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ABSTRACT

Current numerical methods solving the Navier-Stokes equations such as, the subject matter of
this project, the parabolized stability equations (PSE) have proven to be costly for industrial ap-
plications. In particular, improving upon cost effective numerical methods for hypersonic regimes
has been a topic of interest. The Hypersonic Vehicle Simulation Institute aims to study the process
of transition for hypersonic boundary layers by extending the amplification factor transport (AFT)
model to these flow regimes. The work done in this paper will provide developers of the AFT
model with accurate stability results calculated by LPSE for comparison and relate the growth
rates of the instability to energy contributions within the system.

The geometry chosen for this study is a straight cone with an angle of incidence. The cross-
flow instability is identified with a max N-factor of 14.5 at an azimuthal angle of 148.6° and a
wavenumber of 81.9. In its current form, the AFT model only reports instability near the leeward
plane and does not capture the crossflow mechanisms in the regions reported by LPSE.

An energy-perturbation budget analysis shows large Reynolds-flux production counteracted by
pressure work and dissipation for highly unstable conditions. The balancing of these energy pro-
duction values results in the growth rate. The largest energy contribution factors are the Reynolds
heat-flux and the temperature-perturbation dissipation. Using these two terms, the neutral point
is approximated with low relative error compared to the growth rate neutral point (< 10% for re-
gions of interest) as well as large linear correlation to the development of the growth rate in the
streamwise direction.

Another topic of interest for aerospace engineers is the reduction of drag on commercial air-
craft. The National Aeronautics and Space Administration (NASA) University Leadership Initia-
tive (ULI) has developed an airfoil with the slotted-natural-laminar-flow concept (SNLF). Stability
characteristics for the bottom side of this airfoil, which includes the slotted region, are generated
using linear (LPSE) and nonlinear (NPSE) parabolized stability equations. The development of in-

stability mechanisms described for portions upstream of the slot, near the slot entrance, and within
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the slotted region of the airfoil for varying sweep angles 0° < A < 35°.

The instability mechanisms are defined as the crossflow instability for swept cases and the
Gortler mechanism in the concave region of the slot. Using LPSE, a large Gortler amplification
is found in the slot (/N = 13) for the steady and unsteady equivalent of the disturbance. This
amplification is stabilized by the presence of crossflow within the slot. At A = 35°, the N-factor
is approximately 8.5 and 7.5 for the unsteady and steady disturbance, respectively.

For large sweep angles (A > 20°) a destabilized crossflow instability is present in the upstream
portion of the airfoil. This amplification is quickly dampened by the convex surface curvature re-
sulting in a stable flow at the slot entrance indicating little to no upstream influence of the crossflow
instability.

A nonlinear study indicates the highly distorted Gortler instability within the vicinity of the
slot. The largest initial amplitude allowing convergence is A 1) = 10~2. The neutral point for the
nonlinear case remains consistently at a location slightly downstream of the slot entrance regardless
of sweep. A more pronounced sweep angle results in nonlinear saturation occurring further down-
stream. The crossflow velocity component causes a smearing effect primarily in regions where the

velocity has upwelled further into the freestream.
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NOMENCLATURE

VARIABLES

@ Streamwise wavenumber in the leading-edge-orthogonal
direction

B Spanwise wavenumber in the leading-edge-parallel direction

150 Hartree Parameter

y Ratio of specific heats

) Boundary-layer height

O Blasius length

€ Small factor

0 Azimuthal angle

K Coefficient of thermal conductivity

Av Second viscosity coefficient

A Sweep angle

1 Dynamic viscosity coefficient

p Density

) Primitive variable vector (u,v,w, T\ p)

) Norm value

(G Wave angle

\Y Divergence operator (s, ¥, z)

v Dissipation

w Angular frequency

X Slowly varying streamwise coordinate
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a Speed of sound

A Amplitude

A, B,C,and D Coefficient matrices (5 x 5) present in the disturbance
equations

c Leading-edge-normal chord length

Cp Specific heat at constant pressure

Cy Specific heat at constant volume

Cph Phase speed

D Viscous energy terms

Ec Eckert number

f Regular frequency or period

G Gortler number

hi, ha, hs Curvature scales in the (s, y, z) directions, respectively

H Shape factor

k Wavenumber multiple factor

L Reference length

L Linear disturbance matrix
M Mach number

n Frequency multiple factor
N Amplification factor

N Nonlinear forcing vector
P Pressure

P Pressure work

Pr Prandtl number

Q Resultant velocity

R Radius of curvature
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Reynolds-flux term

R, Specific gas constant

Re Reynolds number

8,9, % Local Cartesian coordinate system

S Sutherland’s temperature

t Time variable

T Temperature

U, v, W Velocity components in (s, y, z) directions, respectively
1% Velocity vector (u, v, w)

x, Y, Z Global Cartesian coordinate system
ACRONYMS

AOA Angle of attack

CF Crossflow

CST Computational Stability and Transition
DEKAF Digits by Ethan, Koen, Alex, and Fernando
EPIC Euonymous Parabolized Instability Code
HVSI Hypersonic Vehicle Simulation Institute
IATA International Air Transport Association
LPSE Linear parabolized stability equations

LST Linear stability theory

MFD Mean flow distortion

NASA National Aeronautics and Space Administration
NLF Natural-laminar-flow

NPSE Nonlinear parabolized stability equations

PSE Parabolized stability equations
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SCF
SNLF
TCF
TS
TAMU
ULI

UTK

SUBSCRIPTS

e

SUPERSCRIPTS

ACCENTS

A

Stationary crossflow

Slotted, natural-laminar-flow
Traveling crossflow
Tollmien-Schlichting

Texas A&M University
University Leadership Initiative

University of Tennessee, Knoxville

Edge value
Imaginary value
Freestream quantity
Fourier mode

Real value

Pertaining to values at the wall

Dimensional quantity
Complex conjugate
Matrix transpose
Quadratic

Cubic

Arbitrary Fourier mode number

Shape-function quantity

Basic state quantity
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Disturbance quantity
Dummy variable

Vector
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1. INTRODUCTION

1.1 Background

Turbulent flow has several detrimental effects in terms of performance. For example, in com-
mercial aircraft it contributes a significant portion of drag, and for re-entry vehicles it causes a
high thermal loading. For this reason, laminar-to-turbulent transition has been a topic of great
importance to aerospace engineers. When a laminar flow experiences a disturbance, an instability
mechanism can cause it to grow. If the disturbance has a large enough amplitude, it will break
down to turbulence. Understanding these instability mechanisms and how they grow or decay
allows engineers to better predict transition and further reduce turbulent flow.

The equations that, ultimately, govern disturbance amplification are the Navier-Stokes equa-
tions. Several numerical methods have been developed to solve these equations. The highest fi-
delity method is Direct Numerical Simulation (DNS). For that reason, it is the most costly method
in terms of computational resources. For industrial applications, the Reynolds-Averaged Navier-
Stokes (RANS) model is commonly practiced for its lower computational-resource requirements.
In contrast to DNS, RANS has a lower fidelity because turbulence is modeled instead of resolved,
i.e. resolving small, turbulent eddies. For the purpose of this proposal, stability methods such
as Linear Stability Theory (LST, [3, 4]) and Parabolized Stability Equations (PSE, [5, 6]) will be
employed. These methods impose assumptions that exploit geometrical symmetries correspond-
ing to the specific boundary-layer flow case (i.e. the flow over an airfoil or a cone at an angle of
incidence) to simplify the Navier-Stokes equations. At a highly reduced cost compared to DNS,
stability methods maintain a relatively high level of fidelity, especially in regard to the perturbation

dynamics.
1.2 Motivation

This study focuses on the application of PSE on two separate projects: one at high and the

other at low speed. Both projects have industrial applications and understanding how disturbances



grow in each case will provide insight to understanding boundary-layer transition.
1.2.1 High-Speed Project: HVSI

As mentioned, for hypersonic applications, e.g. re-entry vehicles, surface heating is of large
concern as the material can be damaged and life cycles can be reduced. Transition to turbulence of
the boundary layer on this type of vehicle can be a source of larger heat transfers so understanding
the instability mechanisms at hypersonic speeds has great value. The U.S. Air Force Academy
(USAFA) established the Hypersonic Vehicle Simulation Institute (HVSI) to study boundary-layer
transition on high speed vehicles. One objective for the HVSI is to expand on the Amplification
Factor Transport (AFT, [7, 8, 9]) model which can run in parallel to a computational fluid dynamics
code and account for instabilities by switching on a turbulence model when applicable. This model
is being developed by the University of Tennessee, Knoxville (UTK) and is compared against PSE
results provided by Texas A&M University (TAMU). A geometry that will be considered for this
specific effort is a straight cone, yawed at an angle. The PSE analysis will focus on the development
of the crossflow instability. Further details on this instability mechanism will be specified later. To
further assist in the overarching goal of extending the existing AFT model, an accurate depiction
of instability growth is necessary. To this extent, an energy-budget-analysis tool is developed. This
tool will decompose the perturbed flow into the dominant sources of energy to better understand
what parameters are of greater importance. These sources can then help influence the AFT model
by providing a guideline for the parameters that contribute to the instability mechanisms that cause

transition.
1.2.2 Low-Speed Project: ULI

In the NASA Aeronautics Strategic Implementation Plan, NASA emphasizes the goals of the
International Air Transport Association (IATA) to impose reductions in net emissions for subsonic
transport aircraft. These goals include a 1.5% average annual efficiency improvement between
2010 and 2020, a reduction of 50% in net emissions by 2050 as compared to 2005, and carbon

neutral growth from 2020 onward. Our contribution to this overall goal is led by the University of



