a2 United States Patent

Sun et al.

US011516976B2

US 11,516,976 B2
Dec. 6, 2022

(10) Patent No.:
45) Date of Patent:

(54) IRRIGATION SYSTEM CONTROL WITH
PREDICTIVE WATER BALANCE
CAPABILITIES

(71)  Applicant: THE TEXAS A&M UNIVERSITY
SYSTEM, College Station, TX (US)

(72) Inventors: Lijia Sun, College Station, TX (US);
Jiang Hu, College Station, TX (US);
Dana O. Porter, Wolfforth, TX (US);
Thomas H. Marek, Amarillo, TX (US);
Charles C. Hillyer, Amarillo, TX (US);
Yanxiang Yang, College Station, TX
Us)

(73) Assignee: The Texas A&M University System,
College Station, TX (US)

(*) Notice:  Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 276 days.

(21) Appl.No.:  16/771,321

(22) PCT Filed: Dec. 11, 2018

(86) PCT No.: PCT/US2018/064949
§ 371 (e)(D),
(2) Date: Jun. 10, 2020

(87) PCT Pub. No.: W02019/118460
PCT Pub. Date: Jun. 20, 2019

(65) Prior Publication Data
US 2020/0296906 Al Sep. 24, 2020
Related U.S. Application Data
(60) Provisional application No. 62/597,048, filed on Dec.

11, 2017.
(51) Imt. CL
A01G 25/16 (2006.01)
GOG6N 20/00 (2019.01)
(Continued)

(52) US. CL
CPC ... A01G 25/165 (2013.01); A01G 25/167
(2013.01); GOIN 33/246 (2013.01); GO6N
20/00 (2019.01); GOIN 2033/245 (2013.01)
(58) Field of Classification Search
CPC .. A01G 25/165; A01G 25/167; GOIN 33/246;
GO1N 2033/245; GO6N 20/00;

(Continued)
(56) References Cited
U.S. PATENT DOCUMENTS

2018/0211156 Al*  7/2018 Guan ............. GOG6N 3/0445

OTHER PUBLICATIONS

Shivaram Irukula, “Reinforced Learning Based on Controller for
Precision Irrigation,” A Dissertation Submitted to the Office of
Graduate and Professional Studies of Texas A&M University, Dec.
2015. (Year: 2015).*

* cited by examiner

Primary Examiner — Chad G Erdman

(74) Attorney, Agent, or Firm — Thomas | Horstemeyer,
LLP

(57) ABSTRACT

Disclosed are various embodiments for reinforcement learn-
ing-based irrigation control to maintain or increase a crop
yield or reduce water use. A computing device may be
configured to determine an optimal irrigation schedule for a
crop planted in a field by applying reinforcement learning
(RL), where, for a given state of a total soil moisture, the
computing device performs an action, the action comprising
waiting or irrigating crop. An immediate reward may be
assigned to a state-action pair, the state-action pair compris-
ing the given state of the total soil moisture and the action
performed. The computing device may instruct an irrigation
system to apply irrigation to at least one crop in accordance
with the optimal irrigation schedule determined, where the
optimal irrigation schedule includes an amount of water to
be applied at a predetermined time.
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IRRIGATION SYSTEM CONTROL WITH
PREDICTIVE WATER BALANCE
CAPABILITIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is the § 371 national phase application of
PCT/US2018/064949, filed Dec. 11, 2018, which claims the
benefit of and priority to U.S. Provisional Patent Application
No. 62/597,048 entitled “IRRIGATION SYSTEM CON-
TROL WITH PREDICTIVE WATER BALANCE CAPA-
BILITIES,” filed on Dec. 11, 2017, the contents of which
being incorporated by reference in their entirety herein.

BACKGROUND

Irrigation management plays a critical role in determining
crop yield. Crop yield largely depends on a sufficient water
supply. Yet, fresh water resources are limited. Ideally, farm-
ers irrigate an exact amount of water that is needed by crop,
no more and no less. Historically, such precise irrigation
control is complex and difficult, if not impossible. However,
currently, wireless sensors, computer networking, and
advanced irrigation machines enable site-specific variable
rate irrigation (SSVRI), making precise irrigation control
realistic.

In artificial intelligence and machine learning applica-
tions, reinforcement learning (RL) relates to an area of
computer engineering and science concerned with how an
artificial intelligence application should take actions in an
environment so as to maximize a reward. Like a human, an
artificial intelligence routine may apply reinforcement learn-
ing to achieve successful strategies that lead to long-term
rewards based on trial-and-error. For instance, a decision
made by the artificial intelligence application may cause the
application to receive either a reward or a punishment.

BRIEF SUMMARY OF INVENTION

According to a first embodiment, a system for reinforce-
ment learning-based irrigation control is described to main-
tain or increase a crop yield or reduce water use. The system
includes at least one computing device and program instruc-
tions stored in memory and executable by the at least one
computing device that, when executed, direct the at least one
computing device to: determine an optimal irrigation sched-
ule for at least one crop in at least one region of a field by
executing a reinforcement learning (RL) routine, where, for
a given state of a total soil moisture, the reinforcement
learning (RL) routine is configured to: perform an action, the
action comprising waiting or irrigating the at least one crop;
and assign a reward (e.g., an immediate reward or a delayed
reward) to a state-action pair, the state-action pair compris-
ing the given state of the total soil moisture and the action
performed; and instruct an irrigation system to apply irri-
gation to at least one crop in accordance with the optimal
irrigation schedule determined, wherein the optimal irriga-
tion schedule comprises an amount of water and a deter-
mined time at which the amount of water should be applied.

The optimal irrigation schedule may be determined using
at least one of: a real-time soil moisture value, a near
real-time soil moisture value, a predictive evapotranspira-
tion (ET) metric, or a weather forecast metric. The system
may further include a cascading neural network configured
to generate a crop yield. The cascading neural network
configured to generate the crop yield may include: a first
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neural network configured to receive, as an input, at least
one of irrigation data and weather data, wherein the first
neural network is configured to provide a total soil water
(TSW) value determined based at least in part on the input;
and a second neural network configured to receive the total
soil water as an input, wherein the second neural network is
configured to generate the crop yield based at least in part on
the total soil water. Further, the system may include a
decision support system for agrotechnology transfer (DS-
SAT) module configured to communicate with the cascading
neural network over a network.

The first neural network may be configured to receive
training data from the DSSAT module and train using the
training data prior to generating the total soil water (TSW)
value; and the second neural network is configured to
receive training data from the DSSAT module and train
using the training data before generating the crop yield. The
at least one computing device may include a microcontroller
implemented in a mobile irrigation machine; and the irriga-
tion system may be instructed to apply irrigation to at least
one crop in accordance with the optimal irrigation schedule
by converting the optimal irrigation schedule to a suitable
signal for interpretation by the irrigation system. The system
may further include at least one soil moisture sensor posi-
tioned in the at least one region of the field, where the
optimal irrigation schedule is determined based at least in
part on a soil moisture measurement obtained by the at least
one soil moisture sensor.

According to a second embodiment, a computer-imple-
mented method for reinforcement learning-based irrigation
control is described to maintain or increase a crop yield or
reduce water use. The method includes determining, by at
least one computing device, an optimal irrigation schedule
for at least one crop in at least one region of a field by
executing a reinforcement learning (RL) routine, where, for
a given state of a total soil moisture, the reinforcement
learning (RL) routine comprises: simulating, by the at least
one computing device, an action, the action comprising
waiting or irrigating the at least one crop; and assigning, by
the at least one computing device, an immediate reward to
a state-action pair, the state-action pair comprising the given
state of the total soil moisture and the action performed; and
instructing an irrigation system to apply irrigation to at least
one crop in accordance with the optimal irrigation schedule
determined, wherein the optimal irrigation schedule com-
prises an amount of water and a determined time at which
the amount of water should be applied.

