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ABSTRACT 

Successful operation of military aviation depends on effective pilot training. The current training 

capabilities of the United States Air Force might not be sufficient to meet the demand for new 

pilots. To help resolve this issue, this study focused on developing a prototype of an adaptive 

virtual reality (VR) training system. The system was built leveraging the three key elements of an 

adaptive training system including the trainee’s performance measures, adaptive logic, and 

adaptive variables. The prototype was based on a procedure for an F-16 cockpit and included 

adaptive feedback, display features, and various difficulty levels to help trainees maintain an 

optimal level of cognitive workload while completing their training. After conducting a pilot study 

with 14 participants, a trend favoring the use of adaptive training was identified. Results suggest 

that adaptive training could improve performance and reduce workload as compared to the 

traditional non-adaptive VR-based training. Further work is required to further validate the 

findings with a larger sample size. Implementation of adaptive VR training has the potential to 

reduce training time and cost. The results from this study can assist in developing future adaptive 

VR-training systems.  
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1. INTRODUCTION 

Effective pilot training is essential for the continued operations of both the transportation and 

defense industries. The United States Air Force’s current training capabilities are not sufficient to 

train the 1,500 pilots per year needed to maintain their services, with a shortage of 1,925 pilots as 

of fiscal year 2020 (Losey, 2021). To fill this gap, technologies such as virtual reality (VR) and 

artificial intelligence have been used to increase the effectiveness and efficiency of training. In 

March 2021, the first class of pilots graduated from Undergraduate Pilot Training after seven 

months of training rather than the traditional twelve months (Losey, 2021). While these results are 

positive, further improvements are possible by new training technologies.  

Virtual reality, defined as a “real or simulated environment in which a perceiver experiences 

telepresence” (Steuer, 1992), has been applied for education and training in various fields 

including healthcare (Radianti et al., 2020), defense (Bhagat et al., 2016; Pallavicini et al., 2016) 

and rehabilitation (Maggio et al., 2019; Rossol et al., 2011). Utilizing this technology for training 

is promising because of its immersive properties, ability to simulate challenging situations, and 

scalability. 

Adaptive training has the potential to take advantage of the benefits associated with VR training. 

The term adaptive training is defined as “training interventions whose content can be tailored to 

an individual learner’s aptitudes, learning preferences, or styles prior to training and that can be 

adjusted, either in real time or at the end of a training session, to reflect the learner’s on-task 

performance”(Landsberg et al., 2010). There are three key elements for adaptive training systems 

including: (1) Trainee performance which is an observable characteristic that is used to gauge the 

trainee’s success in training, (2) Adaptive logic which is a function that uses trainee performance 

to define the way adaptive variables change, and (3) Adaptive variables which are adjustable 
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features of a training task that can change the difficulty of the task based on the adaptive logic.  

Adaptive training can be tailored to the user’s current capabilities by using multiple performance 

measures (Zahabi & Abdul Razak, 2020). In this vein, adaptation can help the user maintain an 

optimal level of arousal, avoiding both too low and too high levels (Yerkes & Dodson, 1908). This 

study proposes a VR-based training system that applies the principles of adaptive training to 

improve pilots’ training effectiveness and efficiency as compared to traditional non-adaptive 

training systems.  

1.1 Cognitive Workload 

Operator workload is a concept that refers to the load imposed on a person by a certain activity. 

Its definition has been tied to the demands of the activity, the effort done by the person, or the level 

of accomplishment of the activity (Gartner & Murphy, 1979). It is important to note that workload 

refers to both the physical and mental demands related to tasks, and a distinction must be made 

when referring to only the mental load a task may require. Cognitive workload can be defined as 

the degree of mental effort experienced by an individual when executing a task (Moray, 2013). 

Since cognitive workload cannot be directly observed, several measurement approaches have been 

used to estimate the mental effort required for a task. For simplicity purposes, in this work we use 

the term workload to refer to cognitive workload only, excluding any physical component of it.  

There are three main categories to assess mental workload: performance measures, physiological 

measures and subjective ratings. In performance measures, there are two main techniques, primary 

task and secondary task measurement. The first uses the performance in a single task to infer 

workload levels, with lower performance suggesting a higher workload, however, it is possible 

that a person might be exerting different levels of effort to achieve the same level of performance. 
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This is why primary task measures work when a person is above their “red line” of workload, or 

the moment in which additional workload impacts performance (Grier et al., 2008). In the 

secondary task technique an additional task is added to the main one to aid in measurement. The 

secondary task is used to use-up the “spare capacity” in mental effort, and can be a simple mental 

arithmetic or counting exercise. Performance on the primary task is assumed to be constant, while 

performance on the secondary task suggests workload imposed by the primary task. 

Physiological measures aim at capturing the biological responses in the body while executing a 

task. There is a wide variety of measurement variables and techniques to assess workload, 

including direct measures and derivations of cardiac activity, respiration, ocular measures, 

electrodermal activity, and brain signals (Charles & Nixon, 2019). Each physiological variable has 

a particular relationship with workload levels, and it often varies with external factors such as 

illumination, temperature physical activity, and others. Subjective ratings are another approach to 

estimate workload, including the cognitive aspect. They consist of self-reported questionnaires, 

given after performing a task, in which participants rate different categories related to the load 

imposed by the task. Examples of these techniques include the NASA-Task Load Index (Hart & 

Staveland, 1988) and the Modified Cooper-Harper Scale (Hill et al., 1992).  

Cognitive workload is relevant in the context of training, as an appropriate level of mental effort 

in the adequate tasks is required to achieve positive training outcomes(Sweller, 1988).  Cognitive 

Load Theory (CLT) (Sweller, 1988) divides cognitive load in training into three categories: 

intrinsic load, extrinsic load, and germane load. Intrinsic load is defined by the difficulty level or 

complexity of the material to be learned, corresponding to scenario difficulty level. Extrinsic load 

is connected to how challenging is the medium of instruction, independent of the content, which 

in our case is an interactive VR simulation. Germane load is the effort the trainee uses to develop 
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a mental model of the training material, linking the new information to past knowledge. Given 

these distinctions, to improve learning, extraneous load should be reduced, as it wastes available 

cognitive capacity, intrinsic load should be modulated, and germane load should be increased, all 

without exceeding the available mental capacity of the trainee. 

