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ABSTRACT

Scientific discovery is the process of finding answers to scientific inquiries. Scientific discovery

forms the basis of scientific/engineering applications as it serves as an operational objective or a

means of achieving operational goals. In practice, scientific discovery is realized via (a sequence

of) scientific decision-making that involves predicting the potential efficacy of available options

and taking action that maximizes the expected utility of interest. Making optimal decisions is

particularly important in real-world scientific/engineering applications as, potentially, it accelerates

the discovery or even has a profound impact on the success of scientific applications.

In this dissertation, we comprehensively study the optimal decision-making problem for accel-

erating successful scientific discovery. Starting with a data-driven model that accelerates the op-

timal decision-making itself for a representative real-world scientific/engineering application, we

propose mathematical optimization frameworks for identifying optimal decision-making. Based

on the proposed models, we quantitatively analyze how fast this set of models can advance scien-

tific discoveries for the applications.

In the first part, we consider the optimal decision-making problem in the context of optimal ex-

perimental design (OED). Identifying the optimal experiment that is expected to maximally reduce

system uncertainty has become a critical problem in real-world scientific/engineering applications

that involve modeling complex systems. Mean objective cost of uncertainty (MOCU)-based OED

has shown that such a goal-driven OED is extremely useful in real-world problems that aim at

achieving specific objectives based on complex uncertain systems. However, MOCU-based OED

tends to be computationally expensive mainly due to the prediction cost of the potential efficacy

of available experiments based on MOCU, which limits its practical applicability. To address this

issue, we propose a novel ML scheme that can significantly accelerate MOCU computation and

expedite MOCU-based experimental design. We apply the proposed ML-based OED acceleration

scheme to design experiments aimed at optimally enhancing the control performance of uncertain

Kuramoto oscillator models.
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In the second part, we study an optimal decision-making problem for screening campaigns

based on high-throughput virtual screening (HTVS) pipeline structures, which frequently arises in

various scientific and engineering problems including drug discovery and materials design. We

propose a general mathematical framework for optimizing HTVS pipelines that consist of multi-

fidelity models. The central idea is to optimally allocate the computational resources to mod-

els with varying costs and accuracy to optimize the return-on-computational-investment (ROCI).

Based on both simulated as well as real data, we demonstrate that the proposed optimal HTVS

framework can significantly accelerate screening virtually without any degradation in terms of

accuracy.

In the third part, based on the optimization framework we proposed in the second part of

the dissertation, we design an optimal computational campaign (OCC) in the context of rapidly

selecting redox-active organic materials for developing novel energy storage devices. Starting from

a high-fidelity model that computes the redox potential (RP) of a given material, we show how a set

of surrogate models with different accuracy and complexity may be designed to construct a highly

accurate and efficient HTVS pipeline. Besides, we further generalize the screening condition and

the optimization framework accordingly, which enables the design of computational screening

campaigns according to a screening range. We demonstrate that the proposed HTVS pipeline

remarkably enhances the overall throughput for a given computational budget.
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1. INTRODUCTION

Scientific discovery-the process of finding answers to scientific inquiries-forms a basis of sci-

entific/engineering applications as it serves as an operational objective or a means of achieving

operational goals. Scientific discovery is realized via (a sequence of) scientific decision-making

that involves predicting the potential efficacy of available options and taking action that maximizes

the expected utility of interest. In real-world scientific/engineering applications, making optimal

decisions is particularly important as they are often closely relevant to the allocation of experimen-

tal or computational resources, the progress, and even the outcomes of the applications.

The primary focus of the dissertation is the application of scientific frameworks to make the op-

timal decision for accelerating successful scientific discoveries in the context of real-world scien-

tific/engineering applications. In Chapter 2, we propose a machine learning (ML)-based approach

for accelerating decision-making to expedite the identification of the optimal experiment. In Chap-

ter 3, we propose a mathematical framework that identifies the optimal operational policy of high-

throughput virtual screening (HTVS) pipelines to accelerate computational screening campaigns.

In chapter 4, we design an optimal computational campaign (OCC) for the effective detection of

redox-active organic materials. To this aim, we propose an effective strategy to construct an HTVS

pipeline based on a high-fidelity model. Besides, we further generalize the screening criterion of

screening campaigns and the optimization framework proposed in Chapter 3, accordingly.

The purpose of the remaining part of this chapter is to provide readers with some gentle intro-

ductions to the scientific applications and signal processing techniques considered in the disserta-

tion. In Section 1.1, we describe the optimal experimental design (OED) problem. We mathemat-

ically define the mean objective cost of uncertainty (MOCU) that forms the basis of MOCU-based

OED in Section 1.2. In Section 1.3, we introduce a general computational screening campaign

problem and HTVS pipelines. Then, we provide a high-level overview of neural network (NN)

and kernel ridge regression (KRR) models in Section 1.4 and Section 1.5, respectively. Finally,

we review parametric density estimation algorithms in Section 1.6. For a more extensive treatment
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Figure 1.1: The flowchart depicting an optimal experimental design (OED) framework for reducing
system uncertainty.

with mathematical derivations of these topics, the reader is referred to the references given at the

end of each section.

1.1 Optimal experimental design (OED)

Various real-world scientific and engineering applications often involve the mathematical mod-

eling of complex systems for designing operators of interest. A fundamental challenge in such

applications is to construct a model that can generate precise responses with respect to the devised

operators. Even with sufficient data, the accurate model construction may not be practically impos-

sible due to the intrinsic complexity of the application of interest, causing substantial uncertainty

in the model. The system uncertainty affects the subsequent processes–designing operator and

performance evaluation. In such a case, based on scientific knowledge, one may consider OED to

reduce system uncertainty, thereby improving the performance of the operators of interest.

Figure 1.1 shows an overview of the OED framework for an application incorporating mathe-

matical system modeling. OED aims to identify the optimal experiment whose outcome is expected

to maximally reduce the system uncertainty among all available experiments. The outcome of the

selected experiment is used to reduce system uncertainty based on scientific knowledge.

In Chapter 2, we consider an optimal decision-making problem in OED in the context of robust

synchronization of the uncertain Kuramoto model. For a comprehensive and detailed introduction

2



to OED and relevant signal processing techniques under system uncertainty, see [1].

1.2 Objective-based Uncertainty Quantification (objective-UQ)

Objective-UQ is the art of quantifying the system uncertainty that affects the operational ob-

jective, such as filtering, classification, estimation, or control. The central idea of Objective-UQ is

MOCU which quantifies the system uncertainty based on the expected increase of the operational

cost that it induces. MOCU is particularly important in effective experimental design as it pro-

vides an effective means of quantifying the expected efficacy of the experiments with respect to

the operational objective.

Let θ ∈ Θ be a system parameter vector governed by distribution f (θ). First, We define a

robust operator over the uncertainty class Θ.

ψ∗ = arg min
ψ∈Ψ

Eθ [ξθ (ψ)] , (1.1)

where Ψ is a set of operators, and ξθ : Ψ→ [0,∞) is a cost function within a set Θ = {ξθ|θ ∈ Θ}.

For a specific model parameter θ, the objective cost of uncertainty (OCU) is a differential cost

of using ψ∗ instead of the optimal operator ψθ for the model θ as follows:

UΨ,Ξ,f (Θ, θ) = ξθ (ψ∗)− ξθ (ψθ) . (1.2)

Finally, MOCU is defined as the expectation of the OCU over f (θ) as follows:

MΨ,Ξ,f (Θ) = EΘ [UΨ,Ξ,f (Θ, θ)] . (1.3)

In Chapter 2, we utilize the concept of MOCU to quantify the system uncertainty and identify

the optimal experiment that is expected to maximally minimize the system uncertainty that affects

the operational performance. For a detailed description of MOCU and various applications, see [2].

1.3 High-throughput virtual screening (HTVS) pipeline

There has been a continuous need for efficient computational screening of molecular candi-

dates that possess desired properties in various scientific and engineering problems, including drug

3
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Figure 1.2: Illustration of a high-throughput virtual screening (HTVS) pipeline.

discovery and materials design. Fundamental challenges in such computational screening cam-

paigns are (1) the large size of the search space containing the candidates and (2) the considerable

computational cost of high-fidelity property prediction models. To address these issues, construct-

ing and operating an HTVS pipeline that consists of multi-fidelity models is an effective approach

to accomplish computational screening tasks.

Figure 1.2 illustrates a typical HTVS pipeline that consists of N stages, each of which is as-

sociated with a surrogate model fi that evaluates the property of the molecules with a different

accuracy/fidelity and computational cost ci. Based on screening policy λi, each stage Si eval-

uates all the molecular candidates to determine whether the evaluation score appears promising

enough to warrant passing it to the next–often more computationally expensive but more accurate–

stage without unnecessarily wasting computational resources and time. In this manner, the HTVS

pipeline gradually narrows down the number of candidate molecules for investigating those that

are promising and more likely to possess the desired property. The most potent candidates that

remain at the end of screening may proceed to experimental validation. In Chapter 3, we provide

the details on the stringent mathematical description and problem setup.

4
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1.4 Neural network (NN) model

(Artificial) NN is a computational model inspired by the human brain systems. A fundamen-

tal building block of NN is an artificial neuron shown in Figure 1.3. Formally, for NI features

x1, x2, . . . , xNI
, the artificial neuron aggregates weighted features with bias b and computes the

response y through non-linear function f called the activation function as follows:

y = f

(
NI∑
i=1

xiwi + b

)
. (1.4)

NN is a network of artificial neurons that are connected via weighted directed edges. Figure 1.4

shows a general NN structure that computes NO system responses of NI input values. Thanks

to the capability of learning sophisticated non-linear relationships between input and response,

the NN model has been widely used in various research fields such as climate science [3, 4],

medical science [5, 6], finance [7, 8], chemistry [9, 10], and nuclear science [11, 12], just to

name a few. Besides, NN itself can serve as a building block for machine learning models. For

example, variational autoencoder (VAE) [13], generative adversarial network (GAN) [14], and

various types of deep Q networks (DQNs) [15, 16, 17, 18] have NN models as substructures to

learn the relationship between the extracted features and responses of interest.

We utilize a NN model with one hidden layer as a surrogate classifier in order to accelerate the

5
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Figure 1.4: Illustration of an NN of artificial neurons.

optimal decision-making in the context of MOCU-based OED in Chapter 2. For a comprehensive

description of NN models and their applications, see [19].

1.5 kernel ridge regression (KRR)

KRR is a fundamental ML algorithm based on linear least square with l2-norm regularization

in the kernel space. Formally, for given training data points x1,x2, . . . ,xN , the KRR learns w

that minimizes the cost function CKRR of the KRR model with l2-norm regularization defined as

follows:

CKRR =
1

2

N∑
i=1

(
yi −wTΦ (xi)

)2
+

1

2
λ ‖w‖2

2 , (1.5)

where yi, w, Φ, and λ are the response to xi, linear transformation matrix, kernel function, and

regularization parameter, respectively.

In Chapter 4, we use a set of KRR models that learn different feature sets to construct an HTVS

pipeline. For an exhaustive introduction to KRR and its applications, see [20].

1.6 Parametric density estimation

Parametric density estimation is a signal processing technique that estimates parameters of an

underlying density from samples drawn from the distribution. First, we describe the maximum like-

6



lihood estimation (MLE) for normal distribution. Then, we discuss the expectation-maximization

(EM) algorithm for a Gaussian mixture model that does not possess a closed-form expression of

MLE due to the latent variables. Note that, for simplicity, we consider univariate distributions.

We utilize parametric density estimation techniques in order to learn the joint score distribution

of the scores predicted via surrogate models in HTVS pipelines in Chapters 3 and 4. For more com-

prehensive details on mathematical derivations and parametric density estimation for multivariate

distributions, see [21].

1.6.1 Maximum likelihood estimation (MLE)

Suppose that X1, X2, . . . , Xn are independent and identically distributed random variables fol-

lowing normal distribution N (µ, σ2). The likelihood function L (µ, σ) is defined as follows:

L (µ, σ) =fX1,X2,...,XN

(
x1, x2, . . . , xN ;µ, σ2

)
(1.6)

=
N∏
i=1

fXi

(
xi;µ, σ

2
)
, (1.7)

where fXi
(xi;µ, σ

2) is the probability density distribution (PDF) of normal distributionN (µ, σ2).

With realizations x1, x2, . . . , xN of random variables X1, X2, . . . , XN , the key idea of MLE

is to find parameters µ̂MLE and σ̂MLE that maximize the log-likelihood function ln (L (µ, σ2)) as

follows:

µ̂MLE = arg max
µ

N∑
i=1

ln
(
fXi

(
xi;µ, σ

2
))
, (1.8)

σ̂MLE = arg max
σ

N∑
i=1

ln
(
fXi

(
xi;µ, σ

2
))
. (1.9)

As the log-likelihood function ln (L (µ, σ2)) is concave, we can analytically find the ML pa-

rameters µ̂MLE and σ̂MLE by taking the partial differentiation of ln (L (µ, σ2)) with respect to µ and
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σ and setting them to zero, respectively:

µ̂MLE =
1

N

N∑
i=1

xi, (1.10)

σ̂MLE =

√√√√ 1

N

N∑
i=1

(xi − µ̂MLE)2. (1.11)

1.6.2 Expectation-maximization (EM) algorithm

Assume that X1, X2, . . . , XN are independent and identically distributed random variables of

a Gaussian mixture model with K components, where the joint PDF is defined as follows:

fX1,X2,...,XN
(x1, x2, . . . , xN) =

N∏
i=1

K∑
k=1

πkfXi|Zi
(xi|zi = k) (1.12)

=
N∏
i=1

K∑
k=1

πkfXi

(
xi;µk, σ

2
k

)
, (1.13)

where πk is a mixture weight of the kth component; Zi is a latent variable representing the mixture

component for Xi; and µk and σ2
k are the mean and variance of the kth component, respectively.

An EM algorithm finds the maximum likelihood estimates of the parameters for the Gaus-

sian mixture model that depends on unobserved latent variable Z. The EM algorithm itera-

tively alternates an expectation step that computes the posterior distribution of Zi given Xi, and

a maximization step that estimates the optimal parameters based on the expectation. Specifically,

the EM algorithm starts with initial parameters π = [π1, π2, . . . , πK ], µ = [µ1, µ2, . . . , µK ], and

σ = [σ1, σ2, . . . , σK ], and, based on these parameters, the posterior distribution is computed as

follows:

PZi
(k|Xi = xi) =

πkfXi
(xi;µk, σ

2
k)∑K

k=1 πkfXi
(xi;µk, σ2

k)
. (1.14)

Then, the EM algorithm updates the parameters based on the following expected complete

8



log-likelihood with respect to µk, σk, and, πk:

EZ|X [ln f (X,Z;π,µ,σ)] =
N∑
i=1

K∑
k=1

PZi
(k|Xi = xi)

(
ln (πk) + ln

(
fXi

(
xi;µk, σ

2
k

)))
. (1.15)

By alternating these steps, we can find the optimal parameters that maximize a lower bound on

the log-likelihood function.
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2. ACCELERATION OF BAYESIAN OPTIMAL EXPERIMENTAL DESIGN (OED)

Many real-world engineering applications involve mathematical modeling of complex systems,

where the constructed models are used for designing operators–such as controllers, filters, classi-

fiers, and estimators–that can effectively achieve engineering goals of interest. For example, one

may be interested in building a network model representing the transcription regulations in micro-

organisms that regulate their metabolism [22]. The resulting model may be used to infer the po-

tential impacts of modifications in the transcription regulatory network (TRN) on the metabolism

of interest, for example, predicting the metabolic flux changes that result from the deletion of one

or more transcription factors. In this example, the engineering goal may be predicting the optimal

genetic modification in the TRN that will lead to maximizing the production of a metabolite of

interest. In fact, designing optimized strains of micro-organisms for ethanol overproduction [23]

is an active area of research due to its implications for efficient bio-energy production.

A fundamental challenge in the aforementioned application as well as many other real-world

engineering problems involving complex systems is the difficulty of accurate model construction.

While one may have ample training data for model inference, the data size may nevertheless pale

in comparison to the complexity of the system being modeled. Prior knowledge, if available, may

also aid in improving model construction, but the final model is likely to still have substantial

uncertainties. Consequently, a critical question is how one may reliably and optimally achieve

the given engineering goals in the presence of model uncertainty. Furthermore, when one has

the experimental budget for the acquisition of additional data or relevant knowledge (e.g., via

hypothesis testing), how should the experimental campaigns be designed to maximize the expected

“return on investment”?

While these are fundamental problems in modern engineering with a long and rich history [24,

25], it has been recently shown that a novel Bayesian paradigm for objective-based uncertainty

* Reprinted with permission from Hyun-Myung Woo, Youngjoon Hong, Bongsuk Kwon, and Byung-Jun Yoon “Ac-
celerating Optimal Experimental Design for Robust Synchronization of Uncertain Kuramoto Oscillator Model Using
Machine Learning,” IEEE Transactions on Signal Processing, vol. 69, pp. 6473-6487, 2021. © 2021 IEEE.
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quantification (objective-UQ) based on the mean objective cost of uncertainty (MOCU) [2, 26]

can effectively address the optimal design of operators and experiments for complex uncertain

systems [27, 28, 29, 30, 31, 32, 33, 34]. The core idea underlying the MOCU-based optimal exper-

imental design (OED) is that, when dealing with complex uncertain models, one should quantify

the model uncertainty in an objective-based manner and design experiments that can reduce the

uncertainty that impacts one’s operational goals. By focusing on the uncertainty that matters to

the operation to be performed, the experimental budget can be efficiently used for optimizing the

operational performance. To date, the efficacy of MOCU-based OED has been demonstrated in

various systems, including experimental design for robust intervention in gene regulatory networks

(GRNs) [29, 30] and that for robust synchronization of inter-coupled Kuramoto oscillators [27].

One practical challenge that limits the potential applicability of the MOCU-based OED scheme

is its high computational cost, as discussed in [27, 29]. The computation of MOCU involves

identifying the optimal robust operator for an uncertainty class that consists of all possible models

(e.g., models with different parameter values) as well as evaluating expectations based on high-

dimensional prior (or posterior) probability distributions. Except for very simple cases, there is no

closed-form expression for the optimal robust operator and the expectations have to be evaluated

numerically [27]. As a result, the evaluation of MOCU involves costly optimization to find the

optimal robust operator as well as extensive sampling of the uncertain model parameters from the

uncertainty class to obtain reliable estimates, which may make the cost of MOCU computation

formidably high in many applications.

In this chapter, we tackle this issue by adopting a machine learning (ML) approach for an

efficient design of the optimal robust operator, thereby significantly accelerating the computation

of MOCU as well as the MOCU-based experimental design. To the best of our knowledge, this is

the first study that investigates adopting ML to accelerate MOCU-based OED. In order to develop

and validate this ML-based OED acceleration scheme, we focus on designing experiments that can

enhance the robust control of uncertain Kuramoto models that was investigated recently in [27].

A Kuramoto model [35] consists of a network of interconnected oscillators, whose dynamics are
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described by coupled ordinary differential equations (ODEs). The Kuramoto oscillator model has

been widely studied in various fields across engineering, physics, chemistry, and biology, due to

its capability to model interesting collective behavior (e.g., global/partial synchronization) that

emerges in complex networks [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. For example, a

microgrid system with droop-controlled inverters can be mathematically cast as a Kuramoto model,

where the synchronization failure of the model corresponds to a power outage in the microgrid [42,

44, 47, 48, 49, 50, 51]. Another interesting example is the application of the Kuramoto model for

studying brain dynamics [38, 39, 45, 46], where the synchronization phenomena may be associated

with neurodegenerative diseases [45, 52]. We show that our proposed ML-based OED acceleration

scheme can improve the speed of MOCU-based experimental design by 104 ∼ 154 times without

degrading the OED performance.

The two major contributions of this chapter are as follows. First, we propose an ML-based

scheme for the acceleration of MOCU-based OED, which leads to significant speed improvement

without performance degradation. Second, we present a comprehensive analysis of ML-based

MOCU estimation and validate its performance in the context of OED.

2.1 Overview of Bayesian OED

In this section, we provide a brief review of the OED strategy for uncertain Kuramoto oscilla-

tor models, which we originally proposed in our recent work [27]. We begin the section with an

introduction to the Kuramoto model, followed by a brief description of the robust synchronization

problem for uncertain Kuramoto models. Given an uncertain Kuramoto model, we describe how

the MOCU can be used to quantify the impact of the model uncertainty on the control synchro-

nization performance and how the MOCU-based OED strategy can be used to effectively reduce

the uncertainty that matters to the objective at hand–i.e., optimal robust synchronization of the

Kuramoto model in the presence of uncertainty.

Consider the Kuramoto model that consists of N interacting oscillators described by the fol-
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lowing ODEs:

θ̇i (t) = ωi +
N∑
j=1

ai,j sin (θj (t)− θi (t)) , (2.1)

for i = 1, 2, . . . , N , where θi (t) is the instantaneous phase of the ith oscillator at time t, ωi is the

natural frequency of the ith oscillator, and ai,j is the coupling strength between the ith and jth

oscillators. Kuramoto models have been widely studied to investigate the synchronization phe-

nomena in various biological, chemical, or engineered oscillator systems, whose primary interest

is whether the oscillators in a given Kuramoto model will get frequency synchronized as follows:

lim
t→∞
|θ̇i (t)− θ̇j (t) | = 0, (2.2)

for 1 ≤ i, j ≤ N . For example, it has been shown that modern smart grid networks referred to

as microgrids can be modeled as a network of Kuramoto model oscillators, where the synchro-

nization phenomena of the Kuramoto model are closely tied with the stability of the power grid

network [48, 49, 50, 51]. Furthermore, in neuroscience studies, brain network synchronization has

been shown to be associated with various neurological disorders, where excessive neuronal activ-

ities can be represented as a global synchronization of the Kuramoto model [38, 45, 46, 52, 53].

While conditions for synchronization have been extensively studied for homogeneous Kuramoto

models with uniform coupling strength [54, 55, 56], there is yet no closed-form solution that can be

used to predict the asymptotic synchronization of a general heterogeneous Kuramoto model based

on its parameters.

