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ABSTRACT

We conduct a theoretical investigation of radiation from a uniformly accelerating particle cou-

pled to a Proca field. The fact that a Proca field allows non-conservation of charge facilitates the

use of regularizations where the charge changes in time. Using several classical methods, we ob-

tain expressions for the field, and expressions for the rate of emitted energy and particle number.

We also obtain general expressions for the quantity of radiation when the charge is an arbitrary

function of time, both when the charge is at rest, and when it is uniformly accelerating.

Separately, in the context of the longstanding puzzle of the equivalence principle and radiation,

we carry out an analysis of electromagnetic radiation in the case where observer and charge both

have distinct accelerations. We confirm the result of Hirayama and others, that the rate of radiation

is proportional to the square of the difference of the accelerations.
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1. INTRODUCTION

A uniformly accelerated charged particle emits radiation, in accordance with the Larmor for-

mula P = 2
3
q2a2

4π
. However, historically and presently, several aspects of this situation have been

found to be puzzling.

• The Abraham-Lorentz expression for the radiation reaction force, 2
3
q2

4π
(ȧµ−vµaνa

ν) vanishes

identically for a uniformly accelerated charge, leading to the conclusion that there should be

no radiation, in contradiction to the Larmor formula.

• By the equivalence principle, a co-accelerated observer would interpret a uniformly accel-

erated charge as being at rest in a uniform gravitational field. Such an observer would not

expect to see radiation.

• There is uncertainty about the meaning of radiation and its locality.

While ways of resolving these and other issues have been proposed, they remain controversial,

and efforts at clarification are ongoing by many authors. The purpose of this dissertation is to

provide an additional tool for these efforts by analyzing a variation of the problem, in which one

supposes the field has a nonzero mass, namely a Proca field. The main advantage of a Proca

field, for this application, is that its source need not satisfy conservation of charge. This facilitates

several regularization/limiting procedures, including allowing the charge to oscillate with nonzero

frequency, or to appear and disappear after a finite interval of time.

This dissertation is organized as follows. Section 2.1 provides historical background to the

problem. Sections 2.2 - 2.4 define and explain the system being studied, namely a Proca field with

a uniformly accelerating source. The remaining sections of chapter 2 each outline a method of

calculating and quantifying the field and its radiation.

Sections 3.1 - 3.3 provide the specific results of the methods introduced in the previous chapter.

Sections 3.4 - 3.6 introduce variations on those methods which give further results quantifying

radiation.
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Chapter 4 discusses the standalone topic of the generalization of the Larmor formula for

nonzero observer acceleration, and its relationship to the equivalence principle. It does not con-

sider the Proca field, but only the usual electromagnetic field. This chapter serves as an illustration

of some of the issues of acceleration and radiation.
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2. BACKGROUND AND METHODS

The issue of radiation from a uniformly accelerated charge has been investigated by numer-

ous authors. Principal sources for this dissertation include Ren and Weinberg [1], and Landulfo,

Fulling, and Matsas [2], who consider a massless scalar field; Boulware [3], and Higuchi, Mat-

sas, and Sudarsky [4, 5], who consider the electromagnetic field; and Castiñeiras et al. [6], who

consider the Proca field, although with a different emphasis from this dissertation.

2.1 Historical highlights

The electromagnetic field of a uniformly accelerating charge is explicitly known, and the first

to calculate it was Born [7] in 1909. In 1955, Bondi and Gold [8] updated this solution to account

for the singularity on the boundary of the particle’s causal future. In 1920, Pauli [9] argued that

such a charge emits no radiation, based on the fact that the magnetic field vanishes at t = 0. The

view that a uniformly accelerating charge does not radiate was further popularized by Feynman

[10] in 1962, evoking the (mistaken) idea that the radiated power should equal the work done

by the Abraham-Lorentz force. Fulton and Rohrlich [11] in 1960, and later papers by Rohrlich

[12, 13], performed the calculations showing that the uniformly accelerated charge does radiate

for inertial observers, but not for co-accelerated observers, making apparent that the notion of

radiation is observer-dependent. Other contributions to the discussion of uniform acceleration and

the equivalence principle include Kovetz and Tauber [14], Ginzburg [15], and Pauri and Vallisneri

[16]. Boulware’s contribution [3] in 1980 is also significant for emphasizing the role of horizons

for accelerated observers. In 2010, Rowland [17] clarified the question of energy conservation and

the relationship to the Abraham-Lorentz force, showing that radiated power is not the work done

by the radiation reaction, but comes from energy stored in the field. Finally for completeness it is

important to mention the generalization of the Abraham-Lorentz force to curved spacetime, given

by DeWitt and Brehme [18] and Hobbs [19], as well as the generalization of the Larmor formula to

gravitational fields and general accelerated observers, given by Kretzschmar and Fugmann [20, 21]

3



and Hirayama [22, 23].

2.2 Proca field

Here and throughout, this dissertation uses metric signature −,+,+,+ and units where c =

h̄ = 1. The Proca equation for a vector field Aµ, with mass m and source Jµ, is

−∇µF
µν +m2Aν = Jν (2.1)

where F µν is the field strength tensor given by

Fµν = ∇µAν −∇νAµ (2.2)

Taking the divergence of the Proca equation yields the divergence constraint

m2∇µA
µ = ∇µJ

µ (2.3)

Notice that, in contrast to the electromagnetic field, a Proca field is permitted to have non-conserved

source. Equation (2.1) is equivalent to the vector Klein-Gordon equation

(−∇2 +m2)Aν = J̃ν (2.4)

in conjunction with the constraint (2.3). Note that there is an altered source

J̃ν = Jν − 1

m2
∇ν∇µJ

µ (2.5)

Equation (2.4) by itself implies that

(−∇2 +m2)(m2∇νA
ν −∇νJ

ν) = 0 (2.6)
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Thus, by the uniqueness of solutions to hyperbolic equations, if the divergence constraint is sat-

isfied on a space-like hypersurface, then it is satisfied throughout spacetime. In particular, for a

source compactly supported in time, the retarded solution to (2.4) automatically satisfies the diver-

gence constraint.

Alternatively to modifying the source, if V µ is a solution to the vector Klein-Gordon equation

(2.4) with right-hand side Jµ, then

Aµ = V ν − 1

m2
∇ν∇µV

µ (2.7)

is a solution to the Proca equation with the same source Jµ.

Let Σ be a space-like hypersurface with future-directed unit normal vector nµ. Solutions of

the homogeneous Proca equation carry an (indefinite) inner product

⟨A1, A2⟩ = i

∫
Σ

nν(A1µF
νµ
2 − A2µF

νµ

1 ) dσ (2.8)

where dσ is the measure on Σ with respect to its Riemannian metric. This expression is indepen-

dent of the choice of Σ because the vector field in parentheses has divergence zero.

Inevitably one is interested in taking the zero mass limit of the Proca field in order to shed light

on the electromagnetic case. The mathematical details of the zero mass limit have been worked

out in [24]. The upshot is that the zero mass limit of a Proca solution is the corresponding solution

to Maxwell’s equations, provided that the source is conserved and the observable in question is

gauge-invariant.

2.3 Rindler coordinates

In special relativity, the notion of (linear) uniform acceleration means having proper accelera-

tion aµ of constant magnitude a =
√
aµaµ, and constant spatial direction parallel to the velocity.

5



The resulting motion is hyperbolic, shown in figure 2.1.

z(t) =

√
t2 +

1

a2
(2.9)

Figure 2.1: The trajectory of a particle (red) in uniform acceleration

In flat spacetime, we consider coordinates (τ, ξ, x, y) that are adapted to a family of uniformly

accelerated observers. They are related to the Cartesian coordinates by

t =
eaξ

a
sinh(aτ) z =

eaξ

a
cosh(aτ) (2.10)

6



The coordinate basis transformations are

∂τ = a(z∂t + t∂z) ∂ξ = a(t∂t + z∂z) (2.11)

∂t = ae−2aξ(z∂τ − t∂ξ) ∂z = ae−2aξ(z∂ξ − t∂τ ) (2.12)

dτ = ae−2aξ(zdt− tdz) dξ = ae−2aξ(zdz − tdt) (2.13)

dt = a(tdξ + zdτ ) dz = a(zdξ + tdτ) (2.14)

These coordinates cover the wedge of spacetime z > |t| (the Rindler wedge). We will also some-

times employ the auxiliary coordinate χ = eaξ. The Rindler coordinate system is shown in figure

2.2.

