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ABSTRACT

Recently some novel relations between topological strings on some toric Calabi-Yau threefolds

and Bloch electrons moving in two-dimensional lattices under uniform magnetic flux was found. It

turns out that the modular double duality plays an important role. We compute the density of states

of the condensed matter side and show that it matches with the imaginary part of the derivative of

quantum A-period. We will analyze the bandwidths in great detail and show that it is related to the

quantum B-period of the topological string side.
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1. INTRODUCTION

String theory as a promising candidate for theory of everything has found its application in

various kinds of fields such as number theory, enumerative geometry, particle phenomenology and

cosmology etc. However, our description of this framework remains quite limited. If we take the

practical view that our understanding of the theory relies on how good we can calculate the physical

amplitudes, then only for regime where perturbation theory 1 works do we have full control so

far. For some special background where duality can help us probe the strong coupling regime,

the result is often approximate. Therefore the study of non-perturbative string theory remains an

ongoing endeavour.

Recently there is some progress made in the area of topological string theory introduced by

Witten [1]. Although topological string theory is a simplified version of standard string theory, it

captures many important quantities of the physical string theory. Inspired by the result of several

works [2, 3, 4, 5] on ABJM matrix model, it was found in [6] that there exists a non-perturbative

completion of the topological string partition function for a special class of Calabi-Yau manifolds.

Moreover, it’s conjectured that those non-perturbative completed partition functions can solve the

eigenvalue problems of the corresponding quantum curve of those CY manifolds. This conjecture

is later known as the topological string/ spectral theory correspondence. Though this conjecture

has not been proved rigorously, it has passed numerous tests [7, 8, 9] and no counterexamples has

been encountered. The quantization condition introduced in [6] is shown to be equivalent to a

generalized version [10] of Nekrasov-Shatashivili quantization condition [11] in [12].

Interestingly, it was found in [13] that the topological string on local P1×P1 not only solves the

eigenvalue problem of the mirror curve of local P1×P1, but also encodes the information of Harper-

Hofstadter model on the square lattice [14]. This result is later generalized to the connection be-

tween quantum geometry of local B3 geometry [15] and triangular lattice [16]. The results afore-

mentioned mainly involve the quantum version of the A-period. Regarding the quantum B-period,

1Recent works show that we may not even understand some versions of perturbative string theory well.
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it was shown in [17] that its quantum mechanical counterpart is the so-called non-perturbative A

function introduced by Zinn-Justin and Jentschura [18, 19]. In [20], the one-instanton and the

two-instanton expansions of the square lattice was analyzed in detail. The quantum B-period near

the conifold point of local F0 is shown to be equal to the non-perturbative A function of the square

lattice. This result is later generalized in [21] to a connection between local B3 geometry and hon-

eycomb lattice [22]. Similar results for the triangular lattice were also obtained by the author of

this thesis and the collaborators.

This dissertation is organized in the following way. In Section 2, we will brief review the

topological string theory and the recent development which leads to the topological string/ spectral

theory correspondence. In Section 3, the Harper-Hofstadter model on various lattice systems will

be introduced; detailed analysis of the spectrum would be performed in the semiclassical region.

Section 4 studies the quantum geometry of local B3 geometry and its relation to Harper-Hofstadter

model on triangular lattice and honeycomb lattice; the quantum geometry of local F0, which is

a blowdown limit of local B3, is shown to be related to Harper-Hofstadter model on the square

lattice. Conclusions and discussions on open problems would be included in Section 5.
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2. BRIEF REVIEW OF TOPOLOGICAL STRING THEORY

Topological string theory is a simplified version of physical string theory which was origi-

nally formulated by twisting the N = (2, 2) sigma model. After the topological twisting, we get

two models called A model and B model. Mirror symmetry states that these two formulations

are equivalent. Practically speaking, the main task of topological string theory is about calculat-

ing the topological string free energy, which captures many important information of the internal

manifold and the lower dimensional gauge/supergravity theories resulting from compactification

of string/M/F theory. In this paper, we mainly focus on the refined topological strings on toric

Calabi-Yau threefolds in the Nekrasov-Shatashivili (NS) limit [11].

2.1 A model

For the A model, it’s more convenient to work in the target space perspective. The free energy

is defined as the generating function of Gromov-Witten invariants Nd
g , where d denotes the degree

and g the genus. The free energy is defined as the formal sum

F (t, gs) =
∑
g≥0

g2g−2
s Fg(t) (2.1)

At genus 0,

F0(t) =
1

6
aijkt

itjtk + P2(t) +
∑
d

Nd
0 e
−d·t (2.2)

where aijk denotes the classical intersection and P2(t) is an ambiguous term. The genus 1 free

energy is given by

F1(t) = bit
i +
∑
d

Nd
1 e
−d·t (2.3)

At higher genus,

Fg(t) = Cg +
∑
d

Nd
g e
−d·t, g ≥ 2 (2.4)

3



where Cg is the constant map contribution to the free energy. The total free energy is then given by

F (t, gs) = F p(t, gs) +
∑
g≥0

∑
d

Nd
g e
−d·tg2g−2

s , (2.5)

where F p(t, gs) is the polynomial part

F p(t, gs) =
1

6g2
s

aijkt
itjtk + bit

i +
∑
g≥0

Cgg
2g−2
s . (2.6)

The BPS part of the free energy could be resummed in terms of Goparkumar-Vafa invariants [23]

FGV (t, gs) =
∑
g≥0

∑
d

∑
w≥1

1

w
nd
g

(
2 sin

wgs
2

)
e−wd·t, (2.7)

where nd
g be the Goparkumar-Vafa invariants which take values in Q. Topological strings on toric

Calabi-Yau threefolds can have a one-parameter deformation called refined topological string the-

ory. This could be understood by turning on the Ω background in 4d/5d supersymmetric gauge

theories resulting from string/M theory compactification on toric CY threefolds. In the large vol-

ume limit, the refined topological free energy consists of a perturbative part and an instanton part.

The perturbative contributions has the form

F p
ref(t, ε1, ε2) =

1

ε1ε2

(
1

6
aijkt

itjtk + 4π2bNS
i t

i

)
+ bit

i − (ε1 + ε2)2

ε1ε2
bNS
i t

i. (2.8)

The constants bNS
i can be obtained by the refined holomorphic anomaly equation [24, 25]. The

instanton contributions are given by

F inst
ref (t, ε1, ε2) =

∑
jL,jR≥0

∑
d

∑
w≥1

(−1)2jL+2jRNd
jL,jR

χjL(qwL )χjR(qwR)

w(q
w/2
1 − q−w/21 )(q

w/2
2 − q−w/22 )

e−wd·t, (2.9)

where

q1,2 = eε1,2 , qL,R = e(ε1∓ε2)/2, (2.10)

4



and χj(q) are SU(2) characters, say

χj(q) =
q2j+1 − q−2j−1

q − q−1
. (2.11)

The instanton part of the refined free energy can be calculated quite efficiently using the refined

topological vertex formalism [26] in the large radius limit. The ordinary topological string theory

can be recovered in the limit

Ftop(t, gs) = Fref(t, gs,−gs) (2.12)

There’s another interesting limit to take which is the NS limit:

FNS(t, ~) = lim
ε1→0

ε1F (t, ε1, ~) (2.13)

2.2 B model

A toric Calabi-Yau threefold is a toric variety given by the symplectic quotient,

M = (Ck+3/SR)/G, (2.14)

where G = (C∗)k and SR is the Stanley-Reisner ideal of G. The quotient is specified by a matrix

of charges Qα
i , i = 0, · · · , k+2, α = 1, · · · , k. The group G acts on the homogeneous coordinates

xi as

xi → λ
Qαi
α xi, i = 0, · · · , k + 2 (2.15)

where α = 1, · · · , k, λα ∈ C∗, and Qα
i ∈ Z. The toric variety can be understood as the vacuum

configuration of a 2d U(1)k (2,2) gauged linear sigma model (GLSM). The supersymmetric ground

state is constrained by
k+3∑
i=1

Qα
i |xi|2 = rα, α = 1, · · · , k, (2.16)

5



where rα is the Kähler class. In general, the Kähler class takes complex value with the imaginary

part given by a theta angle: tα = rα + iθα. Mirror symmetry which relates A model and B model

needs the existence of R symmetry. In order to avoid R symmetry anomaly, one has to put the

condition
k+3∑
i=1

Qα
i = 0, α = 1, · · · , k. (2.17)

which is the Calabi-Yau condition for the toric case.

The mirror to the toric Calabi-Yau was constructed in [27]. Define the Batyrev coordinates

zα =
k+3∏
i=1

x
Qαi
i , α = 1, · · · , k, (2.18)

and

H =
k+3∑
i=1

xi (2.19)

Without loss of generality, we can set x1 to 0 and the remaining xi can be expressed by x and y.

There is still a reparameterization symmetry left [28]:

 x

y

→ G

 x

y

 , G ∈ SL(2,Z). (2.20)

The mirror geometry is described by

P (X, Y, u, v) = uv −H(X, Y, zα) = 0, α = 1, · · · , k, (2.21)

where X := ex, Y := ey and X, Y, u, v ∈ C. The algebraic spectral curve

H(X, Y, zα) = 0, (2.22)

describes a Riemann surface embedded in C∗ × C∗, which is called the mirror curve to the toric

Calabi-Yau in the literature.

6



In this thesis, we focus on a special class of toric Calabi-Yau manifold called toric del Pezzo

Calabi-Yaus, which are total space of canonical bundle on a del Pezzo surface: O(KS)→ S.Given

the charge matrix Qα
i , we introduce

ν(i) = (1, ν
(i)
1 , ν

(i)
2 ), i = 1, · · · , k + 3, (2.23)

which are 3-dimensional real vectors. They satisfy

k+3∑
i=1

Qα
i ν

(i) = 0. (2.24)

In terms of these vectors, the mirror curve can be expressed as

H(ex, ey) =
k+3∑
i=1

xi exp (ν
(i)
1 x+ ν

(i)
2 y). (2.25)

The holomorphic 3-form of the mirror CY is given by

Ω =
du ∧ dx ∧ dy

∂vP
=
du ∧ dx ∧ dy

u
(2.26)

For standard/unrefined topological string, the periods of the 3-form are

ti =

∮
Ai

Ω, Fi =

∮
Bi

Ω. (2.27)

whereAi andBi are holomorphic 3-cycles. Integrating out the non-compact directions, the 3-forms

get reduced to 1-forms and the periods become

ti =

∮
αi

ydx, Fi =

∮
βi

ydx, (2.28)

where αi and βi are appropriate 1-cycles. Special geometry tells us that the B-periods can be

7



written as derivative of a function called prepotential:

∂F0(t)

∂ti
= Fi =

∮
βi

ydx. (2.29)

In some sense, our understanding of the unrefined topological string theory relies on how well we

can compute this prepotential.

In the context of refined B model, x and y gets promoted to Hermitian operators x and y

satisfying the commutation relation

[x,y] = i~. (2.30)

For each toric del Pezzo Calabi-Yau, we can associate an operator O(x,y) of the form

O(x,y) =
∑
m,n∈Z

am,ne
mx+ny, am,n ≥ 0 (2.31)

in such a way that we have a well-defined eigenvalue problem

O(x,y)|ψn >= eEn|ψn >, n ∈ N (2.32)

We can solve this eigenvalue problem by the standard numerical method for quantum mechanics.

Otherwise, as we will show in the next section, the topological string can also solve this problem

in an efficient manner.

2.3 The TS/ST correspondence

The topological string/ spectral theory correspondence, also known as Grassi-Hatsuda-Marinö

conjecture, states that the eigenvalues of a certain class of trace-class operators could be read

off from the generalized topological string partition function of some Calabi-Yau 3-fold whose

quantized mirror curve is identical to those operators. This conjecture has not been proved mathe-

matically but passed all numerical tests to date. It’s quite unexpected that the original indications

pointing to this conjecture comes from the study of ABJM theory[29], which is the worldvolume
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theory of M2 branes probing C4/Zk and is dual to M theory on AdS4 × S7/Zk. With the devel-

opment of localization technique, the partition function of the ABJM theory gets simplified to a

matrix integral

ZABJM(N, k) =
1

N !2

∫
dNµdNν

(2π)2N

∏
i<j[2 sinh(

µi−µj
2

)]2[2 sinh(
νi−νj

2
)]2∏

i,j[2 cosh(
µi−νj

2
)]2

exp

[
ik

4π

∑
i

(µ2
i − ν2

i )

]
(2.33)

where k is the Chern-Simons level and N is the rank of the gauge group. By using the Cauchy’s

determinant identity, the partition function can be written as

ZABJM(N, k) =
1

N !