In a real-world setting, the parameters of the Kuramoto model, which represents a complex

network of oscillators, may not be completely known. For example, while it may be relatively easy

to accurately estimate the natural frequency of each oscillator, in the absence of interactions with

other oscillators, it will be practically challenging to accurately measure the coupling strengths

between all oscillators in a large network. This uncertainty gives rise to an uncertainty class of

Kuramoto models, which contains all possible Kuramoto models that are consistent with our prior

knowledge regarding the true model and/or available observation data. Under this setting, our
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Figure 2.1: Illustration of the original sampling-based mean objective cost of uncertainty (MOCU)
computation scheme in [27]. For reliable MOCU estimation, a relatively large sample size K is
needed (step 1). The sampling-based estimation scheme takes advantage of graphics processing
unit (GPU) programming for massive parallelization of the sampling operation. Specifically, we
group the K sample points {ai}, i = 1, 2, . . . , K, into L blocks (step 2), and the GPU processes
L sample points in different processing blocks in parallel (step 3). Within block l, based on a
sample point ai that specifies a Kuramoto model (sampled from the uncertainty class), we find
a valid search range

[
aLN+1, a

U
N+1

]
that contains at least one valid solution that leads to global

synchronization of the Kuramoto model (left bottom part). In the next phase (right bottom part),
we find the solution with the smallest cost ξ (ai) through a binary search, reducing the search range
by half in every iteration. Finally, we compute the MOCU M (A) of the uncertainty classA based
on the K estimates ξ (ai), i = 1, 2, . . . , K, (step 4). © 2021 IEEE.

primary interest is how we can apply robust control to the uncertain Kuramoto model, comprised of

a network of oscillators whose natural frequency ωi is known but their coupling strength ai,j is only

known up to a range ai,j ∈
[
aLi,j, a

U
i,j

]
. We denote the uncertainty class of all possible Kuramoto

models asA, which consists of all parameter vector a = [a1,2, a1,3, . . . , aN−1,N ]T ∈ A that satisfies

the given constraints. As in the previous study [27], we assume that prior distribution PA (a) is

uniformly distributed. However, this is not necessary. Non-uniform priors may be assumed, or

custom priors may be constructed based on available prior domain knowledge [57, 58].

Suppose that we are interested in synchronizing an uncertain Kuramoto model that consists of

N interacting oscillators, whose interaction strengths are only known up to a range, via external

control. We adopt the synchronization method proposed in [27] that introduces an additional oscil-
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lator as a global “synchronizer” to the original model. Let the natural frequency of this (N + 1)th

oscillator be ωN+1 = 1
N

ΣN
i=1ωi, and we assume that this control oscillator interacts with all oscil-

lators in the original model with a uniform coupling strength ai,N+1 = aN+1, ∀i, which is a control

parameter. The addition of the control oscillator augments the Kuramoto model as follows:

θ̇i(t) = ωi +
N∑
j=1

ai,j sin(θj(t)− θi(t)) + aN+1 sin(θN+1(t)− θi(t)), (2.3)

for i = 1, 2, . . . , N + 1. As the increase of the coupling strength aN+1 will in practice lead to

an increase of the control cost, our control objective is to find a minimum aN+1 that guarantees

the asymptotic frequency synchronization of the Kuramoto model despite the uncertainty. If we

had complete knowledge about the coupling strength a, we would be able to find the optimal

(minimum) coupling strength aN+1 = ξ (a) that ensures synchronization by gradually increasing

the value of aN+1 from 0 until synchronization is achieved. A more efficient approach will be

to perform a binary search as illustrated in Figure 2.1 (see the blow-up figure at the bottom). In

the presence of uncertainty, we have to ensure that the control oscillator will be able to achieve

synchronization for any a ∈ A. For this reason, we have chosen aN+1 = ξ∗ (A) as follows:

ξ∗ (A) = max
a∈A

ξ (a) , (2.4)

which is the smallest aN+1 that guarantees global synchronization of the uncertain Kuramoto os-

cillators.

Given an uncertain Kuramoto model, the expected impact of this model uncertainty on the

operational goal–in this case, the global frequency synchronization of the Kuramoto oscillators–

can be quantified by the MOCU [2]. For a given uncertainty class A, MOCU M (A) can be

computed by:

M (A) = EA [ξ∗ (A)− ξ (a)] , (2.5)

where ξ∗ (A) is the cost of the optimal robust control and ξ (a) is the cost of the optimal control
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for the specific model configured with a specific parameter set a. As shown in Equation (2.5),

MOCUM (A) quantifies the expected cost increase for applying the optimal robust control (which

is inevitable to maintain robust control performance in the presence of uncertainty) instead of the

model-specific optimal control (which cannot be applied in practice as the true model is unknown).

In this study, the optimal robust interaction strength (cost) ξ∗ (A), ensuring that the uncertain

Kuramoto model is synchronized by the added control oscillator while keeping the control cost

minimum, is given by Equation (2.4).

In general, there is no closed-form expression of Equation (2.5), as a result of which the MOCU

M (A) for uncertainty classA computation requires a numerical approximation. One practical way

to compute the MOCU M (A) is to take a sampling-based approach to approximate it through the

empirical expectation of the differential cost based on samples drawn from the distribution PA (a).

Figure 2.1 illustrates the sampling-based MOCU computation process. First, we draw K sam-

ple points {ai}, i = 1, 2, ..., K, from PA (a). Then, for each sample point ai, which is a potential

true model parameter in the uncertainty classA, we estimate the minimum coupling strength ξ (ai)

of the control oscillator that assures the asymptotic frequency synchronization of the Kuramoto

model under control. To this aim, we consider a binary search to find the minimum coupling

strength ξ (ai) efficiently, as depicted in the dotted box at the bottom of Figure 2.1. Specifically,

we start with a broad search space that contains at least one coupling strength synchronizing the

system. At each iteration, we solve the ODEs of the Kuramoto model augmented with the control

oscillator whose coupling strength aN+1 is set to the median value c of the current search space:

aN+1 ← c =
(
aUN+1 + aLN+1

)
/2. If the system under control is synchronized, we update the upper

bound of the search space to the median value: aUN+1 ← c. Otherwise, we set the lower bound

of the search space to the median value: aLN+1 ← c. The binary search continues until we find

the minimum coupling strength ξ (ai), for the given sample point ai, which is within a specified

tolerance level (set to 2.5× 10−4 in this study). Based on the K sample points, we can obtain the
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MOCU M (A) as follows:

M (A) =
1

K

K∑
i=1

(
max
j

(ξ (aj))− ξ (ai)

)
. (2.6)

Note that the accuracy of this numerical approximation of MOCU is dependent on the sample

size K. In general, a larger K generally leads to a more accurate MOCU estimation. However,

at the same time, the computational cost increases as the sample size increases. We can reduce

the computational time for numerical MOCU computation by exploiting parallelism. For example,

estimating the optimal cost ξ (ai) of a sample point ai is an independent process to those of the

other samples aj , j 6= i, which can be processed in a parallel manner with powerful parallel proces-

sors. In fact, the sampling-based MOCU computation in [27] takes advantage of GPU (Graphics

Processing Unit) programming with CUDA (Compute Unified Device Architecture), in which 200

sample points are processed in parallel at a given time–i.e., L = 200. However, for each sample

point ai, the estimation of the minimum cost ξ (ai) via binary search (step 3 in Figure 2.1) is a

highly sequential process–which involves repeatedly solving the ODEs of the corresponding Ku-

ramoto model and verifying whether or not the model is globally synchronized (i.e., not amenable

to parallelization).

The significance of objective-UQ using MOCU is that it enables the design of experiments that

focus on reducing the model uncertainty that matters. More specifically, as MOCU quantifies the

expected cost increase (relevant to our operational goal) due to model uncertainty, it can be used

to quantify the expected impact of a potential experiment on reducing the model uncertainty that

affects the operational performance, hence how effective the experiment will be in reducing the

operational cost.

The MOCU-based OED strategy for uncertain Kuramoto models has been recently proposed

in [27]. In this study, a realistic experimental design space was considered, where an experiment

corresponds to selecting a pair (i, j) of oscillators and observing whether they get spontaneously

synchronized in isolation of other oscillators and in the absence of external control. The experi-
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mental outcome was a binary value–either synchronized or non-synchronized–based on which the

uncertainty of the coupling strength ai,j ∈ [aLi,j, a
U
i,j] can be reduced. Theorem 1 in [27] repro-

duced below gives us the necessary and sufficient condition for an oscillator pair to be frequency

synchronized (see Appendix A for the proof):

Theorem 1. Consider the Kuramoto model of two-oscillators:

θ̇1 (t) = ω1 + 0.5a sin (θ2 (t)− θ1 (t)) ,

θ̇2 (t) = ω2 + 0.5a sin (θ1 (t)− θ2 (t)) ,

(2.7)

with the initial angles θ1 (0) , θ2 (0) ∈ [0, 2π). Then, for any solutions θ1 (t) and θ2 (t) to (2.7),

there holds |θ̇1(t)− θ̇2(t)| → 0 as t→∞ if and only if |ω1 − ω2| ≤ a. �

According to Theorem 1, the Kuramoto oscillator pair (i, j) becomes frequency synchronized

limt→∞|θ̇i (t) − θ̇j (t)| = 0 if and only if |ωi−ωj |
2
≤ ai,j . As a result, if the two oscillators are

observed to be synchronized, we can increase the lower bound aLi,j to max
(
aLi,j, |ωi − ωj|/2

)
.

Otherwise, we can decrease the upper bound aUi,j to min
(
aUi,j, |ωi − ωj|/2

)
. Since the experimental

outcome is unknown in advance, we need to consider both possible outcomes to quantify the

expected impact of a given experiment on reducing the objective uncertainty. To formalize this,

let Oi,j be a binary random variable representing the outcome of the pairwise synchronization

experiment for the oscillator pair (i, j). Then, the expected remaining MOCU R (i, j) is given by:

R (i, j) = EOi,j
[M (A|Oi,j)]

=
∑

o∈{0,1}

P (Oi,j = o)M (A|Oi,j = o) ,
(2.8)

where M (A|Oi,j) is the conditional MOCU given Oi,j . The conditional MOCU M (A|Oi,j = o)

given an experimental outcome Oi,j = o can be computed by reducing the uncertainty class as

previously described and numerically computing the MOCU of this reduced uncertainty class.
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The probability P (Oi,j = o) can be derived in a straightforward manner as follows:

P (Oi,j = 1) =
aUi,j − âi,j
aUi,j − aLi,j

, (2.9)

P (Oi,j = 0) =
âi,j − ali,j
aUi,j − aLi,j

, (2.10)

where, âi,j = min
(
max

(
1
2
|ωi − ωj| , aLi,j

)
, aUi,j

)
. The R (i, j) in Equation (2.8) quantifies the

MOCU that is expected to remain after performing the pairwise synchronization experiment for

the pair (i, j).

So, how should we prioritize the potential
(
N
2

)
experiments? Naturally, the optimal choice will

be to choose the experiment with the smallest R (i, j) as follows.

(i∗, j∗) = arg min
(i,j)∈E

R (i, j) . (2.11)

Experiment (i∗, j∗) is expected to most effectively reduce the objective uncertainty among

all potential experiments. In practice, rather than performing a single best experiment, we may

perform a sequence of experiments prioritized by Equation (2.11). In theory, R (i, j) needs to be

re-estimated after performing the predicted optimal experiment and observing its outcome, as it

changes the uncertainty class, hence the expected remaining MOCU for the potential subsequent

experiments. However, empirically, R (i, j) computed based on the original uncertainty class A is

a robust indicator of the efficacy of the potential experiments.

The overall computational complexity for predicting the optimal experiment is as follows:

O(TKN4L−1 log ε), (2.12)

where T is the time duration for solving the ODEs using the Runge-Kutta method (to check for

asymptotic global frequency synchronization among the Kuramoto model oscillators), K is the

sample size for numerical computation of MOCU, N is the number of oscillators in the Kuramoto

model, L is the number of parallel processing blocks in GPU, and ε is the tolerance level for the
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binary search (set to ε = 2.5×10−4 in this study). Note that the complexity for computing MOCU

is O(TKN2L−1 log ε), where predicting the optimal experiment involves computing MOCU 2 ·(
N
2

)
times to calculate R (i, j) given by Equation (2.8) for all oscillators pairs. As we can see in

Equation (2.12), the computational cost for the sampling-based OED sharply increases as the size

N of the Kuramoto model increases, which limits the practical applicability of the OED scheme for

large models. For example, when T = 5, K = 20, 480, and L = 128, respectively, identifying the

optimal experiment (i∗, j∗) for the uncertain Kuramoto model operating on five oscillators required

650 seconds on average. However, it took 3, 171 seconds to determine the optimal experiment

(i∗, j∗) for the uncertain Kuramoto model with seven oscillators.

2.2 Methods

We propose an ML approach for accelerating the quantification of the objective system uncer-

tainty. As we discussed in the previous section, in real-world applications that typically involve the

control consisting of highly non-linear sequential operations, the effective computational complex-

ity is critically dependent on the computational complexity of the control rather than the number of

samples. The proposed approach learns a surrogate model for (part of) the operations of the con-

trol for estimation of the control cost for a system, thereby reducing the effective computational

complexity that cannot be further reduced by parallelism. Recently, there has been an increasing

number of studies investigating the application of deep learning (DL) methods to scientific com-

putation, including approximating and solving differential equations (DEs) (e.g., see [59, 60, 61]

and references therein). However, it is worth noting that the primary focus of our current study

does not lie in solving ODE systems via deep network models but in the accelerated design of

optimal experiments based on the objective-UQ via the concept of MOCU. Rather than aiming at a

fast solution of DEs, our goal is to efficiently design experiments that can most effectively reduce

model uncertainty, thereby optimally enhancing the control performance of uncertain Kuramoto

oscillator models.

Estimating the MOCU of the uncertain Kuramoto model based on the sampling approach in-

volves a binary search for each sample ai, where at each iteration solving the corresponding ODEs
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Figure 2.2: Illustration of the MOCU-based OED loop. First, we compute the expected remaining
MOCU R (i, j) for all possible experiments (i, j) in the experimental design space E based on the
current uncertainty class A. Next, we identify the optimal experiment (i∗, j∗) that has the smallest
expected remaining MOCU such that (i∗, j∗) = arg min(i,j)∈E R (i, j). In the second phase (right
bottom), we conduct the selected experiment (i∗, j∗) and remove the performed experiment from
the experimental space E . Specifically, in this experiment, we isolate the selected oscillator pair
(i∗, j∗) and determine whether or not they get synchronized without external control. Based on the
experimental outcome, we update the uncertainty class accordingly [27]. Finally, we evaluate the
actual efficacy of the conducted experiment by computing the MOCU of the updated uncertainty
class A. We iterate this experimental loop until the experimental space becomes empty (i.e., there
are no more experiments left to be performed). © 2021 IEEE.

and determining if the system under control is synchronized or not. From a broad perspective, at

each iteration, these operations, the gray box in Figure 2.1, are nothing but a binary classification

problem. Hence, if we collect enough samples to build an accurate classifier, we replace such a

process with the binary classifier, which is computationally efficient. In this study, we considered

a fully-connected neural network (fcNN) with only one hidden layer, possibly the simplest ML

structure that we can think of.

The proposed approach on the MOCU-based OED framework is realized by replacing part

of the operations of control with the trained model for the estimation of the expected remaining

MOCU R (i, j) highlighted in gray in Figure 2.2. Hence we focus on the difference in quantifying

the expected remaining MOCUR (i, j) between the proposed ML-based approach and the original
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Figure 2.3: Comparison between the original sampling-based estimation scheme adopted in [27]
and the proposed machine learning (ML)-based estimation scheme. The proposed scheme obvi-
ates the need for repeatedly solving the coupled ordinary differential equations (ODEs) within the
binary search routine to find the optimal robust coupling strength illustrated in Figure 2.1. This
significantly enhances the computational efficiency of MOCU estimation. © 2021 IEEE.

approach that manually determines the synchronization of the Kuramoto model. To compute the

expected remaining MOCU R (i, j) we first need to estimate conditional MOCU M (A|Oi,j = o)

given the experimental outcome Oi,j = o ∈ {0, 1} (i.e., synchronized or not) as derived in Equa-

tion (2.8). Specifically, we compute the control cost ξ (ai) of all samples ai, i = 1, 2, . . . , K,

drawn from the posterior uncertainty class distribution PA|Oi,j=o (a) updated according to the ex-

perimental outcome Oi,j = o as shown in Figure 2.2. Figure 2.3 shows the difference in estimating

the control cost ξ (ai) of sample ak between the proposed approach and the original approach.

Both approaches find a numerical solution through the binary search that is a sequential pro-

cess. At each iteration, the coupling strength aN+1 of the control oscillator is set to the midpoint

c←
(
aUN+1 + aLN+1

)
/2 of the search space. The original approach solves the Kuramoto model de-

termined by the sample ak and midpoint c and determines if the solutions are synchronized or not

according to the criterion (Equation (2.2)). On the other hand, the proposed ML-based approach

extracts features based on the natural frequencies ωi, sample ak, and midpoint c and classifies the
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feature vector. The search space is then halved according to the outcome. Note that the com-

putational complexity of the original approach is critically dependent on the time precision and

simulation time. Less time precision and shorter simulation time can reduce the overall computa-

tional complexity, but such parameters significantly affect the estimation accuracy of the MOCU.

On the other hand, MOCU-based OED with the proposed approach is free from such a trade-off at

the inference phase as the features are independent of the parameters.

2.3 Results and discussion

In this section, we demonstrate the efficacy of the proposed ML approach in accelerating the

speed of objective-UQ, resulting in a very efficient OED. As described in the previous section, we

considered the OED for the Kuramoto model under uncertainty, where one’s operational objective

is to ensure synchronization of the model by adding an oscillator for control. For validation,

we considered two experimental setups based on uncertain Kuramoto models with five and seven

oscillators, respectively. As a reference ODE solver, we used the fourth-order Runge-Kutta method

to solve the Kuramoto model sampled at the sampling frequency fs of 160Hz for five seconds. To

determine whether the Kuramoto model is synchronized or not, we used the following criterion:

max
2.5≤t≤5

( max
1≤i≤N

∆θi (t)) < Td, (2.13)

where ∆θi (t) , θi (t+ (1/fs))− θi (t), θi (t) is the instantaneous phase of the ith oscillator, and

Td is a threshold of tolerance. We set Td to 0.001. To estimate the MOCU of a given uncertainty

class, we randomly drew 20, 480 sample points from the uncertainty class (i.e., K = 20, 480). We

used a Lambda workstation equipped with Intel i9-9960X, 128GB memory, and GeForce RTX 2080

Ti for the simulations.

At the core of the proposed method lies a binary classifier that accurately classifies the global

frequency synchronization of the model when a control oscillator is introduced. To train an ac-

curate classifier, we used an fcNN model with one hidden layer. In that regard, it is essential to

extract representative features from the parameters that define the Kuramoto model, such as the
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number of oscillators, natural frequencies, initial phases, or coupling strength values between os-

cillators. Inspired by Theorem 1, which gives us the necessary and sufficient condition for pairwise

frequency synchronization of Kuramoto oscillators, we used the natural frequencies, the absolute

difference between the frequencies, and the corresponding coupling strength values as features.

More specifically, given a parameter set that fully determines the Kuramoto model operating on

N + 1 oscillators, we first sort all the natural frequencies in descending order and rearrange the

coupling strength accordingly. Then, we construct the corresponding feature set that consists of the

sorted natural frequencies, the absolute difference of the natural frequencies of all oscillator pairs,

and their coupling strengths. Note that this arrangement makes the feature set highly structured

but does not affect the characteristics of the Kuramoto model. To accurately label a given sample

point (the feature set of a given Kuramoto model), we used the fourth-order Runge-Kutta method

with a much longer simulation time T of 400 seconds to determine whether the model reaches

global frequency synchronization or not. Besides, we rigorously determined the synchronization

of the Kuramoto model based on more stringent criteria. For the labeling purpose, we consider

that a Kuramoto model is synchronized if both of the following two conditions are satisfied: First,

frequencies of all oscillators rounded to the sixth decimal place are equal for the last 20 (T ∗ 0.95)

seconds. Second, the sum of absolute change in the coherence value r (t) of the order parameter

r (t) ejψ(t) = 1
N

∑N
i=1 e

jθi(t) is less than 10−6 for the last 20 seconds. Note that if the results for the

two conditions differ, we excluded the sample point from the training dataset.

First, in order to validate the efficacy of the proposed method that incorporates ML-based

predictions into MOCU estimation, we directly compared the MOCU values from the ML-based

approach and the sampling-based approach.

As a first experimental scenario, we considered an uncertain Kuramoto model that consists of

five oscillators that do not get spontaneously synchronized in the absence of external control. In

this experiment, we adopted the identical experimental setup in the previous work [27] for direct

comparison. Specifically, we assumed that the five oscillators have the natural frequencies of

−2.50, −0.6667, 1.1667, 2.0, and 5.8333, respectively. The natural frequency of the additional
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(i.e., 6th) control oscillator was set to the average frequency of the five oscillators (ω6 = 1.1667).

Besides, we set the initial phase of all the oscillators to zero. Finally, we used the uncertainty class

defined as follows:

aU =
[
1.0541 0.6325 0.7762 1.4375 1.0542 0.6900 1.6819 0.4791 2.6833 2.2041

]T
, (2.14)

aL =
[
0.7791 0.4675 0.5737 1.0625 0.7792 0.5100 1.2431 0.3541 1.9833 1.6291

]T
. (2.15)

To train the classifier, we generated 40, 000 sample points (a set of 20, 000 parameter values

that result in synchronization and another set of 20, 000 parameter values that do not) from a mul-

tivariate uniform distribution whose support completely covers the range of the parameters in the

uncertainty class at hand. Specifically, a parameter set has six real-values from the uniform distri-

bution with a range of (−2π, 2π) as natural frequencies of the six oscillators ωi, i = 1, 2, . . . , 6, and

ten coupling strength values ai,j , 1 ≤ i < j ≤ 6, between oscillators ranging from 0.25 |ωi − ωj|

to 2.35 |ωi − ωj|. To build the classifier, we sorted the six natural frequencies in descending or-

der and rearranged the coupling strength values accordingly. Then, we extracted the following

features: the sorted natural frequencies, the absolute difference of the natural frequencies of all

oscillator pairs, and their coupling strengths. Finally, we trained an fcNN model with a single

hidden layer, whose width is three times the number of features, until the model is capable of

classifying all the 40, 000 sample points in the training dataset perfectly. We validated the trained

model in terms of its asymptotic classification accuracy by assessing the accuracy as a function of

the training data size. This result is shown in Figure B.1 in Appendix B.