Figure 2.2: The Rindler coordinate system in the z-t plane

In these coordinates, the metric takes the form

g = e2aξ(−dτ 2 + dξ2) + dx2 + dy2 (2.15)

7



Translation in the τ direction is a time-translation symmetry of the Rindler spacetime. The orbits of

constant x, y, ξ form a family of worldlines all having uniform acceleration. Those located at ξ = 0

are privileged in that their proper time coincides with their τ coordinate, and their proper accelera-

tion is a. These coordinates are adapted to the symmetries of a uniformly accelerated source. They

also capture the appropriate notion of a “co-accelerated” reference frame. τ -stationary observers

are rigid with respect to each other, and their natural notions of time translation and simultaneity

are those associated with the τ coordinate. Note that this notion of co-accelerated frames is not

one in which the observers have equal proper acceleration. The observers have different proper

acceleration, but they remain a constant proper distance from each other. The distinction is the

same as in the well-known Bell’s spaceship paradox [25] concerning two spaceships with a string

tied between them.

The Klein-Gordon equation in Rindler coordinates takes the form

e−2aξ(∂2
τϕ− ∂2

ξϕ)− ∂2
xϕ− ∂2

yϕ+m2ϕ = 0 (2.16)

A family of positive τ -frequency solutions is given by the Rindler modes, indexed by frequency

ω ≥ 0 and transverse momentum k⊥ = (kx, ky). k⊥ =
√

k2
x + k2

y , and x⊥ = (x, y).

ϕω,k⊥ =

√
sinh(πω/a)

4π4a
Kiω/a

(√
k2
⊥ +m2

eaξ

a

)
ei(k⊥·x⊥−ωτ) (2.17)

These solutions are orthogonal and normalized in the sense determined by equation (2.26) below.

2.4 The source

We are interested in a uniformly accelerated charge. In Rindler coordinates, this corresponds

to a source

J = q δ(ξ)δ(x)δ(y) ∂τ (2.18)

where ∂τ is the τ coordinate basis vector. For some parts of the calculation it will be helpful to

regularize this source by letting the charge be a function of time, q(τ). Because the radiation is pro-
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portional to q2, for any regularization it is appropriate to renormalize by a factor of
√∫

q2 dτ . For

example, much of the following uses the regularization where the charge oscillates with frequency

E, and/or appears and disappears outside a finite time interval. Expressly,

J =


√
2 q cos(Eτ)δ(ξ)δ(x)δ(y) ∂τ , |τ | < T

0 else
(2.19)

The regularization involving oscillation is discussed in [5].

2.5 The method of Unruh modes

This section considers Rindler modes and Unruh modes as solutions of the homogeneous Proca

equation, normalized with respect to the inner product (2.8). The classical solution can be ex-

panded in these modes. The method is the same as that in [2]. There are three independent

polarizations for the Proca field, worked out in detail in [6]. These modes, labeled I, II, III, are

defined in the Rindler wedge, and are expressed here in the dτ, dξ, dx, dy dual basis. Letting

ρ =
√

k2
⊥ +m2,

V R,I,ω,k⊥
µ =

1

k⊥
(0, 0, kyϕ

ω,k⊥ , −kxϕ
ω,k⊥) (2.20)

V R,II,ω,k⊥
µ =

1

ρ
(∂ξϕ

ω,k⊥ , −iωϕω,k⊥ , 0, 0) (2.21)

V R,III,ω,k⊥
µ =

1

m

(
−iωk⊥

ρ
ϕω,k⊥ ,

k⊥
ρ
∂ξϕ

ω,k⊥ ,
ikxρ

k⊥
ϕω,k⊥ ,

ikyρ

k⊥
ϕω,k⊥

)
(2.22)

where ϕω,k⊥ are the functions given in (2.17). There are also Rindler modes in the left wedge given

by

V L,λ,ω,k⊥
µ (t, z, x, y) = V R,λ,ω,k⊥

µ (−t,−z, x, y) (2.23)

The Unruh modes [26] are linear combinations of V L
µ and V R

µ , which are positive frequency in the

Minkowski sense:

W 1,λ,ω,k⊥
µ =

V R,λ,ω,k⊥
µ + e−πω/a V L,λ,ω,−k⊥

µ√
1− e−2πω/a

(2.24)

9



W 2,λ,ω,k⊥
µ =

V L,λ,ω,k⊥
µ + e−πω/a V R,λ,ω,−k⊥

µ√
1− e−2πω/a

(2.25)

They are orthonormal in the sense of inner product (2.8):

⟨W σ,λ,ω,k⊥ , W σ′,λ′,ω′,k′
⊥⟩ = δσσ′δλλ′δ(ω − ω′)δ2(k⊥ − k′

⊥) (2.26)

One may calculate the retarded solution by expanding in Unruh modes. This will make use of the

so-called causal propagator E = A− R, the difference of the advanced and retarded propagators.

Thus in the future wedge t > |z|, R(J̃) = −E(J̃). So we have

R(J̃) = −
∑
σ,λ

∫ ∞

0

dω

∫
d2k⊥⟨W σ,λ,ω,k⊥ , E(J̃)⟩ W σ,λ,ω,k⊥ + c.c. (2.27)

Furthermore, for any solution f of the homogeneous Klein-Gordon equation, there is the identity

⟨f, E(J̃)⟩ = i

∫
f̄ J̃ d4x (2.28)

so we may calculate the expansion coefficients as

i

∫
W σ,λ,ω,k⊥

µ J̃µ d4x (2.29)

Here follows a derivation of identity (2.28). Let f be a solution of the homogeneous Klein-Gordon

equation, and let J be compactly supported. Let Σ1 and Σ2 be spacelike hypersurfaces in the past

and future of the support of J .

∫
fJ d4x =

1

2

∫
f(−∇2 +m2)(A+R)J d4x (2.30)
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This may be integrated by parts twice, moving the derivatives to f , at the cost of boundary terms

on Σ1 and Σ2:

=
1

2

(∫
Σ2

nµ
2f (−∇µRJ) dσ2 −

∫
Σ1

nµ
1f (−∇µAJ) dσ1

−
∫
Σ2

nµ
2(−∇µf)RJ dσ2 +

∫
Σ1

nµ
1(−∇µf)AJ dσ1

+

∫
((−∇2 +m2)f)(A+R)J d4x

) (2.31)

The last integral vanishes because f is a solution. Rearranging,

=
1

2

(∫
Σ1

nµ
1(f∇µAJ − AJ∇µf) dσ1 −

∫
Σ2

nµ
2(f∇µRJ −RJ∇µf) dσ2

)

= ⟨f, E(J)⟩

(2.32)

2.6 The method of the retarded propagator

Another approach to calculating the retarded solution is to directly integrate the source against

the retarded propagator, as in [3]. We will take E = 0 so the source is conserved. If we have a

conserved source following a worldline r(λ) with velocity vector vµ(λ), then we may compute the

retarded solution as

Aµ(x) = q

∫
vµ(λ)R(x, r(λ)) dλ (2.33)

where

R(x, y) =
1

2π
θ(x0 − y0)

(
δ(−s2)− θ(−s2)

mJ1(m
√
−s2)

2
√
−s2

)
(2.34)

is the Klein-Gordon retarded propagator, and

− s2 = −(x− y)2 (2.35)
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In principle, the idea behind equation (2.7) could adapt this method to non-conserved sources.

Then we would have

Aµ(x) =

∫
q(λ)vµ(λ)R(x, r(λ)) dλ− 1

m2
∇µ

∫
q̇(λ)R(x, r(λ)) dλ (2.36)

This idea has not been pursued here, as the relevant integrals are unwieldy.

2.7 General form of the stress-energy tensor

One way to quantify the presence of radiation is with the stress-energy tensor. This section will

use cylindrical Rindler coordinates τ, χ, x⊥, ϕ, for which the metric takes the form

g = −χ2dτ 2 +
1

a2
dχ2 + dx2

⊥ + x2
⊥dϕ

2 (2.37)

The stress-energy tensor of the Proca field is

Tµν = FµαF
α

ν +m2AµAν −
1

4
gµνFαβF

αβ − 1

2
m2gµνAαA

α (2.38)

In the Rindler wedge, the retarded solution for the uniformly accelerated charge has the general

form

A = u(χ, x⊥)dτ (2.39)

Consequently, the field strength tensor takes the form

F = uχdχ ∧ dτ + u⊥dx⊥ ∧ dτ (2.40)

where uχ = ∂u
∂χ

and u⊥ = ∂u
∂x⊥

. The components of the stress-energy tensor may be computed in

terms of these functions:

Tττ =
1

2
(a2u2

χ + u2
⊥ +m2u2) (2.41)

Tτi = 0 for i ̸= τ (2.42)
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Tχχ =
1

2a2χ2
(−a2u2

χ + u2
⊥ +m2u2) (2.43)

T⊥⊥ =
1

2χ2
(a2u2

χ − u2
⊥ +m2u2) (2.44)

Tϕϕ =
x2
⊥

2χ2
(a2u2

χ + u2
⊥ +m2u2) (2.45)

Tϕi = 0 for i ≠ ϕ (2.46)

Tχ⊥ = − 1

χ2
uχu⊥ (2.47)

As an example, these components may be explicitly computed in the massless case, m = 0, for

which

u = − qa

4π

1 + χ2 + a2x2
⊥√

(1 + χ2 + a2x2
⊥)

