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Abstract

Varying coefficient models are popular tools in estimating nonlinear regression
functions in functional data models. Their Bayesian variants have received limited
attention in large data applications, primarily due to the prohibitively slow posterior
computations using Markov chain Monte Carlo (MCMC) algorithms. We introduce
Bayesian data sketching for varying coefficient models to obviate computational chal-
lenges presented by large sample sizes. To address the challenges of analyzing large
data, we compress functional response vector and predictor matrix by a random
linear transformation to achieve dimension reduction and conduct inference on the
compressed data. Our approach distinguishes itself from several existing methods for
analyzing large functional data in that it requires neither the development of new
models or algorithms nor any specialized computational hardware while delivering
fully model-based Bayesian inference. Well-established methods and algorithms for
varying coefficient regression models can be applied to the compressed data. We
establish posterior contraction rates for estimating the varying coefficients and pre-
dicting the outcome at new locations under the randomly compressed data model.
We use simulation experiments and conduct a spatially varying coefficient analysis of
remote sensed vegetation data to empirically illustrate the inferential and computa-
tional efficiency of our approach.

Keywords: B-splines; Predictive Process; Posterior contraction; Random compression ma-
trix; Varying coefficient models.
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1 Introduction

We develop an inferential framework for functional data analysis using Bayesian data

sketching to achieve scalable inference for massive functional data sets. “Data sketch-

ing” (Vempala, 2005; Halko et al., 2011; Mahoney, 2011; Woodruff, 2014; Guhaniyogi and

Dunson, 2015, 2016) is a method of compression that is being increasingly employed for

analyzing massive amounts of data. The entire data set is compressed before being ana-

lyzed for computational efficiency. Data sketching proceeds by transforming the original

data through a random linear transformation to produce a much smaller number of data

samples and we conduct the analysis on the compressed data thereby achieving dimension

reduction. Furthermore, the original data is neither accessed nor exactly recoverable from

the compressed data, which preserves data confidentiality.

While such developments have primarily focused on ordinary linear regression and pe-

nalized linear regression (Zhang et al., 2013; Chen et al., 2015; Dobriban and Liu, 2018;

Drineas et al., 2011; Ahfock et al., 2017; Huang, 2018), our innovation lies in developing

such methods for functional regression models. The primary challenge distinguishing the

current manuscript from existing data sketching methods is our pursuit of inference for

the underlying effects of functional coefficients in the context of varying regression models.

While bearing some similarities, our current contribution differs from compressed sensing

(Donoho, 2006; Ji et al., 2008; Candes and Tao, 2006; Eldar and Kutyniok, 2012; Yuan

et al., 2014) in the inferential objectives. Specifically, compressed sensing solves an inverse

problem by “nearly” recovering a sparse vector of responses from a smaller set of random

linear transformations. In contrast, our functionally indexed response vector is not neces-

sarily sparse. Also, we do not seek to (approximately) recover the original values in the

response vector so our method is applicable to situations where preserving confidentiality
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of the response (and predictors) is important.

We consider a varying-coefficient model (VCM) where all functional variables (response

and predictors) are defined on a d-dimensional indexed space D ⊆ Rd. For temporal data

d = 1 and for spatial data applications d = 2, while for spatial-temporal applications the

domain is D = R2×R+ and the index is a space-time tuple (u = (s, t)). For each index u ∈

D, the functional response y(u) ∈ Y ⊆ R and P functional predictors x1(u), ..., xP (u) ∈

X ⊆ R, are related according to a posited varying coefficients regression model

y(u) =
P∑

j=1

xj(u)βj +
P̃∑

j=1

x̃j(u)wj(u) + ϵ(u) = x(u)Tβ + x̃(u)Tw(u) + ϵ(u) , (1)

where β = (β1, β2, . . . , βP )
T is a P × 1 vector of functionally static coefficients, x̃(u) =

(x̃1(u), x̃2(u), . . . , x̃P̃ (u))
T is a P̃ × 1 vector comprising a subset of predictors from x(u)

(so P̃ ≤ P ) whose impact on the response is expected to vary over the functional in-

puts, w(u) = (w1(u), w2(u), . . . , wP̃ (u))
T is a P̃ × 1 vector of functionally varying re-

gression slopes, and ϵ(u)
iid∼ N(0, σ2) captures measurement error variation at location u.

Such functionally-varying regression coefficient models are effective tools for estimating the

functionally varying impact of predictors on the response in time series (see, e.g., Chen

and Tsay, 1993; Cai et al., 2000, and references therein), in spatial applications (see, e.g.,

Gelfand et al., 2003; Wheeler and Calder, 2007; Finley et al., 2011; Guhaniyogi et al., 2013;

Kim and Wang, 2021, and references therein) and in spatial-temporal data analysis (see,

e.g., Lee et al., 2021, and references therein). When d = 2, customary geostatistical re-

gression models with only a spatially-varying intercept emerge if the first column of x(u)

is the intercept and P̃ = 1 with x̃1(u) = 1. Spatially-varying coefficient models, a class of

varying coefficient models for d = 2, also offer a process-based alternative to widely used

geographically weighted regression (see, e.g., Brunsdon et al., 1996) for modeling nonsta-

tionary behavior in the mean. Finley (2011) offers a comparative analysis and highlights
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the richness of (1) in ecological applications.