We started with the original uncertainty class defined in Equations (2.14) and (2.15) and es-

timated the expected remaining MOCU of random oscillator pairs through both approaches one

hundred times while randomly changing the true model (assumed to be unknown). Figure 2.4 is a

scatter plot that shows the comparison between the expected remaining MOCU values computed

by different methods. As shown in Figure 2.4, the expected remaining MOCU values computed

by the proposed ML-based method and the original sampling-based method display a strong lin-

ear relationship. The Pearson’s correlation coefficient was 0.9849 with a p-value of 1.90× 10−76.

25



Expected remaining MOCU

estimated through the sampling-based approach

E
x

p
ec

te
d

 r
em

ai
n

in
g

 M
O

C
U

es
ti

m
at

ed
 t

h
ro

u
g

h
 t

h
e 

M
L

-b
as

ed
 a

p
p

ro
ac

h

Pearson’s correlation coefficient: 0.9849

p-value: 1.9017e-76 

Figure 2.4: The scatter plot shows the expected remaining MOCU values for the uncertain five-
oscillator Kuramoto model estimated using the proposed ML-based approach and the original
sampling-based approach in [27]. As shown, the estimated values were highly correlated to each
other. © 2021 IEEE.

This plot shows that the ML-based computational scheme has the potential to effectively replace

the costly sampling-based scheme without affecting the MOCU-based OED performance, as it

will likely not affect the ranking of potential experiments. In terms of computational cost, the

ML-based approach was able to compute the expected remaining MOCU in 0.1110 seconds (on

average) for a given uncertainty class, while it took 818.7 seconds (on average) for the sampling-

based approach. These results clearly show the advantages of the proposed approach in efficiently

quantifying the objective uncertainty.

To examine the computational cost increase and scalability for larger models, we next con-

sidered an uncertainty class of Kuramoto models with seven oscillators. This increases the time

for solving the ODEs and the number of possible experiments also increases from
(

5
2

)
= 10 to(

7
2

)
= 21. Here we set the natural frequency of the oscillators to −3.4600, −1.9611, −0.6754,

−0.3806, −0.3675, 6.1161, and 8.3287, respectively. We assumed that the natural frequency
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of the control oscillator (i.e., 8th oscillator) is the average frequency of the seven oscillators

(ω8 = 1.0857). We considered the uncertainty class shown below:

aU =

[
0.848 0.988 1.446 1.607 3.820 0.915 0.400

0.850 0.419 4.162 1.090 0.122 0.039 2.124

0.872 0.007 2.737 1.804 1.360 0.744 1.174

]T
,

(2.16)

aL =

[
0.073 0.172 0.153 0.054 0.501 0.463 0.043

0.015 0.096 0.501 0.103 0.007 0.009 0.139

0.408 0.000 0.131 0.119 0.300 0.286 0.131

]T
.

(2.17)

As in the previous experiment for the Kuramoto model with five oscillators, we set the initial

phase of all oscillators to zero.

As the size of the parameter set is much greater for this Kuramoto model, we generated the

training data in a more tailored way. Rather than generating the sample points (i.e., Kuramoto

model parameter sets) with random natural frequencies within a specific range as we did for the

five oscillator model, we fixed the natural frequencies to −3.4600, −1.9611, −0.6754, −0.3806,

−0.3675, 6.1161, 8.3287, and 1.0857 in this example. For the coupling strength values, we drew

them from the uniform distribution for the uncertainty class, whose support is defined in (2.16)

and (2.17). In this manner, we collected 50, 000 sample points per label according to the same

criteria we used for the five oscillator case. Then, we extracted the feature values as described

previously for the five oscillator case and trained the classifier using an fcNN with a single hidden

layer, whose width is four times the number of features. Figure B.1 in Appendix B shows that

this model quickly learns the classification boundary, where the classification accuracy rapidly

converges to 100% as the size of the training data increases.

As before, we started with the original uncertainty class defined in Equations (2.16) and (2.17)

and computed the expected remaining MOCU of random oscillator pairs using the ML-based

method and the sampling-based method. We repeated this until we collected a hundred expected

remaining MOCU values per method. Figure 2.5 shows the scatter plot that compares the expected
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Figure 2.5: The scatter plot shows the expected remaining MOCU values for the uncertain seven-
oscillator Kuramoto model estimated using the proposed ML-based approach and the original
sampling-based approach in [27]. As before, the estimated values showed a high correlation.
© 2021 IEEE.

remaining MOCU values computed by the two methods. Again, we can see that there is a strong

linear relationship between the computed values. The Person’s correlation coefficient was 0.9606

with a p-value of 2.62 × 10−56. In terms of computational cost, it took 0.6953 seconds (on aver-

age) for the ML-based method to compute the expected remaining MOCU, which was still less

than a second although the experimental design space has grown from (5×4)
2

= 10 experiments to

(7×6)
2

= 21. It took the sampling-based approach 3, 684.9 seconds (on average) to compute the ex-

pected remaining MOCU values, which shows that our proposed method makes the computation

5, 298 times faster at practically identical accuracy. These results clearly show the advantages of

the proposed ML-based approach in quantifying the objective model uncertainty.

Next, we compared the OED performance of the proposed ML-based method against three

existing approaches:

• Sampling-based approach: the original approach proposed in [27] based on the MOCU
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framework, where a fourth-order Runge-Kutta method is to solve the Kuramoto model to

determine synchronization.

• Entropy-based approach: the experiment is chosen for the oscillator pair whose coupling

strength value has the largest entropy to reduce this uncertainty.

• Random approach: the experiment is randomly selected from the experimental design

space.

For the MOCU-based OED schemes (i.e., ML-based and sampling-based computations), we

considered the following OED strategies. In the first approach (marked as iterative in the figures),

we re-estimated the expected remaining MOCU for the remaining experiments in each iteration,

after performing the predicted optimal experiment and updating the uncertainty class based on

the observed experimental outcome. In the second approach, we estimated the expected remain-

ing MOCU only based on the initial uncertainty class and prioritized all experiments based on

this result. While this approach is theoretically suboptimal, it significantly reduced the overall

computational cost and empirically showed comparable performance to the iterative scheme, as

we will show in this section. Note that we reused the fcNN models trained for the MOCU value

comparisons.

We conducted OED simulations for the same five-oscillator Kuramoto model considered in the

previous study [27] for direct comparison. The true (unknown) model a was assumed to be as

follows:

a =
[
0.9166 0.55 0.675 1.25 0.9167 0.6 1.4625 0.4166 2.3333 1.9166

]T
. (2.18)

Figure 2.6 shows the experimental design performance of the different algorithms, where the

objective uncertainty (quantified by MOCU) is shown as a function of the number of experimental

updates (iterations). As shown in Figure 2.6, the proposed ML-based approach with iterative

re-estimation (red dotted line with asterisks) showed the nearly identical performance to sampling-

based methods (both iterative and non-iterative schemes, shown in yellow lines). All three schemes
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Figure 2.6: Performance comparison of various experimental design strategies for the uncertain
five-oscillator Kuramoto model considered in [27]. The results showed that the three MOCU-
based OED schemes perform similarly, regardless of how MOCU was estimated. The MOCU-
based schemes clearly outperformed other schemes as reported in [27]. © 2021 IEEE.

reached the near minimum MOCU within only three experimental updates. The non-iterative ML-

based scheme (red dashed line with squares) also identified the first optimal experiment accurately

and showed comparable performance in the later updates with the other three MOCU-based OED

schemes. All four MOCU-based OED schemes (both ML-based and sampling-based) significantly

outperformed the entropy-based and random approaches, resulting in much sharper uncertainty

reduction within fewer experimental updates.

Figure 2.7 compares the overall computational cost between the ML-based OED schemes and

the sampling-based OED schemes. The entropy-based approach and the random approach are not

shown, as their computational cost is fixed and negligible. As we can see in Figure 2.7, the pro-

posed ML-based OED approaches, marked as red, showed significantly lower time complexity

compared to the sampling-based OED approaches. Note that the ML-based methods (red dot-

ted lines) were significantly faster compared to the sampling-based methods, despite maintaining
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Figure 2.7: Cumulative computational cost (in seconds) for identifying the optimal experiment.
As shown, the proposed ML-based estimation clearly outperformed the original sampling-based
estimation [27] in terms of efficiency, where their costs differed by two orders of magnitude. For
both ML-based/sampling-based schemes, iterative estimation required further computations, as the
uncertainty class is updated after each experiment, based on which the remaining expected MOCU
values are assessed again. © 2021 IEEE.
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Figure 2.8: Average performance of various experimental design strategies for uncertain Kuramoto
models with five oscillators. The experiments were repeated one hundred times by sampling po-
tential true models from the uncertainty class. As shown, all three MOCU-based methods led
to the best performance. Random selection resulted in linear uncertainty reduction as expected.
© 2021 IEEE.

equivalent OED performance. We did not include the time for training the fcNN model as the

model training only needs to be performed once before the beginning of OED. In fact, the trained

model can be reused for different uncertainty classes and any true model therein. Besides, the

training time is negligible thanks to the shallow structure of the fcNN model considered in this

study. Specifically, the model learned the training dataset for making a decision for the uncertain

Kuramoto model with five oscillators within 90 seconds.

Next, we repeated the experiment based on one hundred different true models randomly drawn

from the uncertainty class (i.e., different coupling strength values were drawn from the prior dis-

tribution of the uncertainty class). The results of these large-scale experiments are shown in Fig-

ure 2.8 and Figure 2.9. Note that we excluded the iterative sampling-based OED method due to

its excessive requirement of computational time. As shown in these figures, the proposed ML-

based method without iterative re-estimation of the expected remaining MOCU showed identical
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Figure 2.9: Average cumulative computational cost (in seconds) for identifying the optimal exper-
iment based on different experimental design strategies for uncertain Kuramoto models with five
oscillators. © 2021 IEEE.

performance to other best performers. Random experimental selection (blue dotted line) yielded

a linearly decreasing MOCU curve, as we would expect on average. The entropy-based method

showed similar performance as before (see Figure 2.6). Computational cost in Figure 2.9 shows

a similar trend as before (see Figure 2.7). As before, the time for training the ML model is not

included in this plot. Furthermore, Figure C.1 in Appendix C shows the RainCloud plot [62] that

depicts the instantaneous performance of the different methods measured in terms of the remaining

uncertainty (measured by MOCU) after performing the first experiment selected by the respective

methods. As we can see from Figure C.1, all three MOCU-based OED schemes consistently yield

the best overall performance.

We compared experimental sequences identified by the ML-based methods and the sampling-

based approach to further investigate if the proposed ML approach can practically replace the

sampling-based method for prioritizing the experiments in the experimental design space. The

vertical axis corresponds to the number of intersecting experiments in the first k experiments pre-
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Figure 2.10: Comparison between the optimal sequence of experiments predicted by different
OED strategies for uncertain Kuramoto models with five oscillators. The y-axis shows the num-
ber of common experiments within the first k experiments predicted by two different methods.
© 2021 IEEE.

dicted by two different methods. If two methods predict the identical experimental sequence, the

resulting curve will be a straight line (with unit slope). For example, the black line in Figure 2.10

compares the ML-based method and the sampling-based method. From Figure 2.10, we can see

that the proposed ML-based method (without re-estimation) always identified the same first ex-

periment as the sampling-based method in all one hundred evaluations. By comparing the true

optimal experimental sequence (i.e., predicted by an “oracle”) and the sequences predicted by the

ML-based method, we can see that the first optimal experiment was always accurately predicted. In

fact, results in Figure 2.8 show that the first experiment leads to the most significant drop in model

uncertainty, and all MOCU-based OED schemes (both ML-based and sampling-based) accurately

predict this critical experiment. We also note that the entropy-based/random approaches tended to

mispredict the best first experiment, resulting in a substantial performance gap when compared to

the MOCU-based approaches. Figure 2.10 also shows that the predicted experimental sequences
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Figure 2.11: Average performance of various experimental design strategies for uncertain Ku-
ramoto models with seven oscillators based on one hundred experiments. All MOCU-based meth-
ods led to the best performance, and random selection resulted in linear uncertainty reduction.
© 2021 IEEE.

diverge in later iterations. However, this did not impact the OED performance on average, as later

experiments did not reduce the model uncertainty as significantly as the earlier experiments.

We also repeated the experiments for uncertain Kuramoto models that consist of seven oscil-

lators. As before, true (unknown) models were randomly sampled from the uncertainty class one

hundred times to evaluate average performance.

Figure 2.11 shows the OED performance assessment results for the various experimental design

methods based on the seven-oscillator Kuramoto model. As we can see from Figure 2.11, the per-

formance trends were very similar to those seen in Figure 2.8 for the Kuramoto model with five os-

cillators. The proposed ML-based methods again accurately identified the first optimal experiment

that maximally reduces MOCU on average. All four MOCU-based OED schemes (both ML-based

and sampling-based), regardless of whether or not the remaining expected MOCU values were

re-estimated after each experimental update, showed almost identical performance on average.
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Figure 2.12: Average cumulative computational cost (in seconds) for identifying the optimal ex-
periment based on different experimental design strategies for uncertain Kuramoto models with
seven oscillators. © 2021 IEEE.

Figure C.2 in Appendix C compares the performance of different methods, where we measured

the MOCU that remains after performing the first experiment selected by each method. The results

are again shown for one hundred evaluations based on different true models. As shown in Fig-

ure C.2, the efficacy of the first experiment varies depending on the underlying true model, which

is expected. As before, the results in Figure C.2 clearly show that the proposed ML-based OED

scheme can effectively replicate the performance of the original sampling-based approach [27], the

primary goal of this study. The computational time is shown in Figure 2.12, which clearly shows

that the ML-based scheme (especially, the non-iterative scheme) is significantly faster compared

to the original sampling-based approach. As before, the plot only shows the time for OED and

does not include the training time for the ML model. Furthermore, even the ML-based method

with the iterative update was considerably faster than the sampling-based that does not iteratively

re-estimate the expected remaining MOCU.

Finally, we compared the experimental sequences identified by the different methods, including
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Figure 2.13: Comparison between the optimal sequence of experiments predicted by different
OED strategies for uncertain Kuramoto model with seven oscillators. The y-axis shows the num-
ber of common experiments within the first k experiments predicted by two different methods.
© 2021 IEEE.

the true optimal experimental selection (i.e., predicted by an “oracle”). Note that due to the ex-

cessive computational cost of the optimal experimental selection (as it requires exhaustive search),

we identified the optimal experimental sequences only for the first thirty evaluations based on

randomly sampled true models from the uncertainty class. For this reason, Figure 2.13 shows

the comparison results based on the first thirty experimental sequences (out of one hundred). As

shown in the figure, both the ML-based and the sampling-based methods were able to accurately

identify the first optimal experiment. The predicted sequences tended to diverge in later iterations.

However, considering the simulation results shown in Figure 2.11, it is likely that this was because

many experiments in later updates did not significantly reduce the objective uncertainty, once the

best experiment has been performed in the earlier iterations (especially, the first iteration). Also,

we can see that the entropy-based and the random selection approaches tended to miss the best

experiment, which resulted in a significant degradation in the overall experimental design perfor-
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mance. These comprehensive simulation results clearly showed that our proposed ML-based OED

approach effectively quantifies the objective model uncertainty at a small fraction of the computa-

tional cost of the sampling-based method, thereby remarkably accelerating the OED process while

maintaining excellent performance.

2.4 Concluding remarks

In this chapter, we proposed an ML approach that can significantly accelerate the objective-

based quantification of model uncertainty via MOCU. A major bottleneck in applying MOCU for

designing/prioritizing optimal experiments that can optimally reduce the uncertainty in models

that represent real-world complex uncertain systems has been the high computational cost for

accurately estimating MOCU. The proposed approach effectively addresses this issue in the context

of OED for uncertain Kuramoto models by replacing the computational costly DE solver with an

ML model, which remarkably speeds up the process of predicting the optimal controller (i.e.,

the oscillator that guarantees global frequency synchronization at minimum cost). The trained ML

model predicts the asymptotic behavior of a given Kuramoto model, namely, whether all oscillators

in the model will be eventually frequency synchronized or not.

The comprehensive simulation results clearly demonstrate that the ML-based MOCU calcula-

tions are highly correlated with those computed by the sampling-based scheme originally proposed

in [27]. Furthermore, the OED performance of the ML-based scheme is practically equivalent to

that of the original sampling-based OED scheme. However, despite achieving equivalent OED

performance, our proposed ML-based OED scheme accelerates the experimental design process

by at least two orders of magnitude, resulting in significant computational gains. The remarkably

enhanced computational efficiency enables more reliable MOCU calculation by further increas-

ing the sample size (i.e., K) as needed. Furthermore, it allows us to iteratively recompute the

remaining MOCU R (i, j) after performing the predicted optimal experiment at each experimental

update (see Figure 2.9 and Figure 2.12), which can–in theory–lead to a more accurate prediction of

the optimal experiment, although the actual gain will depend on the underlying model uncertainty.

Such iterative update is practically infeasible for the original sampling-based OED scheme without
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resorting to HPC (high-performance computing).

Our ML-based MOCU estimation and OED approach remarkably enhance the computational

efficiency by refraining from repeatedly solving the DEs for the uncertain Kuramoto models for

the sake of finding the optimal robust operator (which is required in the original sampling-based

approach) but instead adopting ML for decision-making. However, as training the ML model re-

quires the generation of sufficient training data, which also requires solving the coupled ODEs for

different Kuramoto models in the uncertainty class, it will be interesting to compare the proposed

ML-based approach with the sampling-based approach from the perspective of “data efficiency”.

For this purpose, we quantitatively compare the proposed approach with the sampling-based ap-

proach in terms of data requirements. For the uncertain Kuramoto model with five oscillators, we

trained the ML model (an fcNN with a single hidden layer) with 40, 000 labeled sample points.

Each sample point corresponds to the Kuramoto model with a different parameter, and labeling the

sample point (i.e., synchronized vs non-synchronized) requires solving the corresponding ODEs.

The trained model is used throughout the entire experimental design process without the need

for generating additional sample points. On the other hand, the sampling-based method requires

generating approximately 2.2 × 107 labeled sample points (i.e., by solving the DEs for different

Kuramoto model parameters). Similarly, for the uncertain Kuramoto model with seven oscillators,

we trained an fcNN model based on 100, 000 labeled sample points, and the trained model is used

throughout the experimental design process. In comparison, the sampling-based approach requires

the generation of around 9.4 × 107 labeled sample points. These comparisons clearly show that

our proposed ML-based OED acceleration scheme not only improves the computational efficiency

but also drastically improves the data efficiency.
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3. PERFORMANCE OPTIMIZATION OF HIGH-THROUGHPUT VIRTUAL SCREENING

(HTVS) PIPELINE

In various real-world scientific and engineering applications, the need for screening a large set

of molecular candidates to identify a small subset of molecules that satisfy certain criteria or pos-

sess targeted properties arises fairly frequently. For example, since the Coronavirus disease 2019

(COVID-19) outbreak, there have been significant concurrent efforts among various groups of sci-

entists to identify or develop drugs that can provide a potential cure for this extremely infectious

disease. One such notable effort is IMPECCABLE (Integrated Modeling PipelinE for COVID Cure

by Assessing Better LEads) [63] whose operational objective is to optimize the number of promis-

ing ligands that potentially lead to the successful discovery of drug molecules. To this aim, IM-

PECCABLE utilized deep learning-based surrogates for predicting docking scores and multi-scale

biophysics-based computational models for computing docking poses of compounds. Built on

the strength of massive parallelism on exascale computing platforms combined with RADICAL-

Cybertools (RCT) managing heterogeneous workflows, IMPECCABLE identified promising leads

targeted at COVID-19.

Considering that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that

can potentially lead to COVID-19, is known to rapidly mutate itself to create more infectious and

deadlier variants [64], such drug screening process to identify anti-viral drug candidates that are

effective against a specific variant may have to be repeated as new variants emerge. However, when

one considers the huge search space of potential molecules–e.g., ZINC (Zinc Is Not Commercial)

15 [65] contains about 230 million commercially available compounds. There are, however, about

1012 compounds that can be considered for drug design in chemical space theoretically–and the

astronomical amount of computation that was devoted to the screening of drug candidates in [63] to

screen 1011 candidates, this is without question a Herculean task that requires enormous resources

and one that cannot be routinely repeated.

While different in scale and complexity, high-throughput virtual screening (HTVS) pipelines
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Is there resource constraint      ?
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Training dataset: 

Find optimal screening policy jointly optimizing

the throughput and comptuational resource. 

The number of test samples: 

Find optimal screening policy maximizing 

the throughput under budget constraint    .

Optimal screening policy: 

Stage

Stage

Stage

Surrogate model of the  th stage
Screening threshold of the  th stage
Computational complexity per sample of the  th stage

High-throughput virtual screening pipeline
consisting of     screening stages

Figure 3.1: Illustration of a general high-throughput virtual screening (HTVS) pipeline (left) that
consists of N stages (surrogate models) for rapid and reliable identification of a set Y of candi-
date molecules that likely possess the desired properties from a huge original set X containing all
candidates. Stage Si evaluates all the molecules x ∈ Xi, which passed the previous stage Si−1,
via a surrogate model fi. Si passes the sample x to the next stage Si+1 if fi (x) ≥ λi. Otherwise,
it discards the molecule. The proposed optimization framework shown on the right side predicts
optimal screening policy ψ∗ =

[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
that yields the maximal throughput according

to the screening campaign scenarios.

have been widely utilized in various fields, including biology [66, 67, 68, 69, 70, 71], chem-

istry [63, 72, 73, 74, 75, 76, 77], engineering [78], and materials science [79, 80]. However, the

construction of such HTVS pipelines and the strategies for operating them heavily rely on expert

intuition, often resulting in heuristic methods with reasonable yet sub-optimal screening perfor-

mance. It remains a fundamental challenge to optimally construct and operate such screening

pipelines to sift potential molecular candidates from an enormous search space in an efficient yet

accurate manner.
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In general, typical HTVS pipelines consist of multiple stages, each of which is associated with

a surrogate model that evaluates the property of the molecules with a different accuracy/fidelity

and computational cost. This is illustrated on the left side of Figure 3.1. At each stage in the

pipeline, the molecular candidate is evaluated to determine whether the evaluation result appears

promising enough to warrant passing it to the next–often more computationally expensive but

more accurate–stage without unnecessarily wasting computational resources and time. In this way,

the HTVS pipeline narrows down the number of candidate molecules, while sensibly allocating the

available resources for investigating those that are promising and more likely to possess the desired

property. The most promising candidates that remain at the end of screening may proceed to

experimental validation, which is often more laborious, costly, and time-consuming. For example,

in [70], an HTVS pipeline based on multi-fidelity surrogate models combined with an experimental

platform successfully selected and reported a novel non-covalent inhibitor, MCULE-5948770040.

