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ABSTRACT

As one of the most dangerous natural disasters, flash floods account for 52% of economic losses

and over 70% of fatalities and injuries caused by flood-related disasters. There is an urgent need to

evaluate community-based flash flood vulnerability, identify its driving factors, and develop miti-

gation strategies in different communities to reduce damages from future events. However, most

precedent analyses of flash flood vulnerability rely on subjectively selected social variables and the

developed models lack validation. This project aims to fill this gap by developing a framework to

assess vulnerability at the community-level using historical flash flood data and determine the so-

cioeconomic and environmental factors that affect vulnerability. Flash flood records collected from

the National Oceanic and Atmospheric Administration (NOAA) and SHELDUS database, socioe-

conomic data derived from U.S. Census Bureau, as well as terrain data derived from GMTED2010

dataset via USGS and Multi-Resolution Land Characteristics (MRLC) Consortium were utilized

in this project. First, this study statistically analyzed the location, frequency, and damage of flash

flood events in Texas at block-group-level Second, we defined and calculated a flash flood vul-

nerability index based on the average damage (sum of property and crops damage) per capita per

event. Third, social variables used in previous study on vulnerability assessment are collected,

and their correlation with the derived vulnerability index was examined. The results could support

further analysis of natural disaster risk assessment and monitoring and assist disaster mitigation

and responding.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Flash Flood

Flood, “an overflow of water onto normally dry land”, has been one of the most common forms

of natural disasters in recent decades (NWS 2022b). According to the NWS, flood is the deadliest

form of all weather-related hazards in the United States other than heat, accounting for around 19

% of all weather-related fatalities during the past 30 years (NWS 2020).

Specifically, flash floods are a unique form of floods that feature their rapidity. Flash floods

usually occur within 2 hours and are caused by certain events like heavy rainfall or snowmelt (NWS

2022a). Monitoring and predicting flash flood frequencies and intensities are challenging because

of such rapidity. Consequently, flash floods have caused devastating damage to local communities

as people have little time to foresee, prepare for, and respond to those events promptly. Flash flood

accounts for the majority of the damage caused by flood-related events (Ashley and Ashley 2008).

In the past 20 years, flash flood events caused approximately 72% of flood-relevant fatalities, 72%

of flood-induced injuries, and 52% of flood-related economic losses in the U.S., making them one

of the most lethal natural disasters (NWS 2019).

1.2 Flash Flood Vulnerability

Due to the difficulty of monitoring flash floods and their subsequent hazardous impacts, in-

vestigations on flash flood threats and damages have attracted the attention of governments and

researchers, all aiming at identifying pathways to mitigate the risk of flash floods. According to a

report published by the Intergovernmental Penal on Climate Change (IPCC), disaster risk should

be estimated by three dimensions: (1) hazard, the natural event threatening in the targeted area

and its possible occurrence; (2) exposure, buildings/properties/humans that are in the area where

hazards may occur; and (3) vulnerability representing the propensity of exposed elements to suffer

adverse effects when impacted by hazard events (IPCC 2012). Accurate disaster risk evaluation

relies on finding suitable methods and indicators to quantify the three dimensions.
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Among the three aspects, the hazard frequency and intensity are capricious since they depend

on the terrain, climate, and other natural conditions. Exposure, on the other hand, could be solved

via long-term urban planning and short-term activities, e.g., evacuation. As a result, vulnerability

becomes the focus that communities could target by actions such as improving the drainage system

and enhancing building strength to get immediate improvement. Analyzing the vulnerability to

flash floods will shed light on how communities suffer from this disaster and thus establish proper

measures to reduce the potential damage caused by future events.

One critical issue in flash flood vulnerability assessment is that the definition of “vulnerability”,

varies among studies. Cutter and Finch (2008) define vulnerability as “a measure of both the

sensitivity of a population to natural hazards and its ability to respond and recover from the impacts

of hazards” in an analysis of the spatial changes in vulnerability in the United States at the county

level (Cutter and Finch 2008). This definition is a composite of two processes, sensitivity and

recovery, and has been widely adopted in numerous investigations (Kirby et al. 2019; Tate 2012).

In more recent year, Lam et al. established the Resilience Inference Measurement (RIM) Model

to conceptualize and evaluate the disaster resilience process. This model defines vulnerability as

“the latent relationship between exposure and damage” (Lam et al. 2016). By selecting quantitative

indicators of exposure and damage to explore their disparate relationships, the RIM model has been

applied to evaluate community resilience and vulnerability to coastal hazards (Cai et al. 2016),

earthquakes (Li et al. 2016), and drought (Mihunov et al. 2018; Mihunov et al. 2019). Lam’s

definition of vulnerability provides a self-validated measurement framework that can be seamlessly

customized for diverse disaster types. Therefore, this thesis adopts its vulnerability concept and

framework for flash flood vulnerability assessment.

1.3 Research Questions and Objectives

To understand the root causes of flash flood vulnerability, this project aims to answer the fol-

lowing research questions:

1. What are the spatial patterns of flash flood occurrence and economic impact?

2



2. Which communities are more vulnerable to flash flood events?

3. How can communities reduce flash flood vulnerability in hazard-prone areas?

To answer these questions, it is necessary to establish a model to quantify the spatial disparities

in vulnerability. Using Texas as the study area, this research developed a framework to assess the

spatial patterns of vulnerability to flash floods at two scales: block-group and county. The research

objectives are three-fold:

1. Develop a vulnerability inference measurement (VIM) framework to quantify community

vulnerability to flash floods using multiple databases.

2. Examine the spatial disparities of flash floods in Texas at multiple administrative scales, i.e.,

county and block-group.

3. Identify potential contributors of flash flood vulnerability at different scales and inform de-

cision and policy making for risk mitigation.

