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ABSTRACT

Machine learning plays a significant role in powering artificial intelligence advances in many

areas like natural language processing and personalized recommendation, aiming to build models

to fit the labeled training data and then predict on the held-out testing data. A key challenge for

these machine learning models is the imbalance between scarce labeled data and continuously in-

creased model capacity. On the one hand, the labeled data of many tasks is scarce because human

annotations are expensive, which is especially true for some specialized domains like biomedical.

On the other hand, the capacity of models are growing continuously in the last decade, with param-

eters ranging from millions to billions. Without enough labeled data, such large-scale models may

overfit on low-resource tasks, resulting in performance deterioration. Recently, many work demon-

strate that transferring useful knowledge from pre-training stages or jointly trained related tasks to

the target task may alleviate the label scarcity problem and significantly boost the performance of

the target task. Despite the prominence achieved in the recent work, there are still many challenges

and open problems to be explored for the knowledge transfer. First, transferring domain-specific

knowledge from pre-training stages to large-scale language models remains under-explored, which

limits the performance of natural language understanding over the corresponding domains. Sec-

ond, training multiple tasks jointly hinders the performance on individual tasks, which is more

serious in transformer-based multi-task co-training because all tasks share a single set of param-

eters. Third, transferring knowledge from the source might have a negative impact on the target

learner, leading to worse results than training the target task alone. To overcome these challenges,

three contributions are made in this dissertation:

• To transfer disease knowledge to enhance BERT-like language models over health-related

tasks, we propose a new pre-training procedure named disease knowledge infusion, which

efficiently exploit the self-supervised learning signals of Wikipedia pages.

• The second contribution is a novel method named HyperPrompt that utilizes HyperNetworks

ii



to generate task-conditioned prompts for multi-task learning, where the task-specific knowl-

edge can be flexibly shared via the HyperNetworks.

• To alleviate the negative transfer problem from the perspective of gradient magnitudes, we

propose a novel algorithm named MetaBalance to dynamically and adaptively balance the

gradients of auxiliary tasks to better assist the target task.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background

Machine learning [54] is one of today’s most rapidly growing and impactful technical fields.

At its core, machine learning typically aims to build a model to fit the training data of a task and

then predict on the held-out testing data. This approach has led to wide application in many areas

like health care [14], manufacturing [128], education [5], financial modeling [25], and marketing

[80].

In the past decade, machine learning has seen rapid growth in both model capacity – e.g., many

widely-deployed models have millions or even billions of parameters – and in computing capa-

bilities to support such large models – e.g., the adoption of GPUs and specialized processors like

Google’s Tensor Processing Unit (TPU). This dramatic progression has opened new opportunities

for machine learning to have impact on many areas such as computer vision (CV) [43], natural

language processing (NLP) [114] and personalized recommendation [23].

A key challenge for these large machine learning models is the imbalance between scarce

labeled data and continuously increased model capacity. On the one side, the labeled data of

many tasks is scarce. For example, the paraphrase identification dataset MRPC [31] only contains

5,801 sentence pairs. Moreover, such a scarcity problem becomes more serious in specialized

domains like biomedicine because expensive domain experts are required to manually annotate

datasets [46, 86]. On the other side, the capacity of models is growing continuously. For example,

pre-trained language models have evolved from ELMo [87] with 94M parameters to GPT-3 [17]

with over 175B parameters in just two years. Without enough labeled data, such large-scale models

may overfit on low-resource tasks, resulting in poor performance.

1.2 Knowledge Transfer

To overcome this challenge, we hypothesize that transferring useful knowledge from other re-

sources to these large models may alleviate the label scarcity problem, while delivering improved
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performance in the target tasks or domains. Indeed, this direction of knowledge transfer has re-

cently begun attracting more and more attention. Especially, recent models have larger and larger

capacity to accumulate knowledge through multiple related stages [39] or simultaneously learn

multiple related tasks [139]. Supported by this related work, this dissertation focuses on transfer-

ring useful knowledge through multi-stage learning and multi-task learning.

1.2.1 Transfer via Multi-Stage Learning

Traditionally, a machine learning model’s parameters are randomly initialized and then itera-

tively updated (e.g., through back-propagation). In other words, the model is trained from scratch

and the only source of the task knowledge is the labeled training set of the target task, as shown

in Figure 1.1.A. However, as introduced before, a low-resource task might not be enough to fully

tune the (millions of) parameters of a large-scale model, leading to performance degeneration.

In one exciting direction, the traditional single stage can be extended to a new style of multi-

stage learning as shown in Figure 1.1.B, which has shaken natural language understanding (NLU)

with dramatic successes in recent years, enabled by Transformer-based pre-trained language mod-

els (PLMs) such as (1) BERT [28], ALBERT [61] and Roberta [77] (the encoder of Transformer

[114]); (2) GPT2 [90] and GPT3 [17] (the decoder of Transformer); and (3) T5 [91] and BART

[65] (the encoder and decoder of Transformer).

Originally, there are two stages [28]: pre-training and fine-tuning. Recent research [39] also

shows that an intermediate domain/task adaptive pre-training between the general pre-training and

fine-tuning is also helpful.

General Pre-training Stage. In this stage (Figure 1.1.B.1), these models capture general-purpose

knowledge of a language [89, 94] in their parameters via self-supervised training tasks over large-

scale unannotated data. For example, T5 [91] is pre-trained on a web crawled text collection1

(about 750 GB). A typical pre-training task is Masked Language Modeling (MLM) [28]: ran-

domly mask some (e.g., 15%) tokens from a sentence and then predict the masked tokens given the

unmasked context, which is used in bi-directional attention PLMs like BERT. Via MLM, PLMs
1https://www.tensorflow.org/datasets/catalog/c4
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Figure 1.1: Knowledge transfer via multi-stage and multi-task learning. Blue dataset represents
the labeled training set while brown dataset represents the testing (unlabeled) or validation
(labeled) set. The blue line with arrow indicates that the dataset is fed into a model. The
green line with arrow indicates that the model infers on the testing/validation set. The orange
line with arrow indicates the knowledge transfer. (A) Single task with single stage learning:
the model is trained on the labeled training set and then infer on the testing/validation set
of the same task; (B) Multi-stage learning: (B.1) a PLM is first pre-trained over large-scale
general unlabeled datasets (like Wikipedia or crawled web pages) to learn the general-purpose
knowledge; (B.2) and then pre-train the same PLM over domain or task-specific unlabeled
datasets (like PubMed) to learn the domain or task-specific knowledge; (B.3) finally, the PLM
is fine-tuned over the target task as the same procedure as A. The knowledge learned from these
pre-training stages can be transferred to improve the downstream task; (C) Multi-task learning
– multiple tasks are trained together on the same model, which has two scenarios: (C.1) The
tasks are equally important and the high testing performance required for each task. Hence,
we are interested in the transferring of task-specific knowledge between the tasks; (C.2) The
high testing performance is only required for target task and the role of auxiliary tasks is to
assist the target task. Hence, only the knowledge transfer from the auxiliary tasks to the target
task is of interest.

3



can learn the basics of language knowledge – e.g., we normally say “a gallon of milk" rather than

“a of gallon milk" (syntax error) or “a pair of milk" (semantic error).

Fine-tuning Stage. In this stage (as shown in Figure 1.1.B.3), these models are further trained

over the labeled training set of downstream tasks. With the vast amount of knowledge transferred

from the pre-training stage, the label scarcity problem can be significantly alleviated, while these

PLMs achieve the state-of-the-art (SOTA) performance over NLU benchmarks like GLUE [116]

and SuperGLUE [117]. Moreover, the extreme cases of the label scarcity problem are few-shot

learning [121] and zero-shot learning [119], where large-scale PLMs also obtain promising results.

For example, GPT-3 can only see a few examples as the prompts and then achieve results even as

good as SOTA models with fitting the full training set.

Domain/Task-Adaptive Pre-training. Recently, as shown in Figure 1.1.B.2, more and more re-

searchers [6, 39, 62, 86] conduct a domain or task-adaptive pre-training after the general pre-

training and before the fine-tuning, which aims to to incorporate models with the knowledge of

a specific domain or task. Specifically, they continue to train already-pre-trained PLMs over un-

labeled datasets of a specific domain or the unlabeled training set for a given task. For example,

Gururangan et al. [39] continue training an already-pre-trained Roberta over unlabeled datasets

(like articles) of biomedical, computer science and news domain respectively and achieve better

performance than the model without such domain-adaptive pre-training on the downstream task of

the corresponding domain.

Knowledge Transfer through the Stages. In summary, multi-stage learning is an effective way

to alleviate the imbalance between scarce labeled training data and continuously increased model

capacity, as introduced in Section 1.1. Rather than randomly initializing the weights of a model as

in traditional single stage learning, multi-stage learning enables the model’s parameters to be well-

updated before the fine-tuning and hence already imbues the model with vast amount of language,

domain and task knowledge. Through the multiple stages, the knowledge learned from the previous

stages can be accumulated in the same model and finally be transferred to boost the target task,

which outperforms the single stage learning relying only on the scarce training set.
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1.2.2 Transfer via Multi-Task Learning

In a complementary direction, single task learning (train only one task on the model) can be

expanded to multi-task learning [139], which is to train multiple tasks simultaneously on the same

model as shown in Figure 1.1.C and hence the task-specific knowledge can be transferred via the

shared model between the tasks to alleviate the label scarcity problem. Compared with multi-stage

learning, multi-task learning has been studied over decades but there are new challenges recently,

which will be detailed in the next section.

There are two scenarios of multi-task learning: (i) when the tasks are equally important, and

(ii) when there is a target task supported by auxiliary tasks.

Tasks are equally important. In the first scenario as shown in Figure 1.1.C.1, all tasks have

the same priority and the goal is to improve the performance of all tasks (at least most tasks).

Hence, we are interested in the performance over the testing set of each task and the knowledge

sharing that benefits all the tasks. An example in computer vision is that a multi-task model can be

designed to learn depth regression, semantic segmentation, and instance segmentation to create a

complete scene understanding system [57], where the three tasks can reinforce each other. In the

area of NLP, HyperGrid [106] jointly trains the tasks of GLUE or SuperGLUE on a Transformer-

based language model, leading to the observation that low-resource tasks are improved due to the

knowledge transferred from the high-resource tasks. Multi-task learning has been widely applied to

model various user behaviors in recommender systems. Lu et al. [78] and Wang et al. [118] design

multi-task models to jointly optimize the recommendation task and the corresponding explanation

task.

Target task with auxiliary task. As shown in Figure 1.1.C.2, another scenario is to transfer

knowledge from auxiliary tasks to improve a primary/target task, which is an example of the auxil-

iary learning paradigm [51, 67]. While multi-task learning aims to improve the performance across

all tasks, auxiliary learning differs in that high test accuracy is only required for the target task, and

the role of the other tasks is to assist in generalization of the primary task. Auxiliary learning has

been widely used in many areas. For example, in social recommendation [38, 79, 120], knowledge
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can be transferred from the social network to improve personalized recommendations via training

the target task simultaneously with auxiliary tasks like predicting the connections or trust among

users. In speech recognition, Toshniwal et al. [109] apply auxiliary supervision from phoneme

recognition to improve the performance of conversational speech recognition. In computer vision,

Liebel at al. [67] propose auxiliary tasks such as the global description of a scene to boost the

performance for single scene depth estimation.

Knowledge Transfer through Shared Parameters. In summary, multi-task learning is another

effective way to alleviate the imbalance between scarce labeled training data and continuously

increased model capacity, as introduced in Section 1.1. No matter the scenario, the shared param-

eters of the multi-task model are updated jointly by all tasks and hence each task could receive

more supervised signals than training it alone to alleviate the label scarcity problem and achieve

potentially higher generalization ability.

1.3 Challenges to Conduct Knowledge Transfer

While these previous work offer promises of multi-stage learning and multi-task learning –

and demonstrate the importance of transferring knowledge from the pre-training stages and jointly

learned tasks to alleviate the label scarcity problem – there are still key technical challenges that

may limit the effectiveness and efficiency of the knowledge transfer. In particular, this dissertation

identifies three challenges:

• Lack of Domain-Specific Knowledge: transferring domain-specific knowledge from pre-

training stages to large-scale language models remains under-explored. Without sufficient

knowledge of a specific domain, the performance of fine-tuning PLMs remains limited for

NLU tasks on the corresponding domain. For example, we observe that BERT-base only

achieves the accuracy of 0.729 on a paraphrase identification dataset2 of computer science

domain [46]. As introduced in Section 1.2.1, when PLMs are fine-tuned on the labeled

training set of a task, their knowledge learned from pre-training stages is leveraged to im-

prove their performance on the task. However, the general pre-training stage is designed to
2https://github.com/heyunh2015/PARADE_dataset
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learn the general-purpose language knowledge, where domain-specific knowledge has not

been paid enough attention. The recent developed domain adaptive pre-training (DAPT)

[39] stage aims to incorporate domain knowledge via further training the already-pre-trained

models over unlabeled domain-specific datasets. For example, BioBERT [62] is obtained via

training BERT over biomedical papers. However, DAPT still applies masked language mod-

eling (MLM) as the pre-training task as in the general pre-training stage. In our work [46],

we observe that simply using MLM over the domain-specific dataset can only slightly im-

prove the performance. Hence, new pre-training techniques are required for more effectively

infusing the domain-specific knowledge into PLMs.

• Task Interference [55]: training multiple tasks jointly hinders the performance on individual

tasks, which has been studied for decades in general multi-task learning area [113]. Re-

cently, Transformer-based language models like T5 and BART pose new challenges, which

are unified text-to-text frameworks where all tasks share the same encoder-decoder archi-

tecture. For such universal modules, multi-task learning simply corresponds to mixing task

data sets together and there are no task-specific parameters (e.g., prediction layer) for each

task. Hence, inevitable task conflicts and difficulty in fitting all models within a single set

of hard parameters is a challenging problem for transformer-based multi-task co-training.

For example, previous work Raffel et al. [92] shows that co-learning all tasks together on a

pre-trained Transformer model is inferior to fine-tuning the model for each task separately.

• Negative Transfer [138]: transferring knowledge from auxiliary tasks might have a negative

impact on the target task. As introduced in Section 1.2.2, when the target task is trained

simultaneously with several auxiliary tasks on the same model, the additional supervised

signals can be transferred from the auxiliary tasks to the target task and alleviate the label

scarcity problem. However, we observe that the performance of co-training the target task

with the auxiliary tasks might be even worse than training it alone [47]. One of the possible

reasons for such negative transfer is the divergence between the auxiliary tasks and target
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tasks (or domains) [123, 138]. Interestingly, we observe that another key challenge to trans-

fer knowledge from auxiliary tasks is the potential for a significant imbalance of gradient

magnitudes, which can negatively affect the performance of the target task. Hence, more

thinking and studies to uncover the reasons are required to alleviate the negative transfer.

1.4 Research Questions and Our Contributions

To overcome the challenges introduced above, this dissertation makes three unique contribu-

tions towards intelligent knowledge transfer for multi-stage and multi-task learning. Our contribu-

tions are guided by the following research questions:

• How to transfer domain-specific knowledge from pre-training stages to large-scale PLMs

for downstream domain-specific NLP tasks? (Chapter 2) Disease is one of the fundamental

biological entities in biomedical research and disease knowledge is required in many im-

portant health-related NLP tasks such as consumer health question answering, medical lan-

guage inference and disease name recognition. First, we propose a new disease knowledge

infusion training procedure to explicitly augment BERT-like PLMs with the disease knowl-

edge. Disease knowledge infusion can be seen as a specialized domain-adaptive pre-training

stage, which is between the general pre-training and fine-tuning. Specifically, the structure

of Wikipedia pages is exploited as self-supervised learning signals for PLMs to learn the se-

mantic relations between a disease-descriptive text and its corresponding aspect and disease.

Extensive experiments show that the integration of PLMs with the disease knowledge can

improve the performance on the health-related NLU tasks.

• How to flexibly share knowledge between multiple tasks for Transformer-based multi-task

co-training? (Chapter 3) Second, we introduce HyperPrompt, a natural but novel extension

of Prompt-Tuning [63] to multi-task learning for language understanding. HyperPrompt in-

troduces task-conditioned hyper-prompts that conditions the model on task-specific informa-

tion for constructing these prompts. We further improve upon this by introducing task-aware

and layer-aware HyperNetworks [40] that parameterize and generate weights for the prompt

8



generation process. The usage of HyperNetwork imbues our model with the necessary flex-

ibility of sharing task-dependent knowledge between the multiple co-trained tasks. Hyper-

Prompt outperforms strong baselines on well-established benchmarks like SuperGLUE.

• How to intelligently and flexibly transfer the knowledge from auxiliary tasks to improve the

target task? (Chapter 4) We observe that a significant imbalance of gradient magnitudes be-

tween the target task and the auxiliary tasks might cause the negative transfer and degenerate

the performance of the target task. To overcome this challenge, we propose a novel algo-

rithm MetaBalance to prioritize the target task via preventing auxiliary tasks from being so

strong that they dominate the target task or too weak to help the target task. Specifically, the

gradients of auxiliary tasks can be balanced dynamically throughout the training process and

adaptively for different subsets of the shared parameters, which is more flexible than fixed

weights for task losses. Extensive experiments over two real-world user behavior datasets

show the effectiveness and flexibility of MetaBalance.
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2. INFUSING DISEASE KNOWLEDGE INTO PRE-TRAINED LANGUAGE MODELS FOR

BIOMEDICAL LANGUAGE UNDERSTANDING1

In this chapter, we demonstrate how to transfer specialized domain knowledge from pre-

training stages into PLMs for enhancing their performance over downstream natural language

understanding (NLU) tasks, which is the first challenge as introduced in Section 1.3. In partic-

ular, we focus on infusing disease knowledge into PLMs to improve health-related tasks such as

consumer health question answering, medical language inference and disease name recognition.

Specifically, we propose a new pre-training method named disease knowledge infusion, where the

structure of Wikipedia pages is exploited as self-supervised learning signals for PLMs to learn the

disease knowledge.

2.1 Introduction

Human disease is “a disorder of structure or function in a human that produces specific signs

or symptoms” [85]. Disease is one of the fundamental biological entities in biomedical research

and consequently it is frequently searched for in the scientific literature [50] and on the internet

[18]. Knowledge of a disease includes information about various aspects of the disease, like the

signs and symptoms, diagnosis, and treatment [34, 97, 111]. As an example, Table 2.1 highlights

several aspects for COVID-19. Specialized disease knowledge is critical for many health-related

and biomedical NLP tasks, including:

• Consumer health question answering [3] - the goal is to rank candidate passages for answer-

ing questions like “What is the diagnosis of COVID-19?” as shown in Figure 2.1a;

• Medical language inference [95] - the goal is to predict if a given hypothesis (description of

a patient) can be inferred from a given premise (another description of the patient);

1This chapter is reprinted with permission from “Infusing Disease Knowledge into BERT for Health Question
Answering, Medical Inference and Disease Name Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and
James Caverlee, 2020. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Copyright 2020 by ACL.
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Table 2.1: Disease knowledge of COVID-19 is presented from three aspects: symptoms, diagno-
sis and treatment (based on Wikipedia). Reprinted with permission from “Infusing Disease
Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name
Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP
2020.

Disease Aspect Information

COVID-19 symptoms
Fever is the most common symptom,
but highly variable in severity and
presentation, with some older...

