
AUTOREC: AN AUTOMATED RECOMMENDER SYSTEM

A Thesis

by

TING-HSIANG WANG

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Xia "Ben" Hu
Committee Members, Theodora Chaspari

Na Zou

Head of Department, Scott Schaefer

August 2022

Major Subject: Computer Science

Copyright 2022 Ting-Hsiang Wang

ABSTRACT

Recommender systems are highly specialized to handle specific data and tasks. For

example, Neural Collaborative Filtering [1] takes the implicit interaction between user and

item IDs as the input data for the rating prediction task. Wide & Deep learning [2] ingests

user and application attributes to predict app downloads for Google Play. And DeepFM [3]

leverages both numerical and categorical data to estimate the click-through rate (CTR) for

ad campaigns. However, a high degree of specialization comes at the expense of model

adaptability and model tuning complexity. As shown in Figure 1, the originally apt model

often either becomes obsolete or requires hyper-parameter tuning as the recommendation

task at hand changes and additional types and amounts of data are collected over time. The

efforts required to re-tune or re-build a model is often high.

So far, several modular pipelines for building recommender systems, such as Open-

Rec [4] and SMORe [5], have been proposed to address the adaptability issue. They

contribute to the community by defining unified pipeline schema which divide recommen-

dation models into a series of components (blocks) with specific functions and provide

selectable modules for each. This design allows developers to quickly build and iterate

recommendation models by assembling and swapping for the promising parts. Neverthe-

less, 1) determining which modules to use for each block and 2) hyper-parameter tuning

for recommendation models remain challenging when models need to be adapted for con-

tinuously changing tasks and data.

ii

Figure 1: Recommender systems are optimized for specific data and tasks. For example,
NeuMF [1] (right) predicts ratings based on user and item interactions. Wide & Deep
Learning [2] (center) predicts app downloads based on user and application attributes.
DeepFM [3] (left) predicts CTR for ads based on numerical and categorical data. How-
ever, as the data and tasks change over time, the models become obsolete. Despite better
architectures loom in the background, designing and testing new models are no easy tasks.

iii

ACKNOWLEDGMENTS

The past three years at Texas A&M University is an unforgettable chapter in my life.

I have received a great deal of support and assistance. Here, I would like to thank all the

people who have helped me in my research.

First and foremost, I would like to thank my advisor Dr. Xia "Ben" Hu, for his help,

encouragement, and guidance.

Second, I would like to thank my committee members, Professor Na Zou and Professor

Theodora Chaspari for their guidance and support throughout the course. This includes

during projects, class, and even interviews.

Also, I would like to thank my group members and collaborators at the DATA (Data

Analytics at Texas A&M) Lab in the Department of Computer Science and Engineering,

for helping me and providing advice to my work.

I owe my most sincere gratitude to my parents for their support and love.

Finally, I would like to thank the Texas A&M University for supporting my research

during my master’s program.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by the thesis committee consisting of Professor Xia "Ben"

Hu (advisor) and Professor Theodora Chaspari from the Department of Computer Science

and Engineering, and Professor Na Zou from the Department of Engineering Technology

and Industrial Distribution.

The conceptualization, design, implementation, and experimentation in this work is

a collaborated work between Ting-Hsiang Wang (author), Qingquan Song, Haifeng Jin,

Xiaotian Han, and Zirui Liu.

Funding Sources

The research work was supported under the Student Worker title from Texas A&M

University.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Background and Motivation . 1
1.2 Thesis Contributions . 2

2. RELATED WORK . 4

2.1 Recommender Systems . 4
2.1.1 Rating Prediction and CTR Prediction 4
2.1.2 Deep Learning in Recommender Systems 6
2.1.3 Modular Framework for Recommender Systems 7

2.2 Neural Architecture Search . 7
2.2.1 Search Space and Search Algorithms 8
2.2.2 Libraries for Automated Machine Learning 8

3. PROBLEM STATEMENT . 10

4. THE PROPOSED FRAMEWORK: AUTOREC 12

4.1 Overview of AutoRec Pipeline . 12
4.2 Design of Recommender Module . 14

4.2.1 Mapper Block . 15
4.2.2 Interactor Block . 15
4.2.3 Optimizer Block . 17

4.3 About the Searcher Module . 18

vi

5. EXPERIMENTS . 20

5.1 Datasets . 20
5.1.1 Datasets for Rating Prediction 20
5.1.2 Datasets for CTR Prediction . 21

5.2 Baseline Methods . 22
5.2.1 Baselines for Rating Prediction 22
5.2.2 Baselines for CTR Prediction 23

5.3 Experimental Setup . 24
5.3.1 Data Sampling and Preprocessing 24

5.3.1.1 Data Sampling . 24
5.3.1.2 Data Preprocessing 24

5.3.2 Evaluation Metrics . 25
5.3.3 Parameter Settings . 26

5.4 Model Performance in Rating Prediction (Q1) 27
5.5 Model Performance in CTR Prediction (Q2) 28
5.6 Coding Simplicity Case Study (Q3) . 29

6. CONCLUSION . 31

REFERENCES . 32

APPENDIX A. CODES . 38

vii

LIST OF FIGURES

FIGURE Page

1 Recommender systems are optimized for specific data and tasks. For ex-
ample, NeuMF [1] (right) predicts ratings based on user and item interac-
tions. Wide & Deep Learning [2] (center) predicts app downloads based
on user and application attributes. DeepFM [3] (left) predicts CTR for ads
based on numerical and categorical data. However, as the data and tasks
change over time, the models become obsolete. Despite better architec-
tures loom in the background, designing and testing new models are no
easy tasks. iii

2.1 In the recall stage, the number of candidate items are greatly reduced using
heuristics to ensure efficiency in the ranking stage. In the ranking stage,
items are ranked using high-order features and complex models to achieve
effectiveness. 5

4.1 Pipeline of the proposed AutoRec framework. First, Preprocessor prepares
and splits D into Dtrain and Dvalid. Second, Recommender is built from
chaining Mapper, Interactor, and Optimizer, where Interactor specifies M
and H and Optimizer specifies Ltrain. Third, Searcher is instantiated with
specific search algorithms and chained with Recommender. This forms an
AutoRec instance ready to undergo NAS. 13

4.2 The three-block schema in in recommender systems. (Bottom) Data inputs
are mapped into feature vectors. (Center) Feature vectors interact to pro-
duce additional information. (Top) Output value is scaled and optimized
for the specific recommendation task. (From left to right) DeepFM [3],
Wide & Deep Learning [2], and NeuMF [1]. 14

