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ABSTRACT

An oblique, Cartesian, coordinate system arises from the geometry affiliated with a Gram-
Schmidt (QR) factorization of the deformation gradient F, wherein Q is a proper orthogonal
matrix and R is an upper-triangular matrix.

First, a cube deforms into a parallelepiped whose edges are oblique and serve as the base
vectors for a convected coordinate system. Components for the metric tensor, its dual, and
their rates, evaluated in this convected coordinate system, are established for any state of
deformation. Strains and strain rates are defined and quantified in terms of these metrics
and their rates. Quotient laws and their affiliated Jacobians are constructed that govern how
vector and tensor fields transform between this oblique coordinate system, where constitu-
tive equations are ideally cast, and the reference, rectangular, Cartesian, coordinate system
described in terms of Lagrangian variables, where boundary value problems are solved.

Then, we derived two sets of thermodynamically admissible stress-strain pairs. They are
quantified in terms of physical components extracted from a convected stress and a convected
velocity gradient, with elastic models being presented for both sets. The first model supports
two modes of deformation: elongation and shear. The second model supports three modes
of deformation: dilatation, squeeze and shear. These models are distinguished by their pure-
and simple-shear responses. They contain the coupling effects of Lord Kelvin [1], Poisson [2]
and Poynting [3].

The Eulerian formulation, consists of a lower-triangular stretch postmultiplied by a differ-
ent rotation tensor is studied. The corresponding stretch tensors is denoted as the Eulerian
Laplace stretches. Kinematics (with physical interpretations) and work conjugate stress
measures are analyzed. The Eulerian formulation, which may be advantageous for modeling
isotropic solids and fluids with no physically identifiable reference configuration, does not
seem to have been used elsewhere in a continuum mechanical setting.

As the application of our work, we introduced a dodecahedron to model an alveolus. Its
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geometric properties are derived in detail with regard to its three geometric features: 1D
septal chords, 2D septal membranes, and the 3D alveolar sac. The kinematics are derived
for us to model a deforming dodecahedron, including the shape functions needed for inter-
polating each geometry. Constitutive models are derived that are suitable for describing the
thermomechanical response for the structural constituents of an alveolus: its septal chords,
its permeable membranes, and its volume. Numerical methods are advanced for solving
first- and second-order ordinary differential equations (ODEs) and spatial integrations along
a bar, across a pentagon, and throughout a tetrahedron using Gaussian quadrature schemes
designed for each geometry. A variational formulation is used to create our structural model-
ing of an alveolus. Constitutive equations suitable for modeling biological tissues are derived

from thermodynamics using the theory of implicit elasticity, presented in an appendix.
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1. INTRODUCTION

1.1 Background

It was in his 1951 paper entitled “On the use of convected coordinate systems in the
mechanics of continuous media” published in the Proceedings of the Cambridge Philosophical
Society where ARTHUR LODGE introduced body fields—a formalism he made precise in his
1974 book on Body Tensor Fields in Continuum Mechanics [10]. LODGE showed that a
connection exists between convected space-tensor fields and body-tensor fields, viz., their
components are equivalent at that instant when their coordinate axes become coincident
[11].

A common conjecture betwixt BRILLOUIN [12], HENCKY [13], OLDROYD [14], LODGE
[11], GREEN & ZERNA [15] and others is: It is within a convected coordinate system where
an application of the calculus will be independent of spatial considerations, and therefore, it
is there where constitutive equations will take on their simplest representation. LAME [16]

was the first to use curvilinear coordinate systems in his analysis of shells.
1.2 Introduction

We construct our analysis using convected space-coordinate systems derived from the
geometry of a parallelepiped generated out of a GRAM decomposition of the deformation
gradient that, itself, is generated from the motion of a body traveling through space.

Our analysis is based upon the hypothesis: Deformation is homogeneous at a particle in
a continuum.

The partially embedded coordinate system arrived at in our analysis is oblique Carte-
sian. It convects with the motion, but only within a neighborhood surrounding a particle.
The coordinate axes defining this system are comprised of tangents to an embedded curvi-
linear triad whose origin is located at the particle P whereat deformation gradient F(P) is

evaluated, see Fig. 2.1.



A convected metric with local reach is derived in this study that describes a homo-
geneous state of deformation in terms of an oblique, Cartesian, coordinate system, provided
one knows components of the deformation gradient.

We also use the two Jacobians arising from our convected kinematic analysis to arrive
at two sets of thermodynamic conjugate pairs. Each pair is comprised of two fields: a stress
and a strain, both measures being scalar fields. From these thermodynamic co-ordinates,
constitutive equations can be derived. One set of conjugate pairs associates with two distinct
modes of deformation: elongation and shear. The second set associates with three distinct
modes of deformation: dilatation, squeeze and shear. Elastic models that describe Kelvin,
Poisson and Poynting coupling effects are put forward for both sets of conjugate pairs. These
models are not restricted to infinitesimal strains and/or rotations. The Lodge-Meissner [17]
relation from rheology and the Poynting [3] effect from solid mechanics are shown to describe
the same physics.

We studied a different triangular decomposition of deformation gradient that splits the de-
formation gradient tensor into a rotation tensor followed (premultiplied) by a lower-triangular
stretch tensor. This construction is referred to as the Eulerian formulation of the triangular
decomposition of deformation.

In general, Lagrangian formulations, that is studied in chapter 2 and 3 (e.g., constitutive
models based on Lagrangian measures of strain) are preferred for modeling anisotropic solids,
as-well-as certain isotropic solids, that have a clearly defined initial, stress-free, or ‘reference’
state. This is readily apparent for single crystals, for example, whereby a reference state
is identified with the regular lattice geometry occupied by atoms in their minimum energy
(ground) state. Hyperelasticity is usually invoked in this context [18, 19], whereby an energy
potential depending on a Lagrangian stretch tensor is prescribed. Eulerian formulations, in
contrast, are often preferred for modeling isotropic solids (and fluids) that have no obvious
initial or reference state. For example, many biological tissues, in vivo, are perpetually under

tension, and a stress-free reference state is never physically realized. Eulerian forms are also



used for hypoelastic constitutive modeling that is often more popular than hyperelasticity
for solving initial-boundary value problems numerically.

These models and metrics whose parameters are physical and unique, and whose numeric
implementation will be efficient and stable are used for modeling large deformations and
stress wave mechanics in soft biological tissue. Injuries that occur after a blast wave impacts a
person wearing personal protective equipment (PPE) or a non-penetrating ballistic projectile
impacts a person wearing PPE are referred to as behind armor blunt trauma (BABT). The
kinetic energy from such an impact is absorbed by the PPE, and the bony and soft tissues.
Verification is through experiments where, typically, a suit of body armor is placed over a
"body" subjected to a ballistic impact from a projectile fired by a weapon, all in accordance
with a standard. Current practice is to use clay (usually Roma Plastilina No. 1 clay) as a
surrogate for the human body in these tests.

BABT occurs at the microscopic level of alveoli, which make up the parenchyma, i.e.,
the spongy tissue of lung that comprises around 90% of lung by volume, cf. Fig. 1.1, there
being some 500 million alveoli in a typical human lung. We develop a mechanistic multi-scale
model that is capable of describing the deformation and damage that occur at an alveolar
level, caused by a shock wave traveling through the parenchyma, induced through either a
blast or a ballistic impact to PPE.

Performing experiments for the purpose of model characterization is extremely difficult
when it comes to modeling lung. Lung is a structure; parenchyma is a material. Therefore,
one would normally choose to test the parenchyma, and from these data extract one’s model
parameters but, because of its spongy nature, we are challenged to do so in a physically
meaningful way. Consequently, one typically tests whole lungs, or lobes thereof, and from
these structural experiments we are tasked to extract material parameters through an inverse
analysis. An alternative approach whereby one could, in principle, acquire parameters for the
continuum models would be to homogenize a microscopic structural response for the alveoli

of the parenchyma. The work presented here addresses this approach in our modeling of
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Figure 1.1: A medical drawing of the respiratory system [8].

deformation, damage, and injury in alveolar structures.

The primary purpose of this work is to provide a microscopic model for lung tissue that
can be used as an aid in the parameterization of a macroscopic model for lung that will be
reasonably accurate yet efficient to run in full torso finite element analyses to study BABT
for the purpose of improving PPE.

Figure 1.2 shows micrographs from a rat lung taken at different magnifications. In
the lower-resolution image, one sees numerous alveoli that became exposed because of the
sectioning process. Also present are several alveolar ducts that connect individual alveoli to
a bronchial tree. In the higher-resolution image we observe the faceted structure of these
alveoli, wherein one can see the septal chords and membranes, the latter being traversed by
capillaries through which gas exchange occurs. Gas exchange is not modeled here.

Alveolar geometry is modeled here as a dodecahedron, i.e., a soccer-ball like structure
comprising 12 pentagonal facets bordered by 30 septal cords that are connected at 20 ver-

tices. Each vertex links three neighboring cords of the alveolus with a fourth chord from a



(a) Magnification at 100X. This is Fig. 5 in Freed (b) Magnification at 750X. This is Fig. 7 in Freed
et al. [20]. et al. [20].

Figure 1.2: SEM photographs from a sectioned rat lung. The alveolar diameter in rat lung
is about one quarter the alveolar diameter in human lung.

neighboring alveolus.

This hypothesis was tested and confirmed in an experimental study done by Butler et al.
[21] where they used light scattering to study changes in geometry of the septal planes in
alveoli, from which they concluded: “the microscopic strain field does not differ significantly
from the macroscopic field.” We employ this hypothesis by taking the deformation gradient
from, say, a Gauss point in a finite element model of lung, and imposing it as a far-field defor-
mation onto our dodecahedral model of an alveolus. From this kinematic input we arrive at
an upper bound on the macroscopic stress/stiffness response, akin to a Voigt approximation,
through a homogenization of the microscopic forces created within our structural model for
an alveolus.

In this research we set out to develop a constitutive framework for alveolar mechanics,
fully cognizant of the aforementioned challenges. Our objectives are different from those of
prior studies in alveolar mechanics in that we seek to describe the response/injury of a human
lung that has been subjected to a stress wave propagating across the thorax region caused
by an impact from either a blunt object or a blast wave. Consequently, some important

aspects in the modeling of a breathing lung are thought to be less impactful here, e.g., the



effect of surfactant in keeping alveoli from collapsing at the end of expiration.
1.3 Motivation and Scope of the Study

The contribution of the proposed study is novel and significant in the following respects:

1. A long-standing challenge is resolved to quantify the relevant, convected, tensor fields

for any arbitrary state of deformation as they would arise in a finite element analysis.

2. A general kinematic description for a deformable body in terms of a locally, convected,

coordinate system as a platform is provided.

3. The covariant and contravariant base-vectors, metrics, strains, and their differential
rates in the convected coordinate system, in the sense of LODGE [11, 22, 23, 24] are

derived that describe the geometry of Laplace stretch.

4. Stresses are quantified and constitutive equations are constructed in this convected

coordinate system that is oblique Cartesian.

5. An Eulerian lower-triangular decomposition in the context of continuum mechanics for
modeling isotropic solids (and fluids) that have no obvious initial or reference state has

been derived.

6. An accurate material models for the human body that are also efficient in the finite
element implementation is developed, which facilitate the study Behind Armor Blunt

Trauma (BABT) in an effort to improve the designs of Personal Protective Equipment

(PPE).



2. ON THE USE OF CONVECTED COORDINATE SYSTEMS IN THE MECHANICS
OF CONTINUOUS MEDIA FROM LAGRANGIAN LAPLACE STRETCH [4]

A body B is an open set in a topological space with a non-negative Borel measure
introduced to describe mass [25]. Elements {P} of set B are called particles. Supplied with a
rigid frame of reference, any motion x of body B can be described as x = x (P, t) at particle
P € B at time t. At each instant ¢, a motion x(-,t) is the placement of particle P into body
B.

2.1 Base Vector

In this chapter we utilize four coordinates systems that associate with four sets of base
vectors. Three coordinate systems are rectangular Cartesian with orthonormal base vec-
tors. The fourth coordinate system is oblique Cartesian with base vectors that are neither
orthogonal nor of unit length.

A rectangular Cartesian triad with base vectors (€}, €2, €3), denoted as {€;}, establishes
the first coordinate system considered. It describes an Eulerian frame of reference § that
spans Euclidean point space £. A different, rectangular, Cartesian triad of base vectors
(El, E,, Eg), denoted as {E'Z}, establishes the second coordinate system considered. These
are the Lagrangian base vectors. Base vectors {EZ} rotate from the Eulerian base vectors
{€;} according to an orthogonal tensor R that arises from a polar decomposition of the
deformation gradient, viz., F = RU where U is the symmetric Stretch tensor. Another
rectangular Cartesian triad of base vectors {€;, €,, €3}, denoted as {€;}, establishes the third
coordinate system considered, see Fig. 2.1.

The left-hand graphic is of a unit cube representing a material element oriented with
respect to a set of orthonormal base vectors {€;, €, €3} originating from some particle P. This
spatial triad coincides with a set of material lines {El, 52, 53} that become material curves

in the deformed state, the right-hand graphic. Tangents to these material curves {g, g, g3}



Undeformed Cube Deformed Parallelepiped

Figure 2.1: Deformation of a cube to a parallelepiped

describe the edges of a parallelepiped. As volume of the parallelepiped approaches zero,
i.e., the volume of particle P, differences between the material curves {51,52,§3} and the
oblique, Cartesian, tangent vectors {gi, 8, &3} become negligible. The oblique, Cartesian,
coordinate system becomes coincident with the embedded, curvilinear, coordinate system
within a neighborhood surrounding P. Deformation becomes homogeneous as the volume
of a material element shrinks to a particle, and the convected coordinate system becomes

oblique Cartesian.
2.2 Lagrangian Laplace Stretch

To describe kinematics of a planar membrane, an upper-triangular Gram—Schmidt decom-
position of the deformation gradient F is used in lieu of the symmetric polar decomposition
that is commonly adopted [26, 27, 28, 5, 29]. McLellan [30, 18] was the first to propose a
triangular decomposition of F, to prove its uniqueness and existence, and to establish many
of its physical properties. This idea has been rediscovered several times since then.

A Lagrangian Gram—Schmidt factorization of the deformation gradient F is written here
as F = RU, where the rotation R is orthogonal, and where the Lagrangian Laplace Stretch

U is upper-triangular [29]." This triangular measure of stretch possesses an inherent property

!'The QR rotation R and Lagrangian Stretch U tensors are distinct from those that arise from a polar
decomposition of a deformation gradient, typically denoted as R and U, as found in any, modern, continuum
mechanics text. McLellan [30, 18] introduced the Lagrangian Laplace Stretch in 1976, which he denoted as
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Figure 2.2: Physical attributes of a planar deformation

in two space: the direction aligned with the rotated 1-axis, denoted as g, remains invariant
under transformation U [18], i.e., it is a material vector in a neighborhood surrounding that

particle whereat F is evaluated [4].
2.2.1 2D Factorization of Deformation Gradient

The 2 x 2 deformation gradient associated with a planar membrane has a Gram—Schmidt
decomposition expressed in terms of four physical attributes. Three of these attributes

describe deformation. They are defined as [28]

. m, b Fi1Foy — FioFy g— Il + Foby (2.1)

V3 + FA ’ Fj + Fj

thereby populating Lagrangian Laplace Stretch U and its inverse U ~! with components

a a 1/a —q/b
U= g and U '= jo ~4/ (2.2)

0 b 0 1/b

where a and b are the principal elongations (ratios of current lengths to reference lengths)
and g is the extent of in-plane shear, as measured in a co-ordinate frame (g, 8) illustrated
in Fig. 2.2.

Orthogonal tensor R = [gl ‘ gg] = 0;;8, ® € = R;; € ®Q € rotates the reference co-

ordinate axes (€;, &) into a physical co-ordinate system (g, g) through an angle 6, which

H, while Srinivasa [26] denoted it as F in his 2012 paper.



is the fourth physical attribute arising from a QR factorization of F. This angle of rotation

describes a proper orthogonal matrix, specifically

cos —sinf

= (2.3)
sinf cosf
with
. Fy Fiy . 1 (F21)
sinfl = ————, costl = ——— .. # =tan —— 2.4
F2+ F2 R+ FR i (24)

where a positive angle # corresponds with a counterclockwise rotation of physical axes (g, g5)

about reference axes (€, €).
2.2.1.1 Dilemma

Until recently, [31] there has been a tacit assumption in prior applications of Gram-—
Schmidt factorizations of F: Specifically, the physical base vectors (g1, 82) satisfy a geometric
condition whereby the physical 1-direction g; rotates out of the reference 1-direction €;, but
this need not always be the case. Physical vector g; could equally likely rotate out of the
2-direction &, of the reference frame. At issue is not: How the physical base vectors orient
in space? That is managed by Gram’s procedure. Rather, at issue is: How do the physical
base vectors index with respect to the reference base vectors? This topic is addressed in
Appendix C for the 3D case; below, we address this topic for the 2D case.

To illustrate the concern, consider two deformation histories, as drawn in Fig. 2.3, each
of which describes a simple shear taking place in the plane of a membrane. In one case shear
occurs in the 1-direction, while in the other case shear occurs in the 2-direction. The left
graphic designates a reference configuration while the right two graphics designate deformed
configurations, both in basis (g, g»). There are no elongations. These motions lead to

different Gram—Schmidt factorizations of the deformation gradient. When following the

10
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Figure 2.3: Reference and deformed configuration associated with Eqns. (2.5a) and (2.5b).

protocol of Eqns. (2.1-2.4), these factorizations are found to be
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and

1 L =y
- —
10 VETT Ly
F = = A (2.5b)

v 1 o |V 2}
0 1/ V1472

respectively, where we see that shear ;> has the same physical interpretation in both cases,
viz., 7y, but elongations U;; and Usy do not, viz., Uy = 1 and Usy = 1 in Eqn. (2.5a), whereas
Uy = /1T + 2 and Uy, = 1/4/1 + 72 for the motion described in Eqn. (2.5b). Consequently,
two geometric interpretations are produced for just one physical mode of deformation. This
cannot be!

The only difference between the motions that lead to the two deformation gradients

presented in Eqn. (2.5) is one’s choice for labeling the co-ordinate directions. Matrix oper-

11



ations of row and column pivoting, taken from linear algebra, allow one to transform the
lower-triangular form of Eqn. (2.5b) into an upper-triangular form like Eqn. (2.5a); hence,
producing an unified physical interpretation for both shearing motions, and thereby provid-

ing a means for establishing a remedy to this dilemma.
2.2.1.2 Remedy

For 2D membranes, there are only two co-ordinate re-indexings that are possible (for 3D

solids there are six, Appendix C ). The default is no re-indexing at all, in which case

10 Fii Fiz Fii Fig
[P] = [Po] := = = (2.6a)
0 1 For Foo Fy Fy

while in the second case there is a re-indexing specified by

Pl=[Pl=| — R PR R (2.6b)
10 For Foa Fip
where components F;; = Py FiePy; are the components to be used in the Gram-Schmidt
factorization, and where P € {Py, Py} is orthogonal, i.e., PPT = PTP = | with det P = +1;
specifically, det Py = +1 while det P; = —1.
The challenge in implementing such a strategy is to determine when to switch from Py

(case 1) to Py (case 2), or back again, viz., from P; to Py. To this end, it is useful to

represent the components of a planar deformation gradient as

Fii Fig r By
case 1 : =
Fii Fie For Fo ar Yy
= < — — — = (2.7)
Foar Faz Fyy Fyy Yy ax
case 2 : =
Fiy Fiy fy @

12



Figure 2.4: A general description for homogeneous planar deformation

The physical attributes for Lagrangian Laplace Stretch, as they pertain to the two cases
in Eqn. (2.6), written in terms of components F;; from F = F}; ,Q€; as defined in Eqn. (2.7),

are respectively given by

a=aV1+a? a=y\/1+ 32 (2.8a)
b=y(l—ap) /Vi+a? b=x(1—af) //1+5 (2.8b)
g=yla+p) /x(l+a?) g=a(a+p) [yl +5?) (2.8¢)
f = tan™(—a) f = tan~'(—p) (2.8d)

where attributes in the left column apply to case 1 (i.e., Eqn. 2.6a) while those in the right
column apply to case 2 (viz., Eqn. 2.6b). The actual set of physical attributes {a,b,g, 6}
that are to be used when quantifying Lagrangian Laplace Stretch and its inverse, according

to Eqn. (2.2), are then selected via the strategy

if [g| = |g] : {@,b,5,0} — {a,b,g,0} (2.9a)

}
else |g] < || : {a,b,§,0} — {a,b, 9,0} (2.9b)

13



2.2.1.3 Thermodynamic Strains and Strain Rates

In terms of the above physical attributes for Lagrangian Stretch, i.e., a, b and ¢, and
their reference values, viz., ag, by and gg, one can define a set of strain attributes derived

from thermodynamics, specifically [32]

a b 1 (da db

a by 1 /da db
=In [ 4] =2 S e 2.1
5 n( aob) de Z(a b) (2.10Db)

v i=9—Go dy =dg (2.10c)

whose rates are exact differentials, i.e., they are independent of path—a tacit requirement
from thermodynamics [33]. Here £ denotes dilation (uniform areal stretch), € denotes squeeze

(pure shear), and v denotes (simple) shear.
2.2.1.4 Stretch Rates

The following approximations for stretch rates were derived by Freed & Zamani [4]. From
these, the various strain rates listed in Eqn. (2.10) can be established.

A forward difference formula is used to approximate rates in the reference configuration
for the various stretch attributes, as obtained from dU, = (U; — Uy)/dt + O(dt) that,

neglecting higher-order terms, produces

(2.11)

dag = 290 b1 — bo a (91_90>
ag = —

dby = day =
a0 T T T, U

where dt = t; — tg is the applied time step. A backward difference formula dU; = (U; —
Uy)/dt + O(dt) is used to estimate rates for the various stretch attributes at the end of its

first integration step that, neglecting higher-order terms, give

a; — ap b1 — by ag
da; = db; = dgy = —
M T T Ty (

g1 — go)

= (2.12)
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Equations (2.11 & 2.12) are first-order approximations for these derivatives. Second-order
approximations can be established whenever i > 0 provided the stepsize for step [i,i + 1]
equals the stepsize for step [i — 1,1], where state i = 0 associates with an initial condition.

The backward difference formula dU;,; = (3U; 1 —4U;+U;_1)/2dt+O ((dt)z) then produces

rates for the stretch attributes of

3a;+1 —4a; + a;

daj1 =

2dt
3b; 1 —4b; + b;_
dbyyq = oAl 0 (2.13)
doss — 2a; (9¢+1 —gz‘) Qi1 (gi-i-l _gi—l)
Jixd Ait1 dt Ajt1 2dt

which require stretch attributes a;_1, b;_1 and g;_; to be stored in a finite element setting.
2.2.2 3D Factorization of Deformation Gradient

Taking the approach of Srinivasa [26] in 3 dimensional problem and melding it with the
co-ordinate selection methodology of Freed & Rajagopal [34], the components for Lagrangian
Laplace Stretch U;; are readily gotten through a Cholesky factorization of the right Cauchy-
Green deformation tensor C = C;; Ez ® Ej with tensor components C;; = Fj; Fi; that relate

to their physical attributes via [32]

a ay af l/a —y/b —(B—a)/c
U=1]0 b ba with inverse U™ = | ¢ 1/b —a/c (2.14)
0 0 ¢ 0 0 1/c

with tensor components U;; being evaluated according to formulee [26]

C C
ull =V Cll Z/{12 = ﬁ Z/{13 = ﬁ
ull ull
. _ D) . 023 - Z/{IQ ul3 2 15
Z/{Ql - 0 Z/{22 -V 022 - ulQ Z/{23 - u— ( . )
22
Uz =0 Uz =0 Uss = /Caz — U — U,
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Figure 2.5: Geometric interpretation of Lagrangian Laplace Stretch in a 3D solid

whose elements have physical interpretation, see Fig. 2.5, when defined as

_ Uss gim Uz . Ui

a:=Up, b:=Uyp, ci=Us3, o:i=-—, = = —=
11 22 33 Uy U, v Ut

(2.16)

where a, b, ¢ are three, positive, elongation ratios, and where «, 3,y are three shear magni-
tudes, cf. Fig. 2.5, with U = U;;&; @ E; and U™" = U;'E; ® &;.
One can deconstruct the Lagrangian Laplace Stretch U into a product between an ex-

tensional stretch A and a shear deformation I' as [26]

a 0 0|1 ~ B a ay af

U=AT =10 b 0[|0 1 af= 0 b ba (2.17)
0 0 ¢c|]0O O 1 0 0 ¢
\exten‘srion A shear T ’ Lagrangian Laplace Stretch U

This is an Iwasawa [35] decomposition of the deformation gradient F; namely: extension A

is diagonal with positive elements and shear I is unit upper triangular.
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2.3 Convected Base Vectors

Edges of the deformed parallelepiped depicted in Figs. 2.1 & 2.5 describe a set of oblique

base vectors {g;} whose components obey a linear map of

gl a 0 O él
(= |by b 0]yé& (2.18)
2 c¢f ca c €3
or {g} = ATT{&;}, cf. Eq. (2.17). These base vectors describe a relative volume of
Vigy = 81+ & x & = abc (2.19)

which is the volume of distortion in that det F = detU = abc. Collectively, these formulee
describe the shape of a homogeneously deformed mass element located at particle P whereat
F is evaluated, see Fig. 2.1. The convected base vectors {g;} are not the actual curvilinear
base vectors; rather, they are tangents to the curvilinear base vectors. The theory is therefore
local; nevertheless, it is suitable, e.g., for finite element analysis.

Dual vectors {g'} to the convected basis {g;} are acquired through [36]

gl-_ﬂ o 83X8 3. 81 X&

T = — — T = — — S S5 S 220
8182 %83 g 8182 %83 g 8182 X 83 ( )

which are described by {g'} = A 'T'"'{&'}. Base vectors {g;} and their duals {g'} convect

with the motion, locally at a particle, and by their vary definition, viz. Eq. (2.20), obey

ol

g -8 = 5; which are described by the linear map
g lja —y/a —(B—ay)/a| |&
gr=10 1/ —a/b &> (2.21)
g3 0 0 1/c &’
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or {g'} = A 'T e’}
2.4 Convected Metrics

The ability to work with an oblique, Cartesian, coordinate system instead of having to
work with a general, curvilinear, coordinate system, in accordance with our hypothesis, af-
fords a practical utility to the convected tensor analysis presented herein. The convected
metric tensor can be quantified given any spatially smooth description for motion—a capa-
bility that has been absent until now.

Convected metric v = 7;; 8° ® g7 has components v;; := &; - 8, Vi; = Vi, that, according

to Eq. (2.18), populate as a symmetric matrix with elements

a aby acl
Y= laby bB*(1+497) be(a + ) (2.22)

acf bela+ By) A1+ a? + 3?)

whose dual v~ = 7% g; ® g; has components 77 := g* - g7, v = 7' that, populate as a
symmetric matrix which obey v 14 = 4.
When expressed in terms of Jacobian Y, and its fundamental constituents A and I', viz.,

Y =TA, one finds that
y=Y'Y and ~'=Y'Y T (2.23)

neither of which can be constructed directly out of the Lagrangian Laplace Stretch U =
AT, because matrices A and I' do not commute. Convected metric 4 = Y'Y resembles

Lagrangian metric C = FTF =U'U = Cy; E' ® E7 which does not look like Eq. (2.22).

18



2.4.1 Convected Velocity Gradient

There is an analog to the Eulerian velocity gradient that exists in our convected coordi-
nate system with oblique base vectors {g;}. It is a mixed tensor dn defined by
. og odz*

dn = dn; geg with dn); = 7 aE

(2.24)

The velocity gradient in the experimentor’s basis defined in Eq. (A.3) is dH = dH; &;®¢’
with dH = dY - Y=L It maps to a velocity gradient of the convected basis dn as dn =
Y L.dH Y, i.e., dn < dH. Consequently, velocity gradients dH and dn represent the same

physical field, they are just defined on different manifolds.
2.5 Convected Strains

From our analysis of a cube being transformed into a parallelepiped, the convected,

covariant, strain tensor € of LODGE [24, 10] has components

a’?—1 aby acf3
1
e:=1(v—") = o | abv P+ -1 be(a+ () (2.25)

acf bela+pBy)  Al+ar+ 5% -1

while the convected, contravariant, strain tensor € of LODGE has components

(> —1—7*— (8 —av)?)/a?

E=30n —7) = ; (v(1 + a?) — aB)/ab
(8 — a)/ac
(y(1 +0?) —ap)/ab (8 —ay)/ac
(b* =1 —a?)/p? a/be (2.26)

a/be (2 —=1)/c*
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whenever v, = &;; g} ®§6 and v5! = 69 (80)i ® (8h);, i.e., a0 =by=co=1and g = [y =
Yo = 0.

2.5.1 Properties of Convected Strains

Convected strain € = ;; 8 ® g7 has the physical interpretation of being a measure
of change in the squared distance separating two neighboring particles. Convected strain
E = £ g ® g; has the physical interpretation of being a measure of change in the squared
distance separating two, neighboring but non-intersecting, material planes [24].