Tennessee, Knoxville through the NASA University Leadership Initiative (ULI) project. The ULI
project established the Advanced Aerodynamic Design Center for Ultra-Efficient Commercial Ve-
hicles to develop more aerodynamic wings for commercial aircraft. One such wing in development
is a Slotted, Natural-Laminar-Flow (SNFL, [10, 11]) airfoil which operates in a low-speed setting
(up to transonic speeds). By using the Natural-Laminar-Flow concept, designers can optimize air-
foil shapes to minimize transition-induced-drag. The airfoil design imposes a favorable pressure
gradient over a large percentage of the chord and the addition of the slot furthers that extent. The
favorable pressure gradient will stabilize the Tollmien-Schlichting (TS) instability however, can
amplify crossflow perturbation development [12]. The concave region within the slot will also
amplify the Gortler mechanism [13, 14, 15]. The crossflow and Gortler mechanisms play a key
role in the development of transition and will be studied in detail for this proposal. In particular we
study 1.) which sweep angle is permissible before the crossflow instability dominates the transition
process and 2.) the amplification of Gortler disturbances and the effect of sweep thereon in order

to identify their potential role in the transition process.
1.3 Instability Mechanisms
1.3.1 Crossflow

The crossflow instability can be a dominant factor in three-dimensional flows experiencing a
crossflow velocity such as that over cones at non-zero angle of incidence (non-zero yaw) and swept
wings. This instability can grow when surface streamlines of the inviscid flow are curved by non-
zero pressure gradients. The bending of the streamline causes an imbalance in forces resulting in
a perpendicular velocity component relative to the local inviscid streamline. This velocity com-
ponent is called crossflow. The crossflow velocity must be zero at the wall and approach zero in
the freestream. Therefore, the profile of this velocity component should display an inflection point
somewhere off of the wall. This inflection point is the source for an inviscid instability. If the
disturbance that this instability causes grows to a large enough amplitude, co-rotating vortices can

develop and lead to turbulent breakdown [16, 17]. These vortices typically have a characteristic



spanwise wavelength of 4 times the boundary-layer thickness [18]. Crossflow disturbances can
be either stationary, corresponding to a zero frequency and a non-zero spanwise wavenumber, or
traveling with both a non-zero frequency and spanwise wavenumber. For the cases presented in
this paper, the crossflow mechanism is destabilized by a strong pressure gradient and larger sweep

angles. In order to counteract this instability, a convex surface curvature can be used [19, 20].
1.3.2 Gortler

The Gortler instability is a centrifugal instability that dominates on concave walls such as
the slotted region of the SNLF airfoil or turbine-compressor blades in an engine. The Gortler

instability grows from the satisfaction of the Rayleigh circulation criterion. This simple criterion

d(rv)?

7 < 0, then there
.

dictates that for a geometry with radius, r, and a tangential velocity, V, if

shall exist an inviscid axis-symmetric instability. For the viscous flow over a concave region, the
tangential velocity is zero at the wall and increases toward the freestream. Thereby, the Rayleigh
circulation criterion is automatically satisfied. This instability mechanism causes disturbances
to grow and develop into counter-rotating vortices with a characteristic spanwise wavelength of
approximately one boundary-layer thickness [18]. Saric [13] provides a qualitative study on the
development of this mechanism in the streamwise direction and Floryan [21] provides an in depth
review on experiments studying the Gortler vortices. Many numerical simulations have studied

this mechanism as well [22, 14].



2. METHODOLOGY

2.1 Governing Equations

The dimensional equations governing the physics of the flow will be presented in the form of
mass continuity, conservation of momentum, and conservation of energy in enthalpy form. The
equations govern a calorically perfect gas that is compressible and cast in a Cartesian coordinate

system. Per Stokes’ Theorem, the bulk viscosity is A\, = —% 1 and the second viscosity is ignored.

dp* n Lou* n L Ov* L 02"
ot P o5 TPy TP Gur

=0 2.1

. |ou” . Lou* n L ou* n Lou |0 L ou* . L ou* LAYV |
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The coordinate system, s, ¢, and 2 represent the streamwise, wall-normal, and spanwise directions

respectively and V' is the velocity vector in each direction. The following constitutive relationships



and state equation will aid in defining the remaining variables for the Navier-Stokes equations [23].

T\*?T
) ref +S (26)

= pR,T; = ) = Hre )
p pPligls;  Cp H qu(Tref T+8

2.2 Non-Dimensionalization

To non-dimensionalize the governing equations, reference values corresponding to the wall-
normal edge value is used for the state variables and a reference length L is used for the length

quantities.

L
s*=1Ls; y" =Ly, z*=1Lz V*:z = —t
L U

u = vt =u; wt=uaw; TF=T.0; pt=pp; pt=palp  E7D

*_ . *_ . *_ . *_
W= ety KT = KoKy Cp = Cp;  Cp = Cy,

To represent the governing equations in terms of the primitive variables, ¢, the equation of state,
p* = p*R,T", is substituted for the pressure terms. The non-dimensional gas constant is formu-

lated by substituting dimensional and reference values as such:

p  p° opT. RT. 1

S = = 2.8
YT pTrpeu? quZ o AM2 &9
This gas constant will help define the equation of state in a non-dimensional form.
pT
= 29
P=Ne (2.9)
The following non-dimensional parameters are defined using the reference parameters.
(& eL (& 2
Re, = Pete™.  pp, = Hele. g — Ye (2.10)
He Ke Cpe Te

Substituting the relations from Eqgs. 2.7 - 2.10 into the governing Eqs. 2.1 - 2.5 casts the governing

equations into a non-dimensional form for use in stability formulation.
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o TPas +pa—y+pa—w=0 (2.11)
oV _ Ay I T
[5 +((V-V) V] =—-Vp+V {Ree (V V)} +V {Ree (VV+ (VV) )} (2.12)
oT . 1 8p ECe
{g + (V- V)T} = PreReeV - (kVT) + Ec, [E + (V- V)p] + Ree‘lj (2.13)

2.3 Stability Formulation

A system of stability equations can be derived from the governing equations. The vector of
total flow variables will be depicted as ¢ = [u, v, w, T, p]T. By decomposing the flow variables
into a steady, laminar base-flow, ¢, with an imposed disturbance quantity, ¢', we can accurately

represent a disturbed flow.

ar (2.14)
k(s,y,z,t) =F(T)+ ﬁT/

d
& (5,9.2:8) = (1) + 2T

The decomposed flow variables in Eq. 2.14 can then be plugged back into the governing equa-
tions, Eq. 2.1-2.5. Since the basic-state quantities found in the disturbance equations must satisfy
the governing equations, they can be removed. The disturbances are grouped by their respective

derivative which results in the following non-homogeneous, partial differential equation [24].

a2¢/ 82¢/ 82 ¢/ ang/ 82¢/ aZ(b/
Arge Tg e v A T higg, T Pag: T Bige: s
o0 L0808 ¢ 21

+C, at+cla +Cgay +Cga—+D¢ =N

The rows of the coefficient matrices correspond to each of the governing equations while the col-
umn corresponds to each of the flow variables. N is the forcing vector containing all nonlinear

terms not associated with a disturbance derivative.



2.3.1 Linear Stability Theory

Linear Stability Theory (LST) is a widely used stability method that is relatively simple to
formulate [3, 4]. LST considers a flow that has no wall-normal velocity component making the
flow locally parallel to the surface of the geometry, ¢ = [u(y),0, @(y),T(y),ﬁ(y)}T. A normal-
mode can be used as a solution to the LST disturbance model which takes form in Eq. 2.16 as
a perturbation ansatz. The disturbance, ¢', is defined as a slowly varying shape function and a
quickly varying wave function. Since the disturbance quantity must be real valued, the complex

conjugate is added to the quantity.

/ _ 1 i(as+Bz—wt)
' (s,y,2,t) =0(y) e + c.c. (2.16)

shape wave

The components, « and (3, represent wavenumbers in the streamwise and spanwise directions
respectively while w is a real-valued frequency which describes the nature of the wave within the
solution. For a temporal disturbance analysis, w, and w; is determined by fixing the values of «
and (. For the purposes of this thesis, a spatial disturbance analysis will be performed by fixing
the values of w and [ to solve for a. By choosing w and /3 to be real-valued, the growth or decay
of the disturbance will only be contained in the streamwise direction defined by «;. Additional

relationships are defined to describe the real quantities in the form of a wave angle, 1), and a phase

speed cpp,.

’QD = tan_l (ﬁ—:) and Cph = \/ﬁ (217)

By considering nonlinear and streamwise varying terms to be negligible and implementing the
parallel flow assumptions, Eq. 2.15 can be reduced to a homogeneous, ordinary partial differential
equation. Note the coefficient matrices contain only linear terms from the matrices in Eq. 2.15 as
indicated by the superscript L. Since the wave function can be divided out of the disturbance, only

the shape function remains.



9% O X
AéSTa—yQ + BQLSTa—y + D" =0 (2.18)

Solving the equation requires a posing the system as an eigenvalue problem. By factoring out the

« values from the matrices, a nonlinear equation can be formulated in Eq. 2.19.

(Coa® + Cra+Cy) ¢ =0 (2.19)

Using the Linear Companion Matrix Method [25], the nonlinear system can be linearized by letting

“ ~ ~717T
the solution be of the form © = [a@, @] .

Ad =aB® (2.20)
where the matrices are defined as
-C; —-C Co 0
A=| © . B=]" 2.21)
I 0 0 I

2.3.2 Linear Parabolized Stability Equations

Linear Parabolized Stability Equations (LPSE) is another stability analysis tool that considers
small variations of the base-flow in the streamwise direction [5, 24, 26]. Similar to LST, the flow is
again decomposed into a mean flow and a disturbance quantity. PSE however, does contrast from
LST in its ability to handle non-parallel flows. The equations are parabolic in nature along the
streamwise coordinate which allows us to march downstream from a given initial condition. The
streamwise growth will now depend on the slowly varying scale, y = es, where ¢ = Re ™! [24].

The resulting perturbation ansatz is reflected in Eq. 2.22.

& (5,9, 2,t) = (X, y) exp [z </a(x)dx + Bz — wt)} + c.c. (2.22)
shape ™ ~~ -

wave
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The exponential growth is absorbed into a rapidly evolving wave function with a slow varying
shape function. Again we will substitute this disturbance into the Navier-Stokes equations to result
in a system of equations that can be grouped into matrices. These matrices differ from the LST so-
lution and are updated at each marching step. The benefit of using multiple scales in the marching

direction can be realized when the substitution of the following terms is performed.