COVID-19 diagnosis
The standard method of testing is
real-time reverse transcription poly-
merase chain reaction (rRT-PCR)...

COVID-19 treatment
People are managed with supportive
care, which may include fluid therapy,
oxygen support, and supporting...

• Disease name recognition [30] - the goal is to detect disease concepts in text.

For these tasks, it is critical for NLP models to capture disease knowledge, that is the semantic

relations between a disease-descriptive text and its corresponding aspect and disease:

• As shown in Figure 2.1a, if models can semantically relate “...real-time reverse transcription

polymerase chain reaction...” (disease-descriptive text) to the diagnosis (aspect) of COVID-

19 (disease), it is easier for them to pick up the most relevant answer among the candidates.

• Likewise, as shown in Figure 2.1b, if models know that the premise is the symptoms (as-

pect) of Aphasia (disease) in the hypothesis, they can easily predict that it is entailment not

contradiction.

• Another example is shown in Figure 2.1c, if models can semantically relate “CTG expan-

sion’ to the cause (aspect) of Myotonic dystrophy (disease), it is easier for them to detect this

disease.

In a nutshell, NLP models require the disease knowledge for these disease-related tasks.
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Question: …keen to learn how to get COVID-19 diagnosed, many thanks

Answer 1: ... real-time reverse transcription polymerase chain reaction...
Answer 2: ... diagnosis of vipoma requires demonstration of diarrhea...
Answer 3: ...affected by this disorder are not able to make lipoproteins…

Label: Answer 1 is the most relevant
Disease Knowledge: Answer 1 is the diagnosis of COVID-19

(a) Consumer Health Question Answering

Premise: She was not able to speak, but appeared to comprehend well

Hypothesis: Patient had aphasia
Label: entailment
Disease Knowledge: Premise describes the symptoms of aphasia

(b) Medical Language Inference

Text: Myotonic dystrophy (DM) is caused by a CTG expansion in the 3 
untranslated region of the DM gene.

Label: Myotonic dystrophy 
Disease Knowledge: the text contains the cause of Myotonic dystrophy 

(c) Disease Name Recognition

Figure 2.1: Examples of tasks that can benefit from disease knowledge. Reprinted with permis-
sion from “Infusing Disease Knowledge into BERT for Health Question Answering, Medical
Inference and Disease Name Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and
James Caverlee, EMNLP 2020.

In recent years, the family of Transformer-based pre-trained language models (PLMs) such

as BERT [27], XLNet [132], RoBERTa [77], ALBERT [60] and T5 [92] has shaken NLP field

with dramatic success in many benchmark tasks [36, 116, 117], with the multi-stage learning.

As introduced in Section 1.2.1, the general pre-training stage aims to imbue the model with the

syntactic and semantic knowledge of a language [89, 94] – we normally say a gallon of milk" rather

than a of gallon milk" (syntax error) or a pair of milk" (semantic error). After that, PLMs are fine-

tuned over labeled datasets of downstream tasks like text classification and the captured language

knowledge is leveraged in this stage. Since the domain-specific knowledge has not been paid

enough attention in the general pre-training stage, the performance of PLMs over the corresponding

domain’s NLP tasks remain limited.

Recently, conducting additional domain-adaptive pre-training (DAPT) [39] as an intermediate

stage between the pre-training and fine-tuning has received more and more attention. In biomedical
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domain, BioBERT [62], SciBERT [12], ClinicalBERT [6] and BlueBERT [86] report new SOTA

performance on several biomedical tasks. Specifically, these Bio-PLMs are obtained via training

a general-pre-trained BERT [27] over biomedical corpora like PubMed1 via predicting randomly

masked tokens given their context, which is the masked language model (MLM) [27] task. This

MLM strategy is designed to capture the semantic relations between random masked tokens and

their context, but not the disease knowledge. Because the corresponding disease and aspect might

not be randomly masked or might not be mentioned at all in the disease-descriptive text, the se-

mantic relations between them cannot be effectively captured via MLM. Therefore, a new training

strategy is required to capture this disease knowledge.

Hence, we propose a new disease knowledge infusion training procedure to explicitly augment

PLMs with the disease knowledge, which serves as a specialized domain-adaptive pre-training

between the general pre-training and fine-tuning. The core idea is to train PLMs to infer the cor-

responding disease and aspect from a disease-descriptive text, enabled by self-supervised signals

from Wikipedia. Given a passage extracted from a section (normally describes an aspect) of a

disease’s Wikipedia article, PLMs are trained to infer the title of the corresponding section (aspect

name) and the title of the corresponding article (disease name). To evaluate the quality of disease

knowledge infusion, we conduct experiments on a suite of BERT models – including BERT, Blue-

BERT, ClinicalBERT, SciBERT, BioBERT, and ALBERT – over consumer health question (CHQ)

answering, medical language inference, and disease name recognition. We find that (1) these mod-

els can be enhanced in nearly all cases. For example, accuracy of BioBERT on CHQ answering is

improved from 68.29% to 72.09%; and (2) our method is superior to MLM for infusing the disease

knowledge. Moreover, new SOTA results are observed in two datasets. These results demonstrate

the potential of disease knowledge infusion into pre-trained language models like BERT.

2.2 Related Work

Knowledge-Enriched BERT: Incorporating external knowledge into BERT has been shown to be

effective. Such external knowledge includes world (factual) knowledge for tasks such as entity

1https://pubmed.ncbi.nlm.nih.gov/
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typing and relation classification [72, 88, 129, 140], sentiment knowledge for sentiment analysis

[107, 133], word sense knowledge for word sense disambiguation [64], commonsense knowledge

for commonsense reasoning [59] and sarcasm generation [20], legal knowledge for legal element

extraction [141], numerical skills for numerical reasoning [37], and coding knowledge for code

generation [130].

Biomedical BERT: BERT can also be enriched with biomedical knowledge via pre-training over

biomedical corpora like PubMed, as in BioBERT [62], SciBERT [12], ClinicalBERT [6] and Blue-

BERT [86]. These biomedical BERT models report new SOTA performance on several biomedical

tasks. Disease knowledge, of course, is a subset of biomedical knowledge. However, there are

two key differences between these biomedical BERT models and our work: (1) Many biomedical

BERT models are pre-trained via BERT’s default MLM that predicts 15% randomly masked to-

kens. In contrast, we propose a new training task: disease knowledge infusion, which infers the

disease and aspect from the corresponding disease-descriptive text; (2) Biomedical BERT models

capture the general syntactic and semantic knowledge of biomedical language, while our work is

specifically designed for capturing the semantic relations between a disease-descriptive text and

its corresponding aspect and disease. Experiments reported in Section 4.5 show that our proposed

method can improve the performance of each of these biomedical BERT models, demonstrating

the importance of disease knowledge infusion.

Biomedical Knowledge Integration Methods with UMLS: Previous non-BERT methods con-

nect data of downstream tasks with knowledge bases like UMLS [95, 100]. For example, they map

medical concepts and semantic relationships in the data to UMLS. After that, these concepts and

relationships are encoded into embeddings and incorporated into models [100]. The advantage is

that they can explicitly incorporate knowledge into models. However, these methods have been

outperformed by biomedical BERT models such as BioBERT in most cases.

2.3 Proposed Method: Disease Knowledge Infusion Training

In this section, we propose a new training task: Disease Knowledge Infusion Training, serv-

ing as a specialized domain-adaptive pre-training between the general pre-training and fine-tuning.
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Table 2.2: Eight aspects of knowledge of a disease that are considered in this work. Reprinted with
permission from “Infusing Disease Knowledge into BERT for Health Question Answering,
Medical Inference and Disease Name Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin
Chen and James Caverlee, EMNLP 2020.

Aspect Name Definition

Information The general information of a disease.
Causes The causes of a disease.
Symptoms The signs and symptoms of a disease.
Diagnosis How to test and diagnose a disease.
Treatment How to treat and manage a disease.
Prevention How to prevent a disease.
Pathophysiology The physiological processes of a disease.
Transmission The means by which a disease spread.

Our goal is to integrate BERT-like pre-trained language models with disease knowledge to achieve

better performance on a variety of medical domain tasks including answering health questions,

medical language inference, and disease name recognition. Our approach is guided by three ques-

tions: Which diseases and aspects should we focus on? How do we infuse disease knowledge into

BERT-like models? What is the objective function of this training task?

2.3.1 Targeting Diseases and Aspects

First, we seek a disease vocabulary that provides disease terms. Several resources include

Medical Subject Headings2 (MeSH) [69], the National Cancer Institute thesaurus [24], SNOMED

CT [32], and Unified Medical Language System (UMLS) [15]. Each has a different scope and

design purpose, and it is an open question into which is most appropriate here. As a first step, we

select MeSH, which is a comprehensive controlled vocabulary proposed by the National Library of

Medicine (NLM) to index journal articles and books in the life sciences, composed of 16 branches

like anatomy, organisms, and diseases. We collect all unique disease terms from the Disease

(MeSH tree number C01-C26) and Mental Disorder branch (MeSH tree number F01), resulting

in 5,853 total disease terms.

Knowledge of a disease involves information about various aspects of the disease [34, 97, 111].

2https://meshb.nlm.nih.gov/treeView
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Passage: The WHO has published several testing protocols for the disease. The standard 
method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR)...

New Passage for MLM: What is the [MASK] of [MASK]? The WHO has published several 
testing protocols for the disease. The standard method of testing is real-time reverse 
transcription polymerase chain reaction (rRT-PCR)...

Auxiliary Sentence: What is the diagnosis of COVID-19? 5. Construct an auxiliary sentence that mentions the subject
disease and aspect.

3. Extract text from a section
as the passage.

6. Concatenate the passage
and the auxiliary Sentence.
BERT is trained to infer the
disease and aspect.

1. Obtain disease
terms fromMeSH

2. Obtain Articles of
diseases from Wikipedia

Disease: COVID-19 (title of the Wikipedia article) 4. Extract the weakly-supervised topic disease and aspect for
the passage.

Aspect: Diagnosis (title of the section)

Figure 2.2: Disease knowledge infusion training: an example with COVID-19. Reprinted with
permission from “Infusing Disease Knowledge into BERT for Health Question Answering,
Medical Inference and Disease Name Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin
Chen and James Caverlee, EMNLP 2020.

For each aspect, we focus on text alone (excluding images or other media). Following Abacha and

Demner-Fushman [1], we consider eight disease aspects as shown in Table 2.2.

2.3.2 Weakly Supervised Knowledge Infusion from Wikipedia

Given the target set of diseases and aspects, the next challenge is how to infuse knowledge

of the aspects of these diseases into BERT-like models. We propose to train BERT to infer the

corresponding disease and aspect from a disease-descriptive text. By minimizing the loss between

the predicted disease and aspect and the original disease and aspect, the model should memorize the

semantic relations between the disease-descriptive text and its corresponding disease and aspect.

A straightforward approach is to mask and predict the disease and aspect in the disease-

descriptive text. However, this strategy faces two problems: (1) Given a passage extracted from

disease-related papers, clinical notes, or biomedical websites, the ground-truth of its topic (i.e.,

disease and aspect) is difficult to identify. Medical expert annotation is time-consuming and ex-

pensive; while automatic annotation can suffer from large errors. For example, we need to rec-

ognize disease names in the passage, which is yet another challenging and still open problem in

biomedical text mining [30]; (2) Diseases and aspects mentioned in a passage are not necessarily

the topic words. Multiple disease names or aspect names might appear, making it difficult to de-

termine which is the correct topic. For example, in Table 2.1, the symptoms of COVID-19 also
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mentions fever3, while the correct topic is COVID-19.

Weakly-Supervised Knowledge Source: Instead of annotating an arbitrary disease-related pas-

sage, we exploit the structure of Wikipedia as a weakly-supervised signal. In many cases, each

disease’s Wikipedia article consists of several sections where each introduces an aspect of the dis-

ease (like diagnosis). For example, step 2 in Figure 2.2 shows several aspects on the Wikipedia

page for COVID-19. By extracting the passage from each section, the title of the section (e.g.,

diagnosis) is the topic aspect of the passage and the title of the article is the topic disease (e.g.,

COVID-19). Specifically, we search Wikipedia to obtain the articles for the 5,853 target disease

terms from MeSH and apply regular expressions to extract the text of the sections corresponding

to the appropriate aspects. In total, we collect a disease knowledge resource consisting of 14,617

passages.4 In fact, there are other online resources5 with the similar structure. As a first step, we

start with Wikipedia.

Auxiliary Sentences for Disease and Aspect Prediction: The second problem is that the extracted

passages do not necessarily mention the corresponding disease and the aspect. For example, in Ta-

ble 2.1, the disease name “COVID-19” does not appear in the information of its symptoms. In the

disease knowledge resource, we find that only 51.4% of passages mention both the corresponding

diseases and aspects. Hence, we cannot simply mask-and-predict the disease and aspect because

the passage does not mention them at all.

A remedy for this problem is an auxiliary sentence that contains the corresponding disease and

aspect for each passage. We use a template of question style: “What is the [Aspect] of [Disease]?”

to automatically generate auxiliary sentences as shown in step 5 in Figure 2.2. Some examples are

shown in Table 2.3. The advantage of this question style template is that the cloze statement of the

auxiliary sentences for all aspects (except for the “information” aspect) are the same (What is the

[MASK] of [MASK]?). Hence, the auxiliary sentences provide no clues (i.e., bias) for predicting

the corresponding aspect.

3Fever is included in the disease branch of MeSH.
4Note that each disease article does not necessarily have all eight target aspects.
5https://medlineplus.gov/skincancer.html
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Table 2.3: Examples of auxiliary sentences. Reprinted with permission from “Infusing Disease
Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name
Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP
2020.

Aspect Name Auxiliary Sentence

Diagnosis What is the diagnosis of COVID-19?
Treatment What is the treatment of COVID-19?
Prevention What is the prevention of COVID-19?
Transmission What is the transmission of COVID-19?
Cloze Statement What is the [MASK] of [MASK]?

After that, we replace the corresponding disease and aspect with the special token [MASK] in

the auxiliary sentences. Then, we insert the auxiliary sentence at the beginning of its corresponding

passage to form a new passage with a question-and-answer style as shown in Figure 2.2, where

BERT is trained to predict the original tokens of the masked disease and aspect.

2.3.3 Training Objective and Details

Finally, we show the objective function of disease infusion training. Since most disease names

are out of BERT vocabulary, the WordPiece tokenizer [127] will split these terms into sub-word

tokens that exist in the vocabulary. For example, “COVID-19" will be split into 4 tokens: “co",

“vid", “-" and “19". Formally, let X = (x1, ..., xT ) denote a sequence of T tokens that are split

from a disease name where xt is the t-th token. The original cross-entropy loss is to get the

conditional probability of a masked token as close as possible to the 1-hot vector of the token:

Ldisease = −
T∑
t=1

log p(xt|passage) (2.1)

where p(xt|context) is a conditional probability over xt given the corresponding passage, which

can be defined as:

p(xt|passage) =
exp(zt)∑
z∈V exp(z)

(2.2)
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where V is the vocabulary and zt is the unnormalized log probability of xt. Let yt denote the

embedding of token xt from the output layer of BERT. We can estimate zt via:

zt = w · yt + b (2.3)

where the weight w and bias b are learnable vectors.

Note that the vocabulary size of BERT is around 30,000 which means masked language mod-

eling task is a 30,000 multi-class problem. The logits (like zt) after the normalization of softmax

(Equation 2.2) will be pretty small (the expectation of mean should be around 1/30,000=3.3*e-5),

which might cause some obstacles for the learning. Therefore, we also maximize the raw logits

(like zt) before softmax normalization which might keep more useful information. Empirically, we

add the reciprocal of the logits to the cross-entropy loss:

Ldisease = −
T∑
t=1

logp(xt|passage) +
β∑T
t=1 zt

(2.4)

where β balances the two parts of the loss. The final objective function is combined with the loss

of the disease and aspect: L = Ldisease + Laspect where Laspect = −log p(a|passage) and a is the

token of the aspect name. By minimizing this loss function, BERT can update its parameters to

store the disease knowledge.

2.4 Experiments

In this section, we examine disease knowledge infusion into six BERT variants over three

disease-related tasks: health question answering, medical language inference, and disease name

recognition.

Reproducibility: The code and data in this chapter is released.6 A model is firstly initialized

with the pre-trained parameters from BERT or its variants and then is further trained by disease

knowledge infusion to capture the disease knowledge. We use a widely used Pytorch implementa-

tion7 of BERT and Adam as the optimizer. We empirically set learning rate as 1e-5, batch size as

6https://github.com/heyunh2015/diseaseBERT
7https://github.com/huggingface/transformers
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16 and β as 10. Because MeSH (5,853 disease terms) is chosen as the disease vocabulary in our

experiments, as a smaller vocabulary compared with others like UMLS (540,000 disease terms),

we obtain a relatively small dataset of 14,617 passages. Hence, the training of disease knowledge

infusion is as fast as fine-tuning BERT over downstream datasets, which takes 2-4 epochs to en-

hance BERT for a better performance on downstream tasks, which will be discussed in Section

2.4.5. The training is performed on one single NVIDIA V100 GPU and it takes about 10 minutes

to complete one training epoch using BERT-base architecture. The reproducibility for fine-tuning

over downstream tasks will be detailed in Section 2.4.2.

2.4.1 BERT and its Biomedical Variants

We consider six BERT models: two pre-trained over general language corpora (BERT and

ALBERT) and four pre-trained over biomedical corpora (Clinical BERT, BioBERT, BlueBERT

and SciBERT).

BERT [28] is a multi-layer bidirectional Transformer encoder. Since the following biomedical

versions of BERT are often based on the BERT-base architecture (12 layers and 768 hidden em-

bedding size with 108M parameters), we choose BERT-base here for fair comparison.

ALBERT8 [61] compresses the architecture of BERT by factorized embedding parameterization

and cross-layer parameter sharing. Via this compression, ALBERT can have a substantially higher

capacity than BERT, with stronger performance on many tasks. We choose the maximum version

ALBERT-xxlarge (12 layers and 4096 hidden embedding size with 235M parameters).

BioBERT9 [62] is the first BERT pre-trained on biomedical corpora. It is initialized with BERT’s

pre-trained parameters (108M) and then further trained over PubMed abstracts (4.5B words) and

PubMed Central full-text articles (13.5B words). We choose the best version BioBERT v1.1.

ClinicalBERT10 [6] is a BERT model initialized from BioBERT v1.0 [62] and further pre-trained

over approximately 2 million notes in the MIMIC-III v1.4 database of patient notes [53]. We adopt

the best performing version of ClinicalBERT (108M parameters) based on discharge summaries of

8https://huggingface.co/albert-xxlarge-v2
9https://github.com/dmis-lab/biobert

10https://huggingface.co/emilyalsentzer
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Table 2.4: Summary of tasks and datasets. Reprinted with permission from “Infusing Disease
Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name
Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP
2020.

Datasets Train Dev Test

MEDIQA-2019 208 (1, 701)1 25 (234) 150 (1,107)
TRECQA-2017 254 (1,969) 25 (234) 104 (839)

MEDNLI 11, 2322 1,395 1,422

BC5CDR-disease 4, 1823 4,244 4,424
NCBI 5,145 787 960

1, Questions with associated answers; 2, Pairs of premise and hypothesis; 3, Disease name mentions.

clinical notes: Bio-Discharge Summary BERT.

