
TOWARD RESPONSIBLE RECOMMENDER SYSTEMS

A Dissertation

by

ZIWEI ZHU

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James Caverlee
Committee Members, Xia Hu

Ricardo Gutierrez-Osuna
Xiaoning Qian

Head of Department, Scott Schaefer

August 2022

Major Subject: Computer Science

Copyright 2022 Ziwei Zhu

ABSTRACT

Recommender systems have become essential conduits: they can shape the media we consume,

the jobs we seek, and even the friendships and professional contacts that form our social circles.

With such a wide usage and impact, recommender systems can exert strong, but often unforeseen,

and sometimes even detrimental influence on the social processes connected to culture, lifestyles,

politics, education, ethics, economic well-being, and even social justice. Hence, in this disserta-

tion research, we aim to identify, analyze, and alleviate potential risks and harms on users, item

providers, the platforms, and ultimately the society, and to lay the foundation for new responsi-

ble recommender systems. In particular, we make three unique contributions toward responsible

recommender systems:

• First, we study how to counteract the exposure bias in user-item interaction data. To over-

come the challenge that the user-item exposure information is hard to be estimated when aim-

ing to produce unbiased recommendations, we develop a novel combinational joint learning

framework to learn unbiased user-item relevance and unbiased user-item exposure informa-

tion simultaneously. Then, we push the problem to an extreme where we aim to predict

relevance for items with zero exposure in the interaction data. For this, we propose a neural

network utilizing a randomized training mechanism and a Mixture-of-Experts Transforma-

tion structure. Experiments validate the effective performance by the proposed methods.

• Second, we study what bias the machine learning based recommendation algorithms can

bring and how to alleviate these bias. We uncover the popularity-opportunity bias on items

and the mainstream bias on users. We conduct extensive data-driven study to show the

existence of these bias in fundamental recommendation algorithms. Then, we explore and

propose potential solutions to relieve these two types of bias, which empirically demonstrate

outstanding performance for debiasing.

• At last, we move our attention to the problem of how to measure and enhance fairness

ii

in recommendation results. We study the recommendation fairness in three different rec-

ommendation scenarios – the multi-dimension recommendation scenario, the personalized

ranking recommendation scenario, and the cold-start recommendation scenario. With re-

spect to different recommendation scenarios, we develop different algorithms to enhance the

recommendation fairness. We also conduct extensive experiments to empirically show the

effectiveness of the proposed solutions.

iii

DEDICATION

To mom, dad, Yue and all the people who love me and I love.

iv

ACKNOWLEDGMENTS

Without the advice, support, and love from a few important people who I am fortunate to have

in my life, I would never have the chance to complete this dissertation.

First, I want to express my sincerest gratitude to my advisor, mentor, and good friend Dr. James

Caverlee, who changed and shaped me into a mature researcher and a better person with his selfless

and tirelessly advice and support. It was still fresh in memory that in August 2017, at the moment

when I run into his homepage the first time, I realized immediately he is the advisor I want to work

with. It turns out I was right, and it was one of the best and most important decisions in my life

to reach out to him and join his InfoLab. His influence on students is far beyond research. During

the 10-th year reunion of the InfoLab in October 2017, a formal Ph.D. student Kyumin, who was

an Associate Professor at Worcester Polytechnic Institute, told me that the reason why he chose to

get a faculty job is that he wanted to become a cool educator just like Dr. Caverlee. And after a

few years, I finally understand what he said and cannot agree more. So, I decided to follow the

same path and set the goal for myself to become a cool educator like Dr. Caverlee and to pass his

influence to other people. Five years fly so fast, and it’s time to say goodbye and start my new

journey. But with no doubt, he will be my lifelong role model, with all his guidance and advice, as

well as his kindness, generousness, and patience kept in my mind.

In addition, I would also like to thank the rest of my dissertation committee: Dr. Xia Hu,

Dr. Xiaoning Qian, and Dr. Ricardo Gutierrez-Osuna for their continuous advice and support. I

would also like to thank Dr. Alex Beutel for his help and essential inspirations to my research.

Besides, all the members in the InfoLab provide me support and help everyday in the past five

years. Many thanks to them – Xing Zhao, Yun He, Jianling Wang, Yin Zhang, Majid Alfifi, Parisa

Kaghazgaran, and Zhuoer Wang. I enjoyed all the time spending with them. They helped me get

through countless failures and difficulties, and it would not be possible for me to complete this

dissertation without them. And I also want to express my appreciation to Dr. Shahin Sefati and

Dr. Jingu Kim for offering great internship opportunities to work with them. They are great people

v

and great researchers, from whom I learned things that are hard to learn in the academia.

At the end, I am deeply indebted to my parents Jianhong Cai and Libo Zhu for their endless

love and support. Studying abroad and being far away from home is not only a pain for me, but a

greater pain for them. But they encourage me to pursue my dream all the time. Without their love

and sacrifice for me, I cannot become who I am right now. Finally, I would like to thank my wife

Yue He. With no doubt, without her, it would be impossible for me to pursue the Ph.D. degree

in the U.S. and survive from all these difficulties. It is still like a miracle to me that seven years

before, we were working so hard together in China for applying for graduate schools in the U.S.,

and now, we are married and are having a good life here. Deep in my heart, I know she makes me

stronger, and with her, I am not afraid of any difficulties.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor James Caverlee

[advisor], Professor Ricardo Gutierrez-Osuna, and Professor Xia Hu of the Department of Com-

puter Science and Engineering, and Professor Xiaoning Qian of the Department of Electrical and

Computer Engineering. Section 3.3 is conducted based on the work majorly done while I was

interning at Comcast Applied AI Lab. Section 5.4 is conducted based on the work majorly done

while I was interning at Netflix. All work conducted for the dissertation was completed by the

student independently.

Funding Sources

This work is, in part, supported by DARPA (#W911NF-16-1-0565), NSF (#IIS-1939716 and

#IIS-1841138), and Amazon Research Awards. The views, opinions, and/or findings expressed are

those of the author(s) and should not be interpreted as representing the official views or policies of

the Department of Defense or the U.S. Government.

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xii

LIST OF TABLES. xvi

1. INTRODUCTION. 1

1.1 Background and Motivation . 1
1.2 Dissertation Contributions . 5
1.3 Dissertation Overview . 7

2. PRELIMINARIES . 9

2.1 Formalization of Recommender Systems . 9
2.2 Evaluation Metrics . 9
2.3 Matrix Factorization . 11

3. COUNTERACTING EXPOSURE BIAS IN USER-ITEM INTERACTION DATA 13

3.1 Related Work . 13
3.1.1 Addressing Exposure Bias . 13
3.1.2 Addressing Cold-start Problem . 14

3.2 Counteracting Exposure Bias via a Combinational Joint Learning Framework 15
3.2.1 Introduction . 15
3.2.2 Proposed Combinational Joint Learning Framework . 17

3.2.2.1 Preliminaries . 17
3.2.2.2 Unbiased Propensity Estimation . 18
3.2.2.3 Combinational Joint Learning Framework . 19

3.2.3 Experiments. 22
3.2.3.1 Experimental Settings . 22
3.2.3.2 RQ1: Comparing Recommendation Performance 24

viii

3.2.3.3 RQ2: Investigating the Effectiveness of Estimated Propensity 25
3.2.3.4 RQ3: Investigating the Impact of Hyper-parameter C and Resid-

ual Component . 26
3.2.4 Summary . 26

3.3 Tackling Cold-start Recommendation via Randomized Training and Mixture-of-
Experts Transformation . 27
3.3.1 Introduction . 27
3.3.2 Proposed Cold-start Recommendation Model – Heater . 31

3.3.2.1 Cold-start Recommendation Formalization . 31
3.3.2.2 Heater Framework . 31
3.3.2.3 Randomized Training . 34
3.3.2.4 Mixture-of-Experts Transformation . 36

3.3.3 Experiments. 38
3.3.3.1 Experimental Settings . 38
3.3.3.2 RQ1: Heater vs. Baselines . 42
3.3.3.3 RQ2: Ablation Study . 44
3.3.3.4 RQ3: Impact of Hyper-parameters . 46
3.3.3.5 RQ4: Impact of Pretrained CF Quality . 48

3.3.4 Summary . 49
3.4 Conclusions. 50

4. IDENTIFYING AND MITIGATING BIAS IN RECOMMENDATION ALGORITHMS . . 51

4.1 Related Work . 51
4.1.1 Popularity Bias . 52
4.1.2 Bias on users . 52

4.2 Analyzing and Mitigating Popularity-opportunity Bias . 54
4.2.1 Introduction . 54
4.2.2 Preliminaries . 58
4.2.3 Data-driven Study . 59

4.2.3.1 Measuring uPO and iPO Bias . 60
4.2.3.2 Observations . 62

4.2.4 Theoretical Study . 63
4.2.4.1 Existence of Bias in MF . 64
4.2.4.2 Existence of Bias in BPR . 66

4.2.5 Proposed Debiasing Methods . 67
4.2.5.1 Post-processing: Popularity Compensation . 68
4.2.5.2 In-processing: Regularization . 70

4.2.6 Experiments. 70
4.2.6.1 Experimental Settings . 71
4.2.6.2 RQ1: Comparing Debiasing Performance . 72
4.2.6.3 RQ2: Case Study . 75
4.2.6.4 RQ3: Impact of Hyper-parameters . 76

4.2.7 Summary . 77
4.3 Analyzing and Mitigating Mainstream Bias . 77

ix

4.3.1 Introduction . 77
4.3.2 Analyzing Mainstream Bias . 80

4.3.2.1 Preliminaries . 80
4.3.2.2 Evaluating Mainstream Level of Users . 80
4.3.2.3 Empirical Studies . 83

4.3.3 Mitigating Mainstream Bias . 85
4.3.3.1 Global Methods . 85
4.3.3.2 Local Method . 87

4.3.4 Experiments. 91
4.3.4.1 Experimental Settings . 92
4.3.4.2 RQ1: Compare Debiasing Performance. 93
4.3.4.3 RQ2: Ablation Study . 95
4.3.4.4 RQ3: Hyper-parameter Study. 98

4.3.5 Summary . 100
4.4 Conclusions. 100

5. MEASURING AND ENHANCING FAIRNESS IN RECOMMENDATIONS. 102

5.1 Related Work . 102
5.1.1 Recommendation Fairness . 103
5.1.2 Topics Related to Fairness . 103
5.1.3 Cold-start Recommender Systems . 104

5.2 Enhancing Fairness in Multi-dimension Recommender Systems. 105
5.2.1 Introduction . 105
5.2.2 Preliminaries . 107

5.2.2.1 Notations . 107
5.2.2.2 Tensor-Based Recommendation . 108
5.2.2.3 Fairness in Recommendation . 109

5.2.3 Fairness-Aware Tensor-Based Recommendation . 109
5.2.3.1 Isolating Sensitive Features . 110
5.2.3.2 Extracting Sensitive Information . 112
5.2.3.3 Fairness-Aware Recommendation . 113
5.2.3.4 Optimization Algorithms . 114

5.2.4 Generalizing FATR . 116
5.2.5 Experiments. 118

5.2.5.1 Experimental Settings . 118
5.2.5.2 RQ1: Compare Matrix-based Methods. 123
5.2.5.3 RQ2: Compare Matrix vs. Tensor-Based Methods 124
5.2.5.4 RQ3: Performance with Varying Bias and Sparsity 127
5.2.5.5 RQ4: Multiple Features and Multiple Categories. 128

5.2.6 Summary . 130
5.3 Measuring and Enhancing Fairness in Personalized Ranking Recommender Systems 130

5.3.1 Introduction . 131
5.3.2 Fairness in Personalized Ranking. 134

5.3.2.1 Bayesian Personalized Ranking . 134

x

5.3.2.2 Fairness Metrics for Personalized Ranking . 135
5.3.2.3 Data-driven Study . 137

5.3.3 Proposed Method . 140
5.3.3.1 Enhancing Score Distribution Similarity . 142
5.3.3.2 Individual User Score Normalization . 144
5.3.3.3 Model Training . 145

5.3.4 Experiments. 146
5.3.4.1 Experimental Settings . 146
5.3.4.2 RQ1: Effects of Model Components . 149
5.3.4.3 RQ2: Comparison with Baselines . 152
5.3.4.4 RQ3: Impact of Hyper-Parameters . 155

5.3.5 Summary . 157
5.4 Enhancing Fairness in Cold-start Recommender Systems . 157

5.4.1 Introduction . 157
5.4.2 Fairness Among New Items. 160

5.4.2.1 Cold-start Recommendation . 160
5.4.3 Formalizing Fairness . 161

5.4.3.1 Measuring Utility for Items . 163
5.4.3.2 Data-Driven Study. 164

5.4.4 Fairness Enhancement Approaches . 168
5.4.4.1 Learnable Post-processing Framework . 168
5.4.4.2 The Joint-learning Generative Method . 171
5.4.4.3 The Score Scaling Method . 173

5.4.5 Experiments. 174
5.4.5.1 Experimental Settings . 175
5.4.5.2 RQ1: Fairness-Enhancement Performance. 176
5.4.5.3 RQ2: Impact of Hyper-parameters . 179
5.4.5.4 RQ3: Impact on Group-level Fairness. 180

5.4.6 Summary . 181
5.5 Conclusions. 181

6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES . 183

REFERENCES . 187

xi

LIST OF FIGURES

FIGURE Page

1.1 A closed feedback loop as the pipeline of a recommender system, in which we
study the problems at each of the three key components in the pipeline. 2

3.1 Comparing unbiased models with item popularity as propensity and with estimated
propensity from proposed models. Reprinted with permission from [1]. 25

3.2 DCG@3 of CJMF and CJMF without residual components on the Yahoo dataset,
with varying C. Reprinted with permission from [1]. 26

3.3 (a) setup of cold-start recommendation problem, where both warm and cold users
and items have auxiliary representations (such as user profiles and item content);
and (b) the main idea of existing cold-start recommendation algorithms [2, 3, 4,
5, 6]: learn transformation functions to transform auxiliary representations to CF
representations. Reprinted with permission from [7]. 28

3.4 The framework of Heater, which incorporate structures of the separate-training and
joint-training methods to solve the error superimposition and ineffective learning
problems. Reprinted with permission from [7]. 32

3.5 Randomized Training: during training, randomly feed pretrained CF representa-
tions or transformed auxiliary representations alternatively to generate final repre-
sentations P′u and Q′i. Reprinted with permission from [7]. 35

3.6 Mixture-of-Experts Transformation: apply T multi-layer perceptrons as experts
to transform auxiliary representations, weighted sum outputs of experts as final
output. Reprinted with permission from [7]. 36

3.7 Validation and test set splitting for XING dataset. Reprinted with permission from
[7]. 39

3.8 NDCG@20 comparison between MoE-Map model, LinMap and NLinMap. Reprinted
with permission from [7]. 44

3.9 NDCG@20 results of Heater with different hyper-parameters. Reprinted with per-
mission from [7]. 46

3.10 NDCG@20 results on CiteULike of LinMap, NLinMap, DropoutNet and Heater
with different pretrained CF representations of varying quality. Reprinted with
permission from [7]. 48

xii

4.1 Examples of (a) uPO bias and (b) iPO bias in ML1M. Reprinted with permission
from [8]. 55

4.2 Scatter plots of ranking results by MF on ML1M. Reprinted with permission from
[8]. 63

4.3 Case study: ranking results for items that user 5003 in ML1M will like by different
models. Reprinted with permission from [8]. 75

4.4 Case study: average ranking results of items for matched users in ML1M by dif-
ferent models. Reprinted with permission from [8]. 76

4.5 Mainstream vs. niche users in MovieLens data. Reprinted with permission from [9]. 78

4.6 The proposed Local Fine Tuning method. Reprinted with permission from [9]. 88

4.7 Compare different base model choices. Reprinted with permission from [9]. 96

4.8 Hyper-parameter study: (a) how NDCG@20 changes with varying #epoch and
t; (b) and (c) how NDCG@20 for users of ‘low’ and ‘high’ mainstream levels
changes with varying #epoch; (d) and (e) how NDCG@20 for users of ‘low’ and
‘high’ mainstream levels changes with varying t. Reprinted with permission from
[9]. 99

5.1 Overview of FATR: sensitive features are isolated (top right), then sensitive in-
formation is extracted (bottom right), resulting in fairness-aware recommendation.
Reprinted with permission from [10]. 105

5.2 FATR isolates sensitive features in the latent matrix with non-sensitive dimensions
orthogonal to them and eliminates the sensitive information by removing the sen-
sitive dimensions. XXX is the tensor with bias, and X̃XX is the fairness-enhanced recom-
mendation tensor. Reprinted with permission from [10]. 110

5.3 In the case of multi-category sensitive dimensions (e.g., by ethnicity), this example
shows how to generate the sensitive latent factor matrix. Reprinted with permission
from [10]. 116

5.4 Recommendation quality (MovieLens). Reprinted with permission from [10]. 123

5.5 Recommendation fairness (MovieLens). Reprinted with permission from [10]. 123

5.6 Eliminating Sensitive Information (MovieLens). Reprinted with permission from
[10]. 123

5.7 F1@15 and KS statistics of the proposed methods and the baselines with L2-norm
terms. Reprinted with permission from [10]. 126

xiii

5.8 Evaluating the impact of bias (Synthetic Experts dataset). Reprinted with permis-
sion from [10].. 126

5.9 Evaluating the impact of sparsity under extreme bias (Synthetic Experts dataset).
Reprinted with permission from [10]. 127

5.10 Evaluating the generalizing ability to multi features and multi categories. Reprinted
with permission from [10]. 129

5.11 (a) is an example following score-based statistical parity from previous works [11,
10]. (b) and (c) are examples of the proposed metrics: (b) is ranking-based statis-
tical parity, and (c) is ranking-based equal opportunity. Reprinted with permission
from [12]. 131

5.12 The original distribution of #feedback/#item over different groups of ML1M data,
and the ranking top15 probability distributions (both statistical parity and equal op-
portunity based) produced by BPR and proposed DPR. Reprinted with permission
from [12]. 141

5.13 Illustration of the intuition of the proposed DPR. Reprinted with permission from
[12]. 142

5.14 The architecture of the adversarial learning. Reprinted with permission from [12]. . . 143

5.15 CDFs of user score distributions predicted by BPR and BPR with KL-loss over
ML1M dataset. Reprinted with permission from [12]. 149

5.16 PDFs of p(ŷ|g) for different groups by BPR and BPR w/ adv for RSP over ML1M.
Reprinted with permission from [12]. 150

5.17 F1@k and RSP@k of four different models over three datasets. Reprinted with
permission from [12]. 153

5.18 F1@k and REO@k of four different models over three datasets. Reprinted with
permission from [12]. 154

5.19 F1@15, RSP@15, and REO@15 of DPR-RSP and DPR-REO w.r.t. different
numbers of layers over ML1M. Reprinted with permission from [12]. 155

5.20 F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-REO w.r.t. different α
over ML1M. Reprinted with permission from [12]. 156

5.21 F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-REO w.r.t. different β
over ML1M. Reprinted with permission from [12]. 156

5.22 (a) Existing works consider fairness during warm start recommendation period;
(b) we study fairness among new items, i.e., the cold-start recommendation period.
Reprinted with permission from [13]. 158

xiv

5.23 For ML1M and each model, sort items by MDG in ascending order and plot their
corresponding MDG. Reprinted with permission from [13]. 167

5.24 The structures of the proposed learnable post-processing framework and two con-
crete models. Reprinted with permission from [13]. 169

5.25 In each training epoch, update ψ to push P (R̂U+
i ,i

) of under-estimated items (i1 and
i2) as close as possible to the target P generated by ϕ. Reprinted with permission
from [13]. 171

5.26 Heater as base, MDG of items by different models. Reprinted with permission
from [13]. 177

5.27 Investigate impact of α, β, and γ on ML1M dataset: (a) shows the impact on
NDCG@30; (b) shows the impact on MDG-all; and (c) shows the impact on
NDCG@30 and MDG-max10% together. Reprinted with permission from [13]. 179

5.28 Investigate group-level fairness on ML1M. Reprinted with permission from [13]. 180

xv

LIST OF TABLES

TABLE Page

3.1 Performance comparison, where best baselines are marked by underlines. Reprinted
with permission from [1]. 24

3.2 Statistics of training, validation and test sets in the three datasets. XING-U: XING
dataset with cold-start users (for Task 1); XING-I: XING with cold-start items
(for Task 2); XING-UI: XING with both cold statr users and items (for Task 3).
Reprinted with permission from [7]. 40

3.3 Recall@k (R), Precision@k (P), andNDCG@k (N) of all methods. ‘-’ represents
unavailable result: KNN, CMF, LoCo, LWA and LLAE cannot work for Task 3,
thus there is no result for them on XING-UI; LWA cannot work for Task 1 thus
there is no result for LWA on LastFM and XING-U; LLAE run into out-of-memory
error on XING dataset thus there is no result of LLAE on XING-U and XING-I.
Reprinted with permission from [7]. 43

3.4 Recall@20, Precision@20 and NDCG@20 of proposed Heater, Heater w/o sim-
ilarity constraint, Heater w/o Mixture-of-Experts Transformation, and Heater w/o
Randomized Training. MoET represents Mixture-of-Experts Transformation, RT
represents Randomized Training. Reprinted with permission from [7].. 45

4.1 Characteristics of the four public datasets. Reprinted with permission from [8]. 59

4.2 Measuring uPO bias (PRU) and iPO bias (PRI) for MF and BPR on four datasets.
* indicates that the Spearman’s rank correlation coefficients are statistically signif-
icant for p < 0.01 judged by t-test. Reprinted with permission from [8]. 62

4.3 Evaluation of recommendation utility (NDCG@k), uPO bias (PRU), and iPO bias
(PRI) for MF based models on four datasets. * indicates the correlation coefficients
are statistically significant for p < 0.01. Reprinted with permission from [8]. 73

4.4 Evaluation of recommendation utility, uPO bias (PRU), and iPO bias (PRI) for
BPR based models on ML1M datasets. * indicates the correlation coefficients are
statistically significant for p < 0.01. Reprinted with permission from [8]. 73

4.5 NDCG@20 of different subgroups determined by different mainstream level eval-
uation approaches. Reprinted with permission from [9].. 83

xvi

4.6 Niche users classifying accuracy of four approaches. Reprinted with permission
from [9]. 83

4.7 Characteristics of three datasets. Reprinted with permission from [9]. 92

4.8 Compare overall utility and utility for different subgroups. Reprinted with permis-
sion from [9]. 94

4.9 Compare different neighbor user selection methods. Reprinted with permission
from [9]. 95

4.10 Compare different anchor user selection methods. Reprinted with permission from
[9]. 97

5.1 Main symbols and operations. Reprinted with permission from [10]. 107

5.2 Comparison for recommending Twitter experts. Reprinted with permission from
[10]. 124

5.3 Group information in the three datasets. Reprinted with permission from [12]. 138

5.4 Ranking probability distributions and RSP and REO metrics on three datasets by
BPR. Reprinted with permission from [12]. 139

5.5 Characteristics of the three 2-group datasets. Reprinted with permission from [12].. . 146

5.6 Comparison between BPR w/o KL-loss for JS Divergences among user score dis-
tributions over three datasets. Reprinted with permission from [12]. 149

5.7 Comparison between BPR and BPR w/ adv for JS Divergences of score distribution
among different groups. Reprinted with permission from [12]. 151

5.8 Comparison between BPR and DPR-RSP w.r.t. F1@15 and RSP@15. Reprinted
with permission from [12]. 151

5.9 Comparison between BPR and DPR-REO w.r.t. F1@15 and REO@15. Reprinted
with permission from [12]. 152

5.10 Comparison between DPR and baselines for JS Divergences of score distribution
among groups. Reprinted with permission from [12]. 153

5.11 Characteristics of the four public datasets. Reprinted with permission from [13]. 163

5.12 Empirical results of four algorithms on ML1M (DN stands for DropoutNet, DM
stands for DeepMusic). Reprinted with permission from [13]. 165

5.13 Empirical results of Heater on four datasets. Reprinted with permission from [13]. . . 167

xvii

5.14 Empirical results on ML1M dataset for all models. Reprinted with permission from
[13]. 176

5.15 Results on 4 datasets for Heater as base model. Reprinted with permission from [13].178

xviii

1. INTRODUCTION

1.1 Background and Motivation

In the past few years, tremendous efforts have been dedicated to creating intelligent recom-

mendation algorithms and systems, such as with the help of machine learning and deep learning

techniques [14, 15, 16, 17, 18]. The success of these powerful recommender systems is evident

across many aspects of our lives: nowadays, we rely on recommender systems to discover media

to consume (like YouTube and Netflix), news to read (like Apple News and Google News), places

to visit (like Airbnb and Expedia), courses to take (like Coursera and Udacity), even the jobs to

apply to (like LinkedIn), and friendships to build (like Facebook).

With such a wide usage and impact, these recommender systems can exert strong but often

unforeseen influence on the social processes connected to culture, lifestyles, politics, education,

ethics, economic well-being, and even social justice. This influence can sometimes have sinister

repercussions: for example, machine learning based recommender systems have been shown to

exhibit discrimination against women and people of color [19]; produce bias against women in job

hunting [20] and content creation [21]; expose children to inappropriate content [22]; and intensify

political polarization [23]. Hence, advancing the development of recommender systems while

being blind to these potential risks and adverse impacts is dangerous.

Therefore, this dissertation aims to lay the foundation for new responsible recommender sys-

tems. That is, rather than myopically focusing on maximizing a single utility metric (e.g., revenue,

views, or user engagement), we should design recommender systems with an eye on the potential

risks and adverse impacts on users, item providers, the platforms, and ultimately the society. These

risks exist in every step in the pipeline of a recommender system, including bias in its many forms,

unfairness for users or items, filter bubbles, polarization, rabbit holes, and so on.

In particular, as shown in Figure 1.1, the pipeline of a recommender system can be viewed as

a closed feedback loop involving three key components: users, interaction data from users, and

1

Figure 1.1: A closed feedback loop as the pipeline of a recommender system, in which we study
the problems at each of the three key components in the pipeline.

the machine learning algorithms. The machine learning algorithm aims to recommend potential

interesting items (items can be anything on the Internet, e.g., web pages, job positions, or people

as potential friends) to users; users interact with the recommendations through a set of actions,

like clicks, views or purchases; the collected interaction data is then used to further train the ma-

chine learning algorithm; the performance of the system is evaluated based on the feedback on the

recommendation result provided by users; and then, this loop continues.

In such a pipeline, risks and harms can happen at every step. So, in this dissertation, we target

three different problems in each of the three key components in this pipeline – the exposure bias in

the interaction data, algorithmic bias in the machine learning based recommendation algorithms,

and unfairness in the recommendation result – and aim to identify, analyze, and alleviate these

risks and harms to realizing responsible recommender systems.

Exposure Bias

One core problem that can incur risks in a recommender system is the inherent exposure bias

in user-item interaction data. Modern recommender systems based on machine learning highly

2

rely on user-item interaction data to learn user-item relevance. However, this user-item interaction

data is usually generated in a biased environment, that is, users are exposed to different items

with different probabilities, and only if a user is exposed to an item, can an interaction between

them happen. So, the user-item interaction data with such a bias cannot correctly reflect the true

user-item relevance. For example, if the user-item interaction data is collected from an existing

recommender system, items more frequently recommended in this logging system potentially have

more interactions in the collected data. Then, a new recommendation model trained on this user-

item interaction data cannot precisely learn the true user-item relevance and would be biased toward

those items previously preferred by the logging system.

Building recommender systems unaware of this exposure bias can result in inferior recommen-

dation quality because a recommendation model trained on this biased data cannot accurately learn

the true user-item relevance but learns a mixture of user-item relevance and the behavior patterns

of the logging system. More importantly, because the newly built systems can inherit the behavior

patterns of logging systems due to the exposure bias, the more crucial harm of such an exposure

bias is that it can contribute to accumulating and exaggerating other detrimental issues, like filter

bubble, unfairness, polarization, and so on.

Hence, techniques to counteract the exposure bias is in need. However, it is non-trivial to

achieve this. One major challenge is that to parse the true user-item relevance information from

the user-item interaction data, we need to know the user-item exposure information beforehand,

which is in fact unknown and hard to be estimated. Besides, another vital challenge (also known

as the well-known cold-start problem) is how can we deal with situations with extreme exposure

bias. That is, when there are some items with zero exposure before and without any historical

interaction data, how do we build a recommender system being capable to effectively recommend

these items?

Algorithmic Bias

In addition to the bias raised by data, it is also crucial that we are aware of and are able to

address the bias intrinsic in the machine learning algorithms. One long-standing algorithmic bias

3

is the popularity bias that algorithms have the tendency to more frequently recommend popular

items to users at the expense of less exposure for less popular ones, even if the recommenda-

tion models are trained based on unbiased interaction data. This can potentially incur the ‘rich

get richer’ problem, which will decrease user satisfactions and is unfair toward less popular but

not necessarily lower-quality items. However, the conventional measurement of popularity bias

considers the difference of the recommendation frequency to all users across items with different

levels of popularity, which does not take the ground truth of user-item matching into account. Yet,

only recommending items to matched users, who will interact the item once recommended, can

influence user satisfactions and engagement items receive. Hence, measuring the popularity bias

over recommendations to all users without conditioned on the ground truth of user-item matching

cannot really indicate an undesired harm and the ‘rich get richer’ problem. Challenges remain

unsolved: How can we measure the popularity bias with the ground truth of user-item matching

taken into account? Whether this new type of bias does exist in recommender systems? And how

can we effectively eliminate such a bias?

Besides bias on items, we also wonder what kind of bias the machine learning algorithms can

engender to users. We want to study the bias on users that: Whether users with different preferences

are treated differently by the recommender algorithms? And if the majority of users sharing simi-

lar preferences receive recommendations of higher quality than niche users who prefers items that

are out of the mainstream do? Such a bias can be problematic because it is unfair to consistently

provide low-quality recommendations to niche users and can eventually drive niche users away

from the system. More importantly, this bias could reduce the inclusiveness with respect to niche

opinions and views in essential platforms related to social information and opinions, such as so-

cial media or news platform, leading to intellectual segregation and societal polarization. Toward

thoroughly understanding and solving this mainstream bias, we need to tackle several research

questions: How do we identify mainstream users vs. niche ones? What impact does the degree of

mainstream-ness have on recommendation utility? And can we develop methods to ameliorate this

mainstream bias? Can we improve the recommendation utility for users of low mainstream levels

4

while preserving or even increasing the utility for mainstream users at the same time?

Recommendation Unfairness

At last, we are interested in how the bias in interaction data and the bias in the algorithms lead

to unfair recommendation. In other words, we aim to study are different items or item groups

treated fairly in a recommender system? For example, in a job recommender that recommends

job openings, are high-paying jobs and non-profit jobs treated fairly? In a news recommender,

are news of different political ideologies recommended at similar rate? And even for product

recommenders, are products from big companies favored over products from new entrants? The

harm of recommendation unfairness among items has been recognized in the literature [24, 25, 26],

with potential adverse impacts on item providers, user satisfaction, the recommendation platform

itself, and ultimately social good.

Although many existing work have put efforts to develop new recommendation algorithms

that can enhance fairness, it is still challenging to measure and enhance fairness in some spe-

cial but pervasive recommendation scenarios. How can we enhance recommendation fairness in

a multi-dimension recommender system, where items are recommended to users given different

conditions? How can we measure and enhance fairness directly on ranking results in a personal-

ized ranking system? And how can we enhance recommendation fairness among new items in a

cold-start recommender system, where there is no historical interaction data for these new items?

1.2 Dissertation Contributions

To answer these research questions and address the challenges, we make three unique contri-

butions investigating and tackling three different types of problems in recommender systems.

• The first contribution of this dissertation research lies in counteracting exposure bias in user-

item interaction data used for training recommendation models. Toward tackling this prob-

lem, we propose a novel combinational joint learning framework to learn user-item relevance

and exposure information simultaneously, which can effectively remove the exposure bias

in the training data and provide unbiased recommendations. Moreover, we also consider

5

the more challenging situation with extreme exposure bias, where some items have zero ex-

posure probability. This is also known as the cold-start problem in recommender systems.

We further develop a novel and effective cold-start recommendation algorithm – Heater –

to provide high-quality recommendations for these cold-start items. Extensive experiments

validate the effective performance by the two proposed methods.

• Second, we investigate how do the machine learning based recommendation algorithms in-

troduce additional bias even if the training data is free of exposure bias. We first conduct

both theoretical and empirical studies on fundamental recommendation models to uncover

popularity-opportunity bias, an intrinsic problem for recommender algorithms. Popularity-

opportunity bias refers to the phenomenon that recommendation models tend to more fre-

quently recommend popular items to matched users (who are willing to interact with these

items once recommended) than less popular items. To mitigate this popularity-opportunity

bias, we propose a simple but effective post-processing popularity compensation algorithm.

Besides the bias on the item side, we also study the bias produced by algorithms on the user

side. We conduct data-driven study to reveal the mainstream bias among users that users

with mainstream preference (the majority group of users who share similar preference) re-

ceive more accurate recommendations than users with niche preference. To alleviate this

mainstream bias among users, we propose a local fine tuning method to improve the rec-

ommendation quality for every user by delivering a customized model for each user. We

also conduct extensive experiments to empirically show the outstanding performance of the

proposed algorithms for debiasing.

• Third, we investigate the fairness in the recommendation result, and aim to propose methods

to measure and enhance recommendation fairness. In particular, we explore recommendation

fairness in three different scenarios: the multi-dimension recommendation scenario, where

besides the two dimensions of users and items, there are other dimensions as additional

conditions determining how items are recommended to users; the personalized ranking rec-

6

ommendation scenario, where recommendations are presented as ranking lists of items and

all evaluations including recommendation quality and fairness should be conducted based on

ranking results; and the cold-start recommendation scenario, where cold-start items with no

historical interaction are to be recommended. For each of these different recommendation

scenarios, we conduct empirical analysis on recommendation fairness and propose novel

solutions to enhance fairness which empirically show effective performance.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: In this chapter, we introduce the preliminaries of this dissertation. We first

briefly introduce the formalization of the recommendation task and also some widely-used

metrics for evaluating the recommendation result. Then, we introduce the fundamental rec-

ommendation algorithm – matrix factorization, which serves as the foundation for the re-

search in this dissertation.

• Chapter 3: In this chapter, we introduce the first contribution in this dissertation – to coun-

teract the exposure bias in the user-item interaction data in a recommender system. Specifi-

cally, we first propose a novel and effective combinational joint learning framework, which

is able to learn user-item exposure and user-item relevance jointly to deliver unbiased rec-

ommendation results. Then, we explore further to investigate how to produce high-accuracy

recommendations in the scenario with extreme exposure bias, where there are items without

any historical interaction data. We introduce our proposed algorithm Heater to tackle this

cold-start problem.

• Chapter 4: In this chapter, we move our focus from bias in data to the bias in the machine

learning algorithms. We first introduce the popularity-opportunity bias among items pro-

duced by the recommendation algorithm. We conduct both empirical and theoretical study to

show the existence of this bias and propose simple but effective post-processing algorithms

7

to mitigate this bias. Then, we explore the bias produced by recommendation algorithms

among users and introduce the mainstream bias. We explore the potential ways to identify

niche users and introduce two global methods and one novel local method to alleviate this

mainstream bias.

• Chapter 5: In this chapter, we study how to measure and enhance fairness in recommender

systems. In particular, we study recommendation fairness in three different scenarios. First,

we study how to enhance fairness in a multi-dimension recommender system and develop

a fairness-aware tensor-based model to achieve the goal. Then, we switch our attention to

personalized ranking systems. We introduce two new fairness measurements directly on

ranking results and propose an adversarial learning based algorithm for enhancing fairness

in the personalized ranking recommender system. At last, we investigate fairness in the

cold-start recommender systems and develop a novel learnable post-processing framework

and a joint-learning generative model to improve fairness among cold-start items without

any historical interaction data.

• Chapter 6: At last, we conclude this dissertation by a summary of contributions and a

discussion of future research opportunities.

8

2. PRELIMINARIES

In this chapter, we introduce the preliminaries of this dissertation, including the formalization

of the recommendation problem, the evaluation metrics, and the fundamental matrix factorization

algorithm for recommendation.

2.1 Formalization of Recommender Systems

In a recommender system as demonstrated in Figure 1.1, we have a set of N users denoted as

U = {1, 2, . . . , N} and a set of M items denoted as I = {1, 2, . . . ,M}. At a certain moment

in the life cycle of such a system, we can have a set of user-item interactions (like clicks, views,

or purchase records) collected up to now. We denote this set of interactions from users to items

as O = {(u, i)} where u ∈ U indexes one user, and i ∈ I indexes one item. We use this data

as the training data to train/update a core recommendation model. And the newly trained/updated

recommendation model will provide the next-round recommendations to users. Specifically, by

the recommendation model, we need to provide a list Ru containing k items to every user. And for

a user u, the recommendation is based on her historical interaction record Ou = {i, j, . . .}, where

i, j, . . . are the items u has interacted with before. With the new recommendations, users provide

new interactions to items, resulting in new training data, and such a loop in Figure 1.1 continues.

In a real-world online recommender system, we can directly evaluate the system based on

the user engagement in the system over a period of time. However, when we conduct offline

experiments to evaluate a recommender algorithm, we need to have another item set Õu to represent

the items that user u will like during evaluation, which serve as the ground-truth test data for

evaluating recommendation quality. And most research works [27, 17, 16, 12] adopt this offline

experiment paradigm to evaluate and compare different regimentation algorithms.

2.2 Evaluation Metrics

Many ranking evaluation metrics can be used to evaluate the recommendation result in an

offline experiment. Here we introduce four most widely used ones:

9

Recall@k: calculates the true positive rate of the provided recommendations. In other words, it

shows the expectation of how many items a user likes can be recommended to the user. The higher

the metric is, the more items the user likes can be exposed to the user, indicating the better the

provided recommendations are. The metric can be formulated as:

Recall@k =
1

|U|
∑
u∈U

|Ru ∩ Õu|
|Õu|

. (2.1)

Precision@k: calculates the positive predictive value of the provided recommendations. It shows

the expectation of how many items in the recommendations are useful for the user. the higher

the metrics is, the more items in the recommendations will be liked by the user, the better the

recommendations are. The metric is formulated as:

Precision@k =
1

|U|
∑
u∈U

|Ru ∩ Õu|
k

. (2.2)

F1@k: aims to combine Recall@k and Precision@k because Recall@k and Precision@k evaluate

different perspectives of the recommendations. F1@k calculates the harmonic mean of Recall@k

and Precision@K , formulated as:

F1@k = 2
Recall@k · Precision@k

Recall@k + Precision@k
. (2.3)

DCG@k: evaluates the quality of a ranking system and takes the importance of ranking position

into account. Unlike Recall@k, Precision@k, and F1@k, which consider all the top k positions

equally important, DCG@k applies a logarithmic decay to estimate the position importance. It can

be formulated as:

DCG@k =
1

|U|
∑
u∈U

∑
0<i≤k

δ(Ru[i] ∈ Õu)
log2(i+ 1)

, (2.4)

where δ(x) returns 1 if x is true, otherwise 0; and Ru[i] fetches the item at the i-th position in the

recommended list Ru.

10

NDCG@k: further normalizes the DCG@k to avoid the problem that different users may have

DCG@k at different scales. So, NDCG@k normalizes the DCG@k by the best possible DCG@k

value for each user, making the resulted metric to be in the range of [0, 1]. It is formulated as:

NDCG@k =
1

|U|
∑
u∈U

(
∑

0<i≤k

δ(Ru[i] ∈ Õu)
log2(i+ 1)

·
∑

0<j≤|Õu|

log2(j + 1)). (2.5)

2.3 Matrix Factorization

Collaborative filtering [28] is the core of machine learning based recommendation algorithms.

The main idea is to find items liked by users who are similar to the target user and recommend them

to the target user, or to recommend a target item to users who like items that are similar to the target

item. Matrix factorization is one of the most widely used collaborative filtering algorithms [29,

27], which considers both user-user similarity and item-item similarity simultaneously. Matrix

factorization has become the foundation for many state-of-the-art recommendation models [30,

31], as well as recent neural-network based models [17, 32, 33] that use matrix factorization as

the final layer for predicting preference scores. The main idea of matrix factorization is to learn

low-dimensional latent representations for users and items based on existing user-item interactions,

and then to predict preference scores for unobserved user-item pairs by the dot-product of latent

representations:

ŷu,i = P>uQi, (2.6)

where Pu ∈ RH×1 is the latent representation of user u, Qi ∈ RH×1 is the latent representation of

item i, and H is the latent dimension. With the predicted user-item relevance scores ŷu,i, we rank

items for each user by sorting them in the descending order of their relevance scores.

There are two main categories of objective functions for matrix factorization models: point-

wise objective functions (including Root Mean Square Error (RMSE) [29], Cross-Entropy [17],

among others) and pair-wise objective functions (including Bayesian Personalized Ranking loss

(BPR) [27], Hinge loss [34], and others). Since RMSE and BPR are two of the most widely

11

applied objective functions, we mainly focus on these two in the rest of this dissertation. We

denote the matrix factorization model with RMSE as RMSE, and the one with BPR loss as BPR.

The formulations are shown below:

min
Θ

LRMSE =
∑
u∈U

∑
i∈Ou∪O−u

√
(ŷu,i − yu,i)2, (2.7)

min
Θ

LBPR = −
∑
u∈U

∑
i∈Ou

j∈O−u

ln σ(ŷu,i − ŷu,j), (2.8)

whereO−u is the randomly sampled negative item set for u; yu,i indicates the relevance of the user-

item pair (u, i) in training data – yu,i = 1 if i ∈ Ou, otherwise 0; σ(·) is the Sigmoid function;

and Θ represents the model parameters, i.e., the latent representations for users and items P and

Q. Using the point-wise objective function like RMSE means that we treat the recommendation

task as a user-item relevance regression problem. The advantage of using the point-wise objective

function is that the training process can be simple and flexible because we treat each user-item

pair independently during training. However, the drawback of the point-wise objective function

is that there is a big gap between the objective function and the final ranking-based evaluation of

the recommendations. Hence, the pair-wise objective function like BPR, which is directly aligned

with ranking-based evaluation, can often deliver better recommendation quality.

12

3. COUNTERACTING EXPOSURE BIAS IN USER-ITEM INTERACTION DATA1

In this chapter, we introduce the first contribution of this dissertation research – a set of tech-

niques for counteracting the exposure bias in user-item interaction data. In particular, we first

target one of the major challenges for addressing the exposure bias that the user-item exposure

information is unknown and hard to be estimated. To tackle this challenge, we propose a com-

binational joint learning framework, which learns the user-item relevance and user-item exposure

simultaneously. Then, we also develop a new model with a randomized training mechanism and a

Mixture-of-Experts Transformation structure to attack the big challenge of delivering recommen-

dation in the situation with extreme exposure bias. In this extreme exposure bias situation, some

items have zero exposure in the user-item interaction data, in other words, they do not have any his-

torical interaction data. This recommendation problem with extreme exposure bias is also known

as the cold-start problem. Our developed methods can effectively alleviate the exposure bias and

produce recommendation of high accuracy.

3.1 Related Work

In this section, we will introduce the related work about how to address the exposure bias in the

warm-start recommendation task and how to provide recommendation in the cold-start scenario.

3.1.1 Addressing Exposure Bias

Prior works have studied feedback bias in explicit ratings in recommender systems [35, 36, 37,

38, 39, 40, 41, 42], especially since people can be selective for which items to provide ratings [35,

43, 36, 44, 37]. As a result, many approaches are inherently biased, with more accurate predictions

for high ratings than for low ratings. To address this, previous works propose to alleviate bias in

1This chapter is reprinted with permission from “Unbiased Implicit Recommendation and Propensity Estimation
via Combinational Joint Learning" by Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee, 2020, Proceedings of the
14th ACM Conference on Recommender Systems, Copyright 2020 by ACM; and “Recommendation for New Users
and New Items via Randomized Training and Mixture-of-Experts Transformation" by Ziwei Zhu, Shahin Sefati, Parsa
Saadatpanah and James Caverlee, 2020, Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, Copyright 2020 by ACM.

13

terms of both model learning [35, 36, 38, 39, 40, 41, 42, 45] and evaluation metrics [36, 37, 35].

With increasing impact made by implicit recommender systems, investigating the bias in im-

plicit feedback is in high demand. Yang et al. [46] studied the influence of bias in implicit feed-

back in term of evaluation, showing that conventional evaluation metrics are biased toward high-

exposure items and proposing unbiased metrics based on IPS method. Based on the IPS method as

well, Saito et al. [47] proposed the first unbiased recommendation model to learn unbiased user-

item relevance from biased implicit data. Later, Saito [48] extended the point-wise model in [47]

to a pair-wise version, which delivers improved performance. However, although these existing

unbiased methods theoretically guarantee to generate unbiased recommendation, their reliance on

naïve item popularity based estimation of propensity in the IPS method can still lead to inaccurate

and biased recommendation. In this work, we address this issue by the proposed combinational

joint learning method to learn both unbiased relevance and unbiased propensity simultaneously.

3.1.2 Addressing Cold-start Problem

One inherent drawback of the recommendation algorithms mentioned above is that they can

not recommend in the extreme exposure bias scenario, where there are users or items without

any historical interaction data. However, this cold-start scenario is common in many real-world

applications. There are two main categories of modern approaches: separate-training and joint-

training methods.

Separate-training methods separate the learning of the CF model and the transformation from

auxiliary representations to CF representations. One typical group of methods is to first pretrain a

CF model on the user-item interaction data and generate pretrained CF representations, then learn

the transformation functions based on the pretrained CF representations. One example is LinMap

proposed by Gantner et al. [6], which learns a linear transformation matrix to map auxiliary rep-

resentations to pretrained CF representations. Another example is DeepMusic [49], which use

deep neural networks to transform music audio signals to pretrained CF representations. Another

group of methods [50, 51, 52] combines the learning of CF and transformation functions into one

model, but they have their own loss components in the objective function and a trade off of learning

14

strength between them must be achieved. For example, CMF proposed by Singh et al. [50] learns a

matrix factorization and a linear transformation function in one model, whose core idea is similar

to LinMap.