4.3 Recommender is consisted of Interactor, Mapper, and Optimizer, which
handles the data variables (training and validation sets), model variables
(models and hyperparameters), and task variables (training and validation
losses), respectively. 15

viii

4.4 Searcher’s search strategies conducts NAS and performance evaluation
based on the search spaces and losses provided by Recommender. At the
end of each search iteration, a winning model along with its optimal hy-
perparameters are decided. 19

5.1 Search results are displayed in the terminal for feedback and analysis. . . 29

5.2 Searchable model for rating prediction (AutoRec-RP) built in 10 lines of
code. 30

ix

LIST OF TABLES

TABLE Page

3.1 Important symbols and definitions. 11
5.1 Dataset statistics for rating prediction task. 20

5.2 Dataset statistics for CTR prediction task. 21

5.3 Performance for the rating prediction task. 27

5.4 Performance for the CTR prediction task. 28

x

1. INTRODUCTION

1.1 Background and Motivation

As the main driving force responsible for generating venues in today’s eCommerce

companies, e.g., more than 1 billion US dollars per year for Netflix [6, 7], about 35%

of sales for Amazon, and 60% of the clickable contents on YouTube [8], recommender

systems across the world face a fundamental challenge: the engineering cost needed to

adapt to new recommendation scenarios. Specifically, realistic recommender systems are

required to have the capacity to quickly adapt to the constantly evolving data and tasks or

to explore different models systematically. One of the most prominent examples of this is

Netflix has never deployed the champion recommendation model emerged from their $1M

contest due to its engineering cost and the business’ shifting from movie recommendation,

which targets rating prediction, to video streaming, which targets click-through-rate (CTR)

prediction [9]. In addition, although recommender systems start to capitalize on the power

of deep learning, they have yet been able to convert model depth into raw performance

because of the tendency to overfit, which leads to severe online-offline performance mis-

match. Therefore, most of the active recommendation models in the industry are shallow

when compared to their computer vision counterparts [10]. This calls for a new approach

of recommendation model development which emphasizes both flexibility and the system-

atic exploration of both existing and new neural architectures alike.

In the industry, most recommender systems are highly specialized to handle specific

data and tasks. For example, NeuMF [1] takes user-item implicit feedback data as inputs

for the rating prediction task; DeepFM [3] leverages both numerical and categorical data

for the CTR prediction task. However, a high degree of specialization comes at the ex-

pense of model adaptability and tuning complexity. As recommendation tasks evolve over

1

time and additional types of data are collected, the originally apt model can either become

obsolete or require tremendous tuning efforts. So far, several pipelines for recommender

systems, e.g., OpenRec [4] and SMORe [5], tried to address the adaptability issue via

providing modular base blocks that can be selected according to the context of recommen-

dation. Nevertheless, both determining the blocks to use and tuning the model parameters

are not straightforward when facing new data and changing tasks.

In order to bridge the gap, we present AutoRec, an open-source automated machine

learning (AutoML) platform extended from the TensorFlow [11] ecosystem which focuses

on neural architecture search (NAS) for deep recommendation models. While many Au-

toML libraries, such as Auto-Sklearn [12] and TPOT [13] have shown promising results

in general-purpose machine learning tasks (e.g., regression and hyperparameter tuning)

and our fruitful efforts with AutoKeras [14] extended AutoML to multi-modal data and

multi-task training (e.g., text and image classification), few models incorporate AutoML

for recommendation tasks. And for the few which do, their approaches are often too nar-

row for general recommendation models. For example, AutoInt [15] and AutoCTR [16]

focus on searching interactions for only CTR prediction tasks. In contrast, AutoRec sup-

ports a highly flexible pipeline that accommodates both sparse and dense inputs, rating

prediction and click-through rate (CTR) prediction tasks, and an array of recommendation

models. Lastly, AutoRec provides a simple, user-friendly API. Our preliminary experi-

ments conducted on the benchmark datasets reveal AutoRec can automate the finding of

new state-of-the-art deep recommendation models without prior knowledge.

1.2 Thesis Contributions

As realistic recommender systems need to adapt to ever-changing data and tasks, this

research aims to contribute to the community by automating model selection and hyper-

parameter tuning for recommendation models. There are two major components in this

2

thesis: 1) Design and implement a recommendation model architecture schema which

supports searching optimal model interactions and hyper-parameters and 2) incorporate

the searcher functionality to enable an efficient and systematic search by leveraging the

power of AutoML. The major contributions of our work are summarized as follows:

• We formally define the modular architecture for recommendation models to enable

NAS algorithms to conduct model search and hyperparameter tuning for the said

models.

• The architecture surpasses existing frameworks in usability by accommodating sparse

and dense inputs, rating prediction and CTR prediction tasks, and both deep and

non-deep recommendation models.

• Experimental results show AutoRec is reliable and can identify models which re-

semble the best human-engineered models, showing the potential of AutoML in

maintaining the reliability and efficiency of recommendation models in production.

In addition, the proposed architecture provides a user-friendly application program-

ming interface (API), which allows users to define a searchable recommendation model

using as few as 10 lines of code.

3

2. RELATED WORK

In this section, we discuss two lines of work that are relevant to our research: 1) dif-

ferent types of recommender systems and their evolution and 2) neural architecture search

(NAS) introduced to automate the design of general neural network models. Together,

these works contextualize the contributions of AutoRec.

2.1 Recommender Systems

Different from recommender systems in academia, where researchers design and op-

timize monolithic machine learning models based on fixed benchmark datasets, recom-

mender systems in the industry need to handle data on the order of billions. Since it

is computationally infeasible for models to rank the entire inventory of items according

to user preference, the process of recommendation in the industry are divided into two

stages: 1) the recall stage and 2) the ranking stage, as shown in Figure 2.1. First, in the re-

call stage, efficient heuristics (e.g., same category, k-nearest neighbors algorithm [17, 18])

retrieve promising items to drastically shrink the pool of candidate items. Then, in the

ranking stage, models personalize items according to user preference to achieve accuracy.

This research is focused on the machine learning models being used in the ranking stage.