%—f = (eg—i + iea(ﬁ) exp [2 </ a(x)dx + Bz — wt)} (2.23a)

2 41 2 f
0% = (6 gX(i - 2@60[2—?2 + ieg—iqg —a? A) exp {z (/a(x)dx + Bz — wt)] (2.23b)

From the streamwise derivatives seen in Eq. 2.23, the dissipation term highlighted in red can be
neglected (i.e., €2 = Re~2 << 1). This permits the second derivatives in the streamwise direction
to be eliminated further eliminating elliptic effects on the system. The following partial differential

equation in 2.24 reflects this.

APSE(; ‘f + BPSE 832 +CP5E gi +CpsE gz +D"F6 =0 (2.24)

PSE is solved as an initial value problem and for our flow solving configuration, the LST
solution is used as the initial condition. The PSE solution is marched downstream and when the

matrices are updated, the streamwise wavenumber « is also updated using an auxiliary condition

defined in Eq. 2.25.

Ymax

Y Y / y/ Z / 6P dy (225)

@be{u Uyeeny :é 7777
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2.3.3 Nonlinear Parabolized Stability Equations

While LPSE focuses on solving a single spectral "mode", the nonlinear parabolized stability
equations (NPSE) will solve multiple "modes". The inclusion of additional modes allows for

nonlinear disturbances to be accurately captured. The disturbance is modeled as such:

o0 e}

d'(s,y,2,t) = Z Z ¢nk X Y) Ay (s) exp [i (kBz — nwt)] (2.26)

n=—o00 k=—o00

where

A0<n,k> .
A(n,k) = T €Xp (v | Qnk) (X)dX (2.27)
Since the disturbance quantity must be real-valued, the complex conjugate can be defined with the
following relations. The initial amplitude Aq(n, k) is divided in half and split between the mode
and its complex conjugate. Using the relations found in Eq. 2.28 the disturbance parameters for

modes (—n, —k) and (—n, k) can be solved for. As such, only about half of the modes need to be

calculated to complete a full NPSE simulation.

PO

Plnk) = P(—n 1)

Apgy = Al _j) (2.28)
QXn.k) = _Oézr—n,—k)

Additional symmetry conditions can be applied to the system if the laminar flow field is symmetric
about the spanwise coordinate. With the additional conditions found in Eq. 2.29, fewer calcula-
tions will need to be made as only a fraction of the (n,k) mode space is solved for. A visual

representation of the modes and their relations can be found in Fig. 2.1.
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Figure 2.1: Visual representation of (n, k) modes. Blue dots represent modes needing to be solved
for, yellow stars represent modes that can be found by conjugating known modes, and green trian-
gles represent modes that can be found by applying spanwise symmetry conditions. (Left) Non-
symmetric flow field. (Right) Spanwise symmetric flow field.

Uink) = Un,—k)y  V(nk) = On—k)s  Wink) = —Wn,—k)
Ty = Tint)s Plok) = Pny—t)
(2.29)
Awr) = Aw,-w)
&(n,k) = Oé(n’_k)
The nonlinear disturbance is substituted back into the Navier-Stokes equations and the newly

found differential equation can be represented as such:

0% 0¢ ¢ ¢ :
APSEZ @ | RPSE 4 CPSEZE 4 cPSEZT | DPSEG — N/ (2.30)
oy? L Oyoy Loy ay ¢

The nonlinear interactions are separated onto the right-hand side which allows a harmonic
balancing between different modes. For quadratic interactions the following forcing vector is

formed.

13



L (Z D Sy A exp[i (k1 Bz — nlwt)]) =

n1 ki

(2.31)
N <Z DD Gl Psbs) Ams o) A k) exp [i (K + k) Bz — (2 + n3)wt)]>

ng ky nz k3

Harmonic balancing consists of equating the exponents on the left- and right-hand sides which
results in the following relationship between the integer scales for the wavenumber and frequency.

The same process can be applied to cubic, quartic, and higher order interactions.

nM =n® 4 n® O = @ 4 ;6 (2.32)

Due to the harmonic balancing, a specified mode can only interact with modes that satisfy Eq.
2.32. For example, the mode (1, 2) can interact with mode (1, 1) and (0, 1) for a quadratic forcing
vector. A detailed breakdown of how the interacting modes are chosen can be found in [27].

The mode (0, 0), called the mean flow distortion (MFD) must also be considered. The MFD
for a steady state is defined as the difference between the spanwise averaged transitional boundary
layer and the laminar boundary layer. This mode if responsible for changes in the displacement
and moment thickness. Since the MFD has no complex conjugate, a condition is imposed where
923(0,0) is real and (g o) is imaginary. However, Hein [28] suggested that any non-zero o .g) would
be inconsistent with wall-normal boundary conditions. This assumption will be used in NPSE
calculations presented in this paper as doing so has allowed further downstream convergence. A
consequence of letting «v(g ) = 0 is that ¥ = O (Re_l) as indicated by the disturbed continuity

equation. The linear and nonlinear PSE can be found in appendix C.
2.4 Stability Solver

The primary program used for solving the spatial LST and PSE equations is EPIC [27, 29, 30].
EPIC is a boundary-layer disturbance solver developed by members of the Computational Sta-

bility and Transition (CST) laboratory at Texas A&M University. For EPIC, a three dimensional
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boundary-layer along any arbitrary path can be considered but a uniform flow in the locally span-
wise direction is imposed making this a ’quasi 3-D’ assumption. Using a generalized curvilinear
coordinate system, any curvatures can be accounted for in 3-D geometries and curvature can even
be scaled for certain cases. For PSE calculations, it is necessary to define a vortex path to march
along. The generation of these vortex paths will be outlined in the results section.

When initializing the LPSE simulation, an LST solution is generated at a user specified loca-
tion and the Newton-Raphson method is used to find an approximate neutral point (the streamwise
location where «; = 0). The LPSE solution is marched beginning at a location slightly upstream of
this location to the end of the geometry. For NPSE calculations, the LST initialization and stream-
wise marching occurs at the user specified location. For further details on PSE implementation in
EPIC, see [31].

To assist in quantifying LPSE stability results from EPIC, a parameter called the amplification
factor (N-factor) is defined in Eq. 2.33. The N-factor is the accumulation of growth along a given
streamwise path and is integrated from the neutral point to the end of the geometry. This growth
is captured fully in « for LST. However, for PSE a small part lingers in the shape function. To
properly extract the additional growth, the Chu-norm [32] is used and the equation is outlined
in 2.34. The Chu-norm is used to build the foundation of the energy budget analysis outlined
in the following section. The pu perturbation mass-flux is another common method used when
comparing with hot-wire measurements. A previous study within the HVSI project by Groot et al.
[1] showed qualitative agreement between the current yawed-cone configuration and work done by

Kocian [29], in which the pu mass-flux was utilized.

S : @
N(s) = / —4(5)d5, a(s)za—éaa— (2.33)
Sneut S
Ymax = . T
P(s)|? = ~ . 2 12 ~12 P _I172 52 d
0 = [ () (ats)P + 168+ 108) 4~ Lo 7P+ ) ay
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2.5 Budget Analysis

An energy decomposition tool is necessary to quantify each of the PSE terms. The purpose
is to identify terms of interest providing the AFT model information on flow conditions result-
ing in unstable flow. An energy analysis by Malik [19] indicated strong agreement between the
secondary growth disturbance and integrated energy. In this study, Malik considers a disturbance
energy equation consisting of the momentum equations with a control volume defined by a single
wavelength across the boundary layer. This study will extend the disturbance equation to include
the conservation of energy and mass continuity as well.

In order to properly realize the energy analysis, the scalar LPSE equations must be properly

scaled and converted into energy. The process for doing so is outlined in the following steps:

1. Multiply each equation by a scaling factor consisting of a complex conjugate.

s-momentum x ', y-momentum x 9, z-momentum X ',
- = 2.35
o T (2:3)
energy equation X —, continuity equation X ———
T yM?p

The LPSE equations defining the budget-analysis tool can be found in appendix A.

2. Add all linear disturbance equations. After addition, the left hand side will be defined as the

16



following terms:

u — 1 ~12 ~12 ~12 ﬁ ™12 T A2
w— — ul” + [v|° + |w + ———\T" 4+ ———
(w=ag) (PP 108 + o) + =217 + loP

m 7 00 T
i (p( AL ATaw> P ATap>

hy 0s 0s s ~EcT 0Os 'ysz ds

i ..0u 3 02'1}
=Uu _lpvai + Ru res + ¢ + Df/,res + Pﬁ +
Y ¢ '

o' (Rs + Ds + Po) +

oW 0%
UA)T _lpvi + Rw res + 1— I“ ¢ + Dl[‘,r(‘s + P'zi,' +
oy Re 0y? '

. o 0T oT v 0T . 0T
T*(‘pA i Ry i ~4+DTZ1-<>S+PT‘>+

BeT 0y  BeT Oy BeT 0y v T ECPiReT 0y
ot (—1% + Rpres + Dy + P,s)

0 (2.36)
The largest energy transfer types are Reynolds-flux production terms R (red), viscous terms
D (blue), and pressure work terms P (green). Some terms within these categories have been
defined individually as they produce larger transfers of energy while the rest are indicated by
the subscript, ’res’. The terms are defined by which scalar Navier-Stokes equation produces
the value. For example, the T subscript demonstrates terms defined in the conservation of

energy equation and have been multiplied by 1.

. Now that all of the LPSE equations are combined into a single, total energy equation, the

integral is taken in the y-domain:
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—H/O ha (p( 0s o 0s tw 33) * vEcT  0Os * 7M2p 83) y

Ymax
/ RHS dy
0

(2.37)

where RHS is the right-hand-side from Eq. 2.36.

