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ABSTRACT

Estimation of the mean vector and covariance matrix is of central importance in the analysis of

multivariate data. In the framework of generalized linear models, usually the variances are certain

functions of the means with the normal distribution being an exception. We study some implica-

tions of functional relationships between covariance and the mean by focusing on the maximum

likelihood and Bayesian estimation of the mean-covariance under the joint constraint Σµ = µ for

a multivariate normal distribution. It can be viewed as a multivariate counterpart of the classi-

cal estimation problem in the N(θ ,θ 2) distribution. In addition to the usual inference challenges

under such non-linear constraints among the parameters (curved exponential family), one has to

deal with the basic requirements of symmetry and positive definiteness when estimating a covari-

ance matrix. I have tackled these issues in two ways and verified the solutions using extensive

simulation studies.

In the first case, we derive the non-linear likelihood equations for the constrained maximum

likelihood estimator of (µ,Σ) and solve them using iterative methods. Generally, the MLE of co-

variance matrices computed using iterative methods do not satisfy the constraints. We propose a

novel algorithm to modify such (infeasible) estimators or any other (reasonable) estimator. The

key step is to re-align the mean vector along the eigenvectors of the covariance matrix using the

idea of regression. In using the Lagrangian function for constrained MLE (Aitchison and Silvey,

1958), the Lagrange multiplier entangles with the parameters of interest and presents another com-

putational challenge. We handle this by either iterative or explicit calculation of the Lagrange

multiplier. The existence and nature of location of the constrained MLE are explored within a

data-dependent convex set using recent results from random matrix theory.

In the second case, a novel structured covariance is proposed through reparameterization of the

spectral decomposition of Σ involving its eigenvalues and µ which lets us study some implications

of the functional relationships between covariance and the mean by focusing on the maximum

likelihood and Bayesian estimation of the mean-covariance under the joint constraint Σµ = µ for

ii



a multivariate normal distribution. This is designed to address the challenging issue of positive-

definiteness and to reduce the number of covariance parameters from quadratic to linear function of

the dimension. We propose a fast (noniterative) method for approximating the maximum likelihood

estimator by maximizing a lower bound for the profile likelihood function, which is concave. We

use normal and inverse gamma priors on the mean and eigenvalues, and approximate the maximum

aposteriori estimators by both MH within Gibbs sampling and a faster iterative method.
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1. LITERATURE REVIEW

In this day and age of information boom, multivariate data is collected from everywhere. More

recently, the proliferation of the use of buzzwords like "Big Data", "Data Science", "Machine

Learning" in almost every area of business shows us the importance of these concepts in popular

scientific discourse. Big Data is a blanket term for very large and complex multivariate data sets

where application of traditional data management techniques become obsolete. Data Science is the

scientific pursuit of extracting knowledge by using various methods to analyze the data sets, big or

small. Multivariate data analysis helps us to get a deeper understanding of the data through a whole

range of statistical techniques. For example, in pharmaceutical industry we look at the progression

of disease by studying various clinical endpoints through biological measurements of human body,

in food industry we study various market response parameters using product quality and marketing

parameters etc. Since these data sets almost always have more than two variables in them, the

study of multivariate analysis becomes very important. These concepts have wide applications

in various aspects of scientific research e.g. climate science (Lakshmanan et al., 2015), geology,

financial analysis (Engle et al., 2019), economics (Athey and Imbens, 2019), drug development

(Gaurav et al., 2021) etc.

1.1 Classical Statistical Literature:

Over the last hundred years, the research for the analysis of data sets is growing rapidly. Al-

though the main focus is on continuous data, a significant portion of analysis is done for dis-

crete data sets also. Bishop et al. (2007) has shown a great collection of methods related to this

field in an organized way. There are various topics such as contingency tables, discrete distribu-

tions (e.g.multinomial, negative-multinomial, Dirichlet-multinomial, Dirichlet-negative multino-

mial etc. ) studied extensively in this area. Categorical data sets are also studied using various

techniques like logistic regression, ordered logistic regression, bounded integer models in clinical

trial, transportation data sets etc. On the other hand, continuous data is abundant in real life and
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has been studied using various statistical techniques (e.g. Regression analysis see, Rao (1973),

Bibby et al. (1979) Montgomery et al. (2021) etc. ). Although various continuous distributions are

studied for vectors (e.g. multivariate normal, multivariate t distribution, multivariate pareto distri-

bution etc.), there are other matrix distributions (e.g. Wishart, inverse-Wishart, shrinkage-inverse-

Wishart, inverse-matrix gamma distribution etc.) which are used for analysis and estimation in

random matrix theory especially covariance estimation. In this thesis our problem mainly revolves

around the study of multivariate normal distributions and the estimation of its parameters.

Modeling multivariate data using various discrete or continuous distributions, involves estima-

tion of unknown parameters, which is an essential part for drawing statistical inference (Bibby

et al., 1979, chapter 4). For example, if we model the data set using a normal distribution, the es-

timation of the parameters of the distribution i.e. µ and Σ becomes a necessity. There are various

types of estimation performed in statistical literature and maximum likelihood estimation (MLE),

a point estimate for the unknown parameters, is the most common of them all. However in the

Bayesian set up the posterior distributions of the parameters help us draw inference on them with

maximum aposteriori (MAP) being an example of a Bayesian point estimator.

"Covariance matrix is, arguably, the second most important object in all of statistics" (Ledoit

and Wolf, 2020). In this chapter we present a thorough literature review of the estimation of

the covariance matrix. Mean and covariance estimation of multivariate normal distribution are

essential in almost every area of classical multivariate statistics (Bibby et al., 1979). The range of

modern applications include economics (Ledoit and Wolf, 2004a), genetics (Schäfer and Strimmer,

2005), astrophysics (Hamimeche and Lewis, 2009), environmental sciences (Eguchi et al., 2010)

and climatology (Guillot et al., 2015).

The literature for estimation of covariance matrix is vast and has seen an exponential growth

over the years. Let us assume that x1, x2, . . . , xn is a sample of size n from Np(µ,Σ) distribution.

We know that the unconstrained maximum likelihood estimator (MLE) of the parameters for this
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set up is (bµ, bΣ) = (x̄ ,S) where

S =
1
n

∑
(x i − x̄ )(x i − x̄ )> = 1

n
A(x̄ )

see (Bibby et al., 1979, §4.2.2). The unconstrained MLE for normal distribution has been studied

extensively and we know the distributions of the MLE are:

x̄ ∼ Np

�
µ,

1
n
Σ
�

, and nS ∼Wp(Σ, n− 1)

where W denotes the Wishart distribution and x̄ and S are independent. When p is fixed and

small and n grows large, S becomes a reliabale and undisputed estimator (Anderson, 2003). But

estimation of covariance matrix using sample covariance matrix suffers from several problems, see

Jobson and Korkie (1980). Stein (1956) showed that when p and p/n is large S performs poorly

and proposed an estimator based on eigenvalue shrinkage. Another large class of estimators is

proposed by Ledoit and Wolf (2004b).

It is well-known that estimation of a covariance matrix alone is a daunting task because of some

standard constraints e.g. 1. the number of unknown covariance parameters growing quadratically

with the dimension and 2. positive definiteness. Dempster (1972) stated that, “The computational

ease with which this abundance of parameters can be estimated should not be allowed to obscure

the probable unwisdom of such estimation from limited data.” In order to alleviate the problems,

various structure of covariance matrices have been studied in the literature, for example: com-

pound symmetry, Huynh-Feldt Structure, AR(1), One-Dependent Covariance Structure etc. which

reduces the number of unknown parameters in the model, see (Pourahmadi, 2013, chapter 3.3) for

a detailed discussion. Principal component analysis (PCA) had been developed for reducing the

dimension of the data although it suffers from the problem of interpretability. Many strategies are

developed to bypass the notorious positive definiteness e.g. spectral, Cholesky decomposition and

factor models see Chiu et al. (1996); Pourahmadi (1999); Fan et al. (2008). Some excellent un-

constrained parametrisations of the covariance matrix are proposed by Anderson (1973), Pinheiro
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and Bates (1996), Pourahmadi (1999), and many more. For example, modeling the unconstrained

parameters of the precision matrix (inverse of covariance matrix) goes along with the approach

of generalized linear models (GLM) and includes ideas like covariance selection using linear co-

variance models (LCM) of Dempster (1972) and graphical models in Cox and Wermuth (2014)

where certain entries of the precision matrix are set to zero, see Dempster (1972) and Pourahmadi

(2013). Yuan and Lin (2007), Banerjee et al. (2008) and Friedman et al. (2008) frame this as sparse

estimation problem described by Bien and Tibshirani (2011).

The idea of selecting a sparse covariance matrix by identifying zeroes in its inverse (Dempster,

1972), or setting a specific structure (e.g. compound symmetry, AR(1) etc.) of the covariance ma-

trix can be viewed as a constraint on the covariance matrix while proposing estimators. Exposition

of approaches to compute MLE of multivariate normal distribution under various constraints on the

parameters has a long history in the statistical literature. For example Bibby et al. (1979, §4.2.2.2

& 4.2.2.3) shows constraints like µ = c0µ0, Rµ = r , Σ = c0Σ0 etc. which are straight forward to

solve. Anderson and Olkin (1985) considers cases of estimation of means for rank constraint and

linear constraint, estimation of variance for fixed correlation (Styan, 1973). A big chunk of work

has been produced for covariances when certain entries are zero with recent examples being Butte

et al. (2000), Grzebyk et al. (2004), Bien and Tibshirani (2011), Mao et al. (2012). Chaudhuri

et al. (2007) proposes an algorithm for covariance graph model having nice convergence proper-

ties with similar studies described in Edwards (2012, §7.4), Wermuth et al. (2006) and many more.

Estimation of covariance matrix with a constraint on the condition number are studied in Won and

Kim (2006), Aubry et al. (2012). More generalized constraints are studied in Aitchison and Silvey

(1958), Jamshidian and Bentler (1993), Luo et al. (2016) and many others.

1.2 Bayesian Statistical Literature:

In statistics there are two paradigms in solving the fundamental questions: frequentist and

Bayesian. Upto this point the discussion of literature mainly falls under the frequentist paradigm.

Gelman and Shalizi (2013) has described the difference in the following words: “Schools of statis-

tical inference are sometimes linked to approaches to the philosophy of science. Classical statistics
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- as exemplified by Fishers p-values, Neyman-Pearson hypothesis tests, and Neymans confidence

intervals - is associated with the hypothetico-deductive and falsificationist view of science”. Hy-

pothesis devised by scientists can be tested and rejected but never really established in the same

way. In Bayesian statistics we start with a prior distribution, observe data and formulate inference

based on posterior distribution following an inductive pattern of learning rather than employment

of tests and attempted falsification. The main characteristic of Bayesian statistics is their explicit

use of probability for uncertainty quantification (Gelman et al., 2013).

Bayesian statistical conclusions about an unknown parameter θ are made in terms of proba-

bility statements. These statements are conditional on the observed data written as p(θ | y). It

is on the fundamental level of conditioning where Bayesian inference departs from the statistical

inference based on retrospective evaluation of the procedure to estimate the unknown parameter θ

over the distribution of data conditional on the true unknown θ . There is a vast literature that deals

with the fundamentals of this philosophy of statistics, see Gelman et al. (2013) for further details.

The Bayesian paradigm can be used to deal with the same problems as the frequentist paradigm -

once such example is estimation. In our case, the joint estimation of mean and covariance matrix

of a normal distribution under a special type of constraint is the problem of interest. Naturally, we

will discuss the literature for covariance estimation in this regard.

In the Bayesian context, the literature for covariance estimation is vast and growing. In the early

days of Bayesian statistics, Sir Harold Jeffery proposed a non informative prior distribution on the

parameter space by proposing a density function proportional to the square root of the determinant

of the Fisher information matrix in 1946. Another traditional prior that has been used widely is the

inverse-Wishart prior, see (Gelman et al., 2013, Chapter 3.6). This is described in section 2.6.2.

The main motivation for using inverse Wishart prior is the conjugacy property which makes the

calculation of the posterior distribution very easy. With the improvement in Bayesian computation,

various non conjugate priors are proposed, see Yang and Berger (1994), Daniels and Kass (2001),

Wong et al. (2003),Hoff (2009b). However, the priors used on the covariance matrix is broadly

proposed in three different directions - 1) priors on spectral decomposition 2) generalized inverse
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Wishart prior and regression-based approach and 3) priors on correlation matrix. We are going to

describe each of these classes in the next few paragraphs and also describe some very recent works.

1.2.1 Prior on Spectral Decomposition:

After the seminal work of Stein (1956), a lot of work has been dedicated in shrinking the

eigenvalues of the sample covariance matrix in order to achieve a lower risk (Johnstone and Lu,

2009). Examples of these type of work include Dey et al. (1985), Lin and Perlman (1985), Haff

et al. (1991), Yang and Berger (1994), Daniels and Kass (1999), Hoff (2009a) etc.

The prior on unconstrained parametrization of the covariance matrix, which uses spectral de-

composition, can be divided intro three broad classes with the goal of shrinking either some func-

tions of the off diagonal entries or the correlation matrix towards a a common value. The three

classes are: log matrix prior, reference prior (non-informative) and prior on eigenvectors.

1.2.1.1 Log Matrix Prior:

The log matrix prior by Leonard and Hsu (1992) places multivariate normal prior on log(Σ).

Pro: It is flexible, yield more general empirical and hierarchical Bayes smoothing and inference.

Con: It introduces a large number of hyperparameters, is non conjugate and lacks interpretability

(Brown et al., 1994).

1.2.1.2 Reference Prior:

The common noninformative prior is Jefferey’s prior i.e. p(Σ) =| Σ |−(p+1)/2 which fails to

shrink the eigenvalues properly (Jeffreys, 1998). The reference prior of Yang and Berger (1994)

has the form

p(Σ) = c
�| Σ | [λi −λ j]

−1
�

Pro: It provides better shrinkage compared to Jeffery’s prior because it puts more mass near the

region of equality of the eigenvalues. Daniels and Kass (2001) has shown that it performs well

as compared to Haff et al. (1991) in terms of risk and also with Daniels and Kass (1999) for non-

diagonal, ill-conditioned matrix.
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Con: It requires computation of high dimensional posterior expectations. It provides a uniform

prior on the orthogonal P matrix. It suffers if the true matrix is diagonal.

An alternative non informative prior with closed form posterior is proposed by Rajaratnam

et al. (2008).

1.2.1.3 Prior on Eigenvectors:

Daniels and Kass (1999) prior is designed to shrink the eigenvectors by reparametrizing the

orthogonal matrix in terms of p(p−1)/2 Givens angles Van Loan and Golub (1996). Hoff (2009a)

introduced matrix Bingham distributions as priors on the orthogonal matrices.

Pro: It reduces the small sample risk effectively. Performs really well if the true matrix is diagonal.

Con: It lacks interpretability of the Givens angles.

1.2.2 The Generalized Inverse Wishart Prior and Regreesion-based Approach:

The earliest use of Cholesky decomposition or regression dissection for covariance matrix

can be traced back to Bartlett (1934) and Liu (1993). Although the parameters are statistically

interpretable, they are not permutation invariant. Brown et al. (1994) has shown that a regression

dissection of the inverse Wishart (IW) distribution makes it possible to define a generalized inverted

Wishart(GIW) prior for general covariance matrices which offers considerably more flexibility

compared to inverse Wishart (Daniels and Pourahmadi (2002), Rajaratnam et al. (2008)) due to

the presence of many parameters to control the variability. Daniels and Pourahmadi (2002) refined

the GIW prior in such a way that the restrictions on hyperparameters are removed from normal

and inverse Wishart distributions. The details of the advantages of this prior in the analysis of real

longitudinal data can be found in Daniels (2005).

The inverse Wishart prior has a tendency to increase the variability of the eigenvalues of the

covariance matrix. Berger et al. (2020) has proposed a new class of priors called the shrinkage

inverse Wishart prior (SIW) on the covariance matrix using the ideas of Yang and Berger (1994)

which solves this problem. This is described in section 2.6.3 and motivated us in developing a

prior for our constrained covariance estimation problem.
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Estimation of covariance matrix using regression-based approach is performed by focusing on

priors on the regression parameters, for example see, Daniels and Pourahmadi (2002), Smith and

Kohn (2002), Fox and Dunson (2011) and many more. Tibshirani (1996) gives us the idea of

construction of a bona fide prior by exponentiation of the penalty function.

1.2.3 Priors on Correlation Matrix:

Barnard et al. (2000) has used the variance-correlation factorization to provide a lognormal

prior on variances and uniform priors on off diagonal entries of correlation matrix independently.

Another interesting example where the variance correlation decomposition is used along with the

Cholesky decomposition of the correlation matrix is Lan et al. (2017). Here the correlations are

expressed as a product of vectors on unit sphere and spherical distributions are used to provide a

flexible prior on the correlation matrix.

The decomposition of the covariance matrix in variance correlation matrices has a wide ap-

plication in network analysis especially in Gaussian Graphical models where the sparse precision

matrix is modeled, for example see Baladandayuthapani et al. (2014).

Although we have described the three broad classes of priors in this discussion, constrained

estimation of covariance matrix is not very well studied in the literature. We will use the idea of

putting prior on spectral decomposition in our case because it helps us model the covariance matrix

in a special structure and provide a Bayesian framework for constrained estimation in our case.
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2. INTRODUCTION

In the literature review, we have described various constraints for the normal distribution that

are already studied in the literature. Some study is done on generalized constraints for example see

Aitchison and Silvey (1958), Strydom and Crowther (2012).