Bayesian inference for (1) is computationally expensive for large data sets, as are com-

monplace today, due to the high-dimensional covariance matrix introduced by w(u) in (1).

Modeling high-dimensional dependent functional data has been attracting significant inter-

est and the burgeoning literature on diverse aspects of scalable methods—which has largely

adapted and built from scalable spatial models (see, e.g., Banerjee, 2017; Heaton et al., 2019,

for reviews in spatial statistics)—is too vast to be comprehensively reviewed here. Briefly,

model-based dimension reduction in functional data models have proceeded from low-rank

or fixed rank representations (e.g., Cressie and Johannesson, 2008; Banerjee et al., 2008;

Wikle, 2010; Snelson and Ghahramani, 2005; Burt et al., 2020), multi-resolution approaches

(e.g., Nychka et al., 2015; Katzfuss, 2017; Guhaniyogi and Sansó, 2018), sparsity-inducing

processes (e.g., Vecchia, 1988; Datta et al., 2016; Katzfuss and Guinness, 2021; Peruzzi

et al., 2020) and divide-and-conquer approaches such as meta-kriging (Guhaniyogi and

Banerjee, 2018; Guhaniyogi et al., 2020b,a).

While most of the aforementioned methods entail new classes of models and approxima-

tions, or very specialized high-performance computing architectures, Bayesian data sketch-

ing has the advantage that customary exploratory data analysis tools, well-established

methods and well-tested available algorithms for implementing (1) can be applied to the

sketched data set without recourse to new algorithmic or software development. We pursue

fully model-based Bayesian data sketching, where inference proceeds from a hierarchical

model (Cressie and Wikle, 2015; Banerjee et al., 2014). The hierarchical approach to func-

tional data analysis is widely employed for inferring on model parameters that may be

weakly identified from the likelihood alone and, more relevantly for substantive inference,

for estimating the functional relationship between response and predictors over the domain
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of interest. For analytic tractability we model the varying coefficients using basis expan-

sions (Wikle, 2010; Wang et al., 2008; Wang and Xia, 2009; Bai et al., 2019) rather than

Gaussian processes.

We exploit and adapt some recent developments in the theory of random matrices to

relate the inference from the compressed data with the full scale functional data model. We

establish consistency of the posterior distributions of the varying coefficients and analyze

the predictive efficiency of our models based upon the compressed data. Posterior contrac-

tion of varying coefficient (VC) models have been investigated by a few recent articles. For

example, Guhaniyogi et al. (2020a) derive minimax-optimal posterior contraction rates for

Bayesian VC models under GP priors when the number of predictors P is fixed. Deshpande

et al. (2020) also derived near-optimal posterior contraction rates under BART priors, and

Bai et al. (2019) showed asymptotically optimal rate of estimation for varying coefficients

with a variable selection prior on varying coefficients. We address these questions in the

context of data compression, which has largely remained unexplored.

The balance of this article proceeds as follows. Section 2 develops our data sketching

approach and discusses Bayesian implementation of VC models with sketched data. Sec-

tion 3 establishes posterior contraction rates for varying coefficients under data sketching.

Section 4 demonstrates performance of the proposed approach with simulation examples

and a forestry data analysis. Finally, Section 6 concludes the paper with an eye toward

future extensions. All proofs of the theoretical results are placed in the Supplement.
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2 Bayesian Compressed Varying Coefficient Models

We model each varying coefficient wj(u) in (1) as

wj(u) =
H∑

h=1

Bjh(u)γjh , j = 1, ..., P̃ , (2)

where each Bjh(u) is a basis function evaluated at an index u for h = 1, ..., H, and γjh’s are

the corresponding basis coefficients. The distribution of these γjh’s yields a multivariate

process with cov(wi(u), wj(u
′)) = Bi(u)

Tcov(γi,γj)Bj(u), where Bi(u) and γi are H × 1

with elements Bih(u) and γih, respectively, for h = 1, . . . , H.

Appropriate choices for basis functions can produce appropriate classes of multivariate

functional processes. A number of choices are available. For example, Biller and Fahrmeir

(2001) and Huang et al. (2015) use splines to model the Bjh(u)’s and place Gaussian pri-

ors on the basis coefficients γjh. Li et al. (2015) propose a scale-mixture of multivariate

normal distributions to shrink groups of basis coefficients towards zero. More recently,

Bai et al. (2019) proposed using B-spline basis functions and multivariate spike-and-slab

discrete mixture prior distributions on basis coefficients to aid functional variable selection.

Other popular choices for basis functions include the wavelet basis (Vidakovic, 2009; Cressie

and Wikle, 2015), radial basis (Bliznyuk et al., 2008) and locally bi-square (Cressie and

Johannesson, 2008) or elliptical basis functions (Lemos and Sansó, 2009). Alternatively, a

basis representation of wj(u) can be constructed by envisioning wj(u) as the projection of

a Gaussian process wj(u) onto a set of reference points, or “knots”, which yields predictive

processes or sparse Gaussian processes and other variants (Snelson and Ghahramani, 2005;

Banerjee et al., 2008; Guhaniyogi et al., 2013). More generally, each wj(u) can also be mod-

elled using multi-resolution analogues to the aforesaid models to carefully capture global

variations at the lower resolution and local variations at the higher resolutions (Katzfuss,