The reported inhibitor has been identified by screening over 6.5 million molecules, and it has been

shown to inhibit the SARS-Cov-2 main protease. HTVS pipelines have been also widely used

for materials screening. For example, FHSP-NLO (First-principles High-throughput Screening

Pipeline for Non-Linear Optical materials) [80] consisting of several computational predictors,

based on density functional theory (DFT) calculations as well as data transformation and extraction

methods, successfully identified deep-ultraviolet non-linear optical crystals that were reported in

previous studies [81, 82, 83, 84, 85, 86, 87].

Although previous studies have demonstrated the advantages of constructing an HTVS pipeline

for rapid screening of huge set of molecules to narrow down the most promising molecular candi-

dates that are likely to possess the desired properties, the problem of optimal decision-making in

such screening pipelines has not been extensively investigated to date. For example, how should

one decide whether or not to pass a molecular candidate at hand to the next stage, given the out-

come of the current stage? More specifically, in the HTVS example shown on the left side of Fig-

ure 3.1, how do we optimally determine the screening threshold of each stage for a given HTVS

structure? Furthermore, if we were to modify the HTVS structure or construct it from scratch
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by interconnecting multi-fidelity surrogate models, what would be the optimal structure of such

HTVS that maximizes the throughput and accuracy? This requires selecting the optimal subset

of the available multi-fidelity models, arranging them in the optimal order, and then exploring

the interrelations among their predictive outcomes to make optimal operational decisions for the

constructed HTVS.

In this chapter, we present a computational framework that can answer the aforementioned

questions and applied to the optimization of HTVS pipelines involving that consist of multiple

surrogate models with different costs and fidelity. The key idea is to estimate the joint proba-

bility distribution of predictive scores that result from the different stages constituting the HTVS

pipeline, based on which we optimize the screening threshold values. We consider two optimiza-

tion scenarios. First, we consider the case where the total computational budget is fixed and the

goal is to maximize the throughput within the given budget. Second, we consider the case where

we aim to jointly maximize the throughput of the HTVS pipeline while minimizing the over-

all computational cost required for screening. We demonstrate the performance of the proposed

HTVS pipeline optimization framework based on both simulated data as well as real data. In the

simulated example, the joint distribution of the predictive scores from the multi-fidelity models at

different stages is assumed to be known, based on which we extensively evaluate the performance

of the proposed approach under various scenarios. As a second example, we consider the problem

of screening for long non-coding ribonucleic acids (lncRNAs). In this example, we first construct

an HTVS pipeline by interconnecting existing lncRNA prediction algorithms with varying costs

and accuracy and apply our proposed framework for performance optimization. Both examples

clearly demonstrate the advantages of our proposed scheme, which leads to a substantial reduction

of the total computational cost at virtually no degradation in overall prediction accuracy. Further-

more, we show that the proposed framework enables one to make an informed decision to balance

the trade-off between speed and accuracy, where one could trade accuracy for higher efficiency,

and vice versa.
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3.1 Overview of HTVS pipeline

We assume that an HTVS pipeline consists of N screening stages Si : (fi : X → R;λi; ci),

i = 1, 2, . . . , N , connected in series as shown in Figure 3.1 (left), where fi : X → R is a surrogate

model for predicting the property of interest for a given molecule and λi is the screening threshold.

The average computational cost per sample for fi associated with the ith stage Si is denoted by

ci. At each stage Si, the corresponding surrogate model fi is used to evaluate the property of all

molecules x ∈ Xi that passed the previous screening stage Si−1, where Xi is given by:

Xi = {x | x ∈ Xi−1 and fi−1(x) ≥ λi−1} . (3.1)

By definition, we have Xi , X, which contains the entire set of molecules to be screened.

At stage Si, every molecule x ∈ Xi whose property score yi = fi (x) is below the threshold λi is

discarded such that only the remaining molecules x ∈ Xi+1 that meet or exceed this threshold are

passed on to the next stage Si+1. We assume that all molecules in Xi at each stage Si are batch-

processed to select the set of molecules Xi+1 that will be passed to the subsequent stage Si+1, as it

is often done in practice [88, 89, 90].

Although every stage Si in the screening pipeline performs a down-selection of the molecules

by assessing their molecular property based on the surrogate model fi(x) and comparing it against

the threshold λi, we assume only the threshold values λ1, · · · , λi−1 of the first N − 1 stages will

need to be determined while the threshold λN for the last screening stage SN is predetermined.

This reflects how such screening pipelines are utilized in real-world scenarios. For example, in the

IMPECCABLE pipeline [63], as well as in many other computational drug discovery pipelines,

potentially effective lead compounds that pass the earlier stages based on efficient but less accurate

models will be assessed using computationally expensive yet highly accurate molecular dynamics

(MD) simulations to evaluate the binding affinity against the target. Only the molecules whose

binding affinity estimated by the MD simulations exceeds a reasonably high threshold set by do-

main experts may be further assessed experimentally, in order not to unnecessarily waste the avail-
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able resources, considering that such experimental validation is typically costly, time-consuming,

and labor-intensive. Similarly, in a materials screening pipeline, the last screening stage may in-

volve expensive calculations based on DFT, a quantum mechanical modeling scheme that is widely

used for predicting material properties [91, 92, 93, 94, 95, 96, 97, 98, 99].

Our primary goal is to design the optimal screening policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
that leads

to the optimal operation of the HTVS pipeline. We consider two different scenarios. In the first

scenario, we assume that the total computational budget for screening the candidate molecules is

fixed, where the design goal would then be to identify the optimal screening policy that maximizes

the screening throughput, namely, the percentage (or number) of potential molecules that meet or

exceed the qualification in the last stage SN (i.e., fN(x) ≥ λN ). In the second scenario, we consider

the case when the computational budget is not fixed and where the goal is to design the optimal

policy that simultaneously maximizes the throughput while minimizing the overall computational

cost.

3.2 Methods

Figure 3.1 (right) shows a flowchart summarizing the proposed approach for identifying the

optimal screening policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
for the optimal operation of a given HTVS

pipeline under the two screening scenarios described above. First, we estimate the joint distri-

bution p (y1, y2, . . . , yN) of the predictive scores from the N stages based on the available training

data. In case the probability density function (PDF) p (y1, y2, . . . , yN) is known a priori, this

PDF estimation step will not be required. Given p (y1, y2, . . . , yN), we can predict the optimal

screening policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
that leads to the optimal operational performance of the

HTVS pipeline. Specifically, in case the total computational budget C is fixed, we find the optimal

policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
that maximizes the screening throughput of the pipeline–i.e., the

proportion of molecules that pass the last (and the most stringent/accurate) screening stage that

meet the condition fN (x) ≥ λN–under the budget constraint C. Otherwise, we predict optimal

screening policyψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
that jointly optimizes the throughput and computational

resource based on a weighted objective function that balances the throughput and the computa-
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tional cost. In this case, the balancing weight α can be used to trade throughput for computational

efficiency, or vice versa. We note that the training dataset is only used for estimating the PDF

p (y1, y2, . . . , yN) and not (directly) for finding the optimal screening policy. In fact, the optimal

policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
is determined by a function of up to three parameters: the joint

score distribution p (y1, y2, . . . , yN), |X| (the number of potential molecules to be screened), and

the total computational budget C (in the first screening scenario, where the computational budget

is assumed to be limited).

As shown in Figure 3.1, the proposed optimization framework that identifies the optimal screen-

ing policyψ∗ takes a two-phase approach. In the first phase, we estimate the joint score distribution

p (y1, y2, . . . , yN). Based on the estimated score distribution, we find the optimal screening policy

ψ∗ that maximizes the screening performance. To ensure good screening performance, accurate

estimation of the joint score distribution p (y1, y2, . . . , yN) is crucial. In this study, we perform

a spectral estimation under the assumption that the joint score distribution follows a multivari-

ate Gaussian mixture model and estimate the parameters via the expectation-maximization (EM)

scheme [100].

A formal objective is to determine the screening threshold λi at stage Si, i = 1, 2, . . . , N − 1,

such that the total number of the detected potential candidates in the set Y, where the candi-

dates meet the target criteria based on the score in the last stage SN and the pre-specified screen-

ing threshold λN , is maximized under a given computational budget C. The relationship among

the predictive scores from all stages S1, S2, . . . , SN is captured by their joint score distribution

p (y1, y2, . . . , yN). Based on this joint score distribution, we define the following reward function

r (λ) according to policy λ = [λ1, λ2, . . . , λN ] of the stages Si, i = 1, 2, . . . , N , as follows:

r (λ) =

∞∫
· · ·
∫

[λN ,λN−1,...,λ1]

p (y1, y2, . . . , yN) dy1dy2 · · · dyN . (3.2)

We can find the optimal screening policy ψ∗ =
[
λ∗1, λ

∗
2, . . . , λ

∗
N−1

]
to be applied to the first

N − 1 stages (Si, i = 1, 2, . . . , N − 1) that maximizes the reward |Y| by solving the constrained

46



optimization problem shown below:

ψ∗ = arg max
ψ∈RN−1

r ([ψ, λN ]) (3.3)

s.t.
N∑
i=1

ci|Xi| ≤ C,

where |Xi| is the number of molecules that passed the previous stages from S1 to Si−1. Formally,

|Xi| is defined as:

|Xi| = |X|
∞∫
· · ·
∫

[λi−1,λi−2,...,λ1]

p1:i−1 (y1, y2, . . . , yi−1) dy1dy2 · · · dyi−1, (3.4)

where p1:i−1 denotes the marginal score distribution for y1, · · · , yi−1, which can be obtained by

marginalizing p(·) over yi to yN .

In many real-world screening problems, including drug or material screening, the total com-

putational budget for screening may not be fixed, and one may want to jointly optimize for both

screening throughput as well as computational efficiency of screening. In such scenarios, we can

formulate a joint optimization problem to find the best screening policy that strikes the optimal

balance between throughput and efficiency:

ψ∗ = arg min
ψ∈RN−1

αr̄ ([ψ, λN ]) + (1− α) h̄ ([ψ, λN ]) . (3.5)

The weight parameter α ∈ [0, 1] determines the relative importance between the relative reward

function r̄ ([ψ, λN ]), and the normalized total cost function h̄ ([ψ, λN ]) defined as follows:

r̄ ([ψ, λN ]) =
r ([−∞, λN ])− r ([ψ, λN ])

r ([−∞, λN ])
(3.6)

=

∫∞
λN
pN (yN) dyN − r ([ψ, λN ])∫∞

λN
pN (yN) dyN

, (3.7)
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h̄ ([ψ, λN ]) =
1

N |X|maxi ci

N∑
i=1

ci|Xi|. (3.8)

Note that pN is the marginal score distribution for yN , which is obtained by marginalizing p(·)

over y1 to yN−1.

3.3 Results and discussion

In this section, we validate the proposed optimization framework based on both synthetic and

real data. First, we evaluated the performance of our optimization framework based on a four-stage

HTVS pipeline, where the joint probability distribution of the predictive scores is assumed to be

known. Next, we constructed an HTVS pipeline for lncRNAs by interconnecting existing lncRNA

prediction algorithms with different prediction accuracy and computational complexity. In this

example, the joint distribution of the predictive scores from the different algorithms at different

stages was learned from training data, based on which the proposed HTVS optimal framework

was used to identify the optimal screening policy.

We optimized the screening policy–for both optimization problems defined in Eq. (3.3) and

Eq. (3.5)–using the differential evolution optimizer [101] in the Scipy Python package (version

1.7.0). We performed all simulations on Ubuntu (version 20.04.2 LTS) installed on Oracle VM

VirtualBox (version 6.1.22) that runs on a workstation equipped with Intel i7 − 8809G CPU and

32GB RAM.

For comprehensive performance analysis of the proposed HTVS pipeline optimization frame-

work, we considered a synthetic HTVS pipeline with N = 4 stages, where the joint PDF of the

predictive scores from all stages is assumed to be known. We varied the correlation levels between

the scores from neighboring stages to investigate the overall impact on the performance of the

optimized HTVS pipeline.

Specifically, we assumed that the computational cost for screening a single molecule is 1 at

stage S1, 10 at S2, 100 at S3, and 1, 000 at SN . As the per-molecule screening cost was fairly

different across stages, the given setting for the synthetic HTVS pipeline allowed us to clearly see

the impact and significance of optimal decision-making on the overall throughput and accuracy of
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the screening pipeline.

We considered the case when we have complete knowledge of the joint score distribution

p (y1, y2, y3, y4). The score distribution was assumed to be a multivariate uni-modal Gaussian dis-

tribution G (0,Σ (ρ)), where the covariance matrix Σ (ρ) is a Toeplitz matrix defined as follows:

Σ (ρ) =



1 ρ ρ− 0.1 ρ− 0.2

ρ 1 ρ ρ− 0.1

ρ− 0.1 ρ 1 ρ

ρ− 0.2 ρ− 0.1 ρ 1


, (3.9)

where ρ is the correlation between neighboring stages Si and Si+1 for i = 1, 2, 3. We assumed that

the score correlation is lower between stages that are further apart, which is typically the case in

real screening pipelines that consist of multi-fidelity models.

The primary objective of the HTVS pipeline was to maximize the number of potential candi-

dates that satisfy the final screening criterion (i.e., f4 (x) ≥ λ4) based on the highest fidelity model

at stage S4 while minimizing the total computational cost induced by the entire screening pipeline.

The total number of all candidate molecules in the initial set X was assumed to be 105. We as-

sumed that we are given λ4 = 3.0902 as prior information set by a domain expert, which results

in 100 molecules (among 105 in X) that satisfy the final screening criterion. We validated the

proposed HTVS optimization framework for two cases: first, for ρ = 0.8, where the neighboring

stages yield scores that are highly correlated, and next, for ρ = 0.5 where the correlation is rela-

tively low. Performance analysis results based on various other covariance matrices can be found

in Appendix D.

Figure 3.2 shows the performance evaluation results for different HTVS pipeline structures

optimized via the proposed framework under a fixed computational resource budget. The total

number of the desirable candidates detected by the pipeline is shown as a function of the available

computational budget for two cases: (A) HTVS pipeline that consists of highly-correlated stages

(i.e., ρ = 0.8) and (B) HTVS pipeline comprised of stages with lower correlation (i.e., ρ = 0.5).
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Figure 3.2: Performance assessment of the optimized HTVS pipelines. The number of candidate
molecules that meet the desired screening criterion is shown as a function of the available compu-
tational budget. Results are shown for the case when the stages are highly correlated (A, ρ = 0.8)
as well as when they have relatively low correlation (B. ρ = 0.5). Performance of the best perform-
ing 4-stage pipeline and the best performing 3-stage pipeline is shown. For comparison, we also
show the performance of all 2-stage pipelines. Note that only the best-performing configurations
are shown for N ≥ 3.
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The black horizontal and vertical dashed lines depict the total number of true candidates that meet

the screening criterion (100 in this simulation) and the total computational budget required when

screening all molecules in X only based on the last stage S4 (i.e., the highest-fidelity and most

computationally expensive model), respectively. Figure 3.2 shows the performance of the best-

performing N = 4 stage pipeline and that of the best-performing N = 3 pipeline. Additionally,

the performance of all N = 2 stage pipelines is shown for comparison.

First, as shown in Figure 3.2.A, the performance curves of the pipelines consisting of only two

stages (shown in pink, purple, and light blue lines) demonstrate how each of the lower-fidelity

stages S1–S3 improves the screening performance when combined with the highest-fidelity stage

S4 and performance-optimized by our proposed framework. As we can observe in Figure 3.2.A,

the correlation between the lower-fidelity/lower-complexity stage Si, i = 1, 2, . . . , N − 1, at the

beginning of the HTVS pipeline and highest-fidelity/highest-complexity stage SN at the end of

the pipeline had a significant impact on the slope of the performance curve. For example, in the

two-stage pipeline [S3, S4], where the two stages are highly correlated to each other, we could

observe the steepest performance improvement as the available computational budget increased.

On the other hand, for the two-stage pipeline [S1, S4] which consists of less correlated stages,

the performance improvement was more moderate in comparison as the available computational

budget increased. Note that the minimum required computational budget to screen all candidates

was larger for the pipeline [S3, S4] compared to that for [S1, S4], which was due to the assumption

that all candidates are batch-processed at each stage. For example, with the minimum budget

needed by pipeline [S3, S4] to screen all candidates, the other pipelines [S1, S4] and [S2, S4] were

capable of completing the screening and detecting more than 80% of the desirable candidates.

Nevertheless, the detection performance improved with the increasing computational budget for

all two-stage pipelines.

It is important to note that we can in fact simultaneously attain the advantage of using a lower-

complexity stage (e.g., [S1, S4]) that allows a “quick-start” with a small budget as well as the merit

of using a higher-complexity stage (e.g., [S3, S4]) for rapid performance improvement with the
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budget increase by constructing a multi-stage HTVS pipeline and optimally allocating the compu-

tational resources according to our proposed optimization framework. This can be clearly seen in

the performance curve for the four-stage pipeline [S1, S2, S3, S4] (shown in the red solid line). The

optimized four-stage pipeline consistently outperformed all other pipelines across all budget levels.

Specifically, the optimized pipeline [S1, S2, S3, S4] quickly evaluated all the molecular candidates

in X through the most efficient stage S1 and sharply improved the screening performance through

the utilization of more complex yet also more accurate subsequent stages in the HTVS pipeline in

a resource-optimized manner. For example, the optimized four-stage pipeline detected 97% of the

desirable candidates that meet the target criterion at only 10% of the total computational cost that

would be required if one used only the last stage (which we refer to as the “original cost”). To

detect 99% of the desired candidates, the optimized four-stage pipeline [S1, S2, S3, S4] would need

only about 14% of the original cost.

Among all three-stage pipelines (i.e., N = 3), pipeline [S2, S3, S4] yielded the best perfor-

mance when performance-optimized using our proposed optimization framework (orange solid

line in Figure 3.2.A). As we can see in Figure 3.2.A, the screening performance sharply increased

as the available computational budget increased, thanks to the high correlation between S4 and the

prior stages S2 and S3. However, due to the higher computational complexity of S2 compared to

that of S1, the optimized pipeline [S2, S3, S4] required a higher minimum computational budget

for screening all candidate molecules compared to the minimum budget needed by a pipeline that

begins with S1. Despite this fact, when the first stage S2 in this three-stage HTVS pipeline was re-

placed by the more efficient S1, our simulation results (see Figure D.41 in Appendix D) showed that

the screening performance improved relatively moderately as the budget increased. Empirically,

when all stages are relatively highly correlated to each other, the best strategy for constructing the

HTVS pipeline appears to place the stages in increasing order of complexity and optimally allocate

the computational resources to maximize the return-on-computational-investment (ROCI). In fact,

this observation is fairly intuitive and also in agreement with how screening pipelines are typically

constructed in real-world applications.
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Configuration High correlation (ρ = 0.8) Low correlation (ρ = 0.5)
Potential

candidates Total cost
Effective

cost
Comp.
savings

Potential
candidates Total cost

Effective
cost

Comp.
savings

[S4] 100 100, 000, 000 1, 000, 000 0% 100 100, 000, 000 1, 000, 000 0%
[S1, S4] 94 22, 372, 654 238, 007 76.20% 89 56, 551, 129 635, 406 36.46%
[S2, S4] 96 15, 511, 702 161, 580 83.84% 90 43, 620, 751 484, 675 51.53%
[S3, S4] 98 18, 152, 330 185, 228 81.48% 92 41, 522, 035 451, 326 54.87%

[S1, S2, S4] 97 17, 890, 176 184, 435 81.56% 94 53, 340, 817 567, 456 43.25%
[S1, S3, S4] 98 14, 451, 644 147, 466 85.25% 94 47, 550, 232 505, 854 49.41%
[S2, S1, S4] 97 18, 291, 054 188, 568 81.14% 94 53, 513, 582 569, 293 43.07%
[S2, S3, S4] 98 13, 089, 779 133, 569 86.64% 94 44, 534, 328 473, 769 52.62%
[S3, S1, S4] 99 19, 505, 326 197, 023 80.30% 94 48, 708, 112 518, 171 48.18%
[S3, S2, S4] 99 19, 522, 312 197, 195 80.28% 94 47, 966, 605 510, 283 48.97%

[S1, S2, S3, S4] 99 14, 147, 264 142, 902 85.71% 96 50, 336, 621 524, 340 47.57%
[S1, S3, S2, S4] 99 15, 939, 108 161, 001 83.90% 96 52, 704, 450 549, 005 45.10%
[S2, S1, S3, S4] 99 14, 348, 794 144, 937 85.51% 96 50, 366, 503 524, 651 47.53%
[S2, S3, S1, S4] 99 14, 335, 230 144, 800 85.52% 96 50, 411, 458 525, 119 47.49%
[S3, S1, S2, S4] 99 20, 560, 571 207, 682 79.23% 96 53, 249, 970 554, 687 44.53%
[S3, S2, S1, S4] 99 20, 560, 299 207, 680 79.23% 96 53, 215, 674 554, 330 44.57%

Table 3.1: Performance comparison of various high-throughput virtual screening (HTVS) pipeline
structures jointly optimized via the proposed framework (α = 0.5).

Figure 3.2.B shows the performance evaluation results of the HTVS pipelines, where the

screening stages were moderately correlated to each other (ρ = 0.5). Results are shown for differ-

ent pipeline configurations, where the screening policy was optimized using the proposed frame-

work to maximize the ROCI. Overall, the performance trends were nearly identical to those shown

in Figure 3.2.A, although the overall performance was lower compared to the high correlation sce-

nario (ρ = 0.8) as expected. While the screening performance of the optimized HTVS pipeline

was not as good as the high-correlation scenario, the multi-stage HTVS pipeline with the opti-

mized screening policy still provided a much better trade-off between the computational cost for

screening and the detection performance. For example, if we were to use only the highest-fidelity

model in S4 for screening, the only way to trade accuracy for reduced resource requirements would

be to randomly sample the candidate molecules from X and screen the selected candidates. The

performance curve in this case would be a straight line connecting (0, 0) and (108, 100), below

most of the performance curves for the optimized pipeline approach shown in Figure 3.2.B. As

in the previous case (ρ = 0.8), the best pipeline configuration was to interconnect all four stages,

where the stages were connected to each other in increasing order of complexity.