2.1 Motivation and Goal:

In this thesis, our goal is to study and resolve new challenges which appear when one attempts

to jointly estimate the mean vector and the covariance matrix of a multivariate normal distribution

(Paine et al., 2018) under a new type of constraints. The idea of looking into a constraint like

(2.2.1) come from the discussion of elliptically symmetric angular Gaussian distribution studied

by Paine et al. (2018). This is a distribution suitable for spherical data which arise in many scientific

disciplines like shape analysis, geology, meteorology (e.g. Mardia and Jupp (2000)), text analysis

(e.g. Hamsici and Martinez (2007)), etc. Our idea was to look at the possiblility of using such a

constraint without the spherical nature and provide a generalization to it which can be used in a

much larger context. Since our constraint is similar without the spherical nature of the distribution,

we can always project them in the corresponding Rp (Mardia and Jupp, 2000, §3.5.6) and fit a

normal model with the constraint (2.2.1). This is helpful in developing multivariate techniques

like discriminant analysis, clustering, etc. for spherical data. We have applied it on earth’s historic

magnetic pole data by Schmidt (1976). This type of a constraint is not studied in the literature to

the best of our knowledge.

2.2 Description of the constraint:

The constraint is described below.

Σµ= µ, |Σ|= 1, (2.2.1)
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It is interesting to note that the first constraint forces the mean vector µ to be an eigenvector

of Σ corresponding to the eigenvalue one, and the second constrains the product of the remaining

eigenvalues. The first constraint turns out to be more consequential for statistical inference due to

the entanglement (nonlinearity) of the mean-covariance parameters and that µ as an eigenvector is

identifiable up to a constant. Nevertheless, the two together will definitely impact the estimators

and the shape of the contour plots of a multivariate normal density function as gleaned from the

spectral decomposition of the covariance matrix

Σ= PDP> =
p∑

i=1

λiPiP
>
i =

p−1∑
i=1

λiPiP
>
i +µµ

>, (2.2.2)

where D = diag(λ1,λ2, . . . ,λp−1, 1) is the diagonal matrix of ordered eigenvalues other than 1 and

P = [P1, P2, . . . , Pp] is the corresponding orthogonal matrix of eigenvectors. The second constraint

is less stringent and can be achieved by a rescaling. Though these constraints arise in the context of

directional data analysis (Paine et al., 2018), they seem to resonate with some of the deeper issues

in the classical statistical estimation theory.

2.3 Challenges

It is well-known that constraint or functional relationship among the parameters of a distribu-

tion can be the source of computational and inferential challenges. Interestingly, presence of the

"quadratic" term µµ> in (2.2.2) suggests similarity with the classical inference problems for the

N(θ ,θ 2) distribution where it is known that the minimal sufficient statistic T (X ) = (
∑n

i=1 X i,
∑n

i=1 X 2
i )

is not complete and the UMVU estimators may not exist, see Keener (2011), Chapter 5, for other

interesting examples. More generally, the setup is within the multivariate curved exponential fam-

ily (Efron et al., 1975) where the parameters (µ,Σ) satisfy the constraints in (2.2.1).

2.4 Statistical Interpretation and Prevalence of the Constraint

In this section we interpret the constraints in the context of factor and error-in-variable models,

and then point out that the mean-covariance of the multinomial distributions do not satisfy the

constraints.
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Let us consider a factor model with a single factor of the form (Rao, 1973, §8f.4)

Xi = µ+µwi + εi (2.4.1)

where wi
iid∼ N(0,1) and εi

iid∼ Np(0,Σε) are uncorrelated. Note that the mean vector µ appears as

the loading matrix and wi is the common factor. The covariance matrix of Xi is as in (2.2.2):

Σ= Σε +µµ
>.

This factor model interpretation can also be expanded and viewed as the error-in-variable model

in the context of multivariate regression (Molstad et al., 2020) where the error covariance matrix

and the regression coefficient matrix are parametrically connected. Our model can be viewed as

a special case of the envelop models in Cook and Zhang (2015). It also encourages modeling the

covariance matrix as a parsimonious quadratic function of the mean vector similar to Hoff and Niu

(2012).

To get a feel for the prevalence of the first constraint involving both the mean vector and the

covariance matrix we show that multinomial distributions do not satisfy the constraints as a non-

example. In addition, we explore the role of an "intermediate", seemingly less stringent, constraint

of the form Σb = µ where b is ideally a vector independent of the parameters. However, such a b

may not always exist as shown in the following example.

Suppose Y ∼ multinomial(n, q1, q2, . . . , qp) where
∑p

i=1 qi = 1. Then, Var(Yi) = nqi(1− qi)

and Cov(Yi, Yj) = −nqiq j for i 6= j, and the mean and covariance matrix have the form

µ= nq , Σ(Y ) = diag(q)− qq>

where q = (q1, q2, . . . , qp)>. The covariance matrix is positive semi-definite with one eigenvalue 0

corresponding to the eigenvector 1 = (1, . . . , 1)>. We note that Σµ 6= µ, and there does not exist

a vector b such that Σb = µ. For example, in the one– dimensional case b = 1− q1 depends on
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the parameter. More generally, the class of Dirichlet distributions is another example of this kind

which do not satisfy the constraints.

A similar type of constraint arises when one deals with discrete Markov chain in statistical

literature. In that situation the transition matrix P (Hoel et al., 1986) has the property P1 = 1

which is similar to our constraint. But here the transition matrix may not be symmetric. Also,

stationary distribution π of the chain satisfies πP = π which has an application in the PageRank

algorithm of Google.

2.5 Frequentist Approach for Joint Estimation and the Idea of "Post-Processing"

Though an explicit formula for the MLE of θ in N(θ ,θ 2) is given in Khan (1968), finding

explicit formula for the MLE in our setup seems to be out of reach. A Lagrange multiplier method

for computing constrained MLE and its asymptotic distribution for general distributions satisfying

certain regularity conditions is given in Aitchison and Silvey (1958). Unfortunately, computing

the Lagrange multiplier in our setup is not straightforward, perhaps due to implicit nonlinearity in

the first constraint, and requires special attention. Existing methods such as that of Strydom and

Crowther (2012) and Aitchison and Silvey (1958) are described in 3.1.2 and 3.1.3 respectively.

2.5.1 Post Processing

We know that in statistical literature, parameter spaces are sometimes defined by constraints

on the usual parameter spaces, which in turn helps us specify priors in Bayesian context Lee et al.

(2020). When the dimension of support is lower than the original parameter space, the constrained

prior distribution can be a solution to many problems especially like ours. Lee et al. (2020) has

proposed a two step process in this context: first, computation of a posterior distribution ignoring

the constraint and second, project the posterior sample to the desired parameter space. This might

seem to be unrelated to our situation since our approach is frequentist in this section, but upon

closer look our idea is very similar. We are too first computing the estimator (without fully ignoring

the constraint unlike (Lee et al., 2020)) and later use the algorithm to "post process" the estimator

to project it in our desired parameter space. Therefore we will use the term modified estimator and
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post-processed estimator interchangeably as they refer to the same idea. This idea has been used

in the literature. For example, ordered finite-dimensional parameter space (Dunson and Neelon,

2003), the continuous monotone function space (Lin and Dunson, 2014), measurable monotone

function space (Chakraborty and Ghosal, 2021) etc. They showed that the convergence rate of

the projected posterior distribution is at least that of the original. Bashir et al. (2019) used post

processing to capture the sparsity structure of the precision matrix and Bondell and Reich (2012)

conducted variable selection in high dimensional regression model.

2.5.2 Frequentist Post Processing

It turns out that the presumed MLEs obtained from the iterative methods invariably do not

satisfy the constraint in (2.2.1), and in some cases the covariance estimator is neither symmetric

nor positive-definite. It is a genuine challenge to have the MLE of the covariance matrix to satisfy

(2.2.1), in addition to being symmetric and positive definite. So it makes sense to use the idea of

post processing of the estimator.

A novel algorithm (see section 3.3) is developed where starting with any pair of mean-covariance

estimators, they are modified so as to satisfy the conditions in (2.2.1). The key conceptual idea is

to re-align the given mean vector to be in the space spanned by the orthogonal eigenvectors of

the given covariance matrix estimator. We re-interpret this as a regression problem with the given

mean as the response vector and the eigenvectors as predictors with the associated variable selec-

tion step. The modified eigenspace is formed using the Gram-Schmidt orthogonalization process

starting with the given estimate of mean to ensure that the estimate is an eigenvector of the esti-

mated covariance matrix.

2.6 Bayesian Approach

The Bayesian paradigm needs prior proposition and posterior calculation for the joint estima-

tion of the unknown parameters in the model which is our goal. It is difficult to propose a prior

jointly on mean-covariance that satisfy the constraint under consideration. So we separate the pa-

rameters through a reparametrization, that makes it possible to propose priors easily. In order to
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do so, we propose a simple and novel structured covariance model based on the spectral decom-

position (2.6.1) which addresses the core challenges in covariance estimation under the specific

constraint in equation (2.2.1).

2.6.1 Structured Covariance Model:

Let u = µ
‖µ‖ be the direction of the mean vector so that µ = c0u where c0 ∈ R+ and u lies on

a unit sphere; c0 can be interpreted as the radius of the sphere on which the mean vector lie. Our

structured covariance model is

Σ= Σ(u,λ1, . . . ,λp−1) = P(u)DP>(u) (2.6.1)

where D = diag (1,λ1, . . . ,λp−1) = diag (1,λ) is the matrix of eigenvalues, and for a given

value of the mean direction u, the orthogonal matrix of eigenvectors is P(u) = [u, V(u)] where

V = V(u) ∈ Rp×(p−1) is a known matrix function so that orthogonality of P is ensured. A simple

and prominent example of such a V is obtained by an application of Gram-Schmidt procedure

(Trefethen and Bau III, 1997) to the set {u, e1, e2, . . . , ep−1} where ei, i = 1,2, . . . , p−1 denote the

canonical basis of R p and up 6= 0. With V assumed known in (2.6.1), the unknown parameters

then are (µ,λ), the vectors of mean and the (p− 1) eigenvalues, so that the number of parameters

drastically reduces from quadratic to linear i.e. (2p − 1) in the dimension. Moreover, the first

constraint is automatically satisfied, since using µ ⊥ Vi(u) = Vi (columns of the V matrix) for

i = 1,2, . . . , (p− 1), it follows that

Σµ= P(u)ΛP>(u)µ=
p−1∑
i=1

λiViV
>
i µ+ uu>µ= c0uu>u = µ. (2.6.2)

Next, we will provide two concrete examples to elucidate the idea behind the model and its

components, particularly the eigenvectors as functions of the mean vector.

Example 1: Consider the case of equal means µ = c1, then using Gram-Schmidt procedure (Tre-
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fethen and Bau III, 1997), it follows that P(u) is of the form:

P(u) =
h
1p z(p)p z(p)p−1 z(p)p−2 . . . z(p)2

i
(2.6.3)

where

z(p)s =
�
0, . . . , 0, z(s)s

�> ∀s ∈ {2,3 . . . , p}

z(s)s =

�
s− 1p
s(s− 1)

,
−1p

s(s− 1)
, . . . ,

−1p
s(s− 1)

�>
(2.6.4)

and 1p =
�

1p
p , 1p

p , . . . , 1p
p

�
. The c drops due to normalization. Choosing the eigenvalues to be

D = diag
�
1, 1−ρ

1+(p−1)ρ , . . . , 1−ρ
1+(p−1)ρ

�
, the covariance matrix Σ is compound symmetry i.e.:

Σ=
1

1+ (p− 1)ρ


1 ρ . . . ρ

ρ 1 . . . ρ

...
... . . .

...

ρ ρ . . . 1


We note that for p = 2, the other eigenvalue of Σ is 1−ρ

1+ρ .

Example 2: Let us take

µ= (µ1,µ2, . . . ,µ2)

where only the first two entries are different from each other. Then using the construction method

described in the paragraph following (2.6.1), the P matrix takes the form:

P(u) =
h
u w1 z(p)p−1 z(p)p−2 . . . z(p)2

i
(2.6.5)

where z(p)s ’s are same as in Example 1 and
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w1 = ((p− 1)µ2,−µ1, . . . ,−µ1)/(‖µ‖).

If we choose the diagonal entries to be (1,λ1,λ2, . . . ,λ2), then the covariance matrix Σ will have

the following format.

Σ=



σ11 σ12 σ12 . . . σ12

σ12 σ22 σ23 . . . σ23

σ12 σ23 σ22 . . . σ23

. . . . . . . . .

σ12 σ23 σ23 . . . σ22


where σ11 =

µ2
1 +λ1(p− 1)µ2

2

µ2
0

, σ12 =
µ1µ2(1−λ1)

µ2
0

σ22 =
(1+λ2(p− 2))µ2

0 −µ2
1(1−λ1)

µ2
0(p− 1)

, σ23 =
(1−λ2)µ2

0 − (1−λ1)µ2
1

µ2
0(p− 1)

and µ2
0 = ‖µ‖2.

Example 3: As a generalization of Example 1 and 2, take

µ= (µ1,µ2,µ3, . . . ,µ3)
>

where the first three entries of the mean vector are different and rest of them are the same as the

third entry of the vector. Then, using the construction method described in the paragraph following

(2.6.1), the P matrix takes the form:

P(u) =
h
u w1 w2 z(p)p−2 . . . z(p)2

i
(2.6.6)
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where z(p)s ’s are same as in Example 1, and

w1 =
�
µ2

0,−µ1µ2,−µ1µ3, . . . ,−µ1µ3

�>
/(µ0‖µ‖)

w2 = (0, (p− 2)µ3,−µ2, . . . ,−µ2)
> /((p− 2)µ0) , (2.6.7)

where µ2
0 = µ

2
2+(p−2)µ2

3. When p = 3, w1 and w2 reduce to the ξ̃1 and ξ̃2 in Paine et al. (2018,

§2.3), so that this example is a generalization of their construction to the case of p > 3 or more

general spherical data.

Our goal is to compute the maximum likelihood estimator and provide a Bayesian framework

for estimation of the parameters in (2.6.1). In the Bayesian context, the maximum aposteriori

(MAP) does not have a closed form, even though the posterior distribution obtained by using a

Gaussian prior for the mean vector and inverse gamma on the eigenvalues does. We have suggested

this prior by extending the shrinkage inverse Wishart prior of Berger et al. (2020) to the case of

nonzero means. Here we are going to describe the standard normal-inverse Wishart prior and

shrinkage inverse Wishart priors to illustrate the reason for the proposition of such a prior.

2.6.2 Normal-Inverse Wishart Priors:

For the parameters of a multivariate normal distribution the most popular prior is normal-

inverse Wishart described in Gelman et al. (2013, Section 3.6) and Barnard et al. (2000) with the

hyperparameters (µ0,κ0;ν0,Λ0):

µ | Σ∼ Np(µ0,Σ/κ0), Σ∼ πIW (ν0,Λ−1
0 ),

where ν0 and Λ0 are the degrees of freedom and the scale matrix. The suggested values for the

hyperparameters in Gelman and Hill (2006) are Λ0 = Ip and ν0 = p + 1. The remaining hyperpa-

rameters are the prior mean, µ0 and κ0 on the Σ scale. Due to conjugacy, the posterior density has

the following parameters:
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µn =
κ0

κ0 + n
µ0 +

n
κ0 + n

x̄ ,

Λn = Λ0 + A+
nκ0

κ0 + n
(x̄ −µ0)(x̄ −µ0)

>. (2.6.8)

As a point estimator posterior mode or the maximum aposteriori probability (MAP) estimator for

Σ is generally the most popular choice (Murphy, 2012, §5.2.1). The posterior marginal distribution

of the mean parameter µ is multivariate tνn−p+1

�
µn, Λn

κn(νn−p+1)

�
with the MAP estimator µn, and

the MAP estimator for Σ is given by

bΣmap =
Λn

νn + p+ 2
,

where νn = ν0 + n (proof is shown in appendix 1).

2.6.3 Shrinkage Inverse Wishart Priors

The most natural prior for mean and covariance i.e. normal-inverse Wishart reviewed above

is known to overdisperse the eigenvalues of the posterior covariance estimator. In fact, Yang and

Berger (1994) describes that the normal-inverse Wishart prior has the term
∏

i< j(λi − λ j) in the

density where λi’s are the ordered eigenvalues of Σ, thus forcing the eigenvalues apart and in-

creasing the variability (Berger et al., 2020). This is one major motivation for using the normal-

shrinkage inverse Wishart prior.

The shrinkage-inverse Wishart (SIW) prior has the same density as inverse Wishart prior save

the extra term
∏

i< j(λi −λ j) in the denominator:

πSIW (Σ | ν0, b,Λ−1
0 )∝| Σ |−

ν0+p+1
2

exp
�−1

2 Tr(Λ0Σ−1)
�∏

i< j(λi −λ j)b
, (2.6.9)

where ν0 is a real constant, b ∈ [0,1] and Λ0 is a positive semi-definite matrix. It is interesting to

notice that b = 0 corresponds to some common priors like inverse Wishart, reference, Jefferey’s
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etc. which also contain the term
∏

i< j(λi −λ j) , see Berger et al. (2020).

1. Constant Prior, πC(Σ) = 1 corresponding to ν0 = −(p+ 1), b = 0 and Λ0 = 0

2. Jeffrey’s Prior, πJ(Σ) =| Σ |− p+1
2 corresponding to ν0 = 0, b = 0 and Λ0 = 0.

3. Reference Prior, πR(Σ) =| Σ |−1
�∏

i< j(λi −λ j)
�−1

corresponding to ν0 = −(p− 1), b = 1

and Λ0 = 0.

4. Modified Reference Prior, πMR(Σ) =| Σ |−(1−1/2p) corresponding to ν0 = 1 − (p + 1/p),

b = 1 and Λ0 = 0.

