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ABSTRACT

We propose efficient priors for two different statistical problems: (1) designing Bayesian hy-

pothesis tests with reduced costs for detecting the presence or absence of hypothesized effects,

and (2) efficient modeling of dynamic zero-inflated directed networks. Our contributions cover

computational and methodological aspects and touch upon theoretical aspects in some cases.

Costs of conducting experiments to test hypothesized effects are often directly related to the

number of tested items or participants. To address this, in the first part of the thesis we propose

cost-efficient Bayesian hypothesis tests. We describe a modified sequential probability ratio test

that can be used to reduce the average sample size required to perform statistical hypothesis tests

at specified levels of significance and power. Examples are provided for z and t tests, and tests

of binomial success probabilities. A description of the software package to implement the test is

provided. We compare the sample sizes required in fixed design tests conducted at 5% significance

levels to the average sample sizes required in sequential tests conducted at 0.5% significance levels,

and we find that the two sample sizes are approximately equal. To generalize this framework, we

found the default implementations of Bayesian tests prevent the accumulation of strong evidence

in favor of true null hypotheses because associated default alternative hypotheses assign a high

probability to data that are most consistent with a null effect. We propose the use of “non-local”

alternative hypotheses to resolve this paradox. The resulting class of Bayesian hypothesis tests

permits a more rapid accumulation of evidence in favor of both true null hypotheses and alternative

hypotheses that are compatible with standardized effect sizes of most interest in psychology.

The second part of the thesis extends the discussion of choosing efficient priors and proposes

the Hurdle Network Model for modeling zero-inflated directed networks. We assume node-specific

dynamic latent attributes to account for the underlying network structure and apriori assume the

Dynamic Shrinkage Process on them. We find the model has good predictive performance. Simu-

lation studies and an application on bilateral trade flows from the apparel industry are included to

support this.
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NOMENCLATURE

SPRT Sequential Probability Ratio Test

MSPRT Modified Sequential Probability Ratio Test

UMPBT’s Uniformly Most Powerful Bayesian Tests
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2,m) Normal Moment prior of order m for the null hypothesized
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1. INTRODUCTION

Experimental science relies on controlled experiments that test whether effects predicted by

a scientific theory can be produced and measured in laboratory settings. Observational science

is based on measuring outcomes as they occur naturally, without experimental intervention. In

practice, measured outcomes from both observational studies and experiments are subject to ran-

dom variation and measurement error. For this reason, hypothesis testing procedures and statistical

modeling must be employed to determine whether data support or do not support a hypothesized

effect or model. Innovative statistical methods to evaluate the plausibility of scientific theories have

attracted increased attention over the last decade. This attention has resulted in renewed interest

in Bayesian methods for assessing evidence [e.g., 1], and several novel approaches to sequential

testing procedures have recently been proposed [2, 3]. As [2] point out, each of these sequential

testing methods can be motivated from a Bayesian perspective towards testing.

Recent technological advancements in diverse areas of science have also made it easier to col-

lect and analyze structured data in the form of networks. Some examples include data observed

from social networks, genetic circuits and protein interaction networks. This has increased pop-

ularity of statistical analysis of networks over the past few years. Given that a model has been

specified, a Bayesian approach for statistical inference requires us to assume priors on model pa-

rameters. Although there exists a plethora of methods for modeling such data, there still exists

many open questions. One such question is how we can propose smart modeling strategies and

propose efficient priors that can incorporate network structure, has interpretable parameters and

also lets us draw statistical inference efficiently.

So the common underlying theme in this thesis is choosing efficient priors in these two differ-

ent real life problems with a common goal of drawing valid statistical inference. Below we discuss

some of the key questions that still persists in each of these problems and then briefly outline the

way this thesis attempts to solve them.
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1.1 Reducing Sample Size to Attain Higher Statistical Significance

In the classical hypothesis testing paradigm, two types of errors are considered to assess

whether data support or do not support a hypothesized effect. Type I error occurs when the null

hypothesis of “no effect” is rejected when the hypothesized effect does not exist. To limit claims of

false discovery, hypothesis testing procedures are commonly designed so that the probability of a

Type I error (i.e., α) is limited to be less than a prespecified value, often 0.05. Type II error occurs

when we fail to reject the null hypothesis when the hypothesized effect does exist (the probability

of a Type II error is denoted by β).

Recent concerns over the replicability of scientific studies have led to calls to move away from

p values and significance testing [4, 5, 6, 7]. However, p values and significance testing continue

to play critical roles in many areas, including genomics, high-energy physics, and clinical trials.

An examination of recent articles in prominent psychology journals also suggests that p values and

significance testing continue to play an important role in psychological research [8, 9]. Elsewhere,

we have proposed to address the limitations of p values by reducing the significance thresholds

required for declaring a positive finding from α = 0.05 to α = 0.005 [10, 11]. While this change

would improve the replicability of scientific claims of discoveries, it would also increase the costs

of conducting studies because larger sample sizes would be required if similar controls on Type II

error probability were maintained.

In Chapter 2, we describe a modification of the sequential probability ratio test (SPRT) of [12]

that reduces the sample sizes required to achieve specified Type I and Type II error probabilities.

The modified design can be applied to many studies conducted in the social and natural sciences

in which the goal is to establish the existence of a hypothesized effect. Implicit in this goal is the

detection of effects that are not arbitrarily close to zero (or the null value of the parameter). In this

regard, the proposed design differs from recent developments of sequential procedures designed

to estimate various effect sizes, such as standardized mean differences, correlation and regression

coefficients, and coefficients of variation [13, 14, 15]. We propose the Modified Sequential Proba-

bility Ratio Test (MSPRT) for testing a point null hypothesis against a one or two-sided alternative
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hypothesis. In designing these tests, we objectively set alternative hypotheses. The alternative

hypotheses we propose are based on uniformly most powerful Bayesian tests (UMPBT’s) or ap-

proximate UMPBT’s [11, 16]. We note that exact UMPBT’s are known only for one-parameter

exponential family models and tests for the non-centrality parameters of chi-squared statistics [17].

Approximate UMPBT’s are known for t tests. Thus, a limitation of the MSRPT is that is applicable

primarily to z and t tests, tests of binomial proportions and Poisson means, and chi-squared tests.

For this class of tests, empirical evidence suggests that MSPRT’s require sample sizes that can

be less than 50% of the sample size that is required in corresponding fixed designs when the null

hypothesis of no effect is true, and sample sizes that can be 20% smaller when alternative hypothe-

ses are true. In general, the sample size savings accrued by the use of the MSPRT depends on the

test statistic chosen and the targeted Type I and II error probabilities for the test.Theoretical support

for these findings is provided in [18], where approximate formulae for the average sample number

(ASN) and operating characteristics for truncated SPRTs are derived. These results approximate

discrete time stochastic processes (representing the observed sequential tests) by Brownian motion

or Wiener processes, which are continuous time stochastic processes. For sufficiently large sam-

ple sizes, these processes provide approximate operating characteristics and ASN’s for truncated

SPRT’s. In the case of one- and two-sample z tests, the underlying assumptions required in deriv-

ing those formulae apply to the MSPRT, and the approximate values from these results agree with

our empirical findings. Specific details regarding this connection appear in Section 2.5.1. As noted

by [18], this theoretical result “leads to appreciable qualitative insight; and quantitatively it does

provide a first, crude approximation which can often be used as a basis for subsequent refinement.”

1.2 Efficient Alternative for Bayesian Hypothesis Tests

To identify invariances, hypothesis testing procedures must permit accumulation of evidence

in support of both null and alternative hypotheses (see also [19, 20, 21]). In this regard, Bayesian

testing procedures differ from classical testing procedures, in which one can only fail to reject

the null hypothesis [e.g., 22], by allowing researchers to quantify evidence in favor of true null
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hypotheses, which can reflect the presence of an invariance or lack of an effect. In the Bayesian

paradigm, the posterior odds in favor of an alternative hypothesis H1, based on data x, can be

expressed as the product of the Bayes factor and the prior odds in favor of H1; that is

posterior odds = Bayes factor× prior odds, (1.1)

or
P(H1 |x)

P(H0 |x)
=
m1(x)

m0(x)
× P(H1)

P(H0)
. (1.2)

It is important to note that this equation can be interpreted from both a frequentist and subjec-

tive view of probability. From the frequentist perspective, all probabilities can interpreted as the

limiting proportion of the occurrence of an event. That is, if the null hypothesis H0 is repeatedly

sampled with probability P(H0) (or H1 with probability P(H1) = 1 − P(H0)), and data x is

generated according to m0(x) (or m1(x)), then the posterior probability that data was generated

under H1, for a given x, converges in probability to

P(H1 |x) =
BF10(x) P(H1)

P(H0) + BF10(x) P(H1)
, (1.3)

where BF10(x) = m1(x)/m0(x) is the Bayes factor in favor of H1.

When Bayesian methods are applied to Null Hypothesis Significance Tests (NHSTs), contro-

versy arises in the “subjective” specification of two quantities in these equations. First, the prior

odds in favor of H1 must be specified. This specification is equivalent to specifying either the prior

probability of the alternative hypothesis, P (H1), or the prior probability of the null hypothesis,

P (H0), since P (H0) + P (H1) = 1. A simple approach to setting the prior odds is to assume

P (H0) = P (H1) = 0.5, leading to prior odds of 1.0. However, recent evidence gleaned from

analyses of replicated experiments suggests that the prior odds in favor of the alternative hypothe-

ses studied in psychology and other social sciences might be closer to 1/9 [9, 23]. Although it

is necessary to set a value of the prior odds in order to calculate the posterior odds, evaluation of
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the prior odds is not considered further here. Instead, we encourage researchers to perform their

own sensitivity analyses to evaluate how various assumptions regarding the prior odds affect the

posterior odds for a given Bayes factor.

The second point of controversy arises in the definition of the marginal density of the data

under the alternative hypothesis, given by

m1(x) =

∫
Θ

f(x | θ)π1(θ)d θ. (1.4)

Here π1(θ) represents the prior density for the parameter of interest θ under the alternative hypoth-

esis, i.e., the alternative prior density. (A more detailed description of the Bayesian hypothesis

testing framework may be found in, for example, [24] or [19].) In NHSTs, the quantity m0(x)

simply represents the sampling density of the data, say f(x | θ0), evaluated at the parameter value

that defines the null hypothesis, θ0.

In Chapter 3 we describe a new approach to specifying alternative hypotheses in Bayesian

tests of a normal mean or difference between means. Chapter 4 extends this idea and propose a

similar approach to specifying alternative hypotheses in Bayesian tests of a proportion or difference

between proportions. The approach is based on the use of non-local alternative prior densities

(NAPs; [25]). A NAP is a density that exactly equals 0 at parameter values that are consistent with

the null hypothesis. Tests specified with NAPs offer several advantages over tests defined with

alternative hypotheses based on local priors. The NAPs

• can accumulate stronger evidence for true null hypotheses.

• They achieve comparable or stronger evidence for true alternative hypotheses,

• The sequential tests constructed using NAPs have smaller Average Sample Number (ASN).

• They more accurately reflect the prior belief that under the alternative hypothesis the tested

parameter does not equal a value specified under the null hypothesis. This makes the prior

specification logically consistent.
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1.3 Latent Dynamic Modeling of Networks

Recent technological advancements in diverse areas of studies have made the availability of

structured data in the form of networks increasingly popular. A simple dynamic network data is

observed from a fixed set of individuals over a time period. Because the dynamics involve the

same set of individuals, a key interest in these applications is to take their network structure into

account in the modeling. Often the continuous network data that we observe has excessive zeros

as observations. This can occur for a variety of reasons. For example, in microbiome data this

occurs due to limitations of instruments used for a continuous measurement. Here zeros represent

the measuring thresholds in those instruments. Another relevant example is the bilateral trade data

where the observed zeros represents absence of trades between country pairs. Other examples

include functional connectivity network among widespread brain regions, interactions between

people in a social network, email communication networks, citation network among research arti-

cles or authors, network of co-purchased products, and bilateral trade flows among countries. This

highlights the importance of the observed zeros and suggests taking this into account in the model.

A rapid rise in the network data in many scientific fields have resulted in increased renewed

attention to the static and dynamic modeling of networks. Although the existing methods in the

literature have been important in setting the premise of network models, they can be improved

upon in several aspects. In this research, we motivate ourselves from the bilateral trade flows ob-

served among 29 countries from 1994 to 2013 specific to the apparel industry. The presence or

absence of trades and the trade volumes in the presence of trades are observed between each pair

of 29 countries. We refer to the network data containing the presence or absence of trades as the

binary network. The network data containing the trade volumes in presence of trade occurrences is

referred to as the continuous network. Besides the presence of a network structure of the countries,

some features of additional interest in the data are: (1) dynamic evolution of the network structure

influencing both binary and continuous networks, (2) an abundance of unobserved trades among

many country pairs (henceforth refered as the zero-inflated network), (3) available covariates spe-
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cific to countries and pairs of countries. Several methods relying on the Gaussian random walk

on the latent positions have been proposed to account for the dynamic evolution [26, 27]. But this

often restricts the dynamic dependence to a Markov structure. Individual strategies exist in the lit-

erature that can separately model a binary or continuous network. In the context of bilateral trade

flows, [28] proposed independently modeling binary and continuous networks sequential at each

time point. This approach essentially assumes that there is one stochastic process that governs the

incidence of trade and another that governs the volume of trade. But this can be inefficient when

the proportion of presence and absence of trades become unbalanced. Also, it is counter-intuitive

to assume that two independent underlying processes are responsible for the two networks as both

networks involve the same set of countries.

In Chapter 5, we propose the Hurdle Network Model for zero-inflated network data with two

key modifications. First, we assume there is a single stochastic process which governs both the

binary and the continuous networks. More precisely, we assume the probability that a trade is

present in a binary network is a strictly increasing function of the mean process in a continuous

network. This lets us jointly model the two networks. Second, we assume node-specific latent

attributes corresponding to each country and we apriori assume a dynamic shrinkage process on

them independently across countries for modeling [29]. This lets us jointly model their dynamic

evolution using continuous scale mixtures of Gaussian distributions in a global-local framework.

In latent space, this performs desirable shrinkage as global-local priors, while providing local

adaptivity when necessary. This allows for an adaptive way of modeling trend in a time series

data.
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2. A MODIFIED SEQUENTIAL PROBABILITY RATIO TEST

2.1 Introduction

Experimental science relies on controlled experiments that test whether effects predicted by a

scientific theory can be produced and measured in laboratory settings. Observational science is

based on measuring outcomes as they occur naturally, without experimental intervention. In prac-

tice, measured outcomes from both observational studies and experiments are subject to random

variation and measurement error. For this reason, hypothesis testing procedures must be employed

to determine whether data support or do not support a hypothesized effect. In the classical hypoth-

esis testing paradigm, two types of errors are considered when making this assessment. Type I

error occurs when the null hypothesis of “no effect” is rejected when the hypothesized effect does

not exist. To limit claims of false discovery, hypothesis testing procedures are commonly designed

so that the probability of a Type I error (i.e., α) is limited to be less than a prespecified value, often

0.05. Type II error occurs when we fail to reject the null hypothesis when the hypothesized effect

does exist (the probability of a Type II error is denoted by β).

Recent concerns over the replicability of scientific studies have led to calls to move away from

p values and significance testing [4, 5, 6, 7]. However, p values and significance testing continue

to play critical roles in many areas, including genomics, high-energy physics, and clinical trials.

An examination of recent articles in prominent psychology journals also suggests that p values and

significance testing continue to play an important role in psychological research [8, 9]. Elsewhere,

we have proposed to address the limitations of p values by reducing the significance thresholds

required for declaring a positive finding from α = 0.05 to α = 0.005 [10, 11]. While this change

would improve the replicability of scientific claims of discoveries, it would also increase the costs

of conducting studies because larger sample sizes would be required if similar controls on Type II

error probability were maintained.

This chapter describes a modification of the sequential probability ratio test (SPRT) of [12]
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that reduces the sample sizes required to achieve specified Type I and Type II error probabilities.

The modified design can be applied to many studies conducted in the social and natural sciences

in which the goal is to establish the existence of a hypothesized effect. Implicit in this goal is the

detection of effects that are not arbitrarily close to zero (or the null value of the parameter). In this

regard, the proposed design differs from recent developments of sequential procedures designed

to estimate various effect sizes, such as standardized mean differences, correlation and regression

coefficients, and coefficients of variation [13, 14, 15].

We propose the Modified Sequential Probability Ratio Test (MSPRT) for testing a point null

hypothesis against a one or two-sided alternative hypothesis. In designing these tests, we objec-

tively set alternative hypotheses. The alternative hypotheses we propose are based on uniformly

most powerful Bayesian tests (UMPBT’s) or approximate UMPBT’s [11, 16]. Details regarding

UMPBT’s appear in Section 2.3. We note that exact UMPBT’s are known only for one-parameter

exponential family models and tests for the non-centrality parameters of chi-squared statistics [17].

Approximate UMPBT’s are known for t tests. Thus, a limitation of the MSRPT is that is applicable

primarily to z and t tests, tests of binomial proportions and Poisson means, and chi-squared tests.

For this class of tests, empirical evidence suggests that MSPRT’s require sample sizes that can

be less than 50% of the sample size that is required in corresponding fixed designs when the null

hypothesis of no effect is true, and sample sizes that can be 20% smaller when alternative hypothe-

ses are true. In general, the sample size savings accrued by the use of the MSPRT depends on

the test statistic chosen and the targeted Type I and II error probabilities for the test. Empirical

studies illustrating such savings are described in Section 2.5. Theoretical support for these find-

ings is provided in [18], where approximate formulae for the average sample number (ASN) and

operating characteristics for truncated SPRTs are derived. These results approximate discrete time

stochastic processes (representing the observed sequential tests) by Brownian motion or Wiener

processes, which are continuous time stochastic processes. For sufficiently large sample sizes,

these processes provide approximate operating characteristics and ASN’s for truncated SPRT’s. In

the case of one- and two-sample z tests, the underlying assumptions required in deriving those for-
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mulae apply to the MSPRT, and the approximate values from these results agree with our empirical

findings. Specific details regarding this connection appear in Section 2.5.1. As noted by [18], this

theoretical result “leads to appreciable qualitative insight; and quantitatively it does provide a first,

crude approximation which can often be used as a basis for subsequent refinement.”

The remainder of this chapter is organized as follows. Section 2.2 reviews sequential hypothe-

sis testing procedures. In Section 2.3, we define MSPRT’s, and in Section 2.4 we describe R code

that can be used to implement them. In Section 2.5 we present numerical findings from simulation

studies, and compare the performance of the MSPRT to group sequential designs and sequential

Bayes factors [2]. Section 2.6 complements Section 2.5 by applying the MSPRT to the gambler

fallacy study data [30] collected in the Many Labs 1 project [31]. Finally, we summarize our

findings in Section 2.7.

2.2 Sequential Testing Procedures

In contrast to fixed sample size designs, sequential testing procedures provide a rule for stop-

ping a study after observing individual participants or groups of participants. A sequential testing

procedure specifies a rule that decides, after a group of participants has been measured, whether to

(i) continue to collect data, (ii) stop data collection and reject the null hypothesis, or (iii) stop data

collection and reject the alternative hypothesis.

Sequential testing procedures have not previously found widespread application in behavioral

and social science research. However, the statistical theory for these tests has been developed

extensively since their introduction by Wald in the 1940s. For a comprehensive review of statistical

theory underlying these procedures, see [18]. Most applications have occurred in item response

theory (IRT) and computer adaptive test designs, where sequential tests are often used to terminate

IRT-based adaptive classification tests [32, 33]. Other recent applications include an item selection

algorithm in a binary IRT model [34] and an extension to Bayesian hypothesis testing, called

“Sequential Bayes Factors," that provides an optional stopping rule for multiple testing [2]. From a

theoretical point of view, a bound for the expected stopping time (i.e., the test length) was obtained

in adaptive mastery tests for dependent data [35].

3



The SPRT is one of the most widely known sequential testing procedures [12, 36, 37, 38, 39,

40]. This test is based on comparing the likelihood ratio between a simple (i.e., point or precise)

null hypothesis and a simple alternative hypothesis, and stopping data collection as soon as the

likelihood ratio strongly supports one of the two.

To illustrate this procedure in more detail, suppose that independent data values are collected

sequentially. Denote these values by x1, x2, . . . . Suppose further that the null hypothesis implies

that the probability density function describing a single data value xi is f(xi | θ0), and that the

alternative hypothesis implies that the probability density function is f(xi | θ1). Then the likelihood

ratio in favor of the alternative hypothesis based on the first n observations is defined as

L(θ1, θ0;n) =
n∏
i=1

f(xi; θ1)

f(xi; θ0)
. (2.1)

To simplify notation, we denote L(θ1, θ0;n) by Ln.

Heuristically, the SPRT keeps track of the likelihood ratio Ln as data accumulate, and stops

the experiment as soon as the probability assigned to the data under one hypothesis significantly

exceeds the probability assigned to the data by the other hypothesis.

More formally, the SPRT proceeds by comparing Ln, n = 1, 2, . . . , to constants A and B,

A > B > 0, as data from individual study participants are collected. The procedure stops when

Ln ≥ A or Ln ≤ B, or equivalently when Ln exits the interval (B,A) for the first time. The

quantities A and B are defined as

A =
1− β
α

and B =
β

1− α
. (2.2)

If Ln ≥ A, the null hypothesis is rejected; if Ln ≤ B, the alternative hypothesis is rejected. An

important property of the SPRT is that it requires, on average, fewer participants to achieve its

specified Type I and Type II error probabilities than any other test whose error probabilities are

smaller than or the same as these [41].

A key limitation of the SPRT is that it requires the specification of both a null hypothesis and an
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alternative hypothesis. Specifying an alternative hypothesis is not required in classical hypothesis

tests when only Type I error probability constraints have been imposed. The proposed MSPRT

addresses this limitation by implicitly deriving the alternative hypothesis from the design param-

eters according to pre-specified criteria. From a user’s point of view, this eliminates the need to

explicitly specify an alternative hypothesis, even though the procedure does, of course, directly

depend on the alternative hypothesis that is used. For this reason, users should carefully consider

the magnitude of the effect size implicit in the MSPRT to determine whether it represents a plau-

sible alternative hypothesis. In this regard, the use of the MSPRT mimics classical experimental

design procedures in which Type I and II error probabilities, sample size, and targeted effect size

are balanced against each other to determine a suitable test design.

Another limitation of the SPRT is that the sample size required to complete a test cannot be

determined prior to the start of data collection. In nearly all experimental settings, resources avail-

able for testing participants are limited and in observational studies the amount of the data that can

be collected from a population is finite. This feature of the SPRT thus complicates the practical

design of tests and is resolved by the MSPRT. An earlier modification of the SPRT, known as the

truncated SPRT, was proposed by [42] to address this difficulty. However, this modification gen-

erally provides less statistical power than our proposed MSPRT. For instance, Tables 3.1 and 3.11

in [18] indicate that for the alternative effect size that provides 80% power in a fixed design test,

the truncated SPRT’s power is only 74%. By comparison, the MSPRT provides between 78-79%

power at the same alternative. Further examples of this difference are provided in Section 2.5.1,

where we describe similar differences in power for other effect sizes.

Modifications of the SPRT proposed to handle composite hypotheses are primarily of two

types. One is known as the weighted SPRT and was proposed by [12]. This test replaces the

likelihood ratio with the ratio of integrated likelihoods, weighted with respect to given weight

functions for the respective hypotheses. The weight functions are determined by losses associated

with incorrectly accepting various alternative hypotheses. The other type of modification is known

as the generalized SPRT, which is based on the ratio of maximized likelihoods under the respective

5



hypotheses, and is similar to the generalized likelihood ratio (GLR) test [43].

Other extensions of the SPRT, the MaxSPRT and the sequential GLR test, were proposed for

drug and vaccine safety surveillance [44, 45]. The goal of the MaxSPRT is to reject the null

hypothesis (that a treatment is safe) if there is substantial evidence that a treatment is not safe. Like

the SPRT, the MaxSPRT does not impose a bound on the maximum sample size N . In addition,

the design does not allow early rejection of the alternative hypothesis. The sequential GLR was

proposed to address these issues. Importantly, both tests are based on the GLR, and the alternative

hypothesis used by them is the maximum likelihood estimate (MLE) of the parameter being tested.

When the null hypothesis is true, the MLE converges to the null value, and as a consequence the

tests never terminate a trial in favor of the null hypothesis. Furthermore, for sufficiently large N

the tests can, in principle, reject null hypotheses for arbitrarily small effect sizes.

From a practical perspective, there are many hypothesis testing contexts where it is not fea-

sible to implement a SPRT. For instance, a SPRT cannot be applied when data are not collected

sequentially. Similarly, it cannot be applied when it is not possible to perform the evaluation as

soon as participants are treated. Such is the case in clinical trials of new disease therapies, which

are often conducted at multiple treatment centers. Collation of data across centers can be time

consuming, and it can be difficult to convene review boards. In addition, patient outcomes are

often not known for months or even years after a treatment has been administered. To address

these challenges, group sequential designs have been developed to allow for the evaluation of pa-

tient outcomes only after groups of patients have been observed or at scheduled interim analysis

times [46, 47, 48, 49, 50, 51]. [18, 52] provides detailed discussion of the termination of repeated

significance tests for group sequential studies with a maximum sample size.

2.3 The Modified SPRT

To address the limitations of existing sequential tests, we propose a modified SPRT (MSPRT)

in which

• the maximum sample size (N ) required in a hypothesis test is fixed prior to the start of an

6



experiment, and

• the effect size defining the alternative hypothesis and used to sequentially compute the like-

lihood ratio Ln is derived from the size of the test α (Type I error probability), the maximum

available sample size N , and the targeted Type II error probability, β.

Thus, N , α, and β are MSPRT design parameters that are fixed at the outset of the study. The

effect size defining the alternative hypothesis is determined from these values. Given these values,

the MSPRT is defined in a manner similar to Wald’s initial proposal.

To objectively set the alternative hypothesis in the MSPRT, we find the uniformly most pow-

erful Bayesian test (UMPBT) or the approximate UMPBT that matches the rejection region of a

classical test of size α with a sample size of N [16]. Under fixed designs, UMPBT’s are tests

that maximize the probability that the Bayes factor in favor of the alternative hypothesis exceeds

a specified threshold over the class of all alternative hypotheses. [16] showed that such tests can

be obtained by assuming a point alternative and then maximizing the probability mentioned above

with respect to such alternatives. The optimum value of the point alternative is defined as the

UMPBT alternative. We defer a more detailed description of UMPBTs to Sections A1–A3 of the

supplemental materials. The key feature of an UMPBT relevant to our purpose is that it provides

an automated procedure for defining an alternative hypothesis against which the null hypothesis is

tested. For sampling densities that belong to the class of one-parameter exponential family models

(including z tests, tests for proportions, and tests of means of Poisson counts), UMPBTs exist.

For other sampling densities, and in particular for t tests, approximate UMPBTs exist. In many

cases, the values of the parameter that define the alternative hypotheses in these tests are approxi-

mately equal to the maximum likelihood estimate of the parameter obtained from data that lie on

the boundary of the rejection region of the test.

To illustrate a simple UMPBT, consider a size α z test of H0 : θ = θ0 versus H1 : θ > θ0 based

on N samples from a normal population with an unknown mean θ and known standard deviation

σ. For this problem, the UMPBT alternative hypothesis is θ = θ0 + zασ/
√
N , where zα is the

100(1− α)th quantile of a standard normal distribution.
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Table 1 provides the UMPBT alternatives that can be used in some common, one-sided null

hypothesis significance tests. In this table, definitions of alternative hypotheses are determined

by the maximum sample size N for the z test and test of a binomial proportion. For the t test,

it also depends on n, the currently observed sample size. These alternatives are used to compute

the likelihood ratio at each step. Thus for a t test, the alternative hypothesis used to compute the

likelihood ratio changes after each data point is collected and a new estimate of the observational

variance is obtained. For the z and t tests, the UMPBT alternatives are point alternatives. The

alternative for the test of a binomial proportion is a mixture distribution of two proportions; a

mixture density is used to achieve more accurate Type I error probability control due to the discrete

nature of the binomial distribution.

To understand the nature of this mixture distribution, it is necessary to introduce additional

notation. Denote the cumulative distribution function (cdf), inverse cdf, and the probability mass

function of a binomial distribution with denominator N and success probability θ by F (·;N, θ),

F̄ (·;N, θ), and f(·;N, θ), respectively. Given N and α for a right one-sided test of the probability

θ, define the cut-off point c0 in a fixed design test by

c0 = inf
{
c = 0, 1, · · · , N

∣∣∣F̄ (c;N, θ0) ≤ α
}
.

For θ ∈ [0, 1] and δ > 0, let

hN(θ, δ) =

log δ −N
[

log(1− θ)− log(1− θ0)

]
log

(
θ

1− θ

)
− log

(
θ0

1− θ0

) ,

and define θ(δ) = arg minθ>θ0 hN(θ, δ). With these ingredients, we define the UMPBT alternative

as the mixture distribution

θ ∼ ψR Iθ=θR,L + (1− ψR) Iθ=θR,U ,
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where Ia=b is 1 if a = b and 0 otherwise. Also, θR,L = θ
(
δR,L

)
and θR,U = θ

(
δR,U

)
, where δR,L

and δR,U satisfy

hN

(
θ
(
δR,L

)
, δR,L

)
= c0 − 1, and hN

(
θ
(
δR,U

)
, δR,U

)
= c0,

and ψR = [α − F̄ (c0;N, θ0)]/f(c0;N, θ0). A similar derivation can be applied to left one-sided

tests. Further details are provided in [11, 16] and Section A3 in the supplemental document.

In practice, of course, researchers should examine the design parameters of a MSPRT before the

sequential design is initiated. That is, the alternative hypothesis generated by the MSPRT in order

to obtain the targeted Type I and Type II error probabilities should be inspected, as should the actual

error probabilities achieved by the test design. If the implied effect size is either unreasonably large

or substantively unimportant, then investigators should reconsider the maximum sample size and

error probability controls that were specified.

In the case of one-sided hypothesis testing, given the alternative hypothesis obtained from the

UMPBT or approximate UMPBT, Wald’s SPRT is conducted either until the likelihood ratio (z

and t tests) or the weighted likelihood ratio (proportion test) exits the interval (B,A) or until N

samples (e.g., study participants) have been tested. The values of A and B for the MSPRT are the

same as those used in Wald’s test and, as noted previously, are given by

A =
1− β
α

and B =
β

1− α
.

If no decision has been reached after exhausting N samples, a threshold γ is determined nu-

merically so that the Type I error probability of the test equals α for continuous data and is less than

or equal to α for discrete data. If LN ≥ γ, the null hypothesis H0 is rejected and the experiment is

terminated. Otherwise, if LN < γ, the alternative hypothesis H1 is rejected and the experiment is

terminated.

The extension of the MSPRT for two-sided tests is accomplished by simultaneously running

two one-sided tests of size α/2. Before reaching the maximum sample size N , the test terminates
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by (a) rejecting H0 when either of the tests reject H0, or (b) by not rejecting H0 if both the

tests reject H1. If the test continues to the maximum sample size N , then a common termination

threshold, γ, is determined so as to maintain the desired Type I error probability of the test. The

design parameter γ is chosen to be as small as possible while still maintaining the specified size

of the test, α. If LN ≥ γ for either of the tests, the null hypothesis is rejected. Otherwise, the test

rejects the alternative hypothesis.

In practice, it may be useful to examine the value of Ln at the termination of an MSPRT. This

value represents the likelihood ratio between hypotheses based on all accumulated data and may be

of particular interest when a test terminates after the maximum sample size has been reached. Of

course, an advantage of formal hypothesis testing procedures is that they encourage investigators

to design experiments that have a reasonably high probability of providing “signficant” evidence

in favor of a scientifically important effect. At the end of a parametric hypothesis test, it is usually

possible to compute the likelihood ratio in favor of the MLE over the null parameter value. In

the particular case of the MSPRT, the investigator is able to go a step further and report the Bayes

factor in favor of an alternative hypothesis which was considered scientifically acceptable before

the experiment was undertaken. The MSPRT thus encourages the design of tests that will lead to

Bayes factors (or likelihood ratios) that differ substantially from 1.0, and they do so with smaller

sample sizes than are required in fixed design tests. The values of the likelihood ratio Ln are

provided by the MSPRT software described in Section 2.4.

Figure 1 summarizes the process for conducting a MSPRT for a one-sided test of a normal

mean or a population success probability.

2.4 Implementation

Software to implement the MSPRT is available from the CRAN R software depository at

https://cran.r-project.org/web/packages/MSPRT/index.html and on GitHub

at https://github.com/sandy-pramanik/MSPRT. The software can be used to per-

form one-sample proportion tests, and one- and two-sample z and t tests. To design and implement

a MSPRT, a user must provide a null hypothesis (θ0), a direction of the alternative hypothesis (right,
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Input N , α, β, and an
alternative effect
size (θ) where a

certain amount of
power is desired

Identify the termi-
nation threshold
(γ) numerically

Is the
designed
MSPRT

acceptable?

Modify design
inputs N , α, β

and θ accordingly

Collect the first
observation; set n = 1

Compute Ln

n = N or
Ln ≤ B

or Ln ≥ A

Collect the next
observation; set
n = n + 1

Terminate
data col-
lection

Reject (Ln ≤ B) or
accept (Ln ≥ A) H1

Reject (LN < γ) or
accept (LN ≥ γ) H1

no

yes

no

yes

Ln ≤ B or Ln ≥ A

B < LN < A

Figure 2.1: A flow chart representing the MSPRT procedure.
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Table 2.1: UMPBT alternatives for one-sided tests

Test H0 H1 UMPBT alternative

z test θ = θ0
θ > θ0 θ = θ0 + zα

σ√
N

θ < θ0 θ = θ0 − zα σ√
N

t test θ = θ0
θ > θ0 θ = θ0 + tα;N−1

sn√
N

θ < θ0 θ = θ0 − tα;N−1
sn√
N

Test for proportion θ = θ0
θ > θ0 θ ∼ ψR Iθ=θR,L + (1− ψR) Iθ=θR,U

θ < θ0 θ ∼ (1− ψL) Iθ=θL,L + ψL Iθ=θL,U

Note. For one-sample z and t tests, UMPBT alternative hypotheses have closed-
form expressions. For one-sample tests of proportions, (non-randomized) MSPRT’s
can be used to more accurately achieve Type I error probability control, but a mixture
distribution is required as the alternative in this setting. Details for obtaining explicit
values for the alternative using the R package MSPRT are described in Section A4.3
of the supplemental materials. The 100(1− α)th quantiles of a standard normal dis-
tribution and central t distribution with (N − 1) degrees of freedom are denoted by
zα and tα;N−1, respectively, and σ denotes the known population standard deviation
in a z test, whereas sn refers to the sample standard deviation (with divisor (n− 1))
based on n observations.

left or two-sided), maximum available sample size (N ), and pre-specified error probabilities (α and

β). Given these design parameters, the R package MSPRT provides test results based on sequen-

tial entry of outcome data. Detailed illustrations are provided in Section A4 of the supplemental

materials.

2.5 Simulation Studies

This section analyzes the performance of the MSPRT through simulation studies. For simplic-

ity, we first investigate the performance in one-sample tests for a binomial proportion, z tests, and

t tests. Next, we compare the performance of the MSPRT with group sequential (GS) designs.

The extension of MSPRT designs to two-sample z and t tests is immediate. We also compare the

performance with Sequential Bayes Factors (SBF) [2]. Finally, we discuss the potential benefit

that is offered by MSPRT designs when we decrease the p-value threshold for declaring statistical

significance from 5% to 0.5%. Throughout the section, 106 replications were used to summarize
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the performance of the MSPRT.

2.5.1 Performance in one-sample tests

We examine one-sample tests for a binomial proportion, z tests, and t tests of size α = 0.05

and α = 0.005. For simplicity, we examine one-sided tests with alternative hypotheses of the form

H1 : θ > θ0. We also assume that the targeted power of the test is 80% (i.e., β = 0.2). Two-sided

tests, tests of alternative hypotheses of the form H1 : θ < θ0, and tests with different Type I or

Type II error probabilities are handled similarly. We compare the resulting MSPRT’s to standard

fixed design tests having the same α level, sample size N and Type II error probability β = 0.2.

Given N and α for fixed design tests, we define θa, the fixed design alternative, as the alternative

parameter value that provides the specified β.

We now describe the simulation settings used for analyzing the operating characteristics and

ASN’s of the MSPRT.

For one-sample z tests, observations are assumed to be independent and identically distributed

random samples from a normal distribution with unknown mean θ and known variance σ2
0 . To

study the performance of the MSPRT under the null hypothesis, we generate observations from a

N(θ0, σ
2) distribution. For performance under H1, we use a N(θa, σ

2
0) distribution with the fixed

design alternative, θa, defined in the previous paragraph. We note that it is possible to numerically

compute the operating characteristics and ASN of the MSPRT prior to the onset of an experiment.

The simulation setup for the proportion test proceeds exactly as above where we simulate the data

independently from a Bernoulli(θ) distribution. For our simulations, we use θ0 = 0 for the z test

and θ0 = 0.5 for the proportion test (Section A4.2 in the supplement provides implementation

details). For t-tests, θa is interpreted as the standardized effect size θ/σ.

Figure 2.2 illustrates the performance of the MSPRT for a one-sample t test of H0 : θ = 0

versus H1 : θ > 0. This plot provides the average proportion of the N samples required by a

fixed design test for the MSPRT to achieve nearly equivalent Type I and Type II error probabilities.

Type I error probabilities are exactly maintained at targeted levels. Type II error probabilities for

the MSPRT’s slightly exceed the targeted value of 0.2, but never exceed 0.22.
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Figure 2.2: One-sample t test that a population mean is 0. Hypothesis test of H0 : θ = 0 vs.
H1 : θ > 0. The population standard deviation is assumed to be unknown. Each curve in the
plot represents the average number of samples, out of the maximum sample size (N ), used before
the MSPRT terminates in favor of the null or alternative hypothesis. The operating characteristics
under the alternative are evaluated at the corresponding fixed design point alternatives.
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The plot provided in Figure 2.2 for a one-sided t test is nearly indistinguishable from the

corresponding plots obtained for one-sample z tests and tests of a binomial proportion; these plots

are provided in the supplemental materials.

Two features of these plots are noteworthy. First, for Type I error probabilities of α = 0.005,

the average sample size required by the MSPRT is less than 50% of the sample size required by

the fixed design test when the null hypothesis is true. This finding holds for all three tests. Second,

under the alternative hypothesis, the average sample size required for the MSPRT is typically about

80% of the sample size required for the corresponding fixed design test.

To provide a theoretical context for these findings, we note that [18] provides approximate

formulae for power and the average sample number function for truncated SPRTs for large N

(corollaries 3.45–3.47, page 55–57, Section 6 of Chapter III in [18]). In order to derive these re-

sults, a Brownian motion process was used to approximate the operating characteristics and ASN

of truncated SPRTs. For α = 0.005, the approximations predict that the average sample size re-

quired by the MSPRT under the null and the alternative hypothesis is approximately 40% and 70%

of the fixed design sample size N , respectively, and the Type II error probability at the fixed design

alternative is about 23%. These values match our empirical findings, but are based on approxi-

mating the discrete time scale of the MSPRT by the continuous time scale of Brownian motion.

They also rely on an assumption that the test statistics are approximately normally distributed. As

noted in [18], Brownian motion nonetheless furnishes a convenient way of analyzing properties of

SPRTs while avoiding intractable probability calculations.

Figure 2.3 presents the distribution of the number of samples required by the MSPRT to reach a

decision in a one-sample t test. As in Figure 2.2, the performance of the MSPRT is compared to the

fixed design test having Type I error probability 0.005 and Type II error probability 0.20. The top

panel is based on a maximum sample size N = 30, and the bottom panel on N = 100. From these

figures, we see that under H0 the MSPRT reaches a decision before the maximum sample size is

accumulated in about 85% of tests. This proportion slightly increases when N is 100. Under the

fixed design alternative, the MSPRT terminates in about 60% of tests before the maximum sample
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Figure 2.3: One-sample t test that a population mean is 0. Hypothesis test of H0 : θ = 0
vs. H1 : θ > 0 at α = 0.005 and β = 0.2. The population standard deviation is assumed
to be unknown. The barplots represent the distribution of sample size required by the MSPRT for
reaching a decision underH0 and at the corresponding fixed design alternative θa. The fixed design
alternatives, which provide 20% Type II error probability, are approximately 0.66 for N = 30 and
0.35 for N = 100.
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size is reached when N = 30, and in about 65% of tests when N = 100. Though not displayed,

similar results are obtained for one-sample proportion and z tests.