1.2 Pilot Training 

Tasks associated with operating aircraft heavily engage the pilot’s psychomotor and cognitive 

abilities (Wise et al., 2010). One-on-one instruction is a training method that has proved to be 

effective in producing successful trainees as compared to traditional classroom settings (Bloom, 

1984), and is used in current pilot training efforts (Hunter, 2021). However, one-on-one instruction 

comes with several limitations, such as high cost, restricted training capacity, and instructor-based 

variability in the quality of instruction(Wise et al., 2010) . 

To complement this type of instruction, other technology such as the flight simulator has been used 

to improve the efficiency of training new pilots. This technology allows trainees to practice 

training objectives or scenarios repeatedly and also those that cannot be safely executed in person 

(Orlansky et al., 1994), such as hazardous events. Simulators also reduce cost by mitigating the 

need to use aircraft for training while still allowing training missions to be repeated quickly and 

efficiently. While these factors are helpful in reducing training costs, the effectiveness of 

simulators overall depends on training objectives and the phase of training (Carretta & Dunlap, 

1998; Morrison & Hammon, 2000; Rogers et al., 2007; Roscoe & Bergman, 1980). 

1.3 Virtual Reality  

Several studies have explored possible implementations of VR into aviation related programs 

(Hunter, 2021; Mühlberger et al., 2001; Oberhauser & Dreyer, 2017), mostly with the purpose of 
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reducing training costs and increasing the speed at which new pilots can be trained (Belani, 2020). 

In addition to aviation, VR has been used, in the context of spaceflight, for extravehicular activity 

(EVA) training (Cater & Huffman, 1995; Garcia et al., 2020). Another advantage of VR is 

scalability, as virtual models can be replicated at lower unit cost than full-scale flight 

simulators(Hunter, 2021). The application of adaptive VR to further improve training for aviation 

has yet to gain more momentum, with few studies investigating the benefits of this type of training 

for pilots compared to other fields, such as health care. This type of training could improve upon 

the benefits of traditional VR training. 

1.4 Components of an Adaptive VR-Based Training System 

While research has been conducted on the benefits and costs of using VR over other training 

methods (Gavish et al., 2015; Schultheis & Rizzo, 2001), fewer studies focused on the effects of 

adaptive VR training. A literature review of the topic has found positive to mixed results on the 

benefits of using adaptive over traditional VR training (Zahabi & Abdul Razak, 2020). Though 

few studies have explored adaptive VR systems in aviation training, other fields have found that 

adaptive training has significantly increased performance results compared to control groups 

(Fricoteaux et al., 2014; Jones et al., 2016; Lang et al., 2018; Luo et al., 2013; Mariani et al., 2018; 

Peretz et al., 2011; Zhang & Tsai, 2021), which show a promising avenue for further research on 

incorporating this type of system in pilot training. The following subsections elaborate on the three 

main components of adaptive training and their application. 

1.4.1 Performance measures 

Performance measurements are used as input variables for the adaptive logic to determine how the 

adaptive variables should be changed. These include primary task measures, such as accuracy and 
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task completion time (Heloir et al., 2014; Mariani et al.; Rossol et al., 2011; Summa et al., 2015), 

as well as physiological measures which include heart rate, galvanic skin response, heart rate 

variability, and blink rate (Dahlstrom & Nahlinder, 2009; Monfort et al., 2016; Tattersall & 

Hockey, 1995).  To apply the adaptive component, these measures have to be taken during training 

trials and the adaptive logic has to evaluate the results to determine the changes in adaptive 

variables. The methods section details how the components of adaptive training were applied to 

the prototype built.  

1.4.2 Adaptive logic 

Adaptive logic works by using methods such as rule-based procedures and classification 

algorithms to evaluate user performance measures, such as physiological or accuracy, and use the 

result to adjust the parameters of a scenario appropriately (Bian et al., 2016; Lahiri et al., 2012; 

Rossol et al., 2011; Saurav et al., 2018 ). Common classification algorithms used for this purpose 

make use of machine learning algorithms, such as random forests, Bayesian networks and neural 

networks (Zahabi & Abdul Razak, 2020). The algorithm used is generally dependent on the 

variables and expected outputs as well as the type of training, as there is no widely accepted 

standard or a single technique for adaptive training. This study explored a combined approach: a 

Bayesian Network as a classification algorithm, combined with a transition logic, based on the 

result of the classification. This method was used because of the effectiveness of the Bayesian 

Network as an estimator of uncertain measurements (Fenton & Neil, 2018) and its use in other 

adaptive training applications (Besson et al., 2013; Rossol et al., 2011). 

1.4.3 Adaptive variables 

When implementing adaptation into VR or simulation-based training, there are seven broad 
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categories of adaptive variables manipulated including: (1) the simulated environment (e.g., 

illumination or sound level), (2) stress or physical-based features applied to the trainee (e.g., 

gravity, force, and vibration), (3) controlled elements in the simulation (e.g., self-avatar), (4) the 

trainee’s control (e.g., gain or simulated feel), (5) display features (e.g., gain, lag of the display), 

(6) training scenario difficulty, and (7) the secondary task load (Kelley, 1969). Of these, the most 

easily applicable to a pilot training task based on review of their use in previous studies are training 

scenario difficulty and display features (Chemuturi et al., 2013; Goettl, 1993), which were both 

used in this work.  

Scenario difficulty refers to adjustments made to increase or decrease the effort required to 

complete the scenario by a trainee. Changing the difficulty level can also overlap with other 

adaptive variable categories. For example, changing display features, such as the speed at which 

stimuli are presented, can indirectly adjust the difficulty of a scenario by having trainees complete 

more tasks in less time. Another relevant aspect is adaptive feedback, or the modification of 

feedback the user receives depending on their performance, such as in the timing of feedback 

delivery or content(Feidakis, 2016). 