2 − 4χ2
(2.48)

uχ =
−qaχ(1− χ2 + a2x2

⊥)

π((1 + χ2 + a2x2
⊥)

2 − 4χ2)3/2
(2.49)

u⊥ =
2qa3x⊥χ

2

π((1 + χ2 + a2x2
⊥)

2 − 4χ2)3/2
(2.50)

Tττ =
q2a4χ2((1− χ2 + a2x2

⊥)
2 + 4a2x2

⊥χ
2)

2π2((1 + χ2 + a2x2
⊥)

2 − 4χ2)3

=
q2a4χ2

2π2((1 + χ2 + a2x2
⊥)

2 − 4χ2)2

(2.51)

T⊥⊥ = −a2Tχχ =
q2a4((1− χ2 + a2x2

⊥)
2 − 4a2x2

⊥χ
2)

2π2((1 + χ2 + a2x2
⊥)

2 − 4χ2)3
(2.52)

Tχ⊥ =
2q2a4χx⊥(1− χ2 + a2x2

⊥)

π2((1 + χ2 + a2x2
⊥)

2 − 4χ2)3
(2.53)
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These results agree with those computed in [3], except for Tχχ. We believe the corresponding

expression to Tχχ in [3] to be incorrect, as may be verified by checking the tracelessness condition

for the massless case.

The general forms for the future wedge are similar. Using the coordinates

t =
θ

a
cosh(aζ) z =

θ

a
sinh(aζ) (2.54)

for which the metric takes the form

g = − 1

a2
dθ2 + θ2dζ2 + dx2

⊥ + x2
⊥dϕ

2 (2.55)

the field has the form

A = u(θ, x⊥)dζ (2.56)

Then,

Tζζ =
1

2
(−a2u2

θ + u2
⊥ +m2u2) (2.57)

Tζi = 0 for i ̸= ζ (2.58)

Tθθ =
1

2a2θ2
(a2u2

θ + u2
⊥ +m2u2) (2.59)

T⊥⊥ =
1

2θ2
(a2u2

θ + u2
⊥ −m2u2) (2.60)

Tϕϕ =
x2
⊥

2θ2
(a2u2

θ − u2
⊥ −m2u2) (2.61)

Tϕi = 0 for i ≠ ϕ (2.62)

Tθ⊥ =
1

θ2
uθu⊥ (2.63)
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2.8 Classical particle number

Another way of quantifying radiation is using the classical particle number [27]. Despite the

terminology of particles, this is a classical notion. Classical fields have a conserved current, whose

time component can be thought of as the classical particle density. This is most well known perhaps

in the case of the Klein-Gordon field, but it is true for other fields as well. In our case, the classical

particle number can be defined as

N = ⟨KRJ̃,KRJ̃⟩ (2.64)

where KRJ̃ denotes the Minkowski-positive frequency part of the retarded solution. Since the

Unruh modes are Minkowski-positive frequency, this is given by

KRJ̃ = −
∑
σ

∫
dωd2k⊥

(
i

∫
W σ,II,ω,k⊥

µ J̃µ d4x

)
W σ,II,ω,k⊥ (2.65)

2.9 Quantum field theory

For completeness, and to complement the work of other authors, it is useful to consider the

problem from the point of view of quantum field theory. The results of this section are generic for

quantum fields with a classical source. The case of a massless scalar field is covered in [2], and the

results carry over to the Proca field with minimal changes.

The quantum field theory of the Proca field with a classical source can be solved exactly. Let

Aret = RJ̃ and Aadv = AJ̃ denote the retarded and advanced solutions. Then the quantum field

can be written as

Â = AretÎ + Âin = AadvÎ + Âout (2.66)

The single-particle Hilbert space is the space of positive-frequency solutions to the homogeneous

field equation which are ⟨, ⟩-square-integrable. The full Hilbert space is the Fock space constructed

out of the single-particle space. Each element f of the single-particle space has an associated an-

nihilation operator â(f) and its adjoint creation operator â†(f). The “in” representation above is

associated with operators âin(f) and vacuum state |0in⟩, and the “out” representation is associated
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with operators âout(f) and vacuum state |0out⟩. Note the operators â(f) and â†(f) are only de-

fined for positive frequency f . The quantum field encodes the linear map from test functions to

operators:

⟨KÂin, f⟩ = â†in(f) (2.67)

where, as above, K denotes the positive-frequency part of a field. Likewise for the “out” represen-

tation:

⟨KÂout, f⟩ = â†out(f) (2.68)

The two representations are connected by the S-matrix. In particular

|0in⟩ = Ŝ|0out⟩ (2.69)

We have

Ŝ = exp

[
−i

∫
ÂoutJ̃ d4x

]
= exp

[
−i

∫
(KÂout)J̃ d4x− i

∫
(KÂout)

†J̃ d4x

]
= exp

[
−⟨(KÂout)

†, EJ̃⟩ − ⟨KÂout, EJ̃⟩
]

= exp
[
âout(KEJ̃)− â†out(KEJ̃)

]
(2.70)

using the identity (2.28). Note the inner products project the positive frequency part of EJ̃ . Now

applying ea+b = eaebe−
1
2
[a,b], as well as

[
âout(KEJ̃), â†out(KEJ̃)

]
= ∥KEJ̃∥2Î (2.71)

we find

Ŝ = e−â†out(KEJ̃)eâout(KEJ̃)e−
1
2
∥KEJ̃∥2 (2.72)
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Consequently,

|0in⟩ = e−
1
2
∥KEJ̃∥2e−â†out(KEJ̃)|0out⟩ (2.73)

a coherent state, an eigenstate of âout(f), with eigenvalue −⟨f, EJ̃⟩,and an eigenstate of KÂout

with eigenvalue −KEJ̃ . The field expectation value is

⟨0in|Âout|0in⟩ = −EJ̃ (2.74)

so that

⟨0in|Â|0in⟩ = Aret (2.75)

The total particle number operator is

N̂ = ⟨(KÂout)
†, KÂout⟩ (2.76)

Its expectation value is

⟨0in|N̂ |0in⟩ = ∥KEJ̃∥2 (2.77)

This is then the same expression as the classical particle number.

The results above refer to the exact solution of the quantum field theory. The calculation

of tree-level perturbation theory for the Proca field with uniformly accelerated source has been

carried out in [6]. That paper employed an unnecessary regularization, introducing a dipole at

distance L → ∞ to compensate for lack of charge conservation. This was presumably done so as

to match with previous work on the electromagnetic field. As we know, charge conservation is not

necessary for the Proca field. The results of [6] are unaffected by simply omitting the compensat-

ing dipole. Their results agree with the classical particle number results obtained here in equations

(3.29) and (3.51).
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3. RESULTS

3.1 The method of Unruh modes

Proceeding from section 2.5, we can expand the retarded solution in the future wedge with

Unruh modes. Recalling equation (2.29), the expansion coefficients can be computed as

i

∫
W σ,λ,ω,k⊥

µ J̃µ d4x (3.1)

Conveniently, the second term of J̃ representing non-conservation of charge, may be neglected

here, because when it is integrated by parts, we find a ∇µW µ, which vanishes because the Unruh

mode is a solution of the homogeneous Proca equation.

The expansion coefficients may now be calculated, using regularization (2.19). First, we see

that i
∫
W σ,I,ω,k⊥

µ Jµ d4x = 0, because J has only a τ component. Next,

i

∫
W 1,II,ω,k⊥

µ J̃µ d4x =

=
iq
√
2√

1− e−2πω/a

√
sinh(πω/a)

4π4a
K ′

iω/a(ρ/a)

∫ T

−T

cos(Eτ)eiωτ dτ =

iq
√
2√

1− e−2πω/a

√
sinh(πω/a)

4π4a
K ′

iω/a(ρ/a)

[
sin((E − ω)T )

E − ω
+

sin((E + ω)T )

E + ω

] (3.2)

In the limit T → ∞,
sin((E ± ω)T )

E ± ω
→ πδ(E ± ω) (3.3)

and since we are only considering frequencies ω ≥ 0, we may retain only the δ(ω−E), and replace

ω with E.

i

∫
W 1,II,ω,k⊥

µ J̃µ d4x =
iq

2π
√
a

√
eπE/aK ′

iE/a(ρ/a)δ(ω − E) (3.4)
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Likewise,

i

∫
W 2,II,ω,k⊥

µ J̃µ d4x =e−πω/a i

∫
W 1,II,ω,k⊥

µ J̃µ d4x

=
iq

2π
√
a

1√
eπE/a

K ′
iE/a(ρ/a)δ(ω − E)

(3.5)

And the coefficients for the type III modes also,

i

∫
W 1,III,ω,k⊥

µ J̃µ d4x =

− q
√
2√

1− e−2πω/a

√
sinh(πω/a)

4π4a

ωk⊥
mρ

Kiω/a(ρ/a)

∫ T

−T

cos(Eτ)eiωτ dτ

→ − q

2π
√
a

√
eπE/a

Ek⊥
mρ

KiE/a(ρ/a)δ(ω − E)

(3.6)

Likewise,

i

∫
W 2,III,ω,k⊥

µ J̃µ d4x =− e−πω/a i

∫
W 1,III,ω,k⊥

µ J̃µ d4x

=
q

2π
√
a

1√
eπE/a

Ek⊥
mρ

KiE/a(ρ/a)δ(ω − E)

(3.7)

Now in the limit E → 0, the type III coefficients vanish, and we are left with only

i

∫
W 1,II,ω,k⊥

µ J̃µ d4x = i

∫
W 2,II,ω,k⊥

µ J̃µ d4x

= − iq

2π
√
a
K1(ρ/a)δ(ω)

(3.8)

using the fact that K ′
0 = −K1.