The optimal irrigation schedule may be determined using
at least one of: a real-time soil moisture value, a near
real-time soil moisture value, a predictive evapotranspira-
tion (ET) metric, or a weather forecast metric. The method
may further include generating, by a cascading neural net-
work, a crop yield, wherein the crop yield is used to assign
the immediate reward to the state-action pair. Generating, by
the cascading neural network, the crop yield further may
include: receiving, by a first neural network, as an input, at
least one of irrigation data and weather data; providing, by
the first neural network, a total soil water (TSW) value
determined based at least in part on the input; receiving, by
a second neural network, the total soil water as an input; and
generating, by the second neural network, the crop yield
based at least in part on the total soil water.

The method may further include receiving, by the first
neural network, training data from a decision support system
for agrotechnology transfer (DSSAT) module; training, by
the first neural network, using the training data prior to
generating the total soil water (TSW) value; receiving, by
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the second neural network, training data from the DSSAT
module; and training, by the second neural network, using
the training data prior to generating the crop yield. The at
least one computing device may include a microcontroller
implemented in a mobile irrigation machine, and the method
may further include applying, by the microcontroller, irri-
gation to at least one crop in accordance with the optimal
irrigation schedule by converting the optimal irrigation
schedule to a suitable signal for interpretation by the irri-
gation system. The optimal irrigation schedule may be
determined based at least in part on a soil moisture mea-
surement obtained by at least one soil moisture sensor
positioned in the at least one region of the field.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
with emphasis instead being placed upon clearly illustrating
the principles of the disclosure. Moreover, in the drawings,
like reference numerals designate corresponding parts
throughout the several views.

FIG.1 is a drawing showing factors of water gain and loss
in soil.

FIG. 2 is an example of a control application configured
to employ reinforcement learning to optimize water usage
and a crop yield according to various embodiments of the
present disclosure.

FIG. 3 is a graph showing precipitation during a simulated
crop season.

FIG. 4 is a graph showing total soil water in a soil profile
during a simulated crop season.

FIG. 5 is a schematic diagram showing a process to
construct cascading neural networks for simulation of total
soil water level and crop yield using DSSAT model accord-
ing to various embodiments of the present disclosure.

FIG. 6 is an example of an algorithm for generating a
daily total soil water and irrigation record according to
various embodiments of the present disclosure.

FIG. 7 is an example of the SARSA(A) algorithm imple-
mented in an irrigation control application according to
various embodiments of the present disclosure.

FIG. 8 is a graph illustrating a neural network training
regression for predicting yield according to various embodi-
ments of the present disclosure.

FIG. 9 is an error histogram illustrating neural network
training error for predicting yield according to various
embodiments of the present disclosure.

FIG. 10 is a graph illustrating a neural network training
regression for predicting total soil water level according to
various embodiments of the present disclosure.

FIG. 11 is an error histogram illustrating neural network
training error for predicting total soil water level according
to various embodiments of the present disclosure.

FIG. 12-15 are graphs illustrating comparisons of total
soil water profiles under different irrigation methods accord-
ing to various embodiments of the present disclosure.

FIG. 16 is a schematic block diagram that provides one
example illustration of a computing environment that may
be employed in a networked environment according to
various embodiments of the present disclosure.

DETAILED DESCRIPTION

According to various embodiments of the present disclo-
sure, a system may include at least one computing device
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4

having a controller application configured to implement a
reinforcement learning (RL) routine in an irrigation control
system that makes use of soil moisture sensor and weather
information. The controller application may be implemented
in or otherwise integrated with an irrigation system, such as
a center pivot irrigation machine, a lawn irrigation system,
or a drip irrigation system, as will be discussed.

In reinforcement learning, a key element is the reward
function, which tells if an action is generally good or poor.
For agricultural irrigation, the critical reward—crop yield, is
not known until the end of a crop season. Such delayed
reward may be handled by implementing a temporal differ-
ence approach in reinforcement learning. For instance, due
to limited real data, offline learning through simulation may
be applied. To this end, fast models based on neural net-
works are developed to facilitate scalable learning. The
embodiments described herein are simulated by a fast model
developed upon the Decision Support System for Agrotech-
nology Transfer (DSSAT) module, which includes a model
for crop growth.

According to various embodiments, a control application
may be executed in at least one computing device to
determine an optimal irrigation schedule that includes an
amount of irrigation (e.g., water) to apply as well as a time
at when to apply the irrigation. The optimal irrigation
schedule may be determined using various artificial intelli-
gence techniques, including reinforcement learning, and
may be implemented in a mobile or static irrigation system.
The control application maintains or increases crop yield
while decreasing water usage. In order to do so, the control
application may utilize real-time soil moisture sensor data
provided, for example, wirelessly, from soil moisture sen-
sors positioned throughout a crop field. Further, the control
application may utilize evapotranspiration (ET) values
obtained from the National Digital Forecast Database
(NDFD) and/or a local weather station, which may involve
application programming interface (API) made available
over a network, such as the Internet. When implementing
embodiments of the systems and methods described herein,
a 20% water use reduction while maintaining a same crop
yield is observed when compared to previous methods. As
such, the embodiments described herein are directed
towards technological improvements in computer-based irri-
gation systems that improve the overall operation of irriga-
tion in an agricultural, landscape, or similar environment.
Further, the embodiments described herein provide an opti-
mized tradeoff between the use of computing resources and
a desired degree of accuracy of predictions.

Further, the control application described herein may run
analyses based on future weather, and may handle situations
where outcomes, like precipitation and soil moisture level,
are random while partially depending on the control of the
operator. Notably, the control application may save a sub-
stantial amount of water by calculating the best option of
whether to irrigate a certain amount of water or wait.

Turning now to the drawings, FIG. 1 includes a drawing
that shows a variety of factors for water gain and loss in soil.
To implement a reinforcement learning routine, a control
application may model an irrigation decision-making pro-
cess as an optimization problem in a stochastic system. As
may be appreciated, soil moisture levels drop due to evapo-
ration 103, transpiration 106, runoff 109, and percolation
112. When rainfall is insufficient, irrigation may be applied
to provide soil moisture to meet crop needs. Several irriga-
tion applications are usually needed during an entire crop
season. Traditionally, an irrigation schedule is set to periodic
applications (calendar-based schedule) or may be triggered
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by a certain threshold (e.g., when soil moisture reaches a
depletion level). For instance, whenever a soil moisture level
drops below a predefined threshold, the control application
may cause an irrigation machine to irrigate one or more
areas of a field until the field is replenished to a target filling
point (TFP). The conventional irrigation scheduling or con-
trol strategies do not consider forecasted in-season rainfall;
hence, often the rainfall is not fully utilized and water is
wasted through over-irrigation, thereby resulting in runoff
and deep percolation.

Turning now to FIG. 2, a control application 200 is shown
executing in a computing environment 203. The computing
environment 203 may include a remote computing environ-
ment 203 that communicates with devices and services
through a network, such as the Internet or other telecom-
munications network. When network communication is
made available through the Internet and/or other networks,
irrigation control may further incorporate weather condi-
tions and weather forecast information received from a
suitable weather service (e.g., a web service application
programming interface). The network may include, for
example, the Internet, intranets, extranets, wide area net-
works (WANSs), local area networks (LANs), wired net-
works, wireless networks, or other suitable networks, etc., or
any combination of two or more such networks. For
example, such networks may comprise satellite networks,
cable networks, Ethernet networks, and other types of net-
works.

The computing environment 103 may comprise, for
example, a server computer, a microcontroller, or any other
system providing computing capability. Alternatively, the
computing environment 103 may employ a plurality of
computing devices that may be arranged, for example, in
one or more server banks or computer banks or other
arrangements. Such computing devices may be located in a
single installation or may be distributed among many dif-
ferent geographical locations. For example, the computing
environment 103 may include a plurality of computing
devices that together may comprise a hosted computing
resource, a grid computing resource, and/or any other dis-
tributed computing arrangement. In some cases, the com-
puting environment 103 may correspond to an elastic com-
puting resource where the allotted capacity of processing,
network, storage, or other computing-related resources may
vary over time.