5. Inverse Wishart Prior, πIW (Σ | ν0,Λ−1
0 ) corresponding to b = 0,

The posterior density for (D, P), using the one-to-one transformation fromΣ to D = diag(λ1, . . . ,λp)

and the orthogonal eigenvector matrix P, turns out to be

πSIW (D, P | ν0, b,Λ−1
0 )∝| Σ |−

ν0+p+1
2

exp
�−1

2 Tr(Λ0PD−1P>)
�∏

i< j(λi −λ j)(b−1)
1λ1≥λ2≥...λp

. (2.6.10)

with the Jacobian being,

���� ∂Σ
∂ (D, P)

����=∏
i< j

(λi −λ j)

Note that the posterior is zero whenever the eigenvalues are close together so that effectively it

forces the eigenvalues apart. Moreover, when b = 1, the term in question goes away retaining the

conjugacy property, even with the additional normal prior on the nonzero mean (Proof is shown in

the Appendix 2) and the same posterior parameters as before.

It is interesting to note that a joint prior on (µ,Σ) can be constructed and the normal-shrinkage

inverse Wishart can be parametrized using the five hyperparameters (µ0,κ0;ν0, b,Λ0):

µ | Σ∼ Np(µ0,Σ/κ0), Σ∼ πSIW (ν0, b,Λ−1
0 ) (2.6.11)
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The sampling scheme of Σ from shrinkage-inverse Wishart using the ‘new method’ is described in

appendix B.2. It helps us generate a pair (µ,Σ) jointly from the posterior i.e.

πNSIW (µ,Σ | µn,κn,νn,Λn)∝| Σ |− νn+p
2 −1

exp
�−1

2

�
(µ−µn)

>Σ−1 (µ−µn) +Tr
�
Λ0Σ−1

�	�∏
i< j

�
λi −λ j

� .

The next important consequence of choosing b = 1, from (2.6.10), is that the conditional distri-

bution of the eigenvalues given the orthogonal matrix P is an ordered inverse gamma distribution

(Berger et al., 2020, §3.2). This plays a central role in developing a computational scheme for

computing the MAP.

Recall that the structured covariance model in (2.6.1) has its orthogonal matrix P determined

by a non-zero mean vector. This requires working with nonzero mean vectors in contrast to the

mean zero framework in Berger et al. (2020), while maintaining the conditional distribution of

the eigenvalues given the mean vector as an inverse gamma distribution, see also Berger et al.

(2020). This motivates us to select an inverse gamma prior for the eigenvalues as in (4.3.1) which,

fortunately, in turn implies that the conditional distribution of eigenvalues is the inverse gamma

(see section 4.3.2).
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3. FREQUENTIST SOLUTION USING LAGRANGE MULTIPLIER

3.1 Constrained Maximum Likelihood Estimation

The Lagrange multiplier method (Aitchison and Silvey, 1958) as described in the previous sec-

tion is used to incorporate the constraints for finding the MLE of the parameters of a multivariate

distribution. We derive the likelihood equations, present three iterative methods and study some

of their computational and statistical properties. The first method is described in this section and

the other two methods i.e. Aitchison and Silvey (1958) and explicit calculation of Lagrange mul-

tiplier is described the previous section on literature review. Curiously, the MLEs first appear to

be explicit and have closed-forms, but on closer inspection they actually depend on the random

Lagrange multipliers and hence disqualified as bona fide statistical estimators. This realization

calls attention to estimating the Lagrange multiplier using iterative methods in conjunction with

the MLE. Such coupling of estimation of the main and the nuisance parameters makes the task of

computing the constrained MLE and study of their convergence much more challenging as shown

in this section.

Let x1, x2, . . . , xn be a sample of size n from Np(µ,Σ) where Σ is a positive-definite matrix.

If X is the n × p data matrix, then the log-likelihood of the multivariate normal distribution is

proportional to

l (µ,Σ|X)∝−n
2

log|Σ|−1
2

n∑
i=1

(x i −µ)>Σ−1(x i −µ). (3.1.1)

The MLE of (µ,Σ) ignoring the constraints is (x̄ ,S), the familiar sample mean and sample covari-

ance matrix, which evidently do not satisfy the conditions in (2.2.1). However, the log-likelihood

function generally is not concave under constraints on the covariance matrix and may have multiple

local maxima. For n> p we set A(µ) =
∑n

i=1(x i −µ)(x i −µ)> and note that A(x̄ ) = nS.

Theorem 1. The Lagrangian function for MLE under the intermediate constraint Σb = µ (ex-
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pressed in terms of the inverse covariance matrix) is:

L (µ,Σ | X) = l (µ,Σ | X) +α1

�| Σ−1 | −1
�−α>2 �Σ−1µ− b

�
(3.1.2)

where α1 and α2 are the Lagrange multipliers.

(a) Under the solo constraint | Σ |= 1 (α2 = 0), the MLE bµmle = x̄ is the sample mean andbΣmle =
A(x̄ )
|A(x̄ )|1/p is a shape matrix.

(b) If | Σ |= 1 and Σb = µ as in (3.1.2), then the constrained MLE satisfies

µ=
�

x̄ − 1
n
α2

�
, Σ=

�
A(µ)+ 2α2µ

>�
n+ 2α1

, (3.1.3)

Σb = µ , | Σ |= 1. (3.1.4)

(c) Under both constraints in (2.2.1), the MLE satisfies

µ=
�

x̄ − 1
n
(I −Σ)α2

�
, Σ=

�
A(µ)+ 2α2µ

>�
n+ 2α1

(3.1.5)

Σµ= µ , | Σ |= 1

The proof is provided in the Appendix 1. Unlike the closed-form solution in (a), computing

the MLE in (b) and (c) is more challenging and involves both α1 and α2. Thus, one may resort

to iterative methods for solving for the (random) Lagrange multipliers, which must go through

all the four steps (equalities) to complete one iteration. To highlight the role of the intermediate

constraint, we note that in Theorem 1.(b), every parameter can be expressed in terms of α2 due to

the intermediate constraint Σb = µ, so that the iterations will be over α2 only, see Section 3.1.1.1

for details. By contrast, the case in Theorem 1.(c) underΣµ= µ is much more challenging, at least,

due to the presence of Σ in µ. These observations serve as strong motivations for considering the

alternative method of explicit calculation of the Lagrange multiplier α2 in Section 3.1.2. In view
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of Theorem 1 (a), from here on we focus mostly on the first constraint and deemphasize the second

constraint | Σ |= 1 which is achievable through a scale change.

3.1.1 Algorithms for Computing Constrained MLE:

In spite of the apparent closed forms in (3.1.3) and (3.1.5), these can not be implemented or

viewed as bona fide estimators because of their dependence on the Lagrange multipliers α1 and α2.

Here, first we propose a natural iterative method for computing the Lagrange multipliers leading

to statistically viable estimators of the mean and the covariance matrix. Then, explicit calculation

of the Lagrange multipliers as in Aitchison and Silvey (1958) and Strydom and Crowther (2012)

is pursued and its role on the convergence of the iterative methods is studied.

3.1.1.1 Solving (3.1.3) for α2

Knowing α2 in (3.1.3), determines all the other unknown quantities. To emphasize dependence

on α2, we set µ= µ(α2) and denote the numerator of Σ by

U(α2) = A [µ(α2)] + 2α2µ
>(α2).

From the second constraint in (3.1.4) it follows that | U(α2) |1/p= n+2α1. Replacing the numerator

by U(α2) and the denominator by | U(α2) |1/p in the right hand side of the second identity of (3.1.3)

leads to

Σ(α2) =
U(α2)
| U(α2) |1/p ,

which is a function of α2. Substituting Σ(α2) in the first expression of (3.1.4), we obtain

µ(α2) =
Σ(α2)b
| Σ(α2) |1/p , (3.1.6)

where further replacing µ(α2),Σ(α2),U(α2) and n+2α1 in terms of α2 one obtains the following

after some algebraic manipulation:
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α2 =
| Σ(α2) |1/p x̄ − (n− 1)Sb− (1/n2)α2α

>
2 b

2
�

x̄>b− α>2 b
n

�
− |Σ(α2)|1/p

n

= f (α2). (3.1.7)

This being nonlinear in α2 suggests using the iterations:

α(k+1)
2 = f (α(k)), k = 0, 1, 2 . . . , with α(0)2 = x̄ ,

for solving it.

Although the intermediate constraint seems similar to (2.2.1), in the next section it is demon-

strated that the latter is much harder to work with in that one needs to iterate over the α1 as well.

3.1.1.2 Solving (3.1.5) for α1nd α2

After replacing µ from the first identity, which involves Σ, the second equation in (3.1.5)

reveals that Σ is a nonlinear function of α2. This is different from Theorem 1.(b) in that not all

parameters can be expressed in terms of a single parameter (like α2). Thus, one may resort to

iterative methods involving the four parameters (µ,Σ,α1,α2) where the updates for the (k+1)-th

iteration is done in the following order :

α
(k+1)
1 =

1
2

�|A �µ(k)�+ 2α(k)2 µ
(k)>|1/p − n

�
, Σ(k+1) =

�
A(µ(k)) + 2α(k)2 µ

(k)>�
n+ 2α(k)1

(3.1.8)

α(k+1)
2 =

1
2

��
n+ 2α(k)1

�
Σ(k) − A

�
µ(k)

��
µ(k), µ(k+1) = Σ(k)

�
x̄ − 1

n

�
I −Σ(k)�α(k)2

�
.

Our suggested initial values are (Σ(0),α(0)2 ,µ(0)) = (S, x̄ , x̄ ), and for k = 0 we compute α(1)1 using

(µ(0),α(0)2 ) from the first equation above. But for the updates Σ(1) and α(1)2 , we need the value of

α
(0)
1 . In order to avoid the confusion, we simply choose α(0)1 = α

(1)
1 for the first iteration, then use

(α(1)1 ,α(1)2 ,Σ(1),µ(1)) and repeat the process.
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3.1.1.3 Common Challenges with Iterative Methods for Computing MLE of Σ

An estimate of a covariance matrix from iterative methods is usually asymmetric and not nec-

essarily positive definite. The first issue is addressed by replacing the estimator with 1
2

�
Σ+Σ>

�
,

producing an estimator of the form A+ ab> + ba> where a, b ∈ Rp and a positive definite matrix

A. Ensuring positive definiteness of a matrix of this form is difficult and discussed in the following

lemma, its is presented in the Appendix.

Lemma 1. Let a, b ∈ Rp and A be a positive definite matrix. Then,

(a) The non-zero eigenvalues of (ab> + ba>) are a>b± ‖a‖‖b‖

(b) The matrix M = A+ (ab> + ba>) has at most one negative eigenvalue.

To ensure positive-definiteness, Lemma 1.(b) suggests replacing the smallest eigenvalue of M

by
�∏p−1

j=1 λ j

�−1
where λ j’s are the ordered eigenvalues of M . This is justified by noting that

according to Weyl’s inequality (Bhatia, 2007)

λp−1(M)≥ λp(A)> 0.

In addition, there are a number of existence and convergence problems related to Theorem

1.(c). These are dealt with partially by relying on more explicit calculations of the Lagrange

multipliers under the first constraint only using the methods of Aitchison and Silvey (1958) and

Strydom and Crowther (2012).

3.1.2 Explicit Calculation of the Lagrange Multiplier:

Iterative computation of the Lagrange multipliers along with the parameters of interest as above

can be the source of several convergence problems. We present a method from Strydom and

Crowther (2012) which computes the Lagrange multiplier through a Taylor series expansion of the

constraint function.

Note that our mean-covariance constraint can be written either as a scalar function or vector

function of the parameters. We start with expressing the constraint Σµ = µ as the scalar function
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h : Rp2+p→ R of the natural parameter vector m of a multivariate normal distribution:

h(m) =
�
m2 −m1 ⊗m1 − vec(Ip)

�>
(1⊗m1) = 0, (3.1.9)

where m> =
�
µ>, vec(Σ+µµ>)>

�>
=
�
m>1 , m>2

�>
.

Using the Taylor’s expansion of h(m) around T , the sufficient statistics of the exponential

family (the normal distribution in our case) leads to the following explicit formula for the Lagrange

multiplier:

α2 = −
�∇h(m)>∇m(θ )∇h(T )

�−1
h(T ), (3.1.10)

where θ is the canonical parameter for the multivariate normal distribution, see Appendix B. Sub-

stituting this in (A.2.1) leads to the identity

m = T (X)− V∇h(m)
h(T )

[∇h(m)>V∇h(T )]
with ∇m(θ ) = V . (3.1.11)

It can be used iteratively via a "double iteration" over T and m, see Strydom and Crowther (2012,

§2), with the initial values chosen as the observed canonical statistics for both T and m, see

Algorithm 2 in Appendix B.

As usual positive-definiteness and symmetry of the covariance estimate are not guaranteed.

Nevertheless, its performance in terms of the Frobenius risk in the simulation studies is better than

the standard MLE procedure of Section 3.1.1. This can be attributed to the explicit calculation of

Lagrange multiplier.

3.1.3 The Aitchison and Silvey (1958) Method

For investigating the asymptotic distribution of the MLE and its iterative computation (Aitchi-

son and Silvey, 1958), it is common to confine attention to a ball or neighbourhood of the true

parameter value. More concretely, we consider the set Uε = {θ : ‖θ − θ0‖ < ε} where θ0 is
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the true parameter value for the parameter vector θ =
�
µ>, vec(Σ)>

�>
of a multivariate normal

distribution.

For the vector-valued constraint function

h(µ,Σ) = Σµ−µ,

its first derivative denoted by H1
θ is the (p+ p2)× p full-rank matrix:

H1
θ =

 ∂ h
∂ µ

∂ h
∂Σ

=
Σ− I

µ⊗ I

 .

The notations H1
θ̂

and H1
θ0

, with obvious interpretation, are used as needed next. The partitioned

matrix E =

 Bθ0
−H1

θ0

−H1>
θ0

0

 is non singular (Aitchison and Silvey, 1958, Lemma 3) where Bθ0
=Σ−1 0

0 Σ−1 ⊗Σ−1

, and its inverse is given by

E−1 =

Pθ Qθ

Q>θ Rθ


where

Rθ = −
�
H1>
θ B−1

θ H1
θ

�−1
= − �(Σ− I)Σ(Σ− I)+ (µ>Σµ)Σ

�−1

Qθ = −BθH1
θR, Pθ = B−1

θ

�
I −H1

θQ
>� .

It follows from Lemmas 1 and 2 of Aitchison and Silvey (1958) that, under some regularity

conditions on the density and the constraint function, the solution to the equation ∂ L
∂ θ = 0 (first

derivative of the Lagrangian function) exists within the set Uε almost surely and it maximizes

the likelihood function subject to the constraint h(θ ) = 0. We denote the constrained maximum
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likelihood estimator by θ̂n(x) and α̂2n(x) for the parameters and Lagrange multiplier, respectively.

Then, the following joint asymptotic normality of the estimators of the parameter vector and the

Lagrange multiplier (Aitchison and Silvey, 1958)is useful for developing test statistics for testing

various constraints:

pn
�
θ̂n − θ0

�
1p
n α̂2n

→ N

0,

Pθ 0

0 −Rθ

 . (3.1.12)

Some of the requisite regularity conditions for the above results are verified in the Appendix B.1

using the fact that for multivariate normal distribution all the moments exist (Chacón and Duong,

2015). The rest is verified in Luo et al. (2016) for sufficiently large n.

Next, expressing the Taylor series expansion of the first derivative of the Lagrangian function in

matrix form, one arrives at the following iterative method (Aitchison and Silvey, 1958), abbreviated

as the A&S method, for computing the MLE:

 bθ ( j+1)

1
n bα( j+1)

2

=
 bθ ( j)

1
n bα( j)2

+
P1θ Q1θ

Q>1θ R1θ

 1
n
∂ l(θ |X)
∂ θ |θ=bθ ( j) +Hbθ ( j) 1

n bα( j)2

h(bθ ( j))
 (3.1.13)

where

P1θ Q1θ

Q>1θ R1θ

 is the inverse of

 Bbθ ( j) −H1bθ ( j)
−H1>bθ ( j) 0

 for j = 0. An important point to note here

is that in the A&S method, the coefficient matrix in the right-hand-side stays the same through the

iterations and has to invert a matrix only once.

3.2 Existence and Uniqueness of the Constrained MLE

In this section we study existence and uniqueness of the constrained MLE when the search

is limited to convex subsets of the parameter space. It is based on the intuition that if the true

parameter belongs to a predetermined random set with high probability (Zwiernik et al., 2017),

then an iterations restricted to this set will move closer to the true parameter.
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Recall that with the constraint Σµ= µ, the Lagrangian function is

L (µ,Σ | X) = l (µ,Σ | X) +α>2 (Σµ−µ)
= −n

2
log | Σ | −1

2
Tr
�
A(µ)Σ−1

�
+α>2 (Σµ−µ)

= −n
2

log | Σ | −n
2

Tr
�
SΣ−1

�− n
2

Tr
�
(x̄ −µ)(x̄ −µ)>Σ−1

�
+α>2 (Σµ−µ) . (3.2.1)

It is not concave under the constraint on the covariance matrix and may have multiple local max-

ima. However, we show that the Lagrangian function is concave in any direction in a predefined

set of the form ∆A = {Σ : 0≺ Σ≺ A} , see Zwiernik et al. (2017). Let Sp denotes the set of all

p× p real symmetric matrices as a subset of R p(p+1)
2 and Sp

�0 denotes the open convex cone in Sp of

positive definite matrices. The following lemma establishes concavity of the profiled Lagrangian

function where the mean parameter is estimated by the sample mean for a fixed value of α2.