Historical flash flood records were derived from the Storm Events Database provided by Na-

tional Oceanic and Atmospheric Administration (NOAA) and the Spatial Hazard Events and Losses

Database for the United States (SHELDUS). Socioeconomic data supplied by U.S. Census Bureau

and Digital Elevation Model (DEM) data obtained from U.S. Geological Survey were also uti-

lized. First, this study statistically analyzed the time, duration, frequency, and damage of flash

flood events at the block group and county levels. Second, we defined and calculated flash flood

vulnerability using a newly established Vulnerability Inference Measurement (VIM) model to re-

veal its spatial patterns at the two scales in Texas. Third, potential contributors of flash flood

vulnerability were identified through multiple statistical and learning models. The results of this

project could support further investigations of natural disaster risk assessment and monitoring as

well as assisting disaster mitigation and responding.
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1.4 Literature Review

A lot of researches have been conducted around natural disasters. Some studies analyzed the

disaster management and evaluated their performance in disaster resilience, and some other studies

aims to quantify the social resilience to disasters using a series of social factors.

In 2012, Berke established a model to evaluate the reliability of State Hazard Mitigation Plan

under Disaster Mitigation Act (DMA), which is designed to reduce disaster damages, in building

community resilience. This study lists 6 principles that are closely aligned with DMA requirements

for preparing state mitigation plans, including 4 internal principles (goal, fact base, mitigation poli-

cies, implementation and monitoring) and 2 external principles (interorganizational coordination,

participation), to evaluate the plan. The researchers also strategically quantified the plans through:

(1) collecting samples of State Hazard Mitigation Plan from 30 coastal states; (2) the sampled

plans were then coded/scored based on the six principles of plan quality; (3) each plan were in-

dependently examined by 2 of the 4 coders on the coding team; and (4) the index score of each

principle was calculated for each plan. The final index score of the plan quality was calculated by

summing the scores for each of the items and then dividing the sum by the total number of items

combined. The differences of derived index scores represent the differences of quality of those

plans, and by tracing back the score of each principles the root reasons could be revealed and thus

help governments to improve the mitigation plan (Berke, Smith, and Lyles 2012).

In recent years, more frameworks on quantifying social resilience to disasters emerges. Cutter

et al. (2014) established a model to evaluate resilience from 6 aspects, including social resilience,

economic resilience, community capital, institutional resilience, housing/infrastructure, as well

as environmental resilience. They collected 49 social variables and scored each aspect based on

those variables from 0-6 and summed all the 6 scores up to conclude the final score for resilience.

This method has some limitations. First, the weighting method is subjective and lacks valida-

tion. Second, although the variables of each aspect are synthesized using Principal Component

Analysis (PCA), the final index were calculated directly by summing up the scores of these six

aspects and the difference of weights among these aspects were ignored. Third, as the research
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team disclaimed, “the final score is not an absolute measurement of community resilience for a

single location, but rather a relative value in which multiple places can be compared” (Cutter, Ash,

and Emrich 2014), thereby we cannot extract more information from the resulted scores other than

which community has higher resilience. Nevertheless, this study demonstrates the potential of

synthesizing different socioeconomic data for the quantification of disaster resilience. Since vul-

nerability is defined as a part of resilience in this investigation, similar methods could be utilized

in our model.

Khajehei (2020) raised an advanced way to quantify the vulnerability to flash floods. Similar to

Cutter’s method, they collected a series of data from different categories, including 32 variables of

(1) demographic socioeconomic status, (2) race and ethnicity, (3) age, (4) gender, (5) housing and

transportation, and (6) industrial economy. They normalized all variables of socio-economic data

to z-scores and ran a more advanced PCA algorithm, Probabilistic Principal Component Analysis

(PPCA), to synthesize these variables (Khajehei et al. 2020). Comparing to Cutter’s analysis, this

one is specifically designed for flash flood vulnerability.

Cai’s analysis (2018), on the other hand, summarized the most frequently used socioeconomic

variables in the assessment of disaster resilience. They reviewed 174 academic articles related

to disaster resilience analysis, and classified the commonly used socioeconomic variables into 7

different categories: (1) community, (2) infrastructure, (3) individual/household, (4) urban sys-

tem, (5) economy, (6) others (government, ecosystem, social-ecological system, etc.), and (7) not

specified (Cai et al. 2018). Combining Cai’s conclusions and Khajehei’s model, we would be able

to identify the most frequently used socioeconomic indices for flash flood vulnerability inference,

which are detailed in Section 2.3.

In rencent year, more advanced techniques are introduced in the quantitative assessment of

disaster risk. Sarker et al. (2020) did a literature review and summarized several methods that

use big data, including satellite imagery, aerial imagery and videos, wireless sensor web network,

and LiDAR, etc., in the assessment of disaster resilience, especially its capability and potential on

mitigating disaster risks. They indicate that the analysis of various big data can improve disaster

5



resilience and management through multiple avenues: (1) in the preparedness phase, big data could

help detect and monitor disasters, and thus giving people early warning to help them be prepared

for upcoming disasters and reduce damages; (2) in the mitigation phase, big data could accurately

assess disaster risk and forecast upcoming disaster events; and (3) in the response and recovery

phases, big data could help recovery teams to collect data about current and cascading damage

caused by disaster events, and thus support post-disaster management. However, difficulties exist

in analyzing big data, such as the infrastructure for big data collection, and the requirements of

expert teams with enough technical capacities, etc. Therefore, there is still a lot of improvement

that needs to be realized before we make big data a reliable channel to assess disaster resilience

(Sarker et al. 2020).

Based on the literature review, it is worth noticing that most of the current progress on eval-

uating flash flood vulnerability is based on subjectively selected socioeconomic variables while

lacking either a connection to the actual influences caused by flash flood, or validation on the

factor selections. Another critical fact revealed in Cai’s report is that “only 10.3% of all the 174 ar-

ticles conducted empirical validation of their proposed resilience indices” (Cai et al. 2018), which

further proves that we still lack reliable root understanding to the cause of disaster risks. Therefore,

establishing the connection between the concept of “vulnerability” and the actual effects caused

by flash flood hazards and thus developing a quantitative method to evaluate vulnerability would

be critical for understanding the driving forces behind.
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2. STUDY AREA AND DATA

This project covers all the flash flood events that took place within Texas during 2005 to 2020.

The major dataset used for this project include Texas geographic data, flash flood data, and con-

tributor data.