. Solve for « in the term on the left-hand side by dividing the coefficient highlighted in green
from all terms in the equation. Notice that this coefficient models closely to the Chu-norm

found in Eq. 2.34 with the inclusion of a factor which is a byproduct of using a curvi-

2 h b
linear coordinate system. The modeling of this modified Chu-norm is intentional so as to
model the growth rate —a; while capturing how energy is generated or destroyed locally.

The frequency w will be zero since the focus of this study is on the stationary crossflow

instability.

. Optionally, integrate the resulting expression in the x-direction from a point corresponding
to neutral growth, denoted by x,.¢, up to a point of interest. The axial coordinate, z, is used
for streamwise integration rather than s to allow for comparison of different paths within the

same coordinate system.

Through this process, the streamwise growth of the disturbance can be quantified through the

imaginary component, «;. This process can be applied to each individual scalar LPSE equation

by using the same factor defined in Eq. 2.35 resulting in a disturbance energy with only values

pertaining to the related equation. The left-hand-side coefficient for o will be different which will

result in a different scaling for each of the terms when dividing this quantity out. The coefficient

associated with « on the left-hand-side is plotted in Fig. 2.2 for the total disturbance as well as
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Figure 2.2: Individual contributions to the total energy normalization as seen on the most amplified

vortex path and wavenumber.

each individual LPSE disturbance equation.

In addition to quantifying every energy production term, it is also possible to quantify an ap-
proximate energy production in order to satisfy a specific threshold of the total perturbation energy.

This threshold is defined as a proportion of the maximum growth rate in the axial direction for the

most amplified vortex path and wavenumber.
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3. CONE CONFIGURATION *

3.1 Geometry and Grid Structure

The yawed-cone shape is defined as a straight cone with 7° half angle and 50 ym nose-tip
radius. The current model has a length of 20 in or 0.508 m from the virtual origin to the base
of the cone. A global coordinate system is defined using the x, Y, and Z axes about the virtual
origin. In the global coordinate system, 6 is defined as the angle about the X axis where 0 = 0°
at the windward symmetry plane. Within this coordinate system it is necessary to define a local
coordinate system that follows the path of a streamline. The coordinate s follows the streamwise
path along the surface of the cone and y is the local wall-normal axis. The 6, axis is perpendicular
to the streamline and tangent to the wall and will be referred to as the spanwise component. A
depiction of the yawed-cone geometry and coordinate system can be seen in Fig. 3.1.

Using Pointwise, an overset grid for the cone was created in two structured chunks with the
first surrounding the nose tip and the second encompassing the rest of the geometry. Since the
geometry is symmetrical, only half of the cone is generated (0° < 6 < 180°). A series of three
separate grids are generated with increasing resolution. The individual grids will be dubbed sparse,
intermediate, and dense with the naming convention indicating the grid resolution in regard to the
other grids. The indices j, k, and [ will indicate the axial, azimuthal, and wall-normal directions

respectively. Table 3.1 indicates the resolutions for each grid.

*Material in this chapter has been reprinted with permission from "Assessment of the Amplification Factor Trans-
port Transition Model for High-Mach Number Flows" by Koen J. Groot, Jay Patel, Caleb Saiyasak, James G. Coder,
Douglas L. Stefanski and Helen L. Reed, 2021. Copyright 2021 by Koen J. Groot, Jay M. Patel, Caleb A. Saiyasak,
James G. Coder, Douglas L. Stefanski & Helen L. Reed. and "Energy-Budget Analysis of the Crossflow Instability on
a Hypersonic Yawed Cone" by Jay Patel, Koen Groot, Caleb Saiyasak, James Coder & Douglas Stefanski. Copyright
2021 by Koen J. Groot, Jay M. Patel, Caleb A. Saiyasak, James G. Coder, Douglas L. Stefanski & Helen L. Reed.
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Figure 3.1: Yawed-cone geometry with zoomed in nose-tip, vortex path, and associated coordinate
systems.

Grid level ~ Nose-cap dimensions Body-grid dimensions Total grid points

nj x nk x nl nj x nk x nl
Sparse 121 x 61 x 217 613 x 271 x 217 37,650, 368
Intermediate 161 x 81 x 289 817 x 361 x 289 89,005, 642
Dense 201 x 101 x 361 1021 x 451 x 361 173,558,692

3.2 Base-Flow

The Mach 6.00 flow is directed at the cone with an incidence angle of 6° and a unit Reynolds
number of 10.0 x 10 m~!. The freestream temperature and pressure are T, = 53.42 K and
Poo = 611.4 Pa and the wall temperature has been defined as 7, = 300 K.

The laminar basic-state calculation for this geometry is generated using the NASA OVER-
FLOW [34, 35] Navier-Stokes solver. For this particular usage, HLLE++ fluxes along with a
MUSCL-type reconstruction are used for spatial discretization [36]. This configuration allows
for easier handling of non-grid-aligned shock waves without unwanted anomalies. An in-depth

description for the development of the base-flow grid using OVERFLOW can be found in Ref [1].
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For EPIC initialization, a vortex path must be described along the geometry. This is done by
extracting the full base-flow data using Tecplot 360 then judiciously extracting a vortex path. A
tool for extracting this path is developed by Travis Kocian [29] in MATLAB. This program allows
for a streamlined process to quickly identify and derive multiple paths at once. These paths are
defined by identifying where the spanwise velocity W, achieves an inflection point and rotating
about the wall-normal axis such that the generalized inflection point has no velocity. The analytical
expression for this criterion is seen in Eq. 3.1. Once a path is extracted, the spanwise wavenumber
must be scaled correctly [27]. This scaling depends on paths that are neighboring the extracted
path, in particular the azimuthal angle between the neighboring paths, which will help generate
a local wavenumber. For this analysis a series of vortex paths were generated to encompass the
entirety of the cone geometry. Due to the nature of the flow, the paths will generally start on the
windward portion and travel towards the leeward portion of the cone. To avoid the effects of the

nose, these paths were initialized slightly down stream of the cone origin.

9 p8W9“ =0 where Wy =0 aty = Y, 3.1)
dy dy

3.3 Stability Results

The primary instability for the yawed-cone to be studied is stationary crossflow so we set the
frequency, w to be zero. The spanwise wavenumber distribution ranges 50 < m < 400 at an
axial location x = 0.1 m. The discretization scheme uses 100 and 200 points in the streamwise
(s) and wall-normal (y) directions. These parameters are inputted into EPIC and the following
results are represented in N-factor curves. For the sake of this thesis the dense grid is further
studied, however, a grid resolution study can be found in [1]. For the dense grid, a cluster of paths
covering the majority of the geometry are plotted with the most unstable mode in Fig. 3.2. The
current results have a max N-factor of 14.5 which compares quite well to previous computational
studies [29] finding a max amplification factor of 13.7. The large amplification in the azimuthal

angle range is supported by Balakumar & Owens [37] who showed that the boundary layer near
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the leeward symmetry plane has been separated. Based on the nonlinear study by Moyes’ [38] Fig.
5.11, using the saturation point N-factor of 11, the current LPSE studies are well within the range
of transition. The N-factors for the most unstable vortex path is seen in Fig. 3.4. At the base of
the cone the azimuthal angle and wavenumber are § = 148.6° and m = 81.9. These values are

consistent with the experimental results indicated by Craig & Saric [39].

N-factor
15
Py 10
£
N
5
0.06 .
-Y (m) 0 x (m) 0

Figure 3.2: N-factor envelope for the yawed-cone configuration along the cone shape computed
with LPSE for the dense grid.

Figure 3.3: N-factor envelope for the yawed-cone configuration along the cone shape computed
using the AFT model.

In comparing the current LPSE results to the AFT model found in Fig. 3.3, there is a distinct

mismatch. Primarily, the AFT model only activates in the vicinity of the leeward plane and is
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N-factor

Figure 3.4: N-factors for most-amplified vortex path at varying wavenumbers with the red line
indicating the most unstable curve at the base of the cone.

unable to capture the high levels of crossflow instability in the region outside of the leeward plane.

3.4 Budget Analysis

Due to the discrepancy in amplification calculations between LPSE and AFT models, a budget
analysis of the energy components will be considered to assist in informing the AFT model on
which energy contributions lend itself to larger instability growth. The following budget analysis
will consider the entire § — m plane at the base of the cone and a streamwise study for the most
amplified vortex path and wavenumber. Disturbance energy equations for the total-perturbation,
conservation of energy, and crossflow-perturbation energy will be investigated. Further analysis
of the largest energy production values will focus on the location of .., as well as the linear
(Pearson) correlation coefficient. The conservation of energy disturbance is studied further due to
the large energy transfer seen in Fig. 2.2 and the crossflow-perturbation will be studied due to the

presence of the crossflow instability.
3.4.1 Total-Perturbation Energy

The total growth rate and individual contributions are integrated in the axial direction and

presented in Fig. 3.5. The individual integrated terms are the sums of the energy contributions
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defined in Fig. 3.6 (c).

In the left panel of Fig. 3.5 the vortex path is confined to the path yielding the highest amplifi-
cation while varying the wavenumber. The Reynolds-flux terms have the largest energy production
and effectively dictate the behavior of the total growth as seen be having similar wavenumbers
(m =~ 80 at zpase) for the peaks of energy production. This production term is being destroyed
or transferred by the pressure work and viscous terms which remain relatively constant through
the wavenumber variation. The right panel of Fig. 3.5 the azimuthal angles are varied while
the wavenumber yielding the highest amplification is chosen for each path. A similar trend is
found with the Reynolds-flux values dominating the growth of the instability achieving a peak
near 6 ~ 150° while pressure work and viscous effects impose a destruction of energy rendering a

more stable perturbation-energy growth.
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Figure 3.5: Energy-budget decomposition for the total-perturbation equation, see Eq. 2.37. Black:
—q; as integrated along the streamwise direction representing an approximate N-factor. Red:
Reynolds-flux energy production terms, R. Green: pressure work terms, P. Blue: viscous terms,
D. (Left) Integrated growth at the base of the geometry with varying wavenumbers choosing the
vortex path supporting the most amplified solution. (Right) Integrated growth for each vortex path
at the base of the cone choosing the most amplified wavenumber.

