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ABSTRACT

We construct Lagrangians and show new Minkowski and de Sitter solutions with the presence

of multiple chiral fields in a framework of 4d N = 1 no-scale supergravity in a unified way. The

framework is chosen as it naturally arises in the low energy limit of string theories. The de Sitter

solutions are particularly relevant given that our universe is expanding at an accelerated rate. The

mechanics of these constructions are to first solve for Minkowski solutions and then "combine"

antipodal Minkowski solutions to obtain a de Sitter solution. Quartic stabilization terms are added

to Kähler potential in order to stabilize the de Sitter solutions, and then we proceed to generalize

our solutions in the presence of various matter fields. With matter fields, it becomes possible to

"perturb" the de Sitter solutions to find inflationary potentials. Hence our constructions give a way

of obtaining Minkowski, de Sitter, and inflationary potentials in a unified way.
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1. INTRODUCTION AND LITERATURE REVIEW

In recent years interest has grown in the possibility of string solutions in de Sitter space, for

at least a couple of practical reasons. One is the discovery of the expansion of the universe in the

present time is accelerating due to non-vanishing vacuum energy that is small relative to the energy

scale of the Standard Model [1]. The other is the growing observational support for inflationary

cosmology [2], according to which the early universe underwent an epoch of near-exponential

quasi-de Sitter expansion driven by vacuum energy that was large compared with the energy scale

of the Standard Model, but still hierarchically smaller than the Planck scale. All of a sudden it

became important to incorporate a small positive cosmological constant into string theory that was

being developed as a theory of everything describing all the particles and the forces of nature in-

cluding gravity. One of the most appealing constructions of a de Sitter vacua (or a vacuum with a

positive cosmological constant) is the KKLT model [3]. KKLT start with warped Type IIB com-

pactifications with non-trivial NS and RR fluxes and construct a supersymmetric AdS vacuum.

Then anti-D3 branes are put on top of the AdS vacuum to lift it to a metastable dS vacuum. How-

ever this construction isn’t rigorously proved yet, and is beset with various problems like existence

of tachyons in dS, backreaction of anti-D branes and other problems. Another school of thought is

that dS solutions cannot exist in string theory. [4] derived phenomenological criteria that put all dS

vacua including KKLT construction into the so called swampland. Swampland is suppose to rep-

resent the set of solutions that seem innocuous at low energies but suffers from various problems

at high energies. It is true that there has not been even a single rigorous dS vacuum construction in

string theory, but to put forward such a dramatic statement seems premature. It only seems prudent

to sit down and double our efforts toward finding a dS solution within string theory. It may very

well be that string theory is the correct theory of quantum gravity but the way it provides a dS

vacuum is much more sophisticated than what has been attempted so far [5].

In pursuit of rigorous dS solutions in string theory, we propose to start small by constructing dS

vacuum in N = 1 supergravity theories that are low energy effective theories of string theories. It is

1



our belief that such constructions could be signposts for deriving rigorous dS solutions within string

theory itself. Indeed, it has been possible to put constraints on low energy theories based on the

criteria that the high energy theory behaves well. So it is very well possible that our supergravity dS

solutions are at least not within the swampland. One interesting class of supergravity theories are

the no-scale supergravity theories [6, 10]. It has been shown that the no-scale supergravity emerges

as the effective field theory resulting from a supersymmetry-preserving compactifications of ten-

dimensional supergravity, used as a proxy for compactification of heterotic string theory [11].

This was first shown in the context of a simplified model of compactification with a single volume

modulus, but this first example has been extended to multifield models, including compactifications

with three complex Kahler moduli and a complex coupling modulus, as well as some number of

complex structure moduli. The unique Kahler potential for an N = 1 supergravity model with a

single chiral superfield ϕ was found in [6] as

K = −3 ln
(
ϕ+ ϕ†) . (1.1)

The no-scale models have been named as such because the scale of supersymmetry breaking is un-

determined at the tree level and it was suggested that the scale is set by the perturbative corrections

to the low-energy effective field theory [7].

Construction of dS vacua (along with Minkowski and AdS vacua) was done in no-scale models

with a single chiral field [6]. It seems natural to extend the results to theories with multiple chiral

fields. By doing so, we are broadening the set of solutions that might fall outside the swampland.

Much of the work in [12], co-authored by the author of this dissertation, is focused towards this

goal. Along the way, some valuable results regarding Minkowski vacuum in no-scale models were

also obtained in [12]. Some of the concrete results from [12] are as follows:

1. Construction of multifield Minkowski solutions along with special solutions (called kink

solutions in [12]) that are flat in both real and imaginary field directions.

2. Construction of dS solutions by combining two (antipodal) superpotentials corresponding to

2



Minkowski solutions.

3. Stability and holomorphy analysis of both the Minkowski and dS solutions.

Once we have de Sitter solutions further generalizations are possible. In [13], we construct

Minkowski and de Sitter solutions in presence of matter fields and then proceed to "perturb" the de

Sitter solutions to get inflationary potentials. Some of the concrete results from [13] are as follows:

1. Further generalization of the superpotentials leading to Minkowski and de Sitter solutions.

2. Construction of Minkowski and de Sitter solutions in presence of twisted and untwisted

matter fields.

3. Addition of inflationary superpotential term to de Sitter superpotential to get Starobinsky-

like inflationary potentials.

The rest of the dissertation is a detailed overview of the above results. In chapter 2 of this

dissertation, we discuss de Sitter solutions in single field models and elaborate on the stability of

the solution and the conditions for holomorphy of the superpotential. We then extend the single

field solution to include multiple fields. As a byproduct, we discover new Minkowski solutions in

multi-field no-scale models. We also discuss the stability and holomorphy conditions for multi-

field models and give examples whose superpotential contains only integer powers of the chiral

fields. In chapter 3, we discuss the uniqueness of single-field monomial superpotentials leading to

a Minkowski vacuum and how they can be combined in pairs to yield dS vacua. We also provide

another geometrical interpretation of the Minkowski and de Sitter solutions. We then further extend

these constructions to include twisted and untwisted matter fields. This is followed by a discussion

of inflationary models with either untwisted or twisted matter fields. In chapter 4, we conclude by

discussing some possible extensions of work.
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2. DE SITTER VACUA IN NO-SCALE SUPERGRAVITY1

2.1 Introduction

The unique Kähler potential for 4d N = 1 supergravity model with a single chiral superfield ϕ

(up to canonical field redefinitions) was found in [6] to be

K = − 3 ln
(
ϕ+ ϕ†) . (2.1)

In [7] this was dubbed ‘no-scale supergravity’, because the scale of supersymmetry breaking is

undetermined at the tree level, and it was suggested that the scale might be set by perturbative

corrections to the effective low-energy field theory. The single-field model [6] was explored in

more detail in [8], and the generalization to more superfields was developed in [9] 2.

If string theory admits de Sitter solutions and approximate supersymmetry with scales hier-

archically smaller than the string scale, their low-energy dynamics should be described by some

suitable supergravity theory that is capable of incorporating the breaking of supersymmetry that is

intrinsic in de Sitter space. Since string compactifications yield no-scale supergravity as an effec-

tive low-energy field theory, it is natural to investigate how de Sitter space could be accommodated

within no-scale supergravity 3. This question was studied already in [8], and the purpose of this

chapter is to analyze this question in more detail and generality, extending the previous single-field

analysis of [8, 16] to no-scale models with multiple superfields that are characteristic of generic

string compactifications. These models may provide a useful guide to the possible forms of ef-

fective field theories describing the low-energy dynamics in de Sitter solutions of string theory,

assuming that they exist.

The outline of this chapter is as follows. In Section 2.2 we review the original motivation and

1Reprinted with permission from "De Sitter Vacua in No-Scale Supergravity" by J. Ellis, B. Nagaraj, D. V.
Nanopoulos and K. A. Olive, 2018, Springer Nature, JHEP 1811 (2018) 110. Copyright [2018] by the authors.

2For a review of early work on no-scale supergravity, see [10].
3For other approaches, see [15].
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construction of no-scale supergravity with a vanishing cosmological constant [6], and also review

the construction in [8, 16] of no-scale supergravity models with non-vanishing vacuum energy.

Section 2.3 describes the extensions of these models to no-scale supergravity models with two

chiral fields, which have an interesting geometrical visualization. The de Sitter construction is

extended to multiple chiral fields in Section 2.4. In each case, we discuss the requirements of

stability of the vacuum and holomorphy of the superpotential, and give examples of models whose

superpotentials contain only integer powers of the chiral fields. Finally, Section 2.5 summarizes

our conclusions.

2.2 Single-Field Models

2.2.1 No-Scale Supergravity Models

We recall that the geometry of a N = 1 supergravity model is characterized by a Kähler

potential K that is a Hermitian function of the complex chiral fields ϕi. The kinetic terms of these

fields are

Kj
i

∂ϕi

∂xµ

∂ϕ†
j

∂xµ
where Kj

i ≡ ∂2K

∂ϕi∂ϕ†
j

(2.2)

is the Kähler metric. Defining also Ki ≡ ∂K/∂ϕi and analogously its complex conjugate Ki, the

tree-level effective potential is

V = eK
[
KjK−1j

i Ki − 3
]
+

1

2
DaDa , (2.3)

where K−1j
i is the inverse of the Kähler metric Eq. (2.2) and 1

2
DaDa is the D-term contribution,

which is absent for chiral fields that are gauge singlets as we assume here.

In this Section we consider the case of a single chiral field ϕ, in which case it is easy to verify

that the first term in Eq. (2.3) can be written in the form

V (ϕ) = 9 e4K/3 K−1
ϕϕ† ∂ϕ∂ϕ†e−K/3 . (2.4)
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It is then clear that the unique form of K with a Minkowski solution, for which V = 0, is

K = − 3 ln
(
f(ϕ) + f †(ϕ†)

)
, (2.5)

where f is an arbitrary analytic function. In fact, since physical results are unchanged by canonical

field transformations, one can transform f(ϕ) → ϕ and recover the simple form Eq. (2.1) of the

Kähler potential for a no-scale supergravity model with a single chiral field.

We note that this Kähler potential describes a maximally-symmetric SU(1,1)/U(1) manifold

whose Kähler curvature Rj
i ≡ ∂i∂

j lnKj
i obeys the simple proportionality relation

Rj
i

Kj
i

≡ R =
2

3
, (2.6)

which is characteristic of an Einstein-Kähler manifold.

This model was generalized in EKN [8], where general solutions for all flat potentials were

found. The SU(1,1) invariance in Eq. (2.5) holds whenever 4

R ≡ Rj
i

Kj
i

=
2

3α
, (2.7)

which corresponds (up to irrelevant field redefinitions) to the extended Kähler potential

G = K + lnW (ϕ) + lnW †(ϕ†) , (2.8)

where

K = − 3αln(ϕ+ ϕ†) , (2.9)

4We note that in extended SU(N,1) no-scale models [9] that include N − 1 matter fields, yi, with the Kähler
potential K = −3α log(ϕ+ϕ† − yiy†i /3), the Kähler curvature becomes R = (N +1)/3α. Our constructions can be
generalized to this case, but such generalizations lie beyond the scope of this work.

6



we assume α > 0, and W (ϕ) is the superpotential 5. In this case the effective potential is

V = eG
[
GjK−1j

i Gi − 3
]
. (2.10)

EKN found three classes of solutions with a constant scalar potential [8], namely

1) W = a and α = 1 , (2.11)

2) W = a ϕ3α/2 , (2.12)

3) W = a ϕ3α/2(ϕ3
√
α/2 − ϕ−3

√
α/2) . (2.13)

Solution 1) corresponds to the V = 0 Minkowski solution discussed above, whereas solutions 2)

and 3) yield potentials that are constant in the real direction, but are in unstable in the imaginary

direction. As we discuss further below, stabilization in the imaginary direction is straightforward

and allows these solutions to be used for realistic models with constant non-zero potentials in the

real direction. We find that 2) leads to anti-de Sitter solutions with V = −3/8α · a2 and 3) leads to

de Sitter solutions 6 with V = 3 · 22−3α · a2. We note that in the particular case α = 1 this reduces

to W = a (ϕ3 − 1), which yields the de Sitter solution discussed in [16]. This was utilized in [19]

when making the correspondence between no-scale supergravity and R2 gravity.

In the following subsections, we first generalize the Minkowski solution Eq. (2.11), and then

show that de Sitter solutions can be obtained as combinations of Minkowski solutions. These as-

pects of the solutions will subsequently be used to generalize them to model theories with multiple

moduli.

2.2.2 Minkowski Solutions

We consider the N = 1 no-scale supergravity model with a single complex chiral field ϕ

described by the Kähler potential given in Eq. (2.9) and the superpotential W (ϕ) is a monomial of

5Starobinsky-like models with α ̸= 1 were discussed in [17]. Such models were later dubbed α-attractors in [18,
16].

6We correct here a typo in the third solution given in [8].
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the form

W = a ϕn , (2.14)

and we seek the value of n that admits a Minkowski solution with V = 0. Defining ϕ ≡ x + iy,

the potential along real field direction x is given by

V = 2−3α ·
(
(2n− 3α)2

3α
− 3

)
· a2 · x2n−3α . (2.15)

We can obtain a Minkowski solution by setting to zero the term in the brackets:

(2n− 3α)2

3α
= 3. (2.16)

Solving the above equation for n, we find two solutions [16]:

n± =
3

2
(α±

√
α) . (2.17)

We note that n− = 0 for α = 1, corresponding to the EKN solution Eq. (2.11) listed above.