Consider an ordered sequence in time t5 < t; < ty < -+ < t,_1 < t,, for which fields
a,b,c,a, 5,7 are normalized in that a(tg) = b(tg) = c(to) = 1 and a(ty) = B(to) = v(to) = 0.
The convected strain tensors € and £~ of LODGE, presented in Eqs. (2.25 & 2.26), generalize
to

e(ti,ty) = 5 (v(t:) —v(t;))
E(tity) = 5(v'(t;) =y (t))

For any subset of times ¢;, t;, ¢ belonging to the above sequence, LODGE’s generalized strain

V i,j=0,1,2,....n. (2.27)

tensors possess the following important properties:

E(ti7tj) = —E(tj,ti) 8(tz,tj) = —g(tj,tz) (228b)
E(ti, tj) = E(tl', tk) + €(tk, tj) g(tz, tj) = g(ti, tk) + g(tk, tj) (228C)

Equation (2.27) says strain is a two-state field, independent of the path traversed between
these two states. Equation (2.28a) says a reference state for strain exists, and furthermore,
that its selection is arbitrary. Equation (2.28b) says that strain is anti-symmetric in its
assignment of state. Equation (2.28c) says that two strains will add whenever there is a state
in common between them, irrespective of the states selected, and therefore, irrespective of

the extent of strain. These remarkable properties are unique to convected strain fields.
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3. ELASTIC KELVIN-POISSON-POYNTING SOLIDS DESCRIBED THROUGH
SCALAR CONJUGATE STRESS/STRAIN PAIRS DERIVED FROM
LAGRANGIAN LAPLACE STRETCH [5]

In this chapter an observer assigned frame of reference is considered. It is represented by
an orthonormal triad of base vectors (7, 7, E) describing a rectangular, Cartesian, co-ordinate
system spanning a fixed, Euclidean, point space through which an embedded body B moves
with time where we called Eulerian basis (€1, €,,&;) and Lagrangian basis (E,, E;, E;) in
the previous chapter, and what we called an experimentor’s basis (€1, €, €3) we now refer
to as the physical basis (€, 6y, €3), because it is within this co-ordinate system that the
components of convected vector and tensor fields find their physical components.

In previous chapter we decomposed the Lagrangian Laplace stretch U into a product of
two gradients, viz., Y = YZ. When evaluated in our reference frame for analysis (El, Eg, Eg),
Jacobian F will have components ﬁ’ij = in(X, t)/&f(j with #; = % x(X,t) describing the
motion in (El, Eg, Eg,) How the Jacobians describe the mapping of a tangent vector, for
example, between these various configurations is illustrated in Fig. 3.1. There are three
reference configurations and three current configurations that one can work with in a con-
vected analysis with basis (g1, g2, 83). The deformation gradient F;; maps the Lagrangian
components of a tangent vector belonging to a reference configuration &, into its Eulerian
components belonging to the current configuration ;. The co-ordinate relabeling P;; (one
of six variants) transforms one from an observer’s frame of reference, i.e., (7,7, E), into a
frame better suited for QR analysis, viz., (El, E, E3) The Lagrangian Laplace stretch U;;
maps tangent vectors from the QR reference configuration &, into their counterparts in the
physical frame of reference k;. The distortion Z;; transforms tangent vectors from the QR
reference configuration &, into tangent vectors in the convected frame of reference k., while

the convected stretch Y;; continues this mapping into the physical frame of reference £; out

of which @);; rotates them back into the current configuration for analysis &;. Matrix P;;
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Figure 3.1: Mapping between reference and current configurations by Jacobians

then relabels the co-ordinate axes to those assigned by the observer, returning one to the
current configuration k.

The upper-triangular components for the Jacobians in this decomposition of Lagrangian
Laplace stretch, i.e., YZ (= U), and its inverse, viz., Z='Y ™' (= U™"), can be written out

in terms of the physical attributes of deformation a,b, ¢, o, 3,7 established in Eq. (2.16)

b — b—
a by cf 1 Ty oy
0 0 ¢ 0 0 1

where det Z = 1 while det Y = detUd = det F = abe.
3.1 Stress Power

The internal mechanical power W exerted upon a material particle, caused by stressing

a deformable body, is a frame-indifferent [37, 38] physical property described by [39]

W = tr(TL) (3.2)

where T is the symmetric Cauchy stress and L := FF! is the non-symmetric velocity

gradient, with F representing a material derivative of the deformation gradient F. These
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fields are defined in the current configuration x;, see Fig. 3.1.

For our purposes, it is advantageous to map L and T as mixed tensor fields, first pulling
their Eulerian components back into their associated Lagrangian components, and then push-
ing these Lagrangian components forward into their convected components. The reason for
using mixed tensor components is because Fulerian components L; for the velocity gradient
will map into upper-triangular components 77; for the convected velocity gradient. As a con-
sequence, the expression for stress power used in the construction of constitutive equations
is vastly simplified, hence the motivation. This property of triangularity would be lost if
either covariant or contravariant tensor components had been selected.

The mechanical power caused by stressing a deformable body, i.e., Eq. (3.2), can also be

expressed as

W =tr(en) = tr(TL) = tr(TL) (8a)

whose convected and physical fields for stress, i.e., & and 7T, and velocity gradient, viz., n

and L, are described by

oc=0;8®8, T=T;6Q¢ Ty =T, = Yiof[y ',
J J J with J J k“e j (8b)
n=0808, L=L;éRE Li; =L, =YY ']

wherein
=Y LWYE + Zi 2

J
Ly =Ly =YY ' +vizZEz Ly
establish the oblique and physical components for the velocity gradient.

In terms of the physical tensors 7 and £ that are affiliated with convected tensors o

and 7, the work expended by stressing a deformable body becomes

T T2 Tis L1 Lia L3
W = TijLji = tr Tor Ta2 Tas Lo Lo Log (8d)
Ts1 Ts2 Tss Ls1 Lz L33
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wherein T = T and £

—uu '

3.2 Stress/Strain Base Pairs

3.2.1 Two-Mode Theory

Hypothesis 1: Trace tr(TL) = T;; L;; establishes stress power dW in terms of physical

components, thereby describing a convected stress tensor and a convected velocity-gradient

tensor that can be decomposed into a set of six, conjugate, stress-strain pairs:

T Tho
dW = tr Tor T2
Ta1 Ts2

Tiz| |da/a advy/b a(df —ady)/c
db/b bda/e = > (oide; + 7 ;)

Tas 0
T3 0

3

i=1

0 de/c

The definition selected here for assigning strains and their rates is a byproduct of a

Gram—Schmidt factorization of the deformation gradient F, specifically, we conjecture that

€1

€2

€3

Y1

Y2

V3

:=In(a/ao)
= ln(b/bo)
:=1In(c/co)
=77

== fo

de; = da/a
dey = db/b
des = dc/c
dvy; = dy
dvys = da
dys = df

The thermodynamic stresses conjugate to these strains are therefore

o1 =T
09 1= T2
o3 := Ts3

T 32%751—04%751
b
T2 -25732

3= 2T
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Note: From a Lagrangian perspective, a reference configuration &, would be chosen so that,
typically, ag = by = ¢o = 1 and ay = By = vy = 0 with their current values a, b, c and «, 3,
being response functions. From an Eulerian perspective, a reference configuration &, would
be chosen so that, typically, a = b =c=1and a = = v = 0 with their reference values

ao, bo, co and ayg, By, Yo being response functions, cf. Lodge [24, 10].

3.2.2 Three-Mode Theory

Hypothesis 2: Trace tr(TL) = T;; L;; representing stress power can likewise be decom-

posed into a set of seven, conjugate, stress-strain, base pairs:

T T2 Tiz| |da/a ady/b a(df —ady)/c ,
AW =tr | | To1 Taz Tos 0  db/b bda/c = —3pde + Y (07 de; + 73 dv;)
=1
Ts1 Ts2 Ths 0 0 de/c

where {p, 01, 09, 03, T1, T2, T3} describes a set of intensive scalar-valued stresses whose thermo-
dynamic conjugates {e, 1, e2,¢3,71, 72,73} describe a set of extensive scalar-valued strains.

These strains and their rates are defined as

e 1= In ¥/abe/agboco de = 3 (da/a + db/b + dc/c) (3.7a)
£, := In ¥/aby/agh de; = £ (da/a — db/b) (3.7b)
£ := In /bcy/byc dey = £ (db/b— defe) (3.7¢)
e5 := In ¥/cap/coa des = % (d¢/c — da/a) (3.7d)

T=Y % dyy =dvy (3.7¢)
Yo 1= — dye = da (3.71)
Y3 =5 —Po dys = dp (3.78)

where ag, by, o, g, Bo, 7o are reference values for these kinematic variables, evaluated in a

configuration k, affiliated with time .
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The stresses conjugate to the above measures for strain become

pi=—3(Ti1 + Taz + Ts3) (3.8a)
o1 =T — Ta = 8T —at Ty (3.8b)
0y 1= Tao — Tss 7= 2Ty (3.8¢)
o3 =T33 — T T3 1= 4T3 (3.8d)

where the o; now denote normal stress differences, instead of normal stresses, while the shear
stresses 7; retain the same physical interpretations as in the first hypothesis. Pressure p and

dilatation e are tensor invariants.

Note: This hypothesis supposes there are three separate modes of straining. Only two of

the three squeeze modes are independent, because e3 = —(g1 + €2) and 03 = —(071 + 09).
3.3 Equilibrium Thermodynamics

The internal energy U of a system that is in thermodynamic equilibrium with its sur-
roundings is a function of its extensive variables £', €%, ..., &" (e.g., S, €1, €2, €3, V1, V2, V3)-
Conjugate to these extensive variables are the intensive variables Fy, Fo, ..., F, (e.g., T,
01, 02, 03, T1, To, T3). At equilibrium, the First Law of Thermodynamics has a mathematical
interpretation of

dU = i Fode* =T4dS + i F, dE” (3.9)
a=1

a=2
where the sum in the right-hand expression only spans over the deformation variables, as
the non-deformation variables £ := S and JF; := T have been written out explicitly.

Because dU is an exact differential, equations of constitution follow

Fo=Us o dFa=) Uspd€® or d&* =) U dF; (3.10)
B=1 B=1

where U, 1= 0U /0E* and U,p := 0?U/0E* 0EF with o, 8 =1,2,...,n.
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3.4 Elastic Model with Kelvin, Poisson and Poynting Strain Effects

Here we consider two such solids. The first adopts the two-mode description for state

variables. The second adopts the three-mode description for state variables. Both models

incorporate three coupling effects: Lord Kelvin (Sir William Thomson) [1] studied a coupling

effect between temperature and elongation; Poisson [2] studied a coupling effect between

axial and transverse elongations; and Poynting [3] studied a coupling effect between shear

and elongation.

3.4.1 Two-Mode Elastic Solid

A thermoelastic solid that exhibits Kelvin, Poisson and Poynting strain effects has a

compliance matrix that looks like

N\

ds
dey
deo
1 des
%d’h

%d%

$dvs )

C/T
(6%
(8%

a

« o (6

1/E —-v/E —v/E

-v/E 1/E —v/E v/E

0
0

(1+v)/E

—v/E —v/E 1/E 0
0 ~m/E 0
0 0 n/E 0
0 0 m/E 0

0
0
0
V2/E
0
(1+0)/E
0

0
0
0
v3/E
0
0
(1+v)/E

dT
doq
doy
dos
dn
dro

drs

L (3.11)

J

where the material constants include: C' := T dS/dT is the specific heat capacity measured

at constant pressure; « := (1/L)dL/dT is the coefficient of thermal expansion over a gage

length L; FE := do/de is the elastic modulus; and v := —de g ansverse/dEaxial 18 Poisson’s ratio.
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3.4.2 Three-Mode Elastic Solid

A different thermoelastic solid that also exhibits the Kelvin, Poisson and Poynting strain

effects has a compliance matrix that looks like

ds C/T « 0 0 0 0 0 0
de a 1/3K 0 0 0 0 0 0 (a7 |
dey 0 0 1/3N 0 0  —m/3N 0 0 —dp
des 0 0 0 1/3N 0 7/3N  —v/3N —43/3N | | doy
< des (- 0 0 0 0 1/3N 0 Y9/3N  ~3/3N < doy (
3dm 0 0 -m/3N /3N 0 1/2G 0 0 dos
Sdv 0 0 0 —v2/3N  72/3N 0 1/2G 0 | dr1 |
%d’ygj | 0 0 0 —v3/3N  ~3/3N 0 0 1/2G |

(3.12)

where the material constants include: C' := T'dS/dT is the specific heat capacity mea-
sured at constant pressure; o := (1/L)dL/dT is the coefficient of thermal expansion; K :=
—Vdp/dV = —dp/3de is the bulk modulus; N := do/3de is the squeeze modulus; and

G := d7/d~ is the shear modulus.
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4. LAPLACE STRETCH: EULERIAN FORMULATIONS |[6]

The deformation gradient admits a number of different triangular decompositions, whereby
in each case the full deformation gradient matrix is decomposed into a product of an orthog-
onal tensor and a triangular stretch tensor. The decomposition studied in this chapter splits
the deformation gradient tensor into a rotation tensor followed (premultiplied) by a lower-
triangular stretch tensor. This construction is referred to as the Eulerian formulation of the
triangular decomposition of deformation.

In general, Eulerian formulations are often preferred for modeling isotropic solids (and
fluids) that have no obvious initial or reference state. For example, many biological tissues,
in vivo, are perpetually under tension, and a stress-free reference state is never physically re-
alized. Eulerian forms are also used for hypoelastic constitutive modeling that is often more
popular than hyperelasticity for solving initial-boundary value problems numerically. How-
ever, prior to the present work, no application of the Eulerian lower-triangular decomposition

in the context of continuum mechanics seems to have been reported.
4.1 Deformation

We assume that a body is simply connected and its motion x is sufficiently differentiable

so that F = 0x(X,t)/0X exists and therefore

Fii Fio I 1
aXZ(X, t)
Fij = ox, Foy Fa Fo3| = 2 (4.1)
Fs1 F3p F33 f3

where vectors f; = F;; €; contain the rows of tensor F = F}; €;®¢€;, i = 1,2, 3, with repeated
indices being summed according to Einstein’s summation convention. It follows straightaway

that the left, Cauchy-Green, deformation tensor B := FF' = B;; €;®¢€;, which is symmetric.
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4.1.1 Eulerian Laplace Stretch

Now we describe a Gram—Schmidt like factorization of the deformation gradient, viz.,
F = VRY wherein V = V;; € ®¢€; is called the Eulerian Laplace stretch, or the left Laplace
stretch. Applying a Cholesky factorization to the symmetric, positive-definite, left, Cauchy-
Green, deformation tensor B := FF' = VYT with components B = B;; €; ® €; one can

construct a stretch tensor V = V;; €; ® €; whereby

V11=\/Bil1 Vig =0 Vis=0
Vo1 = Bo1/Vi1 Vaz = m Vag =0 (4.2)
Va1 = Bsi/Vii Vaz = (Bso — VarVa1)/Vao Va3 = A/Bss — V& — Vi

A Gram-like factorization of the deformation gradient F = F}; €; ® €; can also describe

an Eulerian rotation tensor RE = 0ij € ® é'f = R‘Z €, ® €; constructed as

D)
ij €

.
RE = [ &P &’ ] (4.3a)

whose rows constitute unit base vectors that can be constructed via

. Ji

A

_p . o= (f5-€7)er

€, = — 4.3¢c

2= = (f - el (43c)

R (450
Hf3_(f3 el)el - ( 3'92)92 H

It follows that the Eulerian Laplace stretch has components which can be expressed as

Vij=|fy-ef f,-ef 0 (4.4)
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that provide a means of geometric interpretation for this measure of stretch.
4.2 Physical Interpretation of Laplace Stretch Components

Each Laplace stretch has six, independent, physical attributes. Their Eulerian interpre-
tations are distinguished with an overline, viz., @, b, ¢, @, 3 and & which are distinct from

Lagrangian stretch attributes. However, their geometric interpretations are the same.
4.2.1 Eulerian Stretch Attributes

The Eulerian Laplace stretch has geometric interpretations that arise from Eqn. (4.4)

whereby one can assign

a 0 0 1 00[]1 0o0||ao0o0
Vi=l|lay b o|=|5 1 0|]l0o 1 ofl|lo B o (4.5a)
aB ba ¢ 00 1|8 @ 1|00 @

e =fi/a (4.6a)
& = (fy—7f1) /b (4.6b)
& = (fi—afy—B-ayfr) /e (4.6¢)

all of which are described in terms of physical attributes defined as

Via

_ Va . Va
V22’

e T

a:=Vy, b:i=Vy, ©:=Vy, a: (4.7)

According to Eqn. (4.5), the Eulerian Laplace stretch arises from the following sequence
of deformations: it starts with three elongations @, b and ¢, followed by two out-of-plane

shears @ and 3, and then finishes with an in-plane shear 7, as illustrated in Fig. 4.1.
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@
Q|

Figure 4.1: A geometric interpretation for Eulerian Laplace stretch.

4.3 Frameworks for Constitutive Development

Here we construct sets of thermodynamic conjugate pairs for Eulerian frameworks when

using Laplace stretch as one’s kinematic variable.
4.3.1 Eulerian Stress-Strain Attributes

In terms of Eulerian fields, stress power W can be written as piotr(TD) wherein 7 = FSFT
is the Kirchhoff stress, which relates to Cauchy stress T via 7 := det(F)T = 2T, and where
D:=1(L+L") = F-TEF~! is the symmetric part of velocity gradient L := FF~!, with p
being the current mass density.

It can be shown that

W = Ltr(rD) = Lir(rL") (4.8a)

PO

given that F = VRY, where this Eulerian velocity gradient £F is defined by
LF:=VVY' wherein V=V +VQ2F - QFY (4.8D)

with V being an objective co-rotational derivative for this measure of stretch, and 27 :=
RERF" being a spin of an Eulerian coordinate axes (67,87, &%) about the reference axes.

Consequently, stress power pOW = tr(TLE) arises from two sources in this Eulerian
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construction, viz. W = W, + W,. The first is energetic, i.e.,

Wy = piotr(‘rVV*l) (4.9a)
while the second satifies objectivity, viz.,

Wy = tr(TV PV (4.9b)

noting that tr(742%) = 0. The objective correction (4.9b) is required to quantify the work
being done, but it plays no role when creating our Fulerian stress-strain attributes, as Wy =0
whenever 27 = 0.

Because VY ! = Vika_jl €, ®€; has components that are lower triangular, a consequence
of the group that tensor V belongs to, the first contribution to stress power put forward in

Eqn. (4.9a) reduces to a sum of six scalar contributions; specifically,

P0W1 = 7111'211-1/[11 + T12)>2ival + 7131'/3,»1251 + TQQVQ»L‘VZEI + ngVgiVigl + 7'33]./3@‘1}231 (410)

wherein
2 0 0
ViVi! = 545 (% %) % 0 (4.11)
F-ra+p(3-2)-m(3-7) a+a(i-9) ¢
Present here are the squeeze rates &, = %(a/a — b/b) etc., which appear in the off-

diagonal terms, along with their corresponding shear rates, e.g., 7, thereby substantiating

our assumed construction of conjugate pairs.

Expressing Eqn. (4.10) in terms of Eulerian, thermodynamic, conjugate pairs, one can

write

3
p0W1 =7 Z e+ TZ%) (4.12)



whose seven, conjugate, stress-strain pairs are defined as follows: a uniform bulk response is

governed by an Eulerian pressure 7 and an Eulerian dilatation § defined by
_ - b
T = Ti1 + To2 + 733 0:=1In a5z

while the squeeze (pure shear) responses are governed by Eulerian normal-stress differences

7, and Eulerian squeezes g; defined by

a b . 1{a b

01 :=Ti1 — Tog + 3?7’12 g1 = In Y afoio g1 = g <a — b) (413b)
To2 — T33 .lbe ) 1 b

09 1= Eg9 1= In ’ bbCO &9 = g <Z — C> (413C)
+ 3@(7’23 —77'13) 0 ¢ ¢
_ [ a . 1/¢ a

03 = —Ti1 + T33 — 33713 E3:=1Iny ,3@ €3 =5 (c - a) (4.13d)
Co G 3\c @

of which only two are independent, while the (simple) shear responses are governed by

Eulerian shear stresses 7; and strains 7, defined by

T1 = To3 — Y713 ¥, 1= a — @ ¥, =0 (4.13e)
Tg = Ti3 ¥y =0 — Bo Yo =P (4.13f)
T3 = T12 Y3 =7~ Y Y3 =7 (4.13g)

wherein @, by and ¢, are their initial elongation ratios, and where @y, 3, and 7, are their
initial shear offsets.

The set of thermodynamic conjugate pairs for the Eulerian frameworks is composed of
three modes: one pair to describe uniform dilatation, three pairs to describe pure shears, and
three pairs to describe simple shears. There are three pure-shear pairs independent, thereby
resulting in sets of six, independent, conjugate pairs that have direct connections with the

six independent components of stress and stretch rate.
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Bijective maps exist to transform tensor components into thermodynamic stress—strain-

rate attributes that, for isotropic materials, are described by

with

and where

with

T3 = —01 — 02 + 3(aT1 — T2 +773)

0 0 O
0 0 O
0 0 O

/3 1/3
1/3 —1/3
0 1/3
0 -a
3 0
- 7

1/3
0
~1/3

o ™ 9

2|
—

w
]

o o O

T11
T22
{ 733
732

731

721 y

(.
Vuvi_ll
Vgivigl

1')31' Vigl
< 4

inVigl
Vlivigl

SRR
kvl’LViQ )

(4.14a)

(4.14b)

(4.14c)

(4.14d)

These strain rates can be integrated to get the Eulerian thermodynamic strains 6, ;, &, &3,

1, 7o and 75 by using initial conditions of 0]y = £1]o = &2]0 = &3/0 = F1|o = Falo = F3]0 = 0

provided that the initial elongation ratios have been specified as @y, by and ¢, and that the

initial magnitudes of shear have been specified as @y, (3, and ¥,.
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5. A MICROSCOPIC MODEL FOR LUNG TISSUE [7]

Models and metrics whose parameters are physical and unique, and whose numeric im-
plementation will be efficient and stable are used for modeling the Lung tissues.

In this chapter a microscopic model for lung tissue is provided that can be used as an
aid in the parameterization of a macroscopic model for lung that will be reasonably accurate
yet efficient to run in full torso finite element analyses to study behind armor blunt trauma

(BABT) for the purpose of improving personal protective equipment (PPE).
5.1 Dodecahedra: A Model for Alveoli

Typical alveoli are 14 sided polyhedra with one face normally being open as a mouth
to an alveolar duct, and whose septal membranes typically become flat at transpulmonary
pressures as low as 2 cm HoO [40]. A dodecahedron is an isotropic structure, and is nearly

volume filling [41]. It is one of the five perfectly symmetric solids in geometry, Fig. 5.1(a).
5.1.1 Geometric Properties of a Regular Pentagon

Figure 5.2 presents a regular pentagon drawn in its natural co-ordinate system with

co-ordinates designated as (£, 7). Vertices of such a pentagon are placed at

§=cos(2(k:gl)ﬁ+g) nzsin(Q(k:gWT—i—g) k=1,2,...,5 (5.1)

wherein k denotes the vertex number that are numbered counterclockwise, as assigned in

Fig. 5.2. Lengths of the five chords in a regular pentagon are all
LP = 2cos(w) ~ 1.176 (5.2)
while the area of this pentagon is

AP = 2 tan(w) (L?)* = 5sin(w) cos(w) =~ 2.378 (5.3)
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(a) A cube is contained within a dodecahe-

dron, with one of its five possible orientations
being displayed.

(b) Vertices 1 through 8 are located at the corners
of such a cube. Vertices 9 through 20 are corners
of the hipped roof lines residing above each face of
the cube.

Figure 5.1: Geometric representations for a dodecahedron.

Figure 5.2: A regular pentagon in the natural co-ordinate system
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where area of the unit circle that inscribes this pentagon is mr? ~ 3.142, r = 1.
5.1.2 Geometric Properties of a Regular Dodecahedron

Here we consider a dodecahedron that inscribes the unit sphere. Let this geometry be
described in its natural co-ordinate system with co-ordinates (£, 7, ) whose origin is located

at its centroid, the center of the sphere. The 20 vertices of this dodecahedron are placed at

3 n ¢

+1/4/3  +1/V/3  +1/4/3

+¢/vV3  +1/v/3¢ 0 (5.4)
0 +o/\V3  £1//3¢

+1/4/3¢ 0 +6/vV3

where ¢ = (1 ++/5)/2 ~ 1.618, which is also known as the golden ratio. Lengths of the 30

chords in a regular dodecahedron, when measured in its natural co-ordinate system, are all

2
Lt = 75 ~ 0.7136 (5.5)

while the volume of such a dodecahedron is

d tan?(w) sin(w) ~ 2.785 (5.6)

- 40
 34/3¢3

where volume of the unit sphere that inscribes the dodecahedron is %m"3 ~ 4.189, r = 1.

5.1.3 Dimensions of Human Alveoli

Septal chord length L(D), expressed as a function of alveolar diameter D, can be esti-
mated by considering the areal projection of a dodecahedron onto a plane that contains one

of its pentagonal faces, which leads to

D D
L= @) +eos(@) ~ 2.685° (5.7)
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where o« = /19 = 18°. Alveolar diameter D is a property that can be measured in histological

studies of parenchyma.
5.1.4 Geometric Properties for Irregular Pentagons and Dodecahedra

Formule (5.3 & 5.6) only apply for regular pentagons and dodecahedra evaluated in their
respective natural co-ordinate systems. For irregular dodecahedra, the areas of its irregular

pentagons are calculated via

5

1
A= 5 Z(%‘yiﬂ - $i+1yi) (5-8)

=1

where x¢ < x1 and yg < y;. In order for the predicted area to be positive when using this
formula, it is necessary that the vertices (z;, y;) index counterclockwise, as drawn in Fig. 5.2.

The centroid of this pentagon has co-ordinates’

13

Cy = 6A ;(l’z + 1) (@Y1 — Tiv1Yi) (5.92)
13

Cy = GA Z(y@ + Yir1) (Tilis1 — Tiv1Yi) (5.9b)
i=1

wherein the vertex co-ordinates x; and y; are quantified in a 2D pentagonal frame of reference,
e.g., as established later in Fig. 5.4.

To compute the volume of an irregular dodecahedron, use the formula

01 1 1 1
10 6f 0y 0
W8V, =11 €24 0 (% (3 (5.10)

6321 6322 0 6324

—_

Loty iy 0

to calculate each of the 60 individual tetrahedral volumes that collectively fill the volume

of an irregular dodecahedron. Here ¢;; is the length of that tetrahedral edge with vertices ¢
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Table 5.1: Natural co-ordinates for the vertices of a regular dodecahedron, as labeled in
Fig. 5.1(b) according to Eqn. (5.4)

Vertex 3 n ¢ Vertex 3 n ¢
1 VAV VAVE R VAV 11 TAVEI VAVE -
> | VB VB N3 | 12 | VB ANBe 0
SIS VAYZ B VAVE B VAVE] 13 | -¢/V3 1,36 0
4B UVE IV | 14| 9B N3G 0
5 IVAVERS VAVE RS VAVE 15 | 1/V3¢ 0 ¢/V3
6 V3 -1/v/3 -1/V3 16 |-1/v36 0 ¢/V3
[ VAVE T VAV I VYR 17 | 1/V3¢ 0 -¢/V3
8 |-VB V313 18 |-1/V30 0 -¢/V3
9 0 ¢/V3 V3o | 19 0 -¢/V3 136
10 0 ¢/V3 -1/v3o| 20 0 -¢/V3 -1/\3¢

and j; 4,7 = 1,2,3,4; 1 # j; with {;; = {};.
5.1.5 Indexing Scheme for Dodecahedra

In order to implement the dodecahedron as a geometric model for an alveolar sac, as
suggested by the images in Fig. 1.2, it first becomes necessary to introduce a labeling strategy.
The co-ordinates positioning the 20 vertices of a regular dodecahedron in its natural frame
of reference are presented in Table 5.1. According to the labeling scheme of Fig. 5.1(b), the
30 chords of a dodecahedron are given vertex assignments according to Table 5.2, while its
12 pentagons are given vertex assignments according to Table 5.3, which are indexed coun-

terclockwise when viewed looking from the outside in, and labeled according to Fig. 5.1(b).
5.1.6 Co-Ordinate Systems for Chordal Fibers and Pentagonal Membranes

The dodecahedron used to model an alveolus is considered to be regular in its "natural"
configuration, with a capability of being irregular in its reference configuration, and certainly
becoming irregular after deformation. The co-ordinate frame of its natural state is taken to

have its origin positioned at the centroid of this regular dodecahedron, i.e., at the centroid

of its enclosed cube (cf. Fig. 5.1).
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Table 5.2: Vertices that locate the endpoints of septal chords in a dodecahedron, as labeled
in Fig. 5.1(b)

Chord | Vertices || Chord | Vertices || Chord | Vertices
1 9, 10 11 17, 18 21 7,18
2 1,9 12 3, 18 22 7,14
3 2,10 13 4, 16 23 13, 14
4 3, 10 14 15, 16 24 8, 14
5 4,9 15 1, 15 25 8, 16
6 1, 11 16 5, 15 26 5,19
7 2,11 17 5, 12 27 6, 20
8 3, 13 18 11, 12 28 7,20
9 4,13 19 6, 12 29 8, 19
10 2, 17 20 6, 17 30 19, 20

Table 5.3: Vertices that locate the corners of regular pentagonal surfaces in a regular dodec-
ahedron, and the chords that connect them

Pentagon Vertices Chords

1 11, 2,10, 9, 1 6,7, 3, 1,2

2 10, 2, 17,18, 3 | 4, 3, 10, 11, 12

3 13, 4,9, 10, 3 8,9,5,1,4

4 9,4, 16, 15, 1 2,5,13, 14, 15

5 15,5, 12,11, 1 | 15,16, 17, 18, 6
6 17,2, 11,12, 6 | 20, 10, 7, 18, 19
7 18, 7,14, 13, 3 | 12, 21, 22, 23, 8
8 16, 4, 13, 14, 8 | 25, 13,9, 23, 24
9 12, 5,19, 20, 6 | 19, 17, 26, 30, 27
10 14, 7, 20, 19, 8 | 24, 22, 28, 30, 29
11 20, 7,18, 17,6 | 27, 28, 21, 11, 20
12 19, 5, 15, 16, 8 | 29, 26, 16, 14, 25
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Figure 5.3: The co-ordinate system of a chord (€, €;, €3) relative to the co-ordinate system
of its dodecahedron (E;, E,, E3) with origins located at their respective centroids that are
offset by a translation .

Figure 5.4: The co-ordinate system of a pentagon (€1, €, €3) relative to the co-ordinate
system of its dodecahedron (E;, Ey, E3) with origins located at their respective centroids
that are offset by a translation x.