∑
σ∈SN

(−1)sgn(σ)

∫
dNx

N∏
j=1

ρ(xj, xσ(j)) (2.34)

where

ρ(x1, x2) :=
1

2πk

1

(2 cosh x1

2
)1/2

1

2 cosh x1−x2

2k

1

(2 cosh x2

2
)1/2

(2.35)

Notice that if we define the quantum density matrix

ρ̂(p,q) :=
1

(2 cosh q
2
)1/2

1

2 cosh p
2

1

(2 cosh q
2
)1/2

(2.36)

with

[q,p] = i~, ~ = 2πk (2.37)

then

ρ(x1, x2) =< x1|ρ̂(p,q)|x2 > (2.38)

and in the limit ~→ 0, the classical density operator turns out to be the inverse of the mirror curve

of local P1 × P1:

ρcl =
1

ex + e−x + ey + e−y
, (2.39)(

x =
p+ q

2
, y =

q − p
2

)
. (2.40)
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If we introduce the grand partition function

Ξ(µ, k) := 1 +
∞∑
N=1

ZABJM(N, k)eNµ (2.41)

and the grand potential

J(µ, k) := log(Ξ(µ, k)), (2.42)

then the grand partition function can be written as a spectral determinant of quantum density matrix

whose inverse being the quantum mirror curve of local P1 × P1:

Ξ(κ, ~) = det(1 + ρ̂) =
∞∏
n=0

(1 + κe−En). (2.43)

Here µ is the chemical potential and κ = eµ is the fugacity. According to [30], the grand potential

can be calculated by topological string and refined topological string in Nekrasov-Shatashivili limit

on local P1 × P1:

J(µ, k) = J (WS)(µ, k) + JWKB(µ, k) (2.44)

where

J (WS)(µ, k) = Ftop(
2π

~
(t+ iπ),

4π2

~2
), (2.45)

J (WKB)(µ, k) =
t(~)

2π

∂FNS(t(~), ~)

∂t
+

~2

2π

∂

∂~

(
FNS(t(~), ~)

~

)
+

2π

~
bt(~) + A(~), (2.46)

where A(~) is a function that is independent of µ and the topological string side parameters are

identified with parameters of ABJM theory as follows 1:

4µ

k
+ i = t, (2.47)

Notice that both perturbative part and non-perturbative part of J(µ, k) got poles for ~ ∈ 2πQ but

the sum of them is an entire function, this is known as the HMO pole cancellation mechanism [5].

1Generally there are two Kahler moduli for local P1×P1,since they differ by a constant we only write one modulus.
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Here we present the most general statement of Grassi-Hatsuda-Mariño conjecture. [6, 8]. For a

mirror curve Σ of a toric Calabi-Yau 3-fold X with genus gΣ, there are gΣ canonical forms for the

curve,

Oi(x, y) + κi = 0, i = 1, · · · , gΣ. (2.48)

The different canonical forms of the curves are related by reparametrizations and overall factors,

Oi + κi = Pij(Oj + κj), i = 1, · · · , gΣ, (2.49)

where Pij is of the form emx+ny. Equivalently, we can write

Oi = O(0)
i +

∑
i 6=j

κjPij (2.50)

We perform the Weyl quantization and both sides of (2.50) gets promoted to Hermitian operators.

Oi = O
(0)
i +

∑
i 6=j

κjPij. (2.51)

The operator O(0)
i can be interpreted as the unperturbed operator, while the fugacity κj encodes

different perturbations of it. Just as in the genus-1 case, the inverse of O, ρ, is of interest to us. We

have

ρi = O−1
i , i = 1, · · · , gΣ, (2.52)

and

ρ
(0)
i = (O

(0)
i )−1, i = 1, · · · , gΣ. (2.53)

In order to construct the generalized Fredholm/spectral determinant, we introduce the operators

Ajl = ρ
(0)
j Pjl, j, l = 1, · · · , gΣ, (2.54)
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We define the spectral determinant as

ΞX(κ; ~) = det(1 +

gΣ∑
l=1

κlAjl). (2.55)

Now (2.44) to (2.46) gets generalized to

JX(µ, ξ; ~) = JWS
X (µ, ξ; ~) + JWKB

X (µ, ξ; ~), (2.56)

JWS
X (µ, ξ; ~) = Ftop(

2π

~
t(~) + iπB,

4π2

~2
), (2.57)

JWKB
X (µ, ξ; ~) =

ti(~)

2π

∂FNS(t(~), ~)

∂ti
+

~2

2π

∂

∂~

(
FNS(t(~), ~)

~

)
+

2π

~
biti(~) + A(ξ, ~). (2.58)

where ξ are the mass parameters and the B-field is defined as a constant integral vector up to an

even lattice that satisfies the following property: for all triples of degree d, spin jL and jR such that

the refined BPS invariants is non-vanishing, they must satisfy

(−1)2jL+2jR−1 = (−1)B·d. (2.59)

The main statement of GHM conjecture is that the generalized spectral determinant is given by

ΞX(κ; ~) =
∑

n∈ZgΣ
exp (JX(µ+ 2πin, ξ; ~)). (2.60)

As a corollary, the eigenvalues of the quantum mirror curve can be read off from the solutions of

ΞX(κ; ~) = 0. (2.61)

2.4 Exact Nekrasov-Shatashivili quantization conditions

In [11], Nekrasov and Shatashivili discovered interesting correspondence between supersym-

metric gauge theories and quantum integrable systems. In the so called Nekrasov-Shatashivili limit

(ε1 → 0, ε2 = ~), the Nekrasov partition function captures important data of certain quantum inte-
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grable systems. To be more precise, Nekrasov and Shtashivili conjectured that the supersymmetric

vacua equation

exp(∂aIW(~a; ~)) = 1, (2.62)

of the NS free energy

W(~a; ~) = lim
ε1→0

ε1 logZNek(~a; ε1, ε2 = ~) (2.63)

gives the Bethe ansatz equations for the corresponding integrable system. Here ~a denotes the

collection of all Coulomb branch parameters. Geometric engineering of 4d/5d supersymmetric

gauge theories tells us that the NS free energy is just the topological string free energy in the NS

limit on Calabi-Yau X,

W(~a; ~) = FNS(t; ~) (2.64)

Here compactification on X gives rise to the corresponding supersymmetric gauge theory and the

Coulomb parameters get identified with mass parameters of X. The supersymmetric vacua equation

is expected to become Bohr-Sommerfeld like quantization condition on the B-model side:

Cij
∂FNS(t; ~)

∂tj
= 2π(ni +

1

2
), i = 1, · · · , gΣ. (2.65)

Since the left hand side of (2.65) has poles at ~ = 2πp/q (p, q ∈ Z and gcd(p, q) = 1), this naive

quantization condition breaks down if ~/2π is rational. For arbitrary ~, the spectrum calculated

from this method is only approximate compared to the numerical results. So following the spirit of

pole cancellation mechanism, Wang Zhang and Huang proposed an exact quantization condition

[10] by making a non-perturbative completion of the LHS of (2.65):

Cij

(
∂FNS(t; ~)

∂tj
+
∂FNS(t̃; ~̃)

∂t̃j

)
= 2π(ni +

1

2
), i = 1, · · · , gΣ, (2.66)

where t̃ = 2πt/hbar and ~̃ = 4π2/~. Though the Grassi-Hatsuda-Mariño conjecture and the exact

Nekrasov-Shatashivili quantization scheme hasn’t been proved in a complete rigorous manner, they
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have passed numerous numerical tests to date and it was shown in [12] that these two approaches

are equivalent mathematically. It’s also remarked in [31] that the non-perturbative NS free energy

is related to the NS limit of Lockhart-Vafa partition function [32].
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3. ANALYSIS OF HARPER-HOFSTADTER MODEL

3.1 The Harper-Hofstadter Problem

In this section, we introduce the Harper-Hofstadter model which concerns Bloch electrons

moving in uniform magnetic fields. If we plot the spectrum of this model over a wide range of ra-

tional flux values, the spectrum would show a fractal structure called the Hofstadter’s butterfly [14].

We will briefly review the Hofstadter model for square lattice, triangular lattice and honeycomb

lattice respectively.

3.1.1 Square lattice

We first consider electrons moving in a two-dimensional square lattice. We work in the tight

binding approximation and consider only isotropic case, the Hamiltonian we are interested in is

given by

H =
∑
m,n

(
c†m+1,ncm,ne

Axm,n + c†m,n+1cm,ne
Aym,n + h.c.

)
(3.1)

where c†m,n(cm,n) is the creation (annihilation) operator at site (m,n) satisfying the commutation

relations

{cm,n, c†m′,n′} = δmm′δnn′ , {cm,n, cm′,n′} = 0, {c†m,n, c
†
m′,n′} = 0 (3.2)

We fix the gauge using the Landau gauge such that Aym,n = 0, Axm,n = mφ. Under the rational flux

φ/(2π) = p/q with p and q being coprime integers, The eigenvalue equation becomes a difference

equation

eikyψm+1 + e−ikyψm−1 + 2 cos(kx +mφ)ψm = Eψm (3.3)
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where kx and ky are momentum in the Brillouin zone and ψn are Bloch functions with period q.

Under rational flux, the Hamiltonian has a simple matrix form

H(kx, ky) =



2 cos(kx) e−iky 0 . . . 0 eiky

eiky 2 cos(kx + 2π p
q
) e−iky . . . 0 0

0 eiky
. . . . . . ...

... . . . . . . . . . ...

0 0
. . . . . . e−iky

e−iky 0 . . . . . . eiky 2 cos(kx + 2π (q−1)p
q

)


(3.4)

so that the spectrum could be solved by computing the secular equation det(EI −H) = 0, i.e.

Fp/q(E, kx, ky) = det



A0 −e−iky 0 . . . 0 −eiky

−eiky A1 −e−iky . . . 0 0

0 −eiky . . . . . . ...
... . . . . . . . . . ...

0 0
. . . . . . −e−iky

−e−iky 0 . . . . . . −eiky Aq−1


= 0 (3.5)

where An = −2 cos(kx + 2π np
q

) + E. Alternatively, one can also write the secular equation in the

following form:

eiqkyTr
[T0 −e−2iky

1 0


T1 −e−2iky

1 0

 · · ·
Tq−1 −e−2iky

1 0

]+ 1 = 0 (3.6)

where Tn = e−iky(E − 2 cos(kx +mφ)). Solving (3.10) numerically gives us detailed information

about the band structure for the given flux. In general, we got q bands for φ = 2πp/q with p and

q coprime integers. As shown on the left of 3.1, the energy dispersion for φ = 2π3/5 splits into

5 bands. If we plot the range of energy as a function of flux, we get a fractal structure known as
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the Hofstadter’s butterfly. If the magnetic field is turned off, the density of states is given by the

Figure 3.1: Left: the band structure for φ = 2π 3
5
. Right: The Hofstadter’s butterfly for the square

lattice.

formula

ρ0(E) =

∫∫ 2π

0

dkx dky
4π2

δ(2 cos kx + 2 cos ky − E). (3.7)

Performing the integration, we get

ρ0(E) =
1

2π2
K
(

1− E2

16

)
. (3.8)

The computation for rational flux is almost the same, the result is given in [33],

ρ(E) =
P ′(E)

2π2b
K
(

1− P (E)2

16

)
, (3.9)

where

P (E) = Pp/q(E) = Fp/q(E, 0, 0) + 4. (3.10)

We plot the density of states for φ = 2π/3 and φ = 6π/7 in 3.2 as some examples. As we can see,

at the middle of the subbands, the DOS hits some singularities. These singularities are called van

Hove singularities that correspond to P (E) = 0.
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Figure 3.2: We show the density of states for the square lattice with isotropic parameters. The left
figure is the graph for φ = 2π/3), and the right is for φ = 6π/7. The DOS is supported only on
the energy subbands, and it has singularities at P (E) = 0.

3.1.2 Triangular lattice

We now turn to the Bloch electrons on the triangular lattice as shown in Fig. 3.3. Effectively,

one can think of the Bloch electrons on triangular lattice as electrons moving in square lattice with

the hopping parameter turned on for the (1, 1) direction, see [34].

Figure 3.3: bipartite honeycomb lattice with lattice spacing a
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The tight-binding Hamiltonian for the triangular lattice is given by

H =
∑
m,n

(
c†m+1,ncm,ne

i
∫ (m+1,n)
(m,n)

A·dl+c†m,n+1cm,ne
i
∫ (m,n+1)
(m,n)

A·dl+c†m+1,n+1cm,ne
i
∫ (m+1,n+1)
(m,n)

A·dl+h.c.
)

(3.11)

We can fix the gauge by taking A = (0, φx,0), then the difference equation for the triangular

lattice is

eikx(1 + ei(ky+φn))ψn+1 + e−ikx(1 + e−i(ky+φn))ψn−1 + 2 cos(kx + nφ)ψn = Eψn. (3.12)

Again we can put the Hamiltonian in a matrix form for rational flux and the spectrum is determined

by the characteristic polynomial

Dp/q(E, kx, ky) = det(EIq×q −Htri)

= det



A0 B0 0 . . . 0 B∗q−1e
−iqky

B∗0 A1 B1 . . . 0 0

0 B∗1
. . . . . . ...

... . . . . . . . . . ...

0 0
. . . . . . Bq−2

Bq−1e
iqky 0 . . . . . . B∗q−2 Aq−1


= 0

(3.13)

where An = −2 cos(kx + 2π np
q

) +E, Bn = −eikx(1 + ei(ky+(2n+1) p
q
π))1 We solve the determinant

3.13 numerically and reproduce the band spectrum shown in [16]. Notice here for the triangular

lattice the spectrum is not invariant under φ → φ + 2π. Instead, it’s invariant under φ → 4π − φ.

1Here we have some slight sign differences with the characteristic polynomial in [15], this minor modification only
affect the constant term.
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Figure 3.4: The Hofstadter’s butterfly for the triangular lattice.

The DOS for the triangular lattice is given by

ρ(E) =


|F ′|

2π2b(3 + F )1/4
K
(

12− F 2 + 8
√

3 + F

16
√

3 + F

)
, −2 < F ≤ 6,

2|F ′|
π2b
√

12− F 2 + 8
√

3 + F
K
(

16
√

3 + F

12− F 2 + 8
√

3 + F

)
, −3 ≤ F < −2,

(3.14)

where F = (−1)pqFp/q(E) and Fp/q(E) = D(E, 0, 0) + 2(3 + (−1)p + (−1)q + (−1)(p−1)q). It

seems that for b = 2 this formula does not work, but in this case, we easily find

Fa/2(E) = E2 − 6 (odd a). (3.15)

The van Hove singularities for the triangular lattice correspond to the solutions of F = −2.