BlueBERT11 [86] is firstly initialized from BERT (108M parameters) and further pre-trained over

a biomedical corpus of PubMed abstracts and clinical notes [53].

SciBERT12 [12] is a BERT-base (108M parameters) model pre-trained on a random sample of

the full text of 1.14M papers from Semantic Scholar [7], with 18% of papers from the computer

science domain and 82% from the biomedical domain.

2.4.2 Tasks

We test disease knowledge infusion over three biomedical NLP tasks. The dataset statistics are

in Table 2.4. For fine-tuning of BERT and its variants, the batch size is selected from [16, 32] and

learning rate is selected from [1e-5, 2e-5, 3e-5, 4e-5, 5e-5].

Task 1: Consumer Health Question Answering. The objective of this task is to rank candidate

answers for consumer health questions.

Datasets. We consider two datasets: MEDIQA-2019 [13] and TRECQA-2017 [2].13 MEDIQA-

2019 is based on questions submitted to the consumer health QA system CHiQA14. TRECQA-2017

is based on questions submitted to the National Library of Medicine. Medical experts manually re-

11https://github.com/ncbi-nlp/bluebert
12https://huggingface.co/allenai/scibert_scivocab_uncased
13https://sites.google.com/view/mediqa2019
14https://chiqa.nlm.nih.gov/
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Table 2.5: Experimental results. Reprinted with permission from “Infusing Disease Knowledge
into BERT for Health Question Answering, Medical Inference and Disease Name Recogni-
tion" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP 2020.

Tasks Consumer Health Question Answering NLI NER

Datasets MEDIQA-2019 TRCEQA-2017 MEDNLI BC5CDR NCBI

Metrics(%) Accuracy MRR Precision Accuracy MRR Precision Accuracy F1 F1

BERT 64.95 82.72 66.49 74.61 56.17 52.55 75.95 83.09 85.14
BERT + disease* 66.40↑ 83.33↑ 68.94↑ 75.33↑ 56.41↑ 54.01↑ 77.29↑ 83.47↑ 86.81↑

BlueBERT 65.13 81.50 67.35 74.26 48.40 52.55 82.21 85.73 87.78
BlueBERT + disease 68.47↑ 81.17 71.57↑ 77.59↑ 50.96↑ 57.62↑ 83.90↑ 86.30↑ 87.79↑

ClinicalBERT 67.30 84.78 70.59 77.00 52.56 56.62 81.50 84.90 87.25
ClinicalBERT + disease 69.02↑ 88.94↑ 69.84 78.90↑ 54.97↑ 60.40↑ 81.65↑ 85.63↑ 87.22

SciBERT 68.47 84.47 68.07 77.23 54.57 57.54 80.94 86.16 87.24
SciBERT + disease 73.35↑ 85.44↑ 76.28↑ 79.02↑ 56.57↑ 59.57↑ 82.14↑ 86.34↑ 88.30↑

BioBERT 68.29 83.61 72.78 77.12 49.84 57.25 81.86 85.99 87.70
BioBERT + disease 72.09↑ 87.78↑ 74.40↑ 78.43↑ 54.76↑ 58.45↑ 82.21↑ 86.52↑ 87.14

ALBERT 76.54 88.46 81.41 75.09 58.57 53.03 85.48 84.28 87.56
ALBERT + disease 79.49↑ 90.00↑ 84.02↑ 80.10↑ 57.21 62.40↑ 86.15↑ 84.71↑ 87.69↑

SOTA* 78.00 93.67 81.91 77.23 54.57 57.54 84.00 87.15 89.71
* SOTA, state-of-the-art as of May 2020, to the best of our knowledge.
* “ + disease" means that we train BERT via disease knowledge infusion training before fine-tuning.
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ranked the original retrieved answers and provide Reference Score (1 to 11) and Reference Rank

(4: Excellent, 3: Correct but Incomplete, 2: Related, 1: Incorrect).

Fine-tuning. MEDIQA-2019 and TRECQA-2017 are used as the fine-tuning dataset for each

other. MEDIQA-2019 also contains a validation set for tuning hyper-parameters for both datasets.

Following Xu et al. [131], the task is cast as a regression problem where the target score is: score =

Reference Score − Reference Rank−1
m

where m is the number of candidate answers. Each question-

answer pair is packed as a single sequence as the input for BERT. A single linear layer is on top of

the output embedding of the special token [CLS] to generate the predicted score. MSE is adopted

as the loss and we use Adam as the optimizer. All hyper-parameters are tuned on the validation set

in terms of accuracy, where we set the batch size as 16 and learning rate as 1e-5.

SOTA. The state-of-the-art (SOTA) performance on MEDIQA-2019 is achieved by Xu et al. [131],

which is an ensemble method. Because TRECQA-2017 is fine-tuned on MEDIQA-2019, which is

different from the original settings [2] (BERT had not been proposed at that time), we use the best

result of SciBERT among the BERT models as SOTA for TRECQA-2017.

Task 2: Medical Language Inference. The goal of this task is to predict whether a given hypoth-

esis can be inferred from a given premise.

Datasets. MEDNLI [95] is a natural language inference dataset for the clinical domain.15 For

each premise (a description of a patient) selected from clinical notes (MIMIC-III), clinicians gen-

erate three hypotheses: entailment (alternate true description of the patient), contradiction (false

description of the patient), and neutral (alternate description that might be true).

Fine-tuning. Following Peng et al. [86], we pack the premise and hypothesis together into a single

sentence. A linear layer is on top of the output embedding of [CLS] to generate logits. Cross-

entropy loss function is adopted, and we use Adam as the optimizer. All hyper-parameters are

tuned on the validation set in terms of accuracy, where we set the batch size as 32 and learning rate

as 1e-5.

SOTA. To the best of our knowledge, the state-of-the-art on MEDNLI is achieved by BlueBERT,

15https://physionet.org/content/mednli/1.0.0/
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reported in Peng et al. [86].

Task 3: Disease Name Recognition. This task is to detect disease names from free text.

Datasets. BC5CDR16 [124] and NCBI17 [30] are collections of PubMed titles and abstracts. Medi-

cal experts annotate diseases mentioned in the collection. Since BC5CDR includes both chemicals

and diseases, we focus on diseases in this dataset.

Fine-tuning. Following Peng et al. [86], we cast this task as a token-level tagging (classification)

problem, where each token is classified into three classes: B (beginning of a disease), I (inside of

a disease) or O (out of a disease). Cross-entropy is adopted as the loss function and we use Adam

as the optimizer. All hyper-parameters are tuned on the validation set in terms of F1, where we set

the batch size as 32 and learning rate as 5e-5.

SOTA. The best performance is achieved by BioBERT v1.1, reported in Lee et al. [62]18.

2.4.3 Results

The experimental results are presented in Table 2.5. We show each original model and its

disease knowledge infused variant (e.g,. BERT and BERT + disease). We have two main findings:

Effectiveness of Disease Infusion. First, by infusing disease knowledge via our new training

regimen, we see a significant improvement in nearly all cases. For example, ALBERT + dis-

ease achieves 80.10% in terms of accuracy which is superior to 75.09% by ALBERT alone on

TRECQA-2017. Standing on the shoulders of ALBERT, disease knowledge infusion leads to state-

of-the-art results on MEDIQA-2019 and MEDNLI, to the best of our knowledge. Although BERT

and ALBERT are pre-trained on all of Wikipedia, including the articles of diseases, they might not

pay enough attention to the disease part since Wikipedia is so large. Hence, disease knowledge

infusion that leverages the Wikipedia structure to capture the disease knowledge is a complement

for BERT and ALBERT. Moreover, it is encouraging to see the improvements of disease knowl-

edge infusion in biomedical BERT models, even though these variants are already pre-trained over

16https://github.com/ncbi-nlp/BLUE_Benchmark
17https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/
18Although SciBERT reports a better result in NCBI, it uses a conditional random field on top of BERT, which is

more complicated than the linear layer normally used in fine-tuning for BERT models including BioBERT.
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large-scale biomedical corpora like PubMed with access to comprehensive disease information.

This improvement demonstrates that the disease knowledge captured by our method – that is, the

semantic relations between a disease-descriptive text and its corresponding aspect and disease –

is different from the general linguistic knowledge in the biomedical domain captured by the ran-

domly masked tokens prediction strategy of these biomedical BERT models. To sum up, the results

show that the proposed disease knowledge infusion method can effectively complement BERT and

its biomedical variants and hence improve the performance on health question answering, medical

language inference, and disease name recognition.

Effectiveness of Biomedical BERT Models. We also observe that BERT models pre-trained on

biomedical corpora outperform the same BERT architecture that is pre-trained on general language

corpora. For example, BioBERT achieves 68.29% in terms of accuracy on MEDIQA-2019 while

BERT only obtains 64.95%. This demonstrates that with the same model architecture, pre-training

on biomedical corpora can capture more biomedical language knowledge that improves BERT for

downstream biomedical tasks.19

In addition, we find that a high-capacity model like ALBERT can achieve similar performance

as biomedical BERT models on TRECQA-2017, BC5CDR and NCBI, and even better performance

on MEDIQA-2019 and MEDNLI. This observation might motivate new biomedical pre-trained

models based on larger models like ALBERT-xxlarge.

2.4.4 Ablation Study

We present the results of an ablation study on MEDIQA-2019 in Table 2.6. Similar results are

observed on other datasets but omitted here due to the space limitation. We first remove “Auxiliary

Sentence”. That is, we remove the auxiliary question: “What is the [Aspect] of [Disease]?” and let

BERT to predict the corresponding disease and aspect in the original passage if they appear. We

observe worse results in terms of accuracy and precision, which shows that the auxiliary sentence

is an effective remedy for the problem that some passages do not mention their disease and aspects.

19Note that our results for the biomedical BERT models in Table 2.5 are slightly different from the results reported
in the original papers that normally only provide a search range for hyper-parameters and not the specific optimal ones.
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Table 2.6: Ablation study on MEDIQA-2019. Reprinted with permission from “Infusing Disease
Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name
Recognition" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP
2020.

Variants Accuracy MRR Precision

Default 79.49 90.00 84.02
- Auxiliary Sentence 78.23 90.89 78.10
- Aspect Prediction 78.41 89.06 80.00
- Disease Prediction 72.90 85.72 79.44
15% Randomly Masked Tokens 77.06 87.33 85.18

We also remove aspect prediction or disease prediction in the auxiliary sentence; both lead to worse

results but removing disease prediction leads to a much lower performance. This shows that it is

more important for BERT to infer the disease than the aspect from the passage. We also pre-

train BERT on the same corpus (the disease-related passages) as our method. Following Devlin

et al. [28], we randomly mask 15% tokens in each sentence and let BERT to predict them. As

shown in “15% Randomly Masked Tokens", we observe that our proposed disease infusion training

task outperforms the default masked language model in BERT. This shows that our approach that

leverages the structure of Wikipedia article to enhance the disease knowledge infusion works better

than simply adding more data to the training process. Specifically, via leveraging the Wikipedia

structure, we could effectively mask key words like aspect names and disease names that are related

to disease knowledge and hence more effective than randomly masking strategy over the simply

added data.

2.4.5 Learning Curve

In this section, we present the learning curve of our proposed disease infusion training task. The

x-axis denotes the training epochs and the y-axis denotes the performance of BERT models that

are augmented with disease infusion training at that epoch. We take BioBERT and MEDIQA-2019

as examples; similar results are obtained in other models over other tasks. The results in terms of

accuracy are presented in Figure 2.3, where we observe that (1) disease knowledge infusion takes
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Figure 2.3: Learning curve of disease infusion knowledge. The y-axis is the accuracy of BERT
models over MEDIQA-2019. Reprinted with permission from “Infusing Disease Knowledge
into BERT for Health Question Answering, Medical Inference and Disease Name Recogni-
tion" by Yun He, Ziwei Zhu, Yin Zhang, Qin Chen and James Caverlee, EMNLP 2020.

only three epochs to achieve the optimal performance on BioBERT over the CHQ answering task.

(2) cross-entropy loss used by disease knowledge infusion can be enhanced by adding the term of

maximizing the raw logits (Equation 2.4).

2.5 Summary

In this chapter, we propose a new disease infusion training procedure to augment BERT-like

pre-trained language models with disease knowledge. We conduct this training procedure on a

suite of BERT models and evaluate them over disease-related tasks. Experimental results show that

these models can be enhanced by this disease infusion method in nearly all cases. For example,

accuracy of BioBERT on CHQ answering is improved from 68.29% to 72.09%. This improvement

demonstrates that the disease knowledge captured by our method – that is, the semantic relations

between a disease-descriptive text and its corresponding aspect and disease – is different from the

general linguistic knowledge in the biomedical domain captured by the MLM strategy of previous

bio-PLMs. To sum up, the results show that the proposed disease knowledge infusion method can

effectively complement BERT and its biomedical variants and hence improve the performance on

health question answering, medical language inference, and disease name recognition. Moreover,

new SOTA results are observed in two datasets: MEDIQA-2019 and MEDNLI.
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3. HYPERPROMPT: PROMPT-BASED TASK-CONDITIONING OF TRANSFORMERS1

The second challenge of effective knowledge transfer that this dissertation identifies is the

task interference – that is, training multiple tasks jointly hinders the performance on individual

tasks, which is especially true for Transformer-based multi-task learning because there are no

task-specific parameters for each task. In this chapter, we explore the use of prompts to alleviate

the task interference, inspired by Prompt-Tuning as a new paradigm for fine-tuning pre-trained

language model. Specifically, we propose HyperPrompt, a novel architecture for prompt-based

task-conditioning of Transformers for multi-task learning. The hyper-prompts are end-to-end

learnable via generation by a HyperNetwork, enabling flexible knowledge sharing among tasks.

We show that HyperPrompt is competitive against strong multi-task learning baselines with as

few as 0.14% of additional task-conditioning parameters, achieving great parameter and computa-

tional efficiency. Through extensive empirical experiments, we demonstrate that HyperPrompt can

achieve superior performances over strong T5 multi-task learning baselines and parameter-efficient

adapter variants including Prompt-Tuning and HyperFormer++ on natural language understanding

benchmarks of GLUE and SuperGLUE across many model sizes.

3.1 Introduction

Fine-tuning a pre-trained Transformer model over a specific task is an effective method, achiev-

ing dramatic success in the NLP field recently. However, the space complexity of the fine-tuning

is O(n) where n is the number of downstream tasks because an entire new model is required for

every task. As an alternative, multi-task learning, where multiple tasks can be jointly trained on

the same Transformer model, is more parameter-efficient with the complexity of O(1).

We consider the general setting of multi-task learning for a set of tasks {Dτ}Tτ=1, where T is

the total number of tasks and {Dτ} = {x(n)τ , y
(n)
τ }Nτn=1 indicates the corresponding training set of

1This chapter is reprinted with permission from "HyperPrompt: Prompt-based Task-Conditioning of Transform-
ers." by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang Li, Zhao
Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint arXiv:2203.00759 (2022).
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the τ -th task with Nτ samples. We assume that a pre-trained Transformer model fθ(·) (e.g., T5)

is given, where the model is parameterized by θ. To tackle such multi-task learning problem with

fθ(·), we minimize the following objective function:

L(θ) =
T∑
τ=1

Nτ∑
n=1

C(fθ(x
(n)
τ ), y(n)τ ) (3.1)

where C(·, ·) is typically the cross-entropy loss and fθ(x
(n)
τ ) is the output for training sample x(n)τ .

Transformer-based pre-trained language models such as T5 [91] and BART [65] are unified

text-to-text frameworks where all tasks share the same encoder-decoder architecture – {{x(n)τ }Nτn=1}Tτ=1

are fed into the same encoder and {{ŷ(n)τ }Nτn=1}Tτ=1 are generated by the same decoder. For such

universal modules, multi-task learning simply corresponds to mixing task data sets together. There-

fore, θ is task-agnostic (i.e., all parameters are shared) and there is no task-specific classification

or regression networks for each task as in encoder-only modules Devlin et al. [29], Liu et al. [75].

However, inevitable task interference [55] and conflicts in fitting all task data sets within a

single set of parameters is a challenging problem for multi-task co-training. For example, previous

work Raffel et al. [91] shows that co-learning all tasks together on a pre-trained Transformer model

is inferior to fine-tuning the model for each task separately, which can be especially true for low-

resource tasks [91, 106]. To overcome this challenge, a natural way is to introduce a set of task-

conditioned parameters {δτ}Tτ=1 into fθ(.) for Transformers. The objective can be updated as:

L(θ, {δτ}Tτ=1) =
T∑
τ=1

Nτ∑
n=1

C(fθ,δτ (x
(n)
τ ), y(n)τ ) (3.2)

where δτ is the task-specific parameterization for the τ -th task. During training, both θ and {δτ}Tτ=1

are updated via back-propagation because we observe a large performance drop in SuperGLUE

when backbone model θ is frozen and only task-conditioned parameters are tuned, as done in

Karimi Mahabadi et al. [56], which will be detailed in Section 3.3.4.

To this end, our goal is to design task-conditioned parameterization of Transformer models

to achieve greater parameter and computational efficiency as well as Pareto efficiency for multi-
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task learning. More explicitly, we have two goals: (1) improving the fine-tuning performance

of most tasks in {Dτ}Tτ=1 by introducing task-conditioned parameters {δτ}Tτ=1 into fθ(.) and (2)

under the constraint that
∑

τ ‖{δτ}Tτ=1‖0 � ‖θ‖0, which means that the model capacity will not

be significantly increased. And the computational cost would not increase substantially either.

In this chapter, we introduce HyperPrompt, serving as the task-conditioned parameterization

({δτ}τ=1) of Transformer models, which is a natural but novel extension of Prompt-Tuning [63] to

multi-task learning (MTL) for language. HyperPrompt introduces task-conditioned hyper-prompts

that conditions the model on task-specific information for constructing these prompts. Hyper-

prompts are injected to the keys and values in the self-attention module, reminiscent of memory

augmented Transformers [104]. This mitigates the cost of having prompts pass through the stan-

dard FFN layers in Transformers and serves as additional task-specific memory tokens for queries

to attend to.

We further improve upon this by introducing task-aware and layer-aware HyperNetworks [41]

that parameterize and generate weights for the prompt generation process. The usage of Hyper-

Network imbues our model with the necessary flexibility and expressiveness, especially when it

comes to incorporating task-specific and layer-specific information to the network. Meanwhile,

HyperPrompt remains very parameter and computational efficient and friendly to multi-task scal-

ing: the additional parameters scale sub-linearly with, and are independent of the number of tasks

in practice. While Hypernetworks have enjoyed some success in learning adapters [56, 105] and/or

continual learning [115], we note that this is the first exploration of HyperNetworks as a prompt

generator.

Contrary to prior work, we additionally propose to fine-tune the entire network instead of

only the hyper-prompts. We make several compelling arguments for this. Firstly, Lester et al.

[63] shows that parameter efficient Prompt-Tuning only shines for large (e.g., 11B) models and

substantially pales in comparison to fine-tuning when the model is moderately parameterized (e.g.,

220M). Secondly, fine-tuning only adaptive parameters (e.g., prompts/adapters) simply presents

an illusion of efficiency [26]. In reality, the FLOPs incurred by the model is still identical on
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the forward pass, which saves no compute during inference. Parameter counts, especially when

including only prompts and adapters, are not the only measurement of computational efficiency.