We also conducted a simulation study to analyze performance of the MSPRT at effect sizes

other than the null and fixed-design alternatives θa. Specifically, we considered the right-sided

one-sample t test with α = 0.005 and β = 0.2. We again set N = 30 (left panel in Figure 2.4)

and N = 100 (right panel). To analyze the operating characteristics and ASN of resulting tests,

we generated data using effect sizes that corresponded to fixed design tests having Type II error

probabilities 0.05, 0.1, · · · , 0.9. The effect sizes range from 0.25 to 0.82 for N = 30, and 0.13 to

0.43 for N = 100. Figure 2.4 presents the operating characteristics and ASN at these effect sizes.

From the top panel we see that the Type II error probabilities of the MSPRT at these effect sizes are

almost identical to the corresponding fixed design test (the red line almost coincides with the black

line). Thus, the MSPRT achieves almost identical power to the fixed design test at a lower cost.

The bottom panel in the same figure displays the ASN of the corresponding MSPRT’s at the same

effect sizes. The ASN’s in this plot are about 70–80% of N when the Type II error probability of

the fixed design tests is 0.05 or smaller. As the effect size decreases and gets closer to the null

value, the ASN’s increase until they reach a maximum of about 85–90% of N for Type II error

probabilities near 0.5. The ASN then decreases to approximately 40–45% ofN near the null value.

The performance of the MSPRT for other tests is similiar to that depicted in Figure 2.4.

2.5.2 Comparison of MSPRT and GS designs

We next compared the MSPRT to GS designs using the R software package gsDesign

[53]. We used the default Hwang–Shih–DeCani error spending function as the sequential stopping

criterion. For illustration, we assumed the design had a total of 5 groups/stages (including interim

and final analysis) with equal number of subjects entered at each stage. As before, we varied N

from 30 to 200, considering two choices of the Type I error probability (0.05 and 0.005), and set

the Type II error probability at 0.2.

The gsDesign function obtains the critical boundaries of the GS design by assuming a

standard normal test statistic. We therefore conducted a right-sided one-sample z test of the form
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Figure 2.4: One-sample t test that a population mean is 0. Hypothesis test of H0 : θ = 0 vs.
H1 : θ > 0 at α = 0.005 and β = 0.2. The population standard deviation is assumed to be
unknown. The above plots compare the Type II error probability and the average sample size of
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alternatives, which provide 20% Type II error probability, are approximately 0.66 for N = 30 and
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Figure 2.5: One-sample z test that the population mean is 0. Hypothesis test of H0 : θ = 0
vs. H1 : θ > 0. Each curve in the plot represents the average number of samples, out of the
maximum sample size (N ), used before the MSPRT or the GS design terminates in favor of the
null or alternative hypothesis.

H0 : θ = 0 vs H0 : θ > 0 with a known variance of 1. For a comparison under H1, we focused at

the fixed design alternative (θa) corresponding to design parameters N , α and β. After α, β and

θa are specified in the gsDesign, the software designs a test by exactly spending α and β (at θa)

but with a slightly larger maximum sample size (than N ). To make a fair comparison, we designed

the MSPRT using this larger sample size as the maximum available sample size. We also adjusted

the design parameters β and γ so that the designed MSPRT has approximately 1−β power (within

1%) at θa.

In Figure 2.5 we compare the average sample size used in the MSPRT and GS tests. For a

varied range of N , the MSPRT achieves a uniformly smaller ASN than the GS design. Their

performances are quite similar under both H0 and θa when α = 0.05, and at θa when α = 0.005.

A more visible difference can be seen under H0 when α = 0.005. At the higher significance level,

the GS design uses about 44% of the maximum available sample size. The MSPRT on an average

uses about 3–8% fewer samples for the same Type I and Type II error probabilities. The difference

in ASN becomes larger as the maximum available sample size increases.
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2.5.3 Performance comparison between MSPRT and SBF in two-sample t tests

In this section we compare the performance of the MSPRT to the sequential Bayes factor (SBF;

[2]). At each step of a sequential analysis, a SBF computes the Bayes factor under a Cauchy prior

on the standardized effect size. The stopping boundaries are based on verbal labels for grades of

evidence [19]. We note that SBF tests, like the SPRT, do not fix maximum sample sizes in advance.

We make this comparison for two-sided two-sample t tests because of their widespread appli-

cation. Let θ1 and θ2 be the population means of two groups of subjects. Under the assumption

that the observations from the underlying populations are normally distributed and their common

variance is unknown, a two-sided two-sample t test compares the hypothesis H0 : θ1 − θ2 = 0

against the alternative hypothesis H1 : θ1 − θ2 6= 0. To conduct this two-sided test with Type

I error probability α, a MSPRT simultaneously performs two separate one-sided tests, each with

Type I error probability α/2. At each sequential step it (i) rejects H1 if both the tests reject H1,

(ii) rejects H0 if either test rejects H0, or (iii) continues sampling.

To simplify exposition, we assume the maximum number of subjects available in both groups

is equal and is denoted by N , and that sequential testing is performed so that one pair of subjects

from each group are measured simultaneously. The total sample size for the experiment is thus

2N .

Figure 2.6 presents a comparison between the two sequential procedures for testing H0 :

θ1 − θ2 = 0 against H1 : θ1 − θ2 6= 0. The performance under H1 is examined at the corre-

sponding fixed-design alternatives (θa). Figure 2.6 presents results for the right-sided alternative

θa, the results for the left-sided alternative being similar. To implement the SBF test, we followed

the recommendations of [2] and set the Cauchy scale parameter r equal to 0.707. The null and

alternative boundaries for the Bayes factor were fixed at 1/6 and 6, respectively, and the minimum

sample size was set to 20 in each group. We assumed that a maximum ofN samples were available

for each group, and the sample sizes in the two groups were equal. If the SBF test did not reach

a decision after accruing all subjects (i.e., 1/6 < SBF < 6), it was assumed that the test failed to

reject the null hypothesis. Such outcomes thus decrease the Type I error of the SBF tests.
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Figure 2.6: Comparison of error probabilities for SBF and MSPRT tests. Two choices for the
targeted Type I error probabilities of 0.005 (left column) and 0.05 (right column) for the MSPRT
are considered. For both the tests we varied the maximum available sample size (N) and compared
the Type I (first row) and the Type II (second row) error probabilities achieved. The final column
displays the proportion of inconclusive cases at the maximum sample size for the SBF.
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Figure 2.7: Comparison of ASN for MSPRT and SBF. This plot displays the proportion of
the maximum sample size under various assumptions on null and alternative hypotheses for the
MSPRT and SBF tests.

Because the goals and philosophy underlying the SBF and MSPRT are different, choosing the

design parameters for the MSPRT to make a comparison to the SBF is difficult. For this reason,

we choose two default settings for the MSPRT corresponding to α = 0.05 and α = 0.005, holding

β = 0.2. In all comparisons, we assumed that pairs of observations were collected sequentially

until each test terminated (possibly at the maximum sample size 2N ). We emphasize that the SBF

is not intended to control either Type I or Type II error probabilities, so achieving these rates should

not be regarded as a basis of comparison.

Figure 6 displays results for this comparison. The first row shows that that the MSPRT achieves

its targeted Type I error probability for both tests. The Type I error achieved by the SBF is identical

in both plots since the design parameters of that test did not change.

The second row of plots in Figure 6 displays the Type II error of each test, at the alternative

targeted by the MSPRT. When α = 0.005, the Type II error probability of the MSPRT is higher

than the SBF, while it is lower for α = 0.05. The Type II error probability for the SBF changes

between plots because the alternative being tested has changed. The final row of this plot indicates
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the proportion of tests that were inconclusive at the maximum sample size for the SBF test.

Because the SBF does not control error probabilities at pre-assigned values, additional care is

needed to compare the ASN needed for each test. To make such a comparison, we therefore imple-

mented the following procedure. At each N , we determined the (positive) value of the alternative

hypothesis that provided 80% power in a fixed-design, two-sided t test with Type I error probabil-

ity of either 0.05 or 0.005, against a null hypothesis of 0. Through simulation, we then determined

the Type I and Type II error probabilities of the SBF (using the truncation rule described above).

We then constructed the MSPRT with the same (within 1% numerical error) Type I and Type II

error probabilities. This procedure allowed us to compare the average sample sizes of the two

testing procedures with approximately similar error probabilities. The resulting comparison of the

average sample sizes is presented in Figure 7.

For α = 0.005, Figure 7 suggests that both tests require approximately the same ASN when the

alternative hypothesis is true. However, the MSPRT is substantially more efficient when the null

hypothesis is true. In both plots, the solid blue curve represents the ASN for the SBF when the null

hypothesis is true, and this curve falls well above the corresponding solid red curve representing

the ASN for the MSPRT.

The SBF test’s use of a median-zero Cauchy prior to define the alternative hypothesis provides

a partial explanation of these findings. This prior assigns significant mass around 0, the hypothe-

sized effect size under the null. The Cauchy prior is a particular example of a local prior, and it is

known that the evidence in favor of a true null hypothesis accumulates much slower than it does

under a true alternative hypothesis when local priors are used [25]. To fix this asymmetric accumu-

lation of evidence, Johnson and Rossell proposed non-local priors on effect sizes under alternative

hypotheses which assign zero prior density to the null value. Since the UMPBT alternatives place

all their mass at non-null effect sizes, they are non-local alternative priors and can thus be expected

to accumulate evidence more rapidly in favor of true null hypotheses.

For tests based on fixed sample sizes, we note that UMPBTs (when they exist) are, by defini-

tion, the tests that provide the highest probability of exceeding a specified Bayes factor threshold.
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2.5.4 Higher significance with similar sample sizes

We next examine the potential benefit that the MSPRT offers in offsetting the increase in the

sample size that would be required if the bar for declaring a result “statistically significant” were

moved from p < 0.05 to p < 0.005. Specifically, we compare the sample size required in standard

fixed design tests at the 5% level to the average sample size required by the MSPRT at the 0.5%

level.

If the null hypothesis is true, this comparison is straightforward. If not, care must be taken to

make sure that the same alternative hypotheses are compared at both levels of significance in the

fixed design and MSPRT design scenarios. To make this comparison, we determine the θ∗ that

achieves the targeted Type II error probability in a fixed design test of size α = 0.05. For that θ∗,

we next determine the N∗ needed to achieve the same Type II error probability in a fixed design

test of size α = 0.005. We then set that N∗ as the maximum sample size for the MSPRT.

Because the average sample size used in the MSPRT depends on whether the null or alternative

hypothesis is true, and because we are interested in the long-run effect of implementing the MSPRT

over many experiments, it is useful to examine the effect on the total sample size as the proportion

of true null hypotheses is varied. Recent research suggests that this proportion is likely to be in the

range 0.80–0.95 [9, 23].

In the case of a one-sample t test, Figure 2.8 displays the average multiple of the fixed 5% test’s

sample size N that is required to perform the MSPRT with size 0.5% as the proportion of tested

null hypotheses π0 is decreased from 1 (the dashed red line at the bottom) to 0.6 (the light blue

line). Also displayed is the multiple of N that is required to achieve a Type I error probability of

0.005 in a fixed design test (the solid black line at the top). The latter multiple tends to fall between

1.89 and 2.14. Similar plots are obtained for one-sample z tests and tests of a binomial proportion;

these plots are provided in the supplemental materials.

The key finding from Figure 2.8 is that MSPRTs for α = 0.005 require, on average, essentially

the same sample sizes that are required to conduct one-sided, fixed design tests for α = 0.05 for

tests designed to have Type II error probabilities of 0.2. We emphasize that such gains may not
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Figure 2.8: One-sample t test that a population mean is 0. Curves in this plot represent the
average multiple of the sample size in a fixed design test of size α = 0.05 required to perform the
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(the sample size of the corresponding fixed design test).
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be achieved at tests implemented with more stringent Type II error probabilities or in two-sided

test, and it is important to study the operating characteristics of any particular design before its

implementation. In the case of one-sided z, t and proportion tests, however, this finding holds

because N∗ is roughly two times that of N , but at α = 0.005 the MSPRT saves more than 50%

of the maximum available sample size when the null hypothesis is true and the test is powered

to achieve a Type II error of 0.2. For such tests, “raising the significance bar" from 0.05 to 0.005

could be accomplished without significantly increasing sample sizes if MSPRTs were used in place

of fixed design tests.

2.6 An Application to the retrospective gambler’s fallacy study

In this section we illustrate the use of the MSPRT to the replication data of the retrospective

gambler’s fallacy study, one of many studies available from the first “Many Labs” project [31]. The

data is openly accessible from the Open Science Framework (https://osf.io/wx7ck/). In

the original study, [30] investigated the influence of observing a rare, independent, chance event

on individuals’ perception of preceding events. For the experiment, the participants imagined that

they saw someone rolling dice in a casino and then witnessed one of the following three outcomes

(or conditions). In one condition, the participants imagined that they observed three dice being

rolled and all came up “6” (the “three6 condition”). In the second condition, two dice came up

“6” and one was “3” (the “two6 condition”). Finally, in a third condition, two dice were rolled

and both came up “6.” All participants then estimated the number of times the dice were rolled

before they observed the outcomes. The results from the study support a theoretical prediction that

participants perceive unlikely outcomes to have arisen from longer sequences than more common

outcomes.

In the Many Labs project, the same study was replicated with only the first and second condi-

tions. In that study, there were a total of 5942 participants out of whom 2680 participants witnessed

the three6 condition and 3262 witnessed the two6 condition. To keep the illustration simple we

consider a sequential MSPRT with equal number of participants from each group. Thus, we ran-
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domly selected 2680 participants from the two6 group and the full set of 2680 responses from

the three6 condition as our data for the sequential MSPRT. Furthermore, following [30] and [31],

we took the square-root of the subjects’ estimated number of dice rolls prior to their imagined out-

come as the response variable. (The square-root transformation of Poisson counts is approximately

variance stabilizing).

To test the hypothesis of a mean difference, we assumed that the underlying population of the

transformed responses corresponding to the three6 and two6 conditions were independently and

normally distributed with means θ3 and θ2 with an unknown common variance σ2. We then applied

a right-sided two-sample t-test of the form

H0 : θ3 − θ2 = 0 vs. θ3 − θ2 > 0 (2.3)

with the Type I and the Type II error probabilities constrained by α and β, respectively.

Approximately 90 subjects, on average, were assigned to each group in the Many Labs project,

so we arbitrarily set N = 90 in this study. We then varied α = {0.005, 0.05} and β = {0.05, 0.2}

and examined the operating characteristics of the MSPRT by repeatedly sampling 90 subjects from

the two treatment groups.

For each (α, β) combination, we designed the MSPRT using the design.MSPRT() function

in the R package MSPRT. For example, when α = 0.005 and β = 0.05, the R command to obtain

the MSPRT design parameter is as follows:

# design the MSPRT

>out = design.MSPRT(test.type = ’twoT’,

Type1.target = 0.005,

Type2.target = 0.05,

N1.max = 90, N2.max = 90)

# display termination threshold
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>out$termination.threshold

# display simulation estimate of Type I error

# probability obtained by the MSPRT

>out$Type1.attained

# display simulation estimate of Type II error

# probability obtained by the MSPRT at

# the fixed-design alternative

>out$Type2.attained

# display the ASN of the MSPRT under the null

>out$EN$H0

# display the ASN of the MSPRT at the fixed-design

# alterative

>out$EN$H1

We next applied the MSPRT to actual data sets by randomly selecting 90 (sequential) observa-

tions from the available 2680 observations in each treatment group. For α = 0.005 and β = 0.05,

applying the MSPRT to the first sequence of sampled outcomes led to rejection of the null hypoth-

esis at the 0.005 level of significance after 60 observations were observed from each group. The

MSPRT was implemented using the implement.MSPRT() function as follows:

>implement.MSPRT(obs1 = three6.resp.MSPRT,

obs2 = two6.resp.MSPRT,

design.MSPRT.object = out)

Here, three6.resp.MSPRT and two6.resp.MSPRT are numeric vectors containing the se-

quential observations of the three6 and two6 responses, and out is the object storing the MSPRT

28



0

50

100

150

200

0 20 40 60

Steps in sequential analyses

B
a
y
e

s
 f
a

c
to

r

Reject Alternative
Reject Null

Bayes factor

Reject the null hypothesis (n1 = 60, n2 = 60)

Right−sided two−sample t test ( α = 0.005 ,  β = 0.05 )

Figure 2.9: Application of the MSPRT at α = 0.005 and β = 0.05 to a specific simulated sequence
of observations from each group available from the retrospective gambler’s fallacy study.

output. The implement.MSPRT() command can be executed sequentially after responses are

observed and the response variables have been updated. The Bayes factor obtained at the MSPRT

alternative for this sequence of observations is displayed in Fig. 9.

We can also find the operating characteristics of the MSPRT at specified effect sizes using

the OCandASN.MSPRT() function. For example, the R commands to calculate the operating

characteristics of this MSPRT, at the estimated standardized effect of 0.69 cited in [30] are as

follows:

# obtain the OC at theta = 0.69

>oc.out = OCandASN.MSPRT(theta = 0.69,

design.MSPRT.object = out)
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Table 2.2: Operating characteristics and ASN’s of the designed
MSPRT’s for the retrospective gambler’s fallacy study

α β
4 = 0 4 = θa 4 = 0.69

Type I E(n) Type II E(n) Type II E(n)

0.005
0.05 0.005 63.46 0.0513 63.31 0.023 58.4

0.2 0.005 39.83 0.2129 69.78 0.029 56.06

0.05
0.05 0.05 84.3 0.0504 63.74 0.001 46.77

0.2 0.05 63.28 0.204 71.52 0.002 44.13

Note. Type I and Type II indicates the corresponding error probabilities.
4 = (θ3 − θ2)/σ denotes the standardized effect size. E(n) denotes the
ASN for each group at the corresponding effect size. Effect sizes at the null
value4 = 0, fixed-design alternative θa (i.e., the fixedN design providing
the specified (α, β)), and the standardized effect size 0.69 estimated from
the original study are provided.

# display simulation estimate of Type II error probability

# at theta = 0.69

>oc.out$acceptH0.prob

# display ASN from Group-1 at theta = 0.69

>oc.out$EN1

The output from these commands, oc.out, is a data frame in which rows correspond to effect

sizes, and columns refer to the probability of rejecting H1 and the ASN’s from Group 1 and Group

2 (in the case of equal sample sizes in both groups, these values are the same). For reference, these

values are displayed in Table 2.2.

For each pair of (α, β), we also evaluated the operating characteristics of the MSPRT when

applied to 106 sampled sequences. Specifically, we calculated (a) the number of samples required

on average by the MSPRT to reach a decision, and (b) the proportion of times the MSPRT rejected

the null hypothesis. These results are presented in Figure 2.10.
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2.7 Discussion

The costs of conducting experiments to test hypothesized effects is often related directly to

the number of tested items or participants. When the study data can be collected sequentially, the

use of sequential testing procedures can dramatically reduce these costs. When tests are designed

to identify hypothesized effects that do not exist (i.e., the null hypothesis is true), the use of the

MSPRT can reduce the sample sizes to reach a decision. In z and t tests with type II error proba-

bilities targeted at 20%, the reduction in sample sizes can be as much as 20% to 30% in 5% tests,

and as much as 50% in 0.5% tests.

Much of this chapter has focused on one-sample z, t, and proportion tests. Mathematically,

two-sample z and t tests are similar to one-sample tests, and so our findings extend to two-sample

z and t tests. Table S1 of [11] provides a list of the UMPBT alternatives and the likelihood ratios

(or Bayes factors) for two-sample z and t tests. Section A4 of the supplemental materials provides

a user guide for two-sample tests.

A potential drawback in the implementation of MSPRTs is the firm requirement to specify the

outcome variable and test statistic prior to the start of the experiment. Of course, in principle the

same requirement applies to fixed design experiments, but failure to ensure that these quantities are

clearly identified a priori could lead to additional opportunities for p hacking and other unethical

practices in sequential designs. For instance, researchers might apply MSPRTs to several outcome

variables simultaneously, which would negatively affect the control of Type I errors. In addition,

the conduct of MSPRTs requires that investigators perform statistical analyses after the acquisition

of each participant’s data, which in some settings may not be feasible. However, for studies in

which a high threshold for significance is desired, this technique may offer researchers a method

of testing hypotheses while maintaining required sample sizes at a manageable level.

2.8 Supplementary Materials

Supplementary materials, which are available online, contain a detailed discussion of the UMPBT

alternative and a comprehensive user guide for the MSPRT package. Section A2 highlights the gen-
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eral MSPRT for testing a simple null against a compositive alternative hypothesis. In Section A3,

the UMPBT alternatives are discussed in detail for one-sample z, t and proportion tests. Finally,

Section A4 presents an instructional user guide for the R package. Designing and implementing

a MSPRT, calculating the UMPBT alternative for different tests and obtaining N∗ (as in Section

2.5.4) are reviewed in respective subsections there. Additional simulation results for one-sample z

and proportion tests, with similar conclusions as to the one-sample t test, are presented in Section

A4.2.
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3. EFFICIENT ALTERNATIVES FOR BAYESIAN HYPOTHESIS TESTS IN

PSYCHOLOGY

3.1 Introduction

Innovative statistical methods to evaluate the plausibility of scientific theories have attracted

increased attention over the last decade. This attention has resulted in renewed interest in Bayesian

methods for assessing evidence [e.g., 1], and several novel approaches to sequential testing pro-

cedures have recently been proposed [2, 3, 54]. As [2] point out, each of these sequential testing

methods can be motivated from a Bayesian perspective towards testing.

[1] provide a useful summary of Bayesian methodology and, through a series of examples,

argue that “advances in science often come from identifying invariances,” or “statements of equal-

ity, sameness, or lack of association.” As examples, they cite interest in determining “whether

cognitive skills vary with gender”; whether subliminal priming occurs; whether detectability of a

“briefly flashed stimulus” is invariant to the ratio of the intensity of the stimulus to background,

as predicted by the Weber-Fechner law [55]; and whether the exponent in the power function of

intensity used to predict sensation is constant for a given intensity variable [56, 57]. To identify in-

variances, hypothesis testing procedures must permit accumulation of evidence in support of both

null and alternative hypotheses (see also [19, 20, 21]). In this regard, Bayesian testing procedures

differ from classical testing procedures, in which one can only fail to reject the null hypothesis

[e.g., 22], by allowing researchers to quantify evidence in favor of true null hypotheses, which can

reflect the presence of an invariance or lack of an effect.

In the Bayesian paradigm, the posterior odds in favor of an alternative hypothesis H1, based on

data x, can be expressed as the product of the Bayes factor and the prior odds in favor of H1; that

is

posterior odds = Bayes factor× prior odds, (3.1)
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or
P(H1 |x)

P(H0 |x)
=
m1(x)

m0(x)
× P(H1)

P(H0)
. (3.2)

It is important to note that this equation can be interpreted from both a frequentist and subjec-

tive view of probability. From the frequentist perspective, all probabilities can interpreted as the

limiting proportion of the occurrence of an event. That is, if the null hypothesis H0 is repeatedly

sampled with probability P(H0) (or H1 with probability P(H1) = 1 − P(H0)), and data x is

generated according to m0(x) (or m1(x)), then the posterior probability that data was generated

under H1, for a given x, converges in probability to

P(H1 |x) =
BF10(x) P(H1)

P(H0) + BF10(x) P(H1)
, (3.3)

where BF10(x) = m1(x)/m0(x) is the Bayes factor in favor of H1.

When Bayesian methods are applied to Null Hypothesis Significance Tests (NHSTs), contro-

versy arises in the “subjective” specification of two quantities in these equations. First, the prior

odds in favor of H1 must be specified. This specification is equivalent to specifying either the prior

probability of the alternative hypothesis, P (H1), or the prior probability of the null hypothesis,

P (H0), since P (H0) + P (H1) = 1. A simple approach to setting the prior odds is to assume

P (H0) = P (H1) = 0.5, leading to prior odds of 1.0. However, recent evidence gleaned from

analyses of replicated experiments suggests that the prior odds in favor of the alternative hypothe-

ses studied in psychology and other social sciences might be closer to 1/9 [9, 23]. Although it

is necessary to set a value of the prior odds in order to calculate the posterior odds, evaluation of

the prior odds is not considered further here. Instead, we encourage researchers to perform their

own sensitivity analyses to evaluate how various assumptions regarding the prior odds affect the

posterior odds for a given Bayes factor.

The second point of controversy arises in the definition of the marginal density of the data
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under the alternative hypothesis, given by

m1(x) =

∫
Θ

f(x | θ)π1(θ)d θ. (3.4)

Here π1(θ) represents the prior density for the parameter of interest θ under the alternative hypoth-

esis, i.e., the alternative prior density. (A more detailed description of the Bayesian hypothesis

testing framework may be found in, for example, [24] or [19].) In NHSTs, the quantity m0(x)

simply represents the sampling density of the data, say f(x | θ0), evaluated at the parameter value

that defines the null hypothesis, θ0.

The two-sample t test provides a useful context to discuss the specification of the alternative

prior density, π1(θ). In this setting, the parameter of interest is usually defined to be either the

difference in population means, µ2 − µ1, or the standardized difference in population means δ =

(µ2 − µ1)/σ. The former is called the effect size, while the latter is called the standardized effect

size. Sample estimates of δ are called Cohen’s d [58]. (Explicit modeling assumptions on x, µ1,

µ2, σ2 and δ are provided in the next section.) For purposes of the present discussion, we assume

that the null hypothesis requires that δ = 0, and that under the alternative hypothesis δ 6= 0. In the

absence of prior information regarding the value of δ, a common default choice for the alternative

prior density on δ is a Cauchy distribution. The Cauchy distribution is a unimodal density that

takes its maximum value at 0 and has heavy tails that assign significant mass to large values of the

standardized effect size (i.e., δ > 1). When the observational variance σ2 is unknown, a default

prior density on σ is the Jeffreys (or non-informative) prior, given by p(σ2) ∝ 1/σ2. Although

improper, this prior has attractive theoretical properties, provided that it is used as the prior model

for the variance under both the null and alternative hypotheses.

If the Jeffreys prior is assumed for the observational variance σ2 and a Cauchy prior is assumed

for δ, then the resulting prior on µ2 − µ1 is called the JZS prior, in deference to Jeffreys, Zellner

and Siow [24, 59, 60]. It is the default prior recommended in [1] for one- and two-sample t tests

and by [2] in their definition of a sequential Bayes factor (SBF). The JZS prior is an example of a
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local alternative prior, or a prior density that is positive at parameter values that are consistent with

the null hypothesis.

Intrinsic priors [e.g., 61] are another class of commonly used default priors in Bayesian testing

of a normal mean. The operating characteristics of Bayes factors obtained using intrinsic priors

and other default local priors are similar to those obtained using the JZS prior. For brevity, we

therefore do not consider them separately here.

The focus of this chapter is the description of a new approach to specifying alternative hy-

potheses in Bayesian tests of a normal mean or difference between means. The approach is based

on the use of non-local alternative prior densities (NAPs; [25]). A NAP is a density that exactly

equals 0 at parameter values that are consistent with the null hypothesis. For the two-sample t test,

this means that the prior density on δ is identically 0 when δ = 0. As we demonstrate below, tests

specified with NAPs offer several advantages over tests defined with alternative hypotheses based

on local priors. These include the following:

Stronger evidence for true null hypotheses. Because local alternative priors, like the JZS prior,

assign high prior probability to parameter values that are consistent with the null hypothe-

sis, data that support the null hypothesis also provide support to the alternative hypothesis.

This makes it difficult to obtain evidence that favors a true null hypothesis. We note that

accumulating evidence for true null hypotheses is often cited as a primary rationale for the

use of Bayes factors in hypothesis testing (e.g., [1]). Ironically, local alternative priors are

particularly ill-suited for this task (see, for example, Fig. 3.2). These properties of Bayes

factors are discussed below for tests in which sample sizes are fixed at the beginning of a

study and for sequential tests.

Comparable or stronger evidence for true alternative hypotheses. Because NAPs assign neg-

ligible probability to parameter values that are consistent with the null hypothesis, they are

able to assign more prior probability to parameter values that support the alternative hy-

pothesis. When data support the alternative hypothesis, the marginal density for the data

under the alternative thus tends to be higher than it is with a local alternative prior, which
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increases the Bayes factor in favor of the alternative hypothesis. This is especially true when

the NAP assigns high prior probability to standardized effect sizes that are common in the

psychological and social sciences.

Smaller Average Sample Number (ASN) in sequential tests. Because NAPs tend to provide more

evidence in favor of true null hypotheses and comparable evidence in favor of true alterna-

tive hypotheses, sequential tests based on them are likely to reach termination thresholds

more quickly. This means that sequential tests based on NAPs often require fewer subjects

to make a decision.

Logical consistency. In a properly specified hypothesis test, null and alternative hypotheses are

mutually exclusive. That is, if the alternative hypothesis is true, then the null hypothesis

cannot be. Despite this truism, local alternative priors assign prior mass to neighborhoods

of parameter values that are consistent with the null hypothesis. Indeed, in many cases their

densities take their maximum value at the parameter value that defines the null hypothesis.

In this regard, the use of NAPs more accurately reflect the prior belief, under the alterna-

tive hypothesis, that the tested parameter does not equal a value specified under the null

hypothesis.

With regard to the last item, proponents of local alternative prior densities (e.g., [1, 24, 61])

might argue that local alternative priors like the JZS prior reflect a belief that the true parameter

value is “close” to the null value. That is, the fact that a hypothesis test is being conducted at all

suggests that the tested effect size must not be too large. Thus, it is reasonable for the prior density

for the alternative model to take its maximum at the null value. This was the argument originally

posited by [24] in proposing a Cauchy prior for the unknown mean of a normal population.

We have two objections to this perspective. First, as we demonstrate below it is generally not

feasible to detect small standardized effect sizes without very large sample sizes. As a conse-

quence, investigators who wish to detect small effects are compelled to design studies with large

sample sizes. If such studies are planned, investigators can also specify non-local alternative prior
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densities that are appropriately scaled to detect the targeted effects. The resulting NAPs are sharply

spiked at small effect sizes, which increases the Bayes factor in favor of the alternative hypothesis

when it is supported by data. The use of appropriately scaled NAPs can thus lead to savings in

sample size and experimental cost.

Second, point null hypotheses are often used to approximate a belief that a standardized ef-

fect size is small. When this is the case, the use of local alternative prior densities is even more

problematic because they then concentrate prior probability on a range of parameter values that are

consistent with the null hypothesis.

The simplest NAP densities are simple alternative hypotheses. For example, in a one-sided test

of whether a standardized effect size is zero, a simple alternative hypothesis might be H1 : δ =

0.3σ. We demonstrate below that simple alternative hypotheses make it easy to collect evidence

in favor of both true null and true alternative hypotheses, but that they can lack power in detecting

true alternative hypotheses defined by other parameter values (e.g., δ = 0.15σ). For this reason,

we describe a class of continuous NAPs called normal moment densities that are strictly positive

at all non-null parameter values.

The rest of the chapter is organized as follows. In the next section, we describe the class of

normal moment densities that can be used to define alternative hypotheses for standardized effect

sizes in one- and two-sample t and z tests. Unlike simple alternative hypotheses, tests constructed

with these alternative prior densities provide support for a range of true alternative hypotheses.

They also permit rapid accumulation of evidence in favor of true null hypotheses. Conveniently,

these densities lead to explicit expressions for Bayes factors in one- and two-sample z and t tests.

In the next two sections we compare the empirical properties of tests defined with NAPs to tests

defined with default, objective local alternative priors in fixed and sequential design settings. The

third section examines tests in which the sample size is fixed prior to analyses of data. We refer to

such tests as fixed design tests. The fourth section examines the performance of NAP-based tests

in sequential designs. We conclude with a discussion of results.
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3.2 Non-local alternative prior densities

NAPs are probability density functions that take the value 0 at parameter values that are con-

sistent with the null hypothesis [25]. A simple example of a NAP for the test of a normal mean can

be described as follows.

Suppose x = (x1, . . . , xn) are independent and identically distributed (iid) Gaussian random

variables with mean µ and known variance σ2, i.e., xi
iid∼ N(µ, σ2). Suppose we wish to test the

null hypothesis H0 : µ = 0 against a two-sided alternative H1 : µ 6= 0. Let φ(a |m, c2) denote the

normal density function evaulated at a with mean m and variance c2. A NAP density that can be

used to define an alternative hypothesis for this test is the normal moment prior density, which can

be expressed as

pNM(µ |µ0, τ
2σ2) =

(µ− µ0)2

τ 2σ2
φ(µ |µ0, τ

2σ2), −∞ < µ <∞. (3.5)

A plot of this density for τ 2 = 0.32/2 = 0.045 and σ2 = 1 is provided in Fig. 3.1. For comparison,

the dashed curve in this plot depicts the Cauchy density with scale parameter r =
√

2/2 ≈ 0.707, a

local default alternative prior density that is often used to define the alternative hypothesis for this

test (see, for example, [2, 62, 63]). We denote the distribution associated with a generic normal

moment density (3.5) by NM(0, τ 2σ2). The density depicted in Fig. 3.1 has modes at ±
√

2σ2τ 2.

For τ 2 = 0.32/2, the modes of the density occur at ±0.3σ, or at standardized effect sizes of

±0.3. The area of the shaded region in Fig. 3.1, which represents the prior probability assigned to

standard effect sizes between (−0.8,−0.2) and (0.2, 0.8), is 0.825. That is, this normal moment

prior assigns approximately 83% of its prior probability between “small” (±0.2) and “large” (±0.8)

effect sizes [58]. These values approximately match the median and interquartile ranges of non-

null standardized effect sizes reported in meta-analyses in psychology [64, 65, 66, 67, 68, 69, 70].

The NAP density depicted in Fig. 3.1 assigns only 17.2% of its prior mass to standardized

effect sizes less than 0.2 in magnitude, and is identically 0 when the standardized effect size is 0.

In contrast, the Cauchy density depicted in this figure assigns about 36.3% of its prior probability
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Figure 3.1: Normal moment prior. This is an example of a NAP that can be used to define the
alternative hypothesis in test for a normal mean. The shaded area in the figure depicts the prior
probability assigned to standardized effect sizes having magnitude between 0.2 and 0.8.

to effect sizes that fall in the range “small” to “large,” and assigns 17.5% of its probability to effect

sizes that are less than 0.2 in magnitude. The prior probability assigned to standardized effect sizes

greater than 1 in magnitude is 0.392. The mode of this density is 0, which corresponds to the null

hypothesis.

Throughout the remainder of this paper we define the prior depicted in Fig. 3.1 as the default

NAP prior for defining the alternative hypothesis in testing whether the mean of a normal sample,

or difference between means of normal samples, is 0. When the observational variance is unknown,

we assume the Jeffreys’ prior for σ2 under both null and alternative hypotheses.

From a computational perspective, an advantage of the normal moment alternative prior density

in normal models is that it results in closed form expressions for the Bayes factors in both one-

and two-sided tests. In contrast, Bayes factors based on the JZS and other default priors (i.e.,

intrinsic priors) do not have closed-formed expressions and so must be computed using numerical

integration routines. For one-sided tests, we use the positive half of the density to define the
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alternative hypothesis. That is, for testing H1 : µ > 0 we define

p+
NM(µ | 0, τ 2σ2) = 2pNM(µ | 0, τ 2σ2) =

2µ2

τ 2σ2
φ(µ | 0, τ 2σ2), µ > 0. (3.6)

A similar definition is used to test H1 : µ < 0. We denote the distribution corresponding to this

density as NM+(0, τ 2σ2) (or NM−(0, τ 2σ2) for µ < 0).

We now define the specific assumptions used to perform one and two sample tests for normal

means against a two-sided alternative hypothesis, both when the variance is known and unknown.

We also provide explicit expressions for the resulting Bayes factors. Expressions for one-sided

tests are provided in the supplemental material.

For tests conducted in the psychological sciences with small to moderate sample sizes, and for

which no specific prior information regarding the magnitude of standardized effect size is available,

we recommend a default value of τ 2 = 0.045.

1. One-sample, known variance test. Suppose x = (x1, . . . , xn) denote iid N(µ, σ2) random

variables and that σ2 is known. The Bayes factor of the test H1 : µ ∼ NM(0, τ 2σ2) versus

H0 : µ = 0 is given by

BF10(x) = (nτ 2 + 1)−3/2(1 + 2w)ew, (3.7)

where

r =
nτ 2

nτ 2 + 1
, x̄ =

1

n

n∑
i=1

xi, Z =
√
nx̄/σ, and w = rZ2/2. (3.8)

Here, Z is the test statistic used in the frequentist z test.

2. One-sample, unknown variance test. Suppose the conditions in [1] hold, except that σ2 is

unknown. Suppose further that the Jeffreys’ prior density for σ2, proportional to 1/σ2, is

assumed under both hypotheses. Then the Bayes factor in favor of the alternative hypothesis
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can be expressed as

BF10(x) = (nτ 2 + 1)−3/2

(
G

H

)n/2(
1 +

qT 2

H

)
, (3.9)

where r and x̄ are defined as in (3.8), and

q =
rn

n− 1
, S =

n∑
i=1

(xi − x̄)2, s2 =
S

(n− 1)
, T =

√
nx̄

s
, (3.10)

G = 1 +
T 2

n− 1
, and H = 1 +

(1− r)T 2

(n− 1)
. (3.11)

Here, T is the test statistic used in the frequentist t test.

3. Two-sample, known variance test. Suppose x1 = (x1,1, . . . , x1,n1) denote iid N(µ1, σ
2) ran-

dom variables, x2 = (x2,1, . . . , x2,n2) iid N(µ2, σ
2) random variables, x1 and x2 are inde-

pendent of each other, and that σ2 is known. We assume that the prior density for µ1 is

uniformly distributed on an interval (−a, a) for a large value of a under both hypotheses.

Then the Bayes factor for the test H1 : µ2 − µ1 ∼ NM(0, τ 2σ2) versus H0 : µ2 − µ1 = 0

can be expressed as

BF10(x1,x2 |σ2) = (mτ 2 + 1)−3/2 (1 + 2w) ew, (3.12)

where for i = 1, 2,

x̄i =

ni∑
j=1

xj,i/ni, n = n1 + n2, m =
n1n2

n1 + n2

, (3.13)

r =
mτ 2

mτ 2 + 1
, Z =

√
m(x̄2 − x̄1)/σ and w =

rZ2

2
. (3.14)

The value Z is the test statistic in the classical z test. We note that the labeling of samples

is arbitrary and the marginal prior density on µ2 is also approximately uniform on (−a, a).
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The Bayes factor is obtained by taking the limit a→∞.

4. Two-sample, unknown variance test. Suppose the conditions in [3] hold, except now that σ2

is unknown. Suppose further that the Jeffreys’ prior density for σ2 is assumed under both

hypotheses. Then the Bayes factor in favor of the alternative hypothesis can be expressed as

BF10(x1,x2) = (mτ 2 + 1)−3/2

(
G

H

)(n−1)/2(
1 +

qT 2

H

)
, (3.15)

where x̄1, x̄2, r, n, m are defined in (3.13)–(3.14), and

q =
r(n− 1)

(n− 2)
, Si =

ni∑
j=1

(xi,j − x̄i)2, S = S1 + S2, (3.16)

T =

√
m(x̄1 − x̄2)√
S/(n− 2)

, G = 1 +
T 2

(n− 2)
, H = 1 +

(1− r)T 2

(n− 2)
. (3.17)

Here T is the test statistic in the classical t test. As in [3] the labeling of samples is arbitrary, and

the Bayes factor is obtained by taking the limit a→∞.

3.3 Fixed design tests

Classical tests of a normal mean parameter are most commonly based on z or t tests. These

tests are designed to control Type I (α) and Type II (β) error probabilities at pre-specified levels. A

key disadvantage of these tests is that they do not quantify evidence in favor of true null hypotheses.

Instead, they may simply “fail to reject” the null hypothesis. Psychology and other social science

researchers often have a need to quantify evidence in favor of true null hypotheses [for example,

1]. Bayes factors provide such a measure.