Joint-training methods learn CF and transformation functions jointly to minimize the recom-

mendation error on the user-item interaction data in one model. A typical example is DropoutNet

proposed by Volkovs et al. [5], which transforms auxiliary representations to CF representations

by multi-layer perceptions, and learns the model parameters by minimizing a recommendation er-

ror. Another thread of methods directly learns a transformation from auxiliary representations to

preference scores [3, 4] without generating any intermediate CF representations, which is inspired

by Autoencoder based CF [53].

Beside these two directions, there are some works adapting the idea of meta-learning to the

cold-start recommendation field [2, 54]. Vartak ei al. [2] propose to generate different models

for different users based on their historical preferences, then apply these user-specific models to

auxiliary representations of cold-start tweets to predict user preference towards tweets. Lee et

al. [54] build a recommender that is able to adapt to users or items with very few interaction

records (instead of no feedback as in our work) so that it can perform well on new users or items.

3.2 Counteracting Exposure Bias via a Combinational Joint Learning Framework

3.2.1 Introduction

Widespread implicit user-item interactions such as user purchases, views, and clicks, have

been widely used in recommender systems with far-reaching impact [55, 56, 27]. However, recent

studies [47, 57, 48, 46] show that these implicit interactions are not necessarily aligned with user

preferences. Since the observed interactions are determined by both user-item relevance and item

exposure, learning a model directly from implicit interactions results in biased recommendations.

To address this issue, recent works have proposed unbiased recommendation models by ap-

plying principles from Inverse Propensity Scoring (IPS) [47, 48]. These unbiased algorithms can

theoretically guarantee to produce unbiased user-item relevance prediction conditioned on hav-

15

ing an unbiased estimation of the propensity (i.e., the user-item exposure probability). However,

these works model this item exposure probability by a power-law function of item popularity (e.g.,

using the number of interactions received by an item), which is not an unbiased estimate of the

propensity. The item exposure probability of an item depends on the total number of users who

have seen the item, which is a function of both the observed positive feedback (e.g., clicks) and

the unobserved negative feedback. That is, some users may see an item but not interact with it.

This unobserved negative feedback is missing from existing item exposure methods based on item

popularity, and so bias may still be introduced into seemingly unbiased methods.

Therefore, we propose a combinational joint learning framework that is designed to simulta-

neously learn unbiased user-item relevance and unbiased propensity. More specifically, we first

introduce an unbiased propensity estimation method that aims to learn the unbiased user-item ex-

posure probability directly from observed user-item interaction records, rather than assuming a

power law distribution. Such an approach has the benefit of learning propensity directly from data,

sidestepping the disadvantages of heuristic methods used in previous works. Because learning un-

biased relevance and learning unbiased propensity are conditioned on each other, a straightforward

way for unbiased recommendation is to learn both of them via a joint learning model. However, we

show how a naïve joint learning method that iteratively train an unbiased relevance model and an

unbiased propensity model can still lead to a special estimation-training overlap problem, wherein

the learning of the relevance and propensity models shares the same training data, leading to bi-

ased results. Hence, we propose a new combinational joint learning framework that jointly learns

multiple unbiased relevance and propensity sub-models from different parts of the training dataset

to avoid this estimation-training overlap problem. We further show how to incorporate residual

components trained by the complete training data to complement these relevance and propensity

sub-models, leading to unbiased prediction of user-item relevance and propensity. By experiments

on two real-world datasets, we show how the proposed model improves existing unbiased recom-

mendation methods with an improvement of 4% on average over the best alternatives.

16

3.2.2 Proposed Combinational Joint Learning Framework

In this section, we introduce a combinational joint learning framework that jointly learns un-

biased relevance and propensity simultaneously. We begin by formalizing the implicit recommen-

dation problem and introducing an unbiased objective function from previous work to model the

unbiased user-item relevance. We then show how to estimate unbiased propensity – to overcome

the hidden bias prevalent in many previous approaches to estimate propensity – and then provide

the details of the combinational joint learning framework.

3.2.2.1 Preliminaries

Problem Statement

Suppose we have a user set U = {1, 2, . . . , N}, an item set I = {1, 2, . . . ,M}, and a user-

item interaction variable Yu,i ∈ {0, 1} where u ∈ U and i ∈ I recording observed interactions

(Yu,i = 1) or unknown interactions (Yu,i = 0). We use D to denote the training data with all

observed user-item interactions and some unknown interactions (by random negative sampling).

To model the observed interaction variable, previous works [48, 47, 46] introduce two hidden

variables: the relevance variable Ru,i ∈ {0, 1} indicating whether user u likes item i (Ru,i = 1)

or not (Ru,i = 0); and the exposure variable Ou,i ∈ {0, 1} indicating whether item i is exposed to

user u (Ou,i = 1) or not (Ou,i = 0). Then, the interaction variable is modeled as: Yu,i = Ru,i ·Ou,i,

i.e., only if user u likes item i (Ru,i = 1) and i is exposed to u (Ou,i = 1), can we observe Yu,i = 1.

Hence, the task of unbiased implicit recommender systems is to infer user-item relevance Ru,i and

provide ranked lists of items to users based on the observed interaction variable Yu,i.

Unbiased Objective Function via IPS

To model the relevance variable Ru,i, we can have the ideal objective function [47] :

Lideal =
∑

(u,i)∈D

Ru,i(log(R̂u,i)) + (1−Ru,i)(log(1− R̂u,i)), (3.1)

where R̂u,i is the predicted relevance probability for user u to item i, which can be formulated as

17

a matrix factorization model: R̂u,i = σ(P>u ·Qi) with Pu as the user latent factors, Qi as the item

latent factors, and σ(·) as the Sigmoid function. Note that here we adopt cross entropy, but other

loss functions can be selected as well.

However, in practice, Ru,i is unobservable. That is, we can only observe the interaction vari-

able Yu,i that conflates both relevance and exposure. Conventional algorithms [17, 58, 27, 29]

directly replace Ru,i in Lideal by Yu,i, which is problematic because it will lead to the learned R̂u,i

combining both relevance Ru,i and exposure Ou,i (because Yu,i = Ru,i · Ou,i) to generate biased

recommendations. Hence, to address this problem, previous work [47] adopts Inverse Propensity

Scoring (IPS), leading to the following unbiased objective function:

LIPS =
∑

(u,i)∈D

Yu,i
θu,i

(log(R̂u,i)) + (1− Yu,i
θu,i

)(log(1− R̂u,i)), (3.2)

where all variables Yu,i,Ru,i,Ou,i are assumed to be Bernoulli variables as P (Yu,i = 1) = γu,i ·θu,i,

γu,i = P (Ru,i = 1) and θu,i = P (Ou,i = 1). It is straightforward to show E[LIPS] = E[Lideal] (for

details, please refer to [47]). Thus, by minimizing LIPS , we can have unbiased recommendation.

3.2.2.2 Unbiased Propensity Estimation

We call the parameter θu,i (the probability of exposing item i to user u) the propensity in the

IPS method. This propensity is estimated by a power-law function of item popularity (the number

of interactions received by each item) in [47, 48, 46]:

θ∗,i = (
∑
u∈U

Yu,i/maxi∈I(
∑
u∈U

Yu,i))
η. (3.3)

However, the power-law function of item popularity is itself not an unbiased estimation of the

exposure probability: item popularity only considers the observed positive user-item interactions,

but item exposure is determined by both observed positive interactions and unobserved negative

feedback. That is, users may see an item but not interact with it. As a result, bias may still be

introduced into seemingly unbiased methods such as in Equation 3.2.

18

Hence, we propose an unbiased propensity estimation method that aims to learn (i) the trade-off

between the item popularity of positive and negative interactions; and (ii) the relative popularity

for unobserved negative interactions. Such an approach has the added side benefit of learning

propensity directly from data, sidestepping the challenge of tuning the exponent hyper-parameter

η accurately for every new dataset.

Because all of Yu,i, Ru,i, and Ou,i are Bernoulli variables, the unbiased objective function for

modeling Ou,i is symmetric to the unbiased objective function for Ru,i in Equation 3.2. Thus, by

replacing θu,i with γu,i and replacing R̂u,i with Ôu,i in Equation 3.2, we have the Inverse Relevance

Scoring objective function:

LIRS =
∑

(u,i)∈D

Yu,i
γu,i

(log(Ôu,i)) + (1− Yu,i
γu,i

)(log(1− Ôu,i)), (3.4)

where Ôu,i is the predicted exposure probability, i.e., the estimation of the propensity θu,i. Con-

cretely, we model Ôu,i by an item-based model: Ôu,i = (w · a + (1 − w) · Ki)
e, where w =

fw(Qi), a = fa(Qi), e = fe(Qi); fw(·), fa(·), fe(·) are three one layer perceptrons activated

by a Sigmoid function with the item latent vector as input and a probability scalar as output;

Ki =
∑

u∈U Yu,i/maxi∈I(
∑

u∈U Yu,i) is the relative item popularity. We adopt the same power-

law function as previous works [47, 48, 46] do in Equation 3.3, but set the exponent as a learnable

parameter by e = fe(Qi). In essence, a = fa(Qi) aims to learn the relative popularity for unob-

served negative interactions for items and w = fw(Qi) learns the trade-off between the popularity

of positive and negative interactions. Moreover, we can view the propensity estimation in Equa-

tion 3.3 as a special case of our item-based propensity model when w = 0 and e = η.

3.2.2.3 Combinational Joint Learning Framework

Up to now, we have objective functions in Equation 3.2 for learning unbiased user-item rel-

evance probability given we know the propensity (user-item exposure probability), and we also

have the objective function in Equation 3.4 for learning unbiased propensity given we know the

user-item relevance probability.

19

Algorithm 1: Training algorithm.
1 repeat
2 for Dc in {D1, . . . ,DC} do
3 for (u, i) in Dc do
4 Calculate γu,i and θu,i by Ψc and Φc;
5 Update {Ψ1, . . . ,ΨC} \Ψc by Equation 3.2, and update {Φ1, . . . ,ΦC} \ Φc by

Equation 3.4;
6 with {Ψ1, . . . ,ΨC} and {Φ1, . . . ,ΦC} fixed:
7 Update {Ψ1, . . . ,ΨC} by Equation 3.2 with R̂u,i calculated by

{Ψ1 + Ψ1, . . .ΨC + ΨC};
8 Update {Φ1, . . . ,ΦC} by Equation 3.4 with Ôu,i calculated by

{Φ1 + Φ1, . . . ,ΦC + ΦC};

9 until converge;

Naïve Joint Learning Method and Estimation-training Overlap Problem

Therefore, a straightforward idea is to combine them together in one model and jointly learn

both of them. Concretely, assume we have a relevance model Ψ = {P,Q} and a propensity model

Φ = {fw, fa, fe}. For one observed user-item interaction (u, i) ∈ D, we can first fix the propensity

model Φ, and use the prediction Ôu,i of Φ as the propensity in Equation 3.2 to update the relevance

model Ψ; then fix Ψ and update Φ based on Equation 3.4 with the prediction R̂u,i of Ψ as the

relevance probability.

However, such a naïve method faces the estimation-training overlap problem. That is, the user-

item pairs for training and propensity estimation (or relevance estimation) overlap with each other.

More specifically, for a random user-item pair (u, i) inD, we can use it to train the relevance model

Ψ, and then use R̂u,i by Ψ as the relevance probability γu,i in Equation 3.4 to update the propensity

model Φ. This is problematic because Ψ has been trained by (u, i), so that γu,i = R̂u,i becomes

the probability of u liking i given u has already provided positive feedback to i. Hence, γu,i will

be predicted as 1 by Ψ, which violates the definition of γu,i as the probability parameter for the

Bernoulli variable Ru,i. Similarly, using Ôu,i by Φ, which is trained by (u, i), as the propensity θu,i

for updating Ψ brings the same problem.

20

Combinational Joint Learning

To address this problem, we propose a combinational joint learning framework, which sepa-

rately learns unbiased relevance model Ψ and unbiased propensity model Φ by different data sam-

ples. The key idea is to split the training data into multiple chunks, and have multiple relevance sub-

models and propensity sub-models so that the data chunks used for training any one of them and the

chunks they predict relevance and propensity for do not overlap. Formally, we randomly divide the

original training data D into C chunks with the same size: {D1, . . . ,DC}, C is a predefined com-

bination hyper-parameter. Then, we define C relevance and propensity sub-models: {Ψ1, . . . ,ΨC}

and {Φ1, . . . ,ΦC}. Each of the relevance sub-models and the propensity sub-models has the same

structure as the conventional relevance and propensity model Ψ = {P,Q} and Φ = {fw, fa, fe}.

During training, for the c-th relevance and propensity sub-models Ψc and Φc, we will use all data

chunks exceptDc to update them, and output R̂c
u,i by Ψc and Ôc

u,i by Φc as the relevance probability

γu,i and propensity θu,i for user-item pairs inDc for training other sub-models. And γu,i and θu,i for

chunks except Dc for training Ψc and Φc are provided by the other C − 1 relevance and propensity

sub-models. For example, Φ1 and Ψ1 are trained by {D2, . . . ,DC} with γu,i and θu,i provided by

{Φ2, . . . ,ΦC} and {Ψ2, . . . ,ΨC} correspondingly, and Φ1 and Ψ1 output θu,i and γu,i for D1 for

the training process of other sub-models. In this way, data for training and propensity estimation

(or relevance estimation) does not overlap for all of the sub-models.

Yet, there is another issue. Each of the sub-models is only trained by partial training data

(C − 1 chunks), leading to information loss and compromised performance even if we average all

sub-models as the final output. Hence, we further introduce a residual component to complement

each sub-model. For example, for sub-models Ψc = {Pc,Qc} and Φc = {f cw, f ca, f ce} we have

the residual components Ψc = {Pc,Qc} and Φc = {f cw, f ca, f ce}, and add the residual components

to the original sub-models as the final models for output: Ψ′c = {Pc + Pc,Qc + Qc} and Φ′c =

{f cw + f cw, f
c
a + f ca, f

c
e + f ce}. The residual component is trained by the complete D with sub-

models fixed, and the relevance and propensity are provided by all the sub-models. The training

algorithm is shown in Algorithm 1. Last, after training, by averaging the output of {Ψ′1 . . .Ψ′C}

21

and {Φ′1 . . .Φ′C}, we have the final unbiased relevance and propensity predictions.

3.2.3 Experiments

We conduct experiments on two real-world datasets to answer three research questions: RQ1

How does the proposed method perform compared with state-of-the-art alternatives? RQ2 How

effective is the estimated propensity? and RQ3 What is the impact of the combination hyper-

parameter C and of the residual components in the proposed model?

3.2.3.1 Experimental Settings

Datasets

To evaluate unbiased recommendation, we need datasets with items uniformly exposed to users

so that we can directly evaluate user-item relevance without influence of exposure. Thus, we

use the Yahoo and Coat datasets, which are the only two publicly available datasets containing

separate test sets where users provide feedback to uniformly drawn samples of items. Yahoo! R3

(https://webscope.sandbox.yahoo.com/) contains over 300K ratings (1 to 5) from

15.4K users to 1K songs in the training set (a biased training set). Besides, an unbiased test set is

collected by sampling a subset of 5.4K users, each of whom is randomly assigned 10 songs, and

asked to provide ratings to these random items. Following the preprocessing procedure in [46],

we regard ratings ≥ 4 as positive feedback, and we randomly split 10% of the training set to be a

biased validation set. Coat Shopping [35] contains around 7K ratings (1 to 5) from 290 users to

300 coats in the training set (a biased training set). Similar to the Yahoo dataset, the Coat dataset

also has an unbiased random test set by asking all 290 users to rate 16 randomly selected coats.

Metrics

Following [47, 48], we adopt two widely used implicit recommendation evaluation metrics

– DCG@k (Discounted Cumulative Gain) and MAP@k (Mean Average Precision). The detailed

formulations can be found in [47, 48]. We report results with k = 1, 2, 3 since the number of

candidate items for ranking is small in the test set. We rank the 10 exposed items for each user in

the Yahoo dataset, and 16 items in the Coat dataset.

22

https://webscope.sandbox.yahoo.com/

Combinational Approaches

We evaluate combinational joint learning for both a point-wise version (CJMF) and a pair-

wise variation (CJBPR). CJBPR uses the unbiased Bayesian Personalized Ranking (BPR) loss

proposed by [48] for the relevance model, and uses the same propensity loss in Equation 3.2 for the

propensity estimation. Since the output of the relevance model R̂u,i in CJBPR is not a probability,

for a user u, we further use a softmax function on R̂u,∗ to have a multinomial distribution for

predicted scores and then divide the scores by the maximum score in the multinomial distribution

to transform scores to relevance probabilities γu,∗ in Equation 3.4.

Baselines

For fair comparison, we compare CJMF with point-wise baselines, and compare CJBPR with

pair-wise baselines. For point-wise baselines, we use the following biased models: MF-RMSE [29],

the most commonly used matrix factorization model for implicit recommender systems with RMSE

loss; MF-CE, a variation of MF-RMSE adopting cross entropy loss (to have a fair comparison

with CJMF that also uses cross entropy loss). We also consider the following unbiased baselines:

RelMF-RMSE [47], an unbiased model adopting the IPS approach and the RMSE loss; RelMF-

CE is a variation of RelMF-RMSE which adopts cross entropy loss to have a fair comparison with

the proposed CJMF. For pairwise baselines, we adopt the biased BPR [27] model and UBPR [48],

an unbiased version of BPR which also uses the IPS approach.

All point-wise and pair-wise unbiased baselines [47, 48] use the power-law function of item

popularity introduced in Equation 3.3 with η = 0.5 (the same as in the original papers [47, 48]) as

propensity. We also adopt the propensity clipping approach [47, 48] to reduce the variance for all

unbiased baselines and also our proposed models.

Reproducibility

We implement the proposed models based on Tensorflow [59] and use Adam [60] optimizer.

We set the learning rate as 0.001, the batch size as 1024, the latent dimension as 100, and the

negative sampling rate as 5 for all models and datasets. For other hyper-parameters, we tune them

23

Table 3.1: Performance comparison, where best baselines are marked by underlines. Reprinted
with permission from [1].

Point-wise models Pair-wise models
MF

-RMSE
MF
-CE

RelMF
-RMSE

RelMF
-CE

NJMF CJMF ∆ BPR UBPR CJBPR ∆

Yahoo

DCG
@1 .531 .528 .536 .534 .540 .561 4.58% .541 .543 .565 3.96%
@2 .730 .739 .735 .740 .743 .775 4.71% .745 .749 .775 3.42%
@3 .852 .858 .860 .862 .868 .896 4.00% .867 .878 .897 2.22%

MAP
@1 .531 .528 .536 .534 .540 .561 4.58% .542 .543 .565 3.96%
@2 .619 .618 .620 .622 .626 .648 4.09% .626 .630 .650 3.19%
@3 .642 .642 .643 .647 .649 .669 3.54% .649 .653 .672 2.88%

Coat

DCG
@1 .531 .549 .5490 .561 .570 .591 5.26% .532 .574 .591 2.94%
@2 .761 .770 .788 .785 .795 .822 4.34% .774 .787 .822 4.51%
@3 .919 .930 .934 .937 .943 .968 3.33% .930 .939 .960 2.21%

MAP
@1 .531 .549 .549 .561 .570 .591 5.26% .532 .574 .591 2.94%
@2 .612 .620 .637 .642 .648 .671 4.26% .618 .639 .671 4.95%
@3 .626 .640 .650 .649 .657 .674 3.73% .638 .660 .682 3.36%

by grid search on the biased validation sets with the self-normalized inverse propensity scoring

(SNIPS) estimator [46] as the performance indicator. More specifically, we set C = 8 for both

Yahoo and Coat datasets for CJMF and set C = 6 for CJBPR. Since the proposed CJMF and

CJBPR adopt the combinational joint learning method leading to more model parameters than

baselines, to have a fair comparison, we run point-wise baselines for 16 times (run pair-wise

baselines for 12 times) and average their outputs as final predictions. All code and data are at

https://github.com/Zziwei/Unbiased-Propensity-and-Recommendation.

3.2.3.2 RQ1: Comparing Recommendation Performance

We begin by investigating the recommendation performance of the proposed CJMF and CJBPR

approaches compared with corresponding point-wise and pair-wise baselines. Detailed results for

all models are shown in Table 3.1. First, comparing among point-wise models and among pair-wise

models, we observe that the proposed CJMF and CJBPR can significantly outperform correspond-

ing baselines (the best baselines are marked by underlines in Table3.1), which indicates that the

proposed combinational joint learning approach is effective for unbiased implicit recommenda-

tion. Second, we also implement the naïve joint learning model (denoted as NJMF in Table 3.1)

24

https://github.com/Zziwei/Unbiased-Propensity-and-Recommendation

Figure 3.1: Comparing unbiased models with item popularity as propensity and with estimated
propensity from proposed models. Reprinted with permission from [1].

which has the estimation-training overlap issue. From the table we observe that CJMF produces

better recommendation results than NJMF, demonstrating the effectiveness of the proposed com-

binational joint strategy over the naïve approach. Last, by comparing CJMF and CJBPR, we find

that results of CJBPR are better than CJMF but the difference is small, which is not as obvious

as the difference between conventional MF and BPR. Since the propensity and the relevance are

modeled differently in CJBPR (the propensity is modeled as probabilities while relevance is mod-

eled as real-number scores), we see some limits to the effectiveness of the joint learning. We leave

further study along this line to future work.

3.2.3.3 RQ2: Investigating the Effectiveness of Estimated Propensity

Next, we study the effectiveness of the estimated propensity by comparing the performance of

three unbiased baselines using Equation 3.3 as propensity estimation versus using Ôu,i predicted

by CJMF and CJBPR as propensity estimation. Results presented in Figure 3.1 show that for

both datasets, the two variations of RelMF can perform better if use the estimated propensity from

CJMF. The same conclusion can be drawn that with the estimated propensity from CJBPR, UBPR

can perform better.

25

Figure 3.2: DCG@3 of CJMF and CJMF without residual components on the Yahoo dataset, with
varying C. Reprinted with permission from [1].

3.2.3.4 RQ3: Investigating the Impact of Hyper-parameter C and Residual Component

Finally, we investigate the impact of the combination hyper-parameter C on CJMF. We vary

C from 2 to 16 and show the results of CJMF as the red line in Figure 3.2. We see that the

performance of CJMF improves rapidly then converges as C increases, reaching a peak level when

C ≥ 5.

Then, we study the effect of the residual components. We denote the variation of CJMF without

the residual component as CJMF-noRes, which directly averages the output of all sub-models as

the final prediction of the complete model. The DCG@3 results of CJMF-noRes are plotted in

Figure 3.2 as the blue lines. We observe the effectiveness of the residual components by comparing

with the complete model (the red lines in the figure). Note that CJBPR has similar patterns as CJMF

demonstrated in Figure 3.2.

3.2.4 Summary

In this section, we propose a combinational joint learning framework, which jointly learns

unbiased relevance and propensity simultaneously, to produce unbiased recommendations based

on biased implicit data. Extensive experiments on two public datasets show the effectiveness of

26

the proposed method.

3.3 Tackling Cold-start Recommendation via Randomized Training and Mixture-of-Experts

Transformation

Although the proposed combinational joint learning framework can effectively counteract the

exposure bias and learn unbiased user-item relevance for recommendation, a strong assumption

of it and other alternatives is that all items have non-zero exposure probabilities in the user-item

interactive data. Yet, this assumption cannot hold in real world. For example, 500 hours of new

videos are uploaded to YouTube every minute,2 500,000 new users register in Facebook every

day.3 These new items have no exposure in the logged user-item interactive data, in other word,

it is the extreme exposure bias scenario. How to provide effective recommendations for them is

a long-standing challenge, which is also known as the cold-start recommendation problem and

these new items are called cold-start items. To solve this problem, we develop a novel cold-start

recommendation algorithm – Heater, which can not only provide high-quality recommendation for

cold-start items, but can also work for cold-start users at the same time.

3.3.1 Introduction

To provide recommendations for these cold-start users and items, many content-based meth-

ods [61, 62, 63] and heuristic methods have been deployed, e.g., recommending popular items or

geographically near items. However, recent research efforts [2, 3, 4, 5, 6] that tackle the cold-start

problem from the perspective of machine learning have made promising strides. As illustrated in

Figure 3.3a, these ML-based efforts combine user-item interactions from existing warm start users

and items (as in CF-based methods) with auxiliary information from both warm and cold users and

items (as in content-based methods). This auxiliary information – be it from user profiles, item de-

scriptions, reviews, and other sources – is often readily available even in the absence of user-item

interactions.

Conventional CF models provide recommendations for warm users and items by finding sim-

2https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/
3https://www.brandwatch.com/blog/facebook-statistics/

27

Figure 3.3: (a) setup of cold-start recommendation problem, where both warm and cold users and
items have auxiliary representations (such as user profiles and item content); and (b) the main idea
of existing cold-start recommendation algorithms [2, 3, 4, 5, 6]: learn transformation functions to
transform auxiliary representations to CF representations. Reprinted with permission from [7].

ilarities between the CF representations of users and items, which are learned based on existing

user-item interactions. In contrast, these ML-based cold-start recommendation approaches aim

to learn CF representations for cold-start users and items lacking historical interactions. The key

insight is to learn two transformation functions – one for users and one for items – to transform

the auxiliary representations of these new users and items into the CF space. As illustrated in Fig-

ure 3.3b, the two transformation functions (fU and fI) are learned from interactions and auxiliary

representations of warm users and items; the learned transformation functions are then applied on

auxiliary representations of cold-start users and items to predict preference scores at inference time.

Hence, the fundamental challenge is how to generate effective transformation functions based on

the given auxiliary information and user-item interactions.

In general, there exist two major categories of algorithms to learn these transformation func-

tions – separate-training methods and joint-training methods. Here, we identify three major issues

28

with these existing methods that can impact the quality of the learned transformation functions.

These issues motivate our proposed Heater framework.

To begin with, separate-training methods [6, 49, 50, 51, 52] separately learn a CF model (by

minimizing the Collaborative Filtering error LCF on the user-item interactions as in conventional

CF models for warm start recommendation) and transformation functions to transform auxiliary

representations (by minimizing the difference Ltrans between transformed auxiliary representa-

tions and CF representations from a CF model), either in an end-to-end way or non-end-to-end

two-step way [50, 51, 52, 6, 49]. Separate-training methods can fully utilize the user-item inter-

action data because they apply sophisticated CF models directly on the interaction data. However,

they leave one challenge unsolved – the error superimposition problem. Due to the separation

of learning CF and learning transformation functions in the model objective function, the final

cold-start recommendation error during inference is the summation of the CF error LCF and the

transformation error Ltrans. Hence, an increase in either of the two errors will decrease the overall

cold-start recommendation performance.

On the other hand, joint-training methods [3, 4, 64, 5] fuse CF and transformation functions

together (i.e., models input auxiliary representations and output recommendations with CF repre-

sentations as hidden layers), and train models with the only aim of minimizing the recommendation

error LCF on the warm interaction data. Since joint-training methods directly minimize LCF , and

learning of transformation functions is also guided by LCF , there is no error superimposition is-

sue. Nevertheless, there is another challenge for joint-training methods – the ineffective learning

problem – that is, because learning transformation functions is only guided by the recommendation

error which is based on the final model output layer, the long distance from transformation lay-

ers to the model output layer from the perspective of backpropagation leads to ineffective model

learning.

Moreover, a common issue with both separate-training and joint-training methods is the uni-

fied transformation problem. Concretely, almost all existing separate-training and joint-training

methods adopt unified transformation functions (either a linear transformation or a neural network

29

based non-linear transformation) for all users or items under the assumption that users (or items)

keep the same relative relationships in both the auxiliary representation space and CF space. This

assumption seldom holds because auxiliary information is usually noisy and complex, and cannot

be directly aligned with the CF space. Thus, a unified transformation process is not effective and

can generate low-quality CF representations.

To address these three challenges, we propose a new model Heater, which is designed to

keep the advantages of both separate-training and joint-training methods, while overcoming the

drawbacks identified above. To deal with the problem of error superimposition and the problem

of ineffective learning, we combine the structures of separate-training and joint-training methods

together as the basic framework of Heater. The main procedure of training is that Heater first

transforms auxiliary representations to intermediate representations, then further refines interme-

diate representations to final CF representations to minimize recommendation error. Meanwhile,

we also require the intermediate representations to be as close as possible to high-quality pre-

trained CF representations to improve the model effectiveness. To further address the ineffective

learning problem, we propose a Randomized Training mechanism in which we randomly feed

pretrained CF representations or intermediate representations alternatively to the refining compo-

nent of Heater. By doing this, the effectiveness of model training is protected by the high-quality

pretrained CF representations even when the intermediate representations are of poor quality. Last,

we propose a Mixture-of-Experts Transformation, which adopts the Mixture-of-Expert [65]

structure as transformation functions so that Heater can provide ‘personalized’ transformations

for different users and items to tackle the unified transformation issue. Furthermore, unlike most

existing methods [64, 50, 3, 2, 4], the proposed Heater can simultaneously recommend for both

cold-start users and items, rather than requiring separate user-based and item-based models. Last,

we conduct extensive experiments on three real-world datasets to show the effectiveness of Heater

over state-of-the-art alternatives, and the effectiveness of each proposed component.

30

3.3.2 Proposed Cold-start Recommendation Model – Heater

In this section, we formalize the cold-start recommendation problem, then introduce the fun-

damental framework of Heater, the Randomized Training and Mixture-of-Experts Transformation

mechanisms.

3.3.2.1 Cold-start Recommendation Formalization

Assume we haveNw warm users Uw = {1, 2, . . . , Nw} andMw warm items Iw = {1, 2, . . . ,Mw},

each of which has at least one historical interaction record. We denote the set of all historical

records as O = {(u, i)}, where u indexes one user, and i indexes one item. We also have Nc

cold-start users Uc = {1, 2, . . . , Nc} and Mc cold-start items Ic = {1, 2, . . . ,Mc}, all of which

have zero historical interaction record. For these cold-start users and items, there are three tasks:

• Task 1: recommend warm items from Iw to cold users in Uc;

• Task 2: recommend cold items from Ic to warm users in Uw;

• Task 3: recommend cold items from Ic to cold users in Uc.

Note that most previous works only consider the one-sided cold-start situation [64, 50, 3, 2, 4],

i.e., there are only cold-start users or cold-start items in the system. Here, we consider the more

complex situation where there are cold-start users and items simultaneously in the system. Fur-

thermore, we assume we have access to auxiliary information such as an external user profile and

item content information for both warm and cold users and items, denoted as U ∈ R(Nw+Nc)×Eu

and I ∈ R(Mw+Mc)×Ei , where Eu and Ei are the auxiliary representation dimensions for users and

items.

3.3.2.2 Heater Framework

As we have discussed, there are two main categories of cold-start recommendation approaches

– separate-training and joint-training methods, which are determined by the relationship between

CF and the transformation functions in the model. Both of these have obvious advantages and

31

Figure 3.4: The framework of Heater, which incorporate structures of the separate-training
and joint-training methods to solve the error superimposition and ineffective learning problems.
Reprinted with permission from [7].

disadvantages: separate-training methods make full use of the user-item interaction data while

suffering from the error superimposition problem; joint-training methods are free of the error su-

perimposition issue but face the ineffective learning problem. Thus, to overcome these problems,

we propose a framework to integrate the two distinct structures.

Due to the special characteristic that users or items involved during inference time are never

seen before during training, the execution of Heater is different for training and inference. In the

following, we first focus on the training process, then describe how to do inference by a trained

model for cold-start situations.

Training

Separate-training approaches learn CF representations and auxiliary-to-CF transformation sep-

arately by two independent losses LCF and Ltrans, thus, increase of each of them leads to worse

cold-start recommendations (the error superimposition issue). To avoid this error superimposition

issue, we adopt the joint-training structure as the foundation for Heater basic framework as shown

in Figure 3.4. Generally, Heater takes one warm user auxiliary representation Uu ∈ R1×Eu and one

warm item auxiliary representation Ii ∈ R1×Ei as inputs, and by multiple layers of transformation

32

Uu and Ii are transformed to the CF representations P′u and Q′i, of which the dot product is the

predicted preference score R̂u,i = (P′u)
TQ′i for the given user-item pair. More specifically, we first

transform Uu and Ii to intermediate representations U′u and I′i by two transformation functions fU

and fI as U′u = fU(Uu) and I′i = fI(Ii). Then, we further refine the representations by a multi-

layer perceptron (MLP) (φU for user side, φI for item side) to get user and item CF representations:

P′u = φU(U′u), Q′i = φI(I
′
i).

However, because the transformation layers fU and fI are trained based on the recommenda-

tion error LCF which is calculated by the model output layer R̂, the long distance from fU and fI

to the output layer from the view of backpropagation makes it difficult to learn effective parameters

for fU and fI , which can further impact the learning effectiveness of the whole model (the inef-

fective learning issue). Hence, to address this, we input high-quality user and item pretrained CF

representations (denoted as Pu ∈ R1×D and Qi ∈ R1×D) from a pretrained CF model to help guide

the learning processing for fU and fI by setting a similarity constraint to minimize the difference

between the intermediate representations U′u and I′i and pretrained CF representations Pu and Qi:

min
Pu,Qi

‖U′u −Pu‖2
F + ‖I′i −Qi‖2

F. (3.5)

With the similarity constraint, fU and fI are guided by the final recommendation error as well as

the high-quality pretrained CF representations, leading to more effective fU and fI .

Heater can be trained by any popular top-k recommendation loss function, such as Sum Squared

Error (SSE) loss, cross-entropy loss, or Bayesian Personalized Ranking (BPR) loss [27]. Here, we

use SSE loss because most of existing baselines [64, 50, 3, 4, 5] adopt this loss, and it shows good

empirical performance. The objective function of Heater can be written as:

min
Θ

L =
∑

(u,i)∈O∪O−
‖R̂u,i −Ru,i‖2

F

+
α

2
(‖U′u −Pu‖2

F + ‖I′i −Qi‖2
F) +

λ

2
‖Θ‖2

F,

(3.6)

where O− is the negative samples randomly generated based on O; Ru,i is the ground-truth pref-

33

erence with value 1 if (u, i) ∈ O, 0 otherwise; α is the trade-off weight for similarity constraint;

and λ is the trade-off weight for regularization.

Inference

With a trained Heater, it is straightforward to provide recommendations, which is similar to the

training process. The only difference is that we do not need the similarity constraint and pretrained

CF representations shown in Equation 3.5, and we only input the auxiliary representations of cold

users and items into the model. For Task 1 mentioned in Section 3.3.2.1 – recommending warm

items to cold users – assume we want to provide recommendation for the cold user u. All we need

is to input all the (Uu, Ii) pairs into Heater to calculate R̂u,i, where i ∈ Iw, and show items with

top scores in descending order to user u. In the same way, we can generate recommendations for

Task 2 and Task 3.

The Heater framework can also be applied to cases where there is only auxiliary information for

users or items, and the side (user side or item side) without auxiliary information is warm side (all

users in the side or all items in the side are warm). During training, the only modifications needed

are first removing the corresponding similarity constraint for the warm side, and then directly input

the pretrained CF representations Pu (or Qi) as U′u (or I′i) to calculate the final CF representations

P′u (or Q′i) for the warm side. During inference, similarly, we directly use the pretrained CF

representations as input for the warm side.

3.3.2.3 Randomized Training

The introduced similarity constraint in the Heater framework (shown in Equation 3.5) is ca-

pable to guide the learning of transformation functions fU and fI , and thus improves the quality

of U′ and I′ because the pretrained CF representations are known to be of high quality. As a

result, the Heater framework should have higher model learning effectiveness than conventional

joint-training methods.

However, even if we have the similarity constraint, there is always information loss between

P (or Q) and U′ (or I′) due to the low quality of auxiliary representations and the structural

34

Figure 3.5: Randomized Training: during training, randomly feed pretrained CF representations
or transformed auxiliary representations alternatively to generate final representations P′u and Q′i.
Reprinted with permission from [7].

limitation of the transformation functions. This will lead to ineffective learning for φU and φI due

to the low quality of U′ and I′, and further decrease the quality of final CF representations P′ and

Q′. To address this, we propose a Randomized Training strategy, which does not only feed user

and item transformed auxiliary representations U′ and I′ to generate final representations P′ and

Q′ during training, but also uses the pretrained CF representations P and Q in a stochastic way as

demonstrated in Figure 3.5. Note that the proposed Randomized Training is only for the training

and does not influence the inference process.

Concretely, first, we need to pre-define a hyper-parameter p ∈ [0, 1] representing the probability

of using pretrained CF representations P and Q for training. Then, during the training process,

for a given training sample (u, i), based on p, we randomly choose whether to use U′u or Pu to

generate P′u, and whether to use I′i or Qi to generate Q′i. Note that the random processes of user

and item sides are independent, and they can even have different values of probability p.

By using both auxiliary representations and pretrained CF representations alternatively, we can

alleviate the ineffective learning problem because the high-quality pretrained CF representations

can help guide φU and φI to learn effective parameters, especially when U′ and I′ are not of high

quality. The choice of p depends on the quality of the auxiliary information. If the auxiliary

35

Figure 3.6: Mixture-of-Experts Transformation: apply T multi-layer perceptrons as experts to
transform auxiliary representations, weighted sum outputs of experts as final output. Reprinted
with permission from [7].

representations contain rich information about the users and items with limited noise, then we can

use a small p, otherwise, we need a large p to ensure the effectiveness of the model.

3.3.2.4 Mixture-of-Experts Transformation

Last, we turn to address the unified transformation problem of existing methods. Recall that

previous works apply the same transformation process fU (or fI) to map auxiliary representations

into the CF space for all the users (or all items). In other words, they assume the relationships be-

tween users (or items) in the auxiliary representation space are the same as the relationships in the

CF space. But this assumption can seldom hold because the auxiliary information is usually noisy

and complex. For example, two users may have a large distance in the auxiliary representation

space because they have little common information in their profiles, but they could have similar

preference, i.e., small distance in CF space. A unified transformation function cannot handle this

situation. Thus, an algorithm which is able to assign ‘personalized’ transformations to different

users (or items) is required. As a result, we propose to adopt Mixture-of-Experts [65] to implement

fU and fI for every single user and item.

The Mixture-of-Experts Transformation (as shown in Figure 3.6) consists of T experts, where

36

each is a MLP, denoted as ψU1 , . . . , ψ
U
T for user side, ψI1 , . . . , ψ

I
T for item side. All of the experts

take the same input Uu (or Ii), and the final output of the Mixture-of-Experts Transformation is a

weighted sum of the outputs of all experts. The formulation of the user side is:

MoE(Uu) = g1ψ
U
1 (Uu) + g2ψ

U
2 (Uu) + . . .+ gTψ

U
T (Uu), (3.7)

where g1, g2, . . . , gT are the weights for experts, which are calculated by another one-layer percep-

tron: g = ϕ(WTUu + b), where g ∈ RT is the vector consisted of g1, g2, . . . , gT ; and ϕ(·) is

the activation function, we use tanh in this work. The reason why we do not use softmax for the

weights is that experts here work in a collaborative way rather than an exclusive way, thus every

expert should have an independent weight. And tanh empirically outperforms softmax. Note that

the formulation for the item side is similar.

To better explain the effect of Mixture-of-Experts Transformation, we assume all experts are

linear transformation matrices, denoted as VU
1 ,V

U
2 , . . . ,V

U
T for user side, VI

1,V
I
2, . . . ,V

I
T for

item side. Then, the output of Mixture-of-Experts Transformation for user u is:

MoE(Uu) = (g1V
U
1 + g2V

U
2 + . . .+ gTVU

T)TUu, (3.8)

where (g1V
U
1 +g2V

U
2 + . . .+gTVU

T) generates a new transformation matrix specifically for user u

based on her own auxiliary representation, which achieves our goal that assigning different trans-

formations to different users (or items). By doing this, the auxiliary representations U and I can

be transformed into the CF space more effectively than using a unified transformation function. It

is also similar to the idea of applying meta-learning to solve cold-start recommendation [2], which

generates a unique logistic regression model for each user based on her historical interactions and

then applies the logistic regression model on cold-start items. Therefore, the Mixture-of-Experts

Transformation can also be viewed as a meta-learning based method.

37

3.3.3 Experiments

In this section, we empirically evaluate the proposed model over three cold-start recommenda-

tion tasks and three datasets from different domains. We aim to answer four key research questions:

RQ1 How does Heater perform compared with state-of-the-art cold-start recommendation models?

RQ2 How effective are the proposed similarity constraint, Randomized Training, and Mixture-of-

Experts Transformation mechanisms? RQ3 What are the impact of three key hyper-parameters:

similarity constraint weight α, Randomized Training probability p, and number of experts T in

Mixture-of-Experts Transformation? RQ4 What is the impact of the quality of pretrained CF rep-

resentations on Heater compared with other models taking pretrained representations as input?

3.3.3.1 Experimental Settings

Datasets

Datasets for evaluating cold-start recommendation need rich auxiliary information for users

and items, thus we use three real-world datasets commonly used to evaluate the three different

cold-start recommendation tasks introduced in Section 3.3.2.1:

• CiteULike [66] is a dataset recording user preferences towards scientific articles. There are

5,551 users, 16,980 articles and 204,986 user-like-article interactions in the dataset. Besides,

we have the abstracts of the articles as the auxiliary information for the item side, but there is

no auxiliary information for the user side, hence we evaluate Task 2 on CiteULike. Following

the processing of [5], we first generate an 8,000 dimension feature vector by calculating tf-idf

of top 8,000 words for each item, and then keep the top 300 dimensions after dimensionality

reduction by SVD. As a result, we have a 16, 980× 300 item auxiliary representation I.

• LastFM [67] consists of 1,892 users, 17,632 music artists as items to be recommended, and

92,834 user-listen-to-artist interactions (rather than the user-tag-artist interactions as used

in previous work [3], because user-listen-to-artist interaction is more general and the data is

sparser). In this dataset, we have the social relationships between all the users, thus we have

38

Figure 3.7: Validation and test set splitting for XING dataset. Reprinted with permission from [7].

a 1, 892 × 1, 892 user auxiliary representation U, but have no auxiliary information for the

item side. Therefore, we evaluate Task 1 on LastFM.

• XING [68] is a subset of the ACM RecSys 2017 Challenge dataset, which contains 106,881

users, 20,519 jobs as items to be recommended to users, and 4,306,183 user-view-job inter-

actions. We have user profile information such as current job, location and education level.

For items, we have career level, tags, and other related information. Following the process-

ing of [5], we have a 106, 881 × 831 user auxiliary representation U and a 20, 519 × 2, 738

item auxiliary representation I. We evaluate all three tasks on XING.

For CiteULike, we use the same training and test splitting of [5], but further select 30% of

items and all records of them from the test set in [5] as validation set and the remaining part as our

test set. For LastFM, we randomly select 10% of users and all their records as the validation set

and 30% of items and all their records as the test set. For XING, as shown in Figure 3.7, we select

cold-start users and cold-start items randomly for validation set and test set in the same way, and

generate cold-user, cold-item, and cold-user-item validation sets and test sets (6 sets in total). The

detailed statistics of the datasets are shown in Table 3.2.

39

Table 3.2: Statistics of training, validation and test sets in the three datasets. XING-U: XING
dataset with cold-start users (for Task 1); XING-I: XING with cold-start items (for Task 2); XING-
UI: XING with both cold statr users and items (for Task 3). Reprinted with permission from [7].

Training Validation Test
#user #item #record density #user #item #record #user #item #record

CiteULike 5,551 13,584 164,210 0.22% 5,551 1,018 13,037 5,551 2,378 27,739
LastFM 1,136 12,850 55,810 0.38% 189 12,850 9,209 567 12,850 27,815
XING-U 64,129 12,312 1,549,242 0.20% 10,688 12,312 258,497 32,064 12,312 775,837
XING-I 64,129 12,312 1,549,242 0.20% 64,129 2,051 275,782 64,129 6,156 756,638
XING-UI 64,129 12,312 1,549,242 0.20% 10,688 2,051 45,807 32,064 6,156 379,730

Metrics

We adopt three different ranking evaluation metrics to evaluate model performance: Preci-

sion@k (P@k), Recall@k (R@k) and NDCG@k. The detailed definitions of these metrics can be

found in [17, 16]. We report k = {20, 50, 100} here.

Baselines

We consider eight state-of-the-art cold-start recommendation algorithms to compare with the

proposed model:

• KNN [64] generates recommendations by conventional nearest neighbor algorithm. The

user-user or item-item similarity is computed by the given auxiliary representations. This

method works for Task 1 and 2 but not Task 3.

• CMF [50] combines matrix factorization and auxiliary representations to CF representations

transformation together into one objective function and trains these two parts simultaneously.

CMF works for Task 1 and Task 2 but not Task 3.

• LinMap [6] inputs pretrained CF representations and learns a matrix to transform auxiliary

representations to pretrained CF representations. LinMap can work for all three tasks.

40

• NLinMap is similar to [49], which applies deep neural networks to extract features from

auxiliary representation to transform the auxiliary representations to CF space. We use a

MLP of architecture 300 → 300 → 200 for CiteULike, a MLP of architecture 800 →

400 → 200 for LastFM and XING. All hidden layers have ReLU as the activation function.

NLinMap can work for all three tasks.

• LoCo [3] is a linear low-rank regression method, which learns a low-rank transformation

matrix to directly transform auxiliary representations to final predicted preference scores. It

can only work for Task 1 and 2 but not Task 3.

