C*V%  

(9) 

 

The known values enable calculation of electrical force (Ef) in Newtons. As a result, Newton’s 

laws enable calculation of Mg++ ion acceleration (a) based on the mass of the ion (M,;%%) in 

equation (10).  

Ef
M,;%%

= 	a 
 

(10) 

 

Upon finding the acceleration, trivial double integration can be applied to approximate the location 

of the Mg++ ion within the pore of the NMDAr and this information can be used to determine the 

overall cross-sectional availability of the NMDAr consequently directly modulating the values of 

α which directly modulates the magnitude of voltage fluctuation (interaction strength) due to 

neuronal synaptic interactions. Hence, the intricacies of spike-timing dependent plasticity can be 

incorporated in this preliminary first model.  

 Hence, as a product of the variety of plasticity mechanisms, ⍺ is stochastic and highly 

nonlinear. It can be significantly influenced by: (1) the concentration of neurotransmitters and (2) 

the number and availability of receptors on the postsynaptic site. It must be noted that this equation 
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is a foundational factor in quantifying coupling in the brain, particularly on the micro scale. 

Additional coupling terms which include additional factors (e.g., dendritic spine dynamics and/or 

adaptive myelination), must be incorporated to comprehensively account for coupling on a larger 

scale. Furthermore, additional revisions are required to explicitly incorporate and quantify the 

various biological mechanisms that modulate the dynamical trajectories of neural postsynaptic 

potentials. Regardless, quantifying coupling at the microscopic scale is a necessary first step 

towards a more complete model. Thus, the underlying philosophy of this equation can be utilized 

to aid in quantifying complex local voltage fluctuations due to interactions amongst neuronal 

constituents.  

Furthermore, the quantification of the above biological mechanisms must be further 

described in terms of energy to formally constrain the system under the global distribution of 

energy along with the corresponding information entropy value as described previously by the 

general framework.  

 

3.2 Network System in Terms of Energy 

To begin, the total energy (E%) of the ith constituent can be discretized into its potential 

energy (PE%)	and kinetic energy (KE%) terms as shown in equation (11) below.  

E% = 	PE% + KE%  

(11) 

 

In the case of a neuron, the potential energy can be described by the accumulated charge (Q%) in 

coulombs within a neuron multiplied by the total voltage (V%)  of that neuron shown in equation 

(12).  
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PE% =	Q% ∗ V% (12) 

 

The kinetic energy can be described by the rate of change of charge (<=&
<7
) within a neuron 

multiplied by the total voltage (V%) over a time step (Δt) of that neuron shown in equation (13). 

 

KE% =	
dQ%
dt ∗ V% ∗ 	Δt 

 

(13) 

 

Finding these values were implied in the equations above; however, will be explicitly reinforced 

below. The rate of change of charge across the membrane of neuron can be determined using 

diffusion flux from Fick’s Law’s (J!"#$) in units of [/&"
/! ] and the overall cross-sectional area of 

activated ion channels which are capable of allowing ion flux (α) in units of [m4]. Multiplication 

of J!"#$ with α results in the overall amount of ion flow in mols. Thus, this total amount of ion flow 

in mol multiplied by the ion valency (Z) and Faraday’s constant (F) in charge per mol for each 

particular ion species results in the overall amount of charge efflux or influx across the membrane 

of a neuron. This charge flow per unit time is shown below in equation (14). 

 

dQ%
dt = 	 J!"#$ ∗ α ∗ 	F ∗ Z 

 

(14) 
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Upon establishing the rate of charge flux, multiplication with time can establish the overall charge 

accumulation across the neuron membrane shown in equation (15). 

Q% =
dQ%
dt 	∗ 	Δt 

 

(15) 

 

These values can be used to determine the kinetic and potential energy components consequently 

producing the overall energy expenditure of a constituent neuron.  

From the implementation of these equations based on fundamental biophysical principles, a 

neurons membrane potential fluctuation over time can be delineated in terms of energy. Thus, a 

local microscopic description of neuron dynamics and their coupled interactions is established in 

terms of energy.  