We now look in the future wedge and introduce coordinates ζ and η using

t =
eaη

a
cosh(aζ) z =

eaη

a
sinh(aζ) (3.9)

19



Using these coordinates, in the future wedge the zero-frequency Unruh modes take the form

W 1,II,0,k⊥ = W 2,II,0,k⊥ =
1√

32π2a
H

(2)
1

(
ρ
eaη

a

)
eik⊥·x⊥dζ (3.10)

Therefore, following equation (2.27), we have

R(J̃) =

[
iq
√
2

8π2a

∫ ∞

0

k⊥dk⊥

∫ 2π

0

dϕ K1(ρ/a)H
(2)
1

(
ρ
eaη

a

)
eik⊥x⊥ cosϕ + c.c.

]
dζ (3.11)

where polar coordinates in k⊥ have been used. Finally, using

H
(2)
1 = J1 − iY1 (3.12)

and ∫ 2π

0

eik⊥x⊥ cosϕdϕ = 2πJ0(k⊥x⊥) (3.13)

we have

R(J̃) =

[
q√
2πa

∫ ∞

0

k⊥K1(ρ/a)Y1

(
ρ
eaη

a

)
J0(k⊥x⊥)dk⊥

]
dζ (3.14)

This gives us an expression for the Proca field of the uniformly accelerated source.

For the purposes of studying radiation, one would like to plug this expression into the the for-

mulas for components of the stress-energy tensor described in section 2.7. Unfortunately, any fur-

ther simplification of the integral does not appear to be possible, and the lack of a simple algebraic

expression makes further calculations unfeasible. More importantly, unlike the electromagnetic

field, the Proca field radiation can travel in the interior of the future lightcone. This means the field

at any point depends on the entire past history of the source and not just a single retarded time,

so it is not possible to isolate the radiation emitted from a single time on the particle’s worldline,

and there isn’t a clear choice of surface to integrate over. Consequently, this method does not fully

illuminate the question of radiation. Similar challenges apply to the result of the next section. A

way of moving beyond these challenges is to employ the methods of sections 3.3 and 3.4, in which
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actual expressions for the rate of radiation are obtained.

3.2 The method of the retarded propagator

Continuing from section 2.6, we calculate the retarded solution in the Rindler wedge using the

method of [3]. In Minkowski coordinates t, z, x, y, our source has worldline

r(λ) =

(
1

a
sinh(aλ),

1

a
cosh(aλ), 0, 0

)
(3.15)

with velocity

vµ = (cosh(aλ), sinh(aλ), 0, 0) (3.16)

The spacetime interval between r(λ) and the field point x =
(
χ
a
sinh(aτ), χ

a
cosh(aτ), x⊥

)
is

− s2 =
2χ

a2
cosh(a(τ − λ))− 1

a2
(χ2 + 1)− x2

⊥ (3.17)

Then we have

Aτ =
∂t

∂τ
At +

∂z

∂τ
Az

= q

∫
(−χ cosh(aτ) cosh(aλ) + χ sinh(aτ) sinh(aλ))R(−s2)dλ

= −qχ

∫
cosh(a(τ − λ))R(−s2)dλ

(3.18)

Aχ =
∂t

∂χ
At +

∂z

∂χ
Az

= q

∫
(− sinh(aτ) cosh(aλ) + cosh(aτ) sinh(aλ))R(−s2)dλ

= −q

∫
sinh(a(τ − λ))R(−s2)dλ

(3.19)

These integrals can be evaluated by changing the variable of integration to u = −s2. The measure

changes to

du =
2χ

a
sinh(a(τ − λ))dλ = a

√(
u+

1

a2
(χ2 + 1) + x2

⊥

)2

− 4χ2

a4
dλ (3.20)
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Then Aχ becomes

Aχ =
qa

4πχ

(∫
δ(u)du−

∫ ∞

0

mJ1(m
√
u)

2
√
u

du

)
(3.21)

Upon the further variable change w = m
√
u, the second integral becomes

∫∞
0

J1(w)dw = 1, so

all together

Aχ = 0 (3.22)

More complicated is Aτ

Aτ = − qa

4π

∫ (
u+ 1

a2
(χ2 + 1) + x2

⊥
) (

δ(u)− θ(u)mJ1(m
√
u)

2
√
u

)
√(

u+ 1
a2
(χ2 + 1) + x2

⊥
)2 − 4χ2

a4

du

= − qa

4π

 1 + χ2 + a2x2
⊥√

(1 + χ2 + a2x2
⊥)

2 − 4χ2
−
∫ ∞

0

(
w2a2

m2 + 1 + χ2 + a2x2
⊥

)
J1(w)√(

w2a2

m2 + 1 + χ2 + a2x2
⊥
)2 − 4χ2

dw


(3.23)

3.3 Classical particle number

Proceeding from section 2.8. As found earlier, the Unruh mode coefficients for the source

regularized with finite T are

i

∫
W 1,II,ω,k⊥

µ J̃µ d4x = eπω/a i

∫
W 2,II,ω,k⊥

µ J̃µ d4x

=
iq
√
2√

1− e−2πω/a

√
sinh(πω/a)

4π4a
K ′

iω/a(ρ/a)

[
sin(ωT )

ω

] (3.24)

where ρ =
√
k2
⊥ +m2. So,

KRJ̃ = −
∑
σ

∫ ∞

0

dω

∫
d2k⊥

(
i

∫
W σ,II,ω,k⊥

µ J̃µ d4x

)
W σ,II,ω,k⊥ (3.25)
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By the orthonormality of the Unruh modes,

⟨KRJ̃,KRJ̃⟩ =

q2

2π4a

∫
d2k⊥dω

(
1 + e−2πω/a

)sinh(πω/a)
1− e−2πω/a

∣∣K ′
iω/a(ρ/a)

∣∣2(sin(ωT )

ω

)2 (3.26)

In the limit of large T , (
sin(ωT )

ω

)2

→ πTδ(ω) (3.27)

⟨KRJ̃,KRJ̃⟩ → q2

2π4a

∫
d2k⊥

∣∣K1(ρ/a)
∣∣2πT

=
q2aT

π2

∫ ∞

0

dx x

∣∣∣∣∣K1

(√
x2 +

m2

a2

)∣∣∣∣∣
2 (3.28)

Divide by the total time 2T to get the rate of particles:

Rate =
q2a

2π2

∫ ∞

0

dx x

∣∣∣∣∣K1

(√
x2 +

m2

a2

)∣∣∣∣∣
2

=
q2a

4π2

m2

a2
(
K0(m/a)K2(m/a)−K1(m/a)2

) (3.29)

This result agrees with the expression obtained in [6] using tree-level quantum field theory. The

zero-mass limit diverges logarithmically, as expected in a typical infrared divergence of a massless

field. If considered in terms of its spectrum as a function of k⊥, the zero-mass limit of this result

agrees with the result for the electromagnetic field found in [5].