3.3.1 “Weight of evidence” as a measure of evidence

To summarize the performance of various Bayesian tests, we adopt the measurement scale for

evidence based on the natural logarithm of the Bayes factors, ln(BF10). This quantity, called the

“weight of evidence”, has the advantage of being on the same scale as the classical likelihood ratio
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statistic [19, 24].1 Because − ln(x) = ln(1/x), the weight of evidence in favor of the alternative

hypothesis is equal to the negative of the weight of evidence in favor of the null hypothesis (and

vice versa). Descriptors for the weight of evidence were proposed by [19] and [24]. Under the

former, weight of evidence between 0 and 1 in magnitude is considered “not worth more than a

bare mention”; weight of evidence between 1 and 3 is considered “positive”; weight of evidence

between 3 and 5 is “strong”, and above 5 is labeled as “very strong”. At the border between positive

and strong (3), the corresponding Bayes factor is about 20, and at the border between strong and

very strong, the Bayes factor is about 150. Strong and very strong weights of evidence in favor of

the null hypothesis are −3 and −5, or Bayes factors of approximately 1/20 and 1/150.

Bayes factors must be multiplied by the prior odds that the null hypothesis is true to determine

the posterior odds. If the prior odds are 1 (that is, P(H0) = P(H1) = 0.5), then weight of

evidence equal to 3 implies a Bayes factor and posterior odds of about 20, and posterior probability

of the alternative hypothesis equal to 0.95. Similarly, weight of evidence of -5 implies a Bayes

factor and posterior odds of about 1/150, and posterior probability of the null hypothesis equal to

1 − 0.0066 = 0.9934. This probability is very close to 1.0, but it is predicated on the assumption

that the prior odds are 1.0.

Recent evidence from replication of experiments in psychology and social sciences suggest

that the prior probability of a null hypothesis examined in these fields is likely between 0.80–0.95

[8, 9, 23]. If P(H0) = 0.9, then weight of evidence equal to 3 implies that the posterior probability

of the alternative hypothesis is only 0.69, while weight of evidence equal to 5 implies that the

posterior probability of the alternative hypothesis is 0.94.

3.3.2 Performance comparison

With the background from the above section in place, we now consider the average weight

of evidence that is obtained from a two-sided, one-sample t test that a normal mean is equal to 0

when the true mean is 0. We assume the conditions of test [2] above hold. Operating characteristics

1[19] propose 2 ln(BF10(x)) as a default measure, but by omitting the factor of 2 their descriptors are more com-
patible with the measure proposed by [24].
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for two-sided z tests and two-sided, two-sample t tests are very similar to those obtained for the

two-sided one-sample t test. Corresponding results for these tests are provided in the supplemental

materials. The R package BayesFactor [71] was used to compute the Average Sample Number

(ASN) for the JZS alternatives.

3.3.2.1 True null hypothesis

Fig. 3.2 displays the average weight of evidence obtained under several alternative hypotheses

when the null hypothesis of no effect is true. These curves were based on simulating one-million

standard normal random deviates at each sample size. The alternative hypotheses considered in

this plot include the following:

1. The default NAP (normal moment) prior with τ 2 = 0.32/2 = 0.045 (modes at ±0.3),

2. The default JZS prior based on a Cauchy with scale r =
√

2/2,

3. A normal moment prior with τ 2 = 0.52/2 = 0.125 (modes at ±0.5),

4. The JZS prior based on a Cauchy with scale r = 1,

5. A composite alternative hypothesis that assigns 1/2 mass to standardized effect sizes of

±0.3. The mass of a simple hypothesis is split between ±0.3 to reflect the two-sided spec-

ification of the test. Approximate Bayes factors for this test were computed as the ratio of

non-central and central t distributions evaluated at simulated t statistics.

Fig. 2 illustrates a critical deficiency of the JZS priors (and related local priors): The use of

such priors to define the alternative hypothesis makes it difficult to obtain “very strong” weight of

evidence in favor of a true null hypothesis. For two-sided t tests, the default JZS prior requires

about 80,000 subjects, on average, to obtain very strong weight of evidence in favor of a true null

hypothesis, and the JZS prior with r = 1 requires about 40,000 subjects. In contrast, the NAP

prior with modes at ±0.3 and ±0.5 require about 300 and 1200 subjects, on average, for the same

purpose.
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Figure 3.2: Average weight of evidence against alternative hypotheses when the null hypothesis
is true. Curves depicted in the plot correspond to normal moment priors with modes at ±0.3 and
±0.5; the JZS prior with scale

√
2/2 and 1; and a composite alternative hypothesis that places

one-half mass at ±0.3σ. The horizontal axis is displayed on the logarithmic scale because of the
large differences in samples sizes required by the different methods to obtain, on average, strong
or very strong weight of evidence against each alternative hypothesis The JZS priors do not, on
average, yield very strong weight of evidence until sample sizes exceed 40,000.

Obtaining even strong weight of evidence in favor of a true null hypothesis is difficult when

standard JZS priors are used to define the alternative hypothesis. On average, 1,400 subjects are

required to obtain strong weight of evidence when the default JZS prior is used, and on average

750 subjects are needed when the JZS prior with scale r = 1 is used to define the alternative
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hypothesis. In contrast, alternative hypotheses defined with NAP priors require about 300 subjects

at the default scaling, and 110 subjects if the prior mode is set to 0.5.

Like the continuous NAP priors, the composite hypothesis that places one-half point mass at

±0.3σ is also able to quickly obtain evidence in favor of a true null hypothesis. Indeed, because

this nonlocal composite hypothesis places no prior mass in the interval (−0.3, 0.3), it accumulates

evidence in favor of a true null faster than the normal moment priors do.
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Figure 3.3: Weight of evidence for true alternative hypotheses. Curves depicted in the plots denote
the average weight of evidence versus true effect size when the alternative hypothesis was defined
by various NAP and JZS densities.
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3.3.2.2 True alternative hypotheses

What is the cost that NAP priors when used to detect true alternative hypotheses? As it turns

out, not too much for normal moment alternative prior specifications, but more with the two-point

composite alternative hypothesis. Fig. 3.3 shows the average weights of evidence obtained under

these prior specifications for a range of sample sizes in fixed-design tests as a function of the

true standardized effect sizes. It shows that the NAP priors (based on normal moment priors)

achieve strong or very strong weight of evidence in favor of the alternative hypothesis for smaller

standardized effect sizes than the JZS priors do. Alternative hypotheses defined with the JZS

priors provided, on average, higher weights of evidence for larger standardized effect sizes, but

this additional evidence tends to occur when the evidence for the alternative hypothesis provided

by the NAP priors was also very strong. For sample sizes greater than about 40 and standardized

effect sizes between about 0.10 and 0.65, the default NAP prior produces, on average, higher

weight of evidence against the null hypotheses than do default JZS priors.

The properties of tests defined using the two-point composite hypothesis are more ambiguous.

For standardized effect sizes within (−0.15σ, 0.15σ) (or 1/2 the magnitude of the simple alterna-

tives that comprise the composite alternative), tests based on the composite hypothesis provide, on

average, support for a false null hypothesis (that is, a negative weight of evidence). For sample

sizes of 200 and 400, the average weight of evidence in favor of the false null hypothesis is even

very strong for smaller effect sizes. This phenomenon is not unexpected, however, because the null

hypothesis in these cases is “closer” to the data-generating parameter than the composite alterna-

tive is. The composite alternative hypothesis also provides, on average, substantially less weight

of evidence for large standardized effect sizes. This happens because the composite alternative

hypothesis assigns no prior probability to standardized effect sizes greater than 0.3σ in magnitude.

Local priors, like the JZS prior, provide more support for very small standardized effect sizes.

However, strong evidence in favor of very small standardized effect sizes can only be obtained

with very large sample sizes. When the sample size is 500 and the standardized effect size is less

than 0.10, all four of the Bayes factors based on alternative hypothesis defined by the JZS and
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Figure 3.4: Weight of evidence for true alternative hypotheses with very small effect sizes. Curves
depicted in the plots denote the average weight of evidence versus true effect size when the alter-
native hypothesis was defined by various NAP and JZS prior densities. Dashed lines at±3 provide
boundaries for strong support of the alternative hypothesis (> 3) or null hypothesis (< −3).

NAP priors in Fig. 3.4(a) yield average weights of evidence that are negative, thus favoring the

null hypothesis of no effect. Indeed, for standardized effect sizes less than about 0.045, use of the

default NAP prior provides, on average, “strong” support for the null hypothesis, and when the

standardized effect size is less than about 0.023 the NAP prior with mode at 0.5 provides “very

strong” support for the null hypothesis. This misleading performance of the NAP priors for true

standardized effect sizes less than 0.05 persists, and even degrades, for sample sizes up to 4,000.

When the sample size is 1,000 (Fig. 3.4(b)), the default NAP prior and the JZS priors begin to
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show positive support (i.e., log(BF10(x)) > 1) for standardized effect sizes greater than about

0.09. None of the alternative models depicted in Fig. 3.4(b) provide, on average, strong support

for the alternative hypothesis for any standardized effect size less than 0.1. If the sample size is

increased to 2,000 (Fig. 3.4(c)), then the JZS priors and default NAP prior provide, on average,

strong evidence for standardized effect sizes greater than about 0.08, and positive evidence for ef-

fect sizes greater than about 0.065 (JZS) or 0.07 (default NAP). Increasing the sample size to 4,000

(Fig. 3.4(d)) yields a similar pattern, except that “very strong” weight of evidence is obtained, on

average, for standardized effect sizes greater than about 0.07 if the default NAP or JZS priors are

used to define the alternative hypothesis.

The conclusions from Figs. 3.2–3.4 might be simply stated as follows. Alternative hypotheses

defined with NAP priors can provide strong or very strong weight of evidence in favor of true null

hypotheses for small or moderate sample sizes (i.e., < 400). In many practical settings (i.e., n <

2000), JZS or other local priors cannot. For small to medium standardized effects (i.e., in (0.2 −

0.5)), alternatives defined with the default NAP prior provide, on average, slightly higher weight

evidence for small to moderate sample sizes than do JZS priors with standard scale specifications.

For medium or larger standardized effect sizes (> 0.6), alternative hypotheses defined with JZS

priors provide higher average weights of evidence, with all specifications providing strong or very

strong weights of evidence for sample sizes greater than 40. Alternative hypotheses defined with

JZS priors provided higher average weight of evidence for very small effect sizes (i.e., < 0.10),

but require large or very large sample sizes (> 2000) to provide strong support. Nearly identical

conclusions apply to two-sample t tests and z tests.

3.3.3 An Application to incidental disfluency studies

To illustrate the use of NAP-based Bayes factors on real data, we applied them to replications

of an incidental disfluency study, one of the 28 studies included in the “Many Labs 2” project

[72]. Data for this example are available from the Open Science Framework (OSF) (https:

//osf.io/8cd4r/). For purposes of illustration, we restrict attention to Bayes factors based
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on default NAP and JZS priors.

In the original disfluency study, [73] investigated whether a slow, analytical, and deliberate

processing style can be activated by metacognitive experiences of difficulty or disfluency during

the process of reasoning. To test this hypothesis, participants in the study were asked questions

after reading two-statement syllogisms presented in either a hard-to-read or an easy-to-read font.

Forty-one undergraduates from Princeton University completed a questionnaire that contained one

of six syllogistic reasoning problems. The syllogisms were selected based on their accuracy rates

established in prior research: two were easy, two were moderately difficult, and two were very dif-

ficult. Alter’s original study compared responses based on the two moderately difficult syllogisms.

Participants were randomly assigned to a questionnaire printed in either a hard-to-read (disflu-

ent) or an easy-to-read (fluent) font. Each questionnaire contained 6 questions and the number of

questions correctly answered by each participant was recorded as the response.

The study was subsequently replicated 13 times by researchers in multiple countries. To mini-

mize differences between replications, “English in-lab” questionnaires were used in the following

analyses (i.e., on the OSF website, “English” from the “Language” column and “In a lab” from the

“setting” column). In total, these studies collected 2,580 responses, 1,268 from the fluent condition

and 1,312 from the disfluent condition.

In previous analyses of these data, authors of the original and replication studies used two-

sample t tests to test the null hypothesis that the mean number of correct responses from the two

conditions were the same. Following their lead, we assume that the sample means of correct

responses under fluent and disfluent conditions are independently and normally distributed with

means µf and µd, respectively, and unknown common variances σ2/nf and σ2/nd, where nf and

nd are the numbers of subjects responding under the fluent and disfluent conditions. The tested

hypotheses can then be expressed in frequentist terms as

H0 : µf − µd = 0 vs. H1 : µf − µd 6= 0. (3.18)
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Prior Weight of evidence

Default NAP -4.33

Default JZS -2.81

Table 3.1: Weight of evidence accumulated by the default NAP and JZS priors in favor of H1 in
(3.18) in a fixed-design test.

The P -value for the two-sample t-test is 0.43, which does not support the rejection of the null

hypothesis of no effect. Neither does it provide an interpretable summary of evidence in favor of

the null.

Taking a Bayesian perspective, we computed Bayes factors from these data by using default

NAP and JZS priors on the standardized difference (µf−µd)/σ to define the alternative hypothesis

H1.

Table 3.1 displays the weight of evidence accumulated by the each test using all 2,580 re-

sponses. The table shows that both priors favor the null hypothesis. The Bayes factor based on

the default JZS prior fails to provide “strong” evidence against the null, whereas the NAP-based

Bayes factor does. These values correspond to odds (i.e. Bayes factors) of about 17:1 in favor

of H0 using the JZS prior, and 76:1 using the NAP-based Bayes factor. In other words, over four

times more support is obtained in favor of the null hypothesis when the NAP is used to define the

alternative hypothesis.

3.4 Sequential tests

Unlike fixed sample size tests, sequential testing procedures are designed to terminate as soon

as compelling evidence has been collected in favor of either the null or alternative hypothesis.

After each subject or group of subjects is observed, they employ a rule that determines whether

to (i) continue to collect data, (ii) stop data collection and reject the null hypothesis, or (iii) stop

data collection and reject the alternative hypothesis. An important advantage of sequential designs

is that they offer a potential mechanism for reducing the number of subjects that are needed to

perform statistical tests.
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Sequential tests have been developed extensively since their introduction by Wald in the 1940s

[e.g., 12]. For a comprehensive review of developments in the statistical theory underlying sequen-

tial probability ratio tests (SPRT), see [74]. More recently, sequential designs have been proposed

for application in psychology and other social sciences by [2], [3], [54], and [63].

[2] proposed a sequential Bayes factors (SBF) in which data are collected until the Bayes

factor crosses predefined thresholds. They discuss a variety of prior densities on the standardized

effect size that might be used to define the alternative model and Bayes factor, but recommend

as a default the JZS prior with scale parameter r =
√

2/2. [3] discuss a modification of Wald’s

SPRT that applies to two-sample t tests [75]. The thresholds for making a decision in this test

are chosen to maintain Type I and Type II error control. Hajnal’s test is based on computing the

ratio of non-central t and F sampling densities under the alternative hypotheses to central t and

F densities that apply under the null. [3] do not provide objective criteria or default values for

the standardized effect sizes that define the non-centrality parameters in these tests. [63] discuss

the connections between [2] and [3], pointing out that the thresholds for the Bayes factors in the

former can be adjusted to control Type I and II error probabilities. Readers interested in more

detailed descriptions of these and related sequential testing procedures are encouraged to consult

[2] and [3].

[54] propose a modification of the SPRT that they call the modified sequential probability

ratio test (MSPRT). There are three innovations of this test. First, unlike the SPRT and SBF, the

maximum sample size for the MSPRT is set in advance. Second, if a decision has not been reached

after the maximum sample size is determined, a decision threshold is used at the end of the test to

determine whether to the accept or reject each hypothesis. This threshold is estimated numerically

so that the Type II error probability is minimized under the constraint that the targeted Type I

error is maintained. Finally, the simple alternative hypothesis for the test is determined using the

uniformly most powerful Bayesian test (UMPBT; [16]) at the maximum sample size, say N . In

the test of whether a normal mean equals 0, the UMPBT alternative is of order N−1/2. Successful

application of the MSPRT thus implicitly depends on the selection of a maximum sample size that
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is commensurate with the anticipated magnitude of the standardized effect size. For example, if

N = 10, 000, the point alternative hypothesis for the standardized effect size in a MSPRT for a

one-sided z-test of size 0.05 is 0.01645σ (= 1.645σ/
√

10000). If the magnitude of the anticipated

standardized effect size is substantially larger than this, then the UMPBT default value should

not be used. [54] do not provide guidance on the selection of alternative values or maximum

sample size for the test. Because the alternative hypotheses defined in this procedure depend on the

maximum sample size specified for the test, it is difficult to compare its operating characteristics

to the other sequential procedures, and so it is not considered in the comparisons below.

Results presented for fixed design tests suggest that the use of the JZS prior (as well as other

local alternative priors) to define alternative hypotheses makes it difficult to accumulate evidence

in favor of true null hypotheses and “very small” effect sizes. In sequential tests, this means

that sequential procedures may not reach termination criteria before available sample sizes are

expended when the null hypothesis is true. To resolve this difficulty, we propose using the default

NAP prior to define the alternative hypothesis in these tests.

We now explore this proposal in the two contexts suggested by [2] and [3]. First, we exam-

ine the Bayesian approach and the SBF proposed in [2]. In this test, data is accumulated until

the weight of evidence exceeds specified thresholds. After this, we examine the performance of

both methods viewed from the frequentist perspective of [3] in which SPRT-type thresholds are

determined so as to maintain specified Type I and Type II error probabilities.

3.4.1 Sequential design with symmetric evidence thresholds

3.4.1.1 Performance comparison

In this section, we again consider a one-sample two-sided t test of a normal mean µ, with

H0 : µ = 0. In each simulated replication of the test, samples are collected until the weight of

evidence in favor of the alternative hypothesis exceeds 3 or 5 or the weight of evidence against the

alternative hypothesis is less than −3 or −5. The performances of the tests are summarized over
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50,000 simulations of the tests at each standardized effect size.2

Several alternative hypotheses were considered. Following [2], we computed Bayes factors

using the default JZS prior with scale parameter r =
√

2/2. We also examined the default NAP

prior with τ 2 = 0.045. Bayes factors for these procedures were computed using formulae provided

in section two. We refer to the sequential testing procedures based on these prior assumptions as

SBF-JZS and SBF-NAP. To facilitate comparisons with [3], we also tested the SPRT proposed in

[75] with a simple alternative hypothesis defined to be a point mass at concentrated on standardized

effect sizes of ±0.3. This value matches the mode of the default NAP prior and matches the com-

posite hypothesis examined in the previous section. As noted in [3], the Bayes factors from these

tests are most efficient when the true standardized effect size is close to the assumed alternative

hypothesis. For ease of exposition, we refer to the sequential test based on Hajnal’s approximate

Bayes factor with alternative hypothesis equal to a standardized effect size of magnitude d as the

“Hajnal(d)” test.

3.4.1.2 True null hypothesis

Fig. 3.5 presents the boxplot of sample sizes and the ASN required by the SBF-NAP, SBF-JZS

and Hajnal(0.3) tests to exceed thresholds of ±3 and ±5 when the null hypothesis is true. As the

plots show, the SBF-JZS test typically requires significantly more samples to reach a decision. In

the case of thresholds of ±3, the ASN’s for the SBF-JZS test and Hajnal(0.3) test were 968 and

99, respectively, while the ASN for the SBF-NAP test was 239. For a threshold of ±5, the cor-

responding ASN’s were 54,833, 164, and 1,026, respectively. These trends mimic those observed

for fixed design studies.

2To manage simulation time for SBF-JZS, the sample size at each sequential step is increased following [2]. For a
sequential comparison at the next step, we add 1 new sample until the total sample size (n) reaches 100, 5 new samples
until n reaches 1000, 10 new samples until n reaches 2500, 20 new samples until n reaches 5000, and 50 new samples
afterwards.
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Figure 3.5: ASN for sequential procedures under a true null hypothesis. The plots are truncated at
1500 and 80,000 to enhance comparisons at moderate sample sizes. Panel (a) provides a boxplot
estimate of the distribution of sample sizes required for the SBF-NAP, SBF-JZS and Hajnal(0.3)
procedures to cross an exceedance threshold of ±3. About 0.3% percent of SBF-NAP tests and
11% of SBF-JZS tests required more than 1500 samples to reach a decision. All Hajnal(0.3) tests
terminated by 550 samples. Panel (b) provides the corresponding boxplots when the exceedance
threshold is ±5. About 12% of SBF-JZS tests required more than 80,000 samples to reach a
decision. The black diamonds show the ASN’s for each procedure. All SBF-NAP tests reached a
decision by 54750 samples, and all Hajnal(0.3) tests terminated by observation 980.

3.4.1.3 True alternative hypothesis

The increased efficiency of the SBF-NAP and Hajnal(0.3) tests under the null hypothesis is off-

set by decreased power to detect smaller standardized effect sizes. This phenomenon is illustrated

in Fig. 3.6. The panels on the left side of this figure represent the ASN and power achieved by the

three sequential tests when an evidence threshold of±3 was imposed, while the panels on the right

correspond to evidence thresholds of ±5.

The general take-away from this figure is that the SBF-JZS provides substantially better power

than the SBF-NAP test for standardized effect sizes less than 0.25 (left) or 0.10 (right). However,

the cost of the additional power can be very high in terms of the ASN required to reach a decision.

For instance, SBF-JZS requires ASN’s that are greater than 50,000 to reach a decision for stan-
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Figure 3.6: Operating characteristics under true alternative hypotheses. Panels (a) and (b) depict
the ASN’s for three sequential tests when the exceedance thresholds are ±3 and ±5, respectively,
versus the data-generating value of the standardized effect size. Panels (c) and (d) provide the cor-
responding probabilities that each test rejects the null hypothesis as a function of the standardized
effect size.

dardized effect sizes less than about 0.02 and weight of evidence thresholds of ±5, even though

the power at these smaller effect sizes can be well below 0.5.

3.4.1.4 Sequential analysis of the incidental disfluency study

In this section we compare the performances of the SBF-JZS and the SBF-NAP priors using

the disfluency data described earlier. For brevity, we again only compare the default choices of

NAP and JZS priors.

To perform a sequential analysis of the data collected in the 13 replicated studies, we assume
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Figure 3.7: A comparison of the SBF-JZS and the SBF-NAP with symmetric “strong” thresholds in
case of the replicated incidental disfluency data. For each prior the natural logarithm of the Bayes
factor in favor of the alternative hypothesis that incidental disfluency activates a deliberate, analytic
processing style is calculated. The curves corresponding to each prior depicts the sequentially
calculated values after observing each of the 13 studies until they exceed ±3. The horizontal axis
displays the studies in the assumed order they were observed.

for illustration purposes that data from these studies was collected sequentially according to study

number, and that all data from each study was collected simultaneously.

Given this ordering, we calculated the weight of evidence against the null hypothesis specified

in (3.18) after data from each study “arrived.” The weight of evidence was then computed using all

available data. If the weight of evidence for one hypothesis was strong (i.e., > 3 or< −3), that test

was terminated. The time courses for the accumulation of weight of evidence for the SBF-NAP

and SBF-JZS procedures are displayed in Figure 3.7.

From the figure we see that weight of evidence from the SBF-JZS approaches, but never
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crosses, the strong weight of evidence threshold. In contrast, the SBF-NAP test provides strong

weight of evidence in favor of the null hypothesis after Study 3, using only 588 of the 2,580 com-

bined study participants. Thus, application of the SBF-NAP procedure uses nearly 2,000 fewer

subjects to conclude that there is a negligible disfluency effect, while at the same time providing

stronger evidence in favor of this conclusion.

3.4.2 Sequential design with the SPRT thresholds

3.4.2.1 Performance comparison

The sequential probability ratio test, as proposed by [12], is based on comparing the likelihood

ratio between a simple null and a simple alternative hypothesis and terminating an experiment

when the likelihood ratio strongly favors one of the two. More specifically, let x1, x2, . . . represent

independent, identically distributed realizations from a distribution with density function f(x; θ)

under both hypotheses. Suppose the null hypothesis H0 stipulates that θ = θ0 and the alternative

hypothesis H1 that θ = θ1. Then the likelihood ratio statistic in favor of the alternative hypothesis

based on the first n observations may be expressed as

L(θ0, θ1; xn) =
n∏
i=1

f(xi; θ1)

f(xi; θ0)
. (3.19)

Wald’s SPRT continues data collection until L(θ0, θ1; xn) > A and the null hypothesis is rejected,

or L(θ0, θ1; xn) < B and the alternative hypothesis is rejected. The decision thresholds are defined

as

A =
1− β
α

and B =
β

1− α
. (3.20)

Typical design parameters in the social sciences and medicine often assume that Type I and Type

II errors fall in the range (0.005, 0.05) and (0.05, 0.2), respectively. It follows that the SPRT

thresholds for (α, β) = (0.05, 0.2) are A = 16 and B = 0.21, and for (α, β) = (0.005, 0.05) are

A = 190 and B = 0.05.
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[63] point out that the SPRT can be modified for use with composite hypotheses by replacing

the likelihood ratio with the Bayes factor between hypotheses. [75] and [3] extended the SPRT

to t tests by replacing the likelihood ratio for normally distributed data with unknown means and

common variance by the ratio of a non-central t density to a central t density, evaluated at the

t statistic for the experiment (e.g., t =
√
nx̄/s). [63] provided numerical comparisons of the

Hajnal test to the SPRT based on the Bayes factor defined with the JZS prior (and several other

prior choices). We now extend this comparison to include the SPRT obtained by using the default

normal moment prior (default NAP) density to define the alternative hypothesis. Before doing so,

however, it is useful to compare the SPRT thresholds to the symmetric thresholds examined in the

previous section.

For (α, β) = (0.05, 0.2), the Bayes factor thresholds are A = 16 and B = 0.21, with

ln(A) = 2.77 and ln(B) = −1.56. The latter value represents the threshold at which the alterna-

tive hypothesis is rejected. It is substantially smaller in magnitude than the thresholds of -3 and -5

examined previously. With prior odds equal to 1, weight of evidence equal to -1.56 implies that

the posterior probability of the alternative hypothesis is 0.17, which might be considered too high

for rejection. The use of this less stringent threshold for “accepting” the null hypothesis reduces

the ASN required by the SBF-JZS test. Values of (α, β) = (0.005, 0.05) yield weight-of-evidence

thresholds that are more similar to those studied in the previous section. With prior odds equal to

1, the alternative hypothesis is not rejected unless it has posterior probability less than 0.05, and

the null hypothesis is not rejected unless it has posterior probability less than 0.0052.

3.4.2.2 True null hypothesis

Fig. 3.8 depicts the ASN for three sequential tests when Type I and Type II error probabilities

were constrained to (0.05, 0.20) (left panel) and (0.005, 0.05) (right panel). As in the previous

section, all three sequential tests were designed to test the null hypothesis that the mean of a

sample of normal random variables with unknown variance was equal to 0. The boxplots in this

figure were based on 50,000 replications of each test. The decision thresholds for each test were
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set according to (3.20), and data for each test were simulated under the null hypothesis that the

standardized effect size was 0.

The three tests included in the plot include the SPRT based on the Bayes factor obtained by

defining the alternative hypothesis with the default NAP on the standardized effect size (i.e., a

normal moment prior with τ 2 = 0.045), the SPRT based on the Bayes factor obtained by defining

the alternative hypothesis with the default JZS prior on the standardized effect size (r =
√

2/2),

and the [3] version of Hajnal’s two-sided t-test with a composite hypothesis that assigned one-half

probability to ±0.3σ.
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Figure 3.8: ASN for SPRT procedures when the null hypothesis is true. Panel (a) provides a
boxplot estimate of the distribution of sample sizes required for the SBF-NAP, SBF-JZS and Ha-
jnal(0.3) procedures to cross Wald’s decision thresholds at α = 0.05 and β = 0.2. The plot is
truncated at 150 samples (5.49% of SBF-NAP tests, 3.35% of SBF-JZS tests, and 1.75% of Ha-
jnal(0.3) tests required more than 150 samples). Panel (b) provides the corresponding estimate
when Wald’s decision thresholds were based on α = 0.005 and β = 0.05. The plot is truncated at
1500 samples (0.54% of SBF-NAP and 11.1% of SBF-JZS tests required more than 1500 samples;
none of Hajnal(0.3) tests did). The black diamonds show the ASN for each procedure.

The left panel of Fig. 3.8 shows that the test based on the JZS alternative required the smallest

mean and median ASN when the targeted Type I and Type II errors were 0.05 and 0.2, respectively.
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The realized Type I errors for the tests were 0.035, 0.043, and 0.044 for the alternative hypotheses

defined by the JZS, composite, and NAP priors.

The right panel depicts similar findings when the targeted Type I and Type II errors were 0.005

and 0.05, respectively. With thresholds again determined from (3.20), the ASN required by the JZS

test jumps significantly at the more stringent significance threshold, requiring an average of over

1,000 observations before reaching a decision. The NAP and composite tests required an average

of 253 and 103 observations, respectively.
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Figure 3.9: Operating characteristics under true alternative hypotheses. Panels (a) and (b) depict
the ASN for three SPRT procedures based on Wald’s decision thresholds for (α, β) = (0.05, 0.2)
and (0.005, 0.05), respectively, versus the data-generating value of the standardized effect size.
Panels (c) and (d) provide the probability that each procedure rejected the null hypothesis as a
function of the standardized effect size.
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3.4.2.3 True alternative hypothesis

Fig. 3.9 provides the ASN and power of each of the three sequential tests as a function of true

standardized effect size. As in Fig. 3.8, the panels on the left (a,c) reflect the operating character-

istics of the test with targeted Type I and Type II error probabilities equal to 0.05 and 0.2, while

panels (b,d) targeted to error probabilities of 0.005 and 0.05.

From panels (a) and (c), we see that the NAP prior requires, on average, a higher number of

samples to reach a decision for standardized effect sizes less than about 0.3 (JZS) or 0.42 (com-

posite), although it provides better power over the range of standardized effect sizes depicted. True

standardized effect sizes of 0.27, 0.29, and 0.33 are needed for the NAP, composite, and JZS to

reach their targets of 80%. For the composite alternative hypothesis, this value is close to the point

mass alternatives used to define the test.

Panels (b) and (d) reveal a somewhat different trend for the more stringent tests. With error

probability targets of (0.005, 0.05), the ASN for the test defined with the JZS alternative can be

as large as 3,500. However, these larger sample sizes provide higher power, with 95% power

achieved for standardized effect sizes greater than 0.1, whereas the tests defined with the composite

and NAP priors only provide 95% power for standardized effect sizes greater than 0.29 and 0.19,

respectively. As in the less stringent test, the composite hypothesis achieves its targeted power at

the point mass alternatives used in its definition.

3.4.2.4 Sequential analysis of the incidental disfluency study (continued)

We previously examined the efficacy of the SBF-NAP and SBF-JZS tests in accumulating

strong evidence in favor of the null hypothesis against a disfluency effect using symmetric ex-

ceedance thresholds. We now consider a similar analysis using the weak ((α, β) = (0.05, 0.20))

and stringent (α, β) = (0.005, 0.005) Wald thresholds. Note that the weight-of-evidence curves

displayed in Fig. 3.7 for the SBF-JZS and SBF-NAP tests do not change according to the termina-

tion thresholds that are used.

The weight of evidence thresholds that correspond to the less stringent criterion of (α, β) =
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Figure 3.10: A comparison of the SBF-JZS and the SBF-NAP with the SPRT thresholds in case
of the replicated incidental disfluency data. For each prior the natural logarithm of the Bayes
factor in favor of the alternative hypothesis that incidental disfluency activates a deliberate, analytic
processing style is calculated. The curves corresponding to each prior depicts the sequentially
calculated values after observing each of the 13 studies until they exceed the SPRT thresholds
corresponding to (α, β) = (0.005, 0.05). The horizontal axis displays the studies in the assumed
order they were observed.

(0.05, 0.20) are A = 2.77 and B = −1.56. As Fig. 3.7 suggests, both the SBF-JZS and SBF-NAP

prior fall below the lower threshold after the first study (weights of evidence equal to -1.81 and

-1.63, respectively).

The weight of evidence thresholds that correspond to the more stringent criterion of (α, β) =

(0.005, 0.05) are A = 5.24 and B = −2.99. Because the lower threshold is close to -3.0, the

conclusions from the last section apply here also: The SBF-NAP test terminates after the third

study in favor of the null hypothesis and uses only 588 subjects, while the SBF-JZS does not

terminate even after responses from all 2580 subjects are accumulated.
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Prior Strong Very strong

Default NAP 294 1,208

Default JZS 1,445 79,424

Table 3.2: Average sample numbers required for fixed-design tests under true null hypotheses.
This table displays the minimum sample sizes required for Bayes factors to achieve, on average,
strong (log(BF01) ≥ 3) or very strong weight of evidence (log(BF01) ≥ 5) in favor of true null
hypotheses.

3.5 Discussion

This chapter has explored the use of non-local alternative prior densities, or NAP’s, to define

alternative models in Bayesian z and t tests. From a subjective perspective, evidence suggests that

NAPs approximate the marginal distribution of non-null effect sizes observed in the psychology

and social science literature [64, 65, 66, 67, 68, 69, 70]. Viewed more objectively, the operating

characteristics of Bayesian tests based on NAP’s provide an opportunity for researchers to more

rapidly accumulate evidence in favor of true null hypotheses and alternative hypotheses in which

standardized effect sizes are moderate in magnitude.

Table 2 illustrates this effect when the null hypothesis is true. Sample sizes required to obtain

strong weight of evidence, on average, are nearly 5 times larger using the JZS specification than

the NAP specification. To obtain very strong weight of evidence, the sample size required by the

JZS specification needs to be 65 times larger. Table 3 provides a similar comparison when the

alternative hypothesis is true. Evidence for small and medium standardized effect sizes accumu-

lates faster, although the gains for these alternative hypotheses is less pronounced. Bayes factors

based on default JSZ priors outperform those based on default NAP priors for large effect sizes,

an advantage that increases with increasing standardized effect size. Of course, the sample sizes

required to detect large effects tend to be fairly small no matter which alternative is specified.

Tables 4 and 5 demonstrate that similar trends persist for sequential tests based on Bayes fac-

tors. In the case of tests with symmetric thresholds, however, the smaller ASN’s achieved by the
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Prior Small effect Medium effect Large effect

Strong Very strong Strong Very strong Strong Very strong

Default NAP 225 335 37 56 21 31

Default JZS 267 379 42 62 19 28

Table 3.3: Average sample numbers required for fixed-design tests under true alternative hypothe-
ses. This table displays the average sample sizes required for Bayes factors to achieve strong
(log(BF10) ≥ 3) or very strong weight of evidence (log(BF10) ≥ 5) for small (0.2), medium (0.5)
and large (0.8) standardized effect sizes.

NAP-based Bayes factors should be balanced against the fact that these tests have high probability

of generating evidence in favor of the null hypothesis when the magnitude of a standardized effect

sizes is less than 0.1.

Perhaps related to this trade-off, [76] argue that Bayes factors can either favor a point null

hypothesis (Issue 9) or an alternative hypothesis (Issue 10). With regard to the latter, they cite [25]

and express concern that evidence is accumulated asymmetrically in favor of the alternative model.

[77] correctly point out that ‘the claim that something is absent is more difficult to support than the

claim that something is present, at least when one is uncertain about the size of the phenomenon

that is present. Consider, for instance, the null hypothesis “There is no animal in this room,” tested

against the alternative hypothesis: “There is an animal in this room, but it could be as small as

an ant or as big as a cow". Now if the “effect” is of medium size (say a cat), it can be quickly

Priors Symmetric thresholds

Strong Very strong

Default NAP 238 1,026

Default JZS 968 54,832

Table 3.4: Average sample numbers for sequential tests under true null hypotheses. Columns refer
to the average sample sizes required for Bayes factors to exceed, on average, strong (| log(BF01)| ≥
3) or very strong weight of evidence (| log(BF01)| ≥ 5) thresholds when termination thresholds
are symmetric.
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Priors Symmetric thresholds

Strong Very strong

Default NAP 458 3,853

Default JZS 2,399 158,235

Table 3.5: Maximum average sample numbers for sequential tests under true alternative hypothe-
ses. This table does not reflect the power of the tests, which for standardized effect sizes less than
0.2 is greater for the default JZS prior with symmetric thresholds. Columns list the maxiumum
of the ASN required for Bayes factors to exceed, on average, strong (| log(BF10)| ≥ 3) or very
strong weight of evidence (| log(BF10)| ≥ 5) thresholds. The power and standardized effect sizes
at which these values obtain can be discerned from Fig. 6.

discovered and H1 then receives decisive support. But if a cursory inspection does not reveal any

animal, then support for H0 will only be weak (after all, it is easy to miss an ant). Now there is

a way to collect strong evidence for H0, but it requires more effort – a systematic search with a

magnifying glass, for instance.’

Theoretical support for this statement can be found in the pioneering work of [78] and [79],

who showed that likelihood ratios and Bayes factors in favor of true null hypotheses and true

alternative hypotheses increase exponentially fast with sample size when the parameter spaces as-

sociated with the two hypotheses are separated. Sub-exponential convergence occurs when the

parameter defining one hypothesis falls on the boundary between the spaces. This is the case with

NHSTs, where the null parameter value is not separated from parameter values that define alterna-

tive hypotheses. One objective of NAP-based tests is to approximately “separate” the hypotheses.

This goal is complicated by the desire to avoid discontinuities in the prior densities that define the

alternative hypotheses. For example, assigning positive prior density to say, 0.3, and 0 density to

all smaller values may not make sense.

The comments of [77] illustrate this principle well. If only animals larger than cats are considered–

so that the hypotheses are well separated–then one can test “no animal present” versus “animal

present” very quickly. If ants and even smaller animals count, then the null hypothesis is not well

separated from the alternative and testing takes longer. For the NAP-based tests proposed in this

68



chapter, Bayes factors in favor of true null hypotheses increase at a rate of n3/2. For local alterna-

tive hypotheses, this rate is only
√
n [25]. In contrast, the rate for any true alternative hypothesis,

which is always distinct from the null value, increases exponentially fast with n.

The default NAP-based tests proposed in this chapter should not be categorized as objective

Bayesian tests because they explicitly target the detection of standardized effect sizes of most in-

terest in psychology and other social sciences. Nevertheless, it is interesting to examine their prop-

erties using criteria that are sometimes used to judge the performance of objective Bayesian tests.

As summarized in, for example, [80] and [81], such criteria include basic (Bayesian) consistency,

model selection consistency, intrinsic consistency, information consistency, predictive matching,

and scale-location invariance.

NAP-based tests satisfy basic and intrinsic consistency since they are Bayesian tests that do not

depend on arbitrary normalizing constants, training sample sizes, or other arbitrary effects that do

not disappear with increasing sample sizes. Model selection consistency requires that the posterior

probability of the true model converges to 1 as the sample size increases. The NAP-based z and t

tests proposed here satisfy this criterion. The Hajnal tests do not.

The NAP-based z tests proposed in this chapter satisfy information consistency. That is, they

are able to obtain unbounded evidence against the null hypothesis for arbitrarily extreme observa-

tions based on any given sample size. When the observational variance is known, an arbitrarily

large sample mean (or difference in sample means) can provide arbitrarily high evidence against

the null hypothesis, regardless of the sample size.

NAP-based t tests are not information consistent. We do not regard this as a shortcoming of the

tests, however. In our view, it should not necessarily be possible to obtain unbounded information

in favor of an alternative hypothesis using a finite sample of measurements if the properties of the

measuring device or error structure (e.g., the variance) are not known. This is particularly true

when prior knowledge suggests that the value of the tested parameter under the null and alternative

hypotheses are not too dissimilar.
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As a final comment on this issue, we note that lack of information consistency for NAP-based

t tests cannot be attributed to the improper prior assumed for the observational variance. Even if

a proper inverse gamma distribution is assumed on the observational variance, NAP-based t tests

do not attain information consistency (see Theorem S2.8 of Supplemental Materials). That is,

formal Bayesian tests based on fully specified statistical models with proper priors on all unknown

parameters may not satisfy the information consistency criterion.

Because the NAP-based tests are functions of z and t statistics, they inherit the invariance

properties of those test statistics.

Predictive matching requires that Bayes factors between models based on “minimal” sample

sizes should approximately equal 1. Exact predictive matching requires that they exactly equal 1.

Minimal sample sizes can be loosely interpreted as the smallest sample size that makes maximum

likelihood estimation possible for all parameters in all models. In the case of a one-sample t test,

for example, the minimal sample size necessary to estimate the mean and variance is 2 if improper

priors are specified on both parameters.

Predictive matching and information consistency are antithetical for minimal sample sizes.

