a2 United States Patent

US011474952B2

a0y Patent No.: US 11,474,952 B2

Annapareddy et al. @s) Date of Patent: Oct. 18, 2022
(54) METHODS, SYSTEMS, AND COMPUTER (52) US. CL
READABLE MEDIA FOR PERFORMING CPC ... GO6F 12/1027 (2013.01); GO6F 12/0223
PAGE FAULT HANDLING (2013.01); GO6F 2212/657 (2013.01); GO6F
2212/684 (2013.01)
(71) Applicant: The Texas A&M University System, (58) Field of Classification Search
College Station, TX (US) None
See application file for complete search history.
(72) Inventors: Narasimha Reddy Annapareddy, (56) References Cited
College Station, TX (US); Chih-Chieh
Chou, San Jose, CA (US); Chandrahas U.S. PATENT DOCUMENTS
Tirumulasetty, Bryan, TX (US); Paul
Gratz, College Station, TX (US); 2019/0163641 Al* 52019 Cooray GOGF 12/1027
Ayman Abouelwafa, Folsom, CA (US)
OTHER PUBLICATIONS
(73) Assignees: The Texas A&M University System,
College Station, TX (US); Hewlett “Direct access for files.” https://www kernel.org/doc/Documentation/
Packard Enterprise Development LP, filesystems/dax.txt., accessed. Jul. 21, 2021.
Houston, TX (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Charl.es T Choi . .
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor
U.S.C. 154(b) by 0 days. & Hunt, PA.
(57) ABSTRACT
(21) Appl. No.: 17/335,936 Methods, systems, and computer readable media for per-
oo forming page fault handling are disclosed. According to one
(22) Filed: Jun. 1, 2021 method, the method includes: after a translation lookaside
. N buffer (TLB) miss associated with a virtual memory page
65 P Publication Dat
(65) rior Tublication Lata occurs, identifying, in a page table, a page table entry (PTE)
US 2021/0374071 A1~ Dec. 2, 2021 associated with the virtual memory page; determining, using
a first indicator in the PTE, that the virtual memory page is
not present in a main memory; determining, using a second
Related U.S. Application Data indicator in the PTE, that the virtual memory page is
(60) Provisional application No. 63/033,015, filed on Jun. associated with a valid memory a@dress and that the Vmua?
1. 2020 memory page is capable Qf using pre-allocated pages;
’ ’ obtaining, from a pre-allocation table, a page frame number
(51) Int.Cl associated with a pre-allocated page; and updating the PTE
GOGF 12/1027 (2016.01) to indicate the page frame number.
GO6F 12/02 (2006.01) 20 Claims, 9 Drawing Sheets

900 ’l

AFTER A TRANSLATION LOOKASIDE BUFFER {TLB) MISS ASSOCIATED WITH A /902
VIRTUAL MEMORY PAGE OCCURS, IDENTIFY IN A PAGE TABLE, A PAGE TABLE ENTRY
{PTE) ASSOCIATED WITH THE VIRTUAL MEMORY PAGE

i

DETERMINE, USING A FIRST INDICATOR IN THE PTE, THAT THE VIRTUAL MEMORY /904
PAGE 1S NOT PRESENT IN A MAIN MEMORY

i

DETERMINE, USING A SECOND INDICATOR IN THE PTE, THAT THE VIRTUAL MEMORY | 906
PAGE I5 ASSOCIATED WITH A VALID MEMORY ADDRESS AND THAT THE VIRTUAL
MEMORY PAGE IS CAPABLE OF USING PRE-ALLOCATED PAGES

:

OBTAIN, FROM A PRE-ALLOCATION TABLE, A PAGE FRAME NUMBER ASSOCIATED /908
WITH A PRE-ALLOCATED PAGE

+

UPDATE THE PTE TO INDICATE THE PAGE FRAME NUMBER

910

US 11,474,952 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Docker container bind mounts.” https://docs.docker.com/storage/
bind-mounts//., accessed. Jul. 21, 2021.

“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z Core Specification 1.le, accessed Jun. 8, 2022.

“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z Physical Layer Specification 1.1, accessed Jun. 8, 2022.
“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z SFF 8639 2.5-Inch Specification 1.0, accessed Jun. 8, 2022.
“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z SFF 8639 2.5-Inch Compact Specification 1.0, accessed Jun.
8, 2022.

“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z SFF 8201 2.5-Inch with Gen-Z Scalable Connector Speci-
fication, accessed Jun. 8, 2022.

“Gen-Z specifications.” https://genzconsortium.org/specifications/,
Gen-Z Fabric Management Specification 1.0, accessed Jun. 8, 2022.
“Intel optane technology.” https://www.intel.com/content, accessed
Jun. 8, 2022.

“Intel persistent memory development kit.” https://pmem.io/pmdk/.,
accessed Jul. 21, 2021.

“Linux pipe.” http://man7.org/linux/man-pages/man2/pipe.2.html.,
accessed Jul. 21, 2021.

“Linux userfaultfd.” http://man7.org/linux/manpages/man2/userfaultfd.
2 html, accessed Jun. 8, 2022.

“Linux write.” http://man7.org/linux/man-pages/man2/write.2.
html., accessed Jul. 21, 2021.

“Lockless ring buffer design.” https://www.kernel.org/doc/
Documentation/trace/ring-buffer-design.txt. Accessed Jul. 21, 2021.
“Mmapv]l storage engine.” https://docs.mongodb.com/manual/
processor core/mmapv1/, accessed Jun. 8, 2022.

“Phase change memory.” http://www.pdl.cmu.eduw/SDI/2009/slides/
Numonyx.pdf.

“Transaction isolation levels.” https://docs.microsoft.com/en-US/
sql/odbe/reference/develop-app/transaction-isolation-levels?view=
sql-server-2017.

Alam et al., “Do-it-yourself virtual memory translation,” in ISCA
*17, (Toronto, ON, Canada), ACM, Jun. 2017.

Baliley et al., “The NAS parallel benchmarks-summary and pre-
liminary results,” in SC *91, pp. 158-165, ACM, 1991.

Bari et al., “CQNCR: Optimal VM migration planning in cloud data
centers,” in IFIP ’14, (Trondheim, Norway), IEEE, Jun. 2014.
Bhargava et al., “Accelerating two-dimensional page walks for
virtualized systems,” in International conference on Architectural
support for programming languages and operating systems ’13,
2008.

Bienia et al., “The PARSEC benchmark suite: characterization and
architectural implications,” in PACT 08, (Toronto, Ontario, Canada),
pp. 72-81, ACM, Oct. 2008.

Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, pp. 1-7, May 2011.

Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE
Micro, vol. 25, pp. 10-16 (2005).

Chanchio et al., “Communication state transfer for the mobility of
concurrent heterogeneous computing,” IEEE Transactions on Com-
puters, vol. 53, pp. 1260-1273 (2004).

Chen, “A review of emerging non-volatile memory (NVM) tech-
nologies and applications,” Solid-State Electronics, vol. 125, pp.
25-38 (2016).

Cho et al., “Natjam: Design and evaluation of eviction policies for
supporting priorities and deadlines in mapreduce clusters,” in SoCC
’13, (Santa Clara, CA), ACM, Oct. 2013.

Chou et al., “vnvml: An efficient user space library for virtualizing
and sharing non-volatile memories,” in MSST °19 Proceedings of
the 35st Symposium on Mass Storage Systems and Technologies,
(Santa Clara, CA), IEEE, 2019.

Chou, “Optimizing Emerging Memory Systems for Performance,”
2020.

Clark et al., “Live migration of virtual machines,” in NSDI 05,
(Berkeley, CA), pp. 273-286, USENIX, May 2005.

Coburn et al., “NV-Heaps: Making persistent objects fast and safe
with next generation, non-volatile memories,” in ASPLOS XVI
Proceedings of the sixteenth international conference on Architec-
tural support for programming languages and operating systems,
(Newport Beach, California, USA), pp. 105-118, ACM, 2011.
Condit et al., “Better i/o through byte-addressable, persistent memory,”
in SOSP ’09 Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, (Big Sky, Montana, USA), ACM,
2009.

Cooper et al., “Benchmarking cloud serving systems with YCSB,”
in SoCC ’10 Proceedings of the 1st ACM symposium on Cloud
computing, (Indianapolis, Indiana, USA), pp. 143-154, ACM, 2010.
Dong et al., “Hybrid checkpointing using emerging nonvolatile
memories for future exascale systems,” ACM TACO, vol. 8, Jul.
2011.

Dong et al., “Leveraging 3d pcram technologies to reduce check-
point overhead for future exascale systems,” in SC *09, (Portland,
Oregon), ACM, Nov. 2009.

Doshi et al., “Atomic persistence for scm with a non-intrusive
backend controller,” in HPCA ’16 Proceedings of the IEEE Inter-
national Symposium on High Performance Computer Architecture,
(Barcelona, Spain), IEEE, 2016.

Dulloor et al., “System software for persistent memory,” in EuroSys
’14 Proceedings of the Ninth European Conference on Computer
Systems, (Amsterdam, The Netherlands), ACM, 2014.

Eisner et al., “Quill: Exploiting fast non-volatile memory by trans-
parently bypassing the file system,” UCSD CSE Tech. Rep. CS2013-
0991, University of California, San Diego, San Diego, CA, 2013.
Fedorov et al., “Speculative paging for future NVM storage,” in
MEMSYS ’17 Proceedings of the International Symposium on
Memory Systems, (Alexandria, Virginia), 2017.

Fernando et al., “Phoenix: Memory speed hpc i/o with nvm,” in
HiPC ’16, (Hyderabad, India), IEEE, Dec. 2016.

Gao et al., “Real-time in-memory checkpointing for future hybrid
memory systems,” in ICS ’15, (Newport Beach, CA), pp. 263-272,
ACM, Jun. 2015.

Giles et al., “SoftWraP: A lightweight framework for transactional
support of storage class memory,” in MSST *15 Proceedings of the
31st Symposium on Mass Storage Systems and Technologies,
(Santa Clara, CA, USA), pp. 1-14, IEEE, 2015.

Jo et al., “Efficient live migration of virtual machines using shared
storage,” in VEE 13, (Houston, TX), pp. 41-50, ACM, Mar. 2013.
Hines et al., “Post-copy live migration of virtual machines,” ACM
SIGOPS Operating Systems Review, vol. 43, pp. 14-26 (2009).
Joshi et al., “ATOM: Atomic durability in non-volatile memory
through hardware logging,” in HPCA *17 Proceedings of the IEEE
International Symposium on High Performance Computer Archi-
tecture, (Austin, TX, USA), IEEE, 2017.

Jung et al., “FRASH: Exploiting storage class memory in hybrid file
system for hierarchical storage,” ACM Transactions on Storage
(TOS), vol. 6(1) (2010).

Kannan et al., “Optimizing checkpoints using nvm as virtual
memory,” in IPDPS ’13, (Boston, MA), IEEE, May 2013.
Kashyap et al., “Instant os updates via userspace checkpoint-and-
restart,” in ATC 16, (Denver, CO), pp. 605-619, USENIX, Jun.
2016.

Keeton, “Memory-driven computing,” in FAST *17, (Santa Clara,
CA), USENIX Association, 2017.

Krounbi et al., “Status and challenges for non-volatile spin-transfer
torque ram (stt-ram),” in International Symposium on Advanced
Gate Stack Technology ’10, (Albany, NY), Sep. 2010.

Kwon et al., “Strata: A cross media file system,” in SOSP ’17
Proceedings of the 26th Symposium on Operating Systems Prin-
ciples, (Shanghai, China), pp. 460-477, ACM, 2017.

Lee et al, “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, pp. 131-141 (2010).

Li et al, “Improving preemptive scheduling with application-
transparent checkpointing in shared clusters,” in Middleware °15,
(Vancouver, BC, Canada), pp. 222-234, ACM, Dec. 2015.

US 11,474,952 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Liang et al., “A case for virtualizing persistent memory,” in SoCC
’16 Proceedings of the Seventh ACM Symposium on Cloud Com-
puting, (Santa Clara, CA, USA), ACM, 2016.

Memaripour et al., “Atomic in-place updates for non-volatile main
memories with kamino-tx,” in EuroSys ’17 Proceedings of the
Twelfth European Conference on Computer Systems, (Belgrade,
Serbia), pp. 499-512, ACM, 2017.

Narayanan et al., “Whole-system persistence,” in ASPLOS XVII
Proceedings of the seventeenth international conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, (London, England, UK), ACM, 2012.

Peglar, “The future of storage systems—a dangerous opportunity,”
in MSST ’19 Proceedings of the 35st Symposium on Mass Storage
Systems and Technologies, (Santa Clara, CA), IEEE, 2019.
Pelley et al., “Memory persistency,” in ISCA 14 Proceeding of the
41st annual international symposium on Computer architecture,
(Minneapolis, Minnesota, USA), pp. 265-276, ACM, 2014.

Qiu et al., “NVMFS: A hybrid file system for improving random
write in NAND-flash SSD,” in MSST *13 IEEE 29th Symposium on
Mass Storage Systems and Technologies, (Long Beach, CA, USA),
IEEE, 2013.

Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” in ISCA *09 Proceedings
of the 36th annual international symposium on Computer architec-
ture, (Austin, TX, USA), ACM, 2009.

Sahni et al., “A hybrid approach to live migration of virtual
machines,” in CCEM °12, (Bangalore, India), IEEE, Oct. 2012.
Schroeder et al., “Dram errors in the wild: A large-scale field study,
in SIGMETRICS 09, (Seattle, WA), pp. 193-204, ACM, Jun. 2009.
Shao et al,, “Chord: Checkpoint-based scheduling using hybrid
waiting list in shared clusters,” Journal of Systems and Software,
vol. 131, pp. 22-34, Sep. 2017.

Swanson, “A vision of persistence.” https://www.sigarch.org/a-
vision-of-persistence/ (2017).

Venkataraman et al., “Consistent and durable data structures for
non-volatile byte-addressable memory,” in FAST *11 Proceedings
of the 9th USENIX Conference on File and Storage Technologies,
USENIX, 2011.

Volos et al., “Aerie: Flexible file-system interfaces to storage-class
memory,” in EuroSys ’14 Proceedings of the Ninth European
Conference on Computer Systems, (Amsterdam, The Netherlands),
ACM, 2014.

Volos et al., “Mnemosyne: Lightweight persistent memory,” in
ASPLOS XVI Proceedings of the sixteenth international conference

»

on Architectural support for programming languages and operating
systems, (Newport Beach, California, USA), pp. 91-104, ACM,
2011.

Wang et al., “How to be consistent with persistent memory? an
evaluation approach,” in NAS 15, (Boston, MA), pp. 186-194,
IEEE, Aug. 2015.

Woo et al., “The SPLASH-2 programs: Characterization and meth-
odological considerations,” in ISCA ’95, (S. Margherita Ligure,
Italy), pp. 24-36, ACM, Jun. 1995.

Wu et al., “SCMFS: A file system for storage class memory,” in SC
’11 Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, (Seattle,
Washington, USA), ACM, 2011.

Xie et al., “3d memory stacking for fast checkpointing/restore
applications,” in 3DIC *10, (Munich, Germany), IEEE, Nov. 2010.
Xu et al., “Nova: A log-structured file system for hybrid volatile/
non-volatile main memories,” in FAST *16 Proceedings of the 14th
USENIX Conference on File and Storage Technologies, (Santa
Clara, CA, USA), pp. 323-338, USENIX, 2016.

Yang et al., “NV-Tree: Reducing consistency cost for NVM-based
single level systems,” in FAST * 15 Proceedings of the 13th USENIX
Conference on File and Storage Technologies, (Santa Clara, CA,
USA), USENIX, 2015.

Ye et al., “Live migration of multiple virtual machines with resource
reservation in cloud computing environments,” in CLOUD 11,
(Washington, DC), IEEE, Jul. 2011.

Ye et al, “Virtual machine based energy-efficient data center
architecture for cloud computing: A performance perspective,” in
GREENCOMCPSCOM 10, pp. 171-178, IEEE, Dec. 2010.
Zayas, “Attacking the process migration bottleneck,” in SOSP *87,
(Austin, TX), pp. 13-24, ACM, Nov. 1987.

Zhang et al., “A study of application performance with non-volatile
main memory,” in MSST ’15 Proceedings of the 31st Symposium
on Mass Storage Systems and Technologies, (Santa Clara, CA),
IEEE, 2015.

Zhang et al., “Mojim: A reliable and highly-available non-volatile
memory system,” in ASPLOS ’15 Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, (Istanbul, Turkey), ACM, 2015.
Zhao et al., “Kiln: Closing the performance gap between systems
with and without persistence support,” in MICRO ’13 Proceedings
of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, (Davis, CA, USA), IEEE, 2013.

Zhou et al., “A durable and energy efficient main memory using
phase change memory technology,” in ISCA *09 Proceedings of the
36th annual international symposium on Computer architecture,
(Austin, TX, USA), ACM, 2009.

* cited by examiner

US 11,474,952 B2

Sheet 1 of 9

Oct. 18, 2022

U.S. Patent

15

]auIy Aq paj|i4

US 11,474,952 B2

Sheet 2 of 9

Oct. 18, 2022

U.S. Patent

z

jjney aded aiojeq jsuiad] Aq pa|

Old

1

% sa8ed omy
deww
BUINSsYy

JUDSB4d B08I0d MO

Ndd

s3ey

US 11,474,952 B2

Sheet 3 of 9

Oct. 18, 2022

U.S. Patent

plusaA pesny Nid QiDL

T 1 11

yne} aded e Buunp aiempaey Ag pajjidg

€O

Hey

peay

WDEDA BIGEIOd N0 Nad mmmx

/ \

3ne; s8ed e Bunp asempaiey Ag pajiidg

U.S. Patent Oct. 18, 2022 Sheet 4 of 9 US 11,474,952 B2

FIG. 4

head

US 11,474,952 B2

Sheet 5 of 9

Oct. 18, 2022

U.S. Patent

el
adey
rayy

ey
adey
(S}

gy
B8
RIYBY

..Mr.

Fuypuey yneg 982d 304

S

Oid

e

g
s8eqd
14

Buiipuey 30

ey a¥ed unsng

U.S. Patent Oct. 18, 2022 Sheet 6 of 9 US 11,474,952 B2

AOY

.

&

FIG. 6

U.S. Patent Oct. 18, 2022 Sheet 7 of 9 US 11,474,952 B2

D e

P
FIG. 7

£
34
{
i
Ay

3
3
KAV,
£
£y

US 11,474,952 B2

Sheet 8 of 9

Oct. 18, 2022

U.S. Patent

8 "Old
g8 918
> fome
(INAN “93) (NVY “93)
JOVYHO0LS T_ AYOWIN
<
—— | = | T = IR m
v18 I8 | 018 (g11) 808 (NIAIIN) ;
319vL 18Vl ¥344ng 1INN m
NOILYD0TIY || 39Vd { | 301Sv-00T INIWNIOYNYIN | |
-JY4d t | NOILVISNVYHL AYOWIN [
i [}
| H
| |
lllllllll e | i
1 1
“ |
v ! Y !
50 m 708 (30d) m
TINYY i | 3INION3 ONIQVOTH40 m
i | ONNANVH 11Nv4 39vd "
1 i
008

US 11,474,952 B2

Sheet 9 of 9

Oct. 18, 2022

U.S. Patent

6 "Old

0167

HIGINNN FNVYYEL 3DV IHL JLVDIANTE OL 3id 3HL 31vadn

*

8067

3DVd A3LVO0T1IV-Idd V HLIM
G31VID0SSY YIGNWNN JAVYS 39Vd V ‘F18VL NOLLYIOTIV-34d V IWOHS ‘NIVLEO

4

9067

S39Vd A3LVIOTIV-Idd ONISN 40 F18VdVO SI 3DVd AHOWNIN
TYALYIA FHL 1VHL NV SS34AAV AHOWIIN AITVA Vv HLIM G31vID0SSY St 39vd
AYOWIN TVNLYIA FHL IVHL ‘31d 3HL NI HOLVOIONI ANOD3S V ONISN “INIAYILAA

T

7067

AYOWIN NIVIANLV Nt IN3S3dd LON Sf 35vd
AYOWIWN TVNLYIA FHL IVHL ‘31d FHL NI YOLVDIANI 1SHI4 ¥ ONISN ‘ININYILI]

*

206”7

IOVd AHOWIN TYNLYIA FHL HLIM Q3LVID0SSY (31d)
AYLINT 319VL 39Vd ¥V ‘379V1L 3DVd V NI A41LNIAL 'SHNID0 39Vd AYOWIN TVNLYIA
V HLIM Q31VID0SSY SSIA {811) ¥344N8 3CISYNOO0T NOHLYISNVYL V 4314V

ﬁ\ 006

US 11,474,952 B2

1

METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR PERFORMING
PAGE FAULT HANDLING

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 63/033,015 filed Jun. 1, 2020,
the disclosure of which is incorporated herein by reference
in its entirety.

GOVERNMENT INTEREST

This invention was made with government support under
contract number I/UCRC-1439722 awarded by the National
Science Foundation. The government has certain rights in
the invention.

TECHNICAL FIELD

The subject matter described herein relates to virtual
memory management. More specifically, the subject matter
relates to methods, systems, and computer readable media
for performing page fault handling.

BACKGROUND

Virtual memory is a memory management technique used
in modern computer systems. Virtual memory allows appli-
cations to allocate or own more memory than is physically
available. In practice, virtual memory utilizes two funda-
mental techniques: lazy allocation and swapping.

Lazy allocation is a memory management concept where
memory (e.g., a virtual memory page) is allocated only when
it is being accessed or needed. Using lazy allocation, a
memory subsystem of an operating system (OS) can avoid
giving applications memory before the applications begin
execution. Lazy allocation generally works well because it
is very rare for an application to touch or access all pages it
requires immediately after executing and usually the work-
ing sets of programs are much smaller than their whole
memory footprints. Based on this characteristic of programs,
memory subsystems can let multiple applications concur-
rently execute, thereby improving the system overall per-
formance without the system running out of memory.

While lazy allocation can reduce memory usage, it is still
possible for all memory to be allocated, e.g., if too many
applications are executing concurrently in the systems. If the
memory runs out, a swapping mechanism can store the
content of some pages in non-volatile storage devices so that
those pages can be reused (e.g., re-allocated) by other
applications.

Lazy allocation and swapping usually work as part of a
kernel’s page fault exception handling. For example, when
memory is “allocated” (such as mmap or malloc) by pro-
grams, actually only a region of virtual memory address
space is created by the kernel for the calling programs, and
none of the physical pages is allocated. So, the following
memory access within this newly created region may trigger
a page fault exception by a hardware-implemented page
walker, and then a software-implemented exception handler
will check and confirm this access as legal and in turn
allocates a page for it.

The exception handler may need to perform a significant
number of operations to handle a page fault, from checking
validity of a faulting address, acquiring a page from avail-
able free memory pages, filling the page with the corre-

20

25

40

45

60

65

2

sponding data content from a storage device (e.g., major
page fault) or zeroing the page (e.g., minor page fault), to
creating some data structures for the memory management.
Related context switch overhead associated with a major
page fault may not be a serious problem if the underlying
storage devices are solid-state drives (SSDs) or hard disk
drives (HDDs) because access latency for such storage
devices are several orders more than that of dynamic ran-
dom-access memory (DRAM), and as such, in these cases,
the context switch overhead would only contribute a rela-
tively small portion of the total access latency. However,
when using emerging non-volatile memories (NVM) as
storage devices, related context switch overhead may be a
more significant issue since these types of memory have
significantly less access latency than SSDs or HDDs, and as
such, in these cases, the context switch overhead would be
responsible for a significant portion of the total access
latency.

SUMMARY

Methods, systems, and computer readable media for per-
forming page fault handling are disclosed. According to one
method, the method includes: after a translation lookaside
buffer (TLB) miss associated with a virtual memory page
occurs, identifying, in a page table, a page table entry (PTE)
associated with the virtual memory page; determining, using
a first indicator in the PTE, that the virtual memory page is
not present in a main memory; determining, using a second
indicator in the PTE, that the virtual memory page is
associated with a valid memory address and that the virtual
memory page is capable of using pre-allocated pages;
obtaining, from a pre-allocation table, a page frame number
associated with a pre-allocated page; and updating the PTE
to indicate the page frame number.

According to one system, the system includes at least one
processor; and a page fault handling offload engine (POE)
implemented using the at least one processor, wherein the
POE is configured for: after a TLB miss associated with a
virtual memory page occurs, identifying, in a page table, a
PTE associated with the virtual memory page; determining,
using a first indicator in the PTE, that the virtual memory
page is not present in a main memory; determining, using a
second indicator in the PTE, that the virtual memory page is
associated with a valid memory address and that the virtual
memory page is capable of using pre-allocated pages;
obtaining, from a pre-allocation table, a page frame number
associated with a pre-allocated page; and updating the PTE
to indicate the page frame number.

The subject matter described herein can be implemented
in software in combination with hardware and/or firmware.
For example, the subject matter described herein can be
implemented in software executed by a processor. In one
example implementation, the subject matter described
herein may be implemented using at least one computer
readable medium having stored thereon computer execut-
able instructions that when executed by the processor of a
computer cause the computer to perform steps or operations.
Exemplary computer readable media suitable for imple-
menting the subject matter described herein include non-
transitory devices, such as disk memory devices, chip
memory devices, programmable logic devices, and applica-
tion specific integrated circuits. In addition, a computer
readable medium that implements the subject matter
described herein may be located on a single device or
computing platform or may be distributed across multiple
devices or computing platforms.

US 11,474,952 B2

3

As used herein, the terms “node” and “host” refer to a
physical computing platform or device including one or
more processors and memory.