1.5 Problem Statement, Research Objectives, and Hypotheses 

The advent of superior performance and more accessible VR technology opens the opportunity for 

developing high quality training systems. In addition, adaptive training can leverage technology 

to deliver a better training experience in terms of effectiveness and efficiency as compared to 

traditional non-adaptive approaches. Therefore, adaptive VR training systems offer a high impact 

opportunity for occupational instruction. In the case of the USAF, the use of such a system could 

enhance its training capabilities and achieve pilot training requirements moving forward.  
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The objective of this study was to develop a prototype for an adaptive VR-based training system 

for pilots leveraging the three main components of adaptive training including performance 

measures, adaptive logic, and adaptive variables. In addition, the effectiveness of the system, in 

terms of its performance using a pilot test with 14 human participants, was evaluated. Based on 

the findings of previous studies on adaptive training (Fricoteaux et al., 2014; Lang et al., 2018; 

Luo et al., 2013; Mariani et al., 2018; Zhang & Tsai, 2021), it is expected that an adaptive training 

would improve trainees’ performance more than the traditional non-adaptive VR approach. 
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2. METHOD 

2.1 Apparatus  

The VR environment was built using the Unity development platform (Unity, 2021). The 

computing system runs a Windows 10 System type 64-bit operating system, with an Intel(R) Core 

(TM) i9-10900K CPU @ 3.70GHz   3.70 GHz processor, 64 GB of RAM, and an NVIDIA 

GeForce RTX 3080 memory card. This system allows for high performance graphics for 

applications that rely on this type of functionality, such as VR systems.  

The scenario was built with the HTC VIVE Pro eye VR headset as the main tool for delivery.  The 

device was chosen for its ability to generate eye tracking data and its latency of less than 10ms in 

testing, a critical factor in immersive VR training (Oberhauser et al., 2018). The system was set up 

with two “base stations” opposite to each other, which defined the space of the VR environment. 

The VR equipment also consisted of a pair of controllers, which were the main way for the user to 

interact with the system while using the headset. Two buttons on these controllers were used to 

interact with the scenario as illustrated in Figure 1 below.   
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Figure 1. HTC VIVE controllers  

To capture heart rate variability and electrodermal activity, we used the EMPATICA E4 heart rate 

monitor. The device has been verified as a reliable and valid way to measure heart rate variability 

and electrodermal activity (McCarthy et al., 2016; Milstein & Gordon, 2020; Schuurmans et al., 

2020). 

It allows for real-time data acquisition, and the data can be downloaded from a web application.  

The trainee completed the scenario in a seated position next to the computer running the VR 

equipment. To start, the trainee wore the VIVE headset and used one of the controllers to interact 

with the simulation, completing the training tasks. In addition, the user fastened the EMPATICA 

E4 heart rate monitor on their non-dominant hand to capture the relevant data. Figures 2, 3, and 4 

illustrate the equipment setup and the EMPATICA E4 heart rate monitor. 

Trigger 
System 

button 
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Figure 2. HTC VIVE Pro Eye headset and controller 

 

Figure 3. Study setup 
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Figure 4. EMPATICA E4 heart rate monitor and the data collection app 

2.2 Virtual Reality Scenario    

The task implemented in the scenario was based on a navigation tutorial for the F-16 fighter. The 

VR scenario was scripted in C# within Unity, with the adaptive component being handled by 

Python applications. The fighter cockpit was based on digital artwork (Moreno, 2019) and some 

additional elements and interactivity were added based on the scenario. The objective of the 

scenario was for the trainee to identify the cockpit elements in the correct order, simulating the 

navigation tutorial task. To achieve this, the trainee used a controller that interacted with the 

cockpit by hitting the trigger button. If the correct item in the procedure was hit, the checklist 

showed a checkmark. If incorrect cockpit elements were hit 3 times, a cross icon was displayed, 

and the scenario progressed to the next item in the procedure.  Figure 5 displays the virtual reality 

cockpit from the perspective of the trainee. Note that the F-16 cockpit is visible along with three 

panel sections for displaying information to the user. 
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Figure 5. Virtual reality cockpit 

The left panel shows the current task, and its status is displayed on the center panel. The right panel 

has a task checklist and informs the trainee of their performance during the scenario, with green 

checkmarks and red cross symbols. The trainee reads the element to be selected on the left panel, 

then finds the element in the cockpit. Once the element is located, the trainee uses the controller 

to point the laser to the element and presses the trigger to select it. After each task is completed, 

the program moves to the next task, looping through until the user has completed all of the tasks. 

At this point, the participant is assessed by the adaptive logic and will enter the next scene based 

on the results of the evaluation. The following section elaborates on the adaptive component of the 

training.  

2.3 Adaptive Training Components  

The proposed solution architecture for the prototype is suitable for local or networked 

environments. Within the local infrastructure, data is gathered using equipment, processed, and 

Left panel: current cockpit 

element to identify 

Highlighter 
Right panel: Checklist, marks 

correct/incorrect selections 

Center panel: status of 

the task 

 



14 

 

used as input for the algorithms that make up the adaptive logic.  The result of the adaptive logic 

is communicated to the VR infrastructure, where the training system is being implemented. The 

system utilizes this result to make appropriate changes in the adaptive variables, in this case, 

scenario difficulty and feedback. Figure 6 illustrates the solution architecture in a graphical form.  

 

Figure 6. Adaptive VR-based training architecture 

The scenario described above was designed and built as an adaptive training system prototype. As 

mentioned previously, an adaptive training system requires three components to operate 

successfully: trainee’s performance measurement, adaptive logic, and adaptive feedback. The 

following subsections elaborate on the selection of these elements for the prototype as well as how 

they were implemented in the scenario.  
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2.3.1 Trainee performance measurement 

The performance measurement in the adaptive training system was focused on trainee’s estimated 

cognitive workload. Cognitive workload cannot be directly measured, however, there are several 

reliable indicators of workload that can be used to estimate it, and which were included in the 

system. Physiological measurements are a broad category of these indicators, the ones that were 

included in this prototype included heart rate variability (HRV), electrodermal activity (EDA), 

percentage change in pupil size (PCPS), and blink rate. Heart rate variability has been determined 

to be a reliable indicator of cognitive workload (Charles & Nixon, 2019) and has been used in 

aviation settings (Roscoe, 1992). Electrodermal activity (EDA) was also included, as it has been 

especially useful for sudden stimulus and is robust to repeated trials (Charles & Nixon, 2019). 

Two ocular measurements for workload estimation were used in this study including PCPS and 

blink rate. Both are reliable indicators of cognitive workload (Charles & Nixon, 2019; Veltman, 

2002). In addition to physiological measures, we recorded accuracy and task completion time as 

primary indicators of workload. Accuracy is defined as the total “hit points” the user scores divided 

by the total number of points per trial. This measure has the benefit of being an objective way to 

capture the effect of task difficulty on the user’s mental resources assuming the participant’s full 

attention is being devoted to the task. Task completion time was defined as the average time to 

complete each task from the checklist. 

