
QUANTUM ERROR-CORRECTING HYBRID CODES

A Thesis

by

VEDANGI VIVEK BENGALI

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Andreas Klappenecker
Committee Members, Jianer Chen

Laszlo B. Kish
Head of Department, Scott Schaefer

August 2022

Major Subject: Computer Science

Copyright 2022 Vedangi Vivek Bengali

ABSTRACT

Remarkable contributions made in the field of quantum algorithms and theory since 1994 have

paved the way for quantum information and quantum computing. Their substantial speed-up over

classical algorithms encouraged further developments in quantum information theory that enable

information transmission in a reliable and fault-tolerant manner. A huge family of error-correcting

codes have been developed since then with improved parameters and code-generating methods to

process quantum information in the presence of noise and imperfect quantum gates. Stabilizer

codes are one of the important classes of quantum error correcting codes. Their simple structure

makes these codes easier to implement in a fault-tolerant manner. Promising work in the domain

of hybrid quantum error-correcting codes has further shown their advantages over general quantum

error correction.

In this thesis, we show various techniques for constructing error-correcting quantum codes, es-

pecially hybrid codes that transmit quantum-classical information over a single channel. A hybrid

code can simultaneously transmit m bits of classical information and k bits of quantum infor-

mation by building a collection of m quantum codes where each quantum message is associated

with a classical message. Such codes have been shown to have better code parameters than the

best known quantum codes using the same number of physical qubits. The first model is based

on the use of codeword stabilized codes and union stabilizer codes while the second model uses

subsystem codes by encoding the classical information in the gauge subsystem of the code. We

also discuss various examples of good hybrid code constructions using these models and introduce

the notion of using the framework of graph codes to encode and transmit both quantum and classi-

cal information since they allow for simpler fault-tolerant procedures. We finally propose various

future directions to continue the work.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor Dr. Andreas

Klappenecker whose constant guidance, support and patience has encouraged me throughout my

study in quantum computing and made this thesis possible. His immense knowledge and expe-

rience along with an excellent teaching style has made this journey fun and enriching. Under

his guidance, I have been able to discover my passion for research in algorithms and theoretical

computer science.

I would also like to thank Dr. Jianer Chen and Dr. Laszlo Kish, my committee members, for

making my defense an enjoyable experience and for their invaluable advice and suggestions.

Special thanks to my mentor Andrew Nemec for patiently clearing every single doubt in my

study, and for giving helpful insights in this thesis.

I would like to thank all the members in the graduate advising office especially Karrie Bourquin,

Dr. Hank Walker and Dr. John Keyser. It is their kind help and support that have made my time at

the Texas A&M University, a wonderful experience.

No words can express how incredibly grateful I am to my family away from home Tanvi Mehta,

Shreya Apte and Gargi Vaidya, for always being there by my side in my best and worst moments.

I am thankful to Sumedh Pendurkar for motivating and helping me in every way possible in all

the coursework as well as conducting research . I couldn’t have done it without you all. Finally, I

would like to thank my family, for their selfless love, continuous support and understanding, and

for believing in me throughout my life.

iii

CONTRIBUTORS AND FUNDING SOURCES

This work was supported by a thesis committee consisting of Professor Andreas Klappenecker

and Professor Jianer Chen of the Department of Computer Science and Professor Laszlo Kish of

the Department of Electrical and Computer Engineering.

I would like to thank Dr. Klappenecker and Dr. Andrew Nemec of the Department of Computer

Science for the theorems and properties on hybrid codes that were analyzed in this thesis.

All other work conducted for the thesis was completed by the student independently.

iv

NOMENCLATURE

|xyz⟩ Tensor Product |x⟩ ⊗ |y⟩ ⊗ |z⟩

H Complex Hilbert Space

C⊗n n-fold tensor product of complex space C

Pn Pauli group

S Stabilizer Group

G Gauge Group

Z(G) Center of group G

C(G) Centralizer of group G

N (G) Normalizer of group G

CECC Classical Error Correcting Codes

QECC Quantum Error Correcting Codes

CSS Calderbank, Shor and Stean

CWS Codeword stabilized codes

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION. 1

1.1 Quantum computation and information . 1
1.2 Qubits . 1
1.3 Quantum gates and Observables. 4
1.4 Errors induced by the quantum channel. 6

2. QUANTUM ERROR CORRECTION . 8

2.1 Background and Related Works . 8
2.2 Essentials of Quantum error correction . 9

2.2.1 Classical Error Correction . 9
2.2.2 Quantum Error Correcting Codes. 12
2.2.3 Quantum Codes from Classical Codes . 13

2.3 Classes of Quantum Error Correcting Codes . 13
2.3.1 Codeword Stabilized Codes . 13
2.3.2 Calderbank-Shor Steane Codes . 16
2.3.3 Stabilizer Codes . 21
2.3.4 Subsystem Codes . 24

2.4 Linear Programming Bounds on Quantum Error Correcting Codes . 36

3. HYBRID CODES . 40

3.1 Hybrid codes . 40
3.2 Hybrid codes from stabilizer codes . 43
3.3 Hybrid codes from Subsystem codes. 44

vi

4. CONCLUSIONS AND FUTURE WORK . 52

REFERENCES . 53

vii

LIST OF FIGURES

FIGURE Page

1.1 Hierarchy in Unitary Operations on N qubits . 7
2.1 Graph for the perfect [[5, 1, 3]] quantum code . 16

2.2 Class hierarchy of quantum codes . 17

2.3 Structural representation of different Pauli error groups on N-qubits 23

2.4 Example of Operator groups for subsystem codes . 27

3.1 Overview of hybrid outer code and it’s quantum inner codes . 40

3.2 Operator groups for Hybrid Subsystem codes . 45

3.3 Example of Stabilizer generators for Bacon Shor code . 49

3.4 Example of Gauge operators . 49

viii

LIST OF TABLES

TABLE Page

2.1 Equivalent representation of 1-qubit errors . 30

2.2 Equivalent representation of 1-qubit errors after multiplying by stabilizers 31

2.3 Equivalent representation of 1-qubit errors after multiplying by gauge operators 32

ix

1. INTRODUCTION

1.1 Quantum computation and information

The ever increasing need of computational power have driven us into the realm of quantum

computation in recent years. As the size of transistors and other electrical components responsible

for information storage goes on reducing, it is speculated that soon these devices will begin show

quantum effects which can be quite complex and unpredictable. Hence, instead of finding ways to

reduce such quantum effects, it was discovered that learning and exploiting them turned out to be a

paradigm shift in the field of computation. It led to the advent of quantum information processing.

Using the power of quantum mechanics, quantum computers are believed to have capabilities of

solving certain problems that even the most powerful supercomputers cannot.

Promising work expressing the theoretical capabilities of quantum computation has also helped

to reveal some important aspects of theory in classical computing. Algorithms such as the classical

recommendation algorithms [1][2][3] discovered by Ewin Tang et al. were inspired by the quantum

Kerendis-Prakash [4] algorithm. Many industries working towards building quantum computers

have come up with similar technologies, for example, the all-optical computation[5] and quantum

simulation[6].

Although there is still a lot of work to do in building and stabilizing an actual quantum computer

to store highly entangled qubits of data, huge progress has been made in quantum communication,

which started to advance after the establishment of secure information transmission, for example,

the quantum key distribution protocol[7].

1.2 Qubits

One of the major advantages of using quantum computers to store information over classical

computers is the quantum parallelism and linear superposition[8] that quantum systems can satisfy.

Similar to classical computers where information stored in bits can have two states - either 0 or 1,

quantum systems store data in what we call qubits. This information is in a bipartite system having

1

only states - |0⟩ and |1⟩ where neither of the two subsystems is in a definitive state. Following

Dirac’s notation [9] , we say that these states form elements of the two dimensional Hilbert system

- a complex vector space with strictly positive inner product and other additional properties [10].

The state vectors are popularly described using the bra ⟨ψ| and ket |ψ⟩ notation. |ψ⟩ denotes the

column vector of the quantum state while ⟨ψ| describes the transpose conjugate of |ψ⟩. The inner

product of the two states |ψ⟩ and |ϕ⟩ is represented as ⟨ψ|ϕ⟩ while |ψ⟩⟨ϕ| the defines the outer

product.

For our purpose, we will focus on the finite-dimensional Hilbert space having elements of

the form {|ψ1⟩, |ψ2⟩, . . . , |ψn⟩} known as state vectors. These vectors can exist in either pure or

mixed states. The quantum superposition principle allows the linear combination of states like

a|ψ1⟩ ± b|ψ2⟩ to be a perfectly valid pure state, where a and b are complex numbers such that

|a|2 + |b|2 = 1. However, since the Hilbert space divides the space into finite subspaces, pure

states like |ψ1⟩, |ψ2⟩ and a|ψ1⟩ ± b|ψ2⟩ cannot exist together as valid state spaces. It can be either

H := ⟨|ψ1⟩, |ψ2⟩⟩ or H := ⟨|ψ1⟩+ |ψ2⟩, |ψ1⟩ − |ψ2⟩⟩ in say a two-dimensional system C2.

With the huge amount of data in the world, it is inevitable that we do not restrict ourselves to

just one qubit, but to larger composite systems or bit strings of information. Based on the axioms

of quantum mechanics, such composite systems can be formed by taking the tensor products of

component systems in Hilbert spaces. For example, if we have two independent Hilbert spaces H1

and H2, each consisting of an ensemble of state spaces |ψ⟩ and |ψ′⟩, respectively, the combination

of the two systems can be described by the space formed by the tensor product H1 ⊗ H2 having

elements of the form |ψ⟩ ⊗ |ψ′⟩ which can also be written as |ψψ′⟩. To illustrate this, the bit string

110 can be represented by the state |110⟩ = |1⟩ ⊗ |1⟩ ⊗ |0⟩.

Density Operator

Not all quantum systems can be represented by a single quantum state vector. It can be the

case where the state is in a composite system, or in an entangled state, or in an ensemble- a

statistical mixture of different states existing with various probabilities. In such cases, a more

general description of the quantum system is given by the density operator ρ [11]. When the system

2

is in a mixture of states |ψ1⟩, |ψ2⟩, ...|ψn⟩ having probabilities p1, p2, ...pn, the density operator is

given as ρ =
∑

i pi|ψi⟩⟨ψi|.

The average value of any observable ⟨M⟩ on a state |ψ⟩ is given by

⟨M⟩ = ⟨ψ|M |ψ⟩ = trM |ψ⟩⟨ψ|

In a mixture of states, the measurement value of this observable is given as

⟨M⟩ =
∑
i

pi(trM |ψ⟩⟨ψ|) = trMρ

When defining any subsystem A or B of a composite system AB represented by ρAB, we use

the reduced density operators ρA and ρB by using the partial trace as follows:

ρAB −→ ρA = trB ρ
AB

ρAB −→ ρB = trA ρ
AB

where the partial trace over a subsystem A or B is defined as

trA(A⊗B) = (1⊗ tr)A = (trA)B

trB(A⊗B) = (tr⊗1)A = A(trB)

The density operator has the following nice properties

• ρ is positive semidefinite ρ ≥ 0

• ρ is Hermitian ρ⊥ = ρ

• tr ρ = 1

• If ρ acts as a projection operator then ρ2 = ρ and it projects onto a one dimensional subspace.

3

1.3 Quantum gates and Observables

A quantum (logic) gate is a device which performs a fixed unitary operation on selected qubits

in a fixed period of time, and a quantum circuit is a device consisting of quantum logic gates

whose computational steps are synchronized in time. The size of the circuit is the number of gates

it contains[12].

In order to study the common gates that act on single qubits, we look at the Pauli operators[13][14]

σx, σy, σz. They are also referred to as X, Y, Z operators, respectively. Combined with the Identity

operator, these form a nice basis of single-qubit errors with good properties. Any unitary oper-

ation on a single qubit can be expressed in terms of the Pauli errors and the Hadamard gate H .