However, we see that in addition to this n = 0 solution, n = 3 also yields a Minkowski solution

with V = 0 in all directions in field space.

Although such solutions exist for any α, for the superpotential to be holomorphic we need

n− ≥ 0, which requires α ≥ 1. Clearly, integer solutions for n are obtained whenever α is a

perfect square [16].

It is possible to go from one superpotential to another via a Kähler transformation:

K −→ K + λ(ϕ) + λ†(ϕ†), W −→ e−λ(ϕ)W . (2.18)

with λ(ϕ) = ±3
√
α lnϕ. In general, the solutions given in Eq. (2.17) can be thought of as

corresponding to endpoints of a line segment of length 3
√
α centred at 3α/2. Though this appears

trivial, extensions of this geometric visualization will be useful in the generalizations to multiple
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fields discussed below.

For α ̸= 1, the two solutions yield V = 0 only along the real direction, and the mass squared

of the imaginary component y along the real field direction for x > 0 and y = 0 is given by

m2
y = 22−3α · (α− 1)

α
· a2 · x±3

√
α, (2.19)

where the ± in the exponent corresponds to the two solutions n±. From this it is clear that the

Minkowski solutions are stable for α ≥ 1.

There are two aspects of the single-field model that we emphasize here, because they generalize

in an interesting way to multi-field models. The first is the fact that there are two solutions for n

and the second is that, when α = 1, we get a Minkowski solution with a potential that vanishes

everywhere.

2.2.3 De Sitter Solutions

As was shown in EKN, de Sitter solutions can be found with the Kähler potential Eq. (2.9) and

a superpotential of the form Eq. (2.13), which may be written as

W = a (ϕn− − ϕn+) , (2.20)

where n± are given in Eq. (2.17). In this case the potential along the real field direction y = 0 is

V = 3 · 22−3α · a2 . (2.21)

Thus, the de Sitter solution is obtained by taking the difference of the two “endpoint" solutions

mentioned above.

Unfortunately, this de Sitter solution is not stable for finite α. However, this can be remedied

by deforming the Kähler potential to the following form [20, 17]:

K = − 3α ln(ϕ+ ϕ† + b(ϕ− ϕ†)4) : b > 0 . (2.22)
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The addition of the quartic stabilization term does not modify the potential in the real direction,

which is still given by Eq. (2.21). However, the squared mass of the imaginary component y is

now given by

m2
y =

22−3α

α
· a2 · x−3

√
α ·
(
α(x3

√
α − 1)2 − (1− 96bx3)(x3

√
α + 1)2

)
. (2.23)

The stability requirement m2
y ≥ 0 is achieved when α ≥ 1. In Fig. 2.1 we plot the stabilized

potential for a = b = α = 1, and we see that the potential is completely flat along the line y = 0

and is stable for all values of x > 0.

Figure 2.1: The potential V (x, y) for a = b = α = 1 in no-scale supergravity with the stabilized
Kähler potential Eq. (2.22) and the superpotential Eq. (2.20). Reprinted with permission from
[12].

2.3 Two-Field Models

Several of the features of the single-field model that we discussed in Section 2.2 generalize in

an interesting geometrical way to models with N > 1 fields. We illustrate this first by considering

in this section the simplest generalization, i.e., two-field models.
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2.3.1 Minkowski Solutions

We consider the following Kähler potential with two complex chiral fields:

K = − 3
2∑

i=1

αiln(ϕi + ϕ†
i ) : αi > 0 . (2.24)

with the following ansatz for the superpotential

W = a
2∏

i=1

ϕni
i . (2.25)

Denoting the real and imaginary parts by ϕi = xi + iyi, we find that the potential along the real

field directions yi = 0 is given by

V =

(
2∑

i=1

(2ni − 3αi)
2

3αi

− 3

)
· a2 ·

(
2∏
i

2−3αix2ni−3αi
i

)
. (2.26)

We see immediately that by setting

2∑
i=1

(2ni − 3αi)
2

3αi

= 3 (2.27)

we obtain a Minkowski solution,

We observe that Eq. (2.27) describes an ellipse in the (n1, n2) plane centred at (3α1/2, 3α2/2).

All choices of (n1, n2) lying on this ellipse yield a Minkowski solution. In this way, the line seg-

ment centred at 3α/2 in the single-field model that yielded Minkowski endpoints is generalized,

and we obtain a one-dimensional continuum subspace of Minkowski solutions. We can conve-

niently parametrize the solutions for ni in Eq. (2.27) as the points on the ellipse corresponding to

unit vectors r⃗ = (r1, r2) with r21 + r22 = 1:

ni± =
3

2

αi ±
ri√∑2
j=1

r2j
αj

 , i = 1, 2 . (2.28)
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The unit vector r⃗ should be located starting at the centre of the ellipse, and defines a direction on

its circumference. The operation r⃗ → −r⃗ in Eq. (2.28) takes a point on the ellipse to its antipodal

point, an observation we use later to construct de Sitter solutions. We note also that holomorphy

requires both n1, n2 ≥ 0, i.e.

αi +
ri√∑2
j=1

r2j
αj

≥ 0 , i = 1, 2 . (2.29)

As in the case of the single-field model, we can move from one point on the ellipse to another point

via a Kähler transformation. This is possible because the superpotential is just a monomial.

Integer solutions for the values of ni are also possible in the two-field case. The full set of

solutions in the single-field case are valid for n1± when n2+ = n2− (and similarly when 1 ↔ 2).

More generally, solutions can be found by writing

(n1+ − n1−)
2 = λ1(n1+ + n1−) and (n2+ − n2−)

2 = λ2(n2+ + n2−) , (2.30)

with λi is non-negative and λ1 + λ2 = 3. As one example out of an infinite number of solutions,

choosing λ1 = 1 and λ2 = 2 gives (n1+, n1−) = (3, 1) and (n2+, n2−) = (6, 2).

In general, points around the ellipse yield potentials that are flat only in the real direction and,

as in the single-field model, may not be stable in the imaginary directions. The masses of the

imaginary component fields y1, y2 are given by

m2
yi

=
22−3(α1+α2)

α2
i

·

α2
i −

r2i(∑2
j=1

r2j
αj

)
 · a2 · x2n1−3α1

1 x2n2−3α2
2 , i = 1, 2 . (2.31)

The stability requirement m2
yi
≥ 0 for xi > 0 implies

α2
i −

r2i(∑2
j=1

r2j
αj

) ≥ 0 , i = 1, 2 . (2.32)
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It is easy to see that if the stability conditions are satisfied then the holomorphy conditions Eq.

(2.29) are satisfied. Since the left hand side of Eq. (2.32) is proportional to ni+ni−, points on the

ellipse that give stable Minkowski solution are those that are holomorphic so long as their antipodal

points are also holomorphic.

However, given a choice of unit vector, r⃗, this condition is not satisfied for all choices of αi.

We show in Fig. 2.2 the allowed domain in the (α1, α2) plane for which the stability conditions

Eq. (2.32) (and hence also the holomorphy conditions Eq. (2.29)) are satisfied, for two illustrative

choices of the unit vector r⃗. The allowed region for r⃗ = (1/
√
2, 1/

√
2) is shaded green and behind

it (shaded blue) is the allowed region when r⃗ = (1/
√
10, 3/

√
10). For both choices of r⃗, there

is a kink in the allowed domain where it meets the line given by α1 + α2 = 1. At the kink, for

all choices of r⃗, the potential is completely flat and vanishes in all directions in field space. The

position of the kink can be calculated by solving the stability condition along this line:

α1 =
r21 −

√
r21 − r41

2r21 − 1
. (2.33)

For the two examples shown in Fig. 2.2, r1 = 1/
√
2 implies α1 = 1/2 at the kink, and r1 = 1/

√
10

implies α1 = 1/4. In fact, because of the sign ambiguity, there are four unit vectors for each

solution, corresponding to the ambiguous signs of r1 and r2.

Another projection of the domain of stability is shown in Fig. 2.3, which displays the allowed

regions in the (α1, r
2
1) plane for the fixed values α2/α1 = 1, 2, 3, 5, 10, as illustrated by the curves,

respectively. Each pair of curves (red, green, purple, blue and black for increasing α2/α1) corre-

sponds to the two equalities in Eq. (2.32), and the positivity inequalities are satisfied to the right of

each pair of lines for a given value of α2/α1. For example, when α2/α1 = 1 (shown by the solid

red curves), all values of r21 are allowed if α1 ≥ 1, while no values are allowed when α1 < 1/2.

The point where the curves meet corresponds to the kink when α1 = α2 = 1/2 and r21 = 1/2

that was seen in Fig. 2.2 where the green shaded region touches the black line. When α2/α1 = 3

(shown by medium dashed purple curves), the kink occurs when these two curves meet at α1 = 1/4
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Figure 2.2: The shaded regions are the allowed values of α1, α2 for the illustrative choices r⃗ =
(1/

√
2, 1/

√
2) (green) and r⃗ = (1/

√
10, 3/

√
10) (blue). There are kinks located at (α1, α2) =

(1/2, 1/2) and (α1, α2) = (1/4, 3/4) for the two choices of unit vectors. The black line is α1 +
α2 = 1. Reprinted with permission from [12].

and r21 = 1/10.

r
1
2

α
1
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/α

1
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Figure 2.3: The allowed values of α1, r
2
1 for fixed ratios of α2/α1 = 1, 2, 3, 5, 10. The two sets

of curves are derived from the two constraint equations in Eq. (2.32). The stability inequality is
satisfied for points with α1 to the right of both curves of the same colour (red, green, purple, blue
and black for increasing α2/α1). The point at which the two curves meet corresponds to the kink
that appears in Fig 2.2 when α1 + α2 = 1. Reprinted with permission from [12].
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The lower ellipse Eq. (2.27) in the (n1, n2) plane shown in Fig. 2.4 corresponds to this

second example. As this corresponds to the position of the kink, only a single value of r21 =

1/10 is allowed. The four red spots in the figure correspond to the four different vectors r⃗ =

(±1/
√
10,±3/

√
10). These four unit vectors correspond to four different superpotentials via the

relation Eq. (2.28), which give (n1, n2) = (3/4, 9/4), (3/4, 0), (0, 9/4), (0, 0). When (α1, α2) =

(1/4, 3/4), each of the four superpotentials defined by the pair ni yields a true Minkowski solution.

However, because we are at the kink, there are no other stable solutions.

Choosing a larger value of α1 while keeping α2/α1 fixed would increase the allowed range

in r21 (as seen in Fig. 2.3) and would allow a continuum of stable Minkowski solutions along the

real direction in field space. This is seen in the upper ellipse in Fig. 2.4, where we have chosen

α1 = 1/2 and α2 = 3/2. In this case, the stability constraint, which can be read off Fig. 2.3 for

α2/α1 = 3 at the chosen value of α1, yields r1 < 1/2. Unit vectors with r1 < 1/2 correspond to

arcs along the upper ellipse in Fig. 2.4. These are further shortened by the holomorphy requirement

that ni ≥ 0, and the resulting allowed solutions are shown by the red arc segments in the upper

ellipse.

To summarize this discussion of Minkowski solutions in the two-field case:

1) For any generic unit vector r⃗, there is always a kink in the boundary of the allowed values of

(α1, α2) as shown in Fig. 2.2, and these kink solutions always satisfy α1 + α2 = 1 with α1 given

by Eq. (2.33). The kink solutions give a vanishing potential V = 0 in all directions in field space.

2) For any pair (α1, α2) satisfying α1 + α2 = 1, there are four unit vectors that are determined by

inverting Eq. (2.33), namely

r1 = ± α1√
1− 2α1 + 2α2

1

. (2.34)

The four values of the ni that correspond to these choices are (n1, n2) = (0, 0), (3α1, 0), (0, 3α2),

(3α1, 3α2).

3) For α1 + α2 > 1, a continuum of stable Minkowski solutions exist and, when α1 ≥ 1 with

α2/α1 ≥ 1, the entire ellipse (that is, all unit vectors r⃗) yield stable Minkowski solutions in the
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Figure 2.4: Minkowski solutions for α1 = 1/4, α2 = 3/4 (lower ellipse) and α1 = 1/2,
α2 = 3/2 (upper ellipse). In the former case only the four red points corresponding to r⃗ =
(±1/

√
10,±3/

√
10) are allowed, whereas in the latter case the red arc segments correspond to

allowed solutions. Reprinted with permission from [12].

real directions of field space.

4) The holomorphy conditions Eq. (2.29) are satisfied automatically if the stability conditions Eq.

(2.32) are satisfied.

5) There is an infinite set of Minkowski solutions with positive integer powers of the fields in the

superpotential.

2.3.2 De Sitter Solutions

We recall that in the single-field model we were able to construct a de Sitter solution by com-

bining the two superpotentials corresponding to Minkowski solutions that can be visualized as

opposite ends of a line segment. In the two-field model, we have a continuum of superpotentials

that give Minkowski solutions, which are described by an ellipse Eq. (2.27). In this case it is possi-

ble to to construct new de Sitter solutions by combining superpotentials corresponding to antipodal
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points on the ellipse Eq. (2.27). For example, consider the following combined superpotential:

W = a (ϕ
n1+

1 ϕ
n2+

2 − ϕ
n1−
1 ϕ

n2−
2 ) . (2.35)

It is easy to see that the scalar potential in the real field direction is a de Sitter solution:

V = 3 · 22−3α1−3α2 · a2 (2.36)

in this case.