Trainee performance measurement was implemented in the system with a combination of methods. 

Heart rate variability and electrodermal activity were collected using the EMPATICA E4 heart 

rate monitor. The data for the two ocular measures, blink rate and PCPS, were obtained using the 

eye tracking capabilities of the HTC VIVE Pro Eye. Accuracy and task completion time were 

defined within the Unity project. For all these measurements we developed post-processing 



16 

 

applications in Python that transformed the original form of the data into the final form used in the 

adaptive logic component. 

2.3.2 Adaptive logic 

The adaptive logic used in this study was a Bayesian Network algorithm. This model was selected 

based on its adequacy in indirect estimation (Fenton & Neil, 2018) as well as its accuracy and 

computational speed shown in prior studies (Besson et al., 2013; Zhou et al., 2020). Bayesian 

models are derived from a schema of direct dependencies between a set of variables, making use 

of graphs and node probability tables (Fenton & Neil, 2018). There are several different types of 

Bayesian network schemas, and they all depend on different assumptions about the relationships 

between variables. For this prototype, we based the model structure on the measurement idiom, 

which is useful when estimating an unknown variable using different indicator variables. The 

model was built using the GeNIe development tool and the SMILE engine for Python 

integration(Druzdzel, 1999).  The performance of this approach is adequate for the system, taking 

less than a second to run on average and more than 95% accuracy based on pilot test data. 

The adaptive logic was implemented in two phases. The first was completed using Python 

applications, which activate after the trainee completes a scenario, using data generated by the 

postprocessing of the performance measurement. The data are evaluated by the Bayesian model, 

which yields the estimated level of workload (i.e., high, medium, low). The second phase was 

developed with the Unity platform and worked by reading the model result from the first phase, 

and used it in a transition function, which determined the next scenario to load. 

There were nine scenarios with the transition logic being the following: “high” workload sets the 

scenario to be of a lower difficulty than the one just completed, except for the “easiest” difficulty. 
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This means the scenario is too difficult for the participant, and workload must be reduced. 

“medium” workload sets the scenario to be of the same difficulty as the one just completed, as 

there is enough challenge for the trainee to continue to benefit from training in this scenario. A 

“low” workload estimation would set the next scenario to be one of a higher difficulty, indicating 

the user has “mastered” the current level of difficulty. If the current scenario is at maximum 

difficulty, reaching a low level of workload triggers the end of the training session. Figure 7 

illustrates this transition process. 

A Bayesian model requires the definition of a prior probability distribution for the measurement 

node and node probability tables for the indicators. This allows the model to update the degree of 

belief, or probability, of the state of the measurement node. For workload, we defined three states 

of “low”, “medium”, and “high” with a uniform distribution as the prior probability, as we have 

no a-priori information about the trainee’s mental workload (Fenton & Neil, 2018). We defined 

workload level as the variable to be estimated, given an indicator variable, in this case, accuracy, 

task completion time, heart rate variability, percent change in pupil size, blink rate, and 

electrodermal activity. Their relationship is represented in Figure 8. 
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Figure 7. Transition logic 
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Figure 8. Bayesian network model for workload estimation 

For the probability tables of each performance measurement, we defined the states based on the 

observed values of each variable and the relationship between these measurements and workload 

levels based on the literature. These models include the use of the available prior information as 

well as the modeler’s judgement to assign a point estimate for the relationship of the indicator 

variable to cognitive workload. The tables also allow for a degree of uncertainty, since we assume 

there is no perfect indicator of workload. For instance, if a variable strongly indicates a low level 

of workload, we defined the probability of low workload to be 80%, however, we assigned a 

probability of 15% and 5% of observing medium and high workload, respectively, given the same 

level of the variable. In the following paragraphs, we elaborate on the node probability table 

definition for each performance measurement.  

Accuracy and task completion time are primary task measurements of workload. As stated before, 

a primary task measure of workload can detect changes in workload when a person is operating 

near the “red line” of cognitive load, or the limit of their capacity (Grier et al., 2008), and they are 

fully focused on the task. This assumption was valid for this experiment due to the novelty of the 
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task for participants. In addition, there is a tradeoff between accuracy and task completion time. 

However, in this study, we did not include this tradeoff as an assumption in the model due to the 

fact that there was no observed relationship between accuracy and task completion time from the 

pilot study results. This was mainly due to the fact that, after training, the participant was faster in 

completing each task and their accuracy increased, contrary to what would be expected in a routine 

task. This can be explained by the role of learning a novel task as compared to executing a simpler 

or more routine task. 

High accuracy levels are related to low levels of workload in aviation tasks (Gawron, 2008; NASA, 

2010; Rehmann, 1995). Low levels of accuracy have been found to be related to high workload 

(Hicks & Wierwille, 1979; Mazloum et al., 2008). This relationship is reflected in the probability 

table for accuracy, shown in Table 1. As for the states, an accuracy of 50% and below was 

considered to be “low” accuracy, accuracy between 50% and 80% was set as “medium” and 

accuracy above 80% was determined as “high”.   

Task completion time is also a primary task measurement, which is inversely related to workload, 

as longer time to complete a task is associated with higher workload (Biondi et al., 2021; Mazloum 

et al., 2008; NASA, 2010). We defined a measurement range of task completion time that was 

adequate for our particular task (Rehmann, 1995). For this purpose, we tested average task 

completion times for different scenarios in the system and came up with the ranges of average task 

completion times for the node states. An average of 5.5 seconds and below was considered as 

“low”, time between 5.5 to 6.5 seconds was defined as “medium” and any time longer than 6.5 

seconds was defined as “high” task completion time.  The associated node probability for workload 

given the task completion time state is expressed in Table 2.  