Instead, the FLOPs and training time should be considered together to provide a holistic view.
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Figure 3.1: HyperPrompt achieves state-of-the-art performance on SuperGLUE for T5 models up
to XXL. Prompt-tuning [63] with tuning prompt parameters only achieves competitive per-
formance against multi-task learning (MTL) baseline for the 11B parameter model with a
big performance gap for smaller models. HyperPrompt outperforms the strong parameter-
efficient adapter variant HyperFormer++ [56], the MTL baseline, and the full fine-tuning of
Prompt-Tuning (our implementation) across model sizes with a large margin [e.g. 91.3 vs 90.2
(MTL) for T5 XXL]. Reprinted with permission from "HyperPrompt: Prompt-based Task-
Conditioning of Transformers." by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du,
Vamsi Aribandi, Zhe Zhao, YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and
Ed H. Chi, 2022. ArXiv preprint arXiv:2203.00759 (2022).

Our Contributions. Overall, the main contributions include:

• We propose a novel HyperPrompt Transformer architecture with learnable hyper-prompts

for multi-task fine-tuning with great parameter and computational efficiency.

• We demonstrate that for difficult tasks, it is crucial to fine-tune the task-specific parameters

together with the backbone model to achieve Pareto efficiency on all tasks.
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• We explore HyperNetworks as a prompt generator, and inject hyper-prompts into the self-

attention module as global task memory tokens.

• HyperPrompt outperforms state-of-the-art parameter-efficient T5 models [91] using Prompt-

Tuning or adapters on well-established benchmarks such as SuperGLUE and GLUE, across

all explored model sizes (see Figure 3.1).

3.2 Methods

In this section, we introduce HyperPrompt which has three variants: HyperPrompt-Share,

HyperPrompt-Sep and HyperPrompt-Global (Figure 3.2). We follow two key design principles

to formulate HyperPrompt: (1) injecting task-conditioning into self-attention module for better

computational efficiency and more expressive power, and (2) using HyperNetworks to simulta-

neously improve the parameter efficiency and allow a flexible degree of task sharing for better

generalization. The intuition behind the first design principle is based on the fact that self-attention

is the key to the power of Transformers via token-level interactions. Injecting task-conditioning

into self-attention directly allows the learning of more expressive task-specific representations.

3.2.1 Prompt-Based Task-Conditioned Transformer

Previous adapter-based methods [56, 105] for multi-task learning normally add an adapter (i.e.,

dense-relu-dense network) for each task after the feed-forward layers at every Transformer block.

Instead, the key idea of our approach is to prepend l task-conditioned trainable vectors to the keys

and values of the multihead self-attention layer at every Transformer block, where the task-specific

attention feature maps are jointly learned with the task-agnostic representation.

The idea of prepending learnable prompts to the network is explored before by Lester et al.

[63], Li and Liang [66], Liu et al. [73] for single-task fine-tuning. We first introduce and expand

this idea for multi-task learning in this subsection. Specifically, we design a novel method called

HyperPrompt following the design principle #1 of injecting hyper-prompts into self-attention and

#2 using HyperNetworks as generators for hyper-prompts.
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Figure 3.2: HyperPrompt framework: (a) in each Transformer block, task-specific hyper-prompts
PK,V are prepended to the original key K and value V for the query Q to attend to, (b)
in HyperPrompt-Share/Sep, global prompts P is used to generate the hyper-prompts PK,V
through local HyperNetworks hk,v at each Transformer layer, which consists of a down-
projection matrix DK,V , a RELU layer and a up-project matrix UK,V , (c) in HyperPrompt-
Global, all the local HyperNetworks are generated by global HyperNetworks Hk,v using layer-
aware task embeddings I as task-specific inputs (see Section 3.2.3 for details). Reprinted with
permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers." by Yun
He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint
arXiv:2203.00759 (2022).

At a multihead self-attention layer, the original key, value and query are calculated as

Kτ = XτWk, Vτ = XτWv, Qτ = XτWq (3.3)

where Xτ ∈ RL×d is the input sequence of a training sample from the τ -th task, L is the sequence

length, d is the model dimension. Wk ∈ Rd×h×dh , Wv ∈ Rd×h×dh and Wq ∈ Rd×h×dh project the

input into original key Kτ ∈ RL×h×dh , value Vτ ∈ RL×h×dh and query Qτ ∈ RL×h×dh , h is the

number of heads, dh is the dimension of each head and typically set to d/h to save parameters.

To learn the task-specific information for the τ -th task, we have l trainable d-dimensional vec-

tors as the hyper-prompts for the key and the value respectively, denoted as Pτ,k ∈ Rl×h×dh and

Pτ,v ∈ Rl×h×dh , as shown in Figure 3.2(a). Then, the hyper-prompts are concatenated with the
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original key and value:

K′
τ = concat(Pτ,k, Kτ ) (3.4)

V ′
τ = concat(Pτ,v, Vτ ) (3.5)

where the new key (value) K′
τ (V ′

τ ) ∈ R(l+L)×h×dh are used to compute the multihead self-

attention.

After that, the multihead self-attention can be operated2:

Oτ = Attention(Qτ ,K
′
τ ,V

′
τ ) = softmax(QτK

′T
τ )V ′

τ

where Oτ ∈ RL×d is the output of multihead attention.

The hyper-prompts benefit Transformers for multi-task learning in two ways:

• Prompt for key Pτ,k is prepended with the original key and will participate in the calculation

of attention feature map: softmax(QτK
′T
τ ). Pτ,k directly interacts (matrix multiplication)

with the original query Qτ , allowing tokens to acquire task-specific semantics.

• Prompt for value Pτ,v is prepended with the original value and will be absorbed into the

self-attention output Oτ , where each position in Oτ is the weighted-sum of vectors in V ′
τ

with weights from the attention scores. This way, Pτ,v can serve as task-specific memories

for multihead attention to retrieve information from.

3.2.2 HyperPrompt

How to obtain the prompts for them-th Transformer block? A straightforward way is to directly

initialize Pm
τ,k and Pm

τ,v. However, this way is parameter-inefficient, as it scales linearly with both

the number of tasks T and the number layers M as O(T ×M).

Instead, we initialize a global3 prompt Pτ for each task and apply local HyperNetworks at

every Transformer block to project this prompt into {Pm
τ,k}Mm=1 and {Pm

τ,v}Mm=1.

2The following equation shows the self-attention on one head. Multihead attention is slightly more involved and
we omit it for simplicity.

3we term it global because it is independent of the layer number as opposed to layer-dependent prompt Pm
τ .
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Global Prompts. Specifically, we initialize a set of global prompts {Pτ}Tτ=1, where Pτ ∈ Rl×d

is a trainable matrix to learn the task-specific information of the τ -th task, d is the model dimension

and l is the length of the prompt.

Local HyperNetworks. At the m-th Transformer block, we apply two local HyperNetworks

hmk and hmv to transform the global prompt Pτ into layer-specific and task-specific prompts as

shown in Figure 3.2(b):

Pm
τ,k = hmk (Pτ ) = Um

k (Relu(Dm
k (Pτ ))), (3.6)

Pm
τ,v = hmv (Pτ ) = Um

v (Relu(Dm
v (Pτ ))), (3.7)

where Pm
τ,k/v ∈ Rl×h×dh . We call these generated prompts hyper-prompts to distinguish from

global prompts.

In particular, to limit the number of parameters, the local HyperNetworks are designed using a

bottleneck architecture: Dm
k/v ∈ Rd×b and Um

k/v ∈ Rb×h×dh are down-projection and up-projection

matrices, respectively. b is the bottleneck dimension satisfying b� d.

HyperPrompt-Share. We first have all tasks share the same two local HyperNetworks defined

by the down-project matrices Dm
k and Dm

v , and the up-project matrices Um
k and Um

v . We refer to

this design choice as HyperPrompt-Share.

Despite the saving of parameters, one drawback of HyperPrompt-Share is that the task conflicts

could arise given the limited model capacity [122, 126] of the shared local HyperNetworks.

HyperPrompt-Sep. In the opposite extreme of HyperPrompt-Share, each task can have its

own local HyperNetworks hmτ,k(Pτ ) and hmτ,v(Pτ ) as following:

Pm
τ,k = hmτ,k(Pτ ) = Um

τ,k(Relu(Dm
τ,k(Pτ ))), (3.8)

Pm
τ,v = hmτ,v(Pτ ) = Um

τ,v(Relu(Dm
τ,v(Pτ ))), (3.9)

where Dm
τ,k/v and Um

τ,k/v are down-projection and up-projection matrices for the τ task, respec-

tively. In this case, each task hyper-prompt is trained independently and hence there is no informa-
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tion sharing.

3.2.3 HyperPrompt-Global

We further propose a novel design of HyperPrompt-Global to flexibly share information and

knowledge among tasks and layers while maintaining a low parameter cost. As shown in Figure

3.2(c), the key idea of HyperPrompt-Global is to generate the local HyperNetworks using the same

shared global HyperNetwork for all tasks.

Layer-Aware Task Embedding. Following the same recipe in Karimi Mahabadi et al. [56],

we define a layer-aware task embedding for better generalization. Let kτ ∈ Rt′ denote the task

embedding for the τ task and t′ is the dimension. To capture the layer-specific information, layer

embedding zm ∈ Rt′ is introduced. After that, a task projection network ht(·, ·) is applied to fuse

the task embedding and the layer embedding into the final layer-awared task embedding Imτ =

ht(kτ , zm), where Imτ is the input to the shared global HyperNetworks as shown in Figure 3.1(c).

ht is a MLP consisting of two feed-forward layers and a ReLU non-linearity, which takes the

concatenation of kτ and zm as input.

Global HyperNetworks. Hk(·) generates the weight matrices (Um
τ,k,D

m
τ,k) in the local Hy-

perNetworks of key hyper-prompts and another global HyperNetwork Hv(·) generates the weight

matrices (Um
τ,v,D

m
τ,v) in the local HyperNetworks of value hyper-prompts:

(Um
τ,k,D

m
τ,k) = Hk(I

m
τ ) = (W Uk ,WDk)Imτ , (3.10)

(Um
τ,v,D

m
τ,v) = Hv(I

m
τ ) = (W Uv ,WDv)Imτ , (3.11)

where Imτ ∈ Rt is the layer-aware task embedding for the τ task at the m-th block. WDk ∈

R(d×b)×t, WDv ∈ R(d×b)×t, W Uk ∈ R(b×h×dh)×t and W Uv ∈ R(b×h×dh)×t are the weight matrices

of Hk(·) and Hv(·).

Given that Um
τ,k/v, and Dm

τ,k/v are generated by the global HyperNetworks, we project the global

prompts Pτ,k/v into hyper-promtps Pm
τ,k/v following Eqs. 3.8 and 3.9. Finally, the hyper-prompts

Pm
τ,k/v are prepended with original key and value at every self-attention layer as shown in Figure
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3.1(a) to calculate the task-conditioned attention scores.

Using global HyperNetworks to generate the local HyperNetworks has three benefits:

1. Unlike HyperPrompt-Share where all tasks use the same local HyperNetworks or HyperPrompt-

Sep where each task uses different local HyperNetworks, it enables a more flexible way to

share information and knowledge across tasks. As shown in Equation 3.10 and 3.11, the

weight matrices are decomposed into Hk/v(·) that are shared by all tasks and Imτ that rep-

resents the specific task. Therefore, the model can adjust the degree of information sharing

across tasks through learning the appropriate parameter values in Hk/v(·) and Imτ during the

end-to-end training.

2. The global HyperNetworks are shared by all layers of Transformer models, where the infor-

mation and knowledge can be transferred across the different layers.

3. A parameter-efficient task conditioned parameterization is enabled. The number of extra

task-conditioned parameters doesn’t depend on the number of layers M , and scales sub-

linearly with respect to the total number of tasks T . In practice, since task embeddings

and task prompts have far fewer parameters than the global HyperNetworks, the additional

task-conditioned parameters is almost independent of T .

3.2.4 Parameter Efficiency of HyperPrompt-Global

Since the encoder and the decoder of Transformers have approximately the same capacity,

the calculation considers only the decoder-side for simplicity. First, we have global task prompts

Pτ ∈ Rl×d for the τ -th task, which contains dlT parameters for T tasks. The global HyperNet-

works contain four weight matrices WDk ∈ R(d×b)×t, WDv ∈ R(d×b)×t, W Uk ∈ R(b×h×dh)×t and

W Uv ∈ R(b×h×dh)×t, which result in 4(bdt) parameters (we let d = h× dh). To obtain layer-aware

task embedding, HyperPrompt-Global learns task embedding kτ ∈ Rt′ for the τ task and layer

embedding zm ∈ Rt′ for the m-th Transformer block, which in total results in Tt′ +Mt′ param-

eters. Besides, a task projection network ht is applied to fuse the task embedding and the layer
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embedding into the final layer-aware task embedding Imτ ∈ Rt. ht is a two-layer feed-forward

networks and contains (2t′ + t)e parameters, where e is the hidden dimension for ht.

To sum up, the total number of additional parameters from HyperPrompt-Global is dlT +

4(bdt) + Tt′ +Mt′ + (2t′ + t)e, where d is the model dimension, l is the length of the prompts,

T is the total number of tasks, b is the bottleneck dimension of the weight matrices of the local

HyperNetworks, d is the model dimension, t′/t is the dimension of the raw/final layer-aware task

embedding, and e is the hidden dimension of hk/v. Therefore, the space complexity is O(d(lT +

4bt)), given that in practice M ∼ T , t′ � dl, and e � bd. This leads to a sub-linear scaling with

respect to T .

Furthermore, T is typical∼ O(10) for multi-task learning. A reasonable l ∼ O(10) is required

to achieve the optimal performance, which will be detailed in Section 3.3.8. On the other hand,

typical values for b ∼ 24 and t ≥ 32, and therefore 4bt � lT is satisfied in most cases. Hence,

the space complexity could be further simplified asO(bdt). In conclusion, the space complexity of

HyperPrompt-Global mainly comes from the global HyperNetworks and is practically independent

of the prompt length l, the number of Transformer layers M , and the number of tasks T .

3.3 Experiments

3.3.1 Experimental Setup

Datasets. We evaluate the performance of the models on GLUE [116] and SuperGLUE [117]

respectively. Each of them is a collection of text classification tasks to test the general language un-

derstanding ability. Specifically, the tasks include: sentence acceptability (CoLA), sentiment anal-

ysis (SST-2), paraphrasing/sentence similarity (MRPC, STS-B and QQP), natural language infer-

ence (MNLI, QNLI, RTE and CB), coreference resolution (WSC), sentence completion (COPA),

word sense disambiguation (WIC) and question answering (MultiRC and ReCoRD, BoolQ).

Transformers. Following previous work Karimi Mahabadi et al. [56] and Tay et al. [105], our

models are built on top of the state-of-the-art Transformer model T5 [91], which uses encoder-

decoder architecture from Vaswani et al. [114]. We use already pre-trained T5 with sizes from
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Base (220M parameters) to XXL (11B).

Evaluation. We save a checkpoint every 2000 steps for all models and follow the same con-

vention as Raffel et al. [91] in selecting the best checkpoint for each task. The emphasis of our

evaluation is not to find the best single checkpoint for all tasks but to test the model’s ability of

knowledge sharing among the co-trained tasks. We first calculate the average of all metrics for

each task and then report the average of all tasks for GLUE and SuperGLUE.

Baselines. We compare our proposed HyperPrompt with vanilla T5 models [91] for multi-task

learning, which is referred to MTL. Another baseline is Vanilla Adapter proposed in Houlsby et al.

[49] that add adapters modules for each task after each of the the two feed-forward modules in

each Transformer block of the T5 model. The state-of-the-art adapter-based method for multi-task

learning is HyperFormer++ proposed in Karimi Mahabadi et al. [56] that use HyperNetworks to

generate adapters for each task and add them after the feed-forward modules following Houlsby

et al. [49]. In addition, Prompt-Tuning [63] is originally for parameter-efficient single-task fine-

tuning and only prepends prompts to the input word embeddings in the first layer. We slightly

modify it by initializing and prepending prompts for each task respectively so that Prompt-Tuning

can be applied to multi-task learning.

3.3.2 Experimental Details

Our models were implemented using Mesh Tensorflow4 [102] with the T5 library5 [91]. Fol-

lowing Raffel et al. [91], all data are preprocessed as into a "sequence-to-sequence" format. The

length of the sequence is 512 at the encoder and 32 at the decoder. For all experiments, we train

models 300K steps with a batch size of 128 and each batch is a mixture which samples each task

proportionately to the number of examples in the dataset. Learning rate is a constant of 1e-3 with

Adafactor optimizer [101].

For hyper-parameters tuning, the length of prompt l is selected from {12, 16, 20, 20, 24} at the

encoder and {2, 4, 6, 8, 10, 12, 14, 16} at the decoder. The bottleneck dimension b in the weight

4https://github.com/tensorflow/mesh
5https://github.com/google-research/text-to-text-transfer-Transformer
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matrices of local HyperNetworks is set to d/r, where d is the model dimension of the T5 models

and r is a reduction factor and selected from {16, 32, 64}. The dimension t of the layer-aware

task embedding is selected from {32, 64, 128}. For a fair comparison, the hyper-parameters of

baseline methods are set to have approximately the same numbers of parameters as HyperPrompt

with the exception that Prompt-Tuning and HyperPrompt-Share are extremely parameter-efficient

with significantly fewer parameters.

3.3.3 Key Results

Figure 3.1 provides an overall summary of the results of HyperPrompt-Global. Previous

prompt-tuning [63, 66] methods focus on parameter-efficient single-task fine-tuning and hence

freeze the backbone Transformers and only fine-tune the prompts. Their experiments show that

the performance of only tuning the prompts can match the full model training with a very large

11B model (Figure 3.1), but substantially pales for moderate model sizes.

Our HyperPrompt-Global architecture when fully fine-tuned achieves state-of-the-art perfor-

mance on SuperGLUE across four different model sizes. Competitive adapter-tuning variants in-

cluding Prompt-Tuning and HyperFormer++ can either match or slightly improve upon the multi-

task learning (MTL) baseline on the SuperGLUE dataset. In contrast, HyperPrompt-Global out-

performs the strong MTL baseline by a large margin on SuperGLUE score (78.9 vs 77.2 for T5

Base). Interestingly, such a performance gain continues all the way to model size as big as XXL

(e.g. 91.3 vs 90.2) with only 0.14% additional parameters.

3.3.4 Tuning all vs Task-Conditioned Parameters

Recently, Karimi Mahabadi et al. [56] show that only tuning adapters can be competitive

against the full fine-tuning. However, the evaluation is conducted only on the GLUE with smaller

models including T5 Small and Base.