For the example described by the lower ellipse in Fig. 2.4, one example of a de Sitter solution

is found by taking antipodal points corresponding to the red spots. When r⃗ = (1/
√
10, 3/

√
10),

we have W = a(ϕ
3/4
1 ϕ

9/4
2 − 1), which is the unique solution with a holomorphic superpotential

that results in a flat de Sitter potential in the real direction. However, as we discuss further below,

this solution is actually not stable.

As an alternative example, we consider a two-field model with α1 = 1 and α2 = 2. The

Minkowski solutions in this case are described by the ellipse Eq. (2.27) in (n1, n2) space shown

in Fig. 2.5, whose centre is at (3/2, 3). In this case, the entire ellipse can be used to construct

de Sitter solutions, as all possible unit vectors r⃗ are allowed since α1 > 1 (see Fig. 2.3). As in

the previous example, we can use antipodal points to construct de Sitter solutions, as illustrated in

Fig. 2.5. One such pair of antipodal points is (3, 3), (3, 0), corresponding to r⃗ = (1, 0), indicated

by the horizontal orange line in Fig. 2.5. The corresponding superpotential is

W = a2
(
ϕ3
1ϕ

3
2 − ϕ3

2

)
, (2.37)

so that the fields appear in the superpotential with positive integer powers. This example yields a

de Sitter potential with the potential value

V = 3 · 2−7 · a2. (2.38)
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along the real field directions. A continuum of de Sitter solutions for real field values are possible

for different choices of r⃗, e.g., the choice indicated in Fig. 2.5 by the blue line, all with the potential

given by Eq. (2.38).
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Figure 2.5: The Minkowski solutions for α1 = 1 and α2 = 2 are described by an ellipse in (n1, n2)
space. Lines passing through the center of the ellipse connect antipodal points, as illustrated with
two examples. Reprinted with permission from [12].

2.3.3 Stability Analysis

As in the single-field case, the de Sitter solutions of the two-field model require modification

in order to be stable. Stable solutions can easily be found by deforming the Kähler potential to

include stabilizing quartic terms:

K = − 3
2∑

i=1

αiln(ϕi + ϕ†
i + bi(ϕi − ϕ†

i )
4) : bi > 0 . (2.39)

With this modification the potential along real field directions is still given by Eq. (2.36). To

prove the stability of the two-field de Sitter solution with the quartic modification of the Kähler

potential, we calculate the Hessian matrix ∂2V/∂yi∂yj : i, j = 1, 2 along the real field directions,
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and demand that it be positive semi-definite. The Hessian matrix along the real field directions is

of the form

a2
(
3.21−3α1−3α2

α2r21 + α1r22

) x−2
1 A1 x−1

1 x−1
2 B

x−1
1 x−1

2 B x−2
2 A2

 , (2.40)

where

A1 = w−1
(
α2
1r

2
2(1 + 4w + w2) + α1α2r

2
1(1− w)2 + α2r

2
1(96b1x

3
1 − 1)(1 + w)2

)
, (2.41)

A2 = w−1
(
α2
2r

2
1(1 + 4w + w2) + α1α2r

2
2(1− w)2 + α1r

2
2(96b2x

3
2 − 1)(1 + w)2

)
, (2.42)

B = −6α1α2r1r2 , (2.43)

we have defined

w ≡ x

3r1√
r21
α1

+
r22
α2

1 x

3r2√
r21
α1

+
r22
α2

2 , (2.44)

and the Hessian matrix is positive semi-definite if the condition

H ≡ A1A2 ≥ B2 (2.45)

is satisfied.

The stability condition Eq. (2.45) for generic α1, α2, b1, b2 and r⃗ is

(
α2
1r

2
2(1 + 4w + w2) + α1α2r

2
1(1− w)2 + α2r

2
1(96b1x

3
1 − 1)(1 + w)2

)
×

α2
2r

2
1(1 + 4w + w2) + α1α2r

2
2(1− w)2 + α1r

2
2

96b2
w

1
r2

√
r21
α1

+
r22
α2

x
(3r1/r2)
1

− 1

 (1 + w)2


− 36α2

1α
2
2r

2
1r

2
2w

2 ≥ 0 .

(2.46)

A general stability analysis is intractable, so we have considered the simplified case: α1 = α2 ≡ α
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and r⃗ = (1/
√
2, 1/

√
2), for which the positivity condition Eq. (2.45) becomes

(
2α(1 + w + w2) + (96b1x

3
1 − 1)(1 + w)2

)
×
(
2α(1 + w + w2) + (96b2x

3
2 − 1)(1 + w)2

)
≥ 36α2w2 .

(2.47)

Eliminating x2 in favour of x1 and w via Eq. (2.44), this inequality becomes

(
2α(1 + w + w2) + (96b1x

3
1 − 1)(1 + w)2

)
×

(
2α(1 + w + w2) +

(
96b2

w
√

2/α

x3
1

− 1

)
(1 + w)2

)
− 36α2w2 ≥ 0 .

(2.48)

We note that (96b1x3
1 − 1) dominates for x1 ≫ 1 and

(
96b2

w
√

2/α

x3
1

− 1
)

dominates for x1 ≪

1, implying that there is an extremum for some intermediate value of x1. This occurs at x1 =

(b2/b1)
1/6w1/(3

√
2α), and is a global extremum. Whether it is a maximum or a minimum depends

on the sign of 2α(1 + w + w2)− (1 + w)2, and it is non-negative for

α ≥ 2

3
. (2.49)

This is a necessary condition for the inequality Eq. (2.48) to be satisfied. We have not explored the

full range of possible values of b1 and b2 when α1 = α2 = α, but have checked that the stability

condition Eq. (2.48) is always satisfied if b1 = b2 = 1 and α ≥ 2/3, irrespective of the value of w.

We have also found that when α1 ̸= α2 the sum α1 + α2 ≥ 4/3.

We have also considered the case r⃗ = (0, 1) with b1 = b2 = 1. The inequality Eq. (2.46)

reduces in this case to

α2(1− w)2 + (1 + w)2(96w1/
√
α2 − 1) ≥ 0 , (2.50)

which is always satisfied for α2 ≥ 1. It is easy to check that the same is true for the case

r⃗ = (1, 0). Based on these cases and the previous example with r⃗ = (1/
√
2, 1/

√
2), we expect that
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there are generic stable solutions for a range of r⃗ in the first and third quadrants where r1/r2 > 0.

However, the situation is different when r1/r2 < 0. We find that the inequality Eq. (2.45) cannot

be satisfied for r⃗ = (−1/
√
2, 1/

√
2) and b1 = b2 = 1, so there are no stable de Sitter solutions,

and we expect the same to be the case for other choices of r⃗ in the second or fourth quadrant.

In summary, we have established the existence of stable de Sitter solutions only when r⃗ is in

either first or third quadrant.

2.4 N-field models

Finally, we generalize the above set of examples to models with multiple fields N > 2.

2.4.1 Minkowski Solutions

The natural generalization of the Kähler potential in Eq. (2.24) is simply a sum of N similar

terms:

K = − 3
N∑
i=1

αiln(ϕi + ϕ†
i ) . (2.51)

Similarly, we adopt the following ansatz for the superpotential:

W = a
N∏
i=1

ϕni
i , (2.52)

in which case the potential along the real field directions xi is

V =

(
N∑
i=1

(2ni − 3αi)
2

3αi

− 3

)
· a2 ·

(
N∏
i

2−3αix2ni−3αi
i

)
. (2.53)

We can obtain Minkowski solutions along the real field directions by setting

N∑
i=1

(2ni − 3αi)
2

3αi

= 3 , (2.54)

which describes an ellipsoid in (n1, ..., nN) space whose centre is at (3α1/2, ..., 3αN/2). Once

again we find a continuum of Minkowski solutions. The points on the ellipsoid can be parametrized
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conveniently using an N -dimensional unit vector r⃗:

ni =
3

2

αi +
ri√∑N
j=1

r2j
αj

 i = 1, ..., N ; r21 + ...+ r2N = 1 , (2.55)

where the unit vector r⃗ is to be considered as anchored at the centre of the ellipsoid. To ensure holo-

morphy of the superpotential we need ni ≥ 0, and the masses of the imaginary field components

yi are given by

m2
yi

=
22−3(

∑
αi)

α2
i

·

α2
i −

r2i(∑N
j=1

r2j
αj

)
 · a2 ·

N∏
j=1

x
2nj−3αj

j , i = 1, ..., N . (2.56)

For stability, we impose conditions similar to Eq. (2.32), namely:

α2
i −

r2i(∑2
j=1

r2j
αj

) ≥ 0 i = 1, ..., N . (2.57)

As in two-field models, ensuring these stability conditions are satisfied implies that the holomorphy

conditions are also satisfied. For a given unit vector r⃗, one can ask what values of α1, ..., αN satisfy

the stability conditions. We find a multidimensional region analogous to that in Fig. 2.2, with a

vertex that satisfies α1+ ...+αN = 1. We show in Fig. 2.6 the allowed region of α1, α2 and α3 for

a three-field model with r⃗ = (1/
√
3, 1/

√
3, 1/

√
3).

The vertex is a special solution that corresponds to V = 0 in both the real and imaginary field

directions. When the sign of one of the components of r⃗ is changed, the region in α1, ..., αN space

that satisfies Eq. (2.57) remains the same. Therefore, there are 2N unit vectors, each differing only

in the sign of the components, that have the same vertex solution.

The above observations on the vertex solution can be summarized as follows. When

N∑
i=1

αi = 1 , (2.58)
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Figure 2.6: Allowed values of α1, α2, α3 for a three-field model with r⃗ = (1/
√
3, 1/

√
3, 1/

√
3).

Reprinted with permission from [12].

there are 2N superpotentials of the form

W = a ϕ
3αi1
i1

...ϕ
3αin
in

, (2.59)

where {i1, ..., in} (n ≤ N ) is a subset of {1, 2, ..., N}, that all give V = 0 in both the real and

imaginary field directions.

2.4.2 De Sitter Solutions

Finally we discuss de Sitter solutions in N -field models. Here the Kähler potential is again

given by

K = − 3
N∑
i=1

αiln(ϕi + ϕ†
i ) , (2.60)

and, as in the two-field case, the superpotential may be constructed from two antipodal points of

the ellipse Eq. (2.54):

W = a

(
N∏
i=1

ϕ
ni+

i −
N∏
i=1

ϕ
ni−
i

)
, (2.61)
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where the exponents are given by

ni± =
3

2

αi ±
ri√∑N
j=1

r2j
αj

 i = 1, ..., N ; r21 + ...+ r2N = 1 , (2.62)

and the potential along the real field directions is then

V = 3 · 2(2−3
∑N

i=1 αi) · a2 . (2.63)

We use a simple three-field model with α1 = 2, α2 = 2 and α3 = 4 for illustration. The Minkowski

solutions are described by an ellipsoid in (n1, n2, n3) space centred at (3, 3, 6), which is shown in

Fig. 2.7.

Figure 2.7: Minkowski solutions for the three-field model with α1 = 2, α2 = 2 and α3 = 4.
Reprinted with permission from [12].
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To construct de Sitter solutions for this model, we choose the antipodal points (3, 3, 9), (3, 3, 3)

corresponding to the unit vector r⃗ = (0, 0, 1), which yield the superpotential:

W = a (ϕ3
1ϕ

3
2ϕ

9
3 − ϕ3

1ϕ
3
2ϕ

3
3) . (2.64)

This yields a de Sitter potential along the real field directions with potential

V = 3 · 2−16 · a2 . (2.65)

2.4.3 Stability Analysis

The stability analysis of the de Sitter solution in the N -field model is difficult, as it requires

finding the eigenvalues of an N ×N matrix. However, as in the two-field model, we do not expect

the solution to be stable unless the Kähler potential is deformed, e.g., to

K = − 3
N∑
i=1

αiln(ϕi + ϕ†
i + bi(ϕi − ϕ†

i )
4) . (2.66)

With this modification, for any given unit vector r⃗ there should exist a region in (α1, ..., αN) space

where the de Sitter solution is stable.

To demonstrate this in a specific three-field example, we consider the model with three chiral

fields S, T, U that was considered in [21]. This model is defined by the following Kähler potential

and superpotential:

K = − ln(S + S†) − 3 ln(T + T †) − 3 ln(U + U †) ,

W = W (S, T, U) .

(2.67)

This model is of particular interest as it arises in the compactification of Type IIB string theory on

T 6/Z2×Z2. Then the three chiral fields are the axiodilaton S, a volume modulus T and a complex

structure modulus U . One expects that the perturbative contribution to the superpotential should

be a polynomial and that the non-perturbative contribution would have a decaying exponential
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form. For our analysis we assume that the powers of the fields in the superpotential could also be

fractional. In our notations, this STU model has α1 = 1/3, α2 = 1 and α3 = 1.