• LWA [2] is a meta-learning based algorithm which constructs different logistic regression

classifiers for different users based on their historical records. The user-specific logistic

regression takes the auxiliary representation of one cold-start item as input and predicts

whether the user will like input item or not. LWA can only work for Task 2.

• DropoutNet [5] inputs both pretrained CF representations and auxiliary representations into

a MLP and randomly dropouts pretrained CF representations during training. It works for

all tasks.

• LLAE [4] applies the idea of zero-shot learning to solve cold-start recommendation prob-

lems. Similar to LoCo, LLAE also learns a transformation matrix to directly transform

auxiliary representation to predicted preference scores.

Reproducibility

Code and data, and experimental settings can be found at https://github.com/Zziwei/

Heater--Cold-Start-Recommendation. We implement the proposed model by Tensor-

flow [59] and Adam [60] optimizer. For the hyper-parameters, we fix the CF latent factor dimen-

sion as 200, and set the learning rate as 0.005, the mini-batch size as 1024 for all models. Besides,

we re-sample negative samples in each epoch and set the negative sampling rate 5 for all mod-

els. Then we tune other hyper-parameters by grid search on validation sets. More specifically, for

41

https://github.com/Zziwei/Heater--Cold-Start-Recommendation
https://github.com/Zziwei/Heater--Cold-Start-Recommendation

Heater, we set the regularization weight λ = 0.0001 for CiteULike and XING, and λ = 0.001

for LastFM. We set the similarity constraint weight α = 0.0001, set the Randomized Training

probability p = 0.5, set the number of experts in Mixture-of-Experts Transformation as 5, have

one hidden layer activated by tanh of dimension 200 as the expert , and have one hidden layer of

dimension 200 activated by tanh as φU and φI for all 3 datasets.

Heater and some of the baselines require pretrained CF representations as input. Hence, we

train a Bayesian Personalized Ranking (BPR) [27] model with latent factors of 200 dimensions,

L2 regularization weight 0.001, and learning rate as 0.005 for the three datasets, and use the learned

latent factors of BPR as P and Q.

All experiments are performed on a desktop machine with 32GB memory, an 8 core Intel i7-

4820k 3.7GHz CPU and an Nvidia GeForce GTX Titan X GPU with 12 GB memory. The runtime

of one epoch for Heater is 7s for CiteUlike, 6s for LastFM, and 4 minutes and 58 seconds for

XING. Heater can converge within 100 epochs.

3.3.3.2 RQ1: Heater vs. Baselines

We begin by comparing the performance of Heater with eight state-of-the-art alternatives on

three datasets. Recall@k, Precision@k and NDCG@k (k = {20, 50, 100}) are shown in Ta-

ble 3.3. XING-U represents recommending warm items to cold-start users (Task 1) in XING

dataset. Similarly, XING-I represents recommending cold-start items to warm users (Task 2), and

XING-UI represents recommending cold-start items to cold-start users (Task 3). The best baselines

are marked in bold, and the relative improvement (denoted as ∆) of Heater over the best baselines

are also calculated. As we can see from the table, for both metrics and all datasets, Heater is able

to outperform other models for different cold-start recommendation tasks. We also calculate the

p-value of paired t-test for the relative improvement rates, showing the improvements are statisti-

cally significant. Note that LWA cannot work for situations with cold-start users, and there is no

sufficient memory to run LLAE on XING. Hence, we do not report results of LWA for LastFM,

XING-U, and XING-UI, and do not report results of LLAE for all three XING cases. Besides,

KNN, CMF, LoCo, LWA and LLAE cannot work for Task 3, thus we do not report their results for

42

Table 3.3: Recall@k (R), Precision@k (P), and NDCG@k (N) of all methods. ‘-’ represents
unavailable result: KNN, CMF, LoCo, LWA and LLAE cannot work for Task 3, thus there is no
result for them on XING-UI; LWA cannot work for Task 1 thus there is no result for LWA on
LastFM and XING-U; LLAE run into out-of-memory error on XING dataset thus there is no result
of LLAE on XING-U and XING-I. Reprinted with permission from [7].

CiteULike (Task 2) LastFM (Task 1) XING-U (Task 1) XING-I (Task 2) XING-UI (Task 3)
@20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100

KNN
R .219 .385 .521 .135 .234 .341 .122 .219 .301 .073 .105 .142 - - -
P .048 .036 .025 .307 .211 .147 .150 .107 .074 .041 .024 .017 - - -
N .150 .231 .291 .354 .296 .363 .172 .215 .258 .074 .091 .106 - - -

LinMap
R .235 .420 .574 .115 .204 .295 .290 .448 .556 .163 .299 .436 .112 .218 .331
P .059 .042 .030 .250 .178 .129 .350 .218 .135 .098 .073 .053 .068 .053 .041.
N .215 .305 .374 .288 .255 .315 .393 .456 .410 .161 .230 .287 .110 .164 .212

CMF
R .266 .445 .577 .132 .220 .298 .247 .393 .490 .074 .195 .326 - - -
P .064 .045 .030 .288 .192 .130 .300 .193 .120 .043 .047 .040 - - -
N .229 .322 .382 .333 .283 .335 .349 .408 .457 .063 .125 .180 - - -

LoCo
R .292 .500 .641 .137 .235 .321 .246 .395 .507 .207 .362 .483 - - -
P .070 .049 .033 .305 .208 .142 .301 .194 .124 .126 .087 .058 - - -
N .250 .354 .419 .359 .307 .365 .354 .413 .470 .223 .298 .350 - - -

NLinMap
R .275 .461 .625 .140 .247 .346 .297 .450 .553 .211 .367 .500 .141 .255 .370
P .069 .047 .032 .307 .216 .152 .358 .219 .134 .127 .088 .060 .086 .062 .045
N .264 .359 .430 .354 .311 .377 .400 .458 .515 .212 .289 .346 .142 .199 .247

LWA
R .322 .497 .626 - - - - - - .198 .345 .481 - - -
P .077 .051 .033 - - - - - - .120 .083 .058 - - -
N .296 .392 .452 - - - - - - .201 .275 .332 - - -

DropoutNet
R .328 .509 .652 .135 .237 .338 .242 .422 .564 .222 .371 .509 .144 .260 .378
P .077 .050 .033 .300 .210 .150 .292 .206 .137 .133 .090 .062 .088 .064 .046
N .309 .403 .467 .344 .301 .369 .276 .392 .465 .224 .301 .358 .145 .205 .255

LLAE
R .362 .531 .643 .140 .234 .322 - - - - - - - - -
P .084 .054 .034 .311 .207 .142 - - - - - - - - -
N .325 .422 .476 .366 .309 .367 - - - - - - - - -

Heater
R .373 .55 .685 .145 .258 .369 .307 .473 .581 .242 .398 .537 .161 .290 .411
P .089 .055 .035 .322 .228 .162 .371 .231 .141 .143 .096 .065 .097 .070 .050
N .373 .467 .528 .371 .327 .399 .415 .480 .535 .237 .317 .376 .157 .221 .272

∆
R 2.9% 4.1% 5.1% 3.4%4.3% 6.5% 3.6%5.1% 3.1% 9.3%7.3% 5.4% 12.0%11.4% 8.8%
P 6.3% 3.2% 5.1% 3.7%5.7% 6.6% 3.8%5.3% 3.1% 7.3%6.2% 4.7% 10.7% 9.7% 7.3%
N 14.8%10.8%10.9% 1.3%5.3% 5.9% 3.7%4.7% 3.8% 6.1%5.5% 4.7% 7.7% 7.7% 6.5%

XING-UI.

In addition to the outstanding cold-start recommendation performance, another advantage of

43

Figure 3.8: NDCG@20 comparison between MoE-Map model, LinMap and NLinMap. Reprinted
with permission from [7].

Heater is that it is able to address all three cold-start tasks simultaneously by one time of training.

Unlike LinMap and NLinMap, which have to first solve Task 1 and Task 2 one by one, then

generate recommendations for Task 3 based on the trained models from Task 1 and Task 2.

3.3.3.3 RQ2: Ablation Study

Next, we turn to investigate the effects of different components of Heater. We compare the com-

plete version of Heater with three variations: (i) Heater without the similarity constraint (noted as

w/o SC), which puts no constraint on U′u and on I′i; (ii) Heater without Mixture-of-Experts Trans-

formation (noted as w/o MoET), which just adopts a linear transformation as the transformation

functions fU and fI ; and (iii) Heater without Randomized Training (noted as w/o RT), which adopts

the Heater basic framework as introduced in Section 3.3.2.2 with Mixture-of-Experts Transforma-

tion. Table 3.4 shows Recall@20, Precision@20, and NDCG@20 of the three models over all

three datasets. Generally, Heater outperforms all variations for all metrics and all datasets, which

indicates that the proposed similarity constraint, Mixture-of-Experts Transformation and Random-

ized Training mechanisms are effective and help to improve the cold-start recommendation quality.

44

Table 3.4: Recall@20, Precision@20 and NDCG@20 of proposed Heater, Heater w/o similarity
constraint, Heater w/o Mixture-of-Experts Transformation, and Heater w/o Randomized Train-
ing. MoET represents Mixture-of-Experts Transformation, RT represents Randomized Training.
Reprinted with permission from [7].

CiteULike LastFM XING-U XING-I XING-UI

Heater
R@20 .3727 .1451 .3074 .2420 .1609
P@20 .0894 .3221 .3714 .1431 .0973

NDCG@20 .3731 .3705 .4150 .2372 .1566

w/o SC
R@20 .3273 .0944 .2723 .2092 .1252
P@20 .0818 .2112 .3307 .1259 .0781

NDCG@20 .3437 .2387 .3595 .2053 .1263

w/o MoET
R@20 .3406 .1431 .2856 .2160 .1454
P@20 .0827 .3185 .3449 .1291 .0890

NDCG@20 .3382 .3689 .3753 .2132 .1434

w/o RT
R@20 .3654 .1415 .2407 .1843 .1534
P@20 .0887 .3095 .2946 .1099 .0929

NDCG@20 .3672 .3532 .3145 .1833 .1511

Another observation is that for different datasets and different cold-start recommendation tasks,

the performance improvement brought by the similarity constraint, Mixture-of-Experts Transfor-

mation or Randomized Training are different. For instance, for CiteULike, Randomized Training

improves the NDCG@20 by only 1.61% but Mixture-of-Experts Transformation improves by

10.32% and similarity constraint improves by 8.55%, however, for LastFM, Mixture-of-Experts

Transformation improves only by 0.43% while Randomized Training improves by 4.90% and sim-

ilarity constraint improves by 55.22%.

Moreover, to further study the effectiveness of Mixture-of-Experts Transformation, we also

implement a variation of NLinMap with the original MLP replaced by a Mixture-of-Expert Trans-

formation (with the same structure as it in Heater described in section 3.3.3.1). The variation is

denoted as MoE-Map. Comparisons of NDCG@20 between MoE-Map and LinMap and NLin-

Map are present in Figure 3.8. From the figure we can observe that MoE-Map outperforms LinMap

and NLinMap for all cases. As a result, we can conclude that Mixture-of-Experts Transformation

is effective for auxiliary representation transformation.

45

(a) Varying α in CiteULike. (b) Varying p in CiteULike. (c) Varying p in XING-UI.

(d) Varying T in CiteULike. (e) Varying T in LastFM. (f) Varying T in XING-UI.

Figure 3.9: NDCG@20 results of Heater with different hyper-parameters. Reprinted with permis-
sion from [7].

3.3.3.4 RQ3: Impact of Hyper-parameters

Next, we study the impact of three hyper-parameters: the similarity constraint weight α, the

Randomized Training probability p, and the number of experts in Mixture-of-Experts Transforma-

tion T .

Similarity constraint weight α

We first vary the similarity constraint weight α in {0, 5e−6, 1e−5, 2e−5, 5e−5, 1e−4, 2e−

4, 5e − 4, 1e − 3} and set the other hyper-parameters as the same as described in Section 3.3.3.1.

α controls the strength of similarity constraint and is directly connected with model effectiveness.

For conciseness, we only report results on CiteULike because the patterns on other datasets show

similar results as CiteULike. NDCG@20 results of Heater on CiteULike are shown in Figure 3.9a,

where we can observe that with α increasing, the cold-start recommendation quality first improves

and then decreases. This is reasonable because small α causes underfitting for the auxiliary repre-

sentation transformation, while large α does not only give rise to overfitting for the transformation,

46

but also decreases the ratio of parameters updating due to recommendation loss. For CiteULike,

the best performance is achieved when α = 5e − 5, and for other datasets the best performances

are achieved around the same value.

Randomized Training probability p

Then, we vary the Randomized Training probability p in the range of [0.0, 1.0] with step 0.1.

Our goal is to know how p influences the randomized training process and how to set a reasonable

p to maximize the effect of Randomized Training. Because experiments on LastFM, XING-U and

XING-I show similar patterns as XING-UI, thus we only plot NDCG@20 results of CiteULike in

Figure 3.9b and XING-UI in Figure 3.9c. Generally, with p growing from 0.0 to 1.0, NDCG@100

first increases then decreases, but the peak performances are different for different datasets: the

best metrics are achieved when p = 0.9 in CiteULike and p = 0.5 in XING-UI (around 0.5 for

other datasets). We can draw two conclusions: (i) Randomized Training is effective for improving

cold-start recommendation: when p is within a reasonable range, the performance improves with

p increasing; and (ii) large p is not always helpful because fU and fI are trained less in this case.

Number of experts in Mixture-of-Experts Transformation T

Last, we investigate the impact of the number of experts T in the Mixture-of-Experts Trans-

formation. T controls the model complexity of the transformation component, and theoretically

larger T (within reasonable range) is supposed to produce better performance. We experiment with

T varying from 1 to 10 with step 1, and the empirical results on three datasets are shown in Fig-

ure 3.9d, 3.9e and 3.9f (XING-U, XING-I and XING-UI show similar patterns, thus we only show

results of XING-UI here). Generally, on all datasets, with T increasing from 1, the performance

improves first and arrives at a peak. However, the best T for different datasets are different, which

is reasonable because the auxiliary representations in different datasets have distinct characteris-

tics and requires different degrees of complexity for Mixture-of-Experts Transformation. The best

choice of T is 5 for CiteULike, 6 for LastFM, and 7 for XING-UI.

Another direction of changing the complexity of the Mixture-of-Experts Transformation is to

47

Figure 3.10: NDCG@20 results on CiteULike of LinMap, NLinMap, DropoutNet and Heater
with different pretrained CF representations of varying quality. Reprinted with permission from
[7].

increase the number of layers in each expert. But adding more layers dramatically increases the

computational cost, and does not bring much performance improvement, hence we do not show

experimental results here. Besides, we only use one layer for one expert, thus, we cannot change

the model complexity by changing the hidden layer dimension because it must be the same as the

dimension of pretrained CF representations.

3.3.3.5 RQ4: Impact of Pretrained CF Quality

We last study the impact of the quality of pretrained CF representations on Heater compared

with other models which also take pretrained CF representations as input. We want to know with

better pretrained CF representations, does Heater perform better? And is Heater relatively robust

to the change of pretrained CF model compared with other models? For conciseness, we only

show results on CiteULike. Experiments on other datasets show similar patterns. We generate user

and item CF representations by training BPR on user-item interactions of warm start users and

48

items, and we fix all hyper-parameters of BPR except the number of training epochs to generate

representations of different qualities. Because we can only use the training set to train and evalu-

ate BPR, thus we further split the training set shown in Table 3.2 into 90% for training, and 10%

for evaluating. Then, with different quality of pretrained representations, we compare the cold-

start recommendation performance of DropoutNet, LinMap, NLinMap, and Heater. NDCG@20

results on CiteULike are shown in Figure 3.10, where we involve five sets of pretrained repre-

sentations of different qualities, x-axis represents the NDCG@20 of BPR trained by different

numbers of epochs (6, 8, 12, 16 and 30 epochs respectively, and the epoch number of experiment

in Section 3.3.3.2 is 30), y-axis represents the cold-start recommendation performances of models.

From this we can observe that for all pretrained representations of different qualities, Heater al-

ways outperforms alternatives, and as the quality of BPR increases, the performance of all models

improves. Moreover, the performance of Heater is much more consistent when the quality of BPR

representations differs, while other models have a larger range of performance changes. Note that

NDCG@20 of BPR is lower than that of cold-start recommendation performance because they

are under different experiment setups: BPR is evaluated by recommending 13, 584 items to 5, 551

users, cold-start models are evaluated by recommending 2, 378 items to 5, 551 users.

3.3.4 Summary

In this section, we propose a novel model called Heater to address the cold-start recommen-

dation problem. There are three innovative features of Heater, which are designed to address

three key challenges in existing cold-start recommendation algorithms: (i) a combined framework

incorporating the structures of separate-training and joint-training methods to avoid the error su-

perimposition issue and improve the model effectiveness; (ii) the Randomized Training strategy to

further promote quality of model learning; and (iii) the Mixture-of-Experts Transformation mech-

anism to provide ‘personalized’ transformations for users and items. Empirical results on three

public datasets show the performance improvement of Heater over state-of-the-art alternatives.

49

3.4 Conclusions

In this chapter, we investigate the exposure bias in user-item interaction data. To address the

exposure bias, we first propose a combinational joint learning framework, which jointly learns

unbiased relevance and propensity simultaneously, to produce unbiased recommendations based

on biased implicit data. Extensive experiments on two public datasets show the effectiveness of

the proposed method. Then, we also further explore the scenario with extreme exposure bias,

where there are users and items without any historical interactions. This is also known as the cold-

start recommendation problem. To tackle this cold-start problem, we propose a novel model called

Heater. There are three innovative features of Heater, which are designed to address three key chal-

lenges in existing cold-start recommendation algorithms: i) a combined framework incorporating

the structures of separate-training and joint-training methods to avoid the error superimposition is-

sue and improve the model effectiveness; ii) the Randomized Training strategy to further promote

quality of model learning; and iii) the Mixture-of-Experts Transformation mechanism to provide

‘personalized’ transformations for users and items. Empirical results on three public datasets show

the performance improvement of Heater over state-of-the-art alternatives.

50

4. IDENTIFYING AND MITIGATING BIAS IN RECOMMENDATION ALGORITHMS1

Next, we move our attention from studying the bias raised by data to investigate the bias in-

trinsic in recommendation algorithms. Along this line, we focused on how Collaborative Filtering

(CF) based recommendation algorithms amplify the imbalance in the training data to produce bi-

ased recommendations. Here, we show that even when the training data is free of exposure bias

and can perfectly reflect user-item relevance, the machine learning algorithms trained by unbiased

data can still introduce bias! Specifically, in this chapter, we first introduce our work about the

popularity-opportunity bias, which investigates the inequality of recommendation probability to

matched users across items with different popularity. We conduct both empirical and theoretical

studies on the new popularity-opportunity bias for two fundamental recommendation algorithms –

matrix factorization (MF) [29] and Bayesian personalized ranking (BPR) [27], showing the preva-

lence of such a bias in recommendation algorithms. Correspondingly, we design a simple but

powerful post-processing approach to mitigate the popularity-opportunity bias. Then, we turn to

investigate the mainstream bias among users with different preferences, which refers to the prob-

lem that mainstream users receive recommendations of much higher accuracy than niche users. To

tackle this, we design a local fine tuning algorithm which trains a customized model for each user.

4.1 Related Work

In this section, we introduce previous work about the bias introduced by recommendation al-

gorithms in terms of both items and users. Specifically, we introduce related work on conventional

popularity bias and recommendation bias on users.

1This chapter is reprinted with permission from “Popularity-Opportunity Bias in Collaborative Filtering" by Ziwei
Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee, 2021, Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, Copyright 2021 by ACM; and “Fighting Mainstream Bias
in Recommender Systems via Local Fine Tuning" by Ziwei Zhu and James Caverlee, 2022, Proceedings of the 15th
ACM International Conference on Web Search and Data Mining, Copyright 2022 by ACM.

51

4.1.1 Popularity Bias

Conventional Popularity Bias refers to the phenomenon that recommenders tend to assign high

rankings for popular items at the expense of lower recommendation opportunities for less popular

items [69, 70, 71, 72, 73, 74]. This concept and its influence on recommendations has been studied

in [72, 73, 74], and later, Jannach et al. [75] empirically showed that different recommendation

algorithms have different vulnerabilities to popularity bias. Long-tail items are considered valuable

because they often represent novelty and serendipity [72, 76, 77], thus, they are important in terms

of promoting user satisfaction and preventing the monopoly by big brands [71]. To mitigate the

harmful effects of popularity bias, many debiasing approaches have been proposed [71, 70, 78, 79,

44, 80].

However, existing works [69, 70, 71, 79] mainly study the effects of item popularity on the

ranking results themselves – e.g., are popular items recommended more often or ranked higher

than less popular ones? – without considering what are the user preferences toward them (aligned

with the concept of statistical parity). This is problematic because without conditioning on user

preferences, recommendation difference is not necessarily evidence of bias. Thus, we propose

popularity-opportunity bias, which studies the impact of item popularity conditioned on user pref-

erences (which is aligned with the concept of equal opportunity). Furthermore, most prior works

study the group-level impact of popularity on recommendations by grouping items based on their

popularity [75, 70, 71, 81, 79, 78, 69]. These studies often consider two groups – popular items vs.

long-tail items – which ignores the subtle distinction between individual items at different ranking

positions. In contrast, we directly investigate rankings and popularity of individual items.

4.1.2 Bias on users

These prior works mainly focus on the item perspective. Yet, how users are treated is an equally

important topic. The majority of research works investigating the bias on users aim to analyze the

utility difference among different user groups determined by user demographic attributes, such as

age or gender [82, 83, 84, 85, 86]. For example, Schedl et al. [82] study the music preference

52

difference among different user age groups and shows that the recommendation performance for

these age groups are also different. Ekstrand et al. [83] empirically study multiple types of recom-

mendation models and demonstrate that all of the investigated models produce a utility difference

across user demographic groups. To address this problem, Fu et al. [85] propose to take advantage

of the rich information from knowledge graphs, and Li et al. [84] create a re-ranking algorithm to

reduce the utility gap among user groups.

Different from the aforementioned works studying bias based on demographic groups, we aim

to recognize the mainstream and niche users and study the utility difference between them. Also

note that user demographic attributes may not necessarily explain the interests and behaviors of

a user. A similar work to our work is [87], whose goal is to improve the utility for niche users.

Nevertheless, the major differences are: in [87], the mainstream and niche users are determined

purely based on recommendation utility they receive rather than based on the true user preference

reflected by historical feedback; and the algorithm proposed in [87] requires additional auxiliary

information of users and items (such as the review text users give to items), while we aim to debias

relying merely on feedback from users.

Here, we find that local recommendation models [88, 89, 90, 91], although not designed for this

purpose, can mitigate the bias to some degree by improving the utility for niche users. The main

idea of these methods is to use different local models to serve different types of users. Among

existing methods, the recently proposed local collaborative autoencoder (LOCA) [88] produces

the state-of-the-art performance, which uses multiple variational autoencoders (VAE) [92] as local

models to capture the special patterns of different sub-communities. Hence, in our experiments,

we follow LOCA to consider VAE as the base model for our proposed local method, and we

empirically compare our proposed methods with LOCA.

53

4.2 Analyzing and Mitigating Popularity-opportunity Bias

4.2.1 Introduction

Statistical parity and equal opportunity are two important concepts for studying fairness and

bias in classification and recommendation tasks [93, 94, 95, 24, 12]. Statistical parity requires

the same positive rate over individuals or groups [11, 10]. On the other hand, equal opportunity

requires the same true positive rate [24, 12]. Because statistical parity investigates algorithmic

bias without conditioning on the ground truth, the bias identified and removed based on statistical

parity is not necessarily an undesired harmful bias [24, 12].

In this chapter, we re-examine popularity bias from the perspective of equal opportunity. We

observe that previous studies of popularity bias [69, 70, 71, 72, 73, 74] are mainly governed by

statistical parity, and so inherit its limitations. We then connect the concept of equal opportunity

to this conventional popularity bias to introduce the new problem of popularity-opportunity bias

in implicit recommenders.

Suppose we consider the popularity of items as the number of feedback actions toward each

item (clicks or views). Conventional popularity bias [69, 70, 71, 72, 73, 74] refers to the phe-

nomenon that high rankings are tend to assigned for popular items at the expense of lower rank-

ings for less popular items. These studies of conventional popularity bias examine the impact of

item popularity on recommendation results alone, without taking user preferences into account.

That is, the positive rate difference over items of different popularity is calculated for measuring

the conventional popularity bias, which is essentially aligned with the concept of statistical par-

ity [93, 94, 95]. However, such a bias definition is problematic because without conditioning on

user preferences, the recommendation result (or positive rate) alone is not necessarily evidence of

bias. For example, for a user u, one popular item i and one less popular item j, better ranking for

the popular item i than the less popular item j is a biased recommendation defined by conventional

popularity bias. Yet, if we know that u likes i but dislikes j, then this ranking result is in fact

reasonable and not a harmful bias. Moreover, forcing similar rankings for i and j as in previous

54

Figure 4.1: Examples of (a) uPO bias and (b) iPO bias in ML1M. Reprinted with permission from
[8].

works [80, 44] to remove conventional popularity bias could actually hurt user satisfaction and

engagement of the popular item i.

Thus, inspired by equal opportunity, we propose to investigate the popularity-opportunity

bias: conditioned on user preferences that a user likes both items, is the more popular item more

likely to be recommended (or ranked higher) to the user than the less popular one? That is, we

calculate the true positive rate difference over items of different popularity for measuring the bias

during testing, and require the true positive rate to be the same for items of different popularity to

achieve equal opportunity. To our best knowledge, this is the first work which studies popularity

bias from the view of equal opportunity for recommender systems.

To identify popularity-opportunity bias during testing, one critical question is how do we know

user preferences to measure the bias? That is, how do we know whether u likes i or j? In practice,

55

the utility of a recommender system is typically evaluated through a train-test split, where a learned

model (based on the training data) is evaluated over the testing data, where the testing data contains

held-out evidence of user preferences (e.g., by likes, views, or clicks). Similarly, we can leverage

the same testing data as indicators of user preferences to identify popularity-opportunity bias.

User-side popularity-opportunity bias

More specifically, we investigate the proposed popularity-opportunity bias from the views of

users and items separately. To illustrate, let’s first consider the example in Figure 4.1a. Here we

show four items from the MovieLens 1M dataset [96] that user ID5003 likes during testing. That is,

these items are not seen during training but are in the test set of this user, and the user will interact

with these items once recommended (i.e., they are true positives). Item ID116 is the most popular

one with 1588 feedback actions, while item ID1955 is the least popular with only 185 feedback

records. Then, we show the ranking positions of these four items for user ID5003 according to two

fundamental collaborative filtering models – matrix factorization with Root Mean Square Error

loss (denoted as MF) [29] and Bayesian Personalized Ranking loss (denoted as BPR) [27]. We

observe that popular items are ranked higher than less popular items by both models, even though

we know the user likes all of them. We refer to this as user-side popularity-opportunity bias or uPO

bias for short.

Item-side popularity-opportunity bias

Complementary to this user-side perspective, we show an example of five items in Figure 4.1b.

Item ID213 is the most popular, while item ID3001 is the least popular. If we consider only the

matched users who like each item in testing data (i.e., for item i, only the ranking positions for

matched users who have i in their test set are considered), we observe that more popular items

will have better rankings and higher probabilities of being ranked in the top-100. For example,

item ID213 is ranked by MF in the top-100 for 94% of all matched users, whereas item ID3001 is

never ranked in the top-100 for its matched users. This reveals a systematic low recommendation

opportunity for low-popularity items. We refer to this as item-side popularity-opportunity bias or

56

iPO bias for short.

Both this user-side and item-side bias raise critical issues. User-side (uPO) bias is harmful

because a user’s need corresponding to these low-popularity items is not acknowledged and not

satisfied by the recommender. Moreover, low-popularity items sometimes are more important than

popular items because they can be serendipitous and novel for users, crucial for extending the area

of users’ interests and promoting user engagement [72, 76]. Item-side (iPO) bias brings damaging

outcomes that long-tail items may not have any chance to become popular or even known, and

providers of these items will receive less engagement in the system. In the long-term, iPO bias

could accumulate, leading to a recommender dominated by well-known popular items.

Our contributions

Hence, we propose a three-part study of the popularity-opportunity bias:

• Figure 4.1 shows cases of the bias, but is it prevalent beyond these examples? To answer

this, we conduct a comprehensive data-driven study over four datasets to investigate the

presence of popularity-opportunity bias. We focus on two fundamental collaborative filtering

approaches (MF and BPR) that serve as foundations of many recommenders including recent

neural ones [17]. We empirically demonstrate both models produce user-side and item-side

bias.

• While this data-driven study showcases the prevalence of the bias, is it truly inherent to these

models or an artifact of these datasets? To answer this, we theoretically analyze the impact

of item popularity on ranking by MF and BPR to confirm the existence of the bias in both

methods.

• Last, we investigate the potential of two approaches to reduce this bias: a post-processing ap-

proach to compensate for popularity in recommendation; and an in-processing approach that

regularizes predicted scores and item popularity. Through experiments on four datasets, we

explore the trade-offs between debiasing effectiveness and recommendation utility, show-

ing the more effective debiasing performance of the two proposed methods over existing

57

debiasing baselines designed for conventional popularity bias.

4.2.2 Preliminaries

In this section, we first describe the implicit recommendation problem, then introduce matrix

factorization based collaborative filtering models with two different objective functions.

Implicit Recommendation

Suppose we have a user set U = {1, 2, . . . , N} and an item set I = {1, 2, . . . ,M}. We

need to recommend a list of k items to every user u based on her implicit feedback record O+
u =

{i, j, . . .}, where i, j, . . . are the items u has provided positive feedback to before, which are used

as training data for model learning. Besides, we have another item set Õ+
u to represent the items

that user will like during testing, which are the test data for evaluating recommendation utility and

recommendation bias.

Matrix Factorization

Matrix factorization based collaborative filtering [29, 27] is the foundation of many state-of-

the-art recommendation models [30, 31], as well as recent neural-network based models [17, 32,

33] that use matrix factorization as the final layer for predicting preference scores. The main

idea is to learn low-dimensional latent representations for users and items based on existing user-

item interactions, and then to predict preference scores for unobserved user-item pairs by the dot-

product of latent representations: R̂u,i = P>uQi, where Pu ∈ RH×1 is the latent representation of

user u, Qi ∈ RH×1 is the latent representation of item i, and H is the latent dimension.

There are two main categories of objective functions for matrix factorization models: point-

wise objective functions (include Root Mean Square Error (RMSE) [29], Cross-Entropy [17],

among others) and pair-wise objective functions (include Bayesian Personalized Ranking loss

(BPR) [27], Hinge loss [34], and others). Since RMSE and BPR are two of the most widely

applied objective functions, we focus on these two in the rest of the chapter. We denote the matrix

factorization model with RMSE as MF, and the one with BPR loss as BPR. The formulations are

58

Table 4.1: Characteristics of the four public datasets. Reprinted with permission from [8].

#users #items density pop_avg pop_std
ML1M 6,040 3,260 3.55% 214.41 276.85
Ciao 5,047 8,102 0.21% 10.82 19.13

Epinions 12,168 11,283 0.18% 21.88 33.07
App 16,201 4,869 0.23% 37.96 66.34

shown below:

min
Θ

LMF =
∑
u∈U

∑
i∈O+

u ∪O−u

√
(R̂u,i −Ru,i)2, (4.1)

min
Θ

LBPR = −
∑
u∈U

∑
i∈O+

u

j∈O−u

ln σ(R̂u,i − R̂u,j), (4.2)

where O−u is the randomly sampled negative item set for u; σ(·) is the Sigmoid function; and Θ

represents the model parameters, i.e., the latent representations for users and items P and Q.

4.2.3 Data-driven Study

In this section, we conduct a data-driven study of popularity-opportunity bias over four datasets,

and show how MF and BPR are vulnerable to this bias on both user (uPO bias) and item (iPO bias)

sides. While many previous studies have identified conventional popularity bias, this is the first to

identify popularity-opportunity bias.

We adopt four widely used datasets from different domains: ML1M [96], Ciao [97], Epin-

ions [97], Amazon-App [98]. For all datasets, we consider the rating or reviewing behaviors as

positive feedback from users to items, and regard the number of feedback actions an item receives

as its popularity. We first filter out users and items with interactions fewer than 10, and then ran-

domly split them into 60%, 20%, and 20% for training, validation, and testing. The details of these

datasets are presented in Table 4.1, where pop_avg shows the average popularity of the items and

pop_std shows the standard deviation of item popularity.

We train MF and BPR models by the training sets of these datasets; tune hyper-parameters by

grid search on validation sets; and report the results on test sets. Further details of the experimental

59

setup can be found in Section 4.2.6.1.

4.2.3.1 Measuring uPO and iPO Bias

First, we introduce two metrics to measure uPO and iPO bias. Similar to recommendation

utility metrics, such as NDCG, the two introduced bias metrics are calculated based on the test

item set Õ+
u for each user u.

Measuring uPO bias

For uPO bias, we want to know for each user u, among all items u will like during testing

(items in Õ+
u), whether less popular items are ranked lower than more popular ones, i.e., whether

the rankings are correlated with popularity given items are liked by the user. Thus, for each user

u, we calculate the Spearman’s rank correlation coefficient between the popularity of items in Õ+
u

and their ranking positions, then average all users to have the popularity-rank correlation for users

(denoted as PRU):

PRU = − 1

N

∑
u∈U

SRC(pop(Õ+
u), ranku(Õ+

u)), (4.3)

where SRC(·, ·) calculates Spearman’s rank correlation; pop(·) returns item popularity (it counts

the number of feedback actions for each item) for given items; and ranku(Õ+
u) returns the rankings

(from 0 to M − 1, 0 represents the top-most ranking) of given items for user u by a specific model.

Spearman’s rank correlation coefficient assesses the monotonic relationship between two variables

and has values in the range [−1, 1]. Hence, a large positive value (note that we add a negative

sign before SRC(·, ·) to flip the sign) of PRU means that low popularity leads to low rankings for

items a user likes during testing, which violates the requirement of equal opportunity for items of

different popularity, i.e., high uPO bias.

Measuring iPO bias

For iPO bias, we want to know whether the expected rankings of low-popularity items for

matched users are lower than the expected rankings of high-popularity items, i.e., whether the

expected ranking position of an item for a matched user is correlated with its popularity. Hence,

60

we calculate the Spearman’s rank correlation coefficient between the popularity of all items and

their average ranking positions over matched users (for each item i, fetch all the users who have

i in test set Õ+
u , and then average the ranking positions in the ranking lists of these users) to have

the popularity-rank correlation for items (denoted as PRI):

PRI = −SRC(pop(I), avg_rank(I)), (4.4)

where avg_rank(i) = 1

|Ũi|

∑
u∈Ũi ranku(i) returns the average ranking for item i over the set of

matched user Ũi (i.e., for each u ∈ Ũi, i is in Õ+
u)). A large positive value of PRI means that

lower popularity leads to worse rankings, violating the requirement of equal opportunity, i.e., high

iPO bias. In our experiments, we also evaluate the iPO bias by calculating the probability of being

ranked in top-k for a matched user (as examples in the Figure 4.1b), which shows similar pattern

as the introduced metric PRI . Thus, here, we will only report results based on PRI.

Compare PRU and PRI

Both PRU and PRI measure popularity-opportunity bias. The main difference is how they

calculate the popularity-ranking correlation and aggregate across users. Due to this calculation dif-

ference, PRU and PRI measure different aspects of popularity-opportunity bias. PRU represents

the expectation of popularity-ranking correlation of matched items a random user will get from a

model, which is to say, it quantifies the bias from the view of users. On the other hand, PRI

measures the correlation between item popularity and the expectation of ranking position from

matched users for items, which is to say, it quantifies the bias from the view of items. Although

in practice, these two metrics usually show similar patterns, they are essentially not the same. It is

possible that a model generates high uPO bias measured by PRU while low iPO bias measured by

PRI , or vice versa. Hence, it is necessary to study the proposed popularity-opportunity bias from

both PRU and PRI perspectives.

61

Table 4.2: Measuring uPO bias (PRU) and iPO bias (PRI) for MF and BPR on four datasets. *
indicates that the Spearman’s rank correlation coefficients are statistically significant for p < 0.01
judged by t-test. Reprinted with permission from [8].

ML1M Ciao Epinions App
MF BPR MF BPR MF BPR MF BPR

PRU 0.835 0.779 0.542 0.591 0.684 0.708 0.567 0.636
PRI 0.980∗ 0.969∗ 0.363∗ 0.433∗ 0.535∗ 0.573∗ 0.609∗ 0.692∗

4.2.3.2 Observations

In the following, we report our observations of uPO and iPO bias for MF and BPR over the

four datasets.

Observations of uPO bias

First, we show PRU for both MF and BPR across all four datasets in Table 4.2. We can see

that for both MF and BPR on all datasets, PRU values are large positive numbers, indicating both

MF and BPR produce uPO bias. More precisely, for a user, even if we know that two items are

equally liked by the user, the more popular one will have better ranking position than the less

popular one. Note that we do not show the significance test results for PRU because the size of

Õ+
u in Equation 4.3 is small for most of the users which makes the significance test uninformative

(because the p-value is always large when only few instances are included). An example of such

uPO bias in ML1M dataset is shown in Figure 4.1a, which is consistent with our observations from

Table 4.2.

Observations of iPO bias

Next, we focus on the metric PRI to evaluate the iPO bias in Table 4.2. For all four datasets

and both models, PRI are large positive values, which means in the recommendations by MF and

BPR, items with high popularity have better expected rankings for their matched users, while the

opposite holds for low-popularity items. Thus, we can confirm that MF and BPR produce the iPO

bias.

62

Figure 4.2: Scatter plots of ranking results by MF on ML1M. Reprinted with permission from [8].

To better show the effects of iPO bias, we present two scatter plots in Figure 4.2 for ranking

results of MF on ML1M data (BPR and other datasets have similar patterns). Each dot represents

one item. In the left figure, we plot the average rankings of items over matched users (y-axis)

vs. popularity (x-axis), from which we can observe a monotonic decreasing trend for the average

rankings as the popularity increases. In the right figure, for each item, we plot the probability of

being ranked in the top-100 for matched users (y-axis) vs. popularity (x-axis), where we see a

monotonic increasing trend for the recommendation probabilities when the popularity increases.

These observations are consistent with the conclusions drawn from the bias metric shown in Ta-

ble 4.2 that more popular items have better rankings for matched users than less popular items do.

Real examples of such iPO bias in ML1M dataset are presented in Figure 4.1b.

4.2.4 Theoretical Study

After empirically confirming the existence of bias in MF and BPR, we turn in this section to

theoretically analyze the relationship between item popularity and ranking results generated by MF

and BPR under two simplifying assumptions, to confirm the existence of uPO and iPO bias in MF

and BPR.

63

4.2.4.1 Existence of Bias in MF

We first formulate the input and output of the MF model. Given a training user-item interaction

matrix R ∈ {0, 1}N×M with N users, M items, 1 represents a known user-item interaction, and

0 represents an unknown user-item relationship. If we train an MF model on R, we can get a

user latent representation matrix P ∈ RH×N and an item latent representation matrix Q ∈ RH×M .

Now we have Assumption 1: we assume the model is trained in an ideal condition where the

loss function in Equation 4.1 is minimized close to 0. Then the dot product of the latent matrices

will reconstruct R with very minor error: P>Q = R̂ and ‖R̂ − R‖2
F < ε. This is to say that

R̂u,i ≈ 1 if Ru,i = 1, and R̂u,i ≈ 0 if Ru,i = 0. We represent the reconstructed interaction matrix

as R̂ ∈ {∼ 0,∼ 1}N×M , where ∼ 0 and ∼ 1 are numbers very close to 0 and 1. Without loss of

generality, we assume values in R̂ are non-negative because we can always add a positive constant

to R̂ to make all elements positive without changing the ranking results.

Because the number of ∼ 1 values in columns of R̂ can indicate the item popularity, we

introduce the item popularity information to the formulations of P and Q by R̂. Given a user

u, the predicted preference scores for her toward all items can be calculated by P>uQ = R̂u,:,

where R̂u,: ∈ {∼ 0,∼ 1}1×M is the u-th row in R̂. Moving Q to the right-hand side by pseudo-

inverse, we can have P>u = R̂u,:Q
>(QQ>)−1. Similarly, we have Qi = (PP>)−1PR̂:,i, where

R̂:,i ∈ {∼ 0,∼ 1}N×1 is the i-th column in R̂.

Based on the new formulations of Pu and Qi, we define several new matrices for the analysis.

First, we define the normalized user latent representation: A = (PP>)−1P, which normalizes

P by the variances of its principal components over the principal component directions. The

explanation for A is that PP> can be factorized as PP> = UΛU> by Eigen-Decomposition,

where U is an orthogonal matrix (U> = U−1) with eigenvectors of PP> as columns, and Λ is a

diagonal matrix with eigenvalues of PP> as diagonal elements. Then based on the definition of

Principal Component Analysis [99], U>P are the principal components of P, Λ are the variances

of these principal components. As a result, A = (PP>)−1P = UΛ−1U>P, i.e., P is first

transformed to the principal component space by U>, then normalized by the variances of principal

64

components by Λ−1, and last, transformed back to the original space by U. In the same way, we can

have the normalized item latent representation: B = (QQ>)−1Q, and the normalized preference

matrix: Z = A>B ∈ RN×M (values in Z are non-negative because all calculations do not change

sign).

Now we can derive the predicted score for a user-item pair. Given user u will like item i during

testing (i is in Õ+
u):

R̂+
u,i = P>uQi = R̂u,:B

>AR̂:,i = R̂u,:Z
>R̂:,i =

∑
R̂>u,:R̂:,i � Z>, (4.5)

where R̂+
u,i represents the predicted preference score from u to i given the ground truth for this

user-item pair is positive; � is the Hadamard product; and
∑

D (D is a matrix) is to sum up all

elements of D. The intuitive way to interpret Equation 4.5 needs two steps: i) First, R̂>u,:R̂:,i ∈ {∼

0,∼ 1}M×N is the process to select key user-item pairs from a user candidate set Ui and an item

candidate set Iu that help to indicate preference from u to i, where Ui are the users who like i in the

training set, and Iu are the items u likes in the training set. Because Ui reveals characteristics of i

and Iu reveals preferences of u, we can infer R̂u,i based on the preferences of Ui toward Iu, and

elements with value ∼ 1 in R̂>u,:R̂:,i indicates these key user-item pairs. ii) Then,
∑

R̂>u,:R̂:,i�Z>

retrieves the preference scores of the selected key user-item pairs in Z and sums them up as R̂+
u,i.

To simplify Equation 4.5, we have Assumption 2: we assume the preference scores in Z for

key user-item pairs follow the same distribution. The intuitive interpretation of this assumption

is that similar users (and similar items) share similar feedback patterns. Or from another aspect,

any positive user-item interaction can be inferred by other user-item relationships. Based on this

assumption, we denote the expectation of the preference score in Z for a key user-item pair as

E[Z+] (E[Z+] is non-negative). We can further derive Equation 4.5 as:

R̂+
u,i =

∑
R̂>u,:R̂:,i � Z = (

∑
R̂u,:)(

∑
R̂:,i)E[Z+]. (4.6)

Theorem 1. Given Assumption 1 and 2, MF produces uPO bias.

65

Proof. Suppose user u will like items i and j during testing, and i is more popular than j, i.e.,

(
∑

R:,i) > (
∑

R:j), which is also equivalent to (
∑

R̂:,i) > (
∑

R̂:j), the difference between

predicted preference scores of the two is:

R̂+
u,i − R̂+

u,j = (
∑

R̂u,:)((
∑

R̂:,i)− (
∑

R̂:j))E[Z+] > 0, (4.7)

which is to say for user u, even though both items are liked by u, the lower popularity of j makes

it have a worse ranking than i in the recommendation list for u, i.e., MF produces uPO bias.

Theorem 2. Given Assumption 1 and 2, MF produces iPO bias.

Proof. First, we formulate the expectation of the preference score of item i from matched users as:

E[R̂+
:,i] = E[(

∑
R̂u,:)](

∑
R̂:,i)E[Z+], (4.8)

where E[(
∑

R̂u,:)] is the expectation of the sum of predicted scores for a user, which is indepen-

dent with items. Hence, given two items i, j, where i is more popular than j, we calculate the

difference between expected scores of i and j:

E[R̂+
:,i]− E[R̂+

:,j] = E[(
∑

R̂u,:)]((
∑

R̂:,i)− (
∑

R̂:j))E[Z+] > 0, (4.9)

which is to say that the lower popularity of j brings worse expected ranking for users who like j

than i, i.e., MF produces iPO bias.

4.2.4.2 Existence of Bias in BPR

In a similar fashion, we analyze the bias in BPR. Due to the pair-wise BPR loss, we cannot

directly apply the same process in Section 4.2.4.1 to BPR. Thus, we need to first transform a BPR

model to an MF one.

Because the pair-wise objective function in BPR is calculated by fixing a user and then comput-

ing the difference of predicted scores between one pair of positive and negative items, the output

66

matrix R̂ is not an approximated version of R as in MF. Instead, a well trained BPR model will

have R̂ where σ(R̂u,i − R̂u,j) ≈ 1 given Ru,i = 1 and Ru,j = 0. Without loss of generality, we

can remove the Sigmoid function, and assume that R̂u,i − R̂u,j ≈ a (a is a large positive number)

for Ru,i = 1 and Ru,j = 0. Besides, we define a vector x ∈ RN×1 to record the expectations of

predicted scores for items not in the training set (i.e., I \ O+
u) for each user as xu = E[R̂u,I\O+

u
].

Now, for user u, R̂u,: is a vector consisting of values close to xu and xu + a, denoted as ∼ xu

values and ∼ (xu + a) values, where ∼ xu are for items in I \ O+
u and ∼ (xu + a) are for items

in O+
u .