2017; Guhaniyogi and Sansó, 2018).
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Let {y(ui),x(ui)} be observations at N index-points U = {u1,u2, . . . ,uN}. Using (2)

in (1) yields the Gaussian linear mixed model

y =Xβ + X̃Bγ + ϵ , ϵ ∼ N(0, σ2IN) . (3)

where y = (y(u1), y(u2), . . . , y(uN))
T and ϵ = (ϵ(u1), ϵ(u2), . . . , ϵ(uN))

T are N × 1 vec-

tors of responses and errors, respectively, X is N × P with n-th row x(un)
T, X̃ is the

N ×NP̃ block-diagonal matrix with (n, n)-th block x̃(un)
T, B = (B(u1)

T, . . . ,B(uN)
T)T

is NP̃ × HP̃ with B(un) a block-diagonal P̃ × HP̃ matrix whose j-th diagonal block

is (Bj1(un), . . . , BjH(un)). The coefficient γ = (γT
1 , ...,γ

T

P̃
)T is HP̃ × 1 with each γj =

(γj1, . . . , γjH)
T being H × 1. Bayesian methods for estimating (3) typically employ a mul-

tivariate normal prior (Biller and Fahrmeir, 2001; Huang et al., 2015) or its scale-mixture

(discrete as well as continuous) variants (Li et al., 2015; Bai et al., 2019) on γ.

While the basis functions project the coefficients into a low-dimensional space, working

with (3) will be still be expensive for large N and will be impracticable for delivering

full inference (with robust probabilistic uncertainty quantification) for data sets with N ∼

105+ on modest computing environments. Furthermore, as is well understood in linear

regression, specifying a small number of basis functions in (3) can lead to substantial

over-smoothing and, consequently, biased residual variance estimates in functional varying

coefficient models(see, e.g., the discussion in Section 2.1 of Banerjee, 2017, including

Figures 1 and 2 in the paper). Instead, we consider data compression or sketching using a

random linear mapping to reduce the size of the data from N to M observations. For this,

we use M one-dimensional linear mappings of the data encoded by an M ×N compression

matrix Φ with M << N . This compression matrix is applied to y, X and X̃ to construct

the M × 1 compressed response vector yΦ = Φy and the matrices XΦ = ΦX and X̃Φ =

ΦX̃. We will return to the specification of Φ, which, of course, will be crucial for relating
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the inference from the compressed data with the full model. For now assuming that we

have fixed Φ, we construct a Bayesian hierarchical model for the compressed data

p(ψ,β,γ, σ2 |yΦ,Φ) ∝ p(ψ, σ2,β,γ)×N(yΦ |XΦβ + X̃ΦBγ, σ
2IM) , (4)

where ψ denotes additional parameters specifying the prior distributions on either γ or β.

For example, a customary specification is

p(ψ, σ2,β,γ) =
P̃∏
i=1

IG(τ 2i | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ,Vβ)×N(γ |0,∆) , (5)

where ψ = {τ 21 , ..., τ 2P̃} and∆ isHP̃×HP̃ block-diagonal with j-th block given by τ 2j IH , for

j = 1, ..., P̃ . While (5) is a convenient choice for empirical investigations due to conjugate

full conditional distributions, our method applies broadly to any basis function and any

discrete or continuous mixture of Gaussian priors on the basis coefficients. In applications

where the associations among the latent regression slopes is of importance, one could, for

instance, adopt p(ψ,γ) = IW (ψ | r,Ω)×N(γ | 0,∆ψ) with ψ as the HP̃ ×HP̃ covariance

matrix for γ. Our current focus is not, however, on such multivariate models, so we do not

discuss them further except to note that (4) accommodates such extensions.

The likelihood in (4) is different from that by applying Φ to (3) because the error

distribution in (4) is retained as the usual noise distribution without any effect of Φ. Hence,

the model in (4) is a model analogous to (3) but applied to the new compressed data set

{yΦ,XΦ, X̃Φ}. Working with a Φ-transformed model (3), where the distribution of the

noise will be transformed according Φϵ, will not deliver the computational benefits, and

is somewhat detrimental to the cause of data confidentiality (as in that case, the analyst

need to know Φ) that are provided by (4).

For specifying Φ we pursue the idea of data oblivious Gaussian sketching (Sarlos, 2006),

where we draw the elements of Φ = (Φij) independently from N(0, 1/N) and fix them.
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The dominant computational operations for obtaining the sketched data using Gaussian

sketches is O(MN2P̃ ). While alternative computationally efficient data oblivious options

such as the Hadamard sketch (Ailon and Chazelle, 2009) and the Clarkson - Woodruff

sketch (Clarkson and Woodruff, 2017) are available for Φ, it is less pertinent in Bayesian

settings since computation time of (4) far exceeds that for the sketching matrix. The

compressed data serves as a surrogate for the Bayesian regression analysis with varying

coefficients. Since the number of compressed records is much smaller than the number of

records in the uncompressed data matrix, model fitting becomes computationally efficient

and economical in terms of storage as well as the number of floating point operations

(flops). Importantly, original data are not recoverable from the compressed data, and

the compressed data effectively reveal no more information than would be revealed by a

completely new sample (Zhou et al., 2008). In fact, the original uncompressed data does

not need to be stored or accessed at any stage in the course of the analysis.

2.1 Posterior Computations & Predictive Inference

In what follows, we discuss efficient computation offered by the data sketching framework.