3.4 The method of Minkowski modes

This section will repeat the analysis of sections 3.1 and 3.3 using Minkowski modes (plane

waves). These modes will be indexed by wave vector k = (kx, ky, kz). Also let k⊥ and ρ be as

before, but now let ω =
√

ρ2 + k2
z be the Minkowski frequency. The polarization modes to be

used are

U I,k
µ =

1

k⊥

1√
2ω(2π)3

(0, ky, −kx, 0) e
ikµxµ

(3.30)
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U II,k
µ =

1

k⊥

1√
k2
z + k2

⊥

1√
2ω(2π)3

(
0, kxkz, kykz, −k2

⊥
)
eikµx

µ

(3.31)

U III,k
µ =

ω

m

1√
k2
z + k2

⊥

1√
2ω(2π)3

(
−k2

z + k2
⊥

ω
, kx, ky, kz

)
eikµx

µ

(3.32)

They are orthonormal:

⟨Uλ,k, Uλ′,k′⟩ = δλλ′δ3(k− k′) (3.33)

A convenient regularization for this section is q(τ) = qe−ϵ cosh(aτ) with the intention of letting

ϵ → 0, so that

J = qe−ϵ cosh(aτ) δ(ξ)δ(x)δ(y) ∂τ (3.34)

In the Minkowski coordinate basis,

∂τ = (eaξ cosh(aτ), 0, 0, eaξ sinh(aτ)) (3.35)

Thus in order to calculate the coefficients i
∫
UµJ

µ d4x, we need the following integral identities:

∫ ∞

−∞
e−i(A cosh(t)+B sinh(t)) sinh(t) dt = 2iB

K1(
√
B2 − A2)√

B2 − A2
(3.36)

∫ ∞

−∞
e−i(A cosh(t)+B sinh(t)) cosh(t) dt = −2iA

K1(
√
B2 − A2)√

B2 − A2
(3.37)

where in this case,

A =
kz
a

− iϵ B = −ω

a
(3.38)

The result is

i

∫
U I
µJ

µ d4x = 0 (3.39)

i

∫
U II
µ J

µ d4x = −2q

a2
k⊥ω√
k2
z + k2

⊥

1√
2ω(2π)3

K1(u)

u
(3.40)

i

∫
U III
µ Jµ d4x =

2q

a2
1√

k2
z + k2

⊥

1√
2ω(2π)3

K1(u)

u

(
kzm+

iϵa

m
(k2

z + k2
⊥)

)
(3.41)
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where

u =

√
ρ2

a2
+

2iϵkz
a

+ ϵ2 (3.42)

Now, as in section 3.3, the total classical particle number can be found as

dN =
∑
λ

∣∣∣∣i ∫ Uλ
µJ

µ d4x

∣∣∣∣2 d3k

=
4q2

a4
1

2ω(2π)3

∣∣∣∣K1(u)

u

∣∣∣∣2(ρ2 + ϵ2a2

m2
(k2

z + k2
⊥)

)
d3k

(3.43)

This result expresses the Minkowski-frequency dependence of the emitted particles. The second

term, proportional to ϵ2a2

m2 , has conceptual subtleties. It arises only from polarization mode III, and

is associated with radiation resulting from the time-dependence of the magnitude of the charge,

as discussed further in section 3.6. It makes no contribution to dN in the limit ϵ → 0, but it also

diverges if the limit m → 0 is taken first. It will be neglected for the remainder of this section.

Further discussion follows at the end of this section. The ϵ inside of u may not be neglected, as it

is needed for the convergence of the kz integral.

The integral over kz can be done as follows. To make the contour of integration more explicit,

parameterize the variable u as

u =

√
v2 +

ρ2

a2
+ ϵ2 + iv (3.44)

such that

kz =
a

ϵ
v

√
v2 +

ρ2

a2
+ ϵ2 (3.45)

and

dkz =
a

ϵ

|u|2√
v2 + ρ2

a2
+ ϵ2

dv (3.46)

In terms of the parameter v, the frequency ω becomes

ω =
a

ϵ

√
(v2 + ϵ2)

(
v2 +

ρ2

a2

)
(3.47)
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With this change of variable, we have

dN =
4q2

a4
ρ2

2(2π)3

∣∣∣∣K1

(√
v2 + ρ2

a2
+ ϵ2 + iv

)∣∣∣∣2√
(v2 + ϵ2)

(
v2 + ρ2

a2

)(
v2 + ρ2

a2
+ ϵ2

) dvd2k⊥ (3.48)

At this point we are safe to neglect the instances of ϵ2 that merely make an adjustment to the mass.

The divergence is controlled by the factor 1/
√
v2 + ϵ2. In the limit ϵ → 0, it behaves as

1√
v2 + ϵ2

→ 2 ln(1/ϵ)δ(v) (3.49)

The factor of ln(1/ϵ) is proportional to the effective total proper time Tprop, which should be divided

to get the rate of particles. More accurately, Tprop should be found by integrating the regularization

q(τ)2:

Tprop =

∫ ∞

−∞
e−2ϵ cosh(aτ) dτ =

2

a
K0(2ϵ) ≈

2

a
ln(1/ϵ) (3.50)

Thus the rate of particles is

Rate =
N

Tprop
=

q2

4π3a

∫
|K1(ρ/a)|2 d2k⊥ (3.51)

This agrees with equation (3.29).

The benefit of calculating the particle number via the Minkowski frequency spectrum is it

gives an alternative method for computing the total energy in the field, using dE = ωdN . Using

equation (3.48),

dE =
4q2

a4
ρ2

2(2π)3
a

ϵ

∣∣∣∣K1

(√
v2 + ρ2

a2
+ iv

)∣∣∣∣2√
v2 + ρ2

a2

dvd2k⊥ (3.52)

The energy is proportional to effective total inertial time Tinert, rather than proper time. This

26



can be found in terms of ϵ by integrating the regularization q(t)2:

Tinert =

∫ ∞

−∞
e−2ϵ

√
1+a2t2 dt =

2

a
K1(2ϵ) ≈

1

aϵ
(3.53)

Thus the energy in the field is

E =
q2Tinert

4π3a2

∫
ρ2

∣∣∣∣K1

(√
v2 + ρ2

a2
+ iv

)∣∣∣∣2√
v2 + ρ2

a2

dvd2k⊥ (3.54)

The integral may be expressed somewhat more simply via a further change of variables

r sin θ = ρ/a r cos θ = v (3.55)

giving

E =
q2a2Tinert

2π2

∫ π

0

∫ ∞

m
a sin θ

r3 sin3 θ |K1(r(1 + i cos θ))|2 drdθ (3.56)

There is a mysterious discrepancy in the zero-mass limit of this expression. At m = 0, the

double integral evaluates to π/4. This would give a radiation rate of q2a2

8π
, different from the

expected Larmor value of q2a2

6π
. This could be due to the fact that the zero-mass limit of a Proca

field does not correspond to an electromagnetic solution if the source is not conserved. There may

be a subtlety in the simultaneous T → ∞, m → 0 limit, as further discussed at the end of section

3.6. However, we do not believe that neglecting the ϵ2a2

m2 term in equation (3.43) can account for

this discrepancy, because it represents polarization mode III radiation, which would not be present

at all for the electromagnetic field.

3.5 Regularizing the acceleration

This section presents an alternative regularization method. Instead of regularizing the magni-

tude of the charge, one may regularize the magnitude of the acceleration. That is, we change the

source’s trajectory so that its proper acceleration goes to zero in the past and future. As ever, the
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specific choice is one of convenience. Consider the following family of hyperbolic trajectories in

Minkowski coordinates.

z(t) = v

√
t2 +

1

a2
(3.57)

The parameter v ∈ [0, 1] represents the initial and final limiting speed of the particle. The velocity

vector, in Minkowski coordinates, is

vµ =

√
t2 + a−2

(1− v2)t2 + a−2

(
1, 0, 0,

vt√
t2 + a−2

)
(3.58)

The square of the proper acceleration is

aµaµ =
v2

a4((1− v2)t2 + a−2)3
(3.59)

whose maximum value is v2a2. The current source is

Jµ = q

(
1, 0, 0,

vt√
t2 + a−2

)
δ

(
z − v

√
t2 +

1

a2

)
δ(x)δ(y) (3.60)

The calculation of the Minkowski mode coefficients proceeds similarly to section 3.4. The results

are:

i

∫
U I
µJ

µ d4x = 0 (3.61)

i

∫
U II
µ J

µ d4x = −2qv

a2
k⊥ω√
k2
z + k2

⊥

1√
2ω(2π)3

K1(u)

u
(3.62)

i

∫
U III
µ Jµ d4x =

2qv

a2
kzm√
k2
z + k2

⊥

1√
2ω(2π)3

K1(u)

u
(3.63)

where now

u =
1

a

√
ρ2 + (1− v2)k2

z (3.64)

The particle number is

dN =
q2v2

4π3a4
ρ2

ω

∣∣∣∣K1(u)

u

∣∣∣∣2 d3k (3.65)
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We may change integration variable from k⊥ to

r =
√
ρ2 + (1− v2)k2

z (3.66)

The effect is that the remaining variable kz is only integrated between ±
√

(r2 −m2)/(1− v2).