We first construct a Minkowski solution. We can use the stability conditions to find a unit

vector r⃗ and construct an appropriate superpotential. One such unit vector is r⃗ = (0, 1, 0). This

leads to a superpotential of the form

W = aS1/2T 3U3/2 , (2.68)

which gives a stable Minkowski solution V = 0 along real field directions 7.

In order to construct de Sitter solutions we add stabilization terms to the Kähler potential:

K = − ln(S+S†+ bS(S−S†)4) − 3 ln(T +T †+ bT (T −T †)4) − 3 ln(U +U †+ bU(U −U †)4) .

(2.69)

As discussed above, we use antipodal points to construct the superpotential, choosing r⃗ = (0,±1, 0),

in which case:

W = aS1/2U3/2(T 3 − 1) . (2.70)

With this we get a de Sitter solution along the real field directions with potential

V =
3

32
· a2 . (2.71)

In order to check whether the de Sitter solution is stable for the antipodal points that we have

chosen, we calculate the Hessian matrix along the real field directions to verify that the eigenvalues

are non-negative. Defining

S = s+ iy1 , T = t+ iy2 , U = u+ iy3 , (2.72)
7We mention in passing that the STU model does not admit any superpotential with only integer powers, for either

Minkowski or de Sitter solutions.
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we calculate the Hessian matrix ∂2V/∂yi∂yj : i, j = 1, 2, 3 along the real field directions, finding


a2(1+4t3+t6)

64s2t3
0 0

0 −3a2+72a2bT (1+t3)2

16t2
0

0 0 3a2(1+4t3+t6)
64t3u2

 . (2.73)

We see that the Hessian matrix is diagonal, so the eigenvalues are simply the diagonal entries. For

the Hessian matrix to be positive semi-definite we need

− 3a2 + 72a2 bT (1 + t3)2 ≥ 0 , (2.74)

which is independent of bS and bU . Therefore, we simply need

bT ≥ 1

24
, (2.75)

with no restriction on bS and bU .

2.5 Summary

Generalizing previous discussions of de Sitter solutions in single-field no-scale models [8, 16,

19], in this chapter we have discussed de Sitter solutions in multi-field no-scale models as may

appear in realistic string compactifications with multiple moduli.

As a preliminary, we showed that the space of Minkowski vacua in multi-field no-scale models

is characterized by the surface of an ellipsoid. The parameters in these models are the coefficients

(α1, ..., αN) in the generalized no-scale Kähler potential and a unit vector r⃗ that selects a particular

pair of antipodal points on this ellispoid whose center is located at (3α1/2, ..., 3αN/2). Requiring

the stability of Minkowski solutions for a fixed r⃗ leads us to a region in (α1, ..., αN) space with

a vertex that is a special point where
∑N

i=1 αi = 1. Such points describe Minkowski vacua with

potentials that are flat in both the real and imaginary field directions. In this way we constructed

2N monomial (in each field) superpotentials for models with
∑N

i=1 αi = 1 that yield acceptable
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Minkowski vacua. The exponent of each monomial is determined by the coefficients αi and the

vectors, ri.

We then constructed de Sitter solutions by combining the superpotentials at antipodal points,

generalizing a construction given originally in the single-field case in [8]. These de Sitter solutions

are unstable if the simple no-scale Kähler potential is used, and require stabilization. We showed

that modifying the Kähler potential with a quartic term stabilizes a specific two-field model with

α1 = α2 = α and r⃗ = (1/
√
2, 1/

√
2) for α ≥ 2/3, and we expect the stability to hold for other

generic r⃗ for suitable ranges of α1, α2. We also expect that similar stable de Sitter solutions exist

for N -field models under certain conditions, as demonstrated explicitly in a specific three-field

model motivated by the compactification of Type IIB string theory [21].

We note that satisfying the stability requirement also ensures that the superpotential is holo-

morphic in the Minkowski case, i.e., contains only positive powers of the chiral fields, whereas

this is not necessarily true in the de Sitter case. It is easy to find infinite discrete series of models

for which these powers are integral, and we have provided a number of illustrative single- and

multi-field examples.
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3. FROM DE SITTER TO INFLATIONARY MODELS1

3.1 Introduction

In the previous chapter, we discussed Minkowski and de Sitter solutions within the 4d N = 1

no-scale supergravity framework. Several issues then arise within this broader theoretical context.

How unique are no-scale supergravity models with Minkowski or de Sitter solutions? What are

the relationships between them? What other geometrical interpretations are possible? Can the de

Sitter models be used to construct inflationary models predicting perturbations that are consistent

with observations, e.g., resembling the successful [29, 30] predictions of the Starobinsky model

[31] as in [32]? How may the universe evolve from a (near-)de Sitter inflationary state towards the

(near-)Minkowski contemporary epoch with its (small) cosmological constant, a.k.a. dark energy?

Aspects of these questions have been addressed previously in a series of papers. In [12], we

constructed dS vacua in two- and multifield models as could occur in string compactifications, dis-

cussed the conditions for their stability, and gave examples with only integer powers of the chiral

fields in the superpotential. There is a long history of no-scale supergravity models of inflation

[33, 34, 35, 36], but only recently has it been realized that simple forms of the superpotential can

yield Starobinsky-like inflation [16, 19, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

Indeed, there are several forms for the superpotential based on two chiral fields [37]. In [38]

a general discussion of two-field no-scale supergravity models of inflation yielding predictions

similar to those of the Starobinsky model and using the non-compact SU(2,1)/SU(2)×U(1) sym-

metry to catalogue them in six equivalence classes was presented. In [39] a specific minimal

SU(2,1)/SU(2)×U(1) no-scale model that incorporates Starobinsky-like inflation, supersymmetry

breaking and dark energy was constructed. This construction was generalized in [40] to inflation-

ary models based on generalized no-scale structures with different values of the Kähler curvature

R, as may occur if different numbers of complex moduli contribute to driving inflation.

1Reprinted with permission from "From Minkowski to de Sitter in Multifield No-Scale Models" by J. Ellis, B.
Nagaraj, D. V. Nanopoulos, K. A. Olive and S. Verner, 2019, Springer Nature, JHEP 10, 161 (2019). Copyright [2019]
by the authors.
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In this chapter we discuss the uniqueness of superpotentials leading to Minkowski, dS and AdS

vacua of single-field no-scale supergravity models, and how pairs of Minkowski superpotentials

can be used to construct dS/AdS solutions. Expanding on previous work which showed how this

construction may be extended to two- and multifield no-scale supergravity models, we show how

matter fields can be incorporated in a multifield construction of Minkowski, dS and AdS vacua. We

also provide a geometrical visualization of the construction. We also mention how Starobinsky-

like inflationary models can be constructed in this framework, and comment on the inclusion of

additional twisted or untwisted moduli fields.

The structure of this chapter is as follows. In Section 3.2 we first review the of structure

no-scale supergravity and previous work within that framework. We then discuss the uniqueness

of single-field monomial superpotentials leading to a Minkowski vacuum and how they can be

combined in pairs to yield dS vacua. Section 3.3 shows how these constructions can be extended

to multiple moduli, and introduces a geometrical interpretation. Section 3.4.1 then further extends

these constructions to include untwisted matter fields, and Section 3.4.2 considers the case of

twisted matter fields. This is followed in Section 3.5 by a discussion of inflationary models with

either untwisted or twisted matter fields. Finally, our results are summarized in Section 3.6.

3.2 Vacua Solutions with Moduli Fields

3.2.1 No-Scale Supergravity Framework

We first recall some general properties of no-scale supergravity models, which emerge naturally

from generic string compactifications in the low-energy effective limit [11]. The simplest N = 1

no-scale supergravity models were first considered in [6, 7] and are characterized by the following

Kähler potential [8]:

K = − 3 ln(T + T ), (3.1)

where field T is a complex chiral field that can be identified as the volume modulus field, and T

is its conjugate field. The minimal no-scale Kähler potential Eq. (3.1) describes a non-compact

SU(1,1)
U(1)

coset manifold and its higher-dimensional generalizations [9] will be considered in the
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following sections. Furthermore, the Kähler curvature of a general Kähler manifold is given by the

expression Rij̄ ≡ ∂i∂j̄ lnKij̄ , and the scalar curvature obeys the relation:

R ≡
Rij̄

Kij̄

, (3.2)

where Kij̄ is the inverse Kähler metric. If we consider the maximally-symmetric SU(1,1)
U(1)

Kähler

manifold (3.1), the Kähler curvature reduces to the familiar result R = 2
3
. The Kähler potential Eq.

(3.1) can be modified by introducing a curvature parameter α:

K = − 3α ln(T + T ), (3.3)

which also parametrizes a non-compact SU(1,1)
U(1)

coset manifold, but with a positive constant curva-

ture R = 2
3α

if we assume that α > 0. This unique structure was first discussed in [8], and similar

models were studied in [16, 51, 52], where they were termed α-attractors.

To account for interactions, the Kähler potential is extended by including a superpotential W :

G ≡ K + lnW + lnW , (3.4)

yielding the effective scalar potential:

V = eG
[
∂G

∂Φi

Kij̄

∂G

∂Φ̄j̄

− 3

]
, (3.5)

where the fields Φi are complex scalar fields, Φ̄ī are their conjugate fields, and Kij̄ is the inverse

Kähler metric. For more on N = 1 supergravity models, see [24].
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3.2.2 Review of Earlier Work

As was shown in [8, 16, 19], one can consider combining cubic and constant superpotential

terms to acquire a de Sitter vacuum solution. Choosing the following superpotential form:

W = 1− T 3, (3.6)

together with the Kähler potential Eq. (3.1), and imposing the condition T = T , the effective

scalar potential Eq. (3.5) yields a de Sitter vacuum solution V = 3
2
. However, the superpotential

Eq. (3.6) leads to an unstable vacuum solution, since the mass-squared of the imaginary component

of the scalar field is negative: m2
ImT = −2. As we discuss in more detail below, the problem of

instabilities can be addressed by adding a quartic term to the Kähler potential [20, 37, 40].

A detailed analysis of the general de Sitter vacua constructions for multi-moduli models was

conducted in [12] and for convenience, we recall some of the key results. The Minkowski vacua

solutions for a single complex chiral field T were found by considering the Kähler potential Eq.

(3.3) with a monomial superpotential of the following form:

W = λ · T n± , (3.7)

where n± are two possible solutions given by:

n± =
3

2

(
α±

√
α
)
. (3.8)

Along the real T direction, V = 0. The scalar mass-squared in the imaginary direction is:

m2
ImT = 22−3α · λ2 · (α− 1)

α
· T±3

√
α , (3.9)

where the choice T±3
√
α corresponds to the two possible solutions n± Eq. (3.8). As can be seen

from Eq. (3.9), in order to obtain a stable Minkowski vacuum solution, the stability condition
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α ≥ 1 has to be satisfied. For cases when 0 < α < 1, quartic stabilization terms in the imaginary

direction must be introduced in the Kähler potential Eq. (3.3).

As was shown in [8, 12, 40], de Sitter vacua solutions can be obtained from the Kähler potential

Eq. (3.3) by choosing a superpotential of the form:

W = λ1 T
n− − λ2 T

n+ , (3.10)

where n± is given by Eq. (3.8). In this case, along the real T direction the effective scalar potential

Eq. (3.5) becomes:

V = 3 · 22−3α · λ1 λ2. (3.11)

One of the most fascinating features of the de Sitter vacua construction Eq. (3.10) is that it is

obtained by combining two distinct Minkowski vacua solutions Eq. (3.7). In the next sections, we

will show that there is a deeper connection between dS/AdS and Minkowski vacua solutions and

that this relation is not accidental.

Superpotential classes yielding constant scalar potentials were first considered in [8], namely:

1) W = λ with α = 1 , (3.12)

2) W = λT 3α/2 , (3.13)

3) W = λT 3α/2(T 3
√
α/2 − T−3

√
α/2) . (3.14)

Comparing solution 1) to Eq. (3.10), we see that it can be recovered by setting α = 1, λ1 = λ and

λ2 = 0. Because λ2 is chosen to be zero, we find a Minkowski vacuum: V = 0. Solution 3) is

identical to Eq. (3.10) with λ1 = λ2 = −λ. Solution 2) can also be obtained from Eq. (3.10) with

the aid of a Kähler transformation:

K → K + f(T ) + f̄(T ) (3.15)
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and

W (T ) −→ W̃ (T ) = e−f(T )W (T ), (3.16)

with

f(T ) = ln

(
1 + T 3

√
α

2T 3
√
α/2

)
, (3.17)

and applying the transformation laws Eq. (3.15), Eq. (3.16) with Eq. (3.17) and λ1 = −λ2 = λ/2,

we recover solution 2) which is in fact an AdS vacuum solution V = −(3/23α)λ2, which is always

negative.

While the scalar potential is flat in the real direction, the scalar mass-squared of the imaginary

component is given by:

m2
ImT =

22−3α
[
λ2
1(α− 1)T−3

√
α − 2λ1λ2(α + 1) + λ2

2(α− 1)T 3
√
α
]

α
, (3.18)

For α > 0, in the absence of stabilization terms, there are always some field values for which

the instability in the imaginary direction persists. The problem of instability can be remedied

by modifying the Kähler potential Eq. (3.3) and introducing quartic stabilization terms in the

imaginary direction [20, 37, 40]:

K = −3α ln
(
T + T + β (T − T )4

)
, (3.19)

with β > 0. The newly-introduced quartic stabilization term does not alter the potential in the real

direction, while it stabilizes the mass of the imaginary component Eq. (3.18) so that:

m2
ImT

=
22−3α

[
λ2
1(α− 1 + 96βT 3)T−3

√
α − 2(α + 1− 96βT 3)λ1λ2 + λ2

2(α− 1 + 96βT 3)T 3
√
α
]

α
.