2.1 Texas Geographic Data

The Texas geographic data includes the area unit boundaries in Texas at two geographic levels:

county and block-group. Each of them is stored in a shapefile derived from the U.S. Census

database via National Historical Geographic Information System (NHGIS; Figures 2.1).

Figure 2.1: Texas Block Group Boundaries (Left) and Texas County Boundaries (Right).

2.2 Flash Flood Data

The flash flood data have two sources. The raw flash flood event records were derived from Na-

tional Climatic Data Center (NCDC) Storm Event Database developed by NOAA, which contains

various attributes for each storm record, i.e., time, coordinates, injuries, fatalities, damages, causes,
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etc. In addition, the aggregated flash flood occurrence and damage data were derived from SHEL-

DUS database, which summarized various types of weather-related natural disasters recorded in

NCDC database and their influences, including economic losses, fatalities, injuries, and durations,

etc., at county level by month and by disaster categories. The economic losses were adjusted

considering the 2020 inflation rate to enable temporal comparison. These two datasets for flash

flood records were used to quantify vulnerability at different spatial scales. Figures 2.2 shows two

maps for the county-level aggregated flash flood frequency and damage calculated using NCDC

dataset provided by NOAA, and Figure 2.3 shows maps for frequency and damage calculated using

data derived from SHELDUS. We can notice that the overall distribution of damage is very close

between the map generated using NCDC dataset and SHELDUS dataset, while the aggregated fre-

quency is much higher in the map generated using NCDC data than in the map generated using

SHELDUS data. This inconsistency could be caused by the different methods used in data fusion

and spatial analysis.

Figure 2.2: Aggregated Flash Flood Frequency (Left) and Damage (Right) by County calculated
Using NCDC Dataset (2005-2019).
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Figure 2.3: Aggregated Flash Flood Frequency (Left) and Damage (Right) by County calculated
Using SHELDUS Dataset (2005-2019).

2.3 Contributor Data

The contributor data were used for the correlation analysis, which aims to identify what fac-

tors, and in which ways, influence the vulnerability. These factors include two categories: socio-

economic status and terrain conditions. The variable selection is introduced in the following sec-

tions. A complete list of factors for correlation analysis and their definitions are shown in Table

2.1.
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2.3.1 Socio-Economic Status

Khajehei (2020) provides a list of socio-economic factors that can be used in the inference of

social vulnerability to flash flood. Based on variable definitions and data availability, we adopted

the variables selected in the abovementioned literature and added some variables that could reflect

additional aspects of socio-economic status. The detailed modification to the original variable list

is shown and explained below:

• Removed:

– Percentage of households receiving social security: data unavailable.

– Percentage Native American: data only available at county level.

– Percentage of population living in nursing and skilled-nursing facilities: data unavail-

able.

– Industrial Economy (whole category): variables not clearly defined.

• Changed:

– Percentage speaking English as a second language with limited English proficiency:

changed to “percentage of limited English speaking households” due to the data un-

availability (A "limited English speaking household" is one in which no member 14

years old and over (1) speaks only English or (2) speaks a non-English language and

speaks English "very well." In other words, all members 14 years old and over have at

least some difficulty with English. (Bureau 2022)).

– People per unit: changed to “Average household size” due to the data unavailability

(people per unit is not clearly defined so no data source were found, while average

household size is the count of people by household and data are available on NHGIS).

• Added:

11



– Median household income: another variable that reflects “income” other than “Per

capita income” and “Percentage of households earning greater than US $200,000 an-

nually”

In addition, Population data was also collected but it was not used as a potential contributor, but

as a input parameter for VIM index calculation. All data in the adapted variable list were derived

from the US Census Database via NHGIS.

2.3.2 Terrain Conditions

The data for terrain conditions include elevation and impervious rate data (Figure 2.4). The raw

elevation data were the DEM files derived from the GMTED2010 dataset via USGS and converted

into slope data. The raw impervious data were derived from Multi-Resolution Land Characteris-

tics (MRLC) Consortium. All the three data (DEM, slope, and impervious rate) were processed

through zonal statistics to compute the mean and median values for each spatial unit (block group

and county levels).

Figure 2.4: Texas DEM Data Derived from USGS (Left) and Impervious Rate Data Derived from
MRLC (Right).
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2.4 Variable Filtering

A total of 29 potential contributors were selected in the initial collection. The potential collinear-

ity existed within the selected variables could lead to overfitting in the final model. Therefore, a

correlation analysis was conducted to remove potentially correlated variables before inputting them

in regression and machine learning models. Specifically, the Pearson correlation between each pair

of variables in the initial list was tested. If the correlation coefficient of a certain pair of variables

was greater than 0.7, we examined the correlation between each variable and the VIM Index and

kept the one with a higher correlation. An example of three highly correlated variables are shown

in Figure 2.5. The correlation test resulted in 19 variables in the final list, which will be utilized in

the subsequent modeling process (Table 3.2).

Figure 2.5: Three Highly Correlated Variables: PCT_POVERTY, PER_CAPITA_INCOME, and
MED_HSHD_INCOME.
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3. RESEARCH DESIGN

Based on the study objectives discussed in previous sections, our research could be divided

into two modules: (1) vulnerability index establishment (objectives 1&2) and (2) contributor ex-

ploration (objective 3).

3.1 Vulnerability Index Establishment

For objective 1, we establish a model to quantify the vulnerability to flash flood, called the

Vulnerability Inference Measurement (VIM) model. Based on Susan Cutter and Nina Lam’s anal-

ysis, this study defines vulnerability as “the measure of sensitivity which turns the exposure to

actual damage when disasters take place”. Therefore, the main concept of the VIM model is to use

the average economic damage fall on each individual caused by flash floods of the same level of

threats in the given area to evaluate vulnerability. Specifically, vulnerability is defined as Damage

per Capita per Event, as presented below:

RawV IM =
TotalDamage

Population ∗ EventFrequency

To accomplish the calculation, we need the historical flash flood records. And considering both

the precision and the level of detail of our output, we decided to run the model at two different

social scales: block group level and county level.

3.1.1 VIM Index at Block Group Level

Since no aggregated data for flash floor records at BG level could be found, the first step is to

accomplish data aggregation. The NCDC Storm Event Database has very detailed information for

various natural disasters, and we use the flash flood records in this database to complete this part

of our research.