The control application 200 may model the cost of taking
any action and consequence of being at any state in a form
similar to the Bellmen equation. A state s, may include a
state of a crop field, where the state may include a soil
moisture level. The control application 200 may identify a
set of actions to perform, such as waiting (e.g., doing
nothing) or irrigating (applying water to the field) based on
the state of the field s. As such, the control application 200
may determine whether to wait or irrigate the field to one of
N levels. The control application 200 may further utilize a
transition function T(s, a, s'), which may be affected by both
the action, future precipitation, and evapotranspiration loss.
In some embodiments, the transition function may include a
function of evapotranspiration and weather forecast data. A
reward function R (s, a, s') may include an amount of water,
but multiplied by -1. A utility metric may include the sum
of (discounted) rewards, where V*(s) is an expected utility
starting in s and acting optimally while Q¥(s,a) is an
expected utility starting out having taken action a from state
s and thereafter acting optimally.

In various embodiments, the control application 200 may
evenly divide the soil moisture value between the permanent
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wilting point (PWP) and the field capacity by N different
levels. The difference between adjacent levels may be deter-
mined by a desired precision of an irrigation system. An
allowable depletion level (e.g., a metric defined by an
operator or an administrator) may include a soil moisture
level between the permanent wilting point and the field
capacity, and may indicate a maximum amount of plant
available water (PAW) allowed to be removed from the soil
before irrigation occurs to prevent crop drought stress.

Each level of soil moisture may be defined as a state s,
which describes the status of the measured field. A large N
value may be used to provide a more accurate and efficient
control. However, in reality, tuning of an irrigation system
cannot be infinitely accurate. Thus, dividing the soil mois-
ture level beyond irrigation resolution may not assist in
increasing the efliciency of overall water usage. Addition-
ally, increasing the number of N requires more computa-
tional resources. Therefore, N may be set to a value between
ten and twenty to provide a good balance between water
efficiency and computational capacity of an irrigation con-
troller. The actions may include a response (or an action) that
may be performed by the irrigation system according to
current situation. Actions may include predefined events
stored in memory of the computing environment 203. In
some examples, actions include irrigating, abstaining from
irrigating, etc. The action may be selected from one of the
predefined events stored in memory by the control applica-
tion 200 in order to maximize the accumulated reward over
a predictable period. A reward function may be formulated
to provide an ultimate goal of maintaining (or even increas-
ing) crop yield while saving water.

Transitions between states may partly depend on actions
taken, and are probabilistic. For instance, transitions may
also depend on weather, especially precipitation. A transition
matrix may include an NxN matrix that describes odds for
each state pairs. The control application 200 may generate
the transition matrix by the latest twenty-four to seventy-two
hours (or longer) quantitative precipitation forecast (QPF).
The choice of the length of quantitative precipitation fore-
cast may be related to the speed of water infiltration, the
volumetric rate of water provided to the system, and the
availability of quantitative precipitation forecast. Normally,
it takes twelve to twenty-four hours for water to reach major
root area or depth capable of being measured by soil
moisture sensors. Thus, in some embodiments, quantitative
precipitation forecasts are utilized by the control application
200 that are longer than twelve hours, as any immediate
irrigation is not only unnecessary, but also potentially inac-
curate. The longer the predictable time length, the more
efficiently the control application 200 may operate.

For example, if a large precipitation were to happen in one
day, the control application 200 using twenty-four hours of
quantitative precipitation forecast would be able to deter-
mine that it is better to irrigate a smaller amount of water or
even abstain from irrigating the field (depending on different
soil moisture level) as long as the risk of dropping below the
lower soil moisture threshold is acceptable. However, if rain
might occur in three days, then the control application 200
using twenty-four hours of quantitative precipitation fore-
cast might not be informed. Instead, it would just irrigate to
the field capacity. In this case, when it rains three days later,
much of the water could be wasted.

On the other hand, if the control application 200 uses
seventy-two hours of quantitative precipitation forecast,
then the control application 200 may be required to iterate
through every possible scenario and make an optimal choice
which may include, for example, waiting, irrigating a lim-



US 11,516,976 B2

7

ited amount, or more fully utilizing rain to refill the soil with
water. Quantitative precipitation forecast may come in two
different forms, for example. First, the quantitative precipi-
tation forecast may include a probability density function,
which shows a probability of different amounts of precipi-
tation. Second, the quantitative precipitation forecast may
include an expected value. For example, the expected value
may include a weighted average of all possible outcomes.
The control application 200 may form a transition matrix
from the quantitative precipitation forecast according a
water balance equation:

SML(k+1)=SML(k)-ET (k+1)+P(k+1)+1(k) (eq. 1),

where SML(k) indicates soil moisture level at time step k.
Since SML(k), ET(k), I(k) are deterministic, the distribution
of SML(k+1) is in the same shape with P(k+1). If the control
application 200, for instance, at the direction of the operator,
implements a seventy-two hours weather forecast, then once
the control application 200 downloads weather forecast data,
the control application 200 may generate 3*N different
transition matrix for each of the following day and action
pair. The design of the reward function R(s, a, s') is based on
saving water and maintaining soil moisture level above a
minimum threshold.

Given a state, if the control application 200 chooses to
wait, then the immediate reward may be zero as waiting
doesn’t cost anything. On the other hand, if the control
application 200 chooses to fill the soil to the field capacity,
then, based on evapotranspiration and quantitative precipi-
tation forecast, the control application 200 may generate a
needed water amount and use it to represent the cost for each
state-action pair. As the control application 200 is attempting
to lower cost by saving water, the reward value is negative.
The reward function may only represent the immediate
water cost, yet it does not carry any information about the
long-term effect of being at certain state.

Thus, V*(s) may model the risk and benefit of being at a
state s. Because excessive soil moisture can impede root
development, limit oxygen in the root zone, and cause
leaching of soil nutrients, it is not ideal to have excessive
moisture in the soil. Thus, moisture levels above field
capacity are discouraged. As such, the control application
200 may assign negative values according to the level above
field capacity. Also, the soil moisture level should not drop
below the lower soil water threshold (at which crop stress
occurs), and should never drop to permanent wilting point as
the crop will die. Hence, a substantially negative value may
be assigned to those levels near the lower soil water thresh-
old or PWP. An example of V values may appear as follows:

¥(5)=[0.005,-0.004,-0.003,-0.002,-0.001,0.005,—
10,-10]
The Bellmen equation may be utilized to find an optimal
action for each given state at a given day:

max(a)Z(s")7(s,a,5")[R(s,a,5)+yV*(s")] (eq. 2),

where v, having a value between 0 and 1, is a discount factor.
T(s, a, s") and R(s,a) may be used for each state-action pair,
for instance, to calculate the utility values for each action
such that the control application 200 may pick the one that
leads to maximum utility value. When the soil moisture level
is within healthy range, and there is no immediate risk of
running below the lower threshold, the control application
200 may determine that is better to wait rather than fill the
soil to field capacity.

As may be appreciated, the control application 200 may
make a different choice if the situation changes. For
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instance, the current soil moisture level may be near the
lower threshold, and the expected precipitation the next day
may not refill soil moisture above the threshold. Without
irrigation, crop drought stress or death might occur. Accord-
ingly, after calculation, the control application 200 may
determine that waiting to irrigate will incur a much larger
loss compared to incurring the water cost by irrigating. Thus,
the optimized irrigation schedule may include irrigating the
field.

Referring again to FIG. 1, a schematic diagram is shown
that illustrates a variety of factors for water gain and loss in
soil. As may be appreciated, an amount of water in soil
varies over time depending on many factors. Notably, there
are five ways of water loss and two ways of water gain. Due
to gravity (e.g., drainage), water retained in soil is pulled out
of a root zone 115 to deeper layers, where the loss may be
referred to as “deep” percolation 112. Evapotranspiration
includes a combination of transpiration 106 and evaporation
103. Evapotranspiration accounts for plant water use (tran-
spiration 106) and water evaporated from the soil and wet
surfaces (evaporation 103). Water applied at rates exceeding
an intake capacity of soil may be lost through runoff 109.