(3.20)

3.2.3 Uniqueness of Vacua Solutions

By solving an inhomogeneous differential equation, we now show that the monomial Minkowski

superpotential solutions Eq. (3.7) are the only possible unique solutions that yield V = 0, while
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the combination of two distinct Minkowski solutions Eq. (3.10) yield dS/AdS vacuum solutions.

We consider a general superpotential expression W (T ), which is a function of volume modulus

T only, and solve the general homogeneous differential equation, which is equivalent to finding

Minkowski vacuum solutions. As before, we assume that the Vacuum Expectation Value (VEV)

of the imaginary component ⟨ImT ⟩ = 0, so that T = T and W (T ) = W (T̄ ). Using the Kähler

potential Eq. (3.3) and the effective scalar potential Eq. (3.5), we find

V = (2T )−3α ·
[
(3αW − 2TW ′)2

3α
− 3W 2

]
, (3.21)

where W ≡ W (T ) and W ′ ≡ dW (T )
dT

. In order to find Minkowski vacuum solutions, we set

Eq. (3.21) to zero:
(3αW − 2TW ′)2

3α
− 3W 2 = 0. (3.22)

Solving the homogeneous differential equation Eq. (3.22), we obtain two distinct Minkowski

solutions:

W = λi · T
3
2(α±

√
α), (3.23)

where λi is an arbitrary constant. To find the dS/AdS vacuum solutions, we set the differential

equation Eq. (3.21) equal to a constant and solve the following inhomogeneous equation:

(3αW − 2TW ′)2

3α
− 3W 2 = Λ · (2T )3α , (3.24)

where Λ is an arbitrary constant. We look for a particular superpotential solution to the inhomoge-

neous equation Eq. (3.24) of the following form:

W = λ1 · T
3
2(α±

√
α) − λ2 · T m . (3.25)

Inserting the expressions Eq. (3.25) into Eq. (3.24), we find that m = n∓ = 3
2
(α∓

√
α) is

a particular solution of the inhomogeneous differential equation and the general solution has the
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following form:

W = λ1 · T n± − λ2 · T n∓ , with V = Λ , (3.26)

where we have defined the constant Λ = 3 · 22−3α · λ1 λ2. Thus, we have constructed the unique

combination of two Minkowski solutions that yields dS/AdS solutions 2.

3.2.4 Generalized Solutions and Vacuum Stability

Before concluding this section, we introduce a formalism with which the construction of

Minkowski-dS-AdS solutions can be generalized and applied to more complicated Kähler man-

ifolds. Let us write:

K = −3α ln(V) , (3.27)

where V is the argument inside the logarithm. For the simplest minimal no-scale SU(1,1)
U(1)

super-

gravity case with a single volume modulus field T , we have V ≡ T + T . As before, and in all the

cases that we consider, we assume that the VEV of the imaginary part of the complex field is fixed

to zero: ⟨ImT ⟩ = 0, which can always be achieved by introducing quartic stabilization terms in

Eq. (3.27).

For the single field case, the effective scalar potential Eq. (3.5) becomes:

V =
V̂

V3α
, with V̂ =

|V ·W T − 3αW |2

3α
− 3|W |2. (3.28)

In the real direction, where T = T , we define:

V −→ ξ, (3.29)

so that the argument inside the logarithm becomes ξ = 2T .

From our previous discussion, we already know which superpotential forms reduce to Minkowski

solutions. We introduce the following notation, which will be used for all our Kähler coset mani-

2We note that these solutions correspond to flat directions in the real field direction. It is possible and relatively
straightforward to construct minima with non-zero vacuum energy. In particular, it is well known that supergravity
models with unbroken supersymmetry generally lead to AdS vacua.
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folds 3 :

WM ≡ λ · ξn± , with V = 0 , (3.30)

where, as usual, the two possible choices n± are given by Eq. (3.8). Note that, for this construction

to work, we must impose the constraint ξ > 0 and the positive curvature condition α > 0, which

are necessary features of the no-scale structure 4.

With this redefinition, the scalar mass-squared in the imaginary field direction given in Eq.

(3.9) becomes:

m2
ImT =

4λ2(α− 1)ξ±3
√
α

α
, (3.31)

where the sign depends on the choice of the Minkowski vacuum solution in Eq. (3.30). We will

later show that the same Minkowski mass expression Eq. (3.31) holds for any Kähler potential

form, and hence that the solution is stable when α ≥ 1. When 0 < α < 1, Minkowski vacuum

solutions become unstable and we must introduce the quartic stabilization terms in the imaginary

direction.

Similarly, dS/AdS vacua solutions are constructed by combining two different Minkowski so-

lutions Eq. (3.30),

WdS/AdS = λ1 · ξn− − λ2 · ξn+ , (3.32)

and we call such constructions Minkowski pairs. The dS/AdS vacuum solution Eq. (3.32) yields

an effective scalar potential Eq. (3.5):

V = 12λ1 λ2 , (3.33)

which allows three different types of vacua:

• de Sitter vacuum solutions when λ1 and λ2 are ̸= 0 and have the same sign.

3Note that we are using a trick in our definition of the superpotential. Strictly speaking, ξ is defined by the argument
of the log in K when all fields are taken as real. However in the superpotential we are assuming that ξ is a function of
(complex) superfields and ignore the restriction to real fields.

4Note also that the definition of λ here differs from that in Eq. (3.7) by a constant factor of 2n± .
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• anti-de Sitter vacuum solutions when λ1 and λ2 are ̸= 0 and have opposite signs.

• Minkowski vacuum solutions when either λ1 or λ2 is set to zero.

The generalization of the scalar mass in the imaginary direction m2
ImT in Eq. (3.18) is given

by:

m2
ImT =

4
[
λ2
1(α− 1)ξ−3

√
α − 2(α + 1)λ1λ2 + λ2

2(α− 1)ξ3
√
α
]

α
, (3.34)

which should always be positive, m2
ImT ≥ 0 for stability in the imaginary field direction. Recalling

that dS vacuum solutions are acquired when λ1 and λ2 have the same sign, we introduce the ratio

coefficient γ = λ1/λ2, which must always be positive.

To visualize this condition, we plot in Fig. 3.1 the (α, γ) plane with T on the vertical axis,

and the size of log (m2
ImT/4λ

2
2) indicated by color coding. The boundary of the colored region

corresponds to the critical value of m2
ImT/4λ

2
2 = 0, and it indicates when m2

ImT becomes unstable.

Interestingly, the same general expression Eq. (3.34) holds also for more complicated forms of ξ.

It is important to note that Fig. 3.1 shows two colored regions which are separated by a gap, and

indicates that the dS vacuum becomes unstable in the imaginary direction for certain values of T

and α.

To understand the occurrence of the dS vacuum instability, we consider two specific cases with

different values of α, where for illustrative purposes we choose λ1 = λ2 = 1, and we use the field

parametrization T = (x + iy)/
√
2. The effective scalar potential is plotted in Fig. 3.2 for α = 1,

which is characteristic of solutions with α ≤ 1. We see that dS vacuum solutions are always

unstable in the imaginary field direction, so these solutions must be stabilized. In Fig. 3.3 we show

the scalar potential with α = 3, which is characteristic of solutions with α > 1. Here, we see that

vacuum solutions might fall into an AdS vacuum, which corresponds to the gap region shown in

Fig. 3.1. In both cases, the potential is completely flat along the line y = 0 corresponding to the

dS solution up to the point where x = 0 (the potential is not defined at x ≤ 0).

To address the stability issue, we consider the modified Kähler potential Eq. (3.19), where

if we compare it to the general Kähler potential Eq. (3.27), we see that in the real direction the
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Figure 3.1: Illustration of the value of the expression Eq. (3.34) as a function of (α, γ, T ), as shown
by the color coding for log (m2

ImT/4λ
2
2) on the right-hand side. Reprinted with permission from

[13].

argument inside the logarithm remains unchanged, with ξ = 2T .

The generalization of the mass squared in Eq. (3.34) is:

m2
ImT =

4
[
λ2
1(α− 1 + 12β · ξ3)ξ−3

√
α − 2(α + 1− 12β · ξ3)λ1λ2 + λ2

2(α− 1 + 12β · ξ3)ξ3
√
α
]

α
,

(3.35)

where it can readily be seen from the numerator of Eq. (3.35) that, by choosing a value of β that is

large enough, we can always make the imaginary field direction stable 5. We plot in Fig. 3.4 and

Fig. 3.5 the unstable cases considered previously with α = 1 and α = 3, which have been each

stabilized with the choice β = 2. Once again, the potential along y = 0 is flat.

5A similar expression when γ = 1 can be found in [12].
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Figure 3.2: The effective scalar potential V (x, y) normalized by M2 without quartic stabilization
terms in the imaginary direction (β = 0), for the case α = 1. Here M is mass of the field along
real field direction. Reprinted with permission from [13].

3.3 Multi-Moduli Models

3.3.1 Minkowski Vacuum for Two Moduli

Our next step is to extend this formulation to the two- and multi-moduli cases. As before, we

first construct the general Minkowski vacuum solutions and then use Minkowski superpotential

pairs to obtain dS/AdS solutions. We begin by considering the following two-field Kähler potential:

K = −3α1 ln(V1)− 3α2 ln(V2) . (3.36)

For now, we consider V1 = T1 + T 1 and V2 = T2 + T 2. Along the real directions, T1 = T 1 and

T2 = T 2, we adopt the following notation:

V1 → ξ1, V2 → ξ2 , (3.37)
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Figure 3.3: The effective scalar potential V (x, y) normalized by M2 without quartic stabilization
terms in the imaginary direction (β = 0), for the case α = 3. Here M is mass of the field along
real field direction. Reprinted with permission from [13].

and we choose the following ansatz that yields Minkowski vacuum solutions:

WM = λ · ξn1
1 · ξn2

2 . (3.38)

Inserting the superpotential Eq. (3.38) into the expression Eq. (3.5) for the effective scalar poten-

tial, we obtain:

V = λ2 · ξ2n1−3α1
1 · ξ2n2−3α2

2 ·
(
(2n1 − 3α1)

2

3α1

+
(2n2 − 3α2)

2

3α2

− 3

)
. (3.39)

In order to recover Minkowski vacua, we set V = 0, which holds when the following expression

is satisfied [12]:
(2n1 − 3α1)

2

3α1

+
(2n2 − 3α2)

2

3α2

= 3 . (3.40)
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Figure 3.4: The effective scalar potential V (x, y) normalized by M2 for α = 1 now stabilized by
quartic terms in the imaginary direction with β = 2. Here M is mass of the field along real field
direction. Reprinted with permission from [13].

For ease of illustration, we introduce the following parametrization:

r1 ≡
2n1 − 3α1

3
√
α1

, r2 ≡
2n2 − 3α2

3
√
α2

, (3.41)

in terms of which the general expression Eq. (3.40) becomes:

r21 + r22 = 1 . (3.42)

Solving the constraint Eq. (3.40) for n1 and n2, we find:

n1 =
3

2

α1 ±

√
1− (2n2 − 3α2)2

9α2

·
√
α1

 and n2 =
3

2

α2 ±

√
1− (2n1 − 3α1)2

9α1

·
√
α2

 ,

(3.43)

which can be parametrized using Eq. (3.41):

n1 =
3

2
(α1 + r1

√
α1) and n2 =

3

2
(α2 + r2

√
α2) , (3.44)
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Figure 3.5: The effective scalar potential V (x, y) normalized by M2 for α = 3 now stabilized by
quartic terms in the imaginary direction with β = 2. Here M is mass of the field along real field
direction. Reprinted with permission from [13].

where the values of r1 and r2 are constrained by expression Eq. (3.42), and must satisfy the con-

dition ri ∈ {−1, 1}. It can already be seen from these equations that the circular parametrization

Eq. (3.41) simplifies our expressions significantly, and it will be useful in establishing a geometric

connection. We must also satisfy the following inequalities:

αi > 0, with i = 1, 2 . (3.45)

We see from Eq. (3.44) that we can consider a total of four different sign combinations that yield

V = 0. The corresponding expressions for the imaginary masses-squared are given by:

m2
ImTi

=
4λ2 · ξ3r1

√
α1

1 · ξ3r2
√
α2

2 (αi − r2i )

αi

, with i = 1, 2 , (3.46)

where stability in the imaginary direction is obtained when the condition αi−r2i ≥ 0 is satisfied. If

we this combine this inequality with the constraint Eq. (3.42), we obtain another stability condition
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in terms of the curvature parameters:

α1 + α2 ≥ 1. (3.47)

3.3.2 Minkowski Pair Formulation for Two Moduli

Applying the same approach that we used for the case of a single modulus, we now show how

to construct Minkowski pairs for the two-field case and recover dS/AdS vacuum solutions with

V = 12λ1 λ2 (as in Eq. (3.33)) along the direction where all fields are real. The general dS/AdS

vacuum solutions for the two-field case are given by:

WdS/AdS = λ1 · ξn1
1 · ξn2

2 − λ2 · ξn̄1
1 · ξn̄2

2 , (3.48)

where we define:

n̄1 ≡
3

2
(α1 + r̄1

√
α1) and n̄2 ≡

3

2
(α2 + r̄2

√
α2) , (3.49)

with the expressions for n1,2 being given by Eq. (3.44) and r̄i = −ri. We note that the powers Eq.