 

3.3 Macroscopic Information Entropy 

For a comprehensive characterization of a complex network, macroscopic ensemble level 

network description is necessary to constrain the time-evolution of microscopic constituent 

dynamical interactions. The global probability distribution of energy, and its respective 

information entropy content, provides a macroscopic ensemble level description. The ensembles 

probability distribution of energy must be normally distributed as shown in equation (16) 

 

𝐏(E%) = 	
1

σ√2π
e>

?
4(
A&>B
C )! 

 

(16) 
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Furthermore, the resultant macroscopic ensemble network state is determined by the information 

entropy [283] which is a function of the probabilities of energy shown in equation (17).  

𝐒 =8𝐏(E%)ln[𝐏(E%)]
'

%E?

 
 

(17) 

 

These equations are utilized in generating a preliminary brain network model to serve as a 

foundational basis for analyzing the network properties of the brain. Furthermore, additional 

mathematical tools are utilized to extract the underlying time-frequency content of dynamical 

networks to provide a precise quantification for unique patterns of information representation.  

 

3.4 Time-Frequency Analysis to Identify Information Content 

As aforementioned, unique patterns of information in a network can be generated by a 

respectively distinct unique physical characteristic. To be clear, this distinct unique physical 

characteristic occurs in the form of unique time evolution of underlying frequencies. To pinpoint 

this phenomena, mathematical analysis is necessary. Fourier analysis is usually used to extract 

frequency components from a time-series data set or signal [284]. However, Fourier analysis is 

done upon data with the underlying assumption that the time-series is stationary. As real-world 

complex network dynamical frequencies are nonstationary, conventional Fourier analysis is 

insufficient [285]. Nonstationary, nonlinear responses are intrinsically transient in the time and 

frequency domains. Hence, canonical functions based on Fourier analysis are insufficient as the 

basis frequency functions are do not vary over time. In other words, these basis frequency functions 

are not localized and extend off to infinity without changing the underlying frequency components. 

Therefore, Fourier methodology typically involves a complete conversion of time domain 
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information into the frequency domain rendering stationary temporal analysis. Consequently, an 

extraction of frequency information using Fourier analysis loses temporal information of the 

signal. Therefore, Fourier analysis allows extraction of only frequency domain information and is 

not capable of determining how frequency components vary over time which is an essential feature 

for dynamical complex networks as aforementioned. Hence, a simultaneous time-frequency 

analysis is not feasible using the Fourier Transform. Thus, spectral time-evolution can be 

misrepresented in the Fourier domain. Fundamentally, the Fourier transform is mathematically 

linear while the spectral characteristics of real-world complex network dynamics are 

fundamentally nonlinear rendering the inadequacy of applying Fourier methods.  

Hence the concept of instantaneous frequency (IF) must be incorporated to resolve the 

underlying frequency components as a function of time of a time-series signal [286]. A time-

varying signal typically entails an amplitude modulation term (a(t)) and a phase modulation term 

(F(t)). The instantaneous frequency is found by the derivative of the instantaneous phase (F(t)).  

z(t) = a(t) ∗ 	e%F(7)  

(3) 

 

A key caveat to instantaneous frequency is that it can only be applied upon monocomponent 

signals. Real-world complex signals (time-series) typically contain multiple components (which 

is a sum of multiple monocomponent signals.  

Therefore, in addition to IF, a multicomponent time-series must be broken down to its intrinsic 

monocomponents. This method can be accomplished by the empirical mode decomposition by 

application of the Hilbert-Huang Transform (HHT) [287]. The underlying assumption is that any 

time-series signal consists of multiple simple intrinsic modes of oscillations. The inherent 
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oscillation can be classifieds into intrinsic mode functions (IMF) where each intrinsic mode 

function (IMF) represents a simply oscillatory mode as a monocomponent signal. Thus, 

decomposing a multicomponent signal using the Hilbert-Huang Transform allows extracting 

monocomponent signals in terms of the intrinsic mode functions. Finally, the concept of 

instantaneous frequency can be applied upon the monocomponent intrinsic mode functions 

enabling the extraction of simultaneous time-frequency information upon a time-series data set. 

As a result, the underlying information content of the dynamical properties of a network can be 

precisely determined by the intrinsic time-frequency content. These mathematical formulations 

were implemented using MATLAB’s Time-Frequency Toolboxes. 