 



21 

 

Table 1 

Conditional Probability Table for Workload Given Accuracy 

Accuracy Workload 

  Low Medium High 

Low 5% 10% 80% 

Medium 15% 80% 15% 

High 80% 10% 5% 

 

Table 2 

Conditional Probability Table for Workload Given Task Completion Time 

Task Completion time Workload 

  Low Medium High 

Low 60% 20% 10% 

Medium 30% 60% 30% 

High 10% 20% 60% 

 

The model also utilized physiological measures of workload. A reduction in HRV is related to 

high workload (Jorna, 1992; Metalis, 1991; Mulder, 1992; Roscoe, 1992). This relationship has 

also been observed in VR settings (Hoepf et al., 2015; Labedan et al., 2021).The RMSSD method 

was used to generate the HRV value. As a time-domain measure, it is able to differentiate between 

task load levels, is sensitive to changes in task demand, and has good predictive validity for visual 

tasks (Charles & Nixon, 2019), making it a valid indicator for the type of task used in the study. 

The low level of movement experienced in the study procedure greatly reduces changes in cardiac 

measures do to muscular activity.    

To build the node probability table for this variable, we represented the inverse relationship 

between HRV and workload and the fact that this measurement is more sensitive to detect changes 

from low levels to medium ones (Jorna, 1992; Wilson, 1992).This translates to a higher uncertainty 
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of workload-HRV association between medium and higher levels of workload. Therefore, the Root 

Mean Square of the Successive Differences (RMSSD) value of 30 and below was an indicator of 

“low” HRV, a value between 30-40 was “medium” HRV, and an RMSSD of 40 and above was an 

indicator of “high” HRV (Veltman & Gaillard, 1996; Zhang, 2007). Table 3 contains the node 

probability table for workload given HRV. 

Table 3 

Conditional Probability Table for Workload Given Heart Rate Variability 

HRV Workload 

  Low Medium High 

Low 5% 25% 55% 

Medium 15% 60% 40% 

High 80% 15% 5% 

 

Two ocular indicators of workload were used including pupil size and blink rate. Both are valid 

for the type of task in this study, eminently visual in nature. Although these measures are affected 

by ambient temperature and illumination, both variables were controlled in the study. The 

experiment was conducted in a room with controlled temperature, and the VR headset projected a 

constant illumination during the task for all participants.  

Pupil size has been found to increase in higher workload conditions (Beatty, 1982; Causse et al., 

2010; Kramer, 1991; May et al., 1990; Recarte & Nunes, 2000) and has been used in VR-based 

tasks (Abdurrahman et al., 2021; Hoepf et al., 2015).The thresholds set up for this variable state 

were based on the findings of prior studies (Beatty, 1982; Causse et al., 2010). To account for 

individual differences in pupil size, we calculated the percentage change in pupil size metric to be 

used in the model. A PCPS of 10% or lower was considered as “low”, PCPS between 10% to 30% 

was set as “medium”, and PCPS higher than 30% was “high” PCPS. The node probability table 
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for workload given PCPS is shown in Table 4. Blink rate is another ocular variable and low blink 

rate is an indicator of high workload (Kramer, 1991). Similar relationships have been found in the 

aerospace domain (Sirevaag et al., 1993; Veltman & Gaillard, 1996; Wang et al., 2016; Wilson et 

al., 1987) and in a VR setting (Zheng et al., 2012) . Three states of the variable were defined, with 

thresholds of 15 blinks per minute and less correspond to “low” blink rate, 15 to 20 blinks per 

minute considered as “medium”, and values higher than 20 blinks per minute were grouped as 

“high” blink rate. These threshold values were defined based on prior studies linking blink rate 

levels to cognitive load (Abusharha, 2017; Brookings et al., 1996; Wang et al., 2016). The node 

probability table for workload given sblink rate is shown in Table 5. 

Table 4 

Conditional Probability Table for Workload Given Percent Change in Pupil Size 

PCPS Workload 

  Low Medium High 

Low 80% 10% 5% 

Medium 15% 80% 15% 

High 5% 10% 80% 

 

Table 5 

Conditional Probability Table for Workload Given Blink Rate 

Blink Rate Workload 

  Low Medium High 

Low 5% 10% 70% 

Medium 15% 80% 25% 

High 80% 10% 5% 

 

The last physiological indicator of workload was EDA, which is known to increase as workload 

increases but has lower sensitivity to higher workload level. In addition, EDA is a useful method 
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in detecting changes in workload due to increased task demand (Charles & Nixon, 2019; Marucci 

et al., 2021). However, this measurement is affected by temperature, humidity, age and time of 

day. Of these variables, temperature and humidity were controlled in the experimental setting and 

the rest added to the uncertainty of the node probability table. EDA has been shown to be sensitive 

in capturing sudden increases in workload and is less able to discriminate between gradual changes 

of workload (Charles & Nixon, 2019; Collet et al., 2014). Therefore, two states of EDA were used 

in this study (Table 6). EDA values of 0.15μS and lower were categorized as “low” and values 

above 0.15μS were indicator of “high” EDA (Fairclough & Venables, 2006).  

Table 6 

Conditional Probability Table for Workload Given Electrodermal Activity 

EDA Workload 

  Low Medium High 

Low 80% 40% 30% 

High 20% 60% 70% 

 

2.3.3 Adaptive variables 

Another component of an adaptive training system is the adaptive variables. These variables 

depend on the result of the adaptive logic. In this study, the two adaptive variables were the 

scenario’s difficulty level and display features. Difficulty level was defined by the task load of 

each scenario, determined by the number of tasks that needed to be completed, with more tasks 

meaning a higher difficulty. Higher task load has been associated with higher workload (Colle & 

Reid, 1998), and number of tasks has been used as a way to determine task load in several studies 

(Backs et al., 2000; Colle & Reid, 1998; Wilson & Russell, 2003).  

Display features included a highlighter to help the user in locating the different relevant elements 
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in the scenario. If the user exhibited low level of workload, a scenario with more difficulty was 

assigned. Conversely, an overwhelming cognitive load would mean lower levels of difficulty are 

presented. If the trainee exhibited low levels of workload, no highlighter was shown. Moderate to 

high workload levels corresponded to a short (5 second) and longer (20 second) highlighter 

durations respectively. Difficulty level and highlighter generated nine possible difficulty pairs, 

presented in Table 7.  