N =
q2v2

2π2a2

∫ ∞

m

|K1(r/a)|2

r2

∫ √
(r2−m2)/(1−v2)

−
√

(r2−m2)/(1−v2)

r2 − (1− v2)k2
z√

r2 + v2k2
z

dkz rdr (3.67)

This may be straightforwardly computed, but the kz integration is even cleaner for the energy.

dE = ω dN =
q2v2

2π2a2
(
r2 − (1− v2)k2

z

) |K1(r/a)|2

r2
dkz rdr (3.68)

E =
q2v2

3π2a2
√
1− v2

∫ ∞

m

√
r2 −m2

(
2 +

m2

r2

)
|K1(r/a)|2 rdr

=
q2v2a

3π2
√
1− v2

∫ ∞

m/a

√
x2 − m2

a2

(
2 +

m2

a2x2

)
|K1(x)|2 xdx

(3.69)

It is tempting to divide this result by the effective total time over which the source is accelerating,

to get a rate of radiation. Unfortunately, it is unclear what is a suitable definition of effective total

time. Even if we assume the radiation is proportional to aµaµ (which is evidently not precisely true

for m ̸= 0), the time distribution in equation 3.59 has long tails. So any choice of cutoff point or

other measure of width would be somewhat arbitrary. Nevertheless, we can approximately say of

the effective total time that

T ∝ 1

a
√
1− v2

(3.70)

Consequently, the average power

P ∝ q2v2a2 (3.71)

is finite in the v → 1 limit.
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3.6 Radiation from a charge changing in time

As mentioned previously, the source of the Proca field need not be conserved. An important

feature of Proca radiation is that a charge whose magnitude changes in time can radiate, even if

the charge is at rest. First, the radiation from an oscillating charge will be calculated in order to

give a qualitative picture of radiation from time-dependent charges. Consider a particle at rest with

charge

q(t) = qe−iωt (3.72)

A real field can be obtained at the end by taking real parts. The field is spherically symmetric, and

the retarded scalar potential is found to be

ϕ =
q

4πr
ei(kr−ωt) (3.73)

where

k =
√
ω2 −m2 (3.74)

Note that this expression remains valid for |ω| < m, in which case the field falls off exponentially,

approaching the well-known Yukawa potential when ω = 0. The magnetic field B vanishes. The

electric field and vector potential are radial and satisfy

∇ · E = −m2ϕ Ė = m2A (3.75)

so they are given by

E = − qm2

4πr2

(
r

ik
+

1

k2

)
ei(kr−ωt) r̂ (3.76)

A =
q

4π

(
ω

rk
+

iω

r2k2

)
ei(kr−ωt) r̂ (3.77)
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After taking real parts, the Poynting vector is

S = m2ϕA

=
q2m2

16π2r
cos(kr − ωt)

( ω

rk
cos(kr − ωt)− ω

r2k2
sin(kr − ωt)

)
r̂

→ q2m2

16π2r2
ω

k
cos2(kr − ωt) r̂

(3.78)

taking the radiation-zone limit and retaining only the 1/r2 term. The average radiated power is

then

P =
q2m2

8π

ω√
ω2 −m2

(3.79)

For frequencies less than m, the field is exponentially damped, and there is no radiation. This has

the qualitative implication for more general time dependence that if the charge is turned on and off

slowly enough, there should be no contribution to the radiation from this effect.

For more general time dependence, the field can be difficult to calculate, but the radiated en-

ergy and particle number can be found from the Minkowski-mode amplitudes, similarly to previous

sections. For a particle at rest, the only polarization to contribute is U III.

i

∫
U III
µ Jµ d4x =

−i

m

√
k2
z + k2

⊥√
2ω(2π)3

q̃(ω) (3.80)

where

q̃(ω) =

∫ ∞

−∞
q(t)eiωt dt (3.81)

Then, the particle number is

dN =

∣∣∣∣i ∫ U III
µ Jµ d4x

∣∣∣∣2 d3k

=
1

m2

k2
z + k2

⊥
16π3ω

|q̃(ω)|2 d3k
(3.82)
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Utilizing the spherical symmetry and letting k2 = k2
z + k2

⊥,

N =
1

4π2m2

∫ ∞

0

k4

√
k2 +m2

∣∣∣q̃ (√k2 +m2
)∣∣∣2 dk (3.83)

Likewise the radiated energy is

dE = ω dN =
1

m2

k2
z + k2

⊥
16π3

|q̃(ω)|2 d3k (3.84)

E =
1

4π2m2

∫ ∞

0

k4
∣∣∣q̃ (√k2 +m2

)∣∣∣2 dk (3.85)

For example, consider a Gaussian q(t) = qe−t2/2σ2 . In this case, q̃(ω) = q
√
2πσ e−

1
2
σ2ω2

. Then,

N =
q2σ2 e−m2σ2

2πm2

∫ ∞

0

k4

√
k2 +m2

e−σ2k2 dk

=
q2

8π
e−

1
2
m2σ2

(
m2σ2K0

(
1

2
m2σ2

)
+ (1−m2σ2)K1

(
1

2
m2σ2

)) (3.86)

E =
q2σ2 e−m2σ2

2πm2

∫ ∞

0

k4 e−σ2k2 dk

=
3q2e−m2σ2

16
√
πm2σ3

(3.87)

The radiation is exponentially suppressed at m2σ2 ≫ 1. This confirms the intuition that this

mechanism makes negligible contribution to the radiation if the charge’s magnitude varies slowly

enough (slower than m). This result also illustrates the subtlety of the simultaneous m → 0,

T → ∞ limit. If we fix m and send σ → ∞, we get E → 0, the ‘right’ answer. But if we fix σ

and send m → 0, we get E → ∞.

3.7 Uniform acceleration with general time dependence

This section considers the combined effects of uniform acceleration and a time-dependent

charge. The setup and strategy are similar to section 3.1, but allowing the charge to be a more

general function of time. As it was not possible to obtain a workable expression for the field even

in the case where the regularization was removed, calculating the field is all the more unfeasi-
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ble with a time-dependent charge. However, a general expression for the particle number can be

obtained from the Unruh-mode coefficients.

In Rindler coordinates, the source is

J = q(τ) δ(ξ)δ(x)δ(y) ∂τ (3.88)

where the charge q(τ) is a function of τ , its proper time. This function may be Fourier-expanded

q(τ) =
1

2π

∫ ∞

−∞
q̃(E)e−iEτ dE (3.89)

q(τ) is real. Suppose further that it is time-symmetric, so that q(τ) = q(τ) = q(−τ). Consequently,

we may rewrite this as

q(τ) =
1

π

∫ ∞

0

q̃(E) cos(Eτ) dE (3.90)

This representation is convenient because we have already obtained the Unruh-mode coefficients

for cosine time-dependence in equations (3.4)-(3.7). Restating them here,

⟨W 1,II
cos ⟩ =

i

2π
√
2a

√
eπE/aK ′

iE/a(ρ/a) δ(ω − E) (3.91)

⟨W 2,II
cos ⟩ =

i

2π
√
2a

√
e−πE/aK ′

iE/a(ρ/a) δ(ω − E) (3.92)

⟨W 1,III
cos ⟩ = 1

2π
√
2a

√
eπE/a

Ek⊥
mρ

KiE/a(ρ/a) δ(ω − E) (3.93)

⟨W 2,III
cos ⟩ = 1

2π
√
2a

√
e−πE/a

Ek⊥
mρ

KiE/a(ρ/a) δ(ω − E) (3.94)

By linearity, the Unruh-mode coefficients for the general time-dependence are

i

∫
W σ,λ,

µ J̃µ d4x =
1

π

∫ ∞

0

q̃(E) ⟨W σ,λ
cos ⟩ dE

=
1

π
q̃(ω) ⟨W σ,λ

cos ⟩E=ω

(3.95)
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As before, these square to give the particle number.

dN =
|q̃(ω)|2

4π4a
cosh(πω/a)

(∣∣K ′
iω/a(ρ/a)

∣∣2 + ω2k2
⊥

m2ρ2
∣∣Kiω/a(ρ/a)

∣∣2) dωd2k⊥ (3.96)
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4. A FAMILY OF RINDLER FRAMES: A MASSLESS CASE STUDY

This chapter consists of a computation for the massless field, along with conceptual discussion,

as an illustration of what is known about radiation in accelerated frames. It concerns the gener-

alization of the Larmor formula when both observer and source have different and independent

accelerations.

4.1 Background

The relationship between acceleration (Larmor) radiation and the equivalence principle of rel-

ativity is an old paradox in classical electromagnetism. The main questions are of two types:

1. A charged particle with nonzero proper acceleration may be interpreted by a comoving ob-

server as being at rest in a gravitational field. Does such an observer observe the emission

of radiation?

2. A charged particle undergoing inertial motion may be interpreted by an accelerating observer

as being in free fall in a gravitational field. Does such an observer observe the emission of

radiation?

Both questions remain controversial, but many regard the authoritative resolution to have been

given by Rohrlich [13], who answered no to question 1 and yes to question 2. If we set aside issues

of conceptual interpretation, both questions may be framed as well-posed problems of classical

field theory, and answered by explicit calculation of the electromagnetic field in the appropriate

coordinate system. The result is the solution given by Rohrlich.

In this classical field theory context, the resolution of the apparent paradox is that the notion of

radiation is observer-dependent. As will be reflected in the following calculations, this observer-

dependence arises from two sources. The first is the observer’s notion of energy, which depends on

their state of motion in a manner well-understood even at the level of special relativity. For non-

inertial motions and coordinate systems, and if the energy is distributed over a region of space, the
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observer’s instantaneous velocity is no longer sufficient to define their notion of energy. In general

spacetimes, what is needed for this is a timelike Killing vector field, generating the observer’s

notion of time-translation symmetry.