Next, we define a centralized preference matrix R̃ ∈ {∼ 0,∼ 1}N×M by subtracting xu and

dividing a for each user: R̃ = 1
a
(R̂ − J ◦ x), where J = {1}N×M ; and ◦ times elements of x to

corresponding rows of J. R̃ contains∼ 0 and∼ 1 values, which is exactly the same as the R̂ in for

MF. Meanwhile, R̃ maintains the item ranking orders for all users compared with R̂ generated by

BPR because the ranking is executed for each row of R̂, thus, subtracting and dividing constants

will not change the order of the elements in one row. Then, we have a new user latent representation

matrix:

P̃ =
1

a
(P− J ◦ xQ>(QQ>)−1), (4.10)

so that P̃>Q = R̃. Now, we transform the original BPR model with latent matrices P and Q to a

new model with P̃ and Q, where the two models have the same recommendation results. Last, we

can easily apply the same analysis process for MF to the new model to prove the existence of uPO

and iPO bias in BPR.

4.2.5 Proposed Debiasing Methods

After empirically and theoretically studying popularity-opportunity bias in matrix factoriza-

tion models, we next explore several approaches to alleviate this bias. Many methods [71, 70, 78,

79, 44, 80] have been studied for alleviating conventional popularity bias, which aim to promote

the rankings of low-popularity items in the recommendations. These methods can also help pro-

mote the rankings of low-popularity items for matched users, which may mitigate the popularity-

67

opportunity bias. However, this could also promote the rankings of low-popularity items for un-

matched user, which could significantly degrade the overall recommendation utility. Hence, we

explore debiasing methods that are designed explicitly for the popularity-opportunity bias.

Typically, there are three categories of methods: pre-processing [100], post-processing [101,

70], and in-processing [102, 24, 71] methods. Pre-processing approaches modify the training data

so that models trained on the purified data are free of undesired issues (like bias). However, these

kinds of algorithms are usually hard to design and may be ineffective since they cannot remove the

algorithmic bias inherent in model architectures.

Hence, we focus here on the potential of post-processing and in-processing approaches to alle-

viate the bias. Concretely, we propose a simple but effective post-processing algorithm – Popular-

ity Compensation (PC for short) and a regularization-based in-processing debiasing model (Reg

for short).

4.2.5.1 Post-processing: Popularity Compensation

We begin by investigating a post-processing approach that modifies the predicted user-item

preference matrix R̂ by adding compensation to items with small popularity so that they have

higher preference scores and thus higher ranking positions. We propose such a popularity com-

pensation that follows three key guidelines:

• Guideline 1: Compensation should follow item popularity: items with lower popularity

should be compensated more.

• Guideline 2: Compensation should follow user preferences: items with higher probabilities

of being liked by a user should be compensated more.

• Guideline 3: Compensation should follow the value scale of each user: for a user who has a

larger value scale for R̂u, item candidates for her should be compensated more.

Guideline 1 promotes low-popularity items to mitigate the bias. Guideline 2 ensures that items

a user does not like but with low popularity will not be mistakenly promoted by the algorithm.

68

Guideline 3 makes sure that users with large value scales of predicted preference scores will have

large compensation to items so that the algorithm is effective to all users.

Based on these guidelines, we propose the Popularity Compensation (PC) debiasing algorithm.

Given a user u, we have the user-item interaction records in the training data Ru,: ∈ {0, 1}1×M ,

the interacted item set in the training data O+
u , and the predicted preference scores from u to items

generated by MF or BPR R̂u,: ∈ R1×M . The PC algorithm has three steps. First, we calculate the

norm of predicted scores for user u by:

nu = ‖(R̂u,: � (1−Ru,:))/(M − |O+
u |)‖F, (4.11)

where we only consider the predicted preference scores to items that are not in the training data (by

R̂u,:� (1−Ru,:)) because the ranking is executed only on these un-interacted items and we should

exclude the influence of items in the training set. Second, we calculate the popularity compensation

score for one item i given u:

Cu,i =
1

pop(i)
· (R̂u,i · β + 1− β), (4.12)

where there are two parts: 1/pop(i) is to achieve Guideline 1, and (R̂u,i · β + 1− β) is to achieve

Guideline 2 by using the predicted score as the indicator of user preference to i. β ∈ [0, 1] is a trade-

off weight to control the ratio of predicted preference score in the compensation: larger β means

higher ratio for predicted scores. Last, following Guideline 3, we need to scale the compensation

to match the user preference score scale and add it to R̂u,i:

R̂∗u,i = R̂u,i + α ·Cu,i · nu/mu, (4.13)

where R̂∗u,i is the new preference score from u to i; mu = ‖(Cu � (1 − Ru))/(M − |O+
u |)‖F is

the norm of compensation scores of u excluding those for items in O+
u ; nu/mu is to normalize

the compensation scores based on Guideline 3; and α is the trade-off weight for the whole PC

69

algorithm. With new preference scores for all candidate items, we can provide a debiased ranking

list for u.

4.2.5.2 In-processing: Regularization

In this section, we introduce a regularization-based in-processing way to debias. The proposed

method is inspired by previous work enhancing equal opportunity based recommendation fairness

for different item groups [24], which try to decrease the correlation between item group variable

and model output scores to achieve fairness. We adapt this idea to the context of alleviating the

popularity-opportunity bias by decreasing the correlation between item popularity and model out-

put scores.

We adopt the square of the Pearson correlation coefficient between predicted preference scores

for positive user-item pairs and corresponding item popularity as a regularization term, and mitigate

the bias by minimizing this regularization term together with the recommendation error:

min
Θ

LRec + γPCC(R̂+, pop(I))2, (4.14)

where LRec is the loss of recommendation models as shown in Section 4.2.2; PCC(R̂+, pop(I))

computes Pearson correlation coefficient between predicted scores for positive user-item pairs and

the popularity of corresponding items; and γ is the trade-off weight.

The proposed Reg is designed to decouple the item popularity with the model preference pre-

dictions to alleviate the popularity-opportunity bias. However, minimizing the correlation between

item popularity and the predicted score is a challenging task because item popularity is continuous

and unevenly distributed. Thus, a decrease in recommendation utility is expected when we aim to

reduce the bias significantly by Reg.

4.2.6 Experiments

In this section, we investigate the impact of the proposed debiasing methods w.r.t. recom-

mendation utility and debiasing performance, compared with biased base models and baselines of

removing conventional popularity bias. Then, we illustrate these impacts over the same examples

70

from Figure 4.1 to better understand their effects. Last, we study the impact of hyper-parameters

on the two proposed debiasing algorithms.

4.2.6.1 Experimental Settings

Data

We use the same four datasets introduced in Section 4.2.3. We compare the biased models MF

and BPR with their debiased versions: MF-PC and BPR-PC denote the debiased versions based

on the Popularity Compensation algorithm, while MF-Reg and BPR-Reg denote the debiased

versions based on the regularization-based model. Besides, we also include two baselines which

are designed to remove the conventional popularity bias for comparison, in other words, models

forcing items of different popularity to receive similar rankings for all users.

Baselines

The first baseline removes the conventional popularity bias by weighted matrix factoriza-

tion [44], which assigns weights to training samples in the recommendation loss in Equation 4.1

and Equation 4.2 based on the popularity of involved items – items of low popularity will be as-

signed with high weights to promote the predicted scores for them. The weight for item i is chosen

aswi ∝ 1/pop(i)e, where e is an exponent to control the strength of the debiasing effect. We denote

the corresponding versions with MF and BPR as base models as MF-weight and BPR-weight.

The second baseline removes the conventional popularity bias by rescaling the training data [80],

which multiplies rescaling values to the binary training samples based on the popularity of involved

items to uniformly promote the scores of low-popularity items. Then, it trains the vanilla MF or

BPR models on the rescaled training data. The rescaling values are determined by the same way

as the weights in the weighted model: wi ∝ 1/pop(i)e with the exponent e to control the debiasing

strength. We denote the corresponding baselines as MF-rescale and BPR-rescale.

Because the two conventional popularity bias based baselines uniformly promote low-popularity

items in recommendations, the popularity-opportunity bias is expected to be reduced as well. How-

ever, these baselines modify the recommendations without considering the potential user prefer-

71

ences as the two proposed debiasing models do. Hence, it is also expected that the two baselines

will decrease the recommendation utility significantly.

Metrics

We evaluate user-side and item-side bias for all the models using the metrics introduced in

Section 4.2.3.1, and compare the recommendation utility based on NDCG@k with k = 20 and 50.

Reproducibility

All models are implemented in Tensorflow [59] and optimized by Adam [60] algorithm. For

all models and all datasets, we fix the latent dimension as 64, set the learning rate as 0.001, the

negative sampling rate as 2, and set the mini-batch size as 1024. Then we tune hyper-parameters

for all models by grid search over validation sets. More specifically, for post-processing methods

MF-PC and BPR-PC, we directly apply the PC algorithm on the outputs from MF and BPR, and

tune α in [0.1, 1.5] with step 0.1, tune β in [0.0, 1.0] with step 0.1. For in-processing models, we

tune γ in {1e2, 1e3, 1e4, 1e5, 1e6, 1e7}. Note that for all the debiasing models, there is a trade-off

between recommendation utility and debiasing performance. Hence, we explore hyper-parameters

that minimize the bias metrics while preserving an acceptable utility.

4.2.6.2 RQ1: Comparing Debiasing Performance

We begin in Table 4.3 with a comprehensive study on four datasets for all MF based models

(including original biased model: MF; debiased baselines designed for conventional popularity

bias: MF-weight and MF-rescale; and the proposed debiased ones designed for the popularity-

opportunity bias: MF-Reg and MF-PC). Here, we walk through the key findings:

First, we investigate the recommendation utility of the two proposed debiasing models and the

two baselines compared with the original MF. Typically there is a trade-off between recommen-

dation utility and debiasing effectiveness, and we observe such a trade-off here as well. Focusing

on the NDCG columns for different values of k, we see that in all cases there is a drop in recom-

mendation utility between original MF and its debiased versions (proposed MF-PC and MF-reg,

and baselines for conventional popularity bias MF-weight and MF-rescale). Then, by comparing

72

Table 4.3: Evaluation of recommendation utility (NDCG@k), uPO bias (PRU), and iPO bias (PRI)
for MF based models on four datasets. * indicates the correlation coefficients are statistically
significant for p < 0.01. Reprinted with permission from [8].

NDCG@k
PRU PRI

@20 @50

ML1M

MF 0.2726 0.2930 0.8350 0.9799∗

MF-weight 0.1484 0.1793 0.4845 0.6407∗

MF-rescale 0.1361 0.1658 0.4365 0.6936∗

MF-Reg 0.1492 0.1720 0.1910 0.5916∗

MF-PC 0.1435 0.1980 0.4552 0.5594∗

Ciao

MF 0.0717 0.0934 0.5420 0.3625∗

MF-weight 0.0447 0.0675 0.3174 0.3293∗

MF-rescale 0.0425 0.0608 0.3219 0.2526∗

MF-Reg 0.0497 0.0639 0.2881 0.1905∗

MF-PC 0.0647 0.0845 0.3073 −0.0150

Epinions

MF 0.0693 0.0938 0.6840 0.5351∗

MF-weight 0.0349 0.0526 0.3453 0.2341∗

MF-rescale 0.0343 0.0509 0.3678 0.2182∗

MF-Reg 0.0386 0.0516 0.2175 0.2251∗

MF-PC 0.0605 0.0848 0.3549 −0.0415

App

MF 0.1026 0.1359 0.5667 0.6089∗

MF-weight 0.0388 0.0596 0.3552 0.2334∗

MF-rescale 0.0384 0.0583 0.3350 0.2147∗

MF-Reg 0.0439 0.0599 -0.0571 0.2207∗

MF-PC 0.0965 0.1280 0.3527 −0.0487

Table 4.4: Evaluation of recommendation utility, uPO bias (PRU), and iPO bias (PRI) for BPR
based models on ML1M datasets. * indicates the correlation coefficients are statistically significant
for p < 0.01. Reprinted with permission from [8].

NDCG@k
PRU PRI

@20 @50

ML1M

BPR 0.2983 0.3220 0.7793 0.9688∗

BPR-weight 0.1458 0.1757 0.5121 0.6249∗

BPR-rescale 0.1446 0.1784 0.4349 0.6064∗

BPR-Reg 0.1660 0.1769 0.2862 0.5633∗

BPR-PC 0.2308 0.2711 0.5712 0.5080∗

the four debiasing models, we observe that the MF-PC can preserve recommendation utility more

effectively than the others, and MF-Reg performs similarly to the two baselines. Given these util-

73

ity results, if we can observe lower bias by the proposed models, we can conclude that proposed

models are able to achieve more effective debiasing performance with recommendation utility pre-

served.

Hence, we next study the impact different approaches have on reducing user-side (uPO) bias.

Let’s focus on the PRU column (which measures the popularity-rank correlation for users: high

values correspond with high bias). We observe that all debiasing algorithms can significantly re-

duce PRU compared with the original MF. And these findings hold across all four datasets. Com-

paring the four debiasing models, in general, MF-Reg is able to improve PRU more significantly,

and MF-PC performs similarly to MF-weight and MF-rescale. It may be because MF-Reg reduces

the correlation between popularity and model predictions, which can effectively shuffle the rank-

ings of matched items for each user. While the other three debiasing models are to re-rank items

based on heuristics, which are expected to keep the original rankings to some degree. Another

reason of less effective performance of MF-PC compared with MF-Reg is that MF-PC provide

much better recommendation utility than MF-Reg, and a lower PRU is expected if we strengthen

the debiasing effect for MF-PC.

Third, we investigate the impact different approaches have on reducing item-side (iPO) bias.

Here, we focus on the PRI column (which measures the popularity-rank correlation for items:

high values correspond with high bias). All four debiasing methods can improve PRI against

original MF. Comparing the four debiasing methods, the PC algorithm is much more effective,

which can reduce the PRI to a great extent. Although with a smaller improvement, the proposed

Reg algorithm is more effective than the two baselines for removing conventional popularity bias.

Similar results can be observed from experiments on BPR and its debiasing variations (the

results on ML1M dataset is shown in table 4.4). Based on these results, we can draw the conclusion

that the proposed two debiasing algorithms can indeed mitigate both uPO and iPO bias, with

the post-processing PC algorithm preserving recommendation utility better than the in-processing

Reg approach. Comparing the two proposed methods with the two baselines, we can conclude

that both proposed debiasing methods can alleviate the popularity-opportunity bias and preserve

74

Figure 4.3: Case study: ranking results for items that user 5003 in ML1M will like by different
models. Reprinted with permission from [8].

the recommendation utility more effectively than baseline methods designed for removing the

conventional popularity bias.

4.2.6.3 RQ2: Case Study

To further understand the effects of the proposed models, we compare the recommendation

results of the debiasing algorithms and the base model MF for the same examples shown in Fig-

ure 4.1 (results for BPR based models show similar pattern). First, Figure 4.3 shows the ranking

results for matched items of user 5003 by different models (recall this is based on the ML1M

dataset). By comparing the debiasing models with their original base model, we can see that both

debiasing algorithms are able to promote the rankings for unpopular items. The PC algorithm

promotes unpopular items and maintains relatively high rankings for popular ones, meaning that it

is fairly effective at overcoming popularity-opportunity bias. But the Reg model cannot preserve

high rankings for these popular items, giving insight into the challenges Reg faced in Table 4.3.

Next, we show the results from the perspective of iPO bias in Figure 4.3, where we compare

the recommendation results for five items by different models. We can see that compared with MF,

the debiasing models promote the less popular items to have better ranking results. For example,

MF-PC decreases the recommendation probability (assuming 100 items are recommended for each

user) for item213 from 94% to 78%, but increases the probabilities for items with lower popularity,

especially for item1219 and item3001, which do not have any chance to be exposed to users who

like them by MF, but have 60% and 20% probabilities by MF-PC. Similar in spirit to our previous

75

Figure 4.4: Case study: average ranking results of items for matched users in ML1M by different
models. Reprinted with permission from [8].

observation, the Reg also increases rankings for unpopular items but cannot preserve rankings for

popular items.

4.2.6.4 RQ3: Impact of Hyper-parameters

Finally, we study the impact of the hyper-parameters. Due to the space limitation, we only

show the conclusions based on the experiments here but do not show the detailed results.

For the PC algorithm, we have two hyper-parameters: α controls the ratio of popularity com-

pensation, with larger values meaning more weight to the compensation; β controls the strength

of predicted preference scores on the popularity compensation, with larger values meaning more

weight for predicted preference scores. Based on our experimental results, we observe that as α in-

creases, recommendation utility decreases and the debiasing performance is being improved. This

result is because a larger α means a higher ratio of the popularity compensation in the final output,

leading to worse recommendation utility but less bias. For β, we observe that the recommendation

utility keeps increasing, and the debiasing effect is first improved and then degraded as β increases.

The reason behind this is that reasonable β can indicate user preferences and help calculate accu-

rate compensation scores, but higher β makes preference scores dominate the compensation lead

to a decrease in the debiasing performance. For the Reg algorithm, as γ increases, the recom-

mendation utility is reduced, and the debiasing performance first improves then decreases due to

overfitting.

76

4.2.7 Summary

In this section, we conduct a three-part study to investigate popularity-opportunity bias in ma-

trix factorization based models: i) we empirically show the vulnerability of two matrix factoriza-

tion models to the bias by a data-driven study on four datasets; ii) we theoretically show how these

two models inherently produce the popularity-opportunity bias on both user and item sides; and

iii) we explore the potential of in-processing and post-processing approaches to alleviate the bias.

Experiments on four datasets validate the debiasing effectiveness of both proposed methods over

debiasing baselines designed for conventional popularity bias.

4.3 Analyzing and Mitigating Mainstream Bias

Next, we switch our focus from items to users, and study how users with different preferences

are treated differently by the recommender algorithms. More specifically, we aim to investigate

the mainstream bias on users in recommender systems that users with mainstream preference can

receive more accurate recommendations at the expense of users with non-mainstream preference

receiving low-quality recommendations. And we propose a local fine tuning method to improve

the recommendation performance for niche users and mitigate this mainstream bias.

4.3.1 Introduction

Recommender systems play an increasingly important role in connecting users to interesting

items to alleviate the information overload issue. Most recommendation systems, including those

based on classic linear models [29, 103, 27] and recent neural-network models [17, 92, 104],

predict user preference and provide recommendations based on Collaborative Filtering (CF). The

main idea is to estimate the preference from a user to an item depending on the attitudes from other

similar users to the item. By finding other users with similar interests as the target user, these CF

approaches have demonstrated strong recommendation performance.

Naturally, the quality of recommendations critically relies on how easily the model can find

similar users for a target user. A niche (or “indie”) user who prefers items that are out of the

mainstream may have few if any nearby users, resulting in poor recommendations. In contrast, a

77

Figure 4.5: Mainstream vs. niche users in MovieLens data. Reprinted with permission from [9].

mainstream user who shares interests with many other users will likely receive many high-quality

recommendations. To illustrate, Figure 4.5 shows three mainstream users and two niche users

from the MovieLens dataset [96], who are identified based on a method we propose. All three

mainstream users share similar preferences for blockbuster films: the recommendations from a

recent variational autoencoder (VAE) model [92] result in high NDCG@20. In contrast, we see that

for the two niche users – one of whom prefers classic silent films, while one prefers award-winning

films of the late 80s/early 90s – the resulting recommendation quality is quite poor. Indeed, we

find similar patterns for mainstream vs. niche users across multiple datasets (including Yelp [105]

and Epinions [97]) and for different models (including matrix factorization [29], BPR [27], and

local collaborative autoencoders [88]).

This mainstream bias – the tendency for recommendation models to favor mainstream

users over niche users – is a critical challenge for the ongoing success of recommendation sys-

tems. But how do we identify mainstream users vs. niche ones? What impact does the degree of

mainstream-ness have on recommendation utility? And can we develop methods to ameliorate this

mainstream bias? Can we improve the recommendation utility for users of low mainstream levels

78

while preserving or even increasing the utility for mainstream users at the same time? Toward

answering these research questions, our work is organized around three key thrusts:

First, to understand the impact of mainstream bias on recommendation, we first propose to

identify a mainstream score to indicate the mainstream level for each user. We explore four dif-

ferent methods based on outlier detection techniques to compute the mainstream scores for users,

including similarity-based, density-based, distribution-based, and DeepSVDD-based approaches.

While all provide good ability to assess mainstream-ness, we empirically find that the DeepSVDD-

based method is most effective for distinguishing mainstream and niche users.

Second, based on this assessment of each user’s mainstream level, we empirically show that

conventional recommendation models do indeed produce severe mainstream bias. We find that

after grouping users based on their mainstream scores, the users with highest mainstream level

receive recommendation utility more than twice larger than users with the lowest mainstream level.

Finally, we explore how to mitigate such mainstream bias. We introduce both global methods

and local methods to improve the recommendation quality for niche users. Global methods achieve

this by learning a single model that promotes the importance of niche users during model training.

Concretely, we propose i) a Distribution Calibration method (DC) to debias by data augmentation;

and ii) a Weighted Loss model (WL) to debias by adding weights to the loss function. On the other

hand, local methods aim to customize specialized models for different users so that niche users

receive better recommendations from their customized models. For this, we propose the Local

Fine Tuning algorithm (LFT) that improves the model utility for every user by fine tuning a global

base model with partial data that is most informative for this user. Unlike global methods and other

local baselines which maintain a trade-off between the utility for mainstream and niche users, we

find that LFT improves the utility for both of them.

In sum, we make the following contributions: i) To analyze the impact of mainstream bias, we

explore four different methods to calculate mainstream scores for users based on outlier detection

techniques, followed by empirical studies comparing the effectiveness of these approaches and fur-

ther showing the severe bias produced by conventional recommendation models; ii) We introduce

79

global and local methods for bias mitigation, where for global method, we propose the Distribu-

tion Calibration model (DC) and the Weighted Loss model (WL), for local method, we propose the

Local Fine Tuning algorithm (LFT); iii) Extensive experiments show that all proposed solutions

are able to improve utility for niche users, while LFT is more effective and can preserve or even

improve the utility for mainstream users at the same time.

4.3.2 Analyzing Mainstream Bias

In this section, we begin with the first research question: what is the impact of the main-

stream bias on recommendation? To answer this, we first formalize the problem and introduce

four approaches based on outlier detection techniques for identifying mainstream and niche users

to analyze the mainstream bias. We then conduct experiments to investigate the impact the degree

of mainstream-ness has on the quality of recommendations.

4.3.2.1 Preliminaries

Formally, we have a set of N users as U = {1, 2, . . . , N} and a set of M items as I =

{1, 2, . . . ,M}. We denote the set of implicit feedback from users to items as O = {(u, i)} where

u ∈ U indexes one user, and i ∈ I indexes one item. We use this feedback set as the training

data to train a recommendation model and provide recommendations to users. For a user u, we

use a binary vector of size M , denoted as Ou ∈ {0, 1}M , to represent the feedback record vector

of user u, with 1 representing u likes the corresponding item. During evaluation, the trained

model provides a ranked list of items for each user as recommendations, and we evaluate the

recommendation list based on the ranking positions of positive items in a testing set for every user.

Many ranking evaluation metrics can be used, such as NDCG@k and recall@k [92], which are

typically averaged over all users.

4.3.2.2 Evaluating Mainstream Level of Users

Since the typical way to evaluate a recommender system is to average the recommendation

utility over all users, the performance difference among users is ignored. So, to analyze main-

stream bias, we first need to divide users into subgroups based on their mainstream levels, and

80

then compare the recommendation utility across these subgroups. Therefore, we aim to calculate

a mainstream score for each user to indicate the mainstream level of the user. A large mainstream

score means that the user is more likely to be a mainstream user. Then, we can analyze the main-

stream bias by dividing users into subgroups based on their mainstream scores and comparing the

utility across subgroups.

The problem of assessing a user’s mainstream level can be easily turned to an outlier detection

problem: we consider niche users who have different preferences from the majority as the outlier

samples to detect. So, inspired by various outlier detection techniques [106], we explore four

approaches and want to determine which one performs the best for assessing mainstream level.

Similarity-based approach

First, we propose a similarity-based approach to evaluate a user’s mainstream level. The main

intuition is that mainstream users should have more similar users sharing similar feedback records,

while niche users have fewer similar users. Thus, we first calculate the user-user similarity by

Jaccard similarity for all user-user pairs. The similarity between users u and v is denoted as Ju,v.

Then, we use the average similarity between a user u and other users as the mainstream score of u:

MSsimu =
∑
v∈U\u

Ju,v/(N − 1). (4.15)

Density-based approach

The next approach we propose is based on the density-based outlier detection method, which

determines whether one sample is an outlier by investigating the density of the sample’s neighbors.

Here, we propose to directly apply the well-known local outlier factor (LOF) algorithm [107] to the

user feedback records to identify niche users. The LOF algorithm outputs the local outlier factor

value for each user, which indicates an outlier if its value is large. Thus, we add a negative sign to

the local outlier factor value as the mainstream score for a user u:

MSdenu = −LOF (u). (4.16)

81

Distribution-based approach

In the third method, we first generate a distribution vector d that captures the probability of

each item being liked by users. We assume the probability is based on a binomial distribution

and the distribution vector is calculated by averaging the feedback records of all users. Then, we

calculate the mainstream score for u by the Cosine similarity between the feedback record vector

Ou of u and the distribution vector d. Given a function cos(·, ·) to compute Cosine similarity

between two vectors, we calculate the mainstream score:

MSdisu = cos(Ou,d). (4.17)

DeepSVDD-based approach

Last, we apply the recent deep learning based outlier detection algorithm – deep support vector

data description (DeepSVDD) [108] – to identify niche users. DeepSVDD attempts to map most

of the data samples (belonging to one class) into a hypersphere by neural networks and considers

the samples far from the center of the hypersphere as outliers. Moreover, since in a recommender

system, there can be more than one mainstream preference, resulting in more than one user class in

terms of preference. Hence, we further replace the multi-layer perceptron in the mapping compo-

nent in the original DeepSVDD to a mixture-of-experts structure [65], so that the model can have

different mapping functions for different classes to handle the multi-class situation more effec-

tively. In our experiments, we set a 2-layer perceptron of size (400, 300) as one expert component

and adopt 10 experts in total. After the mapping, we have a vector c in the new hyper-space rep-

resenting the center of the hypersphere covering the majority of users, and we also have a vector

DeepSV DD(Ou) to represent user u in the mapped hyper-space. For a user u, we use the negative

distance from DeepSV DD(Ou) to center c as the score:

MSdeepu = −‖DeepSV DD(Ou)− c‖F. (4.18)

82

Table 4.5: NDCG@20 of different subgroups determined by different mainstream level evaluation
approaches. Reprinted with permission from [9].

User subgroups of different mainstream levels
low med-low medium med-high high

Similarity 0.2056 0.2666 0.2915 0.3563 0.4566
Density 0.2219 0.2658 0.2789 0.3431 0.4669

Distribution 0.2059 0.2666 0.2862 0.3408 0.4771
DeepSVDD 0.2092 0.2642 0.2832 0.3368 0.4831

Table 4.6: Niche users classifying accuracy of four approaches. Reprinted with permission from
[9].

Similarity Density Distribution DeepSVDD
Accuracy 0.66 0.31 0.68 0.73

After calculating the mainstream scores for all users, we sort users by the scores and divide

them into subgroups. We then can compare the average utility across subgroups: if the subgroups

with high mainstream scores have higher utility than subgroups with lower scores, then severe

mainstream bias is observed.

4.3.2.3 Empirical Studies

Given these four approaches to evaluate mainstream-ness of users, we conduct experiments to

answer two questions: i) do commonly used recommendation models produce mainstream bias?

and ii) how effective are proposed approaches to identify niche users?

Recommendation models produce mainstream bias

To answer the first question, we conduct experiments with real-world datasets and state-of-the-

art recommendation models. More specifically, we first run a VAE [92] on the MovieLens 1M

dataset [96]. Then, we apply the introduced four approaches to calculate mainstream scores for

all users. Last, we sort users based on calculated mainstream scores in non-descending order and

divide them into five subgroups with equal size. Note that we also run experiments with other

models including MF [29], BPR [27], and LOCA [88], and other datasets including Yelp [105]

83

and Epinions [97]. These experiments show similar patterns. Code and data can be found at

https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias.

The average NDCG@20 for subgroups corresponding to different mainstream-ness measuring

ways are shown in Table 4.5, where we denote the first 20% of users with lowest mainstream

scores as users of ‘low’ mainstream level, the subgroup of 20%-40% users as users of ‘med-low’

mainstream level, and so on for 40%-60% (‘medium’), 60%-80% (‘med-high’), and 80%-100%

(‘high’). From the table, we can observe that all four proposed approaches show a similar pattern

– users with larger mainstream scores receive higher NDCG@20. For example, for all four bias

measuring cases, the average NDCG@20 of ‘high’ mainstream level users is more than twice

larger than those of ‘low’ mainstream level users. This result reveals that all proposed approaches

are able to identify niche users who are under-served by the recommendation model and severe

mainstream bias is produced by the recommendation model.

Proposed approaches effectively identify niche users

Next, we aim to quantitatively evaluate the effectiveness of identifying niche users of these

four introduced approaches. To do this, we need to have a dataset with ground-truth labels of

niche users, which is not easy to get from real-world systems. Hence, we use synthetic data to

compare the proposed approaches. To generate the synthetic data, we assume we have four item

groups, each of which includes 250 items. For each item group, we randomly generate 100 sets

of Gaussian distribution parameters. Based on the Gaussian distribution parameters, we randomly

generate a 100-dimension embedding for each of the 250 items in this group. We consider the first

two item groups as mainstream items and the other two groups as non-mainstream items. Then,

we create two user groups of size 800 as the mainstream users, where the first user group likes

the first item group and the second user group likes the second item group. We also create two

user groups of size 200 as niche users, where each of them likes one of the non-mainstream item

groups. We use the Gaussian distribution parameters of corresponding item groups to generate user

embeddings for these user groups. Last, we generate the user-item interaction data by randomly

sampling from the completed user-item relevance matrix, which is from the dot product of the

84

https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias

generated user and item embeddings.

Given this setup, we run the four proposed approaches to identify niche users in this dataset.

Here, we can formalize a binary classification task, where we consider the 400 users with low-

est mainstream scores from each approach as the predicted niche users, and the 400 users from

the last two generated user groups are the ground-truth labels. The classification accuracy is

shown in Table 4.6, from which we can observe that with the help of deep learning techniques,

the DeepSVDD-based approach performs the best. The next best approaches are similarity-based

and distribution-based approaches, which perform similarly because both of them rely on the sim-

ilarity calculation between users by their feedback records. Density-based approach performs the

worst, which may be because the LOF algorithm cannot work effectively for high-dimensional and

sparse data. As a result, we adopt the DeepSVDD-based approach as the best choice to analyze

mainstream bias.

4.3.3 Mitigating Mainstream Bias

In the previous section, we observed a significant utility gap between mainstream and niche

users. The question then is: can we mitigate this mainstream bias by increasing the utility for

niche users? In this section, we explore both global and local methods to mitigate mainstream bias.

Global methods learn a single model with the importance of niche users being promoted during

model training. Local methods, on the other hand, train customized local models for different

users. In the following, we first detail these two different solution directions and then empirically

test them.

4.3.3.1 Global Methods

One of the reasons mainstream bias is induced is that a model trained based on a loss function

averaging all users tends to focus more on how to accurately predict for mainstream users while

overlooking niche users so that it can minimize the loss function more effectively. Therefore, a

straightforward way to debias is to keep the model structure the same but increase the importance

of niche users in the model training process. Because this type of method uses one model globally

85

for all users, we call this a global method. In the following, we introduce two different methods

belonging to this category: a Distribution Calibration method and a Weighted Loss method.

Distribution Calibration Method (DC)

This first method is a data augmentation based approach, whose main intuition is to generate

synthetic users similar to existing niche users so that these niche users become mainstream in the

training dataset. To achieve this, we adapt the Distribution Calibration method [109] for few-shot

learning to the recommendation task. In the original paper [109], the distributions of few-shot

classes are calibrated by transferring statistics from similar classes with abundant data. Then,

synthetic examples of few-shot classes can be sampled based on the calibrated distributions to

augment the training data. In a recommendation task, we can consider each niche user as a single

class. Then, in a similar way, we can calibrate the distribution for each niche user by transferring

statistics from other similar users and generate synthetic users based on the calibrated distribution.

Specifically, we first identify niche users by any of the proposed approaches in Section 4.3.2.2.

For example, we consider the 50% users with lowest mainstream scores from DeepSVDD-based

approach as niche users. Then, for one niche user u, we fetch similar users to u, and have the

calibrated distribution vector pu of u:

pu = αOu + (1− α)
1

|Nu|
∑
v∈Nu

Ov, (4.19)

where Nu is the set of similar users to u in terms of Jaccard similarity on feedback records; and

0 ≤ α ≤ 1 is a hyper-parameter to control the importance of original feedback of u in the resulting

distribution. Last, we sample synthetic users based on pu for u. Given a budget for synthetic users

(we use the total number of real users in this chapter), the number of synthetic users for each niche

user is proportional to the reciprocal mainstream score of the user. At the end, a model trained by

such an augmented dataset can mitigate the mainstream bias and improve utility for niche users.

86

Weighted Loss Method (WL)

Instead of expanding the training data by synthetic users, another way to promote the impor-

tance of niche users during model training is to directly increase the weights of niche users in the

loss function. Take the VAE model as an example, we can have a weighted loss for the model:

LWL =
∑
u∈U

wu · LV AE(u), wu ∝ (
1

MSu
)β, (4.20)

where LV AE(u) is the original VAE loss for user u; wu is the weight for user u, which is propor-

tional to (1
MSu

)β; and β ≥ 0 is a hyper-parameter to control the strength of debiasing: larger β

means stronger debiasing strength, and 0 means no debiasing at all. By this weighted loss, we can

promote the importance of niche users: a user with lower mainstream score can be promoted more

in the loss function and thus receive better utility after debiasing.

4.3.3.2 Local Method

Although the two introduced global methods are able to improve the utility for niche users,

one major drawback is that there can be a trade-off between the utility of mainstream users and

niche users in these global methods. In other words, the global methods increase utility for niche

users but decrease utility for mainstream users at the same time. Due to the limited expression

capability of one single recommendation model, these global methods cannot support high utility

for so many users with different or even opposite preferences. Hence, another direction to tackle

the mainstream bias problem is to customize local models for different types of users instead of

applying the same global model to all users.

Local recommendation methods have been studied in prior works [88, 89, 90, 91]. The main

idea is to first select anchor users and train specialized anchor models for each of the anchor users.

Then, during inference, given a user, we can customize a local model for this user by ensembling

anchor models based on the relationship between the target user and anchor users. Although these

local recommendation algorithms are not specifically designed for addressing mainstream bias,

we empirically find that they can improve utility for niche users. Hence, in this section, we move

87

Figure 4.6: The proposed Local Fine Tuning method. Reprinted with permission from [9].

further based on these local recommendation models to propose a Local Fine Tuning (LFT) method

to effectively mitigate the mainstream bias, whose goal is to increase the utility for niche users with

the utility for mainstream users preserved or even increased.

Local Fine Tuning

The fundamental motivation is that feedback data from very different users may not be helpful

or can even play negative roles when learning a model for one or a small group of similar users.

Moreover, niche users can be very different from the majority incurring poor utility. Thus, we

consider recommending for each user as an independent task requiring a unique local model. And

for each user, we propose to learn the local model with partial data that is selected to be most useful

for serving this user.

The proposed LFT is illustrated in Figure 4.6. Concretely, we first assume we have a global

base model φ which is trained by the entire dataset as the step (1) in Figure 4.6, such as an ordinary

VAE model. Then, demonstrated as the step (2): for a target user u, we fetch the neighbor users

Nu (including u herself) that are similar to u in terms of preference, and create a sub-dataset

ONu = {Ov|v ∈ Nu} only containing feedback data of neighbor users. Last, during inference, for

a target user u, we further train the base model φ by the sub-dataset ONu to fine tune the model

88

as step (3) in Figure 4.6, so that it can provide accurate prediction for u without influence from

irrelevant users. We denote the local model after fine tuning for u as φu. In this way, niche users

can receive better utility by the local models since influence from mainstream users and other niche

users with different preference is eliminated. Furthermore, mainstream users also benefit from their

local models since they also suffer from the influence of niche users and other mainstream users

with different preferences.

Now, the key question is: how to find the neighbor users Nu of a user u so that the feedback

data of them ONu can help improve the fine tuning effectiveness and eliminate the influence from

irrelevant users? A naive way is to fetch the users with highest similarity (e.g., Jaccard or Cosine

similarity) based on feedback records. However, the limitation is that the similarity between users

based on discrete and sparse feedback records does not consider the latent relationship between

users. For example, if a user only likes item A and another user only likes item B, the similarity

between them will be 0 based on their feedback records. However, if item A and B are very similar,

then the ground truth similarity between them should be high. Therefore, the naive neighbor

user searching method could omit important neighbor users. Instead, we propose to fetch the

neighbor users based on the similarity between the calibrated distributions of users introduced

in Section 4.3.3.1. More specifically, we calculate the Cosine similarity between users by their

calibrated distributions pu calculated by Equation 4.19. For a target user u, we regard users with

similarity over a threshold t as her neighbor users: Nu = {v|cos(pu,pv) > t}. Because the

calibrated distribution of a user tries to approximate the preference probability of the user toward

items, it can help to capture the latent relationship between users that naive methods cannot.2

Choice of Base Model

Another key factor that can influence the performance of the proposed LFT is the choice of

base model φ. To allow the base model to be fine tuned effectively, the base model should not

be overly optimized for specific users and neglect other users, i.e., the base model should produce

2Because conventional recommendation models, such as MF [29], BPR [27], or VAE [92], are vulnerable to various
bias including the mainstream bias, it is not appropriate to use the generated embeddings from these regular models to
fetch neighbor users.

89

low mainstream bias. Otherwise, even if local fine tuning is applied, the final prediction will still

be biased and in low quality for users overlooked by the base model. Hence, we propose to use

the global debiasing model DC or WL in Section 4.3.3.1 as the base model. Besides, another

desirable property of the base model is to adapt quickly to a specific user to provide accurate

prediction for this user after few epochs of fine tuning training. Thus, we also consider meta-

learning techniques [110, 111] to train a base model that can be easily fine tuned to serve specific

users. For these meta-learning approaches, we regard every user as an independent learning task

and use the sub-dataset Ou as the training data for each user u. In Section 4.3.4, we will show the

empirical comparison of these difference choices of base model, where we find that with WL as

the base model, LFT performs the best. Hence, in the rest of this chapter, we consider WL as the

default choice of the base model.

Ensemble Model

Since the proposed LFT requires additional fine-tuning training every time a user visits the

recommendation platform, it requires more computational resources than conventional inference

paradigm without additional fine-tuning training. Although we can control the consuming of time

and computational resources by choosing appropriate fine-tuning epoch number and the size of

neighbor user set, it may still not be feasible for platforms with limited computational resources and

high concurrency of user visits. Hence, we also provide an ensemble version of the propose LFT,

which finishes all the model training and stores the model during the training phase, and provides

predictions without additional training during inference. Similar to existing local recommendation

models [88, 90, 91], during training, we select anchor users and train anchor models for them by

the proposed LFT. During inference, for each target user, we ensemble anchor models based on the

relationship between the target user and anchor users. So, the key is: how to select anchor users so

that they can cover as diverse user preference as possible?

Prior local recommendation models either randomly select anchor users [90] or select main-

stream users to maximize the neighbor user coverage by anchor users [88], which tends to select

mainstream users as anchor users. Both of these are not ideal for addressing mainstream bias.

90

Hence, in this chapter, we propose a similar-dissimilar anchor user selection algorithm to ade-

quately cover mainstream and non-mainstream preference. The proposed similar-dissimilar algo-

rithm is a greedy algorithm, whose core idea is to select the user who is most similar to unselected

users and dissimilar to already selected users in each iteration. Concretely, we define an anchor

user setA beginning as an empty set. Then, we iteratively add users intoA until reach a pre-defined

set size. In each iteration, we select the user by:

arg min
u∈U−A

1

|U − A|
∑

v∈U−A

cos(pu,pv)− λ
1

|A|
∑
v∈A

cos(pu,pv), (4.21)

where we calculate the Cosine similar between users by their calibrated distributions from Sec-

tion 4.3.3.1; and λ controls the balance between similarity to unselected users and dissimilarity to

selected users during the current anchor selection.

After selecting anchor users and training anchor models for them by proposed LFT, during

inference, we ensemble results of anchor models weighted by similarity to anchor users for a

target user u:

R̂u =

∑
v∈A cos(pu,pv)φv(u)∑

v∈A cos(pu,pv)
. (4.22)

We denote the ensemble version of LFT as EnLFT. Compared with the state-of-the-art local

recommendation model LOCA [88], EnLFT has two major improvements. First, EnLFT adopts the

more effective similar-dissimilar algorithm to maximize the coverage of different user preference

for anchor user selection. Second, EnLFT can train more effective anchor models by fine tuning a

global base model with precise neighbor users following LFT.

4.3.4 Experiments

In this section, we conduct extensive experiments to investigate the effectiveness of the pro-

posed debiasing methods and the impact of model design and hyper-parameters.

91

Table 4.7: Characteristics of three datasets. Reprinted with permission from [9].

#users #items density
ML1M 6,040 3,472 4,75%

Yelp 12,171 9,252 0.38%
Epinions 10,507 9,552 0.32%

4.3.4.1 Experimental Settings

Data

We use three public datasets for the experiments: ML1M [96], Yelp [105], and Epinions [97].

For all datasets, we consider the ratings or reviews as positive feedback from users to items. Then,

we randomly split each dataset into 70%, 10%, and 20% for training, validation, and testing. The

details of these datasets are shown in Table 4.7.

Metrics

Since in Section 4.3.2.3 we show that DeepSVDD-based bias measuring approach is more ef-

fective than other approaches, in this section, we only report the results based on DeepSVDD-based

approach for evaluating the mainstream bias. Concretely, we apply DeepSVDD-based approach to

all three datasets to compute mainstream scores for users. Then, we sort users in non-descending

order based on mainstream scores and divide them into five subgroups evenly. Last we report the

average NDCG@20 for each subgroup to show the mainstream bias. The goal of debiasing is to

improve the average NDCG@20 for subgroups with low mainstream scores while preserving or

even increasing the utility for subgroups with high mainstream scores at the same time.

Methods

In the experiments, we adopt the variational autoencoder (VAE) [92] as the base and develop

different debiasing models based on the VAE. By focusing on the same base model, we can isolate

and directly analyze the effects of different debiasing algorithms. VAE is also a baseline method

representing the vanilla recommendation model without any debiasing. For debiasing, we consider

92

both global and local methods as introduced in Section 4.3.3. For global methods, we have our

proposed Distribution Calibration (DC) and Weighted Loss (WL) methods. For local methods, we

include the state-of-the-art Local Collaborative Autoencoders (LOCA) model [88] as a strong local

method baseline that has demonstrated superior performance over other local recommendation

models like LLORMA [90, 91] and GLSVD [89]. LOCA adopts VAE as its local component.

Further, we consider our proposed Local Fine Tuning method with WL as the base model (LFT),

and we also have the ensemble version of the LFT model (EnLFT).

Reproducibility

All models are implemented in PyTorch [112] and optimized by Adam algorithm [60]. For the

baseline VAE and the VAE component in other models, we set one hidden layer of size 100. For

all methods involving the Distribution Calibration step, including the DC model, LFT, and EnLFT,

we set α = 0.7. For the WL model, we set β = 1.5 for ML1M, β = 3 for Yelp and Epinions.

For both LFT and EnLFT: we set the fine tuning epoch number as 30 for ML1M and Yelp, as 5

for Epinions; and we set the similarity threshold t for fetching neighbor users as 0.2 for ML1M,

0.01 for Yelp, and 0.05 for Epinions. For both ensemble models LOCA and EnLFT, we set the

number of anchor models as 100. And we set λ = 1.5 in EnLFT. All code and data can be found

at https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias.

4.3.4.2 RQ1: Compare Debiasing Performance

First, we compare different methods and answer three research questions: i) which method

performs the best in terms of overall utility and bias mitigating? ii) how do the two proposed

global methods perform compared to each other? and iii) how do the proposed local method and

its ensemble version perform compared with the state-of-the-art local recommendation baseline?

To answer these, we present the overall NDCG@20 and average NDCG@20 for 5 user subgroups

of different mainstream levels for all methods and datasets in Table 4.8, where the best results of

all metrics for each dataset are marked in bold, and the improvement rate from proposed LFT over

the best baseline LOCA is exhibited as well (results are significant judged by paired t-test). The

93

https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias

Table 4.8: Compare overall utility and utility for different subgroups. Reprinted with permission
from [9].

ML1M Yelp Epinion
NDCG
@20

Subgroups NDCG
@20

Subgroups NDCG
@20

Subgroups
l m-l m m-h h l m-l m m-h h l m-l m m-h h

VAE .315 .209 .264 .283 .337 .483 .089 .059 .071 .081 .097 .139 .082 .060 .071 .076 .091 .114
DC .317 .222 .266 .282 .335 .480 .090 .063 .074 .083 .094 .137 .082 .063 .071 .075 .089 .110
WL .319 .232 .272 .284 .332 .476 .090 .063 .076 .082 .094 .137 .082 .066 .074 .075 .088 .108

LOCA .323 .242 .276 .286 .335 .476 .092 .065 .079 .083 .096 .137 .084 .065 .073 .078 .092 .113
EnLFT .333 .252 .285 .296 .343 .488 .096 .069 .084 .087 .099 .140 .086 .067 .076 .080 .093 .114

LFT .337 .255 .287 .298 .349 .496 .098 .071 .086 .092 .104 .140 .088 .070 .078 .083 .093 .115
∆LOCA(%) 4.4 5.6 4.1 4.2 4.2 4.2 6.8 9.1 9.4 10.1 7.4 2.1 4.0 6.6 7.2 5.2 1.4 2.1

‘l’ column represents the 20% users with lowest mainstream score, ‘m-l’ represents 20% to 40%

users in the sorted user sequence, and so on for 40%-60% (‘m’), 60%-80% (‘m-h’), and 80%-100%

(‘h’).

