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ABSTRACT

An oblique, Cartesian, coordinate system arises from the geometry affiliated with a Gram-

Schmidt (QR) factorization of the deformation gradient F , wherein Q is a proper orthogonal

matrix and R is an upper-triangular matrix.

First, a cube deforms into a parallelepiped whose edges are oblique and serve as the base

vectors for a convected coordinate system. Components for the metric tensor, its dual, and

their rates, evaluated in this convected coordinate system, are established for any state of

deformation. Strains and strain rates are defined and quantified in terms of these metrics

and their rates. Quotient laws and their affiliated Jacobians are constructed that govern how

vector and tensor fields transform between this oblique coordinate system, where constitu-

tive equations are ideally cast, and the reference, rectangular, Cartesian, coordinate system

described in terms of Lagrangian variables, where boundary value problems are solved.

Then, we derived two sets of thermodynamically admissible stress-strain pairs. They are

quantified in terms of physical components extracted from a convected stress and a convected

velocity gradient, with elastic models being presented for both sets. The first model supports

two modes of deformation: elongation and shear. The second model supports three modes

of deformation: dilatation, squeeze and shear. These models are distinguished by their pure-

and simple-shear responses. They contain the coupling effects of Lord Kelvin [1], Poisson [2]

and Poynting [3].

The Eulerian formulation, consists of a lower-triangular stretch postmultiplied by a differ-

ent rotation tensor is studied. The corresponding stretch tensors is denoted as the Eulerian

Laplace stretches. Kinematics (with physical interpretations) and work conjugate stress

measures are analyzed. The Eulerian formulation, which may be advantageous for modeling

isotropic solids and fluids with no physically identifiable reference configuration, does not

seem to have been used elsewhere in a continuum mechanical setting.

As the application of our work, we introduced a dodecahedron to model an alveolus. Its
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geometric properties are derived in detail with regard to its three geometric features: 1D

septal chords, 2D septal membranes, and the 3D alveolar sac. The kinematics are derived

for us to model a deforming dodecahedron, including the shape functions needed for inter-

polating each geometry. Constitutive models are derived that are suitable for describing the

thermomechanical response for the structural constituents of an alveolus: its septal chords,

its permeable membranes, and its volume. Numerical methods are advanced for solving

first- and second-order ordinary differential equations (ODEs) and spatial integrations along

a bar, across a pentagon, and throughout a tetrahedron using Gaussian quadrature schemes

designed for each geometry. A variational formulation is used to create our structural model-

ing of an alveolus. Constitutive equations suitable for modeling biological tissues are derived

from thermodynamics using the theory of implicit elasticity, presented in an appendix.
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1. INTRODUCTION

1.1 Background

It was in his 1951 paper entitled “On the use of convected coordinate systems in the

mechanics of continuous media” published in the Proceedings of the Cambridge Philosophical

Society where Arthur Lodge introduced body fields—a formalism he made precise in his

1974 book on Body Tensor Fields in Continuum Mechanics [10]. Lodge showed that a

connection exists between convected space-tensor fields and body-tensor fields, viz., their

components are equivalent at that instant when their coordinate axes become coincident

[11].

A common conjecture betwixt Brillouin [12], Hencky [13], Oldroyd [14], Lodge

[11], Green & Zerna [15] and others is: It is within a convected coordinate system where

an application of the calculus will be independent of spatial considerations, and therefore, it

is there where constitutive equations will take on their simplest representation. Lamé [16]

was the first to use curvilinear coordinate systems in his analysis of shells.

1.2 Introduction

We construct our analysis using convected space-coordinate systems derived from the

geometry of a parallelepiped generated out of a Gram decomposition of the deformation

gradient that, itself, is generated from the motion of a body traveling through space.

Our analysis is based upon the hypothesis: Deformation is homogeneous at a particle in

a continuum.

The partially embedded coordinate system arrived at in our analysis is oblique Carte-

sian. It convects with the motion, but only within a neighborhood surrounding a particle.

The coordinate axes defining this system are comprised of tangents to an embedded curvi-

linear triad whose origin is located at the particle P whereat deformation gradient FpPq is
evaluated, see Fig. 2.1.
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A convected metric with local reach is derived in this study that describes a homo-

geneous state of deformation in terms of an oblique, Cartesian, coordinate system, provided

one knows components of the deformation gradient.

We also use the two Jacobians arising from our convected kinematic analysis to arrive

at two sets of thermodynamic conjugate pairs. Each pair is comprised of two fields: a stress

and a strain, both measures being scalar fields. From these thermodynamic co-ordinates,

constitutive equations can be derived. One set of conjugate pairs associates with two distinct

modes of deformation: elongation and shear. The second set associates with three distinct

modes of deformation: dilatation, squeeze and shear. Elastic models that describe Kelvin,

Poisson and Poynting coupling effects are put forward for both sets of conjugate pairs. These

models are not restricted to infinitesimal strains and/or rotations. The Lodge-Meissner [17]

relation from rheology and the Poynting [3] effect from solid mechanics are shown to describe

the same physics.

We studied a different triangular decomposition of deformation gradient that splits the de-

formation gradient tensor into a rotation tensor followed (premultiplied) by a lower-triangular

stretch tensor. This construction is referred to as the Eulerian formulation of the triangular

decomposition of deformation.

In general, Lagrangian formulations, that is studied in chapter 2 and 3 (e.g., constitutive

models based on Lagrangian measures of strain) are preferred for modeling anisotropic solids,

as-well-as certain isotropic solids, that have a clearly defined initial, stress-free, or ‘reference’

state. This is readily apparent for single crystals, for example, whereby a reference state

is identified with the regular lattice geometry occupied by atoms in their minimum energy

(ground) state. Hyperelasticity is usually invoked in this context [18, 19], whereby an energy

potential depending on a Lagrangian stretch tensor is prescribed. Eulerian formulations, in

contrast, are often preferred for modeling isotropic solids (and fluids) that have no obvious

initial or reference state. For example, many biological tissues, in vivo, are perpetually under

tension, and a stress-free reference state is never physically realized. Eulerian forms are also
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used for hypoelastic constitutive modeling that is often more popular than hyperelasticity

for solving initial-boundary value problems numerically.

These models and metrics whose parameters are physical and unique, and whose numeric

implementation will be efficient and stable are used for modeling large deformations and

stress wave mechanics in soft biological tissue. Injuries that occur after a blast wave impacts a

person wearing personal protective equipment (PPE) or a non-penetrating ballistic projectile

impacts a person wearing PPE are referred to as behind armor blunt trauma (BABT). The

kinetic energy from such an impact is absorbed by the PPE, and the bony and soft tissues.

Verification is through experiments where, typically, a suit of body armor is placed over a

"body" subjected to a ballistic impact from a projectile fired by a weapon, all in accordance

with a standard. Current practice is to use clay (usually Roma Plastilina No. 1 clay) as a

surrogate for the human body in these tests.

BABT occurs at the microscopic level of alveoli, which make up the parenchyma, i.e.,

the spongy tissue of lung that comprises around 90% of lung by volume, cf. Fig. 1.1, there

being some 500 million alveoli in a typical human lung. We develop a mechanistic multi-scale

model that is capable of describing the deformation and damage that occur at an alveolar

level, caused by a shock wave traveling through the parenchyma, induced through either a

blast or a ballistic impact to PPE.

Performing experiments for the purpose of model characterization is extremely difficult

when it comes to modeling lung. Lung is a structure; parenchyma is a material. Therefore,

one would normally choose to test the parenchyma, and from these data extract one’s model

parameters but, because of its spongy nature, we are challenged to do so in a physically

meaningful way. Consequently, one typically tests whole lungs, or lobes thereof, and from

these structural experiments we are tasked to extract material parameters through an inverse

analysis. An alternative approach whereby one could, in principle, acquire parameters for the

continuum models would be to homogenize a microscopic structural response for the alveoli

of the parenchyma. The work presented here addresses this approach in our modeling of
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Figure 1.1: A medical drawing of the respiratory system [8].

deformation, damage, and injury in alveolar structures.

The primary purpose of this work is to provide a microscopic model for lung tissue that

can be used as an aid in the parameterization of a macroscopic model for lung that will be

reasonably accurate yet efficient to run in full torso finite element analyses to study BABT

for the purpose of improving PPE.

Figure 1.2 shows micrographs from a rat lung taken at different magnifications. In

the lower-resolution image, one sees numerous alveoli that became exposed because of the

sectioning process. Also present are several alveolar ducts that connect individual alveoli to

a bronchial tree. In the higher-resolution image we observe the faceted structure of these

alveoli, wherein one can see the septal chords and membranes, the latter being traversed by

capillaries through which gas exchange occurs. Gas exchange is not modeled here.

Alveolar geometry is modeled here as a dodecahedron, i.e., a soccer-ball like structure

comprising 12 pentagonal facets bordered by 30 septal cords that are connected at 20 ver-

tices. Each vertex links three neighboring cords of the alveolus with a fourth chord from a
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(a) Magnification at 100X. This is Fig. 5 in Freed
et al. [20].

(b) Magnification at 750X. This is Fig. 7 in Freed
et al. [20].

Figure 1.2: SEM photographs from a sectioned rat lung. The alveolar diameter in rat lung
is about one quarter the alveolar diameter in human lung.

neighboring alveolus.

This hypothesis was tested and confirmed in an experimental study done by Butler et al.

[21] where they used light scattering to study changes in geometry of the septal planes in

alveoli, from which they concluded: “the microscopic strain field does not differ significantly

from the macroscopic field.” We employ this hypothesis by taking the deformation gradient

from, say, a Gauss point in a finite element model of lung, and imposing it as a far-field defor-

mation onto our dodecahedral model of an alveolus. From this kinematic input we arrive at

an upper bound on the macroscopic stress/stiffness response, akin to a Voigt approximation,

through a homogenization of the microscopic forces created within our structural model for

an alveolus.

In this research we set out to develop a constitutive framework for alveolar mechanics,

fully cognizant of the aforementioned challenges. Our objectives are different from those of

prior studies in alveolar mechanics in that we seek to describe the response/injury of a human

lung that has been subjected to a stress wave propagating across the thorax region caused

by an impact from either a blunt object or a blast wave. Consequently, some important

aspects in the modeling of a breathing lung are thought to be less impactful here, e.g., the
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effect of surfactant in keeping alveoli from collapsing at the end of expiration.

1.3 Motivation and Scope of the Study

The contribution of the proposed study is novel and significant in the following respects:

1. A long-standing challenge is resolved to quantify the relevant, convected, tensor fields

for any arbitrary state of deformation as they would arise in a finite element analysis.

2. A general kinematic description for a deformable body in terms of a locally, convected,

coordinate system as a platform is provided.

3. The covariant and contravariant base-vectors, metrics, strains, and their differential

rates in the convected coordinate system, in the sense of Lodge [11, 22, 23, 24] are

derived that describe the geometry of Laplace stretch.

4. Stresses are quantified and constitutive equations are constructed in this convected

coordinate system that is oblique Cartesian.

5. An Eulerian lower-triangular decomposition in the context of continuum mechanics for

modeling isotropic solids (and fluids) that have no obvious initial or reference state has

been derived.

6. An accurate material models for the human body that are also efficient in the finite

element implementation is developed, which facilitate the study Behind Armor Blunt

Trauma (BABT) in an effort to improve the designs of Personal Protective Equipment

(PPE).
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2. ON THE USE OF CONVECTED COORDINATE SYSTEMS IN THE MECHANICS

OF CONTINUOUS MEDIA FROM LAGRANGIAN LAPLACE STRETCH [4]

A body B is an open set in a topological space with a non-negative Borel measure

introduced to describe mass [25]. Elements tPu of set B are called particles. Supplied with a

rigid frame of reference, any motion χ of body B can be described as x � χpP , tq at particle
P P B at time t. At each instant t, a motion χp�, tq is the placement of particle P into body

B.

2.1 Base Vector

In this chapter we utilize four coordinates systems that associate with four sets of base

vectors. Three coordinate systems are rectangular Cartesian with orthonormal base vec-

tors. The fourth coordinate system is oblique Cartesian with base vectors that are neither

orthogonal nor of unit length.

A rectangular Cartesian triad with base vectors p~e1,~e2,~e3q, denoted as t~eiu, establishes
the first coordinate system considered. It describes an Eulerian frame of reference

¶
that

spans Euclidean point space E . A different, rectangular, Cartesian triad of base vectors

p~E1, ~E2, ~E3q, denoted as t~Eiu, establishes the second coordinate system considered. These

are the Lagrangian base vectors. Base vectors t~Eiu rotate from the Eulerian base vectors

t~eiu according to an orthogonal tensor R that arises from a polar decomposition of the

deformation gradient, viz., F � RU where U is the symmetric Stretch tensor. Another

rectangular Cartesian triad of base vectors tẽ1, ẽ2, ẽ3u, denoted as tẽiu, establishes the third
coordinate system considered, see Fig. 2.1.

The left-hand graphic is of a unit cube representing a material element oriented with

respect to a set of orthonormal base vectors tẽ1, ẽ2, ẽ3u originating from some particle P . This

spatial triad coincides with a set of material lines t~ξ1,
~ξ2,

~ξ3u that become material curves

in the deformed state, the right-hand graphic. Tangents to these material curves t~g1, ~g2, ~g3u
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Figure 2.1: Deformation of a cube to a parallelepiped

describe the edges of a parallelepiped. As volume of the parallelepiped approaches zero,

i.e., the volume of particle P , differences between the material curves t~ξ1,~ξ2, ~ξ3u and the

oblique, Cartesian, tangent vectors t~g1, ~g2, ~g3u become negligible. The oblique, Cartesian,

coordinate system becomes coincident with the embedded, curvilinear, coordinate system

within a neighborhood surrounding P . Deformation becomes homogeneous as the volume

of a material element shrinks to a particle, and the convected coordinate system becomes

oblique Cartesian.

2.2 Lagrangian Laplace Stretch

To describe kinematics of a planar membrane, an upper-triangular Gram–Schmidt decom-

position of the deformation gradient F is used in lieu of the symmetric polar decomposition

that is commonly adopted [26, 27, 28, 5, 29]. McLellan [30, 18] was the first to propose a

triangular decomposition of F , to prove its uniqueness and existence, and to establish many

of its physical properties. This idea has been rediscovered several times since then.

A Lagrangian Gram–Schmidt factorization of the deformation gradient F is written here

as F � RU , where the rotation R is orthogonal, and where the Lagrangian Laplace Stretch

U is upper-triangular [29].1 This triangular measure of stretch possesses an inherent property
1The QR rotation R and Lagrangian Stretch U tensors are distinct from those that arise from a polar

decomposition of a deformation gradient, typically denoted as R and U, as found in any, modern, continuum
mechanics text. McLellan [30, 18] introduced the Lagrangian Laplace Stretch in 1976, which he denoted as
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Figure 2.2: Physical attributes of a planar deformation

in two space: the direction aligned with the rotated 1-axis, denoted as ~g1, remains invariant

under transformation U [18], i.e., it is a material vector in a neighborhood surrounding that

particle whereat F is evaluated [4].

2.2.1 2D Factorization of Deformation Gradient

The 2�2 deformation gradient associated with a planar membrane has a Gram–Schmidt

decomposition expressed in terms of four physical attributes. Three of these attributes

describe deformation. They are defined as [28]

a �
a
F 2

11 � F 2
21, b � F11F22 � F12F21a

F 2
11 � F 2

21
, g � F11F12 � F22F21

F 2
11 � F 2

21
(2.1)

thereby populating Lagrangian Laplace Stretch U and its inverse U�1 with components

U �

���a ag

0 b

��� and U�1 �

���1{a �g{b
0 1{b

��� (2.2)

where a and b are the principal elongations (ratios of current lengths to reference lengths)

and g is the extent of in-plane shear, as measured in a co-ordinate frame p~g1, ~g2q illustrated
in Fig. 2.2.

Orthogonal tensor R � �
~g1

�� ~g2
� � δij ~gi b ~ej � Rij ~ei b ~ej rotates the reference co-

ordinate axes p~e1, ~e2q into a physical co-ordinate system p~g1, ~g2q through an angle θ, which

H, while Srinivasa [26] denoted it as F̃ in his 2012 paper.
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is the fourth physical attribute arising from a QR factorization of F . This angle of rotation

describes a proper orthogonal matrix, specifically

R �

���cos θ � sin θ

sin θ cos θ

��� (2.3)

with

sin θ � F21a
F 2

11 � F 2
21
, cos θ � F11a

F 2
11 � F 2

21
6 θ � tan�1

�
F21

F11



(2.4)

where a positive angle θ corresponds with a counterclockwise rotation of physical axes p~g1, ~g2q
about reference axes p~e1, ~e2q.

2.2.1.1 Dilemma

Until recently, [31] there has been a tacit assumption in prior applications of Gram–

Schmidt factorizations of F : Specifically, the physical base vectors p~g1, ~g2q satisfy a geometric

condition whereby the physical 1-direction ~g1 rotates out of the reference 1-direction ~e1, but

this need not always be the case. Physical vector ~g1 could equally likely rotate out of the

2-direction ~e2 of the reference frame. At issue is not: How the physical base vectors orient

in space? That is managed by Gram’s procedure. Rather, at issue is: How do the physical

base vectors index with respect to the reference base vectors? This topic is addressed in

Appendix C for the 3D case; below, we address this topic for the 2D case.

To illustrate the concern, consider two deformation histories, as drawn in Fig. 2.3, each

of which describes a simple shear taking place in the plane of a membrane. In one case shear

occurs in the 1-direction, while in the other case shear occurs in the 2-direction. The left

graphic designates a reference configuration while the right two graphics designate deformed

configurations, both in basis p~g1, ~g2q. There are no elongations. These motions lead to

different Gram–Schmidt factorizations of the deformation gradient. When following the

10



Figure 2.3: Reference and deformed configuration associated with Eqns. (2.5a) and (2.5b).

protocol of Eqns. (2.1–2.4), these factorizations are found to be

F �

���1 γ

0 1

��� ùñ R �

���1 0

0 1

��� , U �

���1 γ

0 1

��� (2.5a)

and

F �

���1 0

γ 1

��� ùñ

$''''''''&''''''''%

R � 1?
1� γ2

���1 �γ
γ 1

���
U �

���?1� γ2 γ

0 1
L ?

1� γ2

���
(2.5b)

respectively, where we see that shear U12 has the same physical interpretation in both cases,

viz., γ, but elongations U11 and U22 do not, viz., U11 � 1 and U22 � 1 in Eqn. (2.5a), whereas

U11 �
?

1� γ2 and U22 � 1{?1� γ2 for the motion described in Eqn. (2.5b). Consequently,

two geometric interpretations are produced for just one physical mode of deformation. This

cannot be!

The only difference between the motions that lead to the two deformation gradients

presented in Eqn. (2.5) is one’s choice for labeling the co-ordinate directions. Matrix oper-

11



ations of row and column pivoting, taken from linear algebra, allow one to transform the

lower-triangular form of Eqn. (2.5b) into an upper-triangular form like Eqn. (2.5a); hence,

producing an unified physical interpretation for both shearing motions, and thereby provid-

ing a means for establishing a remedy to this dilemma.

2.2.1.2 Remedy

For 2D membranes, there are only two co-ordinate re-indexings that are possible (for 3D

solids there are six, Appendix C ). The default is no re-indexing at all, in which case

rPs � rP0s :�

���1 0

0 1

��� ùñ

���F11 F12

F21 F22

��� :�

���F11 F12

F21 F22

��� (2.6a)

while in the second case there is a re-indexing specified by

rPs � rP1s :�

���0 1

1 0

��� ùñ

���F11 F12

F21 F22

��� :�

���F22 F21

F12 F11

��� (2.6b)

where components Fij � PkiFk`P`j are the components to be used in the Gram–Schmidt

factorization, and where P P tP0,P1u is orthogonal, i.e., PPT � PTP � I with det P � �1;

specifically, det P0 � �1 while det P1 � �1.

The challenge in implementing such a strategy is to determine when to switch from P0

(case 1) to P1 (case 2), or back again, viz., from P1 to P0. To this end, it is useful to

represent the components of a planar deformation gradient as

���F11 F12

F21 F22

��� �

$''''''''''&''''''''''%

case 1 :

����F11 F12

F21 F22

���� �

���� x βy

αx y

����
case 2 :

����F22 F21

F12 F11

���� �

���� y αx

βy x

����
(2.7)
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Figure 2.4: A general description for homogeneous planar deformation

The physical attributes for Lagrangian Laplace Stretch, as they pertain to the two cases

in Eqn. (2.6), written in terms of components Fij from F � Fij ~eib~ej as defined in Eqn. (2.7),

are respectively given by

ã � x
?

1� α2 â � y
a

1� β2 (2.8a)

b̃ � yp1� αβq L ?1� α2 b̂ � xp1� αβq L a
1� β2 (2.8b)

g̃ � ypα � βq L xp1� α2q ĝ � xpα � βq L yp1� β2q (2.8c)

θ̃ � tan�1p�αq θ̂ � tan�1p�βq (2.8d)

where attributes in the left column apply to case 1 (i.e., Eqn. 2.6a) while those in the right

column apply to case 2 (viz., Eqn. 2.6b). The actual set of physical attributes ta, b, g, θu
that are to be used when quantifying Lagrangian Laplace Stretch and its inverse, according

to Eqn. (2.2), are then selected via the strategy

if |g̃| ¥ |ĝ| : tã, b̃, g̃, θ̃u ÞÑ ta, b, g, θu (2.9a)

else |g̃| ¤ |ĝ| : tâ, b̂, ĝ, θ̂u ÞÑ ta, b, g, θu (2.9b)

where it is easily verified that ã � â and b̃ � b̂ whenever g̃ � ĝ.
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2.2.1.3 Thermodynamic Strains and Strain Rates

In terms of the above physical attributes for Lagrangian Stretch, i.e., a, b and g, and

their reference values, viz., a0, b0 and g0, one can define a set of strain attributes derived

from thermodynamics, specifically [32]

ξ :� ln
�c

a

a0

b

b0

�
dξ � 1

2

�
da
a
� db

b



(2.10a)

ε :� ln
�c

a

a0

b0

b

�
dε � 1

2

�
da
a
� db

b



(2.10b)

γ :� g � g0 dγ � dg (2.10c)

whose rates are exact differentials, i.e., they are independent of path—a tacit requirement

from thermodynamics [33]. Here ξ denotes dilation (uniform areal stretch), ε denotes squeeze

(pure shear), and γ denotes (simple) shear.

2.2.1.4 Stretch Rates

The following approximations for stretch rates were derived by Freed & Zamani [4]. From

these, the various strain rates listed in Eqn. (2.10) can be established.

A forward difference formula is used to approximate rates in the reference configuration

for the various stretch attributes, as obtained from dU0 � pU1 � U0q{dt � Opdtq that,

neglecting higher-order terms, produces

da0 � a1 � a0

dt , db0 � b1 � b0

dt , dg0 � a1

a0

�g1 � g0

dt

	
(2.11)

where dt � t1 � t0 is the applied time step. A backward difference formula dU1 � pU1 �
U0q{dt �Opdtq is used to estimate rates for the various stretch attributes at the end of its

first integration step that, neglecting higher-order terms, give

da1 � a1 � a0

dt , db1 � b1 � b0

dt , dg1 � a0

a1

�g1 � g0

dt

	
. (2.12)
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Equations (2.11 & 2.12) are first-order approximations for these derivatives. Second-order

approximations can be established whenever i ¡ 0 provided the stepsize for step ri, i � 1s
equals the stepsize for step ri � 1, is, where state i � 0 associates with an initial condition.

The backward difference formula dU i�1 � p3 U i�1�4 U i�U i�1q{2dt�O
�pdtq2� then produces

rates for the stretch attributes of

dai�1 � 3ai�1 � 4ai � ai�1

2dt
dbi�1 � 3bi�1 � 4bi � bi�1

2dt
dgi�1 � 2ai

ai�1

�gi�1 � gi
dt

	
� ai�1

ai�1

�gi�1 � gi�1

2dt

	 (2.13)

which require stretch attributes ai�1, bi�1 and gi�1 to be stored in a finite element setting.

2.2.2 3D Factorization of Deformation Gradient

Taking the approach of Srinivasa [26] in 3 dimensional problem and melding it with the

co-ordinate selection methodology of Freed & Rajagopal [34], the components for Lagrangian

Laplace Stretch Uij are readily gotten through a Cholesky factorization of the right Cauchy-

Green deformation tensor C � Cij ~Ei b ~Ej with tensor components Cij � FkiFkj that relate

to their physical attributes via [32]

U �

������
a aγ aβ

0 b bα

0 0 c

������ with inverse U�1 �

������
1{a �γ{b �pβ � αγq{c
0 1{b �α{c
0 0 1{c

������ (2.14)

with tensor components Uij being evaluated according to formulæ [26]

U11 �
a
C11 U12 � C12

U11
U13 � C13

U11

U21 � 0 U22 �
a
C22 � U 2

12 U23 � C23 � U12 U13

U22

U31 � 0 U32 � 0 U33 �
a
C33 � U 2

13 � U 2
23

(2.15)
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Figure 2.5: Geometric interpretation of Lagrangian Laplace Stretch in a 3D solid

whose elements have physical interpretation, see Fig. 2.5, when defined as

a :� U11, b :� U22, c :� U33, α :� U23

U22
, β :� U13

U11
, γ :� U12

U11
(2.16)

where a, b, c are three, positive, elongation ratios, and where α, β, γ are three shear magni-

tudes, cf. Fig. 2.5, with U � Uij ẽi b ~Ej and U�1 � U�1
ij
~Ei b ẽj.

One can deconstruct the Lagrangian Laplace Stretch U into a product between an ex-

tensional stretch Λ and a shear deformation Γ as [26]

U � ΛΓ �

������
a 0 0

0 b 0

0 0 c

������looooomooooon
extension Λ

������
1 γ β

0 1 α

0 0 1

������loooooomoooooon
shear Γ

�

������
a aγ aβ

0 b bα

0 0 c

������looooooomooooooon
Lagrangian Laplace Stretch U

(2.17)

This is an Iwasawa [35] decomposition of the deformation gradient F ; namely: extension Λ

is diagonal with positive elements and shear Γ is unit upper triangular.
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2.3 Convected Base Vectors

Edges of the deformed parallelepiped depicted in Figs. 2.1 & 2.5 describe a set of oblique

base vectors t~giu whose components obey a linear map of

$''''&''''%
~g1

~g2

~g3

,////.////- �

������
a 0 0

bγ b 0

cβ cα c

������
$''''&''''%

ẽ1

ẽ2

ẽ3

,////.////- (2.18)

or t~giu � ΛΓTtẽiu, cf. Eq. (2.17). These base vectors describe a relative volume of

Vt~giu � ~g1 � ~g2 � ~g3 � abc (2.19)

which is the volume of distortion in that det F � det U � abc. Collectively, these formulæ

describe the shape of a homogeneously deformed mass element located at particle P whereat

F is evaluated, see Fig. 2.1. The convected base vectors t~giu are not the actual curvilinear

base vectors; rather, they are tangents to the curvilinear base vectors. The theory is therefore

local; nevertheless, it is suitable, e.g., for finite element analysis.

Dual vectors t~g iu to the convected basis t~giu are acquired through [36]

~g1 :� ~g2 � ~g3

~g1 � ~g2 � ~g3
, ~g2 :� ~g3 � ~g1

~g1 � ~g2 � ~g3
, ~g3 :� ~g1 � ~g2

~g1 � ~g2 � ~g3
(2.20)

which are described by t~g iu � Λ�1Γ�1tẽiu. Base vectors t~giu and their duals t~g iu convect
with the motion, locally at a particle, and by their vary definition, viz. Eq. (2.20), obey

~g i � ~gj � δ ij. which are described by the linear map

$''''&''''%
~g1

~g2

~g3

,////.////- �

������
1{a �γ{a �pβ � αγq{a
0 1{b �α{b
0 0 1{c

������
$''''&''''%

ẽ1

ẽ2

ẽ3

,////.////- (2.21)
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or t~g iu � Λ�1Γ�1tẽiu.

2.4 Convected Metrics

The ability to work with an oblique, Cartesian, coordinate system instead of having to

work with a general, curvilinear, coordinate system, in accordance with our hypothesis, af-

fords a practical utility to the convected tensor analysis presented herein. The convected

metric tensor can be quantified given any spatially smooth description for motion—a capa-

bility that has been absent until now.