 

3.5 Results and Data Analysis from Network Model 

The previously described foundational equations and underlying philosophies were used 

to generate a preliminary neuron network model. The objective of this model is to model a brain 

networks dynamics from the microscopic to the macroscopic scales. In other words, the objective 

is to establish the time-varying characteristics of the brain network model at the macroscopic 

ensemble level by identifying global system information entropy and its fluctuation while 

simultaneously establishing the time-evolution at the microscopic constituent level regarding the 

dynamic variation of individual neuron membrane potentials. Furthermore, it must be noted that 

the dynamic changes in neuron voltage (membrane potential) are due to the time-evolution of even 

smaller scale coupling terms displayed within the summation of equation (). Additionally, the 

results from this brain network model can be used to analyze, determine, and quantify the 

underlying information content of the network model in terms of the time-frequency components 

of the resultant data sets. Furthermore, due to the computational demands and limitation on 
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resources, the preliminary neuron network model is limited to modeling 6 individual neurons and 

their interactions. While this is certainly not at the scale or full repertoire of the human brain, the 

fundamental methodology can be used to build support for the aforementioned philosophies and 

assumptions to garner the support justifying the merits of utilizing additional resources to produce 

further refined and complex studies based on the very same foundational principles. To begin, the 

next section will display results of the membrane potential dynamics and display the character of 

this is similar to what is observed in electrophysiological studies [288] adding credence to the 

claims and assumptions aforementioned.  

 

 3.5.1 Microscopic Brain Network Analysis and Information Content 

Below the time-evolution of the voltages of 6 neurons in a 6-neuron network model is 

shown in Figure 1.  
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Figure 1: 6 Neuron Voltage Dynamics 

The figure above displays the dynamical voltage fluctuations of six neurons interacting 

with one another eliciting an excitatory response. This data was generated from “An Energy Based 

General Framework for Dynamical Complex Networks – dissertation from Chun-Lin Yang” using 

the equations from the preliminary brain network model and philosophies described previously. 

The general character of these action potential waveforms are within the ranges found from 

electrophysiological studies supporting the validity of the equations and methodologies 

aforementioned in generating a preliminary brain network model. Each waveform is not 

completely identical; however, this inherent variability is necessary as in real brain networks all 
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action potential spikes are not the same due to intrinsic variation and uncertainty in underlying 

physiological machinery.  

Furthermore, the characteristics of neuronal activity can be further delineated by extracting 

the intrinsic frequency components of a neurons voltage and displaying how these frequencies 

change over time. This is necessary to pin-point the exact patterns and forms of information 

represented by this individual neuron. Simultaneously extracting the time-frequency character of 

a neurons activity allows pin-pointing the underlying unique patterns of information. As a 

reminder, the time-frequency components were extracted upon applying the empirical mode 

decomposition using the Hilbert-Huang transform upon the multicomponent signal of a neuron’s 

behavior in terms of its voltage fluctuation over time. This extracted monocomponent intrinsic 

mode functions allowing the application of instantaneous frequency upon the resultant data to 

produce a simultaneous time-frequency representation of the signal. The figure below shows the 

extraction of the underlying time-frequency components of a single neuron’s (neuron 1) activity. 

It is important to note that this defines the information content (in terms of time-frequency 

components) at the microscopic individual neuron constituent level. 
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Figure 2: Neuron 1 Time-Frequency Components to Quantify Information Content 

As is shown in figure 2 above, the monocomponent intrinsic mode functions (IMF) of neuron 1’s 

multicomponent voltage response over time is extracted and the instantaneous frequency 

components as a function of time is displayed. Thus, this shows a signature information content 

for neuron 1 in terms of the underlying time-frequency components of its dynamical response.  

Furthermore, every single neuron is not identical in terms of the dynamical response. While it is 

difficult to establish the subtle differences, such complexity is absolutely necessary to ultimately 

encode diverse forms of information (observed in the diverse forms of physical activity and action 

of coupled neuronal activity). Time-frequency analysis can be applied to illuminate and pin-point 

these differences by representing the respective information content of a neuron in terms of the 
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time-evolution of its underlying frequency components. Thus, time-frequency analysis was 

applied upon neuron 6 (while the previous analysis was applied upon neuron 1) displaying a 

fundamentally distinct repertoire of frequency components corresponding to the unique physical 

behaviors of that particular constituent neuron. The underlying frequency components 

(corresponding to encoding a distinct form of information) is shown below.  