Predictive matching requires that the Bayes factor remain close to 1 whenever a minimal sample

has been obtained, while the information consistency requires that the Bayes factor can become

unbounded for extreme data. Given the discussion above, it is therefore not surprising that NAP-

based z tests are not predictive matching and that NAP-based t tests are. In the former case, the

minimal sample size is 1 and the Bayes factor grows exponentially with the magnitude of a single

observation. For one sample t tests and minimal sample size of 2, the NAP-based Bayes factors

range between (1 + 2τ 2)−3/2 and (1 + 4τ 2)/
√

1 + 2τ 2. For the default value τ 2 = 0.045, the

corresponding range is approximately (0.88, 1.13).

Our interpretation of these results is that predictive matching and information consistency

desiderata are not useful as general criteria for defining Bayesian tests. On one hand, a single

large normal observation with known variance can provide very strong evidence against a null hy-

pothesis that a normal mean equals 0. If the minimal sample size is 1, then accepting such evidence

70



violates the predictive matching criterion. On the other, the posterior probability against a null hy-

pothesis of no effect should not necessarily become arbitrarily small based on a finite sample when

there is uncertainty regarding the precision of the values that were measured.

This chapter has concentrated on default NAP-based tests in which targeted standardized effect

sizes fall in the range (0.2,0.8). However, in some testing contexts specific prior information

regarding the magnitude of a standardized effect size may be known. For instance, a researcher

may wish to detect a very small standardized effect size (e.g.,< 0.2). In such cases, we recommend

defining τ 2 = δ2
p/2, where δp denotes the prior estimate of the standardized effect size or difference

in standardized effect sizes.

To illustrate, suppose the magnitude of a standardized effect size is expected to be approxi-

mately δp = 0.05 in a one-sample test of a normal mean with unknown variance. Then a good

choice for τ 2 is .052/2 = .00125. A plot of this NAP density is provided in Fig. 3.11. If a

NAP-based test is conducted with a normal moment prior with this value of τ 2, then the average

weight of evidence from a fixed-design test with n = 4000 observations is slightly greater than

4.0. In contrast, the average weight of evidence for the default NAP-based test with τ 2 = 0.045

is approximately -0.017, and for the default JZS-based test is 1.46 (see Fig. 4d). Thus, by includ-

ing subjective prior information into a test, an investigator can substantially increase the evidence

collected in favor of a very small standardized effect size.

Although this chapter has focused on two-sided tests, one-sided tests can also be conducted

using formulae for Bayes factors provided in the supplemental information. The NAP prior used

for one-sided tests are twice as large as the densities used for two-sided tests for either positive

(or negative) standardized effect sizes, and 0 for negative (or positive) standardized effects. This

implies that the weight of evidence in favor of a true alternative in a one-sized test can be as

much as 0.69 = ln(2) higher than in a two-sided test, and that the average weight of evidence in

favor of true null hypotheses can also be higher, particularly when the sign of the sample mean

of data disagrees with sign of the standardized effect size assumed under the alternative. Figures

summarizing simulation studies for one-sided tests are provided in the supplemental materials.
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Figure 3.11: Normal moment prior for detecting a very small standardized effect. This normal
moment prior density has peaks at ±0.05 and places most of its prior mass on standardized effect
sizes with magnitudes in the interval (0.02, 0.10).

R functions [82] for implementing the NAP and Hajal tests described in this chapter are avail-

able at CRAN and GitHub.
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4. EFFICIENT ALTERNATIVES FOR BAYESIAN HYPOTHESIS TESTS FOR

PROPORTIONS

4.1 Bayesian Approaches for Testing Two Proportions

There exists two primary Bayesian approaches for testing proportion(s): (a) assuming prior dis-

tribution(s) directly on the proportion(s), and (b) take a logistic regression perspective and specify

prior(s) on the logit transformed proportion(s) [83, 84, 85]. To illustrate, we focus on the two-

sample proportion test. For notation purpose, suppose we respectively observe y1 and y2 successes

out of n1 and n2 samples independently drawn from two populations where n1 and n2 are prefixed.

We assume

y1 ∼ Binomial (n1, p1) , and y2 ∼ Binomial (n2, p2) , (4.1)

where p1 and p2 are population proportions of interest that are unknown and we want to test

H0 : p1 = p2 vs. H1 : p1 6= p2. (4.2)

In the Bayesian paradigm, we assume prior distributions on the respective model parameters under

H0 and H1 that reflect our prior beliefs on the parameters. To quantify evidence accumulated

from the observed data, we then compute the Bayes factor in favor of the alternative hypothesis to

choose between the two competing hypotheses.

4.1.0.0.1 Independent Beta approach. There are two common choices when specifying priors

on the proportion scale. The simplest way is assuming independent Beta priors on the proportions

under both hypotheses [84, 85, 86]. Henceforth, we refer to this as the “Independent Beta (IB)

approach”. For default purposes [84] and [85] suggest the Uniform prior, a special case of the

Beta distribution. In this approach, the marginal density under the alternative, and hence the Bayes

factor, can be obtained in closed form.
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4.1.0.0.2 Difference approach. Another way of specifying priors on the proportion scale is to

parameterize p1 and p2 as

p1 = ζ +
η

2
, and p2 = ζ − η

2
. (4.3)

Then the hypothesis testing problem in (4.2) is the same as testing

H0 : η = 0 vs. H1 : η 6= 0. (4.4)

In order to specify priors, we note that η and ζ respectively take values in (−1, 1) and (0, 1) and

they are dependent. Particularly, given η, ζ lies between (|η| /2, 1− |η| /2) in order for p1 and

p2 to be valid proportions. One can then hierarchically specify priors on η and ζ | η. A common

choice is to assume η ∼ N
(
0, σ2

η

)
truncated between (−1, 1), and ζ | η ∼ N(0, σ2

ζ ) and truncated

between (|η| /2, 1− |η| /2) [85]. Henceforth, this is referred to as the “Diff-Local approach”. Due

to the involved parameterization the marginal density under the alternative cannot be obtained in

closed form and it needs to be calculated numerically.

4.1.0.0.3 Logit approach. Taking a Logistic regression perspective, this approach transforms

the proportions on the Logit scale as

Logit(p1) = β +
ψ

2
, and Logit(p2) = β − ψ

2
, (4.5)

where Logit(x) = ln(x/(1− x)). This implies

β =
1

2

[
Logit(p1) + Logit(p2)

]
, and ψ = Logit(p1)− Logit(p2). (4.6)

Here β is interpreted as the mean of the log odds ratios, and ψ is the difference of the log odds.

Following this setup, we test

H0 : ψ = 0 vs. H1 : ψ 6= 0 (4.7)
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for testing the equality of proportions as in (4.2). Unlike the IB and the Diff approach, here we

assume priors on the transformed parameters β and ψ. This induces priors on the population

proportions, the actual parameter of interest, due to the formulations

p1 =
(
1 + eβ+ψ/2

)−1
, and p2 =

(
1 + eβ−ψ/2

)−1
. (4.8)

While specifying priors, note that β can also be interpreted as the Logit of the common popula-

tion proportion when the null hypothesis is true. In the literature, a more recommended prior on

proportion is the Beta distribution, particularly its non-informative variants like the Uniform or

the Jeffreys prior [24]. [83] and [87] recommends the choice of N(0, σ2
β) prior on β under both

hypotheses, and N(0, σ2
ψ) prior on ψ independent of β under H1. To make the prior on β coherent

with non-informative recommendations, one can either approximate it by assuming normal priors

with appropriate σβ (≈ 1.5 for Uniform and ≈ 3 for Jeffreys) or assuming the prior density

f(β) =
1

Beta(a, b)

eaβ

(1 + eβ)a+b
, for −∞ < β <∞, (4.9)

on β. It has been observed that the test is robust with respect to the choice of prior on β, but

crucially depends on the prior on ψ. (4.9) induces an exact Beta distribution with shape parameters

a and b on Logit−1(β), the common population proportion under true null hypothesis. Due to the

parameterization (4.8), this specifies a dependent prior on (p1, p2) unlike in the IB approach where

the priors are independent. They suggest a default value of 1 for σβ and σψ. Figures 2, 3 and D1

(in the appendix) in [85] provides visuals of priors on (p1, p2) from all these approaches. Due to

the non-linear Logit transformation, the marginal density under the alternative cannot be obtained

in closed form and it needs to be calculated numerically. Henceforth, this is referred to as the

“Logit-Local approach”.

4.1.0.0.4 Fundamental difference between the two approaches. Specifying prior(s) on the pro-

portion scale and taking a logistic regression perspective are two different approaches that are often

taken for one- and two-sample proportion test. Although the null hypotheses in two approaches
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Figure 4.1: Contours of proportion pairs (p1, p2) satisfying a pre-specified difference η (on the
left) and a pre-specified log-odds ψ (on the right). The solid black like denotes the proportion pairs
consistent with the null hypotheses under respective approaches.

correspond to each other, the proportions that are consistent with the alternative in the two ap-

proaches are fundamentally different. For example, let us consider two-sample proportion tests.

Figure 4.1 shows proportion pairs that satisfies p1− p2 = η and Logit(p1)−Logit(p2) = ψ for dif-

ferent values of η and ψ. Comparing the figures we note that if p1 and p2 are moderate (near 0.5),

the two approaches treat them similarly. When they are both small or large, the two approaches

treat them very differently. For example, let p1 = 0.1 and p2 = 0.05. Their absolute difference

is 0.05 which is small in the absolute sense. The absolute difference of log-odds is 0.74 which is

substantially large. Thus a Logit approach is particularly suitable in detecting true proportions that

are both very small/large and unequal.

4.2 Non-local Alternative Prior Densities for Proportion Tests

NAPs are probability density functions that take the value 0 at parameter values that are consis-

tent with the null hypothesis [25]. [88] have recently described the use of “non-local” alternative

hypotheses in Bayesian hypothesis testing of population mean(s) based on one- and two-samples.

Under the alternative, they propose normal moment priors, a special case of the “non-local” den-
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sity. The resulting class of Bayesian hypothesis tests permits more rapid accumulation of evidence

in favor of both true null hypotheses and alternative hypotheses that are compatible with standard-

ized effect sizes of most interest in psychology over classical testing procedures or their “local”

alternatives. Below, we describe NAPs for one- and two-sample proportion tests.

4.2.1 One-sample Proportion Tests

Suppose we observe y successes out of n samples drawn from a population where n is prefixed.

Mathematically, y ∼ Binomial (n, p) where p the true population proportion of interest and is

unknown. For a prespecified p0, one-sample proportion tests compare H0 : p = p0 against a

two-sided alternative H1 : p 6= p0.

4.2.1.0.1 NAP on proportion. A NAP that can be used to define an alternative hypothesis on

the proportion p for this test is the Beta Moment Prior density of order m, which can be expressed

as

fBM (p | p0, K, π,m) = cBM(p− p0)2mpKπ(1− p)K(1−π), for p ∈ (0, 1). (4.10)

Here m and K are positive integers, and the Beta kernel of this moment prior is parameterized to

have its mode at π taking value in (0, 1). The proportionality constant cBM = 1/P(0, 0) where

P(a, b) =
2m∑
j=0

(−1)j
(

2m

j

)
p0

2m−j B (a+ j +Kπ + 1, b+K(1− π) + 1) , (4.11)

for a ≥ 0 and b ≥ 0 with B(a, b) being the Beta function. Note that, the NAP density is exactly 0

at the null hypothesized value p0. This makes the prior logically consistent under the alternative.

The moment order m in the prior controls how much around the null hypothesized value we want

to penalize under the alternative. We recommend m = 1 as the default which penalizes the least

amount. Sensitivity of the prior to the choice of m is important, but for maintaining clarity hereon

we fixed it at 1. Although π can be chosen based on prior belief, setting it to p0, the hypothesized

value under H0, maximizes the NAP density for all p and K. So we recommend this for default

implementation. Then K remains as the only tuning parameter of the prior and it controls the
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modes of the NAP. As K increases, the modes get closer to p0, and vice versa. This reflects

the amount of difference from the null hypothesized value that we want to detect when H1 is

true. In many sensitive real-life applications a difference of ±0.1 on the proportion scale can

have substantial impact. So for default purposes, we suggest tuning K such that both the modes

of the Beta moment prior are within p0 ± 0.1. Nonetheless, practitioners are recommended to

appropriately tune K based on what they want.

Figure 4.2 provides example plots of the NAP for different null hypothesized values. For each

null hypothesized value p0, K is appropriately chosen to place both modes of the prior within

p0 ± 0.1. For comparison, in the same figures we also plot the marginal density on proportion

in the Logit-NAP, the Uniform and the Jeffreys priors. The Uniform and the Jeffreys are local

default alternative priors that are often used to define the alternative hypothesis for this test. The
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Figure 4.2: Beta moment prior densities and marginal densities on proportion in the Logit-NAP
for one-sample proportion tests. Figures (4.2a)–(4.2c) are examples of NAPs that can be used to
define the alternative hypothesis when the hypothesized values p0 under the null are 0.2, 0.5 and
0.8, respectively. The blue dashed vertical lines denote p0±0.1. The hyperparameters in each prior
are chosen so that both the modes are within p0 ± 0.1. The hyperparameter values are respectively
K = 45, 50, 40 and τ = .55/

√
2, .4/

√
2, .6/

√
2. The Uniform and Jeffreys priors are also plotted

for comparison.

NAPs assign about 0.01% prior probability between p0 ± 0.01 and 80–90% probability between
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absolute differences 0.05 and 0.2. In comparison, the local alternative priors assign about 10× to

20× more prior probability between p0 ± 0.01. For tests conducted in the psychological sciences

and other real-life applications with small to moderate sample sizes, and for which no specific

prior information regarding the magnitude of standardized effect size is available, we recommend

a default value of K such that the NAP modes are within p0 ± 0.1.

From computational standpoint, an advantage of the Beta moment prior density is that it results

in closed form expressions for the Bayes factors in both one- and two-sided tests. We now define

the specific assumptions used to perform the tests and provide explicit expressions for the resulting

Bayes factors.

Bayes factor using the Beta moment prior. Suppose y ∼ Binomial (n, p). The Bayes factor of

the test H1 : p ∼ BM(p0, K, π,m) versus H0 : p = p0 is given by

BF10(y) =
P(y, n− y)

py0(1− p0)n−y P(0, 0)
, (4.12)

where P(a, b) is as in (4.11).

4.2.1.0.2 NAP in the Logit approach. Taking a Logistic regression perspective, we can perform

one-sample proportion tests on the Logit scale. A NAP that can be used to define an alternative

hypothesis is using the normal moment prior [88]. That is, first we define β = Logit(p), β0 =

Logit(p0), and then assume

β ∼ NM
(
β0, τ

2,m
)
. (4.13)

This denotes the normal moment prior density of order m (≥ 1) given by

fNM
(
x |µ, τ 2,m

)
= cNM

(
(x− µ)2

τ 2

)m

φ
(
x |µ, τ 2

)
, for −∞ < x <∞, (4.14)

where φ (x |µ, τ 2) denotes the normal density function evaluated at xwith mean µ and variance τ 2,

and the proportionality constant cNM =
∏m−1

i=0 (1 + 2i). Henceforth, we refer to this specification

as the Logit-NAP.
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The density (4.14) has two parameters. The moment order m has the same interpretation as in

(4.10) and we set it to 1 for default implementation. τ controls the modes of the density. Choosing

this parameter is crucial as it reflects the log-odds value, and in turn the proportion value, that

we want to detect if the alternative is true. For a positive u, τ 2 = u2/2m places the modes of

NM(µ, τ 2,m) at µ± u. Figure 1 in [88] depicts the density when µ = 0 and u = 0.3 for m = 1.

Given u, the population proportions that the modes correspond to are

p+ =
[
1 + exp

(
− β0 − u

)]−1

, and p− =
[
1 + exp

(
− β0 + u

)]−1

. (4.15)

The proportion p being of primary interest, we propose choosing u such that both the absolute

differences |p+ − p0| and |p− − p0| does not exceed a desired value. Henceforth, we fix the desired

difference to 0.1. This can be tuned according to the need of users and the problem at hand

by choosing a different value than 0.1 or by directly choosing a desired u. Figure 4.2 provides

example plots of the NAP for different null hypothesized values. For each null hypothesized value

p0, K is appropriately chosen to place both modes of the prior within p0 ± 0.1. For comparison,

in the same figures we also plot the marginal density on proportion in the Logit-NAP, the Uniform

and the Jeffreys priors. The Uniform and the Jeffreys are local default alternative priors that are

often used to define the alternative hypothesis for this test. Figure 4.2 provides example plots of

the Logit-NAP for different null hypothesized values. For each null hypothesized value p0, τ is

appropriately chosen to place both modes of the marginal density on proportion within p0 ± 0.1.

For comparison, in the same figures we also plot the Beta moment, Uniform and Jeffreys priors.

4.2.1.0.3 Test-statistic based approach. Bayesian hypothesis tests are driven by the Bayes fac-

tors. Upon specification of prior beliefs in Null Hypothesis Significance Tests (NHSTs), it quan-

tifies from data the odds of marginal evidence in favor of the alternative. This is also the factor

by which prior odds of the hypotheses are updated to obtain the posterior odds. In NHSTs Bayes

factors crucially depend on the prior specified under the alternative. More so, as the number of

parameters increase, it gets more complex and computationally expensive to evaluate the marginal
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densities. In a seminal work [89] proposed to defining Bayes factors by directly modeling dis-

tributions of test statistics. Being a pivotal quantity, its sampling distribution does not involve

any unknown parameters when the null hypothesis is true. Under the alternative, the distribution

becomes a “non-central” version of the null distribution, and introduces a non-centrality param-

eter that must be taken into account when modeling. In standard testing problems involving χ2,

F , t and Z test-statistics, the non-centrality parameter is much lower-dimensional than the actual

parameter space.

We propose a similar approach for one-sample proportion tests. The Z-statistic for one-sample

proportion tests is given by

Z1 =
p̂− p0

σ̂
, where σ̂2 =

p̂(1− p̂)
n

. (4.16)

Here p̂ = y/n is the sample proportion. A frequentist approach identifies that for a large sample

size n, under the true null hypothesis Z1 approximately follows the standard normal distribution.

Under a true alternative hypothesis Z1 approximately followsN(
√
n (p−p0)/

√
p(1− p), 1) where

p is the true and unknown proportion of interest. δ1 = (p − p0)/
√
p(1− p) is interpreted as the

standardized effect size and is the only unknown parameter in the model. We propose a test-statistic

based approach for one-sample proportion tests and model the Z-statistic under the alternative

hypothesis using the normal moment prior density as in (4.14) [88]. That is, for testingH0 : p = p0

against H1 : p 6= p0, we first compute the Z-statistic from the available data and model it under

each hypothesis as

Z1 ∼ N(0, 1), under H0, (4.17)

Z1 ∼ NM(0, τ 2,m), under H1. (4.18)

Henceforth, we refer to this approach as theZ-NAP. As before, we setm to 1 for default implemen-

tation and τ controls the modes of the density. Choosing this parameter is crucial as it reflects the

proportion value that we want to detect under true alternative hypotheses. Precisely, τ 2 = u2/2m
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places the mode of NM(0, τ 2,m) at ±u. For choosing τ , we use the large sample approximation

of the sampling density of Z1 and propose u =
√
n δ∗1 . δ∗1 reflects the standardized effect size we

want to detect when the alternative is true. A value of δ1 corresponds to two population proportions

and they are the roots of the quadratic equation

ap2 − bp+ c = 0, (4.19)

where

a = 1 + δ2
1, b = 2p0 + δ2

1, c = p2
0. (4.20)

Denote by p+(δ1) and p−(δ1) the proportions δ1 corresponds to. Since the proportion p is of

primary interest, we propose choosing δ∗1 such that the absolute differences |p+(δ∗1)− p0| and

|p−(δ∗1)− p0| does not exceed a desired value. Henceforth, we fix this desired difference on the

proportion scale to 0.1 and tune δ∗1 accordingly. Nonetheless, this can be tuned according to the

need of users and the problems at hand.

From a computation standpoint, in the test-statistic based approach we only need to calcu-

late the likelihood ratio between the two models under respective hypotheses. Below we provide

specific assumption and explicit expression of the resulting likelihood ratio.

Likelihood Ratio based on Z-statistic. Suppose y ∼ Binomial (n, p) and define the test-statistic

Z1 as in (4.16). The likelihood ratio of Z1 ∼ NM(0, τ 2,m) under H1 versus Z1 ∼ N(0, 1)

under H0 is given by

LR10(Z1) = |Z1|2m τ−(2m+1) exp
(
rZ2

1/2
)
, (4.21)

where r = 1− 1/τ 2.

4.2.2 Two-sample Proportion Tests

Consider the notations as in (4.1). Two-sample proportion tests compare proportions of interest

from two independent populations and test for their equality. While (4.2) and (4.4) tests for it on
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the scale of proportion, (4.7) tests for the same null hypothesis on the logit scale. Particularly, we

propose the Diff-NAP and the Logit-NAP. In Diff-NAP we specify priors on the proportion scale

while the Logit-NAP specifies prior on the logit scale. Below we describe the use of NAP densities

in these approaches.

4.2.2.0.1 NAP in the Difference approach. The Diff approach uses the parameterization (4.3)

and tests H0 : η = 0 against H1 : η 6= 0 to test for the equality of the two proportions. For testing

H0 : η = η0 versus H1 : η 6= η0, a NAP that can be used to define an alternative hypothesis is as

follows:

η + 1

2
∼ BM

(
η0 + 1

2
, K, π,m

)
, (4.22)

ζ | η ∼ Unif
(
|η|
2
, 1− |η|

2

)
, (4.23)

where Unif(a, b) denotes the Uniform distribution in the interval (a, b). Henceforth, we refer to

this specification as the Diff-NAP. (4.22)–(4.23) specifies a joint prior density on the parameters

(ζ, η) which induces a joint prior on (p1, p2). The Beta moment prior density in (4.22) evaluates

to 0 at η0, the null hypothesized value. This feature translates to the joint prior on (p1, p2) and

the prior density equals to 0 at the diagonal p1 = p2, the proportion pairs consistent with the null

hypothesis. This induces a non-locality around the diagonal on the proportion scale.

As in one-sample tests, we need to choose K, π and m. Note that the interpretations of the

parameters are the same as in Section 4.2.1. We recommend π = (η0 + 1) /2 and m = 1 for

default implementations. Then (4.22) only has the tuning parameter K. It controls the mode of the

prior on η, the proportion difference of interest. As K increases, the modes are placed closer to η0,

and vice versa. Like in Section 4.1 the marginal density under the alternative, and hence the Bayes

factor, is not available in closed form and it needs to be calculated numerically. The choice of K

for default implementation is discussed below.

4.2.2.0.2 NAP in the Logit approach. The Logit approach transforms the proportions on the

Logit scale and tests H0 : ψ = 0 against H1 : ψ 6= 0 for testing the equality of proportions. We
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propose the use of normal moment prior on ψ as the NAP to define the alternative hypothesis for

this test [88]; that is, under the alternative we assume

ψ ∼ NM
(
0, τ 2,m

)
. (4.24)

The same priors on β as in Section 4.1 is assumed under both hypotheses. Henceforth, we refer

to this specification as the Logit-NAP. m is set to 1 for default purposes. τ controls the mode

of the prior on ψ. Larger the value of τ , the closer the modes are to 0, and vice versa. The

modes reflect the difference in log-odds that we want to detect when the null hypothesis is not

true. Like in Section 4.1 the marginal density under the alternative, and hence the Bayes factor, is

not available in closed form and it needs to be calculated numerically. The choice of τ for default

implementation is discussed below.
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Figure 4.3: On the left, Figure 4.3a shows the proportion pairs (p1, p2) satisfying a pre-specified
difference of η = ±0.1 and a pre-specified log-odds of ψ = ±0.4. The solid black like denotes
the proportion pairs consistent with the null hypotheses, which are the same in both Diff-NAP and
Logit-NAP for two-sample proportion tests.
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4.2.2.0.3 Choosing hyperparameters in Diff-NAP and Logit-NAP. There are multiple ways one

can set the hyperparameters K is Diff-NAP and τ is Logit-NAP for default implementations. We

note the fundamental differences between specifying priors on the proportion scale and on the Logit

scale. The proportions are of primary interest and suppose we aim to detect an absolute difference

of η∗ on the proportion scale. To make the two approaches comparable, we tune the target log-

odds ψ∗ under alternative such that the maximum absolute difference between all proportion pairs

satisfying the log-odds ψ∗ is approximately η∗. For default implementations we suggest η∗ = 0.1

which implies ψ∗ ≈ 0.4. This is presented in Figure 4.3a. Then we choose the hyperparameters

K and τ such that the modes of the marginal priors on the log-odds in the two approaches are

at ±0.4. This corresponds to τ = 0.4/
√

2 in the Logit-NAP and K ≈ 280 in the Diff-NAP.

Figure 4.3b shows the marginal priors on the log-odds and Figure 4.4 shows the joint prior on the

proportions (p1, p2) corresponding to the default choices in the two approaches. Nonetheless, η∗

and δ∗ can be varied according to the need of users and the problems at hand.

4.2.2.0.4 Test-statistic based approach. In two-sample proportion tests, there are two parame-

ters in the model, p1 and p2. For testing in the Bayesian way, we accordingly need to specify priors

on them under each hypothesis. This can get somewhat complicated as we have seen from the

Logit and the Diff approach both using local priors and NAP. Like in one-sample tests here we

propose an approach based on the Z-statistic that is often and widely used to conduct large sample

two-sample proportion tests. The test-statistic is given by

Z2 =
p̂1 − p̂2

σ̂P
, or Z2 =

p̂1 − p̂2

σ̂UP
. (4.25)

σ̂UP and σ̂P are respectively unpooled and pooled estimate of the standard error of p̂1 − p̂2. They

are defined as

σ̂2
UP =

p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

, and (4.26)

σ̂2
P = p̂(1− p̂)

(
1

n1

+
1

n2

)
, (4.27)
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Figure 4.4: The default joint NAP prior assigned to (p1, p2) for two-sided two-sample proportion
tests. Figure (a) on the left panel corresponds to the prior in the Logit-NAP, and Figure (b) on
the right panel corresponds to the prior in the Diff-NAP. The brighter the color, the higher is the
prior density there. The hyperparameters are τ = 0.4/

√
2 in the Logit-NAP and K = 280 in the

Diff-NAP. These default values are chosen so that the modes of the marginal prior on the log-odds
are at ±0.4. Following Figure 4.3a this implies a maximum difference of ±0.1 on the proportion
scale.

where p̂ = (n1p̂1 +n2p̂2)/(n1 +n2) is the pooled estimate of the population proportions. For large

sample two-sample proportion tests a frequentist approach assumes that the group sizes n1 and n2

are increasing such that their ratio n1/n2 → c. c is a positive fraction and indicates the balance

of information coming from two groups. Under this assumption, Z2 approximately follows the

standard normal distribution under the true null hypothesis. Alternatively, when the null is not

true, Z2 approximately follows N(
√
n1 δ2, σ

2). δ2 is interpreted as the standardized effect size.

δ2 and σ2 are slightly different depending on whether we use the unpooled or pooled estimate of

standard error when calculating the test-statistic. δ2 = (p1−p2)/
√
p1(1− p1) + c p2(1− p2) if the

unpooled estimate is used. If the pooled estimate is used, it equals to (p1 − p2)/
√
p(1− p)(1 + c)

where p = (c p1 + p2)/(1 + c). With this in the background, we propose a test-statistic based
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approach for two-sample proportion tests and model the Z statistic under the alternative hypothesis

using the normal moment prior density as in (4.14) [88]. To this, we first compute the Z-statistic

from the available data and model it under each hypothesis as

Z2 ∼ N(0, 1), under H0, (4.28)

Z2 ∼ NM(0, τ 2,m), under H1. (4.29)

Henceforth, we refer to this specification as the Z-NAP. As before, we set m to 1 for default

implementation and τ controls the modes of the density. Recall that τ 2 = u2/2m places the mode

of NM(0, τ 2,m) at ±u. For choosing τ , we use the large sample approximation of the sampling

density of Z and propose u =
√
n1 δ

∗
2 . δ∗2 reflects the standardized effect size that we want to detect

when the null is not true. Given δ2, the population proportions p1 and p2 that it corresponds are

given by the equation

(p1 − p2)2

p1(1− p1) + c p2(1− p2)
= δ2, if the unpooled estimate is used, or (4.30)

(p1 − p2)2

p(1− p)(1 + c)
= δ2, if the pooled estimate is used. (4.31)

Let (p1(δ2), p2(δ2)) denotes all the proportion pairs that δ2 corresponds to. Since the proportions

p1 and p2 are of primary interest, we propose choosing δ∗2 such that the maximum of the absolute

difference |p1(δ∗2)− p2(δ∗2)| among all the choices of proportion pairs does not exceed a desired

value. Henceforth, we fix this maximum allowed difference on the proportion scale to 0.1 and tune

δ∗2 accordingly. Nonetheless, this can be varied according to the need of users and the problems at

hand.

From a computation standpoint, in the test-statistic based approach we only need to calculate

the likelihood ratio between the two models under respective hypotheses. This provides a sig-

nificant computational advantage compared to the Diff-NAP and Logit-NAP where the marginals

under the alternative are not available in closed forms and need to be calculated numerically. Below
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we provide specific assumption and explicit expression of the resulting likelihood ratio.

Likelihood Ratio based on Z-statistic. Suppose y1 and y2 are independent samples from Binomial (n1, p1)

and Binomial (n2, p2), respectively. Define the test-statistic Z2 as in (4.25). The likelihood

ratio of Z2 ∼ NM(0, τ 2,m) under H1 versus Z2 ∼ N(0, 1) under H0 is the same as in

(4.21) for one-sample tests and is given by

LR10(Z2) = |Z2|2m τ−(2m+1) exp
(
rZ2

2/2
)
, (4.32)

where r = 1− 1/τ 2.

4.3 Weight of Evidence comparison in Fixed design tests

Classical tests of a population proportion parameter are either based on exact tests or large

sample approximate tests based on Z-statistics. These tests are designed to control Type I (α) and

Type II (β) error probabilities at prespecified levels. A key disadvantage of these tests is that they

do not quantify evidence in favor of true null hypotheses. Instead, they may simply “fail to reject”

the null hypothesis. Psychology and other social science researchers often have a need to quantify

evidence in favor of true null hypotheses [for example, 1]. Bayes factors provide such a measure.

To summarize the performance of various Bayesian tests, we adopt the measurement scale for

evidence based on the natural logarithm of the Bayes factors, ln(BF10). This quantity, called the

“weight of evidence”, has the advantage of being on the same scale as the classical likelihood ratio

statistic [19, 24].1 Because − ln(x) = ln(1/x), the weight of evidence in favor of the alternative

hypothesis is equal to the negative of evidence in favor of the null hypothesis (and vice versa).

Descriptors for the weight of evidence were proposed by [19] and [24]. Under the former, weight

of evidence between 0 and 1 in magnitude is considered “not worth more than a bare mention”;

weight of evidence between 1 and 3 is considered “positive”; weight of evidence between 3 and

5 is “strong”, and above 5 is labeled as “very strong”. At the border between positive and strong

1[19] propose 2 ln(BF10(x)) as a default measure, but by omitting the factor of 2 their descriptors are more com-
patible with the measure proposed by [24].
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(3), the corresponding Bayes factor is about 20, and at the border between strong and very strong,

the Bayes factor is about 150. Strong and very strong weights of evidence in favor of the null

hypothesis are −3 and −5, or Bayes factors of approximately 1/20 and 1/150.

Bayes factors must be multiplied by the prior odds that the null hypothesis is true to determine

the posterior odds. If the prior odds are 1 (that is, P(H0) = P(H1) = 0.5), then weight of

evidence equal to 3 implies a Bayes factor and posterior odds of about 20, and posterior probability

of the alternative hypothesis equal to 0.95. Similarly, weight of evidence of -5 implies a Bayes

factor and posterior odds of about 1/150, and posterior probability of the null hypothesis equal to

1 − 0.0066 = 0.9934. This probability is very close to 1.0, but it is predicated on the assumption

that the prior odds are 1.0.

Recent evidence from replication of experiments in psychology and social sciences suggest

that the prior probability of a null hypothesis examined in these fields is likely between 0.80–0.95

[8, 9, 23]. If P(H0) = 0.9, then weight of evidence equal to 3 implies that the posterior probability

of the alternative hypothesis is only 0.69, while weight of evidence equal to 5 implies that the

posterior probability of the alternative hypothesis is 0.94. With this background in place, for two-

sided, one- and two-sample proportion tests we now compare the average weight of evidences from

different approaches described in Section 4.2.1 and 4.2.2 respectively hold for one- and two-sample

proportion tests.

4.3.1 One-sample Proportion Tests

We assume the conditions mentioned in Section 4.2.1 hold. Figure 4.5 displays the average

weight of evidence obtained under different approaches when the null hypothesis H0 : p = 0.2

is true. These curves were based on simulating one-million random samples at each sample size.

The alternative hypotheses considered in this plot include the following:

1. Beta moment prior with K = 45,

2. Logit-NAP with τ 2 = (0.552)/2 (modes at ±0.55),

3. Under alternativeZ1 is modeled asNM(0, τ 2, 1) with τ 2 = (0.12)2 n/2 (modes at±0.12
√
n),
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Figure 4.5: Average weight of evidence in two-sided one-sample proportion tests of H0 : p = 0.2
against alternative hypotheses when the null hypothesis is true. The horizontal axis is displayed
on the logarithmic scale because of the large differences in samples sizes required by the different
methods to obtain, on average, strong or very strong weight of evidence against each alternative
hypothesis.

4. The Uniform prior on (0, 1)

5. The Jeffreys prior, that is, Beta distribution with both shape parameters 0.5.

4.3.1.0.1 True Null Hypothesis. Figure 4.5 illustrates a critical deficiency of the local priors:

The use of such priors to define the alternative hypothesis makes it difficult to obtain “very strong”
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weight of evidence in favor of a true null hypothesis. The Uniform prior requires about 2.4 million

subjects, on average, to obtain very strong weight of evidence in favor of a true null hypothesis,

and the Jeffreys prior requires about 1.5 million subjects. In contrast, the NAP approaches, namely

the Beta moment prior, Logit-NAP and Z-NAP, require about 2500 subjects, on average, for the

same purpose.

Obtaining even strong weight of evidence in favor of a true null hypothesis is difficult when

standard Uniform and Jeffreys priors are used to define the alternative hypothesis. On average,

50,000 subjects are required to obtain strong weight of evidence when the Uniform prior is used,

and on average 30,000 subjects are needed when the Jeffreys prior is used to define the alternative

hypothesis. In contrast, the Beta moment prior and the Logit-NAP require about 600 subjects, and

700 subjects if the prior mode is set to 0.5.

4.3.1.0.2 True Alternative Hypothesis. Here we discuss the cost that NAP approaches pay to

detect true null hypotheses. Figure 4.6 shows the average weights of evidence obtained under

these prior specifications for a range of sample sizes in fixed-design tests as a function of the true

proportions. For a sample size of 200, the Uniform and Jefferys prior achieve strong or very strong

weight of evidence in favor of the alternative hypothesis than the NAP approaches do when the

p / 0.14 (/ stands for approximately less than or equal to. ' is similarly interpreted.). When

p ' 0.27, all the approaches except Z-NAP produce strong to very strong evidence. As sample

size increases, the Z-NAP produces strong and very strong weight of evidence than the other

approaches when p / 0.14. For sample sizes 400 or larger, all the methods achieve similar weight

of evidence when p ' 0.27.

Local priors, namely the Uniform and Jeffreys priors, provide more support for proportions

very close to 0.2. However, strong evidence in favor of these proportions can only be obtained

with very large sample sizes. When the sample size is 500 and the proportion is within ±0.02, all

the Bayes factors in Figure 4.7 yield average weights of evidence that are negative, thus favoring

the null hypothesis of no effect. Indeed, for proportions within the range of ±0.02 around the

null, use of the NAP approaches provide, on average, “positive” support for the null hypothesis.
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Figure 4.6: Average weight of evidence in two-sided one-sample proportion tests of H0 : p = 0.2
for true alternative hypotheses. Curves depicted in the plots denote the average weight of evidence
versus true population proportion when different local and NAP approaches are used.

This misleading performance of the NAP priors for true proportions within the range of ±0.01

around the null persists, and even degrades, for sample sizes up to 4,000. When the sample size is

2,000, the NAP approaches and the JZS priors begin to show positive support (i.e., ln(BF10) > 1)

for proportions outside the range of ±0.02. None of the NAP models depicted here provide, on

average, strong support for the alternative hypothesis for any standardized effect size less than 0.1.

On the other hand, the local priors do attain for proportions outside the range of ±0.025. If the

sample size is increased to 4,000, then the Uniform and Jeffreys priors provide, on average, strong

evidence for proportions outside the range of ±0.02, and positive evidence for proportions outside
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Figure 4.7: Weight of evidence for true alternative hypotheses with proportions ±0.03 around the
null H0 : p = 0.2. Curves depicted in the plots denote the average weight of evidence versus true
proportions for different approaches.

the range of ±0.015. For NAP approaches, the proportions need to be outside the range of ±0.02

to attain positive evidence and outside ±0.025 to attain strong evidence.

The conclusions from Figures 4.5–4.7 might be simply stated as follows. NAP approaches

can provide strong or very strong weight of evidence in favor of true null hypotheses for small or

moderate sample sizes (i.e., n ≈ 700). In many practical settings (i.e., n < 2000), the local priors

cannot. For proportions outside a range of about ±0.05 around the null, all the approaches on

average achieve strong evidence for sample sizes greater than 600. Alternative hypotheses defined
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with local priors provide higher average weight of evidence for proportions very close to the null

(i.e., within a range of about ±0.02), but require large sample sizes (' 2000 to provide positive

support and ' 4000 to provide strong support).

4.3.2 Two-sample Proportion Tests

We assume the conditions mentioned in Section 4.2.2 hold. Figure 4.8 displays the average

weight of evidence obtained under different approaches when the null hypothesis H0 : p1 = p2

is true. We investigate the impact of common population proportion and vary it from small to

moderate as 0.1, 0.2, 0.3, and 0.5. These curves were based on simulating 10, 000 random samples

at each sample size. The different alternative hypotheses and approaches considered in this plot

include the following:

1. IB approach with Beta(1, 1) prior,

2. Logit-Local with Unif(0, 1) prior on β and N(0, 1) prior on ψ,

3. Diff-Local with N(0.5, 0.52) prior on ζ and N(0, 0.22) prior on η,

4. Diff-NAP with K = 280,

5. Logit-NAP with Unif(0, 1) prior on β and NM(0, τ 2, 1) prior on ψ with τ 2 = (0.4)2/2

(modes of the NAP at ±0.4),

6. Under the alternative, the un-pooled Z2 is modeled as NM(0, τ 2, 1) with τ 2 = (0.15)2 n/2

(modes of the NAP at ±0.15
√
n).

4.3.2.0.1 True Null Hypothesis. As in one-sample tests, Figure 4.8 illustrates a similar draw-

back of the local priors: The use of such priors to define the alternative hypothesis makes it difficult

to obtain “very strong” weight of evidence in favor of a true null hypothesis. When the common

proportion is 0.1, the IB and Diff-Local requires about 69,000 subjects, on average, to obtain very

strong weight of evidence in favor of a true null hypothesis. The Logit-Local requires about 1.4

million subjects for the same. In contrast, the NAP approaches Diff-NAP, Logit-NAP and Z-NAP
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Figure 4.8: Average weight of evidence in two-sided two-sample proportion tests of H0 : p1 = p2

against alternative hypotheses when the null hypothesis is true. Figures (a)–(d) respectively as-
sumes common proportions 0.1, 0.2, 0.3, and 0.5. The horizontal axis is displayed on the loga-
rithmic scale because of the large differences in samples sizes required by the different methods to
obtain, on average, strong or very strong weight of evidence against each alternative hypothesis.

respectively require about 2800, 16000, and 1700 subjects, on average, for the same purpose. This

shows a very clear performance gap between the test-statistic based approach and the other ap-

proaches. In fact, as the common proportion increases, the gap only gets wider. The Logit-Local

accumulates evidence a little faster while the other approaches requires more samples to attain very

strong evidence in favor of the null. Nonetheless, the NAP approaches still provides a significantly

smaller number of samples as compared to the local priors for this. When the common proportion
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is 0.3, the IB and Diff-Local each requires about 160,000 subjects to attain very strong evidence.