The local co-ordinate system of a chordal fiber, pentagonal membrane, and tetrahedral
volume are presented in Figures 5.3, 5.4, and 5.5, respectively. All three, local, co-ordinate
systems are denoted as (&), €, 63) and each rotates out of the reference co-ordinate system

(El, E,, Eg) of the dodecahedron via its own orthogonal rotation tensor Q.
5.2 Kinematics

The irregular dodecahedron used here as a model for alveoli describes a 3D structure

composing 30 1D rods (the septal chords) joined at twenty nodes (the vertices) that collec-
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Figure 5.5: The co-ordinate system of a tetrahedron (€, €;, €3) relative to the co-ordinate
system of its dodecahedron (E;, E,, E3) with origins located at their respective centroids.

tively circumscribe 12 2D pentagonal membranes (the alveolar septa) that in turn envelop
an alveolar sac whose volume is represented using 60 tetrahedra. To be able to describe
the overall mechanical response of this 3D dodecahedral structure, it is conjectured to be
sufficient to know the individual mechanical responses of its 1D septal chords, its 2D septal

membranes, and the 3D void within.
5.2.1 1D Chords

The stretch of a rod under extension is a ratio of its lengths. Specifically, A := L/Lg

where L and Lg are its current and reference lengths, respectively.
5.2.1.1 Shape Functions for Interpolating a Rod

A two-noded alveolar chord has shape functions NV;, ¢ = 1, 2, that, when evaluated in its

natural co-ordinate system where —1 < ¢ < 1, describe a matrix with elements

N = [Nl NQ] = [; 1-9 i@ +§)] (5.11a)

that interpolate vector fields according to

x(§) = Y Ni) i u(€) = Y Ni(€)us (5.11b)
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wherein £ is the natural co-ordinate. Components z; and u; := x; — z¢;, ¢ = 1,2, are their
global co-ordinates and displacements, respectively, located at the two nodes of a chord

evaluated in the co-ordinate frame (€, &, €3) of Fig. 5.3.
5.2.1.2  Deformation Gradient for a Rod

The deformation gradient in this case is simply

511 5X0 ! 2 2 o
F =14+ == — =1+ NZ U; Nz Zoi
© 65(65) 2. (Z ’“)

Uy — U1 o
=14 —— ®e =
To2 — To1 To2 — To1

A2 T 66 (512)

which is uniform over the length of a chord, i.e., it is independent of &.
5.2.2 2D Triangles

Triangular elements are needed in a support capacity in order to construct our alevolar
model; specifically, the four surfaces of a tetrahedron are triangles. What is required of them

is a capability to compute the traction acting across such a surface through integration.
5.2.2.1 Shape Functions for Interpolating a Triangle

The shape functions for a triangle expressed in terms of its natural co-ordinates (£, ),

where 0 < ¢ < land 0 <np<1—¢, are given by

Ny=1-¢—1 Ny =¢ N3 =1 (5.13a)

so that the area of a triangle in its natural co-ordinates is 1/5.
5.2.3 2D Irregular Pentagons

The kinematics of an irregular pentagon, on the other hand, are not trivial. Shape
functions are required from which deformation gradients can then be constructed. Once a

deformation gradient is in hand, the state of stretch occurring within a pentagon at its Gauss
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points can finally be derived.
5.2.3.1 Wachspress” Shape Functions for Interpolating an Irregular Pentagon

In 1975, Wachspress [42, 43] derived a set of shape functions NV; that are capable of
interpolating convex polyhedra. His shape functions take on the form of rational polynomials,
viz., N; = A;/B where A; and B are polynomials.

Let us consider a convex pentagonal domain €2 defined over R? whose vertices have global

co-ordinates of

(1,91), (T2,92), (3,93), (®4,ya), (T5,¥5)

when evaluated in the pentagonal co-ordinate system (&, &) of Fig. 5.4, with €; being an
outward normal to the pentagon. Associated with this set of global co-ordinates is a set of

local or natural co-ordinates

(E1,m), (§2:m2), (§3,m3), (Ea,m4), (655 75)
that describe a mapping of interpolation where

x(&,n) = 5 Ni(&,n) z; -
(&) =),  Nil&n) o x(©) = 3 N(©)x; (5.14)

yEn) =Y, Ny =

which relate natural co-ordinates & = (£, 7) to global co-ordinates x = (x,y), where x; =
(7, ;) are nodal co-ordinates at the i*! vertex, with 4 indexing counterclockwise around a
pentagon according to Fig. 5.2. Displacement u(x) := x — xq, with reference co-ordinates

X = (9, Yo), also obeys this mapping

u 57 = 5 Nz 57 U; 5
7 Z?I o or  u(€) =) Ni(¢)u; (5.15)
0(57 ?7) = i=1 N’L(f? 77) V; =1

whose components u; = (u;, v;) designate the nodal displacements.
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Shape functions N;(&) = N;(§,n) are interpolation functions that place any position P
with local co-ordinates & = (£,7) € Q, where Q := Q U 89, into their global co-ordinates

x = (z,y). The shape functions of Wachspress [42, 43| possess the following properties [44]:
1. Partition of unity: 3> | N;(€§) =1, 0< N;(§) < 1.
2. Interpolate nodal data: N;(§;) = Z;.
3. Linear completeness: Y0 | N;(€) x; = x.

4. For € € Q, N;(&) is C®, but for £ € 09, N;(£) is CY i.e., interpolation is linear along

an edge (or alveolar chord) connecting two neighboring vertices.

Item 4 is often considered a disadvantage of Wachspress shape functions, viz., the linear
interpolation along their boundaries. However, this is appropriate for our modeling of alveoli,
because the septal boundaries are alveolar chords that are taken to interpolate linearly.

For interpolating a convex, planar, pentagonal shape, the shape functions of Wachspress
have polynomials of order three in their numerators, and another polynomial of order two

in their denominators; specifically, we write them here as

Nz’+1(£>77) = Ky Az(€7n)/B(€7n)7 L= 17 27 te 5 (5168“)

using a scaling factor of k;, where N; < Ng. The numerators and denominator for interpo-

lating a pentagon take on the general form of

Ai(&,n) = api + 1€ + ayn + zi&? + au€n + azn®
+ a6l + an€®n + asi€n” + agin’ (5.16b)

B(&,n) = Bo+ i€ + Pan + BsE + Bakn + S5’ (5.16¢)

Consider a chord ¢; that connects vertex &; 1 = (&§_1,7;_1) with vertex &; = (&, n;) via a
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straight line segment such that ¢; = 0 with ¢; := 1 — ;& — b;n wherein

i — Mi—1 §i1— &
Gj=— bj=— (5.17a)
§iami — &imia §ioami — &imia
for which Dasgupta [45] derived the following set of constraints
ir1(&i1 — &) + bipi(nia—m
K= Ky (a 11061 = &) +biyi(nia 77)> (5.17b)
ai-1(& — &i1) +bia(mi —ni1)
with recursion starting at x; := 1. Coefficients k; enforce property 4 listed above. The
polynomial coefficients for the A; in Eqn. (5.16b) have values of
Qo = 1 (518&)
a1, = —(@ig1 + Qi + aiy3) (5.18b)
g = —(big1 + biva + bis3) (5.18¢)
Q3i = Ai110i42 + Qi120i43 + Q130311 (5.18d)
i = Qi1 (biva + bivs) + @iva(biv1 + biys) + aiys(biva + biyo) (5.18e)
a5i = biy1bivo + birobics + birsbin (5.18f)
Qi = —0j+10i420i+3 (5.18g)
a7 = —(Ai+10iv2bivs + iy1bir2ai3 + biv10i120i43) (5.18h)
agi = —(iy1biyobits + bip1aiy2biys + bip1bii2aiy3) (5.18i)
ag; = —bi11bi420i 13 (5-18j)
which differ for each shape function via index ¢ = 1,2, ..., 5, while the polynomial coefficients
for B in Eqn. (5.16¢) have values of
5
6@': Zaijﬁj, Z::O,l,...,!{') (519)
j=1
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Figure 5.6: Wachspress shape functions for a pentagon, in this case, shape function Ny

which are the same for all five shape functions.
5.2.8.2  First Derivatives of the Shape Functions

The first derivatives of Wachspress’ shape functions for a pentagon are

Ni-‘rLf (éa 77) = Ky -/V’z}f (ga 77)/32(57 77) (5208’)

Ni-‘rlﬂ?({’ 77) = K '/\/i777(€’ 77)/32 (57 77) (520b)

where Nii1¢(€,n) = ONiy1(§,1)/0€ and Nij1,(€n) = ON;11 (€, n)/dn with

Nie&m) = B(&,m) Aie(§,n) — Be(§mAi(€,n) (5.20c)
Nin(€,m) = B(&,n)Ain(§,n) — B,(&m)Ai(&,n) (5.20d)
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which contain the polynomials

Aie(€,m) = agy + 2036 + g + 306 € + 200:€n + agin® (5.20e)
Aig(€,n) = g + auf + 25 + a7, + 205,60 + 3agin’? (5.20f)
Be(&,m) = b1 + 265 + fan (5.20g)
B, (&n) = Ba+ Bal +205m (5.20h)

from which the deformation and displacement gradients are constructed.
5.2.3.8 Deformation Gradient for an Irreqular Pentagon

Derivatives of displacement (u,v) taken with respect to the local co-ordinates (£,n) de-
scribed in terms of gradients of the shape functions N;¢(¢,n) and N; (£, 1) of a pentagon

have components

au/aé 6u/677 5 Ni,E (57 77) U Ni,n (57 77) U;

=24 (5.21a)
av/6£ 50/577 - Ni,{(S? 77) (% Ni,n(€7 77) U;

where u := x — g and v := y — 1o, while gradients of the global co-ordinates (x,y) evaluated

in the current state taken with respect to the local co-ordinates (£, 7n) have components

/0€ Ox/on :Z: £(&mn) (&) (5.21h)
dy/og  dy/on Nig(€&myi Nin(€,m) yi
whose transpose establishes the Jacobian matrix
ox/o& 0oy/o Nie(§,m)wi Nie(&m) i
5. /06 y/oE | £(&mn) &y (5.210)

i=1

dx/on dy/on Nin(€,n)xs Niy(€,n) vi

wherein (z;,v;) denote the current global co-ordinates at the i*" vertex.

From the above matrices, one can construct the deformation gradient F = dx/0x¢ =
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I + du/0xy for an irregular pentagon via

-1

Fu(&n) Fia(§m) 10 Ou/0¢ Oufon | | Oxo/0E dxo/On
F(&.n) = = +

Fn(€,m) F(&n) 01 0v/0g  dufdn | | dyo/0E  dyo/n

All are evaluated in the 12 plane belonging to a co-ordinate system (&, €, €3) that orients

this pentagon, with €; being normal to its surface, as illustrated in Fig. 5.4.
5.2.4 3D Irregular Dodecahedra

The primary kinematic variables needed to describe the deformation of an irregular do-
decahedron used as a model for an alveolar sac are its volume V' and the differential change
in volume dV. Whenever the material filling an alveolar sac is air (its normal healthy con-

dition), no further breakdown of these kinematics is required.
5.2.4.1 Shape Functions for Interpolating an Irreqular Tetrahedron

The shape functions associated with the four vertices of a tetrahedron are defined as

lel_g_n_C7 N2:€7 N3:777 N4:C (523&)

where &, 1 and ( represent natural co-ordinates with 0 < £ < 1, 0 < n < 1 — ¢ and

0<(<1—¢&—n. Gradients of these shape functions are

Nig=—1, Ny, =-1, Ny =-1
Noye=1, Noy=0, Noc=0
N37€ = O, N37,7 = 1, N37< =0

Nye=0, Nyy=0, Nyc=1 (5.23b)

and consequently the deformation gradient will be constant throughout its volume, like the

deformation gradients used for chords and triangles.
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5.2.4.2 Deformation Gradient for an Irreqular Tetrahedron

The deformation gradient for a volume element is constructed from

-1

1 00 ou/o¢ du/on ou/dC | | 0xo/0E Oxo/0n Ox0/0C
F&n =10 1 0|+ |avoe av/on ov/oc | | dyo/oE dyo/dn dyo/dC (5.24)
0 0 1 ow/0§ odw/dn ow/dC | | 0z0/0¢ dzp/dn 0z0/dC

such that, for the four-node tetrahedron considered here, one has

5U/5f 8u/é‘n 5u/5§ 4 N@gui Nimui Ni,gui
ov/o¢ dvfon dvjoC | =) | Nugvi Nigvi Nigu,
=1

Ug — U1 U3 — U Ug— U

Vg — U] U3— U] Uy —Up (5.25a)

Wy — W W3 — W Wqg— W

whose nodal displacements u; := x; — Xq;, ¢ = 1,2, 3,4, have components of u; = u; El +

v; Es + w; E3 with u; := x; — o, v; := y; — yo; and w; 1= z; — 2p;, evaluated in the reference

co-ordinate frame (E'l, E,, E'g) of the dodecahedron, and

81’0/65 6x0/6n on/(?g“ A Ni,Ein mem Ni,Cin
OYo/0E  Oyo/dn Oyo/IC | = Nigyoi  Nigyoi  NicYoi
i=1

02/0&  0z/0n  02/0C Niezoi Nipzoi Niczoi

Loz — Lo1 Lo3 — Lo1 Loa — Lol

Yo2 — Yo1  Yo3 — Yo1 Yoa — Yo1 (5'25]0)

202 — 201 203 — 201 <04 — 201
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whose initial nodal positions are x5, = x; El + Yoi EQ + Zoi Eg at vertex 7. This matrix is
invertible, because the four vertices of a tetrahedron are distinct. The Jacobian matrix is

therefore given by

ox /0 Qy/o& 0z , Niew; Nigyi Nigzi To—T1 Yo— Y1 22— 21

J:=|ox/on oy/on oz/on| = Z Ninti Nigyi Nigzi| = |23 —21 ys—m 23— 21

ox/0C 0y/o¢ 0z/d¢ - Nicxi Nicyi Nicz Ty— X1 Yso— Y1 24— 21
(5.25¢)

whose determinant is used in integrations.
5.2.5 Code Verification: Kinematics
5.2.5.1 Isotropic Motions

Imposing an uniform far-field motion of a volumetric expansion onto our dodecahedral
model results in a dodecahedral dilatation (= := In W) that equals its pentagonal dila-
tion (£ := In4/A/Ap) that equals its chordal strain (e := In(L/Lg)). Other choices for strain
measures do not result in one-to-one relationships when exposed to an isotropic motion like
those observed here. This is a particularly useful result in that it establishes a meaningful
scaling in terms of strains between the three dimensions, cf. Fig. 5.7.

There are two types of strain measures that one can use to quantify deformation within
a pentagon of a dodecahedron: geometric and thermodynamic. For the uniform far-field
motion of volumetric expansion, only a thermodynamic strain known as dilation, i.e., £ =
In \/m, varies with the motion, and its response equals that of the geometric strain
In X/M> see Fig. 5.8. Also present in this graph is an observation that the thermodynamic
strains for squeeze € and shear v do not contribute under motions of pure dilatation, as

expected.
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Figure 5.7: Response of a dodecahedron exposed to an isotropic motion of dilatation.
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Figure 5.8: Response of a dodecahedron exposed to a far-field isotropic motion of dilatation.
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5.2.5.2 Isochoric Motions

How the 30 chords and the 12 irregular pentagons deform under far-field motions of pure
shear is displayed in Fig. 5.9. It demonstrates that the individual chordal and pentagonal
constituents deform in a non-homogeneous manner, where the strains have been calculated as
geometric changes in dodecahedral shape. This result agrees with in vivo observations made
by Perlman & Bhattacharya [46] where confocal microscopy was used to image a breathing
rat lung.

For the chords, there are six independent responses for dodecahedral motions of pure
shear: two chords each for three of these lines, and eight chords each for the remaining three
curves present in the left images of Fig. 5.9. For pentagons, there are three independent
responses with four pentagons responding according to each curve shown in the right im-
ages. Although different chords and pentagons deform differently when sheared in different
directions, their collective responses are the same regardless of the far-field direction being
sheared. Consequently, the local geometric response of a dodecahedron is isotropic under
the far-field motions of pure shear.

How the 30 chords and the 12 irregular pentagons deform under far-field motions of simple
shear is displayed in Fig. 5.10. It demonstrates that the individual chordal and pentagonal
constituents deform in a non-homogeneous manner during simple shears, like they do for
pure shears. However, unlike pure shears whose collective chordal and pentagonal responses
remain isotropic, here they diverge slightly from isotropy under motions of simple shear.
Simple shears in the 12 and 23 planes have the same collective response; whereas, simple
shear in the 13 plane has a slightly different response with respect to changes in the shearing
direction.

The thermodynamic strains arising from a Gram—Schmidt factorization of the defor-
mation gradient specify three strain measures pertinent to a membrane: dilation ¢ =

In y/ab/agby, squeeze ¢ = Iny/aby/agh and shear v = g — go, where elongations a and b

and magnitude of shear g are illustrated in Fig. 2.2.
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Dodecahedral Pure Shear: 1 & 2 Directions
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Figure 5.9: Response of a dodecahedron exposed to far-field pure-shear motions in the sense
of Treloar [9]: @ = ¢, b = 1/¢ and ¢ = 1 in the top images; a = 1, b = £ and ¢ = 1/{ in
the middle images; and a = 1/¢, b = 1 and ¢ = { in the bottom images, with ¢ denoting an
elongation of extrusion.
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Figure 5.10: Response of a dodecahedron exposed to far-field simple-shear motions.
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The curves in Figs. 5.9 & 5.10 were obtained from geometric measures for chordal strain
In(L/Lo) and areal dilation In+/A/Ay. They were computed under separate far-field con-
ditions of pure and simple shears. The curves in Figs. 5.11 & 5.12 were obtained from
thermodynamic measures for membrane strain under the same far-field deformations.

Figures 5.9-5.12 allow us to conclude that if septal dilation were the only mode of pla-
nar deformation thought to cause a mechanical response, then knowledge of the geometric
strain & = ln\/m would be adequate; there would be no need to introduce a separate
finite element discretization of the septal planes for acquiring their deformation gradients.
However, if the non-uniform responses of squeeze € and shear v are thought to contribute to
the overall mechanical response of these membranes, then the shape functions of Wachspress

[42, 43] ought to be used for acquiring the deformation gradient within a septal plane.
5.3 Constitutive Theory

We recall from our kinematic study of a dodecahedron that the geometric strains (i.e.,
e := In(L/Lyg) for the elongation of septal chords, £ := In/A/Aj for the dilation of septal
membranes, and = := In &/V /V; for the dilatation of alveolar volume) are equivalent to one

another under motions of uniform expansion/compression.
5.3.1 Green Thermoelastic Solids: Uniform Motions in 1D, 2D, and 3D

Combining the First and Second Laws of Thermodynamics governing uniform, reversible,

adiabatic processes results in the following three formulee, one per dimension; they are

In 1D: dU = fdn + ;- FdL/L (5.26a)
In 2D: dU = 0dn + ;- TdA/A (5.26b)
In 3D: dU = 6dn — Ps% Pdv/V (5.26¢)

wherein U is an internal energy density (erg/g = dyne.cm/g), which is a function of state,

0 is a temperature in Kelvin (273 4+ °C), 7 is an entropy density (erg/g.K), L is a length of
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Figure 5.11: Same boundary conditions as in Fig. 5.9. Pentagonal areas were used to compute
dilation in Fig. 5.9. The shape functions of Wachspress were used to compute dilation here.
The uniform response in the right column of Fig. 5.9 and in the left column above are the
same, providing additional assurance that the code has been correctly implemented. The
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Figure 5.12: Same boundary conditions as in Fig. 5.10. Pentagonal areas were used to com-
pute dilation in Fig. 5.10. The shape functions of Wachspress were used to compute dilation
here. The uniform response in the right column of Fig. 5.10 and in the left column above
are the same, providing additional assurance that the code has been correctly implemented.
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line (cm), A is an area of surface (cm?), V is a volume of space (cm?), F' is a force (dyne), T
is a surface tension (dyne/cm), and P is a pressure (dyne/cm? = barye), whereas the mass
densities pyp (g/cm), pop (g/cm?) and psp (g/cm®) associate with a reference state of per

unit length, or per unit area, or per unit volume, as appropriate.
5.3.1.1 Constitutive Fquations

Because the internal energy density U is a state function, its differential rate of change
describes a Pfaffian form [33] out of which the following constitutive formulse are readily

obtained

In 1D: 6 =0,U(n,e) F =pipd.U(n,e) (5.27a)
In 2D: 0 = o,U(n, &) 7 = pap OeU(n, §) (5.27b)
In 3D: 6 =0,U(n,2) I = p3p d=U(n, =) (5.27¢)

where strains are logarithms of dimension-appropriate stretches. As a matter of convenience,
we adopt the notation 0,U := 0U/dn, etc. Here, m := 2T and II := —3P are the measures
for surface tension and pressure that we use in this work. We find it useful to use this
negative measure for pressure because the transpulmonary pressure in lung, under normal
physiologic conditions, is typically negative; hence, IT would be positive in its specification
of transpulmonary pressure.

We consider response variables for temperature and force/surface-tension /pressure to be
C"! functions of state; therefore, the internal energy U is a C? function of state in a Green
thermoelastic solid undergoing uniform adiabatic motions (cf. Weinhold [47] and Gilmore
[48]). Under these conditions of smoothness, one can differentiate Eqn. (5.27), thereby

producing the following collection of coupled, partial, differential equations with exchanging
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cause and effect between entropy and temperature In 1D:

d 0/0,, U —0nU /0 U 0-1d6
n _ /7777 n /nn (5.28a)
dF p1D0 6e,7U/67mU p1D(CeeU — 66,7U-8,76U/5,777U) de
In 2D:
d 0/0,,U —0peU /00 U 0-1do
n _ /O neU /O (5.28b)
dm papb a&nU/annU pgD(é’ggU — ﬁgnU-angU/&’m,U) d¢
In 3D:
d 0/0,, U —0,=2U/0,,U 0—1d6
n _ /nn n /nn (5.28¢)
dII p3D9 65,7U/8777,U pgp(aggU — 8577U-6n5U/6m7U) d=

where we recall that de = L™ dL, d§¢ = 1A™*dA and d= = 1V ~1dV.

5.3.1.2 Material Response Functions

Experiments are typically done to quantify the following material properties, defined here

as tangents to response curves, and selected per a material’s physical dimension.

In 1D:
dn L'dL dF
- = < Bypi= o 2
Ori=gwagl, . YT oag ), L, O
In 2D:
dn A1dA T
— = = 2 M = - 2 b
Ori=gval,., T ede |, T 0= giaal,., ¥ )
In 3D:
dn v-ldv —dP
C = [ — = 3 K = —_— 529
P, T eag |, 0 0= vrav|,, 02
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whose analogs as secant functions are defined in Appendix D.

The various thermal strain coefficients ar, ar, ap are, however, distinct from one another.
Even though each is dimensionless, each is defined with respect to its own physical dimension.
Nevertheless, because In(L/Lg) = 31In(A/Ag) = 3In(V/Vp), it follows that ar = 2ap and
ap = 3ap, so there is really just one thermal strain coefficient, i.e., ap, that, hereafter, is
denoted as «; where the subscript ‘¢’ denotes tangent.

The various specific heats Cr, Cr, Cp (erg/g.K) are distinct, yet essentially, they are
equivalent as each is defined per unit mass, insensitive to dimension. They are evaluated at
a fixed thermodynamic force, which does depend upon dimension. Hereafter, we will denote
the tangent response to specific heat as C; that, in Appendix D, is shown to relate to the

secant version of specific heat C; via

F — F,
1D: Ot = CS — asplTHO (530&)
2D: C,=C,—a, Wp;}g" (5.30D)
II-1II
3D: Ct = Cs — OéspgTeo (530C)

where C is the density of specific heat at constant pressure that one typically finds tabulated
in the literature. Usually, the secant and tangent versions for the thermal strain coefficient
are equivalent, i.e., ay = ;. Here Fy), my and Il are the force, surface tension, and pressure
associated with some specified reference state.

The various tangent moduli Fy, My and Ky are also distinct. They have different di-
mensions. Material property Ejy is a modulus of extension (dyne); material property My
is a modulus of dilation (dyne/cm); and material property Ky is a modulus of dilatation
(dyne/ cmz), a.k.a. the bulk modulus, with each modulus being measured at a fixed tem-
perature. The above material properties are gradients. They constitute tangents to their
associated physical response curves, and as such, are denoted hereafter as E;, M; and Kj.

Consequently, they need not be of constant value throughout state space, like a Hookean
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material would suppose them to be. In other words, the secant and tangent moduli need not
be the same at any given state.
In terms of the material properties, Eqn. (5.29), of which there are three per dimension,

the internal energy density has three curvatures that associate with it. For 1D materials:

/01D92 CiE0 —o B0
OgnU = OecU = , OpeU = 0pU =
! p1pCil — o By’ p1pCil — o E, ! ! p1pCil — o E,
(5.31a)
For 2D materials:
pQDQQ 4CtMt0 —40étMt6
OgyU = OgeU = OpeU = 0, U =
T penCif —4afM,” T popCif —4afMy T T T 9yl — daf M,
(5.31b)
For 3D materials (cf. Weinhold [47] and Gilmore [48]):
p3D02 9Cth0 —904th9
8U= 5::(]: 6:UE&:U=
" p3pCrt) — 9041:2Kt7 - p3pCrl — 9041:2Kt’ = = p3pCil — 905%Kt
(5.31c)
These materials constants are constrained by thermodynamics in that
0 0 0
O<Et<p1D§t , O<Mt<p2DC2’t , O<Kt<p3DCZ’t (5.32)
« 4o Yo

t t t

which ensure that their respective thermodynamic Jacobians cannot become singular.
5.83.1.3  Thermoelastic Models for Modeling Alveoli: Uniform Motions

We now write down our constitutive formulae for quantifying uniform responses in thermo-
elastic solids of 1, 2 and 3 dimensions. They are thermoelastic constitutive equations (5.28)

with Helmholtz variables expressed in terms of the material properties defined in Eqn. (5.29)
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assigned to the internal energy density U according to Eqn. (5.31), with outcomes of:

N —

d Cy —a2E,/pf oFy/pb 0=1de
For 1D: My _ |G B/t /o (5.33a)
dF —CYtEt Et de
J |
’
d Cy —4a2M,/pf 4oy, M,/p0 | | 071do
For 2D: M\ _ | G daiM/pf Ao/ (5.33b)
dr —40475Mt 4Mt dg
J |
=
d Cy — 902K, /p0 9oy K, /pf | | 671 do
For 3D: |G Sekilob Sankafp (5.33¢)
dH —QO{th 9Kt dE
J |

We simplify our expressions by suppressing the dimension for which mass density applies.
Equation (5.33) has cause and effect variables that are appropriate for our multiscale
application. In this process, a localization procedure pulls the temperature and deformation
gradient taken from the parenchyma scale down to the level of an alveolar scale. Differential
strain rates dU - U~ are then constructed through appropriate finite difference formulee,
where U denotes the Laplace stretch. These continuum rates are then mapped into our local
thermodynamic rates, with alveolar entropy and stress following from a numerical integration
of the above constitutive equations. These constitutive equations apply to the various facets

of our dodecahedral model for an alveolar sac through a finite element discretization.
5.3.2 Green Thermoelastic Membranes: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic process
are described by the formula dU = 0 dn—i—% dW, where dWW is the mechanical power expended
by stressing a material element of mass density p. For the case of a 2D planar membrane, a
mass density of p < pop applies, with its change in mechanical work being expressed as

Si1 Si2 a~tda ((l/b) dg

dW = tr =ndé+ode+7dy (5.34a)
821 822 0 b_l db
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wherein §;; are the components of a surface tension in the co-ordinate frame of a membrane.
Equation (5.34a) conjectures that the First and Second Laws of Thermodynamics can be

expressed as a differential equation known as a Pfaffian form that, in this case, looks like
dU =0dn+ 5 (rd¢ + ode +7dy) (5.34b)

Conjugate pair (£, 7) describes a dilation 2d¢ < A 'dA caused by a surface tension
7 < 2T Pair (g, 0) describes a squeeze ¢ (or pure shear) caused by a normal-stress difference.

And pair (v, 7) describes an in-plane shear 7 caused by a shear stress 7.
5.83.2.1 General Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic process is
described by an exact differential [33], with U(n,,e,v) in the case of a planar membrane,

it follows that a constitutive response for a Green thermoelastic membrane is described by

0=20,U(n,&e,y) w=poUm,Een) o=pdUmEen) 7=pdUmnEe-~) (535)

The constitutive expressions can be recast into the following system of differential equations

( A [ 7 { 3\

do oU  0peU  0,,U  0,U dn

dm OecnU  pOecU  pOeU  p e, U d¢

) [ _ pOgnU  pOgcU PO P Ogy ) | (5.36)
do pOU pocU po:U po,U de

de} _p@an pOveU po, U pawU_ kd’y)

The above 4 x 4 matrix describes the full non-uniform response permissible by a Green
thermoelastic membrane undergoing an adiabatic process. For our application, it is reason-
able to assume that the presence of a non-uniform planar motion will not cause an uniform
planar response. As such, 0,.U = 0,,U = 0,.U = 0,,U = 0. It is also considered that

the pure and simple shear responses act independently, too, so that 0,.U = o0.,U = 0.
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Converting the above internal energy formulation into its Helmholtz equivalent produces

d 0/0,,U —0,eU /0, U 6-1do
Ui _ /O neU /O (5.37a)
dm pb OeyU [ OyU p(aﬁﬁU - a&nU'anﬁU/amlU) d§
where both 71 df and d¢ = %Ail dA are logarithmic rates, and
do o-:U 0 de
=p (5.37b)
dr 0 o0,U| [dy

where de = I'" 1 dI is logarithmic in structure, while dy = dg is linear in deformation field.
5.3.2.2  Constitutive Fquations Governing a Thermoelastic Membrane

It is the Gibbs free-energy potential (viz., G(6,7,0,7) = U — 0n — n{ — o — 77y, which
exchanges cause and effect with that of the internal energy U(n, &, e,7)), that is most easily

expressed in terms of our material properties. The upper-left 2x2 sub-matrix, which describes

the uniform response, can be rearranged to read as

d Cy —4a2M/pd 4cM/pd | | 6~1do
A iM/p M /p (5.38)
drm —4ay M 4M dé

where M = M,(0,&, ), while the non-uniform or shear response is given quite simply by

do ON 0| |de
= (5.38b)

dr 0 G dvy

where N = Ny(e,0) and G = Gy(v, 7). Collectively, moduli M;, N;, and G, describe the

tangent mechanical response of a thermoelastic membrane.
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5.3.3 Green Thermoelastic Solids: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic process
done on a 3D body result in the formula dU = 6#dn + %dW, where dWW is the mechanical

power expended by stressing a body with a mass density of p; specifically, [28, 5, 6, 49]

S Sz Siz| |atda (a/b)dy (a/c)(df — ady)

dW = tr 821 822 823 0 b=t db (b/C) do
S31 Sz Ssa 0 0 ¢ tde
3
i=1
which is subject to constraints o3 = —(01 + 02) and deg = —(de; + dey).