Table 3.1 shows the performance of the various HTVS pipeline configurations, where the
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approach High correlation (ρ = 0.8) Low correlation (ρ = 0.5)
Potential

candidates Total cost
Effective

cost
Comp.
savings

Potential
candidates Total cost

Effective
cost

Comp.
savings

Proposed (α = 0.75) 100 19, 727, 704 197, 277 80.27% 99 71, 836, 915 725, 625 27.44%
Proposed (α = 0.5) 99 14, 147, 264 142, 902 85.71% 96 50, 336, 621 524, 340 47.57%

Proposed (α = 0.25) 96 10, 926, 901 113, 822 88.62% 86 28, 563, 886 332, 138 66.79%
Baseline (Rs = 0.75) 100 48, 966, 384 489, 664 51.03% 93 48, 662, 387 523, 251 47.67%
Baseline (Rs = 0.5) 98 15, 599, 934 159, 183 84.08% 69 15, 600, 165 226, 089 77.39%

Baseline (Rs = 0.25) 78 2, 537, 498 32, 532 96.75% 28 2, 537, 516 90, 626 90.94%
Baseline (Rs = 0.1) 26 400, 000 15, 385 98.46% 6 400, 008 66, 668 93.33%

Table 3.2: Performance comparison between the proposed pipeline [S1, S2, S3, S4] jointly opti-
mized for throughput and computational efficiency (with various α) and the baseline pipeline
(with different screening ratio Rs) in terms of the total number of detected potential candidates
after screening and the computational cost induced.

screening policy was jointly optimized for both throughput and computational efficiency. The

joint optimization problem is formally defined in Eq. (3.5), and α was set to 0.5 in these simula-

tions. As a reference, the first row (configuration [S4]) shows the performance of solely relying on

the last stage S4 for screening the molecules without utilizing a multi-stage pipeline. The effective

cost is defined as the total computational cost divided by the total number of molecules detected by

the screening pipeline that satisfy the target criterion (i.e., average computational cost per detected

candidate molecule). The computational savings of a given pipeline configuration is calculated

by comparing its effective cost to that of the reference configuration (i.e., [S4]). As we can see in

Table 3.1, our proposed HTVS pipeline optimization framework was able to significantly improve

the overall screening performance across all pipeline configurations in a highly robust manner.

For example, for ρ = 0.8, the optimized pipelines consistently led to computational savings rang-

ing from 76.20% to 86.64% compared to the reference, while detecting 94 ∼ 99% of the desired

candidates that meet the target criterion. Although the overall efficiency of the HTVS pipelines

slightly decreased when the neighboring stages were less correlated (ρ = 0.5), the pipelines were

nevertheless effective in saving computational resources. As shown in Table 3.1, the optimized

HTVS pipelines detected 89% ∼ 96% of all desired candidate molecules with computational sav-

ings ranging between 36.46% and 54.87%.

For further evaluation of the proposed framework, we performed additional experiments based

on the four-stage pipeline [S1, S2, S3, S4]. In this experiment, we first investigated the impact of
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α on the screening performance. Next, we compared the performance of the optimal screening

policy with the performance of a baseline policy that mimics a typical screening scenario in real-

world applications (e.g., see [63]). The baseline policy selects the top Rs% candidate molecules

at each stage and passes them to the next stage while discarding the rest. This baseline screening

policy is agnostic of the joint score distribution of the multiple stages in the HTVS and aims to

reduce the overall computational cost by passing only the top candidates to subsequent stages that

are more costly. Similar strategies are in fact often adopted in practice due to their simplicity.

In our simulations, we assumed the proportion Rs is uniform across the screening stages. The

performance evaluation results are summarized in Table 3.2. When the neighboring stages were

highly correlated (ρ = 0.8), the optimized pipelines detected 100, 99, and 96 candidate molecules

at a total cost of 19, 727, 704; 14, 147, 264; and 10, 926, 901, respectively. Interestingly, when α

was reduced from 0.75 to 0.25 (i.e., trading accuracy for higher efficiency), the number of detected

candidate molecules decreased only by 4 (i.e., from 100 to 96), while leading to an additional

computational savings of 8 percentage points (i.e., from 80.27% to 88.62%). On the other hand,

the performance of the baseline screening policy was highly unpredictable and very sensitive to the

choice ofRs. For example, although the baseline withRs = 0.75 found all the potential candidates,

the effective cost of the baseline was significantly higher than that of the proposed optimized

pipeline with [α = 0.75]. For Rs = 0.5, the baseline detected 98 potential candidates (out of 100)

with a total cost of 15, 599, 934, which was higher than the total cost of the optimized pipeline that

detected 99 potential candidates. The baseline pipelines with Rs = 0.1 and 0.25 selected 26% and

78% of the potential candidates, respectively. Considering that the primary goal of such a pipeline

is to detect the largest number of potential candidates in a computationally efficient manner, these

results clearly showed that this baseline screening scheme that mimics conventional screening

pipelines results in unreliable and suboptimal performance even when the neighboring stages were

highly correlated to each other. While the baseline may lead to reasonably good performance

for certain Rs, it is important to note that we cannot determine the optimal Rs in advance as the

approach is agnostic to the relationships between different stages. As a result, the application of
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this baseline screening pipeline may significantly degrade the screening performance in practice.

When the correlation between the neighboring stages was relatively low (ρ = 0.5), the overall

performance of the proposed pipeline degraded as expected. In this case, the pipeline jointly

optimized for screening accuracy as well as efficiency with α set to 0.75, 0.5, and 0.25 detected

99, 96, and 86 potential candidates with the computational cost of 71, 836, 915, 50, 336, 621, and

28, 563, 886, respectively. As in the high correlation case, the performance of the baseline scheme

significantly varied and was sensitive to the choice of Rs.

To demonstrate the efficacy of the proposed optimization framework in a real-world applica-

tion, we considered an optimal computational screening campaign for the identification of lncR-

NAs. Given a large number of RNA transcripts, the goal is to efficiently and accurately detect

lncRNA transcripts through an HTVS pipeline. In recent years, interests in lncRNAs have been

constantly increasing in relevant research communities, as there is growing evidence that lncRNAs

and their roles in various biological processes are closely associated with the development of com-

plex and often hard-to-treat diseases including Alzheimer’s diseases [102, 103, 104], cardiovascu-

lar diseases [105, 106], as well as several types of cancer [107, 108, 109, 110]. RNA sequencing

techniques are nowadays routinely used to investigate the main functional molecules and their

molecular interactions responsible for the initiation, progression, and manifestation of such com-

plex diseases. Consequently, the accurate detection of lncRNA transcripts from a potentially huge

number of sequenced RNA transcripts is a fundamental step in studying lncRNA-disease associa-

tion. While several lncRNA prediction algorithms have been developed so far [111, 112, 113, 114],

each of which with its own pros and cons, no HTVS pipeline has been proposed to date for fast

and reliable screening of lncRNAs.

First, we collected the nucleotide sequences of Homo sapiens RNA transcripts from GEN-

CODE v38 (May 5, 2021) [115], which consists of 48, 752 lncRNA sequences and 106, 143 protein-

coding sequences. We filtered out sequences that contain any unknown nucleotides (other than

A, U, C, or G) and sequences whose length exceeds 3, 000nt. This resulted in 45, 216 lncRNA

sequences and 79, 030 protein-coding sequences. Next, we applied a clustering algorithm CD-
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Algorithm Accuracy Sensitivity Specificity Time per RNA (ms)
CPC2 [113] 0.7154 0.5760 0.9493 2.5265
CPAT [111] 0.8217 0.6861 0.9817 2.7336
PLEK [112] 0.7050 0.5666 0.9478 83.1765

LncFinder [114] 0.8329 0.7062 0.9678 2,495.6231

Table 3.3: Performance of the four individual long non-coding ribonucleic acids (lncRNAs) pre-
diction algorithms that constitute the lncRNA HTVS pipeline. The average accuracy, sensitivity,
specificity, and processing time (per RNA transcript) are shown.

hit [116] to lncRNAs and protein-coding RNAs, respectively, to remove redundant sequences. We

finally obtained a set of 104, 733 RNA transcripts, consisting of 39, 785 lncRNA sequences and

64, 948 protein-coding sequences.

For the construction of the lncRNA screening pipeline, we selected four state-of-the-art lncRNA

prediction algorithms that have been shown to achieve good prediction performance: CPC2 (Cod-

ing Potential Calculator 2) [113], CPAT (Coding Potential Assessment Tool) [111], PLEK (Predic-

tor of LncRNAs and mEssenger RNAs based on an improved k-mer scheme) [112], and LncFinder

[114].

Table 3.3 summarizes the performance of the individual algorithm based on the GENCODE

dataset, preprocessed as described previously. We assessed the accuracy, sensitivity, and speci-

ficity of the respective lncRNA prediction algorithms. For algorithm CPAT, which yields confi-

dence scores between 0 and 1 rather than a binary output, we set the decision boundary to 0.5 for

lncRNA classification. As shown in Table 3.3, LncFinder achieved the accuracy, sensitivity, and

specificity of 0.8329, 0.7062, and 0.9678, respectively, outperforming all other algorithms in terms

of accuracy and sensitivity. However, LncFinder also had the highest computational cost among

the compared algorithm, where processing an RNA transcript required 2, 495.6231 milliseconds on

average. CPAT was the second-best performer among the four in terms of accuracy and sensitiv-

ity. Furthermore, CPAT also achieved the highest specificity. CPC2 and PLEK were less accurate

compared to LncFinder and CPAT in terms of accuracy, sensitivity, and specificity. Despite their

high computational efficiency, both CPC2 and CPAT also outperformed PLEK based on overall
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CPC2 CPAT LncFinderPLEK

Figure 3.3: One of the optimal structures of the HTVS pipeline for selecting long non-coding
ribonucleic acids (lncRNAs).

Figure 3.4: The heat map showing the Pearson’s correlation coefficient between different stages.
CPAT had the highest correlation to LncFinder. While PLEK was computationally more complex
compared to CPAT, it showed a relatively lower correlation to LncFinder.

accuracy.

As we previously observed from the performance assessment results based on the synthetic

pipeline, the efficacy of the optimized HTVS pipeline is critically dependent on the correlation

between the stages constituting the pipeline. The proposed HTVS optimization framework aims

to exploit the correlation structure across different screening stages to find the optimal screening

policy that strikes the optimal balance between the screening throughput and the computational

cost of screening. Here we placed LncFinder–the most accurate and the most computationally

costly algorithm among the four–in the final stage. In the first three stages in the HTVS pipeline, we

placed CPC2, CPAT, and PLEK, in the order of increasing computational complexity. The resulting

HTVS pipeline structure is depicted in Figure 3.3. After constructing the screening pipeline, we

computed the Pearson’s correlation coefficient between the predictive output scores obtained from

different algorithms. As shown in Figure 3.4, CPAT showed the highest correlation with LncFinder

in the last stage (with a correlation coefficient of 0.93), the highest among the first three stages in
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the screening pipeline.

To apply our proposed HTVS optimization framework, we first estimated the joint probabil-

ity distribution p (y1, y2, y3, y4) of the predictive scores generated by the four different lncRNA

prediction algorithms–CPC2 (y1), CPAT (y2), PLEK (y3), and LncFinder (y4)–via the EM algo-

rithm [100]. For training, 4% of the preprocessed GENCODE data was used. Note that all the

computational lncRNA identification algorithms considered in this study output protein-coding

probabilities, hence a higher output value corresponds to a higher probability for a given transcript

to be protein-coding. Since our goal was to identify the lncRNAs, we multiplied the output scores

generated by the algorithms by −1 such that higher values represent higher chances to be lncRNA

transcripts. The screening threshold for the LncFinder in the last stage of the HTVS pipeline was

set to λ4 = 0.2, which leads to the optimal overall performance of LncFinder with a good balance

between sensitivity and specificity.

Figure 3.5 shows the performance of the optimized lncRNA HTVS pipeline for various pipeline

structures with the different numbers of stages and ordering. The black horizontal dashed line

indicates the total number of potential candidates (i.e., the total number of functional lncRNAs in

the test set) and the black vertical dashed line shows the total computational cost (referred to as

the “original cost” as before) that would be needed for screening all candidates based on the last

stage LncFinder alone, without using the HTVS pipeline. Black vertical dotted lines are located

at intervals of 1/10 of this original cost. Underneath each dotted line, the number of potential

candidates (i.e., true functional lncRNAs) detected by each optimized HTVS pipeline is shown

(see the columns in the table aligned with the dotted lines in the plot).

As before, we assumed that the candidates are batch-processed at each stage. As a result,

for a given pipeline structure, the computational cost of the first stage determined the minimum

computational resources needed to start screening. The correlation between the neighboring stages

was closely related to the slope of the corresponding performance curve, which is a phenomenon

that we already noticed before based on synthetic pipelines. For example, at 10% of the original

cost, the pipelines starting with PLEK (i.e., S3) showed the worst performance among the tested
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10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

9,973 20,280 29,452 37,071 43,250 48,210 50,220 50,265 50,266 50,266

10,020 20,418 30,749 40,615 47,400 49,719 50,244 50,266 50,266 50,266

6,218 15,643 24,246 32,032 39,017 44,202 47,696 49,447 50,091 50,254

10,033 20,364 30,692 40,537 47,365 49,713 50,244 50,266 50,266 50,266

9,563 19,570 28,678 36,164 42,218 47,364 50,125 50,252 50,266 50,266

10,025 20,397 30,765 40,695 47,466 49,717 50,244 50,266 50,266 50,266

9,688 19,753 29,760 39,431 46,680 49,467 50,198 50,264 50,266 50,266

6,530 16,866 26,590 34,663 41,332 46,705 49,974 50,254 50,265 50,266

6,607 16,997 27,335 37,464 45,742 49,239 50,162 50,264 50,266 50,266

9,647 19,711 29,728 39,335 46,647 49,456 50,194 50,264 50,266 50,266

9,518 19,184 28,983 38,729 46,271 49,347 50,160 50,264 50,266 50,266

9,692 19,741 29,768 39,393 46,758 49,464 50,197 50,264 50,266 50,266

9,677 19,734 29,730 39,393 46,745 49,460 50,197 50,264 50,266 50,266

6,448 16,937 27,276 37,429 45,697 49,222 50,158 50,264 50,266 50,266

6,601 16,964 27,329 37,429 45,709 49,230 50,159 50,264 50,266 50,266

Figure 3.5: Performance evaluation of the optimized lncRNA HTVS pipeline. The number of
potential candidates (i.e., lncRNAs) detected by the HTVS pipeline is shown under various com-
putational budget constraints (x-axis). Various different pipeline structures were tested, where the
results show that the proposed optimization framework leads to efficient and reliable performance
regardless of the structure used.
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pipelines in terms of the throughput. Specifically, [S3, S4], [S3, S1, S4], [S3, S2, S4], [S3, S1, S2, S4],

and [S3, S2, S1, S4] detected 6, 218; 6, 530; 6, 607; 6, 448; and 6, 601 lncRNAs, respectively. On the

other hand, pipelines starting with either CPC2 or CPAT (i.e., S1 or S2) detected 9, 518 to 10, 033

lncRNAs at the same cost. In addition, pipelines [S2, S4], [S1, S2, S4], [S2, S1, S4], [S2, S3, S4],

[S3, S2, S4], [S1, S2, S3, S4], [S1, S3, S2, S4], [S2, S1, S3, S4], [S2, S3, S1, S4], [S3, S1, S2, S4], and

[S3, S2, S1, S4] including the second stage associated with CPAT that is highly correlated to the last

stage LncFinder showed the steepest performance improvement. As a result, all HTVS pipelines

that include CPAT were able to identify nearly all true lncRNAs (i.e., 45, 697 to 47, 466) at only

50% of the original cost, regardless of at which stage CPAT was placed in the pipeline.

While the structure of the HTVS pipeline impacts the overall screening performance, Figure 3.5

shows that our proposed optimization framework alleviated the performance dependency on the un-

derlying structure by optimally exploiting the relationships across different stages. For example,

although the optimized pipeline [S1, S2, S4] outperformed the optimized pipeline [S1, S2, S3, S4],

which additionally included PLEK (i.e., S3), the performance gap was not very significant. The

maximum difference between the two pipeline structures in terms of the detected lncRNAs was

1, 202 when the computational budget was set at 40% of the original cost. However, when consider-

ing that PLEK (S3) was computationally much more expensive compared to CPC2 (S1) and CPAT

(S2) and also had a lower correlation with LncFinder (S4), the throughput difference of 1, 202 was

only about 2.4% of the total lncRNAs in the test dataset, which is relatively small. Moreover, this

throughput difference was drastically reduced as the available computational resources increased.

For example, when the computational budget was set at 70% of the original cost, the throughput

difference between the two pipelines was only 50 (see Appendix E for detailed simulation results).

In practice, real-world HTVS pipelines may involve various types of screening stages using

multi-fidelity surrogate models. The computational complexity and the fidelity of such surrogate

models may differ significantly and the structure of the pipeline may vastly vary depending on the

domain experts designing the pipeline. Considering these factors, an important advantage of our

proposed HTVS pipeline optimization framework is its capability to consistently attain efficient
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Configuration
Potential

candidates Total cost (ms)
Effective

cost
Computational

savings Accuracy Sensitivity Specificity F1

[S4] 50, 266 261, 374, 090 5, 200 0% 0.8440 0.9264 0.7936 0.8186
[S1, S4] 48, 875 161, 357, 081 3, 301 36.52% 0.8429 0.9075 0.8034 0.8144
[S2, S4] 47, 950 134, 366, 143 2, 802 46.12% 0.8624 0.9215 0.8262 0.8357
[S3, S4] 47, 083 176, 963, 736 3, 758 27.73% 0.8450 0.8876 0.8188 0.8131

[S1, S2, S4] 48, 210 134, 748, 992 2, 795 46.25% 0.8600 0.9216 0.8222 0.8333
[S1, S3, S4] 49, 100 168, 490, 516 3, 432 34.00% 0.8442 0.9120 0.8026 0.8164
[S2, S1, S4] 48, 214 134, 812, 024 2, 796 46.23% 0.8600 0.9216 0.8222 0.8334
[S2, S3, S4] 48, 295 141, 710, 246 2, 934 43.58% 0.8602 0.9230 0.8218 0.8338
[S3, S1, S4] 49, 119 171, 803, 403 3, 498 32.73% 0.8444 0.9124 0.8026 0.8166
[S3, S2, S4] 48, 326 146, 100, 080 3, 023 41.86% 0.8600 0.9231 0.8214 0.8336

[S1, S2, S3, S4] 48, 402 140, 954, 256 2, 912 44.00% 0.8591 0.9228 0.8200 0.8326
[S1, S3, S2, S4] 48, 332 141, 229, 518 2, 922 43.81% 0.8587 0.9215 0.8203 0.8321
[S2, S1, S3, S4] 48, 409 141, 022, 859 2, 913 43.98% 0.8591 0.9229 0.8200 0.8326
[S2, S3, S1, S4] 48, 414 141, 225, 328 2, 917 43.90% 0.8591 0.9230 0.8200 0.8327
[S3, S1, S2, S4] 48, 424 145, 321, 388 3, 001 42.29% 0.8589 0.9228 0.8197 0.8324
[S3, S2, S1, S4] 48, 429 145, 388, 626 3, 002 42.27% 0.8589 0.9229 0.8197 0.8325

Table 3.4: Performance evaluation of the lncRNA HTVS pipeline jointly optimized for through-
put and efficiency. Results are shown for various pipeline configurations, where the optimized
screening policy was used (with α = 0.5).

and accurate screening performance that may weather the effect of potentially suboptimal design

choices in constructing real-world HTVS pipelines.

Next, we evaluated the performance of the lncRNA HTVS pipeline, jointly optimized for both

throughput and efficiency based on the proposed framework (with α = 0.5). The results for various

pipeline configurations are shown in Table 3.4. On average, the optimized HTVS pipeline detected

48, 372 lncRNAs out of 50, 266 total lncRNAs in the test dataset. The average effective cost was

3, 067. Pipeline configurations that include CPAT (S2) achieved relatively higher computational

savings (ranging from 41.86% to 46.25%) compared to those without S2 (ranging from 27.73% to

36.52%). As we have previously observed, our proposed optimization framework was effective in

maintaining its screening efficiency and accuracy even when the pipeline included a stage (e.g.,

PLEK) that is less correlated with the last and the highest-fidelity stage (i.e., LncFinder). In fact,

the inclusion of a suboptimal stage in the HTVS pipeline does not significantly degrade the average

screening performance. This is because the proposed optimization framework enables one to se-

lect the optimal threshold values that can sensibly combine the benefits of the most efficient stages

(such as CPC2 and CPAT in this case) as well as the most accurate stage (LncFinder), thereby

maximizing the expected ROCI. Similar observation can be made regarding the ordering of the
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Approach
Potential

candidates Total cost (ms)
Effective

cost
Computational

savings Accuracy Sensitivity Specificity F1

Proposed (α = 0.75) 48, 965 148, 155, 016 3, 026 41.81% 0.8553 0.9249 0.8126 0.8292
Proposed (α = 0.5) 48, 402 140, 954, 256 2, 912 44.00% 0.8591 0.9228 0.8200 0.8326

Proposed (α = 0.25) 47, 106 131, 830, 857 2, 799 46.17% 0.8650 0.9143 0.8348 0.8373
Baseline (Rs = 0.75) 39, 079 115, 643, 459 2, 959 43.10% 0.8366 0.7761 0.8737 0.7801
Baseline (Rs = 0.5) 12, 653 35, 255, 772 2, 786 46.42% 0.7170 0.2866 0.9807 0.4348

Baseline (Rs = 0.25) 1, 402 4, 963, 415 3, 540 31.92% 0.6318 0.0330 0.9986 0.0638

Table 3.5: Performance of the four-stage lncRNA HTVS pipeline [S1, S2, S3, S4]. The overall
performance of the HTVS pipeline jointly optimized for throughput and efficiency is compared to
that of the baseline screening approach.

multiple screening stages, as Table 3.4 shows that the average performance does not significantly

depend on the actual ordering of the stages when the screening threshold values are optimized via

our proposed framework. For example, when using all four stages in the HTVS pipeline (N = 4),

the optimized pipeline detected 48, 402 lncRNAs on average and with consistent computational

savings ranging between 42.27% and 44.00%. We also evaluated the accuracy of the potential can-

didates screened by the optimized HTVS pipeline based on four performance metrics: accuracy,

sensitivity, specificity, and F1 score. Interestingly, all configurations except for [S1, S4] outper-

formed LncFinder in terms of accuracy. In terms of sensitivity, the optimized pipeline achieved an

average sensitivity of 0.9177. All pipeline configurations resulted in higher specificity compared to

LncFinder. Besides, pipeline configurations that include S2 consistently outperformed LncFinder

in terms of the F1 score.