As used herein, the terms “module” and “engine” refers to
hardware, firmware, or software in combination with hard-
ware and/or firmware for implementing features described
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained
with reference to the accompanying drawings of which:

FIG. 1 depicts an example pre-allocation table associated
with a page fault handling offload engine (POE) implemen-
tation;

FIG. 2 depicts example page table entry (PTE) data
associated with the POE implementation;

FIG. 3 depicts example PTE data and pre-allocation data
during operation of the POE implementation;

FIG. 4 depicts example pre-allocation data associated
with post-page fault handling operations of the POE imple-
mentation;

FIG. 5 depicts example workflows of a pre-existing,
kernel based page fault exceptions handling and POE page
fault exceptions handling;

FIG. 6 depicts access latency associated with a normal-
ized critical path cycle of a page fault of the POE imple-
mentation and an existing kernel based page fault handler;

FIG. 7 depicts improvement provided by the POE imple-
mentation described herein using various benchmarks;

FIG. 8 is a diagram illustrating an example computing
environment for performing page fault handling; and

FIG. 9 is a diagram illustrating an example process for
performing page fault handling.

DESCRIPTION

The subject matter described herein relates to methods,
systems, and computer readable media for performing page
fault handling.

1 Introduction

Emerging Non-Volatile Memories (NVM), such as phase-
change memory (PCM) [1], NVDIMM [2], STT-RAM [3]
and 3D XPoint [4], have byte-addressability and low
latency, within an order of that of main memory [85],
together with the non-volatility of storage devices. These
bus-attached NVMs can be seen as potential candidates of
next generation of storage devices in the near future.

However, if we simply treat the NVM the same way as the
traditional storage device, we will squander the benefit of
much lower latency (around 5x slower than DRAM [85])
provided by NVM. For example, when a file stored in NVM
is accessed and a major page fault happens, kernel does not
have to block the faulting programs to trigger an input/
output (I/O) request for accessing the slow traditional stor-
age devices; instead, kernel could directly use memcpy
function to copy the data content from (bus-attached) NVM
to DRAM. Further, in such cases with NVM, the context
switch overhead (of page fault) can be too high, compared
to the access latency of NVM, and must be further avoided.

In the subject matter described herein, we consider that
some types of page fault overheads can be significantly
reduced. We also consider approaches for minimizing the
critical path latency of page faults resulting from accessing
the memory regions created by malloc and anonymous
private mmap commands. Improved page fault handling is
achieved by various aspects described herein, such as a page

20

25

35

40

45

60

65

4

pre-allocation mechanism and background thread post-page
fault handling, together with the execution of enhanced
hardware page walker during the page fault. The operations
of our new page fault exception handling can be divided into
three parts: (1) kernel (software) page pre-allocation and
legal address indication; (2) hardware page walker execution
at page fault; (3) kernel (software) post-page fault handling
by a kernel background worker. By doing so, the critical path
of page fault exception can be reduced to only a few memory
accesses.

The contributions of the subject matter described herein
are as follows: a page fault handling offload engine (POE)
for reducing overheads of page fault exceptions generated
from accessing malloc and anonymous private mmap of user
applications, details regarding a POE implementation
involving a modified Linux kernel and a Gem5 emulator;
and an evaluation of the POE implementation showing
significant critical path latency improvement.

The subject matter described herein is organized as fol-
lows. Section 2 describes related work. Section 3 presents
concepts and related features (e.g., hardware and software
modifications) for performing page fault handling related
operations. Section 4 explains a POE implementation
involving a modified Linux kernel and a Gem5 emulator in
more detail. Section 5 presents results of an evaluation of the
POE implementation with some benchmarks. Section 6
provides additional thoughts.

2 Related Work

2.1 Page Fault and Context Switch

In modern computer systems, virtual memory is a
memory management technique employed in most operating
systems. Virtual memory is useful because it assists OSes in
allowing multiple applications to launch without running out
of memory. Before the virtual memory is universally
adopted, an application must allocate or obtain all needed
memory before starting to execute; this limitation signifi-
cantly restricts the number of concurrent executing applica-
tions in a computer system as well as the overall system
throughput the computer systems can provide.

In theory, virtual memory can let applications start to
execute immediately without allocating any memory for
themselves. The memory is dispatched when memory is
needed; this is referred to as lazy allocation or on-demand
paging. Since memory is one of the valuable resources in the
computer systems, so memory is managed and can only be
dispatched by kernel.

One way user space processes can acquire memory is
through a kernel based page fault exception handling. When
user applications need memory, they may initially call mmap
or malloc functions. But mmap and malloc functions do not
allocate any memory for applications when called; instead,
these functions only create and validate a region of virtual
memory address space for the calling processes and return
the start address of this region.

Later, when applications access some address within this
newly created region, (if no page has been allocated for this
address yet), an exception would be triggered by hardware
page walker, and the page fault exception handler starts to
run in the kernel space on behalf of the faulting applications.
Now, the mode of application is transferred from user mode
to kernel mode and the page fault exception will allocate a
page for this faulting address.

After the page fault exception handler completes its job,
the mode is changed back to the user mode and the faulting
load/store instruction is re-executed. This mode change
(from user mode to kernel mode and then back to user mode)
requires some “‘states” (e.g., local variables, hardware reg-

US 11,474,952 B2

5

isters, program counter, etc.) of the user mode to be stored
(or pushed) into the stack. Later operations of the page fault
exception handler may involve moving those states or
related state data from the stack back to their original
locations so that the faulting instruction can continue to
execute. In addition to the overhead of pushing into and
popping from the stack, context switching may also result in
some extra impacts related to cache and TLB misses.

Another technique memory can be allocated by applica-
tions is through file system read and write interfaces. This
technique does not incur page faults, but does rely on system
calls, which also result in context switching. Recently, some
works have observed that context switching overhead
incurred by file system APIs is too high when accessing
emerging storage devices, such as NVM, and those works
try to reduce the number of system calls. For example, Intel
Storage Performance Development Kit (SPDK) [32] pro-
vides the whole NVMe driver in the user space for appli-
cations to access ultra-low-latency (ULL) SSDs based on
NVM. Similarly, vVNVML [86] implements a user space
library for applications to access bus-attached NVM. Their
idea is to access the emerging storage devices (ULL SSD
and NVM, respectively) from the user space as much as
possible and to reduce the number of system calls to improve
the system performance.

On the other hand, Alam et al. [87] adopt a hardware
helper thread to reduce the number of context switches
incurred by page faults. However, their work requires a pair
of registers to indicate a single region of virtual memory
address space (one is for start address and the other is for end
address). Therefore, their approach appears better suited for
virtual machine workloads (because a guest OS will allocate
a huge amount of contiguous virtual memory region from
hypervisor as its physical memory), but might not be suit-
able for the general workloads.

2.2 Hardware Page Walker

The hardware page walker [88] is popularly employed in
many modern central processing units (CPUs). After TLB
misses, the hardware page walker will “walk™ or analyze the
page table with the faulting load or store address and CR3
register in Intel x86 architectures (page directory base
register (PDBR)). If the hardware page walker can reach the
lowest page table entry (PTE) of the faulting address and
finds that the present bit (bit 0) of the PTE is set; meaning
that a page has been allocated for this virtual memory
address and its physical frame number is also stored at the
PTE, then the hardware page walker can simply update the
corresponding TLB entry and re-execute the faulting
instruction again. Otherwise, the hardware page walker must
trigger the page fault exception and let the kernel handle the
page fault.

Employing the hardware page walker can reduce the
number of page fault exceptions because if the hardware
page walker, when reaching the lowest PTE (Page Table
Entry) of a faulting address, can find the present bit is set,
then the hardware page walker can directly update the
corresponding TLB entry (e.g., using the faulting address
and the page frame number found at the PTE) without the
intervention of the kernel.

3 Design Overview

In this section, various features of an example page fault
handling offload engine (POE) and related architecture are
described.

3.1 Handle Page Fault Entirely from User Space or Kernel
Space?

To avoid context switching associated with a page fault,
intuitively, there may appear to be two “straightforward”

20

25

30

35

40

45

50

55

60

65

6

approaches. One “straightforward” approach may involve a
program being executed entirely in user space and another
“straightforward” approach may involve a program being
executed entirely in kernel space.

Several issues may need to be resolved to execute pro-
grams and also handle page faults solely in user space. To
achieve a user space based approach, a user space library
may be implemented, which might create some new data
structures in user space and also map various existing kernel
internal data structures (e.g., these data structures from
kernel space are mapped because page faults can happen in
kernel space and as such these data structures need to be
accessible from kernel space), such as struct task_struct,
struct mm_struct, struct vm_area_struct, struct page, and
several data structures related to swapping, into user space
of the library calling process.

In an example user space based approach, when a page
fault happens, the hardware page walker may usually gen-
erate a page fault exception, which, instead of jumping to a
usual kernel based page fault exception handler, may call a
dedicated user space handler or related function and there-
fore may continue to handle the page fault in the user space.
This approach can be implemented in almost the same way
as a typical function call. Thus, after this user space excep-
tion handler finishes its page fault handling (in user space),
the program can return to the faulting instruction and
re-execute this instruction.

The above idea should be feasible, but it is complicated
(since we have to map and maintain many data structures in
user space) and it also violates security policy imposed by
the Linux kernel. The reason why all user processes in Linux
require to have both user space stack and kernel space stack
is because the security policies of Linux ask that a process
utilize its user space stack (kernel space stack, respectively)
when executing in user space/mode (kernel space/mode,
respectively). This is actually the main reason of context
switching: before mode switching, all local variables/regis-
ters/states must be saved/pushed to the corresponding stack.
However, user space page fault exception handler, which is
still executed in user space regardless of mode switching,
will violate this policy (because it has to map some kernel
internal data structures into user space) and makes security
even more vulnerable.

Due to the above-mentioned drawback, the kernel based
approach may at first appear to be more feasible. However,
it is impossible for user applications because they must
launch in the user space.

Therefore, because the two “straightforward” approaches
are not viable, we consider a more complicated approach,
and utilize the assistance from hardware since pure software
solutions seem unacceptable.

In our proposed approach, an enhanced the hardware page
walker (e.g., hardware that can execute during the page
faults) can be utilized to perform some of the page fault
handling for the kernel. An implementation of an enhanced
hardware page walker as described herein may be referred to
as a page offload engine (POE). A feature of the proposed
approach involves coordinating software (e.g., the kernel)
and hardware (e.g., the hardware page walker) to perform
page fault handling operations. With the help of an enhanced
page walker hardware, and by reordering the operations of
page fault handling software, some operations can be per-
formed before and after the page fault (e.g., by the kernel),
and some other operations can be executed (e.g., by hard-
ware), e.g., during a page fault scenario that the POE does
not handle. By doing so, at the time of a page fault, hardware

US 11,474,952 B2

7

may be running without the intervention of software and
without requiring a context switch.

Based on the proposed approach, the following mecha-
nisms and concepts are utilized to achieve our goal: page
pre-allocation, legal virtual memory address space indica-
tion, hardware page walker enhancement, and post page
fault handling by one or more kernel background thread(s).

3.2 Page Pre-Allocation

Existing page fault exception handlers usually obtain a
page from a buddy system. This action may result in
blocking the faulting program if no page is available and the
kernel must try to obtain pages either from the page cache,
or as a last resort, from writing some dirty pages to swap
space. These page obtaining approaches usually require 1/0
requests to access backing storage devices (and the process
will be blocked), so they cannot be simply executed by
hardware.

In the proposed approach, pages are pre-allocated by a
background kernel thread before page faults even happen.
When a page is allocated, usually a pointer of a struct page
(or the virtual memory address in the kernel of that page) is
returned by the buddy system in the kernel. This pointer (of
struct page) can be translated into physical page frame
number of that page easily by page_to_pfn macro. If those
frame numbers of pre-allocated pages can be saved before-
hand in a certain format at a page pool (here we employ a
pre-allocation table per processor core) and the POE/hard-
ware page walker can access them easily when page fault
occurs, then the operation of page allocation of the page
fault handling can be moved out of the page fault critical
path.

Various benefits can be realized by using page pre-
allocation, e.g., speed and reducing complexity of page fault
handling systems or related mechanisms. For example, since
allocating pages can block faulting user applications, page
pre-allocation by a kernel background thread only blocks
this kernel thread and will not slow down the user applica-
tions. In another example, in an existing Linux kernel (e.g.,
one without POE functionality), to allocate pages for malloc
or anonymous private mmap, the kernel always “zeros” an
entire page (4 KB) or an entire huge page (2 MB) in the page
fault critical path for security. An example pre-allocation
mechanism as described here can move this time consuming
operation out of the page fault critical path. In another
example, by utilizing kernel background threads to perform
page pre-allocation, hardware enhancements for a POE
implementation may be less complex, e.g., relative to an
implementation that requires the hardware to do page pre-
allocation or page allocation on demand.

3.3 Legal Virtual Memory Address Space Indication

A significant part of existing page fault handling opera-
tions involve checking whether the faulting virtual memory
address is legal (e.g., valid) or not (e.g., does the address lies
within the valid “good_area” or the invalid “bad_area? This
checking operation is very complicated and is unlikely to be
handled by hardware. However, the faulting virtual memory
address can only be known at the moment that the page fault
is about to happen; how can a POE know whether the
faulting virtual memory address is a legal or illegal address?