In fact, any arbitrary unitary operation can exactly be implemented in a quantum circuit using the

Hadamard gate and the phase gates.

Identity I =

1 0

0 1

 |0⟩ −→ |0⟩

|1⟩ −→ |1⟩

Bit-flip X =

0 1

1 0

 |0⟩ −→ |1⟩

|1⟩ −→ |0⟩

Phase-flip Z =

1 0

0 −1

 |0⟩ −→ |0⟩

|1⟩ −→ −|1⟩

Bit-phase-flip Y =

0 −i

i 0

 |0⟩ −→ i|1⟩

|1⟩ −→ −i|0⟩

The Identity operator does not change the quantum system. The X and Z quantum gates flip

the bit and phase of the qubit, respectively, while the Y gate is a combination of both bit and phase

flip ZX = iY . The Pauli matrices are unitary(MM⊥ = 1) and Hermitian(M⊥ =M), they square

to the identity, and they either commute or anti-commute.

4

Any (2× 2) complex matrix M can be written as

M = m01 +mxσx +myσy +mzσz

where m0,mx,my,mz are complex numbers and σx, σy, σz are Pauli matrices. These coefficients

are given by the inner product

mk = (σk|M) =
1

2
trσkM

An observable is a physical property of a quantum system that can be measured as a numerical

value(for example, momentum or energy of the system). Measuring whether a quantum state |ψ⟩

is in a state |b⟩ basically means calculating the inner product ⟨ψ|b⟩ that gives the probability with

which the state |ψ⟩ is in the state |b⟩. However, the quantum system finally collapses to the state

|b⟩, losing its quantum properties. In order to completely measure a quantum system, one must

choose an orthonormal basis of vectors |bi⟩ in H known as the computational basis. The quantum

state can thus be represented as

|ψ⟩ =
∑
i

|bi⟩⟨bi|ψi⟩

where the inner product denotes the probability with which the state |ψ⟩ can be in state |bi⟩. In a

more general form, using orthogonal projectors
∑

i Pi = I , measurement of the system in state

|ψ⟩ gives the output value i with value ⟨ψ|Pi|ψ⟩ leaving the system in the state Pi|ψ⟩. Thus, the

normalized state can also be shown as:

|ψ⟩ = Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

Any observable M can be represented as M =
∑

i βi|bi⟩⟨bi| =
∑

i βiPi where βi is the mea-

surement value corresponding to the outcome |bi⟩ and Pi is the projector. This orthogonal basis

is formed by the eigenvectors of M when the operator is a normal operator(MM⊥ = M) and the

measurement values are the respective eigenvalues. These eigenvalues are real when the operator

5

matrix is hermitian.

1.4 Errors induced by the quantum channel

The power of quantum computation can be realized if the system is in a completely isolated

state. which is practically impossible. Any interaction of the quantum system with the environment

causes the quantum state to deviate from its evolution desired by the quantum gates in the circuit.

As more qubits interact with the environment, the chances of undesirable entanglement increases

which can quickly manifest into noise or decoherence in the quantum system. A single qubit that

interacts with the environment |e⟩ can be shown as follows:

|0⟩|e⟩ −→ |0⟩|e00⟩

|1⟩|e⟩ −→ |0⟩|e00⟩

A quantum system Q in state |ψ⟩ = α|0⟩+ β|1⟩ after entanglement with the environment E in

state |e⟩ can generate the following entangled state:

|ψ⟩|e⟩ −→ I|ψ⟩|e1⟩+X|ψ⟩|e2⟩+ Z|ψ⟩|e3⟩+ Y |ψ⟩|e4⟩

where |ei⟩ are the states of the environment. If all environment states |ei⟩ are mutually orthogonal,

we can say that the quantum system Q can undergo one of the four changes , it can be unharmed,

bit-flipped, phase-flipped, or both bit-phase flipped. If however, the environment states are not

orthogonal, then it is impossible to distinguish which error among the above has occurred.

In a more generalized way, this interaction can be represented as

|ψ⟩|e⟩ −→
∑
i

|i⟩ ⊗ Ei|ψ⟩

whereEi is the n-fold tensor product of the Pauli operators acting on individual qubits of an n-qubit

quantum system.

6

Figure 1.1: Hierarchy in Unitary Operations on N qubits

If the quantum state is denoted in terms of the density operator, the initial pure state of the

system is |ψ⟩⟨ψ|. This system evolves into a mixed state which can be obtained using a reduced

density operator by taking the partial trace over the environment. For example, for the 1-qubit

system, this evolution can be:

|ψ⟩⟨ψ| −→ I|ψ⟩⟨ψ|I⟨e1|e1⟩+X|ψ⟩⟨ψ|I⟨e2|e2⟩+ Z|ψ⟩⟨ψ|I⟨e3|e3⟩+ Y |ψ⟩⟨ψ|I⟨e4|e4⟩

The hierarchy of different operators acting on N qubits can be shown in Figure 1.1. In order

to diminish the effect of decoherence on the quantum computing system, quantum error correction

by encoding the state of a single qubit into several physical qubits is required.

7

2. QUANTUM ERROR CORRECTION

2.1 Background and Related Works

Discoveries made in the field of quantum algorithms theoretically establishing the power of

quantum computation over classical created a great deal of excitement in the scientific community.

It was, however, realized that this computing performance comes with a great deal of fragility to

noise and error-prone gates. When it was thought that such properties of a quantum computer will

not make it practically feasible, remarkable revelations were made by Shor [15][16][17] and Steane

[18][8][19] in a short period of time (1995-1997) by redundantly encoding the data in a quantum

state without violating the no-cloning theorem and further constructing a generalized framework

of quantum error correcting codes. This soon culminated in building protocols processing the

quantum information in a fault tolerant manner [20][21] allowing quantum computers to work

reliably in the presence of a small probability of error.

Since 1995, a lot of work has been produced in rapid succession on different types of code

construction that can be used for quantum error detection and correction convincing the scientific

community of the possibility of quantum computation in a real setting.

It began with numerous papers focusing on the developing a generalized framework of quan-

tum codes along with their structure[22], properties[23] and necessary conditions for error detec-

tion and correction[24]. These works were further enhanced by the development of concepts in

fault tolerant computing and threshold theorem[25]. Continuous work is still underway to develop

better and more useful codes, such as stabilizer codes [25], subsystem codes[26][27], topological

codes[28], surface codes[29], etc., with advanced fault-tolerant measurement operations. More re-

cently, the advantages of sending classical and quantum information simultaneously has spawned

an interest among the researchers to delve into the properties of hybrid codes[30].

Previous work on the characterization of hybrid quantum-classical codes has shown that trans-

mitting both classical and quantum information has a higher advantage over optimal quantum

8

codes. Devetak and Shor [31] and others [32][33][34] proved this result for limited channel pa-

rameters and small error rates along with several other information theoretic properties related to

the quantum channel during simultaneous transmission.

Kremsky et al.[35] gave the first construction of hybrid codes by generalizing the framework of

entanglement assisted codes. Several examples of genuine hybrid codes, including their linear pro-

gramming bounds were given by the authors[36][37]. Poon et al.[38] discussed the constructions

of good hybrid codes for a fully correlated quantum channel, while Majidy[39] characterizes the

codes from a unified coding and operator-algebra theoretic error correction perspective. Further

work in the operator theoretic hybrid code construction was done by Kribs et al.[40] which uses

the notion of correction of an algebra of observables.

2.2 Essentials of Quantum error correction

2.2.1 Classical Error Correction

In this section, we briefly discuss the aspects of error correction in classical coding theory that

can be useful in understanding quantum error correction. To reliably transmit data over a noisy

communication channel, message symbols are encoded in blocks of bits using an error correcting

code with a rate less than the channel capacity according to Shannon’s theorem[41].

Consider a k-bit message symbol m = {m1,m2, ...,mk} over the finite field Fk
q having q

symbols. Each of the qk symbols can be encoded into an n-bit codeword c = {c1, c2, ..., cn}. Thus,

useful information forms a subspace of codewords known as the codespace in an n-dimensional

vector space Fn
q . A classical code C ⊂ Fn

q is represented by (n,K, d)q matrix is described by a

generator matrix G and a parity matrix H where K represents the dimension of C. When K = qk,

the code is denoted as [n, k, d]q. The generator matrix of a linear code in its standard form is

[I | P]. It gives a basis of the codespace such that when it is multiplied to the k−bit message

vector, we get the n−bit codeword associated with the message. The remaining n − k bits that

form the P part of the generator matrix are called parity check bits.

An example of the generator matrix in its standard form of the [7, 4, 3]2 hamming code is shown

9

as below:

G =


1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


The n− k parity checks of the code, each of the form H(i) = H1(i), . . . , Hn(i) form the rows

of the parity check matrix H . The parity bits are chosen such that all the codewords c have a

vanishing Euclidean inner product with the parity checks H(i).

H(i).c =
n∑

j=1

Hj(i)cj = 0 (i = 1, 2, ..., n− k)

Thus, the parity matrix acts as generator of the dual code C⊥ where dual code C⊥ of a linear

code C is given by

C⊥ = {x ∈ Fn
q | x.c = 0 ∀c ∈ C}

The (n− k)× n parity check matrix of the [7, 4, 3]2 code is thus given by

H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1


The column space of the generator matrix G forms the code C whereas the column space HT

forms the n−k dimensional vector space of the dual code C⊥ ⊂ Fn
q . The codewords of C are thus

orthogonal to all the codewords in C⊥ and follows the relation GHT = 0. Note that a codeword

can be orthogonal to itself if it has an even parity, and a codeword can thus be part of both C and

C⊥. If C = C⊥, then the code is called a self dual code and if C⊥, then it is a self-orthogonal

code or weakly self-dual. We will focus more on self-dual codes in further sections, as they play a

significant role in the construction of CSS quantum codes.

The Hamming weight of a vector x in a finite field Fn
q is equal to the number of non-zero

10

components xi. The Hamming distance between two vectors x and y in Fn
q is the number of

positions i in which the components xi and yi of the vectors differ. It can also be represented as

the hamming weight of the difference vector (x − y). The minimum distance of a linear code C

is an important property which determines the error correction capability of the code and is the

minimum hamming distance between any two codewords c and c′ in C.

d = min
x,y∈C

{wt(x− y)}

A linear code C with a minimum distance d can detect errors on (d − 1) bits and can correct

⌊(d− 1)/2⌋ bit errors.

In order to maximum maximum amount of information in the minimum amount of physical

bits, an error correcting code must have parameters that maximize the rate k/n along with a maxi-

mum possible distance d so that many errors can be detected and corrected. In order to satisfy thee

conflicting conditions, an error-correcting code must satisfy three bounds as follows:

• Singleton Bound : Any linear block code C with parameters [n, k, d] satisfies

dmin ≤ n− k + 1

• Hamming Bound : A linear block code C with parameters [n, k, d] correcting t = ⌊(d −

1)/2⌋ errors satisfies
t∑

i=0

(
n

i

)
≤ 2n

• Gilbert-Varshamov Bound : A binary code C = [n, k, d] satisfies

d−2∑
i=0

(
n− 1

i

)
≤ 2n−k

11

2.2.2 Quantum Error Correcting Codes

A general quantum error correcting code can be represented as C = ((n,K, d))q where n is the

total number of physical qudits used by the system,K is the dimension of thee encoded code which

is a subspace of the Hilbert Space H = (Cq)⊗n, d is the minimum distance of the code, along with

a recovery operation R. The code space C consists of codewords and the encoded computational

basis states while the Recovery operations {Ra}are related to the set of correctable errors {Ea}.

The set of errors for a single qubit is formed from the basis single-qubit error set - I, σx, σy, σz. It

can extended to a basis for n-qubit error set by using the n-fold tensor product of errors on each of

the qubits.