The values contained in the energy transfers found in Fig. 3.5 will be studied along the vortex
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path and wavenumber for which the largest N-factor is achieved at the base of the cone. For
this study the total growth, —c;, will be compared to an approximated growth , —c; approx, Which
consists of terms summing to a percentage of the maximum growth rate. This threshold is achieved
by including additional terms (in order of largest to smallest) until the desired error is produces.
Fig. 3.6 indicates thresholds for 80%, 90%, and 95% of the total-perturbation growth rate. The
number of terms required to achieve this threshold of growth grows from 14 in Fig. 3.6 (a) to 20
and 48 terms in 3.6 (b) and (c) respectively. This near exponential increase in required terms can
be attributed to a select few terms dominating the balancing of energy while smaller valued terms
play a smaller role fine tuning the exact growth rate. The primary factors in the energy balance are
found to be the Reynolds-flux production and viscous-dissipation values.

From the energy-threshold evaluation, the two largest values are identified as Reynolds heat-
flux and temperature-perturbation dissipation seen in Eqs. 3.2a and 3.2b respectively. Both of
these terms are a product of the conservation of energy disturbance. By summing these two values,
we examine how well the neutral point location can be approximated and if there exists a linear

correlation to the total-perturbation growth rate.

. p 0T
R+ = —j—=0— 3.2a
T ,max EC T 8y ( )
R 0T
D+ =7 — 3.2b
Tymax EcPrReT 0y? (3-20)

The relative error in neutral points between the growth rate —a; and 7T (RT,max + DT,maX>
can be found in the left panel of Fig. 3.7. An error of approximately 10% can be found for the most
unstable regions for the 6-m plane. Regions of higher error can be found within the unstable por-
tion of the #-m plane which are manageable. Very small wavenumbers are associated with larger
wavelengths in which the primary physics we aim to study may not be applicable. This is a possi-
ble reason for why there are higher relative errors for the portion of low wavenumbers. The right

panel of Fig. 3.7 indicates the linear correlation coefficient for these terms along the axial coordi-
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Figure 3.6: Solid black line: —«; as solved with LPSE. Solid grey line: approximate growth rate
— 0 approx defined by sum of terms within threshold. Red line: Reynolds-flux energy production
terms. Blue line: viscous terms with the largest transmission being defined with individual curves.
Green line: pressure terms (combined into a single curve). The plots represent dominant terms of
the total-perturbation energy which allow —; approx to be within £20% (a), £10% (b), and £5%
(c) of —qy;.
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Figure 3.7: (Left) Relative error (%) between the —q; neutral point and the approximate neutral
point as found by Tt <RT,maX + DT,max>- (Right) Linear correlation coefficient between —a; and
R max T D max along z. The 6-m plane consists of all azimuthal paths and each wavenumber

along those paths.

nate . We see a high correlation (> 0.95) for the leading terms in the energy-disturbance against

the growth rate. Similar to the neutral point error, this trend breaks down for small wavenumbers.
3.4.2 Conservation of Energy Perturbation

As indicated previously, a similar energy-budget analysis will be performed by defining the
disturbance energy with the conservation of energy equation as reflected in Eq. 3.3. The develop-
ment of these quantities along the axial direction will be studied for the most unstable scenario.
In a similar fashion to the previous section, the quantities will also be integrated from the axial

neutral point to the base of the cone.

AN 7 o), T 7 b
(w - ag) ( '0_|T|2> il p_TTa—
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—TT(—i p . OT pv ol _ © 0T RoOT

+ Dj o + Pi
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Fig. 3.8 indicates a consistent trend to Fig. 3.5 with large production caused by Reynolds-flux
being destroyed by pressure work or viscous effects. This is to be expected as the dominant terms

of the total-perturbation energy were developed within the conservation of energy. The terms used
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in the formulation of each energy production type are defined in the legend of Fig. 3.9 (c).
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Figure 3.8: Energy-budget decomposition for the conservation of energy disturbance equation, Eq.
3.3. Black: —qy; as integrated along the streamwise direction representing an approximate V-
factor. Red: Reynolds-flux energy production terms, R;. Green: pressure work terms, P;. Blue:
viscous terms, D ;. (Left) Integrated growth at the base of the geometry with varying wavenumbers
choosing the vortex path supporting the most amplified solution. (Right) Integrated growth for each
vortex path at the base of the cone choosing the most amplified wavenumber.

An energy threshold variation study is performed in Fig. 3.9. The quantities, R; . and

D again dominate the energy transference along with additional values defined in the leg-

T max?

ends for each error level.
3.4.3 Crossflow-Velocity-Perturbation Energy

With the crossflow instability being the mechanism of interest for the yawed-cone geometry, it
would be expected that energy production related to the crossflow-velocity component would play
a larger role in the total-perturbation energy equation. It is nevertheless valuable to analyze the

kinetic energy relating to the spanwise momentum equation as seen in Eq. 3.4.
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Figure 3.9: Solid black line: —q; as solved with LPSE. Solid grey line: approximate growth rate
— 0 approx defined by sum of terms within threshold. Red line: Reynolds-flux energy production
terms. Blue line: viscous terms with the largest transmission being defined with individual curves.
Green line: pressure terms (combined into a single curve). The plots represent dominant terms of
the conservation of energy disturbance which allow —a; approx to be within £20% (a), £10% (b),

and +5% (¢) of —ay;.
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Integrated growth rates for the most amplified quantities are found in Fig. 3.10. A slightly
different trend is found in the development of energy. While the Reynolds-flux term still drives
the instability growth, the pressure work has an increased hand in energy reduction. Due to this
increased pressure work, the maximum growth rate does not align with the same wavenumber as
Ry as seen in previous cases. The energy threshold variation in Fig. 3.11 also reflects the larger
pressure work developed on the most unstable path. The pressure work does start as an unstable
value upstream of the neutral point but quickly stabilizes itself and nearly mirrors the growth of

Ry.
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Figure 3.10: Energy-budget decomposition for the conservation of energy disturbance equation,
Eq. 3.3. Black: —q; as integrated along the streamwise direction representing an approximate /N-
factor. Red: Reynolds-flux energy production terms, R;. Green: pressure work terms, P,. Blue:
viscous terms, D,;. (Left) Integrated growth at the base of the geometry with varying wavenumbers
choosing the vortex path supporting the most amplified solution. (Right) Integrated growth for each
vortex path at the base of the cone choosing the most amplified wavenumber.
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Figure 3.11: Solid black line: —q; as solved with LPSE. Solid grey line: approximate growth rate
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4. SWEPT-WING CONFIGURATION*

4.1 Base-Flow

The airfoil for this study is an SNLF airfoil called the X207.LS seen in Fig. 4.1 (a). The airfoil
mimics the pressure gradient found in the S207 airfoil but operates at a lower speed (hence the LS in
X207.LS). The computational parameters for the base flow are based off of the near incompressible
conditions defined in Klebanoff-Saric Wind Tunnel (KSWT) at Texas A&M University. The airfoil
itself serves as a risk-reduction experiment to validate the computational tool’s ability in predicting
conditions which support laminar flow. However, the analysis will focus on the bottom surface of
the fore-element for which experimental results have not been produced. The slotted region on the
bottom side of the airfoil is of great significance for the following analysis.

Two coordinate systems will be defined. The first is the global system z, Y, and Z in which x
is defined as the chordwise dimension perpendicular to the leading edge. The freestream quantities
Usos Voo, and Wy, are defined in this frame. The local coordinate system is defined as s, y, and 2
where s is the dimension following the surface of the geometry, vy is the wall normal component,
and z is the leading-edge parallel dimension. The airfoil has a reference or chord length of 30.15
in or 0.76581 m as defined in the chord wise direction. The entrance of the slot is defined at z/c =
0.643. Pressure distributions are generated by MSES [40] as seen in Fig. 4.1 (b). For this study
an angle of attack is chosen as 2.25° due to the generation of a strong favorable pressure gradient
along the entirety of the chord. This will assist in damping Tollmein-Schlichting waves while
inciting the crossflow instability [12]. A sweep variation study is performed for 0° < A < 35°
at 5° increments. The sweep angle and angle of attack are defined by the freestream quantities in

Egs. 4.1 and 4.2 respectively.

*Material in this chapter has been reprinted from "Gortler Instability on a Variably Swept, Slotted, Natural-
Laminar-Flow Airfoil" by Koen J. Groot, Jay Patel, Ethan S. Beyak, James G. Coder and Helen L. Reed 2021.
Copyright 2021 by Koen J. Groot, Jay Patel, Ethan S. Beyak, James G. Coder and Helen L. Reed.
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A = arctan | ——eX 4.1)
VUi + 0%

a = arctan (@) 4.2)
Uoo

The stability calculations will employ a fixed Rey; = CPoo|V |oo/11eo Where |V, is the
freestream resultant velocity of U, Tso, and W. This Reynolds number is 1.0 x 10°. The Mach
number defined by MSES relates to the leading-edge-orthogonal direction (M = \/m [loo =
0.06) causing a discrepancy with the KSWT Mach number and Reynolds number which is based
on the total velocity component. The details on how this discrepancy is resolved can be found in
[41]. Additional parameters are defined relating the properties of the air. These are R, = 291.171
J/I(kg K), v = 1.4 and Pr = 0.72. Parameters relating to Sutherland’s law are pi,of = 1.716 x 107°
kg/(ms), Tief = 273 Kand S = 111 K.