 

Figure 3: Neuron 6 Time-Frequency Components to Quantify Information Content 

The figure above displays the unique time-frequency components in the dynamical response of 

neuron 6 corresponding to a representation of a different form of information. For the curious 

reader, time-frequency component analysis was done for all 6 neurons shown in Appendix A. Once 

again, it must be recognized that information description at this microscopic level of neurons is 

certainly ambiguous as it is not clear what relations they have to global brain behaviors. It is outside 
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the microscopic level and information content and dynamics at the global level of a brain with 

billions of neural cells and trillions of connections. A complete answer to this would resolve the 

major questions in neuroscience (along with other network systems with complex architectures 

similar to what is observed in the brain). What is within the scope of this thesis; however, is that 

information can fundamentally be extracted without ambiguity using the unique spatiotemporal 

evolution of frequency components and this understanding can serve as one of the foundational 

principles (in addition to the in-depth reviews previously described) to aid in working towards a 

more complete understanding of the human brain which is currently missing in current approaches. 

Furthermore, as will be described in the following sections and figures, despite the simplicity of 

this preliminary brain network model, unique patterns of information in the time-evolution of 

distinct components at the macroscopic and microscopic levels are identified. In the bounds of this 

model, the microscopic level refers to the individual voltage dynamics of a single neuron. The 

results and data analysis displayed above describes the dynamical state and underlying information 

content of a neuron network at the microscopic constituent level in terms of voltage fluctuations 

over time. While these uncover characteristics at the microscopic scales, further analysis upon 

macroscopic level network properties is necessary to characterize network dynamics more 

comprehensively.  

Going further down the microscopic level to the underlying ion flux driving the voltage 

fluctuations due to the interactions from coupling between neurons, analysis of the underlying 

time-frequency components is shown below. Furthermore, analysis of the underlying accumulated 

charge time-frequency components is also shown.  
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Figure 4: Neuron 1 Ion flux Time-Frequency Analysis 
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Figure 5: Neuron 1 Charge Time-Frequency Components 

These figures show the dynamical components pertaining to the coupling interactions 

between neuron cells in regards to ion flux and accumulated charge respectively. It is clear that the 

underlying frequency components are significantly different than that of the neuronal voltage 

dynamics shown previously representing a different form of information at this microscopic scale.  

The cumulative interaction of these different forms of information placed in a particular context 

creates the overall dynamical characteristics of a network at the ensemble level. Thus, information 

content at the macroscopic and microscopic level can be precisely defined using these time-

frequency tools.  
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3.5.2 Macroscopic Brain Network Analysis and Information Content 

The overall macroscopic level information entropy of the network and its underlying time-

frequency components can determine the dynamical state and information content of the network 

ensemble. To begin, the neuron network ensemble information entropy variation over time is 

displayed in figure 6 below.  

 

Figure 6: Macroscopic Neuron Network Information Entropy Dynamics 

It is noteworthy that the character of the resultant entropy fluctuations reflect the underlying spikes 

in neuronal voltage thus exhibiting direct correlations between the ensemble (macroscopic) level 

and constituent (microscopic) level. Hence, the global variation of entropy over time reflects the 

dynamical state of the network ensemble and reflects the fluctuations of the microscopic level 
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constituent behaviors. Furthermore, figure 7 below displays the underlying frequency components 

for the macroscopic information entropy of the 6-neuron network model. Despite, showing 

similarity in time domain trajectories, the repertoire of the two levels (macro and micro) have 

clearly distinct underlying time-frequency components.  

 

Figure 7: Information Entropy Dynamical Frequency Components  

Thus, it is immediately recognizable that at the macroscopic scales a distinct patterned time 

evolution of frequencies is observed in regards to the information entropy of the network model. 

This, of course, corresponds to encoding different type of information (physically represented by 

a different dynamical state). Therefore, the analysis above shows the time frequency analysis can 
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be feasibly used to precisely identify he the unique patterns of frequencies. Furthermore, these 

unique patterns of frequencies correspond to respectively distinct types of information content.  