From the table we see that for all datasets, the proposed LFT produces the best overall NDCG@20

and also provides the best NDCG@20 for each subgroup of different mainstream levels. Compared

with the original VAE, utility for niche users belonging to ‘l’, ‘m-l’, and ’m’ subgroups is greatly

promoted (improvement rate is 13.8% in average). At the same time, LFT also improves the util-

ity for mainstream users belonging to ‘med-high’ and ‘h’ subgroups (improvement rate is 3.1%).

Hence, we can conclude that the proposed LFT is able to mitigate the mainstream bias by signifi-

cantly improving the utility for niche users and can improve the utility for mainstream users at the

same time.

Second, we compare the two global methods. We can observe that the two proposed global

methods – DC and WL – improve the overall recommendation utility and improve the utility for

niche users compared with VAE. However, when they mitigate the mainstream bias by improving

the utility for niche users, they decrease the utility for mainstream users. It is because global

methods keep a single model and have to mitigate the bias by balancing between mainstream and

niche users during training instead of improving all of users as proposed LFT does. And comparing

DC and WL, we find that WL performs slightly better than DC, which may be because the data

94

Table 4.9: Compare different neighbor user selection methods. Reprinted with permission from
[9].

Subgroups of different mainstream levels
NDCG@20 low med-low medium med-high high

ML1M
Cosine 0.3302 0.2442 0.2780 0.2896 0.3433 0.4959
Jaccard 0.3293 0.2417 0.2789 0.2903 0.3409 0.4949

DC 0.3372 0.2549 0.2876 0.2982 0.3492 0.4963

Yelp
Cosine 0.0949 0.0683 0.0822 0.0883 0.0987 0.1370
Jaccard 0.0956 0.0688 0.0811 0.0892 0.0995 0.1392

DC 0.0984 0.0706 0.0860 0.0917 0.1035 0.1403

Epinions
Cosine 0.0867 0.0688 0.0763 0.0813 0.0928 0.1140
Jaccard 0.0864 0.0690 0.0763 0.0811 0.0924 0.1133

DC 0.0876 0.0697 0.0779 0.0825 0.0930 0.1150

augmentation method is more challenging to tune and to find an effective setup.

Last, we compare LFT with the local recommendation baseline LOCA. We observe that LOCA

can also improve the utility for niche users but with a lower rate compared with LFT. However,

utility for mainstream users is decreased compared with VAE. It can be because that LOCA trains

anchor models from scratch and the neighbor users to train an anchor model are naively identified

based on raw feedback record similarity. This leads to the result that no anchor model in LOCA

can capture full information for mainstream users. To be fair, we also propose an ensemble version

of LFT with a similar setup as LOCA. Due to the more effective anchor model training (based on

LFT) and proposed similar-dissimilar anchor users selection algorithm in EnLFT, we can see from

the table that EnLFT performs better than baseline LOCA in terms of overall recommendation

utility and utility for different user subgroups. However, EnLFT is slightly less effective than LFT,

which is expected because LFT trains a specialized model for each user while a limited number of

anchor models are shared in EnLFT.

4.3.4.3 RQ2: Ablation Study

Next, we study how different choices of model component influence the performance, including

the way to select neighbor users, the choice of base model, and the way to select anchor users in

EnLFT.

95

Figure 4.7: Compare different base model choices. Reprinted with permission from [9].

Selecting Neighbor users

In the proposed LFT, when we want to fine tune a local model for one user u, we need to

fetch the neighbor users for u. The naive way is to directly calculate similarity on raw feedback

records of users, such as Jaccard and Cosine similarity. We compare the performance of LFT by

the naive way (by Jaccard and Cosine similarity) and the proposed method of calculating similarity

on calibrated distribution of users (denoted as DC), and show the results in Table 4.9. For each

dataset, the best results are marked in bold. We can see that LFT with the proposed neighbor

user selecting method performs the best for all methods in terms of both overall utility and utility

for each subgroup. The superior performance of the proposed method is because that calibrated

distribution of users can help to capture the latent relationship between users. Due to this, the

improvement for niche users is larger than for mainstream users because identifying neighbor

users for niche users heavily relies on latent relationships.

Choosing base model

Next, we study the impact of different choices of base model in LFT. As discussed in Sec-

tion 4.3.3.2, there are many different choices of base model, including: an ordinary recommenda-

tion model without debiasing, such as a VAE; a global debiasing model, such as the proposed DC

or WL; and a meta-learning model which is supposed to be easily adapted to a specialized local

96

Table 4.10: Compare different anchor user selection methods. Reprinted with permission from [9].

Subgroups of different mainstream levels
NDCG@20 low med-low medium med-high high

ML1M
random 0.3257 0.2376 0.2773 0.2914 0.3387 0.4834
LOCA 0.3291 0.2428 0.2814 0.2943 0.3403 0.4865
EnLFT 0.3328 0.2521 0.2847 0.2963 0.3434 0.4876

Yelp
random 0.0922 0.0632 0.0781 0.0839 0.0983 0.1375
LOCA 0.0933 0.0651 0.0792 0.0853 0.0977 0.1393
EnLFT 0.0959 0.0688 0.0840 0.0872 0.0994 0.1400

Epinions
random 0.0838 0.0647 0.0736 0.0782 0.0895 0.1130
LOCA 0.0850 0.0656 0.0743 0.0793 0.0924 0.1136
EnLFT 0.0859 0.0671 0.0758 0.0802 0.0926 0.1139

model to predict accurately for a specific user, for which we adopt the FOMAML model from [110]

and Reptile model from [111]. To train these meta-learning models, we consider every user as an

independent task and use the same way in Section 4.3.3.2 to get the sub-datasetOu for each user u

as the training data for this task. Besides, we also include a random model as a baseline to show the

importance of having a good base model. For ML1M dataset, the overall NDCG@20 for choices of

random, VAE, FOMAML, Reptile, DC, and WL are 0.2979, 0.3347, 0.3351, 0.3349, 0.3353, and

0.3372, where base model of WL performs the best. Then, we show the average NDCG@20 for

user subgroups by different choices of base model in Figure 4.7, from which we observe that base

model of WL performs the best for niche users, while FOMAML and Reptile perform similarly as

WL for subgroups with higher mainstream level. Hence, we can conclude that choosing WL as the

base model produces the best result, and adopting meta-learning techniques does not significantly

help to improve the performance. Moreover, we find salient difference between results of random

model and other choices, showing that choosing a well-trained base model is important, especially

for niche users.

Selecting anchor users in ensemble model

Last, we investigate the impact of different anchor user selection methods in EnLFT. In the

baseline LOCA [88], mainstream users are selected as anchor users to maximize the neighbor user

97

coverage, which has limited coverage for niche users. Instead, we propose the similar-dissimilar

method to cover both niche and mainstream users to maximize the coverage of user preference.

Besides, we also include the random method to randomly select anchor users. We compare these

methods with other settings the same for EnLFT, and results are listed in Table 4.10, where ‘LOCA’

represents EnLFT with anchor user selection method from LOCA, ‘EnLFT’ represents EnLFT

with proposed similar-dissimilar method, and ‘random’ represents EnLFT with random selection

method. This table shows that with the proposed similar-dissimilar method, EnLFT performs the

best. Compared with LOCA method, we find that the major improvements are from the niche users

(the first three subgroups with lowest mainstream levels), and utility for mainstream users are very

similar for these two methods. This is because the proposed similar-dissimilar method improve the

coverage for niche users compared with the method from LOCA. Besides, we see that utility for

mainstream users by EnLFT with anchor user selection method from LOCA (the ‘LOCA’ rows in

Table 4.10) is higher than the original LOCA (the ‘LOCA’ columns in Table 4.8), which validates

the effectiveness of proposed LFT to learn powerful anchor models.

4.3.4.4 RQ3: Hyper-parameter Study

Here, we study how two hyper-parameters in LFT – the number of training epochs for local

fine tuning; and the similarity threshold for fetching neighbor users – influence the performance.

Number of epochs

Here, we run LFT on ML1M dataset with the number of epochs for local fine tuning (denoted

as #epoch) varying in {10, 20, 30, 40, 60, 70, 80, 90} and other settings the same as in Sec-

tion 4.3.4.1. The overall NDCG@20 are shown as the red line in Figure 4.8a, where v0 to v8

represent 10 to 90. We can observe that the utility first increases then decreases with increasing

epochs. Then, we also show how the average NDCG@20 changes for the user subgroup of ‘low’

mainstream level in Figure 4.8b and for the subgroup of ‘high’ mainstream level in Figure 4.8c.

It shows that with increasing training epochs, utility for niche users first increases and then con-

verges, which may decrease with more epochs. However, the utility for mainstream users first

98

(a) (b) (c)

(d) (e)

Figure 4.8: Hyper-parameter study: (a) how NDCG@20 changes with varying #epoch and t; (b)
and (c) how NDCG@20 for users of ‘low’ and ‘high’ mainstream levels changes with varying
#epoch; (d) and (e) how NDCG@20 for users of ‘low’ and ‘high’ mainstream levels changes with
varying t. Reprinted with permission from [9].

increases and turns to decrease quickly, which is because the base model already provides high

accuracy and fewer local fine tuning epochs are needed for mainstream users. Hence, the next step

of the local fine tuning research is to personalize the training epochs for different users.

Similarity threshold

Then, we study the impact of the similarity threshold t when we fetch neighbor users. Lower

t leads to more neighbor users are selected in LFT. We vary t from 0.08 to 0.32 with step 0.03

and show how the overall NDCG@20 changes as the blue line in Figure 4.8a. In this figure,

v0 to v8 represent 0.08 to 0.32. We can see that with increasing t, NDCG@20 first increases then

decreases and reaches peak at 0.20. We also show how the average NDCG@20 changes for the user

subgroup of ‘low’ mainstream level in Figure 4.8d and for the subgroup of ‘high’ mainstream level

in Figure 4.8e. From these two figures, we find that with increasing t, NDCG@20 for niche users

first increases then decreases, while for mainstream users, the utility does not change notably. It is

because niche users have small numbers of neighbor users, and it is more challenging to find these

99

neighbor users. So, utility for niche users is more sensitive to the choice of t. But for mainstream

users, there are a large number of similar users with high similarity, thus LFT produces strong

performance for mainstream users and is not sensitive to t within certain value range.

4.3.5 Summary

In this work, we study the mainstream bias centering around three thrusts. First, to identify

mainstream and niche users, we propose and compare four approaches to calculate a mainstream

score indicating mainstream levels of each user. Second, we empirically show the severe main-

stream bias produced by conventional recommendation models. Then, we explore both global and

local methods to mitigate such a bias. We propose two global models: Distribution Calibration

and Weighted Loss; and a local algorithm: Local Fine Tuning. Extensive experiments show the

effectiveness of these proposed methods to improve utility for niche users.

4.4 Conclusions

In this chapter, we focus on how the machine learning based recommendation algorithms in-

troduce bias on both users and items even if the data is considered to be free of exposure bias.

Specifically, we first we conduct a three-part study to investigate popularity-opportunity bias on

items: i) we empirically show the vulnerability of two matrix factorization models to the bias by

a data-driven study on four datasets; ii) we theoretically show how these two models inherently

produce the popularity-opportunity bias on both user and item sides; and iii) we explore the po-

tential of in-processing and post-processing approaches to alleviate the bias. Experiments on four

datasets validate the debiasing effectiveness of both proposed methods over debiasing baselines

designed for conventional popularity bias. Then, we switch our attention to users and we study

the mainstream bias among users centering around three thrusts. First, to identify mainstream and

niche users, we propose and compare four approaches to calculate a mainstream score indicating

mainstream levels of each user. Second, we empirically show the severe mainstream bias produced

by conventional recommendation models. Then, we explore both global and local methods to mit-

igate such a bias. We propose two global models: Distribution Calibration and Weighted Loss;

100

and a local algorithm: Local Fine Tuning. Extensive experiments show the effectiveness of these

proposed methods to improve utility for niche users.

101

5. MEASURING AND ENHANCING FAIRNESS IN RECOMMENDATIONS1

The third contribution of this dissertation is to investigate how bias raised by both data and

algorithms can incur unfairness issues in the outputs of a recommender. That is, are different items

or item groups recommended fairly in a recommender system? For example, in a job recommender

that recommends job openings to people, are high-paying jobs and non-profit jobs treated fairly?

In a news recommender, are news of different political stances recommended at a similar rate?

And even for product recommenders, are products from big companies favored over products from

new entrants?

Concretely, we investigate how to measure and enhance recommendation fairness in three dif-

ferent recommendation scenarios. First, we study recommendation fairness among item groups

in the multi-dimension recommendation scenario, where instead of typical two-dimension case

with only users and items, the multi-dimension scenario involves other dimensions to specify the

conditions of recommending items, such as specify the genre for recommending movies or songs.

Second, we study recommendation fairness among item groups in personalized ranking recom-

mendation scenario, where the crucial question is how to measure and enhance fairness directly

on ranking results. And last, we investigate recommendation fairness for cold-start recommen-

dation scenario, where we consider the recommendations for cold-start items with no historical

interaction in training data and study recommendation fairness among them.

5.1 Related Work

In this section, we introduce previous work on the topic of recommendation fairness. Besides,

we also introduce some other topics related to fairness, and also some background about cold-start

1This chapter is reprinted with permission from “Fairness-Aware Tensor-Based Recommendation" by Ziwei Zhu,
Xia Hu, and James Caverlee, 2018, Proceedings of the 27th ACM International Conference on Information and Knowl-
edge Management, Copyright 2018 by ACM; “Measuring and Mitigating Item Under-Recommendation Bias in Per-
sonalized Ranking Systems" by Ziwei Zhu, Jianling Wang and James Caverlee, 2020, Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, Copyright 2020 by ACM;
and “Fairness among New Items in Cold Start Recommender Systems" by Ziwei Zhu, Jingu Kim, Trung Nguyen,
Aish Fenton, and James Caverlee, 2021, 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Copyright 2021 by ACM.

102

recommendation.

5.1.1 Recommendation Fairness

Friedman [113] defined that a computer system is biased “if it systematically and unfairly

discriminates against certain individuals or groups of individuals in favor of others.” As we have

mentioned, considerable efforts have focused on classification tasks (e.g., recidivism prediction,

loan approval) [114, 115, 116, 117, 118]. In the context of recommenders, early studies mainly fo-

cus on rating prediction tasks and investigate item fairness by measuring the difference of predicted

rating distributions across item groups [119, 120, 121, 10, 11]. To improve this score/rating based

concept of item fairness, regularization based [119, 120, 121, 11] and latent factor manipulation

based [10] methods have been proposed. Later, with the prevalence of ranking based recommender

systems, new formulations [12, 24, 26, 101, 122] to directly study item fairness on ranking results

instead of on the intermediate predicted scores/ratings have been proposed. Another line of re-

search [123, 124, 125] studies fairness in terms of equality of exposure, which investigates whether

the amortized exposure of items in recommendations are proportional to the amortized relevance

of items. Further, inspired by fairness-aware classification [94], equal opportunity based fairness

that requires an equal true positive rate across item groups has been proposed [12, 24, 122, 26]. To

improve such ranking based equal opportunity fairness, many new algorithms utilizing regulariza-

tion [122, 24], re-ranking [26], and adversarial learning [12] have also been proposed.

5.1.2 Topics Related to Fairness

There are some recent efforts investigating topics related to recommendation fairness. For ex-

ample, Beutel et al. [126] and Krishnan et al. [127] explored approaches to improve the fairness

w.r.t. recommendation accuracy for niche items. Recommendation diversity [128], which requires

as many groups as possible appearing in the recommendation list for each user, is related to the

metric RSP we propose, but fundamentally different. Another similar concept to RSP called cali-

brated recommendations is proposed by Steck [129], which encourages the same group proportions

as the historical record for each user and can be regarded as a special fairness for individual users.

103

The main differences of our work and these previous works are that research of recommendation

diversity and recommendation calibration investigate the distribution skews for each individual

user rather than for the whole system, and they only consider the recommendation distributions

without taking into account the ground truth of user preference and item quality.

5.1.3 Cold-start Recommender Systems

In almost all real-world applications, recommending new items without any historical feedback

from users (formally called the cold-start recommendation task), is heavily in demand and chal-

lenging. Over the years, many approaches have been proposed including heuristic non-parametric

algorithms like KNN [64], though now there is an emphasis on optimization based machine learn-

ing algorithms. These methods can be categorized into two types [7]: separate-training methods

and joint-training methods.

Separate-training methods [6, 52, 49, 50, 51] separately learn two models: a collaborative

filtering (CF) model learns CF embeddings of warm start items; and a content model learns how to

transform the item content features to the learned collaborative embeddings using warm start items.

During inference, the content model is first applied on content features of new items to generate

CF embeddings and then recommendations for these new items are provided by these embeddings.

A typical example is DeepMusic [49], which utilizes a multi-layer perceptron (MLP) to transform

item content features to CF embeddings learned by a pretrained matrix factorization model. Joint-

training methods [5, 3, 4] combine the CF model and content model together and train both of them

through a single backpropagation process. A typical example is DropoutNet [5], which has an

MLP based content component to first transform item content features, followed by a dot-product

based neural CF component to provide recommendations. Moreover, Heater in [7] mixes separate-

training and joint-training methods, which delivers the state-of-the-art performance. Yet, there is

no notion of fairness in these cold-start recommenders. Hence, we aim to investigate the fairness

of these representative models and propose novel methods to enhance fairness in the cold-start

scenario. Specifically, we investigate four typical cold-start recommenders: Heater, DropoutNet,

DeepMusic, and KNN.

104

Figure 5.1: Overview of FATR: sensitive features are isolated (top right), then sensitive information
is extracted (bottom right), resulting in fairness-aware recommendation. Reprinted with permission
from [10].

5.2 Enhancing Fairness in Multi-dimension Recommender Systems

5.2.1 Introduction

Fairness in recommendation has attracted increasing attention in the research community. Many

different approaches have been developed [130, 11, 131, 102]. While encouraging, most existing

approaches make a number of limiting assumptions: (i) focusing on two-dimensional matrix factor-

ization that has been the cornerstone of recommender research in the past ten years [132, 133, 134];

(ii) assuming there is only a single binary case (e.g., male vs. female); and (iii) trading-off consid-

erable recommendation quality for improving the fairness characteristics of the recommender.

In contrast, we aim to create a new tensor-based framework that can overcome these limita-

tions. Tensors, as n-dimensional generalizations of matrices, have shown great promise across a

variety of data mining and analytics tasks – e.g., [135, 136, 137, 138] – where their multi-aspect

models naturally fit domains that go beyond two dimensions. Recommenders, in particular, are

well-suited for tensors that can capture multi-way interactions among users, items, and contexts

105

(e.g., time, location). But there are key challenges: How can we model sensitive attributes (e.g.,

age, gender) in a tensor-based recommender? How can we minimize the impact of these sensitive

attributes on recommendations, which can be correlated with non-sensitive attributes [139, 118])?

How can we build an optimization model for this problem and efficiently solve it? And can such

efforts maintain recommendation quality while improving fairness?

To tackle these challenges, we propose a novel Fairness-Aware Tensor-based Recommendation

framework called FATR. The overview is illustrated in Figure 5.1. The intuition of the proposed

framework is that the latent factor matrices of the tensor completion model contain latent infor-

mation related to the sensitive attributes, which introduces the unfairness. Therefore, by isolating

and then extracting the sensitive information from the latent factor matrices, we may be able to

improve the fairness of the recommender itself. Concretely, we propose (i) a new sensitive latent

factor matrix for isolating sensitive features; (ii) a sensitive information regularizer that extracts

sensitive information which can taint other latent factors; and (iii) an effective algorithm to solve

the proposed optimization model.

In sum, our contributions are as follows.

• First, FATR is built on a tensor foundation that can analyze multiple aspects simultaneously,

promising potentially better recommendation quality than matrix-based approaches, while

also supporting traditional two-dimensional data (since tensors are generalizations of matri-

ces).

• Second, moving beyond binary sensitive features, FATR supports multi-feature cases with

multisided features (e.g., recommendation where both age of items and gender of users

are considered sensitive) and multi-category cases (e.g., where the sensitive attribute can

take on multiple values like Low, Medium, and High) which are challenging for traditional

regularization-based approaches [120, 131].

• Finally, we empirically show that FATR can provide recommendation quality on par with

traditional (unfair) recommenders while significantly improving the fairness of recommen-

106

Table 5.1: Main symbols and operations. Reprinted with permission from [10].

Notations Definitions
XXX ∈ RI1×I2×...×IN N th-order tensor

X(n) ∈ RIn×(ΠN
i6=nIi) Mode-n unfolding matrix of tensor XXX

J·K Kruskal operator, e.g., XXX ≈ JA1, . . . ,AN K
� Khatri-Rao product
~ Hadamard product
◦ Vector outer product

(Ak)
�k 6=n AN � . . .�An+1 �An−1 � . . .�A1

A[:, i : j] Matrix slicing operation (index starts from 1)
[A B] Matrices concatenating operation (horizontal)

dations, and does so better than state-of-the-art alternatives.

5.2.2 Preliminaries

In this section, we first introduce the notations we use here and the basics of tensor-based

recommendation, then we discuss fairness in recommendation.

5.2.2.1 Notations

Notations and definitions are presented as follows. Tensors are denoted by Euler script letters

like XXX, matrices are denoted by boldface uppercase letters like A, and vectors are denoted by

boldface lowercase letters like a. The [i1, . . . , iN] entry of the tensor XXX is denoted as XXX[i1, . . . , iN].

We denote the pseudo inverse, transpose, and Frobenius norm of a matrix A respectively by A†,

A>, and ‖A‖F. Notation J·K represents the Kruskal operator. Notations �, ~, and ◦ denote the

Khatri-Rao product, Hadamard product, and vector outer product, respectively. Besides, we use

the syntax similar to Python to denote the matrix slicing operation (the index starts from 1), for

example A[:, 2 :] denotes the matrix A without the first column. And we use [A B] to present

the horizontal matrices concatenating operation. The main symbols and operations are listed in

Table 5.1. More details about tensor calculations can be found in [140].

107

5.2.2.2 Tensor-Based Recommendation

Matrix factorization is the foundation of many modern recommenders [29]. These matrix fac-

torization methods estimate missing ratings by uncovering latent features of users and items. Build-

ing on these user-item interactions, tensor-based methods have been growing in appeal recently

since they can naturally model multi-way (or multi-aspect) interactions [135, 136, 137, 138]. For

example, a 3-order tensor could represent users, items, and time of day. Additional contexts can

lead to an N-way tensor. And, of course, the classic user-item problem can be viewed as a 2-way

tensor.

Formally, given an N-order tensor TTT representing the users, items, and multiple aspects related

to the items, the basic tensor-based recommendation model can be defined as:

minimize
XXX,A1,A2,...,AN

LLL = ‖XXX − JA1,A2, . . . ,ANK‖2
F

subject to ΩΩΩ ~XXX = TTT,

(5.1)

whereXXX denotes the complete preferences of users,TTT denotes the observations, ΩΩΩ is a non-negative

indicator tensor with the same size as XXX with ΩΩΩ[i1, . . . , iN] = 1 indicating that we observe the

preference, otherwise ΩΩΩ[i1, . . . , iN] = 0, A1,A2, . . . ,AN are the latent factor matrices of all the

modes of the tensor.

The objective function can be written in the unfolding form so that it can be solved by opti-

mization algorithms, as follows:

minimize
XXX,A1,...,AN

LLL = ‖X(n) −An[(Ak)
�k 6=n]>‖2

F

subject to Ω(n) ~ X(n) = T(n),

(5.2)

where Ω(n) is the mode-n unfolding of the indicator tensor ΩΩΩ, T(n) is the mode-n unfolding of the

tensor TTT, and X(n) is the mode-n unfolding of the tensor XXX. To solve this basic recommendation

by tensor completion, we can use Alternating Least Squares (ALS), which optimizes every latent

108

factor matrix by linear least squares in each iteration. The update rule is:

Ân ← X(n)[[(Ak)
�k 6=n]>]†, (5.3)

where Ân is the updated latent factor matrix of An.

5.2.2.3 Fairness in Recommendation

Such a tensor-based approach has no notion of fairness. Here, we assume that there exists a

sensitive attribute for one mode of the tensor, and this mode is a sensitive mode. For example,

the sensitive attribute could correspond to gender, age, ethnicity, location, or other domain-specific

attributes of users or items in the recommenders. The feature vectors of the sensitive attributes are

called the sensitive features. Further, we call all the information related to the sensitive attributes

as sensitive information, and note that attributes other than the sensitive attributes can also contain

sensitive information [139, 118]. While there are emerging debates about what constitutes algo-

rithmic fairness [114], we adopt the commonly used notion of statistical parity. Statistical parity

encourages a recommender to ensure similar probability distributions for both the dominant group

and the protected group as defined by the sensitive attributes. Formally, we denote the sensitive

attribute as a random variable S, and the preference rating in the recommender system as a ran-

dom variable R. Then we can formulate fairness as P[R] = P[R|S], i.e. the preference rating is

independent of the sensitive attribute. This statistical parity means that the recommendation result

should be unrelated to the sensitive attributes. For example, a job recommender should recommend

similar jobs to men and women with similar profiles. Note that some recent works [94, 102, 131]

have argued that statistical parity may be overly strict, resulting in poor utility to end users. Our

work here aims to achieve comparable utility to non-fair approaches, while providing stronger

fairness.

5.2.3 Fairness-Aware Tensor-Based Recommendation

Given this notion of fairness, we turn in this section to the design of a novel Fairness-Aware

Tensor-based Recommendation framework (FATR) – as illustrated in Figure 5.2. The intuition of

109

Figure 5.2: FATR isolates sensitive features in the latent matrix with non-sensitive dimensions
orthogonal to them and eliminates the sensitive information by removing the sensitive dimensions.
XXX is the tensor with bias, and X̃XX is the fairness-enhanced recommendation tensor. Reprinted with
permission from [10].

the proposed framework is that the latent factor matrices of the tensor completion model contain

latent information related to the sensitive attributes, which introduces the unfairness. Therefore,

by isolating and then extracting the sensitive information from the latent factor matrices, we may

be able to improve the fairness of the recommender itself.

In the rest of this section, we aim to address four key questions: (i) How can we represent (and

ultimately isolate) the sensitive attributes in the tensor completion model? (ii) How do we extract

all the sensitive information into the isolated explicit representation? (iii) How can we eliminate

the extracted sensitive information from the tensor completion model? and (iv) How do we solve

the new fairness-aware recommendation model? In the following, we address these questions in

turn. We focus in this section on a single binary sensitive attribute for mode-n (e.g., gender). In

Section 5.2.4, we will generalize to consider multi-feature and multi-category cases.

5.2.3.1 Isolating Sensitive Features

In conventional tensor completion, the sensitive features will mingle with other features and

distribute over different dimensions in the latent factor matrices, which makes it difficult to extract

them. For example, a 3-way tensor of user-expert-topic can be factorized into three latent factor

110

matrices [135], where the feature vector of a sensitive attribute for the experts like gender is mixed

with other features and represented by the latent factors, which means that the sensitive information

hides in the expert latent factor matrix.

We propose to first isolate the impact of the sensitive attribute by plugging the sensitive fea-

tures into the latent factor matrix. For instance, in our user-expert-topic example, we can create

one vector s0 with 1 representing male and 0 representing female, and another vector s1 with 1

indicating female and 0 indicating male. s0 and s1 together form a matrix, denoted as Sensitive

Features S. We put S to the last two columns of the latent factor matrix of sensitive mode mode-n.

Then we construct a new sensitive latent factor matrix:

DEFINITION (Sensitive Latent Factor Matrix). Given the latent factor matrix An ∈ Rdn×r of the

sensitive mode mode-n, where r is the dimension of the latent factors and dn is the number of

entities of the mode-n. We split An horizontally into two parts: matrix A′n ∈ Rdn×(r−2) and

A′′n ∈ Rdn×2. If A′′n is forced to take the same values as the sensitive features S ∈ Rdn×2, then the

new matrix Ãn = [A′n S] is called sensitive latent factor matrix.

The matrix A′n represents the non-sensitive dimensions, while A′′n represents the sensitive di-

mensions (where the corresponding dimensions in other non-sensitive factor latent matrices are

also called sensitive dimensions). Thus, sensitive dimensions of the sensitive latent factor matrix

will take the same values of the sensitive features. In this way, we can explicitly represent the sen-

sitive attributes and isolate them from non-sensitive attributes in the latent factor matrix. Hence, we

can update the tensor-based recommender in Section 5.2.2.2 with the following objective function:

minimize
XXX,A1,...,Ãn,...,AN

LLL = ‖XXX − JA1, . . . , Ãn, . . . ,ANK‖2
F

subject to ΩΩΩ ~XXX = TTT,

Ãn = [A′n A′′n],

A′′n = S.

(5.4)

111

5.2.3.2 Extracting Sensitive Information

By isolating the sensitive features, we provide a first step toward improving the fairness of the

recommender. But there may still be sensitive information that resides in non-sensitive dimensions.

To extract this remaining sensitive information, we propose an additional constraint that the non-

sensitive dimensions should be orthogonal to the sensitive dimensions in the sensitive latent factor

matrix based on the following theorem.

Theorem 3. If one non-sensitive dimension is not perpendicular to all the sensitive dimensions,

then this dimension is related to the sensitive attribute.

Proof. Regarding all dimensions in the sensitive latent factor matrix as vectors in a high dimen-

sional space. If the angle between one non-sensitive dimension vector v and the plane ps1,s2 de-

cided by sensitive features s1 and s2 is not 90◦, then v can be resolved into two vectors v1 and

v2 on the same directions as s1 and s2, and another vector v3 perpendicular to ps1,s2 . Therefore,

v = v1 + v2 + v3, and v1 and v2 can be merged into s1 and s2 when reconstructing the tensor as

shown in Equation (5.5), which changes the values of sensitive dimensions, i.e., this latent factor

represented by dimension v is related to the sensitive attribute.

XXX ≈ a
(1)
1 ◦ a

(1)
2 ◦ a

(1)
3 + . . .+ a

(r−2)
1 ◦ a

(r−2)
2 ◦ v

+ a
(r−1)
1 ◦ a

(r−1)
3 ◦ s1 + a

(r)
1 ◦ a

(r)
2 ◦ s2

= a
(1)
1 ◦ a

(1)
2 ◦ a

(1)
3 + . . .+ a

(r−2)
1 ◦ a

(r−2)
2 ◦ v3

+ l1 · a(r−2)
1 ◦ a

(r−2)
2 ◦ s1 + l1 · a(r−2)

1 ◦ a
(r−2)
2 ◦ s2

+ a
(r−1)
1 ◦ a

(r−1)
3 ◦ s1 + a

(r)
1 ◦ a

(r)
2 ◦ s2

= a
(1)
1 ◦ a

(1)
2 ◦ a

(1)
3 + . . .+ a

(r−2)
1 ◦ a

(r−2)
2 ◦ v3

+ (a
(r−1)
1 ◦ a

(r−1)
2 + l1 · a(r−2)

1 ◦ a
(r−2)
2) ◦ s1

+ (a
(r)
1 ◦ a

(r)
2 + l2 · a(r−2)

1 ◦ a
(r−2)
2) ◦ s2,

(5.5)

where a
(1...r)
1 , a

(1...r)
2 , and a

(1...r)
3 are the columns in the three latent factor matrices, l1is the scale

112

coefficient between s1 and v1 so that l1 · s1 = v1, and l2 is from l2 · s2 = v2.

After extracting the sensitive information, all the sensitive information is gathered in the iso-

lated sensitive dimensions. Then we have a new objective function for the tensor completion as:

minimize
XXX,A1,...,A′n,...,AN

LLL = ‖XXX − JA1, . . . , Ãn, . . . ,ANK‖2
F

+
λ

2
‖A′′n

>
A′n‖2

F +
γ

2

N∑
i=1

‖Ai‖2
F

subject to ΩΩΩ ~XXX = TTT,

Ãn = [A′n A′′n],

A′′n = S,

(5.6)

where
λ

2
‖A′′n

>A′n‖2
F is the orthogonal constraint term, λ is the trade-off parameter,

γ

2

∑N
i=1‖Ai‖2

F

is the L2-norm constraint to the norms of the latent factor matrices so that the minimizing of
λ

2
‖A′′n

>A′n‖2
F is because the cosine angles are close to zero rather than because the norms of

columns in A′′n or A′n are small (if it is this case, norms of other latent factor matrices will get

larger, which will increase the value of the term
γ

2

∑N
i=1‖Ai‖2

F), γ is the trade-off parameter of this

L2-norm term.

5.2.3.3 Fairness-Aware Recommendation

After the above two steps, we can get the new latent factor matrices A1, . . . , Ãn, . . . ,AN ,

whose sensitive dimensions hold features exclusively related to the sensitive attributes. And their

non-sensitive dimensions are decoupled from the sensitive attributes. Thus, we can derive the

fairness-enhanced recommendation by combining these matrices after removing their sensitive

dimensions as:

X̃XX← JA′1, . . . ,A
′
n, . . . ,A

′
NK, (5.7)

113

Algorithm 2: FATR Solver
Input: TTT, ΩΩΩ, r, S, n, α, λ, γ, tol;
Output: X̃XX, {Ai}Ni=1

1 Randomly Initialize {Ai ∈ RIi×r}Ni=1;
2 repeat
3 for i = 1 : N do
4 if i == n then
5 Update A′n using (5.11);

6 else
7 Update Ai using (5.10);

8 Update A′n ← A′n − α
∂FFF

∂A′n
;

9 Form Ãn ← [A′n S];
10 Update XXX← TTT + ΩΩΩ ~ JA1, . . . , Ãn, . . . ,ANK;
11 until ‖XXXpre −XXX‖F/‖XXXpre‖F < tol;
12 Update X̃XX← JA′1, . . . ,A′n, . . . ,A′NK;

where X̃XX is the fairness-enhanced tensor completion result, and A′1, . . . ,A
′
n, . . . ,A

′
N are the non-

sensitive dimensions of the latent factor matrices (i.e. the first r−2 columns in A1, . . . , Ãn, . . . ,AN).

5.2.3.4 Optimization Algorithms

To solve the optimization problem in Equation (5.6), we need to first rewrite the objective

function to be the unfolding matrix form. For the sensitive mode mode-n, the unfolding form is :

minimize
XXX,A1,...,A′n,...,AN

LLL = ‖X(n) −A′′n(B′′n)> −A′n(B′n)>‖2
F

+
λ

2
‖A′′n

>
A′n‖2

F +
γ

2

N∑
i=1

‖Ai‖2
F

subject to Ω(n) ~ X(n) = T(n),

Bn = [(Ak)
�k 6=n],

B′n = Bn[:, : r − 2],

B′′n = Bn[:, r − 1 :],

A′′n = S,

(5.8)

114

where Bn is the result of the Khatri-Rao product of all the latent factor matrices without mode-n,

B′n is the first r − 2 dimensions of Bn, and B′′n is the last 2 dimensions of Bn.

For non-sensitive modes (denoted as m), the unfolding objective function is:

minimize
XXX,A1,...,AN

LLL = ‖X(m) −Am[(Ak)
�k 6=m]>‖2

F

+
λ

2
‖A′′n

>
A′n‖2

F +
γ

2

N∑
i=1

‖Ai‖2
F

subject to Ω(m) ~ X(m) = T(m), A′′n = S.

(5.9)

Equation (5.8) cannot be solved by ALS because of
λ

2
‖A′′n

>A′n‖2
F, but Equation (5.9) can be

solved by ALS because
λ

2
‖A′′n

>A′n‖2
F is a constant term for non-sensitive modes. We can use

Gradient Descent to solve them together, but its performance is not as good as ALS for tensor

completion task. However, if we can separate
λ

2
‖A′′n

>A′n‖2
F from the objective function and op-

timize it alone, we can efficiently and effectively solve the problem. Thus, we propose a hybrid

optimization algorithm which treats the sensitive and non-sensitive modes differently. It follows

the ALS rule to update the non-sensitive modes in each iteration. For the sensitive mode mode-n,

we first use ALS to update A′n with
λ

2
‖A′′n

>A′n‖2
F being considered as a constant term, and then

use Gradient Descent to update A′n again only to minimize
λ

2
‖A′′n

>A′n‖2
F. The update rule for the

non-sensitive modes is defined in rule (5.10), and the first ALS step for the sensitive mode mode-n

uses update rule (5.11).

Âm ← X(m)(Ak)
�k 6=m [γI + [(Ak)

�k 6=m]>(Ak)
�k 6=m]†, (5.10)

Ân

′
← [X(n) −A′′n(B′′n)>]B′n[γI + (B′n)>B′n]†, (5.11)

where Âm is the updated non-sensitive latent factor matrix, Ân

′
is the updated non-sensitive di-

mensions of the sensitive latent factor matrix, I is an identity matrix.

115

Figure 5.3: In the case of multi-category sensitive dimensions (e.g., by ethnicity), this example
shows how to generate the sensitive latent factor matrix. Reprinted with permission from [10].

In the second optimization step for the sensitive mode, we need the gradient ofFFF =
λ

2
‖A′′n

>A′n‖2
F,

which is calculated by
∂FFF

∂A′n
= λA′′n(A′′n)>A′n.

The entire optimization process is described in Algorithm 2. We can also use Newton’s method

to replace gradient descent, which has the advantages of fast convergence speed and less effort of

tedious learning rate tuning. Newton’s method requires the second-order derivative of FFF, which is

calculated by:
∂2FFF

∂A′n∂A′>n
= λA′′nA

′′>
n .

Finally, line 8 of Algorithm 2 should be modified to be “Update A′n ← A′n−(
∂2FFF

∂A′n∂A′>n
)†
∂FFF

∂A′n
”.

5.2.4 Generalizing FATR

So far, we have focused on a single binary sensitive attribute. We show here how to handle

multi-feature cases (i.e., there are more than one sensitive attributes) and multi-category cases

(i.e., the attribute can take more than two values). We also consider multisided attributes (i.e.,

more than one mode is considered sensitive), which is important in real-world applications [25].

Such multi-feature and multi-category cases are challenging for traditional regularization-based

approaches [120, 131] since a regularization term can only account for fairness between two groups

defined by one binary attribute. By missing the multi-way interactions among multiple categorical

sensitive attributes, such a regularization-based approach may lead to less effective (and less fair)

recommendation. However, the multi-feature and multi-category problems fit naturally into the

proposed FATR framework.

For the multi-feature case, we need to put all the sensitive features into the corresponding

116

sensitive latent factor matrices, and add the orthogonal constraints to all the sensitive modes to

isolate and extract all the sensitive information. For the multi-category case, we need to have c

columns in the sensitive dimensions if the attribute can take c distinct values. Hence, the binary-

feature case is just a special multi-category case where c = 2. Every dimension only indicates one

specific category, for example, dimension i has value 1 for the entities who belong to category ci

and has value 0 for other instances. One example is shown in Figure 5.3.

For ease of presentation, we assume there are three sensitive attributes, one is denoted as S1

belonging to the mode-n1, another two are denoted as S2 and S3 belonging to the mode-n2. And all

of them have three available categories to take. For example, in the Twitter experts recommender,

we want to enhance the fairness for experts with different genders (Female, Male, and Unspecified)

and with different ethnicities (African-American, Asian, and White), and at the same time we also

want to augment the fairness for the topics with different numbers of experts (small, medium, and

large). The sensitive features of S1 is S1 which has 3 columns. The sensitive features of S2 and S3

are S2 and S3, and concatenate them together to be S2,3 which has 6 columns. Then the objective

function is:
minimize

XXX,A1...Ãn1 ...Ãn2 ...AN

LLL = ‖XXX− JA1 . . . Ãn1 . . . Ãn2 . . .ANK‖2
F

+
λ

2
(‖A′′n1

>
A′n1
‖2

F + ‖A′′n2

>
A′n2
‖2

F)

+
γ

2

N∑
i=1

‖Ai‖2
F

subject to ΩΩΩ ~XXX = TTT,

Ãn1 = [A′n1
A′′n1

],

Ãn2 = [A′n2
A′′n2

],

A′′n1
= S1, A′′n2

= S2,3,

(5.12)

where Ãn1 and Ãn2 are the sensitive latent factor matrices, A′n1
and A′n2

are non-sensitive dimen-

sions of Ãn1 and Ãn2 , A′′n1
and A′′n2

are the sensitive dimensions of Ãn1 and Ãn2 which have the

same values as S1 and S2,3.

117

We can still use Algorithm 2 to solve the new objective function with only line 8 and line 9

modified to update both Ãn1 and Ãn2 . In the same way, the proposed method can be applied to

model the cases with more sensitive features and more categories.

5.2.5 Experiments

In this section, we empirically evaluate the proposed approach w.r.t three aspects – recommen-

dation quality, recommendation fairness, and effectiveness of eliminating sensitive information –

over four scenarios: (i) under the traditional matrix scenario; (ii) then by comparing matrix to ten-

sor approaches; (iii) by varying the degrees of bias and sparsity to better explore their impact; and

(iv) evaluating FATR’s generalizability to the multi-feature and multi-category scenario.

5.2.5.1 Experimental Settings

Dataset

We consider a real-world movie dataset, a real-world social media dataset, and a collection of

synthetic datasets for which we can vary degrees of bias and sparsity. We report the average results

over three runs for all datasets.

• MovieLens. We use the MovieLens 10k dataset [96], keeping all movies with at least 35

ratings. Following previous works [11, 119], we use the year of the movie as a sensitive

attribute and consider movies before 1996 as old movies. Those more recent are considered

new movies. In total, we have 671 users, 373 old movies, and 323 new movies. The sparsity

of the dataset is 11.4%. Since we focus on implicit recommendation, we consider ratings to

be 1 if the original ratings are higher than 3.5, otherwise 0. Then we have 15,579 positive

ratings for new movies and 20,387 positive ratings for old movies, which reflects the bias in

the dataset. We randomly split the dataset into 90% for training and 10% for testing.

• User-Expert-Topic Twitter Data. We use a Twitter dataset introduced in [135] that has

589 users, 252 experts, and 10 topics (e.g., news, sports). There are 16, 867 links from

users to experts across these topics capturing that a user is interested in a particular ex-

pert. The sparsity of this dataset is 1.136%. We consider race as a sensitive attribute

118

and aim to divide experts into two groups: whites and non-whites. We apply the Face++

(https://www.faceplusplus.com/) API to the images of each expert in the dataset to derive

ethnicity. In total, we find 126 whites and 126 non-whites, with 11,612 positive ratings for

white experts but only 5,255 for non-whites. Since this implicit feedback scenario has no

negative observations, we randomly pick unobserved data samples to be negative feedback

with probability of 0.113% (one tenth of the sparsity). We randomly split the dataset into

70% training and 30% testing.

• Synthetic Expert Datasets. To gauge the impact of degrees of bias and sparsity, we further

generate a suite of synthetic expert datasets. We first generate three latent factor matrices by

uniform distribution for user, expert, and topic, which are U ∈ R200×30, E ∈ R100×30, and

T ∈ R5×30. Second, we set the last dimension of E to be the binary sensitive features to

indicate two groups and make the numbers of the two groups equal. Third, we add constant

values vu and vt to the sensitive dimensions of U and T to increase the bias. Then, we get

the preference ratings tensor of size 200 × 100 × 5 by calculating the Khatri-Rao product

of U, E, and T. Last, we set 1 to ratings lager than 0.5, meaning the user selects the expert

with respect to the topic and set 0 to ratings less than 0.5, meaning the user does not select

the expert with respect to the topic. We randomly sample the 1’s based on a probability

p to produce the final observed dataset. By adjusting the values of vu and vt, we generate

datasets with varying imbalance of the proportion of the number of the positive ratings for

the protected group over the total number of the positive ratings. With a proportion of 0.1,

only 10% of positive ratings are for the protected group. We call this an extreme bias case.

Similarly, we generate datasets with high bias (0.2), middle bias (0.3), and low bias (0.4).

We further generate three levels of sparsity, which are 0.01 (high sparsity), 0.02 (middle

sparsity), and 0.03 (low sparsity) by adjusting p. As a result, we have 12 different datasets:

High Bias / High Sparsity, High Bias / Middle Sparsity, etc. All datasets are randomly split

into 70% for training and 30% for testing.

119

Metrics

We consider metrics to capture recommendation quality, recommendation fairness, and the

impact of eliminating sensitive information.

To measure recommendation quality, we adopt Precision@k (P@K) and Recall@k (R@K),

defined as:

P@k =
1

|U|
∑
u∈U

|Ok
u ∩O+

u |
k

, R@k =
1

|U|
∑
u∈U

|Ok
u ∩O+

u |
O+
u

, (5.13)

where O+
u is the set of items user u gives positive feedback to in test set and Ok

u is the predicted

top-k recommended items. We also consider F1@k score, which can be calculated by F1@k =

2 · (P@k ×R@k)/(P@k +R@k). We set k = 15 in our experiments.

To measure recommendation fairness, we use two complementary metrics. The first one is the

absolute difference between mean ratings of different groups (MAD):

MAD = |
∑
R(0)

|R(0)|
−

∑
R(1)

|R(1)|
|, (5.14)

where R(0) and R(1) are the predicted ratings for the two groups and |R(i)| is the total number

of ratings for group i. Larger values indicate greater differences between the groups, which we

interpret as unfairness.