The above expression conjectures that the thermodynamics of a 3D elastic solid contained

within the confines of an adiabatic enclosure can be described by the Pfaffian equation

1 2 3
dU =60dn + — (H d= + Z o;de; + (01 + 09)(dey + deg) + Z Ti d%) ) (5.39b)

p i=1 i=1

5.3.83.1 Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic process
is described by an exact differential [33], with U(n, =, &1, e2,71,72,73) in three space, it
necessarily follows that a constitutive response for a Green thermoelastic solid is governed

by two constitutive equations for temperature and pressure [32]

0= aﬂU(na57€17527717’72773)7 IT= paEU(n75>€17€2771772773) (540&)
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two constitutive equations for the normal-stress differences

o1 1 2 —1 paglU(Tl,57517527'}’1’72773)
= _ 5.40b
> ( )

02 -1 2 pa€2U(n757617627711727’73)
and three constitutive equations for the shear stresses

1 =p0 U, B e1,€2,71,72,73), T2 = p0y,U(n,Z,e1,€2,71,72,73)

73 = p 0y, U(n, B, €1,82,71,72,73) (5.40c¢)

Considering each, independent, intensive variable, to be a C* function of each, independent,
extensive variable, then the internal energy U will be at least a C? function of state, and

therefore the constitutive expressions can be recast into the following system of equations

( [ T ( 3
do ) OngnU On=U One, U One, U On U Onvya U Onys U dn
dII 1% 65nU P 655U P 0581U 1% 6552U P 6571 U 1% 6572 U P 65»‘{3 U =
doy pMy, pM= pMye  pM, pMy,, pM, pM, dey

Vdoa ¢ = | pMa,, pMoz pMy,, pMs, pMs, pMs, pMs, { deg ¢ (5.41)

dm pavan pa’YlEU pa’YlalU pa’YIEQU pa'Yl"/lU pa’h’yzU pa’Yl’YsU dm
drp P 6’7277U P 072EU p a'YQEIU p a“/2€2U p a72“/1(] p a“/2721'] p 6W2“/3U dPyQ
drs | P OyinU  pOy,2U  p0y,e, U p0yye, U pOysys U p0yyn U pOsyny U_ ds

\

The squeeze response associates with tangent moduli that are defined accordingly

My, = 3(20.,,U — 0-,,U) Moy = £(20e,yU — 02,,U) (5.42a)
Mz = 3(20.,2U — 0c,=U) Msz = 5(20,2U — 0.,=U) (5.42b)
Mie, = 5(20:,6,U — 0cye, U) My, = 5(20206,U — 02y, U) (5.42¢)
Mizy = %(202,6,U = 0eye,U) Maey = 3(202y6,U = 0e12,U) (5.42d)
My, = 3(20:,1,U — 02,1, U) May, = 3(20ey0, U — 02,4, U) (5.42e)
My, = 3(206,5,U — 0257,U) Moy, = 3 (20237, U — 02,,U) (5.42f)
My, = 3(20e,5,U — 0253,0) Moy, = 3 (20207, U — 02,1, U) (5.42g)
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Collectively, Eqns.(5.41 & 5.42) describe the full non-uniform response permissible by a Green
thermoelastic solid expressed as a hypo-elastic material undergoing an adiabatic process.

As in the case of membranes, it is reasonable to assume that the presence of a non-
uniform motion will not cause an uniform response. For our application, it is also reasonable
to assume that there is no coupling between the modes of squeeze and shear. Furthermore,
it is assumed that there is no coupling betwixt the two independent squeeze modes, nor
between the three independent shear modes. Consequently, all mixed partial derivatives
that associate with a non-uniform response are taken to be zero.

Therefore the above system of equations can be rewritten as three independent systems
of differential equations; specifically, the first differential matrix equation when written in
terms of Helmholz state variables is

d 0/0,,U —0,2U/0,, U 6—'de
n _ /Om w2l /O (5.43a)

dII p@ aEnU/ﬁme P(ﬁzzU — 5577(]57751]/57777(]) d

(1]

recalling that d= = %V‘l dV, plus a full matrix equation that governs the squeeze response

dor | p |2000U =045V | | de 5.130)
31 0..U 20.,.,U | | dey

d0'2

and a diagonal matrix equation that governs the shear response

dTl 671 ol U 0 0 d’}/l
drop=p| 0  0,,U 0 dy, (5.43¢)
drs 0 0 Oyans U dys
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5.3.3.2  Constitutive Equations Governing a Thermoelastic Solid

In terms of the material properties, the uniform response of the thermoelastic solid given

in Eqn. (5.43a) takes on the form of

d C, — 902K /pf 9aK/pd | | 6-1do o=
| _ |G /p /p | (5 4da)
dIT —9aK 9K d= K = K(0,11, =)
while the non-uniform squeeze response is described by
do 3| 2N =Ny | |de Ny = Ny(o1,€1)
= > o L (5.44b)
doy —Ni 2N, dey Ny = Ny(09,€9)
and the non-uniform shear response is described by
dn Gy 0 0 dv; Gy = Gi(11,m)
d7’2 = 0 GQ 0 d’)/g 5 G2 = Gt(72> 72) (544C)
drs 0 0 Gs dvs G3 = Gy(13,73)

which is the general form for a thermoelastic solid that we shall use going forward.
5.3.4 Modeling an Alveolus

To facilitate the numeric implementation of our models, and to facilitate interpretations
of their results by engineers and scientists whom will use our framework, this section converts
all fields defined in 1D and 2D into their 3D analogs; specifically, forces and surface ten-
stons are converted into stresses, all moduli will now have units of stress, all thermal strain

coefficients associate with linear expansions, and all mass densities relate mass to volume.
5.3.4.1 Constraints/Assumptions for Alveoli Subjected to Shock Waves

Because the primary purpose for the alveolar model being constructed here is to better

understand alveolar behavior as a shock wave passes over it, there are certain assumptions
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that we impose upon our model that under normal or different physiologic conditions might
otherwise not apply.

First: An alveolus is considered to be an adiabatic pressure vessel in which air and heat
cannot move into or out of as a shock wave passes over it, simply because the wave speed is
too fast. There is insufficient time for t hese transport phenomena to occur.

Second: Whenever a lung is subjected to a shock wave there is insufficient time for the
viscous characteristics in a viscoelastic response to manifest themselves; therefore, the overall
response is modeled as glassy elastic.

Third: Even though one could construct a mixture theory for the modeling of alveolar
membranes, it would be challenging to establish their boundary conditions, nor would we be
able to construct the necessary experiments to parameterize it. Consequently, an isotropic,
elastic, homogeneous continuum is assumed for modeling the planar septa.

Fourth: Temperature remains continuous in a jump across the kinematic discontinuity
caused by a shock wave traveling through a compressible gas. [50] As such, temperature is
expected to be continuous across the spatial discontinuity of a shock wave traveling through
parenchyma, too. Nevertheless, temperature is expected to change both in front of and be-
hind a traveling wave, where the alveolar sac first compresses and then exapnds. Throughout
this excursion, the overall process is considered to be adiabatic. Furthermore, because tem-
perature changes are expected to be small, and wave speeds are fast, the finite element
models being developed here assume temperatures will remain constant.

Fifth: Alveolar surfaces are modeled as membranes, not plates, and therefore are as-
sumed to have no out-of-plane bending stiffness. This is in concert with our assumption
that the septal chords are modeled as rods, not beams, because of their slenderness ratio.
Furthermore, these septa tend to be flat because there are roughly equal pressures acting
on both sides of these membranes, thereby eliminating any curvature, which is the driving

force behind out-of-plane bending [40] and, we surmise, also helps to suppress wrinkling.
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transpulmonary pressure 4 cm H,O
Age 15-35 36-45 > 65
collagen: /D, (um)*? | 0.952 + 0.242 0.958 + 0.255 1.045 + 0.270
elastin: /D, (um)? | 0.957 £ 0.239 0.970 + 0.213 1.093 + 0.274
transpulmonary pressure 14 cm H,O
Age 15-35 36-45 > 65

collagen: v/D, (um)'/? | 0.955 + 0.246 0.994 + 0.237 1.054 + 0.279
elastin: v/D, (um)Y? | 0.956 + 0.237 0.988 + 0.263 1.079 + 0.281

Table 5.4: Mean and standard deviations in variance for the square root of septal chord
diameters v/D reported by Sobin et al. [51].

5.8.4.2  Modeling Septal Chords Subjected to Shock Waves

The extent of elastic energy stored within a chord will depend upon the diameters D¢
and D¢ and length L of these individual fibers. Let superscript ‘“’ denote collagen, and
superscript ‘¢’ denote elastin. Sobin et al. [51] determined that the square root of their
diameters v/ D distribute normally, with a mean D2 and standard deviation oJB that also
depend upon age and transpulmonary pressure, as presented in Table 5.4.

The collagen and elastin fibers that make up a septal chord have the same length L, they
experience the same strain e, and they exist at the same temperature ; therefore, we employ
Eqn. (5.33a) as the governing constitutive equation to describe their mechanical behaviors;

specifically, for the collagen fiber in an alveolar chord

dn° Cs — (a§)*E°/p°0  aSE°/p°0 61 do
T P — (o)) E/p PEp (5.45)
ds® —ay B¢ E* L=tdL
where E° = Ef(6,e,s°), and for the elastin fiber in an alveolar chord
dn° Cy — (af)?E¢/p°0 ofE°/pd 6-1de
U O (af)*E%/p (E/p (5.45D)
ds® —afE* E¢ L~'dL
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where E¢ = E£(0, e, s¢), and where n° and n° are the entropy densities (erg/g.K) for collagen
and elastin; s := AF°/AS and s¢ := AF®/A¢ are the chordal stresses (barye = dyne/cm?)
carried by the collagen and elastin fibers, wherein A\ = L/Lg is the fiber stretch, A§ and
Ag are their traction-free cross-sectional areas (cm?), and F° and F€¢ are the forces (dyne)
they transmit. Parameters Cf and Cy are their specific heats at constant pressure (erg/g.K),
af and of are their lineal thermal strain coefficients, £ and E° are their elastic moduli
(dyne/cm® = erg/cm®), and p° and p¢ are their mass densities (g/cm®). These differential
equations are subject to initial conditions considered to be s§ = s°|L_1,, s§ = |-y, 1° = 1§
and n° = 75, where n§ and 7 are their respective entropy densities at rest. In vivo, s and
sg are positive valued, cf. Appendix D; whereas, ex vivo, s and s would be zero valued.
The actual force and entropy of an individual septal chord in our alveolar model is taken

to be one third of a fiber’s calculated values, as determined by Eqn. (5.45), because each

alveolar chord is typically shared between three adjoining alveoli; consequently,

FFP= (ASsC 4+ ASs®) /3N and ST = (p°ViEn© + pVien®)/3 (5.46)

where F/ (dyne) is a third of the fiber’s force carried by a septal chord, and S (erg/K) is
a third of the fiber’s entropy.

Both collagen and elastin are modeled as Freed—Rajagopal biologic fibers, which are
described in terms of two such internal energies. Their model is derived from the theory of
implicit elasticity, cf. Appendix D. According to their model, Eqn. (D.7), tangent compliances
for collagen and elastin, pertinent to the hypo-elastic constitutive formulation of Eqn. (5.45),

are described by

1 e —ef 1
— max PR 5-47
Ef(0,s¢e)  Efe§ . +2(s¢—sf) * ES (5.47a)
! ¢~ ! (5.47b)

Ef(0,se)  Bief +2(s* —s5) | E5
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whose internal strains are established from

. . 0 5¢ — 5§ . . 0 s¢ — 5§
elze—atln<90)— ESO, elze—atln(eo)— E§O (5.47c)

with 6y being body temperature, i.e., 310 K. Material constants E{ and ES are the two
asymptotic moduli for collagen that bound its response, i.e., Ef < Ef < Ef, while Ef and
ES are the two asymptotic moduli for elastin that bound its response, viz., Ef < EY < E¥,
both having units of stress (barye = dyne/cm?), with ef ~and e being their respective
transition strains (see their derivation in Appendix D). Collagen fibers are considered to
fracture whenever the strain of stretching molecular bonds exceeds €4 := s%/Eg, where s is
the fracture stress. In contrast, elastin fibers are assumed to remain intact.

Moduli Ef = EYES/(ES + ES) and Ef = E{ES/(E{ + ES) are considered to apply for
stresses less than their respective reference stress, viz., for s¢ < s or s < s, to which

we assign values of s§ = 1FE%¢ and s = 1E¢%¢ . At these reference stresses, L is
0 271" 1ma 0 271 % max )

set to Ly and therefore strain e = 0. Material properties needed to model septal chords
are listed in Tables 5.4 & 5.5. Collagen denatures at around 60°C [60], i.e., above this
temperature collagen will shrink rapidly—an effect not modeled here. From Eqn. (5.32),
these elastic moduli are bound from above by Eqn. (5.32) implying that F¢. = 2.25 x

max

10'2 barye (dyne/cm®) and E¢, = 1.7 x 10'? barye. We therefore observe that ES and ES

max

are about 10° times smaller than F¢__ and F¢__. which seems reasonable for in vivo fibers.

max max’

5.3.4.8 Modeling Alveolar Septa Subjected to Shock Waves

The thermoelastic response of a planar membrane used to model alveolar septa, described
in Eqn. (5.38), is used for modeling alveolar septa subjected to shock waves, where s™ := 7/h
has units of stress (dyne/cm?) with h denoting height or thickness of the spetal membrane.
Assuming the volume of a septal membrane remains constant, thickness would obey h =
ho exp(—2€) with hg being its reference thickness. s” := o/h and s™ := 7/h also have units

of stress (dyne/cm?).
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Collagen
¢ [g/em”] | 1.34 Fels [52]
ns lerg/g.K] | 3.7 x 107
C¢ lerg/g.K] | 1.7 x 107 Kanagy [53]
af = af 0.056 Weir [54]
eg 0.09 +0.018 estimated from TLC =~ 30%
¢ 0.25 + 0.025
Ef  [barye] | 5.0 £ 1.0 x 10°
ES  [barye] | 5.0 £ 0.5 x 107
sG  [barye] | Efef /2 assumption
Elastin
Parameter Value Reference
p¢ [g/em®] | 1.31 Lillie & Gosline [55]
ne lerg/g.K] | 3.4 x 107 Shadwick & Gosline [56]
Cr lerg/g K] | 4.2 x 107 Kakivaya & Hoeve [57]
al = af 0.1 Lillie & Gosline [55]
¢ 0.4 £0.08 Shadwick & Gosline [56]
E¢  [barye| | 2.3+ 0.3 x 10° | Urry [58, Fig. 18]
ES  [barye] | 1.0 £ 0.1 x 107 | Lillie & Gosline [59, Fig. 5]
sq  [barye] | Efe /2 assumption
Table 5.5: Physical properties for hydrated collagen and elastin fibers.
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Property Value

o lg/em’] | L1

no lerg/g.K] | 5.0 x 10°

C, lerg/g.K] | 2.1 x 107

oy 0.037

e 0.24 + 0.24

& 0.2

M, [barye] | 1.0 £ 0.1 x 10*
M, [barye] | 3.0 £0.1 x 10°
s [barye] | Mi&,,./2
Vimax 31/ 2

G, [barye] | M;/25

Go [barye] | My/25

Table 5.6: The elastic properties reported here are for visceral pleura taken from Freed et al.

[28] and parenchyma taken from Saraf et al., [61].

By diminishing the moduli that are appropriate for describing a basement membrane with

thickness ~0.5 um by a factor of 10, one gets an estimate for the effective septal moduli—an

estimate applicable when modeling a whole septal membrane with thickness ~5 ym. We

employ the model parameters specified in Table 5.6, which are based upon this assumption.

For our purposes, we model this collective ensemble of tissue and structure types as a homo-

geneous isotropic membrane modeled after the Freed—Rajagopal biologic fiber [62] that we

have extended to membranes in App. D, specifically

0 ST — g7
=¢—alnl =) — 0
f=¢-aln (90) AN,

1 e — &1 1
= 1 - + —_—
Mt(07 57 Sﬂ—) Mlglmax + E(Sﬂ— - SU) M2

and

T

1 SE0(V1) Vimax — N1 1 s
N A M =Y A
Ge(7,57)  G15gn(M1) Vg + 25 G G

(5.48a)

(5.48Db)

where compliant, initial, tangent moduli M; and G and stiff, terminal, tangent moduli M,

and G5 bound their respective responses so that M; < M; < My and G7 < Gy < Gy, with
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a gradual transition between their asymptotic bounds occurring around strains of &, and
V1,..., With membrane failure or rupture being considered to only occur in the dilation mode
whenever £ > &;.

Whenever s™ < s, modulus M, is assigned a value of M; = M My/(M; + Ms) that is
the tangent modulus at reference stress s, which we take to be %lelmax. Negative surface

tensions cause wrinkling of a membrane surface, which is not addressed here.
5.8.4.4 Modeling an Alveolar Volume Subjected to Shock Waves

Alveoli are connected to bronchial trees via alveolar ducts. Under normal conditions, air
moves in and out of the alveoli via these ducts. However, when subjected to a stress wave
passing over an alveolus, there is no time for the transport of air to take place. Hence, we
can consider the air (and heat) within an alveolus to become "trapped’, and the pressure to

be uniform therein. The governing thermodynamic process is therefore adiabatic.
5.8.4.5 Alveoli Filled with Air

Considering the water saturated air within an alveolus to be an ideal gas, then [63]

PV =nRO or 2V _ h%
) 0o

= nR = constant (5.49)

where, in our case, P is taken to be the atmospheric pressure at sea level (1 bar or 10° Pa or
10 barye), with ¥ being that alveolar volume whereat alveolar pressure and plural pressure
are both atmospheric, while 6y = 37°C = 310 K is assigned as body temperature. Parameter
n is the molar content of gas within an alveolus, and R is the universal gas constant.

The material properties associated with an ideal gas contained within an adiabatic en-

closure are

oL

0 0 oV
L 00

1 RV ol 0 Vo
— and K, =-V —| =P —— 5.00a
P 390 PV ! 6L 0 0 90 ! ( )

. 3V o0

(7

with the other two material properties pertaining to moist air at body temperature being
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its mass density p of 1.125 x 1073 g/cm3 and its specific heat C; of 1.007 x 107 erg/g.K
at constant pressure, constrained by K; < K., = pCif/a? ~ pCify/9 = 3.9 x 10° barye.
An alveolar sac, when modeled as an adiabatic pressure vessel filled with an ideal gas, is

described by

d Cy — 902K, /p0 9, K, /pf | | 0~ do
n _ t i Ki/p Ke/p (5.33¢)

-3 dP —QQ{th 9Kt dE

where the entropy within an alveolar sac is given by S* = pVn whose initial condition is
¢ = pVomo with pno being the entropy per unit volume of humid air at body temperature

and atmospheric pressure, viz., pny = 7.770 x 10* erg/ cm® K.
5.3.4.6 Alveoli Filled with Fluid

In lung tissues that are not healthy, fluids may fill alveolar volumes at various regions
throughout a lung. In such localities the mechanical response of the local parenchyma will
be vastly stiffer than that of healthy tissue, and as such, it will respond very differently to
an imposed traveling shock wave.

In the presence of a passing shock wave, we suppose that an unhealthy alveolar sac, like
a healthy one, can be modeled as an adiabatic enclosure, but now the fluid within such an
alveolus is considered to behave, momentarily, like an elastic solid, viz., as the glassy, elastic,

upper-bound response of a viscoelastic liquid, which blood is, for example.
5.3.5 Code Verification and Capabilities of the Constitutive Equations

Figure 5.13 presents realistic variability with what one should expect for chordal responses
in the alveoli of lung for the deformation out to 10%, 20%, 30% and 40% strains. Both the
chordal force and entropy (actual entropy, not entropy density) were calculated using the
rule of mixtures based upon volume fractions of collagen vs. elastin. The change in chordal
entropy was so small that variability caused by variation in volume fraction dominates this
response; hence, relative changes in entropy (S—Sp) had to be plotted to visualize the effect.

The three conjugate pairs that describe a membrane’s response are presented as rows in
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Figure 5.13: Relative force/strain (left column), relative nominal stress/strain (center col-
umn), and relative entropy /strain (right column) curves for septal chords comprised of indi-
vidual collagen and elastin fibers whose material parameters are listed in Table 5.5, which
are described in terms of probability distributions.
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Fig. 5.14—one row per experiment, with there being 30 curves per plot. These conjugate
pairs describe: uniform dilation (s™, &), non-uniform squeeze (s7,¢), and non-uniform (sim-
ple) shear (s7,7). The three motions that we consider include:

dilation

a=A\ b=\ g—go=0 (5.51a)

pure shear [27]

VA2 A2 V2 A=\

=T b= 9790= 5 (5.51b)
and simple shear
a=1 b=1 g—go#0 (5.51c)

where A denotes a stretch with Ay = 1. For dilation: £ = In\, ¢ = 0 & v = 0; for pure
shear: £ =0, e =In(3(A?+ X %)) & v = (A2 = A %)/(A\* + A ?); and for simple shear: £ =0,
e =0& v = g—go. The constitutive model is that of Eqns. (5.38 & 5.48), applying material
parameters (and their variability) given in Table 5.6. In the dilation experiment (top row)
there is only uniform (s7,&) response. There are no non-uniform responses, neither (s ¢)
nor (s7,7) in an uniform dilation, either theoretical or numerical. The pure shear experiment
(middle row) is dominated by both a squeeze (s%¢) and a shear (s7,y) response, with there
being a small, systematic, dilational coupling through pair (s™,¢) that is on the order of 1
part in 10°.

Observation: The change in entropy caused by deformation has been shown to be
negligible when compared with the entropy present in its reference state. As such, entropy
and its conjugate, i.e., temperature, will not be modeled in our finite element representations

of alveoli being exposed to traveling shock waves.
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Figure 5.14: Membrane response from 30 numerical experiments whose constitutive behavior
is described by Eqns. (5.38 & 5.48) using the parameters listed in Table 5.6. During these
numerical experiments, eight membranes ruptured under dialation, while none ruptured
during these pure and simple shear experiments.
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6. FINITE ELEMENT ANALYSIS [7]

6.1 Quadrature Rules for Spatial Integration

Particular to our application, a suite of nodes is common betwixt three, separate, finite-
element models that share 20 common vertices. These vertices establish the geometry of a
dodecahedron used as the model for a microscopic alveolus. The resultant microscopic force
at each vertex arises from: 7) a finite element model of 30 1D rods representing the alveolar
chords, i) a finite element model of 12 2D pentagons representing the alveolar membranes,
and 7i7) a finite element model of 60 3D tetrahedra representing the alveolar sac. The micro-
scopic forces coming from these three geometric models are summed at their twenty common
vertices.

Shape functions are introduced for interpolating within an element; specifically, consider

an arbitrary field, say f, whose values are known at the nodes, then

(&) = Y V(€ () k=12 m (6.1

where the x; are co-ordinates that locate one of the n nodes in an element of interest, and
where the &, are co-ordinates that locate one of its m Gauss points, both being evaluated

in the natural co-ordinate system of the element. Functions N; are the so-called shape

functions. They obey > | N;(§) =1V €.
6.1.1 Self-Consistent Interpolation Procedures for Rods

Considering a rod with two Gauss points, the interpolation of an arbitrary field (say
f, whose values are known at nodal points x;, i = 1,2) into approximated values located
at Gauss points &;, assigned according to Table 6.1 which approximates Sl_l (&) d€ using
two Gauss points, i.e., Sil f(&)d¢ ~ 23:1 w; f(&;). The weights of quadrature w; sum to its

length, because L = Sl_l d¢ = 2. Selecting shape (interpolation) functions N; = %(1 — &) and
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node | £ co-ordinate weight
1 —/3/3 1
2 V3/3 1

Table 6.1: A quadrature rule for integrating functions over a length of line.

N, = %(1 + &), where —1 < £ < 1, results in an interpolation map that sends values for a

field known at the element nodes down to its Gauss points via

SBT3 4v3 3=V [IED | (6.20)

1) [ 6 3-vE 3evaE| | s

6.1.2 Self-Consistent Interpolation Procedures for Triangles

Now, considering a triangle with three Gauss points, the interpolation of an arbitrary field
f whose values are known at nodal points x;, i = 1,2, 3, into approximated values located at
Gauss points &, assigned according to Table 6.2 that approximates Sé Séfﬁ f(&,m)dnd€ using
three Gauss points, i.e., Sé Sé_f f(&n)dndé ~ Z?:1 w; f(&,m;). The weights of quadrature
w; sum to its area, because A = Sé Séfﬁ dnd§ = 1/5. Selecting shape (interpolation) functions
Ni=1—-&—m, Ny =& and N3 =10, where 0 < ¢ < 1land 0 <n<1—¢, results in an

interpolation that maps according to

Jf(V6, V/s) 4 1 11 | £0,0)
f(%/3, %) =(13 1 4 1|13 f(1,0) - (6.3a)
f( Vs, %) 11 4| |f0,1)

6.1.3 Self-Consistent Interpolation Procedures for Pentagons

Because we seek a quadrature rule for regular pentagons that employs five Gauss points,

and pentagons posses five radial lines of symmetry, it is reasonable to consider that the five
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node | £ co-ordinate 7 co-ordinate weight
1 1/6 1/6 1/6
2 2/3 1/6 1/6
3 1/6 2/3 1/6

Table 6.2: A simple quadrature rule for integrating functions over the area of a triangle.

nodes of quadrature that we seek lie along these five radial lines. Specifically, we seek a

quadrature rule for a pentagon whose nodes are located at x;, i = 1,2,...,5, and whose

Gauss points are located at &;, i =1,2,...,5, with

1 = (cos(7/2), sin(7/2)) & = lx,
5 = (cos(97/10), sin(97/10)) &, = lxy
a3 = (cos(137/10), sin(157/10) ) §; = lx3
4 = (cos(177/10),sin(177/10)) £y = lx,
5 = (cos(7/10), sin(7/10)) &5 = (x5

(6.4a)
(6.4b)
(6.4c)
(6.4d)

(6.4e)

where lines radiating from the origin out to each vertex x; have unit length, while the lines

that radiate out to the Gauss points &, each have a shorter length of /.

Implementing the strategies that underlie Gauss quadrature, length ¢ represents a dis-

tance from the pentagon’s centroid out to the centroid of a quadrilateral. In our case, this

area (one of five equivalent areas) is a four-sided polygon whose apex has an inside angle of

108°, whose two shoulders have right angles, while the inside angle is 72° at the origin. A

little bit of algebra and geometry leads to the result

_ 1+ Sin(37r/10)

(= ~ (0.7454
3 sin(37f/1o)

84

(6.5a)



whose area becomes the associated weight of quadrature, it being

w = sin(37/10) cos(37/19) ~ 0.4755 (6.5b)

which is one-fifth the area of a regular pentagon, cf. Eqn. (5.3). To the best of our knowledge,
the quadrature rule put forward in Eqns. (6.4 & 6.5) for pentagons is new to the literature.
Adopting the shape functions of Wachspress, while using the quadrature rule of Eqns. (6.4

& 6.5), results in a symmetric interpolation map of

f(&) a b cc b||f(z)
f(&) b oa b c cf||flz)
SfE)t=1c b a b c|Sflxs)y (6.6a)
f(&4) c cboabl|flz)
f&)) b c c b oa] | flm))

whose matrix elements are a = 0.6901471673508344, b = 0.1367959452017669 and ¢ =
0.0181304711228159.

6.1.4 Self-Consistent Interpolation Procedures for Tetrahedra

We now consider a tetrahedron with four Gauss points. Here the interpolation of an
arbitrary field f whose values are known at nodal points x;, i« = 1,2,3,4, into approxi-
mated values located at Gauss points §;, assigned according to Table 6.3 that approximates
§0 505 507" £(€,m, €) dC dn d€ using four Gauss points, i.e., §; §o° §o 75" f(€,7,¢) dC dnde ~
Zle w; f(&,mi, (). Selecting shape functions Ny = 1= —n—(, Ny =&, N3 =1, and Ny = (,

bounded by 0 < ¢ <1,0<n<1-¢and 0 < ¢ < 1—-£—n, leads to the following interpolation
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node £ co-ordinate 7 co-ordinate ¢ co-ordinate weight
1 0.1381966011250105  0.1381966011250105 0.1381966011250105 1/24
2 0.5854101966249685 0.1381966011250105 0.1381966011250105 1/24
3 0.1381966011250105  0.5854101966249685 0.1381966011250105 1/24
4 0.1381966011250105 0.1381966011250105 0.5854101966249685 1/24

Table 6.3: A quadrature rule for integrating functions over the volume of a tetrahedron.

formula
( A [ ] A
fla,a,a) 1-3a a a al |f(0,0,0)
f(b,a,a) 1—=2a—b b a a| | f(1,0,0)
< r= { ; (6.7a)
f(a,b,a) 1—2a—=b a b al | f(0,1,0)
kf(a,a,b)) 1—2a—b a a b kf(0,0,l))

where a = 0.1381966011250105 and b = 0.5854101966249685 from Table 6.3.
6.2 Finite Element Analysis

The problem that we have set up to solve is cast in a Lagrangian setting and takes on

the general form of a second-order, ODE; specifically,
F-KA+CA+MA (6.8a)
that under conditions of equilibrium (i.e., whenever A=A-= 0) reduces to
F=KA (6.8b)

where K is a secant stiffness matrix, C is a tangent stiffness matrix!, M is a mass matrix,
and F' is a force vector, while vector A contains the assembled nodal displacements with A

and A denoting their velocities and accelerations.