It seems to be a very challenging problem, but, by
thinking in the opposite direction, we discover a very elegant
solution. Instead of finding out the validity of a faulting
address using hardware, the proposed approach involves
software informing hardware if the faulting address is legal
or not.

In some embodiments, POE may be configured to handle
some page fault scenarios, while allowing other page fault

—_

0

—_

5

w

0

40

60

65

8

scenarios to be handled by existing page fault handling
mechanisms. For example, the POE implementation
described herein may be configured to handle page faults
happening only in the user space, particularly page faults
occurring when accessing virtual memory address space
regions created by malloc and anonymous private mmap
functions within user applications.

When a user application calls a malloc or an anonymous
private mmap function, a virtual memory address space area
may be created and a pointer pointing to the start virtual
memory address of this area may returned to applications.
As such, the kernel can know which address is legal when
these two functions are called. The only thing left is that we
need a mechanism to inform a POE of this information.

Since a POE or a related hardware page walker walks
through page tables and corresponding page directories,
such as a page middle directory (PMD) and a page global
directory (PGD), of current running processes after TLB
misses, the proposed approach involves adding an “indica-
tor” in this page table walking path to inform the POE that
whether a current accessing memory address is legal. In
some embodiments, the valid memory address indicator may
be stored as a bit or parameter of a relevant PTE.

In some embodiments, the proposed operational flow is as
follows. When a user application calls a malloc or an
anonymous private mmap function, and before the system
call returns, a background thread (e.g., a separately execut-
ing process) is created by the kernel. This kernel background
thread, similar to a hardware page walker, may walk a page
table for evaluating or analyzing all pages within the newly
created (e.g., allocated) virtual memory address region in the
background (e.g., the thread runs asynchronously to the user
application and/or other processes). In some embodiments,
the kernel background thread may be run until all PTEs have
been accessed and/or analyzed. The kernel background
thread may be configured to set a “POEable” bit as a legal
address indication for each PTE associated with pages
within the newly created (e.g., allocated) virtual memory
address region. If the paths to PTE of some addresses have
not been constructed yet, the kernel can construct these
paths, e.g., like an existing exception handler does. By
having a kernel background thread asynchronously perform
this path construction process, this process can also be
moved out of the page fault critical path.

3.4 Hardware Page Walker Enhancement

In some embodiments, a POE implementation may
include an enhanced hardware page walker configured to
perform some page fault handling related operations, and a
POE related mechanism or software (e.g., a modified kernel)
may be configured to perform to execute other operations
(e.g., not handled by the enhanced hardware page walker
and to execute those operation out of the page fault critical
path, such as before or after a page fault, using software
(e.g., kernel background thread(s)).

From the above-mentioned features, we have a pre-
allocation page pool containing page frame numbers of
available pre-allocated pages and POEable bits, as indica-
tors, have been set at PTEs of legal address space. Therefore,
the operations of POE may be as follows: When TLB
misses, POE (e.g., an enhanced hardware page walker) may
walk a relevant page table until it reaches a PTE associated
with a faulting address. If POE finds out that the POEable bit
is set (meaning the faulting address is legal), but the present
bit is not set yet (meaning that this address has not been
allocated a page, so POE needs to allocate a page for it), then
POE requests a free page from pre-allocation page pool,
stores its page frame number as well as sets some flag bits

US 11,474,952 B2

9

into the PTE as software exception handler does, refills this
missing TLB entry, and continues to execute the faulting
instruction without the need of kernel help.

However, for other cases different from the above-men-
tioned scenario, the POE may trigger a typical page fault
exception similar to an existing Linux based page fault
exception handler approach and let software (e.g., the ker-
nel) handle it.

3.5 Post-Page Fault Handling by Kernel Background
Thread(s)

In some embodiments, besides the page allocation, the
address validation, and PTE update, there are other page
fault handling related operations, such as increasing a coun-
ter of an mm object (by calling inc_mm_counter function)
and adding a page to a last recently used (LRU) cache for
swapping later. Such operations can be delayed and
executed later by another periodic background kernel thread
if programs are not terminated. In some embodiments,
another thread or process may perform error handling opera-
tions or functionality. For example, actively scan and pro-
cess unprocessed pages in pre-allocation tables only if
programs are being terminating. Thus, this processing can
also be moved out of the page fault critical path.

4 Implementation

In this section, an implementation of POE hardware and
related (e.g., implemented or potential) features and/or
aspects are discussed. Single-threaded implementations and
uses are addressed initially, and multi-threaded applications
implementations and uses are addressed later in the section.

4.1 POE Enable and Disable

An POE implementation described herein may utilize or
be trigged by various POE related system calls or functions.
In particular, applications may call a POE_enable system
call in the beginning of their source code, and no other extra
change is required to use POE functionality. The POE
functionality may be automatically disabled by a POE_dis-
able() function called inside _mmput() function by the
kernel, e.g., when applications are about to be killed. An
POE_disable system call may also be available, which can
directly call the POE_disable() function and allow appli-
cations to disable POE functionality if necessary.

In some embodiments, the POE implementation may
include kernel based POE software where operations of
POE_enable and POE_disable system calls can be executed
when the POE software is loaded and unloaded, respec-
tively. By doing so, user applications may automatically
enable POE by default. However, system calls method may
be preferable in some scenarios because it makes debugging
much easily (e.g., the number POE users can be limited
within some caller applications, rather than all user appli-
cations in the systems).

In some embodiments, “POE is disabled” refers to a
scenario where newly created virtual memory address
spaces do not support POE. In such scenarios, page faults in
those regions may be handled by a kernel based page fault
exception handler. However, in such embodiments, previ-
ously created POE enabled regions (e.g., regions that are still
“POEabled”) may continue utilizing POE related mecha-
nisms for relevant page faults.

4.2 POE_Enable System Call

In some embodiments, a POE_enable system call may set
the POE_enable, a boolean type member of struct_mm, as
true for the caller’s mm object. The first POE_enable caller
may also construct the pre-allocation page pool, e.g., as a
pre-allocation table per processor core. For example, the
“pre-allocation table” may refer to physical contiguous
pages allocated from the kernel’s buddy system. The amount

20

25

30

40

45

60

65

10

of pages (to construct a single table of a processor core)
depends on how many pages are to pre-allocated or con-
tained in a table, which is configurable. In some embodi-
ments, to shorten the time spent executing a POE_enable
system call, only pages to construct pre-allocated tables may
be allocated here, and the pre-allocated pages themselves
contained within these tables may be allocated later by a
background thread.

In some embodiments, after constructing a pre-allocation
table per processor core, a schedule_on_each_cpu() kernel
function may be executed to set the page frame number (34
bits) of the first page of the pre-allocation table, the number
of entries of pre-allocation table (16 bits), and POE_EN-
ABLE bit (1 bit) to a new 64 bits register (e.g., the CR9
control register is employed in the POE implementation) per
processor core in order to enable POE hardware of all
processor cores. In the POE implementation described
herein, the numbers of entries of pre-allocation tables are
configured as sixty-four, but the entry number per table are
configurable and different numbers may be used from table
to table.

In some embodiments, at the end of a POE_enable system
call, a kernel thread is triggered to pre-allocate pages, in the
background, for pre-allocation tables of processor cores.
Because allocating pages per processor core can be very
time-consuming, e.g., consider platforms with hundreds of
processor cores, adopting a kernel background thread can
avoid blocking the execution of the first POE_enable caller
program.

Although it is possible that POE hardware may request
(pre-allocated) pages from some pre-allocation tables before
the above mentioned asynchronous kernel thread is executed
(or before the kernel thread has a chance to allocate any
page), the POE implementation can still trigger a typical
page fault exception. In other words, the POE implementa-
tion can handover the task to the kernel to handle a page fault
scenario where the POE implementation cannot obtain pages
from a relevant pre-allocation table.

4.3 Pre-Allocation Table

In some embodiments, a pre-allocation table may utilize
a lockless ring buffer architecture [89] with one producer
(the kernel, which produces/pre-allocates pages) and one
consumer (the POE implementation, which consumes/re-
quests pages). Each entry of the pre-allocation table may
have sixteen bytes, and the first entry (entry number 0)
stands for the table header, which contains the head index
(ranging from one to the number of entries), tail index (also
from one to the number of entries), number of table entries,
and locks, and the size of each of them is four bytes. Except
for the table header, all the entry’s format is delineated in
FIG. 1. FIG. 1 shows an example pre-allocation table and its
fields, which contains faulting virtual memory address,
TGID, page frame number, used bit, and valid bit.

In some embodiments, the producer may look at the head
index, and the consumer may check the tail index. For
example, when the kernel (producer) wants to pre-allocate a
page, first it looks up the corresponding entry of the head
index from table header. If this entry is not valid (e.g., the
valid bit is not set), meaning that this entry does not contain
a valid pre-allocated page, then the kernel may allocate a
page and put its page frame number into the corresponding
field of this entry, may increment the head index by one, and
may check the next entry. The kernel may continue this page
pre-allocation process until it reaches an entry whose valid
bit has already been set (e.g., indicating that all entries of this
table are valid).

US 11,474,952 B2

11

In some embodiments, since a table is dedicated to a
processor core, page pre-allocation performed by the kernel
may follow some policies and/or rules. For example, if a
platform contains multiple non-uniform memory access
(NUMA) nodes, then pages can be pre-allocated from near
memory first. When near memory is exhausted, the kernel
can decide either to pre-allocate pages from far memory, or
not to pre-allocate pages at all. After all pages (from near
memory) are used from this table, a POE can trigger a
typical page fault exception and let a kernel based page fault
exception handler decide the next step.

4.4 Pre-Page Fault Software Handling

When applications call malloc or anonymous private
mmap, if the kernel determines that the POE_enable mem-
ber of the mm object is set as true (e.g., by a POE_enable
system call), then the kernel may add a new VM_POE flag
to the virtual memory area (vma) object (of the struct
vm_area_struct) when this new vma is created.

At or near the end of mmap or anonymous private malloc
functions, the kernel can create a background kernel thread
by executing a kthread_run() function. This kernel thread,
since it knows the start and end addresses of the newly
created vma, can walk the page table of the calling process
until it reaches (accesses) all the corresponding lowest level
PTEs; if the paths to PTEs have not been constructed yet,
this kernel thread may construct them as page fault excep-
tion handler does.

When a PTE is reached, the kernel thread may set a
POEable bit (e.g., bit 2) and a RW bit (e.g., bit 1, if the
region is writeable) of the PTE if a present bit of this PTE
is not set yet. In some embodiments, bit 2 (the user bit) of
a PTE may be used or repurposed as the POEable bit, which
is safe since this bit is not involved in a swap entry
computation. Besides these two bits, the kernel background
thread may also write a thread group identifier (TGID) of a
current process into the page frame number (PFN) field of
the PTE. FIG. 2 shows pre-page fault handling operations.
For example, FIG. 2 depicts example data (e.g., a context)
of the lowest level PTEs of a POE enabled process. As
shown in FIG. 2, the mmap function maps two pages and
sets the TGID and POEable bit.

In some embodiments, a kernel thread may execute pre-
page fault handling operations asynchronously to avoid
blocking programs for too long since such operations could
be time-consuming, e.g., if applications malloc or mmap a
huge, say 1 GB, region. Also, if a POE reaches a PTE of a
page which is “pre-allocatable” but its POEable bit has not
been set by the kernel background thread, then the POE can
simply treat this page fault as usual and trigger a typical page
fault exception.

4.5 Page Fault Hardware Handling

In some embodiments, the POE implementation (e.g.,
acting an enhanced hardware page walker) may start to
execute operations after TLB misses. Some operations of the
POE implementation are described below.

1. If POE cannot reach (the lowest level) PTE, then it
triggers the page fault exception as usual.

2. If POE can reach (the lowest level) PTE and the present
bit of the PTE is set, then POE updates the TLB entry and
re-executes the instruction again.

3. If POE can reach (the lowest level) PTE and the present
bit of the PTE is not set, and the POEable bit of the PTE
is not set (meaning that this page cannot be pre-allocated),
then POE also triggers the page fault exception as usual.

4. If POE can reach (the lowest level) PTE and the present
bit of the PTE is not set, but the POEable bit of the PTE
is set, then POE stores the TGID (written by kernel at

20

25

40

45

50

55

60

65

12

section 4.4) obtained from a PFN field of the PTE, obtains
a page (e.g., by looking up the corresponding entry
indicated by the tail index and checking that the valid bit
of this entry is set) from the pre-allocation table of the
current executing processor core, fills its page frame
number into the PFN field of the PTE, and sets some
corresponding flags (for read: the present, accessed, and
nx bits are set; for write: besides the three bits mentioned
above, dirty bit and soft dirty bit are also set) into the PTE.
The user bit (bit 2) and RW bit (bit 1, if applicable) are
already set by the pre-page fault kernel thread. (If the
valid bit of a tail entry is not set, e.g., indicating that this
entry does not contain valid page and that the whole
pre-allocation table of this processor core is empty, then
POE would trigger a typical page fault exception.)