3.1.3 Honeycomb lattice

The honeycomb lattice is widely explored in the condensed matter literature. Materials like

graphene are well known to have a single layer of honeycomb lattice structure. The Harper model
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on the honeycomb lattice was discussed in [22]. The honeycomb lattice we are interested in is a

Figure 3.5: bipartite honeycomb lattice with lattice spacing a

bipartite system with two sublattices A and B as shown in Fig. 3.5. The primitive vectors are given

by

a1 = (−
√

3

2
a,

3

2
a), a2 = (

√
3

2
a,

3

2
a), (3.16)

where a is the lattice spacing constant. We can also work out the primitive vectors in the reciprocal

space, which are give by

b1 = (− 2π√
3a
,
2π

3a
), b2 = (

2π√
3a
,
2π

3a
) (3.17)

For simplicity, we first consider the case where the magnetic flux is turned off. In the tight binding

approximation, we have the following eigenvalue equation

 0 D(k)

D∗(k) 0


cA
cB

 = E(k)

cA
cB

 , (3.18)
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where D(k) := e−id1·k + e−id2·k + e−id3·k with

d1 = (−
√

3

2
a,

1

2
a), d2 = (

√
3

2
a,

1

2
a), d3 = (0,−a). (3.19)

Therefore we can get the dispersion relation

E(k)2 = D(k)∗D(k) = 3 + 2 cos(
√

3kxa) + 4 cos

(
3kya

2

)
cos

(√
3kxa

2

)
(3.20)

From the dispersion relation, it’s clear that the energy ranges from -3 to 3. For a generic point in

the Brillouin zone, the system is normally gapped but near the corner of the first Brillouin zone, the

gap closes up and forms the so-called Dirac cone, see Fig. 3.6. Near the Dirac cone, the electrons

behave like massless relativistic fermions moving with the "speed of light" 3a/2.

Figure 3.6: Left: the energy dispersion. Right: the Dirac cone near the corner of the Brillouin
zone.
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Now we turn on the magnetic flux, the function D(k) gets replaced by a difference operator

D(k)→ D̂ = e−
iφ
12 e

iφy
3a e−

√
3a
2
∂x−a2 ∂y + e

iφ
12 e−

iφy
3a e

√
3a
2
∂x−a2 ∂y + ea∂y (3.21)

under the Landau gauge A = (By, 0, 0). The phase factors e±
iφ
12 come from the Baker-Campbell-

Hausdorff formula and

φ = 2π
eΦ

hc
, Φ =

3
√

3a2

2
B. (3.22)

The factor 3
√

3a2/2 simply comes from the area of the unit cell. The eigenvalue equation (3.18)

thus gets promoted to two difference equations on two dimensions. Since we are using the Landau

gauge, we can factorize the wavefunction as ΨA,B(x, y) = eikxxψA,B(y). The difference equations

further reduce to a set of difference equations of one dimension:

EψA(y) = 2 cos

(
φ

3a
y − φ

12
−
√

3a

2
kx

)
ψB

(
y − a

2

)
+ ψB

(
y + a

)
EψB(y) = 2 cos

(
φ

3a
y +

φ

12
−
√

3a

2
kx

)
ψA

(
y − a

2

)
+ ψA

(
y + a

)
.

(3.23)

By eliminating ψA(y), one gets a single difference equation:

λψB(y) = 2 cos

(
φ

3a
y +

φ

12
−
√

3a

2
kx

)
ψB

(
y +

3a

2

)
+ 2 cos

(
φ

3a
y − 5φ

12
−
√

3a

2
kx

)
ψB

(
y − 3a

2

)
+ 2 cos

(
2φ

3a
y +

φ

6
−
√

3akx

)
ψB(y),

(3.24)

where λ := E2−3. Let us write ψn = ψB(3a
2
n+ a

2
). Then the above eigenvalue equation is finally

reduced to the Harper’s equation:

λψn = 2 cos

(
φ

2
n+

φ

4
+κ

)
ψn+1 +2 cos

(
φ

2
n− φ

4
+κ

)
ψn−1 +2 cos

(
φn+

φ

2
+2κ

)
ψn, (3.25)

where κ = −
√

3aky/2. If φ/(2π) = p/q is rational, then following the procedure of square lattice

and triangular lattice, the spectrum of Bloch electrons on honeycomb lattice can be determined by
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an equation of the similar form of Eq (3.13):

Gp/q(λ, κ, θ) = det(Hhoneycomb−λIq×q) = det



A0 B0 0 . . . 0 B∗q−1e
−iθky

B∗0 A1 B1 . . . 0 0

0 B∗1
. . . . . . ...

... . . . . . . . . . ...

0 0
. . . . . . Bq−2

Bq−1e
iθky 0 . . . . . . B∗q−2 Aq−1


= 0

(3.26)

with An = cos

(
2κ − (2n+1)p

q
π

)
− λ and Bn = 1 + ei(2κ−

(2n+1)p
q

π). Here θ is the Bloch angle

due to the periodicity of Harper’s equation. Similarly, once we got the spectral determinant, we

Figure 3.7: Left: the band spectrum for λ. Right: the band spectrum for E.

can plot the band spectrum for the honeycomb lattice, see Fig. 3.7. The form of the DOS for the

honeycomb lattice is almost the same as the DOS for the triangular lattice because the Hamiltonian
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for honeycomb lattice share the same form with the triangular lattice if the flux is turned off. For

the redefined energy λ

ρ(λ) =


1

2π2b(3 +G)1/4

∣∣∣∣∂G∂λ
∣∣∣∣K(12−G2 + 8

√
3 +G

16
√

3 +G

)
, −2 < G ≤ 6,

2

π2b
√

12−G2 + 8
√

3 +G

∣∣∣∣∂G∂λ
∣∣∣∣K( 16

√
3 +G

12−G2 + 8
√

3 +G

)
, −3 ≤ G < −2,

(3.27)

where

G = Ga/b(λ) = Gp/q(λ, 0, 0)−
(
2(−1)pq + 2(−1)q+1(1 + (−1)pq)

)
. (3.28)

The DOS for the real energy is simply

ρ(E) =


1

2π2b(3 +G)1/4

∣∣∣∣∂G∂E
∣∣∣∣K(12−G2 + 8

√
3 +G

16
√

3 +G

)
, −2 < G ≤ 6,

2

π2b
√

12−G2 + 8
√

3 +G

∣∣∣∣∂G∂E
∣∣∣∣K( 16

√
3 +G

12−G2 + 8
√

3 +G

)
, −3 ≤ G < −2.

(3.29)

Here G is expressed as a polynomial of E, say G(E2 − 3).

3.2 Semi-classical Analysis

3.2.1 Perturbative series

The intricate structure of the band spectrum could be explained by the combination of the

so-called T-symmetry and S-duality. For example, for the square lattice, the band spectrum is in-

variant under the shift φ→ φ+ 2π. And under the inversion φ→ 2π2/φ, the energy gets mapped

to its "dual energy". These symmetry transformations make the band spectrum for our consid-

eration fully non-perturbative, thus providing a perfect playground for studying perturbative/non-

perturbative relations. In this section, we will first work out the weak flux expansion for all our

models. Consider the Harper model for the square lattice, we can expand its Hamiltonian for small

φ:

Hsquare = 4− (p2
x + p2

y)φ+
1

12
(p4

x + p4
y)φ

2 − 1

360
(p6

x + p6
y)φ

3 + · · · (3.30)
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We recognize the spectrum up to the first order as the Landau level of the electrons moving in the

uniform magnetic field. Treat φ as the perturbation parameter, we can write 2

En =
∞∑
k=0

E(k)
n φk, |n〉 =

∞∑
k=0

φk|n(k)〉, (3.31)

where E(k)
n is the n-th level energy shift at order k. Using a generalized version of the time-

independent perturbation theory, we can work out the higher-order corrections order by order. The

first few corrections are calculated as follows:

E(2)
n =

1

12
〈n(0)|(p4

x + p4
y)|n(0)〉,

E(3)
n = − 1

360
〈n(0)|(p6

x + p6
y)|n(0)〉+

∑
m6=n

|〈m(0)|(p4
x + p4

y)|n(0)〉|2

288(n−m)
.

(3.32)

Alternatively, one can compute the perturbative expansion more efficiently by applying numerical

techniques introduced by Bender and Wu [35, 36] (see also [37] for reference). Using these meth-

ods, we can calculate the perturbative expansion up to order∼ O(φ100), here we show the first few

orders:

Esquare
top = 4− (2n+ 1)φ+

2n2 + 2n+ 1

8
φ2 − 2n3 + 3n2 + 3n+ 1

192
φ3

+
n4 + 2n3 + 6n2 + 5n+ 2

1536
φ4 +

14n5 + 35n4 + 190n3 + 250n2 + 215n+ 67

245760
φ5 +O(φ6).

(3.33)

Because the spectrum is symmetric under E → −E, the expansion near the bottom edge is simply

Esquare
btm = −Esquare

top . It’s clear that the perturbative expansion (3.33) is not convergent for general

level n. We can do a Borel resummation to cure the divergence. Because the Borel transform of

(3.33) has poles on the positive axis of the Borel plane, we need to integrate along a line in the

complex plane where no pole would be hitted [38]. The ambiguity of the Borel resummation is

related to the imaginary part of instanton-anti-instanton fluctuation. Along the way, we can also

work out the perturbative expansion of the wavefunction, here we show the unnormalized ground
2In the sense of weak flux expansion, the k-th order energy level in flux expansion corresponds to (k-1)-th order

energy level in perturbation theory.

26



state wavefunction and the first-level wavefunction:

ψ0(x;φ) = e−
x2

2

[
1 +

(
x4

48
− x2

16

)
φ+

(
x8

4608
− 7x6

2304
+

29x4

1536
− 13x2

384

)
φ2 +O(φ3)

]
(3.34)

ψ1(x;φ) = e−
x2

2

[
2x+

x3(x2 − 5)

24
φ+

x3(5x6 − 90x4 + 687x2 − 1860)

11520
φ2 +O(φ3)

]
(3.35)

The shortcoming of doing perturbation theory is that the perturbative wavefunction does not know

the periodicity of the square lattice. Nevertheless, for weak flux, the perturbative expansion of

energy matches with the exact ones pretty well. We plot the semiclassical expansion with the

actual band spectrum. From the point of view of perturbative expansions, the bandwidths can be

viewed as non-perturbative instanton corrections. For the triangular lattice, we can perform the

Figure 3.8: The perturbative expansion of (3.33) explains the Landau level splitting in the weak
magnetic field limit. The red solid lines represent the perturbative expansion up to orderO(φ5) for
the first six energy levels.

same kind of numerical analysis for the weak flux expansion. The expansion around the top edge
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is given by

E tri
top = 6−

√
3(1 + 2n)φ+

1 + 2n+ 2n2

4
φ2 − 3 + 8n+ 6n2 + 4n3

72
√

3
φ3

+
3 + 8n+ 10n2 + 4n3 + 2n4

1728
φ4 − 3 + 20n+ 45n2 + 40n3 + 15n4 + 6n5

155520
√

3
φ5 +O(φ6).

(3.36)

And near the bottom edge,

E tri
btm = −3 +

√
3(n+

1

2
)φ− 12n2 + 12n+ 7

24
φ2

+
8n3 + 12n2 + 22n+ 9

144
√

3
φ3 − 336n4 + 672n3 + 1656n2 + 1320n+ 433

10368
φ4

+
11424n5 + 28560n4 + 98960n3 + 119880n2 + 83650n+ 22797

311040
√

3
φ5 +O(φ6).

(3.37)

Thus we can plot the semiclassical expansion for the triangular lattice in Fig. 3.9. For the honey-

comb lattice, the discussion is more involved. For the redefined energy λ, we have the following

expansion near the top edge:

λtop =6−
√

3(2n+ 1)φ+
3n2 + 3n+ 1

6
φ2 − n(n+ 1)(2n+ 1)

36
√

3
φ3

+
3n4 + 6n3 + 9n2 + 6n+ 4

2592
φ4 − 6n5 + 15n4 − 80n3 − 135n2 − 190n− 72

155520
√

3
φ5 +O(φ6).

(3.38)

And for the bottom edge,

λbtm(n, φ) =− 3 +
√

3nφ− n2

2
φ2 − n(n2 + 2)

18
√

3
φ3 − n2(7n2 + 20)

216
φ4

− n(357n4 + 2020n2 + 470)

9720
√

3
φ5 − n2(961n4 + 8950n2 + 6670)

58320
φ6 +O(φ7).

(3.39)

We show the perturbative expansion together with the spectrum for λ on the left of Fig. 3.10.

Notice for the lowest Landau level, λbtm receives no perturbative corrections, say

λbtm(0, φ) = −3 (3.40)
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Figure 3.9: The perturbative expansion for the triangular lattice. The orange solid lines represent
the perturbative expansion up to order O(φ4) for the first six energy levels for the top region and
the first three energy levels for the bottom region.