2.1.1 Rating Prediction and CTR Prediction

The goal of recommender systems is to learn the relationship between users and items

to help with curating a subset of items that solicits targeted behaviors from users (i.e., not

limited to buying). In general, the user-item interaction data are classified as being either

“explicit”, where the data labels have numerical meaning (e.g., star ratings on Amazon,

Tomatometer score on Rotten Tomatoes), or “implicit”, where the data labels are binary

(e.g., clicked or not for online ads, bought or not on Ebay). Consequently, recommendation

4

Figure 2.1: In the recall stage, the number of candidate items are greatly reduced using
heuristics to ensure efficiency in the ranking stage. In the ranking stage, items are ranked
using high-order features and complex models to achieve effectiveness.

tasks are also divided into two categories: “rating prediction” and “click-through rate

(CTR) prediction”, where the words “rating” and “CTR” are general terms describing

the numerical and binary properties of the predictive outcomes, respectively.

The models which make recommendations solely based on user-item interaction data

are said to have taken the “collaborative filtering” approach since they effectively recom-

mend items based on whether other users with tastes similar to that of the target user like

the candidate items (i.e., collaboration) and discard the rest (i.e., filtering). For exam-

ple, collaborative filtering algorithms such as [19, 20, 21, 22] conduct rating prediction,

while [1, 23, 24, 25] conduct CTR prediction.

Despite early recommender system research focused on the rating prediction task, the

CTR prediction task has gained a lot of popularity in recent years. This is because, when

compared to explicit data, implicit data is much easier to collect since users’ explicit ac-

tions (e.g., submitting a score) are not required [26]. On the other hand, compared to rating

5

prediction, CTR prediction is considered to be more practical since the ultimate goal of

recommender systems is maximizing the probability for targeted user behaviors to happen,

not estimating the extent of user preference [1].

2.1.2 Deep Learning in Recommender Systems

The collaborative filtering approach was proposed at a time when: 1) leveraging the

user-item interaction data alone is sufficient to make high quality recommendations [4]

and 2) the data was considered abundant for its contemporary applications (e.g., prod-

uct recommendation on Amazon [27]). However, as the industry evolved with time, two

problems emerged: 1) more modes of data (e.g., text, image) became available but were

not utilized and 2) data sparsity (the growth of the number of user-item interactions can-

not keep up with those of the users and items) took increasing toll on the performance of

collaborative filtering methods [28].

Deep learning is sought after by recommender systems mainly for two reasons: 1)

its raw modeling power has brought tremendous advancements in other machine learning

research areas (e.g., computer vision, natural language processing); and 2) its ability to

convert item content information (e.g., product descriptions, product images) into latent

embeddings, which can then be fed into recommender systems as auxiliary information to

help alleviating the user-item interaction data sparsity problem.

Incidentally, most of the current deep recommender systems for rating prediction,

while exploiting the superior modeling power of deep learning, do not utilize the aux-

iliary information embedded in item contents. The deep neural network structures being

used for rating prediction include restricted Boltzmann machines (RBM) [21], autoen-

coder [29], etc. In contrast, deep recommender systems for CTR prediction take full ad-

vantage of different modes of data to facilitate recommendation. For example, textual

descriptions are modeled by autoencoder [30], audio signals by multi-layer perceptron

6

(MLP) and convolutional neural network (CNN) [31], images by convolutional autoen-

coder [32], and metadata by attention network [15] and cross network [33]. Notice linear

mondeling is still essential to recommender systems since most of the these methods still

integrate latent features into matrix factorization.

2.1.3 Modular Framework for Recommender Systems

Although standard machine learning frameworks (e.g., TensorFlow [11], PyTorch [34])

have provided modular components for general machine learning models, the modular

components tailored for recommender systems are still under-developed. Currently, exist-

ing works towards this problem usually provide modular base blocks that can be selected

according to the context of recommendation. For example, OpenRec [4] divides the al-

gorithm component of recommender systems into three stages: extraction, fusion, and

interaction, where the extraction stage can utilize embeddings pretrained from different

modes of content information (e.g., text, image). SMORe [5] approaches the recommen-

dation problem from a graph perspective and divides a model into three blocks: sampler,

mapper, and optimizer. The sampler module is responsible for extracting high-order inter-

actions between entities in heterogeneous graphs (e.g., user, items, metadata) using various

sampling heuristics (e.g., adjacency, neighborhood, random walk). Nevertheless, both de-

termining the blocks to use and tuning the model hyperparameter are not straightforward

when facing new data and changing tasks.

2.2 Neural Architecture Search

Neural architecture search (NAS) is a sub-field of automated machine learning (Au-

toML) [35] and has become the center of focus for machine learning research as deep

learning models sophisticate and proliferate across different industries over the years. Es-

sentially, NAS aims to automatically discover the optimal deep learning solutions given

specific data and tasks, thus allowing domain experts to contribute without being limited

7

by their lack of experience in machine learning.

2.2.1 Search Space and Search Algorithms

NAS methods are formulated in terms of three components: 1) search space, 2) search

strategy, and 3) performance estimation strategy [36]. Intuitively, the search space defines

the candidate “architectures” for search strategies to pick from. For example, in the case

of hyperparameter tuning for MLP, the search space is composed of the number of layers

and the number of neurons in each layer. In the case of model search, the search space can

include any permitted modeling operations (e.g., MLP, dot product, factorization machine

(FM) [16]) supported by the machine learning framework being searched.

After a search space is defined, a search strategy is responsible for selecting the most

promising architecture from the search space. The process is often a trade-off between

exploitation (i.e., efficiency) and exploration (i.e., effectiveness) [36]. Some of the main-

stream search strategies include Bayesian optimization, reinforcement learning, and evo-

lutionary algorithm [35].

At the end of the NAS iteration, a predefined performance estimation strategy is used

to evaluate the performance of the selected architecture. Since the intuitive solution of

comparing training performance against validation performance is computationally infea-

sible, many other strategies are proposed (e.g., lower fidelity, learning curve exploration,

network morphism, and weight sharing [36]). We remark that AutoKeras [14], the basis

of our work, employs network morphism to address the efficiency issue of NAS.

2.2.2 Libraries for Automated Machine Learning

The notion of automating the process of finding the optimal model for particular data

and tasks is not new to the community. In fact, most of the AutoML libraries are designed

for non-deep-learning algorithms (e.g., TPOT [13], SMAC [37], Auto-WEKA [38], Auto-

Sklearn [12]). AutoKeras [14] is one of the first open-source AutoML frameworks extend-

8

ing to deep neural networks (DNNs). However, these frameworks are designed for general

machine learning and not for recommender systems. On the other hand, for the few which

support NAS for recommender systems (e.g., AutoInt [15]. AutoCTR [16]), they search

the optimal models only for CTR prediction task. Hence, one major novelty of this work is

its modular and searchable pipeline tailored for both rating prediction and CTR prediction

tasks for recommender systems.