Convected metric γ � γij ~g ib ~g j has components γij :� ~gi � ~gj, γij � γji, that, according

to Eq. (2.18), populate as a symmetric matrix with elements

γ �

������
a2 abγ acβ

abγ b2p1� γ2q bcpα � βγq
acβ bcpα � βγq c2p1� α2 � β2q

������ (2.22)

whose dual γ�1 � γ ij ~gi b ~gj has components γ ij :� ~g i � ~g j, γ ij � γ ji, that, populate as a

symmetric matrix which obey γ�1γ � δ.
When expressed in terms of Jacobian Y, and its fundamental constituents Λ and Γ, viz.,

Y � ΓΛ, one finds that

γ � YTY and γ�1 � Y�1Y�T (2.23)

neither of which can be constructed directly out of the Lagrangian Laplace Stretch U �
ΛΓ, because matrices Λ and Γ do not commute. Convected metric γ � YTY resembles

Lagrangian metric C � F TF � UTU � Cij ~E i b ~E j which does not look like Eq. (2.22).
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2.4.1 Convected Velocity Gradient

There is an analog to the Eulerian velocity gradient that exists in our convected coordi-

nate system with oblique base vectors t~giu. It is a mixed tensor dη defined by

dη � dηij ~gi b ~g j with dηij :� Bξ i
Bx̃k

Bdx̃k
Bξ j (2.24)

The velocity gradient in the experimentor’s basis defined in Eq. (A.3) is dH � dH i
j ẽib ẽj

with dH � dY � Y�1. It maps to a velocity gradient of the convected basis dη as dη �
Y�1�dH �Y, i.e., dη Ðß dH. Consequently, velocity gradients dH and dη represent the same

physical field, they are just defined on different manifolds.

2.5 Convected Strains

From our analysis of a cube being transformed into a parallelepiped, the convected,

covariant, strain tensor ε of Lodge [24, 10] has components

ε :� 1
2pγ � γ0q �

1
2

������
a2 � 1 abγ acβ

abγ b2p1� γ2q � 1 bcpα � βγq
acβ bcpα � βγq c2p1� α2 � β2q � 1

������ (2.25)

while the convected, contravariant, strain tensor E of Lodge has components

E :� 1
2pγ�1

0 � γ�1q � 1
2

������
�
a2 � 1� γ2 � pβ � αγq2�{a2�

γp1� α2q � αβ
�{ab

pβ � αγq{ac�
γp1� α2q � αβ

�{ab pβ � αγq{ac
pb2 � 1� α2q{b2 α{bc

α{bc pc2 � 1q{c2

������ (2.26)
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whenever γ0 � δij ~g i
0 b ~g j

0 and γ�1
0 � δij p~g0qi b p~g0qj, i.e., a0 � b0 � c0 � 1 and α0 � β0 �

γ0 � 0.

2.5.1 Properties of Convected Strains

Convected strain ε � εij ~g i b ~g j has the physical interpretation of being a measure

of change in the squared distance separating two neighboring particles. Convected strain

E � E ij ~gi b ~gj has the physical interpretation of being a measure of change in the squared

distance separating two, neighboring but non-intersecting, material planes [24].

Consider an ordered sequence in time t0   t1   t2   � � �   tn�1   tn for which fields

a, b, c, α, β, γ are normalized in that apt0q � bpt0q � cpt0q � 1 and αpt0q � βpt0q � γpt0q � 0.

The convected strain tensors ε and E�1 of Lodge, presented in Eqs. (2.25 & 2.26), generalize

to
εpti, tjq :� 1

2

�
γptiq � γptjq

�
Epti, tjq :� 1

2

�
γ�1ptjq � γ�1ptiq

� @ i, j � 0, 1, 2, . . . , n. (2.27)

For any subset of times ti, tj, tk belonging to the above sequence, Lodge’s generalized strain

tensors possess the following important properties:

εpti, tiq � 0 Epti, tiq � 0 (2.28a)

εpti, tjq � �εptj, tiq Epti, tjq � �Eptj, tiq (2.28b)

εpti, tjq � εpti, tkq � εptk, tjq Epti, tjq � Epti, tkq � Eptk, tjq (2.28c)

Equation (2.27) says strain is a two-state field, independent of the path traversed between

these two states. Equation (2.28a) says a reference state for strain exists, and furthermore,

that its selection is arbitrary. Equation (2.28b) says that strain is anti-symmetric in its

assignment of state. Equation (2.28c) says that two strains will add whenever there is a state

in common between them, irrespective of the states selected, and therefore, irrespective of

the extent of strain. These remarkable properties are unique to convected strain fields.
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3. ELASTIC KELVIN-POISSON-POYNTING SOLIDS DESCRIBED THROUGH

SCALAR CONJUGATE STRESS/STRAIN PAIRS DERIVED FROM

LAGRANGIAN LAPLACE STRETCH [5]

In this chapter an observer assigned frame of reference is considered. It is represented by

an orthonormal triad of base vectors p~ı,~, ~kq describing a rectangular, Cartesian, co-ordinate

system spanning a fixed, Euclidean, point space through which an embedded body B moves

with time where we called Eulerian basis p~e1,~e2,~e3q and Lagrangian basis p~E1, ~E2, ~E3q in

the previous chapter, and what we called an experimentor’s basis pẽ1, ẽ2, ẽ3q we now refer

to as the physical basis p~e1, ~e2, ~e3q, because it is within this co-ordinate system that the

components of convected vector and tensor fields find their physical components.

In previous chapter we decomposed the Lagrangian Laplace stretch U into a product of

two gradients, viz., U � YZ. When evaluated in our reference frame for analysis p~E1, ~E2, ~E3q,
Jacobian F will have components F̂ij � Bχ̂i,κpX, tq{BX̂j with x̂i � χ̂i,κpX, tq describing the

motion in p~E1, ~E2, ~E3q. How the Jacobians describe the mapping of a tangent vector, for

example, between these various configurations is illustrated in Fig. 3.1. There are three

reference configurations and three current configurations that one can work with in a con-

vected analysis with basis p~g1, ~g2, ~g3q. The deformation gradient Fij maps the Lagrangian

components of a tangent vector belonging to a reference configuration κr into its Eulerian

components belonging to the current configuration κt. The co-ordinate relabeling Pij (one

of six variants) transforms one from an observer’s frame of reference, i.e., p~ı,~, ~kq, into a

frame better suited for QR analysis, viz., p~E1, ~E2, ~E3q. The Lagrangian Laplace stretch Uij

maps tangent vectors from the QR reference configuration κ̂r into their counterparts in the

physical frame of reference κ̃t. The distortion Zij transforms tangent vectors from the QR

reference configuration κ̂r into tangent vectors in the convected frame of reference κc, while

the convected stretch Yij continues this mapping into the physical frame of reference κ̃t out

of which Qij rotates them back into the current configuration for analysis κ̂t. Matrix Pij
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Figure 3.1: Mapping between reference and current configurations by Jacobians

then relabels the co-ordinate axes to those assigned by the observer, returning one to the

current configuration κt.

The upper-triangular components for the Jacobians in this decomposition of Lagrangian

Laplace stretch, i.e., YZ (� U), and its inverse, viz., Z�1Y�1 (� U�1), can be written out

in terms of the physical attributes of deformation a, b, c, α, β, γ established in Eq. (2.16)

Y � ΓΛ �

�
�����
a bγ cβ

0 b cα

0 0 c

�
����� Z �

�
�����

1 a�b
a γ a�c

a β � b�c
a αγ

0 1 b�c
b α

0 0 1

�
����� (3.1)

where det Z � 1 while det Y � det U � det F � abc.

3.1 Stress Power

The internal mechanical power 9W exerted upon a material particle, caused by stressing

a deformable body, is a frame-indifferent [37, 38] physical property described by [39]

9W � trpTLq (3.2)

where T is the symmetric Cauchy stress and L :� 9FF�1 is the non-symmetric velocity

gradient, with 9F representing a material derivative of the deformation gradient F. These
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fields are defined in the current configuration κt, see Fig. 3.1.

For our purposes, it is advantageous to map L and T as mixed tensor fields, first pulling

their Eulerian components back into their associated Lagrangian components, and then push-

ing these Lagrangian components forward into their convected components. The reason for

using mixed tensor components is because Eulerian components Lij for the velocity gradient

will map into upper-triangular components 9η ij for the convected velocity gradient. As a con-

sequence, the expression for stress power used in the construction of constitutive equations

is vastly simplified, hence the motivation. This property of triangularity would be lost if

either covariant or contravariant tensor components had been selected.

The mechanical power caused by stressing a deformable body, i.e., Eq. (3.2), can also be

expressed as
9W � trpσ 9ηq � trpT Lq � trpT Lq (8a)

whose convected and physical fields for stress, i.e., σ and T , and velocity gradient, viz., 9η

and L, are described by

σ � σ ij ~gi b ~g j, T � Tij ~ei b ~ej
9η � 9η ij ~gi b ~g j, L � Lij ~ei b ~ej

with
Tij � T i

j � Y i
kσ

k
` rY �1s`j

Lij � Li
j � Y i

k 9η
k
` rY �1s`j

(8b)

wherein
9ηij � rY �1sik 9Y k

j � 9Zi
krZ�1skj

Lij � Li
j � 9Y i

k rY �1skj � Y i
k
9Zk
` rZ�1s`mrY �1smj

(8c)

establish the oblique and physical components for the velocity gradient.

In terms of the physical tensors T and L that are affiliated with convected tensors σ

and 9η, the work expended by stressing a deformable body becomes

9W � TijLji � tr

������
������

T11 T12 T13

T21 T22 T23

T31 T32 T33

������
������

L11 L12 L13

L21 L22 L23

L31 L32 L33

������
����� (8d)
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wherein T � T T and L � 9UU�1.

3.2 Stress/Strain Base Pairs

3.2.1 Two-Mode Theory

Hypothesis 1: Trace trpT Lq � Tij Lji establishes stress power dW in terms of physical

components, thereby describing a convected stress tensor and a convected velocity-gradient

tensor that can be decomposed into a set of six, conjugate, stress-strain pairs:

dW � tr

������
������

T11 T12 T13

T21 T22 T23

T31 T32 T13

������
������

da{a a dγ{b apdβ � α dγq{c
0 db{b b dα{c
0 0 dc{c

������
������

3̧

i�1

�
σi dεi � τi dγi

�
(3.3)

The definition selected here for assigning strains and their rates is a byproduct of a

Gram–Schmidt factorization of the deformation gradient F, specifically, we conjecture that

ε1 :� lnpa{a0q dε1 � da{a (3.4a)

ε2 :� lnpb{b0q dε2 � db{b (3.4b)

ε3 :� lnpc{c0q dε3 � dc{c (3.4c)

γ1 :� γ � γ0 dγ1 � dγ (3.4d)

γ2 :� α � α0 dγ2 � dα (3.4e)

γ3 :� β � β0 dγ3 � dβ (3.4f)

The thermodynamic stresses conjugate to these strains are therefore

σ1 :� T11 τ1 :� a
b

T21 � α a
c

T31 (3.5a)

σ2 :� T22 τ2 :� b
c

T32 (3.5b)

σ3 :� T33 τ3 :� a
c

T31 (3.5c)
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Note: From a Lagrangian perspective, a reference configuration κ̂r would be chosen so that,

typically, a0 � b0 � c0 � 1 and α0 � β0 � γ0 � 0 with their current values a, b, c and α, β, γ

being response functions. From an Eulerian perspective, a reference configuration κ̂r would

be chosen so that, typically, a � b � c � 1 and α � β � γ � 0 with their reference values

a0, b0, c0 and α0, β0, γ0 being response functions, cf. Lodge [24, 10].

3.2.2 Three-Mode Theory

Hypothesis 2: Trace trpT Lq � Tij Lji representing stress power can likewise be decom-

posed into a set of seven, conjugate, stress-strain, base pairs:

dW � tr

������
������

T11 T12 T13

T21 T22 T23

T31 T32 T13

������
������

da{a a dγ{b apdβ � α dγq{c
0 db{b b dα{c
0 0 dc{c

������
������ �3p de�

3̧

i�1

�
σi dεi � τi dγi

�
(3.6)

where tp, σ1, σ2, σ3, τ1, τ2, τ3u describes a set of intensive scalar-valued stresses whose thermo-

dynamic conjugates te, ε1, ε2, ε3, γ1, γ2, γ3u describe a set of extensive scalar-valued strains.

These strains and their rates are defined as

e :� ln 3
a
abc{a0b0c0 de � 1

3 pda{a� db{b� dc{cq (3.7a)

ε1 :� ln 3
a
ab0{a0b dε1 � 1

3 pda{a� db{bq (3.7b)

ε2 :� ln 3
a
bc0{b0c dε2 � 1

3 pdb{b� dc{cq (3.7c)

ε3 :� ln 3
a
ca0{c0a dε3 � 1

3 pdc{c� da{aq (3.7d)

γ1 :� γ � γ0 dγ1 � dγ (3.7e)

γ2 :� α � α0 dγ2 � dα (3.7f)

γ3 :� β � β0 dγ3 � dβ (3.7g)

where a0, b0, c0, α0, β0, γ0 are reference values for these kinematic variables, evaluated in a

configuration κ̂r affiliated with time t0.
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The stresses conjugate to the above measures for strain become

p :� �1
3

�
T11 � T22 � T33

�
(3.8a)

σ1 :� T11 � T22 τ1 :� a
b

T21 � αa
c

T31 (3.8b)

σ2 :� T22 � T33 τ2 :� b
c

T32 (3.8c)

σ3 :� T33 � T11 τ3 :� a
c

T31 (3.8d)

where the σi now denote normal stress differences, instead of normal stresses, while the shear

stresses τi retain the same physical interpretations as in the first hypothesis. Pressure p and

dilatation e are tensor invariants.

Note: This hypothesis supposes there are three separate modes of straining. Only two of

the three squeeze modes are independent, because ε3 � �pε1 � ε2q and σ3 � �pσ1 � σ2q.

3.3 Equilibrium Thermodynamics

The internal energy U of a system that is in thermodynamic equilibrium with its sur-

roundings is a function of its extensive variables E1, E2, . . ., En (e.g., S, ε1, ε2, ε3, γ1, γ2, γ3).

Conjugate to these extensive variables are the intensive variables F1, F2, . . ., Fn (e.g., T ,

σ1, σ2, σ3, τ1, τ2, τ3). At equilibrium, the First Law of Thermodynamics has a mathematical

interpretation of

dU �
ņ

α�1
Fα dEα � T dS �

ņ

α�2
Fα dEα (3.9)

where the sum in the right-hand expression only spans over the deformation variables, as

the non-deformation variables E1 :� S and F1 :� T have been written out explicitly.

Because dU is an exact differential, equations of constitution follow

Fα � U,α 6 dFα �
ņ

β�1
U,αβ dEβ or dEα �

ņ

β�1
Uαβ dFβ (3.10)

where U,α :� BU{BEα and U,αβ :� B2U{BEα BEβ with α, β � 1, 2, . . . , n.
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3.4 Elastic Model with Kelvin, Poisson and Poynting Strain Effects

Here we consider two such solids. The first adopts the two-mode description for state

variables. The second adopts the three-mode description for state variables. Both models

incorporate three coupling effects: Lord Kelvin (Sir William Thomson) [1] studied a coupling

effect between temperature and elongation; Poisson [2] studied a coupling effect between

axial and transverse elongations; and Poynting [3] studied a coupling effect between shear

and elongation.

3.4.1 Two-Mode Elastic Solid

A thermoelastic solid that exhibits Kelvin, Poisson and Poynting strain effects has a

compliance matrix that looks like

$''''''''''''''''''&
''''''''''''''''''%

dS

dε1

dε2

dε3

1
2dγ1

1
2dγ2

1
2dγ3

,//////////////////.
//////////////////-

�

�
�������������������

C{T α α α 0 0 0

α 1{E �ν{E �ν{E 0 0 0

α �ν{E 1{E �ν{E γ1{E 0 0

α �ν{E �ν{E 1{E 0 γ2{E γ3{E

0 0 γ1{E 0 p1 � νq{E 0 0

0 0 0 γ2{E 0 p1 � νq{E 0

0 0 0 γ3{E 0 0 p1 � νq{E

�
�������������������

$''''''''''''''''''&
''''''''''''''''''%

dT

dσ1

dσ2

dσ3

dτ1

dτ2

dτ3

,//////////////////.
//////////////////-

(3.11)

where the material constants include: C :� T dS{dT is the specific heat capacity measured

at constant pressure; α :� p1{LqdL{dT is the coefficient of thermal expansion over a gage

length L; E :� dσ{dε is the elastic modulus; and ν :� �dεtransverse{dεaxial is Poisson’s ratio.
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3.4.2 Three-Mode Elastic Solid

A different thermoelastic solid that also exhibits the Kelvin, Poisson and Poynting strain

effects has a compliance matrix that looks like

$'''''''''''''''''''''&
'''''''''''''''''''''%

dS

de

dε1

dε2

dε3

1
2dγ1

1
2dγ2

1
2dγ3

,/////////////////////.
/////////////////////-

�

�
����������������������

C{T α 0 0 0 0 0 0

α 1{3K 0 0 0 0 0 0

0 0 1{3N 0 0 �γ1{3N 0 0

0 0 0 1{3N 0 γ1{3N �γ2{3N �γ3{3N

0 0 0 0 1{3N 0 γ2{3N γ3{3N

0 0 �γ1{3N γ1{3N 0 1{2G 0 0

0 0 0 �γ2{3N γ2{3N 0 1{2G 0

0 0 0 �γ3{3N γ3{3N 0 0 1{2G

�
����������������������

$''''''''''''''&
''''''''''''''%

dT

�dp

dσ1

dσ2

dσ3

dτ1

,//////////////.
//////////////-

(3.12)

where the material constants include: C :� T dS{dT is the specific heat capacity mea-

sured at constant pressure; α :� p1{LqdL{dT is the coefficient of thermal expansion; K :�
�V dp{dV � �dp{3de is the bulk modulus; N :� dσ{3dε is the squeeze modulus; and

G :� dτ{dγ is the shear modulus.
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4. LAPLACE STRETCH: EULERIAN FORMULATIONS [6]

The deformation gradient admits a number of different triangular decompositions, whereby

in each case the full deformation gradient matrix is decomposed into a product of an orthog-

onal tensor and a triangular stretch tensor. The decomposition studied in this chapter splits

the deformation gradient tensor into a rotation tensor followed (premultiplied) by a lower-

triangular stretch tensor. This construction is referred to as the Eulerian formulation of the

triangular decomposition of deformation.

In general, Eulerian formulations are often preferred for modeling isotropic solids (and

fluids) that have no obvious initial or reference state. For example, many biological tissues,

in vivo, are perpetually under tension, and a stress-free reference state is never physically re-

alized. Eulerian forms are also used for hypoelastic constitutive modeling that is often more

popular than hyperelasticity for solving initial-boundary value problems numerically. How-

ever, prior to the present work, no application of the Eulerian lower-triangular decomposition

in the context of continuum mechanics seems to have been reported.

4.1 Deformation

We assume that a body is simply connected and its motion χ is sufficiently differentiable

so that F � BχpX, tq{BX exists and therefore

Fij � BχipX, tq
BXj

�

������
F11 F12 F13

F21 F22 F23

F31 F32 F33

������ �

������
f r1

f r2

f r3

������ (4.1)

where vectors f ri � Fij ~ej contain the rows of tensor F � Fij ~eib~ej, i � 1, 2, 3, with repeated

indices being summed according to Einstein’s summation convention. It follows straightaway

that the left, Cauchy-Green, deformation tensor B :� FF T � Bij ~eib~ej, which is symmetric.

29



4.1.1 Eulerian Laplace Stretch

Now we describe a Gram–Schmidt like factorization of the deformation gradient, viz.,

F � VRE, wherein V � Vij ~eib~ej is called the Eulerian Laplace stretch, or the left Laplace

stretch. Applying a Cholesky factorization to the symmetric, positive-definite, left, Cauchy-

Green, deformation tensor B :� FF T � VVT with components B � Bij ~ei b ~ej one can

construct a stretch tensor V � Vij ~ei b ~ej whereby

V11 �
a
B11 V12 � 0 V13 � 0

V21 � B21{V11 V22 �
a
B22 � V 2

21 V23 � 0

V31 � B31{V11 V32 �
�
B32 � V21V31

�{V22 V33 �
a
B33 � V 2

31 � V 2
32

(4.2)

A Gram–like factorization of the deformation gradient F � Fij ~ei b ~ej can also describe

an Eulerian rotation tensor RE � δij ~ei b ~eEj � RE
ij ~ei b ~ej constructed as

RE
ij �

�
~eE1 ~eE2 ~eE3

�T

(4.3a)

whose rows constitute unit base vectors that can be constructed via

~eE1 :� f r1
}f r1}

(4.3b)

~eE2 :� f r2 � pf r2 � ~eE1 q~eE1
}f r2 � pf r2 � ~eE1 q~eE1 }

(4.3c)

~eE3 :� f r3 � pf r3 � ~eE1 q~eE1 � pf r3 � ~eE2 q~eE2
}f r3 � pf r3 � ~eE1 q~eE1 � pf r3 � ~eE2 q~eE2 }

(4.3d)

It follows that the Eulerian Laplace stretch has components which can be expressed as

Vij �

������
f r1 � ~eE1 0 0

f r2 � ~eE1 f r2 � ~eE2 0

f r3 � ~eE1 f r3 � ~eE2 f r3 � ~eE3

������ (4.4)
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that provide a means of geometric interpretation for this measure of stretch.

4.2 Physical Interpretation of Laplace Stretch Components

Each Laplace stretch has six, independent, physical attributes. Their Eulerian interpre-

tations are distinguished with an overline, viz., a, b, c, α, β and γ which are distinct from

Lagrangian stretch attributes. However, their geometric interpretations are the same.

4.2.1 Eulerian Stretch Attributes

The Eulerian Laplace stretch has geometric interpretations that arise from Eqn. (4.4)

whereby one can assign

Vij �

������
a 0 0

aγ b 0

aβ bα c

������ �

������
1 0 0

γ 1 0

0 0 1

������
������

1 0 0

0 1 0

β α 1

������
������
a 0 0

0 b 0

0 0 c

������ (4.5a)

whose constituents are measured in a coordinate frame with base vectors

~eE1 � f r1
L
a (4.6a)

~eE2 � �
f r2 � γf r1

� L
b (4.6b)

~eE3 � �
f r3 � αf r2 � pβ � αγqf r1

� L
c (4.6c)

all of which are described in terms of physical attributes defined as

a :� V11, b :� V22, c :� V33, α :� V32

V22
, β :� V31

V11
, γ :� V21

V11
(4.7)

According to Eqn. (4.5), the Eulerian Laplace stretch arises from the following sequence

of deformations: it starts with three elongations a, b and c, followed by two out-of-plane

shears α and β, and then finishes with an in-plane shear γ, as illustrated in Fig. 4.1.
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Figure 4.1: A geometric interpretation for Eulerian Laplace stretch.

4.3 Frameworks for Constitutive Development

Here we construct sets of thermodynamic conjugate pairs for Eulerian frameworks when

using Laplace stretch as one’s kinematic variable.

4.3.1 Eulerian Stress-Strain Attributes

In terms of Eulerian fields, stress power 9W can be written as 1
ρ0

trpτDq wherein τ � FSF T

is the Kirchhoff stress, which relates to Cauchy stress T via τ :� detpF qT � ρ0
ρ

T, and where

D :� 1
2pL � LTq � F�T 9EF�1 is the symmetric part of velocity gradient L :� 9FF�1, with ρ

being the current mass density.

It can be shown that

9W � 1
ρ0

trpτDq � 1
ρ0

tr
�
τLE

�
(4.8a)

given that F � VRE, where this Eulerian velocity gradient LE is defined by

LE :� �
VV�1 wherein

�
V :� 9V � VΩE �ΩEV (4.8b)

with
�
V being an objective co-rotational derivative for this measure of stretch, and ΩE :�

9RERET being a spin of an Eulerian coordinate axes p~eE1 ,~eE2 ,~eE3 q about the reference axes.

Consequently, stress power ρ0 9W � tr
�
τLE

�
arises from two sources in this Eulerian

32



construction, viz. 9W � 9W1 � 9W2. The first is energetic, i.e.,

9W1 :� 1
ρ0

tr
�
τ 9VV�1� (4.9a)

while the second satifies objectivity, viz.,

9W2 :� 1
ρ0

tr
�
τVΩEV�1� (4.9b)

noting that trpτΩEq � 0. The objective correction (4.9b) is required to quantify the work

being done, but it plays no role when creating our Eulerian stress-strain attributes, as 9W2 � 0

whenever ΩE � 0.

Because 9VV�1 � 9VikV�1
kj ~eib~ej has components that are lower triangular, a consequence

of the group that tensor V belongs to, the first contribution to stress power put forward in

Eqn. (4.9a) reduces to a sum of six scalar contributions; specifically,

ρ0 9W1 � τ11 9V1iV�1
i1 � τ12 9V2iV�1

i1 � τ13 9V3iV�1
i1 � τ22 9V2iV�1

i2 � τ23 9V3iV�1
i2 � τ33 9V3iV�1

i3 (4.10)

wherein

9VikV�1
kj �

������
9a
a

0 0

9γ � γ
�

9a
a
� 9

b
b

	
9

b
b

0
9β � γ 9α � β

�
9a
a
� 9c

c

	
� αγ

�
9

b
b
� 9c

c

	
9α � α

�
9

b
b
� 9c

c

	
9c
c

������ (4.11)

Present here are the squeeze rates 9ε1 � 1
3

�
9a{a � 9b{b�, etc., which appear in the off-

diagonal terms, along with their corresponding shear rates, e.g., 9γ, thereby substantiating

our assumed construction of conjugate pairs.

Expressing Eqn. (4.10) in terms of Eulerian, thermodynamic, conjugate pairs, one can

write

ρ0 9W1 � π 9δ �
3̧

i�1

�
σi 9εi � τ i 9γi

�
(4.12)
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whose seven, conjugate, stress-strain pairs are defined as follows: a uniform bulk response is

governed by an Eulerian pressure π and an Eulerian dilatation δ defined by

π :� τ11 � τ22 � τ33 δ :� ln 3

d
a

a0

b

b0

c

c0

9δ � 1
3

�
9a

a
�
9b

b
� 9c

c

�
(4.13a)

while the squeeze (pure shear) responses are governed by Eulerian normal-stress differences

σi and Eulerian squeezes εi defined by

σ1 :� τ11 � τ22 � 3γτ12 ε1 :� ln 3

d
a

a0

b0

b
9ε1 � 1

3

�
9a

a
�
9b

b

�
(4.13b)

σ2 :�

$'&'%
τ22 � τ33

� 3αpτ23 � γτ13q
ε2 :� ln 3

d
b

b0

c0

c
9ε2 � 1

3

�
9b

b
� 9c

c

�
(4.13c)

σ3 :� �τ11 � τ33 � 3βτ13 ε3 :� ln 3

c
c

c0

a0

a
9ε3 � 1

3

�
9c

c
� 9a

a



(4.13d)

of which only two are independent, while the (simple) shear responses are governed by

Eulerian shear stresses τ i and strains γi defined by

τ 1 :� τ23 � γτ13 γ1 :� α � α0 9γ1 � 9α (4.13e)

τ 2 :� τ13 γ2 :� β � β0 9γ2 � 9β (4.13f)

τ 3 :� τ12 γ3 :� γ � γ0 9γ3 � 9γ (4.13g)

wherein a0, b0 and c0 are their initial elongation ratios, and where α0, β0 and γ0 are their

initial shear offsets.

The set of thermodynamic conjugate pairs for the Eulerian frameworks is composed of

three modes: one pair to describe uniform dilatation, three pairs to describe pure shears, and

three pairs to describe simple shears. There are three pure-shear pairs independent, thereby

resulting in sets of six, independent, conjugate pairs that have direct connections with the

six independent components of stress and stretch rate.
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Bijective maps exist to transform tensor components into thermodynamic stress–strain-

rate attributes that, for isotropic materials, are described by

$''''''''''''''&
''''''''''''''%

π

σ1

σ2

τ1

τ2

τ3

,//////////////.
//////////////-

�

�
���������������

1 1 1 0 0 0

1 �1 0 0 0 3γ

0 1 �1 3α �3αγ 0

0 0 0 1 �γ 0

0 0 0 0 1 0

0 0 0 0 0 1

�
���������������

$''''''''''''''&
''''''''''''''%

τ11

τ22

τ33

τ32

τ31

τ21

,//////////////.
//////////////-

(4.14a)

with

σ3 � �σ1 � σ2 � 3
�
ατ1 � βτ2 � γτ3

�
(4.14b)

and where

$''''''''''''''&
''''''''''''''%

9δ

9ε1

9ε2

9γ1

9γ2

9γ3

,//////////////.
//////////////-

�

�
���������������

1{3 1{3 1{3 0 0 0

1{3 �1{3 0 0 0 0

0 1{3 �1{3 0 0 0

0 �α α 1 0 0

�β 0 β γ 1 0

�γ γ 0 0 0 1

�
���������������

$''''''''''''''&
''''''''''''''%

9V1iV�1
i1

9V2iV�1
i2

9V3iV�1
i3

9V2iV�1
i3

9V1iV�1
i3

9V1iV�1
i2

,//////////////.
//////////////-

(4.14c)

with

9ε3 � � 9ε1 � 9ε2. (4.14d)

These strain rates can be integrated to get the Eulerian thermodynamic strains δ, ε1, ε2, ε3,

γ1, γ2 and γ3 by using initial conditions of δ|0 � ε1|0 � ε2|0 � ε3|0 � γ1|0 � γ2|0 � γ3|0 � 0

provided that the initial elongation ratios have been specified as a0, b0 and c0 and that the

initial magnitudes of shear have been specified as α0, β0 and γ0.
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5. A MICROSCOPIC MODEL FOR LUNG TISSUE [7]

Models and metrics whose parameters are physical and unique, and whose numeric im-

plementation will be efficient and stable are used for modeling the Lung tissues.