The NCDC data provide us the crop damage and property damage of each event, so the total

damage could be easily concluded by summing these two values up. However, this damage value
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is for each whole event, while one flash flood event may not be within a single area unit, which

in this case is a block group. To solve this issue, first we need the coordinate data, including

the starting point and ending point, to identify the affected area of each event, and estimate the

influence of each affected block group based on the ratio of that part to the whole affected region.

We established a set of procedures to estimate the partial damage in each area unit: for each event,

we (1) link the starting point and ending point to create a straight line which simulates the route

of this event, (2) split the line by the boundaries of the block groups it crosses, (3) get the ratio of

the length of each splitted part of this line to the total length of the whole line, and (4) calculate

the partial damage of each part by multiplying the total damage to the ratio we got in step (3) (as

shown below).

Damagea =
Lengtha

TotalLength ∗ EventDamage

This equation is used to convert the total amount of economic damage of each single event into the

partial amount for each area unit for each event.

Next, we would use spatial join to (1) count the total number of events in each block group as

frequency by block group (FBG), and (2) sum up the partial damages of all these events in each

block group as the aggregated damage by block group (ADBG). And thereby, with the population

by block group (PBG) data derived from US Census database, the raw VIM index at block group

level (RV IMBG) could be calculated using the equation below:

RV IMBG =
ADBG

PBG ∗ FBG

Since the output of this equation may not be normally distributed values, we may need a series of

operations like logarithm or square root to standardize it and achieve the VIM Index.

The overall workflow for the establishment of VIM index at block group level is shown in

figure 3.1.
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Figure 3.1: Workflow for VIM Index Calculation at Block Group Level.

3.1.2 VIM Index at County Level

Probably because county is a much larger social level and a more frequently used unit for

various studies, there has been an aggregated database for natural disasters at county level provided

by SHELDUS. We derived the flash flood record during 2011 to 2020 from this database for the

VIM Index quantification at county level.

The damage data in SHELDUS database include six categories (CEMHS 2022):

1. CropDmg: Damage to crop in U.S. dollars (current year).

2. CropDmg(Adj): Damage to crop in adjusted U.S. dollars (selected base year).

3. CropDmgPerCapita: Damage to crop in adjusted U.S. dollars (base: 2015) divided by the

annual county population; per capita calculations are based on current population.

4. PropertyDmg: Damage to property in U.S. dollars (current year).

5. PropertyDmg(Adj): Damage to property in adjusted U.S. dollars (selected base year).
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6. PropertyDmgPerCapita: Damage to property in adjusted U.S. dollars (base: 2015) divided

by the annual county population; per capita calculations are based on current population.

current population.

In this research, we are going to use the CropDmg(Adj) and PropertyDmg(Adj) for damage cal-

culation. Since the records in this database are already aggregated by month and county, we can

simply achieve the aggregated damage by county (ADC) with the following steps: (1) summing

up the CropDmg(Adj) and PropertyDmg(Adj) values for each record as total damage (by month

by county), (2) group the records by county, and (3) sum up all total damages for each county.

Meanwhile, the Records field in this dataset represents the frequency of flash flood events in

the given month and given county, so when we group the records by county we can also sum up

the Records field to achieve the frequency by county (FC). Similar to the methods for block group

level analysis, the raw VIM index at county level (RV IMC) could also be calculated using the

equation below:

RV IMC =
ADC

PC ∗ FC

And this value also needs to be standardized to finally achieve the VIM index at county level. The

whole workflow for VIM index calculation at county level is shown in figure 3.2.

Figure 3.2: Workflow for VIM Index Calculation at County Level.
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3.2 Contributor Exploration

After concluding the VIM index, we need to identify the contributors, or in other words, what

factors may lead to high vulnerability. We have two categories of factors: socio-economic variables

and terrain conditions. Using both kinds of factors and run correlation analysis between those

variables and the concluded VIM index, we could identify the potential contributors behind.

The regression analysis would be the major method for identifying the contributors. In this

study we utilized three models for regression, including Linear Regression (LR) model, Multino-

mial Logistic Regression (MLR) model, and Random Forest (RF) model.

We’ve concluded VIM index to represent the level of vulnerability in previous modules, but that

is a continuous parameter, which cannot be used for MLR model and is not very suitable for RF

model (the model would work but the performance would be very bad). Therefore, we categorized

the VIM index before we ran MLR and RF model. In addition, for LR model and MLR model,

Stepwise Selection (SS) was used to determine the best combination of variables which could lead

to the best model performance.

3.2.1 Linear Regression (LR) Model

When there is a continuous dependent variable and a series of predictors, LR Model, which

builds up a linear combination of those variables, is the simplest way to establish the regression

function (Su, Yan, and Tsai 2012). In our research, we aim to explore the potential correlation

or association between our concluded VIM index, which is a continuous variable, and a list of

potential contributors. Therefore, LR model is one of the most ideal methods to provide the most

straightforward result for our analysis. By checking the function of finally concluded LR model,

we can identify how those variables are correlated, or associated with the vulnerability of the

society to flash flood.

3.2.2 Multinomial Logistic Regression (MLR) Model

LR model is a very functional method to explore the correlation between explanatories and re-

sponse, but for vulnerability to flash flood, which is very complex, such a model established based
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on simply linear correlation could not be sufficient to fully explore the relations and associations

behind, and the use of continuous index might be over specific and could make the model unable to

reach a good result. Therefore, Logistic Regression is introduced in this study. By dividing the con-

tinuous index into categories, we could generalize the response variable and thus enable the model

to identify the correlation between explanatory and response. On the other hand, if the response

variable is too general, there could be too much information be eliminated or missed. Therefore,

to find a balance between specificity and generality, we decided to classify the vulnerability into

three categories (will be detailly discussed in section 3.2.4) instead of two categories (which is

more commonly used in Logistic Regression model). Because of this, we need to use MLR model,

which is a “maximum likelihood estimator” for study involves polychotomous dependent variable

(Kwak and Clayton-Matthews 2002), to identify the contributors.