In the experiments, we first compare tuning the full model (the backbone model plus task-

conditioned parameters) vs. only task-conditioned parameters. Table 3.1 and 3.2 shows the com-

parison on the GLUE and SuperGLUE average scores using T5 large. For GLUE, the observation
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Tunable Parameters Model CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

All MTL 59.4 96.6 93.3/90.7 90.6/90.4 89.8/92.3 90.8/90.8 95.2 90.8 88.3
All HyperFormer++-T5.1.1LARGE 63.3 96.6 93.2/90.7 92.1/91.9 89.7/92.3 90.5/90.7 95.1 89.9 88.8
All HyperPrompt-Global-T5.1.1LARGE 64.6 96.7 94.0/91.8 91.3/91.4 90.0/92.4 90.8/91.0 95.4 91.9 89.4
Task-Specific HyperFormer++-T5.1.1LARGE 58.9 95.7 92.7/90.0 91.6/91.5 87.7/90.7 89.8/90.0 94.5 87.0 87.3
Task-Specific HyperPrompt-Global-T5.1.1LARGE 57.5 96.7 93.6/91.2 91.9/92.0 87.0/90.1 90.3/90.6 95.0 87.7 87.5

Table 3.1: Comparison of fine-tuning all vs task-specific parameters on GLUE. Reprinted with
permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers." by Yun
He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint
arXiv:2203.00759 (2022).

Tunable Parameters Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AVG

All MTL 88.5 95.8/98.2 87.0 85.5/56.3 89.2/88.6 91.7 74.0 89.4 85.9
All HyperFormer++-T5.1.1LARGE 88.9 98.7/98.2 86.7 85.4/56.7 89.4/88.8 92.1 74.5 90.7 86.4
All HyperPrompt-Global-T5.1.1LARGE 88.7 99.1/98.8 91.0 85.0/55.6 89.8/89.1 91.3 74.2 92.0 87.0
Task-Specific HyperFormer++-T5.1.1LARGE 85.2 90.9/94.6 76.7 81.5/48.8 87.2/86.4 87.7 67.8 82.1 80.5
Task-Specific HyperPrompt-Global-T5.1.1LARGE 85.2 95.2/95.5 75.5 82.9/52.9 89.1/88.3 85.7 71.1 82.2 81.5

Table 3.2: Comparison of fine-tuning all vs task-specific parameters on SuperGLUE. Reprinted
with permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers."
by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao,
YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv
preprint arXiv:2203.00759 (2022).

is consistent with [56], where task-specific only fine-tuning of HyperFormer++ and HyperPrompt-

Global is comparable to the MTL baseline. However, on SuperGLUE, we observe a large perfor-

mance drop: the average score drops by 5.5 and 5.9 for HyperPrompt-Global and HyperFormer++,

respectively.

Therefore, these experiments show that only tuning the task-conditioned parameters is not

enough to achieve competitive results as full model training for multi-task learning on high-

difficulty tasks such as SuperGLUE. This is consistent with the results of Prompt-Tuning [63].

Hence, the rest of the experiments are conducted with tuning all model parameters.
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Model # Ops Training Time

Vanilla Adapter 1.01 ×1013 8.4h
HyperFormer++ 3.14 ×1013 10.3h
Prompt-Tuning 1.16 ×1013 11.1h
HyperPrompt-Sep 1.01 ×1013 8.9h
HyperPrompt-Share 9.8× 1012 8.0h
HyperPrompt-Global 9.8× 1012 8.7h

Table 3.3: The number of operations for a single forward pass and training time (base model).
Reprinted with permission from "HyperPrompt: Prompt-based Task-Conditioning of Trans-
formers." by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe
Zhao, YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv
preprint arXiv:2203.00759 (2022).

3.3.5 Computational Efficiency

Table 3.3 presents the computational efficiency analysis of the Adapter/Prompt models. HyperPrompt-

Share has the lowest # Ops since hyper-prompts are injected into self-attention and skip the stan-

dard FFN layers. In contrast, HyperFormer++ has ∼ 3x # Ops compared to other variants. Re-

garding training time, HyperPrompt-Share is fastest given that the local HyperNetworks are shared

across tasks. Vanilla Adapter and HyperPrompt-Global are comparable while HyperFormer++ and

Prompt-Tuning take significant longer to do the full fine-tuning. This shows the computational

efficiency of HyperPrompt for both training and inference, in addition to the parameter efficiency.

3.3.6 Ablation Study

Table 3.4 and 3.5 presents the results on T5 Base and Table 3.6 and 3.7 presents the results

on T5 Large. HyperPrompt outperforms all baselines in terms of the average score of GLUE and

SuperGLUE.

HyperPrompt-Global vs. Prompt-Tuning. The original Prompt-Tuning [63] is for single-

task fine-tuning. To be parameter-efficient, it only trains the prompts but freezes the backbone T5.

To make a fair comparison, we modify Prompt-Tuning by (1) training both prompts and backbone,

and (2) adding prompt to each task and co-train all tasks together. As shown in Table 3.4, 3.5, 3.6
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and 3.7, HyperPrompt-Global outperforms Prompt-Tuning by 2.0 (0.6) and 1.6 (1.4) on GLUE and

SuperGLUE using T5 Base (Large), respectively. HyperPrompt-Global improves upon Prompt-

Tuning in two places: (1) Prompt-Tuning only adds prompts to the word embedding layer while

HyperPrompt adds hyper-prompts at every Transformer layer and hence is more expressive; and

(2) Prompts of tasks are trained independently in Prompt-Tuning while HyperPrompt enables a

flexible knowledge sharing via the HyperNetworks.

Model #Params CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

MTL 1.0x 49.8 94.6 92.5/89.8 90.7/90.5 89.2/91.9 88.8/88.5 93.3 85.0 85.5
Vanilla Adapter 1.06x 60.0 95.4 92.7/89.8 90.2/90.2 89.3/91.9 88.5/88.1 93.5 84.4 86.7
HyperFormer++ 1.04x 56.9 94.8 92.9/90.1 91.1/90.9 88.9/91.7 88.7/88.3 93.4 85.6 86.5
Prompt-Tuning 1.0003x 48.0 95.0 92.2/89.0 90.3/90.2 89.0/91.7 88.8/88.5 93.2 82.9 84.8

HyperPrompt-Share (ours) 1.008x 56.2 94.7 93.0/90.4 90.6/90.4 89.2/91.9 88.7/88.4 93.4 85.2 86.4
HyperPrompt-Sep (ours) 1.06x 57.2 94.6 93.8/91.4 91.0/90.8 89.2/91.9 88.5/88.4 93.4 86.6 86.8
HyperPrompt-Global (ours) 1.04x 57.0 95.2 93.4/90.9 90.4/90.2 89.2/92.0 88.7/88.5 93.4 87.1 86.8

Table 3.4: Comparison of HyperPrompt with baselines on GLUE using T5 Base. Reprinted with
permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers." by Yun
He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint
arXiv:2203.00759 (2022).

Model #Params BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC AVG

MTL 1.0x 82.6 93.4/93.5 65.7 76.7/39.7 80.9/80.2 85.6 70.5 81.4 77.2
Vanilla Adapter 1.03x 83.5 93.4/94.6 65.3 77.6/42.7 81.0/80.2 88.2 71.0 76.9 77.5
HyperFormer++ 1.02x 83.5 96.2/97.0 66.3 77.8/41.9 81.2/80.4 87.4 71.0 80.1 78.2
Prompt-Tuning 1.0003x 82.5 94.0/95.8 68.0 76.9/40.2 80.9/80.2 84.1 69.3 80.8 77.3

HyperPrompt-Share (ours) 1.004x 83.1 95.7/95.2 67.7 77.3/41.3 81.9/81.0 87.4 70.4 80.8 78.2
HyperPrompt-Sep (ours) 1.03x 83.3 97.8/97.0 61.7 77.6/42.3 81.5/80.6 86.8 71.4 78.2 77.5
HyperPrompt-Global (ours) 1.02x 83.3 96.6/96.4 69.7 77.5/41.0 81.7/80.9 86.8 70.5 83.7 78.9

Table 3.5: Comparison of HyperPrompt with baselines on SuperGLUE using T5 Base. Reprinted
with permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers."
by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao,
YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv
preprint arXiv:2203.00759 (2022).
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Model #Params CoLA SST-2 MRPC SST-B QQP MNLI QNLI RTE AVG

MTL 1.0x 59.4 96.6 93.3/90.7 90.6/90.4 89.8/92.3 90.8/90.8 95.2 90.8 88.3
Vanilla Adapter 1.06x 63.8 96.5 93.7/91.3 92.0/91.9 90.0/92.5 90.6/90.5 94.9 88.7 88.8
HyperFormer++ 1.02x 63.3 96.6 93.2/90.7 92.1/91.9 89.7/92.3 90.5/90.7 95.1 89.9 88.8
Prompt-Tuning 1.0001x 62.5 96.7 93.4/91.0 91.3/91.0 90.0/92.4 90.9/91.0 95.4 89.9 88.8
HyperPrompt-Share (ours) 1.008x 65.0 96.7 93.8/91.6 91.1/90.8 90.0/92.4 90.8/91.1 95.3 91.3 89.3
HyperPrompt-Sep (ours) 1.06x 63.9 96.6 94.6/92.6 92.0/91.7 90.0/92.4 90.9/91.0 95.2 91.6 89.4
HyperPrompt-Global (ours) 1.02x 64.6 96.7 94.0/91.8 91.3/91.4 90.0/92.4 90.8/91.0 95.4 91.9 89.4

Table 3.6: Comparison of HyperPrompt with baselines on GLUE using T5 Large. Reprinted with
permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers." by Yun
He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint
arXiv:2203.00759 (2022).

Model #Params BoolQ CB COPA MultiRC ReCoRD RTE WIC WSC AVG

MTL 1.0x 88.5 95.8/98.2 87.0 85.5/56.3 89.2/88.6 91.7 74.0 89.4 85.9
Vanilla Adapter 1.03x 88.8 98.3/98.8 86.0 85.3/56.0 89.3/88.7 91.2 73.6 91.3 86.1
HyperFormer++ 1.01x 88.9 98.7/98.2 86.7 85.4/56.7 89.4/88.8 92.1 74.5 90.7 86.4
Prompt-Tuning 1.0001x 88.5 97.6/98.8 85.0 84.9/55.2 89.0/88.4 91.5 72.8 90.1 85.6
HyperPrompt-Share (ours) 1.004x 88.5 98.7/98.2 88.0 85.2/55.8 89.7/89.1 91.8 74.1 93.9 86.8
HyperPrompt-Sep (ours) 1.03x 88.6 97.6/98.8 87.7 85.2/56.4 89.7/89.1 91.6 73.5 89.4 86.1
HyperPrompt-Global (ours) 1.01x 88.7 99.1/98.8 91.0 85.0/55.6 89.8/89.1 91.3 74.2 92.0 87.0

Table 3.7: Comparison of HyperPrompt with baselines on SuperGLUE using T5 Large. Reprinted
with permission from "HyperPrompt: Prompt-based Task-Conditioning of Transformers."
by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao,
YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv
preprint arXiv:2203.00759 (2022).

HyperPrompt-Global vs. HyperFormer++. HyperPrompt-Global is superior to the state-

of-the-art baseline HyperFormer++ in the average score of GLUE and SuperGLUE for both Base

and Large T5 model. For example, HyperPrompt-Global of T5 large achieves 87.0 on the Super-

GLUE compared to 86.4 by HyperFormer++ (Table 3.7). Note that the main difference between

the two methods is that HyperPrompt-Global inserts the task-conditioned parameters as prompts

into self-attention layers while HyperFormer++ insert adapters after each block. We believe task-

conditioning in self-attention gives more expressive power than in the feed-forward network as
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done in adapters. Hyper-prompts that are prepended with the key and value participate in the at-

tention interactions between different token positions, which helps the model to better capture the

task-dependent semantics.

HyperPrompt-Global vs. MTL. Next, we observe that using HyperPrompt-Global can greatly

improve the performance upon the vanilla Transformer model (referred to MTL): 1.7 (1.1) gain on

SuperGLUE score for T5 Base (Large) with 4% (2%) additional parameters. In conclusion, the

experiments show that HyperPrompt-Global is a parameter-efficient and effective task-conditioned

parameterization of Transformers for multi-task learning.

In addition, taking Table 3.5 as an example, we observe that COPA (400 training samples)

and WSC (554 training samples) as the two small datasets are improved the most (65.7 to 69.7 and

81.4 to 83.7 respectively). Hence, the experiments show that HyperPrompt-Global can enhance the

knowledge transfer from high-resource tasks to low-resource tasks, alleviating the task inference

problem.

HyperPrompt-Global vs. HyperPrompt-Share/Sep. Interestingly, HyperPrompt-Share is

better than HyperPrompt-Sep on the SuperGLUE on both Base and Large models while the oppo-

site is true for GLUE. Notice that all tasks share the same two local HyperNetworks in HyperPrompt-

Share while each task has its own local HyperNetworks in HyperPrompt-Sep. More importantly,

we observe that HyperPrompt-Global, where the local HyperNetworks are generated by the global

HyperNetworks, always achieves the best performance on both GLUE and SuperGLUE. Hence,

the experiments show that HyperPrompt-Global can adjust the degree of knowledge sharing for

better multi-task generalization, compared to HyperPrompt-Share/Sep in the extremes.

3.3.7 Peeking into Hyper-Prompts

To shed light on how hyper-prompts help improve the multi-task generalization via the task-

conditioning, we peek into HyperPrompt-Global models by looking at the distribution of attention

scores. We choose the GLUE task MRPC as an example. Specifically, to calculate the attention

mass over hyper-prompts per layer as visualized in Figure 3.3 (top), we averaged the hyper-prompt

attention softmax scores across 100 validation examples and each attention head in a layer, and
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summed across each query attending to the hyper-prompts. In other words, we aggregated the

amount of attention given to hyper-prompts by queries.

To calculate the attention entropy over tokens (other than hyper-prompts) as visualized in Fig-

ure 3.3 (bottom), we calculated the entropy of the attention distributions (averaged across attention

heads) for 100 validation examples. This results in
∑100

n=1

∑12
L=1 |Xn| entropies calculated. For the

HyperPrompt-Global model, this involved re-normalizing the softmax distribution after removing

hyper-prompts, as we wanted to understand how the original tokens are attended to.

First, we compute the attention mass on hyper-prompts for each encoder layer. Figure 3.3

(top) shows that the network has lower attention mass on hyper-prompts in the lower layers and

gradually increases attention mass for higher layers. This phenomenon indicates that higher-levels

of Transformer becomes more task-specialized while it is beneficial for the lower-levels to learn

task-agnostic representation [134] by casting lower attention mass on hyper-prompts. Furthermore,

we calculate the entropy of the attention scores on the tokens. For HyperPrompt-Global, we remove

the hyper-prompts from the calculation and re-normalize the attention scores on the tokens to

make a fair comparison with the MTL baseline. Figure 3.3 (bottom) shows a shift of entropy

distribution towards higher values for HyperPrompt-Global. This signifies that injecting hyper-

prompts encourages a more diverse attention distribution, which seems to be beneficial to model

generalization.

3.3.8 Impact of Hyper-Prompt Length

HyperPrompt-Global prepends l trainable hyper-prompts to the keys and values of self-attention

layer at every Transformer layer. In Figure 3.4, we present the results of tuning the prompt length

l on GLUE using T5 Base as the example (similar patterns are observed on T5 Large and Super-

GLUE). We first add hyper-prompts on the decoder and search the best l and then search the best

l for the encoder with the fixed best decoder hyper-prompt length. As shown in Figure 3.4a, l = 6

is the best for the decoder. As shown in Figure 3.4b, HyperPrompt achieves the best result of 86.8

when l = 16 on the encoder with l = 6 fixed for the decoder. The experiments show that hyper-

prompts with length l ∼ O(10) are good enough to achieve superior performance. Note that the
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Figure 3.3: Visualization of attention mass and entropy distribution. Reprinted with permission
from "HyperPrompt: Prompt-based Task-Conditioning of Transformers." by Yun He, Huaixiu
Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang Li, Zhao Chen,
Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv preprint arXiv:2203.00759
(2022).

original sequence length is 512 on the encoder and 32 on the decoder. Therefore, HyperPrompt

does not substantially increase the time complexity of self-attention layers in practice.

3.3.9 Encoder vs Decoder

To understand the effect of adding task-conditioned parameters to different parts of the net-

work, we present the results of HyperPrompt-Global and HyperFormer++ with adding hyper-

prompts/adapters to: (1) encoder-only, (2) decoder-only, and (3) both encoder-decoder. As shown

in Table 3.8, we observe adding task-conditioned parameters to encoder (encoder-only) performs

better than decoder-only on GLUE. However, the opposite is true for SuperGLUE, where encoder-
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Figure 3.4: Impact of hyper-prompt length in HyperPrompt-Global (GLUE score on T5 Base).
Reprinted with permission from "HyperPrompt: Prompt-based Task-Conditioning of Trans-
formers." by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe
Zhao, YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022. ArXiv
preprint arXiv:2203.00759 (2022).

only is substantially worse than decoder-only. This potentially could be a trainability issue when

prompts are inserted into encoders, i.e. a different learning rate might be required to learn the

prompt parameters from scratch. We leave this investigation as a future work. Based on this ex-

periment, we add task-conditioned parameters to the decoder for SuperGLUE in our experiments.

Model #Params GLUE SuperGLUE

MTL 1.0x 85.5 77.2
HyperFormer++-Encoder 1.02x 85.9 74.4
HyperFormer++-Decoder 1.02x 85.7 78.2
HyperFormer++-Enc-Dec 1.04x 86.5 74.8
HyperPrompt-Global-Encoder 1.02x 86.6 76.5
HyperPrompt-Global-Decoder 1.02x 86.3 78.9
HyperPrompt-Global-Enc-Dec 1.04x 86.8 78.7

Table 3.8: Ablation of inserting hyper-prompts or adapters into Encoder/Decoder/Enc-Dec (base
model). Reprinted with permission from "HyperPrompt: Prompt-based Task-Conditioning of
Transformers." by Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi,
Zhe Zhao, YaGuang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng and Ed H. Chi, 2022.
ArXiv preprint arXiv:2203.00759 (2022).
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3.4 Related Work

Prompt-Tuning. Prompt tuning is becoming a new paradigm for adapting pre-trained general-

purpose language models to downstream tasks, as a lightweight alternative to the popular fine-

tuning approach. Here, we use the term Prompt-Tuning to cover a general family of methods

following the prompting idea in GPT-3 [16]. To avoid manually design the prompts, recent efforts

have focused on search for discrete prommpting words automatically [103]. On the other hand, soft

prompts [42, 63, 66, 73] in the form of continuous vectors are introduced to simplify the process

and have shown competitive results in both natural language understanding [63, 73] and generation

tasks [66]. In particular, Lester et al. [63] show that soft prompts can become competitive against

full fine-tuning for a 11B parameters model, but with a big performance gap when the model size

is moderate. In our work, we close this gap in the full fine-tuning setting and demonstrated that

HyperPrompt can outperform strong multi-task baselines across all model sizes studied.

Adapter-Tuning. Adapter tuning [48, 49, 56] is an alternative approach for parameter-efficient

lightweight tuning of pre-trained langauge models for downstream tasks. Task-specific adapter

layers [48] are inserted into the Transformer block for fine-tuning while the rest of the backbone

model is frozen. By adding only a few percent of additional parameters, Karimi Mahabadi et al.

[56] show that competitive performance can be obtained on NLU benchmarks such as GLUE [116].

However, one limitation from the existing work is the evaluation of NLU on GLUE dataset, which

is known to be no longer suitable for measuring the progress of language understanding [117].

In our work, we evaluate HyperPrompt on SuperGLUE in addition to GLUE dataset, and show

that indeed higher-difficulty tasks such as SuperGLUE requires full-tuning of the model beyond

adapter tuning, to be competitive against state-of-the-art multi-task baselines. We also demonstrate

that it is advantageous to inject prompts into self-attention than adding adapters.