The second measure is the Kolmogorov-Smirnov statistic (KS), which is a nonparametric test

for the equality of two distributions. The KS statistic is defined as the area difference between two

empirical cumulative distributions of the predicted ratings for groups:

KS = |
T∑
i=1

l × GGG(R(0), i)

|R(0)|
−

T∑
i=1

l × GGG(R(1), i)

|R(1)|
|, (5.15)

where T is the number of intervals for the empirical cumulative distribution, l is the size of each

interval, GGG(R(0), i) counts how many ratings are inside the ith interval for group 0. In our exper-

iments, we set T = 50. Lower values of KS indicate the distributions are more alike, which we

interpret as being more fair.

120

MAD and KS can be directly applied to binary sensitive attributes. For multi-category cases,

we need to calculate MAD and KS statistics for every dominant group vs. protected group pair

among the categories. For example, for the attribute of ethnicity with three categories – White

(W), African-American (AA) and Asian (A), where AA and A are the two groups to be protected

– we need to calculate the MAD and KS metrics for two pairs – W vs. AA, and W vs. A.

Note that we measure the fairness in terms of MAD and KS metrics across groups rather than

within individuals, since absolute fairness for every individual may be overly strict and in opposi-

tion to personalization needs of real-world recommenders.

To evaluate the impact of eliminating sensitive information, we use the sum of absolute cosine

angles between non-sensitive and sensitive dimensions (SCos):

SCos =
r−2∑
i=1

r∑
j=r−1

|cos(Ai,Aj)|, (5.16)

where Ai and Aj are one non-sensitive dimension and one sensitive dimension indexed by i and

j, and cos calculates the cosine angle between two vectors.

We also use the sum of absolute Pearson correlation coefficient between non-sensitive and

sensitive dimensions (SCorr) to quantify the sensitive information:

SCorr =
r−2∑
i=1

r∑
j=r−1

|corr(Ai,Aj)|, (5.17)

where corr calculates the Pearson correlation coefficient between two vectors. The lower the SCos

and SCorr are, the better the sensitive information elimination result is.

For multi-category cases, Scos and Scorr should be calculated for every category separately

to evaluate whether the impact of the multi-category attribute is eliminated with respect to all

categories. Following our ethnicity example from earlier, we need to calculate SCos and SCorr for

W, AA, and A separately.

121

Baselines

To evaluate FATR, we consider two variations – one using Gradient Descent (FT(G)) and one

using Newton’s Method (FT(N)) – in comparison with two tensor-based alternatives:

• Ordinary Tensor Completion (OTC): The first is the conventional CP-based tensor comple-

tion method using ALS optimization algorithm as introduced in Section 5.2.2.2. This base-

line incorporates no notion of fairness, so it will provide a good sense of the state-of-the-art

recommendation quality we can achieve.

• Regularization-based Tensor Completion (RTC): The second one is an extension from the

fairness-enhanced matrix completion with regularization method introduced in [11, 120,

102], which adds a bias penalization term to the objective function. For tensor-based rec-

ommenders, we can use the regularized objective function (5.18) to enforce the statistical

parity.

minimize
XXX,A1,...,AN

LLL = ‖XXX− JA1, . . . ,ANK‖2
F

+
λ

2
(

1

n0

‖Ω0Ω0Ω0 ~ JA1, . . . ,ANK‖2
F

− 1

n1

‖Ω1Ω1Ω1 ~ JA1, . . . ,ANK‖2
F)2

subject to ΩΩΩ ~XXX = TTT,

(5.18)

where λ > 0 is the regularization coefficient, Ω0Ω0Ω0 and Ω1Ω1Ω1 are the indicator tensors to indicate

the ratings of the two groups determined by the binary sensitive attribute, n0 and n1 are the

numbers of ratings to the two groups. We use Gradient Descent to solve this optimization

problem.

Since the MovieLens data has only two modes (users and movies), we consider matrix versions

of our tensor based methods (named FM(G) and FM(N)) versus matrix baselines of Ordinary

Matrix Completion (OMC) and Regularization-based Matrix Completion (RMC) corresponding to

RTC.

122

Figure 5.4: Recommendation quality (MovieLens). Reprinted with permission from [10].

Figure 5.5: Recommendation fairness (MovieLens). Reprinted with permission from [10].

Figure 5.6: Eliminating Sensitive Information (MovieLens). Reprinted with permission from [10].

5.2.5.2 RQ1: Compare Matrix-based Methods

For the first experiment, we evaluate the four matrix-based approaches (OMC, RMC, FM(G)

and FM(N)) over the MovieLens dataset. We set 50 as the latent dimension for all the methods and

fine tune all other parameters; for our proposed methods we set λ = 1, γ = 0.05 and learning rate

as 0.001 for FM(G), and λ = 0.00001 and γ = 0.01 for FM(N).

We begin by considering the quality of recommendation of the four approaches in Figure 5.4.

As expected, the baseline with no notion of fairness – OMC – results in the best overall precision

and recall. Of the three fairness-aware approaches, the regularization-based approach – RMC –

123

Table 5.2: Comparison for recommending Twitter experts. Reprinted with permission from [10].

Methods R@15 P@15 KS MAD SCos SCorr
OMC 0.3467 0.0842 0.1660 0.0122 7.8035 1.9131
OTC 0.4384 0.0958 0.3662 0.0333 21.9193 8.7732
RMC 0.1609 0.0702 0.1521 0.0086 15.3268 0.8534
RTC 0.3003 0.0515 0.2003 0.0171 23.6818 1.4036

FM(G) 0.4045 0.0891 0.0523 0.0037 0.3081 0.1407
FT(G) 0.4180 0.0870 0.0195 0.0024 0.0936 0.0396
FM(N) 0.3298 0.0687 0.0245 0.0044 0.0022 0.0115
FT(N) 0.3975 0.0786 0.0173 0.0029 0.0001 0.0001

performs considerably below the others, with our two approaches (FM) providing performance

fairly close to OMC. This suggests that recommendation quality can be preserved, but leaves open

the question of whether we can add fairness.

Hence, we turn to the impact on fairness of the four approaches. Figure 5.5 presents the KS

statistic and MAD (recall, lower is better). We can see that all three fairness-aware approaches –

RMC, FM(G) and FM(N) – have a strong impact on the KS statistic in comparison with OMC.

And for MAD, we see that both FM(G) and FM(N) achieve much better ratings difference in

comparison with RMC, indicating that we can induce aggregate statistics that are fair between the

two sides of the sensitive attribute (old vs. new).

Last, we exam how well do these approaches perform from the perspective of sensitive infor-

mation elimination. The left figure in Figure 5.6 shows the SCos statistic, while the right figure

shows the SCorr statistic. Both of them demonstrate that the proposed FATR framework can elim-

inate sensitive information to a great extent, but RMC can only reduce the SCos to around half of

that of OMC and SCorr to around one third of that of OMC.

5.2.5.3 RQ2: Compare Matrix vs. Tensor-Based Methods

We next turn to evaluating the expert recommendation task over the real-world Twitter dataset.

Here we consider the tensor-based approaches – OTC, RTC, plus FT(G) and FT(N). To further

evaluate the impact of moving from a matrix view to a tensor view, we also consider the purely

matrix-based approaches, which compute users preferences on experts for each topic indepen-

124

dently. We set 20 as the latent dimension for all the methods and fine tune all other parameters;

for our proposed methods we set λ = 1, γ = 0.05 and learning rate as 0.001 for FM(G), and

λ = 0.00001 and γ = 0.01 for FM(N). We show the results for all of our metrics in Table 5.2.

First, let’s focus on the differences between matrix and tensor approaches. We observe that

the tensor-based approaches mostly provide better recommendation quality (Precision@k and Re-

call@k) in comparison with the matrix-based approaches. Since the expert dataset is naturally

multi-aspect, the tensor approaches better model the multi-way relationships among users, ex-

perts, and topics. We see that the fairness quality (KS and MAD) of matrix-based methods are

better than tensor-based ones for the baselines methods (OMC vs OTC, and RMC vs RTC), but

the fairness improves for our proposed methods when we move from matrix to tensor. We see a

similar result for the impact on eliminating sensitive information (SCos and SCorr).

Second, let’s consider the empirical results across approaches. We see that: (i) the proposed

methods are slightly worse than OTC from the perspective of recommendation quality, but keep the

difference small, and FM methods also have comparable recommendation performance with OMC;

(ii) FT(G) and FT(N) provide the best fairness enhancement results, and FM(G) and FM(N) also

alleviate the unfairness a lot compared with other matrix-based methods. RTC and RMC improve

the fairness as well, but their effects are not as good as the proposed methods; (iii) the proposed ap-

proaches can effectively eliminate the sensitive information; and (iv) comparing the two variations

of FATR, FT(G) always provides better recommendation quality but performs worse than FT(N)

in terms of fairness enhancement and sensitive information elimination, which may be because

Newton’s method has stronger effects on optimization leading to more effective minimization of

the orthogonal constraint term FFF =
λ

2
‖A′′n

>A′n‖2
F in Equation (5.4).

In addition, the
γ

2

∑N
i=1‖Ai‖2

F term in our proposed objective function (5.4) may influence the

recommendation performance, but the baselines do not have it, which may be an unfair compari-

son. Therefore, we do another experiment using OTC, RTC, OMC, and RMC with the L2-norm

term. The recommendation performance results and fairness enhancement results are shown in

Figure 5.7. We can conclude similarly that the proposed methods still perform well in terms of

125

Figure 5.7: F1@15 and KS statistics of the proposed methods and the baselines with L2-norm
terms. Reprinted with permission from [10].

(a) Recommendation quality: F1@15. (b) Fairness: KS Statistic.

(c) Sensitive information elimination: SCos.

Figure 5.8: Evaluating the impact of bias (Synthetic Experts dataset). Reprinted with permission
from [10].
both recommendation quality and fairness enhancement. Besides, we find that compared with the

baselines without L2-norm terms, the baselines with L2-norm have better recommendation quality

but higher bias.

126

(a) Recommendation quality: F1@15. (b) Fairness: KS Statistic.

(c) Sensitive information elimination: SCos.

Figure 5.9: Evaluating the impact of sparsity under extreme bias (Synthetic Experts dataset).
Reprinted with permission from [10].

5.2.5.4 RQ3: Performance with Varying Bias and Sparsity

Next, we consider the impact of bias and sparsity through a series of experiments over the

synthetic expert datasets. For parameters setting, the latent factor dimension is set as 20, we set

λ = 0.25, γ = 0.05, learning rate as 0.002 for FT(G), and λ = 0.0001 and γ = 0.1 for FT(N). We

set the latent dimension smaller than 30 on purpose, which is the number of factors we use when

generating the synthetic dataset, because in practice, researchers tend to use low dimensional latent

factor to model user-item interactions.

We begin by investigating the impact of bias – do our methods perform well even in cases of

extreme bias? Or do they require only moderate amounts? We fix the sparsity level at 0.02 and

vary the bias levels from Low, Middle, High, and Extreme. We show in Figure 5.8a the F1@15

of all eight methods on these four datasets. The results show that OTC always performs best, but

FT(G) does not reduce the F1 score much compared with other methods. Overall, tensor-based

methods outperform matrix-based methods. And within matrix-based methods, FM(G) is just a

little worse than OMC, and much better than RMC. Further, we can observe that as the bias level

127

goes down, the recommendation quality is improved for all six fairness-aware methods in compar-

ison with OTC and OMC. For example the F1@15 score difference between OTC and FT(G) are

0.0041, 0.0034, 0.0031, and 0.0015 for the extreme, high, medium, and low bias situations respec-

tively. Figure 5.8b shows that for all the bias levels, the proposed FT(G) and FT(N) can enhance

the fairness to a great extent. We can also observe that RTC and RMC can reduce the unfair-

ness compared with conventional completion methods, but their performances are not comparable

with the proposed methods. One outlier is the result produced by RMC in the low bias dataset.

Although it reduces the KS as low as proposed methods do, its recommendation quality is not

ideal. We also study how well do these methods eliminate sensitive information as demonstrated

in Figure 5.8c. The figure shows that the proposed methods (both tensor-based and matrix-based)

have the lowest SCos values, meaning that our methods can effectively eliminate the sensitive in-

formation. From these results, we can conclude that the proposed approaches provide good and

consistent performance over all the bias levels.

Furthermore, we also analyze the results for datasets with various sparsities with bias level

fixed at the extreme level. The results are shown in Figure 5.9. We can draw the similar conclu-

sion from it that the proposed methods reduce the unfairness without much loss of the prediction

accuracy for different sparsities. However, in addition to this conclusion, these results also im-

ply that with the dataset being denser, the unfairness is more severe. Combining the observations

from Figure 5.8 and Figure 5.9, we can learn that: (i) tensor completion possesses more algo-

rithmic bias than matrix completion does; and (ii) the proposed FATR methods have consistent

fairness-enhancement and sensitive information eliminating performance on datasets with various

bias levels and sparsities. We also compute MAD and SCorr statistics, showing similar patterns as

KS and SCos.

5.2.5.5 RQ4: Multiple Features and Multiple Categories

Finally, by the same dataset as used in Section 5.2.5.3, we investigate how the proposed model

performs with multiple features and multiple categories (as introduced in Section 5.2.4). We con-

sider both gender and ethnicity as sensitive attributes. For ease of experimentation, we consider

128

(a) Recommendation quality:
F1@15.

(b) Fairness Quality: KS and MAD.

(c) Sensitive information elimination: SCos and SCorr.

Figure 5.10: Evaluating the generalizing ability to multi features and multi categories. Reprinted
with permission from [10].
gender (G) as a binary feature (M=Male, F=Female). For ethnicity, we consider three categories:

White (W), African-American (AA), and Asian (A). Our dataset contains 126 whites with 11,612

positive feedbacks, 80 Asian people with 2,238 feedbacks, and 46 African-Americans with 3,017

positive feedbacks. The distribution of the gender is: 163 males and 83 females. Males have

10,160 positive ratings and females have 6,707 positive ratings. Other settings of the experiment

are the same as single-feature experiment as described in Section 5.2.5.3.

For the parameters settings, we set the latent factor dimension as 20 for OTC, but 25 for FT(G)

and FT(N) because there are 5 dimensions occupied by the sensitive dimensions, and we want

similar degree of freedom for all the methods. We set λ = 0.05, γ = 0.05, and the learning rate

0.002 for FT(G), and λ = γ = 1 for FT(N). Because regularization-based models cannot be easily

applied to this scenario, we compare FT(G) and FT(N) with OTC.

Figure 5.10a illustrates that the proposed methods can keep a relatively high recommendation

quality compared with the OTC. Figure 5.10b shows that FT(N) model have a good fairness en-

hancement performance for both attributes. FT(G) works well on the ethnicity feature but a little

129

unsatisfactory for the gender feature. One possible reason is that FT(G) requires more effort for

parameter tuning. Moreover, the bias related to the ethnicity feature is more severe than the unfair-

ness related to the gender feature, which makes it harder for the model to decrease the unfairness

for the gender feature. Figure 5.10c shows the relationships between the latent factor matrices

from the three methods and all the sensitive features. It implies that the FATR models can alleviate

the impact of the sensitive information from all the sensitive attributes. Further, we see that FT(N)

works well for all attributes including gender (which is challenging for the other approaches).

5.2.6 Summary

In this section, based on well known concepts of statistical parity and equal opportunity, we

first propose two fairness metrics designed specifically for personalized ranking recommendation

tasks. Then we empirically show that the influential Bayesian Personalized Ranking model is

vulnerable to the inherent data imbalance and tends to generate unfair recommendations w.r.t. the

proposed fairness metrics. Next we propose a novel fairness-aware personalized ranking model

incorporating adversarial learning to augment the proposed fairness metrics. At last, extensive

experiments show the effectiveness of the proposed model over other state-of-the-art alternatives.

5.3 Measuring and Enhancing Fairness in Personalized Ranking Recommender Systems

Although the proposed FATR produces the outstanding performance for enhancing recommen-

dation fairness, one big challenge unsolved is that the fairness is measured and enhanced based

on predicted scores. However, the predicted score is the intermediate step toward a ranking list of

items, which is the final recommendation result we show to users. Fair scores does not necessarily

lead to fair ranking result. Therefore, it is required to further study how to measure and enhance

fairness on ranking-based recommender systems. In this section, we introduce our work on de-

veloping new fairness measurements and new fairness-enhancement algorithms for personalized

ranking recommender systems.

130

Figure 5.11: (a) is an example following score-based statistical parity from previous works [11, 10].
(b) and (c) are examples of the proposed metrics: (b) is ranking-based statistical parity, and (c) is
ranking-based equal opportunity. Reprinted with permission from [12].

5.3.1 Introduction

Previous works on recommendation fairness [102, 10, 120, 119, 11, 121] mainly focus on in-

vestigating how to produce similar predicted score distributions for different groups of items (in

other words, by removing the influence of group information when predicting preference scores).

The main drawback of these works is that they mainly focus on the perspective of predicted prefer-

ence scores [102, 120, 119, 121, 11, 10]. In practice, however, predicted scores are an intermediate

step towards a ranked list of items that serves as the final recommendation result, and having simi-

lar predicted scores does not necessarily lead to a fair ranking result, suggesting the importance of

directly measuring fairness over rankings instead of scores.

Take the most frequently adopted concept – statistical parity (or demographic parity) [102, 10,

11] – as an example. Fairness of statistical parity encourages identical predicted score distributions

for different groups. Figure 5.11a shows an example following the statistical parity constraint,

131

where rows represent users, and blue squares and red circles represent two different groups of

items. Each group has three items. The numbers in the matrix are the predicted scores from

users to items. The items are ranked by the scores in descending order for each user. The top-

2 items are recommended to users, and the yellow background in some circle and square items

represents positive ground-truth. In this example, the blue square group and red circle group have

exactly the same score distribution (a uniform distribution over the range [1.6, 3.0]). However,

the recommendation result is unfair for the red circle group, which only has two items being

recommended. Therefore, we propose two new fairness metrics calculated directly over the ranking

results – ranking-based statistical parity (RSP) and ranking-based equal opportunity (REO).

Motivating Example: Ranking-Based Statistical Parity

Unlike traditional score-based statistical parity, RSP encourages the probabilities for different

groups being recommended (being ranked within top k) to be similar. Figure 5.11b provides an

example following RSP, where the probabilities of being ranked within the top-2 for the two groups

are both 1
3
. However, while RSP encourages a fair ranking result, it neglects the intrinsic group

quality or user preference imbalance of the data, which may exert unfairness to the popular group.

For instance, in Figure 5.11a and Figure 5.11b, the yellow background in some entries represents

that the marked item has the ground-truth that it is liked by the corresponding user (i.e. it forms

a matched user-item pair). Then, we see that the blue square group is more preferred by users

than the red circle group since the numbers of positive user-item pairs in the two groups are 8 : 4.

Hence, keeping the same recommendation probability in Figure 5.11b is unfair for the blue square

group.

Motivating Example: Ranking-Based Equal Opportunity

Taking into consideration the ground-truth of user-item matching, we propose the metric REO

that encourages the probabilities of being correctly recommended to matched users to be the same

across item groups. A positive example is given in Figure 5.11c, where the probability of being

ranked in top-2 to matched users is 1
2

for both item groups. Figure 5.11a and Figure 5.11b show the

132

negative examples, where in Figure 5.11a the ranking result shows favor to the blue square group,

while Figure 5.11b is biased towards the red circle group.

Due to their distinct characteristics, RSP and REO are applicable for different scenarios. RSP-

based fairness is usually important and needs to be enhanced for situations where there are sensitive

attributes attached to the subjects being recommended, such as considering fairness across genders

or races of job candidates when they are recommended to companies for hiring. Because in this

case, social ethics require equal exposure probability for different demographic groups in the sys-

tem. While REO-based fairness applies to more general scenarios without sensitive attribute, like

movies or songs recommendation. Unfairness regarding REO in these systems can potentially

exerts damaging influence to both users and item providers. On the one hand, user needs corre-

sponding to minority item groups are not fully acknowledged, leading to lower user satisfaction.

On the other hand, item providers of minority groups may not receive enough exposure hurting

their economic gains.

Contributions

With these two metrics in mind, we empirically demonstrate that a fundamental recommen-

dation model – Bayesian Personalized Ranking (BPR) [27] – is vulnerable to unfairness, which

motivates our efforts to address it. Then, we show how to improve the fairness based on the two in-

troduced metrics through a debiased personalized ranking model (DPR) that has two key features:

a multi-layer perceptron adversary that seeks to enhance the score distribution similarity among

item groups and a KL Divergence based regularization term that aims to normalize the score dis-

tribution for each user. Incorporating these two components together, RSP (or REO depending on

how we implement the adversary learning) based fairness can be significantly improved while pre-

serving recommendation quality at the same time. Extensive experiments on three public datasets

show the effectiveness of the proposed model over state-of-the-art alternatives. In general, DPR is

able to reduce the unfairness corresponding to the two metrics for BPR by 67.3% on average (with

an improvement of 48.7% over the best baseline), while only decreasing F1@15 versus BPR by

4.1% on average (with an improvement of 16.4% over the best baseline).

133

5.3.2 Fairness in Personalized Ranking

In this section, we first describe the personalized ranking problem and ground our discussion

through a treatment of Bayesian Personalized Ranking (BPR). Next, we introduce two proposed

fairness metrics for personalized ranking. Last, we empirically demonstrate that BPR is vulnerable

to data bias and tends to produce unfair recommendations.

5.3.2.1 Bayesian Personalized Ranking

Given N users U = {1, 2, . . . , N} and M items I = {1, 2, . . . ,M}, the personalized ranking

problem is to recommend a list of k items to each user u based on the user’s historical behaviors

I+
u = {i, j, . . .}, where i, j, . . . are the items u interacts with before (and so can be regarded as

implicit positive feedback). Bayesian Personalized Ranking (BPR) [27] is one of the most influ-

ential methods to solve this problem, which is the foundation of many cutting edge personalized

ranking algorithms (e.g. [30, 18]). BPR adopts matrix factorization [29] as the base and minimizes

a pairwise ranking loss, formalized as:

min
Θ

LBPR = −
∑
u∈U

∑
i∈I+u
j∈I\I+u

ln σ(ŷu,i − ŷu,j) +
λΘ

2
‖Θ‖2

F, (5.19)

where ŷu,i and ŷu,j are the predicted preference scores calculated by the matrix factorization model

for user u to positive item i and sampled negative item j; σ(·) is the Sigmoid function; ‖·‖F is the

Frobenius norm; Θ represents the model parameters, i.e., Θ = {P,Q}, where P and Q are the

latent factor matrices for users and items; and λΘ is the trade-off weight for the l2 regularization.

With the trained BPR, we can predict the preference scores toward all un-interacted items

and rank them in descending order for user u. A list of items with the top k largest scores

{Ru,1, Ru,2, . . . , Ru,k} will be recommended to user u, where Ru,k is the item id at the ranked

k position.

134

5.3.2.2 Fairness Metrics for Personalized Ranking

However, there is no notion of fairness in such a personalized ranking model. Here, we assume

a set of A sensitive groups G = {g1, g2, . . . , gA}, and every item in I belongs to one or more

groups. A group here could correspond to gender, ethnicity, or other item attributes. We define

a function Gga(i) to identify whether item i belongs to group ga, if it does, the function returns

1, otherwise 0. The high-level goal of a fairness-aware recommender is to enhance the fairness

among different groups such that no group is under-recommended.

Previous definitions of recommendation fairness [10, 11, 141] have two main drawbacks: (i)

the fairness metrics are calculated over the predicted scores, which are not aligned with the ranking

results; and (ii) the definitions are mainly based on the concept of statistical parity, which does not

take the ground-truth of user-item matching into account. Therefore, we propose two new fairness

metrics over the ranking of items from different groups.

Ranking-based Statistical Parity (RSP)

Statistical parity requires the probability distributions of model outputs for different input

groups to be the same. In a similar way, for the personalized ranking task, statistical parity can be

defined as forcing the ranking probability distributions of different item groups to be the same. Be-

cause conventionally only the top-k items will be recommended to users, we focus on the probabil-

ities of being ranked in top-k, which is also aligned with basic recommendation quality evaluation

metrics such as precision@k and recall@k. As a result, we propose the ranking-based statistical

parity metric – RSP, which encourages P (R@k|g = g1) = P (R@k|g = g2) = . . . = P (R@k|g =

gA), where R@k represents ‘being ranked in top-k’, and P (R@k|g = ga) is the probability of

items in group ga being ranked in top-k. Formally, we calculate the probability as follows:

P (R@k|g = ga) =

∑N
u=1

∑k
i=1Gga(Ru,i)∑N

u=1

∑
i∈I\I+u Gga(i)

, (5.20)

135

where
∑k

i=1Gga(Ru,i) calculates how many un-interacted items from group ga are ranked in top-k

for user u, and
∑

i∈I\I+u Gga(i) calculates how many un-interacted items belong to group ga for u.

Last, we compute the relative standard deviation (to keep the same scale for different k) over the

probabilities to determine RSP@k:

RSP@k =
std(P (R@k|g = g1), . . . , P (R@k|g = gA))

mean(P (R@k|g = g1), . . . , P (R@k|g = gA))
, (5.21)

where std(·) calculates the standard deviation, and mean(·) calculates the mean value.

Ranking-based Equal Opportunity (REO)

Our second metric is based on the concept of equal opportunity [93, 94, 95], which encourages

the true positive rates (TPR) of different groups to be the same. Take a binary classification task

with two groups as an example, equal opportunity requires:

P (ĉ = 1|g = 0, c = 1) = P (ĉ = 1|g = 1, c = 1), (5.22)

where c is the ground-truth label, ĉ is the predicted label; P (ĉ = 1|g = 0, c = 1) represents the

TPR for group 0, P (ĉ = 1|g = 1, c = 1) is the TPR for group 1. Similarly, in the personalized

ranking system, equal opportunity demands the ranking based TPR for different groups to be the

same. We can define the TPR as the probability of being ranked in top-k given the ground-truth

that the user likes the item, noted as P (R@k|g = ga, y = 1), where y = 1 represents items are

liked by users. The probability can be calculated by:

P (R@k|g = ga, y = 1) =

∑N
u=1

∑k
i=1 Gga(Ru,i)Y (u,Ru,i)∑N

u=1

∑
i∈I\I+u Gga(i)Y (u, i)

, (5.23)

where Y (u,Ru,i) identifies the ground-truth label of a user-item pair (u,Ru,i), if item Ru,i is liked

by user u, returns 1, otherwise 0 (in practice, Y (u, i) identifies whether a user-item pair (u, i)

is in the test set);
∑k

i=1Gga(Ru,i)Y (u,Ru,i) counts how many items in test set from group ga are

ranked in top-k for user u, and
∑

i∈I\I+u Gga(i)Y (u, i) counts the total number of items from group

136

ga in test set for user u. Similar to RSP, we calculate the relative standard deviation to determine

REO@k:

REO@k =
std(P (R@k|g = g1, y = 1) . . . P (R@k|g = gA, y = 1))

mean(P (R@k|g = g1, y = 1) . . . P (R@k|g = gA, y = 1))
. (5.24)

For classification tasks, TPR is the recall of classification, and for personalized ranking, the

probability P (R@k|g = ga, y = 1) is recall@k of group ga. In other words, mitigating REO-

based bias requires recall@k for different groups to be similar.

Note that for both RSP@k and REO@k, lower values indicate the recommendations are

fairer. In practice, RSP is particularly important in scenarios where humans or items with sen-

sitive attributes are recommended (such as political news). Because RSP-based fairness in these

scenarios leads to social issues like gender discrimination during recruiting or political ideology

unfairness during election campaigns. Conversely, REO-based fairness is supposed to be enhanced

in general item recommendation systems so that no user need is ignored, and all items have the

chance to be exposed to matched users who like them.

5.3.2.3 Data-driven Study

In this section, we empirically show that BPR is vulnerable to imbalanced data and tends

to produce unfair recommendation based on metrics RSP and REO. Since there is no standard

public dataset related to recommendation fairness with sensitive attributes, we adopt three public

real-world datasets that have been extensively used in previous works [102, 18, 142]. However,

conclusions we draw should still hold if we analyze the fairness on datasets with sensitive features

because the fundamental problem definition and the mechanism leading to unfairness are exactly

the same as the experiments here.

• MovieLens 1M (ML1M) [96] is a movie rating dataset, where we treat all ratings as positive

feedback indicating users are interested in rated movies. We consider the recommendation

bias for movie genres of ‘Sci-Fi’, ‘Adventure’, ‘Crime’, ‘Romance’, ‘Childrens’, and ‘Hor-

ror’, and remove other films, resulting in 6, 036 users, 1, 481 items, and 526, 490 interactions.

137

Table 5.3: Group information in the three datasets. Reprinted with permission from [12].

Group #Item #Feedback #feedback
#item

ML1M

Sci-Fi 271 157,290 580.41
Adventure 276 133,946 485.31

Crime 193 79,528 412.06
Romance 447 147,501 329.98
Children’s 248 72,184 291.06

Horror 330 76,370 231.42
Relative std - - 0.33

Yelp

American(New) 1610 91,519 56.84
Japanese 946 45,508 48.11
Italian 1055 46,434 44.01

Chinese 984 36,729 37.33
Relative std - - 0.17

Amazon

Grocery 749 49,646 66.28
Office 892 37,776 42.35

Pet 518 16,260 31.39
Tool 606 14,771 24.37

Relative std - - 0.44

• Yelp (https://www.yelp.com/dataset/challenge) is a review dataset for busi-

nesses. We regard the reviews as the positive feedback showing user interests and only

consider restaurant businesses. We investigate the recommendation bias among food genres

of ‘American(New)’, ‘Japanese’, ‘Italian’, and ‘Chinese’, resulting in 8, 263 users, 4, 420

items, and 211, 721 interactions.

• Amazon [98] contains product reviews on the Amazon e-commerce platform. We regard

user purchase behaviors as the positive feedback, and consider recommendation bias among

product categories of ‘Grocery’, ‘Office’, ‘Pet’, and ‘Tool’, resulting in 4, 011 users, 2, 765

items, and 118, 667 interactions.

Moreover, Table 5.3 lists the details of each group in the datasets, including the number of

items, the number of feedback, and the ratio between them #feedback
#item

. We use this ratio to identify

the intrinsic data imbalance. The higher the ratio is, the more this group is favoured by users,

and the relative standard deviation of ratios for all groups can indicate overall bias in the dataset.

Hence, the Amazon and ML1M datasets contain relatively high bias; and Yelp has lower bias,

138

https://www.yelp.com/dataset/challenge

Table 5.4: Ranking probability distributions and RSP and REO metrics on three datasets by BPR.
Reprinted with permission from [12].

P (R@k|g) P (R@k|g, y = 1)

Genres @5 @10 @15 @5 @10 @15

ML1M

Sci-Fi .00654 .01306 .01949 .09497 .16819 .22922
Adventure .00516 .01022 .01521 .08884 .15808 .21657

Crime .00456 .00888 .01318 .07469 .13017 .17941
Romance .00327 .00665 .01002 .06448 .12003 .16366
Children’s .00251 .00494 .00742 .05852 .10470 .14464

Horror .00176 .00354 .00533 .05399 .10132 .13985
RSP or REO .41054 .40878 .40579 .20885 .19316 .18933

Yelp

American(New) .00154 .00302 .00449 .06345 .10904 .14497
Japanese .00111 .00219 .00328 .04770 .08207 .11106
Italian .00093 .00194 .00297 .03890 .07087 .09658

Chinese .00072 .00146 .00222 .03376 .05626 .07961
RSP or REO .28005 .26376 .25224 .24515 .24290 .22253

Amazon

Grocery .00283 .00572 .00869 .03931 .07051 .09297
Office .00165 .00336 .00506 .01196 .02039 .03180

Pet .00185 .00348 .00501 .04815 .07807 .10215
Tool .00082 .00165 .00250 .00552 .01105 .01519

RSP or REO .40008 .40672 .41549 .68285 .65756 .62175

but American(New) restaurants still have #feedback
#item

around 1.5 times higher than that of Chinese

restaurants.

We run BPR on these datasets and analyze the ranking probability distributions. The detailed

model hyper-parameter settings and data splitting are described in Section 5.3.4.1. Table 5.4

presents P (R@k|g) and P (R@k|g, y = 1) for different groups on three datasets by BPR, where

we consider k = 5, 10, and 15. We also list the metrics RSP@k and REO@k. From the table, we

have three major observations:

(i) For all datasets, the ranking probabilities are very different among groups, e.g., in ML1M,

P (R@5|g = Sci-Fi) is four times higher than P (R@5|g = Horror), and P (R@5|g = Sci-Fi, y =

1) is two times higher than P (R@5|g = Horror, y = 1). And the high values of RSP@k and

REO@k for all k and datasets demonstrate the biased recommendations by BPR.

(ii) The distributions of P (R@k|g) and P (R@k|g, y = 1) for all datasets basically follow the

distributions of #feedback
#item

shown in Table 5.3, and sometimes the deviations of the ranking prob-

139

ability distributions are even larger than #feedback
#item

distributions, for example, the relative standard

deviation of P (R@15|g) in ML1M is 0.4058 while that of #feedback
#item

is 0.3344, which indicates that

BPR preserves or even amplifies the inherent data imbalance.

(iii) As k decreases, the values of RSP@k and REO@k increase. In other words, the results

are unfairer for items ranked at top positions. This phenomenon is harmful for recommenders since

attention received by items increases rapidly with rankings getting higher [143], and top-ranked

items get most of attention from users.

Moreover, we also plot the original #feedback
#item

distribution of ML1M in Figure 5.12a and the

ranking probability distributions by BPR in Figure 5.12b, which visually confirms our conclusion

that BPR inherits data bias and produces unfair recommendations. This conclusion motivates the

design of a fairness-aware personalized ranking framework as the models we propose here. Fig-

ure 5.12c shows the ranking probability distributions generated by the proposed Debiased Person-

alized Ranking models, illustrating more evenly distributed and fairer recommendations compared

to BPR.

5.3.3 Proposed Method

Previous works on fairness-aware recommendation [10, 11, 119] mainly focus on forcing dif-

ferent groups to have similar score distributions, which cannot necessarily give rise to fair per-

sonalized rankings, as shown in Figure 5.11a. One key reason is that users have different rating

scales, which means the high score from one user to an item does not necessarily result in a high

ranking, and a low score does not lead to a low ranking. Conversely, if every user has an identical

score distribution, the value ranges of the scores within the top-k for all users will be the same, as

demonstrated in Figure 5.13a. Then, the top-k scores in different group score distributions (noted

as p(ŷ|g)) will also cover the same value range. Last, as illustrated in Figure 5.13b, if we en-

force identical score distribution for different groups, the proportions of top-k scores in the whole

distribution for different groups will be the same, i.e., we have the same probability p(R@k|g)

for different groups (the definition of RSP). Similarly, if the positive user-item pairs in different

groups have the same score distribution (noted as p(ŷ|g, y = 1)), we will have the same probability

140

(a) Original.

(b) BPR results.

(c) DPR results.

Figure 5.12: The original distribution of #feedback/#item over different groups of ML1M data,
and the ranking top15 probability distributions (both statistical parity and equal opportunity based)
produced by BPR and proposed DPR. Reprinted with permission from [12].
p(R@k|g, y = 1) for different groups (the definition of REO), as presented in Figure 5.13c. Based

on this intuition, the proposed DPR first enhances the score distribution similarity between dif-

ferent groups by adversarial learning, and then normalizes user score distributions to the standard

141

Figure 5.13: Illustration of the intuition of the proposed DPR. Reprinted with permission from
[12].
normal distribution by a Kullback-Leibler Divergence (KL) loss. We introduce the two compo-

nents of DPR and the model training process in the following subsections.

5.3.3.1 Enhancing Score Distribution Similarity

Adversarial learning has been widely applied in supervised learning [95, 144, 93] to enhance

model fairness, with theoretical guarantees and state-of-the-art empirical performance. Inspired by

these works, we propose to leverage adversarial learning to enhance the score distribution similarity

between different groups. We first take the metric RSP as the example to elaborate the proposed

method, and then generalize it to REO. Last, we show the advantages of the proposed adversarial

learning over previous methods.

Adversary for RSP

The intuition of adversarial learning is to play a minimax game between the BPR model and

a discriminator. The discriminator is to classify the groups of the items based on the predicted

user-item scores by BPR. And BPR does not only need to minimize the recommendation error, but

142

Figure 5.14: The architecture of the adversarial learning. Reprinted with permission from [12].
also needs to prevent the discriminator from correctly classifying the groups. If the discriminator

cannot accurately recognize the groups given the outputs from BPR, then the predicted score dis-

tributions will be identical for different groups. Figure 5.14 presents the architecture of the adver-

sarial learning framework, where each training user-item pair (u, i) is first input to a conventional

BPR model; then the output of BPR, ŷu,i is fed into a multi-layer perceptron (MLP) to classify the

groups ĝi of the given item i. ĝi ∈ [0, 1]A is the output of the last layer of MLP activated by the

sigmoid function, representing the probability of i belonging to each group, e.g., ĝi,a means the

predicted probability of i belonging to group ga. The MLP is the adversary, which is trained by

maximizing the likelihood LAdv(gi, ĝi), and BPR is trained by minimizing the ranking loss shown

in Equation 2.8 as well as minimizing the adversary objective LAdv(gi, ĝi). gi ∈ {0, 1}A is the

ground-truth groups of item i, if i is in group ga, gi,a = 1, otherwise 0. We adopt the log-likelihood

as the objective function for the adversary:

max
Ψ

LAdv(i) =
A∑
a=1

(gi,alog ĝi,a + (1− gi,a)log (1− ĝi,a)), (5.25)

where we denote LAdv(gi, ĝi) as LAdv(i) for short, and Ψ is the parameters of the MLP adversary.

Combined with the BPR model, the objective function can be formulated as:

min
Θ

max
Ψ

∑
u∈U

∑
i∈I+u
j∈I\I+u

LBPR(u, i, j) + α(LAdv(i) + LAdv(j)),

where LBPR(u, i, j) = −ln σ(ŷu,i − ŷu,j) +
λΘ

2
‖Θ‖2

F,

(5.26)

143

and α is the trade-off parameter to control the strength of the adversarial component.

Adversary for REO

As for REO, we demand the score distributions of positive user-item pairs rather than all the

user-item pairs to be identical for different groups. Therefore, instead of feeding both scores for

positive and sampled negative user-item pairs ŷu,i and ŷu,j , we only need to feed ŷu,i into the

adversary as:

min
Θ

max
Ψ

∑
u∈U

∑
i∈I+u
j∈I\I+u

LBPR(u, i, j) + αLAdv(i).
(5.27)

Advantages of adversarial learning

There are two existing approaches to achieve a similar effect: a regularization-based method [120,

11, 102]; and a latent factor manipulation method [10]. The advantages of the proposed adversar-

ial learning over previous works can be summarized as: (i) it can provide more effective empirical

performance than other methods; (ii) it is flexible to swap in different bias metrics (beyond just

RSP and REO); (iii) it can handle multi-group circumstances; and (iv) it is not coupled with any

specific recommendation models and can be easily adapted to methods other than BPR (such as

more advanced neural networks).

5.3.3.2 Individual User Score Normalization

After the enforcement of distribution similarity, the next step towards personalized ranking

fairness is to normalize the score distribution for each user. We can assume the score distribution

of every user follows the normal distribution because based on the original BPR paper [27], every

factor in the user or item latent factor vector follows a normal distribution, then P>uQi (for a

given user u, Pu is a constant and Qi is a vector of normal random variables) follows a normal

distribution as well. Thus we can normalize the score distribution of each user to the standard

normal distribution by minimizing the KL Divergence between the score distribution of each user

144

Algorithm 3: Training algorithm for DPR-RSP.
Input: Training data D, adversarial regularizer α, KL-loss regularizer β, L2 regularizer

λΘ, and learning rate for BPR ηBPR, learning rate for the adversary ηAdv ;
Output: BPR parameters Θ;

1 Randomly Initialize model parameters Θ for BPR, and Ψ for the adversary;
2 repeat
3 for (u′, i′, j′) in D do
4 Update Ψ based on LLLAdv(i

′) by backpropagation;
5 Update Ψ based on LLLAdv(j

′) by backpropagation;

6 Randomly draw a mini-batch Dmini from D;
7 for (u, i, j) in Dmini do
8 Update Θ based on gradient ∂(LLLBPR(u,i,j)+α(LLLAdv(i)+LLLAdv(j))+βLLLKL)

∂Θ
;

9 until converge;
10 Return Θ;

and a standard normal distribution as the KL-loss:

LKL =
∑
u∈U

DKL(qΘ(u)||N (0, 1)), (5.28)

where qΘ(u) is the empirical distribution of predicted scores for user u, and DKL(·||·) computes

KL Divergence between two distributions.

5.3.3.3 Model Training

Combining the KL-loss with Equation 5.26 leads to the complete DPR models to optimize

RSP, noted as DPR-RSP:

min
Θ

max
Ψ

∑
u∈U

∑
i∈I+u
j∈I\I+u

(LBPR(u, i, j) + α(LAdv(i) + LAdv(j))) + βLKL,
(5.29)

where β is the trade-off parameter to control the strength of KL-loss. Similarly, we can optimize

REO by combining KL-loss with Equation 5.27 to arrive at a DPR-REO model as well. Note that

although the proposed DPR is built with BPR as the model foundation, it is in fact flexible enough

to be adapted to other recommendation algorithms, such as more advanced neural networks [17].

Then, we train the model in a mini-batch manner. The model training process for DPR-RSP

can be summarized in Algorithm 3. In each epoch, there are two phases: we first update the

145

Table 5.5: Characteristics of the three 2-group datasets. Reprinted with permission from [12].

#Users #Items #Ratings Density
ML1M-2 5,562 543 215,549 7.14%

Yelp-2 6,310 2,834 117,978 0.66%
Amazon-2 3,845 2,487 84,656 0.89%

weights in the MLP adversary to maximize the classification objective, then update the BPR to

minimize pairwise ranking loss, classification objective and KL-loss all together. Following the

adversarial training proposed in [144], in each iteration, we first update the MLP adversary by the

whole dataset, then update BPR by a mini-batch, which empirically leads to faster convergence.

And in practice, we usually first pre-train the BPR model for several epochs.

Algorithm 3 can be easily extended to the DPR-REO model by two minor modifications: first

remove the negative samples update steps for MLP adversary (line 5); then replace the update rule

of line 8 with the gradient:

∂((LLLBPR(u, i, j) + αLLLAdv(i)) + βLLLKL)

∂Θ
. (5.30)

5.3.4 Experiments

In this section, we empirically evaluate the proposed model w.r.t. the two proposed bias metrics

as well as the recommendation quality. We aim to answer three key research questions: RQ1 What

are the effects of the proposed KL-loss, adversary, and the complete model DPR on recommenda-

tions? RQ2 How does the proposed DPR perform compared with other state-of-the-art debiased

models from the perspectives of improving fairness and recommendation quality preserving? and

RQ3 How do hyper-parameters affect the DPR framework?

5.3.4.1 Experimental Settings

Datasets

The three datasets used in the experiments have been introduced in Section 5.3.2.3. Since the

state-of-the-art baselines can only work for binary group cases, to answer RQ2, we create subsets

146

keeping the most popular and least popular groups in the original datasets: ML1M-2 (‘Sci-Fi’

vs ‘Horror’), Yelp-2 (‘American(New)’ vs. ‘Chinese’), and Amazon-2 (‘Grocery’ vs. ‘Tool’).

The specifics of the 2-group datasets are presented in Table 5.5. All datasets are randomly split

into 60%, 20%, 20% for training, validation, and test sets. Note that there is no standard public

dataset with sensitive features, thus we use public datasets for general recommendation scenarios

to evaluate the performance of enhancing RSP-based fairness. However, conclusions we draw

should still hold if we analyze the fairness-enhancement performance on datasets with sensitive

features because the fundamental problem definition and the mechanism leading to unfairness are

exactly the same as the experiments here.

Metrics

In the experiments, we need to consider both recommendation quality and recommendation

fairness. For recommendation fairness, we report RSP@k and REO@k as described in Sec-

tion 5.3.2.2. As for the recommendation quality we adopt F1@k. We report the results with

k = 5, 10, and 15. Note that we also measure NDCG in the experiments, which shows the same

pattern as F1, hence we only report F1@k for conciseness.

Baselines

We compare the proposed DPR with unfair method BPR shown in Section 5.3.2.1 and two

state-of-the-art fairness-aware recommendation methods:

FATR [10]. This is a tensor-based method, which enhances the score distribution similarity

for different groups by manipulating the latent factor matrices. We adopt the 2D matrix version of

this approach. Note that FATR is designed for statistical parity based metric, hence we do not have

high expectation for the performance w.r.t. equal opportunity.

Reg [120, 11, 102]. The most commonly used fairness-aware method for two-group scenarios,

which penalizes recommendation difference by minimizing a regularization term. Following [11],

we adopt the squared difference between the average scores of two groups for all items as the

regularization to improve RSP, denoted as Reg-RSP. For REO, we adopt the squared difference

147

between the average scores of positive user-item pairs as the regularization, denoted as Reg-REO

(it is similar to DPR-REO but enhances the distribution similarity by static regularization rather

than adversary).

To have a fair comparison, we modify the loss functions of all baselines to the BPR loss in

Equation 5.19. Moreover, to align the baselines with the bias metrics for ranking, we further add

the proposed KL-loss introduced in Section 5.3.3.2 to both baselines.

Reproducibility

Go to https://github.com/Zziwei/Item-Underrecommendation-Bias for all

code and data. We implement the proposed model using Tensorflow [59] and adopt Adam [60] op-

timization algorithm. We tune the hyper-parameters of the models involved by the validation set,

the basic rules are: (i) we search the hidden dimension over {10, 20, 30, 40, 50, 60, 70, 80}; (ii)

search the L2 regularizer λΘ over {0.01, 0.05, 0.1, 0.5, 1.0}; (iii) search the adversary regularizer

α over range [500, 10000] with step 500; (iv) search the KL-loss regularizer β over range [10, 70]

with step 10; and (v) search the model specific weight in FATR over {0.01, 0.05, 0.1, 0.5, 1.0}, and

model specific weight for Reg-RSP and Reg-REO over the range [1000, 10000] with step 2000.