In arid and semi-arid areas, insufficient availability of
water in the crop root zone 115 often is the primary limiting
factor for crop yield. Even in relatively humid environments,
seasonal or occasional drought conditions can result in
water-limiting growing conditions, requiring irrigation (e.g.,
water) to be applied to protect against a loss in crop yield.
To show the importance of irrigation, DSSAT simulations of
maize growth in Temple, Tex. according to the weather of
1984 may be performed for different irrigation scenarios.
The DSSAT simulations may compare crop yield, for
instance, when a crop does not receive irrigation to a range
of different amounts of water profiles in soil. For instance,
scenarios of different amounts of irrigation may include
twenty millimeters (mm) of water over ten days, thirty
millimeters of water over ten days, and forty millimeters of
water over ten days.

Referring again to FIG. 2, the control application 200
executing in a computing environment 203 may implement
a reinforcement learning (RL) routine 206. The control
application 200 and the reinforcement learning routine 206
may include program instructions executable in at least one
computing device that, when executed, directs the control
application 200 to determine an optimal irrigation schedule
for at least one crop in at least one region of a field by
executing the reinforcement learning routine 206. In some
examples, the reinforcement learning routine 206 includes
the Deep-Q learning routine, the A3C learning routine, or
other suitable learning routine 206.

For a given state of a total soil moisture, the control
application 200 may perform an action, such as waiting or
irrigating at least one crop. The control application 200 may
assign an immediate reward to a state-action pair, where the
state-action pair includes the given state of the total soil
moisture and the action performed, as will be discussed.
Further, the control application 200 may instruct an irriga-
tion system to apply irrigation to at least one crop in
accordance with the optimal irrigation schedule determined,
where the optimal irrigation schedule includes an amount of
water to be applied at a predetermined time.

As noted above, the control application 200 may deter-
mine the optimal irrigation schedule using field environment
data 209, which may be received over a network and/or
accessed from memory of the computing environment 203.
In various embodiments, the field environment data 209
includes real-time soil moisture values, near real-time and/or
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predictive evapotranspiration, and weather forecast data.
Additionally, the control application 200 may utilize a
system for agrotechnology transfer module, as well as
cascading neural networks, as will be discussed. In some
embodiments, the control application 200 may be is imple-
mented in a mobile irrigation machine.

Precipitation 118 observed over a period of seventy-nine
days is shown in a graph of FIG. 3. FIG. 3 shows precipi-
tation depth during a period of a simulated crop season
having a total amount of rainfall of 219 mm. The variation
of total water in the profile is depicted in a graph shown in
FIG. 3. FIG. 4 shows a total soil water in a profile during the
period of simulated crop season. The notable increase
observed at day twenty-six is caused by a storm on day
twenty-five. Without a sufficient amount of water, the total
soil water drops below 540 mm for 21 days until the end of
the crop season when it rains on day seventy-four. Differ-
ences in the crop yield in the simulation can be observed
from Table 1 below:

TABLE 1

Comparison of Yield under Different Irrigation Plans

Irrigation Plan (mm/10 days)

0 20 30 40

Yield (kg/ha) 2262 6257 6880 6305

From Table 1, it can be easily determined that irrigation
makes a substantial difference in crop yield. Under the
twenty millimeters over ten days simulation, with 160 mm
of water supplied in total, the crop yield is increased by
176.6% when compared to no irrigation. However, irrigation
does not necessarily increase crop yield. When comparing
the yield under twenty, thirty, and forty millimeters over ten
days, one can see that an additional ten millimeters of water
above twenty can boost the crop yield by an additional 10%.
However, a further increase of the water supply to forty
millimeters actually suppresses the yield by 8%.

Water requirements vary by crop and growth stage. For
example, excess water at a germination stage can cause poor
aeration and discourage proper root development. Supplying
a crop with a right amount of water at a specific time
becomes increasingly important (as well as practically
achievable) in modern agriculture. As may be appreciated,
the most suitable amount of water and a most suitable time
to apply the water to a crop are very difficult to determine in
traditional practice, as farmers most commonly use fixed
interval irrigation scheduling. As such, the flexibility and
precision required to adjust for precipitation and soil water
balance is non-existent, and a risk of over-watering a crop
(e.g., wasting water) or under-watering the crop leading to
yield losses is apparent.

In some embodiments described herein, a system may
include the computing environment 203 and a plurality of
soil moisture sensors positioned in various regions of a field
to observe soil moisture for a crop or other item planted in
the field. While soil moisture sensors may be positioned
throughout a field and irrigation applied when a soil water
value drops below a threshold, the question of how much
water to apply to a crop is traditionally not well answered.
Traditionally, a fixed amount of water is applied at a constant
frequency. Some irrigation management technologies exist;
however, their use in agriculture evolved along two orthogo-
nal directions. For instance, advanced algorithms for opti-
mizing problem sets have evolved independently of utiliza-
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tion of modern hardware technology, such as wireless
sensors and wireless sensor networks. However, neither
solution addresses uncertainties in soil, crop, and weather
conditions. Most techniques were developed before the
advent of wireless sensor technology, and therefore, these
techniques are highly dependent on the accuracy of models,
which are not reliable.

The control application 200 may model a growth process
for a particular crop as a Markov chain, which includes a
model for probabilistic transitions among a set of states
S={s,, $,, . . . } over time. In agricultural irrigation, each
state s,&S may be defined as a total soil water (TSW) level
at a certain crop growth stage. Depending on specific types
of crop and soil, a minimum soil moisture level (manage-
ment allowable depletion threshold) will be set higher than
the permanent wilting point (PWP), at which plants can no
longer extract water from soil (and potentially die). A time
step may include three days, although the time step may be
tuned to other values.

An irrigation decision (e.g., a decision whether to irrigate
a crop) is made from a set of actions A={a,, a,, . . . } stored
in memory defined as irrigating the soil until a designated
target filling point (TPF) is reached. A decision of which
action to take directly may affect the state that can be
reached at a next time step. Therefore, the control applica-
tion 200 may implement a Markov decision process (MDP).

In a Markov decision process, an action a,/A at a certain
state s,eS leads to an immediate reward r(s,, a)). The strategy
of choosing actions at each time step may be summarized as
a policy, which usually aims to maximize a long term return
or cumulative reward. In agricultural irrigation, the long
term return may be defined as a Net Return where the Net
Return may be determined using the following equation:

NetReturn=Y*P,-C*P, (eq. 3),

where Y is a crop yield with a unit of kilograms (kg) per
harvest (ha) (kg/ha), C is water usage with a unit of
ha-mm/ha, P, and P,. is a product and water price with a unit
of dollars/kg and dollars/mm, respectively. Contrasting with
previous methods, embodiments of the present disclosure do
not merely optimize water use or crop yield; rather, the
optimization of a net return is optimized. For instance,
farmers or other individuals may use embodiments of the
present disclosure to determine a direct measurement of
economic gain, and are able to adjust the strategy according
to a future market and future water price.

To derive a policy for a Markov decision process, one of
several methods may be employed. In various embodiments
of the present disclosure, the control application 200 execut-
ing in the computing environment 203 is configured to
implement model-free reinforcement learning. Namely, the
model-free reinforcement learning does not depend on an
assumption or prior knowledge, but instead acquires expe-
rience by interacting with an environment.

For instance, at each time step, the control application 200
may take an action aA depending on a current state s€S,
and observe an immediate reward r. At the next time step, the
previous reward r may be discounted by a factor, whose
value may be between zero and one. The factor may control
the preference of behavior for the control application 200.
For instance, when the factor is equal to one, the control
application 200 would implement a long-term strategy.
Alternatively, if the factor were equal to zero, the control
application 200 would only strive for a large immediate
reward. The quality of a state-action pair is specified by a
function Q(s,a), which defines an expected cumulative
reward by being at state s and taking action a.
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The value of the function is largely decided by a reward
resulting from a trajectory of state-action pairs. A challenge
in irrigation is that crop yield, the critical reward, is not
known until the end of the crop season. Thus, in some
embodiments, a temporal difference learning algorithm,
such as SARSA(}), may be utilized to account for a delayed
reward. Notably, SARSA(M) updates Q-functions for state-
action pairs backwards in accordance with an eligibility
trace, in which A controls an eligibility (or a relevance of a
later reward to previous state-action pairs). A Q-function is
a function that determines probability that a normal (Gauss-
ian) random variable will obtain a value larger than x
standard deviations above the mean. Equivalently, the
Q-function, Q(x), is the probability that a standard normal
random variable takes a value larger than x.