Multi-task Natural Language Understanding. Multi-task learning is an important and chal-

lenge research direction in both full fine-tuning and prompt-tuning paradigms because of the com-

peting needs of training and serving a single model while achieving Pareto efficiency in all tasks.

The T5 model [91] renders all NLP tasks as a Text-to-Text problem. However, the best results
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are obtained by task-specific fine-tuning. MTDNN (multi-task deep neural network) [74] shares

parameters between several NLP tasks, and achieves strong performance on the GLUE benchmark.

Aghajanyan et al. [4] use around 50 tasks to boost the multi-task learning performance. Aribandi

et al. [8] builds an extremely diverse set of 107 NLP tasks for extreme multi-task scaling and

demonstrate superior performances on a wide range of benchmarks. Recently, Sanh et al. [98],

Wei et al. [125] also illustrated how a multi-task learning stage can greatly improve the zero-shot

prompting performance of large language models.

3.5 Summary

We propose a novel architecture for prompt-based task-conditioning of self-attention in Trans-

formers. The hyper-prompts are generated by a HyperNetwork to enable flexible information and

knowledge sharing among tasks while remain efficient in parameters and computation. Hyper-

Prompt allows the network to learn task-specific feature maps where the hyper-prompts serve as

task global memories, encouraging a more diverse distribution of attention. Extensive experiments

show that HyperPrompt can achieve superior performances over strong T5 multi-task learning

baselines and parameter-efficient models including Prompt-Tuning and HyperFormer++ on GLUE

and SuperGLUE benchmarks. For example, HyperPrompt outperforms Prompt-Tuning by 2.0

(0.6) and 1.6 (1.4) on GLUE and SuperGLUE using T5 Base (Large), respectively.
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4. METABALANCE: IMPROVING MULTI-TASK RECOMMENDATIONS VIA ADAPTING

GRADIENT MAGNITUDES OF AUXILIARY TASKS1

The third challenge of intelligent knowledge transfer that this dissertation identifies is the neg-

ative transfer – that is, transferring knowledge from auxiliary tasks might have a negative impact

on the target task. This chapter aims to alleviate the negative transfer for personalized recommen-

dations from the perspective of the imbalance between the target task and auxiliary tasks. On the

one hand, one or more auxiliary tasks might have a larger influence than the target task and even

dominate the network weights, resulting in worse recommendation accuracy for the target task.

On the other hand, the influence of one or more auxiliary tasks might be too weak to assist the

target task. More challenging is that this imbalance dynamically changes throughout the training

process and varies across the parts of the same network. We propose a new method: MetaBalance

to balance auxiliary losses via directly manipulating their gradients w.r.t the shared parameters in

the multi-task network. Specifically, in each training iteration and adaptively for each part of the

network, the gradient of an auxiliary loss is carefully reduced or enlarged to have a closer magni-

tude to the gradient of the target loss, preventing auxiliary tasks from being so strong that dominate

the target task or too weak to help the target task. Moreover, the proximity between the gradient

magnitudes can be flexibly adjusted to adapt MetaBalance to different scenarios. The code of our

approach can be found at here.2

4.1 Introduction

The accuracy of personalized recommendations can often be improved by transferring knowl-

edge from related auxiliary information. For example, a primary task on e-commerce platforms

like Amazon and eBay is to predict if a user will purchase an item. This purchase prediction task

can benefit from transferring knowledge about the user’s preference from auxiliary information

1This chapter is reprinted with permission from “MetaBalance: Improving Multi-Task Recommendations via
Adapting Gradient Magnitudes of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo
and James Caverlee, 2022. Proceedings of the ACM Web Conference 2022. Copyright 2022 held by the authors.

2https://github.com/facebookresearch/MetaBalance
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like which item URLs the user has clicked and which items the user has put into the shopping

cart. A common way to enable such transfer learning is to formulate this auxiliary information as

auxiliary tasks (e.g., predict if a user will click a URL) and optimize them jointly with the target

task (e.g., purchase prediction) on a multi-task network. In this way, knowledge can be transferred

from the auxiliary tasks to the target task via the shared bottom layer of the multi-task network as

shown in Figure 4.1. Enhanced with auxiliary information, the target task can obtain better perfor-

mance than training the target task in isolation. Since the motivation of introducing those auxiliary

tasks is often to purely assist the target task, in this chapter, we focus on scenarios where only the

performance of the target task is of interest.

Task-specific
Layer

Task-specific
Layer

Task-specific
Layer

Shared Bottom Layer

Auxiliary Task A Target Task Auxiliary Task B
Transfer Transfer

Figure 4.1: Transfer learning from auxiliary tasks to improve the target task on a multi-task net-
work. Reprinted with permission from “MetaBalance: Improving Multi-Task Recommenda-
tions via Adapting Gradient Magnitudes of Auxiliary Tasks" by Yun He, Xue Feng, Cheng
Cheng, Geng Ji, Yunsong Guo and James Caverlee, Web Conference 2022.

Beyond purchase prediction, many other recommendation scenarios [10, 19, 38, 45, 76, 79, 81,

120, 137] can also benefit from such transfer learning from auxiliary tasks. In social recommenda-

tion [38, 79, 120], knowledge can be transferred from the social network to improve personalized

recommendations via training the target task simultaneously with auxiliary tasks like predicting the

connections or trust among users. To better estimate post-click conversion rate (CVR) in online ad-

vertising, related information like post-view click-through rate (CTR) and post-view click-through

& conversion rate (CTCVR) can be introduced as auxiliary tasks [81]. Another example is that

learning user and item embeddings from product review text can be designed as auxiliary tasks to
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improve the target goal of predicting ratings on e-commerce platforms [137].

However, a key challenge to knowledge transfer from auxiliary tasks in personalized recom-

mendation is the potential for a significant imbalance of gradient magnitudes, which can negatively

affect the performance of the target task. As mentioned before, such knowledge transfer is often

conducted on a multi-task network, which is commonly composed of a bottom layer with shared

parameters and several task-specific layers. In training, each task has a corresponding loss and

each loss has a corresponding gradient with respect to the shared parameters of that multi-task

network. The sum of these gradients (for the target task and the auxiliary tasks) impacts how the

shared parameters are updated. Hence, the larger the gradient is, the greater the impact this gra-

dient has on the shared parameters. As a result, if the gradient of an auxiliary loss is much larger

than the gradient of the target loss, the shared parameters will be most impacted by this auxiliary

task rather than the target task. Consequently, the target task could be swamped by the auxiliary

tasks, resulting in worse performance. On the other hand, if an auxiliary gradient is much smaller

than the target gradient, the influence of this auxiliary task might be too weak to assist the tar-

get task. This imbalance of gradient magnitudes is common in industrial recommender systems:

Figure 4.2a and 4.2b highlight two examples from Alibaba, which respectively demonstrate how

the target task gradient can be dominated by an auxiliary task, and how some auxiliary tasks have

gradients so small that they may only weakly inform the target task.

So how can we overcome this gradient imbalance? A simple and often used approach is to tune

the weights of task losses (or gradients) through a grid or random search. However, such fixed

task weights are not optimal because the gradient magnitudes change dynamically throughout the

training and the imbalance might vary across the different subsets of the shared parameters as

shown in Figure 4.2. Besides, it is time-consuming to tune the weights for multiple auxiliary tasks.

In this chapter, we propose MetaBalance as a novel algorithm and flexible framework that

adapts auxiliary tasks to better assist the target task from the perspective of gradient magnitudes.

Specifically, MetaBalance has three strategies: (A) Strengthening the dominance of the target task

– auxiliary gradients with larger magnitudes than the target gradient will be carefully reduced in
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(a) Imbalance on one part of the shared parame-
ters (e.g., MLP layer)

(b) example: Imbalance on the user embedding
layer

Figure 4.2: The imbalance of gradient magnitudes in transfer learning from auxiliary tasks for
recommendations on Alibaba data. The magnitudes dynamically change throughout the train-
ing, with the imbalance varying across different parts of the same multi-task network: in Fig
4.2a, the gradient of auxiliary task click-URL is much larger than the target gradient; in Fig
4.2b, the gradient of auxiliary task Add-to-Favorite is much smaller than the target gradient.
Reprinted with permission from “MetaBalance: Improving Multi-Task Recommendations via
Adapting Gradient Magnitudes of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng
Ji, Yunsong Guo and James Caverlee, Web Conference 2022.

each training iteration; (B) Enhancing the knowledge transferring from weak auxiliary tasks –

auxiliary gradients with smaller magnitudes than the target gradient will be carefully enlarged; and

(C) MetaBalance adopts both (A) and (B) in the same iteration. In the absence of sufficient prior

knowledge, which strategy to apply is treated as a data-driven problem, where the best strategy can

be empirically selected based on the performance over the validation set of the target task.

Moreover, MetaBalance has three key characteristics:

1. Auxiliary gradients can be balanced dynamically throughout the training process and adap-

tively for different subsets of the shared parameters, which is more flexible than fixed weights

for task losses;

2. MetaBalance prioritizes the target task via preventing auxiliary tasks from being so strong

that they dominate the target task or too weak to help the target task, which can be easily

monitored by choosing one of the three strategies;
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3. The next important question is how much should the auxiliary gradient magnitudes be re-

duced or enlarged? We design a relax factor to control this to flexibly adapt MetaBalance

to different scenarios. The relax factor can also be empirically selected based on the perfor-

mance over the validation dataset of the target task.

In sum, MetaBalance provides a flexible framework for adapting auxiliary gradients to bet-

ter improve the target task from the perspective of gradient magnitudes. Extensive experiments

over two real-world user behavior datasets from Alibaba show the effectiveness and flexibility of

MetaBalance. In particular, we have four target observations:

• With the best strategy and relax factor selected from the validation set, MetaBalance can

significantly boost the test accuracy of the target task, which shows that auxiliary knowledge

can be better transferred to the target task via MetaBalance.

• MetaBalance can significantly outperform previous methods for adapting auxiliary tasks to

improve the target task. For example, we observe a significant improvement of 8.34% upon

the strongest baselines in terms of NDCG@10.

• Only one hyper-parameter in MetaBalance (the relax factor) needs to be tuned, irrespective

of the number of tasks. Hence, MetaBalance requires only a few training runs, which is more

efficient than tuning the weights of task losses, which can be computationally intensive as

the number of tasks increases.

• MetaBalance can collaborate well with several popular optimizers including Adam, Adagrad

and RMSProp, which shows the potential that MetaBalance can be widely applied in many

scenarios.

4.2 Related Work

Recommendations with Auxiliary Tasks. In many personalized recommendation scenarios, the

test accuracy of the target task can be improved via joint learning with auxiliary tasks. In so-

cial recommendation [38, 79, 120], the knowledge about the user preference can be transferred
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from social network to the improve recommendations while the target task like rating prediction

jointly train with auxiliary tasks like predicting the connections and trust among users. To improve

post-click conversion rate (CVR) prediction, Ma et al. [81] consider the sequential pattern of user

actions and introduce post-view click-through rate (CTR) and post-view click-through&conversion

rate (CTCVR) as auxiliary tasks. To enhance music playlists or booklists recommendations, pre-

dicting if a user will like an individual song or book can also be used as auxiliary tasks and jointly

learn with the list-based recommendations. Besides, Bansal et al. [10] design auxiliary tasks of

predicting item meta-data (e.g., tags, genres) to improve the rating prediction as the target task.

To improve the target goal of predicting ratings, learning user and item embeddings from product

review text can also be designed as auxiliary tasks [137].

Auxiliary Learning. In this chapter, we focus on transferring knowledge from auxiliary tasks

to improve the target recommendation task, which is an example of auxiliary learning paradigm.

While multi-task learning aims to improve the performance across all tasks, auxiliary learning dif-

fers in that high test accuracy is only required for a primary task, and the role of the other tasks is

to assist in generalization of the primary task. Auxiliary learning has been widely used in many

areas. In speech recognition, Toshniwal et al. [109] apply auxiliary supervision from phoneme

recognition to improve the performance of conversational speech recognition. In computer vision,

Liebel at al. [67] propose auxiliary tasks such as the global description of a scene to boost the per-

formance for single scene depth estimation. Mordan et al. [83] observe that object detection can be

enhanced if it jointly learns with depth prediction and surface normal prediction as auxiliary tasks.

Liu et al. [70] propose a Meta AuXiliary Learning (MAXL) framework that automatically learns

appropriate labels for auxiliary tasks. In NLP, Trinh et al. [110] show that unsupervised auxiliary

losses significantly improve optimization and generalization of LSTMs. Auxiliary learning has

also been applied to improve reinforcement learning [51, 68].

Gradient Direction-based Methods for Adapting Auxiliary Tasks. In auxiliary learning, several

methods [33, 68, 135] have been proposed to adapt auxiliary tasks to avoid the situation where they

dominate or compete with the target task, where an auxiliary gradient will be down-weighted or
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masked out if its direction is conflicting with the direction of the target gradient. We will introduce

these methods in detail in Section 4.4.4.1 and compare them with the proposed MetaBalance. In

particular, MetaBalance does not punish auxiliary gradients with conflict directions but strengths

the dominance of the target task from the perspective of gradient magnitudes. In the experiments,

MetaBalance shows better generalization than these gradient direction-based methods.

Multi-Task Learning. Multi-task learning [96, 113] is used to improve the learning efficiency and

prediction accuracy of multiple tasks via training them jointly. Shared-bottom model [113] is a

commonly used structure where task-specific tower networks receive the same representations that

come from a shared bottom network.

Multi-Task Balancing Methods. In multi-task learning, methods have been proposed to balance

the joint learning of tasks to avoid the situation where one or more tasks have a dominant influence

on the network weight [21, 57, 71, 82, 99]. Although these methods have no special preference to

the target task (as in our focus in this chapter), we do discuss their connection to MetaBalance in

Section 4.4.4.2 and experimentally compare with them in Section 4.5.

4.3 Problem Statement

Our goal is to improve the test accuracy of a target task via training auxiliary tasks alongside

this target task on a multi-task network, where useful knowledge from auxiliary tasks can be trans-

ferred so that the shared parameters of the network converge to more robust features for the target

task. In the context of personalized recommendation, the target task is normally to predict if a user

will interact (e.g., purchase or click) with an item, which can be formulated as a binary classifi-

cation problem. The test accuracy is measured over the top-K items ranked by their probabilities

of being interacted with by the user against the ground-truth set of items that the user actually

interacted with.

Let θ denote a subset of the shared parameters. For example, θ could be the weight matrix or

the bias vector of a multi-layer perceptron in the shared bottom network. θ is learned by jointly
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minimizing the target task loss Ltar with auxiliary task losses Laux,i, i = 1, ..., K:

Ltotal = Ltar +
K∑
i=1

Laux,i (4.1)

We assume that we update θt via gradient descent with learning rate α:

θt+1 = θt − α ∗Gt
total (4.2)

where t means the t-th training iteration over the mini-batches (t = 1, 2...T ) and Gt
total is the

gradient of Lttotal w.r.t θ:

Gt
total = ∇θLttotal = ∇θLttar +

K∑
i=1

∇θLtaux,i (4.3)

where Gtotal is equivalent to adding up each gradient of the target and auxiliary losses. To simplify

the notations, we have:

• Gtar (i.e., ∇θLtar): the gradient of the target task loss Ltar with respect to θ.

• Gaux,i (i.e., ∇θLaux,i): the gradient of the i-th auxiliary task loss Laux,i with respect to θ,

where i = 1, 2...K.

• ‖G‖: the magnitude (L2 Norm) of the corresponding gradient.

As shown in Eq 4.3 and 4.2, the larger the magnitude of a gradient is, the greater the influence

this gradient has in updating θ.
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Algorithm 1 The Basic Version of MetaBalance

Require: θ1, Ltar, Laux,1, ...,Laux,K , Strategy that is selected from {‖Gaux,i‖ > ‖Gtar‖, ‖Gaux,i‖ <

‖Gtar‖, (‖Gaux,i‖ > ‖Gtar‖) or (‖Gaux,i‖ < ‖Gtar‖)}

Ensure: θT

1: for t = 1 to T do

2: Gt
tar = ∇θLttar

3: for i = 1 to K do

4: Gt
aux,i = ∇θLtaux,i

5: if (Strategy) then

6: Gt
aux,i ← Gt

aux,i ∗
‖Gt

tar‖
‖Gt

aux,i‖
7: end if

8: end for

9: Gt
total = Gt

tar +Gt
aux,1 + . . .Gt

aux,K (element-wise addition)

10: Update θ using Gt
total (e.g., Gradient Descent: θt+1 = θt − α ∗Gt

total)

11: end for

4.4 Proposed Method

The imbalance of gradient magnitudes may negatively affect the target task optimization. On

the one hand, if ‖Gaux,i‖ (∃i ∈ {1, 2...K}) is much larger than ‖Gtar‖, the target task will

lose its dominance of updating θ and get lower performance. On the other hand, if ‖Gaux,i‖

(∃i ∈ {1, 2...K}) is much smaller than ‖Gtar‖, the corresponding auxiliary task might become

less influential to assist the target task. As illustrated in Figure 4.2, many personalized recommen-

dations may suffer from this imbalance. Hence, we are motivated to propose a new algorithm that

adapts auxiliary tasks from the perspective of gradient magnitudes.
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4.4.1 Adapting Auxiliary Gradient Magnitudes

As discussed above, the magnitude imbalance between Gtar and Gaux,i, ...,Gaux,K may nega-

tively affect the target task optimization. To alleviate this imbalance, MetaBalance is proposed to

dynamically and adaptively balance the magnitudes of auxiliary gradients with three strategies and

a relax factor (will be detailed in the next subsection).

The basic version of MetaBalance is presented in Algorithm 1, including four steps:

1. Calculating the Gradients. In each training iteration, we firstly calculate Gt
tar and Gt

aux,i

respectively (line 2 and 4).

2. Applying the Strategy. In line 5, we can choose either reducing auxiliary gradients with

larger magnitudes than the target gradient, or enlarging auxiliary gradients with smaller mag-

nitudes, or applying the two strategies together. The strategy can be selected based on the

validation performance of the target task.

3. Balancing the Gradients. Next, Gt
aux,i is normalized to be a unit vector by dividing by

‖Gt
aux,i‖ and then rescaled to have the same magnitude as Gt

tar by multiplying ‖Gt
tar‖ (line

6).

4. Updating the Parameters. After that, Gt
total (line 9) is obtained by summing Gt

tar and

balanced Gt
aux,1, . . .G

t
aux,K together. Then, Gt

total is used to update θ following an opti-

mizer’s rule such as gradient descent (line 10). Since step (3) and (4) are completely decou-

pled, MetaBalance has the potential to collaborate with most commonly used optimizers like

Adam and Adagrad [35].

MetaBalance benefits auxiliary learning from six aspects:

1. Gt
aux,i with much larger magnitude than Gt

tar could be automatically reduced, which pre-

vents the dominance of one or more auxiliary tasks for the target task. (Strategy A)

2. Gt
aux,i with much smaller magnitude than Gt

tar could be automatically enlarged, which en-

hances the knowledge transference from the corresponding auxiliary task. (Strategy B)
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3. The (1) and (2) could be done together if necessary. (Strategy C)

4. The strategy is selected based on the target task’s performance over validation dataset, which

is the empirically best strategy for a specific task and dataset.