In this chapter a microscopic model for lung tissue is provided that can be used as an

aid in the parameterization of a macroscopic model for lung that will be reasonably accurate

yet efficient to run in full torso finite element analyses to study behind armor blunt trauma

(BABT) for the purpose of improving personal protective equipment (PPE).

5.1 Dodecahedra: A Model for Alveoli

Typical alveoli are 14 sided polyhedra with one face normally being open as a mouth

to an alveolar duct, and whose septal membranes typically become flat at transpulmonary

pressures as low as 2 cm H2O [40]. A dodecahedron is an isotropic structure, and is nearly

volume filling [41]. It is one of the five perfectly symmetric solids in geometry, Fig. 5.1(a).

5.1.1 Geometric Properties of a Regular Pentagon

Figure 5.2 presents a regular pentagon drawn in its natural co-ordinate system with

co-ordinates designated as pξ, ηq. Vertices of such a pentagon are placed at

ξ � cos
�

2pk � 1qπ
5 � π

2



η � sin

�
2pk � 1qπ

5 � π

2



k � 1, 2, . . . , 5 (5.1)

wherein k denotes the vertex number that are numbered counterclockwise, as assigned in

Fig. 5.2. Lengths of the five chords in a regular pentagon are all

Lp � 2 cospωq � 1.176 (5.2)

while the area of this pentagon is

Ap � 5
4 tanpωq pLpq2 � 5 sinpωq cospωq � 2.378 (5.3)
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(a) A cube is contained within a dodecahe-
dron, with one of its five possible orientations
being displayed.

(b) Vertices 1 through 8 are located at the corners
of such a cube. Vertices 9 through 20 are corners
of the hipped roof lines residing above each face of
the cube.

Figure 5.1: Geometric representations for a dodecahedron.

Figure 5.2: A regular pentagon in the natural co-ordinate system
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where area of the unit circle that inscribes this pentagon is πr2 � 3.142, r � 1.

5.1.2 Geometric Properties of a Regular Dodecahedron

Here we consider a dodecahedron that inscribes the unit sphere. Let this geometry be

described in its natural co-ordinate system with co-ordinates pξ, η, ζq whose origin is located

at its centroid, the center of the sphere. The 20 vertices of this dodecahedron are placed at

ξ η ζ

�1{?3 �1{?3 �1{?3

�φ{?3 �1{?3φ 0

0 �φ{?3 �1{?3φ

�1{?3φ 0 �φ{?3

(5.4)

where φ � p1 � ?
5q{2 � 1.618, which is also known as the golden ratio. Lengths of the 30

chords in a regular dodecahedron, when measured in its natural co-ordinate system, are all

Ld � 2?
3φ

� 0.7136 (5.5)

while the volume of such a dodecahedron is

V d � 40
3
?

3φ3 tan2pωq sinpωq � 2.785 (5.6)

where volume of the unit sphere that inscribes the dodecahedron is 4
3πr

3 � 4.189, r � 1.

5.1.3 Dimensions of Human Alveoli

Septal chord length LpDq, expressed as a function of alveolar diameter D, can be esti-

mated by considering the areal projection of a dodecahedron onto a plane that contains one

of its pentagonal faces, which leads to

L � D

tanpωqp1� cospαqq �
D

2.685 , (5.7)
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where α � π/10 � 18�. Alveolar diameterD is a property that can be measured in histological

studies of parenchyma.

5.1.4 Geometric Properties for Irregular Pentagons and Dodecahedra

Formulæ (5.3 & 5.6) only apply for regular pentagons and dodecahedra evaluated in their

respective natural co-ordinate systems. For irregular dodecahedra, the areas of its irregular

pentagons are calculated via

A � 1
2

5̧

i�1
pxiyi�1 � xi�1yiq (5.8)

where x6 ð x1 and y6 ð y1. In order for the predicted area to be positive when using this

formula, it is necessary that the vertices pxi, yiq index counterclockwise, as drawn in Fig. 5.2.

The centroid of this pentagon has co-ordinates0

cx � 1
6A

5̧

i�1
pxi � xi�1qpxiyi�1 � xi�1yiq (5.9a)

cy � 1
6A

5̧

i�1
pyi � yi�1qpxiyi�1 � xi�1yiq (5.9b)

wherein the vertex co-ordinates xi and yi are quantified in a 2D pentagonal frame of reference,

e.g., as established later in Fig. 5.4.

To compute the volume of an irregular dodecahedron, use the formula

288V 2
tet �

����������������

0 1 1 1 1

1 0 ` 2
12 ` 2

13 ` 2
14

1 ` 2
21 0 ` 2

23 ` 2
24

1 ` 2
31 ` 2

32 0 ` 2
34

1 ` 2
41 ` 2

42 ` 2
43 0

����������������
(5.10)

to calculate each of the 60 individual tetrahedral volumes that collectively fill the volume

of an irregular dodecahedron. Here `ij is the length of that tetrahedral edge with vertices i
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Table 5.1: Natural co-ordinates for the vertices of a regular dodecahedron, as labeled in
Fig. 5.1(b) according to Eqn. (5.4)

Vertex ξ η ζ Vertex ξ η ζ

1 1{?3 1{?3 1{?3 11 φ{?3 1{?3φ 0
2 1{?3 1{?3 -1{?3 12 φ{?3 -1{?3φ 0
3 -1{?3 1{?3 -1{?3 13 -φ{?3 1{?3φ 0
4 -1{?3 1{?3 1{?3 14 -φ{?3 -1{?3φ 0
5 1{?3 -1{?3 1{?3 15 1{?3φ 0 φ{?3
6 1{?3 -1{?3 -1{?3 16 -1{?3φ 0 φ{?3
7 -1{?3 -1{?3 -1{?3 17 1{?3φ 0 -φ{?3
8 -1{?3 -1{?3 1{?3 18 -1{?3φ 0 -φ{?3
9 0 φ{?3 1{?3φ 19 0 -φ{?3 1{?3φ
10 0 φ{?3 -1{?3φ 20 0 -φ{?3 -1{?3φ

and j; i, j � 1, 2, 3, 4; i � j; with `ij � `ji.

5.1.5 Indexing Scheme for Dodecahedra

In order to implement the dodecahedron as a geometric model for an alveolar sac, as

suggested by the images in Fig. 1.2, it first becomes necessary to introduce a labeling strategy.

The co-ordinates positioning the 20 vertices of a regular dodecahedron in its natural frame

of reference are presented in Table 5.1. According to the labeling scheme of Fig. 5.1(b), the

30 chords of a dodecahedron are given vertex assignments according to Table 5.2, while its

12 pentagons are given vertex assignments according to Table 5.3, which are indexed coun-

terclockwise when viewed looking from the outside in, and labeled according to Fig. 5.1(b).

5.1.6 Co-Ordinate Systems for Chordal Fibers and Pentagonal Membranes

The dodecahedron used to model an alveolus is considered to be regular in its "natural"

configuration, with a capability of being irregular in its reference configuration, and certainly

becoming irregular after deformation. The co-ordinate frame of its natural state is taken to

have its origin positioned at the centroid of this regular dodecahedron, i.e., at the centroid

of its enclosed cube (cf. Fig. 5.1).

40



Table 5.2: Vertices that locate the endpoints of septal chords in a dodecahedron, as labeled
in Fig. 5.1(b)

Chord Vertices Chord Vertices Chord Vertices
1 9, 10 11 17, 18 21 7, 18
2 1, 9 12 3, 18 22 7, 14
3 2, 10 13 4, 16 23 13, 14
4 3, 10 14 15, 16 24 8, 14
5 4, 9 15 1, 15 25 8, 16
6 1, 11 16 5, 15 26 5, 19
7 2, 11 17 5, 12 27 6, 20
8 3, 13 18 11, 12 28 7, 20
9 4, 13 19 6, 12 29 8, 19
10 2, 17 20 6, 17 30 19, 20

Table 5.3: Vertices that locate the corners of regular pentagonal surfaces in a regular dodec-
ahedron, and the chords that connect them

Pentagon Vertices Chords
1 11, 2, 10, 9, 1 6, 7, 3, 1, 2
2 10, 2, 17, 18, 3 4, 3, 10, 11, 12
3 13, 4, 9, 10, 3 8, 9, 5, 1, 4
4 9, 4, 16, 15, 1 2, 5, 13, 14, 15
5 15, 5, 12, 11, 1 15, 16, 17, 18, 6
6 17, 2, 11, 12, 6 20, 10, 7, 18, 19
7 18, 7, 14, 13, 3 12, 21, 22, 23, 8
8 16, 4, 13, 14, 8 25, 13, 9, 23, 24
9 12, 5, 19, 20, 6 19, 17, 26, 30, 27
10 14, 7, 20, 19, 8 24, 22, 28, 30, 29
11 20, 7, 18, 17, 6 27, 28, 21, 11, 20
12 19, 5, 15, 16, 8 29, 26, 16, 14, 25
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Figure 5.3: The co-ordinate system of a chord p~e1,~e2,~e3q relative to the co-ordinate system
of its dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids that are
offset by a translation χ.

Figure 5.4: The co-ordinate system of a pentagon p~e1,~e2,~e3q relative to the co-ordinate
system of its dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids
that are offset by a translation χ.

The local co-ordinate system of a chordal fiber, pentagonal membrane, and tetrahedral

volume are presented in Figures 5.3, 5.4, and 5.5, respectively. All three, local, co-ordinate

systems are denoted as p~e1, ~e2, ~e3q and each rotates out of the reference co-ordinate system

p~E1, ~E2, ~E3q of the dodecahedron via its own orthogonal rotation tensor Q.

5.2 Kinematics

The irregular dodecahedron used here as a model for alveoli describes a 3D structure

composing 30 1D rods (the septal chords) joined at twenty nodes (the vertices) that collec-
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Figure 5.5: The co-ordinate system of a tetrahedron p~e1,~e2,~e3q relative to the co-ordinate
system of its dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids.

tively circumscribe 12 2D pentagonal membranes (the alveolar septa) that in turn envelop

an alveolar sac whose volume is represented using 60 tetrahedra. To be able to describe

the overall mechanical response of this 3D dodecahedral structure, it is conjectured to be

sufficient to know the individual mechanical responses of its 1D septal chords, its 2D septal

membranes, and the 3D void within.

5.2.1 1D Chords

The stretch of a rod under extension is a ratio of its lengths. Specifically, λ :� L{L0

where L and L0 are its current and reference lengths, respectively.

5.2.1.1 Shape Functions for Interpolating a Rod

A two-noded alveolar chord has shape functions Ni, i � 1, 2, that, when evaluated in its

natural co-ordinate system where �1 ¤ ξ ¤ 1, describe a matrix with elements

N �
�
N1 N2

�
�
�

1
2 p1� ξq 1

2 p1� ξq
�

(5.11a)

that interpolate vector fields according to

xpξq �
2̧

i�1
Nipξqxi, upξq �

2̧

i�1
Nipξqui (5.11b)
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wherein ξ is the natural co-ordinate. Components xi and ui :� xi � x0i, i � 1, 2, are their

global co-ordinates and displacements, respectively, located at the two nodes of a chord

evaluated in the co-ordinate frame p~e1, ~e2, ~e3q of Fig. 5.3.

5.2.1.2 Deformation Gradient for a Rod

The deformation gradient in this case is simply

F pξq � 1� Bu
Bξ

�Bx0

Bξ

�1

� 1�
2̧

i�1
Ni,ξui

�
2̧

i�1
Ni,ξx0i

��1

� 1� u2 � u1

x02 � x01
~e1 b ~e1 � x2 � x1

x02 � x01
~e1 b ~e1 (5.12)

which is uniform over the length of a chord, i.e., it is independent of ξ.

5.2.2 2D Triangles

Triangular elements are needed in a support capacity in order to construct our alevolar

model; specifically, the four surfaces of a tetrahedron are triangles. What is required of them

is a capability to compute the traction acting across such a surface through integration.

5.2.2.1 Shape Functions for Interpolating a Triangle

The shape functions for a triangle expressed in terms of its natural co-ordinates pξ, ηq,
where 0 ¤ ξ ¤ 1 and 0 ¤ η ¤ 1� ξ, are given by

N1 � 1� ξ � η N2 � ξ N3 � η (5.13a)

so that the area of a triangle in its natural co-ordinates is 1/2 .

5.2.3 2D Irregular Pentagons

The kinematics of an irregular pentagon, on the other hand, are not trivial. Shape

functions are required from which deformation gradients can then be constructed. Once a

deformation gradient is in hand, the state of stretch occurring within a pentagon at its Gauss
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points can finally be derived.

5.2.3.1 Wachspress’ Shape Functions for Interpolating an Irregular Pentagon

In 1975, Wachspress [42, 43] derived a set of shape functions Ni that are capable of

interpolating convex polyhedra. His shape functions take on the form of rational polynomials,

viz., Ni � Ai{B where Ai and B are polynomials.

Let us consider a convex pentagonal domain Ω defined over R2 whose vertices have global

co-ordinates of

px1, y1q, px2, y2q, px3, y3q, px4, y4q, px5, y5q

when evaluated in the pentagonal co-ordinate system p~e1, ~e2q of Fig. 5.4, with ~e3 being an

outward normal to the pentagon. Associated with this set of global co-ordinates is a set of

local or natural co-ordinates

pξ1, η1q, pξ2, η2q, pξ3, η3q, pξ4, η4q, pξ5, η5q

that describe a mapping of interpolation where

xpξ, ηq �
¸5

i�1
Nipξ, ηqxi

ypξ, ηq �
¸5

i�1
Nipξ, ηq yi

or xpξq �
5̧

i�1
Nipξqx i (5.14)

which relate natural co-ordinates ξ � pξ, ηq to global co-ordinates x � px, yq, where x i �
pxi, yiq are nodal co-ordinates at the ith vertex, with i indexing counterclockwise around a

pentagon according to Fig. 5.2. Displacement upxq :� x � x0, with reference co-ordinates

x0 � px0, y0q, also obeys this mapping

upξ, ηq �
¸5

i�1
Nipξ, ηqui

vpξ, ηq �
¸5

i�1
Nipξ, ηq vi

or upξq �
5̧

i�1
Nipξqu i (5.15)

whose components u i � pui, viq designate the nodal displacements.
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Shape functions Nipξq � Nipξ, ηq are interpolation functions that place any position P

with local co-ordinates ξ � pξ, ηq P sΩ, where sΩ :� Ω Y BΩ, into their global co-ordinates

x � px, yq. The shape functions of Wachspress [42, 43] possess the following properties [44]:

1. Partition of unity:
°5
i�1Nipξq � 1, 0 ¤ Nipξq ¤ 1.

2. Interpolate nodal data: Nipξ jq � Ξij.

3. Linear completeness:
°5
i�1Nipξqx i � x.

4. For ξ P Ω, Nipξq is C8, but for ξ P BΩ, Nipξq is C0, i.e., interpolation is linear along

an edge (or alveolar chord) connecting two neighboring vertices.

Item 4 is often considered a disadvantage of Wachspress shape functions, viz., the linear

interpolation along their boundaries. However, this is appropriate for our modeling of alveoli,

because the septal boundaries are alveolar chords that are taken to interpolate linearly.

For interpolating a convex, planar, pentagonal shape, the shape functions of Wachspress

have polynomials of order three in their numerators, and another polynomial of order two

in their denominators; specifically, we write them here as

Ni�1pξ, ηq � κiAipξ, ηq{Bpξ, ηq, i � 1, 2, . . . , 5 (5.16a)

using a scaling factor of κi, where N1 ð N6. The numerators and denominator for interpo-

lating a pentagon take on the general form of

Aipξ, ηq � α0i � α1iξ � α2iη � α3iξ
2 � α4iξη � α5iη

2

� α6iξ
3 � α7iξ

2η � α8iξη
2 � α9iη

3 (5.16b)

Bpξ, ηq � β0 � β1ξ � β2η � β3ξ
2 � β4ξη � β5η

2 (5.16c)

Consider a chord ci that connects vertex ξ i�1 � pξi�1, ηi�1q with vertex ξ i � pξi, ηiq via a
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straight line segment such that `i � 0 with `i :� 1� aiξ � biη wherein

ai � ηi � ηi�1

ξi�1ηi � ξiηi�1
, bi � ξi�1 � ξi

ξi�1ηi � ξiηi�1
(5.17a)

for which Dasgupta [45] derived the following set of constraints

κi � κi�1

�
ai�1pξi�1 � ξiq � bi�1pηi�1 � ηiq
ai�1pξi � ξi�1q � bi�1pηi � ηi�1q



(5.17b)

with recursion starting at κ1 :� 1. Coefficients κi enforce property 4 listed above. The

polynomial coefficients for the Ai in Eqn. (5.16b) have values of

α0i � 1 (5.18a)

α1i � �pai�1 � ai�2 � ai�3q (5.18b)

α2i � �pbi�1 � bi�2 � bi�3q (5.18c)

α3i � ai�1ai�2 � ai�2ai�3 � ai�3ai�1 (5.18d)

α4i � ai�1pbi�2 � bi�3q � ai�2pbi�1 � bi�3q � ai�3pbi�1 � bi�2q (5.18e)

α5i � bi�1bi�2 � bi�2bi�3 � bi�3bi�1 (5.18f)

α6i � �ai�1ai�2ai�3 (5.18g)

α7i � �pai�1ai�2bi�3 � ai�1bi�2ai�3 � bi�1ai�2ai�3q (5.18h)

α8i � �pai�1bi�2bi�3 � bi�1ai�2bi�3 � bi�1bi�2ai�3q (5.18i)

α9i � �bi�1bi�2bi�3 (5.18j)

which differ for each shape function via index i � 1, 2, . . . , 5, while the polynomial coefficients

for B in Eqn. (5.16c) have values of

βi �
5̧

j�1
αijκj, i � 0, 1, . . . , 5 (5.19)
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Figure 5.6: Wachspress shape functions for a pentagon, in this case, shape function N1

which are the same for all five shape functions.

5.2.3.2 First Derivatives of the Shape Functions

The first derivatives of Wachspress’ shape functions for a pentagon are

Ni�1,ξpξ, ηq � κi Ni,ξpξ, ηq{B2pξ, ηq (5.20a)

Ni�1,ηpξ, ηq � κi Ni,ηpξ, ηq{B2pξ, ηq (5.20b)

where Ni�1,ξpξ, ηq � BNi�1pξ, ηq{Bξ and Ni�1,ηpξ, ηq � BNi�1pξ, ηq{Bη with

Ni,ξpξ, ηq � Bpξ, ηqAi,ξpξ, ηq �B,ξpξ, ηqAipξ, ηq (5.20c)

Ni,ηpξ, ηq � Bpξ, ηqAi,ηpξ, ηq �B,ηpξ, ηqAipξ, ηq (5.20d)
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which contain the polynomials

Ai,ξpξ, ηq � α1i � 2α3iξ � α4iη � 3α6iξ
2 � 2α7iξη � α8iη

2 (5.20e)

Ai,ηpξ, ηq � α2i � α4iξ � 2α5iη � α7iξ
2 � 2α8iξη � 3α9iη

2 (5.20f)

B,ξpξ, ηq � β1 � 2β3ξ � β4η (5.20g)

B,ηpξ, ηq � β2 � β4ξ � 2β5η (5.20h)

from which the deformation and displacement gradients are constructed.

5.2.3.3 Deformation Gradient for an Irregular Pentagon

Derivatives of displacement pu, vq taken with respect to the local co-ordinates pξ, ηq de-
scribed in terms of gradients of the shape functions Ni,ξpξ, ηq and Ni,ηpξ, ηq of a pentagon

have components

���Bu{Bξ Bu{Bη
Bv{Bξ Bv{Bη

��� �
¸5

i�1

���Ni,ξpξ, ηqui Ni,ηpξ, ηqui
Ni,ξpξ, ηq vi Ni,ηpξ, ηq vi

��� (5.21a)

where u :� x�x0 and v :� y� y0, while gradients of the global co-ordinates px, yq evaluated
in the current state taken with respect to the local co-ordinates pξ, ηq have components

���Bx{Bξ Bx{Bη
By{Bξ By{Bη

��� �
¸5

i�1

���Ni,ξpξ, ηqxi Ni,ηpξ, ηqxi
Ni,ξpξ, ηq yi Ni,ηpξ, ηq yi

��� (5.21b)

whose transpose establishes the Jacobian matrix

J :�

���Bx{Bξ By{Bξ
Bx{Bη By{Bη

��� �
¸5

i�1

���Ni,ξpξ, ηqxi Ni,ξpξ, ηq yi
Ni,ηpξ, ηqxi Ni,ηpξ, ηq yi

��� (5.21c)

wherein pxi, yiq denote the current global co-ordinates at the ith vertex.

From the above matrices, one can construct the deformation gradient F � Bx{Bx0 �
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I � Bu{Bx0 for an irregular pentagon via

F pξ, ηq �

���F11pξ, ηq F12pξ, ηq
F21pξ, ηq F22pξ, ηq

��� �

���1 0

0 1

����

���Bu{Bξ Bu{Bη
Bv{Bξ Bv{Bη

���
���Bx0{Bξ Bx0{Bη
By0{Bξ By0{Bη

���
�1

(5.22)

All are evaluated in the 12 plane belonging to a co-ordinate system p~e2, ~e2, ~e3q that orients
this pentagon, with ~e3 being normal to its surface, as illustrated in Fig. 5.4.

5.2.4 3D Irregular Dodecahedra

The primary kinematic variables needed to describe the deformation of an irregular do-

decahedron used as a model for an alveolar sac are its volume V and the differential change

in volume dV . Whenever the material filling an alveolar sac is air (its normal healthy con-

dition), no further breakdown of these kinematics is required.

5.2.4.1 Shape Functions for Interpolating an Irregular Tetrahedron

The shape functions associated with the four vertices of a tetrahedron are defined as

N1 � 1� ξ � η � ζ, N2 � ξ, N3 � η, N4 � ζ (5.23a)

where ξ, η and ζ represent natural co-ordinates with 0 ¤ ξ ¤ 1, 0 ¤ η ¤ 1 � ξ and

0 ¤ ζ ¤ 1� ξ � η. Gradients of these shape functions are

N1,ξ � �1, N1,η � �1, N1,ζ � �1

N2,ξ � 1, N2,η � 0, N2,ζ � 0

N3,ξ � 0, N3,η � 1, N3,ζ � 0

N4,ξ � 0, N4,η � 0, N4,ζ � 1 (5.23b)

and consequently the deformation gradient will be constant throughout its volume, like the

deformation gradients used for chords and triangles.
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5.2.4.2 Deformation Gradient for an Irregular Tetrahedron

The deformation gradient for a volume element is constructed from

F pξ, η, ζq �

�
�����

1 0 0

0 1 0

0 0 1

�
������

�
�����
Bu{Bξ Bu{Bη Bu{Bζ

Bv{Bξ Bv{Bη Bv{Bζ

Bw{Bξ Bw{Bη Bw{Bζ

�
�����

�
�����
Bx0{Bξ Bx0{Bη Bx0{Bζ

By0{Bξ By0{Bη By0{Bζ

Bz0{Bξ Bz0{Bη Bz0{Bζ

�
�����

�1

(5.24)

such that, for the four-node tetrahedron considered here, one has

������
Bu{Bξ Bu{Bη Bu{Bζ
Bv{Bξ Bv{Bη Bv{Bζ
Bw{Bξ Bw{Bη Bw{Bζ

������ �
4̧

i�1

������
Ni,ξui Ni,ηui Ni,ζui

Ni,ξvi Ni,ηvi Ni,ζvi

Ni,ξwi Ni,ηwi Ni,ζwi

������

�

������
u2 � u1 u3 � u1 u4 � u1

v2 � v1 v3 � v1 v4 � v1

w2 � w1 w3 � w1 w4 � w1

������ (5.25a)

whose nodal displacements ui :� xi � x0i, i � 1, 2, 3, 4, have components of ui � ui ~E1 �
vi ~E2 � wi ~E3 with ui :� xi � x0i, vi :� yi � y0i and wi :� zi � z0i, evaluated in the reference

co-ordinate frame p~E1, ~E2, ~E3q of the dodecahedron, and

������
Bx0{Bξ Bx0{Bη Bx0{Bζ
By0{Bξ By0{Bη By0{Bζ
Bz0{Bξ Bz0{Bη Bz0{Bζ

������ �
4̧

i�1

������
Ni,ξx0i Ni,ηx0i Ni,ζx0i

Ni,ξy0i Ni,ηy0i Ni,ζy0i

Ni,ξz0i Ni,ηz0i Ni,ζz0i

������

�

������
x02 � x01 x03 � x01 x04 � x01

y02 � y01 y03 � y01 y04 � y01

z02 � z01 z03 � z01 z04 � z01

������ (5.25b)
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whose initial nodal positions are x0i � x0i ~E1 � y0i ~E2 � z0i ~E3 at vertex i. This matrix is

invertible, because the four vertices of a tetrahedron are distinct. The Jacobian matrix is

therefore given by

J :�

������
Bx{Bξ By{Bξ Bz{Bξ
Bx{Bη By{Bη Bz{Bη
Bx{Bζ By{Bζ Bz{Bζ

������ �
4̧

i�1

������
Ni,ξxi Ni,ξyi Ni,ξzi

Ni,ηxi Ni,ηyi Ni,ηzi

Ni,ζxi Ni,ζyi Ni,ζzi

������ �

������
x2 � x1 y2 � y1 z2 � z1

x3 � x1 y3 � y1 z3 � z1

x4 � x1 y4 � y1 z4 � z1

������
(5.25c)

whose determinant is used in integrations.

5.2.5 Code Verification: Kinematics

5.2.5.1 Isotropic Motions

Imposing an uniform far-field motion of a volumetric expansion onto our dodecahedral

model results in a dodecahedral dilatation (Ξ :� ln 3
a
V{V0) that equals its pentagonal dila-

tion (ξ :� ln
a
A{A0) that equals its chordal strain (e :� lnpL{L0q). Other choices for strain

measures do not result in one-to-one relationships when exposed to an isotropic motion like

those observed here. This is a particularly useful result in that it establishes a meaningful

scaling in terms of strains between the three dimensions, cf. Fig. 5.7.

There are two types of strain measures that one can use to quantify deformation within

a pentagon of a dodecahedron: geometric and thermodynamic. For the uniform far-field

motion of volumetric expansion, only a thermodynamic strain known as dilation, i.e., ξ �
ln
a
ab{a0b0, varies with the motion, and its response equals that of the geometric strain

ln
a
A{A0, see Fig. 5.8. Also present in this graph is an observation that the thermodynamic

strains for squeeze ε and shear γ do not contribute under motions of pure dilatation, as

expected.
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Figure 5.7: Response of a dodecahedron exposed to an isotropic motion of dilatation.

Figure 5.8: Response of a dodecahedron exposed to a far-field isotropic motion of dilatation.
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5.2.5.2 Isochoric Motions

How the 30 chords and the 12 irregular pentagons deform under far-field motions of pure

shear is displayed in Fig. 5.9. It demonstrates that the individual chordal and pentagonal

constituents deform in a non-homogeneous manner, where the strains have been calculated as

geometric changes in dodecahedral shape. This result agrees with in vivo observations made

by Perlman & Bhattacharya [46] where confocal microscopy was used to image a breathing

rat lung.

For the chords, there are six independent responses for dodecahedral motions of pure

shear: two chords each for three of these lines, and eight chords each for the remaining three

curves present in the left images of Fig. 5.9. For pentagons, there are three independent

responses with four pentagons responding according to each curve shown in the right im-

ages. Although different chords and pentagons deform differently when sheared in different

directions, their collective responses are the same regardless of the far-field direction being

sheared. Consequently, the local geometric response of a dodecahedron is isotropic under

the far-field motions of pure shear.

How the 30 chords and the 12 irregular pentagons deform under far-field motions of simple

shear is displayed in Fig. 5.10. It demonstrates that the individual chordal and pentagonal

constituents deform in a non-homogeneous manner during simple shears, like they do for

pure shears. However, unlike pure shears whose collective chordal and pentagonal responses

remain isotropic, here they diverge slightly from isotropy under motions of simple shear.

Simple shears in the 12 and 23 planes have the same collective response; whereas, simple

shear in the 13 plane has a slightly different response with respect to changes in the shearing

direction.

The thermodynamic strains arising from a Gram–Schmidt factorization of the defor-

mation gradient specify three strain measures pertinent to a membrane: dilation ξ �
ln
a
ab{a0b0, squeeze ε � ln

a
ab0{a0b and shear γ � g � g0, where elongations a and b

and magnitude of shear g are illustrated in Fig. 2.2.
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Figure 5.9: Response of a dodecahedron exposed to far-field pure-shear motions in the sense
of Treloar [9]: a � `, b � 1{` and c � 1 in the top images; a � 1, b � ` and c � 1{` in
the middle images; and a � 1{`, b � 1 and c � ` in the bottom images, with ` denoting an
elongation of extrusion.
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Figure 5.10: Response of a dodecahedron exposed to far-field simple-shear motions.
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The curves in Figs. 5.9 & 5.10 were obtained from geometric measures for chordal strain

lnpL{L0q and areal dilation ln
a
A{A0. They were computed under separate far-field con-

ditions of pure and simple shears. The curves in Figs. 5.11 & 5.12 were obtained from

thermodynamic measures for membrane strain under the same far-field deformations.