(3.49) describe the antipode of a point lying on the surface of a circle described by the coordinates

(r1, r2), and we discuss the geometric interpretation of our models in the next Section.

The scalar masses recovered from the dS/AdS superpotential Eq. (3.48) have complicated

expressions that we do not list here. However, we note that we can always modify the initial

Kähler potential Eq. (3.36) by including higher-order corrections in the imaginary direction:

K = −3α1 ln
(
T1 + T 1 + β1

(
T1 − T 1

)4)− 3α2 ln
(
T2 + T 2 + β2

(
T2 − T 2

)4)
, (3.50)

where these quartic terms easily remedy the stability problems [12]. If we compare it to the general

two-field Kähler potential in Eq. (3.36), along the real directions, T1 = T 1 and T2 = T 2, we recover

ξ1 = 2T1 and ξ2 = 2T2. In the next Section we extend this formulation to the N -field case.
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3.3.3 Minkowski Pair Formulation for Multiple Moduli

We now show how to generalize our formulation and construct successfully the Minkowski pair

superpotential for cases with N > 2 moduli. We first introduce the following Kähler potential:

K = −3
N∑
i=1

αi ln (Vi) , (3.51)

where Vi = Ti + T i. Next, we impose the condition that all our fields are real, therefore Ti = T i,

which leads to:

Vi −→ ξi, for i = 1, 2, ..., N . (3.52)

Minkowski vacuum solutions are obtained with the choice:

WM = λ ·
N∏
i=1

ξni
i (3.53)

in the general N -field case. Inserting the superpotential Eq. (3.53) into Eq. (3.5), we find:

V = λ2 ·
N∏
i=1

ξ2ni−3αi
i ·

(
N∑
i=1

(2ni − 3αi)
2

3αi

− 3

)
, (3.54)

and it can be seen from Eq. (3.54) that in order to obtain Minkowski vacuum solutions: V = 0, we

must satisfy the constraint:
N∑
i=1

(2ni − 3αi)
2

3αi

= 3 . (3.55)

Once again, we introduce the following parametrization:

ri ≡
2ni − 3αi

3
√
αi

, for i = 1, 2, ..., N , (3.56)

and combining the Eq. (3.55) and Eq. (3.56) we obtain:

N∑
i=1

r2i = 1 . (3.57)
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Therefore, Eq. (3.57) parametrizes the N -field Minkowski solutions as lying on the surface of an

(N − 1)-sphere.

Solving Eq. (3.56) for ni, we obtain:

ni =
3

2

(
αi + ri

√
αi

)
, for i = 1, 2, ..., N , (3.58)

where ri ∈ {−1, 1} and αi > 0. For the N -moduli case, we obtain the following expression for

the scalar masses-squared in the imaginary directions:

m2
ImTi

=
4λ2 (αi − r2i )

∏N
i=1 ξ

−3ri
√
αi

i

αi

, with i = 1, 2, ..., N . (3.59)

To obtain a stable solution in the imaginary direction, we must satisfy the condition αi− r2i ≥ 0. If

we use the constraint of the (N −1)-sphere Eq. (3.57), we obtain the following stability condition:

N∑
i=1

αi ≥ 1. (3.60)

Following the procedure described previously, we combine a pair of Minkowski solutions Eq.

(3.53) and introduce the following dS/AdS superpotential:

WdS/AdS = λ1 ·
N∏
i=1

ξni
i − λ2 ·

N∏
i=1

ξn̄i
i , (3.61)

where n̄i = 3
2
(αi + r̄i

√
αi), with r̄i = −ri. This superpotential form also yields the familiar

dS/AdS vacuum result V = 12λ1 λ2.

It proves difficult to perform a detailed stability analysis for N -moduli models, because this

would involve finding the eigenvalues of an N×N matrix. Nevertheless, one can always introduce

higher-order corrections in the Kähler potential Eq. (3.51):

K = −3
N∑
i=1

αi ln
(
Ti + T i + βi

(
Ti − T i

)4)
, (3.62)
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where the quartic terms stabilize the imaginary directions [12]. If we compare the multi-moduli

Kähler potential Eq. (3.51) with Eq. (3.62), we see that along the real directions, Ti = T i, and we

recover ξi = 2Ti.

3.3.4 Geometric Interpretation

We now discuss the geometric interpretation of this Minkowski pair formulation. From Eq.

(3.55-3.57) it is clear that our parametrization describes Minkowski superpotential solutions Eq.

(3.53) that lie on the surface of an (N − 1)-sphere that is embedded in Euclidean N -space. We first

return to the two-moduli case, in which the Eq. (3.57) reduces to Eq. (3.42), and all Minkowski

solutions lie on a circle embedded in 2-dimensional space. We define the radius vector of points

on a circle r by:

r = (r1, r2) , with r21 + r22 = 1. (3.63)

As expected, Eq. (3.63) includes 4 possible sign combinations corresponding to different quadrants

of a circle. To construct successfully a Minkowski pair superpotential that yields a dS/AdS vacuum

solution, we must combine any chosen point on the circle with its antipodal point, given by the

vector:

r̄ = −r = − (r1, r2) . (3.64)

In this way, we can construct an infinite number of distinct Minkowski superpotential pairs by

considering different point/antipode combinations lying on the surface of a circle. The Minkowski

pair construction on a circle is illustrated in Fig. 3.6. For any value of α > 0, Eq. (3.48) will yield

a dS or AdS solution so long as ni =
3
2
(αi + ri

√
αi) and n̄i =

3
2
(αi + r̄i

√
αi).

We can readily generalize this framework to the N -moduli case, in which we define the radius

vector r to lie on the surface of an (N − 1)-sphere, and it is expressed as:

r = (r1, r2, ..., rN) , with
N∑
i=1

r2i = 1 , (3.65)
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Figure 3.6: Depiction of Minkowski pairs on a circle. The circle is split into four quadrants
and two distinct Minkowski pairs are shown lying in different quadrants. The red dots show a
Minkowski pair solution r = (

√
3/2, 1/2) and r̄ = (−

√
3/2,−1/2), which lies in the first and third

quadrants of the circle, while the blue dots show a Minkowski pair solution r = (−1/2,
√
3/2) and

r̄ = (1/2,−
√
3/2), which lies in the second and fourth quadrants of the circle. Reprinted with

permission from [13].

while the antipodal vector r̄ is given by:

r̄ = − (r1, r2, ..., rN) . (3.66)

As an illustration, we consider the three-field case: N = 3. In this case, the Minkowski solutions

lie anywhere on the surface of the unit sphere. dS and AdS solutions can be obtained from any

point on the sphere, by combining it with this antipodal point with ri → −ri. In Fig. 3.7 we
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show an example where four different Minkowski vacuum solutions are combined into 2 distinct

Minkowski pairs lying on the surface of a sphere.

Figure 3.7: Illustration of Minkowski pairs on the surface of a sphere. The sphere is split into eight
octants and two distinct Minkowski pairs lying in different octants are shown. The red dots rep-
resent a Minkowski pair solution r = (1/

√
3,−1/

√
3, 1/

√
3) and r̄ = (−1/

√
3, 1/

√
3,−1/

√
3),

which lies in the fourth and sixth octants of the sphere, while the blue dots represent a Minkowski
pair solution r = (1/

√
3, 1/

√
3, 1/

√
3) and r̄ = (−1/

√
3,−1/

√
3,−1/

√
3), which lies in the first

and seventh octants of the sphere. Reprinted with permission from [13].

We have seen how all Minkowski pair solutions lie on the surface of an (N − 1)-sphere of unit

49



radius, and recall the general expressions for the corresponding powers, ni and n̄i of ξ given earlier:

We show in Fig. 3.8 Minkowski pair solutions for these powers as functions of |ri| and αi. The

lower yellow sheet illustrates the possible choices for ni, while the upper blue sheet illustrates the

possible choices for n̄i. If we are only concerned with Minkowski solutions, we can freely choose

any point lying on either the upper or lower sheet, which leads to V = 0. In order to construct

successfully a Minkowski pair, we need to combine our chosen point with the corresponding point

on the opposite sheet, which will yield the dS/AdS solution V = 12λ1 λ2.

Figure 3.8: Illustration of Minkowski pair formulation on the ni (yellow) and n̄i (blue) sheets. The
Minkowski pairs are depicted by red dots and their coordinates are given by

(
1, 1

2
, 3
4

)
with

(
1, 1

2
, 9
4

)
and

(
2, 3

4
, 3− 9

8

√
2
)

with
(
2, 3

4
, 3 + 9

8

√
2
)
. Reprinted with permission from [13].
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Having established successfully a geometric connection between unique vacuum solutions, in

the remaining sections we show that identical patterns emerge for Kähler potential forms with

untwisted and twisted matter fields.

3.4 Minkowski Pairs with Matter Fields

3.4.1 The Untwisted Case

In this Section, we extend our formulation to no-scale models with untwisted matter fields. We

begin by considering the following Kähler potential, which parametrizes a non-compact SU(2,1)
SU(2)×U(1)

coset space:

K = −3α ln

(
T + T − ϕϕ̄

3

)
, (3.67)

where α is a curvature parameter, T can be interpreted as a volume modulus, and ϕ is a matter

field. Moreover, we impose the conditions T = T and ϕ = ϕ̄ by fixing the VEVs of the imaginary

components of the fields to zero, along the lines discussed above. Clearly Eq. (3.67) can be written

in the form of Eq. (3.27) with V set equal to the argument of the log in Eq. (3.67), V = T +T − ϕϕ̄
3

.

Once again, when we restrict to real fields, and in this case set T = T and ϕ = ϕ̄ we obtain:

V −→ ξ, with ξ = 2T − ϕ2

3
. (3.68)

We then consider the following form of superpotential:

WM = λ · ξn , (3.69)

which leads to the following effective scalar potential:

V = λ2 ξ2n−3α ·
(
(2n− 3α)2

3α
− 3

)
. (3.70)

To obtain a Minkowski vacuum: V = 0, we solve the constraint for n, and recover the familiar

result given in Eq. (3.8) for the case with a single modulus. Using the superpotential in Eq. (3.69),
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we find the following scalar masses-squared for the imaginary components of the fields T and ϕ:

m2
ImT =

4λ2(α− 1)ξ±3
√
α

α
, m2

Imϕ =
4λ2(

√
α± 1)ξ±3

√
α

√
α

, (3.71)

whereas, as anticipated, the masses-squared of the real components are m2
ReT = 0 and m2

Reϕ = 0.

It can be seen from Eqs. (3.71) that stability in the imaginary directions for both fields requires that

the inequalities α ≥ 1.

To construct the SU(2,1)
SU(2)×U(1)

Minkowski pair formulation, we follow the previous discussion and

use the same superpotential as in Eq. (3.32)

WdS/AdS = λ1 · ξn− − λ2 · ξn+ . (3.72)

Doing so, we recover dS/AdS vacuum solutions given by Eq. (3.33). In this case, the masses-

squared for the imaginary field components are given by:

m2
ImT =

4
(
λ2
1(α− 1)ξ−3

√
α − 2(α + 1)λ1λ2 + λ2

2(α− 1)ξ3
√
α
)

α
(3.73)

and

m2
Imϕ = 4

(
λ2
1(
√
α− 1)ξ−3

√
α

√
α

+ 4λ1λ2 +
λ2
2(
√
α + 1)ξ3

√
α

√
α

)
. (3.74)

We do not discuss here the stabilization of these components, but we can always include quartic

stabilization terms in the Kähler potential Eq. (3.67), as discussed previously.

Having established the principles in the case of the SU(2,1)
SU(2)×U(1)

Kähler potential with an un-

twisted matter field ϕ, we can generalize our formulation to no-scale models that parametrize a

non-compact SU(N,1)
SU(N)×U(1)

coset manifold. Following the same recipe considered in previous sec-

tions, we start with the Kähler potential Eq. (3.27), and we define the argument inside the logarithm

as:

V ≡ T + T −
N−1∑
j=1

|ϕj|2

3
. (3.75)
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Furthermore, we fix the VEVs of the imaginary fields to zero, so that T = T and ϕj = ϕ̄j . Using

the same notation:

V −→ ξ, when T = T and ϕj = ϕ̄j , (3.76)

the argument inside the logarithm in the Kähler potential becomes

ξ = 2T −
N−1∑
j=1

|ϕj|2

3
. (3.77)

With this definition of ξ, Minkowski vacuum solutions are found for the same choice of super-

potential given in Eq. (3.69). The masses-squared of the imaginary components, with m2
ImT and

m2
Imϕj

are given by Eq. (3.71).

At this point, it should not be surprising that by combining two distinct Minkowski solutions

we can form a Minkowski superpotential pair given by Eq. (3.72). This dS/AdS superpotential

yields identical scalar masses-squared for the imaginary components, with m2
ImT given by Eq.