5. Because ‖Gt
tar‖

‖Gt
aux,i‖

can be regarded as a dynamic weight for Gt
aux,i in line 6, MetaBalance can

balance Gt
aux,i dynamically throughout the training process.

6. As shown in Figure 4.2, the imbalance of gradient magnitudes varies across the different

parts of the same network (e.g., the auxiliary gradients might be much larger than the target

gradient in an MLP but much smaller in an embedding layer). Because MetaBalance can be

easily applied to each part of the shared parameters separately (θ is an input of Algorithm

1), the training of the different parts can be balanced respectively and adaptively. (5) and (6)

makes MetaBalance more flexible than using fixed weights for task losses.

However, the drawback of this basic version in Algorithm 1 is also obvious: forcing auxiliary

gradients to have exactly the same magnitude as the target gradient might not be optimal for the

target task. To overcome this inflexibility of the magnitude scaling, we design a relax factor to

control the closeness of ‖Gt
aux,i‖ to ‖Gt

tar‖ in the following subsection.

4.4.2 Adjusting Magnitude Proximity

The next question is how to flexibly adjust the magnitude proximity between Gaux,i and Gtar

to adapt to different scenarios? We design a relax factor r to control this magnitude proximity,

which is used in line 6 of Algorithm 1:

Gt
aux,i ← (Gt

aux,i ∗
‖Gt

tar‖
‖Gt

aux,i‖
) ∗ r +Gt

aux,i ∗ (1− r)

where, if r = 1, then Gt
aux,i has exactly the same magnitude as Gt

tar. If r = 0, then Gt
aux,i keeps

its original magnitude. The larger r is, the closer ‖Gt
aux,i‖ gets to ‖Gt

tar‖. Hence, r balances the

magnitude information between each auxiliary gradient and the target gradient.
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The impact of r on the magnitude proximity is illustrated in Figure 4.3. We observe that the

target gradient is dominated by an auxiliary gradient with its much larger magnitude when r = 0

in Figure 4.2a. In contrast, r = 1 lets all gradients have the same but very small magnitude as the

target gradient in Figure 4.3d. Between the two extremes, Figure 4.3b (r = 0.2) and Figure 4.3c

(r = 0.7) balance the gradient magnitudes in a more moderate way, which pushes ‖Gt
aux,i‖ closer

to ‖Gt
tar‖ but not exactly the same – the original magnitude can be partially kept.

More than that, r can actually affect the weight for each auxiliary task. We can further refor-

mulate line 6 in Algorithm 1 as:

Gt
aux,i ← Gt

aux,i ∗ wtaux,i

where wtaux,i is the weight for Gt
aux,i and we have:

wtaux,i = (
‖Gt

tar‖
‖Gt

aux,i‖
− 1) ∗ r + 1 (4.4)

where, if ‖Gt
tar‖ > ‖Gt

aux,i‖, the higher r is, the higher wtaux,i will be; however, if ‖Gt
tar‖ <

‖Gt
aux,i‖, the higher r is, the lower wtaux,i will be.

The next key question is how to choose this r? As presented in Equation 4.4, r affects the

weight for each auxiliary task. Without the prior knowledge of the importance of each auxiliary

task to the target task, we treat the setting of r as a data-driven problem and believe that r should be

carefully adjusted to adapt to different scenarios. Since r is only used in the backward propagation

and hence has no gradient from any loss, r is not a learnable parameter inherently. Hence, we

treat r as a hyper-parameter, which is tuned over validation datasets. Note that the same r for all

auxiliary tasks does not mean that they will have the same weight or gradient magnitude because

wtaux,i is not only decided by r but also affected by ‖Gt
tar‖ and ‖Gt

aux,i‖ (see Equation 4.4).

Therefore, there is only one hyper-parameter r in MetaBalance that needs to be tuned, which

is irrespective of the number of tasks. In contrast, the computational complexity of tuning weights

of task losses increases exponentially for each task added. Moreover, we also observe that Meta-
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(a) MetaBalance with r = 0 (b) MetaBalance with r = 0.2

(c) MetaBalance with r = 0.7 (d) MetaBalance with r = 1.0

Figure 4.3: The impact of relax factor r on magnitude proximity on UserBehavior-2017 dataset. In
the legend, “target” represents the target task (i.e., purchase prediction). Y-axis is the average
gradient magnitude over all mini-batch iterations in one epoch, where the gradient w.r.t a
MLP layer of the multi-task network is taken as the example. Reprinted with permission from
“MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes
of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James
Caverlee, Web Conference 2022.
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Balance achieves higher test accuracy than tuning the task weights in our experiments.

Finally, instead of using current magnitudes ‖Gt
tar‖ and ‖Gt

aux,i‖ in Algorithm 1, following

[82], we apply the moving average of magnitude of the corresponding gradient to take into account

the variance among all gradient magnitudes over the training iterations:

mt
tar = β ∗mt−1

tar + (1− β) ∗ ‖Gt
tar‖ (4.5)

mt
aux,i = β ∗mt−1

aux,i + (1− β) ∗ ‖Gt
aux,i‖,∀i = 1, ..., K (4.6)

where m0
tar = m0

aux,i = 0 and β is to control the exponential decay rates of the moving averages,

which could be empirically set as 0.9. The moving averages make the training more stable and

will be discussed in the experiments. Finally, the complete version of MetaBalance is shown in

Algorithm 2.
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Algorithm 2 The Complete Version of MetaBalance

Require: θ1, Ltar, Laux,1, ...,Laux,K , relax factor r, β in moving averages, Strategy that is selected from

{maux,i > mtar, maux,i < mtar, (maux,i > mtar) or (maux,i < mtar)}

Ensure: θT

1: Initialize m0
tar = m0

aux,i = 0

2: for t = 1 to T do

3: Gt
tar = ∇θLttar

4: mt
tar = β ∗mt−1

tar + (1− β) ∗ ‖Gt
tar‖

5: for i = 1 to K do

6: Gt
aux,i = ∇θLtaux,i

7: mt
aux,i = β ∗mt−1

aux,i + (1− β) ∗ ‖Gt
aux,i‖

8: if (Strategy) then

9: Gt
aux,i ← (Gt

aux,i ∗
mt
tar

mt
aux,i

) ∗ r +Gt
aux,i ∗ (1− r)

10: end if

11: end for

12: Gt
total = Gt

tar +Gt
aux,1 + . . .Gt

aux,K (element-wise addition)

13: Update θ using Gt
total (e.g., θt+1 = θt − α ∗Gt

total)

14: end for

4.4.3 Time and Space Complexity Analysis

In this section, we show that MetaBalance does not significantly increase the time and space

complexity of training multi-task networks. Assume that addition, subtraction, multiplication,

division and square root take “one unit” of time. The time complexity of training a multi-task

network depends on the network’s structure. For simplicity, assume that an MLP is the shared layer

of a multi-task network and θ is a weight matrix of a single layer in the MLP, where θ has input

dimension n and output dimension m. The time complexity of updating θ is O(T (1 + K)nmd)

[11], where T is the number of training iterations over the mini-batches, (1 + K) is the count
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of the target task plus K auxiliary tasks and d is the size of the mini-batch. For MetaBalance in

Algorithm 2, in each training iteration and for each task, r is a hyper-parameter, calculating mt
aux,i

ormt
tar takesO(nmd), and the time complexity of updating the magnitude of Gt

aux,i (line 9) is also

O(nmd). To sum up, the time complexity of MetaBalance is still O(T (1 +K)nmd). Therefore,

MetaBalance will not significantly slow down the training of multi-task networks.

Except for the space of training a multi-task network, MetaBalance only requires extra space for

mtar, r, β and maux,i,..., maux,K , where the space complexity isO(3+K) = O(1) (K is normally

a small number). Hence, MetaBalance does not significantly increase the space complexity of

multi-task networks training either.

4.4.4 Comparison with Previous Methods

In this section, we compare MetaBalance with previous methods.

4.4.4.1 Auxiliary Task Adapting Methods

These methods are specifically designed for auxiliary learning such that auxiliary tasks are

adapted to better improve the target task. The common idea is that if Gaux,i is conflicting with

Gtar from the perspective of direction, Gaux,i will be down-weighted or masked out. Compared

with them, MetaBalance is the first method that adapts auxiliary task to assist the target task from

the perspective of gradient magnitudes rather than punishing Gaux,i due to conflicting directions.

The experimental results show that keeping inner-competition between the target gradient and con-

flicting auxiliary gradients as MetaBalance does improves the generalization ability of the model.

GradSimilarity [33] adapts auxiliary tasks via the gradient similarity between Gtar and Gaux,i.

Specifically, if cosine(Gtar,Gaux,i) is negative, then Gaux,i will not be added to Gtotal and hence

will be ignored in updating the shared layers.

GradSurgery3 [135] replaces Gaux,i by its projection onto the normal plane of Gtar if cosine(Gtar,Gaux,i)

is negative, unlike [33] where Gaux,i is just ignored. Formally, if cosine(Gtar,Gaux,i) is negative,

3GradSurgery is originally for balancing multi-task learning. We can easily apply GradSurgery for auxiliary learn-
ing by specifying a task as the target task and the others as the auxiliary tasks
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they let:

Gt
aux,i = Gt

aux,i −
Gt
aux,i ·Gt

tar

‖Gt
tar‖2

·Gt
tar (4.7)

In this way, the conflict between Gtar and Gaux,i can be alleviated.

OL-AUX (Oline learning for Auxiliary Losses) [68] defines the total loss asLt = Lttar+
∑K

i=0w
t
aux,i·

Ltaux,i where waux,i is the weight of Laux,i and V t(w) as the speed at which the target task loss de-

creases at the t-th iteration and w = [w1, ..., wK ]
T . OL-AUX seek to optimize the N-step decrease

of the target task w.r.t w:

V t,t+N(w) = Lt+Ntar − Lttar (4.8)

With some approximations, they find that ∀i = 1, ..., K:

∇waux,iV t,t+N(waux,i) = −
N−1∑
j=0

(Gt+j
tar )

TGt+j
aux,i (4.9)

Then, w← w−β ·∇wV t,t+N(w) such that the speed at which Ltar decreases could be maximized.

4.4.4.2 Multi-Task Balancing Methods

In contrast to the auxiliary learning-specific methods, these multi-task balancing methods are

for general learning where all tasks are treated equally important. Although they have no prefer-

ence to the target task, they are valid baselines because MetaBalance is specifically for auxiliary

learning and is supposed to outperform them. For convenience, we let j denotes the index of any

task in this subsection, where j = 0, 1, ..., K. Let wj be the weight of the j-th task loss Lj .

Uncertainty [57] assumes that the higher the uncertainty of task data is, the lower the weight of

this task loss should be assigned. They design a learnable parameter σj to model the uncertainty

for each task. Specifically, they optimize the model parameters and σj to minimize the following

objective:

L =
K∑
j=0

1

σ2
j

Lj +
K∑
j=0

logσj (4.10)

Minimizing the loss L w.r.t. σj can automatically balance Lj during training, where increasing σj
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reduces the weight for task loss Lj .

GradNorm [21] encourages ‖Gt
j‖ to be the mean of all ‖Gt

j‖, j = 0, ..., K. In this way, all tasks

could have a similar impact on the updating of shared-parameters. In particular, they minimize the

following two objectives:

Lt =
K∑
j=0

wtj · Ltj (4.11)

LtnormLoss =
K∑
j=0

L1Norm(‖wtj ·Gt
j‖ − ‖Gt‖ · [rtj]α) (4.12)

In each iteration, Lt is firstly optimized w.r.t model parameters θ (not including wtj) to obtain

Gt
j and the LtnormLoss is optimized w.r.t wtj . In the next iteration, updated wtj can balance Ltj .

Moreover, rtj is to model the pace at which different tasks are learned, where rtj = ptj/E[p
t
j] and

ptj = Ltj/L0
j . And α is a hyper-parameter which sets the strength of forcing tasks back to a common

training rate.

DWA (Dynamic Weight Averaging) [71] balances the pace at which tasks are learned. In DWA,

wtj is set as:

wtj =
N · exp(pt−1j /T )∑

n exp(p
t−1
n /T )

, pt−1j =
Lt−1j

Lt−2j

(4.13)

where N is the number of tasks and temperature T controls the softness of the task weighting

in the softmax function. pj estimates the relative descending rate of Lj . When Lj decreases at a

slower rate compared with other task losses, wj will be increased.

MGDA (Multiple-Gradient Descent Algorithm) [99] treats multi-task learning as multi-objective

optimization problem and finds solutions that satisfies Pareto optimality – as long as there is a

common direction along which losses can be decreased, we have not reached a Pareto optimal

point yet. Since the shared parameters are only updated along common directions of the task-

specific gradients, MGDA has no preference on a particular task.

MTAdam [82] is an Adam-based optimizer that balances gradient magnitudes and then update

parameters according to the rule of Adam [58]. Following MTAdam, we also directly manipulate
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the gradient magnitudes, instead of weighting task losses like Uncertainty [57], GradNorm [21]

and DWA [71]. MetaBalance differs from MTAdam in the following aspects:

• MTAdam lets all gradient magnitudes be similar to that of the first loss (not necessarily

the target loss) while MetaBalance has three strategies that can flexibly encourage auxiliary

gradients to better help the target task optimization.

• ‖Gt
aux,i‖ can only be very similar to ‖Gt

tar‖ in MTAdam while MetaBalance can adjust the

proximity of ‖Gt
aux,i‖ to ‖Gt

tar‖ via the relax factor, which is vital for adapting MetaBalance

to different scenarios.

• MetaBalance is an auxiliary task adapting algorithm that can collaborate with most optimiz-

ers like Adagrad or RMSprop to update parameters, whereas MTAdam is specially designed

for Adam-based optimizers only.

4.5 Experiments

In this section, we present our results and discussion toward answering the following experi-

mental research questions:

• RQ1: How well does MetaBalance improve the target task via adapting the magnitudes of

auxiliary gradients?

• RQ2: How well does MetaBalance perform compared to previous auxiliary task adapting

and multi-task balancing methods?

• RQ3: How well does MetaBalance collaborate with commonly used optimizers such as

Adam and Adagrad?

• RQ4: What is the impact of moving averages of gradient magnitudes in MetaBalance?

4.5.1 Experimental Setup

Following the auxiliary learning setting [70, 112], high test accuracy is only required for a

target task while the role of auxiliary tasks is to assist the target task to achieve better test accuracy.
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Datasets. IJCAI-20154 is a public dataset from IJCAI-15 contest, which contains millions of

anonymized users’ shopping logs in the past 6 months. UserBehavior-20175 is a public dataset

of anonymized user behaviors from Alibaba. The two datasets both contain users’ behaviors in-

cluding click, add-to-cart, purchase and add-to-favorite. The statistics of preprocessed datasets are

summarized in Table 4.1. We treat purchase prediction as the target task and the prediction of

other behaviors as auxiliary tasks. We formulate the prediction of each behavior like purchase as a

binary classification problem and negative samples are randomly selected.

Evaluation and metrics. In the evaluation, all items are ranked according to the probability of

being purchased by the user and the top-K items are returned and measured against the ground-truth

items set of what users actually purchased, where we adopt three metrics: Normalized Discounted

Cumulative Gain (NDCG) [52] at 10 and 20 (N@10 and N@20), precision at 10 and 20 (P@10

and P@20), and recall at 10 and 20 (R@10 and R@20).

Multi-task network. Because how to design a better multi-task network is not the emphasis of

this chapter, we directly adopt the combination of MLP layer and matrix factorization layer as the

shared bottom network, which is widely adopted for recommendations in both academia [44] and

industry like Google [23] and Facebook [84]. We build MLP layer as the task-specific tower for

each task. The multi-task network is shown in Figure 4.4.

Baselines. We compare MetaBalance with 10 baseline methods. Gradient direction-based methods

that are designed for adapting auxiliary tasks to improve the target task, which will be detailed in

Section 4.4.4.1, including: GradSimilarity [33], GradSurgery [135], OL-AUX [68]. Multi-Task

balancing methods that treat all tasks equally, which will be detailed in Section 4.4.4.2, including:

Uncertainty [57], GradNorm [21], DWA [71], MTAdam [82] and MGDA [99]. And three

simple baselines. Single-Loss: we mask out the loss terms of auxiliary tasks and only use target

task loss to calculate gradients and update parameters in the model. Vanilla-Multi: multiple loss

terms are not balanced where the weights for all loss terms are 1. Weights-Tuning: weights of

4https://tianchi.aliyun.com/dataset/dataDetail?dataId=47&userId=1
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1

70

https://tianchi.aliyun.com/dataset/dataDetail?dataId=47&userId=1
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1


User MF
Embedding

User MLP
Embedding

Matrix Factorization Layer

Item MF
Embedding

Item MLP
Embedding

MLP Layer

MLP Layer

Concatenation Layer

MLP Layer MLP Layer

Prediction
of Purchase

Prediction
of Click

Prediction of
add-to-favorite 

Shared
Parameters

ConcatenationElement-wise
Product

User One-hot Vector Item One-hot Vector

MLP Layer

Prediction of
add-to-cart 

Figure 4.4: Multi-task recommendation network in the evaluation. The shared bottom layers is the
combination of MLP layer and matrix factorization layer, which is widely adopted for recsys in
both academia [44] and industry [23, 84]. Reprinted with permission from “MetaBalance: Im-
proving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks"
by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee, Web Con-
ference 2022.

loss terms are obtained by random search.

4.6 Reproducibility of Experiments

The code of our approach can be found at here.6

Dataset Preprocessed and Split. IJCAI-2015 is preprocessed by filtering out users who purchase

fewer than 20 unique items and items which are purchased by fewer than 10 unique users. We omit

add-to-cart as an auxiliary task in IJCAI-2015 because this behavior only has 1,693 feedbacks. For

UserBehavior-2017, we filter out users who purchase fewer than 10 unique items and items which

are purchased by fewer than 10 unique users. The datasets are summarized in Table 4.1. We

randomly split purchase interactions into a training set (70%), validation set (10%) and testing set

(20%). For the interactions of auxiliary tasks like add-to-cart, we merge them into the training set.

Since auxiliary interactions like add-to-cart are highly related to purchase interaction, to prevent

possible information leakage, we remove user-item pairs from the auxiliary interactions if these

pairs appear in the validation set and testing set of the purchase interactions.

Implementation and Training Details. We implement MetaBalance, Uncertainty, DWA, Grad-

6https://github.com/facebookresearch/MetaBalance
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Table 4.1: Statistics of preprocessed datasets. Reprinted with permission from “MetaBalance: Im-
proving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks"
by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee, Web Con-
ference 2022.

Target Task Auxiliary Tasks

Dataset #User #Item #Buy Density of Buy #Add-to-Cart #Click #Add-to-Favorite

IJCAI-2015 19,839 50,973 390,600 0.039% 1,693 2,025,910 224,279
UserBehavior-2017 16,089 25,813 89,404 0.022% 53,245 394,246 19,585

Similarity, GradSurgery and OL-AUX via Pytorch. The code of GradNorm is from this repo7 and

the code of MTAdam is from the authors.8 All experiments are conducted on an Nvidia GeForce

GTX Titan X GPU with 12 GB memory. Cross-entropy loss is adopted for each task and Adam

[58] is the optimizer with batch size of 256 and learning rate of 0.001.