. POE updates the TLB entry, writes the faulting virtual
memory address, stores the TGID, set the used bit for the
tail entry of the pre-allocation table, cleans the valid bit of
the tail entry, and increments the tail index by one.
FIG. 3 shows operations of an example POE implemen-

tation during a page fault. As shown in FIG. 3, the left table
represents PTEs and the right table is a pre-allocation table.
The POE implementation makes page fault critical latency
quite small: except for regular memory loads to walk the
page table and the PTE entry update, which are also required
operations of existing page fault exception handling, POE
only incurs one four bytes load (read the tail index), one
eight bytes load (read PFN field and valid bit of the tail
entry), one sixteen bytes store (update the entire tail entry),
and one four bytes store (update the tail index).

4.6 Post-Page Fault Software Handling

A Linux delayed work queue is utilized to periodically
execute post-page fault processing. After pages of pre-
allocation tables are pre-allocated by a background thread
triggered by POE_enable system call, a delayed work queue
function is scheduled, with a delay timer is set as 2 milli-
seconds (ms). When the delay timer expires, a delayed work
function is executed to do the post-page fault handling.

This post-page fault handling may be described as fol-
lows. First, it uses the head index to get the corresponding
(head) entry. If the head entry’s used bit is set, since the
TGID, faulting virtual memory address, and page frame
number can be found at the used entry, then the following
functions may be executed: anon_vma_prepare, inc_mm_
counter, page_add_new_anon_rmap, and Iru_cache_add_
active_or_unevictable for a single page. After those func-
tions are executed, the used bit is cleared.

Besides the above-mentioned operations, the delayed
work function is also responsible for refilling the used
entries of pre-allocation tables. That is, if the valid bit is
cleared, then delayed work function will pre-allocate a page,
write its page frame number, set the valid bit into the head
entry, and increment the head index by one. The delayed
work function may continue to process and refill the next
entry until it meets an entry whose valid bit is set. FIG. 4
illustrates the operations of post-page fault processing.

If pages cannot be pre-allocated due to the lack of
memory, delayed work function may still continue to do the
post-page fault handling for the following used entries,
without increasing the head index. After all entries are
processed, the delayed work function is re-scheduled for the
next time (2 ms).

4.7 Error Handling

Since the delayed work function is only executed every 2
ms, what happens during this period if an application is
terminated and some pages are still not processed by the
delayed work function?

o

US 11,474,952 B2

13

In some embodiments, an error handling function may be
utilized to handle those pages. For example, an error han-
dling function may scan all pre-allocation tables and finds
out the used entries (e.g., by determining if a used parameter
data field or a used bit of the PTE is set) whose TGID is the
same as the terminated application. If such entries exist, then
the error handling function executes the same functions as
delayed work function does. Also, since error handling
function and delayed work function might execute concur-
rently, a lock may be used to avoid a race condition between
them. The bit 0 of locks field in the table header is employed
as a test_and_set lock bit here.

Because the error handling function may need to scan all
pre-allocation tables and it may be configured to only scan
whenever necessary. Therefore, the error handling function
may be called at the zap_pte_range() function and when the
page’s page_mapcount() returns zero as well as the vma’s
VM_POE flag is set. This can significantly reduce the
frequency of calling the error handling function since
page_add_new_anon_rmap will not be called for those
unprocessed pages, so the values of their _mapcount of
struct page are still -1 as well as the page_mapcount
function will return zero.

4.8 POE_Disable Function and POE_Disable System Call

The POE_disable function sets the caller’s POE_enable
member of the mm object as false. The last caller of
POE_disable first waits until the delayed work function is
completed or cancelled. Then, like POE_enable, this last
caller disables POE hardware of each processor core by
calling schedule_on_each_cpu() function to clear the
POE_ENABLE bit for all processor cores, and it also
frees/releases valid pages (whose valid bit is set) of pre-
allocation tables.

As we have mentioned at section 4.1, the POE imple-
mentation may be configured to automatically disabled by
POE_disable() function from _mmput() function by the
kernel when applications are terminated. So disabling POE
within the source code of applications is unnecessary. How-
ever, a POE_disable system call is implemented to allow
applications to disable POE if they want. The POE_disable
system call directly calls POE_disable function. Also, a
protection has been implemented so that calling POE_dis-
able function twice accidentally will not be harmful. The
second POE_disable system call will directly return.

4.9 Huge Page Support

The POE implementation can also support huge (e.g., 2
MB) pages. In some embodiments, the POE implementation
may utilize an additional pre-allocation table per processor
core to contain pre-allocated huge pages for a given pro-
cessor core. The kernel background thread described in
section 4.4 may set the POEable bit at a PMD if a huge page
can be allocated for certain virtual memory address regions.
‘When POE reaches the PMD and finds the POEable bit is set
but that the present bit is not set, the POE implementation
may obtain a huge page from the pre-allocated table.

4.10 Multi-Threaded Process

The previous portions of Section 4 describe various
interactions between the POE implementation and the kernel
for a single-threaded process. How about a multi-threaded
process? For example, two or more threads may access the
same page and therefore encounter the page fault (of the
same page) at the same time. Furthermore, we should
consider a more complicated race condition case between
POE hardware and a kernel software page fault exception
handler.

As indicated in section 4.4, a kernel background thread
can set the POEable bit for PTEs. Consider this example, the

—_

5

o)

5

40

45

65

14

POE hardware reaches a PTE before the background kernel
thread sets its POEable bit. In this example, the POE
hardware may treat this page as “non-POEable” and trigger
a page fault exception. Before the page fault exception
handler executes, the kernel background thread may be
scheduled and may set the POEable bit of this PTE. Con-
tinuing with this example, POE hardware from another
processor core could reach this PTE (e.g., since its present
bit is not set but its POEable bit is set) and may execute the
POE page fault handling. Meanwhile, the page fault excep-
tion handler triggered from the first processor core may
execute and start to handle the page fault for the same
faulting page. This might be a serious issue, so we have to
avoid it.

To address this potential issue, a lock mechanism may be
utilized. For example, a test_and_set lock at PTE may be
employed. In this example, when POE hardware or a kernel
based page fault exception handler want to handle or service
a page fault (e.g., the kernel can check the VM_POE flag
from vma to decide if it needs to get the lock or not), they
each need to obtain a lock at the PTE first.

In some embodiments, an accessed bit (e.g., bit 5) of a
PTE may be utilized or repurposed as the lock bit. In such
embodiments, the flow of section 4.5 may be modified as
follows. If a POE can reach the PTE and the present bit is
not set, but the POEable bit is set, then the POE can perform
a test_and_set action to acquire the lock. For example, if a
PTE is just read and cached, this test_and_set action may
only access the cache and does not need to access memory.
If the returned value from test_and_set is zero or indicating
unlocked, then POE may continue to proceed as described in
section 4.5. After that, the POE may clear the lock bit to
unlock it.

However, in some embodiments, if the returned value
from test_and_set is one or indicating locked (e.g., if another
POE from another processor core or a kernel based page
fault exception handler is handling a page fault for the same
page), then the POE may busy wait (e.g., repeatedly check)
until the lock bit is clear and the present bit is set (which
indicates that the corresponding page fault has been solved),
and updates the TLB as well as re-executes the faulting
instruction.

This lock-based approach is more scalable compared to an
existing kernel based page fault exception handler approach
that uses a global page table lock. In particular, in some
embodiments, the POE only busy waits at the page level, and
this busy wait happens only when multiple POEs try to
access the same page simultaneously. However, an existing
kernel based page fault exception handler may use a global
page table lock to synchronize all page faults of the threads
belonging to the same process. Therefore, for a kernel based
page fault exception handler approach that uses a global
page table lock, all faulting threads of the same process must
busy wait no matter if their faulting pages are the same or
not.

4.11 Comparison with Existing and POE Page Fault
Handling

FIG. 5 shows flows of existing kernel based page fault
exceptions handling and POE page fault exceptions han-
dling. As indicated in FIG. 5, the POE implementation
re-orders various fault handling operations, moves many of
the operations out of the page fault critical path, thereby
leaving less operations for the POE hardware (e.g., the
enhanced hardware page walker) to process.

5 Evaluation

Since the proposed POE approach utilizes features of an
enhanced hardware page walker and a modified kernel,

US 11,474,952 B2

15

existing CPU hardware may be modified for executing the
modified Linux kernel. We employ an Gem5 [90] emulator
to modify and emulate our new POE hardware. The Gem5
platform is configured as four-processor core 3.4 GHz X86
TimingSimple CPU with 8 GB DDR4 main memory using
Ruby memory model. A Gem5 full system (FS) simulation
is employed and Linux kernel version 4.9.182 is modified
and used in our evaluations.

5.1 Results of Page Fault Critical Latency

We evaluated the improvement of the page fault critical
path latency associated with our implementation of a POE.
We conduct experiments inside the GemS5 FS environment.
We run a simple program which mmaps an anonymous
private memory region and accesses one byte per page
within this region; total 100 pages are accessed and their
results are averaged and reported. We compare the read and
write access latency between the POE implementation and
an existing kernel based page fault handler. FIG. 6 shows
access latency associated with a normalized critical path
cycle of a page fault of the POE implementation and an
existing kernel based page fault handler. W stands for write
page fault, and R stands for read page fault. From the data
in FIG. 6, some conclusions can be drawn.

Our evaluation shows that the POE implementation works
in a Linux and Gem5 FS environment. The hardware and
software of the POE implementation cooperate to resolve
the page faults and therefore result in very short critical path
latencies.

Further, the critical path latencies of read and write page
faults of the POE implementation are very close, less than a
hundred processor cycles apart. This is because the POE
hardware allocates a new page for a page fault, regardless of
whether it is read or write related fault. So the POE
operations for read and write page fault handling are the
same, and their latency should be the same, too.

However, an existing kernel based page fault exception
handler may handle page faults caused by read and write
differently if page faults happen within the regions created
by malloc or anonymous private mmap. For example, a
Linux kernel may always map the faulting address to a
special “zeroed” page for read page fault, and may allocate
a new page for write page fault later. Since mapping to a
special “zeroed” page does not require zeroing the page
again, the critical path latency of a read fault is much shorter
than that of a write fault. We can see from the FIG. 6 that the
W (write page fault) has the worst critical path latency since
it incurs both the overheads of the context switch and
zeroing the page.

Furthermore, the critical path latencies of the POE imple-
mentation are much better than the critical path latencies of
an existing Linux page fault exception handler in the Gem5
FS environment. The read latency is improved by a factor of
8.3 and the write latency is improved by a factor of 47.3
times when compared to a traditional Linux page fault
exception handler.

5.2 Results of Micro Benchmarks

In this section, we estimate the improvements of POE by
executing micro benchmarks. However, we do not/cannot
directly run those benchmarks inside the Gem5 FS environ-
ment because the Gem5 FS environment does not support all
X86 instructions (so many benchmarks cannot run directly
in Gem5 FS mode) and because the Ruby memory model of
GemS5 is too slow and is not good enough. We conduct the
same experiment described at section 5.1 in the Gem5 FS
environment and in a real machine and compare their results.

40

50

60

65

16

For critical path latency of write page faults, the GemS5
average is 39203 cycles and but the real machine average is
15024 cycles.

Therefore, we count the number of total page faults of the
benchmarks and estimate the percentage of expected
improvements provided by the POE implementation on a
real machine.

We use a machine with 32 GB DRAM, and Intel i17-4770
four-processor core 3.4 GHz processor with hyperthreading
enabled. Linux kernel 4.9.182 version is employed on this
machine, t0o0.

We measure page fault critical path latencies as explained
in section 5.1 on a real machine, but we average results of
4096 pages instead of 100 pages. We execute the same (4096
pages) measurements in the Gem5 FS environment to get the
page fault latency when POE is enabled. Table 1 summarizes
these measurements. In particular, Table 1 shows average
critical path cycle counts of a page fault and POE latency is
measured in a GEMS FS environment.

TABLE 1
WRITE ON REAL ~ READ ON REAL
POE MACHINE MACHINE
CYCLE 431 3678 1158
COUNTS

Next, we configure all the benchmarks as single-threaded,
and measure their total execution time and the number of
write and read page faults resulting from malloc and anony-
mous private mmap.

The numbers of page faults are then multiplied by the
difference of latency of read faults and POE latency (1158-
431) and the difference of latency of write faults and POE
latency (3678-431) cycle counts and then each difference is
divided by 3.4 G to get the time expected (in seconds),
which gives us the time saved by the POE implementation.
Finally, the expected time is divided by total execution time
of the benchmarks to obtain the percentage of improvement
provided by the POE implementation.

We leverage the PARSEC 3.0 [79] and SPLASH-2X [80]
benchmark suites with native input sets. FIG. 7 depicts
improvement (%) provided by the POE implementation
described herein using various benchmarks. As indicated in
FIG. 7, an average 5.6% improvement is observed.