Using the pressure coefficients, DEKAF employed to generate a base-flow solution. DEKAF is
a spectrally accurate boundary-layer solver developed by the CST Lab. The basic state will contain

2000 streamwise nodes and 250 wall normal nodes. A Malik mapping is used for clustering grid

points in the wall normal direction. GICM is used to interpolate DEKAF profiles [42, 43].
4.2 Boundary-Layer Properties

The streamwise development of boundary-layer parameters are plotted in Fig. 4.2 for all con-
sidered sweep angles. These parameters are defined as the Hartree parameter, 5y, boundary-layer

thickness, dg9, the shape factor, H, the non-dimensional curvature, ¢/ R, and the Gértler number,

G = QTgﬂ\/% 4.3)

where 9, =/ ﬁﬁ% is the Blasius length and ), = /%2, + v2,. The non-dimensional wavelength-

parameter is also defined as

G [13] as seen if Eq. 4.3

)\Zpoo@r &

A:
“" @, VR

4.4)
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Figure 4.1: (a) The X207.LS geometry plotted with the chord along the x-axis (blue line). The slot
entrance is defined with a red dot on the x-axis. (b) Pressure distributions for increasing angles of
attack are shown in color for the bottom side of the fore-element for a 0° sweep angle. The gray
curves represent the pressure distribution for the top side of the same element as well as the aft
element [2].

The plot of curvature in Fig. 4.2 indicates that for positive values a convex surface curvature is
present while a negative value indicates concave curvature. The location of the slot entrance was
defined by the transition from a convex to concave surface geometry, ¢/ R = 0. The implications of
the slot can be seen strikingly on the Hartree parameter which represents the self-similar pressure
gradient. The spike implies a highly favorable pressure gradient in the region of the slot. The shift
in pressure gradient is also reflected in the boundary layer, which experiences a slight shrinking

in size and the shape factor dipping, which results in a more full boundary layer. Qualitatively,
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Figure 4.2: Streamwise development of boundary layer parameters for angle of attack 2.25°.
Dashed vertical line indicates the slot entrance defined by 1/R = 0 (red star) [2].

the increase in sweep does not have a substantial impact on the development of these parameters
within the vicinity of the slot.

The Gortler number, G, defines the control parameter for the the Gortler mechanism [44]. As
seen in Fig. 4.2, GG decreases slightly as the sweep is increased alluding to a stabilizing effect of
sweep. However, the variation in the Gortler number is too small as changes in order of magnitude
typically indicate a difference in the growth of the Gortler disturbance.

An additional feature of the boundary layer is the presence of a crossflow velocity for cases
of non-zero sweep. The crossflow velocity corresponds to the velocity aligned about leading-edge

parallel direction, z. The velocity profiles are demonstrated in Fig. 4.3 for z/c stations along the
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Figure 4.3: Crossflow parameters for A = 5°. (Top left) Pressure coefficient. (Bottom left) Wall-
normal location of the crossflow velocity inflection point. (Right) Crossflow-velocity profiles at
increasing x/c stations.

entirety of the chord. The crossflow component decreases upstream of the slot due to the convex
curvature stifling the pressure gradient. As the flow enters the slot, the pressure gradient becomes
more favorable accompanied by a rapid growth in velocity. On the crossflow profile also exists
an inflection point which signals the presence of the crossflow instability. The evolution of the
inflection point is akin to the boundary-layer heights as the slot has a stabilizing effect on the flow.
Near the trailing edge of the airfoil, an additional inflection point emerges; however, it will be

neglected as its presence does not affect the stability characteristics of the flow.
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4.3 Stability Results

In the following sections, linear and nonlinear stability results for the X207.LS will be pre-
sented. In order to isolate specific instability mechanisms two approaches are taken in the initial-

ization of the PSE problem.

Slot-only approach This approach initializes the LST eigenvalue problem at a location just up-
stream of the slot location. The computational grid consists of 150 streamwise points and
200 wall-normal points. This approach will consider the usage of different initial LST eigen-
modes as well. The eigenmodes are defined as fundamental and harmonic and were chosen

by the number of maxima within the v LST eigenvector.

Full-chord approach The full chord approach initializes the LST eigenvalue problem near the
attachment line of the airfoil. The computational grid will have 750 streamwise points to

secure a similar step size with the slot-only approach and 200 wall-normal points.

The following perturbation boundary conditions are imposed at the wall and the freestream

defined in Eq. 4.5. The boundary condition for p,, is defined by the y-momentum equation.

Joo =0 (4.52)

Gl = Dy = Dy = Ty = 0 (4.5b)

A first-order backwards discretization is used for the streamwise derivatives and a fourth-order

central difference is used for the wall-normal derivative.
4.3.1 Linear Stability Results

The LPSE analysis allows for a relatively quick generation of stability characteristics for a
broad range of initial frequencies and wavelengths. The frequency in this scenario is the regu-
lar frequency or period as defined by f = 27/w and the wavelength is defined as \, = 27/p,
which corresponds to the wavelength in the spanwise direction. Separate frequency and wave-

length ranges are considered for slot-only and full-only approaches. These ranges and increments
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are indicated in Egs. 4.6 and 4.7. The parameter range is chosen such that the N-factor envelope is
captured and the smaller increments indicate a span of higher instability requiring a more resolved
parameter sweep. In order to capture unsteady (traveling) disturbance propagation in the positive

and negative z-directions, additional simulations are ran with negative values of \.

[(mm):05< X, <30 AN =025
[(Hz):0< f <600 Af =25; (4.6)

II(mm):3.0< A, <9.0 AX, =05

[(Hz) : 0 < f <200 Af =25
C I(mm):20< )\ <140 AN =10 (47

I1(Hz) : 200 < f <400 Af =50

The wavelengths for the full-chord approach encompass a larger span due to the presence of
crossflow and as indicated previously, crossflow vortex wavelengths are 4dq9 as compared to the
Gortler vortices at 199 [18]. Due to the overlaps in wavelength for the full-chord and slot-only
approach, the Gortler mechanism wavelengths are maintained for each case.

An overview of the LPSE results can be found in Fig. 4.4. For these plots, only the N-factor
envelopes are shown for each sweep case. The red curves indicate an unsteady (f > 0Hz) dis-
turbance while the blue curves are steady (f = 0Hz). The solid line represents a full-chord
solution while the dotted and dashed lines represent slot-only solutions using different initial LST
eigenmodes. The full-chord approach was only applied to cases where A > 20° as the boundary
layer was not unstable enough to be captured by EPIC. The instability parameters supporting the
largest amplifications for the disturbance are presented in appendix B. Parameters not mentioned
in the previous analysis include the total wavelength, A\ = 27/ \/m, the non-dimensional

wavelength, \g, the phase speed scaled about the absolute maximum of the crossflow velocity,

Cph /|Wmax |, the wave angle, v, and difference between the wave angle and the angle of the inviscid
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streamline, 1) — 1);. The overview figure will answer the following questions:

e How does the presence of a crossflow velocity effect the Gortler mechanism within the slot?

e How does the crossflow disturbance develop upstream of the slot?

e What impact does the upstream presence of crossflow have on the Gortler mechanism within

the slotted region?

To answer the first question, the instabilities of the slot-only approach are considered such
that only the effect of sweep and the resulting crossflow is in question. Other sweep dependent
parameters of the base flow can also be called into question such as the leading-edge orthogonal
Reynolds number and the boundary layer; however these effects are deemed inconsequential for
the present analysis. For A = (0° it is undeniable that only the Gortler mechanism is destabilized.
This is due to the lack of sweep resulting in no crossflow, a stabilization of the Tollmien-Schlichting
mechanism from the favorable pressure gradient [12], and large amplification only in the region
of concave curvature. The instability of unsteady disturbances are found to be more amplified. In
using different initial eigenmodes, the fundamental mode is found to be either slightly more or
just as amplified as its harmonic mode counterpart. With the focus on the increase of crossflow
velocity for the slot-only approach, we see that an increase in sweep results in a more stable
boundary layer. This is indicated by the consistent decrease in max amplitude for both steady and
unsteady disturbances as well as the fundamental and harmonic initializations.

The crossflow disturbance upstream of the slot is plotted as the solid lines in cases which 20° <
A < 35°. Although we have shown the presence of the crossflow instability for A = 5° and the
relation to the strong favorable pressure gradient, the convex curvature has a stabilizing effect on
the crossflow instability [45] and is considered stable enough to not carry influence into the slotted
disturbance (N < 1). In studying the linearly amplified crossflow disturbances found in highly
swept cases, the local maxima of the disturbance upstream of the slot increases consistently. The

unsteady disturbance has a larger escalation for the amplitude compared to the steady disturbance.
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A sharp stabilization occurs after the maxima is achieved by the crossflow instability. The
increase in convex surface curvature is the likely culprit of this occurrence, see Fig. 4.2. This steep
decline results in a relatively stable flow field within the vicinity of the slot entrance.

In answering the third bullet point from above, comparisons are made between the slot-only
approach and full-chord approach. For the unsteady disturbance a very clear reproduction of the
instability is achieved by the full-chord case. This includes the monotonic decrease in amplification
due to sweep. A slight discrepancy between the steady envelopes are found, primarily for A = 25°
and A = 35°. The steady full-chord envelopes in Fig. 4.4 suggests a possible destabilization due
to sweep.

Do to the low amplification of the full-chord envelopes at the entrance of the slot a shift is
performed. This shift will align the neutral point within the region of the slot to be zero and shift
only the N-factor curves from the secondary neutral point onwards. Nothing about the stability
parameters themselves will be changed. The updated neutral point envelopes are plotted in Fig.
4.5. The unsteady envelopes of the full-chord approach correspond quite well with the slot-only
approach. The same cannot be said for the steady case; however, there is a more consistent trend in
the initialization approach. The full-chord approach is consistently more amplified by an /V-factor

of 1 and the monotonic decrease in amplification due to sweep is recovered.