Figures 5.9–5.12 allow us to conclude that if septal dilation were the only mode of pla-

nar deformation thought to cause a mechanical response, then knowledge of the geometric

strain ξ � ln
a
A{A0 would be adequate; there would be no need to introduce a separate

finite element discretization of the septal planes for acquiring their deformation gradients.

However, if the non-uniform responses of squeeze ε and shear γ are thought to contribute to

the overall mechanical response of these membranes, then the shape functions of Wachspress

[42, 43] ought to be used for acquiring the deformation gradient within a septal plane.

5.3 Constitutive Theory

We recall from our kinematic study of a dodecahedron that the geometric strains (i.e.,

e :� lnpL{L0q for the elongation of septal chords, ξ :� ln
a
A{A0 for the dilation of septal

membranes, and Ξ :� ln 3
a
V {V0 for the dilatation of alveolar volume) are equivalent to one

another under motions of uniform expansion/compression.

5.3.1 Green Thermoelastic Solids: Uniform Motions in 1D, 2D, and 3D

Combining the First and Second Laws of Thermodynamics governing uniform, reversible,

adiabatic processes results in the following three formulæ, one per dimension; they are

In 1D: dU � θ dη � 1
ρ1D

F dL{L (5.26a)

In 2D: dU � θ dη � 1
ρ2D

T dA{A (5.26b)

In 3D: dU � θ dη � 1
ρ3D

P dV{V (5.26c)

wherein U is an internal energy density (erg/g = dyne.cm/g), which is a function of state,

θ is a temperature in Kelvin (273 � �C), η is an entropy density (erg/g.K), L is a length of
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Figure 5.11: Same boundary conditions as in Fig. 5.9. Pentagonal areas were used to compute
dilation in Fig. 5.9. The shape functions of Wachspress were used to compute dilation here.
The uniform response in the right column of Fig. 5.9 and in the left column above are the
same, providing additional assurance that the code has been correctly implemented. The
squeeze response shown in the center column is the same for all three orientations of far-field
pure shear, i.e., this response is isotropic.
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Figure 5.12: Same boundary conditions as in Fig. 5.10. Pentagonal areas were used to com-
pute dilation in Fig. 5.10. The shape functions of Wachspress were used to compute dilation
here. The uniform response in the right column of Fig. 5.10 and in the left column above
are the same, providing additional assurance that the code has been correctly implemented.
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line (cm), A is an area of surface (cm2), V is a volume of space (cm3), F is a force (dyne), T

is a surface tension (dyne/cm), and P is a pressure (dyne/cm2 = barye), whereas the mass

densities ρ1D (g/cm), ρ2D (g/cm2) and ρ3D (g/cm3) associate with a reference state of per

unit length, or per unit area, or per unit volume, as appropriate.

5.3.1.1 Constitutive Equations

Because the internal energy density U is a state function, its differential rate of change

describes a Pfaffian form [33] out of which the following constitutive formulæ are readily

obtained

In 1D: θ � BηUpη, eq F � ρ1D BeUpη, eq (5.27a)

In 2D: θ � BηUpη, ξq π � ρ2D BξUpη, ξq (5.27b)

In 3D: θ � BηUpη,Ξq Π � ρ3D BΞUpη,Ξq (5.27c)

where strains are logarithms of dimension-appropriate stretches. As a matter of convenience,

we adopt the notation BηU :� BU{Bη, etc. Here, π :� 2T and Π :� �3P are the measures

for surface tension and pressure that we use in this work. We find it useful to use this

negative measure for pressure because the transpulmonary pressure in lung, under normal

physiologic conditions, is typically negative; hence, Π would be positive in its specification

of transpulmonary pressure.

We consider response variables for temperature and force/surface-tension/pressure to be

C1 functions of state; therefore, the internal energy U is a C2 function of state in a Green

thermoelastic solid undergoing uniform adiabatic motions (cf. Weinhold [47] and Gilmore

[48]). Under these conditions of smoothness, one can differentiate Eqn. (5.27), thereby

producing the following collection of coupled, partial, differential equations with exchanging
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cause and effect between entropy and temperature In 1D:

$'&
'%

dη

dF

,/.
/- �

�
�� θ{BηηU �BηeU{BηηU

ρ1Dθ BeηU{BηηU ρ1DpBeeU � BeηU �BηeU{BηηUq

�
��
$'&
'%
θ�1 dθ

de

,/.
/- (5.28a)

In 2D:

$'&
'%

dη

dπ

,/.
/- �

�
�� θ{BηηU �BηξU{BηηU

ρ2Dθ BξηU{BηηU ρ2DpBξξU � BξηU �BηξU{BηηUq

�
��
$'&
'%
θ�1 dθ

dξ

,/.
/- (5.28b)

In 3D:

$'&
'%

dη

dΠ

,/.
/- �

�
�� θ{BηηU �BηΞU{BηηU

ρ3Dθ BΞηU{BηηU ρ3DpBΞΞU � BΞηU �BηΞU{BηηUq

�
��
$'&
'%
θ�1 dθ

dΞ

,/.
/- (5.28c)

where we recall that de � L�1 dL, dξ � 1
2A

�1 dA and dΞ � 1
3V

�1 dV .

5.3.1.2 Material Response Functions

Experiments are typically done to quantify the following material properties, defined here

as tangents to response curves, and selected per a material’s physical dimension.

In 1D:

CF :� dη
θ�1 dθ

����
dF�0

αF :� L�1 dL
θ�1 dθ

����
dF�0

Eθ :� dF
L�1 dL

����
dθ�0

(5.29a)

In 2D:

CT :� dη
θ�1 dθ

����
dT�0

αT :� A�1 dA
θ�1 dθ

����
dT�0

� 2αF Mθ :� dT
A�1 dA

����
dθ�0

(5.29b)

In 3D:

CP :� dη
θ�1 dθ

����
dP�0

αP :� V �1 dV
θ�1 dθ

����
dP�0

� 3αF Kθ :� �dP
V �1 dV

����
dθ�0

(5.29c)
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whose analogs as secant functions are defined in Appendix D.

The various thermal strain coefficients αF , αT , αP are, however, distinct from one another.

Even though each is dimensionless, each is defined with respect to its own physical dimension.

Nevertheless, because lnpL{L0q � 1
2 lnpA{A0q � 1

3 lnpV{V0q, it follows that αT � 2αF and

αP � 3αF , so there is really just one thermal strain coefficient, i.e., αF , that, hereafter, is

denoted as αt where the subscript ‘t’ denotes tangent.

The various specific heats CF , CT , CP (erg/g.K) are distinct, yet essentially, they are

equivalent as each is defined per unit mass, insensitive to dimension. They are evaluated at

a fixed thermodynamic force, which does depend upon dimension. Hereafter, we will denote

the tangent response to specific heat as Ct that, in Appendix D, is shown to relate to the

secant version of specific heat Cs via

1D: Ct � Cs � αs
F � F0

ρ1Dθ
(5.30a)

2D: Ct � Cs � αs
π � π0

ρ2Dθ
(5.30b)

3D: Ct � Cs � αs
Π� Π0

ρ3Dθ
(5.30c)

where Cs is the density of specific heat at constant pressure that one typically finds tabulated

in the literature. Usually, the secant and tangent versions for the thermal strain coefficient

are equivalent, i.e., αs � αt. Here F0, π0 and Π0 are the force, surface tension, and pressure

associated with some specified reference state.

The various tangent moduli Eθ, Mθ and Kθ are also distinct. They have different di-

mensions. Material property Eθ is a modulus of extension (dyne); material property Mθ

is a modulus of dilation (dyne/cm); and material property Kθ is a modulus of dilatation

(dyne/cm2), a.k.a. the bulk modulus, with each modulus being measured at a fixed tem-

perature. The above material properties are gradients. They constitute tangents to their

associated physical response curves, and as such, are denoted hereafter as Et, Mt and Kt.

Consequently, they need not be of constant value throughout state space, like a Hookean
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material would suppose them to be. In other words, the secant and tangent moduli need not

be the same at any given state.

In terms of the material properties, Eqn. (5.29), of which there are three per dimension,

the internal energy density has three curvatures that associate with it. For 1D materials:

BηηU � ρ1Dθ
2

ρ1DCtθ � α2
tEt

, BeeU � CtEtθ

ρ1DCtθ � α2
tEt

, BηeU � BeηU � �αtEtθ
ρ1DCtθ � α2

tEt

(5.31a)

For 2D materials:

BηηU � ρ2Dθ
2

ρ2DCtθ � 4α2
tMt

, BξξU � 4CtMtθ

ρ2DCtθ � 4α2
tMt

, BηξU � BξηU � �4αtMtθ

ρ2DCtθ � 4α2
tMt

(5.31b)

For 3D materials (cf. Weinhold [47] and Gilmore [48]):

BηηU � ρ3Dθ
2

ρ3DCtθ � 9α2
tKt

, BΞΞU � 9CtKtθ

ρ3DCtθ � 9α2
tKt

, BηΞU � BΞηU � �9αtKtθ

ρ3DCtθ � 9α2
tKt

(5.31c)

These materials constants are constrained by thermodynamics in that

0   Et   ρ1DCtθ

α2
t

, 0  Mt   ρ2DCtθ

4α2
t

, 0   Kt   ρ3DCtθ

9α2
t

(5.32)

which ensure that their respective thermodynamic Jacobians cannot become singular.

5.3.1.3 Thermoelastic Models for Modeling Alveoli: Uniform Motions

We now write down our constitutive formulæ for quantifying uniform responses in thermo-

elastic solids of 1, 2 and 3 dimensions. They are thermoelastic constitutive equations (5.28)

with Helmholtz variables expressed in terms of the material properties defined in Eqn. (5.29)
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assigned to the internal energy density U according to Eqn. (5.31), with outcomes of:

For 1D:

$'&'%dη

dF

,/./- �

���Ct � α2
tEt{ρθ αtEt{ρθ

�αtEt Et

���
$'&'%θ

�1 dθ

de

,/./- (5.33a)

For 2D:

$'&'%dη

dπ

,/./- �

���Ct � 4α2
tMt{ρθ 4αtMt{ρθ

�4αtMt 4Mt

���
$'&'%θ

�1 dθ

dξ

,/./- (5.33b)

For 3D:

$'&'%dη

dΠ

,/./- �

���Ct � 9α2
tKt{ρθ 9αtKt{ρθ

�9αtKt 9Kt

���
$'&'%θ

�1 dθ

dΞ

,/./- (5.33c)

We simplify our expressions by suppressing the dimension for which mass density applies.

Equation (5.33) has cause and effect variables that are appropriate for our multiscale

application. In this process, a localization procedure pulls the temperature and deformation

gradient taken from the parenchyma scale down to the level of an alveolar scale. Differential

strain rates dU � U�1 are then constructed through appropriate finite difference formulæ,

where U denotes the Laplace stretch. These continuum rates are then mapped into our local

thermodynamic rates, with alveolar entropy and stress following from a numerical integration

of the above constitutive equations. These constitutive equations apply to the various facets

of our dodecahedral model for an alveolar sac through a finite element discretization.

5.3.2 Green Thermoelastic Membranes: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic process

are described by the formula dU � θ dη� 1
ρ

dW , where dW is the mechanical power expended

by stressing a material element of mass density ρ. For the case of a 2D planar membrane, a

mass density of ρð ρ2D applies, with its change in mechanical work being expressed as

dW � tr

���
���S11 S12

S21 S22

���
���a�1 da pa{bq dg

0 b�1 db

���
��� π dξ � σ dε� τ dγ (5.34a)
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wherein Sij are the components of a surface tension in the co-ordinate frame of a membrane.

Equation (5.34a) conjectures that the First and Second Laws of Thermodynamics can be

expressed as a differential equation known as a Pfaffian form that, in this case, looks like

dU � θ dη � 1
ρ

�
π dξ � σ dε� τ dγ

�
(5.34b)

Conjugate pair pξ, πq describes a dilation 2 dξ ð A�1 dA caused by a surface tension

π ð 2T . Pair pε, σq describes a squeeze ε (or pure shear) caused by a normal-stress difference.

And pair pγ, τq describes an in-plane shear γ caused by a shear stress τ .

5.3.2.1 General Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic process is

described by an exact differential [33], with Upη, ξ, ε, γq in the case of a planar membrane,

it follows that a constitutive response for a Green thermoelastic membrane is described by

θ � BηUpη, ξ, ε, γq π � ρ BξUpη, ξ, ε, γq σ � ρ BεUpη, ξ, ε, γq τ � ρ BγUpη, ξ, ε, γq (5.35)

The constitutive expressions can be recast into the following system of differential equations

$'''''''&'''''''%

dθ

dπ

dσ

dτ

,///////.///////-
�

���������

BηηU BηξU BηεU BηγU
ρ BξηU ρ BξξU ρ BξεU ρ BξγU
ρ BεηU ρ BεξU ρ BεεU ρ BεγU
ρ BγηU ρ BγξU ρ BγεU ρ BγγU

���������

$'''''''&'''''''%

dη

dξ

dε

dγ

,///////.///////-
(5.36)

The above 4 � 4 matrix describes the full non-uniform response permissible by a Green

thermoelastic membrane undergoing an adiabatic process. For our application, it is reason-

able to assume that the presence of a non-uniform planar motion will not cause an uniform

planar response. As such, BηεU � BηγU � BξεU � BξγU � 0. It is also considered that

the pure and simple shear responses act independently, too, so that BγεU � BεγU � 0.
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Converting the above internal energy formulation into its Helmholtz equivalent produces

$'&'%dη

dπ

,/./- �

��� θ{BηηU �BηξU{BηηU
ρθ BξηU{BηηU ρ

�BξξU � BξηU �BηξU{BηηU
�
���
$'&'%θ

�1 dθ

dξ

,/./- (5.37a)

where both θ�1 dθ and dξ � 1
2A

�1 dA are logarithmic rates, and

$'&'%dσ

dτ

,/./- � ρ

���BεεU 0

0 BγγU

���
$'&'%dε

dγ

,/./- (5.37b)

where dε � Γ�1 dΓ is logarithmic in structure, while dγ � dg is linear in deformation field.

5.3.2.2 Constitutive Equations Governing a Thermoelastic Membrane

It is the Gibbs free-energy potential (viz., Gpθ, π, σ, τq � U � θη � πξ � σε � τγ, which

exchanges cause and effect with that of the internal energy Upη, ξ, ε, γq), that is most easily

expressed in terms of our material properties. The upper-left 2�2 sub-matrix, which describes

the uniform response, can be rearranged to read as

$'&'%dη

dπ

,/./- �

���Ct � 4α2
tM{ρθ 4αtM{ρθ

�4αtM 4M

���
$'&'%θ

�1 dθ

dξ

,/./- (5.38a)

where M �Mtpθ, ξ, πq, while the non-uniform or shear response is given quite simply by

$'&'%dσ

dτ

,/./- �

���2N 0

0 G

���
$'&'%dε

dγ

,/./- (5.38b)

where N � Ntpε, σq and G � Gtpγ, τq. Collectively, moduli Mt, Nt, and Gt describe the

tangent mechanical response of a thermoelastic membrane.
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5.3.3 Green Thermoelastic Solids: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic process

done on a 3D body result in the formula dU � θ dη � 1
ρ

dW , where dW is the mechanical

power expended by stressing a body with a mass density of ρ; specifically, [28, 5, 6, 49]

dW � tr

������
������

S11 S12 S13

S21 S22 S23

S31 S32 S33

������
������
a�1 da pa{bq dγ pa{cqpdβ � α dγq

0 b�1 db pb{cq dα

0 0 c�1 dc

������
�����

� Π dΞ�
3̧

i�1
pσi dεi � τi dγiq (5.39a)

which is subject to constraints σ3 � �pσ1 � σ2q and dε3 � �pdε1 � dε2q.

The above expression conjectures that the thermodynamics of a 3D elastic solid contained

within the confines of an adiabatic enclosure can be described by the Pfaffian equation

dU � θ dη � 1
ρ

�
Π dΞ�

2̧

i�1
σi dεi � pσ1 � σ2qpdε1 � dε2q �

3̧

i�1
τi dγi

�
. (5.39b)

5.3.3.1 Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic process

is described by an exact differential [33], with Upη,Ξ, ε1, ε2, γ1, γ2, γ3q in three space, it

necessarily follows that a constitutive response for a Green thermoelastic solid is governed

by two constitutive equations for temperature and pressure [32]

θ � BηUpη,Ξ, ε1, ε2, γ1, γ2, γ3q, Π � ρ BΞUpη,Ξ, ε1, ε2, γ1, γ2, γ3q (5.40a)
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two constitutive equations for the normal-stress differences

$'&
'%
σ1

σ2

,/.
/- �

1
3

�
�� 2 �1

�1 2

�
��
$'&
'%
ρ Bε1Upη,Ξ, ε1, ε2, γ1, γ2, γ3q

ρ Bε2Upη,Ξ, ε1, ε2, γ1, γ2, γ3q

,/.
/- (5.40b)

and three constitutive equations for the shear stresses

τ1 � ρ Bγ1Upη,Ξ, ε1, ε2, γ1, γ2, γ3q, τ2 � ρ Bγ2Upη,Ξ, ε1, ε2, γ1, γ2, γ3q

τ3 � ρ Bγ3Upη,Ξ, ε1, ε2, γ1, γ2, γ3q (5.40c)

Considering each, independent, intensive variable, to be a C1 function of each, independent,
extensive variable, then the internal energy U will be at least a C2 function of state, and
therefore the constitutive expressions can be recast into the following system of equations

$'''''''''''''''''&
'''''''''''''''''%

dθ

dΠ

dσ1

dσ2

dτ1

dτ2

dτ3

,/////////////////.
/////////////////-

�

�
������������������

BηηU BηΞU Bηε1U Bηε2U Bηγ1U Bηγ2U Bηγ3U

ρ BΞηU ρ BΞΞU ρ BΞε1U ρ BΞε2U ρ BΞγ1U ρ BΞγ2U ρ BΞγ3U

ρM1η ρM1Ξ ρM1ε1 ρM1ε2 ρM1γ1 ρM1γ2 ρM1γ3

ρM2η ρM2Ξ ρM2ε1 ρM2ε2 ρM2γ1 ρM2γ2 ρM2γ3

ρ Bγ1ηU ρ Bγ1ΞU ρ Bγ1ε1U ρ Bγ1ε2U ρ Bγ1γ1U ρ Bγ1γ2U ρ Bγ1γ3U

ρ Bγ2ηU ρ Bγ2ΞU ρ Bγ2ε1U ρ Bγ2ε2U ρ Bγ2γ1U ρ Bγ2γ2U ρ Bγ2γ3U

ρ Bγ3ηU ρ Bγ3ΞU ρ Bγ3ε1U ρ Bγ3ε2U ρ Bγ3γ1U ρ Bγ3γ2U ρ Bγ3γ3U

�
������������������

$'''''''''''''''''&
'''''''''''''''''%

dη

dΞ

dε1

dε2

dγ1

dγ2

dγ3

,/////////////////.
/////////////////-

(5.41)

The squeeze response associates with tangent moduli that are defined accordingly

M1η �
1
3
�
2Bε1ηU � Bε2ηU

�
M2η �

1
3
�
2Bε2ηU � Bε1ηU

�
(5.42a)

M1Ξ � 1
3
�
2Bε1ΞU � Bε2ΞU

�
M2Ξ � 1

3
�
2Bε2ΞU � Bε1ΞU

�
(5.42b)

M1ε1 � 1
3
�
2Bε1ε1U � Bε2ε1U

�
M2ε1 � 1

3
�
2Bε2ε1U � Bε1ε1U

�
(5.42c)

M1ε2 � 1
3
�
2Bε1ε2U � Bε2ε2U

�
M2ε2 � 1

3
�
2Bε2ε2U � Bε1ε2U

�
(5.42d)

M1γ1 � 1
3
�
2Bε1γ1U � Bε2γ1U

�
M2γ1 � 1

3
�
2Bε2γ1U � Bε1γ1U

�
(5.42e)

M1γ2 � 1
3
�
2Bε1γ2U � Bε2γ2U

�
M2γ2 � 1

3
�
2Bε2γ2U � Bε1γ2U

�
(5.42f)

M1γ3 � 1
3
�
2Bε1γ3U � Bε2γ3U

�
M2γ3 � 1

3
�
2Bε2γ3U � Bε1γ3U

�
(5.42g)

68



Collectively, Eqns.(5.41 & 5.42) describe the full non-uniform response permissible by a Green

thermoelastic solid expressed as a hypo-elastic material undergoing an adiabatic process.

As in the case of membranes, it is reasonable to assume that the presence of a non-

uniform motion will not cause an uniform response. For our application, it is also reasonable

to assume that there is no coupling between the modes of squeeze and shear. Furthermore,

it is assumed that there is no coupling betwixt the two independent squeeze modes, nor

between the three independent shear modes. Consequently, all mixed partial derivatives

that associate with a non-uniform response are taken to be zero.

Therefore the above system of equations can be rewritten as three independent systems

of differential equations; specifically, the first differential matrix equation when written in

terms of Helmholz state variables is$'&'%dη

dΠ

,/./- �

��� θ{BηηU �BηΞU{BηηU
ρθ BΞηU{BηηU ρ

�BΞΞU � BΞηU �BηΞU{BηηU
�
���
$'&'%θ

�1 dθ

dΞ

,/./- (5.43a)

recalling that dΞ � 1
3V

�1 dV , plus a full matrix equation that governs the squeeze response

$'&'%dσ1

dσ2

,/./- � ρ

3

���2 Bε1ε1U �Bε2ε2U

�Bε1ε1U 2 Bε2ε2U

���
$'&'%dε1

dε2

,/./- (5.43b)

and a diagonal matrix equation that governs the shear response

$''''&''''%
dτ1

dτ2

dτ3

,////.////- � ρ

������
Bγ1γ1U 0 0

0 Bγ2γ2U 0

0 0 Bγ3γ3U

������
$''''&''''%

dγ1

dγ2

dγ3

,////.////- (5.43c)
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5.3.3.2 Constitutive Equations Governing a Thermoelastic Solid

In terms of the material properties, the uniform response of the thermoelastic solid given

in Eqn. (5.43a) takes on the form of

$'&'%dη

dΠ

,/./- �

���Ct � 9α2K{ρθ 9αK{ρθ
�9αK 9K

���
$'&'%θ

�1dθ

dΞ

,/./- ,
α � αt

K � Ktpθ,Π,Ξq
(5.44a)

while the non-uniform squeeze response is described by

$'&'%dσ1

dσ2

,/./- � 3
2

���2N1 �N2

�N1 2N2

���
$'&'%dε1

dε2

,/./- ,
N1 � Ntpσ1, ε1q

N2 � Ntpσ2, ε2q
(5.44b)

and the non-uniform shear response is described by

$''''&''''%
dτ1

dτ2

dτ3

,////.////- �

������
G1 0 0

0 G2 0

0 0 G3

������
$''''&''''%

dγ1

dγ2

dγ3

,////.////- ,

G1 � Gtpτ1, γ1q

G2 � Gtpτ2, γ2q

G3 � Gtpτ3, γ3q

(5.44c)

which is the general form for a thermoelastic solid that we shall use going forward.

5.3.4 Modeling an Alveolus

To facilitate the numeric implementation of our models, and to facilitate interpretations

of their results by engineers and scientists whom will use our framework, this section converts

all fields defined in 1D and 2D into their 3D analogs; specifically, forces and surface ten-

sions are converted into stresses, all moduli will now have units of stress, all thermal strain

coefficients associate with linear expansions, and all mass densities relate mass to volume.

5.3.4.1 Constraints/Assumptions for Alveoli Subjected to Shock Waves

Because the primary purpose for the alveolar model being constructed here is to better

understand alveolar behavior as a shock wave passes over it, there are certain assumptions
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that we impose upon our model that under normal or different physiologic conditions might

otherwise not apply.

First: An alveolus is considered to be an adiabatic pressure vessel in which air and heat

cannot move into or out of as a shock wave passes over it, simply because the wave speed is

too fast. There is insufficient time for t hese transport phenomena to occur.

Second: Whenever a lung is subjected to a shock wave there is insufficient time for the

viscous characteristics in a viscoelastic response to manifest themselves; therefore, the overall

response is modeled as glassy elastic.

Third: Even though one could construct a mixture theory for the modeling of alveolar

membranes, it would be challenging to establish their boundary conditions, nor would we be

able to construct the necessary experiments to parameterize it. Consequently, an isotropic,

elastic, homogeneous continuum is assumed for modeling the planar septa.

Fourth: Temperature remains continuous in a jump across the kinematic discontinuity

caused by a shock wave traveling through a compressible gas. [50] As such, temperature is

expected to be continuous across the spatial discontinuity of a shock wave traveling through

parenchyma, too. Nevertheless, temperature is expected to change both in front of and be-

hind a traveling wave, where the alveolar sac first compresses and then exapnds. Throughout

this excursion, the overall process is considered to be adiabatic. Furthermore, because tem-

perature changes are expected to be small, and wave speeds are fast, the finite element

models being developed here assume temperatures will remain constant.

Fifth: Alveolar surfaces are modeled as membranes, not plates, and therefore are as-

sumed to have no out-of-plane bending stiffness. This is in concert with our assumption

that the septal chords are modeled as rods, not beams, because of their slenderness ratio.

Furthermore, these septa tend to be flat because there are roughly equal pressures acting

on both sides of these membranes, thereby eliminating any curvature, which is the driving

force behind out-of-plane bending [40] and, we surmise, also helps to suppress wrinkling.
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transpulmonary pressure 4 cm H2O
Age 15–35 36–45 ¡ 65

collagen:
?
D, pµmq1{2 0.952 � 0.242 0.958 � 0.255 1.045 � 0.270

elastin:
?
D, pµmq1{2 0.957 � 0.239 0.970 � 0.213 1.093 � 0.274

transpulmonary pressure 14 cm H2O
Age 15–35 36–45 ¡ 65

collagen:
?
D, pµmq1{2 0.955 � 0.246 0.994 � 0.237 1.054 � 0.279

elastin:
?
D, pµmq1{2 0.956 � 0.237 0.988 � 0.263 1.079 � 0.281

Table 5.4: Mean and standard deviations in variance for the square root of septal chord
diameters

?
D reported by Sobin et al. [51].

5.3.4.2 Modeling Septal Chords Subjected to Shock Waves

The extent of elastic energy stored within a chord will depend upon the diameters Dc

and De and length L of these individual fibers. Let superscript ‘c’ denote collagen, and

superscript ‘e’ denote elastin. Sobin et al. [51] determined that the square root of their

diameters
?
D distribute normally, with a mean D̄1{2 and standard deviation σ?D that also

depend upon age and transpulmonary pressure, as presented in Table 5.4.

The collagen and elastin fibers that make up a septal chord have the same length L, they

experience the same strain e, and they exist at the same temperature θ; therefore, we employ

Eqn. (5.33a) as the governing constitutive equation to describe their mechanical behaviors;

specifically, for the collagen fiber in an alveolar chord

$'&'%dηc

dsc

,/./- �

���Cc
t � pαctq2Ec{ρcθ αctE

c{ρcθ
�αctEc Ec

���
$'&'% θ�1 dθ

L�1 dL

,/./- (5.45a)

where Ec � Ec
t pθ, e, scq, and for the elastin fiber in an alveolar chord

$'&'%dηe

dse

,/./- �

���Ce
t � pαet q2Ee{ρeθ αetE

e{ρeθ
�αetEe Ee

���
$'&'% θ�1 dθ

L�1 dL

,/./- (5.45b)
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where Ee � Ee
t pθ, e, seq, and where ηc and ηe are the entropy densities (erg/g.K) for collagen

and elastin; sc :� λF c{Ac0 and se :� λF e{Ae0 are the chordal stresses (barye = dyne/cm2)

carried by the collagen and elastin fibers, wherein λ � L{L0 is the fiber stretch, Ac0 and

Ae0 are their traction-free cross-sectional areas (cm2), and F c and F e are the forces (dyne)

they transmit. Parameters Cc
t and Ce

t are their specific heats at constant pressure (erg/g.K),

αct and αet are their lineal thermal strain coefficients, Ec and Ee are their elastic moduli

(dyne/cm2 = erg/cm3), and ρc and ρe are their mass densities (g/cm3). These differential

equations are subject to initial conditions considered to be sc0 � sc|L�L0 , se0 � se|L�L0 , ηc � ηc0

and ηe � ηe0, where ηc0 and ηe0 are their respective entropy densities at rest. In vivo, sc0 and

se0 are positive valued, cf. Appendix D; whereas, ex vivo, sc0 and se0 would be zero valued.

The actual force and entropy of an individual septal chord in our alveolar model is taken

to be one third of a fiber’s calculated values, as determined by Eqn. (5.45), because each

alveolar chord is typically shared between three adjoining alveoli; consequently,

F f � pAc0sc � Ae0s
eq{3λ and Sf � pρcV c

0 η
c � ρeV e

0 η
eq{3 (5.46)

where F f (dyne) is a third of the fiber’s force carried by a septal chord, and Sf (erg/K) is

a third of the fiber’s entropy.