'In the literature, matrix C is typically utilized as a damping matrix; however, there are presently no
damping mechanisms in our alveolar model.

86



Our problem of interest is the dynamic mechanical response of an alveolus, whose geom-
etry is modeled as a dodecahedron. The shape of an irregular dodecahedron is described by

a set of 20 vertices, each experiencing displacements of

) T
u; ° = {uﬁ” UZ(U) wgv)} (6.9a)
where at the beginning of a solution step u{”) := z{") — z{", v := 4 — ) "and W :=
zz(v) — z(() ), while at the end of that solution step ug )1 = xg +)1 — xé ), vfi)l = yl( +)1 — y(()v), and

W — (v)

wy = 2z — 2", with (2, y® 2(")) denoting co-ordinates for vertex v in the co-ordinate

frame (El, E,, E3) of a dodecahedron. The velocities at these vertices are
X0 !
Wl = {i o o} (6.9b)

where at the beginning of a solution step b = Q—dt(éiﬂ —3d;_1), while at the end of that solution

step 0,1 = 5di L (30,41 —46; + 0,_1), with § € {u®, v w®}. Likewise, their accelerations are

2

(v) T
il ={a§“> ) w@} (6.9¢)

where at the beginning of a solution step o = (dt)Q (0;x1 — 20; + d;_1), while at the end of
that solution step (5”1 = ﬁ(%iﬂ —50; +46; 1 — d;_2). An evaluation of these nodal fields
requires knowledge of the co-ordinates for each vertex at states i + 1, ¢, 7 — 1, and i — 2. All
finite difference equations listed above are second-order formulee.

Symbol A is used to denote an assemblage of all nodal displacements, while symbol u”)
is used to denote the nodal displacement of an individual vertex (node) v located within this
model, of which there are 20 in our dodecahedral model.

Our problem is not cast as a typical finite element solution, in the sense that we know the
nodal displacements A, velocities A, and accelerations A a priori, for which nodal forces

F' are to be found. Typically, boundary conditions are known for which displacements are
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determined in a weak sense, which is the opposite of our situation. Inputs for our model are
considered to come from a finite element model of a torso subjected to an impact caused by
either a ballistic projectile or a blast wave.

The assembled nodal forces F'(T'), depend upon stresses T evaluated at the Gauss points,
as do the tangent and secant stiffness matrices, i.e., C(T') and K(T'), which thereby couples
the system of equations that are to be solved. As such, an iterative solver is proposed. The
mass matrix M will vary between solution steps, too, but not because the mass matrix of
a particular element changes, but rather, because rotations of the local co-ordinate systems
for the elements about the global reference frame for the dodecahedron can become large,
and as such, effect change in the assembled mass matrix.

The stress that arises from KA is due to an elastic deformation that begins in some
reference state (at an initial time to) and ends at the current state (at present time ¢;). The
stress that arises from CA is due to an additional elastic deformation that begins in this
current state (at time ¢;) and ends at some nearby state (at a future time ¢, = ¢; + dt).
While an inertial contribution to stress results from MA.

The solution strategy adopted here mimics that of a predictor/corrector method used for
solving ODEs. At the beginning of a current solution step, the solution at the end of its

previous step takes on the form of

F, = K,A; + MA,; (6.10a)

where F; = F(T;) and K; = K(T;). Recall that there is no damping in our model, so there
is no A, contribution entering here. At the beginning of a step the stiffness response arises
singularly from a secant modulus. Meanwhile, the response at the end of the time step is

considered to be described by a predictor of the form

Fip+1 = KlAZ + CzAz + 1\/IZAZ
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where F[ , = F(T/_ ). Subtracting Eqn. (6.10a) from the above equation produces

F?, = F; + GA, (6.10D)

At this point in the solution process, one evaluates the mass and secant stiffness matrices

according to M, 1 and K;,; = K(T'/.;) and then corrects the solution via
Fiii =KAo +MgA, (6.10c)

where Aiﬂ and Aiﬂ are approximated using backward difference formulee. A reevaluation
of K;11 = K(T';;1) now takes place, and Eqn. (6.10c) is iterated on until convergence. In
preparation to the next step, one evaluates the tangent stiffness matrix C;y; = C(T'41).

Equation (6.10) is not self starting. To start, because Ag = Ay = 0, it follows that

Fin = FO + C(]Ao (611&)

where Fq = F(T) denotes a residual force or prestress that must exist in biologic tissues,
while Cy = C(T) and F? = F(T?). Here A, is to be approximated using an Euler forward

step. After evaluating K; = K(T'7), a correction is computed

F,=KA, (6.11D)

where F'y = F(T). Upon convergence, one determines the mass matrix M; and the tangent
stiffness matrix C; = C(T';) in preparation for advancing to solution step 2. It is during
the second solution interval whereat nodal accelerations can first be computed, so that with
Eqn. (6.11b) appling at the start of this interval, and with the following predictor considered

to apply at the end of the interval

F!=K,A, + CiA, + M4 A,
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then subtracting Eqn. (6.11b) from this equation finds the solution advances via

Fg = F1 + ClAl + MlAl (611(3)

where FY = F(T?Y). At this point there is enough information to estimate the nodal
accelerations Al, as displacement data are available for ¢ + 1 = 2. Both Al and Al are
approximated using central difference formulee. Upon evaluating the mass matrix My and
the secant stiffness matrix Ky = K(T7), a corrected solution at the end of the step is

computed via
Fy = KyAy + MLA, (6.11d)

where Ay « Al, because at this juncture there is not enough nodal displacement information
to estimate acceleration at the end of this step, while A, is approximated using a backward
difference formula. Equation (6.11d) allows for an improvement for Ky = K(7T'5) that can
be inserted back into itself, iterating until convergence. Upon convergence, one determines
the tangent stiffness matrix Cy = C(T;) in preparation for advancing to solution step 3.
We construct three, individual, finite-element models governed by the following three

systems of differential equations

Fip=KpA+Cip A + Mip A (612&)
Fop =Kop A+ Cyp A + Map A (612b)
Fs3p =Ksp A+ Csp A + M3p A (612C)

wherein subscript ‘1p’ associates with alveolar chords that assemble into a 3D space truss,
subscript ‘op’ associates with alveolar membranes that assemble into a 3D tiled balloon-like
structure, and subscript ‘3p’ associates with an alveolar sac.

When assembled, vectors F', A, A and A have lengths of 60 for the alveolar chord and
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alveolar membrane models, and a length of 63 for the alveolar sac model, while matrices K,
C and M have dimensions of 60 x 60 for the alveolar chord and alveolar membrane models,
and dimensions of 63 x 63 for the alveolar sac model. The model for alveolar volume has an

extra node located at the centroid of the dodecahedron.
6.2.1 Mass Matrices

The consistent mass matrix of an element, [64] when quantified in the element’s co-

ordinate frame (€, €, €3), is defined as follows: For 1D elements

Mcip = f pNTN AdL MS™P = J p NNy AdL (6.13a)
L L
with 7,7 = 1,2,...,n where n is the number of nodal points. For 2D elements
2
Meap = f pNTN H dA MG = J p > NilNyy HdA (6.13b)
A A k=1
with 7,7 = 1,2,...,2n where n is the number of nodal points. And for 3D elements
3
Mesp = f pNTNdV MJ® = J p Y NNy dV (6.13¢)
1% Vo k=1
with 2,7 = 1,2,...,3n where n is the number of nodal points. For a rod, Mcp is a 2x2

matrix; for a pentagon, Mcop is a 10 x 10 matrix; and for a tetrahedron, Msp is a 12x 12
matrix. In each expression, p is mass per unit volume, N is a matrix of shape functions for
the element of interest, L is length, H is height, A is area, and V is volume.

One form of a lumped mass matrix is where the entries from each row of a consistent
mass matrix are summed and placed in their respective diagonal entries; specifically: [65]

For 1D elements

MR =Y MG = J pNy; ). Nij AdL, MED =0 % (6.14a)
j=1 L j=1
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with 2 = 1,2, ...,n where n is the number of nodal points. For 2D elements

2n 2 2n
MPP = > MG = J p Y N Y Nij HdA, MEP =0 i (6.14b)
j=1 A k=1 j=1
with i = 1,2,...,2n where n is the number of nodal points. And for 3D elements
3n 3 3n
MPP = MG = f p Y Nii > Ny dV, MPP =0 i+#j (6.14c)
j=1 Vo k=1 j=1
with ¢ = 1,2,...,3n where n is the number of nodal points.

A lumped-consistent (or weighted) mass matrix My can then be created as follows

sz(l—u)Mc—i—uML

wherein p is a free scalar parameter for weighting between the consistent and lumped mass
matrices. The reason for mixing M¢ and My, is to achieve a non-singular mass matrix by
making the resulting matrix diagonally dominant. In this work, u is taken to be a half] i.e.,
an averaged mass matrix is adopted, which has a nice property of minimizing low frequency

dispersion. Specifically, we select

Mip := 5(Mcip + MLip) (6.15a)
Mop = 5(Mcap + Miaop) (6.15b)
Msp = 5(Mesp + Mysp) (6.15¢)

as our means for constructing mass matrices. Each of these mass matrices is invertible that,

for example, is a requirement of the numerical solution strategy.
6.2.1.1 Mass Matrixz for a Chord

A two-noded alveolar chord (a pinned beam in finite element terminology) has shape

functions N; that aggregate into a 1 x 2 matrix of shape functions when evaluated in their
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natural co-ordinate system wherein —1 < ¢ < 1, viz.,

NE©O =V M]=[30-9 $1+9)] (6.16a)

from which a symmetric matrix arises to become the backbone for this mass matrix (which

happens to be singular), its components being

— 9, + &2 _ 2
NTN(fi)zi Pmrl 14 (6.16b)

1—¢& 1+ 26 + &2

where §; designates a co-ordinate for the i*" Gauss point associated with a specific Gauss
quadrature rule for integration, which in our case comes from Table 6.1.

The determinant |J| of Jacobian matrix J is used to transform the integrals in Eqns. (6.13
& 6.14) from their natural co-ordinates into the co-ordinate system (&, €, €;) of a chord,

cf. Fig. 5.3. Its value is
J_|J|—Z Nig(©wj=—L-—tp+1.lp =1L (6.17)

given nodal co-ordinates of x; = —%L and zy = %L, where L is the length of our alveolar
chord. The Jacobian matrix J and its determinant |J| are equivalent in the case of a rod,
because this geometric space is one dimensional.

The consistent mass matrix for a 1D alveolar chord modeled as a two-noded rod, when

evaluated in the co-ordinate system of the chord, becomes

L 1 m
Mcip = J oNTN Adz = f pNTN AT =T piANTN(G) w
-1

0 i=1

1-26+&  1-¢ (6.18)

1-¢& 1+26 + &

_ L o PiAw;
_2; 4

where IN(§;) is a matrix of shape functions evaluated at a node of quadrature & whose
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associated weight of quadrature is w;, both evaluated at Gauss point ¢ for a selected Gauss
integration rule comprising m Gauss points. Table 6.1 presents values for the co-ordinates &;
and weights w; of quadrature where two Gauss points of integration (m = 2) are employed

for integrating over a length of chord.
A Tumped mass matrix for a 1D alveolar chord, when evaluated in the co-ordinate system

of a chord is

L & piAiwi 1- 2& + 512 - 612 L & piAl-wi - 52 0
ML1D225274 ) ) :527
rows i1 1-¢  1+%+g| 2o 0 1+

(6.19)

It is seen that the mass matrix in Eqn. (6.18) is singular at any given Gauss point, whereas

the mass matrix in Eqn. (6.19) has a reciprocal, except whenever £ = 1, which are points
not realized in Gaussian quadrature rules.

A chordal mass matrix that is appropriate for biologic fibers, and that associates with

the Gauss quadrature rule listed in Table 6.1, has a consistent and lumped mass matrix that

when averaged become

Mp =
24 1 5-2V3 24 1 5+2V3

(6.20)

with Mip being the 1D mass matrix that we implement. Because the mass of an alveolar
chord does not change when exposed to a traveling shock wave, it follows that pAL = pyAg Lo,

and as such, this mass matrix only needs to be evaluated once.
6.2.1.2 Assembly of Chordal Mass Matrices

In our alevolar model comprising septal chords, there are 20 nodes (vertices) whose
numbering scheme and natural co-ordinates (those of a regular dodecahedron) are specified
in Table 5.1. Connecting these 20 nodes are 30 line segments (septal chords) whose numbering

scheme and associated nodal numbers are specified in Table 5.2.
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In 3D analyses, the components MiljD of mass matrix M;p from Eqn. (6.20) populate a

mass matrix M % for element e, e € {1,2,...,30}, accordingly

1D
My

e}
e}

1D
M5

)
o
o
)
o O
o O

M9 = (6.21)

To rotate this mass matrix for an element from its co-ordinate system for a chord
(8, 8,,8) into the fixed co-ordinate system for a dodecahedron (E'l, E,, Eg), where it
can be assembled with the mass matrices from the other 29 chordal elements, one must first

apply the orthogonal transformation

QY o ol o o o
Q% Q% Q% o 0o o0
Q(e) Q(e) Q(e) 0 0 0
Rgg _ 31 32 33 (622)
0 0 o0 QY QfY Q@
0 0 o0 Q% Q% o

0 0 0 Q% QF QF

so that, accordingly,
e e T e e
M3 = (Rip) MPR{) (6.23)

where M% becomes this mass matrix, transformed into a dodecahedral co-ordinate system

(Ey, B, E;) with [{&}{&:}{&:}]©® = [{E:}{E2}{E3}][Q)], cf. Fig. 5.3. Even though M3 is
a constant mass matrix, M% need not be, because R§‘3 will typically vary over time in our

analysis of alveoli subjected to shock waves.
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We can now re-write our example equation for f = Mu as a block matrix equation

fi N M%?)zz M&%zg ul
fj Mg%:ji Mg%):jj '&j

wherein f, = fli) E, + fQ(i) E, + féi) E;, etc., where i and j are the nodal numbers for the two

nodes that establish this chord.
6.2.1.3 Mass Matrixz for a Pentagon

The surface of a dodecahedron is tiled with 12 pentagons, and as such, an analysis to
establish a mass matrix for a pentagon becomes the building block needed to be able to
assemble a 2D mass matrix Msp representing the alveolar membranes that envelope an
alveolar sac.

For an alveolar membrane, represented here as an irregular pentagon, the matrix of shape

functions IN(&,n) takes on the general form of

Ny 0 N, 0 Ny 0 Ny 0 N; 0
N = (6.24)

0O Ny 0 No 0 N3 0O Ng O Nj

wherein N;, ¢ = 1,...,5, are the five shape functions that correspond with the five vertices
of a pentagon. These shape functions are nonlinear functions of their co-ordinates (§,n),
which is readily apparent in Fig. 5.6.

A consistent mass matrix Mop is constructed by substituting the above matrix of shape

functions into the following expression

Mm:LﬁWNWH%MZWZMEWN@%Wi (6.25)

i=1

where m is the number of Gauss points with (§;, ;) and w; being their respective co-ordinates

and weights of quadrature that, in our implementation, are provided by Eqns. (6.4 & 6.5). As
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with alveolar chords, alveolar membranes have mass densities p; and heights H; (thicknesses)
that are not uniform across a membrane.

Here |J| is the Jacobian determinant of a 2x2 Jacobian matrix J. In areal derivations,
the Jacobian of a 2D transformation connects the physical z, y to the natural £, n co-ordinate
systems involved. Components of this Jacobian matrix are calculated using derivatives of

shape functions taken with respect to the local co-ordinates [65, pg. 424], with

W—%@—%@ (6.26)

-~ oon  ono¢

establishing the Jacobian determinant. It is proportional to the area of the pentagon Ag
because Apy = §~dzdy = [~ |J[ddn = |I|3_, w; = 2.378|J| using the quadrature rule

for pentagons given in Eqn. (6.5), cf. Eqn. (5.3).
6.2.1.4 Assembly of Pentagonal Mass Matrices

In the co-ordinate system of a pentagon (&, &, &), e € {1,2,...,12}, a pentagon has

a mass matrix with a symmetric block structure of

MY MB ME MY MY
MP MP ME MP MP
M= | M M ME MY MY (6.27a)
MY MB ME MY MP

2D 2D 2D 2D 2D
| M5 M3, Mz Mz, My

with each element in this matrix being a 3 x 3 matrix with diagonal entries of

MP 00
M?jD = 0 Mz‘sz 0 (6.27b)
0 0 0
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whose components have values of

Jo| < _
MEP = |20| > porHoeNi(1+ Ni) (& i) wi i=1,2,...,5 (6.28a)
k=1
Jo| < o
M = MGP = |20| 2 ok Hok NiN; (€, i) wy i # (6.28h)
k=1

with co-ordinates (&;,n;) and weights w; of quadrature being given in Eqns. (6.4 & 6.5),
and whose shape functions are defined according to Eqn. (5.16). Because the mass of an
alveolar membrane is conserved when exposed to a traveling shock wave, it follows that

pH|J| = poHy|Jo|, and as such, like the mass matrices M % and M g%) for chords and
tetrahedra, the mass matrix M g%) for each pentagon only needs to be evaluated once.

To rotate this mass matrix for element e, e € {1,2,...,12}, from its elemental co-ordinate
system for the pentagon (&, &, &) into a fixed co-ordinate system for the dodecahedron

(El, E'g, Eg), where it can be assembled with mass matrices from the other 11 elements, one

must apply the orthogonal transformation

Q© o0 0 0 0
Q© o0 0 0
0 Q9 o0 o0 (6.29a)

0 0 Q@ o

S o o o

0 0 0 Q©

whose diagonal entries are themselves orthogonal matrices with components

QY QY QY

Q) = gel) ng) gg) (6.29b)

ik o
so that, accordingly,
e en T e e
Myp = (Ryp) 'MipRiD (6.29¢)
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where Mg% is its mass matrix transformed into the dodecahedral co-ordinate system (El, E,, Eg)

according to the map [{&}{&}{&:}] = [{E‘l}{E'z}{E'g}] |Q@], cf. Fig. 5.4.
6.2.1.5 Mass Matrixz for a Tetrahedron

The volume of a dodecahedron is filled with 60 tetrahedra, whose centroid (the origin in
its natural co-ordinate system) is a common vertex among these 60 tetrahedra.

The matrix of shape functions N(§, 7, () for a tetrahedron has a general form of

N, O ON, O 0Ny O ON, 0 0
N=| 0N O ON, 0O ONy 0 0N, 0 (6.30)
0O 0N O 0N, 0 ON; 0 0 Ny

in which the N;, i = 1,2, 3,4, are the four shape functions corresponding to the four vertices
of a tetrahedron. Numerical integration is used to obtain a consistent mass matrix for a

tetrahedron

m

Moo = | pN"Ndadydx = | 1 jlg | T ONTN A dnde = p[3] S NTN (i )

1% 0oJo Jo = 61
where |J| is the determinant of the Jacobian matrix J, with m being the number of Gauss
points used for spatial integration, which in our case is four. The co-ordinates (&;,;, ()
and weights w; of quadrature used for integrating over the volume of a tetrahedron are
found in Table 6.3. The Jacobian is calculated from taking derivatives of the shape func-
tions with respect to their local co-ordinates (&,7,(), cf. Ref. [65, pg. 424], whose deter-
minant |J| is proportional to the volume of this element when evaluated in the physical
co-ordinate system (El,EQ,Eg). Specifically, |J| = 6V because Vi = SVtet dzdydz =
§olo “50 © MIIIdCdndg = 3] X7 wi = 2.
6.2.1.6 Assembly of Tetrahedral Mass Matrices

In our finite element model for an alveolar sac, there are 21 nodes (20 vertices and the

origin) whose numbering scheme and natural co-ordinates are given in Table 5.1. Filling
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this volume are 60 tetrahedra whose numbering scheme and associated nodal numbers are
specified according to the following strategy. Associated with any given pentagon are 5
tetrahedra. Nodes 1 and 4 of these five tetrahedra are the same. Node 1 is at the centroid
of the pentagon, and node 4 is at the origin of the dodecahedron. Nodes 2 and 3 of the
tetrahedron are also nodes of this pentagon, and are sequenced such that when traversing
nodes 1 — 2 — 3 of a tetrahedron one undergoes a counterclockwise path when viewed
looking inward from outside of the dodecahedron. In the co-ordinate system of a tetrahedron

(€, &,,8)(), a tetrahedron has a mass matrix with a symmetric block structure of

MY My My My

M3D M3D M3D M3D

Mg;,:)) _ 21 22 23 24 (632&)
M ME ME M

3D 3D 3D 3D

with each element in this matrix being a 3 x 3 matrix with diagonal entries of

ME}D 0 0
MP=| 0 MP o0 (6.32b)
0 0 M%D
whose components have values of
b poldol :
MiP = 2020 3 N1 Ni) (6 s Ge) i=1,234 (6.33a)
k=1
3D ap _ Poldol . . .
M~ = Mjm = —5 D NiN; (&, i, Gi) wi i # ] (6.33D)
k=1

with co-ordinates (&;, n;, ¢;) and weights w; of quadrature being given in Table 6.3. Here we
consider that mass is conserved over the volume of each element, and as such, p|J| = po|Jo|-

To rotate this mass matrix for element e, e € {1,2,...,60}, from its elemental co-ordinate
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system for the tetrahedron (&, &, &) into a fixed co-ordinate system for the dodecahedron
(El, EQ, Eg), where it can be assembled with mass matrices from the other 59 elements, one

must apply the orthogonal transformation

R = (6.34a)

o

0 0 0 Q@

whose diagonal entries are themselves orthogonal matrices with components

QY QY 0
Qe = © ol ol (6.34b)

5 Q% Qi

so that, accordingly,
e e\ T e e
M) = (Rp) MRS (6.34¢)

where Mg%) is its mass matrix transformed into the dodecahedral co-ordinate system (El, E,, Eg)

according to the map [{&}{&,}{&}]) = [{El}{EQ}{E3}] [Q]. Even though M% is a con-
stant mass matrix, ng% need not be, because Rg‘g will typically vary over time in our analysis

of alveoli subjected to shock waves.
6.2.2 Constitutive Models for Finite Elements

In this study, we implement implicit, elastic, material models. Consequently, their elastic
compliance C and modulus M, where M := C™!, are taken to be functions of both strain
and stress in a manner that is consistent with thermodynamics. Furthermore, the conjugate
response between temperature and entropy is not incorporated into our finite element solu-

tion strategy, because changes in entropy caused by elastic deformations have been shown
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to be negligible in our application. As such, one can write down the governing constitutive

equations for use in finite elements as

E =C*E,T)- (T —T) (6.35a)

T =T,+ M*(E,T)-E (6.35b)

where Ty is an initial (residual) stress at zero strain, and where C* and M are the secant
compliance and secant modulus, respectively, obeying M* = (C*)~!. Written symbolically,

C* = E/(T —T,) and M* = (T — T,)/E.

Expressing these constitutive equations in differential form, one can write

dE = CYE,T) - dT (6.35¢)

dT = M'(E,T) - dE (6.35d)

where C' and M are the tangent compliance and tangent modulus, respectively, obeying
M' = (€)1, Written symbolically, C* = dE/dT and M' = dT/dE. The components

from these elastic compliance and moduli relate to one another via

ac; .o
Ciy = (Iik - (9E£ (T, — Toz)) (ij + lefj(Te - Toz)) (6.35€)
oM N\ OM:
t _ o 11 s k¢

that, because M" = (C")~!, enables one to write

ac;, - ac;
t _ s 14 . o ke .
M = (Cz'k + o7, (T, Toe)) (ij OF, (7% Toe)) (6.35g)

and therefore we observe that if C°(E, T) and T are known, then M?* C' and M" can all
be determined in terms of this secant compliance and initial stress. It is the moduli M* and

M that appear later in our finite element equations (6.52).
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In finite element implementations, strain E and stress T are treated as vectors of size
¢x1, while the compliance C* and C' and the moduli M?* and M are each matrices of size

¢x{, where ¢ denotes the number of independent stress/strain attribute pairs that there are.
6.2.2.1 Moduli for a Chord

Alveolar chords comprising collagen and elastin fibers are loaded in parallel. Conse-
quently, they are exposed to the same axial strain of e = In(L/Lg) but carry different stresses
s¢ and s¢, where ¢ is for collagen and € is for elastin. The rule of mixtures is used to average
their individual responses into a collective chordal response. Specifically, the chordal, elastic,

secant modulus is described by the averaged response

E* = ¢E°+ (1 —¢)EC (6.36a)

while the chordal, elastic, secant compliance is described by the averaged response

s G5

C*® = 60t (1—g)Ce (6.36D)
Consequently, the chordal, elastic, secant modulus M?* becomes
M®=¢/CE+ (1 —9)/CE. (6.36¢)
Given the constitutive equation s = sq + E?e, it follows that the stresses average as
Soi=0¢sg+ (1—¢)sg and s:=¢s°+ (1 —¢)s° (6.36d)

because these fibers experience the same strain. The collagen, fiber, volume fraction ¢ that

does this partitioning is established by

¢ = AS/(AS + AS) (6.36¢)
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where the cross-sectional area of a chord is the sum of cross-sectional areas for its collagen
A§ and elastin Af fibers, here evaluated in a reference state.

The secant compliance C* that we apply to the collagen and elastin fibers in an alveolar
chord are derived in Appendix D, cf. Eqn. (D.9). This model, under isothermal conditions,
describes an elastic secant compliance for collagen of

C EC (& 1
1= g (1 ) -

J— _l’_ -
s¢ — 5§ VES€es  +2(s — sf) Es

and an elastic secant compliance for elastin of

e Ee e 1
C6(s°) = —Lmax (1 V1 L ) (6.37b)

J— _l’_ -
s¢ — & VESes |+ 2(s¢ — s§) ES

whose inverses, viz., E¢ 1= 1/C¢ and E¢ := 1/C¢, are their secant moduli, which are defined
in accordance with Eqns. (6.35a & 6.35b), and as such, s¢ = s§ + ESe and s = s + Efe.
The material properties associated with collagen fibers are: a soft initial modulus EY, a
stiff terminal modulus E3, and their strain of transition ef , with like material properties
describing an elastin fiber. Whenever s¢ < s, the elastic modulus for collagen is taken to
be its modulus at zero strain, i.e., B¢ = EfES/(ES + ES) so that C¢ = (E{ + ES)/E{ES. The
elastic fiber compliance in Eqn. (6.37) depend only upon stress, not upon strain, and as such
the elastic tangent modulus M" of Eqn. (6.35g), which is one of two moduli we use in our

finite element implementation, reduces in this 1D case to

s -1
M = (CS + aai (s — so)> (6.38a)

where C* is given by Eqn. (6.36b), whose individual compliance C¢ and C¢ are described by

Eqn. (6.37), and whose derivatives are determined to be

ocs @ CE(s¢) C<(s°) s\t 0 CE(s) CE(s°) s\
0s 05 pCs(s) + (1 — §) C(s°) <a> 05 6Ci(s%) + (1 - 6) Ci(s°) (a)

(6.38D)
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which follow from Eqn. (6.37).
6.2.2.2 Moduli for a Pentagon

The secant response of an isothermal, isochoric, elastic pentagon can be written in terms

of Eqn. (6.35a),whose constitutive behavior is established through an elastic modulus M?*

such that
s™ 54 4M* 0 0 '3
sr=30¢+| 0 am3 0| Se (6.39)
sT 0 0 0 G* v
T To ) Mo ’ E

which is used in our finite element implementation. This strain vector E has elements
denoting a dilation & = In 4/ab/agby, a squeeze (pure shear) e = In«/aby/agh, and a (simple)
shear v = g — go, which in turn are described in terms of two elongations a and b plus an
in-plane shear g, with their reference values being ag, by and go.

The stress vector T' = {s™, 57, s"}T conjugate to strain vector E = {£,&,7}" has elements
of a surface tension s™ = 817 +822, a normal-stress difference s = §11—S8o, and a shear stress

T

s” = ¢ S12. Only surface tension is considered to have a residual state of stress sg, which is

necessary for alveolar stability, and is caused, in part, by the presence of surfactant. In a
reciprocal sense, the stress components are assigned via ;1 = %(s7r +57), Sog = %(s7r — 5%)
and Sjp = Sg1 = SST such that S = PU 'SU TPT with S being the second Piola—Kirchhoff
stress evaluated in the co-ordinate system of a pentagon, while U is the Laplace stretch, and
P is a re-indexer of co-ordinate labeling needed to ensure invariance under a transformation

of Laplace stretch.

The elastic compliance governing an isothermal dilation response is

/M 1
1Etae (6.40a)

]' — glmax 1 _ _"_
AM3(s™)  sT—sf \/ My, +L(sm—s) ) 4Mo
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where M*(s™<sT) = My My/(M; + Ms). The elastic compliance governing shear response is

1 A/ 1
— f)/lmax (1 Glﬁylmax ) + G (6401:))
2

Go(s7) Il U Gy + 257 ) G

where G*(s™ =0) = G1G2/(Gy + G3). Like the fiber compliance used to model an alveolar
chord, the membrane compliance used to model an alveolar septa has components that

depend upon stress, but not upon strain. Consequently, the tangent modulus is

. oy d(1/4Ms
s + (57 — s7) A0 0 0
M! = 0 o+ (57— sg)% 0 (6.41)
0 0 o 4 57 I

whose entries, taking into account Eqn. (6.40), are determined to be

Lo Q0AMY G MG (6.42a)
4Ms ds™ A(MiE1,, + 3(s7 + 7)) Y7 4D
1 A0/ M VO, L (6.42b)
& A7 (Gt + 2T G |

and as such, our implementation becomes quite straightforward.