With prior distributions on parameters specified as in (5), posterior computation requires

drawing Markov chain Monte Carlo (MCMC) samples sequentially from the full conditional

posterior distributions of γ|−, β|−, σ2|− and τ 2j |−, j = 1, . . . , P̃ . To this end, σ2|− ∼

IG(aσ +M/2, bσ + ||yΦ −XΦβ − X̃ΦBγ||2/2), τ 2j |− ∼ IG(aτ + H/2, bτ + ||γj||2/2) and

β|− ∼ N
(
(XT

ΦXΦ/σ
2 + I)

−1
XT

Φ(yΦ − X̃ΦBγ)/σ
2, (XT

ΦXΦ/σ
2 + I)

−1
)
do not present

any computational obstacles. The main computational bottleneck lies with γ|−,

N

(BTX̃T
ΦX̃ΦB

σ2
+∆−1

)−1

BTX̃T

Φ

(yΦ −XΦβ)

σ2
, (BTX̃T

ΦX̃ΦB/σ2 +∆−1)−1

 . (6)
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Efficient sampling of γ relies upon the Cholesky decomposition of
(
BTX̃T

ΦX̃ΦB/σ2 +∆−1
)

and solves triangular linear systems to draw a sample from (6). While numerically robust

for small to moderately large H, computing and storing the Cholesky factor of this ma-

trix involves O((HP̃ )3) and O((HP̃ )2) floating point operations, respectively (Golub and

Van Loan, 2012). This produces computational and memory bottlenecks for a large number

of basis functions, which is required to estimate the unknown functional coefficients with

sufficient local variation.

To achieve computational efficiency, we adapt a recent algorithm proposed in Bhat-

tacharya et al. (2016) (in the context of ordinary linear regression with uncompressed data

and small sample size) to our setting: (i) draw γ̃1 ∼ N(0,∆) and γ̃2 ∼ N(0, IM); (ii) set

γ̃3 = X̃ΦBγ̃1/σ + γ̃2; (iii) solve (X̃ΦB∆BTX̃T
Φ/σ

2 + IM)γ̃4 = ((yΦ −XΦβ) /σ − γ̃3);

and (iv) set γ̃5 = γ̃1 +∆BTX̃T
Φγ̃4/σ. The resulting γ̃5 is a draw from the full conditional

posterior distribution of γ. The computation is dominated by step (iii), which comprises

O(M3 +M2HP̃ ). Finally, note that when basis functions involve parameters, they are up-

dated using Metropolis-Hastings steps since no closed form full conditionals are generally

available for them.

Predictive inference on y(u0) will proceed from the posterior predictive distribution

E[p(y(u0) |yΦ,β,γ, σ2)] =

∫
p(y(u0) |yΦ,β,γ, σ2)p(β,γ, σ2 |yΦ,Φ)dβdγdσ2 , (7)

where E[·] is the expectation with respect to the posterior distribution in (4). This is

easily achieved by drawing y(u0)
(l) ∼ N(

∑P
p=1 xp(u0)β

(l)
p +

∑P̃
j=1 x̃j(u0)wj(u0)

(l), σ2(l)) for

each posterior sample {β(l),γ(l), σ2(l)} drawn from (4), where wj(u0)
(l) is obtained from

γ(l) using (2) and l = 1, 2, . . . , L indexes the L (post-convergence) posterior samples. The

next section offers theoretical results related to the large sample consistency of the posterior

distribution from the compressed varying coefficients model (4) and the posterior predictive
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distribution in (7) with respect to the probability law for the uncompressed oracle model

in (1).

3 Posterior contraction from data sketching

3.1 Definitions and Notations

This section proves the posterior contraction properties of varying coefficients under the

proposed framework. In what follows, we add a subscript N to the compressed response

vector yΦ,N , compressed predictor matrix X̃Φ,N , dimension of the compression matrix MN

and the number of basis functions HN to indicate that all of them increase with the sample

size N . Naturally, the dimension of the basis coefficient vector γ and the compression

matrix Φ are also functions of N , though we keep this dependence implicit. Since we do

not assume a functional variable selection framework, we keep P fixed throughout, and

not a function of N . We assume that u1, ...,uN follow i.i.d. distribution G on D with

G having a Lebesgue density g, which is bounded away from zero and infinity uniformly

over D. The true regression function is also given by (1), with the true varying coefficients

w∗
1(u), ..., w

∗
P̃
(u) belonging to the class of functions

Fξ(D) = {f : f ∈ L2(D) ∩ Cξ(D), EU [|f |] < ∞}, (8)

where L2(D) is the set of all square integrable functions on D, Cξ(D) is the class of at

least ξ-times continuously differentiable functions in D and EU denotes the expectation

under the density of g. The probability and expectation under the true data generating

model are denoted by P ∗ and E∗, respectively. For algebraic simplicity, we make a few

simplifying assumptions in the model. To be more specific, we assume that β = 0 and

σ2 = σ∗2 is known and fixed at 1. The first assumption is mild since P does not vary with
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N and we do not consider variable selection. The second assumption is also customary in

asymptotic studies (Vaart and Zanten, 2011). Furthermore, the theoretical results obtained

by assuming σ2 as a fixed value is equivalent to those obtained by assigning a prior with a

bounded support on σ2 (Van der Vaart et al., 2009).