The Logit-Local requires about 60,000 subjects for the same. Compared to this, the Diff-NAP and

Logit-NAP each requires 7000 samples while the Z-NAP requiring only 1700 subjects.

In terms of achieving very strong evidence in favor of the null, there seems to be a consensus

within the NAP approaches and the local priors, in the sense, the NAP approaches require smaller

number of samples to achieve very strong evidence, on average, than the local priors. But this does

not hold if we only want to obtain strong evidence. In this case, the crucial difference between

specifying priors on the proportion scale and the Logit scale becomes prominent. This is more

prominent when the common population is very small. For example, when the common popula-

tion proportion is 0.1, Figure 4.8(a) shows that the IB approach requires lesser number of samples

compared to the Logit-NAP to achieve strong evidence. If we compare within each type of speci-

fying priors, Logit-NAP requires lesser samples than the Logit-Local and Diff-NAP needs smaller

samples than the IB. For example, when the common population proportion is 0.1, the IB and the

Diff-Local requires about 1300 samples to attain strong evidence as compared to 700 samples by

the Diff-NAP. On the other hand, the Logit-Local requires about 25,000 samples as compared to

3700 samples by the Logit-NAP. Compared to all these approaches, Z-NAP does better than all

and requires only about 500 sample for the same. As the common proportion increases (Please

see Figure 4.8(b)–(d)), the difference between the two types of prior specifications reduces. For

example, when the common population proportion is 0.3, the IB and the Diff-Local requires about

3000 samples to attain strong evidence as compared to 1700 samples by the Diff-NAP. On the

other hand, the Logit-Local requires about 10,600 samples as compared to 1700 samples by the

Logit-NAP. Compared to all these approaches, Z-NAP does better than all and requires only about

500 sample for the same.

4.3.2.0.2 True Alternative Hypothesis. Here we discuss the cost that NAP approaches pay to

detect true null hypotheses. Figures 4.9–4.11 respectively correspond to p1 = 0.1, 0.2, and 0.5.

Each figure shows the average weight of evidence obtained by the approaches for a range of sample

sizes in fixed-design tests as a function of p2 varied within (p1, p1 + 0.1). For a prefixed p1 = 0.1
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Figure 4.9: Average weight of evidence in two-sided two-sample proportion tests of H0 : p1 = p2

for true alternative hypotheses. For a prefixed p1 = 0.1 curves depicted in the plots denote the
average weight of evidence versus true population proportion p2 varied within (p1, p1 + 0.1) when
different approaches are used.

and 200 samples, Figures 4.9 shows that the IB and Diff-Local consistently produce lesser weight

of evidence than others. On the other hand, the Logit-Local and Logit-NAP achieves positive

evidence for p2 larger than about 0.16 but the evidence they accumulate for p2 lesser than 0.16 is

not worth a mention. Compared to this, even with only 200 samples the Diff-NAP and Z-NAP

is able to achieve a positive evidence both for proportions within (0.1, 0.12) and larger than about

0.16. As sample size increases to 800, all the approaches except the IB and the Diff-Local achieves

very strong weight of evidence for p2 larger than about 0.16 and strong weight of evidence larger
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Figure 4.10: Average weight of evidence in two-sided two-sample proportion tests of H0 : p1 = p2

for true alternative hypotheses. For a prefixed p1 = 0.2 curves depicted in the plots denote the
average weight of evidence versus true population proportion p2 varied within (p1, p1 + 0.1) when
different approaches are used.

than about 0.15. On the other end near 0.1, the null, the Diff-NAP and the Z-NAP accumulates

evidence faster with increase in sample size and achieves strong evidence in favor of the null. The

proportion values being very small, this again highlights the difference in evidence accumulation

between specifying priors on the logit scale and the proportion scale, and modeling of the test-

statistic.

As the prefixed p1 increases to 0.5, an agreement within the NAP and the local priors shows

up. For a sample size of 200, only IB and Diff-Local achieves positive evidence near the null
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Figure 4.11: Average weight of evidence in two-sided two-sample proportion tests of H0 : p1 = p2

for true alternative hypotheses. For a prefixed p1 = 0.5 curves depicted in the plots denote the
average weight of evidence versus true population proportion p2 varied within (p1, p1 + 0.1) when
different approaches are used.

while Logit-Local barely achieves so, and Logit-NAP and Diff-NAP achieve evidence that are not

worth mention. For p2 near 0.6, all the NAP approaches achieves positive evidence while the local

priors fall short. As the sample size increases to 800 all the methods except the Z-NAP achieves

positive evidence. Compared to others, the Z-NAP performs more consistently. For sample size

200 it achieves the highest evidence in favor of the null and, as other NAP approaches, achieves

positive evidence for p2 larger than 0.59. When sample size increases to 800, the Z-NAP is the

only approach that achieves strong evidence in favor of the null and also achieves higher evidence
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over the local priors and is as good as the other NAPs.

The conclusions from Figures 4.8–4.11 can be summarized as follows. Whether under true

null or true alternative hypothesis, performance of Logit based approaches and priors specified on

proportion scale is sensitive to the actual value of proportions. This performance difference less

prominent if sufficient sample size is provided and a decision is reached after attaining very strong

evidence. In such cases, the NAP approaches can provide strong or very strong weight of evidence

in favor of true null and alternative hypotheses. In many practical settings, the local priors cannot.

The difference between the approaches becomes more vivid when both proportions are small or

large and decision is reached after strong evidence is attained. Remarkably, the Z-NAP is almost

agnostic to this issue. Since it is based on the test-statistic, we only need to specify a prior on the

single non-centrality parameter under the alternative. This makes the method simple to specifying

priors. If a prior is correctly specified, this also makes it less sensitive to the chosen prior.

4.4 An Application to the New England Journal of Medicine studies

To illustrate the use of NAP-based Bayes factors on real data, we applied them to 39 tests

results from two-sided two-sample proportion tests from articles published in the New England

Journal of Medicine in 2015 [90]. Out of a total of 207 articles published in the journal, there

are results from 39 statistical tests that compared two population proportions and resulted in null

results. To demonstrate the benefits of using NAP based approaches, we consider the same 39

tests and compare weight of evidences attained by the methods described in Section 4.3.2. Data

for this example are available from GitHub.

In a recent reanalysis of this data, for each study [85] performed two-sided two-sample propor-

tion tests to test the null hypothesis that the two population proportions are equal. Following their

lead, in each study we assume that the number of “successes” y1 from Population 1 and y2 from

Population 2 are independently distributed as Binomial(n1, p1) and Binomial(n2, p2), respectively.

Here p1 and p2 are population proportions of interest and are unknown. n1 and n2 are observed

sample size from Population 1 and 2, respectively, and are prefixed. The tested hypotheses can
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Figure 4.12: Weight of evidence achieved by all approaches in favor ofH1 in (4.33) in fixed-design
tests. The horizontal axis represents difference in proportions estimated from the sample. The left
panel shows weight of evidence using the local priors and the right panel shows the same obtained
using the NAP based approaches.

then be expressed in frequentist terms as

H0 : p1 − p2 = 0 vs. H1 : p1 − p2 6= 0. (4.33)

For 39 studies we computed the P -values for the Fisher’s exact test and the Pearson’s Chi-squared

test statistic. The lowest P -value is 0.11, which does not support the rejection of the null hypoth-

esis of equality of proportions at 0.005 or 0.05 level of significance. Neither does it provide an

interpretable summary of evidence in favor of the null. Following [85], we take a Bayesian per-

spective and compute Bayes factors from these data by using default Diff-NAP, Logit-NAP and

Z-NAP. Figures 4.12–4.13 display the weight of evidence accumulated by each approach. We sep-

arately analyze impact of specifying priors on proportion or on the Logit scale. The figures have the
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Figure 4.13: Weight of evidence achieved by all approaches in favor ofH1 in (4.33) in fixed-design
tests. The horizontal axis represents difference in log-odds estimated from the sample. The left
panel shows weight of evidence using the local priors and the right panel shows the same obtained
using the NAP based approaches.

weight of evidence on the vertical axis with difference in proportions estimated from the samples

on the horizontal axis in Figure 4.12 and with difference in log-odds estimated from the samples on

the horizontal axis in Figure 4.13. The figures show that for 31 studies the Logit-Local attained a

positive evidence in favor of the null and for other 8 studies the evidence accumulated is not worth

a mention. Compared to the Logit-Local, the IB and Diff-Local consistently achieved a higher

evidence in favor of the null for all studies. They attained strong evidence for 11 studies, positive

evidence for 25 studies, and evidence that are not worth a mention for 3 studies. Figure 4.12(b)

shows that when the estimated proportion difference in close to 0, the NAP based approaches at-

tained higher evidence in favor of the null as compared to their respective local approaches. It

shows that the Diff-NAP and Z-NAP achieved very strong evidence for 9 and 14 studies, strong

evidence for 6 and 9 studies, positive evidence for 16 and 10 studies, evidence not worth a mention
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for 8 and 6 studies. Compared to this, the Logit-NAP could not attain very strong evidence for

any study. It achieved strong evidence for 6 studies, positive evidence for 20 studies, evidence not

worth a mention for 13 studies. Figures 4.12–4.13 also highlights the difference between specify-

ing priors on the proportion and on the Logit scale. Compared to all these approaches, the Z-NAP

has a more consistent pattern of evidence accumulation irrespective of whether we plot it as a

function of estimated difference in proportions or log-odds. In both cases, at the null H0 : η = 0

or H0 : ψ = 0 the Z-NAP attains the highest amount of evidence in favor of the null compared

to the other approaches. As we move away from the null on both sides, the evidence in favor

of the null gets weaker. We find that for the studies with observed proportion difference outside

about (−0.03, 0.03), the achieved evidence is not worth a mention. This suggests a possible pres-

ence of tiny proportion differences and the sample sizes observed are not large enough to detect

them. Nonetheless, the Z-NAP provides twice or more support in favor of the null hypothesis

as compared to the IB and Diff-Local for 21 studies and as compared to the Logit-Local for 33

studies.

4.5 Discussion

This chapter has explored the use of non-local alternative prior densities, or NAP’s, to define

alternative models in Bayesian proportion tests based on one- and two-samples. From a subjective

perspective, evidence suggests that NAPs approximate the marginal distribution of non-null effect

sizes observed in the psychology and social science literature [64, 65, 66, 67, 68, 69, 70]. Viewed

more objectively, the operating characteristics of Bayesian tests based on NAP’s provide an op-

portunity for researchers to more rapidly accumulate evidence in favor of true null hypotheses and

alternative hypotheses in which standardized effect sizes are moderate in magnitude.

For fixed design experiments, tests defined based on Z statistic using a normal moment prior

model allow strong or very strong weight of evidence to be collected in favor of true null hypothe-

ses after only an average of 500 subjects (strong weight of evidence) or 1,700 subjects (very strong

weight of evidence). In contrast, tests designed using default local priors require on average at

least 3× or 35× more subjects to obtain strong or very strong weight of evidence in favor of a

103



true null hypothesis. NAP alternative specifications, particularly Z-NAP also provide similar or

stronger support, on average, for true proportion difference of 0.05 or larger. When true difference

is smaller than that, the use of NAP often provide misleading evidence in favor of false null hy-

potheses. In these cases, tests based on local priors can provide positive evidence in favor of the

alternative hypothesis, but achieving strong weight of evidence often requires more observations.

Researchers interested in detecting smaller standardized effect sizes should plan on very large sam-

ples and should consider tailoring both the sample size and the prior or the NAP model in Z-NAP

(for example, placing the modes of the NAP) used define the alternative hypothesis in their studies

accordingly.
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5. HURDLE NETWORK MODEL FOR ZERO-INFLATED DIRECTED NETWORK USING

LATENT DYNAMIC SHRINKAGE PROCESS

5.1 Introduction

Statistical modeling of networks has been of active interest for many years. Recent techno-

logical advancements in diverse areas of studies have made it easier than ever to collect data on

many individuals over time. As a result, the static and dynamic modeling of networks has grabbed

some renewed attention. To name a few, some real life examples include functional connectivity

network among brain regions, interactions between people in a social network, email communi-

cation networks, citation network among research articles or authors, network of co-purchased

products, and bilateral trade flows among countries. The modeling approaches for network data

can be broadly classified into two categories: models that do not use latent variables, and those

that do. The network models that fall into the first category are, for example, Exponential random

graph models (ERGMs), the quadratic assignment procedure (QAP), and stochastic actor oriented

models (SAOMs). The latent variables in the second type of models introduce various forms of

dependence between the individuals and the edges among them. Two particular models belonging

to this class, namely the stochastic block models (SBMs) and the latent space models (LSMs),

have seen significant developments in recent time. The SBMs assume that the individuals in the

network belong to blocks or groups and the individuals can interact both within and between the

groups. In this case, both the groups and the number of groups are unknown and a key objective

is to estimate both of them together with edge probabilities and their memberships to each group.

On the other hand, the LSMs assumes that the individuals in a network lie in a K-dimensional

Euclidean space and the presence of an edge between any two individuals depends on their posi-

tions. This geometric approach of modeling provides a visual representation and interpretation of

individuals in network or relational data.

There exists a host of literature on the LSMs that have been applied to the data arising from
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different real-life scenarios [28, 91, 92, 93, 94, 95, 96]. To our interest, [93] proposes a class of

models to analyze social network data following a conditional independence approach. Given the

latent positions of individuals in an Euclidean space, the model assumes that the probability of

a presence of a tie or an observed value between two individuals is inversely proportional to the

distance between their positions. This model has two key attractions. First, marginalizing over the

latent positions induces low-rank network structure which provides a convenient way of inducing

generalized dependence among the individuals. Second, the latent positions are treated as model

parameters and they are estimated from the data. These estimated positions can provide crucial

insight on the underlying network structure influenced by the individuals.

Although these methods have been important in setting the premise of network data modeling,

they can be improved upon in several aspects. In this research, we motivate ourselves from the

bilateral trade flows observed among 29 countries from 1994 to 2013 specific to the apparel indus-

try. The presence or absence of trades and the trade volumes in the presence of trades are observed

between each pair of 29 countries. So we assume that there is an underlying network structure

in the data driven by the countries. We refer to the first network as the binary network and the

second as the continuous network. Beside the presence of a network structure, the data have some

features which are of particular interest. These are (1) dynamic evolution of the network structure

influencing both binary and continuous networks, (2) an abundance of unobserved trades among

many country pairs, (3) available covariates specific to countries and pairs of countries. Several

methods relying on the Gaussian random walk on the latent positions have been proposed to ac-

count for the dynamic evolution [26, 27]. But this often restricts the dynamic dependence to a

Markov structure. Individual strategies exist in the literature that can separately model a binary or

continuous network. In the context of bilateral trade flows, [28] proposed independently modeling

binary and continuous networks sequential at each time point. This approach essentially assumes

that there is one stochastic process that governs the incidence of trade and another that governs the

volume of trade. But this approach can be inefficient when the proportion of presence and absence

of trades become unbalanced. Also, it is counter-intuitive to assume that two independent under-
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lying processes are responsible for the two networks where the same set of countries are involved

in both of them.

In this research, we propose the Hurdle Network Model for zero-inflated network data with two

key modifications. First, on the latent variables we assume a dynamic shrinkage process prior as

proposed by [29]. This lets us jointly model their dynamic evolution using continuous scale mix-

tures of Gaussian distributions in a global-local framework. In latent space, this performs desirable

shrinkage as global-local priors, while providing local adaptivity when necessary. This allows for

an adaptive way of modeling trend in a time series data. Second, we assume there is a single

stochastic process which governs both the binary and the continuous networks. More precisely,

we assume the probability that a trade is present in a binary network is a strictly increasing func-

tion of the mean process in a continuous network. This lets us jointly model the two networks.

Performance summaries from simulation study and the application on the bilateral trade data show

significant improvement of the joint modeling strategy over the independent modeling and other

competitive strategies.

The rest of the chapter is organized as follows. In Section 5.2, we propose the model and spec-

ify priors on model parameters. The strategy leverages on the latent dynamic shrinkage process

prior and is aimed at learning dynamic structure present on the latent space. We discuss motiva-

tions behind the choices and specify pre-specified choices of hyperparameters. Section 5.3 and

Section 5.4 respectively evaluate the performance of Hurdle-Net through simulation studies and

an application to the bilateral trade flows data from the apparel industry. Finally, we conclude in

Section 5.5 and discuss the contribution of this research.

5.2 Methodology

In this section we propose the Hurdle Network Model (Hurdle-Net) for zero-inflated network

data that are observed over time. Although the proposed model is motivated from bilateral trade

flows data, the model is applicable to network data arising from sources where binary and continu-

ous measurements are observed over time between each pair in a same set of individuals. To this, in

Section 5.2.1 we introduce notations to propose the model for general purposes. In Section 5.2.2,
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we present the Hurdle Net using node-specific latent variables. The model allows us to jointly

model binary and continuous network data, and the latent variable induces a low-rank dependence

among the nodes at any given time. For inference on the model parameters we take a Bayesian

approach. To this, in Section 5.2.3 we discuss the choice of a dynamic horseshoe process as the

prior on the latent variables. We conclude the section in Section 5.2.4 by discussing the choices of

prior for other parameters and the posterior sampling.

5.2.1 Notations

Suppose there is a fixed set of n nodes for which we observe the network data over T time

points. Without loss of generality let us fix a time t = 1, . . . , T . Let Y t = ((Yijt))n×n denotes

the continuous directed network data observed among the nodes at time t. Thus Y t is a n × n

matrix where Yijt ∈ R, referred as the continuous edge value, denotes the observed value of a

continuous variable of interest from node i to j at time t. Because Y t is a directed network, Yijts

are asymmetric in i and j. Further, we also have a set of covariates that might be predictive of

the network response Y t. Without loss of generality, let us fix i = 1, . . . , n and j 6= i. At time

t, let xit ∈ Rp1 denotes a p1-dimensional node-specific covariates for the node i, and xi•j,t ∈ Rp2

denotes a p2-dimensional pair-specific covariate for the pair of nodes i and j. The pair-specific

covariates are symmetric in i and j in our data; that is, xi•j,t = xj•i,t. Combining the intercept

and the two types of covariate information, we denote xijt = (1,xit,xjt,xi•j,t)
T denotes the

(2p1 + p2 + 1) dimensional covariate information corresponding to the data Yijt at time t. Let ‖x‖

denote the `2 norm of a vector x.

5.2.2 Hurdle Network Model for zero-inflated directed networks

Given a set of n nodes, suppose we observe the continuous network data Y t among them at

times t = 1, . . . , T where a significant proportion of continuous edge values exactly equal to 0.

Such is the case in the bilateral trade flows data from the apparel industry where 30% of the Yijt

values are 0. To take this into account in the model, we introduce a binary network ∆t similar to

Y t. Here ∆t is a n× n adjacency matrix where δijt is a binary variable with 1 and 0 respectively
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indicating the presence and absence of a directed edge from node i to j at time t. From here on,

we consider T pair of networks (∆t,Y t) as the observed data.

Hurdle Net is based on two key assumptions. First, following [93] at each time point we take

a conditional independence approach for modeling dependence among the nodes in the networks.

To this, define Zt = (z1t, . . . ,znt)
T where zit ∈ RK denotes the latent position of node i at time t

in the K-dimensional Euclidean space. Given Zt, Hurdle-Net assumes the following:

Conditional independence in the binary network. The presence or absence of a tie from node i

to j is independent of all other ties in the network. For i 6= i
′ or j 6= j

′ this means, δijt is

conditionally independent of δi′j′ t given zit and zjt.

Conditional probability of a tie in the binary network. The conditional probability that a tie is

present from node i to j is proportional to their similarity in the latent space. The greater

the similarity between zit and zjt the larger is the probability that a tie is present, and vice

versa.

Conditional independence in the continuous network. The continuous value observed from node

i to j is independent of all other values in the network. For i 6= i
′ or j 6= j

′ this means, Yijt

is conditionally independent of Yi′j′ t given zit and zjt.

Conditional mean in the continuous network. The expected continuous edge value from node i

to j is proportional to their similarity in the latent space. The greater the similarity between

zit and zjt the larger is the expected value, and vice versa.

Second, we assume that both δijt and Yijt are governed by the same underlying mechanism and pro-

pose a joint model for the two networks. Combining these assumptions, we consider the following

parametric model: for all 1 ≤ i 6= j ≤ n and t = 1, . . . , T ,

Yijt | δijt = 1,xijt, Lijt,β, σ
ind∼ N

(
xT
ijt β + Lijt, σ

2
)
, (5.1)

δijt |xijt, Lijt,β
ind∼ Bernoulli

(
Φ
(
f
(
xT
ijt β + Lijt

)))
, (5.2)
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where Φ is the standard normal cdf. We refer to (5.1) as the continuous model and it models the

continuous edge value given the presence of a tie, while (5.2) is referred to as the probit model

and it models the presence or absence of a tie. Thus (5.1) and (5.2) jointly model the binary and

continuous networks, and we collectively refer to them as the Hurdle Network Model (Hurdle-

Net). As for the other components of the model, xijt denotes the vector of observed covariates

corresponding to each tie, β is the static regression coefficient (including the intercept), σ2 is the

error variance, Lijt is the latent term, and f : R 7→ R is a strictly increasing function. The choices

for Lijt and f and their importance are discussed below.

Several models have been proposed in the literature for modeling dynamic networks (interested

readers please refer to [97]). Briefly, these models can be broadly classified into two types: latent

space models (LSM) and stochastic block models (SBM). LSM assumes that the probability of a

tie, or the expected continuous edge value is proportional to their relative positions in the latent

space. On the other hand, SBM assumes that the nodes can be partitioned into some latent classes

or blocks. Here we take the first approach. In particular, we consider the projection model as in [93]

and use the latent term ai v
T
itvjt. Here ai > 0 is the activity level of node i (parent node) and vit is a

unit-lengthK-dimensional Euclidean space associated with node i at time t. This parameterization

represents the nodes at each time point as points on the K-dimensional unit sphere. In a binary

network, at each time point it encourages the presence of a tie from node i to j if the angle between

vit and vjt are small (that is, vT
itvjt > 0), discourages if the angle is obtuse (that is, vT

itvjt < 0),

and stays neutral if the angle is right angle (that is, vT
itvjt = 0). Similar interpretation can also be

drawn in the context of a continuous network. Following the suggestion of [93] in a static model,

one can choose zit = ai vit, which means ai = ‖zit‖ and vit = zit/ ‖zit‖. Although the presence

of ai is crucial and allows for asymmetry in the model, one can similarly consider aj , the activity

level of node j (child node), in the model. But that can possibly lead to a different inference. So to

ensure invariant inference from either modeling (∆t,Y t) or
(
∆T

t ,Y
T
t

)
, we define

Lijt = α
zT
itzjt
‖zjt‖

+ (1− α)
zT
itzjt
‖zit‖

, for 0 ≤ α ≤ 1. (5.3)
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α close to 1 implies the effect of parent nodes is dominant in the network, whereas a value close to

0 implies the same for the child nodes.

For joint modeling of the two networks, we assume that a single underlying process governs

both networks. More precisely, Hurdle-Net assumes that the probability of a tie in the probit

model is a strictly increasing function (f ) of the expected edge value in the continuous model. So

the success probability in (5.2) is a composition of Φ and f , denoted by Φ◦f . We note that, for any

strictly increasing f , Φ◦ f can be uniquely represented by an ‘S’-shaped function f ∗ : R 7→ (0, 1).

The latter class of functions can be derived as a special case of the generalized logistic function.

So, with a slight abuse of notation, we replace Φ ◦ f in (5.2) by f (different from the f in Φ ◦ f )

which has the parametric form

f(x) =
(
1 + e(a−bx)

)−1/γ
, for a ∈ R and b, γ > 0. (5.4)

Here f can be considered as a generalized link function which provides a data-driven generalized

way of modeling the edge probability in the binary network. This significantly reduces the com-

plexity of the proposed model, and removes the necessity of specifying a fixed link function (for

example, the logit or the probit) at the expense of only three more parameters.

In Hurdle-Net β, σ, α, a, b, and γ are static model parameters, and Z1, . . . ,ZT are dynamic

latent positions. All of these parameters are of key interest and they need to be estimated. We take

a Bayesian route and hierarchically specify priors on the parameters for posterior inference. The

choice of priors and the motivation behind them are discussed below in the following subsections.

5.2.3 Latent dynamic shrinkage process

Given the latent positions, Hurdle-Net is conditionally independent across the ties over time.

To estimate the positions, for identifiability we assume that Z1 is lower triangular with positive

diagonal elements. Then we apriori specify the dynamic shrinkage process (DSP) to model their

dynamic evolution [29]. The motivation behind DSP stems from a Bayesian adaptation of trend

filtering models [98, 99, 100]. First, a suitable difference of the time varying model parameter is
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defined. The order of difference relates to sharpness in the change of slope of the latent position

between subsequent time points. Then a global-local continuous shrinkage prior is assumed on the

differences. For specifying the process of order 1, let us define

Ω1 = Z1, and Ωt = Zt −Zt−1, for t > 1, (5.5)

Also, for any t denote Ωt = (ω1t, . . . ,ωnt)
T. Then for i = 1, . . . , n, t = 1, . . . , T , and k =

1, . . . , K, we hierarchically specify the prior as follows:

ωitk | τ0, {τj}, {λjs}
ind∼ N

(
0, τ 2

0 τ
2
i λ

2
it

)
,

hit = log
(
τ 2

0 τ
2
i λ

2
it

)
,

hi1 = µ0 + µi + ηi1, and hit = µ0 + µi + φi (hi,t−1 − µ0 − µi) + ηit,

µ0, µi, ηit
iid∼ Z (c, s, 0, 1) ,

(5.6)

whereZ (c, s, µz, σz) denotes theZ-distribution [29]. In general, one can specify a process of order

D ∈ N by defining Ωt = ∆DZt in (5.5), where ∆D is the difference operator of order D. Then

one can specify the same hierarchical model (5.6) on the differences. As discussed in [29], the Z-

distribution is a general class of distributions and contains many important shrinkage distributions

in the literature (Please refer to Table 1 in [29]). To our interest, Z (1/2, 1/2, 0, 1) corresponds to

the Horseshoe prior on the differences ωitk’s [101]. The probability distribution is known to have

many attractive shrinkage properties. The positions across different latent dimensions are assumed

independent and identically distributed. The shrinkage behavior of the differences ωit determines

the dynamics of the latent positions. When the differences are shrunk toward 0, the dynamics of

the positions are locally linear. On the other hand, large values of ωit results in large changes of

slopes in the dynamics of positions. Thus the hyperparameters τ0, τi’s, and λit’s are crucial in

determining the shrinkage behavior of the differences. For each i, the dynamic structure in the

prior comes from the dependence between local scale parameters λit where λit is informed by its

past values {λis}s<t. λit near 0 implies aggressive shrinkage which indicates no change in the

112



dynamics zit, and a large value indicates significant absolute change in zit from the previous time

point. This temporally adaptive shrinkage behavior controls the smoothness and adaptivity in the

dynamics of the latent positions. Henceforth, for any difference order D, we collectively refer to

(5.5)–(5.6) with c = s = 1/2 as the Dynamic Horseshoe Shrinkage (DHS) process of orderD with

adaptive shrinkage, and is denoted by Adaptive-DHS(D). In this specification, setting φi = 0 for

all i does not allow for adaptive shrinkage. This specification is referred to as the DHS process of

order D with non-adaptive shrinkage, and is denoted by NonAdaptive-DHS(D).

5.2.4 Other priors and sampling from the posterior

In this section we specify priors on other model parameters and discuss sampling from the

posterior distribution. We assume a non-informative normal prior N
(
0, σ2

βI
)

with large σβ on β,

the Jeffrey’s prior on σ2 which is proportional to 1/σ2, the Uniform prior in [0, 1] on α, a non-

informative normal prior N (0, σ2
a) with large σa on a, and the Uniform prior in [ε, L] on b and

γ where ε > 0 and L is large. For the results presented here, we set σβ = σa = L = 105 and

ε = 10−5.

For conducting Bayesian inference, we note that all the parameters in the model are continu-

ous. We take advantage of the probabilistic programming language Stan and use the No-U-turn

Hamiltonian Monte Carlo sampling to draw samples from the joint posterior distribution [102].

We further use serial tempering as a warm-start to better initialize the Markov chain, which leads

to quicker MCMC convergence. Suppose we have prespecified a sequence of increasing positive

fractions {λ1, . . . , λG} with λG < 1. The sampling procedure has two stages: burn-in and final

sampling. Based on the prefixed sequence we divide the burn-in stage into G sequential burn-in.

At step g, we implement Stan with the likelihood equals to the actual likelihood raised to the

power λg. At step 1 of burn-in, the starting point of the sampling algorithm is randomly chosen.

At subsequent steps, it is set to be the last sample drawn at the previous step. At the final sampling

stage we initialize at the last sample drawn at step G of burn-in and implement Stan with the

actual likelihood to get desired number of posterior samples.
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5.3 Simulation study

In this section, we compare performances of different methods through simulation studies.

We set up the simulation experiment to mimic some features of the real data while making it

misspecified from the proposed model in other aspects. We set the number of time points T to 10.

Following the real-data described in Section 5.4 we set the number of node-specific covariates p1

to 3 and the number of pair-specific covariates p2 to 2. To mimic some features of the real data, we

set the true regression coefficient β, the parameter in the latent term α, the noise standard deviation

σ, the true generalized link function f are set to their estimates from the Hurdle-Net+Adaptive-

DHS(1) that provides the best prediction performance (Please see Section 5.4.3). Following this

the latent dimension K is prefixed to 5. To generate the true node-specific latent attributes Zt’s,
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Figure 5.1: Simulated latent positions at 10 time points for n = 10. Data from the first 9 time
points are used to fit the models. The predictive performance is tested at the last time point.

we mimic their estimate presented in Section 5.4.3 (Please see 5.10). We assume that there exists

two groups of equal size of the n expected Zit1 in the first latent dimension. Over time 80% of the
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nodes in the cluster closer to the origin moves to the second group. The times when the transitions

start is chosen at random. The group-means in other latent dimensions are assumed to have only

one group but the group-mean values are different from each other. Finally Zitk’s are simulated by

adding a random noise to it. The random noises are generated from normal distribution with mean

0 and standard deviation 0.2. Figure 5.1 shows the simulated latent variables for n = 10 for the 5

latent dimensions.

In addition to the regression coefficient β, the estimation and prediction of edge probabilities

and expected nonzero means for observed edge occurrences are also of interest. Parameter esti-

mates are obtained using the posterior mean. We compute the Normalized Mean Squared Error

(MSE) to quantify the performance. For an estimate θ̂ ∈ Rd and its true value θ0 ∈ Rd, the nor-

malized squared error is defined as E
∥∥∥θ̂ − θ0

∥∥∥2

/d. For example, to compute this for the latent

term, we vectorize {Lijt} as

L = (L121, . . . , Ln,n−1,1, L122, . . . , Ln,n−1,2, . . . , L12T , . . . , Ln,n−1,T )T .

To quantify the estimation and prediction performance of the edge probabilities and expected

nonzero means, they are vectorized and then its normalized MSE is calculated. To compute the

normalized MSE and MSPE for the edge probabilities, we use the binary vector of the observed

occurrences as the true value. We compare the performance of the Network Hurdle Model with

several of its simplifications. These are as follows:

1. Hurdle-Net model with Adaptive-DHS(1) prior on the latent positions. This is denoted by

Hurdle-Net+Adaptive-DHS(1).

2. Hurdle-Net model with NonAdaptive-DHS(1) prior on the latent positions. This is denoted

by Hurdle-Net+NonAdaptive-DHS(1). This evaluates the importance of adaptive shrinkage

in the DHS for modeling dynamic evolution of the latent positions.

3. Hurdle-Net model with Adaptive-DHS(0) prior on the latent positions. This is denoted by

Hurdle-Net+Adaptive-DHS(0). This evaluates whether modeling the first order difference
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is beneficial to capture the trend in the latent dynamics. In the presence of a strong trend, we

expect Hurdle-Net+Adaptive-DHS(1) to provide significant improvement over this specifi-

cation.

4. Hurdle-Net model with NonAdaptive-DHS(0) prior on the latent positions. This is denoted

by Hurdle-Net+NonAdaptive-DHS(0). This evaluates the importance of modeling first order

difference and of allowing for adaptive shrinkage.

5. Independent modeling of binary and continuous network using the probit and Gaussian

model as in (5.2) and (5.1), respectively. In each model, we assume the Adaptive-DHS(1)

prior on the latent positions. This is denoted by Indep+Adaptive-DHS(1). This evaluates

the importance of a joint modeling approach for the two networks.

6. Hurdle-Net model with static latent positions. We assume a Horseshoe prior on the latent

positions and this is denoted by Hurdle-Net+HS. This evaluates the importance of dynamic

latent positions.

7. Hurdle-Net model without latent positions. This is denoted by Hurdle-Net+NoLatent. This

evaluates the importance of latent positions.

The data is simulated from 20 replicated studies. We add an intercept and set it to 7 when simulat-

ing from the continuous model to approximately match the proportion of observed nonzero edge

occurrences in the simulated data with the real data in Section 5.4. For the 50 replicated studies the

observed nonzero edge occurrence percentage varies from 66 − 70%. For each replicated study,

we fit each of the 7 models on the data until the 9th time point and then predict at the 10th time

point. To compare fitting and prediction performances, we vary n as 10, 20 and 30.

Figures 5.2–5.3 together illustrate the efficacy of the proposed methods, namely Hurdle-Net+Adaptive-

DHS(1) and Hurdle-Net+NonAdaptive-DHS(1), over other methods. Figure 5.2 shows that on av-

erage, Hurdle-Net+Adaptive-DHS(1), Hurdle-Net+NonAdaptive-DHS(1) and Indep+Adaptive-

DHS(1) achieve similar MSEs in regression coefficient estimation. The MSEs obtained by them
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Figure 5.2: Boxplots of normalized Mean Squared Errors (MSEs) of regression coefficient esti-
mated based on the posterior mean from different methods in replicated studies.
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Figure 5.3: Mean squared error (MSE) and mean squared prediction error (MSPE) of parameters
and terms in the model. Heights of the bars are the MSEs or MSPEs with error bars denoting ±1
standard errors around it. Bars depicted in the plot correspond to the 7 methods under comparison.

are significantly better than the other methods. In this figure, we find that the normalized MSEs of

Hurdle-Net+Adaptive-DHS(0) and Hurdle-Net+NonAdaptive-DHS(0) is particularly worse. This

shows the significance of modeling the first order difference along the time scale of node-specific

latent attributes. In Figure 5.3, similar differences in performance are also observed in estimation

117



and prediction of expected nonzero means and tie occurrence probabilities. The top and bottom row

in this figure respectively analyzes the performance on the training and test set. In estimating tie

occurrence probabilities, Indep+Adaptive-DHS(1), Hurdle-Net+HS, and Hurdle-Net+NoLatent

have worse MSEs than the other methods uniformly over the number of nodes. Their perfor-

mances does not improve even as n increases. As for the other four methods, the MSEs of Hurdle-

Net+Adaptive-DHS(1) and Hurdle-Net+NonAdaptive-DHS(1) have higher MSEs as compared

to the Hurdle-Net+Adaptive-DHS(0) and Hurdle-Net+NonAdaptive-DHS(0) when the number of

nodes is as low as 10. In this case the method does not benefit from shrinking the latent positions

to the positions at the previous time point. As the number of nodes increases to 30, the ben-

efit of shrinkage is revealed and Hurdle-Net+Adaptive-DHS(1) and Hurdle-Net+NonAdaptive-

DHS(1) have significantly better MSEs over all the methods. In estimating the expected nonzero

mean for observed tie occurrences, when the number of nodes is 10 the Hurdle-Net+Adaptive-

DHS(1) and Hurdle-Net+NonAdaptive-DHS(1) have the lowest MSEs and the latter is as good

as Indep+Adaptive-DHS(1). As the n increases to 30, Hurdle-Net+Adaptive-DHS(1), Hurdle-

Net+NonAdaptive-DHS(1), Hurdle-Net+Adaptive-DHS(0), Hurdle-Net+NonAdaptive-DHS(0) and

Indep+Adaptive-DHS(1) perform similar to each other and has significantly lower MSEs than

Hurdle-Net+HS, and Hurdle-Net+NoLatent.

The second row of Figure 5.3 presents the predictive performance of each model at the last time

point. In predicting both tie occurrence probabilities and expected nonzero mean for occurred ties,

Hurdle-Net+Adaptive-DHS(0) and Hurdle-Net+NonAdaptive-DHS(0) have at least 6 times the

MSPEs of the other methods. The MSPEs are about 26 times higher than others when predicting

the expected nonzero mean for occurred ties. Compared to this, Hurdle-Net+Adaptive-DHS(1)

and Hurdle-Net+NonAdaptive-DHS(1) are consistently having smaller MSPEs with smaller stan-

dard errors.

Combining Figures 5.2–5.3 we feel it is safe to conclude that the performances of Hurdle-

Net+Adaptive-DHS(1) and Hurdle-Net+NonAdaptive-DHS(1) is very consistent and robust over

all simulation settings. In some scenarios they perform as good as the independent approach while
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in other scenarios the shrinkage of the node-specific latent attributes to its previous time points can

provide substantial improvement in the performance with lower standard error. These highlight the

importance of dynamic node-specific latent attributes and their adaptive dynamic shrinkage. As

for the comparison with an independent modeling approach, an improved performance can be ob-

served in estimation and prediction of edge probabilities, particularly when an unbalanced number

of presence and absence of edges are observed in the binary network. In such cases, a joint model-

ing strategy borrows information from the continuous model and provide lower MSEs and MSPEs

with lower standard errors. As for the performance difference between Hurdle-Net+Adaptive-

DHS(1) and Hurdle-Net+NonAdaptive-DHS(1), the non-adaptive variant evaluates the importance

of allowing adaptive shrinkage in the log-variance model. Whether this can prove to be superior

depends on the complexity of the model and informativeness of the underlying latent dynamics.

Although the two methods are performing quite similar to each other in the simulation setting

considered here, Hurdle-Net+Adaptive-DHS(1) shows a significant improvement in the real-data

analysis on the bilateral trade data from the apparel industry. This discussion is further continued

in the next section.

5.4 Application to international trade of apparel industry

To illustrate the use of Hurdle-Net+Adaptive-DHS(1) on a real-data, we applied them to the

international trade data from the apparel industry. The data contains import volumes between each

pair of 29 countries from 1994 to 2013. Combining all the years, trades occurred between 70%

of the country pairs. For the rest of the pairs, the countries did not trade. In this application, we

model the dynamics of the trade network among the 29 countries, determine the importance of

available covariates, and predict trade occurrence probabilities and trade volumes in presence of a

trade. For comparison we apply the methods presented in Section 5.3 and compare their predictive

performances. For the purpose of modeling, we transform the observed trade volumes on the log

scale to satisfy the normality assumption better in the continuous model (5.1). The histogram

of the actual trade volumes is presented in Figure 5.4(a). Figure 5.4(b) shows the histogram of

ln(1 + trade volumes). To compare predictive performance, we use the data from 1994 to 2012 as
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Figure 5.4: Histogram of the observed trade volumes before and after the ln transformation. The
histogram on the left is for the actual observed trade volumes. On the right, it shows the histogram
of ln(1 + trade volumes). On the left of this histogram we see a bar of approximate height 0.3.
This corresponds to the country pairs with unobserved trade occurrences.

the training data and then use the data in 2013 as the test data. First, we fit Hurdle-Net+Adaptive-

DHS(1) on the training data with latent dimension K varied from 1 through 6. Then we choose

the value of K that provides the best prediction in 2013. Next, we fit all other models on the

training data using this best value of K and compare predictive performances of the 7 models. In

this modeling n = 29 and T = 19. For a fixed pair of countries (i, j) and time t, we assume

δijt denotes the presence or absence of a trade from country i to j, and the continuous variable

Yijt denotes the log of trade volume from country i to j. For each country we have their GDPs,

populations and areas as the node-specific covariates, and distances between capitals and labour

provisions as the pair-specific covariates. Thus p1 = 3, p2 = 2, and xijt denotes 8 available

covariates corresponding to each pair of countries.