The necessary and sufficient conditions for a quantum computer to correct a set of errors E =

{Ea} also known as the Knill-Laflamme conditions are

⟨i|E⊥
a Eb|i⟩ = ⟨j|E⊥

a Eb|j⟩ (2.1)

and

⟨i|E⊥
a Eb|j⟩ = 0 (2.2)

where |i⟩ and |j⟩ denote the basis codewords. The two conditions can be unified in a single matrix

equation as

⟨i|E⊥
a Eb|j⟩ = Cabδij (2.3)

where Cab is a square Hermitian matrix such that Cab = C∗
ba which can be diagonalized and whose

rank can be determined by its non-zero eigen-values; and δij is the Kronecker delta. When this

matrix is singular, the QECC is said to be degenerate, and with a nonsingular matrix is known as

non-degenerate code. This degeneracy is dependent on the set of correctable errors. In a code with

minimum distance d, at most (d− 1) errors can be detected and no more than (d− 1/2) errors can

be corrected.

12

2.2.3 Quantum Codes from Classical Codes

The introduction of graph states and graph codes by [42][43][44] had a significant impact on

measurement-based quantum computing, as they provided a simpler way of constructing quantum

codes using classical codes and graphs. Here we focus on graphs having at most one edge between

any two vertices without any self-loops. In a graph with |V | nodes and |E| edges, a graph state can

be denoted as

|G⟩ = U|G0⟩

where U is the unitary entangling operator which is a product of controlled phase gates CP corre-

sponding to each edge of the graph U =(i,j)∈E (CP)i,j .

The graph basis associated with a graph code are a set of orthonormal basis states of the form

|a⟩ = Za|G0⟩

where a is the tuple of n-values (a1, a2...., an) and each aj can be 0 or 1. Thus, a can take 2n

values forming the orthonormal basis of the Hilbert space. The coding space of the graph code

is a subspace spanned by a subset these basis states. The properties of graphs make it relatively

easier for the graph codes to calculate the distance of the code once the choice codewords have

been specified. It also turns out that most of the good quantum codes are either graph codes or

locally equivalent to graph codes[45][46].

2.3 Classes of Quantum Error Correcting Codes

2.3.1 Codeword Stabilized Codes

An important class of error correcting codes known as the codeword stabilized codes(CWS)

[47][48] can be characterized using a graph and a classical code. It includes additive as well as

nonadditive quantum codes. The graph G can be defined by a self-dual code over GF (4) which

essentially transforms the quantum errors into classical errors that can be tackled further by the

13

classical binary code. A typical ((n,K, d)) CWS code can be defined by a graph G with n vertices

representing the n qubits and an (n, k) classical code C. The code construction starts with an

initial basis state or the stabilizer state |s⟩ defined by the graph G, which is then transformed

into other basis states of the code using translation or codeword operators having the form Wi =

Zci for i = 1, 2, ..., K where ci are the codewords of the classical code given by the rows of its

Generator matrix. This code can also be represented as Q = (G, C). This construction also enables

representing any error of the form Pauli X,Z or Y in an equivalent error operator consisting of a

tensor product of only Z operators(upto a phase). Thus, the graph provides a mapping between

the single-qubit error into their equivalent multi-qubit error version, which in turn also represents

the classical binary errors. For example, any error of the form Ei = imZvXu can be defined as a

classical error vector by a mapping function given by

CC(E) = v ⊕
n⊕

j=1

ujrj

The classical vector CC(E) and its corresponding operator ZCC(E) are the graphical representa-

tions of the error E.

According to the standard form of CWS codes as given by [47][48], a CWS code can detect an

error E ⊂ E if and only if the classical code C detects the graphical representation CC(E) for all

errors in the set E . For a code to be non-degenerate, all the errors in the set represent a non-zero

vector in their graphical representation. However, if CC(E) is a zero-vector, then the errors E

must commute with all the word operators {Wi = Zc
i } in order for the code to be degenerate.

Focusing our attention to additive codes, we can represent any [[n, k, d]] stabilizer code sta-

bilized by the generators S0 = ⟨S1, S2, ..., Sn−k⟩ with logical operators Zi, X i in CWS form as

follows:

The new graph state |s⟩ is now stabilized by

S = ⟨S1, S2, ..., Sn−k, Z1, Z2, ...Zk⟩

14

The set of codeword operators is an Abelian group formed by the logical X operators W =

⟨X1, X2, ..., Xk⟩. For example, the [[5, 1, 3]] stabilizer code has the following stabilizer gener-

ators:

S1 = XZZXI

S2 = IXZZX

S3 = XIXZZ

S4 = ZXIXZ

with the logical operators as

X = ZZZZZ,Z = XXXXX

The stabilizer group of the additive CWS ((5, 2, 3)) code would then be constructed by altering

the stabilizers S such that each generator S ′ contains only one X component. For example, S ′
3 =

S1S2Z = IZXZI . And other stabilizer generators would be the cyclic permutations of S ′
3. The

group of codeword operators is given by W = {I,X} corresponding to the classical binary code

with codewords {00000, 11111}. This code can be represented by a ring graph as shown in Figure

2.1 consisting of 5 nodes which represent the physical qubits such that every vertex has only two

adjacent nodes, each connected by single edges.

15

Figure 2.1: Graph for the perfect [[5, 1, 3]] quantum code

2.3.2 Calderbank-Shor Steane Codes

Another important class of Quantum error correcting codes are concatenated codes where we

can use codes with known error detection capabilities multiple times to increase the overall sup-

pression of errors. Shor’s [9, 1, 3] is one such example of concatenated codes which combines two

layers of [3, 1, 1] codes. The inner layer is used to detect and correct bit-flip errors, while the outer

encoding layer protects each of the logical bits from phase-flip errors. However, as the level of

concatenation increases, the requirement of the number of physical qubits needed for encoding a

logical qubit and for the measurement of the syndrome increases significantly.

Calderbank and Shor[49], and Steane[18] found a special class of codes called CSS codes

(represented in Figure 2.1) which make use of the classical linear codes and possess a nice structure

enabling fault-tolerant properties. This makes it convenient to implement CSS codes in practical

circuits and can be further generalized to stabilizer codes.

Glancing at a few preliminary definitions of quantum code properties that are analogous to the

classical codes, we know that M = XuZv and M ′ = Xu′Zv′ commute iff u.v′ + v.u′ = 0 and a

stabilizer can be uniquely specified by an (n− k)× 2n binary matrix of the form

H = (Hx | Hz)

16

Figure 2.2: Class hierarchy of quantum codes

The requirement that the operators all commute (i.e. H is an Abelian group) is expressed by

HxH
T
z +HzH

T
x = 0

The matrix H is the analogue of the parity check matrix for a classical error correcting code while

the analogue of the generator matrix is the matrix G = (Gx|Gz) and satisfies

HxG
T
z +HzG

T
x = 0

H and G are duals with respect to the inner product and the above two equations imply that G

contains H. Thus, without loss of generality , we can say that G contains H.

All the members of G commute with all the members of H. Since there can be no further error

operators which commute with all of H, all error operators not in G anti-commute with at least one

member of H. If all members of G (other than the identity) have weight at least d, then all error

operators (other than the identity) of weight less than d anti-commute with at least one member of

H, and so are detectable. Therefore, such a code can correct all error operators of weight less than

d/2. If the only members of G having weight less than d are also members of H, then the code can

still correct all error operators of weight less than d/2 and are known as degenerate codes.

17

Now the main problem to focus on during the code construction is to find matrices H and its

dual G such that they satisfy the first two equations and have weights as large as possible. This can

be done by combining two well chosen classical binary error correcting codes as follows:

H =

 H2 0

0 H1

 , G =

 G1 0

0 G2


where Hi is the check matrix of code Ci generated by Gi and HiG

T
i = 0. This construction works

by separately correcting the X and Z errors contained in a general error operator Es = XxZz.

CSS codes are constructed using two classical linear codes C1 with parameters [n, k1, d1] and

C2 with parameters [n, k2, d2] such that C⊥
2 ⊂ C1, and C1 and C2 are both t− error correcting

codes. Using these codes, we can derive CSS quantum codes to correct for quantum bit flip and

phase flip errors by doing the following:

1. Generate MZ from H1 by replacing 0 with I and 1 with Z.

2. Generate MX from H2 by replacing 0 with I and 1 with X.

C1 then gives us n − k1 stabilizer generators and C2 gives n − k2 generators for a total of

2n − k1 − k2 generators. The resulting quantum error correcting code is then a stabilizer code

encoding k1 + k2 − n qubits. Minimum distance of the code is d ≥ min{d1, d2}.

The rows (tensor product of Pauli matrices) are called parity check stabilizers Si with the

property that for all i :

Si|ψL⟩ = |ψL⟩

For the stabilizer generators to commute, following conditions should be satisfied:

C⊥
2 ≤ C1 ⇔ C⊥

1 ≤ C2 ⇔ H2G
T
1 = 0 ⇔ H1G

T
2 = 0

18

Code Construction

For stabilizer codes the projection operator PC onto the the codespace can be given by

PC =
1

|S|
∑
M∈S

M

Taking an arbitrary standard basis state |ai⟩, the projection of |ai⟩ into the codespace is:

PC |ai⟩ =
1

|S|
∑
M∈S

M |ai⟩

Since the number of encoded qubits in a CSS code is k = k1 + k2 − n or k = dim(C1) +

dim(C⊥
2) and C⊥

2 ≤ C1, the number of cosets of C⊥
2 in C1 is the same as the number of standard

basis states that the CSS code has to encode. Thus, the construction partitions the codespace C1

into cosets of C⊥
1 :

C1 = C⊥
2 ∪ (c1 + C⊥

2), ...,∪(cN + C⊥
2)

whereN is the total number of codewords in C1 and cj are the representative members of the coset.

The total number of cosets formed is given by N = 2k1/2
k
2. Using this intuition we can construct

the quantum codeword for any arbitrary codeword u ∈ C1 as follows:

|ū⟩ = 1√
|C⊥

2 |

∑
w∈C⊥

2

|u+ w⟩

Because C⊥
2 ≤ C1 , the vector u + w is in C1 for all w ∈ C⊥

2 . Hence, u + w will satisfy all of

the parity checks of C1 i.e the stabilizer generators from C1 all have eigenvalue +1 for |u+w⟩, and

will leave the encoded state |ū⟩ undisturbed. If u ∈ C⊥
2 , the state |ū⟩ will be the same as |000...0⟩

because adding u to the vectors w in the sum just permutes the terms. For any two vectors u,v

∈ C1, we have:

19

|ū⟩ = |v̄⟩ ⇔ u+ C⊥
2 = v + C⊥

2 ⇔ u− v ∈ C⊥
2

We cannot take any codewords u in C1 to encode standard basis states. We can however take

(representative elements of) cosets in the quotient set C1/C
⊥
2 to encode standard basis states and

there are exactly the right number of these cosets to encode the 2k = 2k1

2n−k2
standard orthogonal

basis states |ū⟩ that we need to encode.

This encoding is also preserved by the stabilizer generators contributed by C2 . We can easily

see this by applying Hadamard transform to each qubit:

R
1√
|C⊥

2 |

∑
w∈C⊥

2

|u+ w⟩ = 1√
|C2|

∑
h∈C2

(−1)h.u|h⟩

We can check that the original state is also preserved by any stabilizer generator M contributed

by C2, by testing whether this state is preserved by the operator M ′ = H⊗nMH⊗n. Since each

codeword k ∈ C2 satisfies the parity checks of C2 , the state H⊗n|ū⟩ will have +1 eigenvalue with

each operator M ′; then, the generators from C2 also preserve codewords.

An example of CSS codes is the [[7, 1, 3]] code whose construction will be shown below. It is

constructed using the classical Hamming codes [7, 4, 3] and its dual [7, 3, 4]. Similar construction

methodology can be applied to construct the [[15, 7, 3]] CSS code using the [15, 11, 3] classical

linear code and its dual. Distance 3 CSS codes can thus be generalized as [[n, k, 3]] where n =

2m − 1, k = n− 2m for the integer m ≥ 3.