The perturbative results for the honeycomb lattice was first found in [39] and in [39, 40, 41], it was

argued that the honeycomb lattice model near the Dirac point has hidden supersymmetry, which

could explain the behaviour of the lowest Landau level near the Dirac point. For the real energy E

of the honeycomb lattice, the expansion of the top and the bottom edge is related to the expansion
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Figure 3.10: Left:The perturbative expansion for the redefined energy λ for the honeycomb lattice.
The red solid lines represent the perturbative expansion up to order O(φ5) for the first six energy
levels for the top region and the first three energy levels for the bottom region. Right: The per-
turbative expansion for the real energy E for the honeycomb lattice. We show the first six energy
levels for the top and bottom region and the first three energy levels for the region near zero energy.

of λtop by Etop =
√
λtop + 3 and Ebtm = −

√
λtop + 3. To show it more explicitly,

Ehoneycomb
top = −Ehoneycomb

btm =3− 2n+ 1

2

√
3φ+

2n2 + 2n+ 1

72
φ2 +

2n+ 1

432
√

3
φ3

+
2n4 + 4n3 + 26n2 + 24n+ 11

31104
φ4

− 14n5 + 35n4 + 320n3 + 445n2 + 380n+ 117

933120
√

3
φ5 +O(φ6).

(3.41)

The expansion near the zero energy for E results from the expansion near the bottom edge for λ,

we denote the expansion above the zero energy as E+ and the expansion below the zero energy as
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E− such that E± = ±
√
λbtm + 3, more explicitly,

Ehoneycomb
+ =− Ehoneycomb

- = 31/4
√
n
√
φ− n3/2

4 · 31/4
φ3/2 −

√
n(17n2 + 16)

288 · 33/4
φ5/2

− n3/2(73n2 + 176)

3456 · 31/4
φ7/2 −

√
n(60281n4 + 292960n2 + 61440)

2488320 · 33/4
φ9/2 +O(φ11/2).

(3.42)

And for the lowest Landau level, E± is identically 0 due to the hidden supersymmetry.

3.2.2 Bandwidths analysis

As we mentioned in the last section, the bandwidths are invisible from perturbative analysis.

In order to analyze the bandwidths, we need to include the non-perturbative corrections. We first

review the non-perturbative results for the square lattice following [20]. The energy receives per-

turbative and instanton corrections in the following form

E(θx,θy)(n, φ) = Epert(n, φ) + Enp
(θx,θy)(n, φ)

=
∞∑
k=0

a
(0)
k (n)φk + (2 cos θx + 2 cos θy)e

−A/φN (n, φ)
∞∑
k=0

a
(1)
k (n)φk +O(e−2A/φ),

(3.43)

where the Bloch angles are defined as θx = qkx and θy = qky for φ = 2πp/q. Here the band

edges correspond to (θx, θy) = (0, 0) and (π, π). Since the van Hove singularity corresponds to

(θx, θy) = (π/2, π/2), therefore at the van Hove singularity the one-instanton correction vanishes.

We can determine the one-instanton fluctuation by doing numerical analysis of the bandwidths

since the leading contribution to the bandwidths is given by the one-instanton expansion

∆Esquare(n, φ) : = |E(0,0(n, φ)− E(π,π)(n, φ)|

= 8|N (n, φ)|e−A/φ
∞∑
k=0

a
(1)
k (n)φk + · · · ,

(3.44)

where the instanton action is calculated to be

A =
1

i

∫ 2π

0

arccos(2− cosx) dx = 8G. (3.45)
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Here G is Catalan’s constant.

Using the spectral determinant (3.10) we can calculate the bandwidths numerically to high

precision. By numerical fitting the first few Landau levels, we get

∆Esquare(n, φ) ≈ 8n+2

n!πn

(
φ

2π

) 1
2
−n

e−A/φP inst
square, (3.46)

where the one-instanton fluctuation is given by

logP inst
square =− 6n2 + 30n+ 19

96
φ− 20n3 + 102n2 + 136n+ 27

4608
φ2

− 210n4 + 1380n3 + 2910n3 + 2700n+ 893

368640
+O(φ4).

(3.47)

We would like to focus on the instanton-anti-instanton (bion) sector of the two-instanton sector.

The perturbative sector and the instanton-anti-instanton sector share the same topological charge.

According to resurgence analysis [38, 42], the asymptotics of perturbative expansion encodes the

information of all other non-perturbative series and the ambiguity of the perturbative expansion is

related to the bion fluctuation. The large order behavior of a(0)
k (n) has the following form

a
(0)
k (n) =

SCn
2πi(2A)k+2n

∞∑
m=0

(k + 2n−m− 1)!a(1,1)
m (n)(2A)m + · · · , (3.48)

where S is the Stokes constant, which is related to the ambiguity of Borel resummation of perturba-

tive series. Cn is an n-dependant constant and we normalize a(1,1)
0 (n) to be 1. By utilizing the data

of (3.33), we get S = 128i and Cn = 28n

(n!)2 from numerical method. Since we have also fixed the

instanton action (3.45), we can estimate a(1,1)
m (n) through numerical fitting. The bion fluctuation

turns out to be

logPbion
square =− 6n2 + 18n+ 13

48
φ− 20n3 + 66n2 + 100n+ 27

2304
φ2

− 210n4 + 900n3 + 2190n3 + 1980n+ 653

184320
+O(φ4).

(3.49)

The instanton fluctuation (3.47), the bion fluctuation (3.49) and the perturbative expansion (3.33)
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are interrelated by the perturbative/non-perturbative threesome relation

Pbion
square

(P inst
square)

2
=

(
1

2φ

∂Epert

∂n

)−1

, (3.50)

which suggests us to introduce a new function A(n, φ) by

P inst
square =

1

2φ

∂Epert

∂n
e−A(n,φ),

Pbion
square =

1

2φ

∂Epert

∂n
e−2A(n,φ).

(3.51)

It turns out that this new function is the non-perturbative A function appearing in the Zinn-Justin-

Jentschura exact quantization conditions [18, 19]. Since we have already calculated the perturba-

tive series and the instanton fluctuation for the square lattice, the explicit form for the A function

is thus given by

Asquare(n, φ) =

(
B2

16
+

11

192

)
φ+

(
5B3

1152
+

49

4608

)
φ2

+

(
7B4

12288
+

77B2

24576
+

889

2949120

)
φ3 +O(φ4),

(3.52)

where B = n+ 1
2
.

For triangular lattice the bandwidths is given by

∆E tri =


∣∣∣∣E(0, 0)− E(

4π

3
,
2π

3
)

∣∣∣∣ p odd,∣∣∣∣E(3π, π)− E(
π

3
,−π

3
)

∣∣∣∣ p even.
(3.53)

Here E(θx, θy) is the solution of (3.13). By numerical fitting we found the bandwidths near the top

edge

∆E tri
top(n, φ) ≈ 108 · 31/4(6

√
3)n

n!πn

(
φ

2π

) 1
2
−n

e−Â/φP tri inst
top , (3.54)
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Figure 3.11: Left: the bandwidths near the bottom edge of the triangular lattice. Right: differences
between those almost identical subbands.

and the bottom edge

∆E tri
btm±(n, φ) ≈ 9 · 31/4(3

√
3)n

n!(2π)n

(
φ

2π

) 1
2
−n

e−Â/5φP tri inst
btm , (3.55)

where the instanton action is

Â =
2

i

∫ π/2

−π/2
arccos(

2

cosx
− cosx) dx = 10.149416064096 · · · . (3.56)

The subscript ± denotes a pair of subbands whose bandwidths are almost identical. These over-

lapping subbands share the same one-instanton series but differ in two-instanton and higher-order

instanton series. We show log plots of those pairs of bandwidths and their differences in 3.11. For

convenience of our analysis, the flux is taken to be φ = 2π/Q.

The instanton fluctuation near the top and bottom edge is given by

logP tri inst
top =− 6n2 + 42n+ 31

72
√

3
φ− 2n3 + 15n2 + 23n− 2

864
φ2

− 15n4 + 138n3 + 330n2 + 153n− 26

46656
√

3
φ3 +O(φ4),

(3.57)
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logP tri inst
btm =− 30n2 + 102n+ 59

72
√

3
φ− 34n3 + 147n2 + 177n+ 72

432
φ2

− 4470n4 + 26220n3 + 48750n2 + 46440n+ 15961

58320
√

3
φ3 +O(φ4).

(3.58)

It’s safe to assume that the bion fluctuation, instanton fluctuation and the perturbative series satisfy

the threesome relation for both top and bottom edge:

P bion

(P inst)2
=

(
1

cφ

∂Epert

∂n

)−1

, (3.59)

where the normalization constant c = −2
√

3 for the top edge and c =
√

3 for the bottom edge. One

can check this relation holds by doing resurgence analysis to get the coefficients of bion fluctuation.

With this relation satisfied, we can proceed to calculate the non-perturbative A function near the

top and bottom edge of the triangular lattice:

Atri
top(n, φ) =

(
23

144
√

3
+

B2

12
√

3

)
φ+

(
19B

1728
+
B3

432

)
φ2

+

(
− 581

746496
√

3
+

97B2

31104
√

3
+

5B4

15552
√

3

)
φ3 +O(φ4),

(3.60)

Atri
btm(n, φ) =

(
31

144
√

3
+

5B2

12
√

3

)
φ+

(
37B

288
+

17B3

216

)
φ2

+

(
15443

466560
√

3
+

1075B2

3888
√

3
+

149B4

1944
√

3

)
φ3 +O(φ4).

(3.61)

The semiclassical analysis of the honeycomb lattice is very similar to the triangular lattice, but

more subtler, as shown in [39, 21]. The bandwidths near the top edge of λ share the same form of

(3.57). The only difference lies in the instanton fluctuation

logPhoneycomb inst
top =− 6n2 + 42n+ 19

72
√

3
φ− 2n3 + 15n2 + 15n+ 6

864
φ2

− 15n4 + 138n3 + 258n2 + 297n+ 166

46656
√

3
φ3 +O(φ4),

(3.62)
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By numerical fitting, the bandwidths near the bottom edge has the following form

∆λbtm(0, φ) ≈ 9
√

3

(
2π

φ

)−1

e−
2Â
5φPhoneycomb bion

btm (0, φ),

∆λbtm(n, φ) ≈ 3
3(n+1)

2
√
n√

2πn!
φ1−ne−

Â
5φPhoneycomb inst

btm (n, φ), n ≥ 1,

(3.63)

where the instanton fluctuation is given by

logPhoneycomb inst
btm =− 30n2 + 72n+ 11

72
√

3
φ− 34n3 + 96n2 + 49n+ 16

432
φ2

− 4470n4 + 17280n3 + 14910n2 + 12960n+ 1081

58320
√

3
φ3 +O(φ4).

(3.64)

The leading contribution to the ground state bandwidths is related to the bion fluctuation instead

of the instanton fluctuation due to the Dirac cone structure. By numerical fitting, the lowest level

of the bion fluctuation is

logPhoneycomb bion
btm (0, φ) = − 11

36
√

3
φ− φ2

27
− 1081φ3

29160
√

3
+O(φ4). (3.65)

For honeycomb lattice, we also have a pair of almost identical subbands near the bottom edge for

n ≥ 1. For convenience we have omitted the subscript ±. The difference between those subbands

turns out to be related to the two-instanton expansion |∆λ+(n, φ) − ∆λ−(n, φ)| ≈ Cne
− 2Â

5φ (1 +

O(φ)).

The bion fluctuation near the top and bottom edge can be obtained from resurgent analysis of

perturbative series (3.38) and (3.39). Near the top edge,

logPhoneycomb bion
top (n, φ) =− 3n2 + 12n+ 5

18
√

3
φ− 4n3 + 18n2 + 18n+ 7

864
φ2

− 30n4 + 168n3 + 354n2 + 378n+ 251

46656
√

3
φ3 +O(φ4).

(3.66)
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And near the bottom edge,

logPhoneycomb bion
btm (n, φ) =− 30n2 + 36n+ 11

36
√

3
φ− 34n3 + 48n2 + 49n+ 8

216
φ2

− 4470n4 + 8640n3 + 14910n2 + 6480n+ 1081

29160
√

3
φ3 +O(φ4).

(3.67)

One can show that by taking n = 0, (3.67) indeed reduces to (3.65). The threesome relationship

of instanton fluctuation, bion fluctuation and perturbative expansion of λ share the same form of

the threesome relationship of triangular lattice (3.59). And indeed the bion fluctuations predicted

by the threesome relationship matches with the resurgence calculation. The non-perturbative A

function associated with λ near the top edge and bottom edge is thus given by

Ahoneycomb
top (n, φ) =

(
−1

144
√

3
+

B2

12
√

3

)
φ+

(
B

576
+
B3

432

)
φ2

+

(
1051

746496
√

3
+

49B2

31104
√

3
+

5B4

15552
√

3

)
φ3 +O(φ4),

(3.68)

Ahoneycomb
btm (n, φ) =

(
11

72
√

3
+

5n2

12
√

3

)
φ+

(
49n

432
+

17n3

216

)
φ2

+

(
1081

58320
√

3
+

497n2

1944
√

3
+

149n4

1944
√

3

)
φ3 +O(φ4).

(3.69)

In the next section we will show that the non-perturbative A function is related to the quantum free

energy of topological strings on certain CY threefolds.
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4. QUANTUM GEOMETRY OF LOCAL B3 AND TS/CM CORRESPONDENCE1

In this chapter, we will discuss the quantum geometry of localB3, which is a three-point blowup

of local P2. We will illustrate the topological string/ condensed matter theory correspondence by

showing several quantities like the derivative of the quantum A-period are related to the physical

quantities of the condensed matter side.