Finally, we compared the performance of the optimized pipeline to that of the baseline approach

that selects the top Rs% of the incoming candidates for the next stage, where Rs% is a parameter

to be determined by a domain expert. For this comparison, we considered the four-stage pipeline

[S1, S2, S3, S4]. The optimal screening policy was found based on our proposed framework using

three different values of α ∈ {0.25, 0.50, 0.75}. The baseline screening approach was evaluated

based on four different levels of Rs ∈ {25%, 50%, 75%}. The performance assessment results are

summarized in Table 3.5. As shown in Table 3.5, the baseline approach detected fewer lncRNAs

for all values ofRs compared to the optimized pipeline. Specifically, the jointly optimized pipeline

detected 48, 965; 48, 402; and 47, 106 lncRNAs at a cost of 148, 155, 016 (α = 0.75); 140, 954, 256
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(α = 0.50); and 131, 830, 857 (α = 0.25), respectively. On the other hand, the baseline approach

with Rs = 75% detected only 39, 079 lncRNAs at a total cost of 115, 643, 459. For Rs = 50%

and Rs = 25%, the baseline scheme detected only 12, 653 and 1, 402 lncRNAs, respectively. In

terms of the four quality metrics (accuracy, sensitivity, specificity, and F1), the optimized pipeline

outperformed the baseline scheme in terms of accuracy, sensitivity, and F1. The optimized pipeline

resulted in lower specificity compared to the baseline. However, it should be noted that the poten-

tial candidates detected by the optimized HTVS pipeline are remarkably higher compared to the

baseline approach. This is clearly reflected in the much lower sensitivity of the baseline approach,

as shown in Table 3.5. As a result, the baseline approach tended to achieve significantly lower

accuracy and F1 compared to the optimal screening scheme.

3.4 Concluding remarks

In this chapter, we proposed a general mathematical framework for identifying the optimal

screening policy that can maximize the ROCI of an HTVS pipeline. The need for screening a large

set of molecules to detect potential candidates that possess the desired properties frequently arise

in various science and engineering domains, although the design and operation of such screening

pipelines strongly depend on expert intuitions and ad hoc approaches. We aimed to rectify this

problem by taking a principled approach to high-throughput virtual screening (HTVS), thereby

maximizing the screening performance of a given HTVS pipeline, reducing the performance de-

pendence on the pipeline configuration, and enabling quantitative comparison between different

HTVS pipelines based on their optimal achievable performance.

We considered two scenarios for HTVS performance optimization in this study: first, max-

imizing the detection of potential candidate molecules that possess the desired property under

a constrained computational budget; second, jointly optimizing the throughput and the compu-

tational efficiency of the HTVS pipeline when there is no fixed computational budget for the

screening operation. For both scenarios, we have thoroughly tested the performance of our pro-

posed HTVS optimization framework. Comprehensive performance assessment based on synthetic

HTVS pipelines as well as real lncRNA screening pipelines both showed clear advantages of the
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proposed framework. Not only does the HTVS optimization framework remove the guesswork in

the operation of HTVS pipelines to maximize the throughput, enhance the screening accuracy, and

minimize the computational cost, it leads to reliable and consistent screening performance across a

wide variety of HTVS pipeline structures. This is a significant benefit of the proposed framework

that is of practical importance since it makes the overall screening performance robust to varia-

tions and potentially suboptimal design choices in constructing real-world HTVS pipelines. As

there can be infinite different ways of building an HTVS pipeline in real scientific and engineer-

ing applications, it is important to note that our proposed optimization framework can guarantee

near-optimal screening performance for any reasonable design choice regarding the HTVS pipeline

configuration.
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4. CONSTRUCTION AND OPTIMIZATION OF GENERALIZED HIGH-THROUGHPUT

VIRTUAL SCREENING (HTVS) PIPELINE

With the increasing interest in renewable energy sources, there has been an explosive need

to develop novel energy storage devices that can overcome the problems that conventional Li-

ion batteries have suffered [117, 118, 119, 120]. Remarkably, organic electrode material-based

energy storage devices have attracted explosive attention as they possess favorable characteristics.

First, the organic material can be synthesized from earth-abundant precursors such as C, H, O,

or N. Besides, they do not utilize toxic heavy metals that cause serious environmental issues.

More importantly, organic redox-active material-based batteries are highly potent for a significant

increase in capabilities as opposed to the traditional inorganic material-based batteries [117].

One fundamental challenge in developing novel energy storage devices based on organic elec-

trode materials is to construct a subset of the promising organic electrode material candidates that

possess target redox potential (RP) computed at the desired fidelity. Since there are infinitely

many organic materials to be considered and desired fidelity requires an excessive amount of

computational resources per molecule, the exhaustive computational screening campaign is prac-

tically infeasible. Recently, several machine learning studies have been dedicated to predicting

the structure-electrochemical property relationships efficiently [121, 122, 123, 124]. For exam-

ple, in [121], a fully-connected neural network (fcNN) with two hidden layers accurately ap-

proximated the RP of molecules based on ten features–the number of B/C/Li/O/H, the number

of aromatic rings, highest occupied molecular orbital (HOMO), lowest unoccupied molecular or-

bital (LUMO), HOMO-LUMO gap, and electron affinity (EA). However, despite the predictive

efficiency, such machine-learning approaches have not been systematically exploited in the con-

text of an objective-driven computational screening campaign, resulting in only utilizing them for

prioritizing the materials for further evaluation based on the desired fidelity model.

One practical goal-driven approach for effective selection of promising candidates is to build

a high-throughput virtual screening (HTVS) pipeline consisting of various mathematical or surro-
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gate models with different fidelity. In the early stage, HTVS pipelines use computationally efficient

models to discard samples that are unlikely to possess the desired property and pass the remaining

samples to the next stage for further screening based on the higher fidelity models. The surviving

molecules up to the final stage are evaluated at the desired (highest in general) fidelity which is

very accurate but computationally complex. Thanks to the capability of reducing search space

efficiently, HTVS pipeline-based approach has been widely used in various studies including biol-

ogy [66, 67, 68, 69, 70, 71], chemistry [72, 73, 74, 75, 76, 77, 63], and materials science [79, 80].

However, operational strategies for such HTVS pipelines have relied on expert intuition, often

resulting in reasonable but sub-optimal performance of the HTVS pipelines. Recently, a math-

ematical optimization framework for optimizing the throughput and computational efficiency of

the HTVS pipelines has been proposed [125] (Chapter. 3). The central idea of the proposed ap-

proach is to estimate the joint distribution of the scores that are either predicted via approximated

models or computed through mathematical models with different fidelity. Based on the joint score

distribution reflecting how screening stages are interrelated, the proposed approach defines the ob-

jective function and identifies the optimal screening policy. The proposed approach improved the

computational efficiency of the HTVS pipelines by a significant margin while achieving a given

operational objective–maximizing the number of promising molecules whose property meets a

given condition at the desired fidelity–when the scores of a molecule of the screening stages are

highly correlated.

Another practical issue in the HTVS pipeline-based screening campaign is to construct an

HTVS pipeline effectively. Although the previous study provided insight on how one can im-

prove the structure of the existing HTVS pipeline to further enhance the performance of the HTVS

pipeline, the effective HTVS pipeline construction strategy has been a still open problem, espe-

cially when one is given a high-fidelity computational model and a pre-specified target screening

threshold.

In this chapter, we design an optimal computational campaign for computationally efficient

detection of organic electrode materials whose RP computed at desired fidelity model is within a
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target range. To accomplish this, we propose an effective strategy for the construction of an HTVS

pipeline based on a given high-fidelity density functional theory (DFT) computational model. To

be specific, we decompose the high fidelity model into four sequential sub-models, each of which

computes intermediate properties, such as HOMO, LUMO, HOMO-LUMO gap, and EA, that are

needed to compute RP at the high fidelity. The sub-models form a skeleton structure of the HTVS

pipeline. Then, we learn five surrogate models that serve as screening stages by predicting the RP

using the intermediate properties that are available based on the location of the surrogate models

within the HTVS pipeline. Besides, we introduce a concept of sub-surrogate models that predict

the next available intermediate properties based on available features. The predicted properties are

used as virtual features for the surrogate models to improve the predictive accuracy. Finally, we

generalize the HTVS pipeline optimization framework proposed in the previous study [125] such

that the framework is capable of optimizing the HTVS pipeline that screens the materials according

to a target range, not a target threshold. We rigorously evaluate the performance of the optimized

HTVS pipelines in various scenarios.

4.1 Overview of generalized HTVS pipeline

Figure 4.1 illustrates an overview of the proposed computational screening campaign design for

the efficient detection of promising organic electrode materials. Formally, the operational objec-

tive of the campaign is to find subset Y = {x | λL ≤ f (x ∈ X) ≤ λU} that consists of promising

redox-active materials whose RP f (x) computed via the given high fidelity DFT model f is within

target screening range λ = [λL, λU ] from huge initial material set X. We assume that the target

screening range λ is pre-specified by domain experts. As pointed out in [121], due to the excessive

computational complexity of the high-fidelity model f , it is practically impossible to screen all

the materials based solely on the high-fidelity model f . In order to overcome the fundamental is-

sue, we propose a two-step optimal computational campaign design: First, we construct an HTVS

pipeline structure by decomposing the high-fidelity model f into four sub-models f1, f2, . . . , f4 and

learning five machine learning-based surrogate models g1, g2, . . . , g5 that serve as screening stages.

Then, we identify the optimal screening policy ψ∗ =
[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
for the constructed
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Figure 4.1: An overview of the proposed strategy based on a high-throughput virtual screening
(HTVS) pipeline structure, where the primary operational objective is to efficiently detect promis-
ing organic electrode materials whose redox potential (RP) computed via the high fidelity den-
sity functional theory (DFT)-based model f is within pre-specified target range [λL, λU ]. In the
first phase (left panel), we decompose the high-fidelity model f into four sequential sub-models
f1, f2, . . . , f4, computing intermediate properties that are needed to compute RP at the high fi-
delity, to form a skeleton structure of the HTVS pipeline. Then, we learn the surrogate models
gi, i = 1, 2, . . . , 5 based on a different set of intermediate properties to build screening stages
with different fidelity (left panel). In the second phase (right panel), we find the screening policy
ψ∗ =

[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
of the HTVS pipeline via the generalized optimization framework.
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HTVS pipeline via the proposed optimization framework. We generalize the original optimization

framework proposed in the previous study [125] such that the proposed framework can identify the

optimal screening policy based on the target screening range, not a screening threshold.

The left panel of Figure 4.1 depicts the proposed HTVS pipeline construction strategy when

one is given a high-fidelity computational model f with target screening range λ = [λL, λU ]. First,

we decompose the high-fidelity DFT model f into four sequential sub-models fi, i = 1, 2, . . . , 4,

each of which computes the intermediate properties of a material such as HOMO, LUMO, HOMO-

LUMO gap, and EA. Then, we cascade the sub-models to construct the skeleton structure of the

HTVS pipeline. Between the forms fi and fi+1, we learn up to two surrogate models gj that predict

the RP based on available intermediate properties as features. For the second surrogate model

between the sub-models fi and fi+1, we learn sub-surrogate models gj,l that predict intermediate

properties which will be computed via the following sub-model and use the predicted intermediate

properties as features to improve the predictive accuracy of the surrogate model gj . As shown

in Figure 4.1 (left bottom), the resulting HTVS pipeline consists of five surrogate models, where

surrogate model gi is associated with screening stage Si with screening policy λi = [λi,L, λi,U ].

Each stage Si associated with surrogate model gi or sub-module fj predicts the RP of all the

samples delivered from the previous stage Si−1. Then, Si discards the materials whose predicted

potential is out of the corresponding range λi = [λi,L, λi,U ] and passes the remaining samples for

further DFT computation based on the remaining DFT computational steps marked in white. In

this manner, we can gradually narrow down the search space while continuing to compute the

intermediate features that are essential to computing RP at high fidelity for the surviving redox-

active materials.

In the second phase, we find optimal screening policy ψ∗ =
[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
which

is used for decision-making (whether pass the sample to the next stage or discard it) in screen-

ing stages associated with machine learning surrogates. To accomplish this, we generalize the

original optimization framework proposed in [125] such that the generalized framework is ca-

pable of identifying the optimal screening policy for HTVS pipelines built for computational
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screening campaigns with a target screening range. The proposed optimization framework is

a two-step approach as shown in the right panel of Figure 4.1. First, we estimate joint distri-

bution p1,2,...,N (y1, y2, . . . , yN) of the RP values predicted via machine learning surrogate mod-

els or computed through the high-fidelity model. The joint score distribution provides informa-

tion on how the screening stages are interrelated. Then, based on the joint score distribution

p1,2,...,N (y1, y2, . . . , yN), we formulate the objective function and find the optimal screening policy

ψ∗ =
[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
. In that regard, we considered two practical scenarios. We consider

the case where we want to maximize the throughput of the HTVS pipeline with fixed computa-

tional budget constraint C. In the second case, the objective is to jointly optimize the throughput

of the HTVS pipeline and computational efficiency. For the second scenario, we introduce weight

α ∈ [0, 1] that determines the relative importance between the relative reward r̄ (ψ, λL, λU) and

normalized cost function h̄ (ψ, λL, λU).

4.2 Methods

As shown in Figure 4.1, the proposed approach addresses two fundamental issues in compu-

tational screening campaigns based on an HTVS pipeline structure, designing an HTVS pipeline

based on a high-fidelity model and finding the optimal screening policy.

As shown in Figure 4.2 (right panel), the high-fidelity DFT computational model computes

several features of a molecule in neutral and anionic states to compute the RP. In order to construct

the skeleton structure of the HTVS pipeline, we first decompose the high-fidelity model f into four

computational modules f1, f2, . . . , f4 and cascade them sequentially, as shown in the right panel in

Figure 4.2. For a given redox-active material, we first compute the primitive features such as the

number of C, B, O, Li, H, and aromatic rings via f1. Then, we compute the HOMO, LUMO, and

HOMO-LUMO gap by combining a geometric optimizer and single-point energy/thermochemistry

calculator for the material in a neutral state (f2). Then, we compute the EA of the material based on

the available intermediate features and geometrically optimized material in the neutral and anionic

states via f3. Finally, we calculate the solvation-free energies of the materials in both states to

obtain the RP through f4.
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Figure 4.2: Illustration of constructing the skeleton structure of the HTVS pipeline based on the
high-fidelity density functional theory (DFT) model.

Surrogate symbol Model Descriptors Predicting property
g1 Kernel

ridge
regressor

(RBF)

Primitive features (PFs): #C, #B, #O, #Li, #H, # of aromatic rings

RP
g2 PFs, HOMO (pred.), LUMO (pred.), HOMO-LUMO gap (pred.)
g3 PFs, HOMO, LUMO, HOMO-LUMO gap
g4 PFs, HOMO, LUMO, HOMO-LUMO gap, EA (pred.)
g5 PFs, HOMO, LUMO, HOMO-LUMO gap, EA
g2,1 Kernel

ridge
regressor

(RBF)

PFs
HOMO

g2,2 LUMO
g2,3 HOMO-LUMO gap
g4,1 PFs, HOMO, LUMO, HOMO-LUMO gap EA

Table 4.1: Specifications of the surrogate models (1 to 5) and sub-surrogate models (2.1 to 2.3 and
4.1). Sub-surrogates predict intermediate properties used as virtual descriptors for the surrogate
models to improve predictive capacity.
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Based on the skeleton structure of the HTVS pipeline as shown in the right panel of Figure 4.2,

we learn five surrogate models to build screening stages which will be placed between the se-

quential computational modules f1, f2, . . . , f4. The five surrogate models predict the RP using a

different set of descriptors available based on the location of the surrogate model. For example,

surrogate model g1 located right after f1 predicts the RP based on only the primitive descriptors.

We introduce a concept of the sub-surrogate model that predicts the next available descriptors and

use them as virtual features to improve the predictive accuracy of the surrogate models. For ex-

ample, the second surrogate model g2 located between g1 and f2 uses additional predicted features

such as HOMO, LUMO, and HOMO-LUMO gap predicted via sub-surrogate models g2,1, g2,2, and

g2,3 in order to improve the prediction accuracy. Table 4.1 shows the specification of all the surro-

gate models trained in this study. We use a kernel ridge regression (KRR) model that effectively

regresses the response in general (see Appendix G).

Similar to the original optimization framework proposed in [125], the first step of the gener-

alized optimization framework for optimizing the performance of HTVS pipelines is to estimate

joint score distribution p of the screening stages associated with machine learning-based surrogates

gi and the high-fidelity model f . In this study, we use parametric spectral estimation based on a

multivariate Gaussian mixture model. Specifically, we estimate the parameters of the bi-modal

multivariate Gaussian distribution via the expectation-maximization (EM) algorithm [100].

In the first computational campaign scenario, we assume that the operational objective is to

maximize the number of organic electrode materials whose RP computed via a given high fidelity

model f is within pre-specified target range [λL, λU ] under computational budget constraint C. To

this aim, we identify the optimal screening policy ψ∗ =
[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
of the screening

stages Si, i = 1, 2, . . . , N − 1 associated with a machine learning-based surrogate fi, such that the

cardinality of the output set Y is maximized when target range [λL, λU ] of the last stage SN and

available computational budget C are given.

Let p (y1, y2, . . . , yN) be a joint distribution of the RP values either computed via high-fidelity

DFT model f or predicted through machine learning surrogate models gi, i = 1, 2, . . . , 5. Let us
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denote the reward function r (λ) according to screening ranges λ1:N = [λ1,L, λ1,U , λ2,L, . . . , λU ]

of the screening stages Si, i = 1, 2, . . . , N , as follows:

r (λ1:N) =

[λN ,λN−1,U ,...,λ1,U ]∫
· · ·
∫

[λL,λN−1,L,...,λ1,L]

p (y1, y2, . . . , yN) dy1dy2 · · · dyN . (4.1)

Note that r (λ1:N) is proportional to the number of the potential samples that went through the

screening pipeline.

We can find the optimal screening policyψ∗ =
[
λ∗1,L, λ

∗
1,U , . . . , λ

∗
N−1,U

]
of the surrogate-based

stages Si, i = 1, 2, . . . , N − 1, maximizing |Y|, by solving the constrained optimization problem

as follows:

ψ∗ = arg max
ψ∈R2(N−1)

r ([ψ,λ]) (4.2)

s.t.
N∑
i=1

ci|Xi| ≤ C, (4.3)

where |Xi| is the number of samples that passed the previous stages from S1 to Si−1, defined as

follows:

|Xi| = |X|
[λi−1,U ,λi−2,U ,...,λ1,U ]∫

· · ·
∫

[λi−1,L,λi−2,L,...,λ1,L]

p1:i−1 (y1, y2, . . . , yi−1) dy1dy2 · · · dyi−1, (4.4)

where p1:i−1 is a marginal score distribution by marginalizing over p of yi to yN .

In this scenario, we jointly optimize the throughput and computational resource consumption

of the HTVS pipeline by solving the optimization problem as follows:

ψ∗ = arg min
ψ∈R2(N−1)

αr̄ ([ψ,λ]) + (1− α) h̄ ([ψ,λ]) , (4.5)

where α ∈ [0, 1] is a weight parameter that determines the relative importance between the relative

reward function ḡ ([ψ,λ]) and the normalized total cost function h̄ ([ψ,λ]) defined, respectively,
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as follows:

r̄ ([ψ,λ]) =
r ([−∞,∞, . . . ,∞,λ])− r ([ψ,λ])

r ([−∞,∞, . . . ,∞,λ])
(4.6)

=

∫ λU
λL

pN (yN) dyN − r ([ψ,λ])∫ λN,U

λN,L
pN (yN) dyN

, (4.7)

h̄ ([ψ,λ]) =
1

N |X|maxi ci

N∑
i=1

ci|Xi|, (4.8)

where sN is a marginal score distribution by marginalizing over p of y1 to yN−1.

4.3 Results and discussion

In order to validate the proposed computational screening design approach for detecting promis-

ing redox-active materials, we first collected 109 organic electrode materials designed in previous

studies. [121, 123, 95, 92, 91, 93, 96, 99, 94]. Then, we computed electronic features of the mate-

rials, such as HOMO, LUMO, HOMO-LUMO gap, and RP (see Appendix F for further details).

Since our DFT dataset has been developed over multiple studies and under several different

computational machines, we needed a method to fairly estimate the computational complexity

(to calculate RP, as well as the input DFT features) for all the molecules in our dataset. There-

fore, for consistency, we performed the necessary calculations on a single representative case,

anthraquinone, and recorded the computational time. Using the computational time for this case

and the well-known scaling factor for standard DFT computational complexity O(N3) [126, 127],

we estimated the computational complexity for the remaining cases accordingly.

We performed simulations including learning surrogates and optimization on a system equipped

with Intel i7-8809G and 32 GB memory. We utilized the differential evolution algorithm to opti-

mize the HTVS pipelines. We evaluated the time complexity of a representative molecule on Intel

Xeon E5-2650 v3 and 64 GB memory.

To evaluate the efficacy of the proposed HTVS construction strategy, we computed Pearson’s

correlation of the RP values computed via the high-fidelity model f and predicted through sur-
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Figure 4.3: Pearson’s correlation of the RP values either computed via the high-fidelity DFT model
f or predicted surrogate models gi, i = 1, 2, . . . , 5. As we used more descriptors, the correlation of
the RP predicted via the surrogate models in comparison to the high-fidelity DFT model increased
as we expected. Note that the predicted descriptors via the sub-surrogate model helped improve
the regression performance.

rogate models gi, i = 1, 2, . . . , 5. We used a KRR model that effectively regresses the response

in general (see Appendix G). We optimized hyperparameters of each surrogate via a grid search

based on 5-fold cross-validation (see Appendix H). Note that we used all the materials to learn

the surrogate models as our major concern was not to design the best surrogate models. However,

for completeness, we provide the performance evaluation results of all the computational screen-

ing scenario considered in this study based on a strict 5-fold cross-validation (see Appendix I).