Example : [[7,1,3]] CSS Code

Using the classical binary Hamming code [7, 4, 3] and binary simplex code [7, 3, 4], a non-

degenerate CSS code can be constructed that corrects 1-qubit errors and has a distance d = 3. In

this case n = 7, k1 = 4, k2 = 3, k = (k1 − k2) = 1 and the basis codewords mapping 1 qubit to 7

are

20

|0⟩ = 1

23
[|0000000⟩+ |0110011⟩+ |1010101⟩+ |1100110⟩+

|0001111⟩+ |0111100⟩+ |1011010⟩+ |1101001⟩]

|1⟩ = 1

23
[|1111111⟩+ |1001100⟩+ |0101010⟩+ |0011001⟩+

|1110000⟩+ |1000011⟩+ |0100101⟩+ |0010110⟩]

2.3.3 Stabilizer Codes

Stabilizer codes[25][50][51], also known as additive codes can be considered as a more gen-

eralized version of CSS codes. For a stabilizer code, this notation can be given as C = [[n, k, d]]q

where the dimension K can be written as K = qk. Similarly, a classical code is represented as

C = (n,M, c)q where c is the minimum distance of the code. If the code is a linear block code it

can be denoted as C = [n,m, c]q where the cardinality M = qm.

The codespace C of a stabilizer code as a subspace of the n-bit Hilbert space Hn
2 is fixed by the

elements of the Abelian group S known as the stabilizer group. This group can be generated by

(n − k) generators s1, s2...sn−k and any element s′ of the stabilizer can be written as the product

of powers of the generators as follows:

s′ = sp11 , s
p2
2 , ..., s

pn−k

n−k

Thus, when we only restrict ourselves to a qubit, the 2n dimensional Hilbert space can be divided

into 2n−k unique orthogonal subspaces each with a dimension of 2k. Also note that −I and i

cannot be a part of the stabilizer group because if −I ∈ S, then −I|ψ⟩ = |ψ⟩ should be the case

and we know that −I|ψ⟩ = −|ψ⟩. This leaves the solution state |ψ⟩ to be 0 or null forming a trivial

21

codespace with only the null vector. Similarly, if i ∈ S, then again (iI)2 = −I resulting in a trivial

codespace.

Pauli Errors: We have already seen that any error in the Pauli group of n-qubit errors Pn =

⟨±i,±1, {I,X, Y, Z}n⟩ can be represented as

E = ikσ1
j1
⊗ σ1

j2
,⊗...⊗ σn

jn

where k = 0, 1, 2, 3 ; l in σl
jl

denotes the qubit on which the operators σl is acting on while jl

denotes the exact pauli error among {σ0, σx, σy, σz}. Now each of these errors in the Pauli group

can also be written in the form of X and Z errors as

E = ikX(a)Z(b)

where a and b are n-bit bit-strings. X(a) shows the bit-flip error on the qubits where the value of

ak is 1. Similarly Z(a) shows the phase-flip error on the qubits wherever the value of bk is 1. When

both ak and bk are 1 on any k-th qubit, this means that the qubit is affected by the Pauli Y error.

In a quantum stabilizer code, any error in the Pauli group can be diagnosed by measuring the

value of its stabilizer generators. This produces a syndrome of the error which helps in specifying

the position of the error in the system. For each of the generators, this syndrome S(E) can be given

as a (n − k) bit string e1, e2, .., en−k where each ei ∈ {0, 1}. It is 0 when the error E commutes

with the generator gi and 1 when it anti-commutes.

gkE|ψ⟩ = Egk|ψ⟩ = E|ψ⟩....E commutes with gk

gkE|ψ⟩ = −Egk|ψ⟩ = −E|ψ⟩....E anti-commutes with gk

We have seen previously that if an error is detectable by the code Cq, then it satisfies

⟨i|E|j⟩ = CEδij

22

Figure 2.3: Structural representation of different Pauli error groups on N-qubits

for all basis codewords. In this case when the error anticommutes with a subset of the stabilizer,

this condition is satisfied as ⟨i|E|j⟩ = 0. Similarly the errors in the set E = {Ea} are correctable

by Cq when ⟨i|E⊥
a Eb|j⟩ = Cabδij , and for a non-vanishing syndrome for (E⊥

a Eb), Cab is 0 and thus

⟨i|E⊥
a Eb|j⟩ = 0. Errors that however commute with all elements of the stabilizers and are not part

of the stabilizers cannot be detected. We will further look at the group of such errors.

Normalizers and Centralizers: The centralizer C(S) of the stabilizer S is the set of errors

which commute with all elements of the stabilizer S. The elements of the centralizer N thus satisfy

the following property for each element Sk of the stabilizer S

NSiN
⊥ = Sj where i = j

In the case where i ̸= j, we call the group generated by operators N as the normalizer N (S) of

the stabilizer S. In the case of stabilizer code, the normalizers and the centralizers overlap. Also,

since S is abelian, it is included in N (S). A simple group representation is shown in Figure 2.3

where the stabilizer group in green is a subgroup of the normalizer. The cosets of stabilizer group

in the normalizer forms the group of logical operators. The normalizer also forms cosets in the

Pauli group Pn each of which contains pure errors that can be recognized by the stabilizers.

23

Example: [[7, 1, 3]] CSS Stabilizer code

The stabilizer generators of the CSS code which we saw previously are

S1 = IIIXXXX, S4 = IIIZZZZ

S2 = IXXIIXX, S5 = IZZIIZZ

S3 = XIXIXIX, S6 = ZIZIZIZ

The logical operators can then be defined as

X = XXXIIII, Z = ZZZIIII

2.3.4 Subsystem Codes

The notion of stabilizer codes can be further generalized to a code formalism known as subsys-

tem codes, also known as quantum operator error-correcting codes. In this chapter we will study

various properties of this formalism, how they can relate to the previous stabilizer codes and how

they can be constructed.

In the subspace coding formalism, the Hilbert space of qubits is divided into a direct sum of

H = C ⊕ C⊥ where C is the code space containing the encoded information and C⊥ is dual.

However, subsystem codes enforce a tensor product of the subsystems in the codespace, which

can be written as by C = Clogical ⊗ Cgauge. The complete Hilbert system space then looks like

H = (Clogical ⊗ Cgauge) ⊕ C⊥. In this formalism, only the subsystem Clogical is used to encode

and store useful information while information and errors on subsystem Cgauge are ignored. The

subsystem Cgauge, also known as the Gauge subsystem because it contributes to gauge degrees

of freedom can then be used for improved decoding circuits and fault tolerant operations. Thus,

instead of restricting to one subspace of the multi-qubit Hilbert space, subsystem codes see differ-

ent subspaces as equivalent because of the gauge degrees of freedom. These codes are important

24

for practical purposes because of their simpler,flexible circuit realizations for error detection and

correction.

The approach of subsystem codes is very similar to the stabilizer formalism. When viewed in

terms of stabilizer codes, here we are, in a sense, only using a subset of the logical qudits to encode

the quantum information. An [[n, k, r, d]] subsystem code has k logical qudits corresponding to

subsystem Clogical and r gauge qudits corresponding to subsystem Cgauge. A total of (n − k − r)

generators are required to form its Stabilizer group S that stabilizes the k+r dimensional subspace.

Similar to stabilizer codes, we have a stabilizer group S such that

C = {|ψ⟩ ∈ H | s|ψ⟩ = |ψ⟩∀s ∈ S}

In addition, there are two groups that induce the structure of the tensor product known as the Gauge

group G and the logical group L. Both of these groups are subgroups of the Pauli group Pn and

have operators that commute with each other, which means [L,G] = 0 where L ∈ L, G ∈ G. This

commutation property enforces the desired tensor product structure in the codespace such that the

logical operators from L act nontrivially on the subsystem Clogical and as identity on Cgauge while

operators from G act nontrivially on the subsystem Cgauge and as identity on Clogical. The gauge

group G can be defined as G = ⟨ω,S, X i
G(a), Z

i
G(b) | 1 ≤ i ≤ r⟩ where X i

G(a) and Zi
G(b) are the

logicalX andZ operators on the gauge qudits. The Logical group having operators that act as Pauli

X and Z on the virtual qudits in subsystem Clogical is given as L = N (S)/G. After encoding the

initial state using unitary operators from the Clifford group, the subset of generators of the gauge

group {S1, S2...Ss+r} are isomorphic to the logical Zi operators in the unencoded state, while the

remaining gs+1, ...gs+r} operators are isomorphic to the Xj operators or translational operators.

Si = UZiU
⊥, gj = UXiU

⊥

An example of the different operator groups defining subsystem codes can be shown in Figure 2.4.

Such a code can correct errors that are not in N (S)− G.

25

Stabilizer codes are mainly based on the measurement of the eigenvalues of commuting oper-

ators (the stabilizers). If any of these measurements result in a -1 eigenvalue, we know that the

state has drifted out of the codespace. On the other hand, in subsystem codes, we also measure

eigenvalues of some operators, but this time they do not form a commuting set of operators. These

operators are called gauge operators that generate the gauge group with its center as the stabi-

lizer group. This is the group of operators generated by the gauge operators that commute with

every element of the gauge group but anti-commute with some of the elements of the stabilizer

generators.

Error Detection and Correction conditions

The density operator representing a state in the subsystem code can be defined as

ρ = ρA ⊗ ρB ⊕ 0C
⊥

where information is stored in state ρA and ρB is any arbitrary state in the gauge subsystem.

For a set of errors E in E to be correctable, following condition needs to be satisfied:

PCEaEbPC = λabPC ∀a, b

where Ea, Eb is an arbitrary pair of error operators or the Kraus operators that map the state ρ

to its erroneous version E(ρ), PC is the projection operator onto the codespace C and λa,b is the

Hermitian operator that depends only on the indices of the error operators.

The information can be recovered by applying a recovery map that will reverse the action of

the error map E to a transformation in the subsystem B

(R ◦ E)(ρA ⊗ ρB) = (ρA ⊗ ρ
′B)

If we consider that the Projection operator PAB = ⊮A ⊗ ⊮B on the system A ⊗ B and gBab

is a bounded operator in the set B(B), the following condition must be satisfied for the recovery

26

Figure 2.4: Example of Operator groups for subsystem codes

operator to exist:

PABEaEbPAB = IA ⊗ gBab ∀Ea, Eb ∈ E

CWS Subsystem Codes

We have already seen that CWS codes are characterized by a graph G and a classical code C

and it’s base state |s⟩ is stabilized a set of operators of the form

Si = XiZ
ri

where Si are the stabilizer operators and ri is the row vector of the adjacency matrix A of the

n−vertex graph G. The codespace is formed by the span of the base graph state and its orthogonal

translations given by

|wl⟩ = wl|s⟩

where wl are the word operators given by W = {wl} = {Zcl}, where cl are the codewords of the

classical code C. Also, any error acting on a CWS code can be represented by another operator

consisting of only Pauli Z operators just by multiplying each error operator by a set of stabilizers

until all it’s X components cancel out.

If we take the base state of the operator-CWS code[52] as |s′⟩ = |0⟩⊗s|ψ⟩ where the first

s = n− r qubits are in state |0⟩ and |ψ⟩ is an arbitrary state in the r−qubit subsystem, the density

27

operator of this system is given by

ρ = ρA ⊗ ρB = (|0⟩⟨0|)⊗s ⊗ (|ψ⟩⟨ψ|) = ρA ⊗ ρB

Here, multiple base states differing in the states |ψ⟩ in the B subsystem are considered equivalent.

The maximal abelian group of stabilizers S must stabilize the base state fixed in subsystemAwhile

acting as identity on subsystem B. We can say that the fixed s−qubit state |0⟩⊗s is stabilized by

S = ⟨Z1, Z2...Zs⟩

Adding to this group the stabilizers and operators acting on the remaining r qubits, we get the

gauge group G that acts trivially on subsystem A and gives an equivalent base such that ρA =

trB{|s′⟩⟨s′|} = trB{|s′′⟩⟨s′′|} where |s′′⟩ = g|s′⟩ for all gauge operators g.