Lemma 2. For a given value of α2 and the mean vector µ estimated by x̄ , the Lagrangian function

L : Sp→ R in (3.2.1) is strictly concave in Σ in the region ∆2S.

The proof is given in the Appendix (B.1.4). The strict concavity of the Lagrangian function

also guarantees that the covariance matrix where the Lagrangian attains its maximum is unique.

Lemma 3. If Σmax = ar g maxΣ∈∆2S
L(x̄ ,Σ), then Σmax is unique in ∆2S.

Proof. Suppose there are two matrices Σ1 and Σ2 in∆2S, which maximize the Lagrangian function

for a given α2. Then, for the matrix Σ(t) = (1− t)Σ1 + tΣ2, t ∈ [0,1], we have

L(x̄ ,Σ(t))≥ (1− t)L(x̄ ,Σ1) + t L(x̄ ,Σ2) = L(x̄ ,Σ1)

so that Σ(t)’s also maximizes the Lagrangian function. Therefore there is a direction in which the

Lagrangian is not strictly concave contradicting lemma 2. So if the maximizer exists within∆2S, it

is unique.
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To analyze the probability that ∆2S contains the true covariance matrix, we rely on the known

fact that (Bibby et al., 1979, Theorem 3.4.1) a sample covariance matrix S based on a random

sample of n≥ p observations from Np(µ,Σ), follows a Wishart distribution i.e. nS ∼ πW (n−1,Σ)

and also Wn−1 = nΣ−1/2SΣ−1/2 ∼ πW (n− 1, Ip). Then, the probability that Σ ∈ ∆2S is expressed

as follows:

P [Σ ∈∆2S] = P [2S−Σ� 0] = P
�
2Σ−1/2SΣ−1/2 − Ip � 0

�
= P

�
2
n

Wn−1 � Ip

�
= P

h
Wn−1 � n

2
Ip

i
= P

h
λp(Wn−1)>

n
2

i
.

Interestingly, the probability that the true parameter Σ lies within the set ∆2S is independent of Σ

and is equal to the probability that λp(Wn−1) >
n
2 where Wn−1 ∼ πW (n− 1, Ip). It is known that

(Zwiernik et al., 2017) this probability gets closer to 1 as n, p→∞,n/p→ γ∗ < 6+ 4
p

2. Thus,

for big enough dataset we expect an iterative algorithm, when restricted to this random set, will

eventually converge to the constrained MLE.

3.3 An Algorithm for Enforcing the Constraints

Most estimators presented so far do not necessarily satisfy the constraints. In order to obtain

an estimator in the desired constrained parameter space (where the constraint is satisfied), we need

to post process or modify the estimator even though we did not ignore the constraints in the first

part of the computation process described in the previous section. In this section, starting with any

reasonable estimators for (µ,Σ) (like those in Sections 3.1), we present an algorithm for modifying

them so as to satisfy both constraints in (2.2.1). The notation M0 = (µ̃, Σ̃) is used from here on to

denote any such pre-estimate of (µ,Σ) and Mi, i = 1,2, 3 for its gradual modifications.
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3.3.1 Scale Modifications of the Mean and Covariance Matrix

The modification process starts by the task of modifying the given covariance matrix estimator

to accommodate the mean vector estimate. For p = 3, a slightly different reparameterization of the

covariance matrix is developed in Paine et al. (2018).

Lemma 4. Given µ̃ ∈ Rp and Σ̃ any p × p positive-definite covariance matrix with the spectral

decomposition PDP> as in (2.2.2). Set P∗p =
µ̃
||µ̃|| and apply the Gram - Schmidt orthonormalization

process to the set of vectors {P∗p, Pp−1, . . . , P2, P1} to obtain {P∗p, . . . , P∗2 , P∗1}. Then, the modified

covariance matrix

bΣ∗ = p−1∑
j=1

λ j

λpr
P∗j P

∗>
j + P∗pP∗>p where λpr =

� p−1∏
k=1

λk

� 1
p−1

(3.3.1)

satisfies the conditions in (2.2.1).

We denote this estimator by M1. In Lemma 4, µ̃ is effectively forced to become an eigenvector

corresponding to the eigenvalue 1 of a modified covariance matrix estimator, i.e. bΣ∗µ̃= µ̃. It turns

out that estimators obtained by this simple-minded modification, and inspired by basic linear alge-

bra do not perform well. This is somewhat expected as only the covariance estimator is modified

and the mean vector is left intact.

In view of the simultaneous constrains on the mean vector and the covariance matrix, their

joint modification seems a natural idea to consider. Next, the mean vector is forced in the direc-

tion (span) of the eigenvectors of the covariance estimator. This is implemented by entertaining

regression-like models for the given mean vector with the eigenvectors serving as covariates. First,

we consider simple linear regressions by choosing a single eigenvector and estimating the corre-

sponding regression coefficient c i.e. µ̃= cPi for some eigenvector Pi.

Lemma 5. Given µ̃ ∈ Rp and Σ̃ a p × p positive-definite covariance matrix with spectral decom-

position PDP>. Define
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c0i = argmin
c∈R
‖µ̃− cPi‖2 = 〈Pi, µ̃〉

||Pi||2 and i0 = argmin
i

�
1− λi

c2
0i

�2

. (3.3.2)

Then, the modified mean-covariance estimators

bµ∗ = c0i0 Pi0 , bΣ∗ = p∑
j 6=i0
j=1

λ j

λpr
PiP
>
i + bµ∗bµ∗> where λpr =

∏
j 6=i0
j=1

λ j


1

p−1

(3.3.3)

satisfy (2.2.1).

We refer to the estimator (bµ∗, bΣ∗) as M2 in the sequel. The intuition behind the method for

selecting i0 is that from bµ∗bµ∗ = c2
0iPiP

>
i it is desirable to have the eigenvalue corresponding to bµ∗

to be as close as possible to one of the λi’s. Thus, it is reasonable that λi/c
2
0i should be as close to

1 as possible. More details about such selection can be found in Appendix (5).

Modifying the initial estimator jointly using (3.3.3) we obtain (bµ∗, bΣ∗). Since the covariance

matrix is not modified too much it is likely that the mean will suffer too much while the estimator

of the covariance will not. In light of this intuition we need to have a balance for joint estimation

while satisfying the constraint.

3.3.2 The Modification Algorithm: Multiple Regression

In this section we consider a full-fledged multiple linear modeling of µ̃ on Pi’s. It amounts to

a generalization of Lemma 5 and involves variable selection in the context of multiple regression.

The details are organized in the following Algorithm 1, where the task is to divide the eigenvectors

(regressors) into two groups. We rely on the maximum distance between the consecutive terms of

ordered absolute values of the regression coefficients in the saturated model. A viable alternative

for this is the 2-means clustering algorithm applied to absolute values of the entries of the vector c

of regression coefficients. The estimator from this algorithm is denoted by M3.

Algorithm 1 Modifying an Estimator to Satisfy (2.2.1)
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1: Start with a given (µ̃, Σ̃) and its spectral decomposition as in (2.2.2)

2: Variable (Basis) Selection: Write µ̃=
∑p

j=1 ciPi = Pc where c = (c1, c2, . . . , cp).

• Simple Clustering : Viewing the ci’s as weights, select those Pi’s which has largest abso-

lute weight by ordering absolute values of ci’s and find out the biggest gap. Let the index

set of the group with higher absolute value of ci be S = {i1, i2, . . . , i j0} where j0 is its

cardinality.

OR

• Cluster ci’s by applying K-means clustering with K = 2 (Hartigan and Wong, 1979) on

absolute values of ci’s.

3: Regress µ̃ on the span of columns of P j0 = [Pi1 , Pi2 , . . . , Pi j0
]:

bβ = argmin
β

µ̃− P j0β
2

, bµ∗ = P j0
bβ (3.3.4)

4: Orthogonalization to accommodate bµ∗: Let g = argmax{| bβk∗ |: k∗ = i1, i2, . . . , i j0}. Apply

the Gram-Schmidt process on
¦

Pi1 , . . . , Pig−1
, bµ∗, Pig+1

, . . . , Pi j0

©
to obtain

�bµ∗, b1, b2, . . . , b j0−1

	
with bµ∗ as the starting vector.

5: Set, bΣ∗ = bµ∗bµ∗> + p∑
j 6={i1,...,i j0}

j=1

λ jP jP
>
j +

j0−1∑
k=1

λ
′
ik

bkb>k

estimate λ
′
ik

by

bλik = b>k Σbk, k = 1,2, . . . , j0 − 1. (3.3.5)

(The proof of this step is presented in Appendix 7).

6: Let λpr =

�∏p
j 6∈S
j=1

λ j.
∏ j0

k=1
bλik

� 1
p−1

. The modified estimator (bµ∗, bΣ∗) is given by
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bµ∗ = P j0
bβ

bΣ∗ = p∑
j 6={i1,...,i j0+1}

j=1

λ j

λpr
P jP
>
j +

j0∑
k=1

bλik

λpr
bk b>k + bµ∗bµ∗>. (3.3.6)
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4. A STRUCTURED COVARIANCE MODEL AND MLE, MAP COMPUTATION

Our goal is to compute the maximum likelihood estimator and provide a Bayesian framework

for estimation of the parameters in (2.6.1). It turns out that computing the maximum likelihood

estimator is challenging due to the nonlinearity and intractability of P(u). However, the MLE

of the eigenvalues and c0 have closed forms as a function of the mean direction, thus making it

possible to compute its profile likelihood. At this stage, we approximate the MLE of the mean

direction by first finding a lower bound for the concave profile log-likelihood function of the mean

direction (for given λ) and then maximizing it. In the Bayesian context, the maximum aposteriori

(MAP) does not have a closed form, even though the posterior distribution obtained by using a

Gaussian prior for the mean vector and inverse gamma on the eigenvalues does. These priors are

suggested by extending the shrinkage inverse Wishart prior of Berger et al. (2020) to the case of

nonzero means. We show in Section 4.3.2 that one can generate from the posterior distribution

quite easily using Metropolis-Hastings within Gibbs sampling. But if we are only interested in

point estimation (e.g. MAP), then we propose a simpler way of computing it. The idea is to

follow the calculation of the approximate MLE by providing a lower bound for the posterior and

maximize it using a modified version of Newton’s method.

4.1 MLE of µ and λ in Model (2.6.1)

Let x1, x2, . . . , xn be a sample of size n from Np(µ,Σ), where Σ is parameterized as in (2.6.1)

with µ= c0u and X is the n× p data matrix. Then, the log-likelihood can be written as

l(u, c0,λ | X)∝−n
2

p−1∑
i=1

log(λi)− 1
2

�
n∑

j=1

(c0u − x i)
>Σ−1(c0u − x i)

�
(4.1.1)

∝−n
2

p−1∑
i=1

log(λi)− 1
2

Tr
�
D−1B(X , c0, u)

�
∝−n

2

p−1∑
i=1

log(λi)− 1
2

�
B(X , c0, u)11 +

p−1∑
i=1

B(X , c0, u)(i+1)(i+1)

λi

�
, (4.1.2)
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where B(X , c0, u) = P>(u)A(c0u)P(u) and A(µ) =
∑n

i=1(x i −µ)(x i −µ)>.

Evidently, maximization of the log-likelihood function with respect to the mean direction is

more challenging than those with respect to c0 and λ. This suggests and we propose approximating

the MLE of the parameters using the following three (non-iterative) steps:

1. Differentiate the log-likelihood function to obtain the MLE of c0 and λi’s as a function of

the mean direction vector u.

2. Compute the profile log-likelihood.

3. Find a lower bound for the profile log-likelihood and maximize it to obtain the approximate

MLE of the mean direction u. Use the latter to compute the approximate MLE of c0 and the

eigenvalues.

Next, we provide further details about implementing these three steps.

Step 1: For a given u, differentiating the log-likelihood in (4.1.1) with respect to c0 (Bibby et al.,

1979, §4.2.9) and in (4.1.2) with respect to λi, we obtain

bc0 =
u>P(u)D−1P>(u)x̄
u>P(u)D−1P>(u)u , and bλi =

B(X , c0, u)(i+1)(i+1)

n
. (4.1.3)

The expression for the bc0 in (4.1.3) reduces to

bc0 =
e>1 D−1P>(u)x̄

e>1 D−1e1

=
1
λ1

e>1 P>(u)x̄
1
λ1

= u> x̄ , (4.1.4)

and note that the estimates of the eigenvalues are always positive.

Step 2: Substituting for bc0 and bλi in the log-likelihood (4.1.2), the profile likelihood of the mean

direction u turns out to be

l(u,bc0, bλ | X)∝−n
2

p−1∑
i=1

log

�
B(X ,bc0, u)(i+1)(i+1)

n

�
− 1

2
[B(X ,bc0, u)11 + n(p− 1)] (4.1.5)
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Denoting the columns of V by Vi for i = 1, 2, . . . , (p−1), then the diagonal entries of the B(X ,bc0, u)

are

�
B(X ,bc0, u)11, B(X ,bc0, u)22, . . . , B(X ,bc0, u)p,p

	
(4.1.6)

=
¦

u>A(bc0u)u, V>1 A(bc0u)V1, . . . , V>p−1A(bc0u)Vp−1

©
. (4.1.7)

Since u ⊥ Vi for i = 1,2, . . . , p− 1, one may further simplify the diagonal entries of B(X ,bc0, u)

to the following:

V>i A(bc0u)Vi = V>i
�
A(0)− nbc0 x̄ u> − nbc0ux̄> + nbc2

0uu>
�

Vi = V>i A(0)Vi

u>A(bc0u)u = u>A(x̄ )u. (4.1.8)

In spite of this simplification, the profile log-likelihood is hard to differentiate as a function of u,

in general, when we are not assuming any specific form for the matrix V .

Step 3: We find a workable lower bound for (4.1.5) and maximize it with respect to the mean

direction to obtain an approximate MLE for u. Alternatively, this amounts to assuming that the

first sum in the profile likelihood (2.7) is constant. The expression in equation (4.1.8) is a quadratic

form of the matrix A(0) =
∑n

j=1 x j x
>
j and can be bounded by its largest eigenvalue (Rao, 1973,

§1f.2.1). Consequently, using (4.1.8) and that columns of V are orthonormal simplify the profile

log-likelihood (4.1.5) and we arrive at the following lower bound:

l(u,bc0,λ | X)∝−n
2

p−1∑
i=1

log

�
V>i A(0)Vi

n

�
− 1

2

�
u>A(x̄ )u + n(p− 1)

�
≥ −n(p− 1)

2
log

�
λ1 {A(0)}

n

�
− 1

2

�
u>A(x̄ )u + n(p− 1)

�
= h(u) (4.1.9)

Evidently, the lower bound denoted by h(u) is maximized by minimizing the quadratic ex-

pression inside the second bracket. Since u 6= 0 and h is a quadratic function of u, the maximum
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occurs when u is the eigenvector corresponding to the smallest eigenvalue of the matrix A(x̄ ). As

such the approximate MLE of u is unique only up to a sign.

Even though the computed mean direction bu is not the exact MLE, it is still a good approxima-

tion as confirmed by the simulation results in Table 5.4 of Section 5.2. The approximate maximum

likelihood estimate of the eigenvalues and the constant c0 are obtained by plugging in the approx-

imate MLE of u in (4.1.3) and (4.1.4). Fortunately, this idea of approximatiing MLE can also be

replicated in our posterior MAP estimator approximation developed in the next section, but the

maximization of the lower bound is not as straightforward and requires employing a version of

Newton’s iterative method.

We can find out the distribution of the estimates. We know that (Bibby et al., 1979, §3.4.2)

A(c0u) | c0, u ∼Wishartp (Σ, n) (4.1.10)

From equation 4.1.6 and Bibby et al. (1979, §Theorem 3.4.2), we can also show that

nbλi = Pi(u)
>A(c0u)Pi(u) | c0, u ∼Wishart1

�
Pi(u)

>ΣPi(u), n
�

nbλi

Pi(u)>ΣPi(u)

����� c0, u ∼ χ2
n (4.1.11)

The estimate of u is the eigenvector corresponding to smallest eigenvalue of the matrix A(x̄ ) = nS

where S is the MLE of the covariance matrix for data coming from a normal distribution. Finding

the exact distribution of u is challenging. But Anderson (2003, §Theorem 13.3.3) has a nice result,

which is useful in this regard. The statement is the following:

Theorem 2. Suppose A ∼ Wishartp(I , n) and P =
�
P1, P2, . . . , Pp

�
is the matrix of normalized

eigenvectors of A with P1i ≥ 0. Then C = P> has the conditional Haar invariant distribution and

C is distributed independently of the eigenvalues.

However, the asymptotic distribution of the MLE approximation bu which is the eigenvector
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corresponding to the smallest eigenvalue of the matrix A(x̄ ) = nS is known, see (Anderson, 2003,

§Theorem 13.5.1). From this theorem we can say that

p
n
�bu − P∗p

�→ Np

 
0,

p∑
k=1,k 6=p

λpλk�
λp −λk

�2 P∗k P∗>k

!

when the data generating covariance matrix Σ has P∗1 , P∗2 , . . . , P∗p as the eigenvectors corresponding

to the ordered eigenvalues λ1,λ2, . . . ,λp.

4.2 A Structured Covariance Model Without Joint Constraint

In this section, we modify our problem to better understand the structured covariance model

by moving away from the joint constraint and model the covariance matrix directly under a similar

constraint. Here the constraint is on the covariance matrix only i.e.

Σu = u (4.2.1)

where u is some unknown vector and not the mean unlike our original setup. For the sake of sim-

plicity we assume that the mean vector µ= 0 and u is NOT related to µ anymore. We are going to

show that under this set up we can still use the structured covariance modeling with the covariance

matrix Σ being a function of u and compute the MLE with almost identical computation. In that

sense, this can be seen as a corollary of the computation of section 4.1.