41



Steady

42

" ——— Full chord «weeeeees Slot only, fundamental - = —= Slot only, harmonic Unsteady
131 A:O‘? A=5° A =10° A =15° A =20° A =25° A =30° A =35°
i E
NI 5
T g
i i
9r i i
Srgl 1 g A& s g g g g g
65| i a3 § S S A A A
58 ! = = = = s = s
@ ! o A & & @ @ & @
4 : a B
T i E)
21 : F] Fl
E] El
1 3 f,
0 1 1 1 1 1 1
0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
z/c z/c z/c z/c z/c z/c z/c z/c
Figure 4.4: N-factor envelopes (steady/unsteady content) versus chordwise position for increasing sweep angles. Full-chord approach
initializes LPSE at the attachment line and slot-only approach initializes just upstream the slot entrance. The full-chord envelopes in
the slot correspond to unadjusted neutral points at the entrance of the slot [2].
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4.3.2 NPSE Results

Nonlinear stability parameters are produced for the slotted region of the airfoil at 0° sweep.
The simulation will study the steady Gortler disturbance by defining 7 harmonics, i.e. n = 0
and 1 < k < 7, as well as the mean flow distortion, (n, k) = (0,0). The spanwise wavelength
achieving the most amplified linear disturbance within the slow is chosen, see appendix B. As
suggested previously, a; 9.0y = 0 for this study to improve convergence of the MFD. The nonlinear
forcing vector will allow up to cubic interactions. An initial amplitude for the (0,1) mode is
chosen as 1072 as this amplitude captured the neutral-point such that the entirety of the disturbance
growth can be modeled. In the previous LPSE study, the initial location is decided a Newton-
Raphson method applied to the LST eigenmode to find the neutral-point location and march from
just upstream this point. In the following NPSE analysis, all LST initializations occur at the same
location, z/c = 0.629. The computational convergence of the NPSE analysis was found to be
quite sensitive to the initial LST eigenmode. The spanwise wavelength is chosen from the most
amplified N-factor at the end of the domain as found by the LPSE study.

The disturbance amplitudes are presented in Figs. 4.6 and 4.7 for all considered sweep angles.
The linear disturbance for the fundamental mode is also superimposed onto the plot as a dashed
curve. Three chordwise positions of interest are defined. The first is the neutral point of the fun-
damental mode, the second is the point of saturation in which the linear disturbance deviates from
the nonlinear disturbance, and third is the location at which the MFD overtakes the fundamental
mode. Note, in the previous section, the fundamental mode defined the initial LST eigenmode
while here it will be used more properly as the (0, 1) mode. Subsequent harmonics are based off
of this fundamental mode. The A = 0° case is most comparable to previous computational results
and qualitative matches can be found with Benmalek [14] and Li & Malik [22].

A curious observation is how these points of interest develop as sweep is increased. Fig. 4.8
indicates the position of the neutral point location, saturation point, and location of MFD overtake.
The neutral point varies quite little as sweep is increased implying the neutral point is not affected

by the increase in crossflow. Interestingly enough, the neutral point also lies slightly downstream
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Figure 4.8: Chordwise locations of the fundamental mode neutral point, the saturation location,
and the location at which the MFD overtakes the fundamental mode for varying sweep.

of the slot entrance. This differs from the LPSE analysis which indicated a neutral point near or
slightly ahead of the slot entrance. The saturation point, which is calculated when the difference
between the linear and nonlinear disturbance exceeds 5%, and the MFD overtake exhibit a very
similar behavior. The presence of sweep forces nonlinear distortion to occur further downstream.
Li & Malik also suggest that a longer wavelength will allow the MFD to overtake the fundamental
mode further downstream for the Gortler instability [22]. The LPSE study in the previous section
supports this as the most amplified wavelength grows for increasing sweep angles.

Fig. 4.9 illustrates the maximum amplitudes for the fundamental, MFD, and (0, 2) modes. The
MED starts at a high amplitude and gradually decreases until A = 25° when a large jump in
amplitude occurs. A similar trend is seen for the fundamental mode except the amplitude remains
constant until the jump at the same sweep angle. There currently is no explanation for the behavior
of these two modes. The (0, 2) mode gradually increases in size as sweep is increased.

The streamwise development of the Gortler instability can be seen in Figs. 4.10 and 4.11. The
total nondimensional streamwise flow component, u = u + «/, is mapped out along for increasing
sweep angles at various chordwise locations using iso-velocity contours. These chordwise loca-

tions correspond to the locations of interest shown previously along with the chordwise position at
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the end of the domain.

Focusing on the zero-degree sweep case, the characteristic behavior of the Gortler instability
is seen. The second panel from the left shows a linearly disturbed amplification growing and
the third panel from the left shows a nonlinearly distorted behavior. This nonlinear distortion
is very indicative of the unique “'mushroom’ behavior generated by the counter-rotating vortices.
These vortices create regions of upwelling and squeezing in the velocity profile. In the region
of upwelling flow, the fluid will impart a lower shear stress on the surface while larger shear
stresses can be found when the iso-contours are squeezed. The large distortion is a product of large
variation in the streamwise momentum. The spanwise wavelength was chosen to be A = 1.75mm
which compares closely to the boundary-layer thickness 6 ~ 2.5mm. This is consistent with
previous experimental studies indicating that the Gortler instability wavelength matches closely
to the boundary layer thickness [18]. This shape has been well documented in experiments by
Peerhossaini [44, 46] using dye injection in a water tunnel. Traveling further downstream to the
end of the domain yields more upwelling suggesting a stronger influence of the Gortler mechanism
resulting in distorted flow entering further in the free stream.

The sweep angles following zero sweep now include a crossflow component. The addition of
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the of crossflow velocity creates a smearing effect on the linear and nonlinear disturbances. Note,
due to the analysis of the bottom side of the airfoil, the axes are flipped such that the positive z
coordinate moves towards the root of the wing. To resolve this discrepancy, a negative sweep angle
must be considered such that the crossflow velocity component is in the direction of the wing tip.
This mismatch has no effect on the physics of the flow and is only pointed out to explain why this
smearing effect pushes the instability towards z = 0. As sweep is increased, this effect becomes
more pronounced in the linear and nonlinear regions. In the nonlinearly distorted region, the smear
is more distinctly seen when the velocity has upwelled while closer to the wall, the flow maintains
a behavior more reminiscent of the case with zero sweep.

Since the saturation of the Gortler mechanism occurs further downstream as sweep is increased,
the boundary-layer is allowed to grow for a longer chordwise distance before the nonlinear distor-
tion occurs. However, when nonlinear effects do take hold they do so at this larger boundary-layer
thickness.

Upon reaching the end of the domain, the flow is experiencing a highly distorted perturbation
that has jettisoned further into the freestream. Within this region, it is difficult to say what mecha-
nisms are dominating the flow as physics undetermined within this thesis may take hold. Swearin-
gen & Blackwelder [47] indicate that the structure of these vortices break down very quickly lead-

ing to the onset of turbulence.
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Figure 4.11: Development of the Gortler instability within the slot as seen by the nondimensional
u velocity (m/s) for 20° < A < 35°. The furthest right figure indicates laminar flow at the neutral
point to provide reference. The second, third and fourth figures represent /¢ points at g, Tmea
and the end of the domain.

51



5. CONCLUSION

5.1 Cone Configuration

The primary goal of this project is to extend the AFT model into the hypersonic regime. The
work of this thesis contributes to this goal by providing a stability solution using the LPSE model
to compare performance. Since the AFT model activates turbulence modeling through the use
of surrogate indicators, parameters assisting in the development of instability will be identified.
An energy-perturbation budget analysis will be performed to assess the behavior of these relevant
terms and their relation to the stability parameters as found by LPSE.

For the following stability analysis, a laminar basic state is produced using OVERFLOW. Due
to symmetry conditions only half of the cone geometry is necessary to model. Along the span of
the cone, multiple streamwise vortex paths are identified and initialized at a location downstream
of the blunt nose. Due to the non-zero yaw, the crossflow disturbance is expected to dominate
the process of transition. In particular, the stationary crossflow instability has been studied in this
thesis.

Using the LPSE analysis, the azimuthal angle and wavenumber combinations leading to the
most amplified boundary-layer are identified. An N-factor of 14.5 at the base of the cone has
been achieved which was proven to be well within the requirements for transition. This maximum
occurs for an azimuthal angle of 148.6° and a wavenumber of 81.9. In contrast, the AFT model
only predicts an unstable flow in the vicinity of the leeward plane. It is quite clear that the AFT
model, in its current iteration, is unable to predict unstable flow for the crossflow instability in a
hypersonic regime.

In order for the AFT model to activate its turbulence modeling, additional information pertain-
ing to the instability is needed. However, the model is unable to calculate stability characteristics
such as the ones found by LPSE. Instead, properties of the boundary layer will assist in the acti-

vation of the AFT model. With this in mind, budget analysis studies are performed with different

52



energy-disturbance equations.

When considering the total-perturbation energy, the relation of the energy contributions to the
growth rate is characterized by a large Reynolds-flux energy transfer which is destroyed or redis-
tributed by pressure work and dissipation. By quantifying individual terms of the energy budget, a
select few terms were found to dominate the flow. In particular, the Reynolds heat-flux term and
the temperature-perturbation dissipation values were the largest in magnitude. In considering only
these two terms for energy contribution in the streamwise direction, a good approximation of the
neutral point can be predicted. The combination of these two terms also results in an approximate
growth rate with a high linear correlation to the growth rate defined by LPSE.

The largest terms found in the total-perturbation were terms derived in the conservation of
energy. Performing an energy-budget analysis on this disturbance equation proved to be quite
trivial for this reason as similar trends to the total-perturbation energy were found.

As this study focuses on the crossflow instability itself, an analysis of the z-momentum equa-
tion is performed. In the context of this disturbance, a large Reynolds-flux contribution is found
which is balanced strongly by the pressure work contribution.

The current analysis found relations of the stability characteristics to quantities of energy trans-
fer. Of course, this relationship still depends on the stability parameters themselves so the AFT
model cannot yet apply these relations. However, in being able to identify large energy con-
tributions, future studies could relate these terms back to the base-flow parameters. Additional
possibilities include finding correlations between the disturbance characteristics and the integral

parameters that are only base-flow dependent.
5.2 Swept-wing Configuration

As more efficient aircraft are developed, an emphasis on drag reduction encourages a study into
mechanisms of transition. To this point, the X207.LS airfoil is developed using the SNLF concept
to reduce drag by supporting laminar flow over a substantial portion of the chord. The goal of this
project is to assess regions of unstable flow on the bottom side of this airfoil which contains the

slotted feature. In defining regions of unstable flow, the mechanisms and disturbance parameters
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resulting in unstable flow will be interpreted.