Both collagen and elastin are modeled as Freed–Rajagopal biologic fibers, which are

described in terms of two such internal energies. Their model is derived from the theory of

implicit elasticity, cf. Appendix D. According to their model, Eqn. (D.7), tangent compliances

for collagen and elastin, pertinent to the hypo-elastic constitutive formulation of Eqn. (5.45),

are described by

1
Ec
t pθ, sc, eq

� ec1max � ec1
Ec

1e
c
1max � 2psc � sc0q

� 1
Ec

2
(5.47a)

1
Ee
t pθ, se, eq

� eet � ee1
Ee

1e
e
t � 2pse � se0q

� 1
Ee

2
(5.47b)
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whose internal strains are established from

ec1 � e� αct ln
�
θ

θ0



� sc � sc0

Ec
2

, ee1 � e� αet ln
�
θ

θ0



� se � se0

Ee
2

(5.47c)

with θ0 being body temperature, i.e., 310 K. Material constants Ec
1 and Ec

2 are the two

asymptotic moduli for collagen that bound its response, i.e., Ec
1 ¤ Ec

t ¤ Ec
2, while Ee

1 and

Ee
2 are the two asymptotic moduli for elastin that bound its response, viz., Ee

1 ¤ Ee
t ¤ Ee

2,

both having units of stress (barye = dyne/cm2), with ec1max and ee2max being their respective

transition strains (see their derivation in Appendix D). Collagen fibers are considered to

fracture whenever the strain of stretching molecular bonds exceeds ecf :� scf{Ec
2, where scf is

the fracture stress. In contrast, elastin fibers are assumed to remain intact.

Moduli Ec
t � Ec

1E
c
2{pEc

1 � Ec
2q and Ee

t � Ee
1E

e
2{pEe

1 � Ee
2q are considered to apply for

stresses less than their respective reference stress, viz., for sc   sc0 or se   se0, to which

we assign values of sc0 � 1
2E

c
1e
c
1max and se0 � 1

2E
e
1e
e
1max . At these reference stresses, L is

set to L0 and therefore strain e � 0. Material properties needed to model septal chords

are listed in Tables 5.4 & 5.5. Collagen denatures at around 60�C [60], i.e., above this

temperature collagen will shrink rapidly—an effect not modeled here. From Eqn. (5.32),

these elastic moduli are bound from above by Eqn. (5.32) implying that Ec
max � 2.25 �

1012 barye (dyne/cm2) and Ee
max � 1.7 � 1012 barye. We therefore observe that Ec

2 and Ee
2

are about 105 times smaller than Ec
max and Ee

max, which seems reasonable for in vivo fibers.

5.3.4.3 Modeling Alveolar Septa Subjected to Shock Waves

The thermoelastic response of a planar membrane used to model alveolar septa, described

in Eqn. (5.38), is used for modeling alveolar septa subjected to shock waves, where sπ :� π{h
has units of stress (dyne/cm2) with h denoting height or thickness of the spetal membrane.

Assuming the volume of a septal membrane remains constant, thickness would obey h �
h0 expp�2ξq with h0 being its reference thickness. sσ :� σ{h and sτ :� τ{h also have units

of stress (dyne/cm2).

74



Collagen
ρc [g/cm3 ] 1.34 Fels [52]
ηc0 [erg/g.K] 3.7� 107

Cc
p [erg/g.K] 1.7� 107 Kanagy [53]

αcs � αct 0.056 Weir [54]
ec1max 0.09� 0.018 estimated from TLC � 30%
ecf 0.25� 0.025
Ec

1 [barye] 5.0� 1.0� 105

Ec
2 [barye] 5.0� 0.5� 107

se0 [barye] Ec
1e
c
1max{2 assumption

Elastin
Parameter Value Reference
ρe [g/cm3 ] 1.31 Lillie & Gosline [55]
ηe0 [erg/g.K] 3.4� 107 Shadwick & Gosline [56]
Ce
p [erg/g.K] 4.2� 107 Kakivaya & Hoeve [57]

αes � αet 0.1 Lillie & Gosline [55]
ee1max 0.4� 0.08 Shadwick & Gosline [56]
Ee

1 [barye] 2.3� 0.3� 106 Urry [58, Fig. 18]
Ee

2 [barye] 1.0� 0.1� 107 Lillie & Gosline [59, Fig. 5]
se0 [barye] Ee

1e
e
1max{2 assumption

Table 5.5: Physical properties for hydrated collagen and elastin fibers.
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Property Value
ρ [g/cm3 ] 1.1
η0 [erg/g.K] 5.0� 106

Cp [erg/g.K] 2.1� 107

αt 0.037
ξ1max 0.24� 0.24
ξf 0.2
M1 [barye] 1.0� 0.1� 104

M2 [barye] 3.0� 0.1� 106

sπ0 [barye] M1ξ1max{2
γ1max 3ξ1max{2
G1 [barye] M1{25
G2 [barye] M2{25

Table 5.6: The elastic properties reported here are for visceral pleura taken from Freed et al.
[28] and parenchyma taken from Saraf et al., [61].

By diminishing the moduli that are appropriate for describing a basement membrane with

thickness �0.5 µm by a factor of 10, one gets an estimate for the effective septal moduli—an

estimate applicable when modeling a whole septal membrane with thickness �5 µm. We

employ the model parameters specified in Table 5.6, which are based upon this assumption.

For our purposes, we model this collective ensemble of tissue and structure types as a homo-

geneous isotropic membrane modeled after the Freed–Rajagopal biologic fiber [62] that we

have extended to membranes in App. D, specifically

1
Mtpθ, ξ, sπq �

ξ1max � ξ1

M1ξ1max � 1
2psπ � sπ0 q

� 1
M2

ξ1 � ξ � αt ln
�
θ

θ0



� sπ � sπ0

4M2
(5.48a)

and

1
Gtpγ, sτ q �

sgnpγ1q γ1max � γ1

G1 sgnpγ1q γ1max � 2sτ �
1
G2

γ1 � γ � sτ

G2
(5.48b)

where compliant, initial, tangent moduli M1 and G1 and stiff, terminal, tangent moduli M2

and G2 bound their respective responses so that M1 ¤ Mt ¤ M2 and G1 ¤ Gt ¤ G2, with
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a gradual transition between their asymptotic bounds occurring around strains of ξ1max and

γ1max , with membrane failure or rupture being considered to only occur in the dilation mode

whenever ξ ¡ ξf .

Whenever sπ   sπ0 , modulus Mt is assigned a value of Mt � M1M2{pM1 �M2q that is

the tangent modulus at reference stress sπ0 , which we take to be 1
2M1ξ1max . Negative surface

tensions cause wrinkling of a membrane surface, which is not addressed here.

5.3.4.4 Modeling an Alveolar Volume Subjected to Shock Waves

Alveoli are connected to bronchial trees via alveolar ducts. Under normal conditions, air

moves in and out of the alveoli via these ducts. However, when subjected to a stress wave

passing over an alveolus, there is no time for the transport of air to take place. Hence, we

can consider the air (and heat) within an alveolus to become "trapped", and the pressure to

be uniform therein. The governing thermodynamic process is therefore adiabatic.

5.3.4.5 Alveoli Filled with Air

Considering the water saturated air within an alveolus to be an ideal gas, then [63]

PV � nRθ or PV

θ
� P0V0

θ0
� nR � constant (5.49)

where, in our case, P0 is taken to be the atmospheric pressure at sea level (1 bar or 105 Pa or

106 barye), with V0 being that alveolar volume whereat alveolar pressure and plural pressure

are both atmospheric, while θ0 � 37�C = 310 K is assigned as body temperature. Parameter

n is the molar content of gas within an alveolus, and R is the universal gas constant.

The material properties associated with an ideal gas contained within an adiabatic en-

closure are

αt :� θ

L

BL
Bθ

����
P

� θ

3V
BV
Bθ

����
P

� 1
3θ0

P0

P

V0

V
and Kt :� �V BP

BV
����
θ

� P0
θ

θ0

V0

V
(5.50a)

with the other two material properties pertaining to moist air at body temperature being
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its mass density ρ of 1.125 � 10�3 g/cm3 and its specific heat Ct of 1.007 � 107 erg/g.K

at constant pressure, constrained by Kt   Kmax � ρCtθ{α2
t � ρCtθ0{9 � 3.9 � 105 barye.

An alveolar sac, when modeled as an adiabatic pressure vessel filled with an ideal gas, is

described by $'&'% dη

�3 dP

,/./- �

���Ct � 9α2
tKt{ρθ 9αtKt{ρθ

�9αtKt 9Kt

���
$'&'%θ

�1 dθ

dΞ

,/./- (5.33c)

where the entropy within an alveolar sac is given by Sa � ρV η whose initial condition is

Sa0 � ρV0η0 with ρη0 being the entropy per unit volume of humid air at body temperature

and atmospheric pressure, viz., ρη0 � 7.770� 104 erg/cm3.K.

5.3.4.6 Alveoli Filled with Fluid

In lung tissues that are not healthy, fluids may fill alveolar volumes at various regions

throughout a lung. In such localities the mechanical response of the local parenchyma will

be vastly stiffer than that of healthy tissue, and as such, it will respond very differently to

an imposed traveling shock wave.

In the presence of a passing shock wave, we suppose that an unhealthy alveolar sac, like

a healthy one, can be modeled as an adiabatic enclosure, but now the fluid within such an

alveolus is considered to behave, momentarily, like an elastic solid, viz., as the glassy, elastic,

upper-bound response of a viscoelastic liquid, which blood is, for example.

5.3.5 Code Verification and Capabilities of the Constitutive Equations

Figure 5.13 presents realistic variability with what one should expect for chordal responses

in the alveoli of lung for the deformation out to 10%, 20%, 30% and 40% strains. Both the

chordal force and entropy (actual entropy, not entropy density) were calculated using the

rule of mixtures based upon volume fractions of collagen vs. elastin. The change in chordal

entropy was so small that variability caused by variation in volume fraction dominates this

response; hence, relative changes in entropy (S�S0) had to be plotted to visualize the effect.

The three conjugate pairs that describe a membrane’s response are presented as rows in
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Figure 5.13: Relative force/strain (left column), relative nominal stress/strain (center col-
umn), and relative entropy/strain (right column) curves for septal chords comprised of indi-
vidual collagen and elastin fibers whose material parameters are listed in Table 5.5, which
are described in terms of probability distributions.
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Fig. 5.14—one row per experiment, with there being 30 curves per plot. These conjugate

pairs describe: uniform dilation psπ, ξq, non-uniform squeeze psσ, εq, and non-uniform (sim-

ple) shear psτ , γq. The three motions that we consider include:

dilation

a � λ b � λ g � g0 � 0 (5.51a)

pure shear [27]

a �
?
λ2 � λ�2
?

2
b �

?
2?

λ2 � λ�2 g � g0 � λ2 � λ�2

λ2 � λ�2 (5.51b)

and simple shear

a � 1 b � 1 g � g0 � 0 (5.51c)

where λ denotes a stretch with λ0 � 1. For dilation: ξ � ln λ, ε � 0 & γ � 0; for pure

shear: ξ � 0, ε � ln
�1

2pλ2 � λ�2q� & γ � pλ2 � λ�2q{pλ2 � λ�2q; and for simple shear: ξ � 0,

ε � 0 & γ � g� g0. The constitutive model is that of Eqns. (5.38 & 5.48), applying material

parameters (and their variability) given in Table 5.6. In the dilation experiment (top row)

there is only uniform psπ, ξq response. There are no non-uniform responses, neither psσ, εq
nor psτ, γq in an uniform dilation, either theoretical or numerical. The pure shear experiment

(middle row) is dominated by both a squeeze psσ, εq and a shear psτ, γq response, with there

being a small, systematic, dilational coupling through pair psπ, ξq that is on the order of 1

part in 106.

Observation: The change in entropy caused by deformation has been shown to be

negligible when compared with the entropy present in its reference state. As such, entropy

and its conjugate, i.e., temperature, will not be modeled in our finite element representations

of alveoli being exposed to traveling shock waves.
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Figure 5.14: Membrane response from 30 numerical experiments whose constitutive behavior
is described by Eqns. (5.38 & 5.48) using the parameters listed in Table 5.6. During these
numerical experiments, eight membranes ruptured under dialation, while none ruptured
during these pure and simple shear experiments.
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6. FINITE ELEMENT ANALYSIS [7]

6.1 Quadrature Rules for Spatial Integration

Particular to our application, a suite of nodes is common betwixt three, separate, finite-

element models that share 20 common vertices. These vertices establish the geometry of a

dodecahedron used as the model for a microscopic alveolus. The resultant microscopic force

at each vertex arises from: i) a finite element model of 30 1D rods representing the alveolar

chords, ii) a finite element model of 12 2D pentagons representing the alveolar membranes,

and iii) a finite element model of 60 3D tetrahedra representing the alveolar sac. The micro-

scopic forces coming from these three geometric models are summed at their twenty common

vertices.

Shape functions are introduced for interpolating within an element; specifically, consider

an arbitrary field, say f , whose values are known at the nodes, then

fpξkq �
ņ

i�1
Nipξkqfpxiq k � 1, 2, . . . ,m (6.1a)

where the xi are co-ordinates that locate one of the n nodes in an element of interest, and

where the ξi are co-ordinates that locate one of its m Gauss points, both being evaluated

in the natural co-ordinate system of the element. Functions Ni are the so-called shape

functions. They obey
°n
i�1Nipξq � 1 @ ξ.

6.1.1 Self-Consistent Interpolation Procedures for Rods

Considering a rod with two Gauss points, the interpolation of an arbitrary field (say

f , whose values are known at nodal points xi, i � 1, 2) into approximated values located

at Gauss points ξi, assigned according to Table 6.1 which approximates
³1
�1 fpξq dξ using

two Gauss points, i.e.,
³1
�1 fpξq dξ � °2

i�1wifpξiq. The weights of quadrature wi sum to its

length, because L � ³1
�1 dξ � 2. Selecting shape (interpolation) functions N1 � 1

2p1� ξq and
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node ξ co-ordinate weight
1 �?3{3 1
2

?
3{3 1

Table 6.1: A quadrature rule for integrating functions over a length of line.

N2 � 1
2p1 � ξq, where �1 ¤ ξ ¤ 1, results in an interpolation map that sends values for a

field known at the element nodes down to its Gauss points via

$'&'%fp
�?3/3q

fp?3/3q

,/./- � 1
6

���3�?3 3�?3

3�?3 3�?3

���
$'&'%fp�1q
fp1q

,/./- . (6.2a)

6.1.2 Self-Consistent Interpolation Procedures for Triangles

Now, considering a triangle with three Gauss points, the interpolation of an arbitrary field

f whose values are known at nodal points xi, i � 1, 2, 3, into approximated values located at

Gauss points ξ, assigned according to Table 6.2 that approximates
³1
0

³1�ξ
0 fpξ, ηq dη dξ using

three Gauss points, i.e.,
³1
0

³1�ξ
0 fpξ, ηq dη dξ � °3

i�1wifpξi, ηiq. The weights of quadrature

wi sum to its area, because A � ³1
0

³1�ξ
0 dη dξ � 1/2 . Selecting shape (interpolation) functions

N1 � 1 � ξ � η, N2 � ξ, and N3 � η, where 0 ¤ ξ ¤ 1 and 0 ¤ η ¤ 1 � ξ, results in an

interpolation that maps according to

$''''&''''%
fp1/6 , 1/6q
fp2/3 , 1/6q
fp1/6 , 2/3q

,////.////- � 1
6

������
4 1 1

1 4 1

1 1 4

������
$''''&''''%
fp0, 0q
fp1, 0q
fp0, 1q

,////.////- . (6.3a)

6.1.3 Self-Consistent Interpolation Procedures for Pentagons

Because we seek a quadrature rule for regular pentagons that employs five Gauss points,

and pentagons posses five radial lines of symmetry, it is reasonable to consider that the five
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node ξ co-ordinate η co-ordinate weight
1 1/6 1/6 1/6
2 2/3 1/6 1/6
3 1/6 2/3 1/6

Table 6.2: A simple quadrature rule for integrating functions over the area of a triangle.

nodes of quadrature that we seek lie along these five radial lines. Specifically, we seek a

quadrature rule for a pentagon whose nodes are located at xi, i � 1, 2, . . . , 5, and whose

Gauss points are located at ξi, i � 1, 2, . . . , 5, with

x1 �
�
cospπ/2q, sinpπ/2q

�
ξ1 � `x1 (6.4a)

x2 �
�
cosp9π/10q, sinp9π/10q

�
ξ2 � `x2 (6.4b)

x3 �
�
cosp13π/10q, sinp13π/10q

�
ξ3 � `x3 (6.4c)

x4 �
�
cosp17π/10q, sinp17π/10q

�
ξ4 � `x4 (6.4d)

x5 �
�
cospπ/10q, sinpπ/10q

�
ξ5 � `x5 (6.4e)

where lines radiating from the origin out to each vertex xi have unit length, while the lines

that radiate out to the Gauss points ξi each have a shorter length of `.

Implementing the strategies that underlie Gauss quadrature, length ` represents a dis-

tance from the pentagon’s centroid out to the centroid of a quadrilateral. In our case, this

area (one of five equivalent areas) is a four-sided polygon whose apex has an inside angle of

108�, whose two shoulders have right angles, while the inside angle is 72� at the origin. A

little bit of algebra and geometry leads to the result

` � 1� sinp3π/10q
3 sinp3π/10q � 0.7454 (6.5a)
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whose area becomes the associated weight of quadrature, it being

w � sinp3π/10q cosp3π/10q � 0.4755 (6.5b)

which is one-fifth the area of a regular pentagon, cf. Eqn. (5.3). To the best of our knowledge,

the quadrature rule put forward in Eqns. (6.4 & 6.5) for pentagons is new to the literature.

Adopting the shape functions of Wachspress, while using the quadrature rule of Eqns. (6.4

& 6.5), results in a symmetric interpolation map of

$''''''''''&''''''''''%

fpξ1q
fpξ2q
fpξ3q
fpξ4q
fpξ5q

,//////////.//////////-
�

������������

a b c c b

b a b c c

c b a b c

c c b a b

b c c b a

������������

$''''''''''&''''''''''%

fpx1q
fpx2q
fpx3q
fpx4q
fpx5q

,//////////.//////////-
(6.6a)

whose matrix elements are a � 0.6901471673508344, b � 0.1367959452017669 and c �
0.0181304711228159.

6.1.4 Self-Consistent Interpolation Procedures for Tetrahedra

We now consider a tetrahedron with four Gauss points. Here the interpolation of an

arbitrary field f whose values are known at nodal points xi, i � 1, 2, 3, 4, into approxi-

mated values located at Gauss points ξi, assigned according to Table 6.3 that approximates³1
0

³1�ξ
0

³1�ξ�η
0 fpξ, η, ζq dζ dη dξ using four Gauss points, i.e.,

³1
0

³1�ξ
0

³1�ξ�η
0 fpξ, η, ζq dζ dη dξ �°4

i�1wifpξi, ηi, ζiq. Selecting shape functions N1 � 1�ξ�η�ζ, N2 � ξ, N3 � η, and N4 � ζ,

bounded by 0 ¤ ξ ¤ 1, 0 ¤ η ¤ 1�ξ and 0 ¤ ζ ¤ 1�ξ�η, leads to the following interpolation
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node ξ co-ordinate η co-ordinate ζ co-ordinate weight
1 0.1381966011250105 0.1381966011250105 0.1381966011250105 1/24
2 0.5854101966249685 0.1381966011250105 0.1381966011250105 1/24
3 0.1381966011250105 0.5854101966249685 0.1381966011250105 1/24
4 0.1381966011250105 0.1381966011250105 0.5854101966249685 1/24

Table 6.3: A quadrature rule for integrating functions over the volume of a tetrahedron.

formula $'''''''&'''''''%

fpa, a, aq
fpb, a, aq
fpa, b, aq
fpa, a, bq

,///////.///////-
�

���������

1� 3a a a a

1� 2a� b b a a

1� 2a� b a b a

1� 2a� b a a b

���������

$'''''''&'''''''%

fp0, 0, 0q
fp1, 0, 0q
fp0, 1, 0q
fp0, 0, 1q

,///////.///////-
(6.7a)

where a � 0.1381966011250105 and b � 0.5854101966249685 from Table 6.3.

6.2 Finite Element Analysis

The problem that we have set up to solve is cast in a Lagrangian setting and takes on

the general form of a second-order, ODE; specifically,

F � K ∆�C 9∆�M :∆ (6.8a)

that under conditions of equilibrium (i.e., whenever :∆ � 9∆ � 0) reduces to

F � K ∆ (6.8b)

where K is a secant stiffness matrix, C is a tangent stiffness matrix1, M is a mass matrix,

and F is a force vector, while vector ∆ contains the assembled nodal displacements with 9∆

and :∆ denoting their velocities and accelerations.
1In the literature, matrix C is typically utilized as a damping matrix; however, there are presently no

damping mechanisms in our alveolar model.
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Our problem of interest is the dynamic mechanical response of an alveolus, whose geom-

etry is modeled as a dodecahedron. The shape of an irregular dodecahedron is described by

a set of 20 vertices, each experiencing displacements of

upvq
i �

!
u
pvq
i v

pvq
i w

pvq
i

)T
(6.9a)

where at the beginning of a solution step upvqi :� x
pvq
i � x

pvq
0 , vpvqi :� y

pvq
i � y

pvq
0 , and wpvq

i :�
z
pvq
i � z

pvq
0 , while at the end of that solution step upvqi�1 � x

pvq
i�1 � x

pvq
0 , vpvqi�1 � y

pvq
i�1 � y

pvq
0 , and

w
pvq
i�1 � z

pvq
i�1 � z

pvq
0 , with pxpvq, ypvq, zpvqq denoting co-ordinates for vertex v in the co-ordinate

frame p~E1, ~E2, ~E3q of a dodecahedron. The velocities at these vertices are

9upvq
i �

!
9u
pvq
i 9v

pvq
i 9w

pvq
i

)T
(6.9b)

where at the beginning of a solution step 9δi � 1
2dtpδi�1�δi�1q, while at the end of that solution

step 9δi�1 � 1
2dtp3δi�1 � 4δi� δi�1q, with δ P tupvq, vpvq, wpvqu. Likewise, their accelerations are

:upvq
i �

!
:u
pvq
i :v

pvq
i :w

pvq
i

)T
(6.9c)

where at the beginning of a solution step :δi � 1
pdtq2 pδi�1 � 2δi � δi�1q, while at the end of

that solution step :δi�1 � 1
pdtq2 p2δi�1 � 5δi� 4δi�1 � δi�2q. An evaluation of these nodal fields

requires knowledge of the co-ordinates for each vertex at states i� 1, i, i� 1, and i� 2. All

finite difference equations listed above are second-order formulæ.

Symbol ∆ is used to denote an assemblage of all nodal displacements, while symbol upvq

is used to denote the nodal displacement of an individual vertex (node) v located within this

model, of which there are 20 in our dodecahedral model.

Our problem is not cast as a typical finite element solution, in the sense that we know the

nodal displacements ∆, velocities 9∆, and accelerations :∆ a priori, for which nodal forces

F are to be found. Typically, boundary conditions are known for which displacements are
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determined in a weak sense, which is the opposite of our situation. Inputs for our model are

considered to come from a finite element model of a torso subjected to an impact caused by

either a ballistic projectile or a blast wave.

The assembled nodal forces F pT q, depend upon stresses T evaluated at the Gauss points,

as do the tangent and secant stiffness matrices, i.e., CpT q and KpT q, which thereby couples

the system of equations that are to be solved. As such, an iterative solver is proposed. The

mass matrix M will vary between solution steps, too, but not because the mass matrix of

a particular element changes, but rather, because rotations of the local co-ordinate systems

for the elements about the global reference frame for the dodecahedron can become large,

and as such, effect change in the assembled mass matrix.

The stress that arises from K∆ is due to an elastic deformation that begins in some

reference state (at an initial time t0) and ends at the current state (at present time ti). The

stress that arises from C 9∆ is due to an additional elastic deformation that begins in this

current state (at time ti) and ends at some nearby state (at a future time ti�1 � ti � dt).

While an inertial contribution to stress results from M :∆.

The solution strategy adopted here mimics that of a predictor/corrector method used for

solving ODEs. At the beginning of a current solution step, the solution at the end of its

previous step takes on the form of

F i � Ki∆i �Mi
:∆i (6.10a)

where F i � F pT iq and Ki � KpT iq. Recall that there is no damping in our model, so there

is no 9∆i contribution entering here. At the beginning of a step the stiffness response arises

singularly from a secant modulus. Meanwhile, the response at the end of the time step is

considered to be described by a predictor of the form

F p
i�1 � Ki∆i �Ci

9∆i �Mi
:∆i
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where F p
i�1 � F pT p

i�1q. Subtracting Eqn. (6.10a) from the above equation produces

F p
i�1 � F i �Ci

9∆i (6.10b)

At this point in the solution process, one evaluates the mass and secant stiffness matrices

according to Mi�1 and Ki�1 � KpT p
i�1q and then corrects the solution via

F i�1 � Ki�1∆i�1 �Mi�1 :∆i�1 (6.10c)

where 9∆i�1 and :∆i�1 are approximated using backward difference formulæ. A reevaluation

of Ki�1 � KpT i�1q now takes place, and Eqn. (6.10c) is iterated on until convergence. In

preparation to the next step, one evaluates the tangent stiffness matrix Ci�1 � CpT i�1q.
Equation (6.10) is not self starting. To start, because :∆0 � ∆0 � 0, it follows that

F p
1 � F 0 �C0 9∆0 (6.11a)

where F 0 � F pT 0q denotes a residual force or prestress that must exist in biologic tissues,

while C0 � CpT 0q and F p
1 � F pT p

1 q. Here 9∆0 is to be approximated using an Euler forward

step. After evaluating K1 � KpT p
1 q, a correction is computed

F 1 � K1∆1 (6.11b)

where F 1 � F pT 1q. Upon convergence, one determines the mass matrix M1 and the tangent

stiffness matrix C1 � CpT 1q in preparation for advancing to solution step 2. It is during

the second solution interval whereat nodal accelerations can first be computed, so that with

Eqn. (6.11b) appling at the start of this interval, and with the following predictor considered

to apply at the end of the interval

F p
2 � K1∆1 �C1 9∆1 �M1 :∆1
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then subtracting Eqn. (6.11b) from this equation finds the solution advances via

F p
2 � F 1 �C1 9∆1 �M1 :∆1 (6.11c)

where F p
2 � F pT p

2 q. At this point there is enough information to estimate the nodal

accelerations :∆1, as displacement data are available for i � 1 � 2. Both 9∆1 and :∆1 are

approximated using central difference formulæ. Upon evaluating the mass matrix M2 and

the secant stiffness matrix K2 � KpT p
2 q, a corrected solution at the end of the step is

computed via

F 2 � K2∆2 �M2 :∆2 (6.11d)

where :∆2 Ð :∆1, because at this juncture there is not enough nodal displacement information

to estimate acceleration at the end of this step, while 9∆2 is approximated using a backward

difference formula. Equation (6.11d) allows for an improvement for K2 � KpT 2q that can

be inserted back into itself, iterating until convergence. Upon convergence, one determines

the tangent stiffness matrix C2 � CpT 1q in preparation for advancing to solution step 3.

We construct three, individual, finite-element models governed by the following three

systems of differential equations

F 1D � K1D ∆�C1D 9∆�M1D :∆ (6.12a)

F 2D � K2D ∆�C2D 9∆�M2D :∆ (6.12b)

F 3D � K3D ∆�C3D 9∆�M3D :∆ (6.12c)

wherein subscript ‘1D’ associates with alveolar chords that assemble into a 3D space truss,

subscript ‘2D’ associates with alveolar membranes that assemble into a 3D tiled balloon-like

structure, and subscript ‘3D’ associates with an alveolar sac.

When assembled, vectors F , ∆, 9∆ and :∆ have lengths of 60 for the alveolar chord and
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alveolar membrane models, and a length of 63 for the alveolar sac model, while matrices K,

C and M have dimensions of 60�60 for the alveolar chord and alveolar membrane models,

and dimensions of 63�63 for the alveolar sac model. The model for alveolar volume has an

extra node located at the centroid of the dodecahedron.

6.2.1 Mass Matrices

The consistent mass matrix of an element, [64] when quantified in the element’s co-

ordinate frame p~e1, ~e2, ~e3q, is defined as follows: For 1D elements

MC1D �
»
L

ρNTNA dL MC1D
ij �

»
L

ρN1iN1j A dL (6.13a)

with i, j � 1, 2, . . . , n where n is the number of nodal points. For 2D elements

MC2D �
»
A

ρNTNH dA MC2D
ij �

»
A

ρ
2̧

k�1
NkiNkj H dA (6.13b)

with i, j � 1, 2, . . . , 2n where n is the number of nodal points. And for 3D elements

MC3D �
»
V

ρNTN dV MC3D
ij �

»
V

ρ
3̧

k�1
NkiNkj dV (6.13c)

with i, j � 1, 2, . . . , 3n where n is the number of nodal points. For a rod, MC1D is a 2�2

matrix; for a pentagon, MC2D is a 10�10 matrix; and for a tetrahedron, MC3D is a 12�12

matrix. In each expression, ρ is mass per unit volume, N is a matrix of shape functions for

the element of interest, L is length, H is height, A is area, and V is volume.