6.2.2.8 Moduli for a Tetrahedron

The isothermal response of a volume element located within an alveolar sac will have a

secant response governed by

{ ) { ) [ T { )
I I 9K 0 0 0 0 0ff=
o1 0 0 3N —-3N 0 0 0f |&
o2 0 0 —3N 3N 0 0 0f |e
¢ =4 r+ <7 (6.43)
T 0 0 0 0 G 0 0f[m
T 0 0 0 0 0 G 0f |
() |0 0 0 0 0 0 G| ()
~— — - ~- — ——
T To M? E
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where, for air, only the bulk modulus K is non-zero. The strain vector E = {Z, &1, €9, 71,72, V3} "
has elements that denote a dilatation = = In \S/W, two separate squeezes (pure
shears) e; = IHW and €9 = In m, and three separate (simple) shears v; =
a—ag, Yo = B — B, and 73 = v — 7. The stress vector T = {II, 04,09, 71,72, T3} con-
jugate to strain E has elements that comprise a pressure Il = S;; + Soo + S33 = —3P
where P denotes the common definition for pressure, two separate normal-stress differences
o1 = 811 — Soo and 09 = Syy — S33, and three separate shear stresses 7 = 2832, T = 283
and 73 = £S89 — aty. Of these, only pressure has an initial value, viz., Iy, which represents
atmospheric pressure. Moduli K, N, and G are considered to be constants in our modeling

of an alveolar sac; therefore, M’ = M?® when modeling alveolar volumes.
6.2.3 Stiffness Matrices
6.2.3.1 Strain-Displacement Matrices

Finite element techniques introduce a matrix B that transforms nodal displacements ()

for an element e into a vector of thermodynamic strains E located at a Gauss point via

E =Bu" (6.44)

where E has size £ x 1, B has size ¢ xnd, and u(® has size nd x 1. Here: d is the spatial
dimension of an element (viz., d = 1,2 or 3 that, in our case, associate with a chord, a
pentagon, and a tetrahedron, respectively); ¢ is the number of conjugate pairs appropriate
for an element (viz., £ = 1,3 or 6 that, in our case, associate with a chord, a pentagon, and
a tetrahedron, respectively); while n is the number of nodes in an element (viz., n = 2,5 or
4 that, in our case, associate with a chord, a pentagon, and a tetrahedron, respectively).

In order to make our computation more systematic, the strain-displacement matrix B is

taken to additively decompose into linear and nonlinear constituents such that

B=B;+By (645&)
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where the entries in By, are constants, while the entries in By are functions of displacement.

Hence, this decomposition allows linear and nonlinear strain constituents to be

E, =B,u® and Ey:=Byu® (6.45D)

which E = E; + Ey. Their associated derivatives, taken with respect to displacement,

produce the formulee

dE, =Bydu'® - dB, =0 (6.45¢)

dEy = By du'® + dBy u'® (6.45d)

which obey dE = dE; +dEy and dB = dBy so that dE = B du(® +dB u(®). This differen-
tial equation reduces to the classic result dE = B du(® found in the finite element literature
whenever the total displacements are infinitesimal in extent, under which conditions By ~ 0
and dBy &~ 0. It is advantageous for us to re-write this nonlinear strain-displacement rela-

tion By as a product between two matrices such that

By=AH (6.46a)

where matrix A has size ¢ x d, while matrix H has size d x nd, with A being comprised
of various displacement gradients, and H being comprised of derivatives of shape functions

taken in the element’s co-ordinate system, and as such

dBy=dA-H -+ dH=0. (6.46b)

As a consequence of this definition, at least for the elements of interest to us, it turns out

that one can establish another useful relationship, specifically

dATT = SHdu' (6.46¢)
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wherein S is a symmetric matrix of size d x d whose components come from those of its

conjugate stress vector T of size £ x 1.
6.2.3.2 Secant Stiffness Matrix

For nonlinear elastic materials, like soft tissues, their stress/strain response curves gen-
erally become stiffer with increasing deformation. Consequently, the slope of a line segment
connecting the origin with its current stress/strain state, located somewhere along its re-
sponse curve, will change with a change in stress and strain, and therefore, its secant modulus
will necessarily be a function of stress and/or strain.

A variation in the residual energy R of a deformed elastic body is the difference between
variations from two energy sources, assuming a simply connected body whose motion maps
have sufficient smoothness, etc. These energies are: a potential energy U that stores an
internal strain energy, and a work done W that expends energy through an external loading,

specifically
SR = 8U — W (6.47a)
such that for an element e one has [66]

oW => F-u® (6.47D)

U =) J BT TdV - ju'® (6.47¢)
cJv

or alternatively

JR=> R-su=> ( j BTTdV — F) - oul) (6.47d)
& e v

where F' and R are vectors denoting the external and residual forces, respectively, while T’
is a stress conjugate to strain E, which are represented here as vector fields, with B being

the well-known strain-displacement matrix found in Eqn. (6.44).
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In order to satisfy equilibrium, the internal and external forces of Eqn. (6.47) must be in

balance, and therefore, for each element [67]

R:f B'"TdV-F=0 (6.48a)
Vv

whose solution is typically achieved through an iterative process. Substituting the secant con-
stitutive equation Eqn. (6.35b) along with the strain-displacement relationship of Eqn. (6.44)

into the above integral allows it to be re-written as

f BTTdvzf BTTOdV+J BTMSEdvzf
1% Vv Vv

BTTOdV+J B M*BdV u©
1%

\%

~/ . ~/

Y Y

Fy Ks

(6.48b)

where K* is a stiffness matrix built around the secant modulus M?* and Fy is an internal
force accounting for an initial residual stress of Ty. Here B and M? are evaluated at current

time t;, i.e., at the beginning of an integration step.
6.2.3.3 Tangent Stiffness Matrix

Motivated by a definition for the tangent stiffness matrix being C := dR/du that,
e.g., would be appropriate for an updated-Lagrangian finite element formulation, [68] we

differentiate Eqn. (6.47d) to get d0R = ddR = dR - fu'® from which one gets
dR = f dB' T dV + J BT dT dV =: Cdu® (6.49)
1% v

which follows because the external force F' is considered to be a fixed boundary condition
during a variation in its displacements. This equation establishes that a change in residual
force dR is needed to further deform an elastic body from an equilibrium condition R = 0
that exists at current time t; into another equilibrium state associated with some future

moment in time t;,; = t; + dt. This differential force depends upon both the stress T at

110



time t; and its change dT' that occurs when advancing from ¢; to t;,1.
Substituting constitutive equation (6.35b) for T' into the first integral of Eqn. (6.49),

while incorporating Eqn. (6.46), allows this integral to be re-written as

f dB'TdV = f dB"(Ty + M°E) dV = J H'SHAV du® (6.50)
|4 |4

\%
—_—
Cs

where Ty + MPFE — S, and as such, C? is that contribution to the tangent stiffness matrix
C attributed to the secant modulus M* appearing in Eqn. (6.35b), which is quadratic
in H. Now, substituting constitutive equation (6.35d) for dT into the second integral in
Eqn. (6.49), while employing Eqns. (6.45¢ & 6.45d) to describe strain rate dE, this integral

becomes

f BTdevzf BTMtdEdVZJ BTMthVdu<€>+J BT M'dBAV u(®  (6.51a)
1% |4 14 14

v "

Ct Kt

where the contribution to the secant stiffness can be expressed alternatively as

Kt=f H'dSHAV given dS:=AT M'dA. (6.51b)
\%

6.2.3.4 FEquations of Motion

Pulling everything together, the equations of motion Eqn. (6.8), when written for an

element, are given by
F=Ku® +Cca® +Mal (6.52a)
which has a secant stiffness matrix of

K=K +K' (6.52b)
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a tangent stiffness matrix of

C=C*+C! (6.52¢)

and a forcing function of

F = Fpc—Fy (6.52d)
wherein

K* = J BT M*BdV (6.52¢)
\%4

K' = f H'dS'HAV where ds! = AT M'dA (6.52f)
\%

C’ = J H'S*HAV where Ty + M°E — S* (6.52g)
14

Ct = f BT M!'BdV (6.52h)
Vv

Fy = J BT TydV (6.52i)
1%

with F'geo being an external force associated with the boundary conditions evaluated at the
end of a solution step. All other fields are evaluated at the beginning of this solution step.
Superscript “®” implies that these matrices are evaluated using the secant modulus M?,
while superscript ‘*” implies that these matrices are evaluated using the tangent modulus
M. To minimize an accumulation of roundoff error, it is advantageous to compute K* as

four separate integrals, viz.,
K® = J B] M*BdV + J B] M*BydV + J By M*BpdV + f By M*BydV
v v v v
and to compute C' as four separate integrals, too, viz.,

ct = J B M!B.dV + J B] M!'BydV + f BLM!BpdV + J By M!BydV
\% \% \% \%
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while computing Fy as two separate integrals, viz.,
Fy = f B] Tydv +J Bl TodV
1% 1%

where the first integral will only need to be evaluated once, as its argument is constant

valued.
6.2.4 Kinematic Matrices of Finite Elements

To implement our finite element discretization, it is necessary that we know the following
matrices for a given element type: the linear strain-displacement matrix By, the nonlinear
strain-displacement matrix By, and its decomposition By = AH, plus the differential rate
dA. These matrices are acquired in the following sections for a chord, a pentagon, and a

dodecahedron where QR kinematics have been adopted.
6.2.4.1 Kinematic Matrices for a Chord

The components of Laplace stretch U can be obtained from a Cholesky factorization of
the right, Cauchy-Green, deformation tensor C = FTF = U U, [26] which is a symmetric
tensor. For a 1D chord, the only possible deformation is a stretch of the chord in its axial
direction. Therefore, in this case, the deformation gradient, as well as the right Cauchy—
Green tensor C, have only one component. Consequently, the Laplace stretch U also consists
of only one component, which is denoted by a. If u is the axial displacement of a chord, then

its axial elongation a becomes

—— 0 o’
a = Z/lll = 011 with Cll =1+ qu <u> given F11 =1+

u

= (653

ox ox

This chord is subjected to an axial strain defined as e = In(a) = In(L/Ly), where Lo and L

are the initial and current lengths of the chord. Here we decompose the total strain into its
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linear and nonlinear components as
e=eL+ey (6.54)

as determined by a Taylor expansion of e = In+/C';, which gives

1
er = a—u and ey = —— @ a—u (6.55)
0x

The linear strain-displacement matrix B, can now be obtained by expressing the linear

strain ey, in terms of its nodal displacements, viz.,

er = gz = Z; Nigt; = [[bri][bro]]{u®©} = [BL][{u} (6.56a)

wherein

bl = [N = [N ][I and u® = {4 4} (6.56)

2

where N; ¢ is the gradient of shape function N; evaluated in element (e)’s natural co-ordinate
system, which maps into gradient /V; , evaluated in the element’s physical co-ordinate system
via its Jacobian matrix [J], with u§6> and uge) denoting the nodal displacements of the chord.

We introduce machinery that is excessive for chord, but becomes useful when constructing
the nonlinear strain-displacement matrices for pentagon and tetrahedron. Let nonlinear

strain ey be written as a product between some matrix A and some vector 8; specifically,
en = 3 |—0u/ox]{ou/ox} = S A0 (6.57)
where A = [—0du/0x] whose differential is
dA = {-odu/oz} = {- 2  N;,du;} = [[L][]][[di][d2]]" = LD (6.58a)
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wherein
[Li] = [=Niz] = [-DNigl [J]_1 and [d;] = [duy]. (6.58b)

Furthermore, we consider that 8 can be expressed in terms of the nodal displacements as

0 = {0u/ox} = {3 Ny u;} = |[[hi][hs][{u®} = Hu® (6.59a)

wherein
H = [[hy][hs]| with [h;] = [N;.] = [Nig][I] (6.59b)

for the chord, there is no difference between by; and h;, which will not be the case in

higher-dimensional spaces. Hence, the nonlinear strain-displacement matrix By becomes
By = AH = [[byi][bn2]] (6.60)

where by; = [-0u/0x][h;]. The tangent stiffness matrix C*® associated with Ty + M°E

S* = [so + E?¢e], which is defined in Eqn. (6.36), becomes

C’ = L H'S*HAJL = |J| i HT S*(&) H Ay (&) w; (6.61)

=1

where an isochoric response is assumed in that Ag|Jo| = A|J|. Here & and w; are the co-
ordinates and weights of quadrature for Gauss point i, and Ay and A are the initial and
current cross-sectional areas of the chord with Ay(&;) being the initial cross-sectional area at
Gauss point &;.

The tangent stiffness matrix C*, as established in Eqn. (6.51), becomes

C! :f B'"M'BAdL = |J0|Zn]BT MUE) B Ag (&) w (6.62a)
L

i=1
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where axial stress rate ds is described by a tangent modulus M from Eqn. (6.38).

The secant stiffness matrix K*, as established in Eqn. (6.48b), becomes

K® :f B'"M*BAdL = |J0|Zn:BT ME(E) B A (&) w; (6.63a)
L P—

=1

where axial stress s is described by a secant modulus M? from Eqn. (6.36).

Likewise, a secant stiffness matrix K, also established in Eqn. (6.51), becomes

K' = J H'dS'HAdL = |J| Z H' dS' (&) H Ag(&) w; (6.64a)
L

i=1
where its stress rate is given by dS* := AT M"dA.
6.2.4.2 Kinematic Matrices for a Pentagon

For a planar membrane, components of Laplace stretch U, obtained from a Cholesky
factorization of the right Cauchy-Green tensor C := FTF = U'U, cf. Eqn. (2.2), where Ci;,
Ch2 =5 and Uy, are components of the right Cauchy—Green tensor C that can be expressed

in terms of displacement gradients as

ou o\’ v\’

Gu v oudu vl
oy oxr Jdr 0Oy Oxr Oy

ov ou\ > o\
—1+4+2—+ [ =— — .
o) + 2 + <ay> + (ay) (6.65¢)

Cip = (6.65b)

which arise from the deformation gradient

1+ oufor  ou/od
P ufow oujdy (6.65d)

ov/oxr 1+ dv/dy

where u and v are displacements associated with the deformation of a planar membrane.
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Gradients of shape functions are used to construct the above spatial gradients, viz.,

N; ¢ dx/0¢  0Oy/0¢ N; »

Ny dx/dn 0Oy/dn Niy

whose matrix is the non-singular Jacobian, while NV;¢ and N;, are gradients of the shape
functions in their natural co-ordinates, as established in Eqn. (5.20) for pentagons. These
are evaluated at i*" Gauss point for the quadrature rule used that, in our case, is found in

Eqns.(6.4 & 6.5). It is necessary to invert this equation for it to become useful for us so that

-1

Ni, ox/0¢ dy/d N,
al _ JOE  dy/o¢ £ (6.66)
Niy ox/0n 0Oy/on N,

with V; , and N;, being employed below.

The thermodynamic strain attributes that we use are defined in Eqn. (2.10). Without loss
of generality, we consider the membrane to be initially undeformed, which allows us to set ag
and by to one, while the initial shear g, is taken as zero. To gain computational advantage,

we decompose these strain attributes into linear and nonlinear components; specifically, we

consider

§=38L+ &N+ &nva+&ns (6.67a)
€=¢crtent +En2 +EnNs (6.67b)
Y =L+ N1+ N2 + YN (6.67¢)

Traditionally, finite element constructions decompose strain into a linear component and a

nonlinear component. However, in our case, a further decomposition of the nonlinear strain

component into three separate components makes our computation much easier.
Decomposition of strain attributes is achieved via Taylor expansions that retain terms

through second-order. The linear and nonlinear components of these strain attributes, thus
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obtained, are given as

£ = ; (Zi + Z;) (6.68a)
gN:i(_gg;_‘;zZz—z?;g) (6.68D)
er = ; (Zz - 2;) (6.68¢)
gN:jl( o~ g;g‘y’—gzgi 22;121) (6.684)
= ?yl + Z (6.68¢)
= WGy dudu (6.65f)

where the linear components of these strain attributes consist only of first-order derivatives
in the displacements, while the nonlinear components contain the second-order terms. In
terms of the nodal displacements, the vector containing the linear strain attributes, i.e., E,

can be written as

37 %u7x+%v7y 5 %Niﬂc 3 Niy
Uy
Er=qcer={3us—32v, = Z:l 1Nz —3Niy
1= Vg
YL Uy + Vg Ni,y Ni
= |[br1][br2][brs][bra][brs][{u'®} = By ul® (6.692)
where
3Nia 3 Niy
.
brl= 1N, —iNy | w9={us v wuy v2 us vs ws v ws vs} (6.69b)
Ni,y Ni,:v

for element e, whose matrix entries come from Eqn. (6.66).

Now let nonlinear strain E; be written as a product between some matrix A; and some
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vector 04; specifically, let

En1 —%U?y 0 — 3 0v/dy
1 ou/ox )
Envi=<cen ¢ = _iu?a: + %v?y =3 —Lou/ox  §ov/oy =5A160; (6.70)
ov/dy
IN1 Vax Uy 0 2 (9’0/(91‘
with
0 —% &’dv/(?y 0 _%Ni,y dvi
5
dAy = [ —1odu/ox  1odv/oy | = Zi:1 —3 Nipdu;  § Niydo;
0 20dv/ox 0 2N, dv;
- T
= | 1] [12][15][14] [15]] {[dl] [d2][ds][d4] [d5]] = LDy (6.71a)
wherein
0 —3 Ny
Ll=|-inN, LN, | and [d]= : (6.71b)
0 dUZ'
0 2N;

To obtain the nonlinear strain—displacement matrix, we require the nonlinear strain to be
expressed in terms of the nodal displacements. This is achieved by expressing the elements
of displacement gradient in terms of the nodal displacements by using the shape functions,

specifically, the vector 8, can be written as

6u/6w 5 Ni,m (7

01 = = Diims = [[hﬂ[hzl[hgl [h] [hs]] {u@} =Hu®  (6.720)

ov/dy Niyvi

where the components of H; contains the derivatives of shape functions with respect to spatial

variables, i.e.,

[hi]=| " . (6.72b)
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Therefore, the first nonlinear strain—displacement matrix By, can be written as

BNl = Al Hl = [[le][bNg] [bNg] [bN4] [bN5]:| (673&)

where the components of By are given as

0 —10v/dy .
[byil = | =1 ou/ox % ov/oy v : (6.73b)
0 Ny
0 20v/0x

In a similar manner, the second nonlinear strain terms can be written as

§N2 _%u,y Vg —81}/830 0
ou/dy .
Eno = {engp = % Uy Vg = 35 ov/ox 0 = 5A20, (6.74)
ov/dx
IN2 —2U4 Vg 0 —4 0u/ox
with
—ddv/ox 0 —N; , dv; 0
5
dAg = | odv/ox 0 = 2i=1 N; ;- dv; 0
0 —4 0du/ox 0 —4 N; 5 du;
- T
= | [L][12]{1s] 1] [15]} [[dﬂ [d][d3][d4] [d5]} = L2D2 (6.752)
wherein
—Ni » 0
dvi 0
0 —4N;,

The vector 0, is expressed in terms of the nodal displacements with the use of shape functions
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as

8u/8y 5 Ni,y U;
6 = = Diics = [[hﬂ[hz] [bs][ha) [hs]} {u@} =Hu®  (6.763)
ov/dx Ni 2 v;
where the elements of Hy are given as
Niy O
[h;] = (6.76D)
0 Ni,z
Hence, the second nonlinear strain—displacement matrix Byo becomes
B2 = A2 H, = |:[bN1][bN2] [bNg] [bN4] [bN5]] (6'773)
where its elements are given as
—dv/ox 0
Niy O
[byni] = | ov/ox 0 (6.77b)
0 Nig
0 —40u/ox
In like manner, the third nonlinear strain terms can be written as
Ens — —2ou/ox 0
1 ou/ox .
Ens = EN3 = %U%C = 5 0 ov/0x = 5A3603 (6.78)
ov/dx
N3 —Uy Uy —20u/dy 0
with
—% odu/ox 0 —% Ni » du; 0
5
dAj = 0 odv/ox | = 22’:1 0 N; » dv;
—2 0du/dy 0 —2 Ny du; 0
- T
= | [11]{12][15][14] [15]] {[dl][dﬂ [ds][d4] [d5]] = L3D; (6.79a)
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wherein

_%Ni,m 0
du; 0
[L] = 0 N,| and [di]= : (6.79D)
0 d’UZ'
—2N;, O

05 is expressed in terms of the nodal displacements using the shape functions; specifically

ou/ox Ni g ui

65 = =Y - [[hl][hz][hg] [hy] [h5]] {u@} =Hu®@  (6.800)
ov/ox Ni 2 v;

where the components of Hg contains the derivatives of shape functions with respect to spatial

variables, i.e.,
[h;] = ’ . (6.80b)

Therefore, the first nonlinear strain—displacement matrix By3 can be written as

Bys = A3H3 = {[bm][bm][bm] [bn4l [bNS]] (6.81a)

where the components of Byg are given as

—30ufox 0
Nir O
[bri] = 0 dv/dy : (6.81D)
0 Nig
—20u/dy 0

The total nonlinear strain—displacement matrix is evaluated as the summation of its com-
ponents By, Byg, and Bys. Now, with all the strain—displacement matrices evaluated, we
are ready to compute the stiffness matrix for a planar membrane.

To obtain the stiffness matrix for a planar membrane, we need to compute the four

constituent strain-displacement matrices C*, C!, K* and K, as mentioned earlier.
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The tangent stiffness matrix C?, as established in Eqn. (6.50), becomes

C’ = J H'S*HH A = |Jo| Y H" 8(&,n;) H Hy w; (6.82a)
Q i=1
wherein
S S
S* = (6.82b)
Sa1 S22
where an isochoric response is assumed in that Hy|Jo| = H|J|. Here Hy and H are the

initial and current height or thickness of the septal membrane, and &;, n; and w; are the
co-ordinates and weights of quadrature for Gauss point .

The stress vector T = {s™,5,s"}T conjugate to strain vector E = {£,¢,7}" has elements
of a surface tension s™ = 811 + Sa9, a normal-stress difference s = 811 — Soo, and a shear

stress s = ¢ S

1 1 b
811 = 5(87T + SU), 822 = 5(87T — SU) and 812 = 821 = *ST (683)

a
such that S = PU 'SU "PT with S being the second Piola-Kirchhoff stress evaluated in
the co-ordinate system of a pentagon, while U is Laplace stretch, and P is a re-indexer of
co-ordinate labeling needed to ensure invariance under a transformation of Laplace stretch.

The tangent stiffness matrix C’, as established in Eqn. (6.51), becomes

Ct — L BT M'B |J| HdA = [Jo| Y| BT M'(&,n:) B Hy; (6.84)

i=1

where its associated stress rate is described by a tangent modulus M.

The secant stiffness matrix K*, as established in Eqn. (6.48b), becomes

K® = f BT M*BHdA = |J| ZBT M°(&,m;) B Hy; w; (6.85)
O .

i=1
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where its associated stress is described by a secant modulus M.

Likewise, a secant stiffness matrix K*, also established in Eqn. (6.51), becomes

=1
where its associated stress rate is given by dS* := AT M'dA.
6.2.4.3 Kinematic Matrices for a Tetrahedron

Let us consider a tetrahedron subjected to displacements of u, v and w in its three

spatial directions, respectively. In terms of these displacements, elements of the deformation

gradient can be written as

1+ du/ox  Ou/dy ou/oz,
F=| ov/iox 1+ov/oy ov/oz |- (6.87)
ow/0x ow/oy 14 0w/0z

The components of the right Cauchy-Green deformation tensor, viz., C := F'F, becomes

Ci = (ZDQ + (ZZ)Q + (Z‘;)z ”% +1 (6.882)
O = (?;)2 + (gZ)Q + (?yV)z +22§ +1 (6.88b)
Caz = (22)2 + (ZZ)Q + (g‘:)Q + 2?: +1 (6.88¢)
01220212224-2;4-2; Zz-i-g; ZZ}JFZZ-?; (6.88d)
023=032=?;+?;+?;-?:+ZZ ZZJFZZ?ZV (6.88f)

The components of Laplace stretch U are obtained in terms of displacement gradients
through a Cholesky factorization of the right Cauchy—Green tensor as defined in Eqn. (2.15).

For computational ease, these strain attributes are additively decomposed into one linear
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and five nonlinear components. The primary advantage of this decomposition is an emergence
of a systematic structure in the strain-displacement matrix, which makes evaluation of the
stiffness matrix much easier. The linear and nonlinear components for the strain attributes,

thus obtained, are given by

§=E&L+&n1 +En2 +En3 +ENa+Ens (6.89a)
€i = &L T €iN1 + EiN2 + EiN3 T EiNa + EiN5 (6.89b)
Yi =L T VN1t YiN2 T ViN3 + ViNa T ViN5 (6.89c¢)

where their linear and nonlinear components can be expressed in terms of elements arising

from a matrix representation of the displacement gradient as

1 /0u ov oOw
fL—g(aX‘Fay‘i‘aZ) (6903)
¢ _}(@@_@@_@@_@@+@@_@@_@@_2@@_4@@)
N"6\0z 0z ox ox dy 0y 0z 0z 0x 0x 0Oy 0y 0z 0Oz Jy 0x 0z dy
(6.90b)
1 /0u ov
f1L = 3 (8}( - ay) (6.90c)
1 ovov Ovov dudu owdw 0w Ow ou ov
S PRABARAS AL LT AS AN p Rl .
LN 6( ox (9x+(9y dy 0x 6x+8x ox 0y 8y+ oy ax) (6.90d)
1 fov ow
€1, = 3 <0y - az) (6.90e)
l/0wow Ovov Ovov dudu o0v ov ow Ow ou ov ov ow
e = ¢ EE_&&_55_55+£E+3§5_25&+455> (6.90f)
oV Oow
YL = P + g (6.90g)
ou odv ou 0v oudw oJuow Ov Ov ov Ow  Ow 0w
ov  oOw .
_tudu_ ,owdv owiw vov dwidw 690
TN = 0y 0z 0x 0z ox dy 0y 0z 0Oy 0z )
ou Ov
_ v oy .90k
Y3L 6y+5x (690)
ou du 2811 ov  0v Ov 8W&l (6.901)

VBN = ok Gy “oxdx oxdy | ox dy
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The total stiffness matrix can be obtained as a sum of the linear and five nonlinear stiffness

matrices.

First, the linear strain-displacement matrix B, is obtained by expressing the strain at-

tributes in terms of the nodal displacements through derivatives of the shape functions.

Specifically, the linear strain-displacement matrix takes the form of

( 3\

L
€1L
€21
E;p =«
ML

V2L

V3L
J

\

-

\

1 1 1
gU@—FgU’y—i‘gw’z

VU, + Wy

Uy + Vg

3\

J

>
i=1

— [[bLl][bL2][bL3] [bL4]] {u®} = B,u®

wherein each component of By is given by

and the nodal displacement vector for element e is given as

1
1,2 3 Nz

W=

2

W=

)

Ni,y Ni,:v

8
|
W=
=
<

W=

Wl

Nix

)

Nim

)

0
0

.
e
u():{ul V1 Wi Uy UV Wy U3 V3 W3 Uy Uy w4}~

Uil (6.91)
(6.92a)
(6.92b)

Note that the linear strain—displacement matrix By, consists only of derivatives for the shape

functions, and thus, remains the same throughout a deformation process.
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Now we establish the nonlinear strain-displacement matrices that will be used to obtain
the nonlinear stiffness matrix. The nonlinear components of each strain attribute have been
additively decomposed into five components to make our computation easier. Components of
each strain attribute are placed into an associated vector resulting in an additive decomposi-
tion of the total nonlinear strain Ey. To obtain the nonlinear stiffness matrix corresponding
to these nonlinear strain components, the nonlinear strains are written as a product of two
quantities: a matrix A containing various components of the displacement gradient, and a
vector @ that contains the derivatives of displacement with respect to spatial location. The
vector O essentially represents the slope of the body resulting from the deformation process.
The components of the displacement gradient are placed in the matrix A in such a way so
that its product with the slope vector yields the corresponding contribution to the nonlinear
strain.

The slope vector @ can further be expressed in terms of the corresponding nodal displace-
ments by using the derivatives of the shape functions. Thus, the nonlinear strain components
En;,i = 1,2,3,4, can be expressed in terms of the nodal displacements, with the nonlinear
strain-displacement matrix Bp; corresponding to these strain components.