Table 7 

Difficulty level combinations for the adaptive training system 

 

 

 

 

 

 

 

2.4 Study Design and Variables 

To evaluate the effectiveness of the adaptive training system, a between-subject, pre-test/post-test 

experiment was designed. The independent variable was the training type with two levels including 

adaptive and non-adaptive VR training systems. In the non-adaptive VR training system, a 

monotonic fixed progression between difficulty levels was defined, independent of the results of 

the adaptive logic. Both system options included pre-test and post-test scenarios of identical 

Task Difficulty Highlighter Scenario difficulty pair 

Easy 

Highlighter - 20 sec Easy difficulty, 20s highlighter  

Highlighter -   5 sec Easy difficulty, 5s highlighter  

Highlighter - none Easy difficulty, no highlighter  

Medium 

Highlighter - 20 sec Medium difficulty, 20s highlighter  

Highlighter -   5 sec Medium difficulty, 5s highlighter  

Highlighter - none Medium difficulty, no highlighter  

Hard 

Highlighter - 20 sec Hard difficulty, 20s highlighter  

Highlighter -   5 sec Hard difficulty, 5s highlighter  

Highlighter - none Hard difficulty, no highlighter  
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difficulty level, so the performance responses can be compared. The pre-test scenario was 

completed before the training started, and the post-test was presented after the training phase was 

completed. In addition, the participant completed a retention scenario, with the same difficulty as 

pre-test/post-test scenarios, one week after the first training session was completed. The dependent 

variables included accuracy, task completion time, and workload during the pre-test, post-test, and 

retention scenarios. Accuracy was defined as the total “hit points” the user scores divided by the 

total number of points per trial. Task completion time was defined as the average time to complete 

each task from the checklist in the scenario. Workload was defined as the workload estimated 

through the Bayesian model deployed in the adaptive logic.  

2.5 Participants 

A pilot test was conducted with 14 healthy participants (7 males, 7 females) within the range of 

22 to 31 years (M= 25.5 yrs., SD= 2.7 yrs.). The participants were recruited from student 

population at Texas A&M university who were interested in aviation or virtual reality. All 

participants had normal or corrected-to-normal vision with contact lenses, with five participants 

using contacts. Also, they did not have any history of simulator sickness during VR use, and none 

exhibited simulator-induced motion sickness during or after the procedure.  Two participants had 

previous experience piloting an aircraft. All participants read and signed the informed consent 

form prior to participating in the experiment. The Texas A&M University Institutional Review 

Board (IRB) approved the study protocol. Participants were compensated $30 for their time.  

2.6 Procedure 

Upon arrival to the lab, participants were randomly assigned to either the adaptive or non-adaptive 

VR-based training. Once the participant read and signed the consent form, they fastened an 
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EMPATICA E4 heart rate monitor to their wrist to measure electro-cardiac activity, and then 

proceeded to fill out the demographic questionnaire. Subsequently, the participant was presented 

with training material regarding the scenario to be performed, which consisted of short slide 

presentation on a computer. The participant was evaluated on the knowledge of the cockpit 

elements attained in the training via a paper-based examination, which involved relating a cockpit 

element name with its correct position in the cockpit. Emphasis was placed on correct 

identification of cockpit elements, as opposed to fast performance. 

The simulator sickness questionnaire (SSQ) was used to identify motion sickness symptoms that 

could negatively affect participants prior and during the experiment (Kennedy et al., 1993). The 

participant put on the HTC VIVE Pro Eye virtual reality headset to engage in the virtual reality 

simulation. The experiment started with a “baseline” data collection phase, in which the participant 

relaxed within the virtual reality environment and eye tracking and heart rate data were collected 

for duration of 2 minutes. After that, the participant proceeded to the next phase, which was the 

pre-test scenario corresponding to the highest difficulty level with no highlighter. After that, the 

participant executed the training scenarios, which include the different difficulty levels described 

in the earlier section. In the non-adaptive training scenario, the difficulty level increases by one 

level after each trial, covering the nine possible combinations. In adaptive training scenarios, the 

participant started with an appropriate difficulty level (defined by the adaptive logic result for the 

pre-test scenario), and the difficulty level increased or decreased according to the adaptive logic, 

for a maximum of 18 trials, or until the participant completed the hardest difficulty. Upon 

completion of the training phase, the participant moved to the post-test scenario, which was 

identical to the pre-test scenario in terms of the difficulty level to compare performance. Upon 

completion of the post-test scenario, the participant was debriefed and left the lab. After one week 
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of the initial experiment, the participant returned to complete a retention phase, consisted of a 

retention scenario. This procedure was similar for both adaptive and non-adaptive experimental 

groups, with the only difference being the transition logic in the training phases, which is adaptive 

for the first and fixed for the second, in the manner explained in the previous subsection. The study 

procedure is depicted in Figure 9.   

 

Figure 9. Study Procedure 

2.7 Data Analysis 

The data for the system was extracted with three main components including the eye tracking 

capability of the HTC VIVE Pro Eye headset, the EMPATICA E4, and the VR scenario code in 

Unity.  The data collected from the HTC VIVE Pro Eye headset was extracted using the VIVE 

SRanipal SDK and customized code in C#. With this data, blink rate and PCPS were calculated 

via Python modules. The EMPATICA E4 data was obtained with the help of the E4 Realtime 

mobile application and downloaded from the E4 connect web service. The raw data was processed 

via Python modules to compute EDA and HRV (using the RMSSD method). Accuracy and task 

completion time were generated automatically by the Unity project after each scenario ended.  
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There dependent variables were analyzed: accuracy, task completion time, and estimated 

workload, which were measured for the pre-test, post-test, and retention phases. Accuracy was 

defined as the total “hit points” the user scores divided by the total number of points in each 

scenario. Task completion time corresponded to the total duration of the scenario divided by the 

number checklist items, thereby being the average task duration per item. Estimated workload 

corresponds to the result of the Bayesian model, used in the logic in adaptive training, and 

calculated, but not used for transition, in the non-adaptive version of training. To evaluate the 

effect of training type, the mean percent difference between the pre-test and post-test phases, and 

between pre-test and retention were calculated. This metric allowed us to compare the change in 

accuracy and task completion time for each treatment group independent from the initial level of 

performance. In the case of task completion time, the absolute value of the reduction in task 

completion time was illustrated. The higher the absolute value of the reduction in task completion 

time, the more effective the training method was.  

To analyze the change in estimated workload, we used the reduction in workload for each 

participant for the three evaluation scenarios: pre-training, post-training and retention. If the 

estimated workload was lower in post-training or retention than in pre-training, the variable 

“reduction in estimated workload” was classified as “true”, otherwise as “false”. For instance, if a 

participant went from a “High” workload evaluation in pre-training to either a “Medium” or “Low” 

estimation, it was classified as a workload reduction instance. If the participant went to a higher or 

same estimate, they would be classified as no workload reduction. 