One form of a lumped mass matrix is where the entries from each row of a consistent

mass matrix are summed and placed in their respective diagonal entries; specifically: [65]

For 1D elements

ML1D
ii �

ņ

j�1
MC1D

ij �
»
L

ρN1i

ņ

j�1
N1j A dL, ML1D

ij � 0 i � j (6.14a)
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with i � 1, 2, . . . , n where n is the number of nodal points. For 2D elements

ML2D
ii �

2ņ

j�1
MC2D

ij �
»
A

ρ
2̧

k�1
Nki

2ņ

j�1
Nkj H dA, ML2D

ij � 0 i � j (6.14b)

with i � 1, 2, . . . , 2n where n is the number of nodal points. And for 3D elements

ML3D
ii �

3ņ

j�1
MC3D

ij �
»
V

ρ
3̧

k�1
Nki

3ņ

j�1
Nkj dV, ML3D

ij � 0 i � j (6.14c)

with i � 1, 2, . . . , 3n where n is the number of nodal points.

A lumped-consistent (or weighted) mass matrix MW can then be created as follows

MW � p1� µqMC � µML

wherein µ is a free scalar parameter for weighting between the consistent and lumped mass

matrices. The reason for mixing MC and ML is to achieve a non-singular mass matrix by

making the resulting matrix diagonally dominant. In this work, µ is taken to be a half, i.e.,

an averaged mass matrix is adopted, which has a nice property of minimizing low frequency

dispersion. Specifically, we select

M1D :� 1
2pMC1D �ML1Dq (6.15a)

M2D :� 1
2pMC2D �ML2Dq (6.15b)

M3D :� 1
2pMC3D �ML3Dq (6.15c)

as our means for constructing mass matrices. Each of these mass matrices is invertible that,

for example, is a requirement of the numerical solution strategy.

6.2.1.1 Mass Matrix for a Chord

A two-noded alveolar chord (a pinned beam in finite element terminology) has shape

functions Ni that aggregate into a 1�2 matrix of shape functions when evaluated in their
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natural co-ordinate system wherein �1 ¤ ξ ¤ 1, viz.,

Npξq � �
N1 N2

� � �
1
2 p1� ξq 1

2 p1� ξq
�

(6.16a)

from which a symmetric matrix arises to become the backbone for this mass matrix (which

happens to be singular), its components being

NTNpξiq � 1
4

���1� 2ξi � ξ2
i 1� ξ2

i

1� ξ2
i 1� 2ξi � ξ2

i

��� (6.16b)

where ξi designates a co-ordinate for the ith Gauss point associated with a specific Gauss

quadrature rule for integration, which in our case comes from Table 6.1.

The determinant |J| of Jacobian matrix J is used to transform the integrals in Eqns. (6.13

& 6.14) from their natural co-ordinates into the co-ordinate system p~e1, ~e2, ~e3q of a chord,

cf. Fig. 5.3. Its value is

J � |J| �
¸2

i�1
Ni,ξpξqxi � �1

2 � �1
2L� 1

2 � 1
2L � 1

2L (6.17)

given nodal co-ordinates of x1 � �1
2L and x2 � 1

2L, where L is the length of our alveolar

chord. The Jacobian matrix J and its determinant |J| are equivalent in the case of a rod,

because this geometric space is one dimensional.

The consistent mass matrix for a 1D alveolar chord modeled as a two-noded rod, when

evaluated in the co-ordinate system of the chord, becomes

MC1D �
» L

0
ρNTNA dx �

» 1

�1
ρNTNA |J| dξ � |J|

m̧

i�1
ρiAi NTNpξiqwi

� L

2

m̧

i�1

ρiAiwi
4

���1� 2ξi � ξ2
i 1� ξ2

i

1� ξ2
i 1� 2ξi � ξ2

i

��� (6.18)

where Npξiq is a matrix of shape functions evaluated at a node of quadrature ξi whose
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associated weight of quadrature is wi, both evaluated at Gauss point i for a selected Gauss

integration rule comprising m Gauss points. Table 6.1 presents values for the co-ordinates ξi

and weights wi of quadrature where two Gauss points of integration (m � 2) are employed

for integrating over a length of chord.

A lumped mass matrix for a 1D alveolar chord, when evaluated in the co-ordinate system

of a chord is

ML1D �
¸

rows

L

2

m̧

i�1

ρiAiwi
4

�
��1 � 2ξi � ξ2

i 1 � ξ2
i

1 � ξ2
i 1 � 2ξi � ξ2

i

�
�� �

L

2

m̧

i�1

ρiAiwi
2

�
��1 � ξi 0

0 1 � ξi

�
�� .

(6.19)

It is seen that the mass matrix in Eqn. (6.18) is singular at any given Gauss point, whereas

the mass matrix in Eqn. (6.19) has a reciprocal, except whenever ξ � �1, which are points

not realized in Gaussian quadrature rules.

A chordal mass matrix that is appropriate for biologic fibers, and that associates with

the Gauss quadrature rule listed in Table 6.1, has a consistent and lumped mass matrix that

when averaged become

M1D � ρ1A1L

24

���5� 2
?

3 1

1 5� 2
?

3

���� ρ2A2L

24

���5� 2
?

3 1

1 5� 2
?

3

��� (6.20)

with M1D being the 1D mass matrix that we implement. Because the mass of an alveolar

chord does not change when exposed to a traveling shock wave, it follows that ρAL � ρ0A0L0,

and as such, this mass matrix only needs to be evaluated once.

6.2.1.2 Assembly of Chordal Mass Matrices

In our alevolar model comprising septal chords, there are 20 nodes (vertices) whose

numbering scheme and natural co-ordinates (those of a regular dodecahedron) are specified

in Table 5.1. Connecting these 20 nodes are 30 line segments (septal chords) whose numbering

scheme and associated nodal numbers are specified in Table 5.2.
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In 3D analyses, the components M1D
ij of mass matrix M1D from Eqn. (6.20) populate a

mass matrix M peq
1D for element e, e P t1, 2, . . . , 30u, accordingly

M
peq
1D �

����������������

M1D
11 0 0 M1D

12 0 0

0 0 0 0 0 0

0 0 0 0 0 0

M1D
21 0 0 M1D

22 0 0

0 0 0 0 0 0

0 0 0 0 0 0

����������������
(6.21)

To rotate this mass matrix for an element from its co-ordinate system for a chord

p~e1, ~e2, ~e3qpeq into the fixed co-ordinate system for a dodecahedron p~E1, ~E2, ~E3q, where it

can be assembled with the mass matrices from the other 29 chordal elements, one must first

apply the orthogonal transformation

Rpeq
1D �

����������������

Q
peq
11 Q

peq
12 Q

peq
13 0 0 0

Q
peq
21 Q

peq
22 Q

peq
23 0 0 0

Q
peq
31 Q

peq
32 Q

peq
33 0 0 0

0 0 0 Q
peq
11 Q

peq
12 Q

peq
13

0 0 0 Q
peq
21 Q

peq
22 Q

peq
23

0 0 0 Q
peq
31 Q

peq
32 Q

peq
33

����������������
(6.22)

so that, accordingly,

Mpeq
1D �

�
Rpeq

1D
�T
M

peq
1DRpeq

1D (6.23)

where Mpeq
1D becomes this mass matrix, transformed into a dodecahedral co-ordinate system

p~E1, ~E2, ~E3q with rt~e1ut~e2ut~e3uspeq �
�t~E1ut~E2ut~E3u

��
Qpeqs, cf. Fig. 5.3. Even thoughM peq

1D is

a constant mass matrix, Mpeq
1D need not be, because Rpeq

1D will typically vary over time in our

analysis of alveoli subjected to shock waves.
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We can now re-write our example equation for f � M:u as a block matrix equation

$'&'%f if j
,/./- �

���Mpeq
1D:ii Mpeq

1D:ij

Mpeq
1D:ji Mpeq

1D:jj

���
$'&'%:ui

:uj

,/./-
wherein f i � f

piq
1
~E1 � f

piq
2
~E2 � f

piq
3
~E3, etc., where i and j are the nodal numbers for the two

nodes that establish this chord.

6.2.1.3 Mass Matrix for a Pentagon

The surface of a dodecahedron is tiled with 12 pentagons, and as such, an analysis to

establish a mass matrix for a pentagon becomes the building block needed to be able to

assemble a 2D mass matrix M2D representing the alveolar membranes that envelope an

alveolar sac.

For an alveolar membrane, represented here as an irregular pentagon, the matrix of shape

functions Npξ, ηq takes on the general form of

N �

���N1 0 N2 0 N3 0 N4 0 N5 0

0 N1 0 N2 0 N3 0 N4 0 N5

��� (6.24)

wherein Ni, i � 1, . . . , 5, are the five shape functions that correspond with the five vertices

of a pentagon. These shape functions are nonlinear functions of their co-ordinates pξ, ηq,
which is readily apparent in Fig. 5.6.

A consistent mass matrix MC2D is constructed by substituting the above matrix of shape

functions into the following expression

MC2D �
»
D

ρNTN |J|H dξ dη � |J|
m̧

i�1
ρiHi NTNpξi, ηiqwi (6.25)

wherem is the number of Gauss points with pξi, ηiq and wi being their respective co-ordinates

and weights of quadrature that, in our implementation, are provided by Eqns. (6.4 & 6.5). As
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with alveolar chords, alveolar membranes have mass densities ρi and heights Hi (thicknesses)

that are not uniform across a membrane.

Here |J| is the Jacobian determinant of a 2�2 Jacobian matrix J. In areal derivations,

the Jacobian of a 2D transformation connects the physical x, y to the natural ξ, η co-ordinate

systems involved. Components of this Jacobian matrix are calculated using derivatives of

shape functions taken with respect to the local co-ordinates [65, pg. 424], with

|J| � Bx
Bξ
By
Bη �

Bx
Bη
By
Bξ (6.26)

establishing the Jacobian determinant. It is proportional to the area of the pentagon AD

because AD � ³
D

dx dy � ³
D
|J| dξ dη � |J|°5

i�1wi � 2.378|J| using the quadrature rule

for pentagons given in Eqn. (6.5), cf. Eqn. (5.3).

6.2.1.4 Assembly of Pentagonal Mass Matrices

In the co-ordinate system of a pentagon p~e1, ~e2, ~e3qpeq, e P t1, 2, . . . , 12u, a pentagon has

a mass matrix with a symmetric block structure of

M
peq
2D �

������������

M 2D
11 M 2D

12 M 2D
13 M 2D

14 M 2D
15

M 2D
21 M 2D

22 M 2D
23 M 2D

24 M 2D
25

M 2D
31 M 2D

32 M 2D
33 M 2D

34 M 2D
35

M 2D
41 M 2D

42 M 2D
43 M 2D

44 M 2D
45

M 2D
51 M 2D

52 M 2D
53 M 2D

54 M 2D
55

������������
(6.27a)

with each element in this matrix being a 3�3 matrix with diagonal entries of

M 2D
ij �

������
M2D

ij 0 0

0 M2D
ij 0

0 0 0

������ (6.27b)
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whose components have values of

M2D
ii � |J0|

2

5̧

k�1
ρ0kH0kNip1�Niqpξk, ηkqwk i � 1, 2, . . . , 5 (6.28a)

M2D
ij �M2D

ji � |J0|
2

5̧

k�1
ρ0kH0kNiNjpξk, ηkqwk i � j (6.28b)

with co-ordinates pξi, ηiq and weights wi of quadrature being given in Eqns. (6.4 & 6.5),

and whose shape functions are defined according to Eqn. (5.16). Because the mass of an

alveolar membrane is conserved when exposed to a traveling shock wave, it follows that

ρH|J| � ρ0H0|J0|, and as such, like the mass matrices M peq
1D and M peq

3D for chords and

tetrahedra, the mass matrix M peq
2D for each pentagon only needs to be evaluated once.

To rotate this mass matrix for element e, e P t1, 2, . . . , 12u, from its elemental co-ordinate

system for the pentagon p~e1, ~e2, ~e3qpeq into a fixed co-ordinate system for the dodecahedron

p~E1, ~E2, ~E3q, where it can be assembled with mass matrices from the other 11 elements, one

must apply the orthogonal transformation

Rpeq
2D �

�
������������

Qpeq 0 0 0 0

0 Qpeq 0 0 0

0 0 Qpeq 0 0

0 0 0 Qpeq 0

0 0 0 0 Qpeq

�
������������

(6.29a)

whose diagonal entries are themselves orthogonal matrices with components

Qpeq �

�
�����
Q
peq
11 Q

peq
12 Q

peq
13

Q
peq
21 Q

peq
22 Q

peq
23

Q
peq
31 Q

peq
32 Q

peq
33

�
����� (6.29b)

so that, accordingly,

Mpeq
2D �

�
Rpeq

2D
�T
M

peq
2DRpeq

2D (6.29c)
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where Mpeq
2D is its mass matrix transformed into the dodecahedral co-ordinate system p~E1, ~E2, ~E3q

according to the map rt~e1ut~e2ut~e3uspeq �
�t~E1ut~E2ut~E3u

��
Qpeqs, cf. Fig. 5.4.

6.2.1.5 Mass Matrix for a Tetrahedron

The volume of a dodecahedron is filled with 60 tetrahedra, whose centroid (the origin in

its natural co-ordinate system) is a common vertex among these 60 tetrahedra.

The matrix of shape functions Npξ, η, ζq for a tetrahedron has a general form of

N �

������
N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

������ (6.30)

in which the Ni, i � 1, 2, 3, 4, are the four shape functions corresponding to the four vertices

of a tetrahedron. Numerical integration is used to obtain a consistent mass matrix for a

tetrahedron

MC3D �

»
V
ρNTN dz dy dx �

» 1

0

» 1�ξ

0

» 1�ξ�η

0
ρNTN |J|dζ dη dξ � ρ |J|

m̧

i�1
NTNpξi, ηi, ζiqwi

(6.31)

where |J| is the determinant of the Jacobian matrix J, with m being the number of Gauss

points used for spatial integration, which in our case is four. The co-ordinates pξi, ηi, ζiq
and weights wi of quadrature used for integrating over the volume of a tetrahedron are

found in Table 6.3. The Jacobian is calculated from taking derivatives of the shape func-

tions with respect to their local co-ordinates pξ, η, ζq, cf. Ref. [65, pg. 424], whose deter-

minant |J| is proportional to the volume of this element when evaluated in the physical

co-ordinate system p~E1, ~E2, ~E3q. Specifically, |J| � 6Vtet because Vtet �
³
Vtet

dz dy dx �³1
0

³1�ξ
0

³1�ξ�η
0 |J| dζ dη dξ � |J|°m

i�1wi � 1
6 |J|.

6.2.1.6 Assembly of Tetrahedral Mass Matrices

In our finite element model for an alveolar sac, there are 21 nodes (20 vertices and the

origin) whose numbering scheme and natural co-ordinates are given in Table 5.1. Filling
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this volume are 60 tetrahedra whose numbering scheme and associated nodal numbers are

specified according to the following strategy. Associated with any given pentagon are 5

tetrahedra. Nodes 1 and 4 of these five tetrahedra are the same. Node 1 is at the centroid

of the pentagon, and node 4 is at the origin of the dodecahedron. Nodes 2 and 3 of the

tetrahedron are also nodes of this pentagon, and are sequenced such that when traversing

nodes 1 Ñ 2 Ñ 3 of a tetrahedron one undergoes a counterclockwise path when viewed

looking inward from outside of the dodecahedron. In the co-ordinate system of a tetrahedron

p~e1, ~e2, ~e3qpeq, a tetrahedron has a mass matrix with a symmetric block structure of

M
peq
3D �

���������

M 3D
11 M 3D

12 M 3D
13 M 3D

14

M 3D
21 M 3D

22 M 3D
23 M 3D

24

M 3D
31 M 3D

32 M 3D
33 M 3D

34

M 3D
41 M 3D

42 M 3D
43 M 3D

44

���������
(6.32a)

with each element in this matrix being a 3�3 matrix with diagonal entries of

M 3D
ij �

������
M3D

ij 0 0

0 M3D
ij 0

0 0 M3D
ij

������ (6.32b)

whose components have values of

M3D
ii � ρ0|J0|

2

4̧

k�1
Nip1�Niqpξk, ηk, ζkqwk i � 1, 2, 3, 4 (6.33a)

M3D
ij �M3D

ji � ρ0|J0|
2

4̧

k�1
NiNjpξk, ηk, ζkqwk i � j (6.33b)

with co-ordinates pξi, ηi, ζiq and weights wi of quadrature being given in Table 6.3. Here we

consider that mass is conserved over the volume of each element, and as such, ρ|J| � ρ0|J0|.
To rotate this mass matrix for element e, e P t1, 2, . . . , 60u, from its elemental co-ordinate

100



system for the tetrahedron p~e1, ~e2, ~e3qpeq into a fixed co-ordinate system for the dodecahedron

p~E1, ~E2, ~E3q, where it can be assembled with mass matrices from the other 59 elements, one

must apply the orthogonal transformation

Rpeq
3D �

���������

Qpeq 0 0 0

0 Qpeq 0 0

0 0 Qpeq 0

0 0 0 Qpeq

���������
(6.34a)

whose diagonal entries are themselves orthogonal matrices with components

Qpeq �

������
Q
peq
11 Q

peq
12 Q

peq
13

Q
peq
21 Q

peq
22 Q

peq
23

Q
peq
31 Q

peq
32 Q

peq
33

������ (6.34b)

so that, accordingly,

Mpeq
3D �

�
Rpeq

3D
�T
M

peq
3DRpeq

3D (6.34c)

where Mpeq
3D is its mass matrix transformed into the dodecahedral co-ordinate system p~E1, ~E2, ~E3q

according to the map rt~e1ut~e2ut~e3uspeq �
�t~E1ut~E2ut~E3u

��
Qpeqs. Even thoughM peq

3D is a con-

stant mass matrix, Mpeq
3D need not be, because Rpeq

3D will typically vary over time in our analysis

of alveoli subjected to shock waves.

6.2.2 Constitutive Models for Finite Elements

In this study, we implement implicit, elastic, material models. Consequently, their elastic

compliance C and modulus M, where M :� C�1, are taken to be functions of both strain

and stress in a manner that is consistent with thermodynamics. Furthermore, the conjugate

response between temperature and entropy is not incorporated into our finite element solu-

tion strategy, because changes in entropy caused by elastic deformations have been shown
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to be negligible in our application. As such, one can write down the governing constitutive

equations for use in finite elements as

E � CspE,T q � pT � T 0q (6.35a)

T � T 0 �MspE,T q �E (6.35b)

where T 0 is an initial (residual) stress at zero strain, and where Cs and Ms are the secant

compliance and secant modulus, respectively, obeying Ms � pCsq�1. Written symbolically,

Cs � E{pT � T 0q and Ms � pT � T 0q{E.

Expressing these constitutive equations in differential form, one can write

dE � CtpE,T q � dT (6.35c)

dT � MtpE,T q � dE (6.35d)

where Ct and Mt are the tangent compliance and tangent modulus, respectively, obeying

Mt � pCtq�1. Written symbolically, Ct � dE{dT and Mt � dT {dE. The components

from these elastic compliance and moduli relate to one another via

Ctij �
�
Iik � BCsi`

BEk pT` � T0 `q

�1 �

Cskj �
BCsk`
BTj pT` � T0 `q



(6.35e)

Mt
ij �

�
Iik � BMs

i`

BTk E`


�1 �
Ms

kj �
BMs

k`

BEj E`



(6.35f)

that, because Mt � pCtq�1, enables one to write

Mt
ij �

�
Csik �

BCsi`
BTk pT` � T0 `q


�1 �
Ikj � BCsk`

BEj pT` � T0 `q



(6.35g)

and therefore we observe that if CspE,T q and T 0 are known, then Ms, Ct and Mt can all

be determined in terms of this secant compliance and initial stress. It is the moduli Ms and

Mt that appear later in our finite element equations (6.52).
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In finite element implementations, strain E and stress T are treated as vectors of size

`�1, while the compliance Cs and Ct and the moduli Ms and Mt are each matrices of size

`�`, where ` denotes the number of independent stress/strain attribute pairs that there are.

6.2.2.1 Moduli for a Chord

Alveolar chords comprising collagen and elastin fibers are loaded in parallel. Conse-

quently, they are exposed to the same axial strain of e � lnpL{L0q but carry different stresses

sc and se, where c is for collagen and e is for elastin. The rule of mixtures is used to average

their individual responses into a collective chordal response. Specifically, the chordal, elastic,

secant modulus is described by the averaged response

Es :� φEc
s � p1� φqEe

s (6.36a)

while the chordal, elastic, secant compliance is described by the averaged response

Cs � Cc
s C

e
s

φCe
s � p1� φqCc

s

. (6.36b)

Consequently, the chordal, elastic, secant modulus Ms becomes

Ms � φ{Cc
s � p1� φq{Ce

s . (6.36c)

Given the constitutive equation s � s0 � Ese, it follows that the stresses average as

s0 :� φ sc0 � p1� φqse0 and s :� φ sc � p1� φqse (6.36d)

because these fibers experience the same strain. The collagen, fiber, volume fraction φ that

does this partitioning is established by

φ :� Ac0{pAc0 � Ae0q (6.36e)
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where the cross-sectional area of a chord is the sum of cross-sectional areas for its collagen

Ac0 and elastin Ae0 fibers, here evaluated in a reference state.

The secant compliance Cs that we apply to the collagen and elastin fibers in an alveolar

chord are derived in Appendix D, cf. Eqn. (D.9). This model, under isothermal conditions,

describes an elastic secant compliance for collagen of

Cc
spscq �

ec1max

sc � sc0

�
1�

a
Ec

1e
c
1maxa

Ec
1e
c
1max � 2psc � sc0q

�
� 1
Ec

2
(6.37a)

and an elastic secant compliance for elastin of

Ce
s pseq �

ee1max

se � se0

�
1�

a
Ee

1e
e
1maxa

Ee
1e
e
1max � 2pse � se0q

�
� 1
Ee

2
(6.37b)

whose inverses, viz., Ec
s :� 1{Cc

s and Ee
s :� 1{Ce

s , are their secant moduli, which are defined

in accordance with Eqns. (6.35a & 6.35b), and as such, sc � sc0 � Ec
se and se � se0 � Ee

se.

The material properties associated with collagen fibers are: a soft initial modulus Ec
1, a

stiff terminal modulus Ec
2, and their strain of transition ec1max , with like material properties

describing an elastin fiber. Whenever sc   sc0, the elastic modulus for collagen is taken to

be its modulus at zero strain, i.e., Ec
s � Ec

1E
c
2{pEc

1 �Ec
2q so that Cc

s � pEc
1 �Ec

2q{Ec
1E

c
2. The

elastic fiber compliance in Eqn. (6.37) depend only upon stress, not upon strain, and as such

the elastic tangent modulus Mt of Eqn. (6.35g), which is one of two moduli we use in our

finite element implementation, reduces in this 1D case to

Mt �

�
Cs � B Cs

Bs
ps� s0q


�1
(6.38a)

where Cs is given by Eqn. (6.36b), whose individual compliance Ccs and Ces are described by

Eqn. (6.37), and whose derivatives are determined to be

B Cs

Bs
�

B

Bsc
Ccspscq Cespseq

φ Cespseq � p1 � φq Ccspscq

�
Bs

Bsc


�1
�

B

Bse
Ccspscq Cespseq

φ Cespseq � p1 � φq Ccspscq

�
Bs

Bse


�1

(6.38b)

104



which follow from Eqn. (6.37).

6.2.2.2 Moduli for a Pentagon

The secant response of an isothermal, isochoric, elastic pentagon can be written in terms

of Eqn. (6.35a),whose constitutive behavior is established through an elastic modulus Ms

such that $''''&''''%
sπ

sσ

sτ

,////.////-loomoon
T

�

$''''&''''%
sπ0

0

0

,////.////-loomoon
T 0

�

������
4M s 0 0

0 4M s{3 0

0 0 Gs

������loooooooooooomoooooooooooon
Ms

$''''&''''%
ξ

ε

γ

,////.////-loomoon
E

(6.39)

which is used in our finite element implementation. This strain vector E has elements

denoting a dilation ξ � ln
a
ab{a0b0, a squeeze (pure shear) ε � ln

a
ab0{a0b, and a (simple)

shear γ � g � g0, which in turn are described in terms of two elongations a and b plus an

in-plane shear g, with their reference values being a0, b0 and g0.

The stress vector T � tsπ, sσ, sτuT conjugate to strain vector E � tξ, ε, γuT has elements

of a surface tension sπ � S11�S22, a normal-stress difference sσ � S11�S22, and a shear stress

sτ � a
b

S12. Only surface tension is considered to have a residual state of stress sπ0 , which is

necessary for alveolar stability, and is caused, in part, by the presence of surfactant. In a

reciprocal sense, the stress components are assigned via S11 � 1
2psπ � sσq, S22 � 1

2psπ � sσq
and S12 � S21 � b

a
sτ such that S � P U�1S U�TPT with S being the second Piola–Kirchhoff

stress evaluated in the co-ordinate system of a pentagon, while U is the Laplace stretch, and

P is a re-indexer of co-ordinate labeling needed to ensure invariance under a transformation

of Laplace stretch.

The elastic compliance governing an isothermal dilation response is

1
4M spsπq �

ξ1max

sπ � sπ0

��1�
a
M1ξ1maxb

M1ξ1max � 1
2psπ � sπ0 q

�� 1
4M2

(6.40a)
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where M spsπ¤sπ0 q �M1M2{pM1 �M2q. The elastic compliance governing shear response is

1
Gspsτ q �

γ1max

|sτ |

�
1�

?
G1γ1maxa

G1γ1max � 2|sτ |

�
� 1
G2

(6.40b)

where Gspsτ � 0q � G1G2{pG1 � G2q. Like the fiber compliance used to model an alveolar

chord, the membrane compliance used to model an alveolar septa has components that

depend upon stress, but not upon strain. Consequently, the tangent modulus is

Mt �

�
�����

1
4Ms � psπ � sπ0 q

dp1{4Msq
dsπ 0 0

0 3
4Ms � psπ � sπ0 q

dp3{4Msq
dsπ 0

0 0 1
Gs � sτ dp1{Gsq

dsτ

�
�����

�1

(6.41)

whose entries, taking into account Eqn. (6.40), are determined to be

1
4M s

� psπ � sπ0 q
dp1{4M sq

dsπ �
ξ1max

a
M1ξ1max

4
�
M1ξ1max �

1
2ps

π � sπ0 q
�3{2 �

1
4M2

(6.42a)

1
Gs

� sτ
dp1{Gsq

dsτ �
γ1max

a
G1γ1max

pG1γ1max � 2|sτ |q3{2
�

1
G2

(6.42b)

and as such, our implementation becomes quite straightforward.

6.2.2.3 Moduli for a Tetrahedron

The isothermal response of a volume element located within an alveolar sac will have a

secant response governed by

$''''''''''''''&
''''''''''''''%

Π

σ1

σ2

τ1

τ2

τ3

,//////////////.
//////////////-loomoon

T

�

$''''''''''''''&
''''''''''''''%

Π0

0

0

0

0

0

,//////////////.
//////////////-loomoon

T 0

�

�
���������������

9K 0 0 0 0 0

0 3N �3
2N 0 0 0

0 �3
2N 3N 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

�
���������������

looooooooooooooooooooomooooooooooooooooooooon
Ms

$''''''''''''''&
''''''''''''''%

Ξ

ε1

ε2

γ1

γ2

γ3

,//////////////.
//////////////-loomoon

E

(6.43)
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where, for air, only the bulk modulusK is non-zero. The strain vectorE � tΞ, ε1, ε2, γ1, γ2, γ3uT

has elements that denote a dilatation Ξ � ln 3
a
abc{a0b0c0, two separate squeezes (pure

shears) ε1 � ln 3
a
ab0{a0b and ε2 � ln 3

a
bc0{b0c, and three separate (simple) shears γ1 �

α � α0, γ2 � β � β0, and γ3 � γ � γ0. The stress vector T � tΠ, σ1, σ2, τ1, τ2, τ3uT con-

jugate to strain E has elements that comprise a pressure Π � S11 � S22 � S33 � �3P

where P denotes the common definition for pressure, two separate normal-stress differences

σ1 � S11 � S22 and σ2 � S22 � S33, and three separate shear stresses τ1 � b
c
S32, τ2 � a

c
S31

and τ3 � a
b
S21 � ατ2. Of these, only pressure has an initial value, viz., Π0, which represents

atmospheric pressure. Moduli K, N , and G are considered to be constants in our modeling

of an alveolar sac; therefore, Mt � Ms when modeling alveolar volumes.