4.1 Quantum Curve of local B3

It’s known mathematically that the local P2 geometry, the canonical bundle over P2, can be

blown up up to 8 points. They are denoted as local Bn (n = 1 · · · 8). Out of those eight geometries

local B3 is of great interest to us because it’s connected to the Harper-Hofstadter model on trian-

gular lattice and honeycomb lattice. The local B3 geometry is a toric Calabi-Yau threefold that

belongs to the toric del Pezzo Calabi-Yau manifolds. Since it’s a toric del Pezzo Calabi-Yau mani-

fold, we can simply encode its information to a toric diagram, see Fig. 4.1. From the point of view

of string theory, The duality between Type IIA and Type IIB string theory gives us an alternative

description of this geometry. To be more precise, M theory/Typer IIA on local B3 is dual to Typer

IIB with (p,q) fivebrane webs whose configuration is identical to the dual web diagram of local

B3 [43]. The resulting effective theory is 5d N = 1 SU(2) superconformal field theory (SCFT)

with Nf = 2 [44]. The SO(2) flavour symmetry and U(1) instanton symmetry gets enhanced to

E3 ' SU(3)× SU(2) at a UV fixed point.

We can read off the toric data of local B3 from its toric diagram. And from the toric data, we

get its classical curve:

ex + ey + e−x−y +m1e
−x +m2e

−y +m3e
x+y = E (4.1)

Here (m1,m2,m3) are mass parameters and E is the true modulus of the local B3 geometry, which

1Part of this chapter is reprinted with permission from "Calabi-Yau geometry and electrons on 2d lattices" by Y.
Hatsuda, Y. Sugimoto and Z. Xu, 2017. Physical Review D 95.8 (2017): 086004. Copyright [2017] by APS.
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Figure 4.1: Left: the toric diagram of local B3. Right: the dual web diagram.

can be understood as energy. If we turn off the mass parameters (m1,m2,m3) → (m1,m2, 0) →

(m1, 0, 0) → (0, 0, 0) in turn, the geometry is reduced to local B2, local F1 and local P2, respec-

tively. Here Fn denotes the Hirzebruch surface O ⊕ O(−n). The blowdown of local B3 is not

unique. With a different choice of the mass parameters, the mirror curve can be written as

ex + ey +m′1e
−x + e−y +m′2e

−x−y +m′3e
x+y = E (4.2)

If we turn off the mass parameters (m′1,m
′
2,m

′
3) → (m′1,m

′
2, 0) → (m1, 0, 0), we get local B2

and local F0 or local P1 × P1, or in the geometry literature language O(−1,−1) → P1 × P1,

the canonical bundle over P1 × P1. The physical equivalence of this blowdown process can be

illustrated as follows. Consider the dual picture of (p,q) brane web of local B3, then removing one

7-brane from this (p,q) brane web corresponds to going from local B3 to local B2. By removing

another 7-brane, we obtain the web corresponds to local F0.

The canonical way of quantizing the curve is to promote x and y to operators and impose the

commutation relation:

[x, y] = i~. (4.3)
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To avoid ambiguity of operator ordering, we take the following quantization method

eax+by → eax+by = q−ab/2eaxeby, (4.4)

where q = ei~. Then the quantum curve of local B3 is simply given by

H = ex + ey + e−x−y +m1e
−x +m2e

−y +m3e
x+y. (4.5)

If we work in the x-representation, then e±y = e∓i~∂x are difference operators and the eigenvalue

equation Hψ(x) = Eψ(x) leads to the difference equation

exψ(x) + ψ(x− i~) + q−1/2e−xψ(x+ i~)

+m1e
−xψ(x) +m2ψ(x+ i~) +m3q

−1/2exψ(x− i~) = Eψ(x).

(4.6)

Notice here there’s similarity between the difference equation for the quantum mirror curve and

the difference equation for the Harper model of the triangular lattice.

4.1.1 Classical Regime

The mirror curve (4.1) defines a genus-one Riemann surface. Under special geometry, we can

define the A and B-period of the A and B-cycle of the Riemann surface:

t =

∮
A

dx y(x, E), (4.7)

∂F0(t)

∂t
= vol0(E) =

∮
B

dx y(x, E). (4.8)

Here the B-period calculates the volume or area enclosed by the mirror curve in the phase space

and F0(t) is the prepotential as introduced in Eq (2.29). At the technical level, there is an efficient

way to compute these periods exactly. As explained in [45], the computation of these periods is
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mapped to the periods for the Weierstrass normal form of the elliptic curve:

Y 2 = 4X3 − g2X − g3. (4.9)

To go from the mirror curve (4.1) to the Weierstrass form (4.9), so-called Nagell’s algorithm is

used. See [45] in detail. We use the result (A.22) in [45] for computing the coefficients g2 and g3:

g2 =
1

12z4
[1− 8(m1 +m2 +m3)z2 − 24(1 +m1m2m3)z3

+ 16(m2
1 +m2

2 +m2
3 −m1m2 −m2m3 −m3m1)z4],

g3 =
1

216z6
[1− 12(m1 +m2 +m3)z2 − 36(1 +m1m2m3)z3

+ 24(2m2
1 + 2m2

2 + 2m2
3 +m1m2 +m2m3 +m3m1)z4

+ 144(m1 +m2 +m3)(1 +m1m2m3)z5

+ 8(−8m3
1 − 8m3

2 − 8m3
3 + 12m2

1m2 + 12m2
2m3 + 12m2

3m1

+ 12m1m
2
2 + 12m2m

2
3 + 12m3m

2
1 + 27 + 6m1m2m3 + 27m2

1m
2
2m

2
3)z6],

(4.10)

where z = 1/E . Then, the periods are written in closed forms

∂t

∂z
= − 1

2πz2

2√
e1 − e3

K
(
e2 − e3

e1 − e3

)
,

∂2F0

∂z∂t
= − 1

z2

2√
e1 − e3

K
(
e1 − e2

e1 − e3

)
.

(4.11)

where K(m) is the complete elliptic integral of the first kind, and e1, e2 and e3 are three roots of

the elliptic curve (4.9). We have to choose them to reproduce the correct asymptotics of the A- and

B-periods in z → 0. The A-period has a logarithmic divergence, while the B-period has a double

logarithmic divergence in this limit. The explicit forms of (e1, e2, e3) are very complicated, but we
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can fix them by the behavior in the limit z → 0 as follows:

e1 =
1

6z2
− 2

3
(m1 +m2 +m3)− 2(1 +m1m2m3)z +O(z2),

e2 = − 1

12z2
+

1

3
(m1 +m2 +m3) + (1 +m1m2m3 + 2

√
m1m2m3)z +O(z2),

e3 = − 1

12z2
+

1

3
(m1 +m2 +m3) + (1 +m1m2m3 − 2

√
m1m2m3)z +O(z2).

(4.12)

Plugging these expansions into the first equation in (4.11), one finds

−t = log z + (m1 +m2 +m3)z2 + 2(1 +m1m2m3)z3

+
3

2
(m2

1 +m2
2 +m2

3 + 4m1m2 + 4m2m3 + 4m3m1)z4 +O(z5),
(4.13)

where we fixed the integration constant so that Q = e−t = z+O(z2) in z → 0. Inverting this, one

gets the so-called mirror map

z = Q[1− (m1 +m2 +m3)Q2 − 2(1 +m1m2m3)Q3

+ (m2
1 +m2

2 +m2
3 −m1m2 −m2m3 −m3m1)Q4 +O(Q5)].

(4.14)

Similarly, from the second equation in (4.11), one obtains

∂F0

∂t
= 3 log2 z + log(m1m2m3) log z + C0

+

(
1

m1

+
1

m2

+
1

m3

+m1m2 +m2m3 +m3m1

)
z

+

[
(m1 +m2 +m3)(log(m1m2m3) + 6 log z) + 4(m1 +m2 +m3)

− 1

4m2
1

− 1

4m2
2

− 1

4m2
3

− m2
1m

2
2

4
− m2

2m
2
3

4
− m2

3m
2
1

4

]
z2 +O(z3).

(4.15)

The integration constant C0 is not fixed in this way. We fix it by comparing it to vol0(E). From the

numerical experiment, we observe the following asymptotic behavior of vol0(E) in E → ∞:

vol0(E) = 3 log2 E−log(m1m2m3) log E−π2−1

2
(log2m1+log2m2+log2m3)+O(E−1). (4.16)
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Comparing this expansion with (4.15), the integration constant should be fixed by

C0 = −π2 − 1

2
(log2m1 + log2m2 + log2m3). (4.17)

Substituting the mirror map (4.14) into (4.15), we finally obtain the prepotential

F0(t) = t3 − log(m1m2m3)

2
t2 + C0t+ C̃0 + F inst

0 (t),

F inst
0 (t) = −

(
1

m1

+
1

m2

+
1

m3

+m1m2 +m2m3 +m3m1

)
e−t

− 1

8

(
16(m1 +m2 +m3)− 1

m2
1

− 1

m2
2

− 1

m2
3

−m2
1m

2
2 −m2

2m
2
3 −m2

3m
2
1

)
e−2t +O(e−3t).

(4.18)

Another integration constant C̃0 is not relevant in our analysis.

In particular, for m1 = m2 = m3 = 1, things are much simpler. In this case, by shifting the

y-variable by y → y − x/2, the mirror curve becomes

2 coshx+ 4 cosh
x

2
cosh y = E . (4.19)

Then the periods are written as

t(E) =
1

πi

∫ x+

x−

dx arccosh

(
E − 2 coshx

4 cosh x
2

)
,

∂F0

∂t
= 4

∫ x−

0

dx arccosh

(
E − 2 coshx

4 cosh x
2

)
,

(4.20)

where x± are defined for E > 6 by

E − 2 coshx±
4 cosh x±

2

= ∓1, x± > 0. (4.21)

The integral in (4.20) can be analytically continued to −3 ≤ E ≤ 6 with appropriate choice of

cycle. We found that at the conifold point the classical A-period gives the instanton action (3.56)
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of the triangular lattice and the constant part of the instanton action of the honeycomb lattice

t(6) =
5

2
t(−3) =

Â

2π
. (4.22)

The fact that the period integral gives non-perturbative correction is explained in [3]. The derivative

of these integrals with respect to E can be evaluated exactly. We find the following expressions:

∂t

∂E
=

2

π
√
E2 − 12 + 8

√
E + 3

K
(

16
√
E + 3

E2 − 12 + 8
√
E + 3

)
,

∂2F0

∂E∂t
=

8√
E2 − 12 + 8

√
E + 3

K
(
E2 − 12− 8

√
E + 3

E2 − 12 + 8
√
E + 3

) (4.23)

From these, one immediately finds

− t = log z + 3z2 + 4z3 +
45

2
z4 + 72z5 + 340z6 +O(z7). (4.24)

and

F0(t) = t3 − π2t+ C̃0 + F inst
0 (t),

F inst
0 (t) = −6e−t − 21

4
e−2t − 56

9
e−3t − 405

32
e−4t − 3756

125
e−5t − 751

9
e−6t +O(e−7t).

(4.25)

One can check that the functions

wA(z) :=
∂t

∂z
, wB(z) :=

∂2F0

∂z∂t
, (4.26)

both satisfy the following second order differential equation

z2(1 + 2z)(1 + 3z)(1− 6z)w′′i (z) + z(3− 4z − 120z2 − 216z3)w′i(z)

+(1− 2z − 96z2 − 216z3)wi(z) = 0, i = A,B.

(4.27)

This differential equation can be regarded as a Picard–Fuchs equation. Interestingly, we notice that
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the same differential equation appears in the so-called mass deformed E8 del Pezzo geometry with

three non-vanishing masses studied in [7]. In appendix C of [15], it was shown that the mirror

curve of E8 del Pezzo geometry is simply a reparameterization of the mirror curve of local B3,

which indicates that they should share the same quantum spectrum. In appendix B, we show that

local B3 and mass deformed E8 are indeed related by several steps of Hanany-Witten transitions

for (p, q)-brane webs [43]. We would like to work out the periods for local F0 as well. Recall that

with a different choice of mass parameters, the mirror curve of local B3 can be written as

ex + ey +m′1e
−x + e−y +m′2e

−x−y +m′3e
x+y = E . (4.28)

If we take the blowdown limit m′2 → 0 and m′3 → 0 and write m = m′1, we get the mirror curve

of local F0:

ex +me−x + ey + e−y = E . (4.29)

We perform a change of variable x → x + logm/2 and define λ :=
√
m, the periods of local F0

can be calculated analytically

t =
2

πi

∫ x+

x−

dx arccosh

(
E
2
− λ coshx

)
,

∂F0

∂t
= 4

∫ x−

0

dx arccosh

(
E
2
− λ coshx

)
,

(4.30)

where x± are defined for E > 2(1 + λ) by

E
2
− λ coshx± = ∓1, x± > 0. (4.31)

The derivative of the classical period for local F0 was already calculated in various works, see

[46, 7, 13]. Similar to the periods of local B3, the derivative of the periods of local F0 are written
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in terms of the complete elliptic integral of the first kind:

∂t

∂E
=

4

π
√
E2 − 4(1− λ)2

K
(

16λ

E2 − 4(1− λ)2

)
,

∂2F0

∂E∂t
=

8√
E2 − 4(1− λ)2

K
(
E2 − 4(1 + λ)2

E2 − 4(1− λ)2

)
.