The statistical analyses were performed in R(R Core Team, 2018). Before statistical testing, a 

screening process was conducted to identify outliers in the data, none of which were found. 

Subsequently, diagnostics were conducted to check for assumptions normality (using Q-Q plots 
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and Shapiro-Wilk normality test) and variance homoscedasticity (using the Levene test) prior to 

conducting One-Way Repeated Measures Analysis of Variance (ANOVA). The significance 

criterion of the study was set at p ≤ 0.05 level. 

3. RESULTS  

3.1. Performance 

The preliminary results showed that adaptive training led to a higher mean percent change in 

accuracy than the non-adaptive training in both pre-test vs. post-test (53.5% vs 25.4%) and pre-

test vs. retention (49.0% vs 18.1%) comparisons. It is important to point out that due to the limited 

sample size, this observation should be regarded as a trend (and not a significant difference) that 

favors adaptive training. Adaptive training also exhibited a higher reduction in time in pre-test vs. 

retention (67.1% vs 59.8%) and a lower one in pre-test vs. post-test (74.5% vs 82.1%). Figures 10 

and 11 illustrate the mean percent change in accuracy and the mean percent reduction in task 

completion time respectively. 

 

Figure 10. Mean Percent Change in Accuracy 
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Figure 11. Mean Percent Reduction in Task Completion Time 

We conducted a One-Way Repeated-measures ANOVA test to assess the significance of the 

differences in change in accuracy and reduction in task completion time for the adaptive and non-

adaptive groups. After performing the tests using the R package (R Core Team, 2018), we did not 

find any significant differences in mean percent change in accuracy and mean percent reduction 

in task completion time. The results are summarized in Table 8.  
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Table 8 

Results of the repeated-measures ANOVA for comparing the adaptive and non-adaptive training 

Groups 

 

 

3.2. Workload 

In addition to performance comparison, the reduction in estimated workload for both training 

groups was measured. Table 9 illustrates the reduction in workload for both training groups. We 

can observe a higher reduction in estimated workload in the adaptive training group in both pre-

test vs post-test (85.7% vs 28.6%) and pre-test vs retention (71.4% vs 28.6%). Similar to accuracy 

and task completion time results, in adaptive training, we observe a higher reduction in estimated 

workload immediately after performing the training session than one week later.  

Table 9 

Reduction in Estimated Workload 

Phase Comparison Reduction in Estimated Workload 

  Adaptive Non-Adaptive 

Pre-test vs Post-test 85.7% 28.6% 

Pre-test vs Retention 71.4% 28.6% 

 

Dependent Variable 
Adaptive 

training 

Non-adaptive 

training 
F p η2 

  M SE M SE       

 Pre-test vs Post-test 

Mean Percent Change in 

Accuracy 
53.5% 22.6% 25.4% 7.2% 1.2 0.295 0.09 

Mean Percent Reduction in 

Task Completion Time 
74.5% 3.9% 82.1% 5.5% 1.08 0.318 0.08 

 Pre-test vs Retention 

Mean Percent Change in 

Accuracy 
48.9% 25.3% 18.8% 11.3% 1.21 0.293 0.09 

Mean Percent Reduction in 

Task Completion Time 
67.1% 5.2% 59.8% 5.8% 0.75 0.402 0.06 



33 

 

4. DISCUSSION 

 

A prototype of an adaptive VR-based training system aimed at training pilots was developed using 

the Unity platform and Python as software tools and the HTC VIVE Pro Eye and EMPATICA E4 

as hardware tools. This prototype was built leveraging the three fundamental components for an 

adaptive training system including trainee’s performance measurement, adaptive logic, and 

adaptive variables. The system described in this work is a proof of concept, which confirms the 

possibility to build an interactive, real-time adaptive training system in a VR environment for pilots 

using a combination of hardware and open software. We consider it as a valuable starting point to 

either refine or build new adaptive training systems using VR. Researchers can utilize the different 

approaches detailed in this work to inform their development process. This prototype system was 

able to integrate different components and technologies to achieve the desired functionality, 

enabling flexibility in future efforts by not depending on an off-the-shelf platform or paradigm.  

In addition, a preliminary study was conducted to evaluate the developed system. The findings 

suggested that adaptive training was better in terms of increasing the accuracy of trainees in both 

pre-test vs. post-test and pre-test vs. retention comparisons. This result should be considered a 

trend (and not a statistical significance) due to the limited sample size. Prior studies also observed 

a similar pattern of results (Fricoteaux et al., 2014; Landsberg et al., 2012; Luo et al., 2013; Mariani 

et al., 2018; Zhang & Tsai, 2021) which indicates that an adaptive training approach can be more 

effective than a traditional approach in improving trainees’ accuracy. Since these findings were 

captured from larger sample sizes (ranging from 10 to 40 participants per group), it is reasonable 

to expect that the trend found for the system developed in this study correspond to the initial 

hypothesis but the findings should be confirmed with a larger sample size.  
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In terms of task completion time, there was a similar reduction for the adaptive and non-adaptive 

groups in the pre-training vs. post training, but a greater reduction in pre-training vs. retention for 

the adaptive training approach. These findings can be due to the fact that immediately after the 

training session, participants in both groups are familiar with the scenario and are able to go 

through it at a similar speed. In contrast, a greater reduction in task completion time a week after 

may indicate better performance in knowledge retention for adaptive training. These results may 

indicate a trend favorable for retention of the learned skills in the adaptive training approach. The 

findings are similar to the results of previous studies (Lang et al., 2018; Rossol et al., 2011) that 

link performance improvements in terms of time with adaptive training. However, a study with a 

larger sample size is required to validate these findings. 

Results also suggested that adaptive training was more effective in reducing workload than the 

non-adaptive training group in both pre-test vs. post-test and pre-test vs. retention comparisons. 

Evidence regarding the effect of adaptive VR training on workload is sparse. Ariali and Zinn 

(2021) compared the level of perceived workload between adaptive and non-adaptive VR training 

systems and found no difference between the two approaches (Ariali & Zinn, 2021).  It is important 

to note that the estimate of workload in this work is closely related to accuracy and task completion 

time findings. Since accuracy was improved for the adaptive training group in general and task 

completion time was reduced in the retention session, we can infer that the reduction in workload 

was influenced by the performance improvement observed for the adaptive training group. We 

consider understanding the effect of adaptive training on cognitive workload a relevant avenue for 

future research. 