G = ⟨Z1, Z2...Zs, Zs+1, ..., Zn, Xs+1, ..., Xn⟩

Now, the word operators also must act non-trivially only on subsystem A since we should not

be able to deduce any information in subsystem A by looking at subsystem B. This means that

wl = wA
l ⊗ IB. Therefore, such operators can be obtained from the X operators in Pn/G that act

on the s qubits or on the subsystem A. Even if the wl consists of any operator g acting on the

subsystem B, it will still give us an equivalent class of state

(wA
l ⊗ g)|s′⟩ = wA

l |0⟩⊗s ⊗ g|ψ⟩ = wA
l |0⟩⊗s ⊗ |ψ′⟩

Since this operator g must remain the same for all word operators, it can be incorporated in the

unitary encoding operator U which transforms the base state from |s′⟩ to (|0⟩⊗s ⊗ |ψ⟩) conjugates

itself with all gauge operators in G as well as the word operators wl. This unitary operator trans-

forms all the Zi operators into XiZ
ri and all Xi operators into Zi. Thus, we have stabilizers of

the form Si = XiZ
ri and gj = Zs+j where i = 1, ..., n and j = 1, ..., r. As we saw earlier, any

28

X error can be transformed into an operator consisting of only I and Z operators by multiplying

the error by a set of stabilizers for the CWS codes. In the subsystem version, however, we can

further reduce the Z operators on the gauge qubits by multiplying by the gauge operators gj giving

equivalent classes for errors as well. Applying the error detecting conditions discussed above on

the new conjugated operators, we can say that the necessary and sufficient condition to detect and

correct errors is wiEwj ̸= g for all g ∈ G and i ̸= j.

The word operators {wl}, in order to act trivially on the gauge qubits s+1, ..., nmust commute

with the gauge operators g1, ..., gr and with Ss+1, ..., Sn. The equivalent set of errors should then

be correctable by the classical code with codewords that correspond to the word operators.

An example of a CWS code representation for a ring graph with n = 5 and r = 2 having

stabilizers stabilizing only one state and the gauge operators given as :

S1 = XZIIZ

S2 = ZXZII

S3 = IZXZI

S4 = IIZXZ

S5 = ZIIZX

g1 = IIIZI

g2 = IIIIZ

After multiplying the 1-qubitX andZ errors by the appropriate stabilizers and the gauge operators,

we can represent each of the 1-qubit errors as shown in Table 2.1 above.

Example : [[7,1,1,2]] CSS subsystem Code

For the [[7, 1, 3]] CSS code, there exists a subsystem code such that r = 1. The popularly used

notation of CSS codes constructed previously by using the parity check matrix of self-orthogonal

codes has the following set of stabilizers and logical operators:

29

Type of 1-qubit errors
Error type on 1st qubit on 2nd

qubit
on 3rd qubit on 4th qubit on 5th qubit

X IZIII ZIZII IZIII IIZII IIZII
Z ZIIII IZIII IIZII IIIII IIIII
Y ZZIII ZZZII IZZII IIZII ZIIII

Table 2.1: Equivalent representation of 1-qubit errors

S = ⟨IIIXXXX, IXXIIXX,XIXIXIX, IIIZZZZ, IZZIIZZ,ZIZIZIZ⟩

X = ZZZIII;Z = XXXIII

The stabilizer of the equivalent CWS code would be given by

S ′ = ⟨S1, S2, S3, S4, S5, S6, Z⟩

It can be shown [53] that S ′ is Clifford equivalent to the SCWS where SCWS = US ′U⊥ and

U = H1H2H4 . The modified set of stabilizers can thus be given by

SCWS = ⟨IIIZXXX, IZXIIXX,ZIXIXIX, IIIXZZZ, IXZIIZZ,XIZIZIZ, ZZXIIII⟩

By combining the stabilizer generators, we can get a stabilizers such that each operator has

only one X component as follows:

30

S ′
CWS1

= SCWS6 = XIZIZIZ

S ′
CWS2

= SCWS5 = IXZIIZZ

S ′
CWS3

= SCWS7 = ZZXIIII

S ′
CWS4

= SCWS4 = IIIXZZZ

S ′
CWS5

= SCWS1SCWS2Z = ZIIZXII

S ′
CWS6

= SCWS1SCWS2Z = IZIZIXI

S ′
CWS7

= SCWS1SCWS2SCWS3 = ZZIZIIX

g1 = IIIIIIZ

where g1 is the gauge operator composed of I and Z components that anticommute with S ′
CWS7

but not with all the other stabilizers. The word operators can then be chosen as

W = {IIIIIII, ZZIZIII}

where w1 is the all-identity operator that represents the base state and w2 is such that it commutes

with g1 and S ′
CWS1

After multiplying the 1-qubit X and Z errors by the appropriate stabilizers , we can represent

each of the 1-qubit errors as shown in Table 2.2

Types of 1-qubit errors at on different qubits
Error at 1st at 2nd at 3rd at 4th at 5th at 6th at 7th

X IIZIZIZ IIZIIZZ ZZIIIII IIIIZZZ ZIIZIII IZIZIII ZZIZIII
Z ZIIIIII IZIIIII IIZIIII IIIZIII IIIIZII IIIIIZI IIIIIIZ
Y ZIZIZIZ IZZIIZZ ZZZIIII IIIZZZZ ZIIZZII IZIZIZI ZZIZIIZ

Table 2.2: Equivalent representation of 1-qubit errors after multiplying by stabilizers

31

Types of 1-qubit errors at on different qubits
Error at 1st at 2nd at 3rd at 4th at 5th at 6th at 7th

X IIZIZII IIZIIZI ZZIIIII IIIIZZI ZIIZIII IZIZIII ZZIZIII
Z ZIIIIII IZIIIII IIZIIII IIIZIII IIIIZII IIIIIZI IIIIIII
Y ZIZIZII IZZIIZI ZZZIIII IIIZZZI ZIIZZII IZIZIZI ZZIZIII

Table 2.3: Equivalent representation of 1-qubit errors after multiplying by gauge operators

After multiplying by the gauge operator further, we get the error classes as given in Table 2.3.

However, if we look at the stabilizers and the pure errors associated with them, we see that now

the distance of this subsystem code has reduced to 2.

Example : Bacon-Shor error detecting Subsystem code

Bacon-Shor[13] codes are stabilizer codes defined over a square lattice whose dimensions de-

termine the error detection and correction properties of the code. For example, the simplest Bacon-

Shor code on a 2 × 2 square lattice has the following stabilizers S = ⟨XXXX,ZZZZ⟩ and the

Gauge group defined as {XXII, IIXX,ZIZI, IZIZ}. The logical operators are then denoted

by ZZII and XIXI .

Similarly, for generalized C(n1, n2) Bacon Shor codes over a n1 × n2 square lattice of qubits,

there are a bunch of gauge operators such that one logical qubit is encoded into n1n2 physical

qubits correcting ⌊(n1 − 1)/2⌋ Z errors and ⌊(n2 − 1)/2⌋ X errors.

X type gauge operators are horizontal dominoes and Z type gauge operators are vertical domi-

noes. A vertical stack of n of the X-type dominoes generates an X type stabilizer on n×2 qubits

and so on.

Construction of subsystem codes from pairs of classical linear codes is possible using this

construction without the need of the codes to be self orthogonal.

Theorem: For i ∈ {1, 2}, let Ci ⊆ Fni
q be an Fq-linear code with parameters [ni, ki, di]q. Then

there exists a subsystem code with the parameters

[[n1n2, k1k2, (n1 − k1)(n2 − k2),min {d1, d2}]]q

32

that is pure to dp = min {d⊥1 , d⊥2 }, where d⊥i is the minimum distance of the code C⊥
i .

Code Construction

Using the pairs of parity checks and the generator matrices of two classical codes C1{P1, G1}

and C2{P1, G1}, we can generate subsystem codes following a sequence of simple steps. First, we

can define the rows of the parity matrix P1 as the n− k stabilizers Si =
⊗n1

j=1 Z
(P1)i,j . This group

S1 = ⟨S1...Sn1−k1⟩ detects d1 Pauli X errors. Similarly, using P2, we define Ti =
⊗n2

j=1X
(P2)i,j

to generate the stabilizer group S2 that detects Pauli Z errors. The codewords here are now in the

Hadamard basis.

Next, we arrange n1n2 qubits on an n1×n2 rectangular lattice such that the stabilizers from S1

act on each column and those from S2 act on each row. Let T1 be the abelian group generated by S1

acting on the columns and T2 be the abelian group generated by S2 acting on the rows. However,

the group formed by combining these two sets of operators T = ⟨T1, T2⟩ is nonabelian. Therefore,

we need to construct an abelian subgroup that commutes with every element in T by following the

steps below.

1. Take the element S1 ∈ S1 and the codeword v2 ∈ C2 and construct an element of T1 where

Svj acts on column j.

2. Every element of this form commutes with all elements of both T1 and T2.

3. Similarly construct elements in T2 that commute with all elements in T .

4. Together, they generate the stabilizer group S of the subsystem code.

Bacon-Shor Using this construction

Using the above steps, the Bacon-Shor code for an [[n2, 1, (n − 1)2, n]] subsystem code is

defined on a n × n lattice using the stabilizer generators formed by one set of operators on two

neighboring rows and another set on two neighboring columns. Since now there are 2(n − 1)

mutually independent operators in the stabilizer group, the codespace stabilized is of the dimension

2n
2−2(n−1) = 2(n−1)2+1 representing (n − 1)2c + 1 virtual qubits. Logical operators are defined

33

by the operators X in the first row and Z operators on the first column. The gauge group on the

other hand is formed by two-qubit operators such that two-qubitX operators are stacked in vertical

columns while two qubit Z operators are stacked horizontally. This group that forms the subsystem

B acts only on the (n− 1)2 gauge qubits and commutes with the logical group, and thus the useful

information exists in the remaining 1 qubit that forms subsystem A.

For example, for n = 3, we start with two repetition codes C1 = C2 of length 3 each with the

generator matrix and the parity check matrix as follows:

G =
(
1 1 1

)
;P =

1 1 0

0 1 1


The stabilizer generators of the matrix can thus be defined as :

S =

〈ZZZ III XXI IXX

ZZZ, ZZZ, XXI, IXX

III ZZZ XXI IXX

〉

Next, we define the gauge operators that form four anti-commuting pairs as follows: (GZ
i , G

X
i):

ZII XIX

ZII, III

III III

 ;


III III

ZII, III

ZII XIX

 ;


IZI IXX

IZI, III

III III

;


III III

IZI, III

IZI IXX


If we pick one gauge, then the group ⟨S, GZ

1 , G
Z
2 , G

Z
3 , G

Z
4 ⟩ stabilizes the same subspace as that by

Shor’s 9-qubit code.