A common issue faced by reinforcement learning is a
trade-off between exploitation and exploration. Specifically,
the control application 200 may explore an environment and
learn from experience. However, at early stages, heavily
relying on learned Q-values or exploitation to make deci-
sions may reduce any opportunity to discover improved
routes. At later stages, it may be wasteful to spend too much
time on exploration rather than using existing knowledge.
Thus, the exploitation-exploration trade-off may be
addressed utilizing the e-greedy algorithm, where an action
with a largest Q-value is taken with a probability of 1-e and
an action is randomly chosen among all actions with prob-
ability E. At state s, action a may be taken according to the
e-greedy algorithm. Then, a reward r may be received and
the state transitions to s'. Let a' be the next action according
to the e-greedy algorithm. The Q-value of the state-action
pair (s', a") may be updated with a temporal difference (d)
defined using the following equation:

d=r+1Q(s',a)-Q(s,a) (eq. 4).

The control application 200 may maintain a record of the

eligibility trace e(s,a) in memory. After each visit, the

eligibility value of a current state-action pair may be incre-
mented by one:

e(s,a)<e(s,a)+1 (eq. 5).

After each visit, all entries of the Q-table may be updated
according to the temporal difference (8) and e(s,a) with a
learning rate o

O(s,a)<=0O(s,a)+ade(s,a) (eq. 6).
The eligibility may be discounted by the product of y and A
so that rewards obtained at later time steps are updated
according to a relevance of a previous state-action pair. The
longer a distance, the smaller a relevance, and, therefore,
less weights on the updates:

e(s,a)<yhe(s,a) (eq. 7).

The above process may be repeated until either the
Q-table is converged or the policy is sufficiently stabilized.
Notably, the process includes both learning and decision
making.

In order to learn what is good and bad in terms of policy,
the control application 200 may interact with an environ-
ment. However, the process may be slow as learning from
one actual crop season may take ninety to 120 days depend-
ing on a type of crop and a time of planting. Thus, to shorten
the learning process, simulation modules, such as the
DSSAT module, may be utilized. However, directly incor-
porating the DSSAT module can be very difficult, as control
of irrigation scheduling may require either manual editing
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through a graphical user interface (GUI) of the DSSAT
module or understanding its source code written in Fortran.

Referring now to FIG. 5, to make Q-function training
more scalable, cascading neural networks (NNs) may be
used in accordance with some embodiments as a surrogate
to the DSSAT module. For instance, the cascading neural
networks (NNs) may include a first neural network 503 that
accepts irrigation and weather information (e.g., ET and
precipitation) as inputs and predicts a total soil water (“Pre-
dictTSW( )”) for a geographic location, as shown in FIG. 5.
Additionally, a second neural network 506 may be utilized,
where the second neural network 506 may predict crop yield
(“PredictYield( )”) given the daily total soil water of an
entire crop season determined by the first neural network
503. Since a final crop yield may be closely related to total
soil water during a simulated crop season, random irrigation
plans may be run and total water soil tables may be used as
inputs, and crop yields obtained may be used as targets to
train the second neural network 506 that ultimately deter-
mines crop yield.

As shown in FIG. 5, the input to the second neural
network 506 may include the output of the first neural
network 503 that is configured to predict a daily total soil
water. The total soil water level may be affected by not only
precipitation and irrigation, but also ET, runoff, and perco-
lation, which themselves vary as a function of soil type, solar
radiation, wind speed, temperatures, etc. In the DSSAT
module, the total soil water may be calculated and data
obtained from simulations ran by the DSSAT module may be
used to train the first neural network.

In the SARSA(A) algorithm, although each time step may
be three days, a prediction of crop yield may require total
soil water data daily. As described in an algorithm shown in
FIG. 6, the control application 200 may first translate time
step 1 to days [j,j+2]. Then, the control application 200 may
calculate an irrigation water depth I, for day j according to
a current TSW (TSW)), and a target filling point (TFP) may
be decided by actions in A using a function IrrigationA-
mount( ). Because frequent small irrigation applications can
result in a large evaporation loss and discourage deep root
development, the depth of any irrigation application may be
required to be at least a certain amount, (such as twenty
millimeters) depending upon local soil conditions. Once the
amount is determined, the control application 200 may run
the neural network function PredTSW( ) to produce TSW
values for the following three days. The function may
accept, as its parameters, a current TSW, irrigation (if any),
ET, and precipitation.

The reward function design for the SARSA()) learning in
irrigation warrants particular discussion. A long term return
may include the net return resulting from crop yield and
water expense. Since water application occurs multiple
times throughout a crop season, one embodiment may
include counting a water use expense immediately after each
irrigation action. However, this approach incurs two prob-
lems. First, a reward due to water use is negative (e.g., a
punishment) as water use should be minimized instead of
being maximized. A negative reward often results in nega-
tive Q-values, which interferes in the exploitation-explora-
tion tradeoff. More specifically, a good action a* may
temporarily have a negative Q-value, while another under-
explored action a' may have a zero Q-value even though it
is a poor action. The discrepancy may mislead the subse-
quent learning process.

Second, a reward may be discounted by eligibility trace in
the SARSA(MA) learning. As such, a same dollar amount for
water use and crop yield may be treated with different
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weights. To overcome these problems, the reward associated
with water use may be deferred until the end of crop season.
In other words, all time steps in the middle of a season have
an immediate reward of zero. At the end of the season, there
is only a single reward: the net return.

An algorithm for a learning process is shown in FIG. 7.
Each simulated crop season may be referred to as an episode
consisting of n time steps. The control application 200 may
start with a pseudorandomly generated Q-table, where
Q-values of all state-action pairs may be relatively small in
magnitude as compared to rewards. At each time step, the
control application 200 may take an action and run a
function SimuTSW() to obtain total soil water and irrigation
which may be recorded for the current time step. The reward
function may be configured such that all immediate rewards
are zero, except for the last reward. The final reward may
include a net return, calculated by eq. 3. Notably, if a net
return is smaller than a desired value threshold, then it may
be assigned a small negative value, such as —50. Thus, good
policy may be clearly distinguished from bad policy. A small
negative value may also direct the control application 200 to
favor other unexplored state-action pairs, thus making it
faster to find good policies (e.g., increasing the speed of the
computations). The control application 200 may update the
Q-table and eligibility trace in memory at the end of each
time step. Upon completion of each episode, the eligibility
may be reset to, for example, all zeros; however, the Q-table
may be kept as a reference to continue learning until
convergence.

To evaluate effectiveness of the embodiments described
herein, computer simulations were run on four different
locations, as shown in Table 2, namely Temple, Tex., United
States; Kununurra, Australia; Hyderabad, India; and Sas-
katchewan, Canada. In the computer simulations, the first
three fields were planted with maize, and the last field was
planted with wheat. The test cases are summarized in Table
2, below:

TABLE 2

General Information of Test Cases

Location
Temple Kununurra  Hyderabad Saskatchewan
Soil Type Clay Clay Clay Loam
Cultivar Maize  Maize Maize Wheat
Planting Data May 12, Jun. 12, May 12, May 25,
1984 1982 1983 1975

The neural networks for predicting total soil water and
crop yield may be trained with a single hidden layer con-
sisting of ten or other suitable amount of neurons. The
training algorithm may include, for example, Levenberg-
Marquardt. Samples may be divided into training, valida-
tion, and testing sets. The neural networks may be trained on
training sets and validated by validation sets, which are used
to instruct the neural networks to stop training. The accuracy
of the neural networks may be measured on the test sets to
provide unbiased results. FIGS. 6-9 demonstrate the training
performance for the Temple case. Regression measures the
correlation between targets and outputs, where values closer
to one are better. In the error histogram of FIG. 9, the smaller
and more concentrated around zero, the more accurate. The
statistics of all test cases are summarized in Table 3, below:
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TABLE 3

Summary of NNs Training Regressions

Regression Temple Kununurra Hyderabad ~ Saskatchewan
Yield >0.97 >0.98 >0.98 >0.96
TSW >0.99 >0.99 >0.99 >0.99

As is evident, the use of neural networks significantly
improves learning efliciency, as simulating each episode
costs less than two seconds of computation time. If per-
formed solely by the DSSAT module, assuming manually
adjusting an irrigation plan takes approximately one hour for
each episode, and the rule of thumb that Q-table normally
converges after 500 iterations, the time cost would be
unmanageable.