The analysis above displays the time-varying properties of a 6-neuron network model at 

the macroscopic and microscopic levels along with the respective information content described 

by the unique time-frequency components of the network’s global information entropy signature 

and its local neuron voltage dynamics and coupling interactions.  

While the figures and analysis above describe the characteristics of one particular network 

type, a comparison must be made to a different network configuration to display that a different 

network composes another unique pattern of time-frequency components which can be used to 

encode different forms of information. Furthermore, analysis of upon a different network 

configuration must be similarly done upon the macroscopic and microscopic levels. Additionally, 

this analysis must be performed to display that the underlying methodologies and philosophies can 

be applied to networks beyond the human brain, rendering the aforementioned ideas generally 

applicable to network complexity within nature’s ensemble in analyzing unique forms of 

information content (by the underlying time-frequency components).  

 

3.5.3 Macroscopic 20 Point Mass Network Information Content Analysis 

For further comparison in establishing a unique time evolution of frequencies for a 

particular network configuration (which encode different forms of information), the previously 

displayed results are compared to that of a 20-point mass network model. The intrinsic differences 

in this network underlying architecture from the micro to the macro scales renders a unique 

evolution of frequencies over time. In other words, this creates a distinct type of information. 

Furthermore, this exhibits how the precise characterization of unique patterns of information can 
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be quantified using such time-frequency tools to better understand (and even manipulate) various 

forms of information. Mathematical analysis of data must be performed to corroborate these 

claims.  

The initial conditions of this network model start with 20-point masses oriented at different 

positions in a concentric circle in 3-D space. Each point mass was coupled to one another. The 

degree of coupling in this network configuration is signified by K and J to signify the magnitude 

of coupling strength between the point masses. The nature of coupling dynamics in this network 

system results in a network evolution towards synchronization. This is analogous to the terms 

within the summation of the dynamical equation for a neurons voltage which signified the 

magnitude of ion flux corresponding to the strength of interactions and respective degree of 

coupling between neurons. The key takeaway for the following analysis is to identify that a 

different network structure is capable of encoding different forms of information which is precisely 

quantified by its underlying time frequency content. To begin, we start of with the macroscopic 

dynamical state of this network ensemble dignified by the information entropy characteristics and 

an analysis of its underlying frequency components in figure 8 below.  
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Figure 8: 20 Point-Mass Information Entropy Time Domain Fluctuation 

As the network’s trajectory evolves towards synchronization, entropy fluctuation is significant in 

the beginning time steps; however, reduces significantly once synchronization is reached. In 

addition to time-domain information, frequency domain information is extracted and shown below 

in figure 9.  
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Figure 9: 20-Point Mass Network Time-Frequency Components of Information Entropy 

It can be seen that far more information can be extracted from the simultaneous analysis of the 

time-frequency components. Therefore, this tool enables characterizing different forms of 

information content to a much higher degree than pure time-domain or pure frequency-domain 

analysis. Furthermore, the dynamical macroscopic ensemble state of this network and its 

underlying frequency components are distinctly different from that of a brain network model. 

Naturally, a neuron network model and a 20-point mass constituent model will have different 

characters; however, this is still shown to explicitly convey that these unique forms of information 

(a rather ambiguous term) can be precisely pin-pointed by analysis of the underlying dynamic 

frequency components. This formalization of information representation is necessary to enable the 
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advancement of future refined studies. Furthermore, these results indicate that neuron networks 

trial cases with different underlying parameter configurations would produce distinctly different 

time-frequency characteristics. In other words, alteration in underlying parameter configurations 

(such as interactions strength denoted by overall cross-sectional area of receptors) would inflict a 

change of the dynamical repertoire of a neuronal networks character enabling encoding different 

forms of information. This phenomenon is recognized as synaptic plasticity and can be 

quantitatively pinpointed with mathematical precision using these time-frequency tools. In the next 

section, the microscopic network level characteristics will be assessed for comparison as well.  