We can also interpret Shor’s subsystem codes by separately combining the X and the Z stabi-

lizer generators, which gives us a shortened set of four generators as follows:

34

S1 = ZZIZZIZZI

S2 = IZZIZZIZZ

S3 = XXXXXXIII

S4 = IIIXXXXXX

When the stabilizer set is reduced to just four generators, the stabilized codespace increases

from initially encoding one virtual qubit to a codespace of dimension 29−4 = 25, which is equiva-

lent to five virtual qubits. And with the reduced number of syndrome measurements, the number of

errors that can be detected also decreases. These undetected errors can be generated by four pairs

of anti-commuting operators known as the gauge operators that act on the four of the five virtual

qubits and stabilizes the fifth qubit. The four sets of gauge operators are:

G1
Z = IZZIIIIII, G1

X = IIXIIIIIX

G2
Z = IIIIZZIII, G2

X = IIIIIXIIX

G3
Z = ZZIIIIIII, G3

X = XIIIIIXII

G4
Z = IIIZZIIII, G4

X = IIIXIIXII

35

2.4 Linear Programming Bounds on Quantum Error Correcting Codes

Using weight distribution of codes and linear programming is another powerful approach in

defining the upper bounds on the parameters of the code for constructing good quantum codes

with a distance d. This weight distribution is interpreted by weight enumerators, which count the

number of codewords of each weight in the code. This is usually the case for additive codes, which

we focus on in this thesis. In the case of non-additive codes, they can be used to characterize

the distribution of distances between different codewords. For classical additive codes, the weight

enumerators Aw can be defined as

Aw = |{|x ∈ C,wtx = w}|

where wtx represents the hamming weight of the codeword x and Aw is the number of codewords

with hamming weight w. For a (n,K, d) nonadditive code, we can define the number of codewords

that have a distance w between them as

Aw =
1

K
|{(x, y)|x, y ∈ C, distH (x, y) = w}|

The weight or distance distribution is finally described as

A(z) =
n∑

w=0

Awz
w

Similarly, the weight enumerator of the dual codeC⊥ can be given as follows using the MacWilliam’s

identity

B(z) =
(1 + z)n

K
A

(
1− z

1 + z

)
The weight distribution can be equivalently defined for a ((n,K, d)) quantum error correcting

codes as given by Shor and Laflamme [54] using the following:

36

Aw =
1

K2

∑
Ew

tr (EwP) tr (EwP)

=
1

K2

∑
Ew

∣∣∣∣∣∑
j

⟨j|Ew|j⟩

∣∣∣∣∣
2

Bw =
1

K

∑
Ew

tr (EwPEwP)

=
1

K

∑
Ew

∑
j,k

|⟨k|Ew|j⟩|2

where {|j⟩} are the computational basis states with the projector operator on the codespace as

P =
∑
j

|j⟩⟨j|

In an [[n, k, d]] stabilizer code, Aw and Bw can be interpreted as the number of elements

of weight w in the stabilizer S and the centralizer C(S) respectively. The weight distributions

can then be defined in a way similar to that defined for the classical codes. Using the quantum

MacWilliam’s[55] identity for an [[n, k, d]] stabilizer code specifically, we can derive B(z) using

the distribution A(z) as

B(z) =
1

2n−k
(1 + 3z)nA

(
1− z

1 + 3z

)
Another important factor introduced to impose tighter bounds on the distance of the code d by

putting a new set of constraints on {Aw} is the Shadow Enumerator[56] S(z). The shadow of the

stabilizer of an [[n, k, d]] stabilizer code is the set of operators E in the set of Pauli operators Pn

whose relation with the stabilizers s ∈ S satisfy the condition

< s,E >= wt (s) (mod 2)

37

where < s,E > is 0 when s and E commute and 1 when they anti-commute. Thus, the operators

in the shadow of the stabilizer commute with the even weight elements of the stabilizer S and anti-

commute with the odd-weight stabilizers. Denoting Sw as the number of elements in the shadow

Sh(S) having weight w, we can define the shadow operator as

S(z) =
n∑

w=0

Swz
w

Similar to the MacWilliam’s identity, the shadow enumerator S(w) can be related with the weight

enumerator A(w) using the following identity for an [[n, k, d]] stabilizer code:

S(z) =
1

2n−k
(1 + 3z)nA

(
z − 1

1 + 3z

)

The goal of linear programming in error correction is to minimize the objective function∑n
w−1Aw for given values of n, k and d by satisfying some constraints defined by the above re-

lations. Looking at the distribution of weights {Aw} in the stabilizer S, we can characterize the

codes as degenerate or nondegenerate, and if there is no solution for a set of n, k, d values, then

a quantum code cannot exist for those parameters. Thus, linear programming plays an important

role in finding the best possible code that can transmit the maximum amount of information with

a minimum number of physical qubits for some maximum possible distance d.

Similar to the weight enumerators defined for additive or stabilizer codes, A(z) and B(z) can

have another interpretation in the form of distance distribution of the codewords for nonadditive

codes[57]. The CWS framework comprises both the stabilizer and majority of non-additive codes.

We know that a CWS code is defined by a stabilizer group S consisting of n commuting generators

that stabilize a single state s and a collection W of word operators that translate the state s to

different cosets of Pn/S. Now the combined set WS acts as the centralizer of the stabilizer.

Since the word operators wl correspond to the classical code associated with the CWS code, the

classical code corresponding to the set WS will now have codewords whose distance distribution

can be represented by the Shor-Laflamme weight enumerators B(z) [57]. In one example of the

38

non-additive ((9, 12, 3)) CWS code given by [57], it was observed that the distance enumerator,

calculated by measuring the symplectic distance between each codewords is

B′(z) = 1 + 68z3 + 242z4 + 684z5 + 1464z6 + 1852z7 + 1365z8 + 468z9

which was exactly equal to the Shor-Laflamme weight enumerator that calculates the number of

codewords with different weights in the centralizer WS . Similar observations were encountered

in the case of other nonadditive codes such as the ((10, 24, 3)) nonadditive CWS code where the

weight enumerator has integral coefficients.

39

3. HYBRID CODES

3.1 Hybrid codes

Hybrid codes are the quantum codes that allow transmission of both quantum and classical in-

formation over a quantum channel. They can also be used to protect hybrid quantum memory [58]

as well as for the purpose of quantum secret sharing[59]. In this thesis we will focus particularly on

hybrid stabilizer codes. The results obtained for qubit systems can also be extended for quantum

qudit systems having dimension q = pl where p is prime.

Using the notions of classical and quantum codes, we can represent a hybrid code with pa-

rameters as C = ((n,K : M,d : c))q for a code that can simultaneously encode a K dimensional

quantum system and one of the M classical messages into the Hilbert space (Cq)⊗n. Thus, the en-

tire code-space of a hybrid code is composed of M orthogonal K-dimensional quantum codes Cm

each corresponding to a different classical messagem ∈ [M]. The M quantum codes Cm are known

as inner codes while the collection of inner codes C = {Cm | m ∈ [M]} is known as the outer code

as depicted in Figure 3.1. For example, any quantum state |ψ⟩ and any classical message m can

be simultaneously sent over a single channel by encoding the quantum state into the quantum code

Cm. The hybrid code protects the quantum and classical information from errors less than d and c

Figure 3.1: Overview of hybrid outer code and it’s quantum inner codes

40

respectively. If both the minimum distances d and c are same, the notation ((n,K : M,d)) can be

used. If both the inner and outer codes are stabilizer codes, then the hybrid stabilizer code can be

represented as [[n, k : m, d : c]] where the parameters K = qk and M = qk.

Here we will first discuss the necessary and sufficient conditions required for error detection

and correction, discuss methods of hybrid code construction when d=c; and generalize it further to

design good hybrid codes[60] were d ̸= c.

Trivially, hybrid codes can be constructed in the following different ways:

1. Given a quantum code C = ((n,KM, d))q of composite dimension KM, there exists a hybrid

code with parameters ((n,K :M,d))q.

2. Given a hybrid code C=[[n, k : m, d]]q with k>0, there exists a hybrid code having parame-

ters [[n, k − 1 : m+ 1; d]]q.

3. Given a quantum code C1 = [[n1, k1, d]]q and a classical code C2 = [n2,m2, d]q, there exists

a hybrid code C = [[n1 + n2, k1 : m2, d]]q.

4. For d ̸= s , Given a quantum code C1 = ((n1, K1, d))q and a classical codeC2 = [n2,M2, c]q,

there exists a hybrid code C = [[n1 + n2, K1 :M2, d : c]]q.

A hybrid code is known as genuine when it is not based on the above simple constructions. In

this paper, we aim to provide construction for genuine hybrid codes having parameters better than

the trivial constructions. In order to determine if one hybrid code is better than the other, a partial

order relation is defined between them as follows:

Lemma 1. Given two hybrid codes C1 = [[n1, K1 : M1, d1 : c1]]q and C2 = [[n2, K2 : M2, d2 :

c2]]q, we can say that C2 is better than C1 written as C1 ⪯ C2 if it satisfies one of the following

conditions:

1. K1 ≤ K2 and M1 ≤M2 and d1 ≤ d2 and c1 ≤ c2

2. K1M1 ≤ K2M2 and K1 ≤ K2 and d1 ≤ d2 and c1 ≤ c2

41

We will first discuss the error detection and correction conditions and later study the code

construction strategy when both the minimum distances are equal (d = c). For a hybrid code

C = ((n,K : M))q which is also expressed as a collection of M quantum codes C = {C(ν) : ν =

1, 2, ...,M}, let {c(ν)i : i = 1, 2..., K} define the orthogonal basis of the K dimensional quantum

code C(ν) corresponding to the classical information ν.

Theorem 1. The necessary and sufficient condition for an [[n,K : M,d]] hybrid quantum code to

to detect upto d− 1 errors and correct the linear span of errors Ek where {k = 1, 2...} is

⟨c(ν)i | E†
kEl | c(µ)j ⟩ = α

(ν)
kl δijδµν (3.1)

Here, when ν = µ, the equation reduces to the Knill-Laflamme error correction conditions

satisfied by each inner code Cν and is given by

⟨c(ν)i | E†
kEl | c(ν)j ⟩ = α

(ν)
kl δij (3.2)

On the other hand, when ν ̸= µ, it is necessary to retrieve the classical information ν in addition

to the quantum information. In order to perfectly differentiate the state |c(ν)i ⟩ from the state |c(µ)i ⟩,

equation (3.1) should satisfy the following condition :

⟨c(ν)i | E†
kEl | c(µ)j ⟩ = 0 (3.3)

This condition suggests that the images of the quantum codes C(ν) under all error operators is

mutually orthogonal. Applying measurement based on the orthogonal projectors P (ν) can thus be

used to retrieve the classical information ν. If however this condition is not satisfied, it implies that

Ek|c(ν)i ⟩ and El|c(µ)i ⟩ are not orthogonal and hence cannot be distinguished.

For a genuine hybrid code, it is necessary for some of the constants α(ν)
kl to depend on the

classical information ν. That is, it should satisfy the condition α(ν)
kl ̸= α

(µ)
kl for at least a pair of

classical messages and error operators and α(ν)
kl ̸= 0 for some ν and k ̸= l. This implies that some

of the codes C(ν) needs to be degenerate codes.

42

3.2 Hybrid codes from stabilizer codes

Following a framework similar to the union stabilizer codes, we will start with a degenerate

CWS code which is also a stabilizer quantum code C(0) = [[n, k, d]]q having a stabilizer group

S(0). The remaining inner codes C(ν) are chosen to be the images of this code C(0) under the tensor

product of the translation operators tν . Thus the hybrid code can be described as a union of the

translated degenerate codes as follows:

C =
⋃

tνC(0) (3.4)

where ν = 1, 2...M . The stabilizer group S(0) associated with the quantum code C(0) corresponds

to a self-orthogonal code C0 where C0 ⊆ C∗
0 and C∗

0 corresponds to the normalizer N(S(0)). Thus

in a classical sense, equation (4) corresponds to a union of cosets C∗
0 + tν of the normalizer code

and the hybrid code in terms of the classical code can be represented as

C∗ =
M⋃
ν=1

C∗
0 + tν (3.5)

The hybrid code is a stabilizer code when equation (5) above is an additive code. The classical

codes associated satisfies the property C ≤ C0 ≤ C∗
0 ≤ C∗. There are qm cosets of the code C∗

0 in

C∗. Using the representatives tν of each of these cosets , we can construct the mutually orthogonal

inner quantum codes C(ν) each having the same minimum distance

min{wt(c) : c ∈ C∗
0 \ C0} > min{wt(c) : c ∈ C∗ \ C0} (3.6)

The code construction can be summarized in the following theorem:

Theorem 2. Given a self-orthogonal classical additive code C0 = (n, qn−k, d0)q2 and an additive

code C∗ = (n, qn+k+m, d′) containing C∗
0 , there exists a hybrid stabilizer code C = [[n, k : m, d]]q

with a minimum distance given by

43

d = min{wt(c) : c ∈ C∗ \ C0} (3.7)

The stabilizer generators of the inner code C0 can be divided into the quantum stabilizer and the

classical stabilizer. The quantum stabilizer SQ stabilizes the outer code and commutes with all the

translation operators tν while the classical stabilizer SC is generated from the stabilizer generators

that does not commute with at least one of the translation operators. SC consists of generators

gi,j such that Sc = ⟨gi,j | i ∈ [m], 0 ≤ j ≤ l⟩ (where q = pl) which can be associated with the

Zi(α
j) operator acting on ith virtual qudit. Similarly, the translator operator ta corresponding to

the classical message a ∈ Fm
q , can be associated with the X(a) operator. With the defined classical

and quantum stabilizers, we can say that the inner stabilizer code taC corresponding to the classical

message a can be stabilized by Sa = ⟨SQ, ω
−tr(b.a)gi,j⟩ where b = αj in the ith position and 0

elsewhere.