As shown in Figure 4.3, the correlation of the RP values between the surrogate model gi and the

high-fidelity model f gradually increased as the number of used properties increased. Specifically,

the correlation between the RP values predicted via the first surrogate model g1 that uses only the

primitive features to the RP values computed via the high-fidelity model f is 0.8572. Interestingly,

the predicted HOMO, LUMO, and HOMO-LUMO gap via the sub-surrogate models g2,1, g2,2,

and g2,3 help increase the correlation of the second surrogate model g2, showing a correlation of
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0.8614. Similarly, the predicted EA via sub-surrogate model g4,1 helped improve the performance

of the surrogate model by 0.0179. Lastly, the last surrogate model that utilizes all the chemical

descriptors showed the highest correlation with respect to the high-fidelity model f . These simula-

tion results clearly show that the proposed HTVS construction strategy is effective to configure the

surrogate models that serve as screening stages with the increasing order of regression accuracy

and computational complexity.

To evaluate the performance of the optimized HTVS pipeline, we first considered a realistic

computational screening scenario where the operational objective is to effectively select the or-

ganic redox-active materials whose RP computed at high fidelity is above target threshold 2.5 V

vs. Li/Li+ (i.e., λ = [2.5 V,∞ V]) which is exhibited by many organic cathode materials under a

typical voltage window of 1 ∼ 4 V vs. Li/Li+ [128].

Figure 4.4 shows the performance evaluation results of the optimized HTVS pipeline under a

computational resource constraint in seconds (x-axis) in terms of sensitivity, specificity, F1 score,

and accuracy based on a 5-fold cross-validation. Sensitivity is a ratio of the detected potential can-

didates whose RP exceeds or is equal to the minimum target threshold of 2.5 V to all the promising

materials in the test dataset. Specificity is defined as a ratio of the discarded negative molecules to

negative samples. F1 score is a harmonic mean between the positive predictive rate and specificity.

Lastly, accuracy is a correctly selected promising material ratio. The shaded area along each per-

formance curve represents the standard deviation of the performance on the five cross-validation

datasets. The optimized HTVS pipeline effectively distributed a given computational budget over

the stages and maximized throughput (i.e., the number of promising redox-active materials meet-

ing the given condition). On average, the optimized HTVS pipeline selected all potential materials

with only 84.11% of the original computational resource budget (6, 286, 056, blue vertical line)

that requires for screening all the organic materials via the high fidelity model f . Besides, 80%

of potential materials were detected with 58.62% of the original budget. Note that specificity was

always 1 throughout the simulation as the redox-active materials were screened based on the high

fidelity model in the last stage S6. In other words, all the remaining negative samples arriving at
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Figure 4.4: Performance evaluation of the optimized HTVS pipeline based on a 5-fold cross-
validation. The shaded area along each curve represents the standard deviation of the performance
on the five cross-validation datasets. The optimal screening policy maximized the throughput (i.e.,
the number of potential candidates whose RP exceeds or is equal to the target threshold of 2.5
V) under computational budget constraints (x-axis). The optimized HTVS pipeline effectively
allocated the computational resource over the multiple screening stages, thereby detecting all the
potential candidates at only 84.11% of the original computational cost of 6, 286, 056 (blue vertical
line) which would be required if solely the high fidelity model f were used for screening.
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Figure 4.5: Performance evaluation of the individual stages constituting the HTVS pipeline based
on a 5-fold cross-validation. In general, sensitivity tended to increase as the allocated computa-
tional budget increased. On the other hand, the specificity of the stages (except for the last stage)
tended to decrease as the allocated resource increased. This was because the earlier stages were
designed to pass a larger number of candidates to later stages as the available budget grew, in order
to evaluate and screen the materials with higher accuracy. For the same reason, the F1 score and
the accuracy generally increased as the computational budget grew, but they eventually decreased
due to the increasing false-positive rates as a result of passing too many candidates to subsequent
stages.

the final stage were discarded. For this reason, the F1 score reached 1 on average where sensitivity

became 1. We could observe a similar trend in accuracy. Specifically, the accuracy reached 80.17%

when only 46.73% of computational resources were given. The pipeline achieved perfect accuracy

at the cost of 5, 287, 453 seconds (84.11% of the original cost) on average.

Figure 4.5 illustrates the performance evaluation results at each stage in the optimized HTVS

pipeline in terms of sensitivity, specificity, F1 score, and accuracy based on a 5-fold cross-validation.

The sensitivity of the screening stages tended to increase as the computational resource budget rose.
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For a given computational budget, the sensitivity of Si was always greater than or equal to that of

later stages Sj>i. This was due to the structure of the HTVS pipeline that the later stages processed

only the materials delivered from the previous screening stages. On the other hand, the specificity

except for the final stage tended to decrease as the available budget increased. In other words,

the earlier screening stages allowed the later stages with higher accuracy to involve the screening

campaign more as the computational resource grew. As a result, the F1 score tended to increase

sharply at the beginning but slowed down the tendency to rise later. The trend of the accuracy was

similar to that of the F1 score due to the same reason. The accuracy of the earlier stages eventually

fell since they passed too many materials to later stages, resulting in higher false-positive rates.

Note that the performance fluctuation of the preceding stages was relatively severe, while the per-

formance of the HTVS pipeline (i.e., S6) showed a very gentle change, implying that the optimal

screening policy was not unique from a numerical point of view.

Figure 4.6 shows the number of discarded materials at each stage in the optimized HTVS

pipeline with respect to an available computational budget (x-axis) based on 5-fold cross-validation.

On average, the first stage S1 (left top, green dotted line) predicting the RP based on only primi-

tive features, such as the numbers of various atoms and aromatic rings, contributed to significantly

screening materials when the available computational budget was limited. As the computational

budget increased, the number of molecules discarded in the first stage gradually decreased, allow-

ing subsequent screening stages to involve in screening with higher accuracy. For example, the

surrogate models discarded 75.09, 4.62, 0, 0, 0.21, and 0.01 materials, respectively, when there

were only 320, 452 (5.1% of the original computational cost) computational resources. With a

computational resource of 5, 287, 453, the screening stages eliminated 5.8, 5.8, 0.4, 7.0, 13.4, and

3.4 materials, respectively. During the simulation, each stage rejected 37.72, 6.42, 0.13, 2.23, 4.13,

and 0.95 materials on average, respectively.

Table 4.2 shows the performance evaluation results of the jointly optimized HTVS pipeline

with various α in terms of detected materials, total cost (in seconds), effective cost, sensitivity,

specificity, F1 score, and accuracy based on a 5-fold cross-validation. α ∈ [0, 1] is a parameter
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Figure 4.6: The number of discarded molecules at each screening stage with respect to available
computational resource budget (x-axis) based on a 5-fold cross-validation. The first stage S1 (left
top, green dotted line) that predicts the RP based only on primitive features filtered out a significant
proportion of candidates when the computational budget was tightly constrained. As the computa-
tional budget increased, the number of molecules discarded at the first stage gradually decreased,
allowing subsequent higher-accuracy stages to get more actively involved in screening.

α
Detected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 score Accuracy

0.25 40.4 3, 450, 440 85, 407 0.7769 1 0.8714 0.8619
0.5 47.8 4, 365, 990 91, 339 0.9192 1 0.9574 0.95
0.75 49.8 4, 645, 890 93, 291 0.9577 1 0.9782 0.9738

Table 4.2: Performance evaluation of the jointly optimized HTVS pipeline based on a 5-fold cross-
validation (target RP threshold at the last stage set to 2.5 V). As α weighting between the through-
put and computational efficiency increased from 0.25 to 0.75, all the throughput-related perfor-
mance metrics tended to improve at the cost of higher computational requirements (i.e., increased
total cost and effective cost). Overall, the optimized HTVS pipeline struck a good balance between
throughput and computational efficiency.
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that weights between the throughput and computational efficiency of the pipeline. The detected

materials is the cardinality of the resulting subset set Y. Total cost is the amount of time to screen

input set X and the effective cost is defined as the ratio of the total cost to the detected materials.

Sensitivity is a ratio of the number of selected materials to the number of total promising redox-

active materials in the test dataset. Specificity is defined as a ratio of the discarded samples that

do not meet the desired criterion to negative samples. F1 score is a harmonic mean between the

positive predictive rate and specificity, and accuracy is a correctly classified material ratio. As

α increased from 0.25 to 0.75, the number of selected materials whose RP value at high fidelity

is greater than or equal to 2.5 V rose from 40.4 to 49.8 out of 52 promising organic electrode

materials. To be specific, on average, the pipeline picked 49.8 out of 52 promising materials

when α was 0.75 at the effective cost of 93, 291. When alpha was 0.25, the optimized HTVS

pipeline detected 40.4 samples at the effective cost of 85, 407. In terms of saving computational

resources, although the total computational cost and effective cost grew when α changed from

0.25 to 0.75, the overall computational complexity was significantly less than that of the original

computational cost of 6, 286, 056 and original effective cost of 120, 886, respectively. Besides,

other evaluation metrics, including accuracy, sensitivity, and F1 score noticeably improved when α

increased. Overall, the optimized HTVS pipeline with various α found an efficient and reasonable

consensus between throughput and computational complexity.

Next, we considered a more practical computational screening campaign scenario where the

operational objective of the campaign is to detect promising redox-active materials whose RP com-

puted at the desired fidelity is within a target range. In fact, higher RP of organic cathode materials

is desirable for increasing the output voltage of a Li-ion cell. However, the peak voltage could

be constrained due to limiting factors such as the thermodynamic stability of organic electrolyte

material. Based on our previous works, we selected 3.2 V vs. Li/Li+ as the target upper bound for

the computational screening campaign, resulting in targeting screening range [2.5 V, 3.2 V].

Figure 4.7 demonstrates the performance evaluation results of the optimized HTVS pipeline

under a computational resource budget constraint (x-axis) for detecting organic electrode materi-
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Figure 4.7: Performance evaluation of the optimized HTVS pipeline that aims to detect promising
redox-active materials whose RP at the desired fidelity is within the target range [2.5 V, 3.2 V]
based on a 5-fold cross-validation. The average performance metrics are shown as a function of
the total available computational budget (x-axis). The shaded area along each performance curve
represents the standard deviation of the performance on the five cross-validation datasets. The
optimized HTVS pipeline detected all promising materials that meet the target screening condition
at only 85.78% of the original computational cost (blue vertical line) that would be required for
screening all materials solely based on the high fidelity model f . The HTVS pipeline built on the
high fidelity model achieved perfect specificity regardless of the available computational budget.
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als in terms of sensitivity, specificity, F1 score, and accuracy based on a 5-fold cross-validation.

Similarly, the shaded area of each performance curve stands for the standard deviation of the perfor-

mance on the five cross-validation datasets. As shown in Figure 4.7, the HTVS pipeline optimized

via the generalized optimization framework effectively allocated a computational budget to the

stages, thereby saving a significant amount of computational resources without (or with minimal)

throughput loss for the screening campaign according to the target RP range [2.5 V, 3.2 V]. On

average, the optimized pipeline consisting of five surrogates saved 14.22% of the original compu-

tational resources 6, 286, 056 (in seconds) for detecting chemical compounds via the high fidelity

model f . Besides, the optimized pipeline selected 80% of the promising organic electrode materi-

als with only 65.85% of the original cost. Note that the HTVS pipeline always guaranteed perfect

sensitivity (i.e., 1) as the HTVS pipeline was built based on the high fidelity model f . Therefore,

the envelope of the F1 score with respect to the computational resource constraint (i.e., x-axis)

had a similar shape to that of sensitivity. In terms of accuracy, the HTVS pipeline trivially assured

the accuracy of 0.5714 which is equal to the ratio of the negative samples. The accuracy of the

optimized HTVS pipeline gradually increased as the available computational budget increased and

achieved the perfect accuracy at the computational resource of 5, 391, 914 (85.78% of the original

cost).

Figure 4.8 demonstrates the performance evaluation results of the stages in the optimized

HTVS pipeline detecting the organic electrode materials according to the target RP range of

[2.5 V, 3.2 V] based on a 5-fold cross-validation. We could observe a similar trend to the previous

computational campaign scenario. The sensitivity of the screening stages tended to increase as the

computational resource budget increased. Similarly, for a given computational budget, the sensi-

tivity of Si was always greater than or equal to those of later stages Sj>i. For example, the stages

S1, S2, . . . , S6 achieved the sensitivity of 0.9874, 0.8716, 0.8698, 0.8130, 0.6882, and 0.6882, re-

spectively, when the available computational complexity was 3, 158, 898 (50.25% of the original

computational cost). Again, we could observe that the specificity except for the final stage de-

creased as the available budget rose. As a result, both the F1 score and accuracy tended to increase

84



Figure 4.8: Performance evaluation of the screening stages in the optimized HTVS pipeline de-
signed to detect the organic electrode materials according to target RP range [2.5 V, 3.2 V] based
on a 5-fold cross-validation. As before, the sensitivity of the screening stages tended to increase
as the computational budget (x-axis) grew. In general, the specificity decreased as the available re-
source rose (except for the last stage). The F1 score and accuracy improved as the available budget
got larger, but they eventually decreased due to the increasing false-positive rates due to passing
too many materials to the later stages.
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Figure 4.9: The number of molecules that were discarded at each stage for the case when the target
RP range was set to [2.5 V, 3.2 V]. The results were obtained based on a 5-fold cross-validation
for a given computational resource constraint (x-axis). As before, when the computational budget
was tightly limited, the most efficient first stage S1 (top left, green dotted curve) filtered out a
significant number of redox-active materials and passed only candidate materials that are expected
to satisfy the target screening condition at the high fidelity. In general, the number of molecules
discarded in the first stage decreased gradually as the computational budget increased, allowing
subsequent screening stages with higher accuracy to get more involved in screening.

sharply but eventually decreased later.

Figure 4.9 illustrates the number of discarded redox-active materials at each stage in the opti-

mized HTVS pipeline based on a 5-fold cross-validation. Similarly, as the available computational

budget increased, the number of materials discarded in the first stage S1 gradually decreased.

For example, the screening stages S1, S2, . . . , S6 discarded 66.72, 13.23, 0, 0.08, 1.17, and 0.4

materials, respectively, when there were only 27.2319 (4.33% of the original computational cost)

computational resources. With computational resource of 5, 391, 914 (85.78% of the original cost),

the screening stages dropped 4.0, 4.2, 0.2, 3.2, 17.6, and 18.8, respectively. During the simulation,

each stage rejected 30.06, 12.45, 0.5, 3.85, 11.8, and 2.2 materials on average, respectively.

Table 4.3 shows the performance evaluation results of the HTVS pipeline jointly optimized via
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α
Detected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 Accuracy

0.25 23.4 2, 923, 471 124, 935 0.65 1 0.7689 0.85
0.5 29.2 3, 921, 249 134, 289 0.8111 1 0.8892 0.9190
0.75 29.8 4, 257, 906 142, 883 0.8278 1 0.9003 0.9262

Table 4.3: Performance evaluation of the jointly optimized HTVS pipeline based on a 5-fold cross-
validation, where the target RP range was set to [2.5 V, 3.2 V]. As α increased, the overall through-
put of the HTVS pipeline increased with the higher consumption of the computational resources
(i.e., increased total cost and effective cost). As before, the optimized HTVS pipeline struck a good
balance between throughput and computational efficiency.

the proposed optimization framework with different values of α based on a 5-fold cross-validation.

We could observe a similar trend compared to the computational campaign detecting the potential

materials according to the target screening threshold (i.e., [2.5 V,∞ V]). As α increased, all the

throughput quality metrics improved at the cost of higher computational complexity (i.e., total

cost and effective cost). When α was 0.25, the jointly optimized pipeline operated conservatively

from the perspective of resource utilization. To be specific, the optimized pipeline with α =

0.25 consumed 2, 923, 471 seconds for detecting 23.4 promising compounds out of 36 promising

organic electrode materials in the test datasets. On the other hand, the optimized HTVS pipeline

with α = 0.75 selected 29.8 promising candidates, on average, whose RP is between 2.5 V and 3.2

V at the cost of 4, 257, 906. Overall, the jointly optimized HTVS pipeline found an efficient and

reasonable consensus between throughput and computational complexity according to the value of

α

4.4 Concluding remarks

In this chapter, we designed the optimal computational screening campaigns, where the op-

erational objective is to construct a subset of promising organic electrode materials whose RP

computed at high fidelity meets the desired condition from a huge initial material set. At the

essence of the proposed design lie the HTVS construction strategy when a high fidelity model f

is given and the generalized HTVS pipeline optimization framework. As shown in Figure 4.1, we

first decomposed the high fidelity model into four sub-components fi, i = 1, 2, . . . , 4, that compute
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intermediate properties of a material, such as HOMO, LUMO, HOMO-LUMO gap, or EA. Then,

we cascaded them to construct a skeleton structure of the HTVS pipeline. Based on the structure,

we learned five machine learning surrogate models that predict the RP with available intermediate

descriptors according to the locations of the surrogate models. Surrogate model gi was associated

with screening stage Si with screening policy [λi,L, λi,U ] in order to pass only materials that are

likely to meet the desired condition at the high fidelity to the next stage Si+1 for further RP com-

putation, thereby significantly saving computational resources. Besides, we introduced a concept

of the sub-surrogate model that predicts the next available descriptors and used them as virtual

features to improve the predictive accuracy of the surrogate models. In the second phase, we opti-

mized the optimal screening policy of the stages that are associated with machine learning-based

surrogate models through the optimization framework. Specifically, we found optimal screen-

ing ranges
[
λ∗i,L, λ

∗
i,U

]
of stages Si, i = 1, 2, . . . , 5, which leads to the optimal performance of

the HTVS pipeline. To this aim, we further generalized the original optimization framework for

HTVS pipelines proposed in [125], which enables optimizing HTVS pipelines screening materials

according to target range, in addition to target threshold.

We validated the proposed approach by optimizing the constructed HTVS pipeline for a screen-

ing campaign whose operational goal is to maximally detect promising redox-active materials ac-

cording to the target RP threshold set to 2.5 V. As shown in Figure 4.4, the optimized pipeline

consumed 84.11% of the original computational resources to detect all the promising redox-active

materials at the desired fidelity. The HTVS pipeline consumed only 58.62% of the original com-

putational cost to find 80% of the potential materials. Then, we found the optimal screening policy

that jointly optimized the throughput and computational efficiency. According to the α, the pipeline

found 77.69% to 95.77% of the promising redox-active materials with the accuracy of 86.19% to

97.38% at the effective computational cost of 85, 407 to 93, 291.

We also validated the proposed approach based on the computational screening campaign

where the objective is to efficiently detect organic redox-active materials whose RP computed at the

high fidelity is within the target range ([2.5 V, 3.2 V]). We utilized the same HTVS pipeline struc-
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ture that was used for the first computational screening campaign. As shown in Figure 4.7, when

a computational resource budget is given, the optimized HTVS pipeline selected all the promising

organic electrode materials at 85.78% of the original cost. In case the available computational

resource was not fixed, we jointly optimized the HTVS pipeline for optimizing the throughput and

computational efficiency according to the value of α. Specifically, when alpha was set to 0.75,

the optimized HTVS pipeline found 29.8 potential candidates (82.78% of the promising potential

compounds in the test dataset) while consuming only 4, 257, 906 seconds. The optimized pipeline

with α = 0.25 selected 65% of the potential candidates at the cost of 2, 923, 471.

Besides, based on the simulation result shown in Figure 4.3, we repeated the simulations on

the identical setup with updated the structure of the HTVS pipeline. Specifically, we discarded the

first and third stages (i.e., S1 and S3) from the original HTVS pipeline structure and optimized the

pipeline [S2, S4, S5, S6] accordingly. The comprehensive simulation results showed that discarding

computationally very efficient and moderately correlated screening stage does not significantly

impact the performance of the optimized HTVS pipeline (see Appendix J). However, it should

be noted that reducing redundant stages reduces the dimensionality of the score joint distribution,

potentially resulting in higher density estimation accuracy. Besides, one might save computational

resources in screening operations and avoid the burden of training surrogate models.

It should be noted that the computational screening campaign considered in this study has a

fundamental performance bound that we cannot overcome, as we were interested in selecting the

promising materials whose property computed at the high fidelity model meets a pre-specified con-

dition. For example, when a test dataset contains only promising materials, in order to achieve our

fundamental objective which is to detect all the promising molecules in an initial search space, we

eventually have to compute all the molecules in the high-fidelity model. In fact, the positive sample

ratio of the first and second computational campaigns in this study were 0.381 and 0.4286, respec-

tively, which affects the overall performance of the optimized pipeline. However, in real-world

screening campaigns, the positive sample ratio is extremely small, and the proposed approach

showed an impressive performance improvement as shown in the original study [125]. In fact,
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we evaluated the performance of the optimized pipeline based on a strict 5-fold cross-validation

when the target screening threshold is set to 4.3 resulting in only one promising redox-active ma-

terial out of 21 samples in the test deadset. The optimized HTVS pipeline identified the promising

redox-active material at the cost of 18.78% of the original computational cost (see Appendix K).

Another critical factor affecting the computational complexity of the optimized HTVS pipeline

is the ratio of the positive samples satisfying a given screening condition due to the nature of the

designed experiment built on the decomposed highest fidelity model. In other words, the chemical

compounds arriving at the final stage are evaluated at the highest fidelity. In the worst case that

there are only positive samples in the test dataset, the overall computational complexity of the op-

timized HTVS pipeline is slighter higher than that of the screening campaign based solely on the

highest fidelity model due to the prediction cost of the surrogates. However, in real-world appli-

cations, the positive sample ratio is more than often extremely small, which makes the designed

experiments more effective and practical.