Now let us perform the procedure described above on all five nonlinear strain components.
For the first nonlinear strain, Ey; can be written as a product of the matrix A; and the

slope vector 8, as

( ) ( )

§in ¢ (—u? =% —w?) —3oufox —%ovjoy —iow/ox
1N & (—u? +0%) —Loujor  Lov/oy 0
L (2 2) ) . ou/ox
EaN = (—vy, +w? 1 0 —30v/dy 3 0w/0z
Eni = < b =4 ° Y ’ (=3 3 3 ov/dy
YIN —V Uy Wy W, 0 —20v/0z  20w/dy
ow/oz
V2N VzVy +Wyw, 0 20v/0z 20w /dy
73N) L _U,LL‘ u,y + v7$ 'U7y ) __2 5U/ay 2(9'1)/(9:17 0 1
~1A,6,
(6.93)
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with

—20du/ox —%odv/dy —3 ddw/0z —3 N; pdu;
—% odu/ox % odv /oy 0 —% Nizdu;
0 —Lodv/oy Ladw/oz 0
dA, = 3 0do/0y g 0dw/0z ) >
0 —20dv/0z  2d0dw/dy a 0
0 20dv/0z  2ddw/dy 0
| —20du/dy  20dv/ox 0 | | —2Niydu;
- T
- || [l an] =i,
wherein
_%Ni,x _%Ni,y _%Ni,z
—iNie 3N 0
’ SR dui 0 0
0 —iNy, 1IN
L] = ST and [dil=| 0 dw 0
0 —2N;, 2N;,
0 0 dw;
0 2N; . 2Ny
| 2N, 2N, 0 |

—% N; y dv;
% N; y dv;
—% N; o dv;
—2N; . dv;
2 N; . dv;

2 Ni’m dvi

1
—3 Ni . dw;

% Ni,z dwl
2Ni’y dwi

2 Ni,y dwz

(6.94a)

(6.94D)

The derivative of displacement with respect to spatial variables x,y and z, can be written as

0, =

ou/ox
ov/dy
ow/oz

for element e, where

- Z; Niyvi (= [[hl][hz][hg][hd] {u®} =H;ul®

Nizu;

Ni,z w;

0 0
Niy O
0 Ni7z
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Hence, the strain-displacement By corresponding to the first nonlinear strain becomes

wherein the components of By, are given as

Byi=AH; = {[bm][bm] [bns] [bN4]]

[ _Lowor —1av/oy
—%ou/ox % ov/oy
0 —10v/oy

0 —20v/0z

0 20v/0z

| —20u/oy  20v/ox

— % 0w/dz
0

3 0w/0z

20w/dy

20w/dy

0

Nip 0
0 Niy
0 0

(6.97)

(6.98)

In a similar manner, we can obtain the strain-displacement matrices corresponding to the

other nonlinear strain components. The second nonlinear strain terms can be written as

\

&L
EIN
EaN
Ene =<
YIN

Y2N

V3N

=1A50,

1(,2 2 2
6 (u z Ve w,y)
=1,,2
6 Wy
2 2 2
(—uvz + v, + 3w’y)
> =
0
Uy U,z
W W,y

0
1 | —3%0u/oz
2 0
2 0u/dy
| 0
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0
1 ov/2
0
0
0

10u/oz  —Lov/oz —3dw/dy

—3 0w/dy
ow/dy
0
0
20w/ox

ou/oz
ov/0z
ow/dy

(6.99)



with

%&’du/é’z —%6dv/é’z —%6dw/6y %Ni,z du;
0 0 —1 odw/oy 0
dA, — —% odu/0z % odv/oz odw/dy _ 24 —% N;.» du;
i=1
0 0 0 0
| 0 0 20dw/dz | i 0
- T
= | [1][l] [13][14]} [[dll[dz][dzl [d4]} = LoDy
wherein
% Ni,z _% Ni,z :1; 7Y
0 0 —1 Ny
-3 Nz,z %sz Ni,y
L] = and [di]=1] 0 dv; ©
0 0 0
0 0 dw;
2Ny 0 0
| 0 0 2 Ni,x

1
—3 Ni . dv;

1
3 Ni,z dvi

1

—3 ]Vi’y dw;
1
3 ]\fm, dw;

Ni,y dwl

2 Ni@ dwi

(6.100a)

(6.100b)

The slope vector can further be expressed in terms of the nodal parameters via

ou/oz Ni - u;
0 =3 ov/oz =Z; Nisv; ¢ = [[hl][hQ][hg][m]] {u©} =Hyu®
ow/dy Ny w;
where
Ni. 0 0
[h]=] 0 N_. 0
0 0 N
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Hence, the strain-displacement matrix B o becomes

By = AoHy = [[le][sz] [bns] [bN4]] .

The components of this strain-displacement matrix are given as

$0u/0z  —%0v)0z —Low/dy
0 0 — 1 0w/dy
—30u/0z % 0v/0z ow/ oy
[bnil =
0 0 0
2 0u/dy 0 0
|0 0 20w/ox |

For the third nonlinear strain term, i.e., Ey3, can be written as

( A (

95 i
EIN
€2N
Eyns = 4 > = <
TN
V2N
L V3N | L
2 ov/ox
1 —2 ov/ox
=3 .
0
0

(—2 Vaply —4wyv, + w?m)

% (2 Vg Uy + wa)

[

—20v/0x —3 0w/dy

0
3 0w/dy
0
0
0

(—2vzuy+4wyv)

0
0
0
L ow/oz |
1 ow/ox
0
0
0
0
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(6.103)
Ni. 0 0
0 N. O (6.104)
0 0 Niy
.
’ (6.105)

ou/0y
ov/oz ¢ = 5 A3 03

ow/ox



with

—% odv/ox —% odw/dy % odw/ox —% Ni z dv;
2 0dv/ox 0 L odw/ox 2 Nipdv;
2 4 2
—20dv/ox = odw/0 0 —2 N; . dy;
dAs = 3 / 3 /0y _ 24 3 Vi,
i=1
0 0 0 0
0 0 0 0
| 0 0 0 ] i 0
- T
= | ][] [15] [14]] {[dl] [d2][ds] [d4]] = LsDs
wherein
_%Nz,x _gNz,y %Nz,m
2 Nl X 0 lNl X
’ ’ dvi 0 0
_% Nz T % Nz,y 0
[L] = and [di]l=| 0 dw; 0
0 0 0
0 0 duw;
0 0 0
| 0 0 0 |

4
-3 Ni,y dwz

0
% N; y dw;
0
0
0

2 N p dw;
% N; 5 dw;
0
0
0

0

(6.106a)

(6.106b)

Here the slope vector @3 contains derivatives of displacements with respect to spatial variables

y, z, x that relate to the nodal parameters via

ou/oy Ny u;

03 =< dv/oz =Z; Nizvi ¢ = [[hﬂ[hﬂ[hg][hd} {u©} = Hzu®

ow/0x Ni o w;

where
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Therefore, the strain-displacement matrix B3 becomes

Bys = A3 H; = [[le][bNQ][bNg] [bN4]] (6.109)

whose components are given as

—2 0v/ox —%(9w/6y 3 0w/ox
2 0v/ox 0 1 ow/ox
2 00/0x 4 ow/d 0 My 00
—20v/dx 5 ow/dy
byi=| ° ’ 0 Ni. 0 |- (6.110)
0 0 0
0 0 N
0 0 0
|0 0 0

For the fourth nonlinear strain term, Ex4 can be written as

{ A ( 3 B .
£ 0 0 0 0
EIN %U?x 0 %61}/&% 0
ou/ox
E9N —sv% 1 0 — 3 0v/0x 0
Ens =« r =3 ’ (=3 ov/ox
YN 20Uy F2Upwy 40v/0z 0 4 0u/ox
ow/ 0y
YoN 2V Uy —2Uz Wy —40v/dz 0 —4 0u/ox
(V3N | -2V U, ) | —4 ov/ox 0 0 |
~1A,0,
(6.111)
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with

0 0 0 0 0 0
0 2 0dv/ox 0 0 2 Nizdv; 0
0 —Lodv/ox 0 0 —L N, do; 0
dA, = 3 0dv/ - .
40dv/oz 0 4 ddu/ox - 4 N; , dv; 0 4N, du;
—40dv/0z 0 —4 0du/ox —4 N; . dv; 0 —4 N; , du;
_—4 odv/ox 0 0 1 _—4 Ni » dv; 0 0 1
- T
= [ L] [12][1s] [14]] {[dl] [d2][ds] [d4]] = L4Dy (6.112a)
wherein
0 0 0
0 2Nia 0
dvi 0 0
0 —% Nia 0
[L] = and [di]=1]0 dv; O |- (6.112b)
4 Ni,z 0 4Nz,x
0 0 du;
—4N; 0 —4 N, ¢
_—4 N 0 0

Here the slope vector 64 contains derivatives of displacements with respect to the spatial

variables x and y that relate to the nodal parameters via

du/oz Nioui
01= 1 ov/ox :2;1 Niz vi :[[hl][hz][hs][hz;]] {u@} = Hu'® (6.113)
dw/dy Ny w;
where
Ny 0 0
hi]=1]0 N. 0 (6.114)
0 0 N,
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Therefore, the strain—displacement matrix By, becomes

Byi=AH, = [[le][bNQ][bNg] [bN4]] (6.115)

whose components are given as

0 0 0
0 2 0v/ox 0
Nig 0 0
0 —3 0v/ox 0
by = 0 N 0 |- (6.116)
40v/0z 0 4 0u/dx
0 0 Ny
—40v/oz 0 —4 0u/ox
| —40v/0x 0 0o
The last nonlinear strain term, Exy5 can be written as
{ A 3\
92 ( 0
E1N 0
EIN 0
EN5 =< L = < >
YN Vg Uz = 2WyVy — Uy We
V2N 0
V3N 0
o0 7 (6.117)
0 0 0
0 0 0
ou/0z
1 0 0 0 L
=5 ovjoy ¢ =3 As505
—20v/0x —40w/dy —20du/dy
ow/ox
0 0 0
0 0 0
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with

0 0 0 0 0
0 0 0 0 0
0 0 0 4 0 0
dAs = =2
—20dv/dx —40dw/dy —2addu/dy —2 Nz dv;
0 0 0 0 0
| 0 0 0 ] i 0 0
r T
= [ M]N2]{1s] [14]] {[dl][dﬂ [ds] [d4]] = LsDs
wherein
0 0 0
0 0 0
dvi 0 0
0 0 0
[L] = and [di]=| 0 dw; 0
—2N;, —4N,, —2N;,
0 0 du;
0 0 0
| 0 0 0
the slope vector @5 relates to the nodal parameters via
ou/0z Ni i
4 e
05 =3 dvfay [ =Dy A Nigui | = [[hl][hz] [hs] [m]} {u©} = Hzu®
where
N;. 0 0
[hz] = 0 Ni,y 0
0 0 Nis
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—4 N,"y dwi

—2 Nay du,‘
0

0

(6.118a)

(6.118b)

(6.119)

(6.120)



Therefore, the strain-displacement matrix B x5 becomes

Bys = As; H; = [[le][bNg][bNg] [bN4]] (6.121)

whose components are given as

0 0 0
0 0 0
No. 0 0
0 0 0
by; = 0 N, 0 |- (6.122)
—20v/0x —40w/dy —20u/dy
0 0 N
0 0 0
0 0 0

The total nonlinear strain-displacement matrix By can be obtained as a sum of its five
components, i.e., By = Zle Byi.

To obtain the stiffness matrix for a tetrahedron, we need to compute the four constituent
strain-displacement matrices C*, C!, K*® and K', as mentioned earlier. The tangent stiffness

matrix C*, as established in Eqn. (6.50), becomes

C® = J H'S"HAV = [J| > H' $°(&,n;, () Hu; (6.123a)
14

i=1

wherein &, ;, (; and w; are the co-ordinates and weights of quadrature at the i*" Gauss point,

and

Sll 812 '513
S* =[Sy Sy Sas|- (6.123b)
831 832 833

The stress vector T' = {m, 01,09, T1, T2, T3} | conjugate to strain E has elements that comprise
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a pressure m = Sy + Soo + S33 = —3P where P denotes the common definition for pressure,
two separate normal-stress differences o1 = 811 — S22 and 09 = Syp — S33, and three separate
shear stresses 71 = 2832, T = 283 and 73 = {81 — ary. Of these, only pressure has an
initial value, viz., Iy, which represents atmospheric pressure. In a reciprocal sense, the stress

components are assigned via

14201 +02) Lm+an) Sy
S = Yrm+amn) i(m—o+o0) el (6.124)
STy o7 %(77_‘71_202)

The tangent stiffness matrix C’, as established in Eqn. (6.51), becomes
C - f BT M BAV = 3] Y BT M/ (€, 1, ) B (6.125)
1%

i=1

where the stress rate is described by its tangent modulus M.

The secant stiffness matrix K*®, as established in Eqn. (6.48b), becomes

K® :f BT M°BdV = |J| ) BT M*(&, i, &) Buy (6.126)
\%4

i=1

where the stress is described by its secant modulus M?*.

Likewise, a secant stiffness matrix K', also established in Eqn. (6.51), becomes

Kt — f HTdS' HdV = 3] Y HT dS! (€, 7, C) Hus (6.127)
4 i=1
where its stress rate is given by dS* := AT M"'dA.

6.2.5 Force Vector

The principle of stationary potential energy via the Rayleigh-Ritz approach, i.e., Eqn. (6.47),

determines a basis for finite element stress analysis. The internal strain energy is balanced
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with the potential energy of applied internal and external loads on the body.

The virtual work done by external forces 6 in Eq. (6.47) can be expressed as

6W=J téudSzf tNdAdS = U NTtdS> dA (6.128a)
S S S

where dS denotes a surface element with t being its surface traction vector (per unit surface

area) at current time. Hence, the external F ¢ force vectors are
Fpo = L NTtdsS. (6.128b)
The force needed to balance the residual stresses, i.e., Fy, is evaluated as
Fy = L B] TodV + fv B TodV (6.129)

where the first integral only needs to be evaluated once, as its argument is constant valued.
6.2.5.1 Force Vector for a Chord

Following the procedure described above, the force vector of a 1D alveolar chord is eval-

uated numerically in its natural co-ordinate system as

2
Fpc = f NTtdL = > N |J]w; (6.130)
L i=1
where w; are the weighting coefficients of the Gauss integration rule, N is the shape function
matrix for chord, and t is the traction on the septal chord that is selected so that the traction
can be additively decomposed into that carried by the collagen and elastin fibers.
The internal force Fy accounting for an initial residual stress of Ty, expressed as two

separate integrals, can be computed as

2
Fy :J BIToAdL-i-J B—IJ;;T()AdLZ |J|ZB—£T0Aiwi+ |J|ZBLT0AZU)Z (6.131&)
L L

2
i=1 =1
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where the first integral will only need to be evaluated once, as the argument is constant valued.
The cross-sectional areas of biologic chords need not be the same at both Gauss points; hence,
it cannot be pulled outside the sum (integration). Here the initial stress To = [so] — So = [so]

contains the initial stress sg carried by the collagen and elastin fibers; specifically,
so = (¢s§ + (1 — ¢)s5) where ¢ := AG/(Af + AF) = AG/Ag (6.131b)

where Ag and A are the initial and current cross-sectional areas of the chord. The superscripts

““” and ‘°’ designate collagen and elastin.
6.2.5.2  Force Vector for a Pentagon

The boundary of a 2D pentagon consists of line segments, which can be considered as 1D
chords. Hence, an evaluation of the boundary integrals of a pentagon amounts to evaluating
the line integrals along these boundary lines. Once the interpolation function for a pentagon
are evaluated on the boundary of a pentagon, we can obtain the corresponding chordal
interpolation functions [65]. Thus, the force vector F g for a pentagon can be obtained by
integrating the traction vectors multiplied by appropriate shape functions over all sides of
pentagon. Specifically, force along the boundary of a membrane can be obtained as

Fpco = ffﬁNTtdL = NTtyo|J[dL + | NTtoz[J|dL+ | NTt34|J|dL
I L12 L23 L34

+ | NTtys |J|dL+J NT t5|J|dL
L L
45 ) (6.132)

2 2 2
= |J|ZNTt12wZ‘+ |J|ZNTt23U)Z‘+ |J|ZNTt34wi
i=1 =1 i=1

2 2
+ |J|ZNTt45wi+ |J|ZNTt51wi
=1 i=1

where N represents the shape function matrix of a chord, but with the matrix dimension of
a pentagon, |J| is the determinant of the Jacobian for a 1-D chord, w; denotes the natural

weight of the chord, dS is the arc-length of an infinitesimal line element along the boundary,
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and t is the traction vector on each edge of the pentagon defined as
t=ST.n (6.133)

where n is the normal vector to each sides of pentagon on which the traction acts, and S*
are established in Eqn. (6.82b).

The internal force F'y accounting for an initial residual stress of Ty becomes
5 5
Fy = f B} T, dV + f BL TodV = |J| Z Bl Ty H;w; + |J| 2 B Ty H; w; (6.134)
174 1% i=1 i=1

where B and J are the strain displacement and Jacobian matrix of pentagon, respectively,
whose thickness or height H; can vary over the surface of the membrane, and as such, cannot

be pulled outside the summation. Here the initial stress

80 1
350 O
To=1<5s5=0p—So= (6.135)
0 35§
sy =0 ?

contains the initial surface tension sj carried by the septal membrane.

6.2.5.3 Force Vector for a Tetrahedron

The force vector on the alveolar volume is computed by integrating the traction vector
over the four boundary surfaces of the tetrahedron. Here the matrix of shape functions;

Eq. (6.30), is used to obtain the force vector for tetrahedron; specifically,

F30=§NTtdA= NTtAldA-FJ

NT tr, dA + J
A

NTta,dA +J NTtn,dA
A3

Al A4

(6.136)

3 3 3 3
= [T NTta, wi + 1T DN ta, wi + [T DN ta, wi + I[N ta, w;
=1 =1 i=1 i=1

where A;,i = 1,2, 3,4 represent the triangular boundary surfaces of a tetrahedron. Here N

represents the shape function matrix for these associated triangular boundaries. |J| is the
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determinant of the Jacobian for triangle, n denotes the number of Gauss points, w; is the
natural weight of the triangle from Table 6.2, and t is the surface traction on the triangle
surface. Integral § denotes an integration over the surface boundary of a tetrahedron.
Note: Except for the base of the tetrahedron, the tractions on its other sides have equal
and opposite contributions to the total force vector. Therefore, contributions from opposite
boundary surfaces of the tetrahedron nullify each other. Hence, in order to obtain the total
force vector for a tetrahedron, it is sufficient to only consider the contributions due to the

traction on its base. Therefore, the total force vector takes the form of

3
Fpo=|J| > NTtp, w; with ta, =S°T-n (6.137)
=1

where ta, is the traction vector on the surface of triangle, n is the normal vector to each

sides of tetrahedron on which the traction acts, and S°® has been defined in Eqn. (6.123b).

The internal force Fy accounting for an initial residual stress of Ty becomes
4 4
F :f B'TodV = |J| Y B] Tow; + 3| Y. BY Tow; (6.138a)
v i=1 i=1

where B and J are the strain displacement and Jacobian matrices of a tetrahedron, re-

spectively. Here the stress vector Ty = {7T,O'1,O'2,7'1,7'2,7'3}T is conjugate to strain E =

{€,€1,82,7, 72,73} T, where

o
010=0
it 00
020=0
Ty = < b= So=10 im o0 (6.139)
T10=0
0 0 3m
To0=0
7'3():0)

contains the residual pressure 7 inside a tetrahedron.
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Figure 6.1: deformation history during the shock wave

6.3 Numerical Implementation

Here, the capabilities of the presented alveolar septa formulations and its finite element
simulation subjected to shock waves that happened in a microsecond are demonstrated as
an example.

The physical and material properties of alveolar membranes, along with their variance,
are presented in Table 5.6. The material properties describing dilation, viz., M, M, and
E1maz, Were taken from Ref. [28] to model a visceral pleura membrane. The squeeze moduli,
viz., Ny and Ny, are in the same proportions as those of dilation, as reported in [28] for the
visceral pleura. The shear properties, viz., G, Ga, and Y4z, are our best estimates based
upon very limited data [61].

Figure 6.1 presents the imposed deformation history to the alveolar membrane considering
a compression first, and then an expansion as the alveolar septa is decompressed after the

shock wave. The assumed deformation history illustrated here is described by

Fy = —  Fy= (6.140)

although, all elements of deformation gradients remain the same as their initial value, vis,
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Figure 6.2: Alveolar membrane response for the squeeze mode caused by deformation histo-
ries.

Fy, Iy varies exponentially from its initial value to its final value in Fy.

The top row in Fig. 6.2 presents the displacement, velocity, and acceleration of node one
as assigned in Fig. 5.2 through the imposed far-field deformation history that engages the
squeeze modes. The second row demonstrates all vertices of the pentagon that appropriately
show the behavior of alveolar septa when exposed to a traveling shock wave.

A ballistic impact produces a shock wave that rises rapidly to form over-pressure or peak
pressure and then rapidly decreases to form a small pressure. Figure 6.3 illustrates the nodal
forces for a 2D pentagon at node one during the time that shock wave happens. The black
line is the nodal force from this theory written in Python with one pentagonal element. The
blue points are the results from Ansys using the Neo-Hookean model written in FORTRAN,
with 123 rectangular and triangular elements.

The simulation results in Fig. 6.4 present the equivalent stress distribution in the alveolar

septa during the shock wave. Based on the simulation, the top and bottom parts of the
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Figure 6.3: A comparison of the analytical solution and Ansys result of forces at node 1 of
the pentagon.
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Figure 6.4: Simulation results

pentagon have the highest level of von Mises pressure.
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7. SUMMARY

Through this dissertation, the components for a convected metric tensor and its inverse
described in an oblique, Cartesian, coordinate system are derived whose axes are tangents to
a triad of curvilinear coordinate axes originating at some particle of interest in a deforming
body. Strains and strain rates are constructed in terms of these metrics, along with a velocity
gradient, all quantified in this locally convected coordinate system. Quotient laws, and
their associated Jacobians of transformation, are derived that map vector and tensor fields
from this convected coordinate system in-to and out-of the Lagrangian and experimentor’s
coordinate systems.

We also derived two sets of thermodynamically admissible stress-strain pairs. The clas-
sical theory of elasticity and our two-mode theory of elasticity have two independent pa-
rameters for describing an isotropic elastic response, e.g., Young’s modulus E and Poisson’s
ratio v. Whereas, our three-mode elastic theory has three independent moduli for describing
an uniform elastic response, viz., the bulk K, shear G, and squeeze N moduli. Whenever
N = E/(14v) = 2G, the three-mode model reduces to the two-mode model, and to classical
elasticity whenever the deformations are infinitesimal. So why are there three, independent,
elastic moduli present in our three-mode elastic theory, while only two exist in the classical
theory? Whenever stress power is described in terms of a symmetric strain rate, as in classic
theory, the work done can be decomposed into two modes: volumetric and deviatoric. In
this description, elastic responses are quantified through the bulk K and shear G moduli.
Whereas, whenever stress power is described in terms of a triangular measure for strain rate,
as in our theory, the work done can be decomposed into three modes: one volumetric mode
and two deviatoric modes. One deviatoric mode describes motions of squeeze (e.g., pure
shear), whose eigenvectors for stretch will not rotate in the body, while the other deviatoric
mode describes motions of simple shear, whose eigenvectors for stretch will rotate in the

body. The volumetric mode has an elastic response quantified through the bulk modulus K,
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while the two deviatoric modes have elastic responses quantified through the squeeze N and
shear G moduli, with N being unique to our theory.

Also, the Eulerian triangular decompositions of deformation has been analyzed. Phys-
ically observable stretch/strain components comprising the triangular Laplace stretch has
been derived. Consideration of stress power, i.e., rate of working done by stretch rate, has
enabled derivation of work conjugate stress-stretch tensors as-well-as thermodynamically
conjugate scalar pairs of stress-strain attributes with physical meaning. Significantly, the
Eulerian formulation containing an Eulerian, lower-triangular, stretch tensor has not been
developed elsewhere in the mechanics literature.

The developed constitutive model is implemented as a microscopic alveolar model whose
homogenized response describes the macroscopic behavior of parenchyma in lung. Such a
model can be used in lieu of physical experiments to help develop and parameterize a better
continuum lung model for use in finite element analyses. The need for such a model is to
improved PPE to better protect a person from BABT and BLI when impacted by ballistic
projectiles or blast waves.

The geometry of an individual alveolus is modeled as an irregular dodecahedron com-
prising 20 alveolar vertices, 30 1D alveolar chords, and 12 2D pentagonal alveolar septa, all
enveloping a 3D alveolar sac. Implicit elastic constitutive equations are used to model these
alveolar chords and septa. Alveolar chords are modeled as collagen and elastin fibers loaded
in parallel. Damage is accounted for through the rupture of individual alveolar fibers and
septa, and the tearing of capillaries that lead to blood and interstitial fluids leaking into its
alveolar sac. Material properties for the individual fibers and septa are assigned through
probability distribution functions to account for their biologic variability.

It is shown that geometric strains for the three physical dimensions that arise in this
analysis are equivalent during uniform deformations when they are defined as geometric
strains. Adopting Laplace stretch as our fundamental kinematic variable, thermodynamic

conjugate pairs are established for these three geometric dimensions. These thermodynamic
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strains equate with the above geometric strains under conditions of uniform deformation,
plus they allow for the handling of nonuniform deformations, in particular, pure and sim-
ple shears. New to this implementation are the following: i) Sets of consistent interpola-
tion/extrapolation procedures for 1D rods, 2D triangles and pentagons, and 3D tetrahedra,
which allow physical fields to be mapped between the nodes and Gauss points of an element
in a reproducible manner; ii) Shape functions and a Gauss integration formula suitable for
constructing a pentagonal finite element, which is used to model alveolar septa; iii) Nonlin-
ear strain-displacement matrices for 2D pentagons and 3D tetrahedra that employ Laplace
stretch as their kinematic variable; and iv) A numerical algorithm that employs both secant

and tangent stiffness matrices in its finite element solver.
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APPENDIX A

QUOTIENT LAWS

Quotient laws determine how the components of vector and tensor fields map from one
coordinate system into another coordinate system [36]. They are linear transformations.
They are not tensor equations [10].

Usage of the word ‘push’ implicates moving a field forward through a linked set of con-
figurations: Lagrangian — convected +— experimentor’s +— Fulerian. While usage of the
word ‘pull” implicates moving a field backwards through these configurations: Lagrangian
«— convected <« experimentor’s < Eulerian.

The quotient laws preserve symmetry for covariant and contravariant tensors, whenever
it exists, but not for mixed tensors (the exception being stretch U [69]). The quotient laws
presented below preserve triangularity for mixed tensors, whenever it exists, but not for

covariant or contravariant tensors.
A.1 Field Transfer: Convected Fields & Experimentor’s Fields

The transfer of vector and tensor fields between the oblique convected and the ortho-
normal experimentor’s coordinate systems is governed by its Jacobian (or coordinate gradi-

ent) whose inverse exists. This Jacobian can appear in one of four forms

T ol [] wr [] oot [0
Y"[asc]’ Y ‘[(%6]’ Y ‘[afr]’ Y ‘[aﬂ] (&-1)

where coordinates ¢ locating a particle in the experimentor’s coordinate system with base

vectors {&;}, while coordinates £’ locate the same particle in the convected coordinate system
with base vectors {g;}. Matrices A and I do not commute, and as such, Y = I'A is distinct
from U = AT'. Jacobian Y maps tangent vectors from the oblique convected basis {g;} into

the orthonormal basis of the experimentalist {&;}, while Jacobian Y~T maps normal vectors
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from the oblique convected basis into the orthonormal basis. Jacobians Y~ ! and YT run
these maps in the reverse direction.
Given this set of Jacobian matrices, all covariant vectors W = @; & and w = w; g push

w+— w and pull w «— W via

~  ~=T T

w=Y w and w=Y'w, (A.2a)
all contravariant vectors w = @' e; and w = w’g; push w +— W and pull w «— W via

w=Yw and w=Y W, (A.2b)

all covariant tensors W = I;; &' ® &/ and Q = Q;; ' ® g/ push Q — W and pull Q@ « W

via
W=Y QY and Q=Y"WY, (A.2¢)

all contravariant tensors W = Wi &, ® é; and Q = QY g, ® g; push Q — W and pull

Q < W via
W =YQY" and Q=Y 'WY T, (A.2d)

and all mixed (right covariant) tensors W = Wf é;®e’ and Q = Q! g, ® g’ push Q — W

and pull 2 « W via
W =YQY! and Q=Y 'WY. (A.2e)

These maps are for absolute vector and tensor fields, since the Jacobian determinant det’Y =

abc plays no role here.
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A.1.1 Derivatives

A time derivative de taken in the convected coordinate system pushes forward as a LIE
derivative de in the experimentor’s coordinate system. To quantify these LIE derivatives we

need
odxt ok
o0&k 019

dH:=dHé;®¢&’  with  dH] = (A.3)

or, alternatively, in terms of Jacobian Y, dH = dY - Y ! whose components populate an
upper-triangular matrix.

With a velocity gradient dH defined over {€;} now in hand, the material derivative of a
covariant vector described in {g;} pushes forward into the experimentor’s frame with base

vectors {€;} as dw — dw, given that w — W, whose LIE derivative is defined by

dw =Y T dw AW = dWw + dH" - W, (A .4a)

the derivative of a contravariant vector pushes as dw — dw, given that w — W, whose LIE

derivative is defined by
dw =Y - dw dw :=dw —dH - w, (A.4Db)

the derivative of a covariant tensor pushes as d§2 — dw, given that Q — W, whose LIE

derivative is defined by
AW =Y T.dQ- Y AW := dW + dH"- W + W - dH, (A.4c)

the derivative of a contravariant tensor pushes as d€2 — dW, given that {2 — \7\7, whose LIE

derivative is defined by

AW =Y -dQ- YT AW :=dW —dH - W — W - dH", (A.4d)
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and the derivative of a mixed tensor pushes as d€2 — d\NN, given that  — W, whose LIE

derivative is defined by
AW =Y -dQ-Y! AW :=dW —dH-W + W - dH (A de)

wherein dHT is taken to mean Y~ T-dYT =T T.dI'" + T T(dA - A™)T'" whose components

populate a lower-triangular matrix.
A.2 Field Transfer: Convected Fields <& Lagrangian Fields

To push a Lagrangian field quantified in a coordinate system with base vectors {EZ} into
a convected field quantified in our locally, convected, coordinate system with base vectors
{gi} or, vice versa, to pull a convected field back into the Lagrangian basis, one must first
construct the quotient law that governs this particular type of field transfer. We begin with
the fact that Laplace stretch U = I/lj e ® Ej is a gradient, which itself is a product of

gradients in that

i oF_ow oc”

= - = — =YZ h F=RYZ A.
i = 3x7 ~ %F ax or U so that R (A.5)

wherein Lagrangian coordinates X exist in basis {E'Z}, experimentor’s coordinates Z° exist
in basis {&;}, while physical coordinates £* exist in basis {g;}. We note that F = F} &;® Ej,
R=6®&, Y=Y'e,®g andZ= 7§ QFE,

Like Y, Z is a Jacobian matrix pertaining to a coordinate transformation, this time

between the convected and Lagrangian coordinate bases. It too appears in four forms

e o X" r [eef] .. [oxe
Z‘_laXc]’ 2 ‘[asc]’ 2 ‘[aXT]’ 2 _[58] (4.6)

where Z = YU = A 'T7!AT, with transposes ZT = U'Y T =TTAT A 'and Z77 =

Y'U™" = ATTAT'T T populating lower-triangular matrices.