6.2.3 Stiffness Matrices

6.2.3.1 Strain-Displacement Matrices

Finite element techniques introduce a matrix B that transforms nodal displacements upeq

for an element e into a vector of thermodynamic strains E located at a Gauss point via

E � Bupeq (6.44)

where E has size `�1, B has size `�nd, and upeq has size nd�1. Here: d is the spatial

dimension of an element (viz., d � 1, 2 or 3 that, in our case, associate with a chord, a

pentagon, and a tetrahedron, respectively); ` is the number of conjugate pairs appropriate

for an element (viz., ` � 1, 3 or 6 that, in our case, associate with a chord, a pentagon, and

a tetrahedron, respectively); while n is the number of nodes in an element (viz., n � 2, 5 or

4 that, in our case, associate with a chord, a pentagon, and a tetrahedron, respectively).

In order to make our computation more systematic, the strain-displacement matrix B is

taken to additively decompose into linear and nonlinear constituents such that

B � BL �BN (6.45a)
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where the entries in BL are constants, while the entries in BN are functions of displacement.

Hence, this decomposition allows linear and nonlinear strain constituents to be

EL :� BL u
peq and EN :� BN u

peq (6.45b)

which E � EL � EN . Their associated derivatives, taken with respect to displacement,

produce the formulæ

dEL � BL dupeq 7 dBL � 0 (6.45c)

dEN � BN dupeq � dBN u
peq (6.45d)

which obey dE � dEL�dEN and dB � dBN so that dE � B dupeq�dBupeq. This differen-

tial equation reduces to the classic result dE � B dupeq found in the finite element literature

whenever the total displacements are infinitesimal in extent, under which conditions BN � 0

and dBN � 0. It is advantageous for us to re-write this nonlinear strain-displacement rela-

tion BN as a product between two matrices such that

BN � A H (6.46a)

where matrix A has size `�d, while matrix H has size d�nd, with A being comprised

of various displacement gradients, and H being comprised of derivatives of shape functions

taken in the element’s co-ordinate system, and as such

dBN � dA �H 7 dH � 0. (6.46b)

As a consequence of this definition, at least for the elements of interest to us, it turns out

that one can establish another useful relationship, specifically

dAT T � S H dupeq (6.46c)
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wherein S is a symmetric matrix of size d�d whose components come from those of its

conjugate stress vector T of size `�1.

6.2.3.2 Secant Stiffness Matrix

For nonlinear elastic materials, like soft tissues, their stress/strain response curves gen-

erally become stiffer with increasing deformation. Consequently, the slope of a line segment

connecting the origin with its current stress/strain state, located somewhere along its re-

sponse curve, will change with a change in stress and strain, and therefore, its secant modulus

will necessarily be a function of stress and/or strain.

A variation in the residual energy R of a deformed elastic body is the difference between

variations from two energy sources, assuming a simply connected body whose motion maps

have sufficient smoothness, etc. These energies are: a potential energy U that stores an

internal strain energy, and a work done W that expends energy through an external loading,

specifically

δR � δU � δW (6.47a)

such that for an element e one has [66]

δW �
¸

e
F � δupeq (6.47b)

δU �
¸

e

»
V

BT T dV � δupeq (6.47c)

or alternatively

δR �
¸

e
R � δupeq �

¸
e

�»
V

BT T dV � F


� δupeq (6.47d)

where F and R are vectors denoting the external and residual forces, respectively, while T

is a stress conjugate to strain E, which are represented here as vector fields, with B being

the well-known strain-displacement matrix found in Eqn. (6.44).
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In order to satisfy equilibrium, the internal and external forces of Eqn. (6.47) must be in

balance, and therefore, for each element [67]

R �
»
V

BT T dV � F � 0 (6.48a)

whose solution is typically achieved through an iterative process. Substituting the secant con-

stitutive equation Eqn. (6.35b) along with the strain-displacement relationship of Eqn. (6.44)

into the above integral allows it to be re-written as

»
V

BT T dV �
»
V

BT T 0 dV �
»
V

BT MsE dV �
»
V

BT T 0 dVloooooomoooooon
F 0

�
»
V

BT Ms B dVlooooooooomooooooooon
Ks

upeq

(6.48b)

where Ks is a stiffness matrix built around the secant modulus Ms, and F 0 is an internal

force accounting for an initial residual stress of T 0. Here B and Ms are evaluated at current

time ti, i.e., at the beginning of an integration step.

6.2.3.3 Tangent Stiffness Matrix

Motivated by a definition for the tangent stiffness matrix being C :� dR{du that,

e.g., would be appropriate for an updated-Lagrangian finite element formulation, [68] we

differentiate Eqn. (6.47d) to get dδR � δdR � dR � δupeq from which one gets

dR �
»
V

dBT T dV �
»
V

BT dT dV �: C dupeq (6.49)

which follows because the external force F is considered to be a fixed boundary condition

during a variation in its displacements. This equation establishes that a change in residual

force dR is needed to further deform an elastic body from an equilibrium condition R � 0

that exists at current time ti into another equilibrium state associated with some future

moment in time ti�1 � ti � dt. This differential force depends upon both the stress T at
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time ti and its change dT that occurs when advancing from ti to ti�1.

Substituting constitutive equation (6.35b) for T into the first integral of Eqn. (6.49),

while incorporating Eqn. (6.46), allows this integral to be re-written as

»
V

dBT T dV �
»
V

dBT�T 0 �MsE
�

dV �
»
V

HT S H dVlooooooomooooooon
Cs

dupeq (6.50)

where T 0 �MsE ÞÑ S, and as such, Cs is that contribution to the tangent stiffness matrix

C attributed to the secant modulus Ms appearing in Eqn. (6.35b), which is quadratic

in H. Now, substituting constitutive equation (6.35d) for dT into the second integral in

Eqn. (6.49), while employing Eqns. (6.45c & 6.45d) to describe strain rate dE, this integral

becomes

»
V

BT dT dV �

»
V

BT Mt dE dV �

»
V

BT Mt B dVlooooooooomooooooooon
Ct

dupeq �
»
V

BT Mt dB dVloooooooooomoooooooooon
Kt

upeq (6.51a)

where the contribution to the secant stiffness can be expressed alternatively as

Kt �

»
V

HT dS H dV given dS :� AT Mt dA. (6.51b)

6.2.3.4 Equations of Motion

Pulling everything together, the equations of motion Eqn. (6.8), when written for an

element, are given by

F � Kupeq � C 9upeq � M :upeq (6.52a)

which has a secant stiffness matrix of

K � Ks � Kt (6.52b)
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a tangent stiffness matrix of

C � Cs � Ct (6.52c)

and a forcing function of

F � FBC � F 0 (6.52d)

wherein

Ks �

»
V

BT Ms B dV (6.52e)

Kt �

»
V

HT dSt H dV where dSt � AT Mt dA (6.52f)

Cs �

»
V

HT Ss H dV where T 0 � MsE ÞÑ Ss (6.52g)

Ct �

»
V

BT Mt B dV (6.52h)

F 0 �

»
V

BT T 0 dV (6.52i)

with FBC being an external force associated with the boundary conditions evaluated at the

end of a solution step. All other fields are evaluated at the beginning of this solution step.

Superscript ‘s’ implies that these matrices are evaluated using the secant modulus Ms,

while superscript ‘t’ implies that these matrices are evaluated using the tangent modulus

Mt. To minimize an accumulation of roundoff error, it is advantageous to compute Ks as

four separate integrals, viz.,

Ks �

»
V

BT
L Ms BL dV �

»
V

BT
L Ms BN dV �

»
V

BT
N Ms BL dV �

»
V

BT
N Ms BN dV

and to compute Ct as four separate integrals, too, viz.,

Ct �

»
V

BT
L Mt BL dV �

»
V

BT
L Mt BN dV �

»
V

BT
N Mt BL dV �

»
V

BT
N Mt BN dV
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while computing F 0 as two separate integrals, viz.,

F 0 �

»
V

BT
L T 0 dV �

»
V

BT
N T 0 dV

where the first integral will only need to be evaluated once, as its argument is constant

valued.

6.2.4 Kinematic Matrices of Finite Elements

To implement our finite element discretization, it is necessary that we know the following

matrices for a given element type: the linear strain-displacement matrix BL, the nonlinear

strain-displacement matrix BN , and its decomposition BN � AH, plus the differential rate

dA. These matrices are acquired in the following sections for a chord, a pentagon, and a

dodecahedron where QR kinematics have been adopted.

6.2.4.1 Kinematic Matrices for a Chord

The components of Laplace stretch U can be obtained from a Cholesky factorization of

the right, Cauchy–Green, deformation tensor C � FTF � UTU , [26] which is a symmetric

tensor. For a 1D chord, the only possible deformation is a stretch of the chord in its axial

direction. Therefore, in this case, the deformation gradient, as well as the right Cauchy–

Green tensor C, have only one component. Consequently, the Laplace stretch U also consists

of only one component, which is denoted by a. If u is the axial displacement of a chord, then

its axial elongation a becomes

a � U11 �
a
C11 with C11 � 1� 2 Bu

Bx �
�Bu
Bx


2

given F11 � 1� Bu
Bx. (6.53a)

This chord is subjected to an axial strain defined as e � lnpaq � lnpL{L0q, where L0 and L

are the initial and current lengths of the chord. Here we decompose the total strain into its
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linear and nonlinear components as

e � eL � eN (6.54)

as determined by a Taylor expansion of e � ln
?
C11, which gives

eL � Bu
Bx and eN � �1

2
Bu
Bx

Bu
Bx (6.55)

The linear strain-displacement matrix BL can now be obtained by expressing the linear

strain eL in terms of its nodal displacements, viz.,

eL � Bu
Bx �

¸2

i�1
Ni,x ui �

�rbL1srbL2s
� 

upeq
( � �

BL

� 
upeq( (6.56a)

wherein

rbLis � rNi,xs � rNi,ξsrJs�1 and upeq �  
u
peq
1 u

peq
2

(T (6.56b)

where Ni,ξ is the gradient of shape function Ni evaluated in element peq’s natural co-ordinate
system, which maps into gradient Ni,x evaluated in the element’s physical co-ordinate system

via its Jacobian matrix rJs, with upeq1 and upeq2 denoting the nodal displacements of the chord.

We introduce machinery that is excessive for chord, but becomes useful when constructing

the nonlinear strain-displacement matrices for pentagon and tetrahedron. Let nonlinear

strain eN be written as a product between some matrix A and some vector θ; specifically,

eN � 1
2 r�Bu{BxstBu{Bxu � 1

2 Aθ (6.57)

where A � r�Bu{Bxs whose differential is

dA �
 
�Bdu{Bx

(
�

 
�
°2
i�1Ni,x dui

(
�

�
rl1srl2s

��
rd1srd2s

�T
� L D (6.58a)
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wherein

rlis � r�Ni,xs � r�Ni,ξsrJs�1 and rdis � rduis. (6.58b)

Furthermore, we consider that θ can be expressed in terms of the nodal displacements as

θ �  Bu{Bx( �  °2
i�1Ni,x ui

( � �rh1srh2s
� 

upeq( � H upeq (6.59a)

wherein

H � �rh1srh2s
�

with rhis � rNi,xs � rNi,ξsrJs�1 (6.59b)

for the chord, there is no difference between bLi and hi, which will not be the case in

higher-dimensional spaces. Hence, the nonlinear strain-displacement matrix BN becomes

BN � A H � �rbN1srbN2s
�

(6.60)

where bNi � r�Bu{Bxsrhis. The tangent stiffness matrix Cs associated with T 0 �MsE ÞÑ
Ss � rs0 � Eses, which is defined in Eqn. (6.36), becomes

Cs �
»
L

HT Ss HA dL � |J0|
ņ

i�1
HT SspξiqHA0pξiqwi (6.61)

where an isochoric response is assumed in that A0|J0| � A|J|. Here ξi and wi are the co-

ordinates and weights of quadrature for Gauss point i, and A0 and A are the initial and

current cross-sectional areas of the chord with A0pξiq being the initial cross-sectional area at

Gauss point ξi.

The tangent stiffness matrix Ct, as established in Eqn. (6.51), becomes

Ct �
»
L

BT Mt BA dL � |J0|
ņ

i�1
BT MtpξiqBA0pξiqwi (6.62a)
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where axial stress rate ds is described by a tangent modulus Mt from Eqn. (6.38).

The secant stiffness matrix Ks, as established in Eqn. (6.48b), becomes

Ks �
»
L

BT Ms BA dL � |J0|
ņ

i�1
BT MspξiqBA0pξiqwi (6.63a)

where axial stress s is described by a secant modulus Ms from Eqn. (6.36).

Likewise, a secant stiffness matrix Kt, also established in Eqn. (6.51), becomes

Kt �
»
L

HT dSt HA dL � |J0|
ņ

i�1
HT dStpξiqHA0pξiqwi (6.64a)

where its stress rate is given by dSt :� AT Mt dA.

6.2.4.2 Kinematic Matrices for a Pentagon

For a planar membrane, components of Laplace stretch U , obtained from a Cholesky

factorization of the right Cauchy–Green tensor C :� FTF � UTU , cf. Eqn. (2.2), where C11,

C12�C21 and C22 are components of the right Cauchy–Green tensor C that can be expressed

in terms of displacement gradients as

C11 � 1� 2 BuBx �
�Bu
Bx


2

�
�Bv
Bx


2

(6.65a)

C12 � Bu
By �

Bv
Bx �

Bu
Bx �

Bu
By �

Bv
Bx �

Bv
By (6.65b)

C22 � 1� 2 BvBy �
�Bu
By


2

�
�Bv
By


2

(6.65c)

which arise from the deformation gradient

F �

���1� Bu{Bx Bu{By
Bv{Bx 1� Bv{By

��� (6.65d)

where u and v are displacements associated with the deformation of a planar membrane.
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Gradients of shape functions are used to construct the above spatial gradients, viz.,

$'&'%Ni,ξ

Ni,η

,/./- �

���Bx{Bξ By{Bξ
Bx{Bη By{Bη

���
$'&'%Ni,x

Ni,y

,/./-
whose matrix is the non-singular Jacobian, while Ni,ξ and Ni,η are gradients of the shape

functions in their natural co-ordinates, as established in Eqn. (5.20) for pentagons. These

are evaluated at ith Gauss point for the quadrature rule used that, in our case, is found in

Eqns.(6.4 & 6.5). It is necessary to invert this equation for it to become useful for us so that

$'&'%Ni,x

Ni,y

,/./- �

���Bx{Bξ By{Bξ
Bx{Bη By{Bη

���
�1 $'&'%Ni,ξ

Ni,η

,/./- (6.66)

with Ni,x and Ni,y being employed below.

The thermodynamic strain attributes that we use are defined in Eqn. (2.10). Without loss

of generality, we consider the membrane to be initially undeformed, which allows us to set a0

and b0 to one, while the initial shear g0 is taken as zero. To gain computational advantage,

we decompose these strain attributes into linear and nonlinear components; specifically, we

consider

ξ � ξL � ξN1 � ξN2 � ξN3 (6.67a)

ε � εL � εN1 � εN2 � εN3 (6.67b)

γ � γL � γN1 � γN2 � γN3. (6.67c)

Traditionally, finite element constructions decompose strain into a linear component and a

nonlinear component. However, in our case, a further decomposition of the nonlinear strain

component into three separate components makes our computation much easier.

Decomposition of strain attributes is achieved via Taylor expansions that retain terms

through second-order. The linear and nonlinear components of these strain attributes, thus
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obtained, are given as

ξL � 1
2

�Bu
Bx �

Bv
By



(6.68a)

ξN � 1
4

�
�Bv
By

Bv
By �

Bu
Bx

Bu
Bx � 2 Bu

By
Bv
Bx



(6.68b)

εL � 1
2

�Bu
Bx �

Bv
By



(6.68c)

εN � 1
4

�
2 Bv
Bx

Bv
Bx �

Bv
By

Bv
By �

Bu
Bx

Bu
Bx � 2 Bu

By
Bv
Bx



(6.68d)

γL � Bu
By �

Bv
Bx (6.68e)

γN � Bv
Bx

Bv
By � 2 Bu

Bx
Bv
Bx �

Bu
Bx

Bu
By (6.68f)

where the linear components of these strain attributes consist only of first-order derivatives

in the displacements, while the nonlinear components contain the second-order terms. In

terms of the nodal displacements, the vector containing the linear strain attributes, i.e., EL,

can be written as

EL �

$''''&
''''%

ξL

εL

γL

,////.
////-

�

$''''&
''''%

1
2 u,x �

1
2 v,y

1
2 u,x �

1
2 v,y

u,y � v,x

,////.
////-

�
5̧

i�1

�
�����

1
2 Ni,x

1
2 Ni,y

1
2 Ni,x �1

2 Ni,y

Ni,y Ni,x

�
�����

$'&
'%
ui

vi

,/.
/-

�
�
rbL1srbL2srbL3srbL4srbL5s

� 
upeq

(
� BL upeq (6.69a)

where

rbLis �

�
�����

1
2 Ni,x

1
2 Ni,y

1
2 Ni,x �1

2 Ni,y

Ni,y Ni,x

�
����� , upeq �

 
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5

(T (6.69b)

for element e, whose matrix entries come from Eqn. (6.66).

Now let nonlinear strain EN1 be written as a product between some matrix A1 and some
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vector θ1; specifically, let

EN1 �

$''''&
''''%

ξN1

εN1

γN1

,////.
////-

�

$''''&
''''%

�1
4 v

2
,y

�1
4 u

2
,x �

1
4 v

2
,y

v,x v,y

,////.
////-

�
1
2

�
�����

0 �1
2 Bv{By

�1
2 Bu{Bx

1
2 Bv{By

0 2 Bv{Bx

�
�����

$'&
'%
Bu{Bx

Bv{By

,/.
/- � 1

2 A1 θ1 (6.70)

with

dA1 �

�
�����

0 �1
2 Bdv{By

�1
2 Bdu{Bx 1

2 Bdv{By

0 2 Bdv{Bx

�
����� �

¸5
i�1

�
�����

0 �1
2 Ni,y dvi

�1
2 Ni,x dui 1

2 Ni,y dvi

0 2Ni,x dvi

�
�����

�

�
rl1srl2srl3srl4srl5s

� �
rd1srd2srd3srd4srd5s

�T
� L1D1 (6.71a)

wherein

rlis �

�
�����

0 �1
2 Ni,y

�1
2 Ni,x

1
2 Ni,y

0 2Ni,x

�
����� and rdis �

�
��dui 0

0 dvi

�
�� . (6.71b)

To obtain the nonlinear strain–displacement matrix, we require the nonlinear strain to be

expressed in terms of the nodal displacements. This is achieved by expressing the elements

of displacement gradient in terms of the nodal displacements by using the shape functions,

specifically, the vector θ1 can be written as

θ1 �

$'&
'%
Bu{Bx

Bv{By

,/.
/- �

¸5
i�1

$'&
'%
Ni,x ui

Ni,y vi

,/.
/- �

�
rh1srh2srh3srh4srh5s

�  
upeq

(
� H1upeq (6.72a)

where the components of H1 contains the derivatives of shape functions with respect to spatial

variables, i.e.,

rhis �

�
��Ni,x 0

0 Ni,y

�
�� . (6.72b)
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Therefore, the first nonlinear strain–displacement matrix BN1 can be written as

BN1 � A1 H1 �
�
rbN1srbN2srbN3srbN4srbN5s

�
(6.73a)

where the components of BN1 are given as

rbNis �

������
0 �1

2 Bv{By
�1

2 Bu{Bx 1
2 Bv{By

0 2 Bv{Bx

������
���Ni,x 0

0 Ni,y

��� . (6.73b)

In a similar manner, the second nonlinear strain terms can be written as

EN2 �

$''''&
''''%

ξN2

εN2

γN2

,////.
////-

�

$''''&
''''%

�1
2 u,y v,x

1
2 u,y v,x

�2u,x v,x

,////.
////-

�
1
2

�
�����
�Bv{Bx 0

Bv{Bx 0

0 �4 Bu{Bx

�
�����

$'&
'%
Bu{By

Bv{Bx

,/.
/- � 1

2 A2 θ2 (6.74)

with

dA2 �

�
�����
�Bdv{Bx 0

Bdv{Bx 0

0 �4 Bdu{Bx

�
����� �

¸5
i�1

�
�����
�Ni,x dvi 0

Ni,x dvi 0

0 �4Ni,x dui

�
�����

�

�
rl1srl2srl3srl4srl5s

� �
rd1srd2srd3srd4srd5s

�T
� L2D2 (6.75a)

wherein

rlis �

�
�����
�Ni,x 0

Ni,x 0

0 �4Ni,x

�
����� and rdis �

�
��dvi 0

0 dui

�
�� . (6.75b)

The vector θ2 is expressed in terms of the nodal displacements with the use of shape functions
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as

θ2 �

$'&
'%
Bu{By

Bv{Bx

,/.
/- �

¸5
i�1

$'&
'%
Ni,y ui

Ni,x vi

,/.
/- �

�
rh1srh2srh3srh4srh5s

�  
upeq

(
� H2upeq (6.76a)

where the elements of H2 are given as

rhis �

�
��Ni,y 0

0 Ni,x

�
�� . (6.76b)

Hence, the second nonlinear strain–displacement matrix BN2 becomes

BN2 � A2 H2 �

�
rbN1srbN2srbN3srbN4srbN5s

�
(6.77a)

where its elements are given as

rbNis �

�
�����
�Bv{Bx 0

Bv{Bx 0

0 �4 Bu{Bx

�
�����

�
��Ni,y 0

0 Ni,x

�
�� . (6.77b)

In like manner, the third nonlinear strain terms can be written as

EN3 �

$''''&
''''%

ξN3

εN3

γN3

,////.
////-

�

$''''&
''''%

�1
4 u

2
,x

1
2 v

2
,x

�u,y u,x

,////.
////-

�
1
2

�
�����
�1

2 Bu{Bx 0

0 Bv{Bx

�2 Bu{By 0

�
�����

$'&
'%
Bu{Bx

Bv{Bx

,/.
/- � 1

2 A3 θ3 (6.78)

with

dA3 �

�
�����
�1

2 Bdu{Bx 0

0 Bdv{Bx

�2 Bdu{By 0

�
����� �

¸5
i�1

�
�����
�1

2 Ni,x dui 0

0 Ni,x dvi

�2Ni,y dui 0

�
�����

�

�
rl1srl2srl3srl4srl5s

� �
rd1srd2srd3srd4srd5s

�T
� L3D3 (6.79a)
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wherein

rlis �

�
�����
�1

2 Ni,x 0

0 Ni,x

�2Ni,y 0

�
����� and rdis �

�
��dui 0

0 dvi

�
�� . (6.79b)

θ3 is expressed in terms of the nodal displacements using the shape functions; specifically

θ3 �

$'&
'%
Bu{Bx

Bv{Bx

,/.
/- �

¸5
i�1

$'&
'%
Ni,x ui

Ni,x vi

,/.
/- �

�
rh1srh2srh3srh4srh5s

�  
upeq

(
� H3upeq (6.80a)

where the components of H3 contains the derivatives of shape functions with respect to spatial

variables, i.e.,

rhis �

�
��Ni,x 0

0 Ni,x

�
�� . (6.80b)

Therefore, the first nonlinear strain–displacement matrix BN3 can be written as

BN3 � A3 H3 �

�
rbN1srbN2srbN3srbN4srbN5s

�
(6.81a)

where the components of BN3 are given as

rbNis �

�
�����
�1

2 Bu{Bx 0

0 Bv{By

�2 Bu{By 0

�
�����

�
��Ni,x 0

0 Ni,x

�
�� . (6.81b)

The total nonlinear strain–displacement matrix is evaluated as the summation of its com-

ponents BN1, BN2, and BN3. Now, with all the strain–displacement matrices evaluated, we

are ready to compute the stiffness matrix for a planar membrane.

To obtain the stiffness matrix for a planar membrane, we need to compute the four

constituent strain-displacement matrices Cs, Ct, Ks and Kt, as mentioned earlier.
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The tangent stiffness matrix Cs, as established in Eqn. (6.50), becomes

Cs �

»
D

HT Ss HH dA � |J0|
ņ

i�1
HT Sspξi, ηiqHH0 iwi (6.82a)

wherein

Ss �

�
��S11 S12

S21 S22

�
�� (6.82b)

where an isochoric response is assumed in that H0|J0| � H|J|. Here H0 and H are the

initial and current height or thickness of the septal membrane, and ξi, ηi and wi are the

co-ordinates and weights of quadrature for Gauss point i.

The stress vector T � tsπ, sσ, sτuT conjugate to strain vector E � tξ, ε, γuT has elements

of a surface tension sπ � S11 � S22, a normal-stress difference sσ � S11 � S22, and a shear

stress sτ � a
b

S12.

S11 � 1
2ps

π � sσq, S22 � 1
2ps

π � sσq and S12 � S21 � b

a
sτ (6.83)

such that S � P U�1S U�TPT with S being the second Piola–Kirchhoff stress evaluated in

the co-ordinate system of a pentagon, while U is Laplace stretch, and P is a re-indexer of

co-ordinate labeling needed to ensure invariance under a transformation of Laplace stretch.

The tangent stiffness matrix Ct, as established in Eqn. (6.51), becomes

Ct �
»
D

BT Mt B |J|H dA � |J0|
ņ

i�1
BT Mtpξi, ηiqBH0 iwi (6.84)

where its associated stress rate is described by a tangent modulus Mt.

The secant stiffness matrix Ks, as established in Eqn. (6.48b), becomes

Ks �
»
D

BT Ms BH dA � |J0|
ņ

i�1
BT Mspξi, ηiqBH0 iwi (6.85)

123



where its associated stress is described by a secant modulus Ms.

Likewise, a secant stiffness matrix Kt, also established in Eqn. (6.51), becomes

Kt �
»
D

HT dSt HH dA � |J0|
ņ

i�1
HT dStpξi, ηiqHH0 iwi (6.86)

where its associated stress rate is given by dSt :� AT Mt dA.

6.2.4.3 Kinematic Matrices for a Tetrahedron

Let us consider a tetrahedron subjected to displacements of u, v and w in its three

spatial directions, respectively. In terms of these displacements, elements of the deformation

gradient can be written as

F �

������
1� Bu{Bx Bu{By Bu{Bz

Bv{Bx 1� Bv{By Bv{Bz

Bw{Bx Bw{By 1� Bw{Bz

������ . (6.87)

The components of the right Cauchy–Green deformation tensor, viz., C :� FTF, becomes

C11 �

�
Bu
Bx


2
�

�
Bv
Bx


2
�

�
Bw
Bx


2
� 2 Bu

Bx
� 1 (6.88a)

C22 �

�
Bu
By


2
�

�
Bv
By


2
�

�
Bw
By


2
� 2 Bv

By
� 1 (6.88b)

C33 �

�
Bu
Bz


2
�

�
Bv
Bz


2
�

�
Bw
Bz


2
� 2 Bw

Bz
� 1 (6.88c)

C12 � C21 �
Bu
By

�
Bv
Bx

�
Bu
Bx

�
Bu
By

�
Bv
Bx

�
Bv
By

�
Bw
Bx

�
Bw
By

(6.88d)

C13 � C31 �
Bu
Bz

�
Bw
Bx

�
Bu
Bx

�
Bu
Bz

�
Bv
Bx

�
Bv
Bz

�
Bw
Bx

�
Bw
Bz

(6.88e)

C23 � C32 �
Bv
Bz

�
Bw
By

�
Bu
By

�
Bu
Bz

�
Bv
By

�
Bv
Bz

�
Bw
By

�
Bw
Bz
. (6.88f)

The components of Laplace stretch U are obtained in terms of displacement gradients

through a Cholesky factorization of the right Cauchy–Green tensor as defined in Eqn. (2.15).

For computational ease, these strain attributes are additively decomposed into one linear
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and five nonlinear components. The primary advantage of this decomposition is an emergence

of a systematic structure in the strain-displacement matrix, which makes evaluation of the

stiffness matrix much easier. The linear and nonlinear components for the strain attributes,

thus obtained, are given by

ξ � ξL � ξN1 � ξN2 � ξN3 � ξN4 � ξN5 (6.89a)

εi � εiL � εiN1 � εiN2 � εiN3 � εiN4 � εiN5 (6.89b)

γi � γiL � γiN1 � γiN2 � γiN3 � γiN4 � γiN5 (6.89c)

where their linear and nonlinear components can be expressed in terms of elements arising

from a matrix representation of the displacement gradient as

ξL �
1
3

�
Bu
Bx �

Bv
By �

Bw
Bz



(6.90a)

ξN �
1
6

�Bu
Bz

Bu
Bz �

Bu
Bx

Bu
Bx �

Bv
By

Bv
By �

Bv
Bz

Bv
Bz �

Bw
Bx

Bw
Bx �

Bw
By

Bw
By �

Bw
Bz

Bw
Bz � 2 Bu

By
Bv
Bx � 4 Bv

Bz
Bw
By

	

(6.90b)

ε1L �
1
3

�
Bu
Bx �

Bv
By



(6.90c)

ε1N �
1
6

�
2 Bv
Bx

Bv
Bx �

Bv
By

Bv
By �

Bu
Bx

Bu
Bx �

Bw
Bx

Bw
Bx �

Bw
By

Bw
By � 2 Bu

By
Bv
Bx



(6.90d)

ε2L �
1
3

�
Bv
By �

Bw
Bz



(6.90e)

ε2N �
1
6

�Bw
Bz

Bw
Bz �

Bv
Bx

Bv
Bx �

Bv
By

Bv
By �

Bu
Bz

Bu
Bz �

Bv
Bz

Bv
Bz � 3 Bw

By
Bw
By � 2 Bu

By
Bv
Bx � 4 Bv

Bz
Bw
By

	
(6.90f)

γ1L �
Bv
Bz �

Bw
By (6.90g)

γ1N � 2 Bu
Bx

Bv
Bz �

Bu
Bz

Bv
Bx � 2 Bu

Bx
Bw
By �

Bu
By

Bw
Bx �

Bv
By

Bv
Bz � 2 Bv

By
Bw
By �

Bw
By

Bw
Bz (6.90h)

γ2L �
Bv
Bz �

Bw
By (6.90i)

γ2N �
Bu
By

Bu
Bz � 2 Bu

Bx
Bv
Bz � 2 Bu

Bx
Bw
By �

Bv
By

Bv
Bz �

Bw
By

Bw
Bz (6.90j)

γ3L �
Bu
By �

Bv
Bx (6.90k)

γ3N � �
Bu
Bx

Bu
By � 2 Bu

Bx
Bv
Bx �

Bv
Bx

Bv
By �

Bw
Bx

Bw
By (6.90l)
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The total stiffness matrix can be obtained as a sum of the linear and five nonlinear stiffness

matrices.