 

3.5.4 Microscopic 20-point mass Network Information Content Analysis 

Further analysis is done upon the microscopic level network characteristics. For this network 

system, the microscopic level dynamics is the velocity for a single constituent. The velocity of 

single constituent in a 20-point mass network model defines the driving state of an individual 

constituent. Hence, velocity in this network configuration is analogous to the voltage of a neuron 

for the 6-neuron network model. The velocity profile of a single constituent is show below in figure 

10. 
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Figure 10: Velocity of a Constituent in 20 Point-Mass Network 

As the 20-point mass network configuration is relatively simpler compared to neuronal dynamics, 

the resulting driving velocity has minimum variation in terms of its frequency spectrum over time 

as shown in the figure below. The time series displays the most significant dynamic features in the 

transition qualitatively observed between 0 to 5 seconds. This is shown in the corresponding time-

frequency analysis below as the most significant changes are shown in between 0 to 5 seconds. 

There are smaller fluctuations from normal behavior throughout the signal shown in subtle jumps 

in the time frequency analysis as time continues. Still, it must be noted the overall level of 

information variation is minimal as compared to a neuron’s dynamics due to the relative simplicity 

of a 20-point mass network model.  
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Figure 11: Velocity Time-Frequency Components of a Constituent in 20 Point-Mass 

Network 

Thus, the information encoding scheme is displayed in the subtle yet non-negligible variation in 

physical characteristic of the velocity fluctuations over time. This is shown in the subtle spikes of 

frequency components displayed in the time-frequency analysis. The level of dynamic fluctuation 

is not as rich as a neuron networks individual voltage; however, the underlying information content 

(represented by the dynamical character of the velocity) can still be extracted using these time-

frequency tools. Furthermore, this 20-point mass network model explicitly conveys coupling in 
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terms of degrees of coupling K and degree of coupling J. Analysis is shown in the following figures 

12-13.  

 

Figure 12: Time-Frequency Components for DOC K 
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Figure 13: Time-Frequency Components for the DOC J 

The degrees of coupling K and J in this 20-point mass neural network model signify the interaction 

magnitude between constituents. The degrees of coupling K and J are analogous to the 

accumulated charge within a neuron and the ion flux occurring across the membrane of a neuron. 

Analysis of the intrinsic frequency components and how they change over time shows a unique 

encoding of formation distinguished by these frequency components further corroborating the 

ability to extract different types of information using time-frequency tools. Furthermore, it is 

noteworthy that in this network configuration, the characteristics and evolution of the degree of 

coupling displays a richer repertoire of information content as opposed to the velocity of the 

constituents. Consequently, information encoding in this network architecture is significantly 

represented by the degree of coupling between network constituents. In other words, the magnitude 

of influence network constituents has upon each other and the time-varying properties of this 
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feature is capable of encoding complex forms of unique information. Thus, information content at 

the microscopic or macroscopic scales of a network can be distinctly identified by the underlying 

time-frequency content. Furthermore, the information content at the micro and macroscopic levels 

along with the coupling interactions between constituents is distinctly unique at all levels for the 

20-point mass network model and the 6-neuron network model. This further dignifies the unique 

information character represented by distinctly different physical attributes which is precisely 

identified by extracting the instantaneous frequency components and comparing their temporal 

evolution.   
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4. SUMMARY, CONCLUSIONS AND FUTURE WORK

Through thorough literature review, current approaches in attaining a general 

understanding of human brain dynamics are insufficient. Significant knowledge has been attained; 

however, to sustain the next level of progress a new approach is necessary. Therefore, it is the aim 

of this study to build the foundations of a new approach towards understanding the human brain 

With the established theoretical framework and governing numerical equations implemented upon 

network models of different configurations and analysis of the resultant data, the feasibility of this 

approach is demonstrated in being able to model the underlying dynamics of the human brain using 

fundamental physical laws as established by the general framework for complex networks. This 

establishes network dynamics at the macroscopic levels through information entropy and at the 

microscopic levels through individual constituent energy fluctuations (manifested in the physical 

form of neuron voltage in the one hand and velocity of a point mass on the other hand) along with 

energy attributed to individual degrees of coupling. Each level (macro and micro for global 

network state and individual behavior and coupling dynamics) contains a unique spatiotemporal 