3.2.3 Random Forest (RF) model

Random forest is a more advanced learning algorithm which is able to identify the prediction

rules, or in other words the correlation and association, behind the response variable and a series

of explanatory variables, and rank all explanatories based on their importance in the final model

(Boulesteix et al. 2012). Given the complexity of vulnerability, RF could be a very powerful tool

to explore the contributors. Similar to MLR model, RF may not perform very well on dealing with

continuous numeric values, so we first need to use the classified vulnerability categories for RF

model as well. In addition, the RF model cannot use Stepwise to select variables, so we ran it with

two sets of variables. The first variable list is the same as the variable list used in MLR model,

which is selected using SS (RF1 model); the other variable list is the whole list of all 19 variables

(RF2 model).

3.2.4 Vulnerability Classification

We’ve concluded a vulnerability index, which can represent the level of vulnerability. However,

this is a continuous variable, which would make it difficult for model to have very good perfor-

mance. Therefore, we classified the vulnerability of each area unit into three ordinal categories,
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“Low”, “Median”, and “High”, depending on their VIM index: if the VIM of a given area unit is

over 0.5 standard deviation higher than the mean VIM, it is classified as "High"; if the VIM in a

given area unit is below 0.5 standard deviation lower than the mean VIM, it is classified as "Low";

if the VIM of a given area unit is within 0.5 standard deviation from the mean VIM, it is classified

as "Medium" (as shown in Figure 3.3).

Figure 3.3: Vulnerability Classification.

3.2.5 Stepwise Selection (SS) Algorithm

For LR model and MLR model, we do have a list of variables that are selected based on both

existing analysis and intercorrelation test, yet it doesn’t mean that using all those variables in the

model could lead to the best results. Instead, just like many other regression models, the selection

of subset of explanatories could significantly influence the performance of our models. Therefore,

we introduced SS Algorithm in this study.
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4. RESULTS AND DISCUSSION

4.1 VIM Index result

4.1.1 VIM at Block Group Level

Using the methods introduced in previous chapter, we first concluded the raw VIM index.

As shown in figure 4.1, from the histogram on the left we can find that the raw VIM values are

extremely right skewed and we need to convert it into normal distribution. After attempts we find

that using a logarithm transformation as shown below could standardize it and generate values

ranging from 0 to 8 for this data set. A histogram for the normalized VIM is also included in figure

4.1.

V IMBG = log10(RV IMBG ∗ 10000 + 1)

Figure 4.1: Histograms for Raw VIM Index (Left) and Normalized VIM (Right) by Block Group.

The spatial distribution of VIM in Texas and block group level is shown in figure 4.2. Due to the

large proportion of area units with no flash flood records, there are large blank areas on this map,

which makes the overall pattern hard to tell. Especially for some of the east areas of Texas, where

the block groups are very small around big cities like Houston and Dallas, such discontinuousness
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makes it very hard to tell what average level of vulnerability is in those places. On the other hand,

we can still use the resulting data, including both RV IM and V IM , to identify the influence from

different contributors in subsequent analysis.

Figure 4.2: Spatial Distribution of VIM Index at BG Level (A. Dallas; B. Austin and San Antonio;
C. Houston)

4.1.2 VIM at County Level

Similarly, we have concluded raw VIM by county with extremely right skewed distribution (as

shown in figure 4.3). Using an equation shown below we can standardize the indices into values

ranging from 0 to 8.

V IMC = log10(RV IMC ∗ 10000 + 1)

However, this time the resulting VIM are still not in a perfect normal distribution (also shown in

figure 4.3). Instead, not only it is slightly right-skewed, but also the overall shape formed by the

histograms is very unsmooth.
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Figure 4.3: Histograms for Raw VIM Index (Left) and Normalized VIM (Right) by County.

On the other hand, the map for VIM by county (figure 4.4) provided us a much better represen-

tation of vulnerability’s spatial pattern than the maps at block group level. Although the gaps still

exist, the overall distribution could be observed more directly. The east area of Texas, especially

Houston and its surrounding areas, have obviously higher vulnerability than most other counties

of Texas, meaning these counties would more likely to experience high damage when flash floods

take place there.

Figure 4.4: Spatial Distribution of VIM Index at County Level.
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4.2 Vulnerability Contributors Exploration

4.2.1 Model Performance

The variable selection and performance of all three models for block group level is shown in

Table 4.1, and for county level is shown in Table 4.2. For the analysis of each social scale, we used

2 combinations of variables for RF model, that the first one is the same variable list used in MLR

model selected via Stepwise, and the second one is the combination of all 19 variables in the list.

Model Name Algorithm Variables in final model Model performance

LR
Linear

Regression

MED_HSHD_INCOME
PCT_Under_EDU

PCT_Service
PCT_ ASIAN

PCT_AFRICAN_AMERICAN
PCT_UNDER18

PCT_MOBILE_HOMES
PCT_UNOCCUPIED_HOUSING

MEAN_Impervious

Adjusted R2 = 0.06
Cor = 0.25

MLR
Multinomial

Logistic
Regression

MED_HSHD_INCOME
PCT_Under_EDU
PCT_Extractive

PCT_Service
PCT_ASIAN

PCT_AFRICAN_AMERICAN
PCT_UNDER18

PCT_MOBILE_HOMES
PCT_UNOCCUPIED_HOUSING

MEAN_Impervious

Accuracy = 42.78%

RF1 Random Forest
Same Variable List

as MLR Model

OOB estimate of
error rate: 42.18%

(Accuracy = 57.82%)

RF2 Random Forest Whole Variable List
OOB estimate of

error rate: 41.91%
(Accuracy = 58.09%)

Table 4.1: Model Summary for BG Level Analysis.
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Model Name Algorithm Variables in final model Model performance

LR
Linear

Regression

PCT_Under_EDU
PCT_Service

UNEMPLOYMENT_RATE
PCT_ASIAN

PCT_FEMALE
PCT_FEMALE_LABOR

MEAN_SLP
MEAN_Impervious

Adjusted R2 = 0.11
Cor = 0.39

MLR
Multinomial

Logistic
Regression

PCT_AFRICAN_AMERICAN
PCT_KID_OLD
PCT_FEMALE

PCT_HOUSING_NO_CAR
PCT_UNOCCUPIED_HOUSING

MEAN_Impervious

Accuracy = 53.16%

RF1 Random Forest
Same Variable List

as MLR Model

OOB estimate of
error rate: 41.15%

(Accuracy = 58.85%)

RF2 Random Forest Whole Variable List
OOB estimate of

error rate: 43.19%
(Accuracy = 56.81%)

Table 4.2: Model Summary for County Level Analysis.