To emphasize the difference, the model in (2.6.1) still holds in this setup under the constraint

(4.2.1). The orthogonal matrix P calculated in the same way as before as a function of u because

the structured covariance model treats u as a vector without using any property of µ. In this sense

the constraint is no longer a joint constraint and we are left with a functional covariance model.
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4.2.1 MLE of u and λ in Model (4.2.1)

Let x1, x2, . . . , xn be a sample of size n from Np(0,Σ), where Σ is parameterized as in (2.6.1)

with X being the n × p data matrix. Unfortunately the task of maximization of the likelihood

function is difficult since it involves computation of the derivative (a nonstandard quadratic form

due to the dependence of Σ on u) of x>Σ−1(u)x with respect to u. Then, the log-likelihood can

be written as

l(u,λ | X)∝−n
2

p−1∑
i=1

log(λi)− 1
2

�
n∑

j=1

x>i Σ
−1x i

�
(4.2.2)

∝−n
2

p−1∑
i=1

log(λi)− 1
2

Tr
�
D−1B(X , u)

�
∝−n

2

p−1∑
i=1

log(λi)− 1
2

�
B(X , u)11 +

p−1∑
i=1

B(X , u)(i+1)(i+1)

λi

�
, (4.2.3)

where B(X , u) = P>(u)A(0)P(u) and A(0) =
∑n

i=1 x i x
>
i = nS as before, where S is the uncon-

strained MLE of the covariance matrix of normal distribution.

Evidently, maximization of the log-likelihood function with respect to u is more challenging

than that with respect to λ. This suggests and we propose approximating the MLE of the parame-

ters using the following three (non-iterative) steps:

1. Differentiate the log-likelihood function to obtain the MLE of λi’s as a function of u.

2. Compute the profile log-likelihood.

3. Find a lower bound for the profile log-likelihood and maximize it to obtain the approximate

MLE of u. Use the latter to compute the approximate MLE of the eigenvalues.

Next, we provide further details about implementing these three steps.

Step 1: For a given u, differentiating the log-likelihood in (4.2.3) with respect to λi, we obtain

bλi =
B(X , u)(i+1)(i+1)

n
. (4.2.4)
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Note that the estimates of the eigenvalues are always non-negative.

Step 2: Substituting for bλi in the log-likelihood (4.2.3), the profile likelihood of u turns out to be

l(u, bλ | X)∝−n
2

p−1∑
i=1

log

�
B(X , u)(i+1)(i+1)

n

�
− 1

2
[B(X , u)11 + n(p− 1)] (4.2.5)

Denoting the columns of V by Vi for i = 1,2, . . . , (p− 1), then the diagonal entries of the B(X , u)

are

�
B(X , u)11, B(X , u)22, . . . , B(X , u)p,p

	
=
¦

u>A(0)u, V>1 A(0)V1, . . . , V>p−1A(0)Vp−1

©
.

In spite of this, the profile log-likelihood is hard to differentiate as a function of u, in general,

when we are not assuming any specific form for the matrix V .

Step 3: We find a workable lower bound for (4.2.5) and maximize it with respect to u to obtain an

approximate MLE for u. Alternatively, this amounts to assuming that the first sum in the profile

likelihood (4.2.6) is constant. The expression V>i A(0)Vi is a quadratic form of the matrix A(0) =∑n
j=1 x j x

>
j and can be bounded by its largest eigenvalue (Rao, 1973, §1f.2.1). Consequently, we

arrive at the lower bound of the profile log-likelihood in (4.2.5) as follows:

l(u,bc0,λ | X)∝−n
2

p−1∑
i=1

log

�
V>i A(0)Vi

n

�
− 1

2

�
u>A(0)u + n(p− 1)

�
≥ −n(p− 1)

2
log

�
λ1 {A(0)}

n

�
− 1

2

�
u>A(0)u + n(p− 1)

�
= h(u) (4.2.6)

Evidently, the lower bound denoted by h(u) is maximized by minimizing the quadratic ex-

pression inside the second bracket. Since u 6= 0 and h is a quadratic function of u, the maximum

occurs when u is the eigenvector corresponding to the smallest eigenvalue of the matrix A(0). As

such the approximate MLE of u is unique only up to a sign.
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Even though the computed value of bu is not the exact MLE, it is still a good approximation.

The approximate maximum likelihood estimate of the eigenvalues are obtained by plugging in the

approximate MLE of u in (4.2.4).

In this context, we can find out the distribution of MLE approximation of the unknown param-

eters in the model. We know that x i ∼ Np(0,Σ) which tells us that

A(0) =
n∑

i=1

x i x
>
i ∼Wishartp(Σ, n)

nbλi = P>i (u)A(0)Pi(u) | u ∼ Wishart1
�
P>i (u)ΣPi(u), n

�
nbλi

Pi(u)>ΣPi(u)

����� u ∼ χ2
n (4.2.7)

The main difference between this computation and the one in Section 4.1 are the following:

1. In Section 4.1 u is a function of the mean direction µ. Here µ = 0 and u is an unknown

quantity not related to µ.

2. The expression of MLE of λi: Previously it was a function of the diagonal entries of matrix

B(X , c0, u). Here the corresponding matrix is B(X , u). Since µ = 0, there is no c0 here and

the B matrix is a function of A(0) instead of A(c0u).

3. The P matrix remains the same as before.

4. The simplification in equation (4.1.8) is no longer required and the first diagonal entry of the

B matrix involves A(0) instead of A(x̄ ).

5. Finally the estimate of u is the eigenvector corresponding to the lowest eigenvalue of the

matrix A(0) instead of A(x̄ ).

4.3 Bayesian Estimation of (µ,λ) in 2.6.1

Here we propose a new prior on (µ,λ) in 2.6.1 and provide the details of calculation of MAP

estimators in two ways.
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4.3.1 The Mean-Eigenvalue Priors

A convenient prior distribution on the mean vector is the multivariate normal and the inverse

gamma on the ordered eigenvalues. The latter prior comes naturally from the shrinkage inverse

Wishart prior of (Berger et al., 2020, §3.2) as the conditional distribution of eigenvalues given the

matrix of eigenvectors (see section 2.6.3 for detailed discussion), see also Hoff (2009a) (section

3.3). More specifically, our proposed prior is:

µ | D ∼ Np(µ0, D/κ0) and λi ∼ Inverse-gamma(a− 1, ci/2), (4.3.1)

where a, ci’s are the hyperparameters. Setting H0 = diag(1, c1, c2, . . . , cp−1), then the posterior

distribution has the form

p(µ,λ | X)∝
� p−1∏

i=1

λi

�− n+1+2a
2

exp
�
−1

2
Tr
�
D−1HN

	�
(4.3.2)

with HN = B(X ,µ)+κ0(µ−µ0)(µ−µ0)>+H0. Here B(X ,µ) has the same expression as B(X , c0, u)

which appeared in Section 2.

One needs to generate from this posterior distribution when computing the Bayesian point

estimates, credible intervals and various other quantities. We show that Metropolis-Hastings within

Gibbs sampling is possible here and suitable for our goals (Brooks et al., 2011, §1.12.10).

4.3.2 Gibbs Sampling

The Gibbs sampler (Gelfand and Smith, 1990) method is a numerical technique for sampling

from the joint posterior distribution. Given an initial vector, the Gibbs sampling proceeds by sam-

pling from the conditional posterior distribution. More generally, if the full conditional posterior

distribution in any Gibbs step is of a non-standard form, using MH (Metropolis-Hastings) step is

convenient (Brooks et al., 2011). The technique is known as Metropolis-Hastings within Gibbs

Sampling or alternatively as single-component Metropolis-Hastings sampling as follows:

1. Since p(D | µ, X)∝ p(µ,λ | X) has an Inverse-Gamma distribution, the orderd eigenvalues
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are generated from independent Inverse Gamma
�

n+2a−1
2 , c∗i /2

�
where c∗i is the i-th diagonal

entry of HN matrix.

2. Generate from p(µ | D, X) using the MH algorithm with a proposal distribution q selected

as

q
�
. | µ(i−1)

�
= Np

�
µ(i−1),

1
n

P
�
µ(i−1

�
DP>

�
µ(i−1)

��
.

More concretely, the steps of MH within Gibbs algorithm in our context are as follows:

Algorithm 2 MH within Gibbs for generating samples from the posterior distribution

1: Start with µ(0) = x̄ .

2: Repeat s times: j − th step

3: Generate λ( j)i ∼ IG
�

n+2a−1
2 , c∗i /2

�
to form D( j).

4: Start with µ( j−1), Repeat MH Step l times: k− th step

5: Generate µ∗ ∼ q
�
. | µ(k−1)

�
6: Calculate

r
�
µ∗,µ(k−1)

�
=min

¨
1,

p
�
µ∗,λ( j) | X�q

�
µ(k−1) | µ∗�

q (µ∗ | µ(k−1)) p (µ(k−1),λ( j) | X)
«

7: Generate u∼ U(0,1)

8: Set µ(k) = µ∗ if u< r
�
µ∗,µ(k−1)

�
else µ(k) = µ(k−1)

9: Set µ( j) = µ(l)

10: Collect (µ( j),λ( j)) for j = 1,2, . . . , s

11: End

4.3.3 Approximation of MAP through a Lower Bound

The Gibbs sampling is computationally challenging and the time complexity increases expo-

nentially with the dimensions. We follow the steps Section 2 to approximate the MAP estimator
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using a lower bound for the log posterior density. The main difference is in the maximization step

of the lower bound as a function of u where it is not as straightforward as the MLE case and does

not have a closed-form. So, we resort to an iterative modified Newton-Raphson algorithm. Using

µ= c0u where c0 ∈ R as before we arrive at

log p(u, c0,λ | X)∝−t
p−1∑
i=1

logλi − 1
2

�
f (c0) + Tr (D−1H0)

�
(4.3.3)

∝−t
p−1∑
i=1

logλi − 1
2

�
(HN )11 +

p−1∑
i=1

(HN )i+1,i+1

λi

�
(4.3.4)

where t = n+1+2a
2 and f (c0) =

∑n
i=1(x i − c0u)>Σ−1(x i − c0u) + κ0(c0u − µ0)>D−1(c0u − µ0).

Following similar calculations as in (4.1.3), the estimates of c0 and the eigenvalues in terms of the

mean direction are as follows:

bc0 =
nu> x̄ +κ0u>D−1µ0

n+ κ0u>D−1u
, bλi =

(HN )i+1,i+1

2t
(4.3.5)

where HN = B(X , c0, u) + κ0(c0u − µ0)>D−1(c0u − µ0) + H0. Here the expression of bc0 and bλi

are intertwined. So we are doing the following calculation with the aim to propose an iterative

algorithm for the MAP estimators. We will use equation (4.3.5) and (4.3.12) as our updating

equation.

Using the expression of bλi from equation (4.3.5) in the log posterior likelihood function we

obtain the following analogue of the profile likelihood in (4.1.5):

log p(u, c0, bλ | X)∝−t
p−1∑
i=1

log

�
(HN )i+1,i+1

2t

�
− 1

2

�
(HN )11 + (p− 1)t

�
(4.3.6)

where the diagonal entries of HN are

(HN )i+1,i+1 =


u>A(c0u)u + κ0 (c0u −µ0)

2
1 + (H0)1,1 for i = 0

V>i A(0)Vi +κ0 (c0u −µ0)
2
i+1 + (H0)i+1,i+1 for i 6= 0 and ∀c0

. (4.3.7)
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This follows from the expression of the matrix B(X , c0, u) in equation in (4.1.8) and the definition

of HN . We observe the following

(HN )i+1,i+1 ≤ λ1 {A(0)}+ κ0‖c0u −µ0‖2+(H0)i+1,i+1

= mi + κ0‖c0u −µ0‖2 for i 6= 0 and ∀c0 ∈ R. (4.3.8)

For a given value of c0, equation (4.3.6), provides a lower bound h(u), which we will maximize to

approximate u. This is equivalent to minimizing −h(u). We apply Newton - Raphson algorithm

(Lange, 2013) to obtain an update for u. The calculation of derivatives are shown below.

log p(u, c0, bλ | X)≥ h(u),

− h(u) = t
p−1∑
i=1

log

�
mi +κ0‖c0u −µ0‖2

2t

�
+

1
2

�
u>A(c0u)u + κ0‖c0u −µ0‖21+m1

�
, (4.3.9)

−∇h(u) = t
p−1∑
i=1

4tκ0c0(c0u −µ0)
mi +κ0‖c0u −µ0‖2 + [A(0)u − c0nx̄ +κ0c0(c0u −µ0)] , (4.3.10)

−∇2h(u) = t
p−1∑
i=1

4tκ0c0

�
(mi +κ0‖c0u −µ0‖2)I − 2(c0u −mu0)(c0u −µ0)>

�
{mi +κ0‖c0u −µ0‖2}2 ,

+
�
A(0) + κ0c2

0(c0u −µ0)(c0u −µ0)
>� (4.3.11)

Thus, the updating equation for the mean direction is

u(k+1) = u(k) − �∇2h(u)
�−1∇h(u) (4.3.12)

Due to the concavity of the lower bound, Newton’s method is an appealing choice in our case.

However there are two potential problems with Newton’s method (Lange, 2013, §10.3). First, it

may be computationally expensive to invert the second derivative matrix in each step. Second,

the Newton’s method is not really a ascent algorithm in the sense that h
�
u(k+1)

�
> h

�
u(k)

�
for a

concave function. The second problem can be remedied by modifying the increment such that it is
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a partial step in the ascent direction. Let us denote:

v =
�∇2h(u)

�−1∇h(u) (4.3.13)

The idea is to take a sufficiently short increment in the direction of v . If
�
u(k) −αv

�
shows incre-

ment in h(u) value, we update our mean vector in the iteration, otherwise we look at
�
u(k) −α j v

�
for j = 1,2, . . . until we observe an increment. Due to the good performance of the MLE, we

use the MLE of c0 and u as our initial values which make the convergence fast. Based on (4.3.5)

and (4.3.12), an iterative algorithm for computing the approximate MAP is summarized in the

following algorithm:

Algorithm 3 MAP Approximation

1: Initialize: Start with c(0)0 =MLE of c0, u(0) =MLE of u and λ(0)i =
HN(c(0),u(0))i+1,i+1

2t

2: For k→ (k+ 1)

3: Update c(k+1) and λ(k+1)
i from equation (4.3.5)

4: For j→ ( j + 1)

5: u( j) = u(k) and v ( j) =
�∇2h(u( j))

�−1∇h(u( j))

6: For l → (l + 1)

7: u( j+1) = u( j) −αl v ( j)

8: If h(u( j+1))> h(u( j))

9: Accept the update of u

10: Break

11: Else Change αl → αl+1

12: If ‖u( j+1) − u( j)‖< ε
13: u(k+1) = u( j+1)

14: Break

15: If h(uk+1)< h(u(k))

16: Break

17: Get the final value of c0, λ and u.
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18: End

This algorithm produces the MAP approximation of the eigenvalues and the mean vector. The

continuity of the estimate of the covariance matrix, shown in Lemma 6, ensures that the covariance

estimate will converge with the convergence of the mean direction vector u.

Lemma 6. If V(u), described after (2.6.1) is continuous, then the approximate MAP of the covari-

ance matrix Σ is also a continuous function of u.

Proof. If V(u) is a continuous function of u, then each column of V , V j is also continuous. This

implies diagonal entries of HN and in turn the MAP estimate of the eigenvalues are also a contin-

uous function of u. The claim follows since the MAP of Σ given by

bΣ= uu> +
p−1∑
i=1

bλiViV
>
i = uu> +

p−1∑
i=1

(HN )i+1,i+1

n
ViV
>
i (4.3.14)

is sum of continuous functions of u.

48



5. SIMULATIONS

In this section, we are going to describe the simluation studies for the methods described in

section 3 and section 4 both in two subsections.

5.1 Simulation Experiments for Iterative Methods with Lagrange Multiplier in Section 3

Through several simulation experiments, we assess the performance of the following three

iterative methods and our modified estimators: 1. Standard MLE, 2. Standard MLE with explicit

calculation of Lagrange multiplier (denoted by S&C), 3. The Aitchison and Silvey (1958) iterative

method (denoted by A&S) as described in Section 3.

5.1.1 The Simulation Set up:

We have taken sample size and dimension to be (n, p) = (50,5), (50,25), (100,10), (300,30).

Risks are approximated by averaging the losses for 100 independent replications in each of the four

combinations of (n, p). In all cases the data generation mechanism and the risk function are kept

the same, we have used Frobenius loss as our default loss function and calculated Stein’s loss in

some specific cases.

For the parameters of the Gaussian distributions used for data generation we take the entries

of the mean vector µ to be values of independent standard Gaussian variables. For the covariance

matrix, we start withΨ= LL> where L is a lower triangular matrix with the diagonal entries gener-

ated from N(5,1) and standard normal for the off-diagonal entries. The larger diagonal entries of

L ensure positive-definiteness of Σ. Since such (µ,Ψ) do not necessarily satisfy conditions (2.2.1),

the covariance matrix is modified first by applying (3.3.1) to (µ,Ψ).

The performance of the estimators is assessed using the scaled L2 risk (Ledoit and Wolf, 2004b,

§3.1):

R(µ, bµ∗) = E�1
p
‖bµ∗ −µ‖2F� , R(Σ, bΣ∗) = E�1

p

bΣ∗ −Σ2

F
�

,
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where bµ∗ and bΣ∗ are the final modified estimators described in Section 3.3.