(4.32)

One can do series expansion of the right-hand-side of the first equation of (4.32) and then integrate,

the expansion for the classical A-period is given as follows:

−t = log z + 2(1 + λ2)z + 3(1 + 4λ2 + λ4)z2 +
20

3
(1 + 9λ2 + 9λ4 + λ6)z3

+
35

2
(1 + 16λ2 + 36λ4 + 16λ6 + λ8)z4 +O(z5),

(4.33)

where z := 1/E2. Inverting this, we get the mirror map for local F0:

z =Q− (2 + 2λ2)Q2 + 3(λ4 + 1)Q3

− 4(λ6 + λ4 + λ2 + 1)Q4 + 5(λ8 − 5λ4 + 1)Q5 +O(Q6)

(4.34)

Similarly, for the B-period, we get

∂F0

∂t
= log z2 + 2 log z log λ+ C0 + (4(1 + λ2)

+ 4(1 + λ2) log z + 4(1 + λ2) log λ z +O(z2),

(4.35)

where the integration constant is fixed to be C0 = −2π2/3− log2 λ. Substituting (4.34) into (4.35),

we get the large radius expansion of the prepotential

F0(t) =
1

3
t3 − log λ t2 + C0t+ C̃0 + Finst(t),

Finst(t) = −4(λ2 + 1)e−t − 1

2
(λ4 + 16λ2 + 1)e−2t

− 4

27
(λ4 + 80λ2 + 1)(λ2 + 1)e−3t +O(e−4t).

(4.36)

One can check the above computation by solving the Picard-Fuchs equation of local F0 or using
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the topological vertex technique [47] to calculate the large radius expansion.

For λ = 1, the classical periods can be written in closed form:

−t(z) = log z + 4z 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16z

)
,

∂F0

∂t
= −2π2 +

2

π
G3,2

3,3

0 0 0

1
2

1
2

1

∣∣∣∣∣16z

 ,

(4.37)

where pFq(a1, · · · , ap; b1, · · · , bq; z) is the hypergeometric function and

Gp,q
m,n

a1 · · · ap

b1 · · · bq

∣∣∣∣∣z
 , (4.38)

is the Meijer G function. At the conifold point (4.37) is proportional to the instanton action (3.45)

t

(
z =

1

16

)
=

8G

π
=
A

π
. (4.39)

4.1.2 The Quantum mirror map

The classical periods can be generalized to their quantum versions. For the B-period, its

quantum version gives rise to the exact quantization condition and solves the spectral problem

of the quantum curve. For the A-period, the quantum A-period was first proposed in [48] and

several examples were calculated explicitly. In general, we can put the quantum mirror curve

(H(X, Y )− E)ψ(X) = 0 into the form

h(X, V (X); q, z,mi) = 0, (4.40)

where X = ex, Y = ey and

V (X) =
ψ(X)

ψ(q−1X)
. (4.41)
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Since log V (X) has finite number of poles in the small z expansion, we can get the small z expan-

sion of the quantum A-period by calculating the residues:

− t = log z +

∮
dX

2πiX
log(V (X)) = log z − ResX=0

c

X
log(V (X)), (4.42)

The constant c depends on which geometry we are considering. For local B3, we can calculate

the quantum A-period order by order for arbitrary q. The difference equation written in the form

(4.40) is given by

X +
m1

X
+ V (X) +

m2

V (qX)
+

q−1/2

XV (qX)
+m3q

−1/2XV (X) =
1

z
. (4.43)

We expand V (X) in z:

V (X) =
v−1(X)

z
+ v0(X) + v1(X)z + · · · . (4.44)

It is easy to fix each coefficient:

v−1(X) =
1

1 +m3q−1/2X
, v0(X) = − m1 + q−1/2X2

X(1 +m3q−1/2X)
. (4.45)

Then,

log V (X) = log

(
v−1(X)

z

)
+

v0(X)

v−1(X)
z + · · · . (4.46)

The quantum A-period is obtained by the formula

ΠA(z; q) = −ResX=0
V (X)− log(v−1(X)/z)

X
= −ResX=0

(
v0(X)

Xv−1(X)
z + · · ·

)
. (4.47)
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which turns out to be

−t = log z + (m1 +m2 +m3)z2 + (q1/2 + q−1/2)(1 +m1m2m3)z3

+

[
3

2
(m2

1 +m2
2 +m2

3) + (4 + q + q−1)(m1m2 +m2m3 +m3m1)

]
z4 +O(z5),

(4.48)

or inversely

E−1 = z = Q− (m1 +m2 +m3)Q3 − (q1/2 + q−1/2)(1 +m1m2m3)Q4

+ [m2
1 +m2

2 +m2
3 − (q + q−1 − 1)(m1m2 +m2m3 +m3m1)]Q5 +O(Q6).

(4.49)

In the classical limit q → 1, it reduces to the classical A-period (4.13). Following the same

procedure, we can also work out the quantum A-period of local F0, or the q-deformation of (4.33):

−t = log z + 2(1 + λ2)z + 3

(
1 +

2

3
(q + q−1 + 4)λ2 + λ4

)
z2

+
2(λ2 + 1)(3λ2 + 3λ2q4 + 18λ2q3 + 2(5λ4 + 19λ2 + 5)q2 + 18λ2q)

3q2
z3 +O(z4),

(4.50)

The inverse series of (4.50) gives the quantum mirror map of local F0:

E−2 = z = Q− 2(λ2 + 1)Q2 + (3λ4 − (2λ2(q1/2 − q−1/2)2) + 3)Q3

− 2((λ2 + 1)(2λ4q2 + λ2(q − 1)2(q2 + 1) + 2q2))

q2
Q4 +O(Q5)

(4.51)

In the next section, we will show that the quantum A-period or its derivative can be written in

closed form if q is a root of unity.

4.2 The TS/CM correspondence

It’s shown in the TS/ST correspondence that the eigenvalue problem of the quantum mirror

curve can be solved by the refined topological strings. We now know that for a special class of

toric threefold like local B3 and local F0, the band spectrum of the Harper-Hofstadter model is

identical to the branch cut structure of the Kähler modulus. Moreover, various quantities on both

sides match with each other. This is the so-called topological string/condensed matter (TS/CM)
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correspondence.

4.2.1 Branch cut structure of the Kähler modulus

The quantum A-period has some remarkable symmetry properties. First of all, it is invariant

under the shift ~→ ~ + 4π and the flip ~→ −~, namely

t(E ,mi, ~ + 4π) = t(E ,mi, ~) = t(E ,mi,−~) = t(E ,mi, 4π − ~). (4.52)

This is the "T-symmetry". The exact quantization condition (2.66) is invariant under

(t,mi, ~) 7→ (t̃, m̃i, ~̃) =

(
2πt

~
,m

2π/~
i ,

4π2

~

)
. (4.53)

This tells us that the energy and the "dual energy" is related implicitly by

t(E ,mi; ~) =
2π

~
t(Ẽ , m̃i; ~̃). (4.54)

The T and S-duality can be understood as a consequence of modular double symmetry of Uq(sl(2,R))[49].

Thanks to the modular double symmetry, we can work out the relation between E and Ẽ by examin-

ing the difference equation and its dual. It can be proved without much effort that the Hamiltonian

(4.5) commutes with its dual Hamiltonian:

H̃ = ex̃ + eỹ + e−x̃−ỹ + m̃1e
−x̃ + m̃2e

−ỹ + m̃3e
x̃+ỹ, (4.55)

where

(x̃, ỹ) =

(
2π

~
x,

2π

~
y

)
. (4.56)
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For simplicity we set mi = 1 and shift the variable y → y − x/2, we can write the difference

equation and its dual as

2 cosh

(
x

2
+
i~
4

)
Ψ(x+ i~) + 2 cosh

(
x

2
− i~

4

)
Ψ(x− i~) = (E − 2 coshx)Ψ(x),

2 cosh

(
x̃

2
+
i~̃
4

)
Ψ(x+ 2πi) + 2 cosh

(
x̃

2
− i~̃

4

)
Ψ(x− 2πi) = (Ẽ − 2 cosh x̃)Ψ(x).

(4.57)

These two equations share the same eigenfunction because of the compatibility of the two Hamil-

tonians. For ~ = 2πa/b, the b × b secular equation should match with the a × a dual secular

equation. The x-independent part of the secular equation is nothing but the secular equation for the

triangular lattice, thus the algebraic relation between E and Ẽ is given by

Fa/b(E) = Fb/a(Ẽ). (4.58)

Under the chain of T and S-transformations, we can write the quantum A-period in closed form. If

ab is even, we can reduce the calculation to the classical period:

t(E , ~ = 2πa/b) =
1

b

(
log Ẽ − Π

(0)
A (Ẽ)

)
for ab : even, (4.59)

where

Ẽ = Fa/b(E). (4.60)

The derivative of the classical period is given by (4.23), therefore

∂t(E , ~ = 2πa/b)

∂E
=

2

πb

∂Ẽ
∂E

1√
Ẽ2 − 12 + 8

√
3 + Ẽ

K

(
16
√

3 + Ẽ
Ẽ2 − 12 + 8

√
3 + Ẽ

)
, (4.61)

for ab even. The chain of reductions can be summarized by the following example

a

b
=

2

7

S−→ 7

2

T−→ −1

2

T−→ 1

2

S−→ 2
T−→ 0 (4.62)
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If ab is odd, the calculation of quantum A-period is reduced the the calculation of the quantum

A-period at self-dual point ~ = 2π:

t(E , ~ = 2πa/b) =
1

b

(
log Ẽ − Π

(0)
A (−Ẽ)

)
for ab : odd, (4.63)

The derivative of the quantum A-period at the self-dual point is given by

∂t(E , 2π)

∂E
=

2

π
√
E2 − 12 + 8

√
3− E

K
(

16
√

3− E
E2 − 12 + 8

√
3− E

)
, (4.64)

then we have

∂t(E , ~ = 2πa/b)

∂E
=

2

πb

∂Ẽ
∂E

1√
Ẽ2 − 12 + 8

√
3− Ẽ

K

(
16
√

3− Ẽ
Ẽ2 − 12 + 8

√
3− Ẽ

)
, (4.65)

for ab odd. The basic flow of the reduction can be illustrated by the following example

a

b
=

3

7

S−→ 7

3

T−→ 1

3

S−→ 3
T−→ 1 (4.66)

Combining (4.61) and (4.65), we have

∂t(E , ~ = 2πa/b)

∂E
=

2F ′

πb
√
F 2 − 12 + 8

√
3 + F

K
(

16
√

3 + F

F 2 − 12 + 8
√

3 + F

)
, (4.67)

where F = (−1)abFa/b as defined in section 3. The quantum A-period has branch cuts along

−3 ≤ F ≤ 6. If we plot the intervals that correspond to the branch cuts as a function of ~, we get

the exact same figure of the Hofstadter’s butterf ly for the triangular lattice (Fig 3.4). Moreover, It

was shown in [15] that the imaginary part of (4.67) equals the DOS of the triangular lattice (3.14):

ρ(E , φ = 2πa/b) =
1

π

∣∣∣∣Im(∂t(E , ~ = 2πa/b)

∂E

)∣∣∣∣ . (4.68)
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This is one of the main results of this thesis. It turns out that if we choose a different quantization

scheme for the mirror curve of local B3 other than (4.4), the spectral theory of it would correspond

to the Harper-Hofstadter model on the honeycomb lattice. There are infinitely many ways of

quantizing the operator eax+by. The second most natural way would be

eax+by = eaxeby → eaxeby = qab/2eax+by, (4.69)

Thus the Hamiltonian for mi = 1 is of the form

H = ex + ey + e−x + e−y + q1/2ex+y + q−1/2e−x−y. (4.70)

Notice that the same form of the quantum curve can also be obtained by setting m′1 = 1,m′2 =

q−1/2 and m′3 = q1/2 in (4.28) and applying the first quantization method (4.4). This Hamiltonian

is indistinguishable from the Hamiltonian for the honeycomb lattice after some change of vari-

ables, therefore it’s better to denote the Kähler modulus as λ and the eigenvalue equation becomes

HΨ(x) = λΨ(x). The small-z expansion of the quantum A-period gets modified to

−t(z; q) = log z + 3z2 +
(1 + q)2

q
z3 +

(
3q +

33

2
+

3

q

)
z4

+
3(1 + q)2(1 + 4q + q2)

q2
z5 +O(z6).

(4.71)

The S-dual relation for the quantum A-period would be

t(λ; ~) =
2π

~
t(λ̃; ~̃). (4.72)

It’s natural to conjecture the algebraic relation relating the Kähler modulus to its dual would be

given by the spectral determinant of the honeycomb lattice. We would like to check whether it’s
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Table 4.1: The S-duality relation in local B3 for mi = 1 for the quantization method (4.69).
The energy λ at ~ = 2πa/b is related to the energy λ̃ at ~̃ = 2πb/a by the algebraic equation
Gb/a(λ̃) = Ga/b(λ).

a b Gb/a(λ̃) = Ga/b(λ)

1 1 λ̃ = λ

2 λ̃ = λ2 − 6

3 λ̃ = λ3 − 9λ− 3

4 λ̃ = λ4 − 12λ2 − 8λ+ 6

5 λ̃ = λ5 − 15λ3 − 5
2
(3 +

√
5)λ2 + 15

2
(5−

√
5)λ+ 15

6 λ̃ = λ6 − 18λ4 − 18λ3 + 45λ2 + 54λ+ 3

2 5 λ̃2 − 6 = λ5 − 15λ3 − 5
2
(3−

√
5)λ2 + 15

2
(5 +

√
5)λ+ 15

true. Shifting x→ x− y/2 and y → x+ y/2, the difference equation and its S-dual would be

2 cosh

(
x

2
+
i~
4

)
Ψ(x+ i~) + 2 cosh

(
x

2
− i~

4

)
Ψ(x− i~) =

(
λ− 2 cosh

(
2x+

i~
2

))
Ψ(x),

2 cosh

(
x̃

2
+
i~̃
4

)
Ψ(x+ 2πi) + 2 cosh

(
x̃

2
− i~̃

4

)
Ψ(x− 2πi) =

(
λ̃− 2 cosh

(
2x̃+

i~
2

))
Ψ(x).