For linear correlation modeling for the continuous VIM index, LR model provided a function

with 6.05% variance explained (which is represented by adjusted R2 ) for BG level analysis using

9 variables, and 10.8% variance explained for county level analysis using 8 variables. For both

model, percentage of population aged 25 years or older with less than 12th grade education, per-

centage employment in service industry, percentage Asian, as well as average impervious rate, are

selected as the explanatories

Among the three model for categories vulnerability, RF model performs better than MLR

model at both BG level and county level. For RF model using same variable list as the MLR

model, it reached the accuracy of 57.82% at BG level using 10 variables, and 58.85% at county

level using 6 variables; for RF model using the whole variable list, it reached the accuracy of

58.09% at BG level, and 56.81% at county level; For MLR model, it only achieved accuracy of

42.78% at BG level using 10 variables, and 53.16% at county level using 6 variables.
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In addition, for LR, MLR, and RF using SS variable list, the county level models perform better

than BG level model, while for RF using the whole variable list, the BG level model performs

better.

4.2.2 Interpretation of Correlation and Association

In total we have 8 different models with different selections of variables, and even the same

variables could appear to have different types of correlation/association with the vulnerability. To

identify the consistency of each variable among different model, we classify the correlation/association

into 6 classes based on our observations (shown in Table 4.3). Since some of those correlations can

only be observed in certain models due to the different complexity of them, we rank them into two

levels. Level 1 means in can be observed in all models, and level 2 means it can only be observed

in MLR and RF models.

Class Description Level

Positive
When the given variable increases, the vulnerability tends to increases;
when the give variable decreases, the vulnerability tend to decreases. 1

Negative
When the given variable increases, the vulnerability tends to decreases;
when the give variable decreases, the vulnerability tends to increases. 1

Divergent
When the given variable increases, probability of both high and low
vulnerability increases; when the give variable decreases, probability
of median vulnerability increases.

2

Convergent
When the given variable decreases, probability of both high and low
vulnerability increases; when the give variable increases, probability
of median vulnerability increases.

2

Concave-up/
upwards

When the given variable increases, the vulnerability decreases at first;
after this variable reaches a certain point and continues increasing,
the vulnerability turns to increase.

2

Concave-down/
downwards

When the given variable increases, the vulnerability increases at first;
after this variable reaches a certain point and continues increasing,
the vulnerability turns to decrease.

2

Table 4.3: Classification of Correlation or Association.
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4.2.2.1 LR Model

The performance of the LR model is shown in Figure 4.5. We can tell that, for both BG level

model and county level model, the estimated VIM index falls in a much narrower range than the

actual VIM index we observed. For BG level model most estimated VIM falls within 4 and 5, and

for county level model most estimated VIM falls within 3.5 and 5.5, while actually the VIM ranges

from 0 to 8 for both social scales. This is a more direct representation of the low value of adjusted

R2, and indicates that the LR model itself is very limited on predicting the VIM index using the

given variables in this research.

Figure 4.5: Estimated VIM vs. Observed VIM of LR Model at BG Level (left) and County Level
(Right).

The coefficients for LR model at BG level are shown in Table 4.4. In this model, 6 variables

have positive correlation with vulnerability, including “MED_HSHD_INCOME”, “PCT_Under_EDU”,

“PCT_Service”, “PCT_ASIAN”, “PCT_MOBILE_HOMES”, and “PCT_UOCCUPIED_HOUSING”.

On the other hand, “PCT_AFRICAN_AMERICAN”, “PCT_UNDER18”, and “MEAN_Impervious”

has negative correlation with vulnerability.

The coefficients for LR model at county level are shown in Table 4.5. “PCT_Service”, “UN-
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.527e+00 1.251e-01 36.182 < 2e-16

MED_HSHD_INCOME 2.547e-06 7.532e-07 3.381 0.000731
PCT_Under_EDU 3.836e-03 1.908e-03 2.010 0.044506

PCT_Service 1.189e-02 2.303e-03 5.163 2.56e-07
PCT_ASIAN 5.207e-03 2.607e-03 1.997 0.045890

PCT_AFRICAN_AMERICAN -3.163e-03 1.209e-03 -2.617 0.008922
PCT_UNDER18 -1.212e-02 3.129e-03 -3.873 0.000109

PCT_MOBILE_HOMES 5.587e-03 1.327e-03 4.212 2.60e-05
PCT_UOCCUPIED_HOUSING 7.189e-03 1.598e-03 4.497 7.11e-06

MEAN_Impervious -6.385e-03 1.143e-03 -5.584 2.53e-08

Table 4.4: Coefficients for LR model at BG level.

EMPLOYMENT_RATE”, “PCT_ASIAN”, and “PCT_FEMALE” have positive correlation with

the vulnerability. This implies that the low level of education, high occupation in service industry,

high percentage of Asian population, and high percentage of female population, could lead to, or

associate with high vulnerability. On the other hand, “PCT_Under_EDU”, “PCT_FEMALE_LABOR”,

“MEAN_Slope”, and “MEAN_Impervious” have negative correlation with vulnerability, which in-

dicates that high percentage of population without enough education (low level of education), high

percentage of female labor, dramatic rise or fall of the land surface (slope), as well as high level of

impervious rate could associate with low vulnerability.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.93153 2.80724 1.044 0.29805

PCT_Under_EDU -0.03748 0.01535 -2.442 0.01576
PCT_Service 0.06630 0.03142 2.110 0.03653

UNEMPLOYMENT_RATE 6.23681 2.07475 3.006 0.00311
PCT_ASIAN 0.14999 0.05723 2.621 0.00968

PCT_FEMALE 0.06406 0.04371 1.466 0.14484
PCT_FEMALE_LABOR -0.08567 0.03953 -2.167 0.03180

MEAN_SLP -2.33962 1.32520 -1.765 0.07953
MEAN_Impervious -0.02555 0.01251 -2.042 0.04289

Table 4.5: Coefficients for LR model at County level.
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The inconsistency between the two models is at the correlation between education and vulner-

ability. In BG model, the high percentage of population without enough education, or in other

words, the low level of education, in a certain area are more likely to associate with high vulnera-

bility to flash flood, but in the county model, areas with low levels of education are more likely to

have low vulnerability.