States in reinforcement learning may be defined according
to crop growth stage and TSW. The state definitions for
Temple and Saskatchewan are shown in Table 4 and 5,
respectively, and the state definitions for the other two
locations are similar.

TABLE 4

State Definition of Case Temple, Texas, United States

State =540 (540, 545) (545, 550) (550, 560) >560

<7 1 2 3 4 5
=15 6 7 8 9 10
=21 11 12 13 14 15
>21 16 17 18 19 20

TABLE 5
State Definition of Case Saskatchewan, Canada

State =320 (320, 325) (325, 330) (330, 340) >340
<13 1 2 3 4 5
=20 6 7 8 9 10
=27 11 12 13 14 15
>27 16 17 18 19 20

In Table 4 and Table 5, the header rows include ranges of
total soil water with a unit of millimeters. The header
columns include time steps. Each entry in the table is a state
identifier (state ID). Since the soil and crop type in Temple,
Kununurra, and Hyderabad are the same, the division of
total soil water levels are the same in those cases. However,
as they differ in geolocation, planting date, and weather
conditions, the length of the crop seasons and definition of
growth stages have some variance. The actions for all four
cases are defined in Table 6, below:

TABLE 6

Definition of Actions in All Four Test Cases

1 2 3 4
Temple wait 560 570 580
Kununurra wait 560 570 580
Hyderabad wait 560 560 580
Saskatchewan wait 340 350 360

In Table 6, the first action (e.g., Action 1) is to wait, while
the rest of the actions include irrigating until a total soil
water level reaches a designated target filling point (TPF).
The embodiments described herein were compared with
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fixed scheduling irrigation, which includes applying a fixed
amount of water every ten days. Also, the embodiments
described herein were compared to threshold-based irriga-
tion, which includes applying a fixed amount of water at a
time step if the soil moisture level is below a certain
threshold. At the time of the analysis was performed, accord-
ing to the Food and Agriculture Organization of the United
Nations (FAO), international maize and wheat prices are
around 200 USD/ton. The cost of irrigation for every 1
ha-mm/ha is about 1 USD. Results shown in Table 7 below
were produced based on those price settings. With respect to
exploration and exploitation trade-off, to achieve a good
balance, € may be initialized as a value of 0.7 (or similar
value) to encourage exploration. As the experience accumu-
lates, the decision making increases its reliance on existing
knowledge. As learning continues, € may decrease. Specifi-
cally, if the number of learned episode N<300, e<—0.7-
0.002N; when N=300, e<—VI/N for each episode.

The advantage of utilizing reinforcement learning in
water usage can be seen from comparing total soil water
curves in FIGS. 10-13. In FIG. 12, the total soil water
increases quickly, even if the field does not need that much
water. Yet, when water is lost too quickly, in FIG. 13, the
fixed method of irrigation does not keep up with crop
demand. Although threshold-based method may avoid these
problems, they are not flexible enough. For instance, in FIG.
10, embodiments described herein initially keeps the total
soil water at a low level; however, it increases the supply of
water at later stages. Such arrangement makes perfect sense
in agriculture, since at early growth stages, like germination,
crops are small and roots are shallow, thus crop water
demand is lower compared to later stages. The control
application 200, utilizing artificial intelligence, learned this
from exploration.

From the result shown in Table 7, Table 8, Table 9, and
Table 10, one can see that the performance of the reinforce-
ment learning embodiments described herein stands out in
every instance. For example, in Temple, the net return was
improved by 27.1% and 15.6%, compared to the average of
threshold-based and fixed scheduling method, respectively.
In Kununurra, the increased profits are 56.9% and 136.2%;
in Hyderabad, 96.4% and 38%, and Saskatchewan, 6.4%
and 49.2%. Additionally, the embodiments described herein
conserve water and, in most cases, the water consumption
under learning method is lower than threshold based and
fixed scheduling method. In every tested case, the embodi-
ments described herein outperform the threshold-based
method by 46.7%, and fixed scheduling by 59.8% on an
average net return.

TABLE 7

Comparison of Performance under Different
Irrigation Methods in Temple

Yield Total Irrigation Net Return

(kg/ha) (ha-mm/ha) (USD/ha)
Learning 9224 236 1608
Threshold 540 mm 6576 160 1155
Threshold 550 mm 7530 200 1306
Threshold 560 mm 7876 240 1335
Fixed 20 mm 6993 180 1218
Fixed 30 mm 8948 270 1519
Fixed 40 mm 8975 360 1435
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TABLE 8

Comparison of Performance under Different
Irrigation Methods in Kununurra

Yield Total Irrigation Net Return

(kg/ha) (ha-mm/ha) (USD/ha)
Learning 11279 303 1952
Threshold 540 mm 6530 280 1026
Threshold 550 mm 8732 280 1406
Threshold 560 mm 8393 380 1298
Fixed 20 mm 3482 200 496
Fixed 30 mm 4671 300 634
Fixed 40 mm 8743 400 1348

TABLE 9
Comparison of Performance under Different
Irrigation Methods in Hyderabad

Yield Total Irrigation Net Return

(kg/ha) (ha-mm/ha) (USD/ha)
Learning 5493 125 973
Threshold 540 mm 2100 80 340
Threshold 550 mm 3217 120 523
Threshold 560 mm 3815 140 623
Fixed 20 mm 4079 160 655
Fixed 30 mm 5303 240 820
Fixed 40 mm 4790 320 638

TABLE 10
Comparison of Performance under Different
Irrigation Methods in Saskatchewan

Yield Total Irrigation Net Return

(kg/ha) (ha-mm/ha) (USD/ha)
Learning 8146 210 1419
Threshold 540 mm 7377 220 1255
Threshold 550 mm 7893 200 1378
Threshold 560 mm 8031 240 1366
Fixed 20 mm 6478 220 1075
Fixed 30 mm 6680 330 1006
Fixed 40 mm 6057 440 771

Agricultural irrigation plays a critical role in addressing
the challenge of fresh water shortage. The progress of
wireless sensor and internet technologies allows advanced
site-specific variable rate irrigation, which has not been fully
exploited yet. A reinforcement learning based control
approach is proposed. Its training can be carried out either
through online crop growth season or offline simulations. A
neural network infrastructure is built to facilitate efficient
trainings. Its successful implementation opens a promising
alternative in future computational agricultural research.
Simulations for different crop types at various geographic
locations show that the proposed method outperforms fixed
irrigation scheduling by 59.8% and threshold based
approach by 46.7% on average net return.

With reference to FIG. 16, shown is a schematic block
diagram of the computing environment 203 according to an
embodiment of the present disclosure. The computing envi-
ronment 203 includes one or more computing devices 600.
Each computing device 600 includes at least one processor
circuit, for example, having a processor 603 and a memory
606, both of which are coupled to a local interface 609. To
this end, each computing device 600 may comprise, for
example, a microcontroller, at least one server computer, or
like device. The local interface 609 may comprise, for
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example, a data bus with an accompanying address/control
bus or other bus structure as can be appreciated.