Note that selections of α and β should consider the balance between recommendation quality and

recommendation fairness.

There are two sets of experiments: experiments over multi-group datasets (ML1M, Yelp, and

Amazon) to answer RQ1 and RQ3; and experiments over binary-group datasets (ML1M-2, Yelp-2,

and Amazon-2) to answer RQ2.

In the first set of experiments, for all three datasets: we set 20 as the hidden dimensions for

BPR, DPR-RSP, and DPR-REO; we set the learning rate 0.01 for BPR, and ηBPR 0.01 as well

for DPR-RSP and DPR-REO. For all methods, we set λΘ = 0.1 for ML1M and Amazon; set

λΘ = 0.05 for Yelp. As for adversary learning rate ηAdv, we set 0.005 for ML1M and Yelp, 0.001

for Amazon. For all three datasets, we set α = 5000 for DPR-RSP. As for DPR-REO, we set

α = 1000 for ML1M, 5000 for Yelp, and 10000 for Amazon.

In the second set of experiments, we set different hidden dimensions for different datasets, but

148

https://github.com/Zziwei/Item-Underrecommendation-Bias

Table 5.6: Comparison between BPR w/o KL-loss for JS Divergences among user score distribu-
tions over three datasets. Reprinted with permission from [12].

ML1M Yelp Amazon
BPR 0.1540 0.0808 0.0836

BPR w/ KL-loss 0.0571 0.0254 0.0313
∆ -62.92% -68.56% -62.56%

Figure 5.15: CDFs of user score distributions predicted by BPR and BPR with KL-loss over ML1M
dataset. Reprinted with permission from [12].
for the same dataset all methods have the same dimension: we set 10 for ML1M-2, 40 for Yelp-2,

and 60 for Amazon-2. We set the learning rate 0.01 for baselines, and 0.01 as ηBPR for DPR-RSP

and DPR-REO. As for adversary learning rate ηAdv, we set 0.005 for all three datasets.

For all methods in all experiments, we have negative sampling rate 5 and mini-batch size 1024.

For all fairness-aware methods, we set β = 30. And we adopt a 4-layer MLP with 50 neurons with

ReLU activation function in each layer as the adversary for DPR.

5.3.4.2 RQ1: Effects of Model Components

In this subsection, we aim to answer three questions: whether the KL-loss can effectively nor-

malize user score distribution? whether the adversary can effectively enhance score distribution

similarity among groups? and whether DPR-RSP and DPR-REO can effectively improve the fair-

ness metrics RSP and REO?

149

Figure 5.16: PDFs of p(ŷ|g) for different groups by BPR and BPR w/ adv for RSP over ML1M.
Reprinted with permission from [12].

Effects of KL-loss

The KL-loss is to normalize the user score distribution. Hence, we adopt the Jensen-Shannon

Divergence (JS Divergence) to measure the deviation between user score distributions, where lower

JS Divergence indicates that the user score distributions are normalized better. We compare BPR

and BPR with KL-loss over all three datasets, the results are shown in Table 5.6, and the improve-

ment rates (noted as ∆) are also calculated. We can observe that with the KL-loss, the divergence

among user score distributions is largely reduced, demonstrating the effectiveness of KL-loss. To

better show the effects of KL-loss, we visualize the score distribution for every user produced by

BPR with and without KL-loss for ML1M in Figure 5.15, where each curve represents the Cumu-

lative Distribution Function (CDF) of a single user’s scores. The closely centralized CDFs in the

right figure verify the effectiveness of the proposed KL-loss.

Effects of Adversary

The adversary in DPR is to enhance the score distribution similarity among different groups.

To evaluate the effectiveness of the adversarial learning, we compare the performances of BPR

and BPR with adversary for both metrics (noted as BPR w/ adv for RSP and BPR w/ adv for

REO). More specifically, we compare BPR with BPR w/ adv for RSP w.r.t. JS Divergence among

p(ŷ|g) for different groups, and compare BPR with BPR w/ adv for REO w.r.t. JS Divergence

among p(ŷ|g, y = 1) for different groups. Results are shown in Table 5.7, where the top three

150

Table 5.7: Comparison between BPR and BPR w/ adv for JS Divergences of score distribution
among different groups. Reprinted with permission from [12].

ML1M Yelp Amazon

RSP setting
BPR 0.0222 0.0011 0.0215

BPR w/ adv 0.0090 0.0004 0.0046
∆ -59.46% -63.64% -78.60%

REO setting
BPR 0.0128 0.0045 0.0378

BPR w/ adv 0.0047 0.0041 0.0087
∆ -63.28% -8.89% -76.98%

Table 5.8: Comparison between BPR and DPR-RSP w.r.t. F1@15 and RSP@15. Reprinted with
permission from [12].

ML1M Yelp Amazon

F1@15
BPR 0.1520 0.0371 0.0230

DRP-RSP 0.1439 0.0354 0.0221
∆ -5.31% -4.32% -3.90%

RSP@15
BPR 0.4058 0.2522 0.4155

DPR-RSP 0.0936 0.0856 0.0607
∆ -76.92% -66.07% -85.40%

rows are calculated on all user-item pairs not in the training set (fit the RSP setting), the bottom

three rows are calculated on user-item pairs only in the test set (fit the REO setting). The table

demonstrates the extraordinary effectiveness of the proposed adversarial learning for enhancing

distribution similarity under both settings. To further validate this conclusion, we visualize the

distributions of p(ŷ|g) for different groups from ML1M in Figure 5.16 (distributions of p(ŷ|g, y =

1 have the same pattern), where the Probability Distribution Function (PDF) of every group’s score

distribution is plot as a single curve. We can find that PDFs by BPR w/ adv are close to each other,

while PDFs by the ordinary BPR differ considerably.

Effects of DPR

The effects of the complete DPR should be evaluated from the perspectives of both recommen-

dation quality and recommendation fairness. We first investigate the performance of DPR-RSP.

151

Table 5.9: Comparison between BPR and DPR-REO w.r.t. F1@15 and REO@15. Reprinted with
permission from [12].

ML1M Yelp Amazon

F1@15
BPR 0.1520 0.0371 0.0230

DRP-REO 0.1527 0.0363 0.0208
∆ +0.49% -1.94% -9.81%

REO@15
BPR 0.1893 0.2225 0.6217

DPR-REO 0.0523 0.0874 0.3577
∆ -72.38% -60.73% -42.47%

F1@15 and RSP@15 results of both BPR and DPR-RSP over three datasets are listed in Ta-

ble 5.8, where the change rates for them are calculated. From the table we have three observations:

(i) DPR-RSP improves the fairness over BPR greatly (decreases RSP@15 by 76% on average);

(ii) DPR-RSP effectively preserves the recommendation quality (only drops F1@15 by 4% on

average); and (iii) for different datasets with different degrees of data imbalance, DPR-RSP can

reduce the unfairness to a similar level (RSP@15 for three datasets by DPR-RSP are all smaller

than 0.1).

Similar conclusions can be drawn for DPR-REO based on Table 5.9, where comparison be-

tween BPR and DPR-REO w.r.t. F1@15 and REO@15 are listed. We can observe that DPR-REO

is able to decrease metricREO@15 to a great extent while preserving high F1@15 as well. Gener-

ally speaking, DPR-REO demands less recommendation quality sacrifice because the definition of

REO is less stringent and enhancing fairness is easier to achieve than RSP. However, there is one

exception that in Amazon dataset, DPR-REO drops F1@15 by 9.8%. It may be because for the

Amazon dataset, every item group has its own collection of users, and there are few users giving

feedback to more than one group, which exerts difficulty for DPR-REO training.

5.3.4.3 RQ2: Comparison with Baselines

We next compare the proposed DPR with state-of-the-art alternatives to answer two questions:

(i) how does the proposed adversarial learning perform in comparison with baselines for predicted

score distribution similarity enhancement? and (ii) how does the proposed DPR perform for both

fairness metrics compared with baselines? Because baselines Reg-RSP and Reg-REO can only

152

Table 5.10: Comparison between DPR and baselines for JS Divergences of score distribution
among groups. Reprinted with permission from [12].

ML1M-2 Yelp-2 Amazon-2

RSP setting

BPR 0.0564 0.0034 0.0514
FATR 0.0218 0.0027 0.0332

Reg-RSP 0.0276 0.0026 0.0378
DPR-RSP 0.0155 0.0020 0.0079

∆ -28.90% -23.08% -76.20%

REO setting

BPR 0.0422 0.0216 0.1531
FATR 0.0044 0.0078 0.1844

Reg-REO 0.0179 0.0062 0.0219
DPR-REO 0.0011 0.0018 0.0038

∆ -75.00% -70.97% -82.65%

Figure 5.17: F1@k and RSP@k of four different models over three datasets. Reprinted with
permission from [12].
work for binary-group cases, we conduct the experiment over ML1M-2, Yelp-2, and Amazon-2

datasets in this subsection.

To answer the first question, we report JS Divergences of score distributions for different groups

in Table 5.10, where the top five rows are calculated on all user-item pairs not in the training set

153

Figure 5.18: F1@k and REO@k of four different models over three datasets. Reprinted with
permission from [12].
(fitting the RSP setting), and the bottom five rows are calculated on user-item pairs only in the

test set (fitting the REO setting). The improvement rates of DPR over the best baselines also

are calculated. From the table we can conclude that the proposed adversarial learning can more

effectively enhance score distribution similarity than baselines. Although less competitive, both

FATR and Reg models can improve the distribution similarity to some degree compared with BPR.

As for the second question, we show F1@k, RSP@k, and REO@k comparison between all

methods over all datasets in Figure 5.17 and Figure 5.18. On the one hand, from the leftmost

three figures in both Figure 5.17 and Figure 5.18, we can observe that DPR-RSP and DPR-REO

preserve relatively high F1@k from BPR and outperform other baselines significantly. On the

other hand, from the rightmost three figures, we are able to see that DPR-RSP and DPR-REO

enhance RSP and REO to a great extent respectively, which also outperform other fairness-aware

methods considerably. Besides, one potential reason for better recommendation quality for DPR

on Yelp is that the intrinsic bias in Yelp is small, thus DPR can promote unpopular groups and keep

the original high rankings for popular groups simultaneously, leading to better performance.

154

Figure 5.19: F1@15, RSP@15, and REO@15 of DPR-RSP and DPR-REO w.r.t. different num-
bers of layers over ML1M. Reprinted with permission from [12].

5.3.4.4 RQ3: Impact of Hyper-Parameters

Finally, we investigate the impact of three hyper-parameters: (i) the number of layers in the

MLP adversary; (ii) the adversary trade-off regularizer α; and (iii) the KL-loss trade-off regularizer

β. For conciseness, we only report experimental results on ML1M dataset, but note that the results

on other datasets show similar patterns.

Impact of Layers in Adversary

First, we experiment with the number of layers in MLP adversary varying in {0, 2, 4, 6, 8},

and the other parameters are the same as introduced in Section 5.3.4.1 including that the number

of neurons in each MLP layer is still 50. Generally speaking, with more layers, the adversary

is more complex and expressive, which intuitively results in better fairness performance. The

F1@15 results of DPR-RSP and DPR-REO w.r.t. different numbers of layers are shown at the

left in Figure 5.19, and RSP@15 and REO@15 results are presented at the right in Figure 5.19.

From these figures, we can infer that with a more powerful adversary, the recommendation quality

drops more; however, the fairness improvement effect first gets promoted but then weakened due

to difficulty of model training. The best value is around 2 to 4. Besides, we can also find that it is

easier to augment the metric REO than RSP with less recommendation quality sacrificed, which is

consistent with the observation in Section 5.3.4.2.

155

Figure 5.20: F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-REO w.r.t. different α over
ML1M. Reprinted with permission from [12].

Figure 5.21: F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-REO w.r.t. different β over
ML1M. Reprinted with permission from [12].

Impact of α

Then, we vary the adversary trade-off regularizer α and plot the results in Figure 5.20, where

the x-axis coordinates {α0, α1, . . . , α5} are {1000, 3000, 5000, 7000, 9000, 11000} for DPR-RSP

and {200, 600, 1000, 1400, 1800, 2200} for DPR-REO. The left figure demonstrates the F1@15

results with different α, which shows that with larger weight for the adversary, the recommen-

dation quality decreases more. For the fairness improving performance, as presented at the right

in Figure 5.20, with larger α, both DPR-RSP and DPR-REO first improve the fairness, but then

increase it again, which is most likely due to the dominating of adversary over KL-loss in the

objective function. To balance the recommendation quality and recommendation fairness, setting

156

α = 5000 for DPR-RSP and α = 1000 for DPR-REO are reasonable choices.

Impact of β

Last, we study the impact of the KL-loss trade-off regularizer β and vary the value in the set

{0, 10, 20, 30, 40, 50, 60, 70}. The left figure in Figure 5.21 shows the change tendency of F1@15,

which implies that larger β leads to lower recommendation quality. The fairness improving per-

formance of DPR-RSP and DPR-REO with different β are shown at the right in Figure 5.21, from

which we can observe that with higher β, the fairness is enhanced better, and converges to a certain

degree. However, the impact of β is not as strong as that of α (the value changes of RSP@15, and

REO@15 in Figure 5.21 are smaller than those in Figure 5.20).

5.3.5 Summary

In this section, we propose a novel framework – FATR – to enhance the fairness for implicit

recommender systems while maintaining recommendation quality. FATR effectively eliminates

sensitive information and provides fair recommendation with respect to the sensitive attribute. Fur-

ther, unlike previous efforts, the proposed model can also handle multi-feature and multi-category

cases. Extensive experiments show the effectiveness of FATR compared with state-of-the-art alter-

natives.

5.4 Enhancing Fairness in Cold-start Recommender Systems

Last, we turn our focus to cold-start recommender systems and investigate whether new items

with no historical feedback can be fairly treated and how to enhance such recommendation fairness

for cold-start items.

5.4.1 Introduction

Previous works have revealed that widely used recommendation algorithms can indeed produce

unfair recommendations toward different items (like job candidates of different genders), e.g.,

[12, 24, 101, 26, 11]. However, these existing works consider fairness only during the middle of

the life cycle of an item, that is in the warm start recommender scenario. In this scenario, prior

157

Figure 5.22: (a) Existing works consider fairness during warm start recommendation period; (b)
we study fairness among new items, i.e., the cold-start recommendation period. Reprinted with
permission from [13].
works show that the main driver of unfairness is the data bias in historical feedback (like clicks

or views), and recommendation algorithms unaware of this bias can inherit and amplify this bias

to produce unfair recommendations. But what if there is no historical feedback? Can we fairly

recommend new items (we use ‘new items’ and ‘cold-start items’ interchangeably) in such a cold-

start scenario?

To illustrate, Figure 5.22a shows the life cycle of an item: the item first appears in the system at

t0; in the absence of historical feedback, a cold-start recommendation algorithm recommends this

item to users and receives the first collection of feedback at t2; then, a warm start recommender

can be trained at t3 by this first collection of feedback, further recommending the item to users

and collecting new feedback at t4; the system continues this loop of collecting new feedback and

training a new warm start model until the item leaves the system. While methods in existing works

can introduce fairness at time t3 and later, is the item treated fairly before then? Here, we show that

the data bias can be transferred from warm start items to new items through item content features by

machine learning based cold-start recommendation algorithms, inducing unfair recommendations

among these new items.

This fairness gap can be especially problematic since unfairness introduced by cold-start rec-

ommenders will be perpetuated and accumulated through the entire life cycle of an item, resulting

158

in growing difficulty for mitigating unfairness as the life cycle goes on. Instead, providing fair rec-

ommendations among new items could give rise to a virtuous circle of collecting (relatively) unbi-

ased feedback and training fairer models later in the life cycle. Hence, as shown in Figure 5.22b,

we propose to investigate fairness in cold-start recommender systems and aim to enhance fairness

among new items at the beginning of their life cycles.

Fairness goal

Here, we follow two well-known concepts – equal opportunity [94] and Rawlsian Max-Min

fairness principle of distributive justice [145] – to introduce the Max-Min Opportunity Fairness in

the context of cold-start scenarios. The fairness goal is to provide recommendations that maximize

the true positive rate (that is, the probability of being accurately recommended to matched users

who will like the item during testing) of the worst-off items so that no item is under-served by

the recommendation model. The advantages of this fairness goal are twofold: (i) by following

equal opportunity to measure fairness by the true positive rate, the fairness is directly aligned with

the feedback or economic gain items receive as well as user satisfaction; and (ii) by following

Rawlsian Max-Min fairness to accept inequalities, the fairness does not require decreasing utility

for the better-served items and thus can better preserve the overall utility. Thus, by improving

the Max-Min Opportunity Fairness, we aim to improve item fairness without decreasing overall

satisfaction.

Contributions

To the best of our knowledge, this is the first work to study recommendation fairness among

new items in cold-start recommenders. In sum, we make the following contributions:

• We introduce the problem of fairness among new items in cold-start scenarios, and we con-

duct a comprehensive data-driven study to demonstrate the prevalence of unfairness among

new items in cold-start recommender systems.

• To mitigate unfairness among new items, we propose a novel learnable post-processing

framework as a solution blueprint, which promises better practical feasibility than existing

159

strategies. Based on this blueprint, we demonstrate two concrete approaches for enhanc-

ing item fairness: a score scaling model based on existing work for addressing popularity

bias [80] and a novel joint-learning generative model that can effectively improve fairness.

• Extensive experiments over four datasets show that both proposed methods can simulta-

neously enhance item fairness while preserving recommendation utility, demonstrating the

viability of filling the fairness gap. Furthermore, we also demonstrate the capability of the

proposed methods to enhance group-level fairness in addition to individual-level fairness.

5.4.2 Fairness Among New Items

In this section, we first introduce the cold-start recommendation problem. Second, we formal-

ize fairness among new items. Then, we introduce how to measure recommendation utility from

the view of items. Last, we conduct a data-driven study over four public datasets and four cold-

start recommendation algorithms to empirically demonstrate the prevalence of unfairness among

new items.

5.4.2.1 Cold-start Recommendation

We focus on the cold-start item recommendation task [5], where all users are warm start during

training and testing, but new items never seen during training are to be recommended during test-

ing. Assume we have N users U = {1, 2, . . . , N} and Mw warm start items Iw = {1, 2, . . . ,Mw},

where each item has at least one historical interaction record in the training data. We denote

Otr = {(u, i)} as the training set, where u ∈ U indexes one user, and i ∈ Iw indexes one warm

start item. We also have Mc cold-start (new) items Ic = {1, 2, . . . ,Mc}, none of which are in-

cluded in the training set Otr. We denote Ote = {(u, i)} as the test set, where u ∈ U and i ∈ Ic.

For each item i, we have a subset of users U+
i to indicate the matched users (users who have al-

ready interacted the item during training or will interact with the item during testing) for this item:

for a warm start item i ∈ Iw, U+
i are matched users in the training set Otr; for a new item i ∈ Ic,

U+
i are matched users in the test set Ote. The goal of a cold-start recommender [7, 5, 49, 64] is to

provide a ranked list of cold-start items to each user as recommendations.

160

To provide cold-start recommendations, typical machine learning based methods [6, 52, 49,

50, 51, 5, 3, 4, 7, 64] need to utilize user-item interactions Otr of existing warm start users and

items, and content features of both warm and cold-start items. These content features – such as

item descriptions, reviews, or from other sources – are often readily available even for new items.

The main idea of these cold-start recommendation algorithms is to learn a transformation from

item content features of warm start items to user-item interactions between warm start users and

items during training, and then apply this learned transformation process to the content features

of new items to predict possible interactions between users and new items as recommendations

during testing. Note that item content features of warm start items and new items share the same

feature space. As a result, bias inherent in training data of warm users and items collected from

an existing fairness-unaware recommender system will be transferred through the item content

features to recommendations for new items, generating unfair recommendations among new items.

5.4.3 Formalizing Fairness

A natural following question is how to determine if recommendations are fair or not among new

items? Here, we follow two well-known concepts to formalize fairness: equal opportunity [94] and

Rawlsian Max-Min fairness principle of distributive justice [145].

In a classification task, equal opportunity requires a model to produce the same true positive

rate (TPR) for all individuals or groups. Equal opportunity fairness has already been recognized as

unquestionably important in recommender systems by previous works [12, 24, 122, 26]. The goal

is to ensure that items from different groups can be equally recommended to matched users dur-

ing testing (the same true positive rate): for example, candidates of different genders are equally

recommended to job openings that they are qualified for. In contrast, demographic parity fair-

ness [12, 11] only focuses on the difference in the amount of exposure to users without considering

the ground-truth of user-item matching. However, because only the exposure to matched users (as

considered by equal opportunity fairness) can influence the feedback or economic gain of items, in

recommendation tasks, equal opportunity is better aligned than demographic parity fairness.

Rawlsian Max-Min fairness requires a model to maximize the minimum utility of individuals

161

or groups so that no subject is under-served by the model. Unlike equality (or parity) based notions

of fairness [24, 122, 26, 12, 119, 120, 121, 11] aiming to eliminate difference among individuals or

groups but neglecting a decrease of utility for better-served subjects, Rawlsian Max-Min fairness

accepts inequalities and thus does not requires decreasing utility of better-served subjects. So,

Rawlsian Max-Min fairness is preferred in applications where perfect equality is not necessary,

such as recommendation tasks, and it can also better preserve the overall model utility.

Hence, following these two concepts, for the cold-start recommendation task, we have the

fairness definition:

Definition 1 (Max-Min Opportunity Fairness). Suppose H is a set of models, TPR(i) is the ex-

pected true positive rate a new item i gets from a model h, then the model h∗ is said to satisfy

Max-Min Opportunity Fairness if it maximizes the true positive rate of the worst-off item:

h∗ = arg max
h∈H

min
i∈Ic

TPR(i) (5.31)

Hence, the goal of enhancing such a Max-Min Opportunity Fairness is to improve the true

positive rate of the worst-off item in recommendations. And we measure this Max-Min Opportu-

nity Fairness for a cold-start recommender by calculating the average true positive rate of the t%

worst-off items, which are the t% items with the lowest true positive rates among all cold-start

items during testing. We measure the fairness over t% items instead of just the worst item to make

the metric more flexible and robust to noise.

Then, the next question is how to calculate the true positive rate of an item? We calculate the

true positive rate for a new item by averaging a scoring function of ranking positions2 across all

matched users in the test set. Concretely, we propose the true positive rate metric Mean Discounted

2We use a reciprocal log function as the scoring function to calculate the true positive rate resulting in a metric
aligned with NDCG. Other choices lead to true positive rate calculations aligned with other existing utility metrics: a
step function is aligned with Recall@k; a reciprocal function is aligned with mean reciprocal rank.

162

Table 5.11: Characteristics of the four public datasets. Reprinted with permission from [13].

#user
Train Validation Test

#item #record #item #record #item #record
ML1M 6,018 1,811 529,952 302 106,695 905 296,870
ML20M 112,292 6,083 10,697,409 1,014 1,797,626 3,041 5,490,603

CiteULike 5,551 13,584 164,210 1,018 13,037 2,378 27,739
XING 89,867 10031 1,893,135 1,671 376,994 5,016 1,131,487

Gain (MDG) for an item i:

MDGi =
1

|U+
i |

∑
u∈U+

i

δ(ẑu,i <= k)

log(1 + ẑu,i)
, (5.32)

where U+
i is the set of matched users for the new item i in the test set; ẑu,i is the ranking position

of i (among all new items Ic, ranging from 1 to Mc) for user u by a cold-start recommendation

model; δ(x) returns 1 if x is true, otherwise 0. That is to say, we only consider the discounted

gain 1/log(1 + ẑu,i) for ranking positions within the top-k and assign 0 for positions after k (we

fix k = 100) so that MDG is aligned with the well-known metric NDCG@k [146]. MDGi = 0

means that item i is never recommended to matched users who like it during testing; MDGi = 1

means that i is ranked at the top position to all matched users during testing.

With the introduced metric MDG, we measure the Max-Min Opportunity Fairness in Defini-

tion 1 for a cold-start recommender by calculating the average MDG of the t% worst-off items,

which are the t% items with the lowest MDG among all cold-start items during testing. In the

empirical study, we report results with t% = 10% and 20%, denoted as MDG-min10% and

MDG-min20%. Higher values indicate the evaluated system is fairer. We also report the average

MDG for the 10% best-served items for comparison, which are the 10% items with the highest

MDG, denoted as MDG-max10%.

5.4.3.1 Measuring Utility for Items

The typical way to evaluate the quality of a recommender system, such as with NDCG@k,

is to first calculate the recommendation utility for each user and then average across users as the

measured utility for a recommendation algorithm. Thus, this metric represents the expectation of

163

recommendation utility a random user can receive from an algorithm, which is essentially from the

view of users. We call these conventional metrics like NDCG@k as user-view utility. In contrast,

we can also evaluate the recommendation utility from the view of items to show how well items are

generally served by a recommendation algorithm. Because we study item fairness here, it is natural

to consider this item-view utility as one evaluation aspect in empirical studies. Here, given the true

positive rate metric MDG introduced in Section 5.4.3, we report MDG-all =
∑

i∈Ic MDGi/|Ic|

as the item-view utility metric, which shows the expectation of recommendation utility a random

item can get from an algorithm.

5.4.3.2 Data-Driven Study

Given the formalization of fairness in cold-start recommendation, how much unfairness can

be generated by different cold-start recommendation algorithms? Here, we conduct a data-driven

study on four public datasets and four different cold-start models to show the prevalence of unfair-

ness in cold-start recommendation.

Datasets

We adopt four widely used datasets for cold-start recommendation: ML1M [96], ML20M [96],

CiteULike [66], and XING [68]. ML1M and ML20M are movie rating datasets, where we con-

sider all ratings as positive signals. Both datasets contain tag genome scores [147] (showing rele-

vance of an item to a fixed set of tags) as the item content features. CiteULike is a dataset recording

user preferences toward scientific articles, and following [5], we use the abstracts of these arti-

cles as item content features. XING is a user-view-job dataset, and it includes career level, tags,

and other related information as the item content features. For ML1M, ML20M, and XING, we

randomly select 10% items and 30% items as the cold-start (new) items, with all the user-item

interactions of these items, to be the validation set and test set respectively. For CiteULike, we

directly adopt the dataset splitting from [5]. The detailed statistics of the four datasets are shown

in Table 5.11.

164

Table 5.12: Empirical results of four algorithms on ML1M (DN stands for DropoutNet, DM stands
for DeepMusic). Reprinted with permission from [13].

Heater DN DM KNN Optimal Random

User utility
NDCG@15 0.5516 0.5488 0.5312 0.4402 1.000 0.0550
NDCG@30 0.5332 0.5316 0.5167 0.4226 1.000 0.0586

Item utility MDG-all 0.0525 0.0552 0.0572 0.0646 0.1932 0.0236

Fairness
MDG-min10% 0.0000 0.0000 0.0000 0.0001 0.1388 0.0118
MDG-min20% 0.0000 0.0000 0.0001 0.0020 0.1498 0.0145
MDG-max10% 0.2272 0.2294 0.2323 0.2091 0.2471 0.0386

Cold-start recommendation models

There are many different cold-start recommendation models in the literature, and it is im-

possible to test all of them. Generally, existing algorithms can be categorized into joint-training,

separate-training, combined, and heuristic non-parametric methods as introduced in Section 5.4.2.1.

Thus, here, we pick four representative algorithms from each category: a typical joint-training

method DropoutNet [5]; a typical separate-training method DeepMusic [49]; a combination of

joint-training and separate-training method Heater [7]; and a heuristic non-parametric method

KNN [64].

Experiment protocol

Following these cold-start recommendation works [7, 5, 49, 64], during testing, we evaluate

recommendations for only new items without mixing warm start items in, which allows us to focus

on the behavior of cold-start recommenders and deepen our understandings of fairness among new

items.

Empirical results

First, we report the results of four cold-start recommendation algorithms on the ML1M dataset

in Table 5.12. Besides, we also show two special cases: (i) the Optimal case we can achieve, for

which we directly get access to the positive user-item pairs in the test set, and rank the matched

items to the most top positions with a random order for each user; and (ii) the Random case,

for which we randomly rank the items for each user. The first three rows in Table 5.12 show the

results of user-view utility (NDCG@15 and NDCG@30) and item-view utility (MDG-all). User-

165

view utility and item-view utility reveal different aspects of a recommender system, which usually

show opposite patterns.3 For example, in Table 5.12, Heater achieves the best user-view utility,

however, it has the lowest item-view utility (while KNN is the opposite). Since items are treated

unfairly by Heater, a small subset of items (potential popular items) with large numbers of test

samples receive very high MDG and the majority of items get very low MDG, leading to high

user-view utility but low item-view utility. In other words, the different patterns of user-view and

item-view utility is due to the unfairness in recommendations.

Hence, we next analyze the fairness as shown in the last three rows in Table 5.12, where we

present MDG-min10%, MDG-min20% to show the average MDG of the worst-off items; and we

also present MDG-max10% to show the average MDG of the best-served items for comparison.

We can observe that Heater and DropoutNet produce zero MDG for the 10% and 20% worst-off

items, which means these items are never exposed to matched users who will like them during

testing. DeepMusic and KNN perform slightly better, but the MDG-min10% and MDG-min20%

are still very low. However, MDG-max10% values are very high for all four algorithms. The large

difference between MDG-min and MDG-max illustrates the unfairness among new items in these

four cold-start recommendation models. For the Optimal case, because the recommendation is

optimal for every user and item, the fairness is also guaranteed. Moreover, we can also observe

that MDG-min10% and MDG-min20% in the Random case are higher than the personalized cold-

start recommendation models, which on one hand shows the unfairness in these cold-start models,

and on the other hand, demonstrates one possible way to enhance the fairness by introducing

randomness to recommendations.

To further understand the unfairness issue in these algorithms, we plot the MDG of each item

by different algorithms in Figure 5.23, where for each algorithm, items are sorted based on their

MDG in ascending order. Each dot in Figure 5.23 represents one item for one algorithm; the y-axis

shows the MDG an item receives from one of the six algorithms; and the x-axis shows the position

3Although in practice, user-view and item-view utility often show opposite patterns, indeed, they are not opposite
to each other. Theoretically, an optimal model can achieve the best user-view and item-view utility at the same time,
and achieve fairness among new items as well. One example of such an optimal model is the ‘Optimal’ in Table 5.12.

166

Figure 5.23: For ML1M and each model, sort items by MDG in ascending order and plot their
corresponding MDG. Reprinted with permission from [13].

Table 5.13: Empirical results of Heater on four datasets. Reprinted with permission from [13].

ML1M ML20M CiteULike XING

User utility
NDCG@15 0.5516 0.4408 0.2268 0.2251
NDCG@30 0.5332 0.4308 0.2670 0.2762

Item utility MDG-all 0.0525 0.0187 0.1833 0.1333

Fairness
MDG-min10% 0.0000 0.0000 0.0046 0.0028
MDG-min20% 0.0000 0.0000 0.0251 0.0129
MDG-max10% 0.2272 0.1455 0.5106 0.3821

of an item in a sorted item list of an algorithm (e.g., the dot corresponding to 100% represents

the item with the largest MDG for one algorithm, 0% represents the item with the lowest MDG).

From the figure, we can see that all four cold-start recommendation algorithms produce skewed

distributions of MDG across recommended new items: most items receive low or even zero MDG,

and only a few items receive extremely high MDG, confirming the existence of unfairness. The

Optimal shows the best result we can achieve on the given test set, where we can observe that the

overall distribution is much more flat, with higher MDG for worst-off items but lower MDG for

the best-served items compared with the other four algorithms. The goal of fairness enhancement

is to generate a distribution as close as possible to the optimal case.

Last, we report results for the best-performing model Heater on all four datasets in Table 5.13.

167

From the table, we can see that for all four datasets, MDG-min10% and MDG-min20% are very

small (or even zero) compared with MDG-max10%, demonstrating that the unfairness among

new items is prevalent across datasets from different domains and with different characteristics.

Besides, comparing results of different datasets, we find that fairness is highly related to the den-

sity of training data and quality of item content features: training data with high density or with

high-quality item content features can lead to more unfair recommendations, such as ML1M and

ML20M which are very dense and have high-quality item content features (informative tag genome

scores [147]). When the training data is dense or item content features are informative, a cold-start

recommendation model can more effectively learn information including data bias in training data

and hence deliver unfairer recommendations.

5.4.4 Fairness Enhancement Approaches

Given the observation of unfairness, we study in this section how to enhance the fairness for

new items. We first propose a novel learnable post-processing framework to enhance the fairness

for new items, which is not a concrete model but a high-level solution blueprint. Then, based on

this blueprint, we propose two concrete models: a novel joint-learning generative method; and

a score scaling model, which adapts a previous work for popularity bias [80] into the proposed

framework, as a baseline for comparison.

5.4.4.1 Learnable Post-processing Framework

We first elaborate the overall structure of the proposed framework, and then explain how to

enhance fairness in this framework.

Main structure of the framework

Most existing works improve item fairness [24, 12, 26, 102], popularity bias [148, 71, 80],

or diversity [149, 150] for warm start recommender systems by either in-processing methods or

non-parametric post-processing methods. In-processing methods [102, 24, 71] modify the original

recommendation models to achieve fairness or other goals. The major drawback of this type of

method is that it requires re-training the whole recommender system with all training data, which

168

(a) The learnable post-processing framework.

(b) The Gen method. (c) The Scale method.

Figure 5.24: The structures of the proposed learnable post-processing framework and two concrete
models. Reprinted with permission from [13].
is highly resource intensive and not practically feasible in real-world systems. Another widely

investigated class is the non-parametric post-processing method [129, 26, 101], which keeps the

original recommender systems unchanged, but conducts a heuristic re-ranking to the output of

the original model to achieve fairness or other goals. This type of approach is more practically

feasible because it does not require re-training the base model. But limitations are that it usually

produces inferior performance than learning based in-processing methods and can be difficult to

adapt to equal opportunity based fairness. To overcome the disadvantages of these two types of

approaches, we propose a learnable post-processing framework to enhance fairness.

The proposed learnable post-processing framework is shown in Figure 5.24a, which has three

main components: (i) Similar to the non-parametric post-processing method, we keep the origi-

nal base model unchanged, which can be any existing cold-start recommendation model, such as

Heater, DropoutNet, DeepMusic, or KNN used in Section 5.4.3.2. (ii) Instead of the heuristic re-

ranking in the non-parametric post-processing method, we learn an autoencoder (denoted as ψ) to

conduct the ‘re-ranking’. We input the predicted score vector of an item i from the base model to

the autoencoder ψ, where the score vector is denoted as R̃:,i ∈ RN and the size of the vector is the

total number of users N . Autoencoder ψ outputs the reconstructed score vector R̂:,i ∈ RN for final

169

rankings. (iii) By introducing fairness to the training process of the autoencoder ψ, we enable ψ to

produce fairer results for new items.

During training, we can only get access to the warm start items, so we use R̃:,i for i ∈ Iw to

train the autoencoder ψ. Then, during testing, we receive predicted scores from the base model for

new items R̃:,i with i ∈ Ic, and feed them to the trained ψ to have fairness-enhanced scores for

recommending these new items. Note that if we do not introduce fairness to the learning process

of ψ and just make the output of the autoencoder R̂:,i as close as possible to the input R̃:,i, then the

learnable post-processing framework will reproduce the same recommendations as the base model.

Enhancing fairness in this framework

The next question is how can we enhance the fairness among new items in such a framework?

The ultimate goal of fairness is to promote the true positive rate for worst-off items so that they

can receive similar true positive rate as best-served items. From the formulation of true positive

rate (such as Equation 5.32), we know that if we can improve the expectation of ranking position

to matched users for under-served items during testing, then fairness can be enhanced. However,

ranking position is hard to control in a recommendation model. So we need to further align the

ranking positions with scores predicted by models, then ensure the fairness by increasing the expec-

tation of predicted scores to matched users for under-served items. Therefore, to achieve fairness,

we need to accomplish two requirements:

Requirement-1: promote under-served items so that their distributions of matched-user pre-

dicted scores, denoted as P (R̂U+
i ,i

), are as close as possible to the distributions of best-served

items.

Requirement-2: for every user, the predicted scores, denoted as R̂u,:, follow the same distri-

bution.

By achieving Requirement-1, we try to maximize the expectation of predicted scores to matched

users for under-served items. By achieving Requirement-2, we ensure that a specific predicted

score value corresponds to a specific ranking position for all users. Hence, with both require-

ments fulfilled, under-served items are promoted to have higher expectation of ranking position to

170

Figure 5.25: In each training epoch, update ψ to push P (R̂U+
i ,i

) of under-estimated items (i1 and
i2) as close as possible to the target P generated by ϕ. Reprinted with permission from [13].
matched users during testing, i.e., fair recommendations are provided.

To achieve these two requirements for new items during testing, we need to train the autoen-

coder ψ so that ψ achieves these requirements for warm start items during training. Requirement-2

is easy to accomplish. First, before training ψ, we normalize the score distributions of users in the

outputs of the base model to a standard normal distribution (score distributions for users are usu-

ally considered as normal distributions [58, 12]). And we use the normalized scores as the ground

truth to train ψ. By this, ψ will learn to output scores normalized for users. Thus, during training,

we have the predicted score matrix for warm start items R̃ ∈ RN×Mw from the base model, and we

normalize it for each user:

R̃N
u,: = (R̃u,: −Mean(R̃u,:))/Std(R̃u,:), (5.33)

whereMean(·) calculates the mean value of a sequence; Std(·) calculates the standard deviation of

a sequence; and R̃N
u,: with all u ∈ U form the normalized score matrix R̃N to train the autoencoder

ψ. A good property of this method is that because the recommendation is based on a ranked list of

items for each user, the normalization of scores for each user will not influence the ranking order.

Now, the remaining challenge is how to accomplish Requirement-1. To tackle this, following

the learnable post-processing framework, we propose two concrete models: a novel joint-learning

generative method (Gen); and a score scaling method (Scale).

5.4.4.2 The Joint-learning Generative Method

The overall framework of the joint-learning generative method is shown in Figure 5.24b where

there are two main components: an autoencoder ψ and a distribution generator ϕ. The intuition

171

of Gen is: in each training epoch, the distribution generator ϕ first generates a target distribution

P ; then we update the autoencoder ψ so that it promotes items that are under-estimated in prior

epochs by pushing their matched-user score distributions P (R̂U+
i ,i

) as close as possible to the

target distribution P , and at the same time, have ψ preserve the recommendation utility as much

as possible; last we update the distribution generator ϕ to generate a new target distribution P

as the average of all items’ matched-user score distributions P (R̂U+
i ,i

). We show an example in

Figure 5.25, where there are 3 items i1, i2 and i3 and we show their matched-user score distributions

at current training epoch. i1 and i2 have worse distributions (lower expectations of matched-user

scores) than i3, and we have the target distribution P which is the average of all three items. So, in

this epoch, we need to update ψ so that P (R̂U+
i ,i

) of i1 and i2 are promoted to be close to P . After

this, we also need to update the P to be the average of the new P (R̂U+
i ,i

) of these three items. By

jointly learning these two components, we can push the matched-user score distribution P (R̂U+
i ,i

)

of under-estimated items (like i1 and i2) to be closer and closer to best-served items (like i3) epoch

by epoch, and eventually achieve a fair status.

Concretely, the autoencoder ψ is the same as the one in the framework in Section 5.4.4.1, which

takes predicted score vectors R̃:,i from a base model as input and outputs R̂:,i, with user-normalized

score vectors R̃N
:,i as training ground-truth.

The distribution generator ϕ is to generate a target distribution P (the average distribution of

P (R̂U+
i ,i

) over all items from last epoch) for under-estimated items to be promoted to. ϕ is a

multi-layer perceptron (MLP) with 1-dimension input and output layers, which takes S random

seeds from a standard normal distribution as inputs and outputs S samples R ∈ RS to represent the

target distribution P . To generate such a R, at the end of each training epoch, we first retrieve the

matched-user entries R̂U+
i ,i

in the output vectors R̃N
:,i from the autoencoder ψ for all warm items

Iw. Then, for each item i, we update ϕ to minimize the sum of distribution distances between

generated samples R from ϕ and matched-user scores R̂U+
i ,i

so that the underlying distribution of

R has the minimum sum of distances to all items. For example, in Figure 5.25, the generated P has

the minimum sum of distances to these three items, that is, P is the average distribution of these

172

items. Here, we adopt the Maximum Mean Discrepancy (MMD) [151], an effective kernel based

statistic test method, to calculate the distribution distance by samples from two distributions as the

loss for the distribution generator:

min
ϕ

Lgen =
∑
i∈Iw

MMD(R, R̂U+
i ,i

)

=
∑
i∈Iw

(
1

S2

S∑
x,y=1

f(R[x], R[y])− 2

S2

S∑
x=1

S∑
y=1

f(R[x], R̂U+
i ,i

[y])

+
1

S2

S∑
x,y=1

f(R̂U+
i ,i

[x], R̂U+
i ,i

[y])),

(5.34)

where f(a, b) = exp(−(a − b)2/l2) is a Gaussian kernel with l = 1. Note that we do not need a

regularization for ϕ because there is no overfitting problem for it.

After generating samplesR following the target distribution P , we then update the autoencoder

ψ by:

min
ψ

LAE =
∑
i∈Iw

(‖R̃N
:,i − R̂:,i‖F + α(MMD(R, R̂U+

i ,i
) · δ(i ∈ IUE))) + λ‖ψ‖F, (5.35)

where ‖ψ‖F is the L2 regularization and λ is the regularization weight; the RMSE part ‖R̃N
:,i−R̂:,i‖F

is to preserve the recommendation utility from the base model; α is the fairness-strength weight

to control the fairness enhancement strength: the larger the more strength for improving fairness;

IUE is a subset of items that are under-estimated by the autoencoder ψ from last epoch: we first

calculate the mean value of the matched-user scores for each item i as mi = Mean(R̂U+
i ,i

), then

determine the under-estimated item set IUE with items whose mean values are lower than the

average of all items, i.e., i ∈ IUE if mi < Mean(mIw). As a result, by this loss, we push

P (R̂U+
i ,i

) for i ∈ IUE to be close to P .

5.4.4.3 The Score Scaling Method

In addition to Gen, we adapt an existing work for addressing popularity bias [80] into the

proposed learnable post-processing framework to enhance fairness among new items. This score

173

scaling method can also serve as a baseline method.

To counteract popularity bias, the work [80] re-scales the training data based on item popu-

larity: it up-scales ratings for unpopular items and down-scales ratings for popular items of high

popularity, and then it trains a recommendation model on the scaled data to deliver debiased rec-

ommendations. Similarly, we can scale the user-normalized predicted score vectors R̃N
:,i to be fairer

ground-truth to train a fair autoencoder ψ in the proposed post-processing framework. In detail, for

the user-normalized score vector R̃N
:,i of each warm start item i ∈ Iw, we scale the matched-user

entries:

R̃NS
U+
i ,i

= R̃N
U+
i ,i
×
Max({Mean(R̃N

U+
j ,j

)β|j ∈ Iw})

Mean(R̃N
U+
i ,i

)β
, (5.36)

where R̃N
U+
i ,i

are the matched-user entries in R̃N
:,i; Mean(R̃N

U+
i ,i

) calculates the mean value of

matched-user entries; Max(·) returns the maximum value in a sequence, and for the numerator, we

useMax({Mean(R̃N
U+
j ,j

)β|j ∈ Iw}) so that no item is down-scaled but only under-estimated items

are up-scaled during the scaling; β is the fairness-strength weight – the larger the more strength to

enhance fairness; R̃NS
U+
i ,i

denotes the scaled entries for matched users, and we write them back to

R̃N
:,i to have the final score vector R̃NS

:,i for i as the ground-truth for training the autoencoder ψ. The

overall framework of the proposed Scale is shown in Figure 5.24c.

By this, we have fairness-enhanced scores for warm items. The autoencoder learned with these

scaled scores as ground truth will bring fairer recommendations for new items during testing. We

adopt the RMSE loss for learning the proposed Scale model:

min
ψ

LScale =
∑
i∈Iw

‖R̃NS
:,i − R̂:,i‖F + λ‖ψ‖F. (5.37)

5.4.5 Experiments

In this section, we conduct extensive experiments to answer three key research questions: RQ1

how does the Gen model enhance fairness for new items and preserve utility, compared with Scale

and other baselines? RQ2 what is the impact of the hyper-parameters in the two proposed meth-

174

ods? and RQ3 what is the impact of the proposed fairness-enhancement methods on group-level

fairness?

5.4.5.1 Experimental Settings

Data and Metrics

Similar to the data-driven study in Section 5.4.3.2, we use the same four datasets (ML1M,

ML20M, CiteULike, and XING) and same metrics: we report NDCG@k with k=15 and 30 for

evaluating user-view utility; MDG-all for item-view utility; MDG-min10% and MDG-min20%

(the larger the fairer a model is) for fairness; and we also report MDG-max10% for comparison.

Baselines

We use the same four cold-start recommendation base models (Heater, DropoutNet, DeepMu-

sic, and KNN) as introduced in Section 5.4.3.2. And we investigate the fairness-enhancement

performance of the proposed Gen and Scale. We consider the Scale method, which adapts a pre-

vious work for addressing popularity bias into the proposed learnable post-processing framework,

as one baseline to compare with Gen. Besides, we saw in Section 5.4.3.2 that random rankings

can also improve the true positive rates of worst-off items compared with personalized cold-start

recommendation algorithms. Hence, we also consider a Noise method which adds random noise

to the output of base cold-start recommendation models as another baseline, in which there is a

fairness-strength weight γ to control the amount of noise added.