In addition, by comparing the p-values in the two models, it’s easily to find that all variables in

BG-level LR model have relatively important correlation with VIM (p < 0.05), yet the correlation

of some variables in county-level LR model is not important enough (p > 0.05).

To provide a more thorough understanding of the correlation of each variable to VIM index, a

complete table for the results of Pearson’s correlation test for all variables in table 2.1 is provided

(Table 4.6).

Variable p-value (BG) cor (BG) p-value (CN) cor (CN)
MED_HSHD_INCOME 0.0101 * 0.0437 0.2309 -0.0958
PCT_Under_EDU 0.7865 -0.0046 0.6262 -0.0390
PCT_Extractive 0.0694 0.0309 0.9659 0.0034
PCT_Service 6.64e-10 *** 0.1047 0.2806 0.0864
UNEMPLOYMENT_RATE 0.2623 -0.0191 0.0037 ** 0.2294
PCT_ASIAN 0.8748 -0.0027 0.9481 0.0052
PCT_AFRICAN_AMERICAN 2.34e-06 *** -0.0802 0.423 0.0642
MEDIAN_AGE 0.5883 0.0092 0.03787 * 0.1654
PCT_KID_OLD 2.26e-06 *** 0.0803 0.1840 0.1062
PCT_UNDER18 3.42e-07 *** -0.0865 0.0633 -0.1481
PCT_FEMALE 0.9066 0.0020 0.2332 -0.0954
PCT_FEMALE_LABOR 0.8239 0.0038 0.5009 -0.0539
PCT_FEMALE_HSHD 0.0019 ** -0.0529 0.9713 0.0029
HSHD_SIZE 0.0206 * -0.0394 0.5127 -0.0524
PCT_MOBILE_HOMES < 2.2e-16 *** 0.1457 0.0516 0.1552
PCT_HOUSING_NO_CAR 0.0036 ** -0.0495 0.8230 -0.0179
PCT_RENTER 9.81e-10 *** -0.1036 0.0187 * -0.1869
PCT_UNOCCUPIED_HOUSING 1.16e-12 *** 0.1204 0.0059 ** 0.2181
MEAN_SLP 0.0058 ** 0.0469 0.2708 -0.0881
MEAN_Impervious < 2.2e-16 *** -0.1704 0.0438 * -0.1607

Table 4.6: Pearson’s Correlation Test for the Whole Variable List (the number of asterisks indicates
the level of significance of the correlation).
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4.2.2.2 MLR model

The effect of each variable selected via SS on the MLR model at BG level is shown in fig-

ure 4.6. We can find that: for “MED_HSHD_INCOME”, “PCT_Under_EDU”, “PCT_Service”,

“PCT_ASIAN”, “PCT_MOBILE_HOMES”, and “PCT_UOCCUPIED_HOUSING”, the correla-

tion/association with vulnerability is positive; for “PCT_UNDER18”, “MEAN_Impervious”, and

“PCT_AFRICAN_AMERICAN”, the correlation/association is negative correlation or association

with vulnerability; for “PCT_Extractive”, the correlation/association is divergent.

It is markable that for “PCT_AFRICAN_AMERICAN”, its correlation with vulnerability is

hard to tell since it has insignificant influence on the probability of low vulnerability; yet when it

increases, the probability of median vulnerability will increase and the probability of high vulner-

ability decreases, which should also be considered as a kind of negative correlation or association.

The effect of each variable selected via SS on the MLR model at county level is shown in figure

4.7. We can find that: for “PCT_AFRICAN_AMERICAN” and “PCT_UNOCCUPIED_HOUSING”,

the correlation/association with vulnerability is positive; for “PCT_HOUSING_NO_CAR” and

“MEAN_Impervious”, the correlation/association is negative; for “PCT_KID_OLD”, the correla-

tion/association is convergent; for “PCT_FEMALE”, the correlation/association is divergent.
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4.2.2.3 RF1 Model

The partial dependence of each selected variable in the BG-level RF1 model is shown in Figure

4.8. For “PCT_Service”, “PCT_ASIAN”, “MED_HSHS_INCOME”, “PCT_UNOCCUPIED_

HOUSING”, and “PCT_MOBILE_HOMES”, the correlation/association with vulnerability is pos-

itive; for “PCT_AFRICAN_AMERICAN” and “PCT_UNDER18” , the correlation/association is

negative; and for “PCT_Extractive”, the correlation is divergent; for “MEAN_Impervious”, the

correlation/association appears to be concave-up, and the peak is at around MEAN_Impervious

= 50; similarly, the correlation/association of “PCT_UNDER_EDU” with vulnerability is also

comcave-up, the peak is at around PCT_UNDER_EDU = 20, and after it gets over 30, the vulner-

ability don’t have significant change anymore.

The partial dependence of each selected variable in the county-level RF1 model is shown in

Figure 4.9. For “PCT_AFRICAN_AMERICAN” and “PCT_UNOCCUPIED_HOUSING”, the

correlation/association with vulnerability appears to be positive; for “PCT_FEMALE”, the correla-

tion/association is negative; for “PCT_KID_OLD” and “PCT_HOUSING_NO_CAR”, the correla-

tion/association is converngent; and for “MEAN_Impervious”, being consistent with BG level RF1

model, the correlation/association is concave-up, while the peak is at around MEAN_Impervious

= 30.
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4.2.2.4 RF2 Model

RF2 model uses the whole list of 19 variables. To better focus on the variables that are

highly correlated with vulnerability, here we only represent the partial dependence chart for the

10 variables with the highest importance in each model and treat them as the selected variables.