Stored in the memory 606 are both data and several
components that are executable by the processor 603. In
particular, stored in the memory 606 and executable by the
processor 603 is the control application 200, and potentially
other applications. Also stored in the memory 606 may be a
data store 615 and other data. In addition, an operating
system may be stored in the memory 606 and executable by
the processor 603.

The operations of the control application 200 and other
various systems described herein may be embodied in
software or code executed by general purpose hardware as
discussed above, as an alternative the same may also be
embodied in dedicated hardware or a combination of soft-
ware/general purpose hardware and dedicated hardware. If
embodied in dedicated hardware, each can be implemented
as a circuit or state machine that employs any one of or a
combination of a number of technologies. These technolo-
gies may include, but are not limited to, discrete logic
circuits having logic gates for implementing various logic
functions upon an application of one or more data signals,
application specific integrated circuits (ASICs) having
appropriate logic gates, field-programmable gate arrays (FP-
GAs), or other components, etc. Such technologies are
generally well known by those skilled in the art and,
consequently, are not described in detail herein.

Also, the operations of the control application 200 can be
implemented by logic or an application that comprises
software or program code can be embodied in any non-
transitory computer-readable medium for use by or in con-
nection with an instruction execution system such as, for
example, a processor in a computer system or other system.
In this sense, the logic may comprise, for example, state-
ments including instructions and declarations that can be
fetched from the computer-readable medium and executed
by the instruction execution system. In the context of the
present disclosure, a “computer-readable medium” can be
any medium that can contain, store, or maintain the logic or
application described herein for use by or in connection with
the instruction execution system.

Further, any logic or application described herein, includ-
ing the operations performed by the control application 200,
may be implemented and structured in a variety of ways. For
example, one or more applications described may be imple-
mented as modules or components of a single application.
Further, one or more applications described herein may be
executed in shared or separate computing devices or a
combination thereof. For example, a plurality of the appli-
cations described herein may execute in the same computing
device, or in multiple computing devices in a same com-
puting environment. Additionally, it is understood that terms
such as “application,” “service,” “system,” “engine,” “mod-
ule,” and so on may be interchangeable and are not intended
to be limiting.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to present that
an item, term, etc., may be either X, Y, or Z, or any
combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language is not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y, or at least one of Z to each be present.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
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and modifications may be made to the above-described
embodiment(s) without departing substantially from the
spirit and principles of the disclosure. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims and clauses.

Clause 1. A system for reinforcement learning-based
irrigation control to maintain or increase a crop yield or
reduce water use, comprising: at least one computing
device; and program instructions stored in memory and
executable by the at least one computing device that, when
executed, direct the at least one computing device to:
determine an optimal irrigation schedule for at least one crop
in at least one region of a field by executing a reinforcement
learning (RL) routine, where, for a given state of a total soil
moisture, the reinforcement learning (RL) routine is config-
ured to: perform an action, the action comprising waiting or
irrigating the at least one crop; and assign an immediate
reward to a state-action pair, the state-action pair comprising
the given state of the total soil moisture and the action
performed; and instruct an irrigation system to apply irri-
gation to at least one crop in accordance with the optimal
irrigation schedule determined, wherein the optimal irriga-
tion schedule comprises an amount of water and a deter-
mined time at which the amount of water should be applied.

Clause 2. The system of clause 1, wherein the optimal
irrigation schedule is determined using at least one of: a
real-time soil moisture value, a near real-time soil moisture
value, a recent or near real-time evapotranspiration metric,
a predictive evapotranspiration (ET) metric, or a weather
forecast metric.

Clause 3. The system of any of clauses 1-2, further
comprising a cascading neural network configured to gen-
erate a crop yield.

Clause 4. The system of any of clauses 1-3, wherein the
cascading neural network configured to generate the crop
yield comprises: a first neural network configured to receive,
as an input, at least one of irrigation data and weather data,
wherein the first neural network is configured to provide a
total soil water (TSW) value determined based at least in
part on the input; and a second neural network configured to
receive the total soil water as an input, wherein the second
neural network is configured to generate the crop yield based
at least in part on the total soil water.

Clause 5. The system of any of clauses 1-4, wherein the
system further comprises a decision support system for
agrotechnology transfer (DSSAT) module configured to
communicate with the cascading neural network over a
network.

Clause 6. The system of any of clauses 1-5, wherein: the
first neural network is configured to receive training data
from the DSSAT module and train using the training data
prior to generating the total soil water (TSW) value; and the
second neural network is configured to receive training data
from the DSSAT module and train using the training data
before generating the crop yield.

Clause 7. The system of any of clauses 1-6, wherein the
at least one computing device is a microcontroller imple-
mented in a mobile irrigation machine; and the irrigation
system is instructed to apply irrigation to at least one crop in
accordance with the optimal irrigation schedule by convert-
ing the optimal irrigation schedule to a suitable signal for
interpretation by the irrigation system.

Clause 8. The system of any of clauses 1-7, further
comprising at least one soil moisture sensor positioned in the
at least one region of the field; and wherein the optimal
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irrigation schedule is determined based at least in part on a
soil moisture measurement obtained by the at least one soil
moisture sensor.

Clause 9. A computer-implemented method for reinforce-
ment learning-based irrigation control to maintain or
increase a crop yield or reduce water use, comprising:
determining, by at least one computing device, an optimal
irrigation schedule for at least one crop in at least one region
of a field by executing a reinforcement learning (RL)
routine, where, for a given state of a total soil moisture, the
reinforcement learning (RL) routine comprises: simulating,
by the at least one computing device, an action, the action
comprising waiting or irrigating the at least one crop; and
assigning, by the at least one computing device, an imme-
diate reward to a state-action pair, the state-action pair
comprising the given state of the total soil moisture and the
action performed; and instructing an irrigation system to
apply irrigation to at least one crop in accordance with the
optimal irrigation schedule determined, wherein the optimal
irrigation schedule comprises an amount of water and a
determine time at which the amount of water should be
applied.

Clause 10. The computer-implemented method of clause
9, wherein the optimal irrigation schedule is determined
using at least one of: a real-time soil moisture value, a near
real-time soil moisture value, a predictive evapotranspira-
tion (ET) metric, or a weather forecast metric.

Clause 11. The computer-implemented method of any of
clauses 9-10 further comprising generating, by a cascading
neural network, a crop yield, wherein the crop yield is used
to assign the immediate reward to the state-action pair.

Clause 12. The computer-implemented method of any of
clauses 9-11, wherein generating, by the cascading neural
network, the crop yield further comprises: receiving, by a
first neural network, as an input, at least one of irrigation
data and weather data; providing, by the first neural network,
a total soil water (TSW) value determined based at least in
part on the input; receiving, by a second neural network, the
total soil water as an input; and generating, by the second
neural network, the crop yield based at least in part on the
total soil water.

Clause 13. The computer-implemented method of any of
clauses 9-12, further comprising: receiving, by the first
neural network, training data from a decision support system
for agrotechnology transfer (DSSAT) module; training, by
the first neural network, using the training data prior to
generating the total soil water (TSW) value; receiving, by
the second neural network, training data from the DSSAT
module; and training, by the second neural network, using
the training data prior to generating the crop yield.

Clause 14. The computer-implemented method of any of
clauses 9-13, wherein the at least one computing device is a
microcontroller implemented in a mobile irrigation
machine; and further comprising applying, by the micro-
controller, irrigation to at least one crop in accordance with
the optimal irrigation schedule by converting the optimal
irrigation schedule to a suitable signal for interpretation by
the irrigation system.

Clause 15. The computer-implemented method of any of
clauses 9-14, wherein the optimal irrigation schedule is
determined based at least in part on a soil moisture mea-
surement obtained by at least one soil moisture sensor
positioned in the at least one region of the field.