(3.73) and m2
Imϕj

given by Eq. (3.74).

Finally, we can also extend our formulation to more complicated Kähler potentials that take the

form K =
∑

i Ki, where each Ki is of no-scale type and given by:

K = −3
M∏
i=1

αi ln(Vi), with Vi = Ti + T i −
N−1∑
j=1

|ϕij|2

3
. (3.78)

We again assume that Ti = T̄i and ϕij = ϕ̄ij , which leads to:

Vi −→ ξi, when Ti = T̄i and ϕij = ϕ̄ij . (3.79)

Thus, we obtain the following Minkowski pair superpotential:

WdS/AdS = λ1 ·
M∏
i=1

ξni
i − λ2 ·

M∏
i=1

ξn̄i
i , with V = 12λ1 λ2 , (3.80)

which coincides with the multi-moduli case considered previously.
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3.4.2 The Twisted Case

An analogous Minkowski pair formulation can also be considered in the case of twisted matter

fields. We consider the corresponding Kähler potential:

K = −3α ln
(
T + T

)
+ φφ̄ , (3.81)

where we introduce the notation φ for twisted matter fields. To this end, we first find a relatively

simple superpotential form that yields Minkowski solutions, and consider the following Ansatz:

WM = λ · (2T )n · e−φ2/2 . (3.82)

Combining it with the effective scalar potential in Eq. (3.5), and setting T = T and φ = φ̄ by

fixing the VEVs of the imaginary components of the fields to zero, we obtain:

V = λ2 · (2T )2n−3α ·
(
(2n− 3α)2

3α
− 3

)
. (3.83)

From the form of the scalar potential, we see that it does not depend on Reφ. To obtain a

Minkowski vacuum solution, we find the same solutions found in Eq. (3.8) for n. This yields

the following scalar masses-squared for the imaginary components:

m2
ImT =

4λ2(α− 1)

α
· (2T )±3

√
α (3.84)

and

m2
Imφ = 4λ2 (2T )±3

√
α . (3.85)

We can see from Eq. (3.84) and Eq. (3.85) that Imφ is always stable, and that ImT is stable when

α ≥ 1.
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Similarly, we also consider the following Ansatz:

WM = λ · (2T )n · e+φ2/2 . (3.86)

If we combine this with Eq. (3.5), and set T = T and φ = −φ̄, we obtain the same effective

scalar potential Eq. (3.83) with solutions for n given by Eq. (3.8). In this case, the scalar potential

does not depend on Imφ, and the scalar masses-squared are given by Eq. (3.84) and Eq. (3.85) 6.

Therefore, there are two ways to construct Minkowski vacuum solutions with twisted matter fields

that do not depend on either the real or imaginary components of φ.

Next, we construct the dS/AdS superpotential by combining two distinct Minkowski solutions:

WdS/AdS =
(
λ1 · (2T )n− − λ2 · (2T )n+

)
· e−φ2/2 , (3.87)

where we choose a Minkowski pair construction which does not depend on Reφ, and, if we assume

that T = T and φ = φ̄, the effective scalar potential Eq. (3.5) is given by Eq. (3.33) once again.

In the case of the superpotential Eq. (3.87), the scalar masses-squared of the imaginary field

components are:

m2
ImT =

4
(
λ2
1(α− 1) (2T )−3

√
α − 2(α + 1)λ1λ2 + λ2

2(α− 1) (2T )3
√
α
)

α
(3.88)

and

m2
Imφ = 4

(
λ2
1(2T )

−3
√
α + 4λ1 λ2 + λ2

2(2T )
3
√
α
)
. (3.89)

It is important to note that for de Sitter solutions, while m2
Imφ is always positive, m2

ImT is not and

may require quartic stabilization terms in the imaginary direction for the field T .

6It is important to note that in this case the effective scalar potential has curvature in the real direction and the
scalar mass-squared expression Eq. (3.85) becomes m2

Reφ.
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Analogously, one can also consider the following dS/AdS superpotential form:

WdS/AdS =
(
λ1 · (2T )n− − λ2 · (2T )n+

)
· e+φ2/2 , (3.90)

where, after setting T = T and ϕ = −ϕ̄, we obtain the dS/AdS scalar potential V = 12λ1λ2, with

the scalar masses-squared given by Eq. (3.88) and Eq. (3.89).

This analysis with a single twisted matter field can be generalized to include multiple fields.

We consider the following Kähler potential form:

K = −3α ln(V) +
N∑
j=1

|φ2
j | . (3.91)

In this case, all of the previous results hold after the simple substitution of φ2 →
∑

φ2
j .

Another possible generalization is to consider Kähler potentials of the form K =
∑

i Ki +∑
j |φj|2, where each Ki is of no-scale type:

K = − 3
M∑
i=1

αi ln(Vi) +
N∑
j=1

|φj|2, with Vi = Ti + T i . (3.92)

As before, we assume that:

Vi −→ ξi, when Ti = T i. (3.93)

In this case, with a superpotential of the form

WM = λ ·
M∏
i=1

ξni
i · exp

(
− 1

2

N∑
j=1

ωjφ
2
j

)
, (3.94)

where ωj can take a value of either +1 or −1, we get a Minkowski solution V = 0 after setting

Ti = T i and φj = ωjφj . Similarly, we can obtain dS/AdS solutions V = 12λ1 λ2 along the
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direction Ti = T i, φj = ωjφj from the superpotential:

WdS/AdS =

(
λ1 ·

M∏
i=1

ξni
i − λ2 ·

M∏
i=1

ξn̄i
i

)
· exp

(
− 1

2

N∑
j=1

ωjφ
2
j

)
. (3.95)

3.4.3 The Combined Case

We note finally that one can consider more complicated cases combining twisted and untwisted

matter fields by following the principles discussed earlier in this Section. The only difference is

that one needs to modify the Kähler potential in Eq. (3.92) and introduce untwisted matter fields

ϕik:

K = − 3
M∑
i=1

αi ln(Vi) +
N∑
j=1

|φj|2, with Vi = Ti + T i +
P−1∑
k=1

|ϕik|2 , (3.96)

If we assume that all our fields are fixed to be real, this leads to:

Vi −→ ξi, when Ti = T i, ϕik = ϕ̄ik, and φj = φ̄j , (3.97)

and for this case Minkowski solutions are given by superpotential Eq. (3.94) and dS/AdS solutions

are given by Eq. (3.95).

3.5 Applications to Inflationary Models

3.5.1 Inflation with an Untwisted Matter Field

We now indicate briefly how to construct inflationary models in this framework [39, 40]. For

simplicity, we use a non-compact SU(2,1)
SU(2)×U(1)

Kähler potential Eq. (3.67), and we associate the

matter field ϕ with the inflaton. If we set α = 1, the Kähler potential Eq. (3.67) becomes:

K = −3 ln

(
T + T − ϕϕ̄

3

)
. (3.98)
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Next, we introduce a unified superpotential that combines the Minkowski pair superpotential WdS

with an inflationary superpotential WI = f(ϕ):

W = WI +WdS = Mf(ϕ) + λ1 − λ2

(
2T − ϕ2

3

)3

. (3.99)

We also require that supersymmetry is broken at the minimum through the Minkowski pair super-

potential WdS instead of the inflationary superpotential WI . Therefore, we impose the conditions

that f(0) = f ′(0) = 0. Again, we assume that T = T and ϕ = ϕ, and the superpotential Eq. (3.99)

then yields the following effective scalar potential:

V = 12λ1 λ2 + 12λ2Mf(ϕ) +
M2f ′(ϕ)2(
2T − ϕ2

3

)2 , (3.100)

where we can safely neglect the mixing terms between λ2 and M , leading to the approximation:

V ≈ 12λ1 λ2 +
M2f ′(ϕ)2(
2T − ϕ2

3

)2 . (3.101)

Supersymmetry is broken by an F -term, which is given by:

2∑
i=1

|Fi|2 = F 2
T = (λ1 + λ2)

2 , with m3/2 = λ1 − λ2 . (3.102)

3.5.2 Inflation with a Twisted Matter Field

Following the same approach, we now show how to construct viable inflationary models with

a twisted inflaton field. We use a non-compact SU(1,1)
U(1)

× U(1) Kähler potential form Eq. (3.81),

and we associate the matter field φ with the inflaton. We set α = 1, and Eq. (3.81) reduces to:

K = −3 ln
(
T + T

)
+ φφ . (3.103)
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Next, we introduce the following unified superpotential form 7:

W = WI +WdS =

(
M f(φ) + λ1 − λ2 (2T )

3

)
· e−φ2/2 , (3.104)

where the inflationary superpotential is given by WI = M f(φ) · e−φ2/2. We again require su-

persymmetry to be broken through the Minkowski pair superpotential WdS , and we impose the

conditions that at the minimum we must have f(0) = f ′(0) = 0. The superpotential form Eq.

(3.104) leads to the following effective scalar potential:

V = 12λ1λ2 + 12λ2Mf(φ) +
M2f ′(φ)2

8T 3
. (3.105)

If we neglect the mixing terms between λ2 and M , and fix ⟨T ⟩ = 1
2
, we can approximate:

V ≈ 12λ1λ2 +M2f ′(φ)2 , (3.106)

and supersymmetry breaking is characterized by the same expression given in Eq. (3.102). In order

to construct a Starobinsky-like inflationary potential that is a function of the field φ, we use the

following canonical field redefinition:

φ =
x+ iy√

2
, (3.107)

and we assume that φ = φ = x√
2
. We then introduce the following inflationary superpotential

form:

WI =
3

4
M

(
2φ√
3
+ e

− 2φ√
3 − 1

)
e−φ2/2 , (3.108)

7Similarly, we can consider a unified superpotential form with WdS given by Eq. (3.90). In this case, inflation will
be driven by Imφ.
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and assume that φ = φ = x√
2

and T = T = 1/2, which yields the Starobinsky inflationary

potential with a positive cosmological constant at the minimum:

V = 12λ1λ2 + 3λ2M
(√

6x+ 3e−
√

2
3
x − 3

)
+

3

4
M2

(
1− e−

√
2
3
x
)2

, (3.109)

or if we neglect the mixing terms between λ2 and M , we obtain:

V ≈ 12λ1λ2 +
3

4
M2

(
1− e−

√
2
3
x
)2

. (3.110)

3.6 Summary

We have exhibited in this chapter the unique choice of superpotential leading to a Minkowski

vacuum in a single-field no-scale supergravity model, and also shown how to construct dS/AdS so-

lutions using pairs of these single-field Minkowski superpotentials. We have then extended these

constructions to two- and multifield no-scale supergravity models, providing also a geometrical in-

terpretation of the dS/AdS solutions in terms of combinations of superpotentials that are functions

of fields at antipodal points on hyperspheres. As we have also shown, these constructions can be

extended to scenarios with additional twisted or untwisted fields, and we have also discussed how

Starobinsky-like inflationary models can be constructed in this framework.

The models described in this chapter provide a general framework that is suitable for construct-

ing unified supergravity cosmological models that include a primordial near-dS inflationary epoch

that is consistent with CMB measurements, the transition to a low-energy effective theory incorpo-

rating soft supersymmetry breaking at some scale below that of inflation, and a small present-day

cosmological constant (dark energy). As such, this framework is suitable for constructing complete

models of cosmology and particle physics below the Planck scale.
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4. SUMMARY AND CONCLUSIONS

We constructed Lagrangians and showed new Minkowski and de Sitter solutions with a pres-

ence of multiple chiral fields in a framework of 4d N = 1 no-scale supergravity in a unified way.

As noted in the Introduction, it is currently debated whether string theory admits de Sitter solu-

tions [14]. If this were not the case, measurements of the accelerating expansion of the Universe [1]

and the continuing success of cosmological inflation [2] would suggest that our Universe lies in the

swampland. Our working hypothesis is that this is not the case, and that deeper understanding of

string theory will reveal how it can accommodate de Sitter solutions. Since no-scale supergravity

is the appropriate framework for discussing cosmology at scales hierarchically smaller than the

string scale, assuming also that N = 1 supersymmetry holds down to energies ≪ mPlanck, the

explorations in this dissertation may provide a helpful guide to the structure of the low-energy

effective field theories of de Sitter string solutions. As such, they may even provide some useful

signposts towards the construction of such solutions.

For the future, two general classes of issues stand out. One is the construction of specific

models for sub-Planckian physics, which should address the incorporation of Standard Model (and

possibly other) matter and Higgs degrees of freedom. Should these be described by twisted or

untwisted fields, and how are they coupled to the inflaton? Specific answers to some of these

issues have been proposed in [53], and more details are forthcoming [54].

Another set of issues concerns the interface with string theory. For example, although no-

scale supergravity theories arise generically in the low-energy limits of string compactifications,

many different non-compact coset manifolds may be realized. Which of these is to be preferred?

Another set of questions concerns the specific forms of superpotential that are needed to obtain

a Minkowski or dS vacuum. In papers [12, 13], we have constructed them from a bottom-up

approach, and demonstrated their uniqueness. How could one hope to obtain them in a top-down

approach, starting from a specific string model?

This question is particularly acute in the case of dS vacuum solutions, since swampland conjec-
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tures [4] suggest that string theory may not possess such vacua. At the time of writing controversy

still swirls about these conjectures, and in this work we have taken the pragmatic approach of

exploring what such solutions would look like. As such, our solutions may suggest avenues to

explore in searching for them, or at least the obstacles to be overcome. The existence or otherwise

of dS vacua in string theory is clearly a key issue for the future exploration.