The partial dependence of each selected variable in the BG-level RF2 model is shown in Figure

4.10. For “PCT_Service”, “PCT_ASIAN”, “PCT_KID_OLD”, and “MED_HSHD_INCOME”,

the correlation/association with vulnerability is positive; for “PCT_AFRICAN_AMERICAN” and

“PCT_UNDER18”, the correlation/association is negative; for "PCT_Extractive”, being consis-

tent with the BG-level MLR and RF1 models, the correlation/association is divergent; similar

to RF1 model, for “MEAN_Impervous”, the correlation/association is concave-up with peak at

around MEAN_Impervious = 50; “MEAM_SLP” and “UNEMPLOYMENT_RATE” don’t have

significant influence to the probability of high vulnerability, yet they form concave-down curves

for medium vulnerability and concave-up curves for low vulnerability, so the overall pattern of

the vulnerability should also be concave-down, and the peak is at around MEAN_SLP = 0.2 and

UNEMPLOYMENT_RATE = 15, respectively.

The partial dependence of each selected variable in the county-level RF2 model is shown in Fig-

ure 4.11. For “PCT_UNOCCUPIED_HOUSING”, “PCT_AFRICAN_AMERICAN”, and “UN-

EMPLOYMENT_RATE”, the correlation/association with vulnerability is positive; for “MEAN_

Impervious”, “PCT_HOUSING_NO_CAR”, “PCT_FEMALE”, “PCT_RENTER”, and “MEAN_

SLP”, the correlation/association is negative; for “PCT_KID_OLD”, the correlation/association is

convergent; for “PCT_Extractive”, the correlation/association is concave-down.
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4.2.2.5 Summary of Correlation or Association

A summary of all detected potential correlation/association is shown in Table 4.7. Among these

models, there are 6 sets of variable selections (there are 8 models, while RF1 and MLR model share

the same set of variables; also, for RF2 models we only consider the 10 variables with highest im-

portance as the selected variables). We consider the variables appear in 3 or more of those variable

selections and have consistent correlation/association with vulnerability as the confident variables,

and they include (shown in Table 4.6): MED_HSHD_INCOME (positive), PCT_Service (posi-

tive), PCT_ASIAN (positive), PCT_UNDER18 (negative), and PCT_UNOCCUPIED_HOUSING

(positive). Based on those observations we can conclude that the potential contributors or asso-

ciated variables of high vulnerability in the given area includes: (1) high level of (household)

income, (2) high percentage of employment in service industry, (3) high percentage of Asian in the

whole population, (4) low proportion of population of under 18 years old, and (5) large proportion

of unoccupied housing.

Besides, MEAN_Impervious are included in all variable selections, but inconsistency exists

among the models, that in 5 models it has negative correlation/association with vulnerability, while

in the other 3 models it has concave-up correlation/association. However, by observing the effect

and partial dependence figures of this variable, we noticed that in the models it has concave-

up correlation/association, the highest vulnerability in the increasing phase is lower than in the

decreasing phase, so the overall trend is still decreasing. Therefore, we can assume that such

inconsistency is mainly because the limitation of our models in exploring such complex correlation,

and we still include MEAN_Impervious as a confident contributor that has concave-up correlation

with vulnerability, which means either too low or too high impervious rate could associate with

high vulnerability.

In addition, PCT_AFRICAN_AMERICAN appeared frequently in the resulted models, yet its

influence to vulnerability is inconsistent at different level: in BG-level models it appeared to have

negative correlation, while in county-level models it appeared to have positive correlation. By

checking the dependence charts of the RF models we noticed that this variable only influence vul-
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nerability when the value is relatively low, and have less influence to vulnerability after it reaches

10%, which might be a possible reason for the inconsistency at different social scales. Whatever

the reason is, such an inconsistency makes it invalid to be used as an indicator for vulnerability.
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5. CONCLUSION

In this research, a VIM framework was established and it uses historical flash flood records as

the main input data, combined with administrative boundary data and population data, to calculate

an index that can be used to represent the level of vulnerability to flash flood in the given area.

In the case study in Texas, although the block-group level analysis failed to provide a straight-

forward visualization of the spatial distribution of vulnerability due to the large gaps in the maps

caused by areas with no flash flood records, a county-level VIM index indicates that the coastal

area along the Gulf of Mexico, especially Houston and the surrounding areas, are more susceptible

to flash flood damages.

Through the regression analysis, a series of models are utilized to identify the potential correla-

tion or associations between potential contributors with the quantified vulnerability and established

8 different models based on 3 algorithms to predict vulnerability using a series of socio-economic

or geographical conditions. Among the 8 models we developed, the county-level Random For-

est model using 6 variables achieved the highest performance (accuracy = 58.85%), and other 3

random forest models also achieved accuracy of over 56%.

In addition to directly predicting the vulnerability, the models we established also revealed

some potential correlation or association between those variables and vulnerability. By checking

the coefficients of LR models, effect charts of MLR models, as well as the partial dependence

charts of RF models, we concluded that: the high level in medium household income, high pro-

portion of employment in service industry, high proportion of Asian population, low proportion of

population under 18 years old, as well as large amount of unoccupied housing, could contribute to

high vulnerability; impervious rate could also be an critical factor, and either too high or too low

impervious rate could associate with high vulnerability and find a balance point would be useful

for vulnerability reduction.

However, the current analysis is run in a general way with some very basic variables. To

explain the root cause of our detected correlations or associations and in what way our community
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can reduce the vulnerability to flash flood, more detailed analysis would be necessary. For example,

the correlation between impervious rate and vulnerability may involves a lot of other variables, like

the level of urbanization, development of infrastructure (e.g. drainage system), etc. Those potential

hidden variables are not included in current analysis and if we only look at the overall correlation

between the variables we selected with vulnerability, we still lack the root understanding on how

we could reduce vulnerability. And that’s why in the research we are more likely to call those

variables "contributors" instead of "causes" or "driving factors".

Overall, the result of this research could help people understand what areas in Texas are more

susceptible to flash floods, and what conditions may lead to or be associated with high vulnerabil-

ity. These are not only helpful for governments or social leaders to make new policies, but also

instructive for the public to be prepared for potentially upcoming flash flood disasters.
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