5.4.1 Performance for varied latent dimensions

To determine the impact of varying latent dimensions, we fit Hurdle-Net+Adaptive-DHS(1) to

the training data for varied latent dimensions and then compare their predictive performance on

the test set. Figure 5.5–5.6 compares the MSPEs corresponding to latent dimensions 1 through 6
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Figure 5.5: Comparison of posterior predictive median of expected log(trade volume) and the ob-
served log(trade volume) in 2013 for the country pairs between which trades occurred. The figures
show the performance of Hurdle-Net+Adaptive-DHS(1) for prefixed latent dimension K varied
from 1 through 6. For observed trade occurrences, x-axis denotes log(trade volume) observed be-
tween the country pairs, and y-axis denotes the posterior predictive median of expected log(trade
volume) for them. The dashed black line denotes the y = x line for reference.

for continuous and binary prediction, respectively. We separately compare each prediction perfor-

mance by calculating the normalized MSPEs as defined in Section 5.3.

Figure 5.5 shows the continuous prediction performance at 2013 for Hurdle-Net+Adaptive-

DHS(1) for varied K. The vertical axis in the figure denotes the predicted log trade volumes

for the observed trade occurrences in the test set. The horizontal axis denotes the observed log

trade volumes for the observed trade occurrences in the test set. For reference we overlay the plot

with the y = x line. The more tightly the points are around the line, the better is the prediction.

Similarly Figure 5.6 shows the binary prediction performance. On the horizontal axis 0 and 1

denotes the observed absence and presence of trades. Against each of them, on the vertical axis

we show the boxplot of the posterior predictive median of trade occurrence probabilities. For the

country pairs with no trades we expect the boxplot to be near 0 and for the other we expect it
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Table 5.1: Mean squared prediction errors in 2013 for Hurdle-
Net+Adaptive-DHS(1) with prefixed latent dimensions 1 through 6.

Latent dimension (K) Continuous prediction Binary prediction

1 2.02 0.10

2 1.67 0.07

3 1.71 0.09

4 1.66 0.02

5 0.97 0.007

6 1.83 0.04

Note. For checking accuracy in continuous prediction, we compute the nor-
malized MSPEs between predicted and observed log(trade volume) values
for observed trade occurrences. Also for checking accuracy in binary pre-
diction, we compute normalized MSPEs between predicted trade occurrence
probabilities and observed trade occurrences.

to be near 1. The closer the boxplots are to 0 and 1 respectively, the better the model is able

to predict the presence or absence of trades. Finally, Table 5.2 shows the normalized MSPEs

calculated for both binary and continuous prediction and it clearly shows the superiority in the

performance of Hurdle-Net+Adaptive-DHS(1). The figures show that both the continuous and the

binary prediction improve as we increase the latent dimension. At K = 5 the MSPE reaches the

lowest in both prediction and then increases again at K = 6. Table 5.1 presents the MSPEs in both

predictions. It shows that at K = 5 the MSPEs in continuous and binary predictions have reduced

42% and 65%, respectively, compared to at K = 4. This suggests that a low-rank latent structure

of rank 5 is required in addition to the observed covariates to explain the variance in the observed

data. This implies there are covariates other than the 8 that are considered here and are responsible

for explaining the dynamic of the network.

5.4.2 Model comparison

Next, we provide a comparative analysis and focus on the same 7 models described in Sec-

tion 5.3. As in the section above, we train the models on the training set from 1994 to 2012
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Figure 5.6: Comparison of posterior predictive median of trade occurrence probability and the
observed trade occurrence in 2013 for all pairs of 29 countries. The figures show the performance
of Hurdle-Net+Adaptive-DHS(1) for prefixed latent dimension K varied from 1 through 6. in
each figure, 0 and 1 on x-axis refers to observed and unobserved trades among country pairs.
y-axis denotes the posterior predictive median of trade occurrence probabilities for those pairs.

and check their binary and continuous prediction accuracy in 2013. We fit each model (except

Hurdle-Net+NoLatent) with prefixed latent dimension K = 5 and then compare their binary and

continuous prediction for the year 2013. This is presented in Figure 5.7–5.8.

Figure 5.7 shows the continuous prediction performance at 2013 for different models for pre-

fixed latent dimension K = 5. The vertical axis in the figure denotes the predicted log trade vol-

umes for the observed trade occurrences in the test set. The horizontal axis denotes the observed log

trade volumes for the observed trade occurrences in the test set. For reference we overlay the y = x

line on the plot. The more tightly the points are around the line, the better is the prediction. The

figure shows that the points are better wrapped around the y = x line for Hurdle-Net+Adaptive-

DHS(1) than the methods. Hurdle-Net+Adaptive-DHS(0) and Hurdle-Net+NonAdaptive-DHS(0)

particularly show a constant under estimation in the prediction. Similarly Figure 5.8 shows the bi-
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Figure 5.7: Comparison of posterior predictive median of expected log(trade volume) and the ob-
served log(trade volume) in 2013 for the country pairs between which trades occurred. The figures
show the performance of Hurdle-Net+Adaptive-DHS(1) for prefixed latent dimension K varied
from 1 through 6. For observed trade occurrences, x-axis denotes log(trade volume) observed be-
tween the country pairs, and y-axis denotes the posterior predictive median of expected log(trade
volume) for them. The dashed black line denotes the y = x line for reference.

nary prediction performance. On the horizontal axis 0 and 1 denotes the observed absence and

presence of trades. Against each of them, on the vertical axis we show the boxplot of the posterior

predictive median of trade occurrence probabilities. For the country pairs with no trades we expect

the boxplot to be near 0 and for the other we expect it to be near 1. The closer the boxplots are

to 0 and 1 respectively, the better the model is able to predict the presence or absence of trades.

Hurdle-Net+Adaptive-DHS(1) shows the best performance among the models considered here.

Indep+Adaptive-DHS(1) very accurately predicts the probabilities in the presence of trades, but

does poorly for those that are absent. The other methods predict similar trade occurrence proba-

bilities for trades that are both present and absent, and thus perform poorly. This clearly shows the

benefit of shrinking the latent positions of countries to their positions at the previous time point

in explaining the dynamics of the trade network. Besides, [28] provides a similar analysis of in-

ternational trade flows data in a different context. They propose independent modeling of binary

and continuous networks where the each model is fitted sequentially at the time points. This strat-
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Figure 5.8: Comparison of posterior predictive median of trade occurrence probability and the
observed trade occurrence in 2013 for all pairs of 29 countries. The figures show the performance
of Hurdle-Net+Adaptive-DHS(1) for prefixed latent dimension K varied from 1 through 6. in
each figure, 0 and 1 on x-axis refers to observed and unobserved trades among country pairs.
y-axis denotes the posterior predictive median of trade occurrence probabilities for those pairs.

Table 5.2: Mean squared prediction errors in 2013 for different models with prefixed
latent dimension K = 5.

Models Continuous prediction Binary prediction

Hurdle-Net+Adaptive-DHS(1) 0.97 0.007

Hurdle-Net+NonAdaptive-DHS(1) 1.36 0.10

Hurdle-Net+Adaptive-DHS(0) 2.41 0.10

Hurdle-Net+NonAdaptive-DHS(0) 3.62 0.12

Indep+Adaptive-DHS(1) 1.45 0.04

Hurdle-Net+HS 1.89 0.11

Hurdle-Net+NoLatent 1.87 0.11

egy is similar to Indep+Adaptive-DHS(1) that is considered here and it clearly overestimates the

trade occurrences (Please see Figure 5.8). Hurdle-Net+HS on the other hand overestimates trade

occurrence probabilities. This necessitates the dynamic modeling of a latent structure. Finally, the
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predicted probabilities from Hurdle-Net+Adaptive-DHS(0), Hurdle-Net+NonAdaptive-DHS(0),

and Hurdle-Net+NoLatent are predicting similar chance of an occurrence for observed and unob-

served trades. This indicates the importance of modeling successive differences of latent positions.

In fact the boxplots highlights that the performance without accounting for this is doing no better

than Hurdle-Net+NoLatent where no latent dependence is considered in modeling. Finally, Ta-

ble 5.2 shows the normalized MSPEs calculated for both binary and continuous prediction and it

clearly shows the superiority in the performance of Hurdle-Net+Adaptive-DHS(1). For example,

the MSPEs for the independent modeling has 1.5× the error in continuous prediction and 5.7×

the error in binary prediction as compared to Hurdle-Net+Adaptive-DHS(1). This is consistent

with our visual conclusion that we discussed above shows the superior performance of Hurdle-

Net+Adaptive-DHS(1) and Hurdle-Net+NonAdaptive-DHS(1) over others. This goes to show

that the data support the assumption of a strong latent dynamics and a common underlying mech-

anism in determining the behavior of the two networks.

5.4.3 Interpreting the Parameter estimates

Apart from providing good predictive performance, another equally desired goal in this re-

search is to interpreting model parameters for statistical inference. In fact, two of these parameters

are of primary interest: (a) the regression coefficient β which provides importance of country and

country pair-specific covariates, and (b) the latent positions (Z1, . . . ,ZT ) which provides dynam-

ics of 29 countries in explaining the inherent structure not explained by the covariates in the model.

Following the performance comparison in the previous section, we now discuss the statistical in-

ference of these parameters obtained using Hurdle-Net+Adaptive-DHS(1).

Figure 5.9 presents the boxplot of the posterior samples of the regression coefficients corre-

sponding to the node- and pair-specific covariates. It shows that the GDP and area of the exporter,

GDP of the importer, and the Labour Provision has a statistically significant positive effect in deter-

mining the international trade network. On the other hand, population of the exporter and distance

between the capitals of two trading countries have a statistically significant negative effect in de-

termining the trade pattern. Although, the population and the area of the importer show a positive
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Figure 5.9: Boxplot of the posterior samples for the regression coefficient. The vertical axis repre-
sents the magnitude of each component of the regression coefficient and the horizontal axis shows
the 8 covariates. For each component the figure shows the boxplot of the posterior samples. The
horizontal solid red line denotes the line y = 0 and it denotes the absence of effect.

and negative effect, their magnitudes seem to be very small.

Figure 5.10–5.11 presents the inference of country specific latent variables {Z1, . . . ,ZT}. At

time point t, Zt denotes the latent positions of 29 countries in the 5-dimensional latent Euclidean

space as a 29×5 matrix. The rows correspond to countries and columns correspond to dimensions

in the latent space. For better interpretation and representation, we order the columns of these

matrices in decreasing order of their variances calculated combining all time points. This reorders

the latent dimensions based on their importance in explaining the variability in the observed data.

We also order the rows in an increasing order of the distance of latent positions at 1994, the first

time point. Figure 5.10 provides heatmaps of these latent position matrices at the years 1994,

1998, 2002, 2006, 2010 and 2013 to show the dynamics of the latent positions (The heatmaps

at all the time points are provides in the supplemental). The heatmaps from 1994 to 2010 are

positions estimated from the training data. The heatmap at 2013 shows the predicted positions
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Figure 5.10: Heatmaps of latent positionsZt. Figures (a)–(e) correspond to the estimated positions
at years 1994 1998 2002 2006, and 2010. Figure (f) shows the predicted latent positions of the
countries in 2013. The columns are ordered based on the decreasing variance calculated combining
all times points. The rows are ordered based on the increasing distance of countries from the origin
in 1994, the first time point.

based on the fitted model. For estimation we use the posterior mean and the posterior median

is used for prediction. Figure 5.10(a) very clearly shows two clusters of countries in the latent

space and the clusters have about equal sizes. Before we interpret the dynamics, we note that the

parameter α in (5.3) indicates the overall role of parent node in the binary and continuous networks.

In this data, the parent and child nodes are interpreted as exporters and importers. The fitted

Hurdle-Net+Adaptive-DHS(1) estimates α approximately 1. This means the exporter countries

play the more significant role in deciding the presence or absence trades or the trade volumes. For

interpreting the latent position we note that, with the estimate α ≈ 1, Lijt ≈ zT
itzjt/ ‖zjt‖. For
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Figure 5.11: A scatterplot of estimated and predicted latent positions of 29 countries in 1994 and
2013, respectively. This plot is based on the first two latent dimensions from Figure 5.10 and
shows the clusters of countries in the 2-dimensional latent Euclidean space that accounts for the
first and second largest variance in latent contribution. Figure (a) on the left shows the estimated
latent positions in 1994 and Figure (b) on the right shows the predicted latent positions in 2013.

a fixed pair of countries (i, j), the magnitude of the latent contribution is determined by zjt, the

distance of the importer from the origin. The closer the importer is to the origin, the more is the

latent contribution magnitude, and vice versa. This means the closer the countries are to the origin,

the more the covariates fail to explain their log import volumes. In 1994, such is the case for the 14

countries corresponding to the first 14 rows (Please see Figrue 5.10(a)). This suggests in 1994, the

covariates fails to explain the log import volumes of those countries when 15 countries in the other

group trade with them. As we move forward in time, the included covariates starts to explain more.

Finally, in 2013 only Turkey and Bangladesh are the only two countries left closest to the origin.

This suggests the covariates still fail to explain the log import volumes of Turkey and Bangladesh

when 27 countries in the other group trade with them.
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5.5 Discussion

This chapter has explored the use of the dynamic shrinkage process prior on node-specific dy-

namic latent attributes in a dynamic network model. In many real-life applications we observe

data on a fixed set of individuals over a time period. Because the dynamics involve the same set

of individuals, a key interest in these applications is to take their network structure into account in

the modeling. Often the continuous network that we observe has excessive zeros as observations.

This can occur for a variety of reasons. For example, in microbiome data this occurs due to lim-

itations of instruments used for a continuous measurement. Here zeros represent the measuring

thresholds in those instruments. In this research we focused on bilateral trade data observed from

the apparel industry. The observed zeros in this network means the absence of trades between

country pairs. This highlights the importance the observed zeros and suggests taking this into

account while modeling. To this, we re-frame this as data observed from a binary and a contin-

uous network, and propose a Hurdle-Net model for modeling them jointly. Often there are many

available covariates that aim to account for the variability in the observed data. But part of the

goal is to figure out whether the available covariates are statistically significant. In cases when

they are not, a latent contribution can be assumed in the modeling to account for the unexplained

variance in the data. For modeling binary and continuous network data in presence of node- and

pair-specific covariates, we assume node-specific latent attributes to account for any unexplained

latent contribution. The latent terms in the model both bring in the network structure in the model

and also account for the unexplained variance in the data. Using a latent space approach, we first

independently model the two networks conditional on the latent attributes. Then we model the

latent attributes using a dynamic shrinkage process apriori and independently across the nodes.

All the model parameters and hyperparameters in the priors are continuous. This led us to take

advantage of Stan and perform Bayesian inference using No-U-Turn Hamiltonian Monte Carlo

sampling. Results presented in Section 5.3 shows that the method is quite robust and can prove

to be significantly beneficial over the methods under comparison at times. Another advantage of

the model is the interpretability of the parameters, particularly the regression coefficient and the
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node-specific latent attributes. In application to the bilateral trade data, the results presented in

Section 5.4 shows impressive performance over the other methods. It shows statistical significance

of covariates that are realistic and covariate like the Labor Provision that is found relevant in the

Economics literature [103]. The node-specific latent attributes shows clear cluster structure that

accounts for the variance unexplained by the available covariates. The latent dynamic contribution

helps us in making good prediction in the absence of all important covariates. Nonetheless, it begs

to discover the covariates to account for the latent structure and the unexplained trades between

countries.
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6. SUMMARY OF THESIS

In this thesis we attempt to lay a foundation of efficiently choosing priors for two different

problems: (1) designing Bayesian hypothesis tests for detecting presence or absence of hypothe-

sized effects with lowered costs, and (2) efficient modeling of dynamic zero-inflated network data.

Our contributions cover the computational and methodological aspects of this problem and touches

upon theoretical aspects in some cases.

The costs of conducting experiments to test hypothesized effects is often related directly to the

number of tested items or participants. In Chapter 2 we describe a modified sequential probability

ratio test that can be used to reduce the average sample size required to perform statistical hypoth-

esis tests at specified levels of significance and power. Examples are provided for z tests, t tests,

and tests of binomial success probabilities. A description of a software package to implement the

test designs is provided. We compare the sample sizes required in fixed design tests conducted at

5% significance levels to the average sample sizes required in sequential tests conducted at 0.5%

significance levels, and we find that the two sample sizes are approximately equal.

Bayesian hypothesis testing procedures have gained increased acceptance in recent years. A

key advantage that Bayesian tests have over classical testing procedures is their potential to quan-

tify information in support of true null hypotheses. Ironically, default implementations of Bayesian

tests prevent the accumulation of strong evidence in favor of true null hypotheses because associ-

ated default alternative hypotheses assign a high probability to data that are most consistent with

a null effect. In Chapter 3–4 we propose the use of “non-local” alternative hypotheses to resolve

this paradox. The resulting class of Bayesian hypothesis tests permits more rapid accumulation of

evidence in favor of both true null hypotheses and alternative hypotheses that are compatible with

standardized effect sizes of most interest in psychology. The prior used to define the alternative

hypothesis in Chapter 2 is a special instance of this class of priors.

In the context of modeling zero-inflated directed networks Chapter 5 has proposed a Hurdle

Network Model and explored the use of the dynamic shrinkage process prior on node-specific

1



dynamic latent attributes. In the model the latent terms both bring in the network structure and also

account for the unexplained variance in the data. Using a latent space approach, we independently

model the two networks conditional on the latent attributes. Another advantage of the model is

the interpretability of the parameters, particularly the regression coefficient and the node-specific

latent attributes. The latent dynamic contribution helps us in making good prediction in the absence

of all important covariates.
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M. Aveyard, J. R. Axt, M. T. Babalola, Štěpán Bahník, R. Batra, M. Berkics, M. J. Bern-

stein, D. R. Berry, O. Bialobrzeska, E. D. Binan, K. Bocian, M. J. Brandt, R. Busching,

A. C. Rédei, H. Cai, F. Cambier, K. Cantarero, C. L. Carmichael, F. Ceric, J. Chandler, J.-H.

Chang, A. Chatard, E. E. Chen, W. Cheong, D. C. Cicero, S. Coen, J. A. Coleman, B. Collis-

son, M. A. Conway, K. S. Corker, P. G. Curran, F. Cushman, Z. K. Dagona, I. Dalgar, A. D.

Rosa, W. E. Davis, M. de Bruijn, L. D. Schutter, T. Devos, M. de Vries, C. Doğulu, N. Dozo,
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APPENDIX A

SUPPLEMENTARY MATERIAL: A MODIFIED SEQUENTIAL PROBABILITY RATIO TEST

A.1 Introduction

We consider null hypothesis significance tests (NHSTs) where the maximum number of sam-

ples (N ) is specified and in which we wish to control Type I and Type II error probabilities at

specified levels α and β, respectively.

Let X be a random variable having density f(x; θ) under both the null and alternative hypothe-

ses, and let θ, θ ∈ Θ, denote the parameter of interest. Let f(xn; θ) denote the joint sampling

density of the observation xn = {x1, . . . , xn} for some sample size n, and let πi(θ) denote the

prior density assigned to θ under Hi (for i = 0, 1). Then the marginal density mi(xn) of the data

under Hi (for i = 0, 1) is defined as

mi(xn) =

∫
Θ

f(xn; θ)πi(θ)dθ. (A.1)

For a given point alternative hypothesis H1 : θ = θ1, we define the likelihood ratio (LR) as

L(θ1, θ0;n) =
f(xn; θ1)

f(xn; θ0)
. (A.2)

When there is no ambiguity regarding the values of (θ0, θ1), we simply write Ln ≡ L(θ1, θ0;n).

The Bayes factor (BF) in favor of H1 is defined as BF 10(xn) = m1(xn)/m0(xn).

Following [16], the uniformly most powerful Bayesian test (UMPBT) for evidence threshold

δ > 0 in favor of the alternative H1 against a fixed null H0, denoted by UMPBT(δ), is a Bayesian

hypothesis test in which the Bayes factor for the test satisfies the following inequality for any

θt ∈ Θ and for all alternative hypotheses H2 : θ ∼ π2(θ):

Pθt [BF 10(x) > δ] ≥ Pθt [BF 20(x) > δ]. (A.3)
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That is, the UMPBT maximizes the probability that the Bayes factor against a fixed null hypothesis

exceeds a specified threshold. Following equation (A.3) for one-parameter exponential family

models, the UMPBT alternative is defined as the alternative θ1 which maximizes Pθt [BF 10(x) >

δ] among all prior densities on θ, θ ∈ Θ. A list of the UMPBT alternatives for common statistical

tests can be found in the supporting information file of [11].

In tests of a simple null against a composite alternative, there is often a correspondence between

the rejection regions of Bayesian testing rules using a UMPBT alternative and classical uniformly

most powerful (UMP) tests (when such tests exist). Given a δ, the UMPBT(δ) alternative is optimal

in the sense that it maximizes the probability that the Bayes factor in favor of the alternative exceeds

a specified threshold δ. In such cases, δ can be determined by matching the rejection region of the

test to that of the classical Neyman-Pearson UMP test of size α. This naturally induces a one-to-

one correspondence between the size of the test (α) and the Bayesian evidence threshold (δ).

In the rest of the discussion, we refer to the UMP test as the fixed-design test.

A.2 The Modified Sequential Probability Ratio Test (MSPRT)

Given N , α, and β, suppose we are interested in testing a simple null against a one-sided

alternative, i.e.,

H0 : θ = θ0 vs. H1 : θ > θ0 or θ < θ0, (A.4)

where θ is a scalar parameter defining f(x; θ). We further assume that f(x; θ) belongs to a

one-parameter exponential family. Then, following the preceding discussion, we can obtain the

UMPBT alternative by matching the UMPBT’s rejection region to that of the fixed-design test

using N samples. Doing so leads to the definition of the UMPBT alternative hypothesis and the

evidence threshold. Once the alternative is determined, we can compute the likelihood ratio (or

Bayes factor) in favor of the alternative as we observe data sequentially. For each n, let Ln denote

the likelihood ratio as defined in equation (1) in the main article. As in the case of SPRTs, we

define the acceptance and rejection threshold for Ln by B =
β

1− α
and A =

1− β
α

, respectively.

Using this notation, the conduct of the MSPRT can be defined by Algorithm 1.
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Algorithm 1 : MSPRT

For n = 1, . . . , N
1. Stop and reject H0 if Ln ≥ A
2. Stop and accept H0 if Ln ≤ B
3. Collect the next data point if B < Ln < A

If no decision has been made after collectingN observations, terminate the procedure and reject
H0 if LN ≥ γ; otherwise, accept H0.

The threshold γ, which we refer to as the termination threshold, is chosen to be the smallest

number that preserves the targeted size of the test α. In general, numerical procedures are required

to determine the value of γ. We can implement this procedure using the R package MSPRT. A

more detailed illustration for common tests is provided in Section A.2.

A.3 Examples

A.3.1 One-sample z test for a population mean

Suppose X1, . . . , XN are i.i.d. N(µ, σ2) random variables, σ2 is known, and we wish to test

H0 : µ = µ0 vs. H1 : µ > µ0. (A.5)

Following [16], the UMPBT(δ) alternative is defined as

µ1N = arg min
µ>µ0

[
σ2 log δ

N(µ− µ0)
+

(µ+ µ0)

2

]
= µ0 + σ

√
2 log δ

N
. (A.6)

By matching the rejection region from the UMPBT with that of the fixed-design test, we obtain

the evidence threshold as

δ = exp
(z2

α

2

)
, (A.7)

where zα is the 100(1− α)th quantile of the standard normal distribution. Substituting this in
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(A.6), we get the UMPBT alternative

µ1N = µ0 + zα
σ√
N
. (A.8)

The alternative corresponds to the rejection boundary for the fixed-design test of size α based on

N observations.

Using the alternative, we compute Ln as

Ln =
f(xn;µ1N)

f(xn;µ0)
= exp

[
(µ1N − µ0)

σ2

n∑
i=1

xi −
n(µ2

1N − µ2
0)

2σ2

]
. (A.9)

After γ is obtained, the MSPRT is then conducted according to Algorithm 1 in Section A.2.

A.3.2 One-sample t test for a population mean

Now suppose the conditions of Section A.3.1apply, but σ2 is not known.

A UMPBT does not exist in this case. For this reason, we instead use the approximate data-

dependent UMPBT(δ) alternative defined in [11] as

µ1N = µ0 + sN

√
νδ∗

N
(A.10)

where s2
N =

1

N − 1

N∑
i=1

(xi − x̄N)2, ν = N − 1, and δ∗ = δ2/N − 1.

Based on the maximum sample size N , the condition for matching the rejection regions of the

UMPBT and the fixed-design t test can be derived as

√
νδ∗ = t2α;N−1 ⇔ δ =

[
t2α;N−1

ν
+ 1

]N
2
, (A.11)

where tα;N−1 is the 100(1− α)th quantile of a t distribution with degrees of freedom (df) N − 1.
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From observed data, we obtain the UMPBT alternative at step n as

µ1n = µ0 + tα;N−1
sn√
N
, (A.12)

for n = 2, ..., N .

Using this alternative, we define the integrated likelihood function (or Bayes factor) Ln accord-

ing to

Ln =

[
1 +

(
n
n−1

)
t20,n

1 +
(

n
n−1

)
t21,n

]n
2
, (A.13)

where t0,n =
x̄n − µ0

sn
and t1,n =

x̄n − µ1n

sn
.

We obtained this integrated likelihood by imposing the noninformative prior π(σ2) ∝ 1/σ2 on

the unknown variance parameter.

Once γ is determined numerically, the MSPRT is conducted according to Algorithm 1 in Sec-

tion A.2.

A.3.3 One-sample test for a binomial proportion

Suppose X1, . . . , XN represent i.i.d. Bernoulli observations with success probability p, and for

some p0 we wish to test

H0 : p = p0 vs. H1 : p > p0. (A.14)

To design the MSPRT, we must determine the alternative hypothesis that will be used to com-

pute Ln. We can accomplish this most easily by first examining the form of the fixed design test’s

rejection region. Based on the maximum sample size N , that test rejects H0 if

N∑
i=1

Xi > c0, (A.15)

18



where c0 is defined as

c0 = inf

{
c

∣∣∣∣PH0

( N∑
i=1

xi > c

)
≤ α

}
. (A.16)

Following [16], the UMPBT(δ) alternative value of p is defined as

p1N(δ) = arg min
p>p0

hN(p, δ), (A.17)

where

hN(p, δ) =

log δ −N
[

log(1− p)− log(1− p0)

]
log

(
p

1− p

)
− log

(
p0

1− p0

) . (A.18)

For a given (p, δ), the rejection region for the UMPBT(δ) test is

N∑
i=1

Xi > hN(p, δ). (A.19)

Thus, the rejection region from the fixed-design test can be matched to that of the UMPBT by

solving

hN

(
p1N(δ), δ

)
= c0 (A.20)

for δ. This solution provides the evidence threshold for the test.

In practice, the discrete nature of binomial data causes the Type I error of the test to be less than

the targeted α. In order to achieve the exact α in a classical test, one must use a randomized test.

The randomized test can be described as follows: with probability ψ, reject H0 if
N∑
i=1

xi > (c0−1),

and with probability (1− ψ), reject H0 if
N∑
i=1

xi > c0. The value of ψ is determined according to

ψ =

[
α− PH0

( N∑
i=1

xi > c0

)]/
PH0

( N∑
i=1

xi = c0

)
. (A.21)

This suggests that we obtain the UMPBT alternative according to the following modification.

Noting that the fixed-design randomized test involves two rejection regions, namely
(
c0 − 1, N

]
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and
(
c0, N

]
, and recalling (A.6), we solve

hN

(
p1N(δL), δL

)
= c0 − 1 and hN

(
p1N(δU), δU

)
= c0. (A.22)

In contrast to z and t tests, using these values we define the UMPBT alternative as a mixture

distribution of two points p1N(δL) ≡ p1N,L and p1N(δU) ≡ p1N,U with mixing probabilities ψ and

(1− ψ), respectively. Then we obtain Ln as a weighted likelihood function defined by

Ln = ψ
f(xn; p1N,L)

f(xn; p0)
+ (1− ψ)

f(xn; p1N,U)

f(xn; p0)
, (A.23)

where

f(xn; p)

f(xn; p0)
=

[
1− p
1− p0

]n[
p(1− p0)

p0(1− p)

] n∑
i=1

xi

. (A.24)

After γ has been numerically obtained, the MSPRT can be implemented using Algorithm 1 in

Section A.2.

A.4 Examples with MSPRT: A user’s guide

We have created an R package named MSPRT to implement the MSPRT conveniently. We

illustrate the use of the test in the following examples. We assume throughout that MSPRT has

been loaded into the R command environment.

A.4.1 Designing and implementing a MSPRT

A key function in the package is design.MSPRT(). Given N , α, β, and other parameters,

this function finds the MSPRT. Recall from Algorithm 1 that finding the MSPRT requires finding

the termination threshold γ. The function design.MSPRT() does this. It also provides an option

(through the argument theta1) to find the performance of the resulting MSPRT at a user-defined

point alternative.
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A.4.1.1 One-sample z test for a population mean

Our first illustration of the MSPRT is for a simple z test. For concreteness, suppose we wish to

test H0 : µ = 3 against the alternative hypothesis H1 : µ > 3 for a fixed σ = 1.5 with a maximum

of N = 30 patients in a α = 0.5% test with Type II error of approximately β = 0.2. There are two

steps in the testing process: design and implementation.

In the design step, we calculate the termination threshold and the operating characteristics of

the MSPRT. To do this, we use the functions design.MSPRT() and OCandASN.MSPRT(),

respectively. The function design.MSPRT() is used to determine the termination threshold and

evaluate the performance of the MSPRT when the null hypothesis is true. The required commands

follow:

> design.out = design.MSPRT(test.type = "oneZ", theta0 = 3, sigma = 1.5,

N.max = 30)

> design.out$TypeI.attained ## Type I error probability

[1] 0.005

> design.out$EN[1] ## avg. sample size under the null

[1] 14.24063

> design.out$theta.UMPBT ## UMPBT alternative

[1] 3.70542

> design.out$termination.threshold ## termination threshold

[1] 27.911

In this code snippet, the values TypeI.attained, EN[1], and termination.threshold

represent the Type I error probability, the average sample size required for reaching a decision when

the null hypothesis is true, and the termination threshold of the MSPRT, respectively.

Normally, we must find the operating characteristics of the test at several alternative values.

For the UMPBT alternative (equal to 3.7054 in this case), these values can be obtained by giving

the following command.
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> OC.out = OCandASN.MSPRT(theta = 3.7054,

design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the UMPBT alternative

[1] 0.509086

> OC.out$EN ##avg. sample size at the UMPBT alternative

[1] 25.29154

The values returned from this function call include (but are not restricted to) acceptH0.prob

and EN. They are interpreted as the Type II error probability and the average sample size required

by the designed MSPRT for reaching a decision when the UMPBT alternative is true, respectively.

Finally, it may be necessary to obtain the operating characteristics at arbitrary values of the

alternative hypothesis. Again for concreteness, suppose we wish to determine the operating char-

acteristics for µ = 4 (for example). Then the following command may be given.

> OC.out = OCandASN.MSPRT(theta = 4, design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the the desired alternative

[1] 0.151229

> OC.out$EN ##avg. sample size at the desired alternative

[1] 22.67337

The output from this command may be interpreted as before.

Next, in the implementation phase we can apply the test to a sequence of observed values. To

illustrate this procedure, we simulate the observed values as follows:

> set.seed(1)

> x = rnorm(n = 30, mean = 5, sd = 1.5)

Given these values, the MSPRT stopping criteria can be tested with the command implement.MSPRT().

Note that the object design.out is obtained using the design.MSPRT() command as above.
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Figure A.1: One-sample z test that a population mean equals 3. Hypothesis test of H0 : µ = 3
vs. H1 : µ > 3 with σ known to be 1.5. Sequential comparison plot of the MSPRT obtained in
Section A.4.1.1.

> implement.out = implement.MSPRT(obs = x,

design.MSPRT.object = design.out)

> implement.out$decision ##decision

[1] "reject.null"

> implement.out$n ##number of observations required to reach

## the decision

[1] 9

This output shows that the null hypothesis is rejected after the 9th observation.

If plot.it = 2 (the default), the call to implement.MSPRT() also returns a sequential

comparison plot similar to that depicted in Figure A.1. This particular plot shows that Ln crosses

the “reject null" threshold on the 9th observation, at which time the null hypothesis is rejected.
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A.4.1.2 One-sample t test for a population mean

Our next illustration of the MSPRT is for a t test. For concreteness, suppose we again wish to

test H0 : µ = 3 against an alternative hypothesis H1 : µ > 3 for an unknown σ with a maximum

of N = 30 patients in a α = 0.5% test with Type II error of approximately β = 0.2. Again there

are two steps in the testing process: design and implementation.

In the design step, we calculate the termination threshold and the operating characteristics of

the MSPRT. To do this, we again use the functions design.MSPRT() and OCandASN.MSPRT(),

respectively. The function design.MSPRT() is used to determine the termination threshold and

evaluate the performance of the MSPRT when the null hypothesis is true. The required commands

follow:

> design.out = design.MSPRT(test.type = "oneT", theta0 = 3, N.max = 30)

> design.out$TypeI.attained ## Type I error probability

[1] 0.005

> design.out$EN[1] ## avg. sample size under the null

[1] 14.60748

> design.out$termination.threshold ## termination threshold

[1] 34.02

The values TypeI.attained, EN[1], and termination.threshold can be inter-

preted as before.

Once we have obtained the MSPRT design, it may be necessary to obtain the operating char-

acteristics of the test at arbitrary values of the alternative hypothesis. Again for concreteness,

suppose we wish to determine the operating characteristics for µ = 4. We can do that by using the

following command.

> OC.out = OCandASN.MSPRT(theta = 4, design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the the desired alternative

[1] 0.006113
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> OC.out$EN ##avg. sample size at the desired alternative

[1] 22.39615

The values can be interpreted as in the previous section.

Next, in the implementation phase we can apply the test to a sequence of observed values. To

illustrate this procedure, we use the same x as in Section A.4.1.1:

> set.seed(1)

> x = rnorm(n = 30, mean = 5, sd = 1.5)

Given these values, the MSPRT stopping criteria can be tested with the command implement.MSPRT().

Note that the object design.out is obtained using the design.MSPRT() command as above.

> implement.out = implement.MSPRT(obs = x, design.MSPRT.object = design.out)

> implement.out$decision ##decision

[1] "reject.null"

> implement.out$n ##number of observations required to reach decision

[1] 22

Output from these commands shows that the null hypothesis is rejected after the 22nd observa-

tion.

If plot.it = 2 (the default), the call to implement.MSPRT() also returns a sequential

comparison plot similar to that depicted in Figure A.2. This particular plot show that Ln crosses

the “reject null" threshold on the 22nd observation, at which time the null hypothesis is rejected.

A.4.1.3 One-sample test of a binomial proportion

We next consider the MSPRT for a proportion test. For concreteness, suppose we wish to test

H0 : p = 0.2 against the alternative hypothesis H1 : p > 0.2 with a maximum of N = 30 patients

in a α = 0.5% test with Type II error of approximately β = 0.2. Again we go through the two

steps in the testing process: design and implementation.
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Section A.4.1.2.
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In the design step, we calculate the termination threshold and the operating characteristics of

the MSPRT. To do this, we again use functions design.MSPRT() and OCandASN.MSPRT(),

respectively. The commands follow:

> design.out = design.MSPRT(test.type = "oneProp", theta0 = 0.2, N.max = 30)

> design.out$Type1.attained ##Type I error probability

[1] 0.002946

> design.out$EN[1] ##avg. sample size under the null

[1] 12.9514

> design.out$UMPBT$theta ##two points of the UMPBT alternative

[1] 0.3666727 0.4000178

> design.out$UMPBT$mix.prob ##mixing probability for the UMPBT alternative

[1] 0.2959777 0.7040223

> design.out$termination.threshold ##termination threshold

[1] 13.21

The values TypeI.attained, EN[1], and termination.threshold can be inter-

preted as before. The values of UMPBT$theta and UMPBT$mix.prob together specify the

UMPBT alternative used by the MSPRT. In this case the alternative is 0.3667 and 0.4 with approx-

imate probabilities 0.296 and 0.704, respectively.

Once we have the MSPRT design, we can use OCandASN.MSPRT() to compute the operat-

ing characteristics of that MSPRT. For concreteness, suppose we wish to determine the operating

characteristics for p = 0.3. The following commands do this.

> OC.out = OCandASN.MSPRT(theta = 0.3, design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the the desired alternative

[1] 0.920718

> OC.out$EN ##avg. sample size at the desired alternative

[1] 20.1515
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The values returned from this function call have the same interpretation as before.

Next, in the implementation phase we can apply the test to a sequence of observed values. To

illustrate this procedure, we simulate the observed binary values as follows:

> set.seed(1)

> x = rbinom(n = 30, size = 1, prob = 0.2)

Given these values, the MSPRT stopping criteria can be tested with the command implement.MSPRT().

Note that the object design.out is obtained using the design.MSPRT() command as above.

> implement.out = implement.MSPRT(obs = x, design.MSPRT.object = design.out)

> implement.out$decision ##decision

[1] "reject.alt"

> implement.out$n ##number of observations required to reach decision

[1] 15

This output shows that the alternative hypothesis is rejected after using the 15th observation.

In particular, the sequential test plot in Figure A.3 shows the sequential trajectory of Ln until the

alternative hypothesis is rejected.

A.4.1.4 Two-sample z test for a difference in two population means

Let, µ1 and µ2 be the population means of two groups of patients, respectively. Suppose we

want to test H0 : µ1 − µ2 = 0 against the alternative hypothesis H1 : µ1 − µ2 > 0 for a known

common population variance of σ = 1.5. Assume that we can observe a maximum of 30 patients

from each group (that is, N1 = N2 = 30). We set α = 0.5% and the Type II error level β = 0.2.

In the design step, we calculate the termination threshold and the operating characteristics of

the MSPRT. As before, the function design.MSPRT() is used to determine the termination

threshold and evaluate the performance of the MSPRT when the null hypothesis is true. The

required commands are as follows:
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> design.out = design.MSPRT(test.type = "twoZ", sigma1 = 1.5,

sigma2 = 1.5, N1.max = 30, N2.max = 30)

> design.out$Type1.attained ##Type 1 error probability

[1] 0.005

> design.out$EN$H0

$Group1 ##avg. sample size from Group 1 under the null

[1] 14.22938

$Group2 ##avg. sample size from Group 2 under the null

[1] 14.22938

> design.out$theta.UMPBT ##UMPBT alternative

[1] 0.9976144

> design.out$termination.threshold ##termination threshold

[1] 27.885

In this code snippet, the values TypeI.attained, EN$H0, and termination.threshold

respectively represent the Type I error probability, the average sample size required from Group 1

and 2 under the null hypothesis, and the termination threshold of the designed MSPRT.

Normally, we must also find the operating characteristics of the test at several alternative values.

For the UMPBT alternative (equal to 0.9976 in this case), these values can be obtained by giving

the following command.

> OC.out = OCandASN.MSPRT(theta = 0.9976144,

design.MSPRT.object = design.out)

> OC.OC.out$acceptH0.prob ##Type II error at the UMPBT alternative

[1] 0.509531

> OC.out$EN1 ##avg. sample size from Group 1 at the UMPBT alternative

[1] 25.31669

> OC.out$EN2 ##avg. sample size from Group 2 at the UMPBT alternative

[1] 25.31669
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The values returned from this function call include theta, acceptH0.prob, EN1, and

EN1. They are interpreted as the effect size where the performace is evaluated, the Type II error

probability, the average sample size required from Group 1 at the UMPBT alternative, and the

average sample size required from Group 2 at the UMPBT alternative, respectively.

To obtain the operating characteristics at arbitrary values of the alternative hypothesis, suppose

we wish to determine the operating characteristics for µ1 − µ2 = 2. Then the following command

may be given.

> OC.out = OCandASN.MSPRT(theta = 2, design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the desired alternative

[1] 0.007961

> OC.out$EN1 ##avg. sample size from Group 1 at the desired alternative

[1] 16.17953

> OC.out$EN2 ##avg. sample size from Group 2 at the desired alternative

[1] 16.17953

The output from this command may be interpreted as before.

Next, in the implementation phase we can apply the test to two sequences of observed values

from both groups. To illustrate this procedure, suppose that we simulate the observed values from

Group 1 and 2 as follows:

> set.seed(1)

> x1 = rnorm(n = 30, mean = 0.998, sd = 1.5)

> x2 = rnorm(n = 30, mean = 0, sd = 1.5)

Given these values, the MSPRT stopping criteria can be tested with the command implement.MSPRT().

Note that the object design.out is obtained using the design.MSPRT() command as above.

> implement.out = implement.MSPRT(obs1 = x1, obs2 = x2,

design.MSPRT.object = design.out)
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> implement.out$decision ##decision

[1] "reject.alt"

> implement.out$n1 ##number of observations required from Group 1

[1] 30

> implement.out$n2 ##number of observations required from Group 2

[1] 30

This output shows that the alternative hypothesis is rejected after using the maximum number

of available samples from each group.