To sum up, our work aims to fill the gap of an AutoML framework that satisfies the

needs of general recommender systems, where the system support both rating prediction

and CTR prediction tasks and can utilize user-item interaction data as well as item feature

information to find the most optimal model. The best of all is that the entire process can be

automated by search algorithms once input data, recommendation task, and architecture

search space are provided.

9

3. PROBLEM STATEMENT

In this section, we introduce the necessary notations as well as the problem of neural ar-

chitecture search (NAS) for recommender systems. Essentially, NAS aims to discover the

optimal machine learning solution for a recommendation scenario by automating model

selection and hyperparameter tuning with search algorithms. We give the prerequisites for

formulating the problem below and list the notations in Table 3.1 for reference.

There are two specifications pertaining to recommender systems which are required to

formulate the problem: dataset and loss function. Given a dataset D, D is split into a train-

ing set Dtrain and a validation set Dvalid. A training loss function Ltrain and a validation

loss function Lvalid should be provided to facilitate model training and validation, respec-

tively. Notice Ltrain and Lvalid are often different for recommender systems for pragmatic

reason. Namely, Ltrain is required to be differentiable for model training (e.g., MSE, cross

entropy), while Lvalid is chosen to resemble real-life recommendation scenario as close as

possible (e.g., AUC, Precision@k).

To automate model selection and hyperparameter tuning using NAS techniques, there

are two specifications required to formulate the problem: model search space and hy-

perparameter search space. A model search space M = {m1,m2, ...} is a collection of

trainable candidate models mi. And each mi is associated with a hyperparameter search

space Hi, where Hi = {hi,1, hi,2, ...} is a collection of candidate hyperparameters hi,j .

Finally, the problem of NAS for recommender systems is formulated as the optimization

problem shown below:

m∗
h∗ = argmin

mi∈M,hi,j∈Hi

Lvalid(m
i
hi,j ,w∗ ,Dvalid),

s.t. w∗ = argmin
w

Ltrain(m
i
hi,j ,w,Dtrain),

10

Table 3.1: Important symbols and definitions.

Notations Definitions
D Dataset

Dtrain Training set
Dvalid Validation set
Ltrain Training loss function
Lvalid Validation loss function
M Model search space
mi Model instance
Hi Hyperparameter search space associated with mi

hi,j Hyperparameter instance associated with mi

w Model weight
w∗ Optimal model weight
m∗ Optimal model instance
h∗ Optimal hyperparameter for m∗

m∗
h∗ Optimal machine learning solution m∗ trained with h∗

where w∗ is the optimal state of (i.e., trained) weight w for a model m. The objective of

NAS for recommender systems is, therefore, to find the optimal model m∗ trained with its

optimal hyperparameter h∗, namely the optimal machine learning solution m∗
h∗ .

NAS for Recommender Systems: Given training set Dtrain, validation set Dvalid,

training loss function Ltrain, validation loss function Lvalid, model search space M,

and hyperparameter search space H, the objective of NAS for recommender systems

is to find the optimal model m∗ trained with its optimal hyperparameter h∗, namely

the optimal machine learning solution m∗
h∗ .

11

4. THE PROPOSED FRAMEWORK: AUTOREC

In this section, we introduce the AutoRec framework. The AutoRec framework oper-

ates based on two major components: 1) Recommender: the search space and evaluation

metrics module which provides a model search space M and its associated hyperparam-

eter search space H. And 2) Seacher: the search functionality module (e.g., random

search, Bayesian optimization) which iteratively decides whether to exploit existing can-

didate model mi and its associated hyperparameter hi,j or to explore new ones. We remark

that the majority of our work is focused on the design and implementation of the Recom-

mender, while the Searcher in our framework is extended from the TensorFlow [11] and

AutoKeras [14] ecosystems.

4.1 Overview of AutoRec Pipeline

Figure 4.1 details the process of using the proposed AutoRec pipeline to set up a Rec-

ommender instance for Searcher to perform NAS. There are four steps involved in the

process: data preprocessing, search space construction, search algorithm selection,

and NAS. Below, we will discuss about each step in more detail.

In the data preprocessing step, a Preprocessor is used to transform numerical features

(e.g., log transformation) and categorical features (e.g., fit dictionary). As data preprocess-

ing is highly circumstantial, abstract interface is defined for users to implement their own

solutions. However, we do provide ready-to-use Preprocessors for mainstream benchmark

datasets such as Netflix, Movielens 1M, Avazu, and Criteo. At the end of the data prepro-

cessing step, the input dataset D is split into a training set Dtrain, a validation set Dvalid,

and a test set Dtest.

In the search space construction step, Recommender is built from chaining Mapper, In-

teractor, and Optimizer. Recommender is literally an unspecified recommendation model

12

Figure 4.1: Pipeline of the proposed AutoRec framework. First, Preprocessor prepares
and splits D into Dtrain and Dvalid. Second, Recommender is built from chaining Mapper,
Interactor, and Optimizer, where Interactor specifies M and H and Optimizer specifies
Ltrain. Third, Searcher is instantiated with specific search algorithms and chained with
Recommender. This forms an AutoRec instance ready to undergo NAS.

waiting to differentiate. Among its three components, Mapper and Optimizer are fixed,

while Interactor is mutable. Mapper is responsible for converting data into input features

(e.g., embeddings). Optimizer defines the training loss function Ltrain depending on the

recommendation task (i.e., MSE for rating prediction, cross entropy for CTR prediction).

And Interactor provides model search space M and its associated hyperparameter search

space H for the purpose of NAS.

In the search algorithm selection step, Searcher is instantiated with the specified search

algorithm (e.g., random search, greedy search, Bayesian optimization) and is chained with

Recommender. This forms an AutoRec instance ready to undergo NAS.

Finally, in the NAS step, the AutoRec instance initiates NAS and uses the provided

training loss function Lvalid to help with finding m∗
h∗ . In our research, we let the loss

function for Ltrain and Lvalid to be the same due to the difficulty in obtaining more realistic

labels in an academic setting, despite they are often different in the industry. The process is

iterative and, depending on whether search space is provided by Interactor, may automate

13

both, either, or none of model selection and hyperparameter tuning.

Figure 4.2: The three-block schema in in recommender systems. (Bottom) Data inputs
are mapped into feature vectors. (Center) Feature vectors interact to produce additional
information. (Top) Output value is scaled and optimized for the specific recommendation
task. (From left to right) DeepFM [3], Wide & Deep Learning [2], and NeuMF [1].