For a vector v = (v1, ..., vN)
T, we let || · ||1, || · ||2 and || · ||∞ denote the L1, L2 and

L∞ norms, respectively, defined as ||v||2 = (
∑N

n=1 v
2
n)

1/2, ||v||1 =
∑N

n=1 |vn| and ||v||∞ =

maxn=1,..,N |vn|, respectively. The number of nonzero elements in a vector is given by || · ||0.

In the case of a square integrable function f(u) on D, we denote the integrated L2−norm of

f by ||f ||2 =
(∫

D f(u)2g(u)du
)1/2

and the sup-norm of f by ||f ||∞ = supu∈D |f(u)|. Thus

||·||∞ and ||·||2 are used both for vectors and functions, and they should be interpreted based

on the context. Finally, emin(A) and emax(A), respectively, represent the minimum and

maximum eigenvalues of the square matrixA. The Frobenius norm of the matrixA is given

by ||A||F =
√

tr(ATA). For two nonnegative sequences {aN} and {bN}, we write aN ≍ bN

to denote 0 < lim infN→∞ aN/bN ≤ lim supN→∞ aN/bN < ∞. If limN→∞ aN/bN = 0, we

write aN = o(bN) or aN ≺ bN . We use aN ≲ bN or aN = O(bN) to denote that for

sufficiently large N , there exists a constant C > 0 independent of N such that aN ≤ CbN .

3.2 Assumption, Framework and Main Results

For simplicity, we assume ∆ = I and that the random covariates xp(u), p = 1, ..., P follow

distributions which are independent of the distribution of the idiosyncratic error ϵ. We

now state the following assumptions on the basis functions, HN ,MN , covariates and the

sketching or compression matrix.

(A) For any w∗
j (u) ∈ Fξ(D), there exists γ∗

j such that

||w∗
j −BT

j γ
∗
j ||∞ = sup

u∈D
|w∗

j (u)−
HN∑
h=1

Bjh(u)γ
∗
jh| = O(H−ξ

N ),
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for j = 1, ..., P̃ , and ||γ∗||22 ≺ M
d/(d+2ξ)
N .

(B) N,MN , HN satisfy MN = o(N) and HN ≍ M
1/(2ξ+d)
N .

(C) ||ΦΦT − IMN
||F ≤ C ′

√
MN/N , for some constant C ′ > 0, for all large N .

(D) The random covariate xp(u) are uniformly bounded for all u ∈ D, and w.l.g., |xp(u)| ≤

1, for all p = 1, ..., P and for all u ∈ D.

(E) There exists a sequence κN such that ||X̃Φ,Nα||2 ≍ κN ||X̃Nα||2, such that 1 ≺ NκN ≺

MN for any vector α ∈ RNP̃ .

Assumption (A) holds for orthogonal Legendre polynomials, Fourier series, B-splines

and wavelets (Shen and Ghosal, 2015). Assumption (B) provides an upper bound on the

growth of MN and HN as a function of N . Assumption (C) is a mild assumption based on

the theory of random matrices and occurs with probability at least 1− e−C′′MN when Φ is

constructed using the Gaussian sketching for a constant C ′′ > 0 (see Lemma 5.36 and Re-

mark 5.40 of Vershynin (2010)). Assumption (D) is a technical condition customarily used

in functional regression analysis (Bai et al., 2019). Finally, Assumption (E) characterizes

the class of feasible compression matrices, roughly explaining how the linear structure of

the columns of the original predictor matrix is related to that of the compressed predictor

matrix. Such an assumption is reasonable for the set of random compression matrices for

a sequence κN depending on N , MN and P̃ (Ahfock et al., 2017).

Letw(u) = (w1(u), ..., wP̃ (u))
T andw∗(u) = (w∗

1(u), ..., w
∗
P̃
(u))T be the P̃ -dimensional

fitted and true varying coefficients. Let ∥w − w∗∥2 =
∑P̃

j=1 ∥wj − w∗
j∥2 denote the sum

of integrated L2 distances between the true and the fitted varying coefficients. Define the

set CN =
{
w : ||w −w∗||2 > C̃θN

}
, for some constant C̃ and some sequence θN → 0 and

MNθ
2
N → ∞. Further suppose πN(·) and ΠN(·) are the prior and posterior densities of
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w with N observations, respectively. From equation (2), the prior distribution on w is

governed by the prior distribution on γ, so that the posterior probability of CN can be

expressed as,

ΠN(CN |yΦ,N , X̃Φ,N) =

∫
CN

f(yΦ,N |X̃Φ,N ,γ)πN(γ)∫
f(yΦ,N |X̃Φ,N ,γ)πN(γ)

,

where f(yΦ,N |X̃Φ,N ,γ) is the joint density of yΦ,N under model (4). We begin with the

following important result from the random matrix theory.

Lemma 1. Consider the MN × N compression matrix Φ with each entry being drawn

independently from N(0, 1/N). Then, almost surely

(
√
N −

√
MN − o(

√
N))2/N ≤ emin(ΦΦT) ≤ emax(ΦΦT) ≤ (

√
N +

√
MN + o(

√
N))2/N,

(9)

when both MN , N → ∞.

Proof. This is a consequence of Theorem 5.31 and Corollary 5.35 of Vershynin (2010).

The inequalities in (9) is used to derive the following two results, which we present as

Lemma 2 and 3.