If plot.it = 2 (the default), the call to implement.MSPRT() also returns a sequential

comparison plot similar to that depicted in Figure A.4. This particular plot shows that Ln reaches

N = 30 without reaching a decision. But the likelihood ratio at the maximum sample size is

approximately L30 = 16.74 (stored in implement.out$LR), which is below the termination

threshold 27.885. So the test rejects the alternative after observing 30 samples from each group.

A.4.1.5 Two-sample t test for a difference in two population means

Assume the exact setup as in Section A.4.1.4, and suppose we want to test H0 : µ1 − µ2 = 0

against H1 : µ1 − µ2 > 0, but the common population variance is unknown.

In the design step, we calculate the termination threshold and the operating characteristics of

the MSPRT. The required commands follow:

> design.out = design.MSPRT(test.type = "twoT", N1.max = 30, N2.max = 30)

> design.out$Type1.attained ##Type 1 error probability

[1] 0.005

> design.out$EN$H0

$Group1 ##avg. sample size from Group 1 under the null

[1] 13.93484

$Group2 ##avg. sample size from Group 2 under the null

[1] 13.93484
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> design.out$termination.threshold ##termination threshold

[1] 33.243

In this code snippet, the values Type1.attained, EN$H0, and termination.threshold

represent the Type I error probability, the average sample size required from each group under the

null hypothesis, and the termination threshold of the designed MSPRT, respectively.

To obtain the operating characteristics at arbitrary values of the alternative hypothesis, say,

µ1 − µ2 = 2, the following command may be given.

> OC.out = OCandASN.MSPRT(theta = 2, design.MSPRT.object = design.out)

> OC.out$acceptH0.prob ##Type II error at the UMPBT alternative

[1] 4.9e-05

> OC.out$EN1 ##avg. sample size from Group 1 at the desired alternative

[1] 15.61961

> OC.out$EN2 ##avg. sample size from Group 2 at the desired alternative

[1] 15.61961

The output from this command may be interpreted as before.

Next, in the implementation phase we can apply the test to two sequences of observed values

from both groups. To illustrate this procedure, we use the same x1 and x2 as in Section A.4.1.4:

> set.seed(1)

> x1 = rnorm(n = 30, mean = 0.998, sd = 1.5)

> x2 = rnorm(n = 30, mean = 0, sd = 1.5)

Given these values, the MSPRT stopping criteria can be tested with the command implement.MSPRT().

Note that the value of termination.threshold is obtained using the design.MSPRT()

command above.

> implement.out = implement.MSPRT(obs1 = x1, obs2 = x2,
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design.MSPRT.object = design.out)

> implement.out$decision ##decision

[1] "reject.null"

> implement.out$n1 ##number of observations required from Group 1

[1] 30

> implement.out$n2 ##number of observations required from Group 2

[1] 30

This output shows that the null hypothesis is rejected after observing the maximum available

number of 30 patients from each group.

If plot.it = 2 (the default), the call to implement.MSPRT() also returns a sequential

comparison plot similar to that depicted in Figure A.4.1.5. This particular plot shows that Ln

reaches N = 30 without reaching a decision. But the likelihood ratio at the maximum sample size

is approximately L30 = 40.615 (stored in implement.out$LR), which is above the termination

threshold 33.243. So the test rejects the null after observing 30 samples from each group.

A.4.2 Results from simulation studies

In this section we describe in more detail the simulation results from the main article. We

examine one-sample tests for a binomial proportion, z tests and t tests of size α = 0.05 and 0.005.

For simplicity, we examine one-sided tests with alternative hypotheses of the form H1 : θ > θ0.

We also assume that the targeted power of the test is 80% (i.e., β = 0.2). Two-sided tests, tests of

alternative hypotheses of the form H1 : θ < θ0, and tests with different Type I or Type II errors are

handled similarly. We compare the MSPRTs to standard fixed-design tests having the same size α,

sample size N , and Type II error β = 0.2. Given N and α for fixed-design tests, we define θa, the

fixed-design alternative, as the alternative parameter value (effect size) that provides the specified

β.

Figures A.6 through A.8 display the average proportion of the fixed-design sample size N

needed in a MSPRT to achieve nearly equivalent Type I and Type II errors. In all plots, Type I errors

are maintained. The subplots on the right depict that average power achieved at the corresponding
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size (N ) used before the MSPRT terminates in favor of the null or alternative hypothesis. The plot
on the right displays the average power of the test against its targeted value of 0.8. In both plots,
the operating characteristics under the alternative are evaluated at the corresponding fixed-design
alternatives.
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Figure A.7: One-sample t test that a population mean is 0. Hypothesis test of H0 : θ = 0 vs.
H1 : θ > 0. In contrast to Figure A.6, the population standard deviation is assumed to be unknown.
The curves in the left plot represent the average proportion of the maximum sample size (N )
used before the MSPRT terminates in favor of the null or alternative hypothesis. The plot on
the right displays the average power of the test against its targeted value of 0.8. In both plots, the
operating characteristics under the alternative are evaluated at the corresponding fixed-design point
alternatives.
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Figure A.8: One-sample test that a binomial proportion equals 0.2. Hypothesis test ofH0 : θ = 0.2
vs. H1 : θ > 0.2. The curves in the left plot represent the average proportion of the maximum
sample size (N ) used before the MSPRT terminates in favor of the null or alternative hypothesis.
The plot on the right displays the average power of the test against its targeted value of 0.8. In
both plots, the operating characteristics under the alternative are evaluated at the corresponding
fixed-design point alternatives.
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fixed-design point alternatives.

The plot provided in Figure A.6 for a one-sided z test is nearly indistinguishable from the

corresponding plots obtained for one-sample t tests and tests of a binomial proportion. For the

one-sample z test and the proportion test, we get curves similar to those in Figure A.6. In the

case of the proportion test, the discreteness of binomial data causes some non-monotonicity in the

proportion of the maximum sample size that is required to reach a decision. This feature of the plot

corresponds to the non-monotonicity of power curves for fixed-design tests when sample sizes are

increased. For a given a choice ofN , the R package MSPRT finds an “ideal” maximum sample size

that accounts for this non-monotonicity. We refer to these values as the “effective sample sizes.” In

the proportion test, we illustrate the figure using only those values as the maximum sample sizes.

This point is further discussed in Section A.4.4.

We next provide the results from simulation studies to examine the potential benefit that the

MSPRT can provide in offsetting the increase of sample size that would be incurred if the bar for

declaring a result “statistically significant” were moved from p < 0.05 to p < 0.005. Specifically,

we compare the sample sizes needed to achieve statistical significance at the 5% level in standard

fixed-design tests to the average sample size needed to achieve statistical significance at the 0.5%

level using the MSPRT.

From results cited in the article, this comparison is straightforward if the null hypothesis is

true. If not, care must be taken to make sure that the same alternative hypotheses are compared

at both levels of significance under the fixed and MSPRT designs. To make this comparison, we

determine the θ∗ that achieves the targeted Type II error in a fixed-design test of size 0.05. For that

θ∗, we next determine the N∗ needed to achieve the same Type II error in a fixed-design test of size

α = 0.005. We then define that N∗ to be the maximum sample size for the MSPRT.

A.4.3 Computing the UMPBT alternative

The UMPBT alternative is a key component of the MSPRT design. In this section we illustrate

how this alternative can be obtained using the R package.
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Figure A.9: One-sample z test that a population mean equals 0. Curves in the left plot represent the
average multiple of the sample size in a fixed-design test of size 0.05 required in a MSPRT of size
0.005 of approximately the same power. Average sample sizes are dependent on the proportion
of tested null hypotheses that are true. The MSPRT maintains a Type I error of 0.005, and its
power at θ∗ approximately equals 0.8 for the indicated proportion of N∗ (the sample size of the
corresponding fixed-design test). The power of the MSPRT is depicted in the plot on the right.
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Figure A.10: One-sample t test that a population mean is 0. Curves in the left plot represent the
average multiple of the sample size in a fixed-design test of size 0.05 required in a MSPRT of size
0.005 of approximately the same power. Average sample sizes are dependent on the proportion
of tested null hypotheses that are true. The MSPRT maintains a Type I error of 0.005, and its
power at θ∗ approximately equals 0.8 for the indicated proportion of N∗ (the sample size of the
corresponding fixed-design test). The power of the MSPRT is depicted in the plot on the right.
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Figure A.11: One-sample test that a binomial proportion equals 0.2. Curves in the left plot repre-
sent the average multiple of the sample size in a fixed-design test of size 0.05 required in a MSPRT
of size 0.005 of approximately the same power. Average sample sizes are dependent on the pro-
portion of tested null hypotheses that are true. This proportion (π0) is coded by color, as indicated.
The MSPRT maintains a Type I error of 0.005, and its power at θ∗ approximately equals 0.8 for the
indicated proportion of N∗ (the sample size of the corresponding fixed-design test). The power of
the MSPRT is depicted in the plot on the right.
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A.4.3.1 The z test for a population mean

Consider the test in Section A.4.1.1. To find the UMPBT alternative for a z test, we can use the

function UMPBT.alt(). This command is executed as follows:

> UMPBT.alt(test.type = "oneZ", theta0 = 3, N = 30, Type1 = 0.005, sigma = 1.5)

[1] 3.7054

A.4.3.2 The t test for a population mean

Similar to the z test, the function UMPBT.alt() also calculates the alternative for a t test.

From (A.12), it follows that the alternative is data-dependent. Thus, we need to compute the

UMPBT alternative after acquiring each data point. In order to do that, we need to specify either

the sequentially observed data or the standard deviation (i.e., s =
√∑

(xi − x̄)2/(n− 1) ) of the

data.

Consider again the test in Section A.4.1.2 with data x:

> set.seed(1)

> x = rnorm(n = 30, mean = 5, sd = 1.5)

Suppose we want to find the UMPBT alternative after observing the fifth data value. We then

need to specify either the data x[1:5] or the standard deviation (sd) of these data, which is

roughly 1.44, in UMPBT.alt(). The required commands are as follows:

> UMPBT.alt(test.type = "oneT", theta0 = 3, N = 30, Type1 = 0.005, obs = x[1:5])

[1] 3.725457

>

> sd(x[1:5]) ##sd of the data x[1:5]

[1] 1.441559

>

> UMPBT.alt(test.type = "oneT", theta0 = 3, N = 30, Type1 = 0.005,
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sd.obs = 1.441559)

[1] 3.725457

A.4.3.3 Test for a binomial proportion

In Table 1 of the main article we mentioned that the UMPBT alternative used by the MSPRT is

a mixture distribution of two points. The function UMPBT.alt() numerically computes this mix-

ture. For illustration, consider the testing problem in Section A.4.1.3. We calculate the alternative

for this case with the following command:

> UMPBT.alt(test.type = "oneProp", theta0 = 0.2, N = 30, Type1 = 0.005)

$theta

[1] 0.3666727 0.4000178

$mix.prob

[1] 0.2959777 0.7040223

From the output, we see that the UMPBT alternative is a mixture distribution of the two points

0.3667 and 0.4 with probabilities 0.296 and 0.704, respectively. This output corresponds to the

solutions of (A.22) and the value of ψ defined in (A.21). The alternative illustrated above is a

slight modification of what is originally defined as the UMPBT point alternative in [16]. Note that

the original alternative is always the second component (theta[2] in the previous output) of the

UMPBT alternative used by the MSPRT. This output corresponds to the solution of (A.20).

A.4.3.4 Two-sample z test for a difference in two population means

We again consider the testing problem in Section A.4.1.4. To find the UMPBT alternative for a

two-sample z test, we can similarly use the function UMPBT.alt(). This command is executed

as follows:
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> UMPBT.alt(test.type = "twoZ", N1 = 30, N2 = 30, Type1 = 0.005,

sigma1 = 1.5, sigma2 = 1.5)

[1] 0.9976144

A.4.3.5 Two-sample t test for a difference in two population means

Similar to the two-sample z test, the function UMPBT.alt() calculates the alternative for a

two-sample t test. From [11], it follows that the alternative is data-dependent. Thus, we need to

compute the UMPBT alternative after acquiring each data point from both groups. In order to

calculate this, we need to specify either the sequentially observed data from two groups or the

estimated pooled standard deviation.

We again consider the testing problem in Section A.4.1.5 with data x1 and x2:

> set.seed(1)

> x1 = rnorm(n = 30, mean = 0.998, sd = 1.5)

> x2 = rnorm(n = 30, mean = 0, sd = 1.5)

Suppose we want to find the UMPBT alternative after observing the fifth observation from

each group. We then need to specify either the data (x1[1:5] and x2[1:5]) itself or the esti-

mated pooled standard deviation of these data, which is roughly 1.005, in umpbt.twoT(). The

commands are as follows:

> UMPBT.alt(test.type = "twoT", N1 = 30, N2 = 30, Type1 = 0.005,

obs1 = x1[1:5], obs2 = x2[1:5])

[1] 1.004799

>

> sqrt(((5-1)*var(x1[1:5]) + (5-1)*var(x2[1:5]))/(5+5-2)) ## estimated pooled sd

[1] 1.461191

>

> UMPBT.alt(test.type = "twoT", N1 = 30, N2 = 30, Type1 = 0.005, pooled.sd = 1.461191)

[1] 1.004799
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A.4.4 Obtaining the “effective sample size" in a proportion test

Because of the discreteness issue in a proportion test, power does not increase monotonically

withN when Type I error is exactly maintained. We recommend choosingN to make the expected

sample size as small as possible. To accomplish this, a function named effective.N() is

defined in the MSPRT package.

To illustrate this function, suppose we want to test H0 : p = 0.2 against H1 : p > 0.2 at α =

0.005 with at most 30 samples. Given this choice ofN = 30, we use effectiveN.oneProp()

to determine the maximum sample size that should be used in designing the MSPRT. The command

to do this is as follows:

> effectiveN.oneProp(N = 30, theta0 = 0.2)

[1] 28

From the output, we see that the recommended design is based on N = 28 rather than N = 30.

If plot.it = T (the default), the call to effective.N() also returns a plot similar to that

depicted in Figure A.12. This plot shows the way an efficient N is chosen, based on decreasing

point UMPBT alternatives. The green circled points correspond to the possible choices of N . The

largest is chosen as the “effective” N .

A.4.5 Finding N∗

In the main article we compared tests conducted at two levels of significance, 0.05 and 0.005.

The comparison was based on the number of samples needed to achieve the higher significance

level while still maintaining a prespecified power for the fixed point alternative. In those compar-

isons we set the point alternative to be the fixed-design alternative for the 5% test.

To determine the fixed-design alternative in a z test for testing H0 : µ = 0 with known σ = 1,

α = 0.05 and β = 0.2, the following command can be used:

> fixed_design.alt(test.type = "oneZ", theta0 = 0, sigma = 1, N = 30,

Type1 = 0.05, Type2 = 0.2)
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Figure A.12: The “effective" N for testing H0 : p = 0.2 at α = 0.005.

[1] 0.4539661

Now consider finding N∗. Suppose we know N for the 5% test, and we want at least 80%

power (the default) at the fixed-design alternative with α = 0.05 (that is, at 0.454 for the z test

described as above). Given these constraints, the function find.samplesize() defined in the

MSPRT package finds the required N∗. In this case, the increased sample size in the z test for

N = 30 for the MSPRT of size 0.5% can be found using the following command:

> Nstar(test.type = "oneZ", N = 30)

[1] 57

The output reveals that we need 57 samples, about twice the value of N , to achieve the higher

significance level of 0.005 while maintaining approximately the same 80% power at the alternative

0.454. If plot.it = T (the default), the call to find.samplesize() also returns a plot
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similar to that depicted in Figure A.13. This plot shows that we at least need 57 samples (red

point) to meet our requirements.
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APPENDIX B

SUPPLEMENTARY MATERIAL: EFFICIENT ALTERNATIVES FOR BAYESIAN

HYPOTHESIS TESTS IN PSYCHOLOGY

The supplemental materials address several topics not covered in the main article. First, we

provide analytic expressions for Bayes factors in one-sided tests for normal means and differences

in normal means. Following this, we provide proofs of these theorems and those stated in the main

article. Finally, we provide summaries of operating characteristics for z and two-sample t tests that

show that these tests perform similarly to the one-sample t test discussed in the main article.

B.1 Bayes factors for one-sided tests

S1. One-sample, one-sided, known variance test. Assume the conditions of [1] in the main ar-

ticle hold, except that now H1 : µ ∼ NM+(0, τ 2σ2). Then the Bayes factor in favor of H1

can be expressed as

BF10(x) = 2(nτ 2 + 1)−3/2

[
(1 + 2w)ew

(
1−N (

√
w/2)

)
+

√
2w

π

]
, (B.1)

where

r =
nτ 2

1 + nτ 2
, x̄ =

1

n

n∑
i=1

xi, Z =
√
nx̄/σ, and w = rZ2/2, (B.2)

and N (x) is the standard normal distribution function.

S2. One-sample, one-sided, unknown variance test. Suppose the conditions in [2] of the main

article hold, except now that σ2 is unknown. Suppose further that the Jeffreys’ prior density is

assumed under both hypotheses. In this case, the closed-form expression for the Bayes factor

is more complicated because it depends on the Gauss hypergeometric function, 2F1(a, b, c, x)

and the beta function, B(a, b). These functions are available in many statistical and math-
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ematical software packages, including R (see package “hypergeo” for 2F1 [104]). Using

these functions, the Bayes factor in favor of the alternative hypothesis can be expressed as

BF10(x) =



c1

[
f1d

2
1

(
1− T2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1|d1|2(1−ν)+

f3 |d1|3−2ν ] if x̄ < 0,

c1B (3/2, ν − 3/2) if x̄ = 0,

c1

[
f1d

2
1

(
1− T2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1|d1|2(1−ν)+

f3 |d1|3−2ν + 2f4|d1|3] if x̄ > 0,

(B.3)

where

c1 =
4Γ (ν)√

π(nτ 2 + 1)3/2Γ (n/2)
, (B.4)

q =
rn

n− 1
, S =

n∑
i=1

(xi − x̄)2, s2 =
S

(n− 1)
, T =

√
nx̄

s
, (B.5)

G = 1 +
T 2

n− 1
, and H = 1 +

(1− r)T 2

(n− 1)
. (B.6)

Variables x̄, S, r, T , G, and H are defined in (B.2, B.5, B.6), ν = (n + 3)/2, and d1 =

√
rT/

√
(n− 1)H . The variables f1 − f4 are defined as

f1 = B (ν − 1/2, 1/2) , f2 =
2F1 (ν, ν − 1; ν;−1/d2

1)

(ν − 1)
, (B.7)

f3 =
2F1 (ν, ν − 3/2; ν − 1/2;−1/d2

1)

(2ν − 3)
, f4 =

2F1 (ν, 3/2; 5/2;−d2
1)

3
. (B.8)

The function T2ν−1(·) denotes the cumulative distribution function of a Student t random

variable on (2ν − 1) degrees of freedom.

S3. Two-sample, one-sided, known variance test. Assume the conditions in [3] of the main ar-

ticle hold, except that now H1 : µ2 − µ1 ∼ NM+(0, τ 2σ2). Then the Bayes factor in favor
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of H1 can be expressed as

BF10(x1,x2) = 2
(
mτ 2 + 1

)−3/2

[
ew (1 + 2w)

(
1−N

(√
w/2

))
+

√
2w

π

]
, (B.9)

where

x̄i =

ni∑
j=1

xj,i/ni, n = n1 + n2, m =
n1n2

n1 + n2

, (B.10)

r =
mτ 2

mτ 2 + 1
, Z =

√
m(x̄2 − x̄1)/σ and w =

rZ2

2
. (B.11)

and N is again the standard normal distribution function.

S4. Two-sample, one-sided, unknown variance test. Suppose the conditions in [4] of the main

article hold, except now that σ2 is unknown. Suppose further that the Jeffreys’ prior density

for σ2 is assumed under both hypotheses. Then the Bayes factor in favor of the alternative

hypothesis can be expressed as

BF10(x1,x2) =



c1

[
f1d

2
1

(
1− T2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1|d1|2(1−ν)+

f3 |d1|3−2ν ] if x̄2 < x̄1,

c1B (3/2, ν − 3/2) if x̄ = 0,

c1

[
f1d

2
1

(
1− T2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1|d1|2(1−ν)+

f3 |d1|3−2ν + 2f4|d1|3] if x̄2 > x̄1,

(B.12)

where

c1 =
2Γ (ν)√

π(mτ 2 + 1)3/2Γ ((n− 1)/2)
, (B.13)

T =

√
m(x̄1 − x̄2)√
S/(n− 2)

, G = 1 +
T 2

(n− 2)
, H = 1 +

(1− r)T 2

(n− 2)
. (B.14)

and ν = n/2 + 1. The variables f1 − f4 are as defined in (B.7,B.8), but with d1 =

√
rT/

√
(n− 2)H .
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B.2 Proofs of theorems for one-sample tests

B.2.1 Variance known

B.2.1.1 Two-sided tests

Suppose x = (x1, . . . , xn) are i.i.d. observations from a N(µ, σ2) distribution with σ2 known.

The null hypothesis specifies thatH0 : µ = 0. UnderH1, we assume that µ is drawn from a normal

moment prior density specified by

pNM(µ | τ 2, σ2) =
1√

2πτ 3σ3
µ2 exp

(
− µ2

2τ 2σ2

)
for µ ∈ R. (B.15)

Theorem B.2.1. Under the null hypothesis H0 : µ = 0 and σ2 known, the marginal density of x is

given by

m0(x |σ2) = c exp

(
−nx̄

2

2σ2

)
, (B.16)

where

x̄ =
1

n

n∑
i=1

xi, S =
n∑
i=1

(xi − x̄)2, and c = (2πσ2)−n/2 exp

(
− S

2σ2

)
. (B.17)

Proof: The marginal density under the data under the simple null hypothesis is simply the sam-

pling density of the data. Thus,

m0(x |σ2) =
n∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
(B.18)

= (2πσ2)−n/2 exp

(
− S

2σ2
− n(x̄− µ)2

2σ2

)
. (B.19)

Noting µ = 0 under H0, the result follows.

�

Theorem B.2.2. Under the alternative hypothesis H1 that µ is drawn a priori from the normal
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moment prior (B.15) and σ2 known, the marginal density of x is given by

m1(x |σ2) =
c a3/2

τ 3σ2

(
σ2 + an2x̄2

)
exp

[
− anx̄2

2τ 2σ2

]
, (B.20)

where a = 1/(n+ τ−2) and c is defined in (B.17).

Proof: Substituting the expression for the sampling density of the data obtained in the proof of

Theorem B.2.1, multiplying by the prior on µ, and integrating to obtain the marginal density leads

to

m1(x |σ2) =

∫ ∞
−∞

c√
2πτ 3σ3

µ2 exp

(
− µ2

2τ 2σ2

)
exp

(
−n(x̄− µ)2

2σ2

)
dµ (B.21)

=

∫ ∞
−∞

c√
2πτ 3σ3

µ2 exp

[
− 1

2σ2

(
µ2

τ 2
+ n(x̄− µ)2

)]
dµ. (B.22)

Because
µ2

τ 2
+ n(x̄− µ)2 =

1

a
(µ− anx̄)2 +

anx̄2

τ 2
, (B.23)

it follows that

m1(x |σ2) =

∫ ∞
−∞

c√
2πτ 3σ3

µ2 exp

{
− 1

2σ2

[
1

a
(µ− anx̄)2 + nx̄2 − an2x̄2

]}
dµ(B.24)

=

√
ac

τ 3σ2
exp

(
− anx̄2

2τ 2σ2

)∫ ∞
−∞

1√
2πaσ

µ2 exp

[
−(µ− anx̄)2

2aσ2

]
dµ. (B.25)

The integral represents the second moment of a normal distribution with mean anx̄ and variance

aσ2. Thus

m1(x |σ2) =

√
ac

τ 3σ2

[
aσ2 + (anx̄)2

]
exp

(
− anx̄2

2τ 2σ2

)
. (B.26)

�

Theorem B.2.3. Under the assumptions of Thm B.2.1 and B.2.2, the Bayes factor in favor of the
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alternative hypothesis H1 against the null hypothesis H0 is given by

BF10(x |σ2) = (nτ 2 + 1)−3/2
(
1 + r T 2

)
exp

(
r T 2

2

)
, (B.27)

where r = nτ 2/ (nτ 2 + 1) and T =
√
nx̄/σ.

Proof: Following the definition of the Bayes factor and substituting the expression for the marginal

density of x from Thm B.2.1 and B.2.2 leads to

BF10(x |σ2) (B.28)

=
m1(x |σ2)

m0(x |σ2)
(B.29)

=
1

σ2(nτ 2 + 1)3/2

[
σ2 +

nx̄2

1 + (nτ 2)−1

]
exp

(
n2τ 2x̄2

2σ2(nτ 2 + 1)

)
(B.30)

= (nτ 2 + 1)−3/2
(
1 + r T 2

)
exp

(
r T 2

2

)
. (B.31)

�

B.2.1.2 One-sided tests

Assume the conditions of the two-sided test again hold, except that we now wish to test H0 :

µ = 0 versus H1 : µ > 0. To this end, under H1 we assume that µ is drawn from a normal moment

prior truncated on (0,∞). The density is specified by

pNM(µ | τ 2, σ2) =

√
2√

πτ 3σ3
µ2 exp

(
− µ2

2τ 2σ2

)
for µ > 0. (B.32)

Under this setup we note that the marginal density of x under the null hypothesis H0 : µ = 0 is the

same as in Theorem B.2.1.

Theorem B.2.4. Under the alternative hypothesis H1 that µ is drawn a priori from the normal
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moment prior (B.32) and σ2 known, the marginal density m1(x |σ2) of x is given by

c

(nτ 2 + 1)3/2
exp

(
− d2

nτ 2

) [(
2d2 + 1

)
{1− erf (−d)}+

2d√
π

exp
(
−d2

)]
, (B.33)

where a is as in Theorem B.2.2, c is as in Theorem B.2.1, and d =
√
a nx̄/

√
2σ.

Proof: Substituting the expression for the sampling density of the data obtained in the proof of

Theorem B.2.1, multiplying by the prior (B.32) on µ, and integrating to obtain the marginal density

leads to

m1(x |σ2) =

∫ ∞
0

c
√

2√
πτ 3σ3

µ2 exp

(
− µ2

2τ 2σ2

)
exp

(
−n(x̄− µ)2

2σ2

)
dµ. (B.34)

Using the identity (B.23) and using 2.1.3.1 from [105] leads to

m1(x |σ2) =
c
√

2√
πτ 3σ3

exp

(
− anx̄2

2τ 2σ2

)∫ ∞
0

µ2 exp

[
−(µ− anx̄)2

2aσ2

]
dµ (B.35)

=
c
√

2√
πτ 3σ3

exp

(
− anx̄2

2τ 2σ2

)
× (B.36)[√

πa3/2σ3

√
2

(
an2x̄2

σ2
+ 1

){
1− erf

(
−
√
anx̄√
2σ

)}
+ (B.37)

a2nx̄σ2 exp

(
−an

2x̄2

2σ2

)]
(B.38)

=
ca3/2

τ 3
exp

(
− anx̄2

2τ 2σ2

)
× (B.39)[(

an2x̄2

σ2
+ 1

){
1− erf

(
−
√
anx̄√
2σ

)}
+

√
2a nx̄√
πσ

exp

(
−an

2x̄2

2σ2

)]
(B.40)

=
c

(nτ 2 + 1)3/2
exp

(
− d2

nτ 2

)
× (B.41)[(

2d2 + 1
)
{1− erf (−d)}+

2d√
π

exp
(
−d2

)]
. (B.42)

�

Theorem B.2.5. Under the assumptions stated above, the Bayes factor BF10(x |σ2) in favor of the
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alternative hypothesis H1 against the null hypothesis H0 is given by

(
nτ 2 + 1

)−3/2
exp

(
rT 2

2

)[(
rT 2 + 1

)(
1− erf

(
−
√
rT√
2

))
+

√
2rT√
π

exp

(
−rT

2

2

)]
,

(B.43)

where r = nτ 2/ (nτ 2 + 1) and T =
√
nx̄/σ.

Proof: Following the definition of the Bayes factor and substituting the expression for the marginal

density of x from Thm B.2.1 and B.2.4 leads to

BF10(x |σ2) (B.44)

=
m1(x |σ2)

m0(x |σ2)
(B.45)

=
(
nτ 2 + 1

)−3/2
exp

(
n2τ 2x̄2

2σ2(nτ 2 + 1)

)
× (B.46)[(

n2τ 2x̄2

σ2(nτ 2 + 1)
+ 1

)(
1− erf

(
− nτx̄

σ
√

2 (nτ 2 + 1)

))
+ (B.47)

√
2nτx̄

σ
√
π (nτ 2 + 1)

exp

(
− n2τ 2x̄2

2σ2(nτ 2 + 1)

)]
(B.48)

=
(
nτ 2 + 1

)−3/2
exp

(
rT 2

2

)
× (B.49)[(

rT 2 + 1
)(

1− erf
(
−
√
rT√
2

))
+

√
2rT√
π

exp

(
−rT

2

2

)]
. (B.50)

�

B.2.2 Variance unknown

B.2.2.1 Two-sided tests

As in for the two-sided t test, let x = (x1, . . . , xn) denote i.i.d. observations from a N(µ, σ2)

distribution, but assume now that σ2 unknown. We again wish to testH0 : µ = 0 versusH1 : µ 6= 0.

Under H1, the prior on µ, given σ2, is again specified as a normal moment prior (B.15). To

complete the model specification, under both H0 and H1 we also assume an inverse gamma prior
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on σ2, parameterized here as

π(σ2 |α, β) =
βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

)
for σ2 > 0, (B.51)

with shape parameter α (> 0) and scale parameter β (> 0).

Theorem B.2.6. Under these assumptions and assuming H0 to be true, the marginal density of the

data m(x) is given by

m0(x) =
(2π)−n/2 βα Γ(n/2 + α)

Γ(α)

[
S + nx̄2

2
+ β

]−n/2−α
, (B.52)

where S is as defined in (B.17).

Proof: Since H0 is a point null hypothesis, the prior on µ is a degenerate distribution with all the

mass at µ0. So the marginal density m(x) can be expressed as

m0(x) =

∫
π(σ2 |α, β)

n∏
i=1

φ(xi | 0, σ2) dσ2 (B.53)

=
(2π)−n/2 βα

Γ(α)

∫
(σ2)

−n/2−α−1
exp

[
− 1

2σ2

n∑
i=1

x2
i −

β

σ2

]
dσ2. (B.54)

Noting that the above integral with respect to σ2 is proportional to an Inverse-gamma density yields

(B.52).

�

Theorem B.2.7. Under the assumptions above and assuming H1 is true, the marginal density of

the data m(x) can be expressed as

m1(x) = c∗

[
S + dx̄2

2
+ β

]−n/2−α−1 [
S + dx̄2

2
+ β + ndτ 2x̄2

(
n

2
+ α

)]
, (B.55)
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where x̄, S are as in (B.17), and

c∗ =
(2π)−n/2 βα Γ(n/2 + α)

(nτ 2 + 1)3/2 Γ(α)
, and d =

n

nτ 2 + 1
. (B.56)

Proof: The marginal density m1(x), given τ 2, can be obtained by integrating (B.20) over the prior

on σ2, leading to

m1(x) =

∫
π(σ2 |α, β)× c

σ2(nτ 2 + 1)3/2
exp

[
− dx̄2

2σ2

](
σ2 + ndτ 2x̄2

)
dσ2 (B.57)

=
(2π)−n/2βα

(nτ 2 + 1)3/2 Γ(α)

∫
(σ2)−n/2−α−2 exp

[
− (S + dx̄2 + 2β)

2σ2

](
σ2 + ndτ 2x̄2

)
dσ2.

(B.58)

Noting that the integrals with respect to σ2 are proportional to an Inverse-gamma density results in

m1(x) =
(2π)−n/2βα

(nτ 2 + 1)3/2 Γ(α)

[
Γ

(
n

2
+ α

){
S

2
+
dx̄2

2
+ β

}−n/2−α
+ (B.59)

ndτ 2x̄2 Γ

(
n

2
+ α + 1

){
S

2
+
dx̄2

2
+ β

}−n/2−α−1
]

(B.60)

= c∗

[
S + dx̄2

2
+ β

]−n/2−α−1[
S + dx̄2

2
+ β + ndτ 2x̄2

(
n

2
+ α

)]
. (B.61)

�

Theorem B.2.8. Under the assumptions of Thm B.2.6 and B.2.7, the Bayes factor in favor of the

alternative hypothesis H1 against the null hypothesis H0 is given by

BF10(x) = (nτ 2 + 1)−3/2

(
G

H

)n/2+α(
1 +

q T 2

H

)
, (B.62)

where

r =
nτ 2

nτ 2 + 1
, q =

2r (n/2 + α)

n− 1
, T =

√
nx̄√

S/(n− 1)
, (B.63)
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G = 1 +
T 2

n− 1
+

2β

S
, H = 1 +

(1− r)T 2

n− 1
+

2β

S
. (B.64)

and S is as in (B.17).

Proof: Following the definition of the Bayes factor and substituting the expression for the marginal

density of x from Thm B.2.1 and B.2.2 leads to

BF10(x) (B.65)

=
m1(x)

m0(x)
(B.66)

= (nτ 2 + 1)−3/2

[
(S + nx̄2)/2 + β

(S + dx̄2)/2 + β

]n/2+α[
1 +

n2τ 2x̄2 (n/2 + α)

(nτ 2 + 1)
(
(S + dx̄2)/2 + β

)] (B.67)

= (nτ 2 + 1)−3/2

[
1 + T 2/(n− 1) + 2β/S

1 + T 2/{(nτ 2 + 1)(n− 1)}+ 2β/S

]n/2+α

× (B.68)[
1 +

2τ 2n(n/2 + α)

(nτ 2 + 1)

T 2/(n− 1)

1 + T 2/{(nτ 2 + 1)(n− 1)}+ 2β/S

]
(B.69)

= (nτ 2 + 1)−3/2

(
G

H

)n/2+α(
1 +

q T 2

H

)
. (B.70)

�

B.2.2.2 One-sided tests

Assume the conditions of the two-sided test hold, except that we now wish to test H0 : µ = 0

versus H1 : µ > 0. The prior on µ given σ2 under H1 is specified as (B.32), a normal moment

prior truncated on (0,∞). To complete the model specification, under both H0 and H1 we assume

an inverse gamma prior on σ2 defined by (B.51). Under these assumptions and assuming H0 to be

true, the marginal density of the data m0(x) is the same as in Theorem B.2.6.

Theorem B.2.9. Under the assumptions above and assuming H1 is true, the marginal density of
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the data m1(x) can be expressed as



c∗
(
f1d

2
(
1− F2ν−1

(
−d
√

2ν − 1
))

+ f2 d |d|2(1−ν) + f3 |d|3−2ν
)

if x̄ < 0,

c∗B (3/2, ν − 3/2) if x̄ = 0,

c∗
(
f1d

2
(
1− F2ν−1

(
−d
√

2ν − 1
))

+ f2 d |d|2(1−ν) +

f3 |d|3−2ν + 2f4 |d|3
)

if x̄ > 0,

(B.71)

where x̄, S are as in (B.17), d =
√
a nx̄/

√
2A1, ν = (n+ 3)/2 + α, a = 1/ (n+ τ−2),

c∗ =
(2π)−n/2 4βα Γ(ν)

√
π(nτ 2 + 1)3/2 Γ(α)A

n/2+α
1

, A1 = β +
S

2
+
anx̄2

2τ 2
, (B.72)

f1 = B (ν − 1/2, 1/2) , f2 =
2F1 (ν, ν − 1; ν;−1/d2)

(ν − 1)
, (B.73)

f3 =
2F1 (ν, ν − 3/2; ν − 1/2;−1/d2)

(2ν − 3)
, f4 =

2F1 (ν, 3/2; 5/2;−d2)

3
, (B.74)

B(·, ·) is the Beta function, F2ν−1 is the cdf of the Student’s t distribution (center 0 and scale 1)

with degrees of freedom 2ν − 1, and 2F1 is the Gauss hypergeometric function.

Proof: Substituting the expression for the sampling density of the data obtained in the proof of

Theorem B.2.1, multiplying by the priors on µ |σ2 and σ2, and integrating to obtain the marginal

density given τ 2 leads to

m1(x) =

∫ ∞
0

∫ ∞
0

βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

) √
2√

πτ 3σ3
µ2 exp

(
− µ2

2τ 2σ2

)
× (B.75)

(2πσ2)
−n/2

exp

(
− S

2σ2
− n(x̄− µ)2

2σ2

)
dσ2 dµ (B.76)

=
βαΓ (ν)

2(n−1)/2 π(n+1)/2 τ 3 Γ(α)

∫ ∞
0

µ2

[
β +

S

2
+

1

2

(
µ2

τ 2
+ n(x̄− µ)2

)]−ν
dµ. (B.77)
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where ν = (n+ 3)/2 + α. Define A1 = β + S/2 + anx̄2/2τ 2 and

A2 =
βαΓ (ν)

2(n−1)/2 π(n+1)/2 τ 3 Γ(α)Aν1
. (B.78)

Using the identity (B.23) and some algebraic simplifications lead to

m1(x) =A2

∫ ∞
0

µ2

(
1 +

(µ− anx̄)2

2aA1

)−ν
dµ (B.79)

=A2

∫ ∞
−anx̄

(u+ anx̄)2

(
1 +

u2

2aA1

)−ν
du (B.80)

=A2

(
a2n2x̄2 I0 (−anx̄) + 2anx̄ I1 (−anx̄) + I2 (−anx̄)

)
(B.81)

=A2 (m10 +m11 +m12) , (B.82)

where

Ik(g) =

∫ ∞
g

uk
(

1 +
u2

2aA1

)−ν
du for g ∈ R, k ≥ 0, (B.83)

m10 = a2n2x̄2 I0 (−anx̄) , m11 = 2anx̄ I1 (−anx̄) , m12 = I2 (−anx̄) . (B.84)

For I0(−anx̄), first doing a change of variable with w/
√

2ν − 1 = u/
√

2aA1 and then some

algebraic simplifications lead to

I0 (−anx̄) =

∫ ∞
−anx̄

(
1 +

u2

2aA1

)−ν
du (B.85)

=

(
2aA1

2ν − 1

)1/2 ∫ ∞
−nx̄

√
(2ν−1)a

2A1

(
1 +

w2

2ν − 1

)−((2ν−1)+1)/2

dw (B.86)

=
√

2aA1 B ((2ν − 1)/2, 1/2)

1− F2ν−1

−nx̄√(2ν − 1)a

2A1

 , (B.87)

where B(·, ·) is the Beta function and F2ν−1 is the cdf of the Student’s t distribution (center 0 and
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scale 1) with degrees of freedom 2ν − 1. Following this we get

m10 = a2n2x̄2 I0 (−anx̄) = (2aA1)3/2 f1d
2
(
1− F2ν−1

(
−d
√

2ν − 1
))
, (B.88)

where d =
√
a nx̄/

√
2A1 and f1 = B (ν − 1/2, 1/2). For I1(−anx̄) and I2(−anx̄), we note that

for integers k,

Ik(g) =


Ik (|g|) if g ≥ 0, or g < 0 and k is odd,

Ik (|g|) + 2Jk (|g|) if g < 0 and k is even,
(B.89)

where for g > 0,

Ik(g) =

∫ ∞
g

uk
(

1 +
u2

2aA1

)−ν
du =

1

2

∫ ∞
g2

w(k+1)/2−1

(
1 +

w

2aA1

)−ν
dw, (B.90)

Jk(g) =

∫ g

0

uk
(

1 +
u2

2aA1

)−ν
du =

1

2

∫ g2

0

w(k+1)/2−1

(
1 +

w

2aA1

)−ν
dw. (B.91)

Using equations 3.194.1–3.194.3 from [106] to this leads to

Ik(g) =


gk+1−2ν (2aA1)ν

2ν−k−1 2F1 (ν, (2ν − k − 1)/2; (2ν − k + 1)/2;−2aA1/g
2) if g > 0,

(2aA1)(k+1)/2 B ((k + 1)/2, (2ν − k − 1)/2) if g = 0,

(B.92)

and

Jk (g) =
gk+1

k + 1
2F1

(
ν, (k + 1)/2; (k + 3)/2;−g2/2aA1

)
for g > 0, (B.93)

where 2F1 is the Gauss hypergeometric function. To our interest, this results in

I1(an |x̄|) =


(an|x̄|)2(1−ν)(2aA1)ν

2(ν−1) 2F1 (ν, ν − 1; ν;−2A1/an
2x̄2) if x̄ 6= 0,

2aA1 B (1, ν − 1) if x̄ = 0.