(4.73)

From these equations we find the algebraic relation relating λ and λ̃ for ~ = 2πa/b is indeed given

by

Ga/b(λ) = Gb/a(λ̃), (4.74)

where Ga/b(λ) is defined in (3.28). We show some of these relations in the Table 4.1. And these

relations satisfy (4.72). Notice that it suffices to show the relations for a/b between 0 and 1/2

because for the second quantization method, the T-symmetry of the quantum A-period becomes

t(λ, ~) = t(λ, ~ + 2π) = t(λ,−~), (4.75)

so a/b in the range between 1/2 and 1 gets mapped to a number that belongs to the interval

[0, 1/2]. Combining the T and S-transformations, we can write the quantum A-period in terms of
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the classical A-period under the second quantization method (4.69)

t(λ; ~) =
1

b
t(λ̃; 0). (4.76)

The derivative of it can be written in closed form:

∂t(λ, ~ = 2πa/b)

∂λ
=

2

πb
√
G2 − 12 + 8

√
3 +G

∂G

∂λ
K
(

16
√

3 +G

G2 − 12 + 8
√

3 +G

)
. (4.77)

The quantum A-period as a function of λ has branch cuts along −3 ≤ G(λ) ≤ 6. If we plot the

intervals as a function of ~, we get the branch cut structure for λ, which is identical to the left side

of Fig 3.7. Similarly, if we plot the branch cuts along−3 ≤ G(E2−3) ≤ 6 on the E−~ plane, we

obtain the Hofstadter’s butterfly for the honeycomb lattice. Taking the imaginary part of (4.77), we

find that it matches with the DOS of the redefined energy for the honeycomb lattice (3.27). If we

take the derivative with respect to the real energy, then we get the DOS of the real energy (3.29).

We summarize our results as follows:

ρ(λ, φ = 2πa/b) =
1

π

∣∣∣∣Im(∂t(λ, ~ = 2πa/b)

∂λ

)∣∣∣∣ ,
ρ(E, φ = 2πa/b) =

1

π

∣∣∣∣Im(∂t(λ = E2 − 3, ~ = 2πa/b)

∂E

)∣∣∣∣ . (4.78)

For the rest of this section, we would like to review the results in [13], in which the relations

between quantum geometry of local F0 and Harper model on square lattice has been shown in great

detail. The modular transformation property of the quantum A-period of local F0 is given by

T : t(E , λ; ~) = t(E , λ; ~ + 2π) = t(E , λ;−~),

S : t(E , λ; ~) =
2π

~
t(Ẽ , λ̃; ~̃).

(4.79)

Because of the modular symmetry, the calculation of the quantum A-period can be reduced to the
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calculation of the classical A-period if q is a root of unity:

t

(
E , λ; ~ =

2πa

b

)
=

1

b
t(Ẽ , λ; 0), (4.80)

where E and Ẽ is related by

Pa/b(E , λ) = Pb/a(Ẽ , λ̃). (4.81)

Here Pa/b(E , λ) is simply the anisotropic generalization of (3.10). In particular, if λ = 1, then

t

(
E , 1; ~ =

2πa

b

)
= −1

b

(
log z̃ + 4z̃ 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16z̃

))
, z̃ =

1

Pa/b(E)2
.

(4.82)

The derivative of the quantum A-period can be written in closed form

∂t(E , λ; ~ = 2πa
b

)

∂E
=

4P ′

πbλ
b
2

√
P 2 − 4(1− λ)2

K
(

16λ

P 2 − 4(1− λ)2

)
, (4.83)

whose branch cut structure is identical to Hofstadter’s butterfly for the square lattice (Fig. 3.1).

Taking the imaginary part of (4.83), we get

ρ(E) =
1

2π

∣∣∣∣Im(∂t(E , λ, ~ = 2πa/b)

∂λ

)∣∣∣∣ . (4.84)

4.2.2 Free Energy near the conifold point

In this subsection we would like to investigate the quantum version of the B-period. The semi-

classical region in the condensed matter physics side corresponds to those points near the conifold

point in CY moduli space. So instead of working in the frame of large complex structure, we

choose to work in the so-called conifold frame. For local B3, the periods near the conifold point

z = 1/6 can be defined as the solutions of the PF equation (4.27) with z substituted by 1/6− zc:

tc(zc) = zc +
9z2

c

2
+

43z3
c

2
+

429z4
c

4
+

22077z5
c

40
+O(z6

c ), (4.85)
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tDc (zc) =
∂F0

∂tc
= tc(zc) log zc +

zc
2

+
25

4
z2
c +

305

8
z3
c +

10271

48
z4
c +O(z5

c ). (4.86)

Inversing (4.85), we get the mirror map in the conifold frame

zc = tc −
9t2c
2

+ 19t3c −
633t4c

8
+

13143t5c
40

+O(t6c). (4.87)

Substituting (4.87) into (4.86) and integrate, we get the prepotential near the conifold point:

F0(tc) =
t2c
2

(log
−tc
2
− 3

2
)− t3c

6
+
t4c
16
− t5c

24
+

59t6c
1600

− 11t7c
280

+O(t8c). (4.88)

The quantum version of the prepotential is known as the quantum free energy

F(tc; ~) =
∑
n≤0

F
(n)
NS (tc)~2n. (4.89)

Using holomor phic anomaly equations (see Appendix A), we can calculate F n
NS recursively. The

NS free energy at level one depends solely on the geometry of the curve and is given by (A.6).

Expanding around the conifold point, we get

F
(1)
NS (tc) =− 1

24
log tc −

23tc
24

+
19t2c
32
− 97t3c

144

+
1201t4c
1280

− 119t5c
80

+
23193t6c

8960
− 3077t7c

640
+O(t8c).

(4.90)

Input this into the algorithm, we can get NS free energy to arbitrarily high orders up to some

ambiguity needed to be fixed by the gap condition. We show the next few NS free energy

F
(2)
NS (tc) = − 7

5760t2c
+

581tc
1152

− 18187t2c
25600

− 47t3c
1920

+
152191t4c

30720
− 124509t5c

5120
+

179973073t6c
2048000

+O(t7c),

(4.91)

F
(3)
NS (tc) =

31

161280t4c
+

6553tc
3360

+
41350369t2c

3010560
− 749749t3c

10240
+

3890269611t4c
11468800

− 18496964909t5c
12902400

+
355838787729t6c

63078400
+O(t7c).

(4.92)

For the conifold point z = −1/3 which corresponds to the bottom edge, the A-period near this
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point with coordinate zc = −1/3− z is given by

tc(zc) = zc +
3z2

c

2
+ 5z3

c +
33z4

c

4
+

189z5
c

5
+

69z6
c

2
+

2661z7
c

7
+O(z8

c ). (4.93)

Inverting this series, we get the mirror map

zc = tc −
3t2c
2
− t3c

2
+

99t4c
8
− 2157t5c

40
+

14397t6c
80

− 325923t7c
560

+O(t8c). (4.94)

The lowest orders of the NS free energy is listed below:

F0(tc) =
t2c
2

(log(−t2c)−3)− 5t3c
6

+
17t4c
16
− 149t5c

60
+

12013t6c
1600

− 1481t7c
56

+
6475177t8c

62720
+O(t9c), (4.95)

F
(1)
NS (tc) =− 1

12
log tc −

31tc
24

+
111t2c

32
− 1075t3c

72
+

93267t4c
1280

− 60971t5c
160

+
55988791t6c

26880
− 751063t7c

64
+

96895065201t8c
1433600

+O(t9c),

(4.96)

F
(2)
NS (tc) =− 7

2880t2c
− 15443tc

2880
+

1693691t2c
25600

− 260975t3c
384

+
64632739t4c

10240

− 703614501t5c
12800

+
937885538851t6c

2048000

(4.97)

The main claim of [17] is that the derivative of the regular part of the quantum free energy is

related to the non-perturbative A function of the corresponding quantum mechanical model. For

the triangular lattice, we find that

Atri
top(B, φ) =

∑
n

(
φ

6
√

3

)2n−2
∂

∂B
F (r)
n

(
tc = − Bφ

6
√

3

)
=

[
1

~
∂F (r)(tc; ~)

∂tc

]∣∣∣∣ ~=− φ

6
√

3

tc=− Bφ

6
√

3

,

Atri
btm(B, φ) =

1

2

∑
n

(
φ

3
√

3

)2n−2
∂

∂B
F (r)
n

(
tc = − Bφ

3
√

3

)
=

[
1

2~
∂F (r)(tc; ~)

∂tc

]∣∣∣∣ ~=− φ

3
√

3

tc=− Bφ

3
√

3

,

(4.98)

where B := n + 1/2 and F (r)
n := F

(n)r
NS denotes the regular part of the n-th level NS free energy.

The singular part of the quantum B-period turns out to be related to the prefactor in (3.54) and
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(3.55). We have

[
1

~

(
∂F (s)

t (tc; ~)

∂tc
− tc log

(
−tc

2

))]∣∣∣∣ ~=− φ

6
√

3

tc=− Bφ

6
√

3

=

[
1

2~

(
∂F (s)

b (tc; ~)

∂tc
− 2tc log(−tc)

)]∣∣∣∣ ~=− φ

3
√

3

tc=− Bφ

3
√

3

=−B − 1

24B
+

7

2880B3
− 31

40320B5
+

127

215040B7
+O(B−9)

=−B +
∑
n≥1

(21−2n − 1)B1−2nB2n

2n(2n− 1)

= log Γ

(
B +

1

2

)
−B logB − log 2π

2

(4.99)

Putting the singular part and the regular part together, we can rewrite the bandwidths of triangular

lattice in the form

∆E tri
top =

9

2π

∂E tri pert
top

∂n
exp

[
− Â

φ
− 1

~

(
∂Ft(tc; ~)

∂tc

)]
+ · · · ,

∆E tri
btm =

3

2π

∂E tri pert
btm

∂n
exp

[
− Â

5φ
− 1

2~

(
∂Fb(tc; ~)

∂tc

)]
+ · · · ,

(4.100)

where we have abbreviated the identifications for convenience.

If we do some modification of the instanton action and the free energy, we can get the cor-

respondence between quantum free energy of local B3 and the A-function of redefined energy λ

of the honeycomb lattice, as first shown in [21]. The modified instanton action near the top and

bottom edge is given by

Atop(~) :=
2

i

∫ π/2

−π/2
dx arccos

(
3 cos (~/6)

2 cosx
− cos (2x− ~/2)

2 cosx

)
, (4.101)

Abtm(~) := −1

i
Im
∫ π/2

−π/2
dx arccos

(
3− 6 cos (~/3)

8 sin
(
π
6
− ~

6

)
cosx

− cos (2x− ~/2)

2 cos(x)

)
. (4.102)

Since we don’t know explicitly how the free energy transforms from the Weyl quantization method

(4.4) to the second quantization method (4.69) , We will set the mass parameters to m1 = m2 =
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m3 = q−1/6 and use the Weyl quantization, which is equivalent to the second quantization method

with mi = 1. Since the mass parameters depend on the quantization deformation parameter, the

conifold points that corresponds to λ = 6 and λ = −3 gets modified to

z =
1

6 cos ~
6

, z =
2 sin

(
π
6
− ~

6

)
3− 6 cos ~

6

. (4.103)

Using the method in Appendix A, one can calculate the NS free energy taking values atmi = q−1/6,

the quantum B-period is indeed related to the non-perturbative A function of the honeycomb lattice,

as shown in [21]. We summarize the results 2 as follows:

Ahoneycomb
top (n, φ) =

[
− Atop(~)

~
+

√
3

~

(
∂F (r)(tc, ~)

∂tc

)]∣∣∣∣ ~=−φ
tc=−Bφ√

3

,

Ahoneycomb
btm (n, φ) =

[
− Abtm(~)

~
+

√
3

~

(
∂F (r)(tc; ~)

∂tc

)]∣∣∣∣ ~=−φ
tc=− Bφ

3
√

3

,

(4.104)

where we have absorbed Â/φ into the instanton fluctuation. The singular part of the quantum B-

period near the top edge is identical to its counterpart of the triangular lattice. For the bottom edge,

we have

[√
3

~

(
∂F (s)(tc; ~)

∂tc

)]∣∣∣∣ ~=−φ
tc=− Bφ

3
√

3

= n log

(
φ

3
√

3

)
+ log Γ(n) +

1

2
log n− log 2π

2
. (4.105)

Then the bandwidths near the top and bottom edge for honeycomb lattice can be rewritten as

∆λtop =
9

2π

∂λ pert
top

∂n
exp

[
Atop(~)

~
−
√

3

~

(
∂Ft(tc; ~)

∂tc

)]
+ · · · ,

∆λbtm = 33/4∂λ
pert
btm

∂n
exp

[
Abtm(~)

~
−
√

3

~

(
∂Fb(tc; ~)

∂tc

)]
+ · · · .