3.3 Hybrid codes from Subsystem codes

In [37], the authors have given code constructions to generate [[n, k : r, d : c]]q hybrid codes

from any [[n, k, r, d]]q subsystem codes. The idea here is to encode the classical information into

the gauge qudits by using a method known as gauge fixing[61]. In this method, a subset of gauge

qudits are fixed by selecting a set of r commuting gauge operators, multiplying them by a phase,

and adding them to the existing stabilizer group S = ⟨Si⟩ of the subsystem code.

The stabilizer group S of the subsystem code also stabilizes the outer code of the hybrid code.

Considering a prime field where l=1, the gauge group is generated by choosing 2r gauge operators

X i
G(a) and Zi

G(b) from G \ SZ(Gn) for i ∈ [r] where Gn is the error group. For a fixed i, we have

the error group on single qudit G1 as

⟨ω,X i
G(a), Z

i
G(b)⟩

After fixing a gauge operator say Zi
G(b) and adding it to the stabilizer, we get an expanded

stabilizer group S0 that stabilizes the inner code C0 given as :

44

Figure 3.2: Operator groups for Hybrid Subsystem codes

S0 = ⟨S, Zi
G(b) | i = [r]⟩

The normalizer or centralizer of the S is :

N (S) = ⟨ω,S, X i
G(α

l), Zi
G(α

l), Xj(αh), Zj(αh)⟩

where i ∈ [r], j ∈ [k], 0 ≤ h ≤ l. Similarly the centralizer of the inner Stabilizer group S0 is

N (S0) = ⟨ω,S0, X i(αj), Zj(αj) | i ∈ [k], 0 ≤ j ≤ l⟩

The translational operators ta can be constructed by using the logical X gauge operators X i
G(a)

such that ta = X1
G(a1)...X

r
G(ar). An example of the subsystem operator groups used for hybrid

code construction is shown in Figure 3.2.

Elements in the error group Gn can be represented in the form of E = RSTUV where

45

1. R ∈ S is in the quantum stabilizer

2. S = coset representatives of classical stabilizer S0/S

3. T = logical quantum operator N (S0)/S0

4. U = translational operator N (S)/N (S0)

5. V = Pure error Gn/N (S)

The errors E can fall into three categories as follows:

1. wt(E) < c, d : In this case, the error is of the form RSV as E /∈ N (S) \ G and E /∈

N (S) \ N (S0). Here if V is identity, then the information is not affected in any way and if

it isn’t identity, then it can be detected.

2. c ≤ wt(E) < d: Here error is of the form RSUV since E /∈ N (S) \ G . Similar to the

case above, if V is not identity, then error can be detected. However, if it is identity, then the

quantum information is not affected but the classical information is.

3. d ≤ wt(E) < c: The error here is of the form RSTV since E /∈ N (S) \ N (S0). Again, if

V is not identity then the error can be detected. If however it is identity, then the classical

information is intact but the quantum information is affected.

The quantum minimum distance of the hybrid code which is the minimum weight of the

logical operator on the quantum information is same as that of the subsystem code given by

d = wt(N (S) \ G). On the other hand, the classical minimum distance which is the minimum

weight of the logical operator on the classical information can be given as c = wt(N (S)\N (S0)).

It is conjectured that a hybrid stabilizer code satisfies the quantum singleton bound given by

k +m ≤ n− 2(d− 1)

46

Example: Bacon Casaccino Hybrid Code Construction

Bacon and Casaccino introduced a family of subsystem codes that can be constructed from

two classical linear codes that need not be self-orthogonal(where C ⊆ C⊥). These codes are a

generalization of the subsystem codes defined previously by Bacon and Shor subsystem codes.

The following theorem defines the subsystem code construction from a pair of classical linear

codes.

Theorem 3. Given two classical Fq linear codes C1 ⊆ Fn1
q and C2 ⊆ Fn2

q with parameters

[n1, k1, d1]q and [n2, k2, d2]q respectively, there exists a subsystem code

[[n1n2, (n1 − k1)(n2 − k2),min {d1, d2}]]q

which is pure to distance dp = min{d⊥1 , d⊥2 } where d⊥i is the minimum distance of C⊥
i .

Let H1, H2 denote the parity check matrices and G1, G2 be the generator matrices of the

classical linear codes C1 and C2 respectively. Using the rows of the H1, we can define the classical

stabilizer code C1 by defining n1 − k1 stabilizer generators of type Z, Si = ⊗n1
j=1Z

(P1)
ij of length

ni. The codewords in this code C1 are defined in the computational basis(|0⟩, |1⟩) and can detect

d1 Pauli-X errors. Similarly the rows of H2 can be used to define the code C2 by defining n2 − k2

type X stabilizer generators Ti = ⊗n2
j=1X

(P1)
ij which can detect d2 number of Pauli-Z errors. The

codewords in C2 are however represented in the hadamard basis (|+⟩, |−⟩). Each of these stabilizer

generators form a stabilizer group S1 and S2.

The subsystem code construction from these two classical stabilizer codes starts by arranging

the n1n2 codes in a n1 × n2 rectangular lattice where the vertices denote the qubits. The Z-type

stabilizers from S1 acts on columns of the lattice while the X-type stabilizers from S2 acts on the

rows. The group T1 formed by the column operators from S1 and the group T2 formed by the row

operators from S2 are each abelian however, their combined group T = ⟨T1, T2⟩ containing both

the operators is not abelian. We can however create an abelian subgroup of T by taking a stabilizer

S from S1 and a codeword v fromC2 and generate an element from T1 such that Svj acts on column

47

j. The elements of this subgroup can act as the center of the group T since it commutes with all the

elements of T1 and T1. Similarly, elements from T2 can be constructed such that it commutes with

all the elements in T . The subgroup constructed acts as the stabilizer of the resultant subsystem

code.

Example: Bacon-Shor subsystem code:

The Bacon Shor code is a [[n2, 1, (n − 1)2, n]] subsystem code defined on an n × n array of

qubits. The subsystem version of Shor’s 9-qubit code, is the smallest member of the Bacon-Shor

subsystem code family. The stabilizers consist of operators acting as X on two adjacent rows and

as Z on two adjacent columns. In this construction, a pair of identical classical codes C1 = C2

are used each of which is a 3-qubit repetition code. Their parity check and Generator matrices are

given as follows:

H =

1 1 0

0 1 1

 G =
(
1 1 1

)

Following the construction given above, the stabilizer generators on the 3 × 3 lattice can be

defined as :

S =

〈ZZZ III XXI IXX

ZZZ, ZZZ, XXI, IXX

III ZZZ XXI IXX

〉

The Gauge operators consist of four pairs of anti-commuting logical X i
G and Zi

G operators as

shown below :

48

Figure 3.3: Example of Stabilizer generators for Bacon Shor code

Figure 3.4: Example of Gauge operators


ZII XIX

ZII, III

III III

 ,


III III

ZII, III

ZII XIX

 ,


IZI IXX

IZI, III

III III

 ,


III III

IZI, III

IZI IXX


If we fix the logical Z gauge operators and add them to the existing stabilizer group, the

codespace stabilized by all the resultant abelian group ⟨S, Z1
G, Z

2
G, Z

3
G, Z

4
G⟩ is same as that of the

original 9-qubit code. An example of the structure of stabilizer generators and gauge operators for

Bacon-Shor code is shown in Figure 3.3 and Figure 3.4 respectively.

49

Hybrid Code Construction:

Following the code construction principles for subsystem codes above, we can say that :

Theorem 4. Given two classical Fq linear codes C1 ⊆ Fn1
q and C2 ⊆ Fn2

q with parameters

[n1, k1, d1]q and [n2, k2, d2]q respectively, there exists a hybrid code

[[n1n2, k1k2 : (n1 − k1)(n2 − k2), d : c]]q

where the distance d = min {d1, d2}, c ≥ min{d,max{d⊥1 , d⊥2 }} and d⊥i is the minimum distance

of C⊥
i .

For the 9-qubit Bacon-Shor code, we can construct a [[9, 1 : 4, 3 : 2]] hybrid code by gauge

fixing the subsystem code such that the stabilizer of C0 consists of operators ⟨S, Z1
G, Z

2
G, Z

3
G, Z

4
G⟩.

The translation operators (X1
G)m1(X

2
G)m2(X

3
G)m3(X

4
G)m4 can be used to send the classical mes-

sages of the form m = m1m2m3m4. Thus, we can construct binary hybrid codes having parame-

ters [[n2, 1 : (n− 1)2, n : 2]]2 from the Bacon Shor’s subsystem codes.

Example : Shaw’s 6-qubit code

Shaw et al.[62] gave a construction of a subsystem code from a degenerate 6-qubit quantum

code that corrects an arbitrary single qubit error. The code consists of five stabilizer generators that

form the stabilizer group given by

S = ⟨Y IZXXY,ZXIIZX, IZXXXX, IIIZIZ, ZZZIZI⟩

where Y = ZX . The logical operators of this code can be written as X = ⟨ZIXIXI⟩ and

Y = ⟨IZIIZZ⟩. The logical CNOT operation can be represented in terms of bitwise CNOT

(CN) and Controlled-Z(CZ) operators as follows:

CNOT = CZ(2, 7)CZ(5, 7)CZ(6, 7)CN(1, 9)CN(3, 9),

CN(4, 9), CN(2, 11), CN(4, 11)CN(5, 11)

50

where CQ(i, j) denotes that i is the control bit and j is the target bit and Q can be N or Z. The

logical states or codewords of this code can be given as:

|0⟩ = |000000⟩ − |100111⟩+ |001111⟩ − |101000⟩−

|010010⟩+ |110101⟩+ |011101⟩ − |111010⟩

|1⟩ = |001010⟩+ |101101⟩+ |000101⟩+ |1000010⟩−

|011000⟩ − |111111⟩+ |010111⟩+ |110000⟩

The stabilizer code can be viewed as one composed of six virtual qubits out of which the the

sixth unencoded bit contains useful information. After encoding, it forms a part of the subsystem

Clogical.The fourth unencoded qubit is converted to a gauge qubit such thatX4 and Z4 have no effect

on the subsystem Clogical. After encoding, these operators get converted to X4 and Z4Z6 and form

the encoded gauge subgroup. Thus, the original stabilizer space is reduced to only four generators

given by

S = ⟨Y IZXXY,ZXIIZX, IZXXXX,ZZZIZI⟩

The fourth stabilizer is now a part of the gauge group defined by the logical operators

GX = ⟨IIIXII⟩, GZ = ⟨IIIZIZ⟩

Following the hybrid code construction discussed in the previous section, adding the gauge

operator GX to the stabilizer group S stabilizes the codespace for the inner code C0. The logical

operators for the quantum code remain unchanged whereas the logical operator for the classical

code also known as the translation operator is served by GZ . The resultant code generated is the

[[6, 1 : 1, 3]]2 hybrid code where both the classical and quantum minimum distance is 3.