spectrum of information content. Furthermore, upon generating dynamical data, identification of 

a unique time-evolution of frequencies in the dynamical characteristics of a network can be 

accomplished to uncover the previously ambiguous notion of information content. This can be 

used to precisely quantify the information content of a complex network such as the brain to help 

uncover a deeper comprehension towards neurodynamic complexity. Additionally, mathematical 

tools and concepts such as empirical mode decomposition using the Hilbert-Huang Transform are 

useful in feasibly extracting instantaneous frequency components to determine the time-frequency 

character (information content) of a physical signal. Furthermore, the two different network 
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configurations displayed unique time frequency components signifying the encoding of 

respectively distinct forms of information at the microscopic and macroscopic levels.  

In the case of a brain network analysis was done only upon a 6-neuron network model 

For neuron networks with larger numbers of constituents and greater diversity in the underlying 

attributes of each constituent, it is feasible to consider that various diverse forms of information 

can be encoded and the physical manifestation of a unique time evolution of underlying frequency 

content. Furthermore, encoding different forms of information is possible through adapting 

underlying network parameters. In brain networks, this phenomenon is displayed through the 

various modes of plasticity. Due to the sheer scale and degree of complexity in the brain, small 

changes in underlying network parameters (different forms of sensory information or underlying 

motivations) can dramatically alter the overall time-frequency characteristics of an instantaneous 

brain network response steering adaptive behaviors. For example, different adaptive behaviors 

from identifying valuable resources and recognizing beneficial opportunities to assessing the 

safety of certain tasks and even initiating fight or flight responses; throughout development, the 

brain wields its dynamical characteristics in mastering 1) the recognition of such a variety of 

scenarios and 2) the reaction towards each respective scenario to optimize conditions of survival. 

As described in detail, these dynamical characteristics can be defined through the macroscopic 

level of information entropy, the microscopic fluctuations of energy levels in regard to constituent 

behaviors and interactions and the underlying time-frequency content of both the macro and 

microscopic network state. It is necessary for the brain to operate on these principles to efficiently 

survive and thrive in a world with finite resource limitations. Thus, the feasibility of the 

philosophies of this study are generated from a throughout literature review on brain dynamics to 

a qualitative assessment on the nature of how the brain operates to generating a precise quantitative 
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metric to measure biophysical brain complexity across its multiple scales of action (micro to 

macro). 

Therefore, future studies aim to build upon this foundation and conduct numerical 

experiments upon neuron network models with different configurations for the underlying 

physiological parameters of these neuron. Variation in underlying physiological parameters would 

be done by altering the interaction parameters between neurons via modulating the number and 

overall cross-sectional area of receptors (not limited to just this factor) changing the underlying 

configurations can change the dynamical characteristics and this alteration and physical response 

can encode different forms of information much like how synaptic plasticity and other modes of 

plasticity work in the human brain. Furthermore, the implementation of more efficient computing 

strategies and algorithms will be utilized to increase the scale and computation complexity of 

testing neuron network models with the aims of uncovering additional information. Additionally, 

more comprehensive incorporation of the various forms of plasticity can render generating richer 

brain network models. Additionally, future study in this area is open to transdisciplinary 

collaboration and even merging the developed understandings upon experimental application to 

further refine the merits and foundations of our research work. Experimental application to model 

the human brain is a complex task; however, a thorough understanding of the underlying 

knowledge gives the ability to conduct experimental studies with more efficiency and promise. 

Ultimately, the generated theory and computational simulations must be validated by physical 

experimental application to refine the validity of the developed knowledge to the next level.  

Hence, this study serves to provide a foundational approach in assessing the human brain 

which sheds the inhibitions of conventional practices to bring together all the distinct field 

methodologies and garner a modern transdisciplinary perspective upon the human brain. A new 
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approach is necessary to attain a more comprehensive understanding which can illuminate new 

insight in neuroscience while simultaneously having implications upon organizing the optimal 

representation of information in our society. Furthermore, the precise architecture for optimizing 

the efficient representation of information is accomplished through a statistically self-similar or 

fractal structure. Quantitatively establishing this organizing principle comprehensively is the goal 

of future studies that can be built upon the foundations of this research.  
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