It is worthwhile noting that the performance of the HTVS pipeline optimized via the proposed

framework is also dependent on the predictive power of the surrogate models. In this study, we

utilized the KRR model for predicting the RP. One possible way to further improve the performance

of the HTVS pipeline is to employ deep-learning models having high predictive potential. In that

regard, other highly structured descriptors or features, such as simplified molecular input line entry

system (SMILES) [129] or self-referencing embedded strings (SELFIES) [130], can be considered.
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5. CONCLUDING REMARKS

In this dissertation, we addressed optimal decision-making problems to accelerate scientific

discoveries for scientific and engineering applications that often involve intense computations. In

the first part of the dissertation, we proposed a machine learning (ML) approach that significantly

accelerates the optimal decision-making in mean objective cost of uncertainty (MOCU)-based op-

timal experimental design (OED). One fundamental obstacle that has reduced the applicability of

MOCU-based OED is excessive computational complexity in identifying the optimal experiment.

Specifically, in order to prioritize the experiments to conduct, the expected remaining uncertainty

affecting the operational performance (i.e., MOCU) of each experiment needs to be quantified,

which is computationally complex in practice. The proposed approach is to replace the part of

complex computations in quantifying the remaining uncertainty with an ML surrogate model that

regresses or classifies efficiently. We validated the proposed approach in the context of OED for

robust control of uncertain Kuramoto models by replacing the computational costly differential

equation (DE) solver with an ML model, which remarkably speeds up the process of predicting the

optimal controller. The trained ML model classifies the asymptotic behavior of a given Kuramoto

model, namely, whether all oscillators in the model will be eventually frequency synchronized or

not.

It is worth noting that the proposed approach can be generalized and applied to other MOCU-

based OED problems concerning scientific and engineering applications that do not possess closed-

form (remaining expected) MOCU. In such cases, based on the applications and the data types,

one may consider various ML/deep learning (DL) models including convolutional neural network

(CNN) [131], recurrent neural network (RNN) [132], long short term memory (LSTM) [133],

and graph convolutional network (GCN) [134]. In fact, as a follow-up study, we developed a

deep surrogate model based on the neural message-passing model [135], that directly predicts the

MOCU of an uncertain Kuramoto model [136].

A potential direction for future research is to utilize scientific ML models to learn scientific
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knowledge from data. Scientific knowledge is a fundamental building block for defining experi-

mental space, which affects the computational complexity and the efficacy of MOCU-based OED.

In the context of robust synchronization of the uncertain Kuramoto model, we considered pairwise

synchronization experiments as the necessary and sufficient condition for frequency synchroniza-

tion of the Kuramoto models is limited to two-oscillator models. Discovering relational knowledge

regarding the model parameters via ML can lead to the design of more effective experiments and

a significant expansion of the potential experimental design space.

In the second part of the dissertation, we focused on an optimal decision-making problem in the

context of operating high-throughput virtual screening (HTVS) pipelines to accelerate the optimal

selection of potential molecular candidates whose property meets specific criteria at the desired

fidelity. To this aim, we first generalized and formulated the structure and operations of HTVS

pipelines. Based on this, we designed a mathematical optimization framework that identifies the

optimal screening policy that leads to the optimal performance of HTVS pipelines. The optimal

screening policy at each stage is used to decide whether the evaluation result is advantageous

enough to pass it to the next stage without unnecessarily wasting computational resources and

time.

We validated the proposed optimization framework for computational screening campaigns

based on HTVS pipelines on both synthetic and real-world datasets. The comprehensive simula-

tion results demonstrated that the proposed framework identified the optimal policy that maximizes

the throughput or jointly maximizes the throughput and computational efficiency of the HTVS

pipelines according to the computational screening scenarios. Besides, the proposed optimization

framework was effective in alleviating the performance fluctuations depending on the structures of

HTVS pipelines. In the third part of the dissertation, based on the optimization framework in the

second chapter, we designed an optimal computational campaign (OCC) intending to efficiently

select redox-active organic materials whose redox potential (RP) satisfies a specific condition at

the desired fidelity. To this aim, we proposed an effective strategy for building an HTVS pipeline

structure based on the high fidelity model. Specifically, we decomposed the fidelity model into
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sequential forms that compute several intermediate chemical properties such as highest occupied

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap,

and electron affinity (EA). Then, we learned a set of surrogate models, each of which serves as

a screening stage or feature predictor. Besides, we further generalized the screening condition

and the optimization framework accordingly such that the optimized HTVS pipeline selects the

promising materials according to the target screening threshold, not a threshold. Comprehensive

simulation with various scenarios on a real dataset showed that the proposed HTVS pipeline re-

markably enhances the overall throughput for a given computational budget.
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APPENDIX A

PROOF OF THEOREM 1

Proof. Without loss of generality, we assume that ω1 ≥ ω2 and 0 ≤ Θ (0) < 2π, where Θ (t)

= θ1 (t)− θ2 (t). Suppose that |ω1−ω2|
2
≤ a. Then,

Θ′ (t) = ω1 − ω2 − 2a sin (Θ (t)) (A.1)

, F (Θ (t)) . (A.2)

As 0 ≤ ω1 − ω2 ≤ 2a, there always exists a value Θ∗ ∈
[
0, π

2

]
satisfying sin (Θ∗) = ω1−ω2

2a
.

Note that Θ∗ is a unique stable critical point as F ′ (Θ∗) = −2a cos (Θ∗) < 0. Thus, Θ (t)→ Θ∗

as t→∞, resulting in Θ′ (t)→ 0, unless Θ (0) = π −Θ∗ which is an unstable critical point. If

|ω1−ω2|
2

> a,

Θ′ (t) ≥ |ω1 − ω2| − 2a |sin (θ1 (t)− θ2 (t))| (A.3)

≥ |ω1 − ω2| − 2a (A.4)

≥ 0. (A.5)
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APPENDIX B

ASYMPTOTIC CLASSIFICATION ACCURACY
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Figure B.1: Asymptotic classification accuracy of the neural network model trained with differ-
ent amounts of training data. The accuracy sharply increased as the number of training samples
increased. Note that for N = 5, we generated the training samples while randomly changing the
natural frequencies of the oscillators, resulting in small fluctuations in the classification accuracy.
© 2021 IEEE.
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APPENDIX C

EXPERIMENTAL DESIGN PERFORMANCE
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Figure C.1: Remaining uncertainty, measured by mean objective cost of uncertainty (MOCU),
after performing the first experiment selected by each algorithm for the uncertain Kuramoto model
with five oscillators. The results are shown based on one hundred reevaluations with different true
models. As can be seen, the three MOCU-based experimental design approaches yielded the best
overall performance in terms of reducing model uncertainty. © 2021 IEEE.
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Figure C.2: Remaining uncertainty, measured by MOCU, after performing the first experiment
selected by each algorithm for the uncertain Kuramoto model with seven oscillators. The results
are shown based on one hundred reevaluations with different true models. This example showed
that the uncertainty reduction performance of the first experiment depends on the underlying true
(unknown) model, which we do not have any control over. This was not surprising, since the
MOCU-based optimal experimental design (OED) aimed to predict the best experiment based on
its expected performance for all possible models in the uncertainty class. But the efficacy of the
selected experiment naturally varied across different true models. Nevertheless, the results in this
figure showed that the proposed machine learning-based (ML-based) scheme faithfully replicates
the sampling-based approach, which was the primary goal of this study. © 2021 IEEE.
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APPENDIX D

ANALYTIC PERFORMANCE OF OPTIMIZED HTVS PIPELINES

p (y1, y2, y3, y4) ∼ N
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Figure D.1: Performance comparison of the optimized HTVS pipelines in terms of discovery ca-
pability in scenario 1.
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Figure D.2: Screening thresholds of the optimized pipelines in scenario 1.
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Figure D.3: The number of input samples at each stage in scenario 1.
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Figure D.4: Resources used by each stage in scenario 1.
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p (y1, y2, y3, y4) ∼ N
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Figure D.5: Performance comparison of the optimized HTVS pipelines in terms of discovery ca-
pability in scenario 2.
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Figure D.6: Screening thresholds of the optimized pipelines in scenario 2.
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Figure D.7: The number of input samples at each stage in scenario 2.
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Figure D.8: Resources used by each stage in scenario 2.
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p (y1, y2, y3, y4) ∼ N
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Figure D.9: Performance comparison of the optimized HTVS pipelines in terms of discovery ca-
pability in scenario 3.
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Figure D.10: Screening thresholds of the optimized pipelines in scenario 3.
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Figure D.11: The number of input samples at each stage in scenario 3.
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Figure D.12: Resources used by each stage in scenario 3.
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p (y1, y2, y3, y4) ∼ N
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Figure D.13: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 4.
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Figure D.14: Screening thresholds of the optimized pipelines in scenario 4.

127



0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

25000

50000

75000

100000

[S1, S4] : | 1|
[S1, S4] : | 4|

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

25000

50000

75000

100000

Th
e 

nu
m

be
r o

f i
np

ut
 sa

m
pl

es
 a

t e
ac

h 
st

ag
e

[S2, S3, S4] : | 2|
[S2, S3, S4] : | 3|
[S2, S3, S4] : | 4|

0.0 0.2 0.4 0.6 0.8 1.0
Total resource budget 1e8

0

25000

50000

75000

100000

[S1, S2, S3, S4] : | 1|
[S1, S2, S3, S4] : | 2|
[S1, S2, S3, S4] : | 3|
[S1, S2, S3, S4] : | 4|

Figure D.15: The number of input samples at each stage in scenario 4.

128



0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.0

0.5

1.0

1e7

[S1, S4] : | 1| × c1

[S1, S4] : | 4| × c4

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

2

4

6

8

R
es

ou
rc

es
 u

se
d 

by
 e

ac
h 

st
ag

e 1e7

[S2, S3, S4] : | 2| × c2

[S2, S3, S4] : | 3| × c3

[S2, S3, S4] : | 4| × c4

0.0 0.2 0.4 0.6 0.8 1.0
Total resource budget 1e8

0.0

0.5

1.0

1e7

[S1, S2, S3, S4] : | 1| × c1

[S1, S2, S3, S4] : | 2| × c2

[S1, S2, S3, S4] : | 3| × c3

[S1, S2, S3, S4] : | 4| × c4

Figure D.16: Resources used by each stage in scenario 4.
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p (y1, y2, y3, y4) ∼ N
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Figure D.17: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 5.
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Figure D.18: Screening thresholds of the optimized pipelines in scenario 5.
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Figure D.19: The number of input samples at each stage in scenario 5.
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Figure D.20: Resources used by each stage in scenario 5.
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Figure D.21: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 6.
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Figure D.22: Screening thresholds of the optimized pipelines in scenario 6.
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Figure D.23: The number of input samples at each stage in scenario 6.
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Figure D.24: Resources used by each stage in scenario 6.
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Figure D.25: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 7.
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Figure D.26: Screening thresholds of the optimized pipelines in scenario 7.
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Figure D.27: The number of input samples at each stage in scenario 7.
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Figure D.28: Resources used by each stage in scenario 7.
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Figure D.29: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 8.
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Figure D.30: Screening thresholds of the optimized pipelines in scenario 8.
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Figure D.31: The number of input samples at each stage in scenario 8.
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Figure D.32: Resources used by each stage in scenario 8.
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Figure D.33: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 9.
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Figure D.34: Screening thresholds of the optimized pipelines in scenario 9.
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Figure D.35: The number of input samples at each stage in scenario 9.
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Figure D.36: Resources used by each stage in scenario 9.
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Figure D.37: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 10.
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Figure D.38: Screening thresholds of the optimized pipelines in scenario 10.
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Figure D.39: The number of input samples at each stage in scenario 10.
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Figure D.40: Resources used by each stage in scenario 10.
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p (y1, y2, y3, y4) ∼ N

µ = 0,Σ =


1 0.8 0.7 0.6

0.8 1 0.8 0.7

0.7 0.8 1 0.8

0.6 0.7 0.8 1





0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e8

0

25

50

75

100

[S1, S4]
[S2, S4]
[S3, S4]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e8

0

25

50

75

100

Th
e 

nu
m

be
r o

f p
ot

en
tia

l c
an

di
da

te
s

[S1, S2, S4]
[S1, S3, S4]
[S2, S1, S4]
[S2, S3, S4]
[S3, S1, S4]
[S3, S2, S4]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Total resource budget 1e8

0

25

50

75

100

[S1, S2, S3, S4]
[S1, S3, S2, S4]
[S2, S1, S3, S4]
[S2, S3, S1, S4]
[S3, S1, S2, S4]
[S3, S2, S1, S4]

Figure D.41: Performance comparison of the optimized HTVS pipelines in terms of discovery
capability in scenario 11.
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Figure D.42: Screening thresholds of the optimized pipelines in scenario 11.
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Figure D.43: The number of input samples at each stage in scenario 11.
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Figure D.44: Resources used by each stage in scenario 11.
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APPENDIX E

PERFORMANCE OF OPTIMIZED HTVS PIPELINES FOR LONG NON-CODING RNA

DETECTION
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Figure E.1: Performance comparison of the optimized HTVS pipelines in terms of discovery ca-
pability.
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Figure E.2: Screening thresholds of the optimized pipelines for lncRNA detection.
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Figure E.3: The number of input samples at each stage for lncRNA detection.
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Figure E.4: Resources used by each stage for lncRNA detection.
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APPENDIX F

REDOX POTENTIAL COMPUTATION

To compute redox potential (RP) of the materials, we first calculate density functional theory

(DFT) using Schrödinger Jaguar [137], with PBE0 [138] functional and 6− 31 +G(d, p) basis

set [139]. After geometry optimization using DFT, we compute the electronic features, such as

HOMO, LUMO, HOMO-LUMO gap, and RP.

Then, we used the thermodynamic cycle suggested by Truhlar [140, 141] to calculate the RP.

To evaluate the reduction free energies at 298K in the gas phase ∆Gred
gas, the vibrational frequencies

were analyzed for both the anionic and neutral states for all the organic species. To evaluate the

solvation-free energies of the anionic and neutral states (∆Gsol (R−) and ∆Gsol (R), respectively)

in the mixture of ethylene carbonate and dimethyl carbonate, the Poisson–Boltzmann implicit sol-

vation model was used with a dielectric constant of 16.14. Using the thermodynamic cycle, the

reduction free energy in solution phase (∆Gred
sol (R)) was calculated by:

∆Gred
sol (R) = ∆Gred

gas (R) + ∆Gsol
(
R−
)
−∆Gsol (R) . (F.1)

Finally, the RP in solution phase with respect to Li/Li+ electrode was calculated based on the

free energy change for reduction in solution phase using,

E0
w.r.t. Li =

(
−∆Gred

sol (R)

nF
+ EH

)
− ELi, (F.2)

where n and F denote the number of electrons transferred and the Faraday constant (96, 485

C mol−1), respectively. EH and ELi correspond to the absolute potential of the hydrogen elec-

trode (4.44V ), and the potential of Li electrode with respect to the standard hydrogen electrode

(−3.05V ) [142], respectively. In the previous studies, we showed that this computational strat-

egy produced RPs with a staggering accuracy, within 0.3V vs. Li/Li+ relative to experimental

results [95, 92, 91, 93, 96, 99, 94, 97, 98]. In addition to the RP, the adiabatic electron affinity was
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calculated from the difference in energy between the organic molecules in their neutral state and

in their anionic state. Additional details of the DFT calculations used to predict the RP are found

in the previous studies [95, 92, 91, 93, 96, 99, 94, 97, 98].
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APPENDIX G

PERFORMANCE COMPARISON OF VARIOUS ML SURROGATE MODELS IN

PREDICTING ELECTRONIC PROPERTIES

Figure G.1: Performance comparison of fundamental machine learning (ML) models in terms of
mean squared error (MSE) and coefficient of determination. For the kernel ridge regression (KRR)
model, we used the hyperparameters summarized in Table H.1. For multilayer perceptron (MLP)
and support vector regression (SVR) models, we optimized hyperparameters based on a 5-fold
cross-validation.
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APPENDIX H

SPECIFICATION OF THE OPTIMIZED ML SURROGATE MODELS OF THE HTVS

PIPELINE

Surrogate
symbol

Machine learning model Kernel Hyperparameter (α)
Mean

squared
error

R2 score

g1

Kernel ridge regression Radial basis function

0.1 0.5046 0.7346
g2 0.1 0.4907 0.7419
g3 0.1 0.3408 0.8208
g4 0.1 0.2781 0.8538
g5 0.1 0.0256 0.9865

g2,1

Kernel ridge regression Radial basis function

0.1 0.0595 0.9307
g2,2 0.1 0.2870 0.7351
g2,3 0.1 0.3808 0.6616
g4,1 0.1 0.3194 0.7212

Table H.1: Specification of the optimized machine learning (ML) surrogate models utilized to
construct the HTVS pipeline. The hyperparameters–kernel function and α–were optimized via
5-fold cross-validation.
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APPENDIX I

PERFORMANCE EVALUATION OF THE OPTIMIZED HTVS PIPELINE BASED ON A

STRICT 5-FOLD CROSS-VALIDATION

Figure I.1: Performance evaluation of the optimized HTVS pipeline with minimum target redox
potential (RP) 2.5 V under a computational resource budget constraint (x-axis) based on a strict
5-fold cross-validation.
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Figure I.2: Performance evaluation at each stage in the optimized HTVS pipeline with minimum
target RP 2.5 V under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation.
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Figure I.3: The number of samples discarded (left) or passed to the next stage (right) at each
stage in the HTVS pipeline with minimum target RP 2.5 V under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation.

α
Selected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 score Accuracy

0.25 36.6 3, 506, 408.8 95, 803.5 0.7038 1 0.8233 0.8167
0.5 43.8 4, 425, 191.2 101, 031.8 0.8423 1 0.9134 0.9024
0.75 45.4 4, 605, 138.8 101, 434.8 0.8731 1 0.9316 0.9214

Table I.1: Performance evaluation of the jointly optimized HTVS pipeline with minimum target
RP 2.5 V based on a strict 5-fold cross-validation.
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Figure I.4: Performance evaluation of the optimized HTVS pipeline with target RP range
[2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a strict 5-fold
cross-validation.
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Figure I.5: Performance evaluation of each stage in the optimized HTVS pipeline with target RP
range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a strict
5-fold cross-validation.
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Figure I.6: The number of samples discarded (left) or passed to the next stage (right) at each stage
in the HTVS pipeline with target RP range [2.5 V, 3.2 V] under a computational resource budget
constraint (x-axis) based on a strict 5-fold cross-validation.

α
Selected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 Accuracy

0.25 25 3, 026, 165.6 121, 046.6 0.6944 1 0.8155 0.8690
0.5 31.6 4, 490, 452.4 142, 102.9 0.8778 1 0.9336 0.9476
0.75 33.2 5, 112, 623.8 153, 994.7 0.9222 1 0.9576 0.9667

Table I.2: Performance evaluation of the jointly optimized HTVS pipeline with target RP range
[2.5 V, 3.2 V] based on a strict 5-fold cross-validation.
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APPENDIX J

PERFORMANCE EVALUATION OF THE OPTIMIZED HTVS PIPELINE WITH

STRUCTURE [S2, S4, S5, S6]

Figure J.1: Performance evaluation of the optimized high-throughput virtual screening (HTVS)
pipeline [S2, S4, S5, S6] with minimum target redox potential (RP) 2.5 V under a computational
resource budget constraint (x-axis) based on a 5-fold cross-validation.
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Figure J.2: Performance evaluation of each stage in the optimized HTVS pipeline [S2, S4, S5, S6]
with minimum target RP 2.5 V under a computational resource budget constraint (x-axis) based
on a 5-fold cross-validation.
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Figure J.3: The number of samples discarded (left) or passed to the next stage (right) at each
stage in the HTVS pipeline [S2, S4, S5, S6] with minimum target RP 2.5 V under a computational
resource budget constraint (x-axis) based on a 5-fold cross-validation.

α
Selected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 score Accuracy

0.25 21.2 1, 697, 310.6 80, 061.8 0.4077 1 0.5562 0.6333
0.5 46.6 4, 211, 703.2 90, 379.9 0.8962 1 0.9443 0.9357
0.75 48.2 4, 540, 007.4 9, 419.2 0.9269 1 0.9616 0.9548

Table J.1: Performance evaluation of the jointly optimized HTVS pipeline [S2, S4, S5, S6] with
minimum target RP 2.5 V based on a 5-fold cross-validation.
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Figure J.4: Performance evaluation of the optimized HTVS pipeline [S2, S4, S5, S6] with target RP
range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based on a 5-fold
cross-validation.
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Figure J.5: Performance evaluation of each stage in the optimized HTVS pipeline [S2, S4, S5, S6]
with target RP range [2.5 V, 3.2 V] under a computational resource budget constraint (x-axis) based
on a 5-fold cross-validation.
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Figure J.6: The number of samples discarded (left) or passed to the next stage (right) at each stage
in the HTVS pipeline [S2, S4, S5, S6] with target RP range [2.5 V, 3.2 V] under a computational
resource budget constraint (x-axis) based on a 5-fold cross-validation.

α
Selected
materials

Total cost
(seconds)

Effective cost
(seconds)

Sensitivity Specificity F1 Accuracy

0.25 12.2 1, 350, 211.2 110, 673 0.3389 1 0.4732 0.7167
0.5 30.6 3, 645, 767.6 119, 142.7 0.85 1 0.9054 0.9357
0.75 31.6 4, 307, 546.6 136, 314.8 0.8778 1 0.9303 0.9476

Table J.2: Performance evaluation of the jointly optimized HTVS pipeline [S2, S4, S5, S6] with
target RP range [2.5 V, 3.2 V] based on a 5-fold cross-validation.
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APPENDIX K

PERFORMANCE EVALUATION OF THE OPTIMIZED HTVS PIPELINE WITH MINIMUM

TARGET REDOX POTENTIAL 4.3 V

Figure K.1: Performance evaluation of the optimized high-throughput virtual screening (HTVS)
pipeline with minimum target redox potential (RP) 4.3 V under a computational resource budget
constraint (x-axis) based on a 5-fold cross-validation.
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Figure K.2: Performance evaluation at each stage in the optimized HTVS pipeline with minimum
target RP 4.3 V under a computational resource budget constraint (x-axis) based on a 5-fold cross-
validation.
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Figure K.3: The number of samples discarded (left) or passed to the next stage (right) at each
stage in the HTVS pipeline with minimum target RP 4.3 V under a computational resource budget
constraint (x-axis) based on a 5-fold cross-validation.
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APPENDIX L

SOFTWARE AVAILABILITY

Chapter GitHub Link
2 https://github.com/bjyoontamu/Kuramoto-Model-OED-acceleration
3 https://github.com/bjyoontamu/OCC
4 https://github.com/bjyoontamu/occ-rp

Table L.1: List of software developed in this dissertation.
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