Hyper-parameters. All hyper-parameters are carefully tuned in the validation set, where early

stopping strategy is applied such that we terminate training if validation performance does not

improve over 20 epochs. In the multi-task recommendation network, the size of user and item

embeddings is 64, the size of the shared MLP layers is {32, 16, 8} and the size of the task-specific

MLP layers is {64, 32}. To prevent overfitting, dropout with rate of 0.5 is applied for each layer

and we also use weight decay with rate of e-7. For MetaBalance, r is selected from 0.1, 0.2, ...0.9

and 0.7 is the best for UserBehavior-2017 and 0.9 is the best for IJCAI-2015. For MTAdam, β1,

β2, β3 are respectively set as 0.9, 0.999 and 0.9. For DWA, T is set as 2 and we calculate the mean

of losses in very 5 iterations on IJCAI-2015 and in very 10 iterations on UserBehavior-2017. For

GradNorm, α is set as 0.75 on IJCAI-2015 and 0 on UserBehavior-2017. For OL-AUX, β is set as

0.1 on IJCAI-2015 and 1 on UserBehavior-2017.

4.6.1 RQ1: Improvement of Target Task via Adapting Auxiliary Gradients

In this subsection, we discuss the impact of adapting auxiliary gradient magnitudes on the

target task’s performance.

7https://github.com/hosseinshn/GradNorm
8https://github.com/ItzikMalkiel/MTAdam
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Table 4.2: Strategy selection. Reprinted with permission from “MetaBalance: Improving Multi-
Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks" by Yun He,
Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee, Web Conference 2022.

Datasets UserBehavior-2017 IJCAI-2015

Metrics (%) N@10 R@10 P@10 N@10 R@10 P@10

Vanilla-Multi 0.820 1.284 0.291 0.844 0.965 0.437
Strategy A 0.948 1.487 0.316 0.858 0.963 0.424
Strategy B 0.904 1.384 0.301 0.818 0.950 0.425
Strategy C 0.990 1.550 0.339 0.974 1.164 0.509

Strategy A: strengthening the dominance of the target task;
Strategy B: enhancing the knowledge transferring from weak auxiliary tasks;
Strategy C: Adopting Strategy A and Strategy B together.

Impact of Strategy Selection. We firstly study which strategy is optimal for the two recommenda-

tion datasets. Note that we firstly compare the three strategies over the validation dataset to choose

the best one and apply it on the test dataset. To be consistent with other experimental results, we

present the results of the three strategies over the test dataset in Table 4.2, which reflects the same

pattern as the validation dataset. First of all, all three strategies significantly outperform vanilla

multi-task learning baseline (“Vanilla-Multi") in UserBehavior-2017 and Strategy C significantly

outperforms the baseline in IJCAI-2015, which shows the effectiveness and robustness of Meta-

Balance. We observe the pattern “Strategy C > Strategy A > Strategy B" across the two datasets,

which shows that strengthening the dominance of the target task (Strategy A) is more important

than enhancing the knowledge transferring from weak auxiliary tasks (Strategy B) and combining

the two strategies together can achieve further improvements for the two datasets. Therefore, we

apply Strategy C in the rest of the experiments.

Impact of Relax Factor. Based on Strategy C, we further study the impact of the relax factor.

Figure 4.5 presents the varying of NDCG@10 and Recall@10 as r changes in UserBehavior-2017

dataset (the similar observation is obtained in IJCAI-2015 dataset).

The worst NDCG@10 and Recall@10 are achieved when r = 0 (Vanilla-Multi), where aux-

iliary gradients (‖Gt
aux,i‖) keep their original magnitudes (i.e., not balanced as in Vanilla-Multi).
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Figure 4.5: Impact of relax factor r. Reprinted with permission from “MetaBalance: Improving

Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks" by Yun
He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee, Web Conference
2022.

In Figure 4.2a, we observe that click task’s gradient magnitude (blue curve) is much larger than

‖Gt
tar‖ (red curve). Hence, the target task gradient is probably dominated by the click task gradi-

ent, which explains the low target task performance of Vanilla-Multi (see Table 4.3).

In contrast, r = 1 in MetaBalance means that ‖Gt
aux,i‖ becomes very close to ‖Gt

tar‖ as shown

in Figure 4.3d, where the four curves are twisted together. However, r = 1 achieves suboptimal

results as shown in Figure 4.5, which demonstrates that the target task performance might be

negatively impacted by a large r. A possible reason is that most auxiliary gradients are reduced to

be very similar to the target gradient and hence the update of the shared parameters becomes so

small that it negatively affects the optimization.

Between the two extremes, Figure 4.3b (r = 0.2) and Figure 4.3c (r = 0.7) balance the gradient

magnitudes in a more moderate way – getting ‖Gt
aux,i‖ closer to ‖Gt

tar‖ but not exactly the same,

where r = 0.7 achieves the best performance as shown in Figure 4.5.

4.6.2 RQ2: Comparison with Baseline Methods

Table 4.3 and Table 4.4 present the experimental results and the improvement of MetaBalance

upon the strongest baseline in terms of each metric, where MetaBalance significantly outperforms

all baselines over most of metrics on the two datasets.

MetaBalance vs. gradient direction-based methods. First, we observe that MetaBalance
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Table 4.3: Experimental results of UserBehavior-2017 dataset. Reprinted with permission from
“MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes
of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James
Caverlee, Web Conference 2022.

UserBehavior-2017

Metric(%) N@10 R@10 P@10 N@20 R@20 P@20

Single-Loss 0.817 1.265 0.275 0.994 1.825 0.208
Vanilla-Multi 0.820 1.284 0.291 1.074 2.107 0.237
Weights-Tuning 0.909 1.378 0.326 1.165 2.195 0.263

Uncertainty 0.724 1.158 0.266 0.903 1.739 0.201
GradNorm 0.913 1.292 0.297 1.147 2.044 0.237
DWA 0.915 1.419 0.309 1.165 2.232 0.248
MGDA 0.845 1.328 0.292 1.075 2.058 0.237
MTAdam 0.869 1.382 0.305 1.112 2.153 0.247

GradSimilarity 0.923 1.444 0.308 1.186 2.270 0.255
GradSurgery 0.936 1.471 0.319 1.213 2.371 0.263
OL-AUX 0.931 1.471 0.311 1.162 2.224 0.243

MetaBalance 0.990∗ 1.550∗ 0.339∗ 1.258∗ 2.421∗ 0.269∗

Improvement 5.77% 5.32% 3.96% 3.66% 2.09% 2.08%
∗We conduct a two-sided significant test between MetaBalance and the strongest baseline
(highlighted by underscore), where * means the p-value is smaller than 0.05.
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Table 4.4: Experimental results of IJCAI-2015 dataset. Reprinted with permission from “MetaBal-
ance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxil-
iary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee,
Web Conference 2022.

IJCAI-2015

Metric(%) N@10 R@10 P@10 N@20 R@20 P@20

Single-Loss 0.883 0.935 0.431 1.022 1.314 0.298
Vanilla-Multi 0.844 0.965 0.437 0.992 1.353 0.311
Weights-Tuning 0.866 1.013 0.445 1.037 1.448 0.330

Uncertainty 0.695 0.818 0.365 0.834 1.186 0.266
GradNorm 0.878 0.953 0.430 1.035 1.375 0.307
DWA 0.899 1.005 0.442 1.040 1.372 0.312
MGDA 0.809 1.104 0.439 1.104 1.673 0.350
MTAdam 0.880 1.015 0.463 1.071 1.525 0.348

GradSimilarity 0.817 0.977 0.427 1.025 1.529 0.336
GradSurgery 0.876 0.998 0.445 1.042 1.434 0.327
OL-AUX 0.931 0.921 0.413 0.950 1.312 0.295

MetaBalance 0.974∗ 1.164∗ 0.509∗ 1.134∗ 1.588 0.353

Improvement 8.34% 14.68% 10.01% 2.72% – 0.86%
∗We conduct a two-sided significant test between MetaBalance and the strongest baseline
(highlighted by underscore), where * means the p-value is smaller than 0.05.
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outperforms GradSimilarity, OL-AUX and GradSurgery, which are designed to boost the target

task via adapting auxiliary tasks. Remember that the same idea behind these methods is that

the less similar the direction of target gradient and one auxiliary gradient is, the lower weight

will be assigned to that auxiliary task. While these gradient direction-based methods have worse

performance than MetaBalance over the testing dataset, interestingly, they actually achieve better

training loss than MetaBalance, where an example is shown in Figure 4.6, which demonstrates

they are more prone to overfitting than MetaBalance. Hence, this observation reveals that auxiliary

gradients that have dissimilar directions with the target gradient might be sometimes helpful to

improve the generalization ability of the model, which is consistent with the observations in the

literature [22, 113]. For example, they might help the target task to correct its direction of the

optimization to achieve a better generalization ability. MetaBalance keeps the direction conflicts

between the target gradient and the auxiliary gradients but reduces the auxiliary gradients whose

magnitudes are much larger than the target gradient, which prevents the dominance of auxiliary

tasks and shows more robust performance for personalized recommendations.

In addition, we are curious if MetaBalance can be enhanced when it also considers using the

direction similarity to adapt auxiliary gradients. Specifically, in each training iteration, we first

enlarge or reduce auxiliary gradients via MetaBalance and then enlarge or reduce them again ac-

cording to one of the gradient direction-based methods. The results in Table 4.5 show that the

performance of MetaBalance mostly drops after including the gradient direction-based methods,

which demonstrates that naively combining both magnitude and direction-based approaches can

interfere with each another. We leave how to better consider both gradient magnitudes and direc-

tions for adapting auxiliary tasks to help the target task in the future work.

MetaBalance vs. multi-task balancing methods. Second, it is understandable that Uncer-

tainty, GradNorm, DWA are inferior to MetaBalance because they have no special preference to

the target task. In DWA, the lower the loss decreases, the higher the weight is assigned to that loss.

In GradNorm, the target task gradient magnitude is regularized to be similar to the average of all

gradient magnitudes, which might not be the optimal magnitude for the target task optimization.
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Figure 4.6: The training loss on UserBehavior-2017. Reprinted with permission from “MetaBal-
ance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxil-
iary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee,
Web Conference 2022.

In Uncertainty, the higher the uncertainty of the task dataset, the higher weight is assigned to that

task loss. We also compare MGDA [99] as one of the most representative Pareto methods with

MetaBalance. MGDA treats multi-task learning as multi-objective optimization problem and finds

solutions that satisfy Pareto optimality. In MGDA, the shared parameters are only updated along

common directions of the gradients for all tasks, which might not be the best optimization direc-

tion for the target task. Consequently, the target task is not guaranteed to be improved the most

among all tasks in Pareto optimal solutions like MGDA. In contrast, MetaBalance is a special-

ized method designed for boosting the target task. As Table 4.3 shows, MetaBalance significantly

outperforms MGDA over most of the metrics. Although MTAdam is not originally designed for

auxiliary learning, we let the target task serve as the anchor task in MTAdam. In this way, Meta-

Balance and MTAdam share the same core idea that the auxiliary gradient magnitudes become

closer to the target gradient. However, Table 4.3 shows that MetaBalance significantly outper-

forms MTAdam. The possible reason might be the relax factor in MetaBalance that can control the

magnitude proximity, which makes MetaBalance more flexible than MTAdam.

In addition, Vanilla-Multi is even inferior to Single-loss over most of metrics on both datasets.

This demonstrates that transfer learning from auxiliary tasks is a non-trivial task – that might hurt

the performance of the target task rather than boosting it. After that, Table 4.3 shows that Weights-
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Tuning, where the target task loss normally has a higher weight assigned than the auxiliary tasks,

outperforms Vanilla-Multi over all metrics on both datasets. However, the performance of Weights-

Tuning is significantly inferior to MetaBalance. A possible reason is that the tuned weights are

fixed during the training and hence behave sub-optimally in adapting auxiliary tasks.

To sum up, the results demonstrate that the three strategies and the relax factor make MetaBal-

ance a flexible and effective framework to adapt auxiliary tasks from the perspective of gradient

magnitudes, which significantly improves the target task’s performance and outperforms baselines.

Table 4.5: MetaBalance plus gradient direction-based methods. Reprinted with permission from
“MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes
of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James
Caverlee, Web Conference 2022.

Metric(%) N@10 R@10 P@10 N@20 R@20 P@20

MetaBalance (MB) 0.990 1.550 0.339 1.258 2.421 0.269
MB+GradientSimilarity 0.937 1.398 0.311 1.190 2.210 0.250
MB+GradientSurgery 0.925 1.585 0.329 1.167 2.351 0.258
MB+OL-AUX 0.898 1.374 0.308 1.158 2.224 0.248

4.6.3 RQ3: Collaboration with More Optimizers

As shown in Algorithm 1 and 2, MetaBalance balances the gradient magnitudes and these

balanced gradients are used to update shared parameters following the rules of optimizers. Results

in Table 4.3 have shown that MetaBalance can collaborate with Adam well. We are also curious

if MetaBalance can collaborate with other popular optimizers – achieving higher performance for

the target task compared to the multi-task network that is trained without MetaBalance. In Figure

4.7, we observe that two other widely used optimizers – Adagrad [35] and RMSProp [108] – can

also achieve better performance via using the balanced gradients from MetaBalance. This result

demonstrates that MetaBalance can flexibly collaborate with commonly-used optimizers.

79



0.5

0.7

0.9

1.1

N@10 R@10

(%) Adagrad Adagrad+MetaBalance

(a) Adagrad

0.5

0.7

0.9

1.1

1.3

N@10 R@10

(%) RMSProp RMSProp+MetaBalance

(b) RMSProp

Figure 4.7: Collaboration with other optimizers. Reprinted with permission from “MetaBal-
ance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Aux-
iliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James Caverlee,
Web Conference 2022.

4.6.4 RQ4: Impact of Moving Averages of Gradient Magnitudes

In Table 4.6, we compare the performance of MetaBalance with its variant (“−Moving Av-

erage”) where the moving averages of magnitude mt
tar and mt

aux,i (in Equation 4.5 and 4.6) are

replaced with the current magnitudes Gt
tar and Gt

aux,i at each iteration. We observe that the per-

formance drops slightly on UserBehavior-2017 and drastically on IJCAI-2015 dataset. This result

demonstrates the moving averages of magnitudes benefits the optimization, which takes into ac-

count the variance among all gradient magnitudes over the training iterations.

Table 4.6: Ablation study of moving average of magnitude. Reprinted with permission from
“MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes
of Auxiliary Tasks" by Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo and James
Caverlee, Web Conference 2022.

Datasets UserBehavior-2017 IJCAI-2015

Metrics (%) N@10 R@10 P@10 N@10 R@10 P@10

MetaBalance 0.990 1.550 0.339 0.974 1.164 0.509
−Moving Average 0.983 1.513 0.325 0.835 0.956 0.426
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4.7 Summary

In many personalized recommendation scenarios, the target task can be improved via training

auxiliary tasks alongside this target task on a multi-task network. In this chapter, we propose

MetaBalance to adapt auxiliary tasks to better assist the target task from the perspective of gradient

magnitude. Specifically, MetaBalance has three adapting strategies, such that it not only protects

the target task from the dominance of auxiliary tasks but also avoids that one or more auxiliary tasks

are ignored. Moreover, auxiliary gradients are balanced dynamically throughout the training and

adaptively for each part of the network. Our experiments show that MetaBalance can be flexibly

adapted to different scenarios and significantly outperforms previous methods. For example, our

proposed method achieves a significant improvement of 8.34% in terms of NDCG@10 upon the

strongest baseline on the two real-world datasets.

81



5. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

The past decade has seen rapid growth in model capacity, which paves the way for machine

learning algorithms to achieve dramatic success on many important domains like computer vision,

natural language processing and personalized recommendations. However, human-labeled datasets

are still scarce and hence these large models may overfit on low-resource tasks, resulting in poor

performance. Recently, transferring useful knowledge from previous pre-training stages or related

tasks has received more and more attention, which may alleviate the label scarcity problem. In this

dissertation, we made a series of contributions to enable more effective and efficient knowledge

transfer to boost the target task.

In particular, this dissertation include three contributions which towards tackling the three

corresponding challenges of conducting knowledge transfer. First, transferring domain-specific

knowledge from pre-training stages to large-scale language models remains under-explored, re-

sulting in limited performance over many specialized domains like biomedical. To tackle this

challenge, we propose a new pre-training procedure named disease knowledge infusion, which

explicitly augment BERT-like language models with the disease knowledge to enhance health-

related tasks such consumer health question answering, medical language inference and disease

name recognition. Second, to alleviate the problem of task interference – training multiple tasks

jointly on transformer-based models hinders the performance on individual tasks, we propose Hy-

perPrompt to flexibly share knowledge between the co-trained tasks. HyperPrompt generates task-

conditioned hyper-prompts that enables the model to better learn task-specific information. More-

over, the usage of HyperNetworks imbues the model with the flexibility of task-specific knowledge

sharing among the co-trained tasks. Third, to overcome the challenge of negative transfer – trans-

ferring knowledge from the source can have a negative impact on the target learner, we introduce

MetaBalance as a novel algorithm to intelligently and flexibly transfer the knowledge from auxil-

iary tasks to improve the target task. MetaBalance prioritizes the target task via carefully reducing

the gradient of auxiliary tasks to prevent they from being so strong that they dominate the target
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task or carefully enlarging the auxiliary gradients to enhance the knowledge transfer from them.

Our research would facilitate the exploration of pre-training and multi-task learning, as one step

towards a more intelligent and flexible knowledge transfer to better assist the target task. Despite

the efforts made in the thesis, there are still many challenges and open problems to be explored.

With respect to future work, we are interested in investigating the following directions: o

• Transfer domain-specific knowledge for language generation. Previous work focus on

infusing domain-specific knowledge into language models for natural language understand-

ing such as sentence-level classification (e.g., medical language inference) and token-level

classification (e.g., disease name recognition), while transferring domain-specific knowledge

into language models for better specialized language generation is under-explored. The do-

main knowledge is vital to many important applications such as medical dialogue response

generation [136] and task-oriented dialogue [93], which aims to assist the user in completing

certain tasks in a specific domain such as restaurant booking and weather query.

• Alleviate the catastrophic forgetting of knowledge. The self-supervised pre-training over

large-scale unlabeled corpus imbues language models the general language knowledge. How-

ever, when these models are further fine-tuned over downstream labeled datasets, the catas-

trophic forgetting might happen – parameters shift towards capturing the current task and

lose the general-purpose knowledge learned from the pre-training [9], resulting in perfor-

mance deterioration. In our work of HyperPrompt, we observe that injecting task-conditioned

parameters (prompts or adapters) into the decoder of transformers achieves better perfor-

mance than injecting them into the encoder. A possible reason is that decoder learns the

task-specific knowledge while the encoder mainly learns the general language knowledge,

which should not be interfered by the prompts. We could conduct more fine-grained study

on knowledge retention through the multi-stage learning.

• Study the theoretical foundation of negative transfer. MetaBalance balances the gradient

magnitudes of auxiliary tasks to alleviate the negative transfer. The extensive experiments
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over real-world datasets empirically demonstrate the effectiveness of MetaBalance. In the

future, more study can be conducted on investigating how the gradient magnitudes impact

the knowledge transfer, which might give a theoretical explanation on why MetaBalance can

significantly outperform the gradient-similarity based methods like GradSimilarity.
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