5.1.2 Simulation Results from the Three Iterative Methods:

5.1.2.1 The Standard MLE:

The iterative method for computing the maximum likelihood estimator described in Section

3.1.1 does not always converge. Since convergence of the four sets of parameters simultaneously

is unlikely, the convergence criterion used here is to stop iterations if at least two of the parameters

converge. In most cases the iterations for µ and α1 converge, but the rate of decrease of Frobenius

risk for estimatingΣ is slow in successive iteration. In the simulations we have taken the maximum

number of iterations to be 1000. When the convergence does not happen after 1000 iterations, we

take the output at the 1000-th iteration as the estimator and pass it through the Algorithm 1 for

M3 to arrive at the final estimator. This method referred to as the standard MLE (SMLE), involves

iterative updating of the Lagrange multipliers. In contrast, the next two iterative methods involve

exact calculation of the Lagrange multiplier.

5.1.2.2 The S&C Method:

The S&C method is described in Section 3.1.2. It does not guarantee the positive definiteness

of the estimate of the covariance matrix. Thus, we only take the cases where the estimate is positive

definite for the risk calculation, otherwise the corresponding simulation run is ignored (see Table

5.1)
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Table 5.1: No of Times the Estimate is Positive Definite

n p

No of cases with

positive definite

covariance estimate

50 5 90

50 25 100

100 10 99

300 30 100

Moreover, the method does not guarantee exact satisfaction of the constraints, so we apply the

Algorithm 1 to the estimates using M3 with two types of clustering, they produce similar results

with K-Means clustering performing slightly better. Since convergence is a recurring issue, we

have taken the maximum number of iterations in both the loops of the "double iteration" to be 100,

and the value of ε to be 0.1. From the Table 5.2 we can see that the S&C method is losing very

little while achieving the satisfaction of the joint constraint (2.2.1).

5.1.2.3 The A&S Method:

The iterative method for calculation of the constrained MLE described in Section 3.2 operates

inside a closed ball of radius δ = ‖θ (0)‖ around the true parameter. Hence choosing a good initial

value for the iterations to run is essential and here we chose θ (0) =
�
x̄>, vec(S)>

�>
.

Suppose in the i-th stage we have the value of the parameter vector to be θ (i)0 = a and in

the (i + 1)-th step it moves to a point θ (i+1)
0 = b outside the ball. Then, we find the point c =

(1− t)θ (0)+ tb with t = δ‖θ (0)−b‖ resides on the ball, and continue the iteration with the new point

c instead of b. This can be seen from the Figure 5.1.
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Figure 5.1: This pictorial representation shows how we update when the iteration goes outside the
ball in Aitchison and Silvey (1958) method

In each iteration we symmetrize the update for the covariance matrix. We take only those

simulation runs where iterations produce a positive definite output. The interesting part is that the

positive definiteness is achieved after symmetrization in almost all. The performance is close to

the S&C method as can be seen from Table 5.2.
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Table 5.2: Risks for the three iterative methods of finding constrained MLE, modified by Algorithm
1 (M3) with K-Means. SMLE: standard MLE; S&C is the method of Strydom and Crowther
(2012), and A&S denotes the method of Aitchison and Silvey (1958).

Mean Sigma - Frobenius

Method n p MLE M3 MLE M3

SMLE 50 5 0.5313 0.5463 1.2632 0.4212

S&C 0.4817 0.5206 0.3553 0.3057

A&S 0.4389 0.6296 1.2246 0.6097

SMLE 50 25 0.7998 0.8 6.1632 1.5567

S&C 0.7913 0.8158 1.073 1.5678

A&S 0.1691 0.8643 2.4889 2.3021

SMLE 100 10 0.6709 0.673 2.3789 0.4617

S&C 0.6468 0.6849 0.3797 0.3963

A&S 0.2814 0.6797 1.5451 0.8660

SMLE 300 30 0.8071 0.8072 4.9507 0.5507

S&C 0.8014 0.8238 0.5117 0.5477

A&S 0.1575 0.9639 2.1536 0.8122

5.1.3 An Example: Estimates of the Historic Position of Earths Magnetic Pole

The dataset collected by Schmidt (1976) contains the site mean direction estimates of the

Earth’s historic magnetic pole from 33 different sites in Tasmania. The longitude and latitudes

from the data set is transformed to X1, X2, . . . , X33 on a three dimensional unit sphere (Preston

and Paine, 2017). The angualr gaussian distribution family is the marginal directional component

of a multivariate normal distribution with ESAG distribution as a subfamily. Paine et al. (2018)

provided strong evidence in favor of ESAG distribution which satisfy the constraint over isotropic

angular gaussian distribution while analysing this dataset. This inspire us to make normality as-
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sumption under the constraint similar to ESAG distribution disregaring the spherical nature of the

tansformed dataset. The constrained maximum likelihood estimate calculated using the numerical

method by Aitchison and Silvey (1958) with 1000 iterations is:

µ=
h
−0.593 0.167 0.787

i
, Σ=


0.670 0.235 −0.299

0.235 2.333 −0.106

−0.299 −0.106 0.797


which is comparable to the maximum likelihood estimate calculated using eeliptically symmet-

ric angular Gaussian distribution with a specific parametrization in three dimension (Paine et al.,

2018). One main advantage is that our calculation is not restricted to three dimension.

5.2 Simulation Experiments for the Estimation of the Structured Covariance Model in Sec-

tion 4

In this section, we perform several simulations to assess the performance of the structured

covariance model described in Section 4. We focus on mainly on the following three cases:

1. MLE approximation through lower bound maximization (see section 4.1) of the profile like-

lihood function,

2. MAP estimator with normal-inverse gamma prior (see section 4.3.1) approximated through

Gibbs sampling in section 4.3.2, and

3. MAP approximation (see section 4.3.3) through posterior lower bound

by computing their risks. Then the three estimators are compared with the MAP estimator with

normal-inverse Wishart prior (see section 2.6.2). We have used RStudio 1.3.1093 and R 4.0.3 on a

64 bit 4 Core Windows 10 laptop for all our simulations.

5.2.1 The Simulation Set up:

We have kept the data generation mechanism and the risk function same as in Section 5.1 with

the sample sizes and dimensions to be n = 50,100, 300 and p = 3,5,10, respectively. The risks
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are approximated by averaging the losses for 100 independent replications in each of the nine

combinations of (n, p). The parameters of the Gaussian distributions used for data generation are

selected in the following way:

• the entries of the mean vector µ are taken to be independent standard Gaussian variables,

• the covariance matrix is generated from Ψ= LL> where

L =


Li j ∼ N(0,1) for i 6= j,

Li j ∼ N(5,1) for i = j.

The larger diagonal entries of L ensure positive-definiteness of the modified covariance ma-

trix Σ.

• Since such (µ,Ψ) does not necessarily satisfy conditions (2.2.1), the covariance matrix Σ is

constructed from applying Lemma 4 of Kundu and Pourahmadi (2020) on (µ,Ψ).

The performance of the estimators is assessed using the Frobenius (scaled L2) risk as in Ledoit

and Wolf (2004b, §3.1):

R(µ, bµ∗) = E�1
p
‖bµ∗ −µ‖2F� , R(Σ, bΣ∗) = E�1

p

bΣ∗ −Σ2

F
�

,

where bµ∗ and bΣ∗ are the final estimators in each of the cases (see Tables C.1 and C.2). However,

we have also used Förstner and Moonen (2003) distance metric to assess the performance of the

estimate of the covariance matrix. The distance between two symmetric and positive definite

matrices Σ1 and Σ2 is defined by (denoted by "MF" in the following tables):

d(Σ1,Σ2) =

√√√ p∑
i=1

ln2λi(Σ1,Σ2)
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where λi(Σ1,Σ2) are the eigenvalues of the matrix Σ1Σ−1
2 .

In this thesis we are dealing with Gaussian distribution. Hence for assessing the performance

of the estimator we have also calculated the Kullback-Leibler divergence between the original

distribution and the estimated one. The formula for KL divergence between P1 = N(µ1,Σ1) and

P2 = N(µ2,Σ2) is as follows Duchi (2007):

D(P1 || P2) =
1
2

�
log

� | Σ2 |
| Σ1 |

�
− n+Tr

�
Σ−1

2 Σ1

�
+ (µ2 −µ1)

>Σ−1
2 (µ2 −µ1)

�

5.2.2 Simulation Results:

Here we provide the details of the simulation studies for the MLE approximation, MAP es-

timator computed through Gibbs sampling and using a lower bound of the posterior density. We

have used normal-inverse Wishart as a yardstick to compare the risk of our estimators (MLE ap-

proximation and the two MAP’s).

5.2.2.1 Comparison between constrained and unconstrained MLE

The normal-inverse Wishart prior is very common in statistical literature, it is still in the

Bayesian paradigm. From a frequentist perspective, the unconstrained MLE of Gaussian distri-

bution i.e. (x̄ ,S) might be another standard for comparing our estimator. Therefore, we have first

computed the ratio of risks (L2 loss for mean and Förstner and Moonen (2003) loss for Σ) between

the unconstrained MLE and constrained approximate MLE.

From this simulation (see Table 5.3), we can see that the constrained estimation of mean vector

performs really well and the constrained estimator of the covariance matrix performs equivalent

for smaller values of n. However, when n is very large, the sample covariance is generally a good

estimator and the constrained estimator for covariance suffers.
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Table 5.3: Risk ratio of MLE approximation (through a lower bound) relative to unconstrained
MLE i.e. (x̄ ,S)

n p
µ

L2

Σ

(MF)
Time(sec)

50 3 0.1578 0.9238 7.12

50 5 0.118 1.0297 7.46

50 10 0.1571 1.1425 7

100 3 0.1242 1.0483 6.79

100 5 0.1183 1.3464 7

100 10 0.1389 1.5521 7.41

300 3 0.1425 1.3915 7.56

300 5 0.1206 2.1531 7.28

300 10 0.1335 2.6936 7.54

5.2.2.2 MLE and MAP Approximation using a Lower Bound

The structured covariance matrix defined in equation (2.6.1) does not allow us to calculate

the maximum likelihood estimate and the MAP estimator directly due to the intractability of the

likelihood function. Hence, we approximate them through a lower bound described in Sections 4.1

and 4.3.3, respectively. The approximation of MLE performs well.

A modified version of the Newton-Raphson method (described in the paragraph following

equation (4.3.12)) converges relatively fast i.e. two to five iterations for MAP when initialized

with the approximation of MLE of c0 and u.
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Table 5.4: Risk ratio of MLE and MAP approximation (through a lower bound) relative to the MAP
of normal-inverse Wishart (using L2 norm for mean, MF norm for covariance and KL Divergence)

MLE Approx.

Risk Ratio

MAP Approx.

Risk Ratio

Kullback - Leibler

Divergence
Time

(Sec.)

n p µ
Σ

(MF)
µ

Σ

(MF)
MLE MAP

50 3 0.233 0.7734 0.2796 0.8658 0.4631 0.6956 6.53

50 5 0.2169 0.8137 0.2169 0.9489 0.4531 0.7469 6.35

50 10 0.3615 0.8177 0.3615 0.9447 0.3684 0.7221 6.5

100 3 0.2019 0.9955 0.2143 1.0466 0.7066 0.846 6.33

100 5 0.2057 1.0999 0.2166 1.1676 0.8775 1.1166 6.49

100 10 0.3396 1.2577 0.3396 1.2849 1.0195 1.3628 6.62

300 3 0.2005 1.2115 0.2005 1.2248 1.1582 1.2089 7.1

300 5 0.1942 1.9514 0.1942 1.9401 2.8434 2.9394 6.66

300 10 0.3434 2.4899 0.3434 2.4244 4.3709 4.547 6.91

The performance of these approximations (both MLE and MAP), assessed by the risk, are

better than the Gibbs sampling technique discussed in the next section with the added benefit of

being significantly faster (see the last column of Table 5.4). The usual observations like the decline

of risk as n increases and p decreases are generally true. One interesting observation is that the

performance of MLE approximation is not significantly different from the MAP approximation.

5.2.2.3 Gibbs Sampling

The risk of the MAP estimator is computed through Gibbs sampling as described in Section

4.3.2. Let us denote the initial values to be
�
µ(0),λ(0)

�
. We have chosen µ(0) = µ0 = x̄ , H0 =

I ,κ0 = 1.5 and a = (p + 1). The first iteration takes in µ(0) and calculates the value of HN as

described after equation (4.3.2). Using this, we can generate the value of λ(1) from the distribution

p(D | µ, X) (see step 1 of Gibbs sampling in section 4.3.2) which by construction makes sure that
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each eigenvalue is nonnegative. We can easily see that the initial value of λ i.e. λ(0) does not affect

the Gibbs sampling.

In the MCMC, the chain for the eigenvalues depend on the previous iteration only through the

generation of mean vector. This is happening because the parameters for the conditional distribu-

tion of the eigenvalues are (n+ 2a − 1)/2 and c∗i /2 where c∗i ’s are the diagonal entries of the HN

matrix and hence a function of the mean vector.

To illustrate the algorithm, we have generated pairs of (µ,λ) from the posterior distribution by

MH within Gibbs sampling. We find out the posterior maximizing (µ,λ) pair by exhaustive com-

putation of posterior density at each pair. This is possible because the posterior density has a closed

form barring the normalizing constants. We take the value of the mean vector from the posterior

maximizing pair, set it as our MAP estimate for the mean vector discarding the corresponding λ

and make a final update on λ. Given the estimate of the mean vector, the posterior conditional

distribution of λ is inverse gamma and has a known mode. Using this, we can calculate the best

eigenvalue vector bλ to be bλi =
c∗i

n+1+2a for i = 1, 2, . . . , (p − 1). The newly calculated value bλ,

accompanied by the MAP estimate of µ constitute our MAP estimator
�bµ, bλ�. The performance of

such an estimator is assessed through a simulation study (see Table 5.5).

We have generated 100 samples from the posterior distribution using the MH within Gibbs

algorithm described in section 4.3.2. We repeat this experiment 100 times and approximate the

risk. The performance of the Gibbs sampling is displayed in the following Table 5.5. We can

observe that the performance is improving as the number of observations (n) increase. For low

dimensional cases the risk of the MAP estimator of the covariance matrix calculated from Gibbs

sampling is equivalent and better as compared to its normal-inverse Wishart counterpart.

The time complexity of the MAP approximation increases with the increase in dimension

demonstrated by Figure 5.2. The acceptance rate of the MH step within Gibbs sampling is rea-

sonable and decreases with in increment of dimension.
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Table 5.5: The risk ratio of MAP approximation (from MH within Gibbs sampling) relative to the
MAP of normal-inverse Wishart (using L2 norm for mean and MF norm for covariance)

Normal - Inverse Gamma

Risk Ratio AccProb
Time

(Sec.)

n p
µ

(L2)

Σ

(MF)
KL Div

50 3 1.1173 0.7851 0.7 0.4135 980.52

50 5 1.0824 0.981 1.0976 0.2822 2029.15

50 10 1.2423 0.8042 0.774 0.1218 13574.59

100 3 1.0542 0.9613 0.9677 0.4352 910.92

100 5 1.1677 0.9824 0.9179 0.2908 1901.41

100 10 1.1963 1.2124 1.6632 0.1245 12183.56

300 3 1.1661 0.8392 1.0116 0.4287 1256.81

300 5 1.5729 1.4729 2.2182 0.2895 3215.97

300 10 1.5533 3.0386 10.9107 0.1294 9385

Uncertainty Quantification: In Gibbs sampling we did a small experiment to better understand

the uncertainty in the model using the credible interval in a two dimensional model. We select

n= 100, and p = 2. We know the structure of the covariance matrix for p = 2 from Appendix C.2

when we select the mean vector to be µ = (1, 1)> and ρ = 0.2. We generate 1000 samples from

the posterior distribution to find out the following credible interval in Table 5.6:
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Table 5.6: Credible Interval for p = 2

µ1 µ2 λ

Model Values 1 1 0.6667

Lower Bound 0.7840 0.7668 0.5402

Upper Bound 1.150 1.1245 0.9274

Time for Gibbs Sampling In order to understand how the time to run the Gibbs sampler related

to the dimension of the data, we have run a small experiment. In this experiment we have generated

100 data points of various dimensions and looked at the time taken to find out the MAP estimator.

We have generated 10 samples from the posterior distribution and repeated the experiment three

times. Under this set up the time taken to run the Gibbs sampler is plotted below in Figure 5.2.

Figure 5.2: Time taken to run the Gibbs sampler and calculate the estimate

5.2.2.4 An Example: Estimates of the Historic Position of Earths Magnetic Pole

The dataset collected by Schmidt (1976) contains the site mean direction estimates of the

Earth’s historic magnetic pole collected from 33 different sites in Tasmania. The longitude and

latitudes from the data set is transformed to X1, X2, . . . , X33 on a three dimensional unit sphere

(Preston and Paine, 2017). The angualr gaussian distribution family is the marginal directional
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component of a multivariate normal distribution with ESAG distribution as a subfamily. Paine

et al. (2018) provided strong evidence in favor of ESAG distribution which satisfy the constraint

over isotropic angular Gaussian distribution while analyzing this dataset. This inspire us to make

normality assumption under the constraint similar to ESAG distribution disregarding the spheri-

cal nature of the transformed dataset. The constrained maximum likelihood estimate under the

structured covariance model is:

bu> = h−0.44 0.32 0.75
i

, bΣ=


0.95 −0.01 −0.03

−0.01 1.06 −0.03

−0.03 −0.03 1.00


which are comparable to the maximum likelihood estimate calculated using elliptically symmetric

angular Gaussian distribution with the parametrization in three dimension (Paine et al., 2018) i.e.

bu> = (−0.56,0.24,0.79) and bΣ =


1.31 −0.55 0.40

−0.55 0.85 −0.34

0.40 −0.34 1.39
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APPENDIX A

FIRST APPENDIX

A.1 Proofs of Results:

1. Proof of Theorem 1:

(a) By differentiating the Lagrangian in 1.(a)

L(X ;µ,Σ) = l(X ;µ,Σ) +α1(| Σ−1 | −1)

= c +
n
2

log | Σ−1 | −1
2

Tr
�
A(µ)Σ−1

�
+α1

�| Σ−1 | −1
�

(A.1.1)

with respect to µ and setting to zero leads to bµmle = x̄ . Differentiation with respect to

α1 gives us the condition | Σ−1 |= 1. Using this and setting derivative with respect to

Σ−1 to 0, leads to

∂ L(X ;µ,Σ)
∂Σ−1

=
1
2

�
nΣ− A(µ) + 2α1 | Σ−1 | Σ�

=
1
2
[nΣ− A(µ) + 2α1Σ]

bΣ= A(µ)
| A(µ) |1/p (A.1.2)

Now substituting for the MLE of µ we obtain bΣmle =
A(x̄ )
|A(x̄ )|1/p .