Further research extending the Minkowski and de Sitter constructions given in this thesis can

be found in [40, 55, 56, 57].
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APPENDIX A

SUPERPOTENTIALS WITH INTEGER POWERS

A.1 1-Field Model

Superpotential for Minkowski solution in 1-field model is of the form

W = ϕn± , (A.1)

where

n± =
3

2
(α±

√
α). (A.2)

From the above equation, it is clear that integer powers can be gotten by just choosing an appro-

priate α.

On the other hand, superpotential for de Sitter solution is of the form

W = ϕn+ − ϕn− . (A.3)

To have integer powers, we need 3α = n+ + n− and 3
√
α = n+ − n− to be integers. Thus the

powers satisfy

(n+ − n−)
2 = 3(n+ + n−). (A.4)

From the above equations, it is easy to get the following pair of integer powers and α s:

(n−, n+) = {(0, 3), (3, 9), (9, 18), (18, 30), (30, 45), (45, 63), (63, 84), ...}

α = { 1 , 4 , 9 , 16 , 25 , 36 , 49 , ...}
(A.5)

The pattern is pretty clear: n− of a pair is always the n+ of the previous pair and the difference

n+ − n− is multiple of 3. The α s are just squares of natural numbers. Since α ≥ 1 for each of the
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integer solutions, all the dS solutions are also stable. In Fig. (A.1), we plot all the integer power

solutions.

Figure A.1: The curve is (n+−n−)
2 = 3(n++n−). The red dots correspond to points where both

n− and n+ are integers and n+ > n−.

A.2 2-Field Model

De Sitter solutions: Let (n1+, n2+) and (n1−, n2−) be two antipodal points such that their co-

ordinates are integers. Then the mid-point of these antipodal points give the center of the ellipse

on which they lie. This implies

3α1 = n1+ + n1−,

3α2 = n2+ + n2−.

(A.6)
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Now using the fact that each of the points (n1+, n2+) and (n1−, n2−) lie on the ellipse we get the

following equation:
(n1+ − n1−)

2

n1+ + n1−
+

(n2+ − n2−)
2

n2+ + n2−
= 3. (A.7)

Notice that both the terms on the LHS are non-negative numbers. Also notice that the first term is

made up of only n1+, n1− and the second term is made up of only n2+, n2−. Therefore, the only

way the above equation can hold is if each term is a constant adding up to 3:

(n1+ − n1−)
2

n1+ + n1−
= λ1,

(n2+ − n2−)
2

n2+ + n2−
= λ2, (A.8)

with conditions 0 ≤ λ1 ≤ 3, 0 ≤ λ2 ≤ 3 and λ1 + λ2 = 3. Let us rewrite the above equations so

that they look like Eq. (A.4) that we got for 1-field model.

(n1+ − n1−)
2 = λ1(n1+ + n1−), (A.9)

(n2+ − n2−)
2 = λ2(n2+ + n2−). (A.10)

Now it is easy to get integer solutions. We will work out two cases to illustrate the procedure.

Case 1:

Let us choose λ1 = 3 and λ2 = 0. Then Eq. (A.9) and Eq. (A.10) are

(n1+ − n1−)
2 = 3(n1+ + n1−), (A.11)

n2+ = n2−. (A.12)
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We already solved Eq. (A.11) when we were doing 1-field model. Therefore, we know all the

solutions:

{(n1−, n2−), (n1+, n2+)} = {(0, n2−), (3, n2−),

(3, n2−), (9, n2−),

(9, n2−), (18, n2−),

(18, n2−), (30, n2−),

(30, n2−), (45, n2−),

(45, n2−), (63, n2−),

....}

(A.13)

In the above sequence n2− could be any non-negative integer. From the above solutions, we can

easily find out α1 and α2 using Eq. (A.6).

Case 2:

Let us work with a little non-trivial values for λ1 and λ2. Let

λ1 = 1.2, λ2 = 2.8. (A.14)

Therefore, we need to solve for

(n1+ − n1−)
2 = 1.2(n1+ + n1−), (A.15)

(n2+ − n2−)
2 = 2.8(n2+ + n2−). (A.16)

The solutions to the equations are plotted in Fig. (A.2) and Fig. (A.3). The integer solutions for

Eq. (A.15) are:

{(n1−, n1+)} = {(0, 0), (12, 18), (18, 12), (54, 66), (66, 54), ...}. (A.17)
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Figure A.2: The curve is (n1+−n1−)
2 = 1.2(n1++n1−). The red dots correspond to points where

both n1+ and n1− are integers.

Figure A.3: The curve is (n2+−n2−)
2 = 2.8(n2++n2−). The red dots correspond to points where

both n2+ and n2− are integers.
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The integer solutions for Eq. (A.16) are:

{(n2−, n2+)} = {(0, 0), (28, 42), (42, 28), ...}. (A.18)

Now we can combine one of the solutions in Eq. (A.17) and Eq. (A.18) to construct antipodal

points both of which are non-negative integers. For example, we can take (n1−, n1+) = (12, 18)

and (n2−, n2+) = (28, 42). This would give us (n1+, n2+) = (18, 42) and (n1−, n2−) = (12, 28)

as antipodal points. α1 and α2 can be found using Eq. (A.6). This gives us

α1 =
n1+ + n1−

3
=

18 + 12

3
= 10, (A.19)

α2 =
n2+ + n2−

3
=

42 + 28

3
=

70

3
. (A.20)
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APPENDIX B

STABILITY ANALYSIS OF TWO-FIELD dS SOLUTIONS

B.1 Stability Analysis

As in the single-field case, the de Sitter solutions of the two-field model are not stable. How-

ever, stable solutions can easily be found by deforming the Kähler potential to include a stabilizing

quartic term:

K = − 3
2∑

i=1

αiln(ϕi + ϕ†
i + bi(ϕi − ϕ†

i )
4) . (B.1)

With this modification the potential along real field directions is still given by Eq. (2.36). To

prove the stability of the two-field de Sitter solution with the quartic modification of the Kähler

potential, we calculate the Hessian matrix ∂2V/∂yi∂yj : i, j = 1, 2 along the real field directions,

and demand that it be positive semi-definite. The Hessian matrix along the real field directions is

of the form

a2
(
3.21−3α1−3α2

α2r21 + α1r22

) x−2
1 A1 x−1

1 x−1
2 B

x−1
1 x−1

2 B x−2
2 A2

 , (B.2)

where

A1 = w−1
(
α2
1r

2
2(1 + 4w + w2) + α1α2r

2
1(1− w)2 + α2r

2
1(96b1x

3
1 − 1)(1 + w)2

)
, (B.3)

A2 = w−1
(
α2
2r

2
1(1 + 4w + w2) + α1α2r

2
2(1− w)2 + α1r

2
2(96b2x

3
2 − 1)(1 + w)2

)
, (B.4)

B = −6α1α2r1r2 (B.5)

and defined

w ≡ x

3r1√
r21
α1

+
r22
α2

1 x

3r2√
r21
α1

+
r22
α2

2 . (B.6)
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The condition for the Hessian matrix to be positive semi-definite can be worked out to be

A1A2 ≥ B2 . (B.7)

In order to analyze the stability of de Sitter solutions, let us start with a very simplified version of

inequality (B.7) by having α1 = α2 = α and r⃗ = (1/
√
2, 1/

√
2). Then the condition given by Eq.

(B.7) is just

(
2α(1 + w + w2) + (96b1x

3
1 − 1)(1 + w)2

)
×
(
2α(1 + w + w2) + (96b2x

3
2 − 1)(1 + w)2

)
≥ 36α2w2 .

(B.8)

Our strategy will be to treat w as a parameter and eliminate x2 in favour of x1 via Eq. (B.6). Then

inequality Eq. (B.8) is just

(
2α(1 + w + w2) + (96b1x

3
1 − 1)(1 + w)2

)
×

(
2α(1 + w + w2) +

(
96b2

w
√

2/α

x3
1

− 1

)
(1 + w)2

)
− 36α2w2 ≥ 0 .

(B.9)

Notice that for x1 ≫ 1, (96b1x3
1 − 1) dominates and for x1 ≪ 1,

(
96b2

w
√

2/α

x3
1

− 1
)

dominates.

Therefore, near x1 ≈ 1, the LHS of Eq. (B.9) has an extremum. Differentiating the LHS of Eq.

(B.9) once with respect to x1, we get

288x−4
1 (1 + w)2(2α(1 + w + w2)− (1 + w)2)

(
b1x

6
1 − b2w

√
2/α
)

(B.10)

It is clear that the extremum occurs at x1 = (b2/b1)
1/6w1/(3

√
2α) and that it is a global extremum.

Whether the extremum is a maximum or a minimum depends on the sign of 2α(1 + w + w2) −

(1 + w)2 and it is non-negative for

α ≥ 2

3
. (B.11)
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We certainly don’t want the LHS of inequality Eq. (B.9) to have global maximum. Therefore, we

need α ≥ 2/3 if we are to have any hope of satisfying Eq. (B.9). It is not just enough to have

a global minimum, but it should also be non-negative. This may impose some constraints on the

range of values of b1 and b2. It can be checked that with b1 = b2 = 1 and α ≥ 2/3, the stability

condition Eq. (B.9) is always satisfied irrespective of the value of w.

Now we will use similar strategy to analyze the stability condition for generic α1, α2 and r⃗. We

will consider w and r⃗ as parameters. Then the stability condition Eq. (B.7) in terms of just x1 is

(
α2
1r

2
2(1 + 4w + w2) + α1α2r

2
1(1− w)2 + α2r

2
1(96b1x

3
1 − 1)(1 + w)2

)α2
2r

2
1(1 + 4w + w2) + α1α2r

2
2(1− w)2 + α1r

2
2

96b2
w

1
r2

√
r21
α1

+
r22
α2

x
(3r1/r2)
1

− 1

 (1 + w)2


− 36α2

1α
2
2r

2
1r

2
2w

2 ≥ 0.

(B.12)

Case 1: r1/r2 > 0

When r1/r2 > 0, (96b1x3
1−1) term dominates for x1 ≫ 1 and,

96b2
w

1
r2

√
r21
α1

+
r22
α2

x
(3r1/r2)
1

− 1

 dominates

for x1 ≪ 1. Therefore, near x1 ≈ 1, the LHS of Eq. (B.12) has an extremum. Similar to what we

did before, we can find the point of extremum and demand the second derivative calculated at that

point be non-negative. For simplicity, we will take b1 = b2 = 1 and r⃗ = (1/
√
2, 1/

√
2). Then we

get the following two conditions:

α2
1(1 + 4w + w2) + α1α2(1− w)2 − α2(1 + w)2 ≥ 0, (B.13)

α2
2(1 + 4w + w2) + α1α2(1− w)2 − α1(1 + w)2 ≥ 0. (B.14)

To satisfy the above inequalities, we just demand that each quadratic polynomial in w on the LHS
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have imaginary roots. This leads to the following inequalities:

3α3
1 − 2α1α2 − 6α2

1α2 + 4α2
2 ≤ 0, (B.15)

3α3
2 − 2α1α2 − 6α1α

2
2 + 4α2

1 ≤ 0. (B.16)

We plot the corresponding region in α1, α2 space in Fig. (B.1). This is the region where the LHS

of Eq. (B.12) (for r⃗ = (1/
√
2, 1/

√
2) and b1 = b2 = 1) has a global minimum. We also need

the global minimum to be non-negative. At several points in this region, when checked indeed

produced a non-negative minimum for all values of w. As can be seen from the figure, there are

three kinks with one being at (α1, α2) = (2/3, 2/3).

Figure B.1: The region where the LHS of Eq. (B.12) (for r⃗ = (1/
√
2, 1/

√
2) and b1 = b2 = 1) has

a global minimum.

Case 2: r1/r2 < 0

When r1/r2 < 0, both (96b1x
3
1−1) and

96b2
w

1
r2

√
r21
α1

+
r22
α2

x
(3r1/r2)
1

− 1

 terms dominate for x1 ≫ 1. Then
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we should expect that LHS of Eq. (B.12) has an extremum near x1 ≈ 0. For simplicity, we will

take b1 = b2 = 1 and r⃗ = (−1/
√
2, 1/

√
2). With this simplification, we indeed get an extremum

at x1 = 0. By plugging in x1 = 0 in Eq. (B.12) for our case, it is clear that the stabilization terms

disappear. Without stabilization terms, such an inequality cannot be satisfied. Hence the are no

stable de Sitter solutions.

Case 3: r1/r2 = 0

This corresponds to having r⃗ = (0, 1). For simplicity, let us take b1 = b2 = 1. Then inequality Eq.

(B.12) reduces to

α2(1− w)2 + (1 + w)2(96w1/
√
α2 − 1) ≥ 0. (B.17)

This inequality is always satisfied for α2 ≥ 1.

Case 4: r2/r1 = 0

This corresponds to having r⃗ = (1, 0). For simplicity, let us take b1 = b2 = 1. Then this is just like

the previous case and the stability condition Eq. (B.7) is just α1 ≥ 1.

In summary, we can get stable de Sitter solutions only when r⃗ is in either first or third quadrant.
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