Jacobian Z maps tangent vectors from the Lagrangian basis {EZ} into the convected basis
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{g;}, while Jacobian Z T maps normal vectors from the Lagrangian basis into the convected
basis. Their inverses reverse the direction of these maps.
From this strategy, covariant vectors w = w; EZ and w = w; g have maps that pull

W «— w and push w — w as

w=27Zw w=7Z"w, (A.7a)

contravariant vectors w = w°* EZ and w = w’ g; have maps that pull w <= w and push w — w

as

w=7Z"'w w =Zw, (A.7b)

covariant tensors W = W;; E® Ej and = Q;; 8 ® g’ have maps that pull W « £ and
push W — Q as

W =7"Q%7 Q=7ZTWZ, (A.7c)

contravariant tensors W = Wi E; ® E; and = Q¥ g ® g; have maps that pull W « Q
and push W — € as

W=2z1'1QzT Q=7ZWZ", (A.7d)

and mixed (right covariant) tensors W = W/ E,®E; and Q = Q' g ® g’ have maps that

pull W «— © and push W — (2 as

W =272"'Q7Z Q=7ZWZ " (A.7e)
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APPENDIX B

NUMERICAL APPROXIMATIONS FOR LAPLACE STRETCH

Let the physical components for Laplace stretch at step n be denoted by

Uy Usy Usi Un QYo Qnfn

with analogous components assigned to steps n — 1 and n + 1, as required.

In a typical numerical application, one would be given the deformation gradient at the

beginning and end of a time step of size h, say, denoted here as F,, and F,, 1, whose affiliated

Laplace stretch U,, and U,,.; would come from Eq. (2.15). With this information, finite

difference formulae can be constructed to acquire approximations for differential changes in

the physical components of Laplace stretch a, b, ¢, «, 5 and 7.

The forward difference formula for Laplace stretch dif,, = Y=s1=tn 4 O(h) gives

h

da,, =~ W day, ~ bg:l (Oén+1h— an)
bur1 — by B B

db, ~ = df, “azl (ﬁ = 8 )

de, ~ % Ay, ~ ag;rl (%Hh— %)
while the backward difference formula dif,,.; = w + O(h) gives
da,1 ~ Gnil ~ Gn day,.q ~ bn (Oén+1 - Oén)

h bnt1 h

Qb > 0 g s o (f%ﬂh— ﬁn>
depag & w Vi1 ~ ajil (7n+1h— ’Vn)
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with there being a distinction in how the shear rates are approximated.

Equations (B.2 & B.3) are first-order approximations for these derivatives. Second-order

approximations can be established whenever n > 0 and when the step size for step [n,n + 1]

equals the step size for step [n — 1, n], where state n = 0 associates with an initial condition.

The central difference formula for Laplace stretch dif,, = % + O(h?) gives

Ap+1 — Qp—1
2h
bn+1 - bn—l
2h
Cn+1 — Cp—1

2h

da, ~

db,, =~

de, ~

b o -«
dOén% n+1< n+1 n) +

b, 2h o (O‘” 3 anil)

b, 2h

while the backward difference formula di4,,., = rsi=Tnttns o O(p2) gives

3an+1 B 4an + Ap—1

2h
3bp+1 — 4by, + by
db, 1 ~ +1 2h + 1
3CnJrl - 4cn + Cn—1

dcn+1 ~ 20

~ Ap+1 Bn-i-l - Bn ap—1 Bn — Bn—l
~ Apy1 <7n+1 - 7n) An—1 (7n - 7n71>
dm an, 2h + an, 2h
d 2bn (an-i-l - an) bn—l (an+1 - an—l)
Qpi1 = —
T b h bns1 2h
2an ﬁn—}—l - Bn Ap—1 6n+1 - ﬁnfl
df,11 = — B.5
Pa1 An+1 ( h ) An+1 ( 2h ( )
d _ 2an (%H - %) _ Onoy <7n+1 - %H)
Tt An+1 h Apy1 2h

both of which require values associated with state n — 1 to be stored.
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APPENDIX C

PIVOTING STRATEGY

Paul et al [34] introduced a pivoting strategy that selects an optimal co-ordinate relabel-
ing with respect to preserving the invariant directional qualities inherited through the QR
factorization of a 3 x 3 matrix. The rotated 1 direction is selected to align with that axis

which has minimal transverse shear, as determined through the functions

Fi=AFA+F3 | Fii=0 (C.la)
Foi=AF3+Fj | Fpn=0 (C.1b)

after which the rotated 3 direction is selected so as to minimize the transverse shear acting
across its 1-2 plane, with the Fj; being evaluated in basis (%, 7, 12)

Algorithm 1 establishes the reference co-ordinate system that one ought to use for anal-
ysis. It is rectangular Cartesian with base vectors (El, EQ, Eg)

There are six cases that can arise. Their associated orthogonal matrices are

100 100 010
[Pol=10 1 0 [Pil=1]0 0 1 [P2l=1{1 0 0
001 010 00 1
[0 0 1] [0 1 0] (0 0 1)
[Ps]=11 0 0 [Ps]=(0 0 1 [Ps]=(0 1 0 (C.2a)
010 100 100
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Algorithm 1 Co-ordinate Pivoting to get Upper-Triangle Dominance in F.

if 71 < F and F; < F;3 then

if |F32| < |F23| then

F = P{FPo, [{EHEHEs}] := [t H{7} k)] = [T 7 HK)Po

else

dﬁ.¢f= PIFPy, [(EiHE:NEs)] = [(7}{EHk)] = [(#}{7} K} |Ps

else if 7, < F; and F; < F3 then
if |F13| < |F31| then

F = PIFP,, [{EH{E}{Eq}] = [(7}{Kk}H7)] = [T HIHK)P,

else

dﬁ";‘: PIFP,, [{EiHEHEs}] = [{k}H7 HZ} = [(THT HKNP,
else (F3 < Fyand F3 < Fy)

if |F21| < |F12| then

F = PIFP;, [{(EHEHEs)] := [{(k}7 17} = [{Z}F k)] Pe

else

dﬁ_:f: PIFP;, [{EiHEHEs}] = [{t HkHT ] = (T HF HK}]Ps

end if

whose affiliated components for the re-indexed deformation gradient are

Fi
F3
Fa
Fs3
Fi3

Fys

Fi3
Fs3
Fos
F3
Fi

Fy

Fio
Fso
Fao
Fso
Fio

Fys

A

[F3] =

Fo
Fio
F3o
F3
Fas

Fi3

Fa
Fi
F3
Fso
Fao

Fis

where case 1 is the default case whose operator Py is the identity tensor.
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APPENDIX D

IMPLICIT ELASTICITY

Both explicit (i.e., Green [70]) and implicit (i.e., Rajagopal [71]) elastic material models
are put forward in this appendix for one’s consideration when choosing a material model to

represent biologic fibers and membranes.
D.1 Alveolar Chords as Green (Explicit) Thermoelastic Fibers

A Green thermoelastic fiber has a Gibbs free-energy potential described by an explicit
function of state, viz., G(0, F') where dG = —ndf — %e dF (cf. Eqn. 5.26a), out of which one

derives the governing thermoelastic constitutive equations, viz., for entropy
n=-0G(0,F), (D.1a)
and for strain
e:=1In(L/Ly) = —pdrG(0, F). (D.1b)

Providing an energy function establishes a material model.

D.1.1 Hookean Fibers

Herein we consider a Gibbs free-energy potential suitable for describing a Hookean fiber

GO, F) = —no(6 — 6) — C’(@ln (0‘1) —(9—90)> - F;FO (aln (;0) + F;EFO) (D.2)

normalized so that G(y, Fy) = 0 with initial conditions of ny = —dyG (0o, Fy) and ey =
—p0rG (6o, Fy) = 0 in our reference state associated with fields 6y and Fy. Introducing

In(0/6y) presumes that temperature 6 is absolute, i.e., it is measured in Kelvin, not centi-

165



grade, so in our application 6y = 310 K is body temperature.
D.1.2 Secant Material Properties

Upon subtituting the Gibbs free-energy function (D.2) into the constitutive equations
(D.1a & D.1b) governing entropy and strain, respectively, results in the matrix expression

n—"1o Cs ag/pb | | 1n(6/6)

ID(L/L()> Qg 1/E5 F— FQ

which rearranges into a form that is more suitable for our needs, specifically

n—"o Os - OézEs/pe asEs/pQ IH(Q/Q())
_ (D.3a)
F—F —a, F E, In(L/Ly)
with material properties: a specific heat (evaluated at some reference force Fp) of
n—"o
C, = (D.3b)
In(60/6o) F=F,

with C; — a?E,/pf being a heat capacity (evaluated at some reference length Lg), plus a

thermal strain coefficient (evaluated at some reference force Fp) of

In(L/L
= In(L/Lo) , (D.3c)
n(6/6o) | p—p,
and an elastic compliance (evaluated at some reference temperature 6y) of
1 In(L/Ly)
= = D.3d
E F—Fy |4, ( )

D.1.3 Tangent Material Properties

Upon differentiating the constitutive equations for entropy and strain found in Eqns.

(D.1a & D.1b), respectively, assuming that they are both sufficiently differentiable functions
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of state, while adopting the expression for Gibbs free energy found in Eqn. (D.2), results in
the following constitutive equation

dn 0o G Oor G de Cy ay/pb ~tdo

L=tdL pOrgG pOrrG dF o 1/E; dF

where we observe that the intensive and extensive variables now appear in rate or differential
form; hence, this formulation is hypo-elastic. [72] The material properties are: a specific heat

(at constant force) of

F — F
Ct . d77 C Oés( 0)

— - — = — F D4
0-1dp o s PY) 0 Ooo Q(@, ) ( a)

where the tangent response for specific heat C; relates to the secant response for specific
heat Cy via Cy = Cs — o (F — Fy)/p0, with C; — a?E;/pf being a heat capacity (at constant

strain), plus a thermal strain coefficient (at constant force) of

_LdL

Qy = 140 = —pb 6F0g(‘97 F) = _P‘gﬁé)Fg(e’F) (D‘4b)

dF=0

where, typically, a; = a,, and an elastic compliance (at constant temperature) of

1 L7'dL
E,~  dF

do=0

D.2 Alveolar Chords as Rajagopal (Implicit) Thermoelastic Fibers

In 2003, Rajagopal [71] introduced the idea of an implicit elastic solid. In 2016, Freed &
Rajagopal [62] constructed an elastic fiber model that convolves an explicit energy with an
implicit energy. In their approach, they decomposed fiber strain e := In(L/Lg) into a sum
of two strains, viz., e = e; + e wherein ey := In(L;/Lg) and ey :=In(L/L;). Length Lg is a
reference fiber length, viz., its length whereat F' = Fy. Length L, can be thought of as the

fiber’s length caused solely by a molecular reconfiguration under an applied load of F' (e.g.,
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an unraveling of crimp in collagen, a network reorientation in elastin, a reconformation in
structural proteins, etc.).

Let the Gibbs free-energy potential be described by a function of the form
G(0,e,F):=G(e1, F) +Ga(0, F) with dG = —ndf — %e dF (D.5)

where Gy is an implicit potential (a configuration energy) and G, is an explicit potential (a
strain energy). This energy function leads to the constitutive equation with the material

properties of

Cy = fi” = 009 G(0,e,F) = —0 099 Go(6, F) (D.6a)
0-1d0 | po
-1
o 1= L_ dL = —09 aF@ g(evea F) = _pe aF0g2(97F) (D6b)
0=1db |qr—0
1 L tdL _
= = —(p2,Gr(ex, F)) (e + pdrG(0,e, F)) = pdpr Ga(0, F) (D-6c)
Et dF d0=0

where mass density p is a mass per unit length of line.
D.2.1 Biologic Fibers with Tangent Material Properties

The fiber model of Freed & Rajagopal [62] imposes a limiting constraint e, onto the
internal strain of reconfiguration ey, viz., e; < ey, . Their model, when cast in terms of
a Gibbs free-energy function in the form of Eqn. (D.5), is described by an implicit energy

contribution of
1
gl (61, F) = —;(elmax (E1€1 — (F — Fo)) + 261(F — Fo)) (D.7a)

and explicit energy contribution of

G2(0,F) = —no(6 — 0p) — C (9 In <990) — (60— 0o)> _E ;FO (a In (;) + FQ_EjO> (D.7b)
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that, collectively, depend upon temperature 6, force F', and an internal strain e;, whose free energy
is normalized so that Gi(ey 0, Fo) = 0 and Ga(6p, Fy) = 0 with initial conditions e; 9 = 0, ez =
—p0r Ga(0y, Fy) = 0 and ng = —dp G2(bo, Fp). In fact, the explicit contribution to the free energy
adopted here is Hookean, cf. Eqn. (D.2). The resulting constitutive responses for entropy n and

force F are therefore described by the following differential matrix equation

d Cy —a?E/pd oiEi/p 6~1do
n _ t iEi/p tEi/p (D.7¢)
dF —aFy E, L=tdrL
whose elastic tangent compliance is now described by
1 €1 — €1 1
— max _ D7d
E(0.e.F)  Eren.. +2(F - F) | I (D-7d)
wherein
F —F
e1 =e—aln (;0) B 0 (D.7e)

and whose initial tangent modulus FE;(6y, e, Fy) is E1Ey/(E1 + E3) (= E; whenever Ey »
E; > 0) while its terminal tangent modulus E;(e; =ey,,,. ) is Fy. A transition strain occurs

at e, (> 0), which establishes the limiting state for internal strain ey, i.e., e; <ey, ..
D.2.2 Biologic Fibers with Secant Material Properties

Material properties Cy, oy and E; for the above model, viz., those of Eqn. (D.7), describe
tangents to material response functions. For the thermal properties, their secant counterparts
C, and ay relate to their tangent properties C; and «; just as they do for a Green elastic
fiber. Only the elastic compliance needs to be addressed.

The tangent modulus E; is established through the relationship

1 de

E, dF

_doy
a-o  AF

d€2

1 1
dF N

e+ —
do=0 Elt E2t

(D.8a)

do=0
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so that a fiber’s elastic compliance is described by

dF 1 1 1
de = — where — = —+ — D.8b
Ey By By By (D-8b)
and, consequently, its elastic modulus is described by
BBy
dF = E;d h E,=—7-—. D.8
yde  where E; Bt B (D.8c)

The implicit free-energy function introduced through Eqn. (D.7) produces a tangent com-

pliance of

1 €1 — €1 1
- mx = D.8d
Et Elelmax + 2(F — Fo) E2 ( )

whose internal strain caused by molecular reconfiguration comes from

0 F— K
ep=e—oln (00) -5 ° (D.8e)

The material properties of this model are: FEjFEs/(E; + Es) (> 0) is the initial tangent
modulus, Fy (» E; > 0) is the terminal tangent modulus, e, is the maximum strain
that can arise from a molecular reconfiguration, and «; is the thermal strain coefficient, all
quantified against a reference state described by 6y and Fj.

It follows then that its associated secant compliance obeys

1 e el €9 1 1
— = = + =: + D.9a
E, F—Folg—gy F—Folpmg, I —Folpy, Ers  Eas ( )
so the fiber’s compliance representation is described by
F — F, 1 1 1
— h = = D.9b
e 2 where 5~ + B ( )
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and, therefore, its modulus representation is described by

ElsEQS
F=F+E; h E,=——0r—. D.9¢
0 e where B i B ( )

where, upon integrating Eqn. (D.8d) by separation of variables, one arrives at a secant

compliance comprising a sum between

1 \/
— 61max 1 _ Elelmax (ng)
Els F— FO \/Elelmx + 2(F — FQ)

and

1 1
E2s EQ

with ES(F<F0) = ElEQ/(El + EQ)
D.3 Alveolar Septa as Green (Explicit) Thermoelastic Membranes

For a 2D membrane with a mass density of p per unit area, its response is comprising
uniform and non-uniform contributions. The thermodynamic conjugate fields pertaining to
uniform behaviors are: temperature # and entropy 7, and surface tension 7 and dilation
¢, cf. Eqn. (5.37a). While the conjugate fields pertaining to non-uniform behaviors are:
normal stress difference o and squeeze strain ¢, and shear stress 7 and shear strain ~, cf.
Eqn. (5.37b).

A Green thermoelastic membrane is assigned a Gibbs free-energy potential described by

G(0,7,0,7) = Gu(0,7) + G,(0,7) where dG = —ndf — L (¢ dm + e do + v dr) from which one

1
p

derives its governing thermoelastic constitutive equations; specifically, for entropy

n= _69 g(ea ™, g, T) = _69 gu(eaﬂ-); (DlOa)
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for dilation

{=—p0:G(0,m0,7)=—p0rGu(0,7), (D.10b)
for squeeze

e = —p3,G(0,7,0,7) = —pdy Gul0,7), (D.10¢)
and for shear

v=—p0;G(0,m,0,7)=—p0-G,(0,7) (D.10d)

whereby specifying energies G, and G,, produces a material model for membranes.
D.3.1 Hookean Membranes

In this appendix, we consider a function for the Gibbs free-energy potential that is suit-
able for describing biologic Hookean membranes; specifically: for governing their uniform

response, let

Gu(8,7) = —no(6 — 6p) — C (9 In (;()) — (0 - 00)) - ;p”o (2a In (990) + ”4_]\;0) (D.11a)

and for governing their non-uniform response, let

2 2
Gn(o,7) = —21[) (;N + TG) (D.11b)

where symmetries G,(0,7) = G,(—0,7) = G,(0,—7) = G, (—0, —7) must hold because the
squeeze and shear variables can take on either sign. These free energies are normalized
so that G,(0y,m) = 0 and G,(0¢,79) = 0 with initial conditions of ny = —dpGu (6o, 7o),
& = —p 0z Gu(bo,m0) =0, 60 = —p3,Gn(0,0) = 0 and vy = —p 3, G,(0,0) = 0 for a reference

state with fields 6y, 7, g = 0 and 75 = 0.
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D.3.2 Secant Material Properties
D.3.2.1 Uniform Response

Substituting the Gibbs free-energy function of Eqn. (D.11a) into the constitutive equa-
tions governing entropy Eqn. (D.10a) and dilation Eqn. (D.10b) results in a matrix expression

of
n—"1o Cs as/pf | | 1n(6/60)

In\/A/Ag as  1/4M; T — T
where £ := In/A/Ag. This matrix equation can be rearranged into a form that is more

suitable for our needs, viz.,

n—"no Cs — 402 M, /pf  4asM,/p In(0/6,)
= (D.12a)
T — To —4og M, 4 M, In/A/Ag

whose material properties are: a specific heat (evaluated at a reference surface tension )

of

_ "=
5 In(0/6,)

(D.12b)

T=T0

with Cy — 4a?M,/pf being a heat capacity in an absence of dilation, plus a thermal strain

coefficient (evaluated at a reference surface tension ) of

_ In(L/Lo)

1 In(A/Ag)
T T0(0/60) 2

T2 (0/00) | _

T=m0

(D.12c¢)

T=m0
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where In(A/Ay) = 2In(L/Ly) is the surface dilation, with L/Ly being the stretch between
any two points on its surface, plus an elastic membrane compliance (evaluated at a reference

temperature ) of

1 In(A/A
. In(4/40) 48 , (D.12d)
MS T—TO 6=6, ™ — Ty 6=6,
where T = %(011 + 099) =: %ﬂ' is the surface tension, with o;; being components of the

Cauchy stress in this 2D space. These are secant material properties, hence the subscript

‘s’ whose values can be measured in experiments.
D.3.2.2  Non-Uniform Response

Substituting the Gibbs free-energy function of Eqn. (D.11b) into the constitutive equa-

tions governing squeeze (D.10c) and shear (D.10d) leads to the following matrix equation

€ /2N, 0 o
Y 0 1/Gs| |7
that when inverted becomes
o 2N, 0 €
= (D.13a)
T 0 G 0
whose material properties are: a squeeze compliance (in an absence of shear 7y) of
1 In(T"/T"
L by 13
N, 011 = 022 |4_g, 0 lv=0
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where T" := a/b and T’y = ag/by are the current and reference stretches of squeeze, with
e :=In4/T/T being the squeeze strain, and where o := 017 — 099 establishes a normal stress

difference, plus a shear compliance (in an absence of squeeze ¢) of

v

T

I g—g0

: D.1
GS FO'Ql ( 3C)

F=F0 e=0

where g and gy are the current and reference magnitudes of shear, with v := g — gy denoting
shear strain, and where 7 := I'gg; establishes the thermodynamic shear stress.
D.3.3 Tangent Material Properties

D.3.3.1 Uniform Response

Upon differentiating the constitutive equations for entropy and dilation found in Equs. (D.10a
& D.10b), respectively, assuming they are both sufficiently differentiable functions of state,
while adopting the Gibbs free energy from Eqn. (D.11a), results in the following matrix

constitutive equation

d’)? 699 gu 5971‘ gu do Ct at/pe 6_1 do
dg P a7r9 gu P a7r7r gu dm Qy 1/4Mt dm

which is hypo-elastic in its construction. [72] This expression can be rearranged into

d Cy — 4a?M,/pf 4oy M,/ pb 0=-1do
T _ t i Mi/p tM/p (D.14a)

dm —4atMt 4Mt %A_l dA

recalling that d¢ = dA/2A, and with material properties defined accordingly: a specific heat

(at constant surface tension) of

C, _dn

T 9140 o = Cs — as(m — mo)/ptl = —0 Opy G, (D.14b)
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with Cy —4a?M,/pf denoting a heat capacity at constant dilation, and a lineal thermal strain

coeflicient (at constant surface tension) of

L='dL 1 A~1dA —p0 Org Gu
t = = = = (D14C)
9-1df |, 2 6-1dd |, _,
—Pe a971' gu
plus a compliance (at constant temperature) of
1 A~tdA dé¢
— = =4 — = —4p 0rr Gu. D.14d
M, AT {499 dr|ge_g $ ( )

D.3.3.2  Non-Uniform Response

From dG = dgG, + dG,, with dG, = —ndf — %5 dm comes dgG,, = —%(5 do + ydr) out of
which one obtains the constitutive equations governing non-uniform responses in a Green
elastic membrane, viz., ¢ = —p 0, G, and v = —p d; G, that, assuming they are continuous

and differentiable functions of state, can be expressed as the matrix differential equation

de Oss Gn  O5rGn do 12N, 0 do
dvy 070 Gn 07+ Gn dr 0 1/G, dr

where 0,, G, = 0,;,G, = 0, because the modes of squeeze and shear are taken to be decoupled.

The resulting matrix is readily inverted into a form that is more useful for us, namely

dCT 2Nt 0 dE
_ (D.15a)
dr 0 Gt d’Y
whose associated material properties are established via
1 r-tdr d
= S Z2 % 2 950,.G, (D.15b)
Nt d(O’H — 0'22) dy=0 do dy=0
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and

1 1 dg dy

— = = — = —0p0:+Gp D.15¢

G, Tdow|yy drlye, " (D-15¢)
where the conjugate stresses are defined as o := 017 — 099 and 7 := Tog; with T := a/b

being the stretch of squeeze from which it follows that I'~'dI" = 2de because the strain of
squeeze is given by € = In4/I'/I'y. The squeeze compliance 1/N, = 2de/do|, is evaluated at
a constant shear v, while the shear compliance 1/G; = dv/d7|. is evaluated at a constant

squeeze €.
D.4 Alveolar Septa as Rajagopal (Implicit) Thermoelastic Membranes

We employ implicit elasticity here to derive a constitutive theory suitable for describing

biologic membranes.
D.4.1 Tangent Material Properties
D.4.1.1 Uniform Response

Like the implicit elastic fiber introduced in Eqn. (D.7), the uniform response of an implicit
elastic membrane with a strain-limiting dilation can be modeled using a Gibbs free energy
of the form G, (0,&,7) := Gy (&1, 7) + Ga(6, 7) where our definition for dilation ¢ := In/A/A,
decomposes into a sum of two dilations: & := ln\/m and & = ln\/m so that
& = & + &, with like interpretations as those from their 1D fiber counterparts, viz., e, e;

and ey. Such a membrane’s tangent material properties are then given by

Ct = —Qagggu(e,f,ﬂ') = —Hagggg(e,ﬂ') (D16a)
Oy = —Pe Or6 gu(evéaﬂ-) = _pe Ort gQ((g?ﬂ—) = _pe O gQ(GJﬂ-) (D16b)
1AM, = —(p26,G1(61,m) ™ (€ + p 3 Gul6,€, 1) — prr Ga(0, ) (D.160)

whose derivations are analogous to those for the implicit fiber derived in Eqn. (D.6).
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D.4.1.2  Uniform Biologic Membrane Model

Like our model for a biologic fiber, we consider a Gibbs free-energy function for describing
the uniform response of a biologic membrane whose implicit energy function takes on the

form of

Gi(&,m) = —; (&max (4M1 &1 — (m —m0)) + 261 (7 — 7T0)) (D.17a)

and whose explicit energy function is

Ga(8,7) = —no(6 — By) — Ci <9 In (;()) — (- 90)> I ;p”o (2% In (é) + ”4;47;0)

(D.17b)
thereby resulting an elastic tangent compliance, as established in Eqn. (D.16c¢), of
4Mt(91:fa77) B 4M1§1i1:(a1_2(§; — ) 4]142 (D.17¢)
wherein
0 ™ —
§i=¢—aln (90> YA (D.17d)

with &, > 0 being an upper bound on strain &, i.e., & < &nax. Such a membrane has an
initial tangent stiffness M;(0y, &, mo) of My Ms/(My + Ms) (= M; whenever My » M; > 0)

and it has a terminal tangent stiffness M;(§ =&, ) of Ms.
D.4.1.3 Non-Uniform Response

We seek an energetic construction that is consistent with the Freed & Rajagopal [62]
fiber model, but which is applicable to the non-uniform responses that planar membranes

can support. A Rajagopal elastic solid is implicit. Therefore, we choose a Gibbs free-energy
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function for governing non-uniform behavior that looks like
gn(67 7, 0, T) =01 (51, U) + gg(O') + g3(’71, T) + g4(7—) (D18)

which depend upon three squeeze strains ¢ := In \/m, €1 :=1n \/m and g5 := In \/ﬁ,
and three shear strains v := g —go, 71 := g1 — go, and ¥, := g — g1, both of which are additive
in the sense that € = €; + €5 and v = 7 + 72, and as such, so are their differential rates of
change de = de; +des and dy = dvy; +dr,. Strains €; and 3 may be thought of as describing
an unraveling of molecular configuration, analogous to e; in the fiber model of Eqn. (D.7),
and & in the uniform membrane model of Eqn. (D.17). No coupling between squeeze and
shear is assumed in this energy function. Energies G; and G are Rajagopal elastic (they
have implicit dependencies upon state), while energies Go and G, are Green elastic (they
have explicit dependencies upon state).

From the thermodynamic expression —pdG,, = £do + ydr, the non-uniform Gibbs free
energy G,, when expressed in the form of Eqn. (D.18), and given the definitions for squeeze
1/N and shear 1/G compliances put forward in Eqns. (D.15b & D.15¢), one determines that

the tangent squeeze compliance is described by

1 d _
= = —(0046) T (e + 00061+ G)) = prs 0o (D.19a)
t

and that the tangent shear compliance is described by

1 d _
5 = dl = —(paylgg) 1(7 + /)57(93 + g4)) — P07 G4 (D-19b>
t T

whose mathematical structure is similar to that of the Freed—Rajagopal fiber model presented
in Eqn. (D.7). The first collection of terms on the right-hand side of both formulae is

Rajagopal elastic; the second is Green elastic.
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D.4.1.4 Non-Uniform Biologic Membrane Model

We now specify the Gibbs free-energy functions of Eqn. (D.18) such that they produce
tangent compliances 1/N; and 1/G; with like mathematical structure to Eqn. (D.17c¢) for

dilation, viz., 1/M;. Specifically, we consider Gibbs free-energy functions of the form

—pGi(e1,0) = sgu(er) en,,, (2Ni161 — 0) + 2610 (D.20a)
—pGa(o) = 0? /AN, (D.20b)
—pGs(71,7) = 880(11) Vi (G111 = T) + 217 (D.20c)
—pGu(T) = 72/2G, (D.20d)

where these energy functions have the same mathematical structure as the energies for bio-
logic fibers (Eqn. D.7) and uniform membranes (Eqn. D.17), less their temperature depen-
dence, and less their states of pre-stress, i.e., 0g = 0 and 79 = 0.

The sign functions, viz., sgn(e;) and sgn(~y;), account for the fact that squeeze and shear
strains can be of either sign, but the Gibbs energy must remain negative. In effect, the
sign functions flip the limiting state between tension and compression, i.e., they change the
signs of £1,__and 7, depending upon the respective signs of £; and ;. As a consequence,
Gi(e1,0) = Gi(—¢1,—0), G2(0) = Ga(—0), G3(11,7) = G3(—1, —7) and Gu(7) = Ga(—7).

When substituted into Eqn. (D.19), these energy functions produce the following thermo-

elastic compliances

1 SEN(E1) E1 ey — €1 1 o
= — + —e— — D.21
2N(e,0)  2N;ysgn(ei)er,,, +20 2N, f1TE 2N, ( 2)
1 SEI(V1) Vipmax — N 1 T
= — + = =7— = D.21b
G(v,7)  Gusgn(V) Vipwe +27 G2 nEIT G, ( )

which provide the tangent operators that we will use to describe the non-uniform behavior

of a biologic membrane.
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D.4.2 Secant Material Properties
D.4.2.1 Uniform Response

Integrating by parts the tangent compliance governing dilation found in Eqn. (D.17c¢)

results in a secant compliance of

VALTST L (D.22)

1 — flmax 1 _ +
4MS(7T) ™ — 1T \/Mlglmax 4 %(7‘( _ 7TO) 4M2

where M(m<my) = My My/(M;+ Ms). This compliance applies to the thermodynamic equa-

tions governing the uniform secant response of our membranes, as established in Eqn. (D.12a).
D.4.2.2  Non-Uniform Response

Integrating by parts the tangent compliance governing squeeze in Eqn. (D.21a) provides

its secant compliance of

| VN 1
— Slmax 7 _ lmes | 4 (D.23)
'\/nglmax—i_ |0'| 2N2

2Ny(o) o]

where Ny(o =0) = N1Ny/(N; + Ny), while integrating by parts the tangent compliance

governing shear in Eqn. (D.21b) results in its secant compliance of

Go

L D (VO ) L (D.24)
Gs(1) |7 \/Gﬂlmax + 2|7|

where G4(7 = 0) = G1G3/(G1 + G3). These compliances apply to the thermodynamic
equations governing the non-uniform secant response of our membranes, as established in

Eqn. (D.13a).
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