6 Additional Thoughts

An evaluated POE implementation along with various
potential embodiments and/or related features are discussed
in the subject matter described herein. In the evaluated
implementation described herein, the POE includes an
enhanced hardware page walker and a modified Linux
kernel to reduce the critical path latency of the page fault
handling. In the evaluated implementation, a kernel back-
ground thread is utilized to execute some of the operations
of page fault handling, asynchronous to the actual page fault
while letting hardware carry out operations that need to be
handled at the time of the page fault.

We implemented the kernel modifications in Linux and
simulated the enhanced hardware in a Gem5 emulator. We
have shown that our implemented POE could significantly
reduce the page fault critical path latency when virtual
memory address regions created from malloc and anony-
mous private mmap are accessed.

The evaluation shows that the page fault critical latency
can reduce to 2.1% for write and 12% for read of existing
software exception handling times. In addition, our imple-

US 11,474,952 B2

17

mented POE can improve the execution time of some
benchmarks by an average of 5.6%.

FIG. 8 is a diagram illustrating a computing environment
800 for performing page fault handling and/or related opera-
tions. Referring to FIG. 8, computing environment 800 may
represent various computing architectures, such as an x86
architecture, an x86-64 architecture, an ARM architecture,
or other architectures. In some embodiments, computing
environment 800 may include one or more computing
platforms, memory devices, and/or other hardware. For
example, computing environment 800 may include a pro-
cessor or central processing unit (CPU) 802, a kernel 806, a
memory 816, and a secondary storage 818.

CPU 802 may represent one or more physical processors,
such as an x86 based processor, an x86-64 based processor,
an ARM processor, or another processor. CPU 802 may also
include electronic circuitry or other hardware (e.g., control-
lers, caches, buffers, and/or other entities) for performing
various functions, e.g., virtual memory management, page
fault exception handling or other features.

CPU 802 may execute instructions associated with kernel
806, user applications, and/or other programs. Kernel 806
may represent a particular portion of an OS. For example,
kernel 806 may be a modified Linux kernel that includes a
kernel based page fault exception handler and POE software
configured to utilize POE related system calls and functions
from applications or other entities. In this example, e.g.,
when particular system calls or functions calls are made,
kernel 806 may be configured to initiate or trigger one or
more background threads for facilitating one or more page
fault handling operations associated with a POE 804. In
some embodiments, POE software may be implemented as
a kernel module, and POE 804 may be initiated when the
module is inserted into the kernel, such as a insmod Linux
command, without the help of system calls of function calls.

In some embodiments, one or more kernel associated
background threads may execute pre-page fault handling
operations, e.g., asynchronously to other processes and/or
periodically. For example, a pre-page fault operation may
include pre-allocating virtual memory pages for use by a
processor core and storing corresponding page frame num-
bers in a pre-allocation table 814 for use by the processor
core. In another example, a pre-page fault handling opera-
tion may include determining whether PTEs associated with
a virtual memory region refer to valid memory addresses
and setting valid memory address indications in the PTEs
associated with the virtual memory region.

In some embodiments, one or more Kkernel associated
background threads may execute post-page fault handling
operations, e.g., asynchronously to other processes and/or
periodically. For example, a post-page fault operation may
include updating one or more counters of pre-allocation
table 814, adding one or more virtual memory pages to an
LRU cache for swapping, or allocating one or more pre-
allocated pages to replace used pre-allocated pages associ-
ated with pre-allocation table 814.

In some embodiments, one or more kernel associated
background threads may execute error handling operations,
e.g., asynchronously to other processes and/or periodically.
For example, an error handling operation may include
scanning one or more pre-allocation tables 814 for entries
associated with terminated applications and performing one
or more post-page fault handling operations for each of the
entries associated with terminated applications.

In some embodiments, CPU 802 may include a POE 804,
an MMU 808 and a TLB 810. POE 804 may be implemented
using hardware (e.g., circuitry associated with CPU 802)

20

25

40

45

60

65

18

and/or a processor and may include hardware page walker
functionality along with additional features. In some
embodiments, POE 804 may be configured to handle page
faults occurring in user space, e.g., read and write page faults
occurring when accessing virtual memory address space
regions created by malloc and anonymous private mmap
functions within user applications. In some embodiments,
POE 804 may be configured to handle page faults occurring
in kernel space, e.g., virtual memory address space regions
created by kmalloc.

In some embodiments, POE 804 may be configured to
perform a page walk of page table 812 associated with a
TLB miss. If POE 804 cannot reach a relevant (e.g., the
lowest level) PTE corresponding to the TLB miss, then POE
804 may trigger the page fault exception that is handled by
the kernel. If POE 804 can reach a relevant (e.g., the lowest
level) PTE corresponding to the TL.B miss and the present
parameter data field of the PTE is set, then POE 804 may
update the TLB entry and re-execute the instruction again. If
POE 804 can reach (the lowest level) PTE and the present
bit of the PTE is not set, and the POEable bit of the PTE is
not set (meaning that this page cannot be pre-allocated), then
POE 804 may trigger a page fault exception that is handled
by the kernel. If POE 804 can reach a relevant (e.g., the
lowest level) PTE corresponding to the TLB miss and the
present parameter data field of the PTE is not set, and the
POEable bit of the PTE is set, then POE 804 may store a
TGID obtained from a PFN field of the PTE, obtain a page
(e.g., by looking up a corresponding entry indicated by the
tail index and checking that the valid bit of this entry is set)
from pre-allocation table 814 of the current executing pro-
cessor core, add a related page frame number into the PFN
field of the PTE, and set some corresponding flags (for read:
the present, accessed, and nx bits may set; for write: besides
the three bits mentioned above, dirty bit and soft dirty bit
may also be set) into the PTE. The user bit (e.g., bit 2) and
RW bit (e.g., bit 1, if applicable) may already set by a
pre-page fault kernel thread. (If the valid bit of a tail entry
is not set, e.g., indicating that this entry does not contain
valid page and that pre-allocation table 814 of this processor
core is empty, then POE 804 may trigger a page fault
exception that is handled by the kernel.) POE 804 may also
update the TLB entry, write the faulting virtual memory
address, store the TGID, set the used bit for the tail entry of
pre-allocation table 814, cleans the valid bit of the tail entry,
and increments the tail index by one.

MMU 808 may represent a computer hardware unit for
receiving and/or handling memory references, e.g., read and
write requests, from user applications, kernel 806, or other
programs. MMU 808 may use TLB 810 to translate virtual
memory addresses into physical memory addresses. For
example, when a read or write request is received, MMU
808 may query, using a virtual memory address, TLB 810 to
obtain a corresponding page frame number or other infor-
mation for identifying a physical memory address (e.g., a of
memory 816). In this example, after a physical memory
address is identified, MMU 808 or another entity may
perform the read or write request.

TLB 810 may represent an associative cache of PTE or
relate data. For example, TLB 810 may utilize a content-
addressable memory (CAM). In this example, when a physi-
cal memory address is needed for a virtual memory address,
the CAM search key is the virtual memory address, and the
search result is a physical memory address. If the requested
physical memory address is present in the TLB, a TLB hit
occurs and the retrieved physical memory address can be

US 11,474,952 B2

19

used to access memory. Otherwise, a TLB miss occurs and
a page fault exception occurs.

In some embodiments, when a TLB miss or a related page
fault exception occurs and requisite criteria is met, POE 804
may perform page fault handling and/or related operations.
In such embodiments, where requisite criteria is not met, the
page fault may be handled by a kernel based page fault
exception handler.

Memory 816 may represent any suitable entity (e.g.,
non-transitory computer readable media, etc.) for storing
code and data associated with kernel 806, user applications,
or other programs. Memory 816 may represent a main or
primary memory comprising random-access memory
(RAM) or other storage media. In some embodiments, page
table 812 containing PTEs and pre-allocation table 814
containing pre-allocated page information may be stored in
memory.

Storage 818 may represent any suitable entity (e.g., non-
transitory computer readable media, etc.) for storing code
and data associated with kernel 806, user applications, or
other programs. In some embodiments, memory 816 may
represent a secondary memory comprising NVM, emerging
NVM, PCM, NVDIMM, STT-RAM, and 3D XPoint or other
storage media.

In some embodiments, storage 818 may be used as swap
space storage for virtual memory and may not be directly
addressable by CPU 802. For example, swapping may
involve copying data content in memory 816 (e.g., RAM) to
or from storage 818 (e.g., NVM). Continuing with this
example, if the kernel or another entity attempts to access a
virtual memory page stored in swap space, a page fault
exception may occur (e.g., an error indicating that the page
is not located in memory 816), and the page may be
“swapped” from storage 818 to memory 816.

It will be appreciated that FIG. 8 is for illustrative
purposes and that various nodes, their locations, and/or their
functions may be changed, altered, added, or removed. For
example, some nodes and/or functions may be combined
into a single entity or some functionality (e.g., in POE 804)
may be separated into separate nodes or modules. In another
example, one or more entities depicted in FIG. 8 as imple-
mented using CPU 802 may be implemented using different
hardware and/or firmware.

FIG. 9 is a diagram illustrating an example process 900
for performing page fault handling and/or related operations.
In some embodiments, process 900, or portions thereof (e.g.,
operations 902, 904, 906, 908, and 910) may be performed
by or at CPU 802, POE 804, kernel 806, and/or another
entity (e.g., node or module).

In some embodiments, operations 902-910 may be
referred to as page fault handling operations and may be
performed by or initiated by POE 804, while some other
operations may be referred to as pre-page fault handling
operations (e.g., operations generally occurring before
operations 902-910 are completed), post-page fault handling
operations (e.g., operations generally occurring after opera-
tions 902-910 are completed), and/or error handling opera-
tions (e.g., operations generally occurring in response to an
error or to mitigate errors from occurring during page fault
handling related operations).

In some embodiments, pre-page fault handling opera-
tions, post-fault handling operations and/or error handling
operations may be performed asynchronously and/or inde-
pendently of process 900 or operations thereof. In some
embodiments, pre-page fault handling operations, post-fault

20

25

30

35

40

45

50

55

60

65

20

handling operations and/or error handling operations per-
formed by or initiated by one or more kernel associated
threads or processes

In some embodiments, one or more kernel related threads
or processes may be triggered to facilitate process 900,
portions thereof, or related operations. For example, kernel
806 may trigger or otherwise cause one or more background
threads or processes to execute various page fault handling
related operations asynchronously and/or independently of
process 900. In this example, some operations that generally
occur before operations 902-910 are completed for a given
page fault may be referred to as pre-page fault handling
operations, while operations that generally occur after
operations 902-910 are completed for a given page fault may
be referred to as post-page fault handling operations.

Referring to process 900, in operation 902, after a TLB
miss associated with a virtual memory page occurs, a PTE
associated with the virtual memory page may be identified
in a page table. For example, POE 804 may be configured to
walk page table 812 for identifying a relevant PTE associ-
ated with TLB miss.

In operation 904, it may be determined, using a first
indicator in the PTE, that the virtual memory page may be
not present in a main memory. For example, POE 804 or
another entity may analyze a present parameter data field
(e.g., a particular bit or set of bits) of a PTE to determine
whether a corresponding virtual memory page is stored in a
main memory (e.g., RAM).

In operation 906, it may be determined, using a second
indicator in the PTE, that the virtual memory page is
associated with a valid memory address and that the virtual
memory page may be capable of using pre-allocated pages.
For example, POE 804 or another entity may analyze a user
bit or a parameter data field (e.g., a POEable bit or POEable
parameter data field) of a PTE to determine whether a
corresponding virtual memory page is associated with a
valid memory address and that the virtual memory page is
capable of using a pre-allocated page.

In operation 908, a page frame number associated with a
pre-allocated page may be obtained from a pre-allocation
table. For example, POE 804 or another entity may identify
an available pre-allocated page from pre-allocation table 814
containing information about one or more available pre-
allocated pages and may obtain a page frame number for
indicating a physical memory address.

In operation 910, the PTE may be updated to indicate the
page frame number. For example, POE 804 or another entity
may modify a PTE to indicate a page frame number so that
the page frame number is associated with a corresponding
virtual memory page.

In some embodiments, after updating a PTE to indicate a
page frame number associated with a pre-allocated page
obtained from pre-allocation table 814, process 900 may
also include update a corresponding TLB entry to indicate
the page frame number. For example, POE 804 or another
entity (e.g., a kernel associated background process or
thread) may modify a TLB entry in a TLB so that a page
frame number obtained via process 900 is associated with a
corresponding virtual memory page.

In some embodiments, at least one Kkernel associated
background process may perform one or more pre-page fault
handling operations asynchronously (e.g., with process
900). For example, kernel 806 may trigger a background
thread that is configured (e.g., programmed) to execute a
pre-page fault handling operation, such as pre-allocating
virtual memory pages and storing corresponding page frame
numbers in pre-allocation table 814. In another example, a

US 11,474,952 B2

21

pre-page fault handling operation may include determining
whether PTEs associated with a virtual memory region refer
to valid memory addresses and setting valid memory address
indications in the PTEs associated with the virtual memory
region. In some embodiments, pre-page fault handling
operations may be performed using a kernel associated
delayed work queue.