The second source of observer-dependence of radiation is the observer’s notion of simultaneity.

Radiation, as a rate of energy, also depends on how the observer does their time-slicing, or what

events they regard as simultaneous. For inertial motions, the relativities of energy and simultaneity

cancel each other under Lorentz transformations, and that is why the rate of radiation is Lorentz-

invariant. But as shown by the calculations of Rohrlich, the cancellation does not persist for more

general motion. These two inputs, stationarity and simultaneity, are both needed to define radiation.

They are given by the data of a Killing field and a time function. We see that the concept of an

observer cannot simply be quantified by the observer’s worldline, but requires as input a frame of

reference extending throughout a spacetime region.

As mentioned in section 2.1, Kretzschmar and Fugmann [20, 21] , as well as Hirayama [22, 23],

have given the generalization of the Larmor formula to the case where observer and charge have

arbitrary velocities and accelerations. The classic questions about the equivalence principle and

radiation in accelerated frames may be treated as special cases of this. Suppose the particle has

velocity vµ and proper acceleration aµ, and suppose the worldlines of the observer’s reference

frame have velocity uµ and proper acceleration gµ. Let g =
√
gµgµ. Let

hµ
ν = δµν + vµvν (4.1)

be the projection orthogonal to vµ. Define the Hirayama acceleration vector as

αµ = hµ
ν(a

ν − gν − guν) (4.2)

All these quantities are to be evaluated at the retarded time, that is, at the point of emission. The

general result is that the radiated power is proportional to αµαµ.

The purpose of this chapter is to reproduce this result, via explicit calculation, for the case

36



where vµ = uµ and aµ and gµ are collinear. At the time of performing this calculation, the author

was unaware of the work of Kretzschmar, Fugmann, and Hirayama.

Rindler coordinates describe how Minkowski spacetime looks to a uniformly accelerated ob-

server. The main technical tool of this chapter is to use a family of Rindler coordinate systems,

parameterized by their z-displacement, and by their proper acceleration. This way, the possibilities

for displacement between observer and charge, and for their two independent accelerations, are at

least partly parameterized.

4.2 The field and stress-energy of a point charge in arbitrary motion

This section consists of standard textbook material which can be found, for example, in [28]

chapter 5. We will use signature −,+,+,+, and employ dot product notation for the four-

dimensional dot product. That is, A · B = AµB
µ. Consider a particle of charge q in Minkowski

spacetime, with four-velocity vµ and proper four-acceleration aµ. Let Rµ = xµ − xµ
0 be the four-

dimensional displacement vector, where xµ
0 is the location of the particle. The Lienard-Wiechert

potential of the point charge in arbitrary motion is

Aν =
qvν

4πv ·R
(4.3)

where everything is evaluated at the retarded time, or to put it another way, on the future lightcone,

characterized by R ·R = 0. The field tensor is

Fµν =
q

4π(v ·R)2
[Rµ(aν − fvν)−Rν(aµ − fvµ)] (4.4)

where

f =
1 + a ·R
v ·R

(4.5)

The stress-energy tensor is

Tµν =
q2

(4π)2(v ·R)4

[
RµRν(a

2 − f 2) + Rµ(aν − fvν) + Rν(aµ − fvµ) +
1

2
gµν

]
(4.6)
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The acceleration of the charge need not be uniform. The field on the future lightcone of an instant

on the particle’s worldline depends only on vµ and aµ at that instant. We may choose coordinates

for the inertial frame so that the charge passes through the origin and is instantaneously at rest,

with its acceleration in the z-direction. Also in the inertial frame, let

x⊥ =
√
x2 + y2 (4.7)

r =
√
x2
⊥ + z2 (4.8)

With the inertial frame coordinates so chosen, we have

Rµ = rt̂+ zẑ + x⊥x̂⊥ (4.9)

aµ = aẑ (4.10)

vµ = t̂ (4.11)

v ·R = −r (4.12)

a ·R = az (4.13)

The parameter a may be positive or negative. The idea is to fix the origin as the point of emission

we are interested in. We will look at the field on the future light cone of the origin. The behavior

of the charge at other points of its trajectory does not matter in this context, because we are using a

massless field. The emission point is fixed at the origin, and the observer’s coordinate system will

be moved around.

4.3 A family of displaced Rindler frames

Introduce a family of Rindler frames with coordinates χ and τ , and parameters χ0 and g, taken

to be positive. The coordinates are related to the inertial coordinates by

t =
χ

g
sinh(gτ) z +

χ0

g
=

χ

g
cosh(gτ) (4.14)
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and cover the wedge of spacetime where z+ χ0

g
> |t|. This setup is depicted in figure 4.1. In these

coordinates, the metric is

gµν = −χ2dτ 2 +
dχ2

g2
+ dx2 + dy2 (4.15)

representing a uniform gravitational field. Rindler time τ is a time coordinate for which the metric

is invariant. Among τ -stationary observers, those at χ = 1 are privileged in that their proper

time coincides with the Rindler time τ . The worldlines of τ -stationary observers are in uniform

acceleration, although with differing values of proper acceleration. Privileged observers at χ = 1

have proper acceleration equal to g. The origin of the inertial coordinate system, where the charge

is located, in the Rindler coordinates is at χ = χ0. Thus χ0 represents the vertical displacement of

the charge in the Rindler spacetime, and also represents a redshift factor between the observer and

the charge.

Figure 4.1: The shifted Rindler coordinate system, with an example source trajectory (red), and
the future lightcone of the origin (blue)
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The τ symmetry of Rindler spacetime is associated with a Killing field

ξµ = g

(
z +

χ0

g

)
t̂+ gtẑ (4.16)

which gives us the Rindler observers’ notion of conserved energy.

The 3-dimensional geometry of a constant τ hypersurface is Euclidean. The future lightcone

of the origin intersected with such a surface turns out to be a sphere centered at

χ = χ0 cosh(gτ) (4.17)

with radius

ρ =
χ0

g
sinh gτ (4.18)

On this sphere,

t = r =
χρ

χ0

(4.19)

The geometry of the lightcone sphere as seen in Rindler space is shown in figure 4.2. We may

introduce a polar angle θ on the lightcone sphere, and express the other coordinates in terms of ρ

and θ:

x⊥ = ρ sin θ (4.20)

z =
gρ

χ0

ρ+

√
ρ2 +

χ2
0

g2
cos θ

 (4.21)

r =
gρ

χ0

√ρ2 +
χ2
0

g2
+ ρ cos θ

 (4.22)
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The unit normal vector to the lightcone sphere is

n̂ = cos θ χ̂+ sin θ x̂⊥

=
gρ cos θ

χ0

t̂+
g cos θ

χ0

√
ρ2 +

χ2
0

g2
ẑ + sin θ x̂⊥

(4.23)

Figure 4.2: The future lightcone of the origin at successive times τ as seen in Rindler space, shown
in the x-χ plane

4.4 Evaluating the Rindler energy flux on the light-sphere

We may now calculate the flux of Rindler energy through the lightcone sphere as

S = −Tµνξ
µn̂ν (4.24)
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The needed ingredients are the following dot products:

R · ξ = −rχ0 (4.25)

R · n̂ = ρ (4.26)

n̂ · ξ = 0 (4.27)

(a− fv) · n̂ =
ρ cos θ

rχ0

(aχ0 − g) (4.28)

(a− fv) · ξ = −1

r
(gz + χ0 − azχ0 − agx2

⊥) (4.29)

Putting these together in the stress tensor gives

S = − q2

(4π)2r4

[
− ρχ0

r
(a2x2

⊥ − 2az − 1)− ρ cos θ(aχ0 − g)

− ρ

r
(gz + χ0 + azχ0 − agx2

⊥)
]

= − q2ρ

(4π)2r5
(aχ0 − g)(−ax2

⊥ + z − r cos θ)

=
q2ρ

(4π)2r5
(aχ0 − g)

(
ax2

⊥ − gρ2 sin2 θ

χ0

)
=
q2ρ3 sin2 θ

(4π)2χ0r5
(aχ0 − g)2

(4.30)

At this point several qualitative features are apparent.

• In the g → 0 limit, the radiation has the same features as Larmor radiation.

• An inertial charge, with a = 0, does radiate for accelerated observers.

• A Rindler-stationary charge is one with aχ0 = g, and does not radiate.