4.2 Design of Recommender Module

As Figure 4.2 shown, the structure of recommender systems can be generalized using

a three-block schema. When data comes in, it is mapped into different feature vectors

depending on its data type (e.g., dense vector for numerical feature, one-hot encoding for

categorical feature). The feature vectors then interact with each other following intricate

neural networks to produce new information. Finally, the output value is scaled and opti-

mized for the specific recommendation recommendation task to help with model training.

This motivates us to design Recommender with three dedicated blocks: Mapper, Interac-

tor, and Optimizer, to handle data mapping, feature interaction, and output optimization.

Figure 4.3 shows the division of labor between the triad in greater detail.

14

Figure 4.3: Recommender is consisted of Interactor, Mapper, and Optimizer, which han-
dles the data variables (training and validation sets), model variables (models and hyper-
parameters), and task variables (training and validation losses), respectively.

4.2.1 Mapper Block

The Mapper block is designed to convert data into feature vectors so that different en-

tities can interact with each other to produce additional information. Numerical (dense)

features are naturally comparable and thus directly usable, while categorical (sparse) fea-

tures needs to be fit and transformed by Preprocessor. Both numerical and categorical

features are mapped into embeddings to reduce data noise and dimensionality before be-

ing passed to Interactor to produce new information.

4.2.2 Interactor Block

The Interactor block defines the model search space M and its associated hyperpa-

rameter search space H for NAS. Through Interactors, the input features can interact to

produce additional information, which help with modeling. The Interactor is designed

15

under three guidelines to ensure a comprehensive and flexible search space: 1) Linear,

nonlinear, and deep learning based architectures should all be included. 2) Mainstream

recommendation models must be present in the search space. And 3) Interactor should

have the flexibility to remain ambiguous until Searcher decides which specific Interactor

it should become during NAS.

Among the nine supported Interactor classes, five are non-deep: RandomSelectIn-

teraction, ConcatenateInteraction, ElementwiseInteraction, InnerProductInteraction, and

FMInteraction. Three are deep: MLPInteraction, CrossNetInteraction, and SelfAttention-

Interaction. Lastly, HyperInteraction is the meta Interactor which can parallel multiple

Interactors in the same level. With these modules, state-of-the-art recommender systems

such as NeuMF [1], DeepFM [3], DLRM [39], AutoInt [15], DCN [33], MF [19], and

MLP are able to be discovered by NAS. We remark that RandomSelectInteraction, Con-

catenateInteraction, and InnerProductInteraction are not searchable. For Interactors which

are searchable, we list their search spaces below:

• ElementwiseInteraction:

HRand = {hsum, haverage, hmultiply, hmax, hmin}

• MLPInteraction:

HMLP = {hunits, hnum_layers, hbatch_norm, hdrop_rate}

• FMInteraction:

HFM = {hembedding_dim}

16

• CrossNetInteraction:

HCrossNet = {hlayer_num}

• SelfAttentionInteraction:

HSelfAtt = {hembedding_dim, hatt_embedding_dim, hhead_num, hresidual}

• HyperInteraction:

M = {mMLPInteraction,mConcatenateInteraction,mRandomSelectInteraction,

mElementwiseInteraction,mFMInteraction,mCrossNetInteraction,

mSelfAttentionInteraction,mInnerProductInteraction}

HHyper = {hinteractor_type, hmeta_interactor_num}

4.2.3 Optimizer Block

The Optimizer block defines training loss function Ltrain for a Recommender instance

for measuring the deviation between predicted values and labels. Ltrain for rating predic-

tion task and CTR prediction task are mean squared error (MSE) and cross entropy (CE),

respectively. The two loss functions are defined below:

• Mean Squared Error (MSE): measures the average squared distance between the

predicted values and the true values.

MSE =
1

n

n∑
i=1

(ri − r̂i)
2,

where n is the number of observations, ri is the true rating of the ith observation, and

r̂i is the predicted rating of the ith observation.

17

• Cross Entropy (CE): measures the average difference between the predicted prob-

ability distribution and the true probability distribution.

CE = − 1

n

(
n∑

i=1

yi · log(p̂i)

)
,

where n is the number of observations, yi is the true label of the ith observation, and

p̂i is the predicted probability of the ith observation.

4.3 About the Searcher Module

As Figure 4.4 shown, the Searcher class provides the search strategies which conduct

NAS. On the other hand, Recommender provides the model search space M and hyper-

parameter search space H to be searched with and the loss functions Ltrain and Lvalid as

performance estimator for guiding the search process. The Seacher class supports three

types of search algorithms: random search, greedy search, and Bayesian optimization.

As our work aims to study the impact of NAS for recommender system development and

not search algorithms themselves, the Searcher class is directly extended from the Tensor-

flow [11] and AutoKeras [14] ecosystems. Without going into too much detail, we discuss

the characteristics of the provided search algorithms below:

• Random Search [40]: The search algorithm explores a larger, less promising con-

figuration space.

• Greedy Search: The search algorithm exploits the architecture that locally optimize

the objective function at each iteration.

• Bayesian Optimization [41]: The search algorithm actively tries to balance the

trade-off between exploration and exploitation by reasoning before running.

18

Figure 4.4: Searcher’s search strategies conducts NAS and performance evaluation based
on the search spaces and losses provided by Recommender. At the end of each search
iteration, a winning model along with its optimal hyperparameters are decided.

To perform model search and hyperparameter tuning for a Recommender, simply pass

the Recommender to a Searcher and call the search function to undergo NAS. The Searcher

will display diagnostic information for developer’s reference. Such information include

loss, explored Interactors, and their hyperparameters.

19

5. EXPERIMENTS

We evaluate the performance of the proposed AutoRec framework base on four real-

world benchmark datasets. Specifically, we aim to answer the following questions:

• Q1. How effective is the proposed AutoRec compared to state-of-the-art recom-

mender systems in rating prediction task?

• Q2. How effective is the proposed AutoRec compared to state-of-the-art recom-

mender systems in CTR prediction task?

• Q3. How much effort is required to build a recommender system with automated

model selection and hyperparameter tuning using AutoRec?

5.1 Datasets

In the experiments, four real-world datasets are used to assess the performance of the

proposed AutoRec framework. For the rating prediction task, two movie rating datasets

are used, i.e., Netflix [20] and Movielens 1M [42]. And for the CTR prediction task, two

advertisement click datasets are used, i.e., Avazu [43] and Criteo [44]. All four of these

datasets are well-studied benchmark datasets in their respective task area.

5.1.1 Datasets for Rating Prediction

For the rating prediction task, we employ the full Netflix and Movielens 1M datasets.