(b) The Lagrangian in 1.(b) is:

L(X ;µ,Σ) = c +
n
2

log | Σ−1 | −1
2

Tr
�
A(µ)Σ−1

�
+α1(| Σ−1 | −1)−α>2

�
Σ−1µ− b

�
(A.1.3)

Rewriting the condition as Σ−1µ = b and |Σ−1| = 1 in the Lagrangian is necessary for
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taking the derivative with respect to Σ−1 in accordance with the standard practice in

the unconstrained case (Bibby et al., 1979, §4.2.2 ). Differentiating with respect to µ

and Σ−1 we have:

∂ L(X ;µ,Σ)
∂ µ

= nΣ−1(x̄ −µ)−Σ−1α2

∂ L(X ;µ,Σ)
∂Σ−1

=
1
2

�
(n+ 2α1)Σ− A(µ)− 2α2µ

>� (A.1.4)

and obtain the MLEs as the solution of the following equations:

µ= x̄ − 1
n
α2, Σ=

A(µ) + 2α2µ
>

n+ 2α1

| Σ−1 |= 1, Σ−1µ= b

(c) The Lagrangian

L(X ;µ,Σ) = c +
n
2

log | Σ−1 | −1
2

Tr
�
A(µ)Σ−1

�
+α1(| Σ−1 | −1)−α>2

�
Ip −Σ−1

�
µ

(A.1.5)

and its derivatives with respect to µ and Σ−1 are:

∂ L(X ;µ,Σ)
∂ µ

= nΣ−1(x̄ −µ)− (Ip −Σ−1)α2

∂ L(X ;µ,Σ)
∂Σ−1

=
1
2

�
(n+ 2α1)Σ− A(µ)− 2α2µ

>� (A.1.6)
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and obtain the MLE as the solution of the following equations:

µ= x̄ − 1
n
(Ip −Σ)α2, Σ=

A(µ) + 2α2µ
>

n+ 2α1

| Σ−1 |= 1, Σ−1µ= µ

2. Proof of Lemma 1

(a) Follows from simple algebra and the definition of eigenvalue:

(ab> + ba>)
�

a
‖a‖ +

b
‖b‖

�
=
�
a>b+ ‖a‖‖b‖�� a

‖a‖ +
b
‖b‖

�
(ab> + ba>)

�
a
‖a‖ −

b
‖b‖

�
=
�
a>b− ‖a‖‖b‖�� a

‖a‖ −
b
‖b‖

�

(b) Let B = B(a, b) = ab> + ba>, and λ j(M) be the j-th largest eigenvalue of M with

M = A+ B. We apply Weyl’s Inequality (Bhatia, 2007, Theorem 8.2) to obtain

λ j(M) = λ j(B+ A)≥ λ j(B) +λp(A)

≥ λp(B) +λp(A)

= (a>b− ‖a‖‖b‖) +λp(A), (By applying the first part.)

where λp(A) > 0. Since B is a rank two matrix its at most two non-zero eigenval-

ues are (a>b ± ‖a‖‖b‖). By applying Cauchy-Schwartz inequality it follows that

these non-zero eigenvalues belong to the range
�
a>b+ ‖a‖‖b‖� ∈ [0,2‖a‖‖b‖] and�

a>b− ‖a‖‖b‖� ∈ [−2‖a‖‖b‖, 0]. This tells us that λ1(B)≥ 0 and λ j(B) = 0 for j =

2,3, . . . , p − 1. Weyl’s inequality (Bhatia, 2007, Theorem 8.2) for j = 2,3, . . . , p − 1,

gives us

λ j(M)≥ λ j(B) +λp(A) = λp(A)> 0

and λ1(M)> 0 trivially.
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This cannot be said for the lowest eigenvalue of M i.e. for j = p, we cannot say

whether (a>b − ‖a‖‖b‖) + λp(A) is positive or not. It depends on λp(A). Therefore

except for the smallest eigenvalue all other eigenvalues of M are positive completing

the proof.

3. Verification of Conditions F1−F4 andH 1−H 3 (Aitchison and Silvey, 1958)

Checking the conditions amounts to calculation of second derivative matrix of the likelihood

function, which in turn verifies the existence of the third derivative as one of the conditions.

Here we present the details of these calculations.

First Derivative:

∂ l
∂ µ
= nΣ−1(x̄ −µ), ∂ l

∂Σ
= −1

2

�
nΣ−1 −Σ−1A(µ)Σ−1

�
(A.1.7)

Second Derivative: The Hessian matrix of the likelihood is:

Hl =


∂ 2 l
∂ µ2

����
p×p

∂ 2 l
∂ µ∂Σ

����
p×p2

∂ 2 l
∂Σ∂ µ

����
p2×p

∂ 2 l
∂Σ2

����
p2×p2


p(p+1)×p(p+1)

.

Next, we calculate the four submatrices.

(a) The first submatrix is

∂ 2l
∂ µ2

= −nΣ−1 (A.1.8)

(b) Since, ∂Σ
−1

∂Σ = −Σ−1 ⊗Σ−1 and ∂Σ−1(x̄−µ)
∂Σ−1 = I ⊗ (x̄ −µ) we obtain the following:

∂ 2l
∂Σ∂ µ

����
p2×p

= − �Σ−1 ⊗Σ−1
�
[I ⊗ (x̄ −µ)] (A.1.9)
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(c) The third submatrix is

∂ 2l
∂ µ∂Σ

����
p×p2

= −1
2
∂

∂ µ
vec

�
nΣ−1 −Σ−1A(µ)Σ−1

�
=

1
2
∂

∂ µ
vec

�
Σ−1A(µ)Σ−1

�
=

1
2

∂ vec
�
Σ−1

�−2nx̄µ> + nµµ>
�
Σ−1

�
∂ µ

=
1
2

�
−2n

∂ vec
�
(Σ−1 x̄ )(Σ−1µ)>

�
∂ µ

+ n
∂ vec

�
(Σ−1µ)(Σ−1µ)>

�
∂ µ

�
=

1
2

�
−2n

∂ (Σ−1µ)> ⊗ (Σ−1 x̄ )>
∂ µ

+ n
∂ (Σ−1µ)> ⊗ (Σ−1µ)>

∂ µ

�
=

1
2

�−2nΣ−1 ⊗ (Σ−1 x̄ )> + nΣ−1 ⊗ (Σ−1µ)> + n(Σ−1µ)> ⊗Σ−1
�

(A.1.10)

(d) Following the calculations of Chaudhuri et al. (2007), we obtain

∂ 2l
∂Σ2

����
p2×p2

=
1
2

�
nΣ−1 ⊗Σ−1 − �Σ−1A(µ)Σ−1

�⊗Σ−1 −Σ−1 ⊗ �Σ−1A(µ)Σ−1
��

(A.1.11)

We have shown the existence of the second derivative and from the above quantities it is

evident the the third derivative exists too. Since multivariate normal has all the moments

(Chacón and Duong, 2015), so we have essentially verified conditions F1−F4. Next, we

verifyH 1−H 3 for the constraint. The simplest way is to express it as h(µ,Σ) = Σµ−µ=
0. Here also we need to check the Hessian matrix of the constraint and its corresponding

bound. We can establish the coordinate wise bound to be 1. The details are as follows:

First Derivative

∂ h
∂ µ

����
p×p

= Σ− I ,
∂ h
∂Σ

����
p2×p

= µ⊗ I (A.1.12)
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We denote the first derivative to be
�
H1
θ

�
p+p2×p

with rank(H1
θ ) = p

Second Derivative:

∂ 2h
∂ µ2

����
p2×p

= 0,
∂ 2h
∂Σ∂ µ

����
p2×p2

= Ip2

∂ 2h
∂ µ∂Σ

����
p3×p

= I ⊗ vec(Ip),
∂ 2h
∂Σ2

����
p3×p2

= 0 (A.1.13)

This gives us

H2
θ

����
(p2+p3)×(p+p2)

=

��
∂ 2h
∂ θi∂ θ j

��
with rank(H2

θ ) = p+ p2

4. Proof of Lemma 2: We assume that µ is fixed and are interested in calculating the direc-

tional derivative of the Lagrangian in (3.2.1) as a function of Σ only in the direction of a

symmetric matrix D. Let us set L(µ,Σ | X) = f (Σ). By the definition of directional deriva-

tive,

∇D f = lim
h→0

f (Σ+ hD)− f (Σ)
h

where h is a scalar. Now since the terms in the Lagrangian are additive, we calculate the

directional derivative of each term separately.

(a) First we focus on the first term ignoring the constant f 1 = log | Σ |.

∇D f 1 = lim
h→0

1
h

log
� | Σ+ hD |
| Σ |

�
= lim

h→0

1
h

log
� | Σ || I + hDΣ−1 |

| Σ |
�

= lim
h→0

1
h

log
�| I + hDΣ−1 |�

= lim
h→0

1
h

p∑
i=1

log
�
1+ hλi(DΣ

−1)
�

(Here λi(D) denote the ith eigenvalue of D)
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= lim
h→0

1
h

� p∑
i=1

hλi(DΣ
−1) +

p∑
i=1

�
log

�
1+ hλi(DΣ

−1)
�− hλi(DΣ

−1)
	�
= Tr

�
DΣ−1

�
(b) The second term ignoring the constant f 2 = Tr

�
SΣ−1

�
.

∇D f 2 = lim
h→0

1
h

Tr
�
S
�
(Σ+ hD)−1 −Σ−1

	�
= lim

h→0

1
h

Tr
�
S
�
Σ−1 −Σ−1(h−1D−1 −Σ−1)−1Σ−1 −Σ−1

	�
= lim

h→0

1
h

Tr
�
S
�−Σ−1(h−1D−1 +Σ−1)−1Σ−1

	�
= lim

h→0

1
h

Tr
�
S
�−hΣ−1(D−1 + hΣ−1)−1Σ−1

	�
= lim

h→0
Tr
�−SΣ−1(D−1 + hΣ−1)−1Σ−1

�
= Tr

�−SΣ−1DΣ−1
�

(c) The third term without the constant is f 3 = Tr
�
(x̄ −µ)(x̄ −µ)>Σ−1

�
. The same

calculation shows that ∇D f 3 = Tr
�−(x̄ −µ)(x̄ −µ)>Σ−1DΣ−1

�
(d) The fourth term f 4 = α>2 (Σµ−µ)

∇D f 4 = lim
h→0

�
α>2 (Σ+ hD)µ−α>2µ−α>2Σµ+α>2 µ

	
h

= lim
h→0

�
α>2 (Σ+ hD)µ−α>2Σµ

	
h

= lim
h→0

α>2 (Σ+ hD −Σ)µ
h

= α>2 Dµ

With these calculations the final directional derivative of the Lagrangian function is:

∇D f = −n
2

Tr
�
DΣ−1

�
+

n
2

Tr
�
SΣ−1DΣ−1

�
+

n
2

Tr
�
BΣ−1DΣ−1

�
+α>2 Dµ
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= −n
2

Tr
�
DΣ−1

�
+

n
2

Tr
�
(S+ B)Σ−1DΣ−1

�
+α>2 Dµ (A.1.14)

where B = (x̄ −µ)(x̄ −µ)>

Now, we calculate the second directional derivative in the direction C which is also a sym-

metric matrix. The first derivative denoted by ∇D f has two terms as a function of Σ. The

corresponding notation for second directional derivative is

∇C∇D f = lim
h→0

∇D f (Σ+ hC)−∇D f (Σ)
h

.

We will calculate the directional derivative of each of the two terms.

(a) The first term ignoring the constant is ∇D f 1 = Tr
�
DΣ−1

�
. This is same as the second

term of the original likelihood function. So by applying the same formula we obtain:

∇C∇D f 1 = −Tr
�
DΣ−1CΣ−1

�
= −Tr

�
ΣΣ−1DΣ−1CΣ−1

�
(b) The second term ignoring the constant is∇D f 2 = Tr

�
(S+ B)Σ−1DΣ−1

�
. By Woodbury-

Sherman matrix formula:

(Σ+ hC)−1D(Σ+ hC)−1 −Σ−1DΣ−1

=
�
Σ−1 −Σ−1(h−1C−1 +Σ−1)−1Σ−1

�
D
�
Σ−1 −Σ−1(h−1C−1 +Σ−1)−1Σ−1

�−Σ−1DΣ−1

=
�
Σ−1 − hΣ−1(C−1 + hΣ−1)−1Σ−1

�
D
�
Σ−1 − hΣ−1(C−1 + hΣ−1)−1Σ−1

�−Σ−1DΣ−1

= −hΣ−1(C−1 + hΣ−1)−1Σ−1DΣ−1 − hΣ−1DΣ−1(C−1 + hΣ−1)−1Σ−1 +O (h2)

Using this result, we get:

∇C∇D f 2 = lim
h→0

Tr
�
(S+ B)(Σ+ hC)−1D(Σ+ hC)−1

�− Tr
�
(S+ B)Σ−1DΣ−1

�
h
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= lim
h→0

Tr
�
(S+ B)

�
(Σ+ hC)−1D(Σ+ hC)−1 −Σ−1DΣ−1

	�
h

= − lim
h→0

Tr
�
(S+ B)Σ−1(C−1 + hΣ−1)−1Σ−1DΣ−1

�
− lim

h→0
Tr
�
(S+ B)Σ−1DΣ−1(C−1 + hΣ−1)−1Σ−1

�
= −Tr

�
(S+ B)Σ−1CΣ−1DΣ−1

�− Tr
�
(S+ B)Σ−1DΣ−1CΣ−1

�
= −Tr

�
(S+ B)Σ−1CΣ−1DΣ−1

�− Tr
�
(S+ B)Σ−1(DΣ−1C)>Σ−1

�
= −Tr

�
2(S+ B)Σ−1CΣ−1DΣ−1

�
Adding these two we obtain the final directional derivative to be:

∇C∇D f =
n
2

Tr
�
ΣΣ−1DΣ−1CΣ−1

�− n
2

Tr
�
2(S+ B)Σ−1CΣ−1DΣ−1

�
= −n

2
Tr
�{2(S+ B)−Σ}Σ−1CΣ−1DΣ−1

�
(A.1.15)

Now if we assume that the mean vector µ is estimated by x̄ , then B = 0. If we further assume

that the estimate of the covariance matrix lies within the set D2S = {Σ is pd, 0≺ Σ≺ 2S}
and C = D, then

∇D∇D f = −n
2

Tr
�
Σ−1/2 {2S−Σ}Σ−1/2Σ−1/2DΣ−1/2Σ−1/2DΣ−1/2

�
= −n

2
Tr
�
Σ−1/2DΣ−1/2Σ−1/2 {2S−Σ}Σ−1/2Σ−1/2DΣ−1/2

�≤ 0 (A.1.16)

Therefore, within D2S the constrained likelihood is strictly concave, but outside this set that

is not the case as shown by the following counter-example:

If Σ /∈ D2S, then there exists a u such that u>(2S−Σ)u ≤ 0. Choosing D = Σuu>Σ then
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∇D∇D f = −n
2

Tr
�
Σ1/2uu>(2S−Σ)uu>Σ1/2

�
= −n

2
u>Σuu>(2S−Σ)u ≥ 0, (A.1.17)

which completes the proof.

5. Covariance error bound in Lemma 5: The error of a new estimate can be bounded in the

following way:

Σ− bΣ∗F ≤ Σ− bΣmap

F + bΣmap − bΣ∗F
bΣmap − bΣ∗F =


�

1− 1
λP

� d∑
i=1
i 6=i0

λiPiP
>
i +

�
λi0

c2
0i0

− 1

� bµ∗bµ∗>
F

Applying triangle inequality :

≤

�

1− 1
λP

� d∑
i=1
i 6=i0

λiPiP
>
i

F +

�
λi0

c2
0i0

− 1

� bµ∗bµ∗>F
=

�����1− 1
λP

�����


d∑
i=1
i 6=i0

λiPiP
>
i

F +
�����
�
λi0

c2
0i0

− 1

������ bµ∗bµ∗>F
(A.1.18)

6. Proof of Equation 3.3.4: This follows from standard regression OLS estimate.

7. Proof of Equation 3.3.5:

f
�
λ
′
S
�
= Tr

��
Σ− bΣ∗�2�

∂ f
�
λ
′
S
�

∂ λik

= −2.Tr
��
Σ− bΣ∗� �bkb>k

��
= 0

=⇒ Tr
�
b>k
�
Σ− bΣ∗� bk

�
= 0

=⇒ b>k Σbk = b>k bΣ∗bk
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=⇒ Òλ′ ik = b>k Σbk (A.1.19)

A.2 Explicit Calculation of the Lagrange Multiplier

We consider finding the MLE under constraints for an exponential family of distributions:

f (X ;θ ) = exp

�
b0(X) +

q∑
i=1

θi Ti(X)− a(θ )

�

where θ = (θ1, . . . ,θq) is the vector of natural parameters and T(X) = (T1(X), T2(X), . . . , Tq(X))

is their complete and sufficient statistics with the following (Lehmann and Casella, 2006)

E [T (X)] = ∂ a(θ )
∂ θ

=m and Cov [T (X)] =
∂ 2a(θ )
∂ θ∂ θ> = V .