(B.94)
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This leads to

m11 =


2anx̄ I1 (an |x̄|) if x̄ 6= 0,

0 if x̄ = 0

=


(2aA1)3/2 f2 d |d|2(1−ν) if x̄ 6= 0,

0 if x̄ = 0.

(B.95)

where f2 = 2F1 (ν, ν − 1; ν;−1/d2) / (ν − 1). Similarly, it also results in

I2(an |x̄|) =


(2aA1)3/2 f3 |d|3−2ν if x̄ 6= 0,

(2aA1)3/2 B (3/2, ν − 3/2) if x̄ = 0,

(B.96)

and

J2(an |x̄|) = (2aA1)3/2 f4 |d|3 , (B.97)

where f3 = 2F1 (ν, ν − 3/2; ν − 1/2;−1/d2) / (2ν − 3) and f4 = 2F1 (ν, 3/2; 5/2;−d2) /3. This

leads to

m12 =


(2aA1)3/2 f3 |d|3−2ν if x̄ < 0,

(2aA1)3/2 B (3/2, ν − 3/2) if x̄ = 0,

(2aA1)3/2 (f3 |d|3−2ν + 2f4 |d|3
)

if x̄ > 0.

(B.98)

Finally, (B.71) follows by combining m10, m11 and m12.

�

Theorem B.2.10. Under the assumptions specified above, the Bayes factor BF10(x) in favor of

the alternative hypothesis H1 against the null hypothesis H0 is given by



C1

(
f1d

2
(
1− F2ν−1

(
−d
√

2ν − 1
))

+ f2 d |d|2(1−ν) + f3 |d|3−2ν
)

if x̄ < 0,

C1B (3/2, ν − 3/2) if x̄ = 0,

C1

(
f1d

2
(
1− F2ν−1

(
−d
√

2ν − 1
))

+ f2 d |d|2(1−ν) +

f3 |d|3−2ν + 2f4 |d|3
)

if x̄ > 0,

(B.99)
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where

C1 =
4Γ (ν)√

π(nτ 2 + 1)3/2Γ (n/2 + α)
, (B.100)

x̄, S are as in (B.17), ν = (n + 3)/2 + α, T , r, G and H are as in (B.63)–(B.64), d =

√
rT/

√
(n− 1)H , and f1 to f4 are as in (B.73)–(B.74) with d is it is defined here.

Proof: Following the definition of the Bayes factor we know that BF10(x) = m1(x)/m0(x). While

substituting the expression for the marginal density of x from Thm B.2.6 and B.2.9 we note that

c∗

m0(x)
=

4Γ (ν)√
π(nτ 2 + 1)3/2Γ (n/2 + α)

(
β + S/2 + nx̄2/2

β + S/2 + nx̄2/2(nτ 2 + 1)

)n/2+α

(B.101)

=
4Γ (ν)√

π(nτ 2 + 1)3/2Γ (n/2 + α)

(
G

H

)n/2+α

. (B.102)

Also, d as in Theorem B.2.9 can be rewritten as

d =

√
rnx̄√

2 (β + S/2 + nx̄2/2(nτ 2 + 1))
=

√
rT√

(n− 1)H
. (B.103)

(B.99) directly follows from combining these.

�

B.3 Proofs of theorems of two-sample tests

B.3.1 Variance known

B.3.1.1 Two-sided tests

Suppose x1 = (x1,1, . . . , x1,n1) and x2 = (x2,1, . . . , x1,n2) are observations from i.i.d.N(µ1, σ
2)

and N(µ2, σ
2) distributions, respectively, and we wish to test H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

To this end, we assume that under both H0 and H1, the prior on µ1 is U(−a, a) for some large a.

Under H1, we further assume that µ2 = µ1 + δ, where

p(δ | τ 2, σ2) =
1√

2πτ 3σ3
δ2 exp

(
− δ2

2τ 2σ2

)
, (B.104)
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a normal moment prior on the difference between the means µ1 and µ2. We let φ(· |µ, σ2) denote a

normal density function with mean µ and variance σ2. With a uniform prior on µ1 and sufficiently

large a, we note that the marginal distributions described below are invariant with respect to the

labeling of samples.

Theorem B.3.1. Under the assumptions above and assuming H1 is true and that σ2 is known, the

marginal density of the data m1(x1,x2 |σ2) is given by

√
2πc1

σ
√
n(mτ 2 + 1)3

(
σ2 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

)
exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

mτ 2 + 1

]}
, (B.105)

where we define the following quantities for i = 1, 2:

x̄i =

ni∑
j=1

xj,i/ni, Si =

ni∑
j=1

(xj,i − x̄i)2, n = n1 + n2 (B.106)

m =
n1n2

n1 + n2

, c1 =
1

2a
(2πσ2)−(n1+n2)/2 exp

[
− 1

2σ2
(S1 + S2)

]
. (B.107)

Proof: When not indicated otherwise, we assume that all sums and products extend from i = 1 to

2, and that integrals extend from −∞ to∞. We also define

c2(δ) = c1 p(δ | τ 2, σ2).

The marginal density m1(x1,x2 |σ2) (ignoring dependence on σ2 and τ 2) can be expressed as

m1(x1,x2 |σ2) (B.108)

=

∫ ∫ a

−a

p(δ | τ 2, σ2)

2a

n1∏
j=1

φ(x1,j |µ1, σ
2)

n2∏
j=1

φ(x2,j |µ1 + δ, σ2)dµ1 dδ (B.109)

.
=

∫ ∫
c2(δ) exp

{
− 1

2σ2

[
n1(x̄1 − µ1)2 + n2(x̄2 − µ1 − δ)2

]}
dµ1 dδ. (B.110)
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Defining b = [n1x̄1 + n2(x̄2 − δ)]/n, completing the square in µ1 and integrating leads to

=

∫ ∫
c2(δ) exp

{
− 1

2σ2

[
n(µ1 − b)2 − nb2 + n1x̄

2
1 + n2(x̄2 − δ)2

]}
dµ1 dδ (B.111)

=

∫
c1δ

2

τ 3σ2
√
n

exp

{
− 1

2σ2

[
δ2

τ 2
+ n1x̄

2
1 + n2(x̄2 − δ)2 − nb2

]}
dδ. (B.112)

Completing the square in δ and defining d = [m(x̄2 − x̄1)] and f = (m+ 1/τ 2) leads to

=

∫
c1δ

2

τ 3σ2
√
n

exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2 − d2

f
+ f

(
δ − d

f

)2
]}

dδ (B.113)

Noting that the integral is proportional to the second moment of a normal density with mean d/f

and variance σ2/f results in

=

√
2πc1

τ 3σ
√
nf

(
σ2

f
+
d2

f 2

)
exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

mτ 2 + 1

]}
. (B.114)

=

√
2πc1

σ
√
n(mτ 2 + 1)3

(
σ2 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

)
exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

mτ 2 + 1

]}
(B.115)

�

Theorem B.3.2. Under the assumptions of Theorem B.3.1, but now assuming H0 to be true, the

marginal density of the data is given by

m0(x1,x2 |σ2) =

√
2πσc1√
n

exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

]}
. (B.116)

Proof: Using the proof of Theorem 1, divide equation (B.112) by p(δ | τ 2, σ2) and set δ =

0 to obtain the marginal density of the data under H0 after marginalizing over µ ∼ U(−a, a).

Simplifying the result in the exponential term yields (B.116).

�
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Theorem B.3.3. Under the assumptions of Thm B.3.1 and B.3.2, the Bayes factor in favor of the

alternative hypothesis H1 against the null hypothesis H0 is given by

BF10(x1,x2 |σ2) = (mτ 2 + 1)−3/2
(
1 + rT 2

)
exp

(
rT 2

2

)
, (B.117)

where r = 1/ (1 + (mτ 2)−1) and T =
√
m(x̄2 − x̄1)/σ.

Proof: Following the definition of the Bayes factor and substituting the expression for the marginal

density of (x1,x2) from Thm B.3.1 and B.3.2 leads to

BF10(x1,x2 |σ2) (B.118)

=
m1(x1,x2 |σ2)

m0(x1,x2 |σ2)
(B.119)

=
1

σ2(mτ 2 + 1)3/2

[
σ2 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

]
exp

[
m2τ 2(x̄1 − x̄2)2

2σ2(mτ 2 + 1)

]
(B.120)

= (mτ 2 + 1)−3/2
(
1 + rT 2

)
exp

(
rT 2

2

)
. (B.121)

�

B.3.1.2 One-sided tests

Assume the conditions for the two-sided, two-sample z test hold, except that we now wish to

test H0 : µ1 = µ2 versus H1 : µ2 > µ1. To this end, under both H0 and H1 we similarly assume

the U(−a, a) prior on µ1 is for some large a. Under H1 we still assume that µ2 = µ1 +δ except the

prior on δ is assumed to be a normal moment prior truncated on (0,∞). The density is specified

by

p+(δ | τ 2, σ2) =

√
2√

πτ 3σ3
δ2 exp

(
− δ2

2τ 2σ2

)
for δ > 0. (B.122)

Under this setup we note that the marginal density of x under the null hypothesis H0 : µ = 0 is the

same as in Theorem B.3.2.

Theorem B.3.4. Under the assumptions above and assuming H1 is true and that σ2 is known, the
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marginal density of the data m1(x1,x2 |σ2) is given by

√
2πσc1√

n (mτ 2 + 1)3/2
exp

(
− d2

1

mτ 2

)[(
2d2

1 + 1
)

(1− erf (−d1)) +
2d1√
π

exp
(
−d2

1

)]
, (B.123)

where m, x̄1, x̄2, S1, S2, c1 are as in (B.106)–(B.107), d = m(x̄2 − x̄1), f = (m + 1/τ 2), and

d1 = d/σ
√

2f .

Proof: The marginal density m1(x1,x2 |σ2) (ignoring dependence on σ2 and τ 2) can be expressed

as

m1(x1,x2 |σ2) =

∫ ∞
0

∫ a

−a

p+(δ | τ 2, σ2)

2a

n1∏
j=1

φ(x1,j |µ1, σ
2)

n2∏
j=1

φ(x2,j |µ1 + δ, σ2)dµ1 dδ

(B.124)

Marginalizing over µ1 and following (B.112) leads to

m1(x1,x2 |σ2)
.
=

∫ ∞
0

2c1δ
2

τ 3σ2
√
n

exp

{
− 1

2σ2

[
δ2

τ 2
+ n1x̄

2
1 + n2(x̄2 − δ)2 − nb2

]}
dδ, (B.125)

where c1 is as in (B.107). Completing the square in δ and defining d = [m(x̄2 − x̄1)] and f =

(m+ 1/τ 2) lead to

m1(x1,x2 |σ2) (B.126)

=

∫ ∞
0

2c1δ
2

τ 3σ2
√
n

exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2 − d2

f
+ f

(
δ − d

f

)2
]}

dδ (B.127)

=
2c1

τ 3σ2
√
n

exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

mτ 2 + 1

]} ∫ ∞
0

δ2 exp

[
−f (δ − d/f)2

2σ2

]
dδ. (B.128)
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Using 2.1.3.1 from [105] and some algebraic simplifications result in

m1(x1,x2 |σ2) (B.129)

=
2c1

τ 3σ2
√
n

exp

{
− 1

2σ2

[
m(x̄1 − x̄2)2

mτ 2 + 1

]}
× (B.130)[ √

πσ3

√
2f 3/2

(
d2

σ2f
+ 1

) {
1− erf

(
− d

σ
√

2f

)}
+
dσ2

f 2
exp

(
− d2

2σ2f

)]
(B.131)

=

√
2πσc1√

n (mτ 2 + 1)3/2
exp

(
− d2

1

mτ 2

)[(
2d2

1 + 1
)

(1− erf (−d1)) +
2d1√
π

exp
(
−d2

1

)]
.(B.132)

�

Theorem B.3.5. Under the assumptions stated above, the Bayes factor BF10(x1,x2 |σ2) in favor

of the alternative hypothesis H1 against the null hypothesis H0 is given by

(
mτ 2 + 1

)−3/2
exp

(
rT 2

2

)[(
rT 2 + 1

)(
1− erf

(
−
√
rT√
2

))
+

√
2rT√
π

exp

(
−rT

2

2

)]
,

(B.133)

where r = 1/ (1 + (mτ 2)−1) and T =
√
m(x̄2 − x̄1)/σ.

Proof: Following the definition of the Bayes factor and substituting the expression for the marginal
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density of (x1,x2) from Thm B.3.4 and B.3.2 leads to

BF10(x1,x2 |σ2) (B.134)

=
m1(x1,x2 |σ2)

m0(x1,x2 |σ2)
(B.135)

=
(
mτ 2 + 1

)−3/2
exp

(
m2τ 2(x̄2 − x̄1)2

2σ2(mτ 2 + 1)

)
× (B.136)[(

m2τ 2(x̄2 − x̄1)2

σ2(mτ 2 + 1)
+ 1

)(
1− erf

(
− mτ(x̄2 − x̄1)

σ
√

2(mτ 2 + 1)

))
+ (B.137)

√
2mτ(x̄2 − x̄1)

σ
√
π(mτ 2 + 1)

exp

(
−m

2τ 2(x̄2 − x̄1)2

2σ2(mτ 2 + 1)

)]
(B.138)

=
(
mτ 2 + 1

)−3/2
exp

(
rT 2

2

)
× (B.139)[(

rT 2 + 1
)(

1− erf
(
−
√
rT√
2

))
+

√
2rT√
π

exp

(
−rT

2

2

)]
. (B.140)

�

B.3.2 Variance unknown

B.3.2.1 Two-sided tests

We now consider the case where the variance σ2 is not known. In this case, we assume that σ2

is drawn a priori from an inverse gamma density parameterized as in (B.51).

Theorem B.3.6. Under the assumptions stated above and assuming H1 is true, the marginal den-

sity of the data is given by

m1(x1,x2) =
c3c
−(n+1)/2−α
4

(mτ 2 + 1)3/2

[
c4 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

(
n− 1

2
+ α

)]
, (B.141)

where x̄1, x̄2, S1, S2, n, m are defined in (B.106-B.107), and

c3 =
(2π)−(n−1)/2 βα

2a
√
nΓ(α)

Γ

(
n− 1

2
+ α

)
, and c4 =

m(x̄1 − x̄2)2

2(mτ 2 + 1)
+
S1 + S2

2
+ β. (B.142)

71



Proof: The marginal density m1(x1,x2) (ignoring dependence on τ 2) can be expressed as

m1(x1,x2) =

∫ ∫ ∫
π(σ2 |α, β) π(µ1 | a) π(δ | τ 2, σ2)× (B.143)

n1∏
j=1

φ(x1,j |µ1, σ
2)

n2∏
j=1

φ(x2,j |µ1 + δ, σ2) dµ1 dδ dσ
2. (B.144)

To this we note that, given σ2 the integral with respect to µ1 and δ is identical to (B.109). From

Theorem B.3.1, and noting that the integrals with respect to σ2 are proportional to an inverse

gamma density yields

m1(x1,x2) =
(2π)−(n1+n2−1)/2βα

2a
√
n(mτ 2 + 1)3 Γ(α)

∫
(σ2)−(n1+n2+1)/2−α−1

(
σ2 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

)
× exp

[
− 1

σ2

{
m(x̄1 − x̄2)2

2(mτ 2 + 1)
+
S1 + S2

2
+ β

}]
dσ2 (B.145)

=
(2π)−(n1+n2−1)/2βα

2a
√
n(mτ 2 + 1)3 Γ(α)

[
Γ

(
n1 + n2 + 1

2
+ α− 1

)
c
−(n1+n2+1)/2−α+1
4

+
m2τ 2(x̄1 − x̄2)2

mτ 2 + 1
Γ

(
n1 + n2 + 1

2
+ α

)
c
−(n1+n2+1)/2−α
4

]
(B.146)

=
c3c
−(n+1)/2−α
4 √

n

[
c4 +

m2τ 2(x̄1 − x̄2)2

mτ 2 + 1

(
n− 1

2
+ α

)]
. (B.147)

�

Theorem B.3.7. Under the assumptions of Theorem B.3.6, but now assuming H0 to be true, the

marginal density of the data is given by

m0(x1,x2) = c3

[
m(x̄1 − x̄2)2

2
+
S1 + S2

2
+ β

]−(n−1)/2−α

, (B.148)

where c3 is as in (B.142).

72



Proof: The marginal density m0(x1,x2) can be expressed as

m0(x1,x2) =

∫ ∫
π(σ2 |α, β) π(µ | a)

2∏
i=1

ni∏
j=1

φ(xi,j |µ, σ2) dµ dσ2. (B.149)

To this we note that, given σ2 the integral with respect to µ is the same as the marginalm0(x1,x2 |σ2)

in Theorem (B.3.2). Using (B.116) and noting that the integrals with respect to σ2 are proportional

to an Inverse-gamma density results in

m0(x1,x2) =
(2π)−(n1+n2−1)/2βα

2a
√
nΓ(α)

∫
(σ2)−(n1+n2−1)/2−α−1× (B.150)

exp

[
− 1

σ2

{
m(x̄1 − x̄2)2

2
+
S1 + S2

2
+ β

}]
dσ2 (B.151)

=
(2π)−(n1+n2−1)/2βα

2a
√
nΓ(α)

Γ

(
n1 + n2 − 1

2
+ α

)
× (B.152)[

m(x̄1 − x̄2)2

2
+
S1 + S2

2
+ β

]−(n1+n2−1)/2−α

(B.153)

= c3

[
m(x̄1 − x̄2)2

2
+
S1 + S2

2
+ β

]−(n−1)/2−α

. (B.154)

�

Theorem B.3.8. Under the assumptions of Thm B.3.6 and B.3.7, the Bayes factor in favor of the

alternative hypothesis H1 against the null hypothesis H0 is given by

BF10(x1,x2) = (mτ 2 + 1)−3/2

(
G2

H2

)(n−1)/2+α(
1 +

qT 2
2

H2

)
, (B.155)

where x̄1, x̄2, S1, S2, n, m are defined in (B.106)–(B.107), and

r =
mτ 2

mτ 2 + 1
, q =

2r ((n− 1)/2 + α)

n− 2
, S = S1 + S2, (B.156)

T =

√
m(x̄1 − x̄2)√
S/(n− 2)

, G = 1 +
T 2

n− 2
+

2β

S
, H = 1 +

(1− r)T 2

n− 2
+

2β

S
. (B.157)
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Proof: Following the definition of the Bayes factor and substituting the expression for the marginal

density of (x1,x2) from Thm B.3.6 and B.3.7 leads to

BF10(x1,x2) (B.158)

=
m1(x1,x2)

m0(x1,x2)
(B.159)

=
1

(mτ 2 + 1)3/2

[
m(x̄1 − x̄2)2/2 + S/2 + β

m(x̄1 − x̄2)2/2(mτ 2 + 1) + S/2 + β

](n−1)/2+α

× (B.160)[
1 +

m2τ 2(x̄1 − x̄2)2 ((n− 1)/2 + α) /(mτ 2 + 1)

m(x̄1 − x̄2)2/2(mτ 2 + 1) + S/2 + β

]
(B.161)

= (mτ 2 + 1)−3/2

[
1 + T 2/(n− 2) + 2β/S

1 + T 2/ {(n− 2)(mτ 2 + 1)}+ 2β/S

](n−1)/2+α

× (B.162)[
1 +

2mτ 2 ((n− 1)/2 + α)

(mτ 2 + 1)

T 2/(n− 2)

1 + T 2/ {(n− 2)(mτ 2 + 1)}+ 2β/S

]
(B.163)

= (mτ 2 + 1)−3/2

(
G

H

)(n−1)/2+α(
1 +

qT 2

H

)
. (B.164)

�

B.3.2.2 One-sided tests

Assume the conditions of the two-sample, two-sided t test hold, except that we now wish to

test H0 : µ1 = µ2 versus H1 : µ2 > µ1. To this end, under both H0 and H1 we similarly assume

the U(−a, a) prior on µ1 is for some large a. Under H1 we still assume that µ2 = µ1 + δ, but the

prior on δ given σ2 is assumed to be a normal moment prior truncated on (0,∞) whose density is

defined by (B.122). To complete the model specification, under both H0 and H1 we again assume

an inverse gamma prior on σ2 defined by (B.51). Under these assumptions and assuming H0 to be

true, the marginal density of the data m0(x1,x2) is the same as in Theorem B.3.7.

Theorem B.3.9. Under the assumptions stated above and assuming H1 is true, the marginal den-
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sity of the data m1(x1,x2) is given by



c∗
(
f1d

2
1

(
1− F2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1 |d1|2(1−ν) + f3 |d1|3−2ν

)
if x̄2 < x̄1,

c∗B (3/2, ν − 3/2) if x̄2 = x̄1,

c∗
(
f1d

2
1

(
1− F2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1 |d1|2(1−ν) +

f3 |d1|3−2ν + 2f4 |d1|3
)

if x̄2 > x̄1,

(B.165)

where x̄1, x̄2, S1, S2, n, m are defined in (B.106-B.107), S = S1 + S2, d = m (x̄2 − x̄1), f =

m+ τ−2, d1 = d/
√

2fA1, ν = n/2 + α + 1,

c∗ =
23/2(2π)−n/2 βα Γ(ν)

aΓ(α)
√
n(mτ 2 + 1)3/2A

(n−1)/2+α
1

, A1 = β +
S

2
+

d2

2m (mτ 2 + 1)
, (B.166)

f1 = B (ν − 1/2, 1/2) , f2 =
2F1 (ν, ν − 1; ν;−1/d2

1)

(ν − 1)
, (B.167)

f3 =
2F1 (ν, ν − 3/2; ν − 1/2;−1/d2

1)

2ν − 3
, f4 =

2F1 (ν, 3/2; 5/2;−d2
1)

3
, (B.168)

B(·, ·) is the Beta function, F2ν−1 is the cdf of the Student’s t distribution (center 0 and scale 1)

with degrees of freedom 2ν − 1, and 2F1 is the Gauss hypergeometric function.

Proof: The marginal density m1(x1,x2) (ignoring dependence on τ 2) can be expressed as

m1(x1,x2) =

∫ ∞
0

∫ ∞
0

∫ a

−a
p+(δ | τ 2, σ2)π(σ2 |α, β) π(µ1 | a)× (B.169)

n1∏
j=1

φ(x1,j |µ1, σ
2)

n2∏
j=1

φ(x2,j |µ1 + δ, σ2) dµ1 dσ
2 dδ. (B.170)
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Following (B.125) integrating with respect to µ1, and then integrating with respect to σ2 leads to

m1(x1,x2)
.
=

∫ ∞
0

∫ ∞
0

βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

)
(2πσ2)

−n/2

2a
exp

(
− S

2σ2

)
× (B.171)

2δ2

τ 3σ2
√
n

exp

{
− 1

2σ2

[
δ2

τ 2
+ n1x̄

2
1 + n2(x̄2 − δ)2 − nb2

]}
dσ2 dδ

(B.172)

=
(2π)−n/2βαΓ(n/2 + α + 1)

aΓ(α)τ 3
√
n

× (B.173)

∫ ∞
0

δ2

[
β +

1

2

{
S +

d2

m(mτ 2 + 1)
+ f

(
δ − d

f

)2
}]−(n/2+α+1)

dδ.

(B.174)

Define ν = n/2 + α + 1, A1 = β + S/2 + d2/2m(mτ 2 + 1) and

A2 =
(2π)−n/2βαΓ(ν)

aΓ(α)τ 3
√
nAν1

. (B.175)

Then m1(x1,x2) simplifies to

m1(x1,x2) =A2

∫ ∞
0

δ2

(
1 +

f(δ − d/f)2

2A1

)−ν
dµ (B.176)

=A2

∫ ∞
−d/f

(
u+

d

f

)2 (
1 +

fu2

2A1

)−ν
du (B.177)

=A2

(
d2

f 2
I0

(
−d
f

)
+

2d

f
I1

(
−d
f

)
+ I2

(
−d
f

))
(B.178)

=A2 (m10 +m11 +m12) , (B.179)

where

Ik(g) =

∫ ∞
g

uk
(

1 +
fu2

2A1

)−ν
du for g ∈ R, k ≥ 0, (B.180)

m10 =
d2

f 2
I0

(
−d
f

)
, m11 =

2d

f
I1

(
−d
f

)
, m12 = I2

(
−d
f

)
. (B.181)
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For I0(−d/f), first doing a change of variable with w/
√

2ν − 1 =
√
fu/
√

2A1 and then some

algebraic simplifications lead to

I0 (−d/f) =

∫ ∞
−d/f

(
1 +

fu2

2A1

)−ν
du (B.182)

=

(
2A1

f(2ν − 1)

)1/2 ∫ ∞
−d

√
(2ν−1)
2fA1

(
1 +

w2

2ν − 1

)−((2ν−1)+1)/2

dw (B.183)

=

(
2A1

f

)1/2

B ((2ν − 1)/2, 1/2)

[
1− F2ν−1

(
−d

√
(2ν − 1)

2fA1

)]
,(B.184)

where B(·, ·) is the Beta function and F2ν−1 is the cdf of the Student’s t distribution (center 0 and

scale 1) with degrees of freedom 2ν − 1. Following this we get

m10 =
d2

f 2
I0

(
−d
f

)
=

(
2A1

f

)3/2

f1 d
2
1

(
1− F2ν−1

(
−d1

√
2ν − 1

))
, (B.185)

where d1 = d/
√

2fA1 and f1 = B (ν − 1/2, 1/2). To calculate I1(−d/f) and I2(−d/f) we again

use (B.89)–(B.93). Using these we get

I1(|d| /f) =


|d|2(1−ν)(2A1)ν

f2−ν 2(ν−1) 2F1 (ν, ν − 1; ν;−2fA1/d
2) if x̄2 6= x̄1,

2A1

f
B (1, ν − 1) if x̄2 = x̄1.

(B.186)

This leads to

m11 =


(2d/f) I1 (|d| /f) if x̄2 6= x̄1,

0 if x̄2 = x̄1

=


(2A1/f)3/2 f2 d1 |d1|2(1−ν) if x̄2 6= x̄1,

0 if x̄2 = x̄1.

(B.187)

where f2 = 2F1 (ν, ν − 1; ν;−1/d2
1) / (ν − 1). Similarly, it also results in

I2(|d| /f) =


(2A1/f)3/2 f3 |d1|3−2ν if x̄2 6= x̄1,

(2A1/f)3/2 B (3/2, ν − 3/2) if x̄2 = x̄1,

(B.188)
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and

J2(|d| /f) = (2A1/f)3/2 f4 |d1|3 , (B.189)

where f3 = 2F1 (ν, ν − 3/2; ν − 1/2;−1/d2
1) / (2ν − 3) and f4 = 2F1 (ν, 3/2; 5/2;−d2

1) /3. This

leads to

m12 =


(2A1/f)3/2 f3 |d1|3−2ν if x̄2 < x̄1,

(2A1/f)3/2 B (3/2, ν − 3/2) if x̄2 = x̄1,

(2A1/f)3/2 (f3 |d1|3−2ν + 2f4 |d1|3
)

if x̄2 > x̄1.

(B.190)

Finally, (B.71) follows by combining m10, m11 and m12.

�

Theorem B.3.10. Under the assumptions stated above, the Bayes factor BF10(x1,x2) in favor of

the alternative hypothesis H1 against the null hypothesis H0 is given by



C1

(
f1d

2
1

(
1− F2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1 |d1|2(1−ν) + f3 |d1|3−2ν

)
if x̄2 < x̄1,

C1B (3/2, ν − 3/2) if x̄2 = x̄1,

C1

(
f1d

2
1

(
1− F2ν−1

(
−d1

√
2ν − 1

))
+ f2 d1 |d1|2(1−ν) +

f3 |d1|3−2ν + 2f4 |d1|3
)

if x̄2 > x̄1,

(B.191)

where

C1 =
2Γ (ν)√

π(mτ 2 + 1)3/2Γ ((n− 1)/2 + α)
, (B.192)

where x̄1, x̄2, S, n, m, ν are as in Theorem B.3.9, T , r, G and H are as in (B.156)–(B.157),

d1 =
√
rT/

√
(n− 2)H , and f1 to f4 are as in (B.167)–(B.168) with d1 is as it is defined here.

Proof: Following the definition of the Bayes factor we know that BF10(x1,x2) = m1(x1,x2)/m0(x1,x2).

While substituting the expression for the marginal density of (x1,x2) from Theorem B.3.7 and
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B.3.9 we note that

c∗

m0(x1,x2)
=

2Γ (ν)√
π(mτ 2 + 1)3/2Γ ((n− 1)/2 + α)

× (B.193)(
β + S/2 +m (x̄2 − x̄1)2 /2

β + S/2 +m (x̄2 − x̄1)2 /2(mτ 2 + 1)

)(n−1)/2+α

(B.194)

=
2Γ (ν)√

π(mτ 2 + 1)3/2Γ ((n− 1)/2 + α)

(
G

H

)(n−1)/2+α

. (B.195)

Also, d1 as in Theorem B.3.9 can be rewritten as

d1 =
mτ (x̄2 − x̄1)√

2(mτ 2 + 1)
(
β + S/2 +m (x̄2 − x̄1)2 /2(mτ 2 + 1)

) =

√
rT√

(n− 2)H
. (B.196)

(B.12) directly follows from combining these.

�

B.4 Operating characteristics of z and t tests

The operating characteristics for one-sample z, and two-sample z and t tests are similar to

those cited in the main article for one-sample t tests. For purposes of comparison, plots similar to

those found in the main article are presented below.

B.4.1 Fixed design tests

Fig. B.1 displays the operating characteristics of the one-sample z and two-sample t tests under

a true null hypothesis. For the two-sample t test, equal sample sizes were assumed drawn from

both populations, and the sample size appearing on the horizontal axis refers to the sample size for

each sample. This figure is comparable to Fig. 2 in the main article for the default choices of the

NAP and JZS priors.

For the same tests, Fig. B.2–B.4 displays the weight of evidence for different effect sizes under

the alternative hypothesis as sample size varies. These figures are comparable to Fig. 3 in the main

article for the composite alternative placing one-half mass at ±0.3σ and different choices of the
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Figure B.1: Weight of evidence for true null hypotheses in two-sample t test and one-sample z
test. The black curves represent the average weight of evidence for the default NAP priors, while
the dashed green curve the default JZS prior. The dashed orange curve depicts the average weight
of evidence obtained when the alternative hypothesis assigned one-half mass to ±0.3σ.

NAP and JZS priors.

B.4.2 Sequential tests

Fig. B.5–B.16 display the operating characteristics of the Hajnal(0.3), default SBF-NAP and

default SBF-JZS tests. The results presented below correspond to one-sample z tests and two-

sample z and t tests under a true null and alternative hypothesis. For the two-sample tests, equal

sample sizes were assumed drawn from both populations. For these tests, the ASN refers to the

sample size from each group required on average by the sequential tests. As in the main article,

two types of exceedance thresholds were considered: (a) symmetric exceedance thresholds of ±3

and ±5, and (b) SPRT thresholds with (α, β) equal to (0.05, 0.2) and (0.005, 0.05). The figures

are comparable to Fig. 5–8 in the main article.
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Figure B.2: Weight of evidence for true alternative hypotheses in one-sample z test. Curves de-
picted in the plots denote the average weight of evidence versus true effect size when the alternative
hypothesis was defined by various NAP and JZS densities.

B.4.2.1 Numerical evaluation of symmetric evidence thresholds

Fig. B.5–B.9 display the operating characteristics of Hajnal(0.3), and the SBF-NAP and SBF-

JZS with their default choices. The results presented below correspond to the symmetric ex-

ceedance thresholds of ±3 and ±5. The figures are comparable to Fig. 5–6 in the main article.

B.4.2.2 Numerical evaluation of SPRT thresholds

Fig. B.11–B.16 display the operating characteristics of Hajnal(0.3), default SBF-NAP and de-

fault SBF-JZS tests. The results presented below correspond to the SPRT thresholds with (α, β)

equal to (0.05, 0.2) and (0.005, 0.05). The figures are comparable to Fig. 7–8 in the main article.
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Figure B.3: Weight of evidence for true alternative hypotheses in two-sample z test. Curves de-
picted in the plots denote the average weight of evidence versus true effect size when the alternative
hypothesis was defined by various NAP and JZS densities.
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Figure B.4: Weight of evidence for true alternative hypotheses in two-sample t test. Curves de-
picted in the plots denote the average weight of evidence versus true effect size when the alternative
hypothesis was defined by various NAP and JZS densities.
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Figure B.5: ASN for sequential procedures under a true null hypothesis in one-sample z test. The
plots are truncated at 1500 and 80,000 to enhance comparisons at moderate sample sizes. Panel (a)
provides a boxplot estimate of the distribution of sample sizes required for the SBF-NAP, SBF-JZS
and Hajnal(0.3) procedures to cross an exceedance threshold of ±3. About 0.3% percent of SBF-
NAP tests and 11% of SBF-JZS tests required more than 1500 samples to reach a decision. All
Hajnal(0.3) tests terminated by 530 samples. Panel (b) provides the corresponding boxplots when
the exceedance threshold is ±5. About 4% of SBF-JZS tests required more than 80,000 samples
to reach a decision. The black diamonds show the ASN’s for each procedure. All SBF-NAP tests
reached a decision by 57550 samples, and all Hajnal(0.3) tests terminated by observation 985.
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Figure B.6: Operating characteristics under true alternative hypotheses in one-sample z test. Panels
(a) and (b) depict the ASN’s for three sequential tests when the exceedance thresholds are ±3 and
±5, respectively, versus the data-generating value of the standardized effect size. Panels (c) and
(d) provide the corresponding probabilities that each test rejects the null hypothesis as a function
of the standardized effect size.
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Figure B.7: ASN for sequential procedures under a true null hypothesis in two-sample z test. The
plots are truncated at 3000 and 100,000 to enhance comparisons at moderate sample sizes. Panel
(a) provides a boxplot estimate of the distribution of sample sizes required from each group for the
SBF-NAP, SBF-JZS and Hajnal(0.3) procedures to cross an exceedance threshold of ±3. About
0.3% of SBF-NAP tests and 11% of SBF-JZS tests required more than 3000 samples from each
group to reach a decision. All Hajnal(0.3) tests terminated by 1180 samples. Panel (b) provides
the corresponding boxplots when the exceedance threshold is ±5. About 0.002% of SBF-NAP
tests and 10% of SBF-JZS tests required more than 100,000 samples from each group to reach a
decision. The black diamonds show the ASN’s for each procedure. All Hajnal(0.3) tests terminated
by 1600 observations from each group.
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Figure B.8: Operating characteristics under true alternative hypotheses in two-sample z test. Panels
(a) and (b) depict the ASN’s for three sequential tests when the exceedance thresholds are ±3 and
±5, respectively, versus the data-generating value of the standardized effect size. Panels (c) and
(d) provide the corresponding probabilities that each test rejects the null hypothesis as a function
of the standardized effect size.
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Figure B.9: ASN for sequential procedures under a true null hypothesis in two-sample t test. The
plots are truncated at 3000 and 200,000 to enhance comparisons at moderate sample sizes. Panel
(a) provides a boxplot estimate of the distribution of sample sizes required from each group for the
SBF-NAP, SBF-JZS and Hajnal(0.3) procedures to cross an exceedance threshold of ±3. About
0.3% of SBF-NAP tests and 11% of SBF-JZS tests required more than 3000 samples from each
group to reach a decision. All Hajnal(0.3) tests terminated by 1060 samples. Panel (b) provides
the corresponding boxplots when the exceedance threshold is ±5. About 8% of SBF-JZS tests
required more than 200,000 samples from each group to reach a decision. The black diamonds
show the ASN’s for each procedure. All SBF-NAP tests reached a decision by 103300 samples,
and all Hajnal(0.3) tests terminated by 1610 samples from each group.
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Figure B.10: Operating characteristics under true alternative hypotheses in two-sample t. Panels
(a) and (b) depict the ASN’s for three sequential tests when the exceedance thresholds are ±3 and
±5, respectively, versus the data-generating value of the standardized effect size. Panels (c) and
(d) provide the corresponding probabilities that each test rejects the null hypothesis as a function
of the standardized effect size.

89



NAP JZS Hajnal(0.3)

0
5

0
1

0
0

1
5

0

(a)

S
a

m
p

le
 s

iz
e

Mean

NAP JZS Hajnal(0.3)

0
5

0
0

1
0

0
0

1
5

0
0

(b)

S
a

m
p

le
 s

iz
e

Mean

Figure B.11: ASN for SPRT procedures when the null hypothesis is true in one-sample z test. Panel
(a) provides a boxplot estimate of the distribution of sample sizes required for the SBF-NAP, SBF-
JZS and Hajnal(0.3) procedures to cross Wald’s decision thresholds at α = 0.05 and β = 0.2. The
plot is truncated at 150 samples (5.3% of SBF-NAP tests, 3.33% of SBF-JZS tests, and 1.71% of
Hajnal(0.3) tests required more than 150 samples). Panel (b) provides the corresponding estimate
when Wald’s decision thresholds were based on α = 0.005 and β = 0.05. The plot is truncated at
1500 samples (0.52% of SBF-NAP and 10.76% of SBF-JZS tests required more than 1500 samples;
none of Hajnal(0.3) tests did). The black diamonds show the ASN for each procedure.
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Figure B.12: Operating characteristics under true alternative hypotheses in one-sample z test.
Panels (a) and (b) depict the ASN for three SPRT procedures based on Wald’s decision thresholds
for (α, β) = (0.05, 0.2) and (0.005, 0.05), respectively, versus the data-generating value of the
standardized effect size. Panels (c) and (d) provide the probability that each procedure rejected the
null hypothesis as a function of the standardized effect size.
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Figure B.13: ASN for SPRT procedures when the null hypothesis is true in two-sample z test.
Panel (a) provides a boxplot estimate of the distribution of sample sizes from each group required
for the SBF-NAP, SBF-JZS and Hajnal(0.3) procedures to cross Wald’s decision thresholds at α =
0.05 and β = 0.2. The plot is truncated at 250 samples (7.68% of SBF-NAP tests, 4.37% of SBF-
JZS tests, and 3.3% of Hajnal(0.3) tests required more than 250 samples). Panel (b) provides the
corresponding estimate when Wald’s decision thresholds were based on α = 0.005 and β = 0.05.
The plot is truncated at 3000 samples (0.47% of SBF-NAP and 10.89% of SBF-JZS tests required
more than 1500 samples; none of Hajnal(0.3) tests did). The black diamonds show the ASN for
each procedure.
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Figure B.14: Operating characteristics under true alternative hypotheses in two-sample z test.
Panels (a) and (b) depict the ASN for three SPRT procedures based on Wald’s decision thresholds
for (α, β) = (0.05, 0.2) and (0.005, 0.05), respectively, versus the data-generating value of the
standardized effect size. Panels (c) and (d) provide the probability that each procedure rejected the
null hypothesis as a function of the standardized effect size.
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Figure B.15: ASN for SPRT procedures when the null hypothesis is true in two-sample t test. Panel
(a) provides a boxplot estimate of the distribution of sample sizes from each group required for the
SBF-NAP, SBF-JZS and Hajnal(0.3) procedures to cross Wald’s decision thresholds at α = 0.05
and β = 0.2. The plot is truncated at 250 samples (7.82% of SBF-NAP tests, 4.4% of SBF-JZS
tests, and 3.26% of Hajnal(0.3) tests required more than 250 samples). Panel (b) provides the
corresponding estimate when Wald’s decision thresholds were based on α = 0.005 and β = 0.05.
The plot is truncated at 3000 samples (0.47% of SBF-NAP and 11.18% of SBF-JZS tests required
more than 1500 samples; none of Hajnal(0.3) tests did). The black diamonds show the ASN for
each procedure.
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Figure B.16: Operating characteristics under true alternative hypotheses in two-sample t test. Pan-
els (a) and (b) depict the ASN for three SPRT procedures based on Wald’s decision thresholds for
(α, β) = (0.05, 0.2) and (0.005, 0.05), respectively, versus the data-generating value of the stan-
dardized effect size. Panels (c) and (d) provide the probability that each procedure rejected the null
hypothesis as a function of the standardized effect size.
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