Reproducibility

All models are implemented by Tensorflow [59] and optimized by Adam algorithm [60]. For

the four cold-start recommendation base models, we follow the hyper-parameter tuning strategies

in [7]. For the two proposed fairness-enhancement models, we assign the autoencoder ψ a single

hidden layer of dimension 100 with a linear activation function. For Gen, we assign the distri-

bution generator ϕ two hidden layers of dimension 50 with a tanh activation function. We tune

the fairness-strength weight α, β, γ in Gen, Scale, and Noise models by grid search on valida-

tion sets. Because there is a trade-off between the user-view utility and fairness, when tuning the

175

Table 5.14: Empirical results on ML1M dataset for all models. Reprinted with permission from
[13].

NDCG
MDG-all

Fairness: MDG
@15 @30 min10% min20% max10%

Heater 0.5516 0.5332 0.0525 0.0000 0.0000 0.2272
Noise 0.4240 0.4084 0.0482 0.0017 0.0046 0.1730
Scale 0.5282 0.5135 0.0755 0.0015 0.0066 0.2025
Gen 0.5379 0.5206 0.0719 0.0073 0.0136 0.2036

DN 0.5488 0.5316 0.0552 0.0000 0.0000 0.2294
Noise 0.4586 0.4420 0.0513 0.0010 0.0037 0.1876
Scale 0.5315 0.5150 0.0766 0.0015 0.0069 0.2057
Gen 0.5345 0.5175 0.0745 0.0075 0.0138 0.2055

DM 0.5312 0.5167 0.0572 0.0000 0.0001 0.2323
Noise 0.4406 0.4304 0.0543 0.0007 0.0032 0.1937
Scale 0.5058 0.4946 0.0726 0.0010 0.0047 0.2140
Gen 0.5144 0.5024 0.0730 0.0027 0.0071 0.2136

KNN 0.4402 0.4226 0.0646 0.0001 0.0020 0.2091
Noise 0.3450 0.3378 0.0591 0.0016 0.0053 0.1643
Scale 0.4181 0.4027 0.0712 0.0023 0.0084 0.1791
Gen 0.4158 0.4002 0.0724 0.0075 0.0140 0.1831

fairness-strength weights α and β, we try to preserve a relatively high NDCG@k for both methods

and analyze the fairness performance of them. All code, data, and settings will be available at

https://github.com/Zziwei/Fairness-in-Cold-Start-Recommendation.

5.4.5.2 RQ1: Fairness-Enhancement Performance

First, we investigate how do the two proposed methods perform in terms of improving fairness

and preserving recommendation utility. We first apply the two proposed methods and baseline

Noise to each of the four cold-start recommendation models. Results on the Ml1M dataset are

reported in Table 5.14, where we show results of the four cold-start recommendation base models.

The three rows following each of the cold-start recommendation base models are results of Noise,

Scale, and Gen with the given cold-start recommendation model as the base model (forming a

four-row group).

From Table 5.14, comparing the results before and after applying the two proposed methods

Scale and Gen, we have four major observations: (i) for all cold-start recommendation methods,

after applying the proposed models, the user-view utility decreases but with small percentages;

176

https://github.com/Zziwei/Fairness-in-Cold-Start-Recommendation

(a) 0∼50%-th items. (b) 50∼100%-th items.

Figure 5.26: Heater as base, MDG of items by different models. Reprinted with permission from
[13].
(ii) after applying Scale and Gen, the fairness among new items (evaluated by MDG-min10% and

MDG-min20%) is significantly improved; (iii) after applying proposed methods, the utility for

the best-served items (measured by MDG-max10%) decreases, but with a limited percentage as

well; and (iv) the item-view utility (evaluated by MDG-all) significantly increases after applying

Scale and Gen. This item-view utility improvement is due to that items originally under-served

by base models receive more utility from the two proposed models, leading to the improvement of

overall item-view utility even though the best-served items receive lower utility. Based on these

observations, we can conclude that Scale and Gen can significantly enhance the fairness among

new items; and they can also effectively preserve the user-view utility and improve the item-view

utility.

Next, we compare the performance between Noise, Scale, and Gen in Table 5.14. We can find

that Scale and Gen promote fairness to a greater extent with higher utility (both user-view and

item view) preserved than Noise, showing the effectiveness of the proposed framework and meth-

ods. Then, comparing Scale and Gen, under the circumstance that they produce similar user-view

utility: (i) Scale provides slightly higher item-view utility than Gen; but (ii) Gen delivers better

fairness-enhancement performance than Scale: Gen outperforms Scale for 295.68% for MDG-

min10% and 80.95% for MDG-min20%. As a result, we conclude that Gen can enhance fairness

for new items more effectively than Scale.

To better understand the effects of the proposed Scale and Gen, on the ML1M dataset, we sort

the recommended new items by MDG in ascending order and plot them in Figure 5.26 for Heater

177

Table 5.15: Results on 4 datasets for Heater as base model. Reprinted with permission from [13].

NDCG
MDG-all

Fairness: MDG
@15 @30 min10% min20% max10%

ML1M

Heater 0.5516 0.5332 0.0525 0.0000 0.0000 0.2272
Noise 0.4240 0.4084 0.0482 0.0017 0.0046 0.1730
Scale 0.5282 0.5135 0.0755 0.0015 0.0066 0.2025
Gen 0.5379 0.5206 0.0719 0.0073 0.0136 0.2036

ML20M

Heater 0.4408 0.4308 0.0187 0.0000 0.0000 0.1455
Noise 0.3600 0.3509 0.0184 0.0000 6e−6 0.1144
Scale 0.4166 0.4104 0.0302 0.0000 2.5e−5 0.1443
Gen 0.4265 0.4165 0.0296 0.0003 0.0014 0.1430

CiteULike

Heater 0.2268 0.2670 0.1833 0.0046 0.0251 0.5106
Noise 0.2095 0.2481 0.1779 0.0051 0.0259 0.4958
Scale 0.2202 0.2610 0.1867 0.0055 0.0270 0.5099
Gen 0.2187 0.2599 0.1869 0.0111 0.0332 0.5034

XING

Heater 0.2251 0.2762 0.1333 0.0028 0.0129 0.3821
Noise 0.2051 0.2553 0.1301 0.0038 0.0142 0.3561
Scale 0.2183 0.2701 0.1414 0.0038 0.0162 0.3801
Gen 0.2185 0.2712 0.1487 0.0093 0.0256 0.3755

and three fairness-enhancement methods with Heater as the base model. Figure 5.26a shows the

MDG for items belonging to the first half of the sorted list (from 0%-th to 50%-th items), and

Figure 5.26b shows the MDG for items belonging to the left half of the sorted list (from 50%-th

to 100%-th items). From these two figures, we see that compared to the base model Heater: both

Scale and Gen significantly increase MDG (better than Noise) for most items (around from 0%-th

to 90%-th in the sorted item list), which are originally under-served by Heater; and MDG for items

that are best-served by Heater (around 90%-th to 100%-th) are only slightly decreased by Scale

and Gen. Moreover, another interesting observation is that Gen improves the MDG of the worst-

served items better than Scale as shown in Figure 5.26a, while Scale promotes the MDG for items

between the worst-served and best-served (around 40%-th to 90%-th) more than Gen. This is the

reason why Gen outperforms Scale for fairness but Scale performs better for item-view utility as

in Table 5.14.

Last, in Table 5.15, we report the results of Heater and the three fairness-enhancement methods

with Heater as base model on all datasets. Similar conclusions can be drawn from these results:

for all different datasets, the proposed Scale and Gen can more effectively enhance the fairness for

178

(a) (b)

(c) (d)

Figure 5.27: Investigate impact of α, β, and γ on ML1M dataset: (a) shows the impact on
NDCG@30; (b) shows the impact on MDG-all; and (c) shows the impact on NDCG@30 and
MDG-max10% together. Reprinted with permission from [13].
new items and preserve the utility.

5.4.5.3 RQ2: Impact of Hyper-parameters

We next turn to study the impact of the fairness-strength weights α in Gen, β in Scale, and

γ in Noise. Recall that larger α, β, and γ lead to more strength for enhancing fairness. We run

experiments for Gen with α varying from 40 to 360 with step 40, Scale with β varying from 1 to

5 with step 0.5, and Noise with γ varying from 0.4 to 0.8 with step 0.5. In Figure 5.27a, we show

the results of NDCG@30 on the ML1M dataset, where v0 to v8 correspond to different values

of α, β, and γ in ascending order. The figure shows that with larger fairness-strength weights,

the user-view utility gets smaller for all methods. Then, we present how the item-view utility

(measured by MDG-all) changes when we increase the fairness-strength weights in Figure 5.27b.

We can observe that with weights increasing, MDG-all keeps increasing for both Scale and Gen,

but slowly decreases for Noise. Next, we show how fairness (MDG-min10%) changes with weights

increasing in Figure 5.27c, which demonstrates that all models improve fairness when the weights

179

Figure 5.28: Investigate group-level fairness on ML1M. Reprinted with permission from [13].
get larger.

For Figure 5.27a, Figure 5.27b, and Figure 5.27c, note that we cannot directly compare the

NDCG@30, MDG-all, and MDG-min10% between Scale, Gen, and Noise because the x-axis

(values of α, β, and γ) is not the same for these two methods. Therefore, to further compare

these three methods, we plot Figure 5.27d: the y-axis is MDG-min10%; the x-axis is NDCG@30;

each dot represents an experiment result of a model with a specific fairness-strength weight; and

weights are in decreasing order from left to right (for example, the leftmost dot for Gen corresponds

to the experiment with α = 360). Now, we can conclude from this figure that with the same user-

view utility preserved, Gen enhances fairness more effectively than Scale and Noise for different

fairness-strength weights.

5.4.5.4 RQ3: Impact on Group-level Fairness

The fairness we discussed so far is for individual items: we consider the difference among in-

dividual items as unfairness. Another widely investigated concept is group-level fairness: consider

the difference among different items groups determined by item attributes as unfairness [26, 24,

12]. Here, we want to study how do our proposed methods impact group-level fairness in cold-start

recommendation.

To be consistent to the measurement of fairness we study here, we evaluate the group-level fair-

ness by calculating the average MDG for the worst-off item group (the item group with the lowest

180

average MDG), which is also similar to the measurement of group-level fairness in a classifica-

tion task [152]. We denote the group-level fairness metric as MDG-min-group. For the ML1M

dataset, we show the group-level fairness results of all four cold-start recommendation base models

and their corresponding fairness-enhanced results by the three methods in Figure 5.28, where we

group items by the movie genres provided by ML1M dataset [96], and the worst-off movie genre

for all methods is ‘Documentary’. From Figure 5.28, we see that after applying the two proposed

methods and baseline Noise, the group-level fairness is significantly improved, and Gen performs

better than Scale and Noise. This result is reasonable and expected, because these methods improve

MDG for all under-served items, resulting in under-served groups consisting of under-served items

being promoted in general. This property is very helpful when group-level fairness is required but

no group attribute is accessible.

5.4.6 Summary

In this section, we investigate the fairness among new items in cold start recommenders. We

first empirically show the prevalence of unfairness in cold start recommenders. Then, to enhance

the fairness among new items, we propose a novel learnable post-processing framework as a solu-

tion blueprint and propose two concrete models – Scale and Gen – following this blueprint. Last,

extensive experiments show the effectiveness of the two proposed models for enhancing fairness

and preserving recommendation utility.

5.5 Conclusions

In this chapter, we study how to measure and enhance recommendation fairness in different

recommendation scenarios. First, we focus on how to enhance fairness for a multi-dimension rec-

ommendation task. We propose a fairness-aware tensor-based recommendation algorithm, which

is able to isolate and extract sensitive information in the latent factors and delivers fair recom-

mendation result by the non-sensitive latent factors. Then, we switch our attention to personalized

ranking recommender systems to directly measure and enhance fairness on ranking result instead

of the the predicted score, which is intermediate result in a real-world system. Specifically, we pro-

181

pose two new fairness measurements based on well-known concepts of statistical parity and equal

opportunity. Correspondingly, we also design a novel algorithm adopting the adversarial learning

technique, which is able to produce outstanding performance and is flexible to be applied to any

exisitng recommendation algorithms. At last, we target recommendation fairness in a cold-start

recommender system and aim to improve the fairness among new items with no historical feed-

back data. To tackle this problem, we propose a novel learnable post-processing framework as a

solution blueprint and propose two concrete models – Scale and Gen – following this blueprint.

Extensive experiments using real-world data have been conducted to show the state-of-the-art per-

formance of our developed algorithms.

182

6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

Recommender systems are essential conduits: they can shape the media we consume, the jobs

we seek, and even the friendships and professional contacts that form our social circles. With

such a wide impact, recommender systems can exert strong, but often unforeseen, and sometimes

even detrimental influence on the society in terms of culture, lifestyles, politics, education, ethics,

economic well-being, and even social justice. Hence, in this dissertation research, we aim to lay

the foundation for new responsible recommender systems by identifying, analyzing, and alleviating

potential risks and harms on users, item providers, the platforms, and ultimately the society.

Specifically, we make three unique contributions toward responsible recommender systems.

First, we study how to counteract the exposure bias in user-item interaction data. We first develop

a novel and effective combinational joint learning framework to deliver unbiased recommendation

with biased training data. And then, we further explore how to provide high-accuracy recommen-

dations in the scenario with extreme exposure bias. For this, we propose a new cold-start rec-

ommendation algorithm – Heater – utilizing a randomized training mechanism and a Mixture-of-

Experts Transformation structure. By extensive experiments, we show how our proposed methods

effectively counteract the exposure bias and outperform state-of-the-art baselines.

For the second contribution of this dissertation, we move our focus from the bias in data to the

bias in machine learning algorithms. We investigate how machine learning based recommendation

algorithms introduce bias on items and users in the system. We first introduce the popularity-

opportunity bias on items with empirical and theoretical study showing the existence of this bias.

Then, we develop a simple but powerful post-processing method for debiasing. Besides, we also

introduce the mainstream bias on users produced by recommendation algorithms, for which we

explore both global and local methods to address this problem. Extensive experiments demonstrate

that our proposed algorithms can effectively relieve the two different types of algorithmic bias.

At the end, our third contribution is to study how to measure and enhance fairness in rec-

ommender systems in different scenarios. First, we study how to enhance fairness in a multi-

183

dimension recommender system and develop a fairness-aware tensor-based model to achieve the

goal. Then, we turn to the personalized ranking recommender system. We introduce two new fair-

ness measurements directly based on ranking results and propose an adversarial learning based al-

gorithm for enhancing fairness in the personalized ranking system. At last, we investigate fairness

in the cold-start recommender system and develop a novel learnable post-processing framework

and a joint-learning generative model to improve fairness among cold-start items without any his-

torical interaction data. We conduct extensive experiments and show the outstanding performance

of the proposed models for enhancing fairness in different scenarios.

While in this dissertation, we make a substantial contribution toward identifying, analyzing,

and mitigating data bias, algorithmic bias, and fairness in recommendation, there are many re-

maining challenges and open questions waiting to be studied. For the future research directions,

we are specifically interested in three topics:

• Exploring the inherent relationship between different types of algorithmic bias. Al-

though many different types of bias produced by the recommendation algorithms are iden-

tified, and special characteristics corresponding to these various types of bias are revealed,

we hypothesize that there is an inherent close relationship between them. For example, in

Chapter 4, we show two very different types of bias – the popularity-opportunity bias on

items and the mainstream bias on users. Although they are defined in terms of different

stakeholders, it is not difficult to notice that the items a mainstream user likes are typically

popular items, and a popular item is usually liked by mainstream users. Hence, these two

types of bias are not independent. This induces us to plan to theoretically and empirically

analyze this relationship and develop a uniform solution to address the two types of bias

simultaneously by utilizing the uncovered relationship.

• Analyzing and Alleviating Long-term and Dynamic Impacts. Most of existing work in

the community (including works in this dissertation) focus on studying the unfairness/bias

in an offline and static manner. That is, the potential vicious impacts of algorithms are inves-

tigated by conducting a one-round experiment with offline data. However, these systems in-

184

fluence people over the long-term and dynamically adapt: users can be gradually influenced

by these systems, with this influence changing over time. This influence can not be identified

nor thoroughly analyzed by an offline, static experiment. In the future, we plan to further

contribute to this under-explored area by developing new tools to analyze the long-term and

dynamic impacts of recommender systems and new algorithms to address potential adverse

impacts in a long-term and dynamic way. Specifically, we are interested in answering the fol-

lowing research questions: How to design simulation experiments to analyze long-term and

dynamic impacts without access to real-world systems? How to audit real-world platforms

for their potential risks without access to internal systems? And how the unfairness in rec-

ommender systems incurs polarization globally and homogenization locally among people

over time? And how to alleviate these issues in a long-term and dynamic way?

• Improving security and privacy in recommender systems. Besides developing respon-

sibility by enhancing fairness and alleviating bias, another important topic toward respon-

sibility is to build trust between users and recommender systems. First, to be trustworthy,

users need to know that the systems are robust to data noise from users or item providers,

such as intentional and unintentional false behaviors from users and false information about

items from providers; and the systems should not be susceptible to attacks, such as fake re-

views to promote or demote target items. Second, to gain trust, the systems should provide

privacy protection for users. To achieve this, recommender systems need to enable users

to decide and control what data about or generated by them can be used by the machine

learning models. In the future, we plan to develop new algorithms to augment the robust-

ness and reliability, and also to endow the algorithms the ability to dynamically learn new

knowledge and forget learned knowledge based on users’ changing permission of access to

data. Specifically, we are interested in tackling the following research questions: How to

improve robustness of recommendation algorithms to data noise, including intentional and

unintentional false behaviors from users and false information about items from providers?

How to upgrade existing algorithms to defend against various attacks and threats? And how

185

to enable recommendation algorithms to protect user privacy by equipping them flexibility

to dynamically learn new knowledge and forget learned knowledge based on users’ changing

permission of access to data?

186

REFERENCES

[1] Z. Zhu, Y. He, Y. Zhang, and J. Caverlee, “Unbiased implicit recommendation and propen-

sity estimation via combinational joint learning,” p. 551–556, Fourteenth ACM Conference

on Recommender Systems, 2020.

[2] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle, “A meta-learning

perspective on cold-start recommendations for items,” in Advances in neural information

processing systems, pp. 6904–6914, 2017.

[3] S. Sedhain, A. K. Menon, S. Sanner, L. Xie, and D. Braziunas, “Low-rank linear cold-

start recommendation from social data,” Proceedings of the AAAI Conference on Artificial

Intelligence, 2017.

[4] J. Li, M. Jing, K. Lu, L. Zhu, Y. Yang, and Z. Huang, “From zero-shot learning to cold-start

recommendation,” Proceedings of the AAAI conference on artificial intelligence, 2019.

[5] M. Volkovs, G. Yu, and T. Poutanen, “Dropoutnet: Addressing cold start in recommender

systems,” p. 4957–4966, Advances in neural information processing systems, 2017.

[6] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Schmidt-Thieme, “Learning

attribute-to-feature mappings for cold-start recommendations.,” vol. 10, p. 176–185, 2010

IEEE International Conference on Data Mining, 2010.

[7] Z. Zhu, S. Sefati, P. Saadatpanah, and J. Caverlee, “Recommendation for new users and new

items via randomized training and mixture-of-experts transformation,” p. 1121–1130, Pro-

ceedings of the 43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2020.

[8] Z. Zhu, Y. He, X. Zhao, Y. Zhang, J. Wang, and J. Caverlee, “Popularity-opportunity bias

in collaborative filtering,” p. 85–93, Proceedings of the 14th ACM International Conference

on Web Search and Data Mining, 2021.

187

[9] Z. Zhu and J. Caverlee, “Fighting mainstream bias in recommender systems via local fine

tuning,” in Proceedings of the Fifteenth ACM International Conference on Web Search and

Data Mining, p. 1497–1506, 2022.

[10] Z. Zhu, X. Hu, and J. Caverlee, “Fairness-aware tensor-based recommendation,”

p. 1153–1162, Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, 2018.

[11] T. Kamishima and S. Akaho, “Considerations on recommendation independence for a find-

good-items task,” FATREC Workshop on Responsible Recommendation Proceedings, 2017.

[12] Z. Zhu, J. Wang, and J. Caverlee, “Measuring and mitigating item under-recommendation

bias in personalized ranking systems,” p. 449–458, Proceedings of the 43rd international

ACM SIGIR conference on research and development in information retrieval, 2020.

[13] Z. Zhu, J. Kim, T. Nguyen, A. Fenton, and J. Caverlee, “Fairness among new items in

cold start recommender systems,” in Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 767–776, 2021.

[14] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-

rado, W. Chai, and M. Ispir, “Wide deep learning for recommender systems,” p. 7–10,

Proceedings of the 1st workshop on deep learning for recommender systems, 2016.

[15] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A survey

and new perspectives,” ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[16] W. Niu, J. Caverlee, and H. Lu, “Neural personalized ranking for image recommendation,”

Proceedings of the eleventh ACM international conference on web search and data mining,

2018.

[17] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,”

p. 173–182, Proceedings of the 26th international conference on world wide web, 2017.

188

[18] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking for recommen-

dation,” The 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval, 2018.

[19] “Google’s algorithms discriminate against women and people of colour.”

[20] “Amazon scraps secret ai recruiting tool that showed bias against women.”

[21] M. D. Ekstrand and D. Kluver, “Exploring author gender in book rating and recommenda-

tion,” User Modeling and User-Adapted Interaction, pp. 1–44, 2021.

[22] “Youtube under fire for recommending videos of kids with inappropriate comments.”

[23] “The ‘filter bubble’ explains why trump won and you didn’t see it coming.”

[24] A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao, L. Hong, and E. H.

Chi, “Fairness in recommendation ranking through pairwise comparisons,” p. 2212–2220,

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, 2019.

[25] R. Burke, “Multisided fairness for recommendation,” 2017.

[26] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking in search recom-

mendation systems with application to linkedin talent search,” Proceedings of the 25th acm

sigkdd international conference on knowledge discovery & data mining, 2019.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian person-

alized ranking from implicit feedback,” Proceedings of the Twenty-Fifth Conference on

Uncertainty in Artificial Intelligence, 2009.

[28] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Advances in

artificial intelligence, vol. 2009, 2009.

[29] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender sys-

tems,” vol. 42, Computer, IEEE Computer Society Press Los Alamitos, CA, USA, 2009.

189

[30] R. He and J. McAuley, “Vbpr: Visual bayesian personalized ranking from implicit feed-

back,” Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

[31] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization meets the item embedding:

Regularizing matrix factorization with item co-occurrence,” Proceedings of the 10th ACM

conference on recommender systems, 2016.

[32] J. Wang and J. Caverlee, “Recommending music curators: A neural style-aware approach,”

European Conference on Information Retrieval, 2020.

[33] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee, “Next-item recommendation with

sequential hypergraphs,” Proceedings of the 43rd international ACM SIGIR conference on

research and development in information retrieval, 2020.

[34] F. Zhao and Y. Guo, “Improving top-n recommendation with heterogeneous loss,” Proceed-

ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016.

[35] T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims, “Recommendations

as treatments: Debiasing learning and evaluation,” 2016.

[36] H. Steck, “Training and testing of recommender systems on data missing not at random,”

p. 713–722, Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2010.

[37] H. Steck, “Evaluation of recommendations: rating-prediction and ranking,” p. 213–220,

Proceedings of the 7th ACM conference on Recommender systems, 2013.

[38] X. Wang, R. Zhang, Y. Sun, and J. Qi, “Doubly robust joint learning for recommendation on

data missing not at random,” p. 6638–6647, International Conference on Machine Learning,

PMLR, 2019.

[39] J. M. Hernández-Lobato, N. Houlsby, and Z. Ghahramani, “Probabilistic matrix factoriza-

tion with non-random missing data,” p. 1512–1520, International Conference on Machine

Learning, 2014.

190

[40] Y. Saito, “Asymmetric tri-training for debiasing missing-not-at-random explicit feedback,”

Proceedings of the 43rd International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, 2020.

[41] Y. Wang, D. Liang, L. Charlin, and D. M. Blei, “The deconfounded recommender: A causal

inference approach to recommendation,” arXiv preprint arXiv:1808.06581, 2018.

[42] D. Liang, L. Charlin, and D. M. Blei, “Causal inference for recommendation,” Causation:

Foundation to Application, Workshop at UAI. AUAI, 2016.

[43] B. M. Marlin and R. S. Zemel, “Collaborative prediction and ranking with non-random

missing data,” Proceedings of the third ACM conference on Recommender systems, 2009.

[44] H. Steck, “Item popularity and recommendation accuracy,” Proceedings of the fifth ACM

conference on Recommender systems, 2011.

[45] X. Zhao, Z. Zhu, Y. Zhang, and J. Caverlee, “Improving the estimation of tail ratings in

recommender system with multi-latent representations,” p. 762–770, Proceedings of the

13th International Conference on Web Search and Data Mining, 2020.

[46] L. Yang, Y. Cui, Y. Xuan, C. Wang, S. Belongie, and D. Estrin, “Unbiased offline recom-

mender evaluation for missing-not-at-random implicit feedback,” Proceedings of the 12th

ACM conference on recommender systems, 2018.

[47] Y. Saito, “Unbiased pairwise learning from biased implicit feedback,” p. 5–12, Proceedings

of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval,

2020.

[48] Y. Saito, “Unbiased pairwise learning from implicit feedback,” in NeurIPS 2019 Workshop

on Causal Machine Learning, 2019.

[49] V. , S. Dieleman, and B. Schrauwen, “Deep content-based music recommendation,”

p. 2643–2651, Advances in neural information processing systems, 2013.

191

[50] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix factorization,”

p. 650–658, Proceedings of the 14th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, 2008.

[51] M. Saveski and A. Mantrach, “Item cold-start recommendations: learning local collective

embeddings,” p. 89–96, Proceedings of the 8th ACM Conference on Recommender systems,

2014.

[52] I. Barjasteh, R. Forsati, F. Masrour, A.-H. Esfahanian, and H. Radha, “Cold-start item and

user recommendation with decoupled completion and transduction,” p. 91–98, Proceedings

of the 9th ACM Conference on Recommender Systems, 2015.

[53] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet collaborative

filtering,” p. 111–112, ACM, 2015.

[54] H. Lee, J. Im, S. Jang, H. Cho, and S. Chung, “Melu: Meta-learned user preference estimator

for cold-start recommendation,” p. 1073–1082, Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2019.

[55] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback datasets,”

p. 263–272, 2008 Eighth IEEE international conference on data mining, 2008.

[56] S. Kabbur, X. Ning, and G. Karypis, “Fism: factored item similarity models for top-n rec-

ommender systems,” p. 659–667, Proceedings of the 19th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, 2013.

[57] S. Bonner and F. Vasile, “Causal embeddings for recommendation,” p. 104–112, Proceed-

ings of the 12th ACM conference on recommender systems, 2018.

[58] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” p. 1257–1264, Ad-

vances in neural information processing systems, 2007.

[59] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, and M. Isard, “Tensorflow: a system for large-scale machine learning.,” vol. 16,

192

p. 265–283, 12th USENIX symposium on operating systems design and implementation

(OSDI 16), 2016.

[60] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[61] M. Kompan and M. Bieliková, “Content-based news recommendation,” International con-

ference on electronic commerce and web technologies, 2010.

[62] M. J. Pazzani and D. Billsus, Content-based recommendation systems, p. 325–341. The

adaptive web, Springer, 2007.

[63] R. Van Meteren and M. Van Someren, “Using content-based filtering for recommendation,”

in Proceedings of the Machine Learning in the New Information Age: MLnet/ECML2000

Workshop, pp. 47–56, 2000.

[64] S. Sedhain, S. Sanner, D. Braziunas, L. Xie, and J. Christensen, “Social collaborative filter-

ing for cold-start recommendations,” p. 345–348, Proceedings of the 8th ACM Conference

on Recommender systems, 2014.

[65] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outra-

geously large neural networks: The sparsely-gated mixture-of-experts layer,” 2017.

[66] C. Wang and D. M. Blei, “Collaborative topic modeling for recommending scientific ar-

ticles,” p. 448–456, Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2011.

[67] I. Cantador, P. L. Brusilovsky, and T. Kuflik, “Second workshop on information heterogene-

ity and fusion in recommender systems,” 2011.

[68] F. Abel, Y. Deldjoo, M. Elahi, and D. Kohlsdorf, “Recsys challenge 2017: Offline and on-

line evaluation,” p. 372–373, Proceedings of the eleventh acm conference on recommender

systems, 2017.

193

[69] Celma and P. Cano, “From hits to niches?: or how popular artists can bias music recom-

mendation and discovery,” Proceedings of the 2nd KDD Workshop on Large-Scale Recom-

mender Systems and the Netflix Prize Competition, 2008.

[70] H. Abdollahpouri, R. Burke, and B. Mobasher, “Managing popularity bias in recommender

systems with personalized re-ranking,” The thirty-second international flairs conference,

2019.

[71] H. Abdollahpouri, R. Burke, and B. Mobasher, “Controlling popularity bias in learning-

to-rank recommendation,” Proceedings of the eleventh ACM conference on recommender

systems, 2017.

[72] C. Anderson, The long tail: Why the future of business is selling less of more. Hachette

Books, 2006.

[73] E. Brynjolfsson, Y. J. Hu, and M. D. Smith, “From niches to riches: Anatomy of the long

tail,” 2006.

[74] Y.-J. Park and A. Tuzhilin, “The long tail of recommender systems and how to leverage it,”

Proceedings of the 2008 ACM conference on Recommender systems, 2008.

[75] D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac, “What recommenders recommend:

an analysis of recommendation biases and possible countermeasures,” 2015.

[76] G. Shani and A. Gunawardana, Evaluating recommendation systems. Recommender sys-

tems handbook, Springer, 2011.

[77] L. Chen, Y. Yang, N. Wang, K. Yang, and Q. Yuan, “How serendipity improves user satisfac-

tion with recommendations? a large-scale user evaluation,” The world wide web conference,

2019.

[78] H. Abdollahpouri and R. Burke, “Reducing popularity bias in recommendation over time,”

arXiv preprint arXiv:1906.11711, 2019.

194

[79] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Correcting popularity bias by enhancing

recommendation neutrality,” RecSys Posters, 2014.

[80] H. Steck, “Collaborative filtering via high-dimensional regression,” 2019.

[81] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, “The unfairness of popularity

bias in recommendation,” 2019.

[82] M. Schedl and C. Bauer, “Online music listening culture of kids and adolescents: Listening

analysis and music recommendation tailored to the young,” 1st International Workshop on

Children and Recommender Systems (KidRec 2017), co-located with 11th ACM Confer-

ence on Recommender Systems (RecSys 2017), 2017.

[83] M. D. Ekstrand, M. Tian, I. M. Azpiazu, J. D. Ekstrand, O. Anuyah, D. McNeill, and M. S.

Pera, “All the cool kids, how do they fit in?: Popularity and demographic biases in recom-

mender evaluation and effectiveness,” p. 172–186, PMLR, 2018.

[84] Y. Li, H. Chen, Z. Fu, Y. Ge, and Y. Zhang, “User-oriented fairness in recommendation,”

p. 624–632, Proceedings of the Web Conference 2021, 2021.

[85] Z. Fu, Y. Xian, R. Gao, J. Zhao, Q. Huang, Y. Ge, S. Xu, S. Geng, C. Shah, and Y. Zhang,

“Fairness-aware explainable recommendation over knowledge graphs,” p. 69–78, Proceed-

ings of the 43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2020.

[86] X. Zhao, Z. Zhu, M. Alfifi, and J. Caverlee, “Addressing the target customer distortion

problem in recommender systems,” p. 2969–2975, Proceedings of The Web Conference

2020, 2020.

[87] R. Z. Li, J. Urbano, and A. Hanjalic, “Leave no user behind: Towards improving the utility

of recommender systems for non-mainstream users,” p. 103–111, Proceedings of the 14th

ACM International Conference on Web Search and Data Mining, 2021.

195

[88] M. Choi, Y. Jeong, J. Lee, and J. Lee, “Local collaborative autoencoders,” p. 734–742,

Proceedings of the 14th ACM International Conference on Web Search and Data Mining,

2021.

[89] E. Christakopoulou and G. Karypis, “Local latent space models for top-n recommendation,”

p. 1235–1243, Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, 2018.

[90] J. Lee, S. Kim, G. Lebanon, and Y. Singer, “Local low-rank matrix approximation,”

p. 82–90, International conference on machine learning, 2013.

[91] J. Lee, S. Kim, G. Lebanon, Y. Singer, and S. Bengio, “Llorma: Local low-rank matrix

approximation,” Journal of Machine Learning Research, 2016.

[92] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational autoencoders for

collaborative filtering,” p. 689–698, Proceedings of the 2018 world wide web conference,

2018.

[93] A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, “Data decisions and theoretical implications

when adversarially learning fair representations,” 2017.

[94] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”

p. 3315–3323, Advances in neural information processing systems, 2016.

[95] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with adversarial

learning,” Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,

2018.

[96] H. F. Maxwell and J. A. Konstan, “The movielens datasets: History and context,” Acm

transactions on interactive intelligent systems (tiis), vol. 5, no. 4, p. 1–19, 2015.

[97] J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected world,”

Proceedings of the fifth ACM international conference on Web search and data mining,

2012.

196

[98] J. McAuley, C. Targett, Q. Shi, and V. Den, “Image-based recommendations on styles and

substitutes,” Proceedings of the 38th international ACM SIGIR conference on research and

development in information retrieval, 2015.

[99] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” 1987.

[100] B. Rastegarpanah, K. P. Gummadi, and M. Crovella, “Fighting fire with fire: Using antidote

data to improve polarization and fairness of recommender systems,” Proceedings of the

twelfth ACM international conference on web search and data mining, 2019.

[101] W. Liu and R. Burke, “Personalizing fairness-aware re-ranking,” 2018.

[102] S. Yao and B. Huang, “Beyond parity: Fairness objectives for collaborative filtering,”

p. 2921–2930, Advances in neural information processing systems, 2017.

[103] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender algorithms on top-n

recommendation tasks,” p. 39–46, Proceedings of the fourth ACM conference on Recom-

mender systems, 2010.

[104] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,”

p. 165–174, Proceedings of the 42nd international ACM SIGIR conference on Research and

development in Information Retrieval, 2019.

[105] Y. D. Challenge, “Yelp dataset challenge,” 2013.

[106] I. Ben-Gal, Outlier detection, p. 131–146. Springer, 2005.

[107] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based local

outliers,” p. 93–104, Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, 2000.

[108] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller,

and M. Kloft, “Deep one-class classification,” p. 4393–4402, International conference on

machine learning, PMLR, 2018.

197

[109] S. Yang, L. Liu, and M. Xu, “Free lunch for few-shot learning: Distribution calibration,”

International Conference on Learning Representations, 2020.

[110] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of

deep networks,” p. 1126–1135, International conference on machine learning, 2017.

[111] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” 2018.

[112] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, and L. Antiga, “Pytorch: An imperative style, high-performance deep learn-

ing library,” Advances in neural information processing systems, vol. 32, p. 8026–8037,

2019.

[113] B. Friedman and H. Nissenbaum, “Bias in computer systems,” ACM Transactions on Infor-

mation Systems (TOIS), vol. 14, no. 3, p. 330–347, 1996.

[114] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, “Algorithmic decision making

and the cost of fairness,” 2017.

[115] D. Pedreshi, S. Ruggieri, and F. Turini, “Discrimination-aware data mining,” p. 560–568,

Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining, 2008.

[116] C. Russell, M. J. Kusner, J. Loftus, and R. Silva, “When worlds collide: integrating differ-

ent counterfactual assumptions in fairness,” p. 6417–6426, Advances in neural information

processing systems, 2017.

[117] M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and A. Weller, “From parity to

preference-based notions of fairness in classification,” p. 228–238, Advances in Neural In-

formation Processing Systems, 2017.

[118] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representations,”

p. 325–333, International conference on machine learning, 2013.

198

[119] T. Kamishima, S. Akaho, H. Asoh, and I. Sato, “Model-based approaches for independence-

enhanced recommendation,” p. 860–867, 2016 IEEE 16th International Conference on Data

Mining Workshops (ICDMW), 2016.

[120] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Efficiency improvement of neutrality-

enhanced recommendation,” Human Decision Making in Recommender Systems (Deci-

sions@ RecSys’ 13), 2013.

[121] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Recommendation independence,” Con-

ference on fairness, accountability and transparency, 2018.

[122] F. Prost, H. Qian, Q. Chen, E. H. Chi, J. Chen, and A. Beutel, “Toward a better trade-off be-

tween performance and fairness with kernel-based distribution matching,” “ML with Guar-

antees” workshop at 33rd Conference on Neural Information Processing Systems, 2019.

[123] A. J. Biega, K. P. Gummadi, and G. Weikum, “Equity of attention: Amortizing individual

fairness in rankings,” p. 405–414, The 41st international acm sigir conference on research

& development in information retrieval, 2018.

[124] A. Singh and T. Joachims, “Fairness of exposure in rankings,” p. 2219–2228, Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

2018.

[125] A. Singh and T. Joachims, “Policy learning for fairness in ranking,” Advances in Neural

Information Processing Systems, 2019.

[126] A. Beutel, E. H. Chi, Z. Cheng, H. Pham, and J. Anderson, “Beyond globally optimal:

Focused learning for improved recommendations,” Proceedings of the 26th International

Conference on World Wide Web, 2017.

[127] A. Krishnan, A. Sharma, A. Sankar, and H. Sundaram, “An adversarial approach to im-

prove long-tail performance in neural collaborative filtering,” Proceedings of the 27th ACM

International Conference on Information and Knowledge Management, 2018.

199

[128] N. Hurley and M. Zhang, “Novelty and diversity in top-n recommendation–analysis and

evaluation,” 2011.

[129] H. Steck, “Calibrated recommendations,” p. 154–162, Proceedings of the 12th ACM con-

ference on recommender systems, 2018.

[130] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, “Enhancement of the neutrality in rec-

ommendation.,” in Decisions@ RecSys, pp. 8–14, 2012.

[131] S. Yao and B. Huang, “New fairness metrics for recommendation that embrace differences,”

arXiv preprint arXiv:1706.09838, 2017.

[132] Y. Koren, “Collaborative filtering with temporal dynamics,” Communications of the ACM,

vol. 53, no. 4, p. 89–97, 2010.

[133] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “Geomf: joint geographical modeling

and matrix factorization for point-of-interest recommendation,” p. 831–840, Proceedings of

the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,

2014.

[134] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for online recom-

mendation with implicit feedback,” p. 549–558, Proceedings of the 39th International ACM

SIGIR conference on Research and Development in Information Retrieval, 2016.

[135] H. Ge, J. Caverlee, and H. Lu, “Taper: A contextual tensor-based approach for personal-

ized expert recommendation.,” p. 261–268, Proceedings of the 10th ACM Conference on

Recommender Systems, 2016.

[136] S. Rendle, B. Marinho, A. Nanopoulos, and L. Schmidt-Thieme, “Learning optimal ranking

with tensor factorization for tag recommendation,” p. 727–736, Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data mining, 2009.

[137] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization for personal-

ized tag recommendation,” p. 81–90, Proceedings of the third ACM international conference

on Web search and data mining, 2010.

200

[138] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse recommendation:

n-dimensional tensor factorization for context-aware collaborative filtering,” p. 79–86, Pro-

ceedings of the fourth ACM conference on Recommender systems, 2010.

[139] T. Kamishima, S. Akaho, and J. Sakuma, “Fairness-aware learning through regularization

approach,” p. 643–650, 2011 IEEE 11th International Conference on Data Mining Work-

shops, 2011.

[140] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” vol. 51,

p. 455–500, SIAM review, SIAM, 2009.

[141] R. Burke, N. Sonboli, and A. Ordonez-Gauger, “Balanced neighborhoods for multi-sided

fairness in recommendation,” p. 202–214, Conference on fairness, accountability and trans-

parency, PMLR, 2018.

[142] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation,” p. 161–169,

Proceedings of the eleventh ACM conference on recommender systems, 2017.

[143] L. Lorigo, M. Haridasan, H. Brynjarsdóttir, L. Xia, T. Joachims, G. Gay, L. Granka, F. Pel-

lacini, and B. Pan, “Eye tracking and online search: Lessons learned and challenges ahead,”

Journal of the American Society for Information Science and Technology, vol. 59, no. 7,

p. 1041–1052, 2008.

[144] G. Louppe, M. Kagan, and K. Cranmer, “Learning to pivot with adversarial networks,”

Advances in neural information processing systems, 2017.

[145] J. Rawls, Justice as fairness: A restatement. Harvard University Press, 2001.

[146] C. D. Manning, H. Schütze, and P. Raghavan, Introduction to information retrieval. Cam-

bridge university press, 2008.

[147] J. Vig, S. Sen, and J. Riedl, “The tag genome: Encoding community knowledge to support

novel interaction,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 2, no. 3,

p. 1–44, 2012.

201

[148] R. Cañamares and P. Castells, “Should i follow the crowd?: A probabilistic analysis of the

effectiveness of popularity in recommender systems,” The 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval, 2018.

[149] T. T. Nguyen, P.-M. Hui, H. F. Maxwell, L. Terveen, and J. A. Konstan, “Exploring the

filter bubble: the effect of using recommender systems on content diversity,” p. 677–686,

Proceedings of the 23rd international conference on World wide web, 2014.

[150] M. Zhang and N. Hurley, “Avoiding monotony: improving the diversity of recommendation

lists,” Proceedings of the 2008 ACM conference on Recommender systems, 2008.

[151] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, “A kernel method for

the two-sample-problem,” p. 513–520, Advances in neural information processing systems,

2007.

[152] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain, X. Wang, and E. H. Chi, “Fair-

ness without demographics through adversarially reweighted learning,” Advances in neural

information processing systems, 2020.

202

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background and Motivation
	Dissertation Contributions
	Dissertation Overview

	Preliminaries
	Formalization of Recommender Systems
	Evaluation Metrics
	Matrix Factorization

	Counteracting Exposure Bias in User-item Interaction Data
	Related Work
	Addressing Exposure Bias
	Addressing Cold-start Problem

	Counteracting Exposure Bias via a Combinational Joint Learning Framework
	Introduction
	Proposed Combinational Joint Learning Framework
	Preliminaries
	Unbiased Propensity Estimation
	Combinational Joint Learning Framework

	Experiments
	Experimental Settings
	RQ1: Comparing Recommendation Performance
	RQ2: Investigating the Effectiveness of Estimated Propensity
	RQ3: Investigating the Impact of Hyper-parameter C and Residual Component

	Summary

	Tackling Cold-start Recommendation via Randomized Training and Mixture-of-Experts Transformation
	Introduction
	Proposed Cold-start Recommendation Model – Heater
	Cold-start Recommendation Formalization
	Heater Framework
	Randomized Training
	Mixture-of-Experts Transformation

	Experiments
	Experimental Settings
	RQ1: Heater vs. Baselines
	RQ2: Ablation Study
	RQ3: Impact of Hyper-parameters
	RQ4: Impact of Pretrained CF Quality

	Summary

	Conclusions

	Identifying and Mitigating Bias in Recommendation Algorithms
	Related Work
	Popularity Bias
	Bias on users

	Analyzing and Mitigating Popularity-opportunity Bias
	Introduction
	Preliminaries
	Data-driven Study
	Measuring uPO and iPO Bias
	Observations

	Theoretical Study
	Existence of Bias in MF
	Existence of Bias in BPR

	Proposed Debiasing Methods
	Post-processing: Popularity Compensation
	In-processing: Regularization

	Experiments
	Experimental Settings
	RQ1: Comparing Debiasing Performance
	RQ2: Case Study
	RQ3: Impact of Hyper-parameters

	Summary

	Analyzing and Mitigating Mainstream Bias
	Introduction
	Analyzing Mainstream Bias
	Preliminaries
	Evaluating Mainstream Level of Users
	Empirical Studies

	Mitigating Mainstream Bias
	Global Methods
	Local Method

	Experiments
	Experimental Settings
	RQ1: Compare Debiasing Performance
	RQ2: Ablation Study
	RQ3: Hyper-parameter Study

	Summary

	Conclusions

	Measuring and Enhancing Fairness in Recommendations
	Related Work
	Recommendation Fairness
	Topics Related to Fairness
	Cold-start Recommender Systems

	Enhancing Fairness in Multi-dimension Recommender Systems
	Introduction
	Preliminaries
	Notations
	Tensor-Based Recommendation
	Fairness in Recommendation

	Fairness-Aware Tensor-Based Recommendation
	Isolating Sensitive Features
	Extracting Sensitive Information
	Fairness-Aware Recommendation
	Optimization Algorithms

	Generalizing FATR
	Experiments
	Experimental Settings
	RQ1: Compare Matrix-based Methods
	RQ2: Compare Matrix vs. Tensor-Based Methods
	RQ3: Performance with Varying Bias and Sparsity
	RQ4: Multiple Features and Multiple Categories

	Summary

	Measuring and Enhancing Fairness in Personalized Ranking Recommender Systems
	Introduction
	Fairness in Personalized Ranking
	Bayesian Personalized Ranking
	Fairness Metrics for Personalized Ranking
	Data-driven Study

	Proposed Method
	Enhancing Score Distribution Similarity
	Individual User Score Normalization
	Model Training

	Experiments
	Experimental Settings
	RQ1: Effects of Model Components
	RQ2: Comparison with Baselines
	RQ3: Impact of Hyper-Parameters

	Summary

	Enhancing Fairness in Cold-start Recommender Systems
	Introduction
	Fairness Among New Items
	Cold-start Recommendation

	Formalizing Fairness
	Measuring Utility for Items
	Data-Driven Study

	Fairness Enhancement Approaches
	Learnable Post-processing Framework
	The Joint-learning Generative Method
	The Score Scaling Method

	Experiments
	Experimental Settings
	RQ1: Fairness-Enhancement Performance
	RQ2: Impact of Hyper-parameters
	RQ3: Impact on Group-level Fairness

	Summary

	Conclusions

	Conclusion and Future Research Opportunities
	REFERENCES