Lemma 2. Let P ∗ denote the true probability distribution of yN and f ∗(yΦ,N |γ∗) denotes

the density of yΦ,N (omitting explicit dependence on X̃Φ,N) under the true data generating

model. Define

AN =

{
y :

∫
{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)} πN(γ)dγ ≤ exp(−CMNθ

2
N)

}
. (10)

Then P ∗(AN) → 0 as MN , N → ∞ for any constant C > 0.

Proof. See Section S1 in the Supplement.
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Lemma 3. Let γ∗ be any fixed vector in the support of γ and let BN = {γ : ||γ − γ∗||2 ≤

C2wθNH
1/2
N } for some constant C2w > 0. Then there exists a sequence ζN of random

variables depending on {yΦ,N ,XΦ,N} and taking values in (0, 1) such that

E∗(ζN) ≲ exp(−MNθ
2
N) and sup

γ∈Bc
N

Eγ(1− ζN) ≲ exp(−MNθ
2
N), (11)

where Eγ and E∗ denote the expectations under the distributions f(· |γ) and f ∗(· |γ∗),

respectively.

Proof. See Section S2 in the Supplement.

We use the above results to establish the posterior contraction result for the proposed

model.

Theorem 1. Under Assumptions (A)-(E), our proposed model (4) satisfies

max
j=1,...,P̃

sup
w∗

j∈Fξ(D)

E∗ΠN(CN |yΦ,N , X̃Φ,N) → 0, as N,MN → ∞,

with the posterior contraction rate θN ≍ M
−ξ/(2ξ+d)
N .

Proof. See Section S3 in the Supplement.

Since θN → 0 as N → ∞, the model consistently estimates the true varying coefficients

under the integrated L2-norm. Further, data compression decreases the effective sample

size from N to MN , hence, the contraction rate θN obtained in Theorem 1 is optimal and

adaptive to the smoothness of the true varying coefficients. Our next theorem justifies the

two-stage prediction strategy described in Section 2.1.

Theorem 2. For any input u0 drawn randomly with the density g and corresponding predic-

tors x̃1(u0), . . . , x̃P̃ (u0), let fu be the predictive density p(y(u0) | x̃1(u0), . . . , x̃P̃ (u0), w(u0))

derived from (1) without data compression. Let f ∗ be the true data generating model (i.e.,
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(1) with w(u0) fixed at w∗(u0)). Given u0 and x̃1(u0), . . . , x̃P̃ (u0), define h(fu, f
∗) =∫

(
√
fu −

√
f ∗)2 as the Hellinger distance between the densities fu and f ∗. Then

E∗EEU [h(fu, f
∗) | X̃Φ,N ,yΦ,N ] → 0, as N,MN → ∞, (12)

where EU , E and E∗ stand for expectations with respect to the density g, the posterior

density ΠN(·|X̃Φ,N ,yΦ,N) and the true data generating distribution, respectively.

Proof. See Section S4 in the Supplement.

The theorem states that the predictive density of the VCM model in (1) is arbitrarily

close to the true predictive density even when we plug-in inference on parameters from (4).

4 Simulation Results

4.1 Inferential performance

We empirically validate our proposed approach using (4) for d = 2, i.e., for the spatially

varying coefficient models. The approach, henceforth abbreviated as geoS, is compared with

the uncompressed model (3) on some simulated data in terms of inferential performance

and computational efficiency. We simulate data by using a fixed set of spatial locations

u1, . . . ,uN that were drawn uniformly over the domain D = [0, 1]×[0, 1]. We set P̃ = P = 3

and assume β = 0, i.e., all predictors have purely space-varying coefficients. We set

x̃1(ui) = 1, for all i = 1, . . . , N , while the values of x̃j(u1), . . . , x̃j(uN) for j = 2, 3 were

set to independently values from N(0, 1). For each n = 1, . . . , N , the response y(un) is

drawn independently from N(w∗
1(un) + w∗

2(un)x̃2(un) + w∗
3(un)x̃3(un), σ

∗2) following (3),

where σ∗2 is set to be 0.1. The true space-varying coefficients (w∗
j (u)s) are simulated from

a Gaussian process with mean 0 and covariance kernel C(·, ·; θj), i.e., (w∗
j (u1), ..., w

∗
j (uN))

T
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is drawn from N(0, C∗(θj)), for each j = 1, . . . , P̃ , where C∗(θj) is an N × N matrix

with the (n, n′)th element C(un,un′ ; θj). We set the covariance kernel C(·, ·; θj) to be the

exponential covariance function given by

C(u,u′; θj) = δ2j exp

{
−1

2

(
||u− u′||

ϕj

)}
, j = 1, 2, 3, (13)

with the true values of δ21, δ
2
2, δ

2
3 set to 1, 0.8, 1.1, respectively. We fix the true values of

ϕ1, ϕ2, ϕ3 at 1, 1.25, 2, respectively.

While fitting geoS and its uncompressed analogue (3), the varying coefficients are mod-

eled through the linear combination of H basis functions as in (2), where these basis func-

tions are chosen as the tensor-product of B-spline bases of order q = 4 (Shen and Ghosal,

2015). More specifically, for u = (u(1), u(2)), the j-th varying coefficient is modeled as

wj(u) =

H1∑
h1=1

H2∑
h2=1

B
(1)
jh1

(u(1))B
(2)
jh2

(u(2))γjh1h2 , (14)

where the marginal B-splines B
(1)
jh1

, B
(2)
jh2

are defined on sets of H1 and H2 knots, respec-

tively. The knots are chosen to be equally-spaced so the entire set of H = H1H2 knots is

uniformly spaced over the domain D. We complete the hierarchical specification by assign-

ing independent IG(2, 0.1) priors (mean 0.1 with infinite variance) for σ2 and τ 2j for each

j = 1, . . . , P .