51

4. CONCLUSIONS AND FUTURE WORK

This thesis presents a detailed overview of hybrid codes, their necessary error correcting con-

ditions and discusses various code construction methods for creating genuine hybrid codes. It first

gives a preliminary understanding of quantum error correction and the techniques currently used to

mitigate errors in information transmission over quantum channels. Further, it analyzes the advan-

tages of hybrid codes over individual quantum error correcting codes and classical error correcting

codes and gives examples of infinite family of codes to transfer quantum-classical information in

a noisy channel. The first method uses degenerate quantum codes to construct a family of hybrid

codes where the classical and quantum minimum distance is the same. In the second approach, the

subsystem code structure is used to encode the classical information in the previously unused log-

ical qudits. This construction methodology allows the hybrid code to have different classical and

quantum minimum distances. This thesis also explores the Bacon-Casaccino subsystem code con-

struction and used for the construction of hybrid stabilizer codes using two classical linear codes.

The Bacon-Shor code explained later is an example of such construction that uses the classical

repetition code. Further, it delves into analyzing the code parameters of various infinite family of

codes along with their LP bounds. We also look into the construction of the fault-tolerant CSS

codes and analyze their structure to see if they can be used to build hybrid codes. For this we

analyze various parameters and bounds of the CSS hybrid codes given in Grassl’s table of codes

and analyze their relationship with that of classical and quantum CSS codes.

Although hybrid codes can be highly beneficial for practical purposes in the joint communi-

cation of quantum and classical information, there are various limitations in the amount of infor-

mation that can be packed in general error-correcting codes. These packing bounds do not make

hybrid codes to be widely applicable. This study can be enhanced further by combining entangle-

ment assisted codes in the hybrid subsystem code construction. Future work can also be done in

exploring other applications of hybrid codes in domains like quantum secret sharing.

52

REFERENCES

[1] E. Tang, “A quantum-inspired classical algorithm for recommendation systems,” in Proceed-

ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 217–228,

2019.

[2] E. Tang, “Quantum-inspired classical algorithms for principal component analysis and super-

vised clustering,” arXiv e-prints, pp. arXiv–1811, 2018.

[3] A. Gilyén, Z. Song, and E. Tang, “An improved quantum-inspired algorithm for linear regres-

sion,” arXiv preprint arXiv:2009.07268, 2020.

[4] S. Greengard, “The algorithm that changed quantum machine learning,” Communications of

the ACM, vol. 62, no. 8, pp. 15–17, 2019.

[5] J. L. O’brien, “Optical quantum computing,” Science, vol. 318, no. 5856, pp. 1567–1570,

2007.

[6] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews of Modern Physics,

vol. 86, no. 1, p. 153, 2014.

[7] R. Renner, “Security of quantum key distribution,” International Journal of Quantum Infor-

mation, vol. 6, no. 01, pp. 1–127, 2008.

[8] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2, p. 117,

1998.

[9] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 35, pp. 416–418, Cambridge University Press, 1939.

[10] N. Young, An introduction to Hilbert space. Cambridge university press, 1988.

[11] S. Cheng, C. Cao, C. Zhang, Y. Liu, S.-Y. Hou, P. Xu, and B. Zeng, “Simulating noisy

quantum circuits with matrix product density operators,” Physical Review Research, vol. 3,

no. 2, p. 023005, 2021.

53

[12] D. Aharonov, A. Kitaev, and N. Nisan, “Quantum circuits with mixed states,” in Proceedings

of the thirtieth annual ACM symposium on Theory of computing, pp. 20–30, 1998.

[13] B. M. Terhal, “Quantum error correction for quantum memories,” Reviews of Modern

Physics, vol. 87, no. 2, p. 307, 2015.

[14] N. Sinha, “Quantum computation and quantum information by michael e. nielson and isaac

l. chuang,” Mapana Journal of Sciences, vol. 1, no. 2, p. 120, 2003.

[15] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[16] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in

Proceedings 35th annual symposium on foundations of computer science, pp. 124–134, Ieee,

1994.

[17] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical

review A, vol. 52, no. 4, p. R2493, 1995.

[18] A. M. Steane, “Error correcting codes in quantum theory,” Physical Review Letters, vol. 77,

no. 5, p. 793, 1996.

[19] A. M. Steane, “Enlargement of calderbank-shor-steane quantum codes,” IEEE Transactions

on Information Theory, vol. 45, no. 7, pp. 2492–2495, 1999.

[20] A. M. Steane, “Efficient fault-tolerant quantum computing,” Nature, vol. 399, no. 6732,

pp. 124–126, 1999.

[21] J. Preskill, “Fault-tolerant quantum computation,” in Introduction to quantum computation

and information, pp. 213–269, World Scientific, 1998.

[22] A. M. Steane, “Simple quantum error-correcting codes,” Physical Review A, vol. 54, no. 6,

p. 4741, 1996.

[23] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Phys. Rev. A, vol. 55,

no. 2, pp. 900–911, 1997.

54

[24] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Physical Review A,

vol. 55, no. 2, p. 900, 1997.

[25] D. Gottesman, Stabilizer codes and quantum error correction. California Institute of Tech-

nology, 1997.

[26] D. Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum mem-

ories,” Phys. Rev. A, vol. 73, no. 1, p. 012340, 2006.

[27] S. A. Aly and A. Klappenecker, “Constructions of Subsystem Codes over Finite Fields,”

International Journal of Quantum Information, vol. 7, no. 5, pp. 891–912, 2009.

[28] H. Bombín, “An introduction to topological quantum codes,” arXiv preprint

arXiv:1311.0277, 2013.

[29] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards

practical large-scale quantum computation,” Physical Review A, vol. 86, no. 3, p. 032324,

2012.

[30] M. Grassl, S. Lu, and B. Zeng, “Codes for Simultaneous Transmission of Quantum and Clas-

sical Information,” in Proc. 2017 IEEE Int. Symp. Inform. Theory (ISIT), (Aachen, Germany),

pp. 1718–1722, Jun. 2017.

[31] I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission

of classical and quantum information,” Communications in Mathematical Physics, vol. 256,

no. 2, pp. 287–303, 2005.

[32] M.-H. Hsieh and M. M. Wilde, “Entanglement-assisted communication of classical and quan-

tum information,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4682–4704,

2010.

[33] M.-H. Hsieh and M. M. Wilde, “Trading classical communication, quantum communication,

and entanglement in quantum shannon theory,” IEEE Transactions on Information Theory,

vol. 56, no. 9, pp. 4705–4730, 2010.

55

[34] J. T. Yard, Simultaneous classical-quantum capacities of quantum multiple access channels.

stanford university, 2005.

[35] I. Kremsky, M.-H. Hsieh, and T. A. Brun, “Classical enhancement of quantum-error-

correcting codes,” Physical Review A, vol. 78, no. 1, p. 012341, 2008.

[36] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, “Hybrid quantum-classical algorithms and

quantum error mitigation,” Journal of the Physical Society of Japan, vol. 90, no. 3, p. 032001,

2021.

[37] S. Majidy, “A unification of the coding theory and oaqec perspective on hybrid codes,” arXiv

preprint arXiv:1806.03702, 2018.

[38] C.-K. Li, S. Lyles, and Y.-T. Poon, “Error correction schemes for fully correlated quantum

channels protecting both quantum and classical information,” Quantum Information Process-

ing, vol. 19, no. 5, pp. 1–17, 2020.

[39] S. Majidy, “A unification of the coding theory and oaqec perspective on hybrid codes,” arXiv

preprint arXiv:1806.03702, 2018.

[40] D. W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky, “Operator quantum error correction,”

arXiv preprint quant-ph/0504189, 2005.

[41] M. M. Wilde, “From classical to quantum shannon theory,” arXiv preprint arXiv:1106.1445,

2011.

[42] D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs,”

Physical Review A, vol. 65, no. 1, p. 012308, 2001.

[43] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H.-J. Briegel, “Entanglement in

graph states and its applications,” arXiv preprint quant-ph/0602096, 2006.

[44] S. Clark, C. M. Alves, and D. Jaksch, “Efficient generation of graph states for quantum

computation,” New Journal of Physics, vol. 7, no. 1, p. 124, 2005.

56

[45] M. Grassl, A. Klappenecker, and M. Rotteler, “Graphs, quadratic forms, and quantum codes,”

in Proceedings IEEE International Symposium on Information Theory,, p. 45, IEEE, 2002.

[46] B. Zeng, H. Chung, A. W. Cross, and I. L. Chuang, “Local unitary versus local clifford

equivalence of stabilizer and graph states,” Physical Review A, vol. 75, no. 3, p. 032325,

2007.

[47] A. Cross, G. Smith, J. A. Smolin, and B. Zeng, “Codeword stabilized quantum codes,” in

2008 IEEE International Symposium on Information Theory, pp. 364–368, IEEE, 2008.

[48] Y. Li, Codeword Stabilized Quantum Codes and Their Error Correction. PhD thesis, UC

Riverside, 2010.

[49] A. R. Calderbank, E. M. Rains, P. Shor, and N. J. Sloane, “Quantum error correction via

codes over gf (4),” IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1369–1387,

1998.

[50] D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming

bound,” Phys. Rev. A, vol. 54, no. 3, pp. 1862–1868, 1996.

[51] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis, California In-

stitute of Technology, Pasadena, CA, 1997.

[52] J. Shin, J. Heo, and T. A. Brun, “Codeword-stabilized quantum codes on subsystems,” Phys-

ical Review A, vol. 86, no. 4, p. 042318, 2012.

[53] C. Cafaro, D. Markham, and P. van Loock, “Scheme for constructing graphs associated with

stabilizer quantum codes,” arXiv preprint arXiv:1407.2777, 2014.

[54] E. M. Rains, “Quantum weight enumerators,” IEEE Transactions on Information Theory,

vol. 44, no. 4, pp. 1388–1394, 1998.

[55] S.-C. Chang and J. Wolf, “A simple derivation of the macwilliams’ identity for linear codes

(corresp.),” IEEE Transactions on Information Theory, vol. 26, no. 4, pp. 476–477, 1980.

57

[56] E. M. Rains, “Quantum shadow enumerators,” IEEE transactions on information theory,

vol. 45, no. 7, pp. 2361–2366, 1999.

[57] A. Nemec and A. Klappenecker, “A combinatorial interpretation for the shor-laflamme weight

enumerators of cws codes,” arXiv preprint arXiv:2107.07071, 2021.

[58] G. Kuperberg, “The capacity of hybrid quantum memory,” IEEE Transactions on Information

Theory, vol. 49, no. 6, pp. 1465–1473, 2003.

[59] D. Gottesman, “Theory of quantum secret sharing,” Physical Review A, vol. 61, no. 4,

p. 042311, 2000.

[60] A. Nemec and A. Klappenecker, “Hybrid codes,” in 2018 IEEE International Symposium on

Information Theory (ISIT), pp. 796–800, IEEE, 2018.

[61] A. Nemec and A. Klappenecker, “Encoding classical information in gauge subsystems of

quantum codes,” International Journal of Quantum Information, p. 2150041, 2022.

[62] B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical

qubit into six physical qubits,” Physical Review A, vol. 78, no. 1, p. 012337, 2008.

58

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Quantum computation and information
	Qubits
	Quantum gates and Observables
	Errors induced by the quantum channel

	QUANTUM ERROR CORRECTION
	Background and Related Works
	Essentials of Quantum error correction
	Classical Error Correction
	Quantum Error Correcting Codes
	Quantum Codes from Classical Codes

	Classes of Quantum Error Correcting Codes
	Codeword Stabilized Codes
	Calderbank-Shor Steane Codes
	Stabilizer Codes
	Subsystem Codes

	Linear Programming Bounds on Quantum Error Correcting Codes

	HYBRID CODES
	Hybrid codes
	Hybrid codes from stabilizer codes
	Hybrid codes from Subsystem codes

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