The results obtained for adaptive training can be attributed to several distinctions present between 

the adaptive and non-adaptive training approaches. For those participants that showed high or 
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medium workload, the adaptive logic enabled more practice to get familiar with the cockpit 

elements. However, adaptive training placed individuals with low estimated workload in the pre-

test scenario to start at a commensurate level of difficulty, as opposed to the non-adaptive approach 

where all trainees started at a same level. This resulted in experiencing fewer number of scenarios 

for participants showing low initial workload estimates in adaptive training, with 6 scenarios on 

average, as compared to trainees with high initial workload, with an average of 11 scenarios, while 

the non-adaptive group experienced a fixed number of 9 scenarios. The fact that participants with 

higher workload levels at the onset of training completed, on average, a higher number of scenarios 

than the non-adaptive group, means adaptive training did assign participants to the right number 

of iterations given their workload levels.  

In the context of CLT, we can say that adaptive VR based training, extrinsic load is low and 

constant, because VR tries to simulate a realistic environment and reduces external distractions 

due to its immersive properties. Intrinsic load is modulated via the adaptive component, avoiding 

mental overload by basing scenario transition on the estimated workload of the participant. 

Germane load is promoted by enabling trainees to use their cognitive resources to create an 

accurate mental model of the task. All of these characteristics conform to a training approach that 

fosters better learning outcomes according to CLT, further supporting the use of adaptive VR 

systems for training.  

The approach used in this study has the potential to improve pilot training in terms of efficiency 

and effectiveness. For efficiency, we consider that the cost to set up a training system similar to 

the one developed is lower, on a unit basis, than traditional flight simulators, and, conversely, to 

the use of aircraft. In addition, adaptive training was found to potentially be effective in reducing 

trainees’ workload and improving task accuracy. VR systems can also be effective in initial phases 
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of training and free up the use of other training resources such as simulators, instructors, and 

aircraft for later stages or more complex trainings. This can also mean greater effectiveness, as 

trainees can make better use of the aforementioned resources. 

5. LIMITATIONS AND FUTURE WORK 

This study had some limitations that must be taken into consideration. One is the prototypical 

nature of the system, which influenced some design choices. The approach used for building the 

system is sound because it was done in an efficient fashion, including all the fundamental elements 

of an adaptive training system. The limitations come in terms of the immersive and aesthetic 

qualities of the environment built, such as including more interactive controls, embellishment of 

the cockpit, and other features such as sound, all requiring time and specialized personnel to 

develop. While a more immersive system can improve the user experience, we consider that the 

system built achieved the main task, which was to prove the feasibility of building a VR-based 

adaptive training system and evaluating its effectiveness in a pilot study. To further advance 

towards the latter goal, a larger sample size is required to verify the trends identified in this study. 

To achieve a test with a power of 80% at the 0.05 significance level, and to distinguish a 20% 

difference in means, we would need a sample size of at least 10 participants per group. Currently, 

we are working on recruiting more participants for the study to reach the required sample size and 

be able to conduct inferential statistical tests.  

An important limitation for this system is the type of the simulated task (i.e., a checklist task instead 

of a flight simulation task). This could reduce the generalizability of results. Due to the prototypical 

nature of the system, some of the necessary components to simulate flight tasks, such as flight 

physics, full cockpit “functionality” simulation, and relevant environmental elements such as 

elevation and runways were beyond the scope of the project. Regarding the adaptive logic, we 
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used node probability tables based on different workload indicators. While this approach was 

informed by relevant literature concerning the relationship between cognitive workload and each 

indicator variable, no standardized method exists to precisely quantify this relationship. As a result, 

the output of the model must be considered an estimation of cognitive workload. Future studies 

should explore the use of fuzzy logic (Zadeh, 1978) or ranked nodes (Fenton et al., 2007) to 

incorporate uncertainty into each indicator node. Both methods allow for eliciting full probability 

tables from limited information, avoiding the use of point estimates.  

An interesting avenue of future work is adjusting other aspects of the adaptive components of the 

system, such as the adaptive logic. For instance, we can experiment the effects of a more dynamic 

adaptive logic vs. a more conservative one. This could establish an adaptive logic that reduces the 

total time spent on training while maintaining good outcomes in terms of performance, leading to 

increased training efficiency. In addition, different classes of adaptive variables could be proposed, 

such as various environmental features (i.e. illumination, noise). There is a need for manipulating 

different types of adaptive variables and identifying those that are associated with greater increases 

in performance. 

More studies need to be conducted to validate the effectiveness of adaptive VR training in aviation. 

Our design decisions used the best information available in the current literature, however, the 

evidence of the effectiveness of adaptive training for pilots in a VR environment is sparse. As 

found in Losey (2021), there is a wide practical application of VR in pilot training and using 

appropriate adaptive components can improve training effectiveness. A benefit of the system 

presented is that it provides a novel platform to initiate research on evaluating the effectiveness of 

the adaptive VR-based training systems in aviation and other fields.  

Another avenue for future research is to increase the fidelity of the VR environment to improve 
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the user experience of the trainee. Better graphical embellishments, interactive “mechanical” 

effects, audio, and adding a more realistic environment are all elements that improve the fidelity 

of the system.  Finally, this study can serve as a platform to initiate the development of more 

advanced adaptive VR-based training systems. 
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6. CONCLUSION 

 

Adaptive VR training has the potential to increase the effectiveness and efficiency of pilot training, 

giving the USAF an opportunity to enhance its training capabilities. The objectives of this study 

were to develop an adaptive VR training system for pilots and evaluate its effectiveness in 

improving training outcomes. An adaptive VR training system was developed using open software 

and based on the fundamental principles of adaptive training. Scenario difficulty and feedback 

were modified as adaptive variables using an estimate of workload derived from an adaptive logic 

based on Bayesian networks. This logic estimated workload using physiological and task 

performance data. The findings of our pilot study illustrated a trend that adaptive training could be 

better at improving performance and reducing workload than the traditional non-adaptive VR 

training. Future studies can utilize the work presented as a guideline for developing other VR 

adaptive training systems, which could incorporate more immersive features to improve the 

instructional experience. 
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