Recall that a may be positive or negative, accounting for whether the observer and charge accel-

erate in the same or opposite direction. However χ0 must be positive, since otherwise the future

lightcone of the origin does not intersect the observer’s Rindler wedge.
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4.5 Digression on the interpretation of the conservation equation

In arbitrary spacetimes, a conservation law is expressed locally by the equation

∇µJ
µ = 0 (4.31)

Suppose we have a static metric of the form

gµν = −u(x)dt2 + g(3)µν (x) (4.32)

where g(3) is a metric on 3-dimensional space independent of t. The Rindler spacetime is of this

form, but also others like Schwarzschild. The vector field Jµ decomposes as (J t,
−→
J ). Then the

conservation equation takes the form

∂

∂t
J t +

1√
u
∇ · (

√
u
−→
J ) = 0 (4.33)

where the second term involves the 3-dimensional divergence with respect to g(3). This can be

rewritten
∂

∂t
(
√
uJ t) +∇ · (

√
u
−→
J ) = 0 (4.34)

The interpretation is that the conserved quantity has density
√
uJ t and flux

√
u
−→
J . The volume

factor
√
u must be included, even though it does not appear in g(3). This result is sufficient for the

purpose of the present Rindler spacetime calculation. It is generalized in section 4.7 to the case

where the Killing vector need not be hypersurface-orthogonal.

4.6 Results

In Rindler spacetime, the volume factor is χ, making the flux

χS =
q2ρ2 sin2 θ

(4π)2r4
(aχ0 − g)2 (4.35)
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This may now be integrated over the light-sphere to give the power

P =

∫
χS ρ2dΩ

=
q2(aχ0 − g)2

(4π)2

∫ π

0

ρ4

r4
sin2 θ 2π sin θ dθ

=
q2(aχ0 − g)2

8π

∫ π

0

√1 +

(
gρ

χ0

)2

+
gρ

χ0

cos θ

−4

sin3 θ dθ

(4.36)

The θ integral is equal to 4/3 for all values of ρ, so the final result is independent of ρ:

P =
2

3

q2(aχ0 − g)2

4π

=
2

3

q2χ2
0

4π

(
a− g

χ0

)2 (4.37)

We may interpret this result in the language of Hirayama as in (4.2), and verify that it is in agree-

ment with the general formula found in [22, 23]. aµ and vµ are as given in equations (4.10) and

(4.11). In the Rindler frame, the τ -stationary worldlines have velocity uµ = 1
χ
ξµ, and proper

acceleration

gµ = uν∇νu
µ =

g2

χ2

(
tt̂+ (z + χ0/g)ẑ

)
(4.38)

These must be evaluated at the origin, giving uµ = t̂ and gµ = g
χ0
ẑ. Since uµ = vµ, the Hirayama

acceleration vector simplifies to

αµ = aµ − gµ =

(
a− g

χ0

)
ẑ (4.39)

and the radiation is indeed proportional to αµαµ. The factor of χ2
0 may be interpreted as a redshift

factor between the source, located at χ = χ0, and the observer, located at χ = 1. The power is

doubly redshifted to account for both the redshift of the energy, and also the time dilation.

44



4.7 Conservation laws in a spacetime with a Killing vector and a time function

This section generalizes the result of section 4.5 in a coordinate-independent manner, dropping

the assumption that the Killing vector be hypersurface-orthogonal. If a spacetime is equipped with

a stationary frame of reference in the form of a Killing vector and a time function, this structure

allows the equation ∇µJ
µ = 0 to be interpreted by stationary observers as a local conservation

law for some conserved quantity, in a manner compatible with the observers’ notions of time-

translation and simultaneity. Consider a spacetime equipped with a timelike Killing vector field ξµ

and a time function t that is compatible in the sense that its Lie derivative is equal to 1:

£ξ(t) = 1 (4.40)

In particular, this means

£ξ(∇µt) = 0 (4.41)

so the foliation of constant-t hypersurfaces is preserved under the transformation generated by

ξµ. This data represents a notion of time-translation and simultaneity. It allows us to interpret

spacetime as spatial manifold Σ with a time evolution. Let hµν be the restriction of the metric

to the constant-t surface Σ. hµν is preserved under time evolution, and as a Riemannian metric,

endows Σ with its own geometry and covariant derivatives. We seek to interpret the conservation

equation in a manner compatible with this picture.

An arbitrary vector field Jµ uniquely decomposes as

Jµ = J0ξµ + jµ (4.42)

where

J0 = Jµ∇µt (4.43)

jµ∇µt = 0 (4.44)
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meaning that jµ is tangent to the surfaces of constant t. We may then calculate

∇µJ
µ = £ξJ

0 +∇µj
µ (4.45)

However, the second term is not the same as the divergence of jµ with respect to the metric hµν on

Σ. The derivative operator D on Σ associated with hµν is the orthogonal projection onto Σ of the

operator ∇. Hence the divergence we are interested in is

Dµj
µ = ∇µj

µ + nµn
ν∇νj

µ (4.46)

where nµ is the unit normal vector to Σ. Using the fact that jµnµ = 0, this equals

= ∇µj
µ − jµnν∇νnµ (4.47)

Now introduce a function f defined by

nµ = f∇µt (4.48)

Now we have

Dµj
µ = ∇µj

µ − jµnν∇ν(f∇µt)

= ∇µj
µ − jµnνf∇ν∇µt

(4.49)

Since ∇ is torsion-free, this equals

= ∇µj
µ − jµnνf∇µ∇νt

= ∇µj
µ − jµnνf∇µ

(
nν

f

) (4.50)
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Finally, since nνnν = −1,

= ∇µj
µ + jµf∇ν (1/f)

= f∇µ

(
jµ

f

) (4.51)

This result holds for arbitrary vector fields tangent to Σ. Hence all together,

∇µJ
µ = £ξJ

0 +
1

f
Dµ(fj

µ) (4.52)

Note that
1

f
= nµ∇µt =

√
∇µt∇µt (4.53)

and consequently, £ξ(f) = 0. The conservation equation can be rewritten

0 = £ξ(fJ
0) +Dµ(fj

µ) (4.54)

By using Gauss’s law in Σ, we have the interpretation that there is a conserved quantity of density

fJ0 and flux fjµ.
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5. SUMMARY AND CONCLUSIONS

A uniformly accelerated charge coupled to a Proca field emits radiation. An expression for the

Proca field resulting from such a source is given by

A =

[
q√
2πa

∫ ∞

0

k⊥K1(ρ/a)Y1

(
ρ
eaη

a

)
J0(k⊥x⊥)dk⊥

]
dζ (5.1)

A calculation of the rate of emission of the classical particle number gives the result.

Rate =
q2a

2π2

∫ ∞

0

∣∣∣∣∣K1

(√
x2 +

m2

a2

)∣∣∣∣∣
2

x dx (5.2)

This result is plotted in figure 5.1 as a function of m/a. The methods of Unruh mode expansion and

Minkowski mode expansion both obtain this result, and it also agrees with the results of quantum

mechanics.

Figure 5.1: The emitted particle number rate, equation (5.2), in units of q2a
2π2

The Minkowski mode expansion can also be used to obtain an expression for the emitted en-
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ergy, which is

E =
q2a2Tinert

2π2

∫ π

0

∫ ∞

m
a sin θ

r3 sin3 θ |K1(r(1 + i cos θ))|2 drdθ (5.3)

This result is plotted in figure 5.2 as a function of m/a.

Figure 5.2: The emitted power, equation (5.3), in units of q2a2

4π

While these results refer to the long-time limit, in which the charge is conserved, the calcula-

tional methods utilize regularization of the source such that the charge is not conserved. That this

is possible is a feature of the Proca field.

An alternative to regularizing the charge is to regularize its acceleration. If we consider a

hyperbolic trajectory with limiting velocity v < 1, the result for the radiated energy is

E =
q2v2a

3π2
√
1− v2

∫ ∞

m/a

√
x2 − m2

a2

(
2 +

m2

a2x2

)
|K1(x)|2 x dx (5.4)

We can also consider Proca radiation from a charge at rest whose magnitude changes in time.
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General expressions for the emitted particle number and energy in this case are

N =
1

4π2m2

∫ ∞

0

k4

√
k2 +m2

∣∣∣q̃ (√k2 +m2
)∣∣∣2 dk (5.5)

E =
1

4π2m2

∫ ∞

0

k4
∣∣∣q̃ (√k2 +m2

)∣∣∣2 dk (5.6)

The results confirm that such radiation can be neglected in the limit where the charge varies slowly

enough.

If the charge is both uniformly accelerating and changing in time, a general expression for the

spectrum of the emitted particle number is found to be

dN =
|q̃(ω)|2

4π4a
cosh(πω/a)

(∣∣K ′
iω/a(ρ/a)

∣∣2 + ω2k2
⊥

m2ρ2
∣∣Kiω/a(ρ/a)

∣∣2) dωd2k⊥ (5.7)

Finally, a case study for the electromagnetic field confirms Hirayama’s generalization of the

Larmor formula for accelerating observers. In the context of a certain family of Rindler frames,

with source acceleration a and observer acceleration g, the radiated power is found to be

P =
2

3

q2χ2
0

4π

(
a− g

χ0

)2

(5.8)
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