Let the constraint on the parameters be expressed as a function h(m) = 0 where h(m) : Rq→ R
and both m and V are functions of θ . Differentiating the Lagrangian function

w(X ;θ ,α2) = log f (X ;θ ) +α2h(m)∝ θ>T (X)− a(θ ) +α2h(m)

with respect to θ and equating it to zero, we obtain

∂ w(X ;θ ,α2)
∂ θ

= T (X)− ∂ a(θ )
∂ θ

+α2
∂ h(m)
∂ θ

= 0

m = T (X) +α2∇m(θ )∇h(m) (A.2.1)

where∇m(θ ) is a q×q gradient matrix and∇h(m) denotes a q×1 gradient vector. The algorithms

proposed in Section 3.1.1 approximates the estimate of Lagrange multiplier within the iterations

so that the iterations are free of the nuisance Lagrange parameters, see Matthews and Crowther

(1995), Strydom and Crowther (2012). The Taylor series expansion of h(m) around T (X) and the

approximation of unknown γ is performed as follows:
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0= h(m) = h(T ) +α2∇h(m)>∇m(θ )∇h(T ) + o(||m − T ||)
α2 = −

�∇h(m)>∇m(θ )∇h(T )
�−1

h(T )

Substituting this value in (A.2.1) we obtain the final approximations for m to be the equation

(3.1.11).

Example: We focus on the constraint Σµ = µ under normal distribution as an example of the

general set up described above. We can rewrite the constraint in terms of a suitable differentiable

h, and as a function of the expectation of the sufficient statistic. The log-likelihood of normal

distribution as in (3.1.1), can also be expressed in terms of natural parameters in the following

way:

l(µ,Σ | X)∝ nµ>Σ−1 x̄ − n
2

Tr

�
Σ−1

�
1
n

p∑
i=1

x i x
>
i

��
− n

2
µ>Σ−1µ− n

2
log[det(2πΣ)]

= θ>T − a(θ )

Here T , the sufficient statistic and θ , the natural parameter are:

T (X) =

 x̄

vec
�

1
n

∑p
i=1 x i x

>
i

�
 , θ =

 nΣ−1µ

− n
2 vec(Σ−1)


with

E(T ) =m =

 µ

vec(Σ+µµ>)

=
m1

m2

 , cov(T ) = V =

V11 V12

V21 V22


where

V11 =
1
n
Σ, V12 =

1
n
(Σ⊗µ+µ⊗Σ)
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V21 = V>21, V22 =
1
n

�
Ip2 + K

� �
Σ⊗Σ+Σ⊗µµ> +µµ> ⊗Σ�

The matrix K is given by K =
∑p

i, j=1 Hi j⊗Hi j, where Hi j : zero matrix except (i, j)-th element,

hi j = 1.

Proof of the Form of h in (3.1.9): The condition Tr[(Σ − Ip)Rµ] =
∑p

i=1(Σ − Ip)i.µ = 0,

where Rµ = µ⊗1> and 1= [1,1, . . . , 1]> will be written in the form h(m) = Tr[(Σ− Ip)Rµ]. We

know that vec(Rµ) = 1⊗µ.

m2 = vec(Σ+µµ>) = vec(Σ) + vec(µµ>) = vec(Σ) +m1 ⊗m1

h(m) =
�
m2 −m1 ⊗m1 − vec(Ip)

�>
(1⊗m1) =

�
vec(Σ)− vec(Ip)

�>
(1⊗µ)

= vec
�
Σ− Ip

�>
vec(Rµ) = Tr

��
Σ− Ip

�
Rµ
�

The iteration in (3.1.11) requires ∇h and ∇m. Note that ∇m = V and ∇h is calculated as

follows:

∇h=
�
∂ h
∂m

�
(p2+p)×1

=

 ∂ h
∂m1

∂ h
∂m2



where

∂ h
∂m1

=
∂
�
m2 − vec(Ip)

�>
(1⊗m1)

∂m1
− (m1 ⊗m1)>(1⊗m1)

∂m1

=
�
1⊗ Ip

�> �
m2 − vec(Ip)

�− �1⊗ Ip

�>
(m1 ⊗m1)

− �m1 ⊗ Ip + Ip ⊗m1

�>
(1⊗m1)

∂ h
∂m2

= 1⊗m1.
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Algorithm 2: The detailed steps for finding the constrained mle in an exponential family is:

Step 1. Start with an initial value T0, the vector of observed canonical statistics.

Step 2. Set T = T0

Step 3A. For the l−th iteration of m: m(l) = T and calculate ∇h
�
m(l)

�
and V (l) as a function of m(l)

and T .

Step 3B. For the k−th iteration of T :

1. calculate h
�
T (k)

�
, ∇h

�
T (k)

�
.

2. use (3.1.11) to update:

T (k+1) = T (k) − V (l)∇h(m(l))
h
�
T (k)

�
[∇h (m(l))> V (l)∇h (T (k))]

.

3. If
T (k+1) − T (k)

 ≤ ε for some fixed number ε determining accuracy, set T = T (k+1)

break the loop and go to Step 3A, else repeat the loop.

Step 4. If
T −m(l)

 ≤ ε the convergence is attained and the constrained MLE estimate is m =

m(l).

86



APPENDIX B

SECOND APPENDIX

B.1 Proofs of Results:

1. In case of normal-inverse Wishart prior the posterior density with parameter (µn,κn,νn,Λn)

is the following:

p(µ,Σ | µn,κn,νn,Λn)∝ κ−
p
2

n | Σ |−( νn+p
2 +1) exp

�
−1

2

�
Tr
�
Σ−1Λn

�
+ κn (µ−µn)

>Σ−1 (µ−µn)
	�

After taking logarithm and differentiating we get :

∂ log p(µ,Σ | µn,κn,νn,Λn)
∂Σ−1

=
�νn + p

2
+ 1

�
Σ− 1

2
Λn − κn

2
(µ−µn) (µ−µn)

> = 0

bΣmap =
Λn + κn (µ−µn) (µ−µn)

>

νn + p+ 2

By applying Theorem 4.2.1 of Bibby et al. (1979) we can say that this is indeed the MAP

estimator.

2. Let x1, x2, . . . , xn ∼ Np(µ,Σ) and the prior on (µ,Σ) is normal-shrinkage inverse Wishart

prior i.e. µ | Σ∼ Np(µ0,Σ/κ0) and Σ∼ πSIW (ν0, b,Λ−1
0 ). Here w are interested with b = 1

as stated earlier. The posterior distribution is calculated as follows:

π(µ,Σ | x1, . . . , xn,µ0,κ0,ν0,Λ0)∝
n∏

i=1

Np(x i;µ,Σ)Np(µ;µ0,Σ/κ0)πSIW (Σ;ν0, 1,Λ−1
0 )
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∝
n∏

i=1

Np(x i;µ,Σ)Np(µ;µ0,Σ/κ0)
πIW (Σ;ν0,Λ−1

0 )∏
i< j(λi −λ j)

This is because shrinkage-inverse-Wishart can be obtained from inverse-Wishart density by

dividing it with
∏

i< j(λi −λ j). We know that the normal-inverse Wishart prior is conjugate

with posterior parameters described in (2.6.8), κn = κ0+n and νn = ν0+n respectively. The

numerator is the posterior distribution corresponding to the normal-inverse Wishart prior and

gives us the following:

π(µ,Σ | x1, . . . , xn,µ0,κ0,ν0,Λ0)∝ πN IW (µ,Σ | µn,κn,νn,Λ−1
n )∏

i< j(λi −λ j)

∝ Np(µ | Σ,µn,κn)
πIW (Σ | νn,Λ−1

n )∏
i< j(λi −λ j)

∝ Np(µ | Σ,µn,κn)πSIW (Σ | νn, 1,Λ−1
n )

From the above calculation we can see that the posterior is normal-shrinkage inverse Wishart

with the same parameters as in normal-inverse Wishart proving our hypothesis.

3. Calculation of the Posterior Distribution:

p(µ,λ | X)∝
� p−1∏

i=1

λi

�− n
2

exp
�
−1

2
Tr
�
Λ−1B(X ,µ)

	�� p−1∏
i=1

λi

�− 1
2

exp
�
−1

2
Tr
�
Λ−1(µ−µ0)(µ−µ0)

>	�� p−1∏
i=1

λi

�−a

exp
�
−1

2
Tr
�
Λ−1H0

	�

∝
� p−1∏

i=1

λi

�− n+2(a+1)
2

exp
�
−1

2
Tr
�
Λ−1

�
B(X ,µ) + (µ−µ0)(µ−µ0)

> +H0

�	�

∝
� p−1∏

i=1

λi

�− n+2(a+1)
2

exp
�
−1

2
Tr
�
Λ−1HN

	�

where B(X ,µ) = P(µ)>A(µ)P(µ).
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B.2 Normal-Shrinkage Inverse Wishart Gibbs Sampling Method:

Here we give a concise description of this ‘new method’ which uses the Gibbs sampler:

1. From (2.6.10) we get:

−1
2

Tr(Λ0PD−1P>) = −1
2

Tr(P>Λ0PD−1) =
p∑

i=1

ai

λi

where ai’s are the diagonal elements of the matrix P>Λ0P. This implies that

π(D | P,Λ0)∝
p∏

i=1

λ
− ν0+p+1

2
i e−

ai
λi (B.2.1)

i.e. eigenvalues can be generated from inverse gamma
�
ν0+p−1

2 , ai

�
and ordered.

2. The next step is to generate from π(P | D,Λ0). For this step without loss of general-

ity we assume that Λ0 is diagonal i.e. Λ0 = diag(Λ01,Λ02, . . . ,Λ0p).The principle is to

update each pair of rows in P. The k-th update of the row number i and j, we write

P(k) = diag(G, Ip−2)
�
P(k−1)>

i j , P(k−1)>
−i j

�>
where P(k−1)

i j denotes the 2 × p matrix with the i-

th and j-th rows of P(k−1) and P(k−1)
−i j denotes the rest of the matrix of dimension (p− 2)× p

in the (k−1) th step. Let us define Dε = diag(ε1,ε2) with εi = ±1 , Rrot(θ ) a 2×2 rotation

matrix and G = DεRrot(θ ). Let us denote Λ1 = diag(Λ0i,Λ0 j) and Λ2 diagonal with the rest

of the values. The distribution of θ given P(k−1)
i j , P(k−1)

−i j ,D(k−1) and Λ0 is:

π(θ | Pi j, P−i j, D;Λ0)∝ exp
�
c0 cos2(θ +ω)

�
(B.2.2)

where Pi jD
−1P>i j = Rrot(ω)diag(s1, s2)R>rot(ω) and c0 = −1

2(s1 − s2)(Λ0i −Λ0 j). If we do a

change of variable by α= cos2(θ +ω) then
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π(α | P(k−1)
i j , P(k−1)

−i j , D;Λ0)∝ exp [c0α]α
− 1

2 (1−α)− 1
2 .

Since the normalizing constant in this set up is not known, it is not easy to simulate from

this distribution. We have to resort to rejection sampling from Beta(1
2 , 1

2 ). For the rejection

sampling, we need to find out a constant M0 such that

π(α | P(k−1)
i j , P(k−1)

−i j , D;Λ0)≤ M0Beta
�

1
2

,
1
2

�
.

Let M be the normalizing constant. We know that

M =

∫ 1

0

exp[c0α]α
− 1

2 (1−α)− 1
2 dα≥

∫ 1

0

2exp[c0α]dα=
2(ec0 − 1)

c0

Since c0 is negative,

π(α | P(k)i j , P(k)−i j, D;Λ0) =
exp[c0α]α−

1
2 (1−α)− 1

2

M
≤ β

�
1
2 , 1

2

�
M

α− 1
2 (1−α)− 1

2

β
�

1
2 , 1

2

�
≤ c0β

�
1
2 , 1

2

�
2(ec0 − 1)

α− 1
2 (1−α)− 1

2

β
�

1
2 , 1

2

�
This gives us the value of M0 to be

c0β( 1
2 , 1

2)
2(ec0−1) .

Another crucial point is the choice of θ ,ω ∈ [−π/2,π/2]. ω can be solved from the

equation constructed from the off diagonal elements of the matrix:

Pi jD
−1P>i j = Rrot(ω)diag(s1, s2)R

>
rot(ω)

(Pi j)1.D
−1(Pi j)

>
2. =

s1 − s2

2
sin(2ω)
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Once we getω we can use that to compute θ from α giving us the joint update for two rows

of P. We repeat this process for each pair to update the eigenvector matrix.
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APPENDIX C

THIRD APPENDIX

C.1 Simulation tables using Frobenius norm for MLE approximation, Gibbs sampling and

MAP approximation

Table C.1: Risk ratio of MLE and MAP approximation (through a lower bound) relative to the
MAP of normal-inverse Wishart (using Frobenius norm)

MLE Approx.

Risk

MAP Approx.

Risk
Time

(Sec)
n p Mean Sigma Mean Sigma

50 3 0.4253 1.1331 0.4253 1.1331 3.25

50 5 0.6625 1.1528 0.6625 1.1528 2.59

50 10 1.5009 1.195 1.5009 1.195 5.22

100 3 0.3481 1.4383 0.3481 1.4383 2.52

100 5 0.5342 1.5065 0.5342 1.5065 2.69

100 10 1.401 1.63 1.401 1.63 2.84

300 3 0.3159 2.3753 0.3159 2.3753 2.7

300 5 0.5797 2.6429 0.5797 2.6429 2.95

300 10 1.303 2.6493 1.303 2.6493 3.41
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Table C.2: Risk ratio of MAP approximation (from MH within Gibbs sampling) relative to the
MAP of normal-inverse Wishart (using Frobenius norm)

Normal-Inverse

Gamma Risk
Acc Rate

(in MH)

Time

(Sec.)
n p Mean Sigma

50 3 1.1173 0.8928 0.4135 980.52

50 5 1.0824 1.0963 0.2822 2029.15

50 10 1.2423 1.2798 0.1218 13574.59

100 3 1.0542 0.9872 0.4352 910.92

100 5 1.1677 1.3662 0.2908 1901.41

100 10 1.1963 1.6229 0.1245 12183.56

300 3 1.1661 1.2546 0.4287 1256.81

300 5 1.5729 2.0163 0.2895 3215.97

300 10 1.5533 2.4053 0.1294 9385

C.2 Plot of Constrained and Unconstrained Normal

The graphical representation of normal distribution is only possible for two dimensional case

only. It is shown in Figure C.1. Let us select µ= (1,1)> then the corresponding covariance matrix

will be compound symmetric. The following is the form of the covariance matrix in stuctured

model proposed in (1.3).

D =

1 0

0 1−ρ
1+ρ

 , P =

 1p
2

1p
2

1p
2
− 1p

2

 , Σ=
1

1+ρ

1 ρ

ρ 1

 .

However for unconstrained case we can choose the covariance matrix arbitrarily. The following is

a contour plot of constrained and unconstrained normal density. The unconstrained normal density

has the same mean and the covariance matrix as Σ =

 2 0.7

0.7 3
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Figure C.1: Plot on the left is constrained normal with ρ = 0.2, on the right we have the uncon-
strained normal
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APPENDIX D

FOURTH APPENDIX

D.1 Variable Selection

1. A Brief Review of Standard Variable Selection (Test-based):

Due to the infeasibility of model uncertainty (i.e. looking at all subsets) for large values of p,

Breaux (1967) proposed the idea of stepwise regression which either starts from null model

and add variables into the model or begins with a full model and proceed by deleting some

variables one by one based on some criteria like, lowest p-value, highest adjusted R2, lowest

Mallow’s Cp, lowest AIC, AICc, BIC or HQIC (Hannan and Quinn, 1979), lowest prediction

error, leave-one-out cross validation, etc. One interesting criticism (Doornik, 2009) is that

stepwise proceeds without backtesting and is proved to be biased and inconsistent (Hurvich

and Tsai (1990),Flom and Cassell (2007) etc.)

2. Bayesian Variable Selection and Lasso-Type Model Fitting (Penalty-based):

Penalty based variable selection methods like LASSO (Tibshirani, 1996), Ridge regression

etc. can be interpreted as Bayesian posterior mode estimate (e.g. independent Laplace prior

on parameters in the case of LASSO, see Park and Casella (2008)). Various priors are

proposed in the literature in this context e.g. horseshoe prior (Carvalho et al., 2010), Laplace

prior (Park and Casella, 2008), a family of priors like g-prior (Fernandez et al. (2001), Berger

et al. (2001)) etc. O’Hara et al. (2009) classifies the priors into four categories: indicator

model selection (e.g. Kuo and Mallick (1998), Dellaportas et al. (2002)), stochastic search

variable selection (SSVS) see George and McCulloch (1993), adaptive shrinkage and model

space approach.

3. Modern Variable Selection Methods: Clustering Variables (Screening):

These are ranking methods that rely on some association measure between the dependent
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variable and the regressors. The most common and first of it kind is Sure Independence

Screening (SIS Fan and Lv (2008)). SIS needs a selection procedure in the end to ob-

tain consistent results (e.g. LASSO). Other screening methods include Covariate Assisted

Screening Estimates (CASE Ke et al. (2014)).
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