The dataset statistical information for rating prediction is reported in Table 5.1.

Table 5.1: Dataset statistics for rating prediction task.

Users # Items # User-item Interactions
Netflix 480,189 17,770 100,480,507
Movielens 1M 6,040 3,900 1,000,209

20

Table 5.2: Dataset statistics for CTR prediction task.

Dense Features # Sparse Features # Total Records # Sampled Records
Avazu 0 22 40,428,967 500K
Criteo 13 26 45,840,617 500K

• Netflix [20]: The movie rating dataset contains four kinds of data: movie ID, cus-

tomer ID, rating ranged from 1 to 5 stars, and the date of interaction. It was released

by Netflix in 2006 as the benchmark dataset for the Netflix Prize on Kaggle.

• Movielens 1M [42]: The movie ratings file (i.e., “ratings.dat”) is one of the four

dataset files from the Movielens 1M dataset and contains four data columns: user

ID, movie ID, rating ranged from 1 to 5 stars, and timestamp of the interaction. It

was released in 2003 by GroupLens.

5.1.2 Datasets for CTR Prediction

For the CTR prediction task, due to the large number of feature columns and the com-

putational overhead involved during the ranking stage of the recommendation process, we

sampled 500K data records from each of Avazu and Criteo dataset. The dataset statistical

information for rating prediction is reported in Table 5.2.

• Avazu 500K [43]: The mobile advertising dataset contains 24 data columns, where

column 0 is ad ID, column 1 is label indicating whether the user clicked or not,

and column 2-23 are categorical features. It was released by Avzu in 2014 as the

benchmark dataset for the CTR Prediction Contest on Kaggle.

• Criteo 500K [44]: The online advertising dataset contains 40 data columns, where

column 0 is label indicating whether the user clicked or not, column 1-13 are numer-

ical features, and columns 14-39 are categorical features. It was released by Criteo

in 2014 as the benchmark dataset for the CTR Prediction Contest on Kaggle.

21

5.2 Baseline Methods

In our experiments, two different types of recommendation tasks: 1) rating predic-

tion and 2) CTR prediction, are conducted to evaluate the proposed AutoRec. For the

rating prediction task, one baseline is linear and the other two are deep learning based:

MF [19], MLP, and NeuMF [1]. And for the CTR prediction task, we employ four deep

learning baselines: DeepFM [3], DLRM [39], DCN [33], and AutoInt [15]. Notice ex-

isting recommender systems, whether automated or not, are designed for only one type

of recommendation task, while we aim to provide an AutoML solution for recommender

systems that can generalize to both tasks.

5.2.1 Baselines for Rating Prediction

• MF [19]: takes the user-item interaction matrix as input and decompose it into two

smaller matrices: a user latent matrix and a item latent matrix, where every user

and item is associated with a latent vector. Taking the dot product of the two la-

tent matrices recreates the user-item interaction matrix with the missing entries now

substituted with predicted rating score.

• MLP: takes a single user-item interaction feature vector as input by concatenating

a user one-hot encoding with a item one-hot encoding. The feature vector is then

fed into an MLP to model the high-order interaction between user and item. The

embedding of the last hidden layer is passed through a ReLU activation function to

produce a predicted rating score.

• NeuMF [1]: is a two-tower model constructed by fusing the MF model and the MLP

model. Specifically, the last hidden layer of MF and the last hidden layer of MLP

are concatenated to form the last hidden layer of NeuMF. The embedding is then

passed through a ReLu activation function to produce a predicted rating score.

22

5.2.2 Baselines for CTR Prediction

• DeepFM [3]: is a two-tower model which takes categorical features as inputs, where

the wide component is a factorization machine (FM) modeling the pairwise feature

interactions, and the deep component is an MLP modeling the high-order feature

interactions. The output embeddings of the two components are added together and

passed through a sigmoid function to produce the probability of a click.

• DLRM [39]: takes both numerical and categorical features as inputs, which are

converted into feature vectors by an MLP and one-hot encoding, respectively. The

two features are then passed to an MLP, whose output is passed through a sigmoid

function to produce the probability of a click.

• AutoInt [15]: takes both numerical and categorical features as inputs. Whereas each

numerical field is converted into its own feature vector by multiplying with a learned

embedding vector, categorical fields are converted into a single feature vector by

multiplying a learned embedding matrix with their one-hot encodings. The features

are then concatenated and passed in to a multi-head self-attention unit, whose output

is passed through a sigmoid function to produce the probability of a click.

• DCN [33]: takes both numerical and categorical feature as inputs. Whereas the nu-

merical fields are treated as a feature vector, the categorical fields are converted into

a single feature vector by multiplying a learned embedding matrix with their one-hot

encodings. The two feature vectors are cocatenated and fed into a cross network and

an MLP to provide feaure-crossing and high-order interaction information, respec-

tively. Their output embeddings are concatenated again before being passed through

a sigmoid function to produce the probability of a click.

23

5.3 Experimental Setup

In this section, we introduce the overall experimental setup of this work, including data

sampling and preprocessing, evaluation metrics for the rating prediction task and the CTR

prediction task, and parameter settings.

5.3.1 Data Sampling and Preprocessing

5.3.1.1 Data Sampling

As mentioned in Section 2.1, a recommendation model actually plays the pivotal role

only in the ranking stage of the grand scheme of a recommender system. Without a pre-

ceding recall stage to reduce the amount of candidate items, ranking the entire inventory

of items based on tens to hundreds of features for each user is simply computationally

infeasible. As information retrieval is not the focus of this work, we take the liberty to

sample data as needed.

For the rating prediction task, we use the entire Netflix [20] and Movielens 1M [42]

datasets. Whereas, for the CTR prediction task, we sample 500K records from the Avazu [43]

and the Criteo [44] datasets to make the Avazu 500K and the Criteo 500K datasets. De-

spite the 100M user-item interactions in the Netflix dataset (Table 5.1) seem to trump the

40M and 45M total records in the Avazu dataset and the Criteo dataset, respectively (Ta-

ble 5.2), computing results for the latter are orders of magnitude more expensive due to the

number of features involved. Notice the rating prediction datasets have only two features

(i.e., user and item) while the CTR prediction datasets have tens of features (i.e., the total

number of numerical and categorical features).

5.3.1.2 Data Preprocessing

To reduce data skewness in numerical data, we scale the data of each feature type by

log transformation. To facilitate easy lookup and one-hot encoding for categorical data,

24

we create a fit dictionary to associate each feature type as well as each identifier in the

feature type with a number (starting from zero). Categorical data is then converted into

one-hot encodings before being ingested by models. To procure training, validation, and

test datasets and avoid label imbalance, we employ stratified sampling to split the data

according to the 8:1:1 training-validation-test ratio.