In some embodiments, at least one kernel associated
background process may perform one or more post-page
fault handling operations periodically, wherein the one or
more post-page fault handling operations may include
updating one or more counters of pre-allocation table 814,
adding one or more virtual memory pages to an LRU cache
for swapping, or allocating one or more pre-allocated pages
to replace used pre-allocated pages associated with pre-
allocation table 814. In some embodiments, post-page fault
handling operations may be performed using a kernel asso-
ciated delayed work queue.

In some embodiments, at least one kernel associated
background process may perform one or more error han-
dling operations, wherein the one or more error handling
operations may include scanning one or more pre-allocation
tables 814 for entries associated with one or more applica-
tions and performing one or more post-page fault handling
operations for each of the entries associated with the one or
more applications. In some embodiments, error handling
operations may be performed for reducing or mitigating
issues associated with various scenarios, e.g., scenarios
related to terminated applications, hung applications, or
other applications where some page handling related opera-
tions were unable to complete or execute. In some embodi-
ments, error handling operations may be performed using a
kernel associated delayed work queue.

In some embodiments, a background thread (e.g., a kernel
associated background process) may be statically scheduled
at regular or irregular intervals to perform pre-allocation of
pages. In some embodiments, a background thread may be
dynamically triggered to run (e.g., execute) based on thresh-
old values associated with a number of available pre-
allocated pages. For example, a page pre-allocation back-
ground thread may run when the number of available
pre-allocated pages drops below 10 or when the number of
available pre-allocated pages is less than the number of
pre-allocated pages recently used by the system, e.g., in the
last three minutes. In some embodiments, a shared pool of
pages may be made available to all cores in a processor. In
some embodiments, a pool of pages may be made available
to each processor or core separately.

While some aspects, techniques, and/or features of the
subject matter described herein is motivated by the avail-
ability of the low latency NVM, it will be appreciated that
various aspects, techniques, and/or features of the subject
matter described herein can also be utilized in computing
systems with higher latency SSDs and magnetic disks.
Further, it will be appreciated that while various aspects
and/or features of the subject matter described herein are
described with reference to a single host or a single socket
machine, these techniques can be used in and/or extended to
shared memory machines and multi-socket machines as well
as container based and/or virtual machine based virtualiza-
tion computer systems.

It should be noted that POE 804 and/or functionality
described herein may constitute a special purpose computing
device or module (e.g., a hardware-implemented page
walker, a hardware-implemented POE based exceptions
handler, or a POE chip). Further, POE 804 and/or function-
ality described herein can improve the technological field of

—_

0

20

40

W

0

22

virtual memory management and/or page fault exceptions
handling by providing mechanisms for performing page
fault handling more efficiently and/or faster relative to
various existing kernel based page fault exception handlers.
The disclosure of each of the following references is
incorporated herein by reference in its entirety to the extent
not inconsistent herewith and to the extent that it supple-
ments, explains, provides a background for, or teaches
methods, techniques, and/or systems employed herein.

REFERENCES

[1] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger, “Phase-change technology and
the future of main memory,” IEEE Micro, vol. 30, pp.
131-141, March 2010.

[2] D. Narayanan and O. Hodson, “Whole-system persis-
tence,” in ASPLOS XVII Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems, (Lon-
don, England, UK), ACM, 2012.

[3] M. T. Krounbi, S. Watts, D. Apalkov, X. Tang, K. Moon,
V. Nikitin, V. N. A. Ong, and E. Chen, “Status and
challenges for non-volatile spin-transfer torque ram (stt-
ram),” in International Symposium on Advanced Gate
Stack Technology °10, (Albany, N.Y.), September 2010.

[4] “Intel optane technology.” https://www.intel.com/con-
tent/www/us/en/architecture-and-technology/intel-op-
tane-technology.html.

[5] L. Liang, R. Chen, H. Chen, Y. Xia, K. Park, B. Zang,
and H. Guan, “A case for virtualizing persistent memory,”
in SoCC °16 Proceedings of the Seventh ACM Symposium
on Cloud Computing, (Santa Clara, Calif., USA), ACM,
2016.

[6] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson,
“Mojim: A reliable and highly-available non-volatile
memory system,” in ASPLOS °15 Proceedings of the
Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, (Istanbul, Turkey), ACM, 2015.

[71 Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and
T. Anderson, “Strata: A cross media file system,” in SOSP
17 Proceedings of the 26th Symposium on Operating
Systems Principles, (Shanghai, China), pp. 460-477,
ACM, 2017.

[8] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D.
Reddy, R. Sankaran, and J. Jackson, “System software for
persistent memory,” in EuroSys ’14 Proceedings of the
Ninth European Conference on Computer Systems, (Am-
sterdam, The Netherlands), ACM, 2014.

[9] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B.
He, “NV-Tree: Reducing consistency cost for NVM-
based single level systems,” in FAST ’15 Proceedings of
the 13th USENIX Conference on File and Storage Tech-
nologies, (Santa Clara, Calif., USA), USENIX, 2015.

[10] J. Xu and S. Swanson, “Nova: A log-structured file
system for hybrid volatile/non-volatile main memories,”
in FAST '16 Proceedings of the 14th USENIX Conference
on File and Storage Technologies, (Santa Clara, Calif.,
USA), pp- 323-338, USENIX, 2016.

[11] “Gen-Z specifications.” https://genzconsortium.org/
specifications/.

[12] K. Keeton, “Memory-driven computing,” in F4ST °17,
(Santa Clara, Calif.), USENIX Association, 2017.

[13] X. Wu and A. L. N. Reddy, “Semfs: A file system for
storage class memory,” in SC 11 Proceedings of 2011

US 11,474,952 B2

23

International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, (Seattle, Wash.,
USA), ACM, 2011.

[14] S. Qiu and A. L. N. Reddy, “Nvmfs: A hybrid file
system for improving random write in NAND-flash
SSD,” in MSST ’13 IEEE 29th Symposium on Mass
Storage Systems and Technologies, (Long Beach, Calif.,
USA), IEEE, 2013.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better i/o through byte-
addressable, persistent memory,” in SOSP ‘09 Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating
systems principles, (Big Sky, Mont., USA), ACM, 2009.

[16] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell, “Consistent and durable data structures for
non-volatile byte-addressable memory,” in FAST 11 Pro-
ceedings of the 9th USENIX Conference on File and
Storage Technologies, USENIX, 2011.

[17] SNIA, NVM Programming Model. Storage Networking
Industry Association, 2017. Rev. 1.2.

[18] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “NV-Heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories,” in ASPLOS XVI Proceedings of
the sixteenth international conference on Architectural
support for programming languages and operating sys-
tems, (Newport Beach, Calif., USA), pp. 105-118, ACM,
2011.

[19] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight persistent memory,” in ASPLOS XVI Pro-
ceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems, (Newport Beach, Calif., USA), pp.
91-104, ACM, 2011.

[20] E. R. Giles, K. Doshi, and P. Varman, “Softwrap: A
lightweight framework for transactional support of stor-
age class memory,” in MSST ’15 Proceedings of the 31st
Symposium on Mass Storage Systems and Technologies,
(Santa Clara, Calif., USA), pp. 1-14, IEEE, 2015.

[21] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R.
Alagappan, K. Strauss, and S. Swanson, “Atomic in-place
updates for non-volatile main memories with kamino-tx,”
in EuroSys ‘17 Proceedings of the Twelfth European
Conference on Computer Systems, (Belgrade, Serbia), pp.
499-512, ACM, 2017.

[22] K. Doshi, E. R. Giles, and P. Varman, “Atomic persis-
tence for scm with a non-intrusive backend controller,” in
HPCA °16 Proceedings of the IEEE International Sym-
posium on High Performance Computer Architecture,
(Barcelona, Spain), IEEE, 2016.

[23] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scal-
able high performance main memory system using phase-
change memory technology,” in ISCA '09 Proceedings of
the 36th annual international symposium on Computer
architecture, (Austin, Tex., USA), ACM, 2009.

[24] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and
energy efficient main memory using phase change
memory technology,” in ISCA '09 Proceedings of the 36th
annual international symposium on Computer architec-
ture, (Austin, Tex., USA), ACM, 2009.

[25] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi,
“Kiln: Closing the performance gap between systems with
and without persistence support,” in MICRO 13 Proceed-
ings of the 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, (Davis, Calif., USA), IEEE,
2013.

5

15

20

25

35

40

45

55

60

65

24

[26] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom:
Atomic durability in non-volatile memory through hard-
ware logging,” in HPCA °17 Proceedings of the IFEE
International Symposium on High Performance Com-
puter Architecture, (Austin, Tex., USA), IEEE, 2017.

[27] I. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “Frash:
Exploiting storage class memory in hybrid file system for
hierarchical storage,” ACM Transactions on Storage
(108), vol. 6, no. 1, 2010.

[28] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P.
Saxena, and M. M. Swift, “Aerie: Flexible file-system
interfaces to storage-class memory,” in EuroSys '14 Pro-
ceedings of the Ninth European Conference on Computer
Systems, (Amsterdam, The Netherlands), ACM, 2014.

[29] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L.. N.
Reddy, “Speculative paging for future NVM storage,” in
MEMSYS °17 Proceedings of the International Sympo-
sium on Memory Systems, (Alexandria, Va.), 2017.

[30] D. Watts, “Intel optane dc persistent memory product
guide,” 2019. https://lenovopress.com/Ip1066-intel-op-
tane-dc-persistent-memory.

[31] “Intel persistent memory development kit.” https://
pmem.io/pmdk/.

[32] Intel, “Storage performance development kit,” 2017.
https://spdk.io/.

[33] Samsung, “Ultra-low latency with samsung z-nand
ssd,” 2017. https://www. samsung.com/semiconductor/
global.semi.static/Ultra-Low_Latency_with_Sam-
sung_7Z-NAND_SSD-0.pdf.

[34] L. A. Eisner, T. Mollov, and S. Swanson, “Quill:
Exploiting fast non-volatile memory by transparently
bypassing the file system,” UCSD CSE Tech. Rep.
CS2013-0991, University of California, San Diego, San
Diego, Calif., 2013.

[35] M. Swift, “Persistent memory ordering,” 2015. http://
materials.dagstuhl.de/files/15/15021/

15021 .MichaelSwift1.Slides.pdf.

[36] H. Wan, Y. Lu, Y. Xu, and J. Shu, “Empirical study of
redo and undo logging in persistent memory,” in NVMSA
’16 Proceeding of the 5th Non-Volatile Memory Systems
and Applications Symposium, (Daegu, South Korea), pp.
1-6, IEEE, 2016.

[37] A. Chen, “A review of emerging non-volatile memory
(NVM) technologies and applications,” Solid-State Elec-
tronics, vol. 125, pp. 25-38, 2016.

[38] S. Yu and P.-Y. Chen, “Emerging memory technologies:
Recent trends and prospects,” IEEE Solid-State Circuits
Magazine, vol. 8, no. 2, pp. 43-56, 2016.

[39] Y. Zhang and S. Swanson, “A study of application
performance with non-volatile main memory,” in MSST
'15 Proceedings of the 31st Symposium on Mass Storage
Systems and Technologies, (Santa Clara, Calif.), IEEE,
2015.

[40] B. F. Cooper, A. Silberstein, ErwinTam, R.
Ramakrishnan, and R. Sears, “Benchmarking cloud serv-
ing systems with YCSB,” in SoCC ’10 Proceedings of the
1st ACM symposium on Cloud computing, (Indianapolis,
Ind., USA), pp. 143-154, ACM, 2010.

[41] “Transaction isolation levels.” https://docs.microsoft-
.com/en-us/sql/odbc/reference/develop-app/transaction-
isolation-levels?view=sql-server-2017.

[42] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory
persistency,” in ISCA '14 Proceeding of the 41st annual
international symposium on Computer architecuture,
(Minneapolis, Minn., USA), pp. 265-276, ACM, 2014.

US 11,474,952 B2

25

[43] C. Wang, Q. Wei, J. Yang, C. Chen, and M. Xue, “How
to be consistent with persistent memory? an evaluation
approach,” in NAS ’15, (Boston, Mass.), pp. 186-194,
IEEE, August 2015.

[44] S. Swanson, “A vision of persistence.” https://www.si-
garch.org/a-vision-of-persistence/.

[45] “Mongodb.” https://github.com/mongodb.

[46] “Mmapv] storage engine.” https://docs.mongodb.com/
manual/processorcore/mmapv1/.

[47] “Docker container.” https://www.docker.com/.

[48] “Docker container bind mounts.” https://docs.docker-
.cony/storage/bind-mounts//.

[49] S. Borkar, “Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation,” IEEE Micro, vol. 25, pp. 10-16, 2005.

[50] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram
errors in the wild: A large-scale field study,” in SIGMET-
RICS 09, (Seattle, Wash.), pp. 193-204, ACM, June 2009.

[51] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu, “Virtual
machine based energy-efficient data center architecture
for cloud computing: A performance perspective,” in
GREENCOMCPSCOM 10, pp. 171-178, IEEE, Decem-
ber 2010.