Therefore, the following is claimed:

1. A system for reinforcement learning-based irrigation
control to maintain or increase a crop yield or reduce water
use, comprising:
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at least one computing device; and
program instructions stored in memory and executable by
the at least one computing device that, when executed,
direct the at least one computing device to:
determine an optimal irrigation schedule for at least one
crop in at least one region of a field by executing a
reinforcement learning (RL) routine, where, for a
given state of a total soil moisture, the reinforcement
learning (RL) routine is configured to:
perform an action, the action comprising waiting or
irrigating the at least one crop;
execute a cascading neural network comprising a
first neural network and a second neural network
and generate the crop yield for the at least one crop
based on the performed action by:
executing a first neural network that receives, as
an input, at least one of irrigation data or
weather data and determines a total soil water
(TSW) value determined based at least in part
on the input, wherein the first neural network
receives training data from a crop growth com-
puter model and is trained using the training
data prior to generating the total soil water
(TSW) value; and
executing a second neural network that receives
the total soil water as an input and generates the
crop yield based at least in part on the total soil
water, wherein the second neural network
receives training data from the crop growth
computer model and is trained using the train-
ing data before generating the crop yield;
assign a reward to a state-action pair, the state-action
pair comprising the given state of the total soil
moisture and the action performed, wherein the
reward is assigned based on a predicted crop yield
generated by the cascading neural network; and
instruct an irrigation system to apply irrigation to at
least one crop in accordance with the optimal irri-
gation schedule determined, wherein the optimal
irrigation schedule comprises an amount of water
and a determined time at which the amount of water
should be applied.

2. The system of claim 1, wherein the optimal irrigation
schedule is determined using at least one of: a real-time soil
moisture value, a near real-time soil moisture value, a
predictive evapotranspiration (ET) metric, or a weather
forecast metric.

3. The system of claim 1, wherein the system further
comprises a decision support system for agrotechnology
transfer (DSSAT) computing device.

4. The system of claim 1, wherein:

the at least one computing device is a microcontroller

implemented in a mobile irrigation machine; and

the irrigation system is instructed to apply irrigation to at

least one crop in accordance with the optimal irrigation
schedule by converting the optimal irrigation schedule
to a suitable signal for interpretation by the irrigation
system.

5. The system of claim 1, further comprising at least one
soil moisture sensor positioned in the at least one region of
the field; and

wherein the optimal irrigation schedule is determined

based at least in part on a soil moisture measurement
obtained by the at least one soil moisture sensor.

6. A computer-implemented method for reinforcement
learning-based irrigation control to maintain or increase a
crop yield or reduce water use, comprising:
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determining, by at least one computing device, an optimal
irrigation schedule for at least one crop in at least one
region of a field by executing a reinforcement learning
(RL) routine, where, for a given state of a total soil
moisture, the reinforcement learning (RL) routine com-
prises:
simulating, by the at least one computing device, an
action, the action comprising waiting or irrigating
the at least one crop;
generating, by a cascading neural network comprising
a first neural network and a second neural network,
a crop yield for the at least one crop based on the
simulated action by:
receiving, by the first neural network, as an input, at
least one of irrigation data or weather data;
providing, by the first neural network, a total soil
water (TSW) value determined based at least in
part on the input, wherein the first neural network
receives training data from a crop growth com-
puter model and is trained using the training data
prior to generating the total soil water (TSW)
value;
receiving, by the second neural network, the total
soil water as an input; and
generating, by the second neural network, the crop
yield based at least in part on the total soil water,
wherein the second neural network receives train-
ing data from the crop growth computer model
and is trained using the training data before gen-
erating the crop yield; and
assigning, by the at least one computing device, a
reward to a state-action pair, the state-action pair
comprising the given state of the total soil moisture
and the simulated action, wherein the reward is
assigned based on a predicted crop yield generated
by the cascading neural network; and

instructing an irrigation system to apply irrigation to at

least one crop in accordance with the optimal irrigation
schedule determined, wherein the optimal irrigation
schedule comprises an amount of water and a deter-
mined time at which the amount of water should be
applied.

7. The computer-implemented method of claim 6,
wherein the optimal irrigation schedule is determined using
at least one of: a real-time soil moisture value, a near
real-time soil moisture value, a predictive evapotranspira-
tion (ET) metric, or a weather forecast metric.

8. The computer-implemented method of claim 6,
wherein the at least one computing device is a microcon-
troller implemented in a mobile irrigation machine; and

further comprising applying, by the microcontroller, irri-

gation to at least one crop in accordance with the
optimal irrigation schedule by converting the optimal
irrigation schedule to a suitable signal for interpretation
by the irrigation system.

9. The computer-implemented method of claim 6,
wherein the optimal irrigation schedule is determined based
at least in part on a soil moisture measurement obtained by
at least one soil moisture sensor positioned in the at least one
region of the field.

10. The system of claim 1, wherein the reward assigned
to the state-action pair is one of an immediate reward or a
delayed reward to the state-action pair.

11. The system of claim 10, wherein:

the reward assigned to the state-action pair comprises the

delayed reward; and
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the at least one computing device is further directed to
execute a temporal difference learning algorithm to
account for the delayed reward.

12. The computer-implemented method of claim 6,
wherein assigning, by the at least one computing device, the
reward to the state-action pair further comprises assigning
one of an immediate reward or a delayed reward to the
state-action pair.

13. The computer-implemented method of claim 12,
wherein:

the reward assigned to the state-action pair comprises the

delayed reward; and

the computer-implemented method further comprises

executing a temporal difference learning algorithm to
account for the delayed reward.

14. The computer-implemented method of claim 6,
wherein the at least one crop is at least one of wheat or
maize.

15. A non-transitory computer readable storage medium
storing software thereon, the software comprising instruc-
tions configured to cause at least one processor of at least
one computer to perform steps comprising:

determining an optimal irrigation schedule for at least one

crop in at least one region of a field by executing a
reinforcement learning (RL) routine, where, for a given
state of a total soil moisture, the reinforcement learning
(RL) routine comprises:
simulating an action, the action comprising waiting or
irrigating the at least one crop;
generating, by a cascading neural network comprising
a first neural network and a second neural network,
a crop yield for the at least one crop based on the
simulated action by:
receiving, by the first neural network, as an input, at
least one of irrigation data or weather data;
providing, by the first neural network, a total soil
water (TSW) value determined based at least in
part on the input, wherein the first neural network
receives training data from a crop growth com-
puter model and is trained using the training data
prior to generating the total soil water (TSW)
value;
receiving, by the second neural network, the total
soil water as an input; and
generating, by the second neural network, the crop
yield based at least in part on the total soil water,
wherein the second neural network receives train-
ing data from the crop growth computer model
and is trained using the training data before gen-
erating the crop yield; and
assigning a reward to a state-action pair, the state-
action pair comprising the given state of the total soil
moisture and the simulated action, wherein the
reward is assigned based on a predicted crop yield
generated by the cascading neural network; and
instructing an irrigation system to apply irrigation to at
least one crop in accordance with the optimal irrigation
schedule determined, wherein the optimal irrigation
schedule comprises an amount of water and a deter-
mined time at which the amount of water should be
applied.

16. The non-transitory computer readable storage medium
of claim 15, wherein the optimal irrigation schedule is
determined using at least one of: a real-time soil moisture
value, a near real-time soil moisture value, a predictive
evapotranspiration (ET) metric, or a weather forecast metric.
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17. The non-transitory computer readable storage medium
of claim 15, wherein the optimal irrigation schedule is
determined based at least in part on a soil moisture mea-
surement obtained by at least one soil moisture sensor
positioned in the at least one region of the field.

18. The non-transitory computer readable storage medium
of claim 15, wherein assigning the reward to the state-action
pair further comprises assigning one of an immediate reward
or a delayed reward to the state-action pair.

19. The non-transitory computer readable storage medium
of claim 18, wherein:

the reward assigned to the state-action pair comprises the

delayed reward; and

the steps further comprise executing a temporal difference

learning algorithm to account for the delayed reward.

20. The non-transitory computer readable storage medium
of claim 18, wherein the steps further comprise applying
irrigation to at least one crop in accordance with the optimal
irrigation schedule by converting the optimal irrigation
schedule to a suitable signal for interpretation by an irriga-
tion system.
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