Notice dates in the Netflix dataset, timestamps in the Movielens 1M dataset, and ad

IDs in the Avazu 500K dataset are not used in our research and therefore not preprocessed.

We would also like to remark that the user and item features in the Netflix and Movielens

1M datasets are considered as categorical (i.e., sparse) features because user and item IDs

are incomparable and discrete.

5.3.2 Evaluation Metrics

In our experiments, the performance of recommender systems is measured by two

metrics: 1) mean squared error (MSE) for the rating prediction task and 2) cross entropy

(CE) for the CTR prediction task. Since we are measuring loss, the smaller the value, the

better the performance. The two metrics are defined below:

• Mean Squared Error (MSE): measures the average squared distance between the

predicted values and the true values.

MSE =
1

n

n∑
i=1

(ri − r̂i)
2,

where n is the number of observations, ri is the true rating of the ith observation, and

r̂i is the predicted rating of the ith observation.

• Cross Entropy (CE): measures the average difference between the predicted prob-

25

ability distribution and the true probability distribution.

CE = − 1

n

(
n∑

i=1

yi · log(p̂i)

)
,

where n is the number of observations, yi is the true label of the ith observation, and

p̂i is the predicted probability of the ith observation.

5.3.3 Parameter Settings

In our work, most of the model parameters (e.g., number of neurons, number of layers)

are automatically discovered by search algorithms. Specifically, AutoRec searchers tune

the hyperparameters for all models, with AutoRec-RP and AutoRec-CTR further subject

to model search. This is because the architectures of baseline models are structured in

advance, while the architectures of AutoRec-RP and AutoRec-CTR are defined by search-

able virtual blocks.

In our experiments, the only unspecified model parameter is: input mapping dimen-

sion=64. On the other hand, the training parameters are: epoch=10, early stop=1, and

trial=10. Due to its large size, the Netflix dataset has batch size set to 512,000 while the

other datasets have batch size set to 1,024.

26

Table 5.3: Performance for the rating prediction task.

Mean Squared Error (MSE)

Dataset Netflix Movielens 1M

Searcher Random Greedy Bayesian Random Greedy Bayesian

MF 0.749 0.740 0.729 0.755 0.750 0.752
MLP 0.755 0.765 0.755 0.768 0.771 0.760
NeuMF 0.706 0.644 0.707 0.772 0.752 0.772
AutoRec-RP 0.637 0.740 0.645 0.750 0.751 0.749

5.4 Model Performance in Rating Prediction (Q1)

Table 5.3 lists the rating prediction results of the four compared methods (i.e., MF,

MLP, NeuMF, and AutoRec-RP) trained on the Netflix and Movielens 1M datasets. First,

we report that the numbers are on par with our experience working with these recom-

mendation models. Overall, AutoRec-RP scored the best model-searcher combination

(boldface) in both datasets. This demonstrates the effectiveness of AutoRec in discover-

ing optimal machine learning solutions for the rating prediction task.

Notice that the deep learning based NeuMF and the linear MF are the runner-up

(underline) models for the Netflix dataset and the Movielens 1M dataset, respectively.

Their high performance is likely attributed to the one architecture they share in common,

the generalized MF component. The phenomenon may not come as a surprise because

MF is still the main staple for modeling user-item interaction information (i.e., CF). Of-

ten, deep learning is employed to extract auxiliary information from item contents. It is

then integrated with MF to help with CF [1].

27

Table 5.4: Performance for the CTR prediction task.

Cross Entropy (CE)

Dataset Avazu 500K Criteo 500K

Searcher Random Greedy Bayesian Random Greedy Bayesian

DeepFM 0.406 0.401 0.403 0.481 0.480 0.472
DLRM 0.401 0.402 0.404 0.476 0.474 0.478
DCN 0.399 0.400 0.403 0.471 0.479 0.476
AutoInt 0.403 0.405 0.409 0.476 0.472 0.474
AutoRec-CTR 0.400 0.405 0.409 0.475 0.476 0.471

5.5 Model Performance in CTR Prediction (Q2)

Table 5.4 lists the CTR prediction results of the five compared methods (i.e., DeepFM,

DLRM, DCN, AutoInt, and AutoRec-CTR) trained on the Avazu 500K and Criteo 500K

datasets. In this experiment, the numbers are also on par with our experience working

with these recommendation models. Here, we observe that DCN scored not only the best

(boldface) but also the runner-up (underline) model-searcher combinations. Notice the

Avazu 500K and Criteo 500K datasets both have large amounts of categorical features

(see Table 5.2). And the cross network component of DCN is particularly suitable for

modeling the high-order feature interactions through feature crossing.

On the other hand, AutoRec-CTR and DCN tied for first place in the Criteo 500K

dataset, and AutoRec-CTR is a runner-up in the Avazu 500K dataset. This shows, while

AutoRec is still effective in discovering optimal machine solutions for the CTR predic-

tion task, AutoML does have limitation. While the DCN components are present in the

AutoRec search space, it is computationally infeasible for search algorithms to iterate

through all architectural combinations. Consequently, an exploitation-exploration tradeoff

was made, resulting in a worse but close solution (less than 0.25% difference in CE).

28

5.6 Coding Simplicity Case Study (Q3)

The advantages of using the AutoRec framework for developing recommender systems

include: 1) AutoRec is integrated with the TensorFlow ecosystem, which supports parallel

computing and allows discovered models to be saved as Keras model instances for reuse.

2) AutoRec facilitates systematic exploration of candidate models and hyperparameters as

the variables are managed internally by the system. 3) It is intuitive for users to build new

models by chaining components following the computational graph style. 4) Search results

are shared in terminal to provide feedback and further analysis, as shown in Figure 5.1. 5)

Coding is minimized due to high-level of encapsulation, as shown in Figure 5.2.

Figure 5.1: Search results are displayed in the terminal for feedback and analysis.

29

Figure 5.2: Searchable model for rating prediction (AutoRec-RP) built in 10 lines of code.