[52] K. Chanchio and X.-H. Sun, “Communication state
transfer for the mobility of concurrent heterogeneous
computing,” IEEE Transactions on Computers, vol. 53,
pp. 1260-1273, 2004.

[53] S. Gao, B. He, and J. Xu, “Real-time in-memory
checkpointing for future hybrid memory systems,” in /CS
’15, (Newport Beach, Calif.), pp. 263-272, ACM, June
2015.

[54] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milo-
jicic, “Optimizing checkpoints using nvm as virtual
memory,” in /PDPS ’13, (Boston, Mass.), IEEE, May
2013.

[55] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann,
and Y. Xie, “Leveraging 3d pcram technologies to reduce
checkpoint overhead for future exascale systems,” in SC
'09, (Portland, Oreg.), ACM, November 2009.

[56] J. Xie, X. Dong, and Y. Xie, “3d memory stacking for
fast checkpointing/restore applications,” in 3DIC ’10,
(Munich, Germany), IEEE, November 2010.

[57] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi,
“Hybrid checkpointing using emerging nonvolatile
memories for future exascale systems,” ACM TACO, vol.
8, July 2011.

[58] Intel, “Intel store intrinsics.”https://software.intel.com/
en-us/node/524244.

[59] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, 1. Pratt, and A. Warfield, “Live migration of
virtual machines,” in NSDI ‘05, (Berkeley, Calif.), pp.
273-286, USENIX, May 2005.

[60] E. R. Zayas, “Attacking the process migration bottle-
neck,” in SOSP '87, (Austin, Tex.), pp. 13-24, ACM,
November 1987.

[61] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-
copy live migration of virtual machines,” 4CM SIGOPS
Operating Systems Review, vol. 43, pp. 14-26, July 2009.

[62] S. Sahni and V. Varma, “A hybrid approach to live
migration of virtual machines,” in CCEM °12, (Banga-
lore, India), IEEE, October 2012.

[63] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live
migration of multiple virtual machines with resource
reservation in cloud computing environments,” in
CLOUD 11, (Washington, D.C.), IEEE, July 2011.

20

40

50

65

26

[64] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R.
Boutaba, “CQNCR: Optimal VM migration planning in
cloud data centers,” in IFIP ’14, (Trondheim, Norway),
IEEE, June 2014.

[65] J. Li, C. Pu, Y. Chen, V. Talwar, and D. Milojicic,
“Improving preemptive scheduling with application-
transparent checkpointing in shared clusters,” in Middle-
ware ’15, (Vancouver, BC, Canada), pp. 222-234, ACM,
December 2015.

[66] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N.
Roberts, and P. Lin, “Natjam: Design and evaluation of
eviction policies for supporting priorities and deadlines in
mapreduce clusters,” in SoCC °13, (Santa Clara, Calif.),
ACM, October 2013.

[67] Y. Shao, W. Bao, X. Zhu, W. Xiao, and J. Wang,
“Chord: Checkpoint-based scheduling using hybrid wait-
ing list in shared clusters,” Journal of Systems and Soft-
ware, vol. 131, pp. 22-34, September 2017.

[68] S. Kashyap, C. Min, B. Lee, T. Kim, and P. Emelyanov,
“Instant os updates via userspace checkpoint-and-restart,”
in ATC 16, (Denver, Colo.), pp. 605-619, USENIX, June
2016.

[69] P. Fernando, S. Kannan, A. Gavrilovska, and K.
Schwan, “Phoenix: Memory speed hpc i/o with nvm,” in
HiPC ’16, (Hyderabad, India), IEEE, December 2016.

[70] “Checkpoint/Restore In Userspace (CRIU).” https://
www.criu.org/.

[71] “GDB: the GNU Project debugger.” https://www.gn-
u.org/s/gdb/.

[72] “Linux pipe.” http://man7.org/linux/man-pages/man2/
pipe.2.html.

[73] “Linux userfaultfd.” http://man7.org/linux/man-pages/
man2/userfaultfd.2 html.

[74] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient
live migration of virtual machines using shared storage,”
in VEE °13, (Houston, Tex.), pp. 41-50, ACM, March
2013.

[75] “Direct access for files.” https://www.kernel.org/doc/
Documentation/filesystems/dax.txt.

[76] “Linux write.” http://man7.org/linux/man-pages/man2/
write.2.html.

[77] “Emulated nvdimm in linux.” https://nvdimm.wiki.k-
ernel.org/.

[78] D. Baliley, E. Barszcz, J. Barton, D. Browning, R.
Carter, L. Dagum, R. Fatoohi, P. Frederickson, T. Lasin-
ski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S.
Weeratunga, “The NAS parallel benchmarks-summary
and preliminary results,” in SC 91, pp. 158-165, ACM,
1991.

[79] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC benchmark suite: characterization and architec-
tural implications,” in PACT ‘08, (Toronto, Ontario,
Canada), pp. 72-81, ACM, October 2008.

[80] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 programs: Characterization and
methodological considerations,” in ISCA4 95, (S. Mar-
gherita Ligure, Italy), pp. 24-36, ACM, June 1995.

[81] “Redis: An in-memory data structure store.” http://
redis.io/.

[82] “Gen-z overview.” https://genzconsortium.org/wp-con-
tent/uploads/2018/05/Gen-Z-Overview.pdf.

[83] “Phase change memory.” http://www.pdl.cmu.edu/SDI/
2009/slides/Numonyx.pdf.

[84] “iperf the ultimate speed test tool for tcp, udp and sctp.”
https://iperf fr/iperf-download.php.

[85] R. Peglar, “The future of storage systems—a dangerous
opportunity,” in MSST °19 Proceedings of the 35st Sym-

US 11,474,952 B2

27

posium on Mass Storage Systems and Technologies,

(Santa Clara, Calif.), IEEE, 2019.

[86] C. C. Chou, J. Jung, A. L. N. Reddy, P. V. Gratz, and D.
Voigt, “vavml: An efficient user space library for virtu-
alizing and sharing non-volatile memories,” in MSST ’19
Proceedings of the 35st Symposium on Mass Storage
Systems and Technologies, (Santa Clara, Calif.), IEEE,
2019.

[87] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-
yourself virtual memory translation,” in ISC4 ‘17, (To-
ronto, ON, Canada), ACM, June 2017.

[88] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne,
“Accelerating two-dimensional page walks for virtualized
systems,” in International conference on Architectural
support for programming languages and operating sys-
tems 13, 2008.

[89] “Lockless ring buffer design.” https://www.kernel.org/
doc/Documentation/trace/ring-buffer-design.txt.

[90] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.
Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.
Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39, pp. 1-7,
May 2011.

Although specific examples and features have been
described above, these examples and features are not
intended to limit the scope of the present disclosure, even
where only a single example is described with respect to a
particular feature. Examples of features provided in the
disclosure are intended to be illustrative rather than restric-
tive unless stated otherwise. The above description is
intended to cover such alternatives, modifications, and
equivalents as would be apparent to a person skilled in the
art having the benefit of this disclosure.

The scope of the present disclosure includes any feature
or combination of features disclosed in this specification
(either explicitly or implicitly), or any generalization of
features disclosed, whether or not such features or general-
izations mitigate any or all of the problems described in this
specification. Accordingly, new claims may be formulated
during prosecution of this application (or an application
claiming priority to this application) to any such combina-
tion of features. In particular, with reference to the appended
claims, features from dependent claims may be combined
with those of the independent claims and features from
respective independent claims may be combined in any
appropriate manner and not merely in the specific combi-
nations enumerated in the appended claims.

The invention claimed is:

1. A method for performing page fault handling, the
method comprising:

performing page fault handling operations, the page fault

handling operations comprising:

after a translation lookaside buffer (TLB) miss associ-
ated with a virtual memory page occurs, identifying,
in a page table, a page table entry (PTE) associated
with the virtual memory page;

determining, using a first indicator in the PTE, that the
virtual memory page is not present in a main
memory;

determining, using a second indicator in the PTE, that
the virtual memory page is associated with a valid
memory address and that the virtual memory page is
capable of using pre-allocated pages;

obtaining, from a pre-allocation table, a page frame
number associated with a pre-allocated page; and

updating the PTE to indicate the page frame number.

20

25

40

45

60

65

28

2. The method of claim 1, wherein at least one kernel
associated background process performs one or more pre-
page fault handling operations asynchronously.

3. The method of claim 2, wherein one of the pre-page
fault handling operations comprises:

pre-allocating virtual memory pages and storing corre-

sponding page frame numbers in the pre-allocation
table.

4. The method of claim 2, wherein one of the pre-page
fault handling operations comprises:

determining whether PTEs associated with a virtual

memory region refer to valid memory addresses and for
setting valid memory address indications in the PTEs
associated with the virtual memory region.

5. The method of claim 1, wherein the second indicator is
a valid memory address indicator and is stored in a user bit
or a parameter data field of the PTE.

6. The method of claim 1, wherein the first indicator is
stored in a present bit or a present parameter data field of the
PTE.

7. The method of claim 1, wherein at least one kernel
associated background process performs one or more post-
page fault handling operations periodically, wherein the one
or more post-page fault handling operations includes updat-
ing one or more counters of the pre-allocation table, adding
one or more virtual memory pages to a last recently used
(LRU) cache for swapping, or allocating one or more
pre-allocated pages to replace used pre-allocated pages
associated with the pre-allocation table.

8. The method of claim 1, wherein at least one Kkernel
associated background process performs one or more opera-
tions of pre-allocating pages dynamically based on at least
one threshold value or trigger associated with a number of
available pre-allocated pages.

9. The method of claim 1, wherein the page fault handling
operations are performed without a context switch from user
space to kernel space.

10. The method of claim 1, wherein the page fault
handling operations, pre-page fault handling operations,
and/or post-page fault handling operations are performed
using a kernel associated delayed work queue.

11. The method of claim 1, wherein at least one kernel
associated background process performs one or more error
handling operations, wherein the one or more error handling
operations includes scanning one or more pre-allocation
tables for entries associated with one or more applications
and performing one or more post-page fault handling opera-
tions for each of the entries associated with the one or more
applications.

12. A system for performing page fault handling, the
system comprising:

at least one processor; and

a page fault handling offload engine (POE) implemented

using the at least one processor, wherein the POE is

configured for performing page fault handling opera-

tions, the page fault handling operations comprising:

after a translation lookaside buffer (TLB) miss associ-
ated with a virtual memory page occurs, identifying,
in a page table, a page table entry (PTE) associated
with the virtual memory page;

determining, using a first indicator in the PTE, that the
virtual memory page is not present in a main
memory;

determining, using a second indicator in the PTE, that
the virtual memory page is associated with a valid
memory address and that the virtual memory page is
capable of using pre-allocated pages;

US 11,474,952 B2

29

obtaining, from a pre-allocation table, a page frame
number associated with a pre-allocated page; and
updating the PTE to indicate the page frame number.

13. The system of claim 12, wherein at least one kernel
associated background process performs one or more pre-
page fault handling operations asynchronously.

14. The system of claim 13, wherein one of the pre-page
fault handling operations comprises:

pre-allocating virtual memory pages and storing corre-

sponding page frame numbers in the pre-allocation
table.

15. The system of claim 13, wherein one of the pre-page
fault handling operations comprises:

determining whether PTEs associated with a virtual

memory region refer to valid memory addresses and for
setting valid memory address indicators in the PTEs
associated with the virtual memory region.

16. The system of claim 12, wherein the second indicator
is a valid memory address indicator and is stored in a user
bit or a parameter data field of the PTE.

17. The system of claim 12, wherein at least one kernel
associated background process performs one or more post-
page fault handling operations periodically, wherein the one
or more post-page fault handling operations includes updat-
ing one or more counters of the pre-allocation table, adding
one or more virtual memory pages to a last recently used
(LRU) cache for swapping, or allocating one or more
pre-allocated pages to replace used pre-allocated pages
associated with the pre-allocation table.

20

25

30

18. The system of claim 12, wherein the page fault
handling operations, pre-page fault handling operations,
and/or post-page fault handling operations are performed
using a kernel associated delayed work queue.

19. The system of claim 12, wherein at least one kernel
associated background process performs one or more error
handling operations, wherein the one or more error handling
operations includes scanning one or more pre-allocation
tables for entries associated with one or more applications
and performing one or more post-page fault handling opera-
tions for each of the entries associated with the one or more
applications.

20. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
a processor of a computer cause the computer to perform
page fault handling operations comprising:

after a translation lookaside buffer (TLB) miss associated

with a virtual memory page occurs, identifying, in a
page table, a page table entry (PTE) associated with the
virtual memory page;
determining, using a first indicator in the PTE, that the
virtual memory page is not present in a main memory;

determining, using a second indicator in the PTE, that the
virtual memory page is associated with a valid memory
address and that the virtual memory page is capable of
using pre-allocated pages;

obtaining, from a pre-allocation table, a page frame

number associated with a pre-allocated page; and
updating the PTE to indicate the page frame number.

* % *® ok %