(4.106)

Finally we would like to calculate the free energy of local F0 near the conifold point. The

2Here the scaling of tc in the free energy differs from the one for the triangular lattice. And there’s no tc term in
the exponential on the right hand side as in [21]. This term can be removed by shifting τ by a constant.
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modulus of the conifold frame is related to the large radius frame by zc = 1/16 − z. The flat

coordinate and the prepotential are given as the solutions of the Picard-Fuchs equations for local

F0 with the conifold coordinate. The series solutions are given by

tc =zc + 10z2
c +

356z3
c

3
+ 1524z4

c +
102436z5

c

5
+

851240z6
c

3

+
28093456z7

c

7
+ 57659240z8

c +O(z9
c ),

(4.107)

tD =
∂F0

∂tc
=tc log zc + tc + 9z2

c +
1348z3

c

9
+

6713z4
c

3
+

2466662z5
c

75

+
21769952z6

c

45
+

1051128088z7
c

147
+O(z8

c ).

(4.108)

From these relations, we can get the prepotential

F0(tc) = t2c

(
log−tc

2
− 3

4

)
− t3c

3
+

5t4c
18
− 7t5c

15
+

733t6c
675

− 188t7c
63

+
35921t8c

3969
+O(t9c). (4.109)

The first correction of the NS free energy is

F
(1)
NS =

1

24
log

[
1

zc
(

1

16
− zc)2

]
, (4.110)

whose expansion in terms of the mirror map is given by

F
(1)
NS =− 1

24
log tc −

11tc
12

+
49t2c
36
− 77t3c

18
+

2213t4c
135

− 607t5c
9

+
2443337t6c

8505
− 1183937t7c

945
+O(t8c).

(4.111)

Using the tools in Appendix A, we can also write the next few corrections of NS free energy in

compact form. For instance, the second level is given by

F
(2)
NS = −(k2 + k3)2

54k2
2k3

E2(τ)− 775k3
2 + 1031k2

2k4 + 2112k2k
2
4 + 1264k3

4

4320k2
2k3

, (4.112)
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where we have taken the holomorphic limit and

ki := ϑ4
i (q), q := eiπτ . (4.113)

Expanding in terms of the mirror map, we get

F
(2)
NS =− 7

5760t2c
− 889tc

720
+

181981t2c
10800

− 16157t3c
108

+
2194733t4c

1944

− 42157069t5c
5400

+
24840469741t6c

486000
− 261024263t7c

810
+O(t8c).

(4.114)

It was proposed in [20] that the non-perturbative A function for the square lattice is related to the

regular part of the quantum B-period. The result is given as follows

Asquare(n, φ) =
∑
n

(
φ

16

)2n−2
∂

∂B
F (r)
n

(
tc = −Bφ

16

)
=

[
1

~

(
∂F (r)(tc; ~)

∂tc

)]∣∣∣∣~=−φ/16

tc=−Bφ16

.

(4.115)

The derivative of the singular part of the quantum free energy gives the prefactor in (3.46)

[
1

~

(
∂F (s)(tc; ~)

∂tc

)]∣∣∣∣~=−φ/16

tc=−Bφ16

= log

(
Γ(B + 1

2
)

√
2π

(
φ

16

)B)
. (4.116)

Therefore the bandwidths of the square lattice can be rewritten in the form

∆Esquare =
4

π

∂Esquare pert

∂n
exp

[
− A

φ
− 1

~

(
∂F(tc; ~)

∂tc

)]
+ · · · . (4.117)

with the identifications ~ = −φ/16, tc = −Bφ/16.

4.3 The Dictionary

From the investigations above, it’s clear that the quantization of local B3 geometry with ap-

propriate choice of mass parameters and quantization method corresponds to Harper-Hofstadter

model on square lattice, triangular lattice and honeycomb lattice. We summarize the topological

string/ condensed matter correspondence in the following tables 4.2, 4.3 and 4.4.
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Table 4.2: The dictionary of the TS/CM correspondence

Topological String on local CY manifold Condensed Matter Physics
Weyl quantization of the mirror curve Hamiltonian Htri

of local B3

Quantization of the mirror curve of local B3 Hamiltonian Hhoneycomb

by promoting eax+by → eax̂ebŷ

Quantum curve of local F0 Hamiltonian Hsquare

Planck constant ~ magnetic flux φ
Mass parameters m Hopping parameters λ

Branch cut structure of t(E ; ~) Hofstadter’s butterfly
Imaginary part of ∂t

∂E Density of States
t(E ; ~) evaluated at the conifold point Instanton action

Quantum B-period Non-perturbative A function

Table 4.3: The TS/CM correspondence for local B3 with isotropic mass parameters

Topological String on local B3 Condensed Matter Physics
Weyl quantization Quantization: eax+by → eax̂ebŷ

Conifold point E = 6 top edge of the band spectrum top edge of the band spectrum
for the triangular lattice for the honeycomb lattice

Conifold point E = −3 bottom edge of the band spectrum bottom edge of the band spectrum
for the triangular lattice for the honeycomb lattice

Conifold point E = −2 van Hove singularity at φ = 0

Table 4.4: The TS/CM correspondence for local F0 with isotropic mass parameters

Topological String on local F0 Condensed Matter Physics
Conifold point z = 1

16
top and bottom edge of the band spectrum

for the square lattice
Orbifold point z =∞ van Hove singularity at φ = 0
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One useful application of this dictionary would be calculation of the quantum free energy. If

one can compute the non-perturbative A function from the condensed matter side to relatively high

orders, then we can simply integrate to get the quantum free energy with appropriate identifications

of parameters.
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5. SUMMARY AND DISCUSSIONS

In this dissertation, we have demonstrated the correspondence between topological string the-

ory on some local CY manifolds and the Harper-Hofstadter model on certain lattices. The main

structure of the correspondence is summarized in 5.1. Specifically, we have shown that the quan-

tum A-period t(E ; ~) can be written in closed form using the secular equation coming from the

condensed matter side. Conversely, the DOS equals the derivative of t(E ; ~). The Hofstadter’s

butterfly turns out to be identical to the branch cut structure of t(E ; ~). In order to extract the

information of the non-perturbative A function, which is conjectured to be equal to the quantum

B-period, we analyzed the bandwidths near the edges of the spectrum in great detail. It’s shown

that the quantum B-period indeed equals the corresponding non-perturbative A function with an

appropriate identification of parameters.

There are some open problems worth pursuing in the future. In this thesis we mainly focus on

the perturbative sector, one-instanton sector and the instanton-anti-instanton sector for the semi-

classical analysis. It would be interesting to calculate the higher instanton corrections and see

whether it corresponds to any quantity in the topological string side. Numerically speaking, it

would be a quite challenging task since for the flux of order ∼ O(10−2), the two-instanton correc-

tion would be of order ∼ O(e−100A), the computational power required would be more and more

costly as we investigate higher and higher instanton corrections. Another interesting question to

Table 5.1: The TS/CM correspondence

Topological String Side Condensed Matter Theory Side
Local B3 −→ Triangular Latticey ↘

Honeycomb Lattice
Local F0 −→ Square Lattice
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consider regards the ambiguity of quantizing the term eax+by. The choice of quantization method is

easily reflected in the calculation of quantum A-period. However, computation of the quantum free

energy using the holomorphic anomaly equations seems to favour the Weyl quantization only. It’s

natural to ask how the quantum free energy transforms as we shift from one quantization method

to another.
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APPENDIX A

REFINED HOLOMORPHIC ANOMALY

The refined holomorphic anomaly equations are useful tools to calculate the NS free energy

near the conifold point. The general refined holomorphic anomaly equations for local Calabi-Yau

manifold read

∂F (g1,g2)

∂t̄k
=

1

2γ
C̄ lm
k̄

(
DlDmF

(g1,g2−1) +
∑

0<r1+r2<g1+g2

DlF
(r1,r2)DmF

(g1−r1,g2−r2)

)
, (A.1)

where γ is a constant that depends on the choice of normalization and C̄ lm
k̄

= Glp̄Gmn̄C̄p̄n̄k̄ is

constructed from the complex conjugate of the Yukawa coupling

Cijk =
∂3F0

∂ti∂tj∂tk
, (A.2)

and the metric Gij̄ on the moduli space of complex structures. Since we are considering local CY

manifolds, the geometric structure is essentially a Riemann surface we denote as Σ. The metric is

thus given by

Gij̄ = −iπ(τ − τ̄)ij, (A.3)

where τ is the period matrix of Σ. If we take g1 = 0 in (A.1), we get the standard holomorphic

anomaly equation [50, 51]. The NS limit corresponds to g2 = 0 and in the NS limit (A.1) simplifies

to
∂F

(n)
NS

∂t̄k
=

1

2γ
C̄ lm
k̄

n−1∑
r=1

DlF
(r)
NS DmF

(n−r)
NS , n ≥ 2, (A.4)

where

F
(n)
NS := F (n,0). (A.5)
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If we know F
(1)
NS then using (A.4) we can in principle calculate NS free energy to arbitrarily high

orders recursively, up to a purely holomorphic dependence on the moduli which is the so called

holomorphic ambiguity. It was shown in [25, 24] that

F
(1)
NS = − 1

24
log(∆za

∏
j

m
bj
j ), (A.6)

where ∆ is the discriminant of the curve Σ and the constants a and bj are determined by requiring

regularity at infinity and the information of the geometry we are studying. For genus-1 curves such

as local B3, Cijk only has one component

Y = Cttt. (A.7)

The propagator, which is an almost holomorphic generator, is defined as

C̄tt
t̄ = ∂t̄S

tt. (A.8)

The modularity property of F (1) and the relation

∂t∂t̄F
(1)
NS =

1

2γ
CtttC

tt
t̄ , (A.9)

implies that the propagator is proportional to the shifted Eisenstein series:

Stt = − 1

3β
Ê2(τ, τ̄), (A.10)

where β is an appropriate constant and Ê2(τ, τ̄) is an almost holomorphic modular form of weight

2 defined by

Ê2(τ, τ̄) = E2(τ)− 3

πτ2

. (A.11)
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The elliptic modulus is defined by

τ =
β

2πi

∂tD
∂t

=
β

2πi

∂2F0

∂t2
. (A.12)

From (A.12), the covariant derivative can be written as

Dt = βY Dτ , (A.13)

where Dτ is the Maass derivative acting on modular forms of weight k:

Dτ =
1

2πi

d

dτ
− k

4πτ2

. (A.14)

With all these in hand, we can put the holomorphic anomaly equation (A.4) into the form

∂F
(n)
NS

∂Ê2

= − β

2γ
Y 2

n−1∑
r=1

DτF
(r)
NS DτF

(n−r)
NS , n ≥ 2. (A.15)

This can be integrated as

F
(n)
NS =

2n−3∑
l=1

c
(n)
l (τ)Êl

2(τ, τ̄) + fn(τ), (A.16)

as shown in [52]. Since F (n)(τ, τ̄) are non-holomorphic modular forms of weight zero under the

appropriate monodromy transformation of Σ, therefore c(n)
l (τ) are modular forms of weight −2l

which can be completely fixed by holomorphic anomaly equations. The holomorphic ambiguity

fn(τ) can be fixed by a Schwinger loop type computation called the gap condition.
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APPENDIX B

HANANY-WITTEN TRANSITIONS FROM LOCAL B3 TO MASS DEFORMED E8 DEL

PEZZO GEOMETRY

It was shown in [15] that the mirror curve of local B3 is related to the mirror curve of mass

deformed E8 del Pezzo geometry by a coordinate transformation, which perfectly explains why

the eigenvalues of those two quantum curves match with each other. In this appendix we would

like to reconfirm this relation by demonstrating that these two geometries are indeed related by

Hanany-Witten transitions 1.

In the context of Type IIB string theory, The 7-branes are codimension-two objects which

source the axion-dilation field. They are pointlike as seen from the plane where the 5-brane web

lives. The axion-dilaton undergoes a monodromy transformation around each 7-brane, which is

equivalent to attaching a branch cut with each 7-brane. The monodromy matrix of how axion-

dilaton transforms when crossing the branch cut of the (p, q) 7-brane is given by

K(p,q) = 1 +

p
q

(p q

)
S, (B.1)

where p and q are coprime integers and S :=

0 −1

1 0

. In a generalized (p, q)-brane web

containing both 5-branes and 7-branes, a (p, q) 5-brane or 7-brane gets transformed to a (p′, q′)

5-brane or 7-brane when crossing the branch cut of a (P,Q) 7-brane. The transformation rule is

given by p′
q′

 = K(P,Q)

p
q

 . (B.2)

So if we start with the brane-web configuration corresponding to local B3, and in order to get

1We are grateful to Futoshi Yagi for explaining this.
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the desired configuration, we can pull a (P,Q) 7-brane from infinity into the loop and let the

branch cut of it sweep through some parts of the brane web to let those parts undergo monodromy

transformation. Notice that the charge at each junction is always conserved, say

∑
i

pi =
∑
i

qi = 0. (B.3)

Therefore new branes would be created during each Hanany-Witten transition to preserve charge

conservation. After several steps of these Hanany-Witten transitions [53, 43] together with some

global SL(2,Z) transformations, we finally obtain the web diagram for mass deformed E8 del

Pezzo geometry. We show detailed steps in Fig. B.1.
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⇔

⇓

⇐

⇒

⇓

⇐
SL(2,Z)

local B3 local B'
3

⇓

Figure B.1: Hanany-Witten transtions from local B3 to mass deformed E8 del Pezzo geometry in
detailed steps. The branch cuts are depicted in dashed lines.
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