30

6. CONCLUSION

Realistic recommender systems need to adapt to ever-changing recommendation sce-

narios as well as explore machine learning architectures systematically, and AutoML fits

right into the picture. However, we surveyed current mainstream AutoML frameworks

and discovered most of them are built for general-purpose machine learning tasks [14,

13, 37, 38, 12] or lack comprehensive support for recommender systems [16, 15]. This

motivates us to build a comprehensive AutoML framework specifically for recommender

systems. In this work, we present AutoRec, an open-source AutoML framework based on

the TensorFlow ecosystem [11, 14] for recommendation tasks. AutoRec automates both

model selection as well as hyperparameter tuning. Experiments conducted on the bench-

mark datasets [20, 43, 44, 42] reveal AutoRec is reliable and can identify close-to-the-best

recommendation models without prior knowledge in machine learning. Lastly, AutoRec

provides a simple, user-friendly API to lower the hurdles for people with limited experi-

ences in coding to utilize the package. In the near future, we look forward to adding more

model components to the search space and additional plug-and-play demo examples into

AutoRec open-source repository.

31

REFERENCES

[1] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative

filtering,” in Proceedings of the 26th international conference on world wide web,

pp. 173–182, 2017.

[2] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Ander-

son, G. Corrado, W. Chai, M. Ispir, et al., “Wide & deep learning for recommender

systems,” in Proceedings of the 1st workshop on deep learning for recommender

systems, pp. 7–10, 2016.

[3] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-machine based

neural network for ctr prediction,” arXiv preprint arXiv:1703.04247, 2017.

[4] L. Yang, E. Bagdasaryan, J. Gruenstein, C.-K. Hsieh, and D. Estrin, “Openrec: A

modular framework for extensible and adaptable recommendation algorithms,” in

Proceedings of the Eleventh ACM International Conference on Web Search and Data

Mining, pp. 664–672, 2018.

[5] C.-M. Chen, T.-H. Wang, C.-J. Wang, and M.-F. Tsai, “Smore: modularize graph

embedding for recommendation,” in Proceedings of the 13th ACM Conference on

Recommender Systems, pp. 582–583, 2019.

[6] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,

business value, and innovation,” ACM Transactions on Management Information

Systems, 2016.

[7] D. Jannach and M. Jugovac, “Measuring the business value of recommender sys-

tems,” pp. 1–23, 2019.

32

[8] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,

M. Lambert, B. Livingston, et al., “The youtube video recommendation system,” in

Proceedings of the fourth ACM conference on Recommender systems, pp. 293–296,

2010.

[9] “Netflix recommendations: Beyond the 5 stars (part 1),” 2012.

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-

55838468f429.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,”

in 12th USENIX symposium on operating systems design and implementation (OSDI

16), pp. 265–283, 2016.

[12] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter, “Ef-

ficient and robust automated machine learning,” in Advances in Neural Information

Processing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett, eds.), pp. 2962–2970, Curran Associates, Inc., 2015.

[13] R. S. Olson and J. H. Moore, “Tpot: A tree-based pipeline optimization tool

for automating machine learning,” in Automated Machine Learning, pp. 151–160,

Springer, 2019.

[14] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture search sys-

tem,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 1946–1956, ACM, 2019.

33

[15] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang, “Autoint: Auto-

matic feature interaction learning via self-attentive neural networks,” in Proceedings

of the 28th ACM International Conference on Information and Knowledge Manage-

ment, pp. 1161–1170, 2019.

[16] Q. Song, D. Cheng, E. Zhou, J. Yang, Y. Tian, and X. Hu, “Towards automated neural

interaction discovering for click-through rate prediction,” in Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

ACM, 2020.

[17] E. Bernhardsson, Annoy: Approximate Nearest Neighbors in C++/Python, 2018.

https://github.com/spotify/annoy/.

[18] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with

GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

https://github.com/facebookresearch/faiss.

[19] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-

mender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[20] J. Bennett, S. Lanning, et al., “The netflix prize,” Citeseer, 2007.

[21] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for col-

laborative filtering,” in Proceedings of the 24th international conference on Machine

learning, pp. 791–798, 2007.

[22] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering

recommendation algorithms,” in Proceedings of the 10th international conference on

World Wide Web, pp. 285–295, 2001.

[23] I. Bayer, X. He, B. Kanagal, and S. Rendle, “A generic coordinate descent framework

for learning from implicit feedback,” CoRR, vol. abs/1611.04666, 2016.

34

[24] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for online

recommendation with implicit feedback,” in Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval,

pp. 549–558, 2016.

[25] D. Liang, L. Charlin, J. McInerney, and D. M. Blei, “Modeling user exposure in rec-

ommendation,” in Proceedings of the 25th international conference on World Wide

Web, pp. 951–961, 2016.

[26] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian

personalized ranking from implicit feedback,” arXiv preprint arXiv:1205.2618,

2012.

[27] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-to-item

collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp. 76–80, 2003.

[28] K.-H. Lai, T.-H. Wang, H.-Y. Chi, Y. Chen, M.-F. Tsai, and C.-J. Wang, “Superhigh-

way: Bypass data sparsity in cross-domain cf.”

[29] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet col-

laborative filtering,” in Proceedings of the 24th international conference on World

Wide Web, pp. 111–112, 2015.

[30] H. Wang, N. Wang, and D. Yeung, “Collaborative deep learning for recommender

systems,” CoRR, vol. abs/1409.2944, 2014.

[31] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music rec-

ommendation,” Advances in neural information processing systems, vol. 26, 2013.

[32] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative knowledge base

embedding for recommender systems,” in Proceedings of the 22nd ACM SIGKDD in-

ternational conference on knowledge discovery and data mining, pp. 353–362, 2016.

35

[33] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for ad click predic-

tions,” in Proceedings of the ADKDD’17, pp. 1–7, 2017.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:

An imperative style, high-performance deep learning library,” in Advances in Neural

Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[35] Y. Chen, Q. Song, and X. Hu, “Techniques for automated machine learning,” 2019.

[36] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” 2018.

[37] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization

for general algorithm configuration,” in International conference on learning and

intelligent optimization, pp. 507–523, Springer, 2011.

[38] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Automated

selection and hyper-parameter optimization of classification algorithms,” 2012.

[39] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman, J. Park, X. Wang,

U. Gupta, C.-J. Wu, A. G. Azzolini, et al., “Deep learning recommendation model

for personalization and recommendation systems,” arXiv preprint arXiv:1906.00091,

2019.

[40] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,” Jour-

nal of machine learning research, vol. 13, no. 2, 2012.

[41] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-

chine learning algorithms,” 2012.

[42] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” Acm

transactions on interactive intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.

36

[43] “Click-through rate prediction,” 2015.

[44] “Display advertising challenge,” 2014.

37

APPENDIX A

CODES

AutoRec GitHub: https://github.com/datamllab/AutoRec

38