We implemented our models in the R statistical computing environment on a Dell XPS

13 PC with Intel Core i7-8550U CPU @ 4.00GHz processors at 16 GB of RAM. For each

of our simulation data sets we ran a single-threaded MCMC chain for 5000 iterations.

Posterior inference was based upon 2000 samples retained after adequate convergence was

diagnosed using Monte Carlo standard errors and effective sample sizes (ESS) using the

mcmcse package in R. Source codes for these experiments are available from Redacted in

blinded version.
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Table 1: Results for simulation cases 1 & 2 for the compressed geoS and uncompressed

models. Mean Squared Error (MSE), length and coverage of 95% CI for the spatially

varying coefficients. We also present mean squared prediction error (MSPE), coverage and

length of 95% predictive intervals for the competing models. Computational efficiency for

the geoS with the uncompressed data model is also recorded.

N = 5000, H = 225 N = 10000, H = 256

(geoS) M = 700 Uncompressed (geoS)

M = 1000

Uncompressed

MSE (SVC) 0.0474 0.0168 0.0429 0.0178

95% CI length 0.8368 0.6182 0.7222 0.5531

95% CI Coverage 0.9448 0.9322 0.9153 0.9026

MSPE 0.2574 0.1833 0.2283 0.1605

95% PI length 1.9717 1.5168 1.8613 1.5148

95% PI coverage 0.936 0.925 0.954 0.930

Computation effi-

ciency

2.2050 0.8079 0.9755 0.4356

Table 1 summarizes the estimates of varying coefficients and the predictive performance

for geoS in comparison to the uncompressed model. We applied these models to data gen-

erated with N = 5000 (case 1) and N = 10000 (case 2). For both cases the compressed

dimension is taken to be M ≈ 10
√
N which seems to be effective from empirical consid-

erations in our simulations. We provide further empirical justification for this choice in

Section 4.2. Our geoS approach compresses the sample sizes to M = 700 and M = 1000

in cases 1 and 2, respectively. The number of fitted basis functions in cases 1 & 2 are

H = 225, 256, respectively.
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Figure 1: Simulation case 1: (N,H) = (5000, 225). Two-dimensional true and predicted

surfaces over the unit square D = [0, 1] × [0, 1]. First row corresponds to the surfaces of

true space-varying coefficients β∗
p(u), p = 1, 2, 3. Rows 2 and 3 correspond to the predicted

50% quantile surfaces for the uncompressed and compressed geoS models respectively.

Figures 1 and 2 present the estimated varying coefficients by geoS and the uncompressed

data model for cases 1 and 2, respectively. These figures reveal point estimates that are

substantively similar to those from geoS and the uncompressed model. The mean squared

error of estimating varying coefficients, defined as
∑3

j=1

∑N
n=1(ŵj(un) − w∗

j (un))
2/(3N)

(where ŵj(un) is the posterior median of wj(un)), also confirms very similar point estimates

offered by the compressed and uncompressed models (see Table 1). Further, geoS offers

close to nominal coverage for 95% credible intervals for varying coefficients, with little

wider credible intervals compared to uncompressed data model. This can be explained

by the smaller sample size for the geoS model, though the difference turns out to be

minimal. We also carry out predictive inference using geoS (Section 2.1). Table 1 presents
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Figure 2: Simulation case 2: (N,H) = (10000, 256). Two-dimensional true and predicted

surfaces over the unit square D = [0, 1] × [0, 1]. First row corresponds to the surfaces of

true space-varying coefficients β∗
p(u), p = 1, 2, 3. Rows 2 and 3 correspond to the predicted

50% quantile surfaces for the uncompressed and compressed geoS models respectively.

mean squared predictive error (MSPE), average length and coverage for the 95% predictive

intervals, based onN∗ = 500 out of the sample observations. We find geoS delivers posterior

predictive estimates and predictive coverage that are very consistent with the uncompressed

model, perhaps with marginally wider predictive intervals than those without compression.

Finally, the computational efficiency of both models are computed based on the metric

log2(ESS/Computation Time), where ESS denotes the effective sample size averaged over

the MCMC samples of all parameters. We find geoS is almost 270% and 223% more

efficient than the uncompressed model for N = 5, 000 and N = 10, 000, respectively, while

delivering substantively consistent inference on the spatial effects.
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(a) (b)

Figure 3: (a) MSPE, (b) 95% predictive interval coverage and length for different choices

of M

4.2 Choice of the dimension of the compression matrix M

We present investigations into the choice of the appropriate compression matrix size M .

For simulated data with sample size N = 10000, we ran our model for different values of

M = k
√
N , k = 1, . . . , 20. Figure 3 shows the variations in point-wise and interval predic-

tion reflected in the MSPE and 95% predicted interval coverage and length, respectively.