Using MSES pressure distributions and the DEKAF boundary-layer solver, a base flow is gen-
erated for increasing sweep at a fixed angle of attack. The angle of attack supports a favorable
pressure gradient through the entirety of the bottom side. This angle of attack along with an anal-
ysis of the boundary-layer properties, establishes the primary instability mechanisms. For the case
with no sweep, the Gortler mechanism is expected to dominate the instability within the slotted
region. Considering non-zero sweep introduces a crossflow velocity and more importantly an in-
flection point of the crossflow profile which can induce the crossflow instability.

Initializing LPSE upstream of the slot allows for an isolation of the crossflow velocity com-
ponent. Within the neighborhood of the slot, an N-factor of 13 is found for A = 0° indicating
a large Gortler disturbance due to the concave surface curvature without any complications due
to crossflow. As sweep is introduced, the instabilities experience a stabilizing effect due to the
gradual increase in the crossflow-velocity component.

It is found that from the leading edge to the slot entrance, the crossflow instability is noticeable
unstable for higher sweep cases only (A > 20°). The destabilization is caused by the strong
favorable pressure gradient. However, the convex surface curvature suppresses the growth resulting
in a very stable flow field at the entrance of the slot. This stable flow suggests that little to no
upstream influence is imparted on the instability mechanisms within the slot. This claim is further
supported by the matching of unsteady disturbances from the full-chord approach to the slot-only
approach. The steady disturbance comparison still carries some discrepancies, but a qualitative
match can still be assessed.

The slot-only, steady instability will be further examined through a nonlinear scope. The LPSE
analysis will define the most unstable spanwise wavelength each sweep case. The modal analysis
will define the subharmonics asn = 0 and 1 < k£ < 7. The largest initial amplitude that captured
the neutral pointis A 1) = 10~2. The neutral point remains relatively constant for all sweep angles
(Tneus ~ 0.66). This location is however further downstream than originally indicated by LPSE.

The location at which saturation occurs is documented with the chordwise position for saturation
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being pushed further downstream as shown for the case A = 0° in which saturation occurs at
x/c = 0.74 while at A = 35° saturation occurs at z/c = 0.80.

A visualization of the flow at various streamwise locations indicates stable, linear, and nonlin-
ear characteristics of the disturbance. The characteristic ’'mushroom’ shaped instability is a feature
caused by the counter-rotating nature of the Gortler vortices. This distortion of flow can lead to
regions of higher and lower shear stress possibly characterized by the MFD. Further analysis on
the behavior of shear stress on the wall can assist in designating regions of higher drag. Introduc-
ing a sweeping feature creates a smearing effect on the velocity distortions which becomes more
drastic for larger crossflow velocities. The boundary layer also grows much larger due to the linear
instabilities having more chordwise growth before nonlinear saturation occurs for increased sweep
angles. At the end of the fore-element, the flow has become highly distorted exhibiting behavior
unstudied in this thesis. It is likely that the breakdown in discernible structure implies the onset of

transition.
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APPENDIX A

BUDGET ANALYSIS STABILITY EQUATIONS

The following set of equations represent the LST and LPSE equations in scalar form. The
equations are in order of s-, y-, z-, momentum, conservation of energy, and continuity. The black
terms represent terms found in both LST and LPSE. The green terms represent quantities found
only in LPSE formulation. The conservation of energy is presented in terms of total enthalpy. The
equations are shown in non-dimensional form and have been modified to accommodate the budget
analysis tool. In particular, the material derivatives are represented on the left hand side of the
equations and scaling factors have been applied to each of the equations such that the coefficient

corresponding to the o term on the left hand side is real valued.
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A.2 y-Momentum
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A.3 2z -Momentum
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A.4 Conservation of Energy
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A.5 Conservation of Mass Continuity
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APPENDIX B

MOST-AMPLIFIED SWEPT WING CHARACTERISTICS

The following tables indicate stability characteristics for most amplified N-factor curve for
different sweeps, regions of the airfoil, steady and unsteady cases, and initialization approach.

These values were generated originally in [2].

A x/c f approach| N D99 A A, pYe! Cph Yo Yy —Ps

°] %] [Hz] [mm] [mm] [mm] [Wsmax|  [°] [°]
0 8 0 e 131 231 175 175 133 00 4900 -+90.0
0 glten |27 231 175 175 133 00 4900 -+90.0
25 Seweny. |32 23] 175 —175 133 oo  —89.8 —89.8
50 geonl |l 128 231 175 175 133 oo +89.5 +89.5
5 8 0 ey 125 232 175 175 132 0  +87.1 +909
0 gloten |l 115 232 175 175 132 0 +87.1 +909
100 ool |l 130 232 175 175 132 0.8 4862 4899
125 sloton | 119 232 175 175 132 09 4859 +489.7
10 82 0 gl 715 233 199 200 159 0 4841 +491.7
0  slotenv |l 104 233 199 200 159 0 4841 +91.7
175 Jowonlv |l 126 233 174 175 131 07 4825 +90.1
125 sty | 110 233 174 175 131 05 4830 +90.5
15 82 0 geon 11702 235 222 225 187 0 4811 4925
0 gl || 95 235 247 250 219 0 4811 4924
225 Seenly |l 120 235 196 200 156 0.7  +788 +90.2
175 sletenl |l 108 235 197 200 156 0.5 4793 4907
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A z/c f approach || N g A . pYe Cph Y w — s
] [%] [Hz] [mm] [mm] [mm] [Wsmax| — [°] [°]
20 25 0 full chord 08 1.51 860 9.00 998 0 +72.8 +92.3
27 25 full chord 0.8 1.55 9,52 10.00 1138 0.3 +72.1  +91.5

82 0 ooy [lg7 238 269 275 245 0 4779 +932

0 ooy | g5 238 203 300 279 0  +77.8 +93.1

0 o | 95 238 390 400 430 0 {775 4927

0 et |85 238 245 250 213 0 4780 +933

300 ooy 114 238 193 200 152 07 4750 +903

350 oty || j0g 238 145 150 99 0.6  +755 +90.8

300 e || 114 238 193 200 152 07 4750 4903

300 Micd |14 238 193 200 152 07 4750 4903

25 33 0 full chord 1.3 1.75 9.32 10.00 1155 0 +68.7 +92.3
43 100  full chord 1.8 197 761 —8.00 878 0.9 —108.1 —85.3

82 0 ooy [l 76 240 432 450 495 0 4739 +932

0 ety || 75 242 432 450 495 0 4739 +932

0 [Jullchord | 85 242 480 500 580 0 4737 +93.

0 e |64 242 289 300 270 0 4747 4940

325 ot 106 242 213 225 175 06 +71.1 4904

300 ety || 102 242 213 225 175 0.6 +714  +90.7

300 e || 105 242 213 225 175 06 4714 4907

300 full chord, 10.5 242 213 2.25 175 0.6 +71.4  +90.7

unadjusted n.p.
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A x/c f approach || N &g A A, pYe Cph Yo Puw—Ps
] [%] [Hz] [mm] [mm] [mm] Wsmax|  [°] [°]
30 37 0 fullchord || 2.0 1.90  5.38 6.00 509 0 +63.7 +91.7
39 125  fullchord || 2.8 1.93 551 —-6.00 518 0.7 —113.3 —-854

82 0 oo [l70 247 563 600 729 0  +69.8 +933

0 gy |71 247 517 550 639 0 4699 4934

0 e | 78 247 563 600 729 0 4698 4932

0 Mt |66 247 563 600 729 0 4698 +93.2

375 ooy 1198 247 208 225 167 0.6  +673 +9038

350 ot |96 247 208 225 167 06  +67.6 +91.0

350 e 1|95 247 274 300 258 08 4662 +89.6

350 Micod 1195 247 274 300 258 08 4662 +89.6

35 43 0 full chord 3.0 2.08 6.04 7.00 653 0 +59.6 +91.8
47 150  rfunchord || 4.4 213 724 —8.00 960 1.0 —115.1 —-83.3

82 ooyl 65 253 638 7.00 869 0 +65.6 +93.4

0 gy |67 253 593 650 777 O 4657 +93.5

0 Jlichrd |73 253 638 7.00 869 0 4656 +93.4

0 et |76 253 728 800 1061 0 4655 +93.2

400 Jetomy. |l g9 253 223 250 185 0.6  +63.1 4909

375 oty |88 253 223 250 185 0.6 4633 +91.1

350 e |86 253 308 350 307 08 4618 +89.6

350  fullchord, 1) @ 6 253 308 3.50 307 0.8 +61.8 +89.6

unadjusted n.p.
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APPENDIX C

PARABOLIZED STABILITY EQUATIONS

The parabolized stability equations for a curvilinear coordinate system are represented below.
This representation is what is used for PSE calculations in the EPIC code. The equations are
formatted using a program called DERIVE which is a symbolic algebra manipulator rooted in
Mathematica. For further details on DERIVE see chapter 4 in Beyak’s disseration [31].

The left-hand side of each of the equations consider a single mode, ¢(!), while the right-hand
side may contain no nonlinear interaction, quadratic interaction, or cubic interaction. The level
of complexity is defined by the nonlinear forcing vector, N. If N' = 0 the LPSE is modeled,
if N' = N9%d then quadratic interactions are allowed and if N' = N9 d + A/UP then cubic
interactions are allowed.

The assumptions which separate the LST, LPSE, and NPSE analysis are defined in detail in
chapter 2. The LST distinction has not been made in this appendix as they have been previously

identified in appendix A.
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C.1 s-Momentum
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C.2 y-Momentum
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C.3 2z -Momentum
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C.4 Conservation of Energy
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C.5 Conservation of Mass Continuity
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C.6 Quadratic Nonlinear Forcing Vector
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C.7 Cubic Nonlinear Forcing Vector
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