Unsurprisingly, as M increases the MSPE drops with a diminished rate of decline until

the k ∼ 10. In terms of interval prediction, predictive coverage seems to oscillate within

the narrow interval (0.9, 0.97) for all values of M , but the length of the predictive interval

improves as M increases and starts to stabilize at around k ∼ 10. We observe that the

choice of M ∼ 10
√
N leads to good performance across various simulations and real data

analysis.
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5 Vegetation Data Analysis

We implement geoS to analyze vegetation data gathered through the Moderate Resolution

Imaging Spectroradiometer (MODIS), which resides aboard the Terra and Aqua platforms

on NASA spacecrafts. MODIS vegetation indices, produced on 16-day intervals and at

multiple spatial resolutions, provide consistent information on the spatial distribution of

vegetation canopy greenness, a composite property of leaf area, chlorophyll and canopy

structure. The variable of interest will be the Normalized Difference Vegetation Index

(NDVI), which quantifies the relative vegetation density for each pixel in a satellite image,

by measuring the difference between the reflection in the near-infrared spectrum (NIR) and

the red light reflection (RED): NDV I = NIR−RED
NIR+RED

. High NDVI values, ranging between

0.6 and 0.9 indicate high density of green leaves and healthy vegetation, whereas low

values, 0.1 or below, correspond to low or absence of vegetation as in the case of urbanized

areas. When analyzed over different locations, NDVI can reveal changes in vegetation due

to human activities such as deforestation and natural phenomena such as wild fires and

floods.

Our analysis will be focused on geographical data that was mapped on a sinusoidal

(SIN) projected grid, located on the western coast of the United States, more precisely

zone h08v05, between 30◦N to 40◦N latitude and 104◦W to 130◦W longitude (see Fig-

ure 4(a)). The data set, which was downloaded using the R package MODIS, comprises

133, 000 observed locations where the response was measured through the MODIS tool

over a 16-day period in April, 2016. We retained N = 113, 000 observations (randomly

chosen) for model fitting and held out the rest for prediction. In order to fit (1), we set

y(sn) to be the transformed NDVI (log(NDV I) + 1), P = P̃ = 2 and consider the P × 1

vector of predictors that includes an intercept and a binary index of urban area, both with
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Table 2: Median and 95% credible interval of β1, β2 for geoS and its uncompressed analogue

are presented for the Vegetation data analysis. We also present MSPE, coverage and length

of 95% predictive intervals for the competing models. Computational efficiency for the two

competing models are also provided.

(geoS) M = 2300 Uncompressed

β1 0.222 (0.212, 0.230) 0.229 (0.219, 0.237)

β2 -0.060 (-0.074, -0.047) -0.071 (-0.082, -0.059)

MSPE 0.00327 0.00276

95% PI length 0.23445 0.22136

95% PI coverage 0.95250 0.95411

Computation efficiency 3.5424 0.46901

fixed effects and spatially varying coefficients, i.e., x(un) = x̃(un) = (1, x2(un))
T, with

x2(un) = 1U(un), where U denotes an urban area.

As in Section 4, we fit geoS with M ∼ 10
√
N = 2300 and its uncompressed counterpart

(3), by modeling the varying coefficients through a linear combination of basis functions

constructed using the tensor-product of B-splines of order q = 4 as in (14). We set H =

H1H2 = 392 = 1521 uniformly distributed knots over the domain D, which results in

HP = 3042 basis coefficients γjh that are estimated. Specification of priors are identical to

the simulation studies for σ2, and τ 2j , while βj is assigned a flat prior for j = 1, . . . , P .

We ran an MCMC chain for 5000 iterations and retained 2000 samples for posterior

inference after adequate convergence was diagnosed. The posterior mean of β1 and β2, along

with their estimated 95% credible intervals corresponding to geoS and the uncompressed

model are presented in Table 2. Additionally, Table 2 offers predictive inference from both
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competitors based on N∗ = 20, 000 test observations. According to both models there is a

global pattern of relatively low vegetation density for areas with positive urban index as the

estimated slope coefficient β2 is negative in the compressed geoS and in the uncompressed

models. In terms of point prediction and quantification of predictive uncertainty, the two

competitors offer practically indistinguishable results, as revealed by Table 2.

Further, Figure 4 shows that the 2.5%, 50% and 97.5% quantiles for the posterior pre-

dictive distribution are almost identical for the two competitors across the spatial domain,

with the exception of neighborhoods around locations having lower NDVI values. Notably,

geoS offers nominal coverage for 95% prediction intervals, even with a significant reduction

in the sample size from N = 113, 000 to M = 2300. Data sketching to such a scale consid-

erably reduces the computation time, leading to a much higher computation efficiency of

geoS in comparison with its uncompressed analogue.

6 Summary

We have developed Bayesian sketching for functional response and predictor variables using

varying coefficient regression models. The method achieves dimension reduction by com-

pressing the data using a random linear transformation. The approach is different from

the prevalent methods for large functional data in that no new models or algorithms need

to be developed since those available for existing varying coefficient regression models can

be directly applied to the compressed data. We establish attractive concentration proper-

ties of the posterior and posterior predictive distributions and empirically demonstrate the

effectiveness of this method for analyzing large functional data sets. Access to the values

of the response and predictors in the full data are not required at stage of inference, which

preserves data confidentiality should that be of concern in the application.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4: Colored NDVI images of western United States (zone h08v05). (a) Satellite

image: MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid - 2016.04.06

to 2016.04.21; (b) True NDVI surface (raw data). Figures (c), (d) & (e) present NVDI

predicted 50%, 2.5% and 97.5% quantiles for the geoS model. Figures (f), (g) & (h)

present NVDI Predicted 50%, 2.5% and 97.5% quantiles for the uncompressed model.
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