First, the linear strain-displacement matrix BL is obtained by expressing the strain at-

tributes in terms of the nodal displacements through derivatives of the shape functions.

Specifically, the linear strain-displacement matrix takes the form of

EL �

$''''''''''''''&''''''''''''''%

ξL

ε1L

ε2L

γ1L

γ2L

γ3L

,//////////////.//////////////-

�

$''''''''''''''&''''''''''''''%

1
3 u,x � 1

3 v,y � 1
3 w,z

1
3 u,x � 1

3 v,y

1
3 v,y � 1

3 w,z

v,z � w,y

v,z � w,y

u,y � v,x

,//////////////.//////////////-

�
¸4

i�1

����������������

1
3 Ni,x

1
3 Ni,y

1
3 Ni,z

1
3 Ni,x

�1
3 Ni,y 0

0 1
3 Ni,y

�1
3 Ni,z

0 Ni,z Ni,y

0 Ni,z Ni,y

Ni,y Ni,x 0

����������������

$''''&''''%
ui

vi

wi

,////.////-

�
�
rbL1srbL2srbL3srbL4s

�  
upeq

( � BLupeq

(6.91)

wherein each component of BL is given by

rbLis �

����������������

1
3 Ni,x

1
3 Ni,y

1
3 Ni,z

1
3 Ni,x �1

3 Ni,y 0

0 1
3 Ni,y �1

3 Ni,z

0 Ni,z Ni,y

0 Ni,z Ni,y

Ni,y Ni,x 0

����������������
(6.92a)

and the nodal displacement vector for element e is given as

upeq �  
u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4

(T
. (6.92b)

Note that the linear strain–displacement matrix BL consists only of derivatives for the shape

functions, and thus, remains the same throughout a deformation process.
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Now we establish the nonlinear strain-displacement matrices that will be used to obtain

the nonlinear stiffness matrix. The nonlinear components of each strain attribute have been

additively decomposed into five components to make our computation easier. Components of

each strain attribute are placed into an associated vector resulting in an additive decomposi-

tion of the total nonlinear strain EN . To obtain the nonlinear stiffness matrix corresponding

to these nonlinear strain components, the nonlinear strains are written as a product of two

quantities: a matrix A containing various components of the displacement gradient, and a

vector θ that contains the derivatives of displacement with respect to spatial location. The

vector θ essentially represents the slope of the body resulting from the deformation process.

The components of the displacement gradient are placed in the matrix A in such a way so

that its product with the slope vector yields the corresponding contribution to the nonlinear

strain.

The slope vector θ can further be expressed in terms of the corresponding nodal displace-

ments by using the derivatives of the shape functions. Thus, the nonlinear strain components

ENi, i � 1, 2, 3, 4, can be expressed in terms of the nodal displacements, with the nonlinear

strain-displacement matrix BNi corresponding to these strain components.

Now let us perform the procedure described above on all five nonlinear strain components.

For the first nonlinear strain, EN1 can be written as a product of the matrix A1 and the

slope vector θ1 as

EN1 �

$''''''''''''''&
''''''''''''''%

ξ1N

ε1N

ε2N

γ1N

γ2N

γ3N

,//////////////.
//////////////-

�

$''''''''''''''&
''''''''''''''%

1
6
�
�u2

,x � v2
,y � w2

,z

�
1
6
�
�u2

,x � v2
,y

�
1
6
�
�v2

,y � w2
,z

�
�v,z v,y � w,y w,z

v,z v,y � w,y w,z

�u,x u,y � v,x v,y

,//////////////.
//////////////-

�
1
2

�
���������������

�1
3 Bu{Bx �1

3 Bv{By �1
3 Bw{Bz

�1
3 Bu{Bx

1
3 Bv{By 0

0 �1
3 Bv{By

1
3 Bw{Bz

0 �2 Bv{Bz 2 Bw{By

0 2 Bv{Bz 2 Bw{By

�2 Bu{By 2 Bv{Bx 0

�
���������������

$''''&
''''%

Bu{Bx

Bv{By

Bw{Bz

,////.
////-

� 1
2 A1 θ1

(6.93)
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with

dA1 �

�
���������������

�1
3 Bdu{Bx �1

3 Bdv{By �1
3 Bdw{Bz

�1
3 Bdu{Bx 1

3 Bdv{By 0

0 �1
3 Bdv{By 1

3 Bdw{Bz

0 �2 Bdv{Bz 2 Bdw{By

0 2 Bdv{Bz 2 Bdw{By

�2 Bdu{By 2 Bdv{Bx 0

�
���������������

�
¸4

i�1

�
���������������

�1
3 Ni,x dui �1

3 Ni,y dvi �1
3 Ni,z dwi

�1
3 Ni,x dui 1

3 Ni,y dvi 0

0 �1
3 Ni,y dvi 1

3 Ni,z dwi

0 �2Ni,z dvi 2Ni,y dwi

0 2Ni,z dvi 2Ni,y dwi

�2Ni,y dui 2Ni,x dvi 0

�
���������������

�

�
rl1srl2srl3srl4s

� �
rd1srd2srd3srd4s

�T
� L1D1 (6.94a)

wherein

rlis �

�
���������������

�1
3 Ni,x �1

3 Ni,y �1
3 Ni,z

�1
3 Ni,x

1
3 Ni,y 0

0 �1
3 Ni,y

1
3 Ni,z

0 �2Ni,z 2Ni,y

0 2Ni,z 2Ni,y

�2Ni,y 2Ni,x 0

�
���������������

and rdis �

�
�����

dui 0 0

0 dvi 0

0 0 dwi

�
����� . (6.94b)

The derivative of displacement with respect to spatial variables x, y and z, can be written as

θ1 �

$''''&
''''%

Bu{Bx

Bv{By

Bw{Bz

,////.
////-

�
¸4

i�1

$''''&
''''%

Ni,x ui

Ni,y vi

Ni,z wi

,////.
////-

�

�
rh1srh2srh3srh4s

�  
upeq

(
� H1 upeq (6.95)

for element e, where

rhis �

�
�����
Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

�
����� . (6.96)
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Hence, the strain-displacement BN1 corresponding to the first nonlinear strain becomes

BN1 � A1 H1 �

�
rbN1srbN2srbN3srbN4s

�
(6.97)

wherein the components of BN1 are given as

rbis �

�
���������������

�1
3 Bu{Bx �1

3 Bv{By �1
3 Bw{Bz

�1
3 Bu{Bx

1
3 Bv{By 0

0 �1
3 Bv{By

1
3 Bw{Bz

0 �2 Bv{Bz 2 Bw{By

0 2 Bv{Bz 2 Bw{By

�2 Bu{By 2 Bv{Bx 0

�
���������������

�
�����
Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

�
����� . (6.98)

In a similar manner, we can obtain the strain-displacement matrices corresponding to the

other nonlinear strain components. The second nonlinear strain terms can be written as

EN2 �

$''''''''''''''&
''''''''''''''%

ξL

ε1N

ε2N

γ1N

γ2N

γ3N

,//////////////.
//////////////-

�

$''''''''''''''&
''''''''''''''%

1
6
�
u2
,z � v2

,z � w2
,y

�
�1
6 w2

,y

1
6
�
�u2

,z � v2
,z � 3w2

,y

�
0

u,y u,z

w,xw,y

,//////////////.
//////////////-

�
1
2

�
���������������

1
3 Bu{Bz �1

3 Bv{Bz �1
3 Bw{By

0 0 �1
3 Bw{By

�1
3 Bu{Bz

1
3 Bv{Bz Bw{By

0 0 0

2 Bu{By 0 0

0 0 2 Bw{Bx

�
���������������

$''''&
''''%

Bu{Bz

Bv{Bz

Bw{By

,////.
////-

� 1
2 A2 θ2

(6.99)
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with

dA2 �

�
���������������

1
3 Bdu{Bz �1

3 Bdv{Bz �1
3 Bdw{By

0 0 �1
3 Bdw{By

�1
3 Bdu{Bz 1

3 Bdv{Bz Bdw{By

0 0 0

2 Bdu{By 0 0

0 0 2 Bdw{Bx

�
���������������

�
¸4

i�1

�
���������������

1
3 Ni,z dui �1

3 Ni,z dvi �1
3 Ni,y dwi

0 0 �1
3 Ni,y dwi

�1
3 Ni,z dui 1

3 Ni,z dvi Ni,y dwi

0 0 0

2Ni,y dui 0 0

0 0 2Ni,x dwi

�
���������������

�

�
rl1srl2srl3srl4s

� �
rd1srd2srd3srd4s

�T
� L2D2 (6.100a)

wherein

rlis �

�
���������������

1
3 Ni,z �1

3 Ni,z �1
3 Ni,y

0 0 �1
3 Ni,y

�1
3 Ni,z

1
3 Ni,z Ni,y

0 0 0

2Ni,y 0 0

0 0 2Ni,x

�
���������������

and rdis �

�
�����

dui 0 0

0 dvi 0

0 0 dwi

�
����� . (6.100b)

The slope vector can further be expressed in terms of the nodal parameters via

θ2 �

$''''&
''''%

Bu{Bz

Bv{Bz

Bw{By

,////.
////-

�
¸4

i�1

$''''&
''''%

Ni,z ui

Ni,z vi

Ni,y wi

,////.
////-

�

�
rh1srh2srh3srh4s

�  
upeq

(
� H2 upeq (6.101)

where

rhis �

�
�����
Ni,z 0 0

0 Ni,z 0

0 0 Ni,y

�
����� . (6.102)

130



Hence, the strain-displacement matrix BN2 becomes

BN2 � A2 H2 �

�
rbN1srbN2srbN3srbN4s

�
. (6.103)

The components of this strain-displacement matrix are given as

rbNis �

�
���������������

1
3 Bu{Bz �1

3 Bv{Bz �1
3 Bw{By

0 0 �1
3 Bw{By

�1
3 Bu{Bz

1
3 Bv{Bz Bw{By

0 0 0

2 Bu{By 0 0

0 0 2 Bw{Bx

�
���������������

�
�����
Ni,z 0 0

0 Ni,z 0

0 0 Ni,y

�
����� . (6.104)

For the third nonlinear strain term, i.e., EN3, can be written as

EN3 �

$''''''''''''''&
''''''''''''''%

ξL

ε1N

ε2N

γ1N

γ2N

γ3N

,//////////////.
//////////////-

�

$''''''''''''''&
''''''''''''''%

1
6
�
�2 v,x u,y � 4w,y v,z � w2

,x

�
1
6
�
2 v,x u,y � w2

,x

�
1
6 p�2 v,x u,y � 4w,y v,zq

0

0

0

,//////////////.
//////////////-

�
1
2

�
���������������

�2
3 Bv{Bx �4

3 Bw{By
1
3 Bw{Bx

2
3 Bv{Bx 0 1

3 Bw{Bx

�2
3 Bv{Bx

4
3 Bw{By 0

0 0 0

0 0 0

0 0 0

�
���������������

$''''&
''''%

Bu{By

Bv{Bz

Bw{Bx

,////.
////-

� 1
2 A3 θ3

(6.105)
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with

dA3 �

�
���������������

�2
3 Bdv{Bx �4

3 Bdw{By 1
3 Bdw{Bx

2
3 Bdv{Bx 0 1

3 Bdw{Bx

�2
3 Bdv{Bx 4

3 Bdw{By 0

0 0 0

0 0 0

0 0 0

�
���������������

�
¸4

i�1

�
���������������

�2
3 Ni,x dvi �4

3 Ni,y dwi 1
3 Ni,x dwi

2
3 Ni,x dvi 0 1

3 Ni,x dwi

�2
3 Ni,x dvi 4

3 Ni,y dwi 0

0 0 0

0 0 0

0 0 0

�
���������������

�

�
rl1srl2srl3srl4s

� �
rd1srd2srd3srd4s

�T
� L3D3 (6.106a)

wherein

rlis �

�
���������������

�2
3 Ni,x �4

3 Ni,y
1
3 Ni,x

2
3 Ni,x 0 1

3Ni,x

�2
3 Ni,x

4
3 Ni,y 0

0 0 0

0 0 0

0 0 0

�
���������������

and rdis �

�
�����

dvi 0 0

0 dwi 0

0 0 dwi

�
����� . (6.106b)

Here the slope vector θ3 contains derivatives of displacements with respect to spatial variables

y, z, x that relate to the nodal parameters via

θ3 �

$''''&
''''%

Bu{By

Bv{Bz

Bw{Bx

,////.
////-

�
¸4

i�1

$''''&
''''%

Ni,y ui

Ni,z vi

Ni,xwi

,////.
////-

�

�
rh1srh2srh3srh4s

�  
upeq

(
� H3upeq (6.107)

where

rhis �

������
Ni,y 0 0

0 Ni,z 0

0 0 Ni,x

������ . (6.108)
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Therefore, the strain-displacement matrix BN3 becomes

BN3 � A3 H3 �
�
rbN1srbN2srbN3srbN4s

�
(6.109)

whose components are given as

bNi �

�
���������������

�2
3 Bv{Bx �4

3 Bw{By
1
3 Bw{Bx

2
3 Bv{Bx 0 1

3 Bw{Bx

�2
3 Bv{Bx

4
3 Bw{By 0

0 0 0

0 0 0

0 0 0

�
���������������

�
�����
Ni,y 0 0

0 Ni,z 0

0 0 Ni,x

�
����� . (6.110)

For the fourth nonlinear strain term, EN4 can be written as

EN4 �

$''''''''''''''&
''''''''''''''%

ξL

ε1N

ε2N

γ1N

γ2N

γ3N

,//////////////.
//////////////-

�

$''''''''''''''&
''''''''''''''%

0
2
6 v

2
,x

�1
6 v

2
,x

2 v,z u,x � 2u,xw,y

�2 v,z u,x � 2u,xw,y

�2 v,x u,x

,//////////////.
//////////////-

�
1
2

�
���������������

0 0 0

0 2
3 Bv{Bx 0

0 �1
3 Bv{Bx 0

4 Bv{Bz 0 4 Bu{Bx

�4 Bv{Bz 0 �4 Bu{Bx

�4 Bv{Bx 0 0

�
���������������

$''''&
''''%

Bu{Bx

Bv{Bx

Bw{By

,////.
////-

� 1
2 A4 θ4

(6.111)
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with

dA4 �

�
���������������

0 0 0

0 2
3 Bdv{Bx 0

0 �1
3 Bdv{Bx 0

4 Bdv{Bz 0 4 Bdu{Bx

�4 Bdv{Bz 0 �4 Bdu{Bx

�4 Bdv{Bx 0 0

�
���������������

�
¸4

i�1

�
���������������

0 0 0

0 2
3 Ni,x dvi 0

0 �1
3 Ni,x dvi 0

4Ni,z dvi 0 4Ni,x dui

�4Ni,z dvi 0 �4Ni,x dui

�4Ni,x dvi 0 0

�
���������������

�

�
rl1srl2srl3srl4s

� �
rd1srd2srd3srd4s

�T
� L4D4 (6.112a)

wherein

rlis �

�
���������������

0 0 0

0 2
3 Ni,x 0

0 �1
3 Ni,x 0

4Ni,z 0 4Ni,x

�4Ni,z 0 �4Ni,x

�4Ni,x 0 0

�
���������������

and rdis �

�
�����

dvi 0 0

0 dvi 0

0 0 dui

�
����� . (6.112b)

Here the slope vector θ4 contains derivatives of displacements with respect to the spatial

variables x and y that relate to the nodal parameters via

θ4 �

$''''&
''''%

Bu{Bx

Bv{Bx

Bw{By

,////.
////-

�
¸4

i�1

$''''&
''''%

Ni,x ui

Ni,x vi

Ni,y wi

,////.
////-

�

�
rh1srh2srh3srh4s

�  
upeq

(
� H4upeq (6.113)

where

rhis �

������
Ni,x 0 0

0 Ni,x 0

0 0 Ni,y

������ . (6.114)
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Therefore, the strain–displacement matrix BN4 becomes

BN4 � A4 H4 �
�
rbN1srbN2srbN3srbN4s

�
(6.115)

whose components are given as

bNi �

�
���������������

0 0 0

0 2
3 Bv{Bx 0

0 �1
3 Bv{Bx 0

4 Bv{Bz 0 4 Bu{Bx

�4 Bv{Bz 0 �4 Bu{Bx

�4 Bv{Bx 0 0

�
���������������

�
�����
Ni,x 0 0

0 Ni,x 0

0 0 Ni,y

�
����� . (6.116)

The last nonlinear strain term, EN5 can be written as

EN5 �

$''''''''''''''&
''''''''''''''%

ξL

ε1N

ε2N

γ1N

γ2N

γ3N

,//////////////.
//////////////-

�

$''''''''''''''&
''''''''''''''%

0

0

0

�v,x u,z � 2w,y v,y � u,y w,x

0

0

,//////////////.
//////////////-

�
1
2

�
���������������

0 0 0

0 0 0

0 0 0

�2 Bv{Bx �4 Bw{By �2 Bu{By

0 0 0

0 0 0

�
���������������

$''''&
''''%

Bu{Bz

Bv{By

Bw{Bx

,////.
////-

� 1
2 A5 θ5

(6.117)

135



with

dA5 �

�
���������������

0 0 0

0 0 0

0 0 0

�2 Bdv{Bx �4 Bdw{By �2 Bdu{By

0 0 0

0 0 0

�
���������������

�
¸4

i�1

�
���������������

0 0 0

0 0 0

0 0 0

�2Ni,x dvi �4Ni,y dwi �2Ni,y dui

0 0 0

0 0 0

�
���������������

�

�
rl1srl2srl3srl4s

� �
rd1srd2srd3srd4s

�T
� L5D5 (6.118a)

wherein

rlis �

�
���������������

0 0 0

0 0 0

0 0 0

�2Ni,x �4Ni,y �2Ni,y

0 0 0

0 0 0

�
���������������

and rdis �

�
�����

dvi 0 0

0 dwi 0

0 0 dui

�
����� . (6.118b)

the slope vector θ5 relates to the nodal parameters via

θ5 �

$''''&
''''%

Bu{Bz

Bv{By

Bw{Bx

,////.
////-

�
¸4

i�1

$''''&
''''%

Ni,z ui

Ni,y vi

Ni,xwi

,////.
////-

�

�
rh1srh2srh3srh4s

�  
upeq

(
� H5upeq (6.119)

where

rhis �

������
Ni,z 0 0

0 Ni,y 0

0 0 Ni,x

������ . (6.120)
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Therefore, the strain-displacement matrix BN5 becomes

BN5 � A5 H5 �
�
rbN1srbN2srbN3srbN4s

�
(6.121)

whose components are given as

bNi �

����������������

0 0 0

0 0 0

0 0 0

�2 Bv{Bx �4 Bw{By �2 Bu{By
0 0 0

0 0 0

����������������

������
Ni,z 0 0

0 Ni,y 0

0 0 Ni,x

������ . (6.122)

The total nonlinear strain-displacement matrix BN can be obtained as a sum of its five

components, i.e., BN � °5
i�1 BNi.

To obtain the stiffness matrix for a tetrahedron, we need to compute the four constituent

strain-displacement matrices Cs, Ct, Ks and Kt, as mentioned earlier. The tangent stiffness

matrix Cs, as established in Eqn. (6.50), becomes

Cs �
»
V

HT Ss H dV � |J|
ņ

i�1
HT Sspξi, ηi, ζiqHwi (6.123a)

wherein ξi, ηi, ζi and wi are the co-ordinates and weights of quadrature at the ith Gauss point,

and

Ss �

������
S11 S12 S13

S21 S22 S23

S31 S32 S33

������ . (6.123b)

The stress vector T � tπ, σ1, σ2, τ1, τ2, τ3uT conjugate to strain E has elements that comprise
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a pressure π � S11 � S22 � S33 � �3P where P denotes the common definition for pressure,

two separate normal-stress differences σ1 � S11�S22 and σ2 � S22�S33, and three separate

shear stresses τ1 � b
c
S32, τ2 � a

c
S31 and τ3 � a

b
S21 � ατ2. Of these, only pressure has an

initial value, viz., Π0, which represents atmospheric pressure. In a reciprocal sense, the stress

components are assigned via

Ss �

������
1
3pπ � 2σ1 � σ2q b

a
pτ3 � α τ2q c

a
τ2

b
a
pτ3 � α τ2q 1

3pπ � σ1 � σ2q c
a
τ1

c
a
τ2

c
a
τ1

1
3pπ � σ1 � 2σ2q

������ (6.124)

The tangent stiffness matrix Ct, as established in Eqn. (6.51), becomes

Ct �
»
V

BT Mt B dV � |J|
ņ

i�1
BT Mtpξi, ηi, ζiqBwi (6.125)

where the stress rate is described by its tangent modulus Mt.

The secant stiffness matrix Ks, as established in Eqn. (6.48b), becomes

Ks �
»
V

BT Ms B dV � |J|
ņ

i�1
BT Mspξi, ηi, ζiqBwi (6.126)

where the stress is described by its secant modulus Ms.

Likewise, a secant stiffness matrix Kt, also established in Eqn. (6.51), becomes

Kt �
»
V

HT dSt H dV � |J|
ņ

i�1
HT dStpξi, ηi, ζiqHwi (6.127)

where its stress rate is given by dSt :� AT Mt dA.

6.2.5 Force Vector

The principle of stationary potential energy via the Rayleigh–Ritz approach, i.e., Eqn. (6.47),

determines a basis for finite element stress analysis. The internal strain energy is balanced
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with the potential energy of applied internal and external loads on the body.

The virtual work done by external forces δW in Eq. (6.47) can be expressed as

δW �
»
S

t δu dS �
»
S

t N d∆ dS �
�»

S

NT t dS



d∆ (6.128a)

where dS denotes a surface element with t being its surface traction vector (per unit surface

area) at current time. Hence, the external FBC force vectors are

FBC �
»
S

NT t dS. (6.128b)

The force needed to balance the residual stresses, i.e., F 0, is evaluated as

F 0 �
»
V

BT
L T 0 dV �

»
V

BT
N T 0 dV (6.129)

where the first integral only needs to be evaluated once, as its argument is constant valued.

6.2.5.1 Force Vector for a Chord

Following the procedure described above, the force vector of a 1D alveolar chord is eval-

uated numerically in its natural co-ordinate system as

FBC �
»
L

NT t dL �
2̧

i�1
NT t |J|wi (6.130)

where wi are the weighting coefficients of the Gauss integration rule, N is the shape function

matrix for chord, and t is the traction on the septal chord that is selected so that the traction

can be additively decomposed into that carried by the collagen and elastin fibers.

The internal force F 0 accounting for an initial residual stress of T 0, expressed as two

separate integrals, can be computed as

F 0 �

»
L

BT
L T 0AdL�

»
L

BT
N T 0AdL � |J|

2̧

i�1
BT
L T 0Aiwi � |J|

2̧

i�1
BT
N T 0Aiwi (6.131a)
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where the first integral will only need to be evaluated once, as the argument is constant valued.

The cross-sectional areas of biologic chords need not be the same at both Gauss points; hence,

it cannot be pulled outside the sum (integration). Here the initial stress T0 � rs0s ÞÑ S0 � rs0s

contains the initial stress s0 carried by the collagen and elastin fibers; specifically,

s0 �
�
φsc0 � p1 � φqse0

�
where φ :� Ac0{pA

c
0 �Ae0q � Ac0{A0 (6.131b)

where A0 and A are the initial and current cross-sectional areas of the chord. The superscripts

‘c’ and ‘e’ designate collagen and elastin.

6.2.5.2 Force Vector for a Pentagon

The boundary of a 2D pentagon consists of line segments, which can be considered as 1D

chords. Hence, an evaluation of the boundary integrals of a pentagon amounts to evaluating

the line integrals along these boundary lines. Once the interpolation function for a pentagon

are evaluated on the boundary of a pentagon, we can obtain the corresponding chordal

interpolation functions [65]. Thus, the force vector FBC for a pentagon can be obtained by

integrating the traction vectors multiplied by appropriate shape functions over all sides of

pentagon. Specifically, force along the boundary of a membrane can be obtained as

FBC �

¾
L

NT t dL �

»
L12

NT t12 |J|dL�

»
L23

NT t23 |J|dL�

»
L34

NT t34 |J|dL

�

»
L45

NT t45 |J|dL�

»
L51

NT t51 |J|dL

� |J|
2̧

i�1
NT t12wi � |J|

2̧

i�1
NT t23wi � |J|

2̧

i�1
NT t34wi

� |J|
2̧

i�1
NT t45wi � |J|

2̧

i�1
NT t51wi

(6.132)

where N represents the shape function matrix of a chord, but with the matrix dimension of

a pentagon, |J| is the determinant of the Jacobian for a 1-D chord, wi denotes the natural

weight of the chord, dS is the arc-length of an infinitesimal line element along the boundary,
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and t is the traction vector on each edge of the pentagon defined as

t � SsT � n (6.133)

where n is the normal vector to each sides of pentagon on which the traction acts, and Ss

are established in Eqn. (6.82b).

The internal force F 0 accounting for an initial residual stress of T 0 becomes

F 0 �

»
V

BT
L T 0 dV �

»
V

BT
N T 0 dV � |J|

5̧

i�1
BT
L T 0Hiwi � |J|

5̧

i�1
BT
N T 0Hiwi (6.134)

where B and J are the strain displacement and Jacobian matrix of pentagon, respectively,

whose thickness or height Hi can vary over the surface of the membrane, and as such, cannot

be pulled outside the summation. Here the initial stress

T0 �

$''''&
''''%

sπ0

sσ0 �0

sτ0 �0

,////.
////-

ÞÑ S0 �

�
��

1
2s
π
0 0

0 1
2s
π
0

�
�� (6.135)

contains the initial surface tension sπ0 carried by the septal membrane.

6.2.5.3 Force Vector for a Tetrahedron

The force vector on the alveolar volume is computed by integrating the traction vector

over the four boundary surfaces of the tetrahedron. Here the matrix of shape functions;

Eq. (6.30), is used to obtain the force vector for tetrahedron; specifically,

FBC �

¾
A

NT t dA �

»
41

NT t41 dA�

»
42

NT t42 dA�

»
43

NT t43 dA�

»
44

NT t44 dA

� |J|
3̧

i�1
NT t41 wi � |J|

3̧

i�1
NT t42 wi � |J|

3̧

i�1
NT t43 wi � |J|

3̧

i�1
NT t44 wi

(6.136)

where ∆i, i � 1, 2, 3, 4 represent the triangular boundary surfaces of a tetrahedron. Here N

represents the shape function matrix for these associated triangular boundaries. |J| is the
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determinant of the Jacobian for triangle, n denotes the number of Gauss points, wi is the

natural weight of the triangle from Table 6.2, and t is the surface traction on the triangle

surface. Integral
¶
denotes an integration over the surface boundary of a tetrahedron.

Note: Except for the base of the tetrahedron, the tractions on its other sides have equal

and opposite contributions to the total force vector. Therefore, contributions from opposite

boundary surfaces of the tetrahedron nullify each other. Hence, in order to obtain the total

force vector for a tetrahedron, it is sufficient to only consider the contributions due to the

traction on its base. Therefore, the total force vector takes the form of

FBC � |J|
3̧

i�1
NT t41 wi with t41 � SsT � n (6.137)

where t41 is the traction vector on the surface of triangle, n is the normal vector to each

sides of tetrahedron on which the traction acts, and Ss has been defined in Eqn. (6.123b).

The internal force F 0 accounting for an initial residual stress of T 0 becomes

F 0 �

»
V

BT T 0 dV � |J|
4̧

i�1
BT
L T 0wi � |J|

4̧

i�1
BT
N T 0wi (6.138a)

where B and J are the strain displacement and Jacobian matrices of a tetrahedron, re-

spectively. Here the stress vector T 0 � tπ, σ1, σ2, τ1, τ2, τ3uT is conjugate to strain E �
tξ, ε1, ε2, γ1, γ2, γ3uT, where

T0 �

$''''''''''''''&
''''''''''''''%

π0

σ1 0�0

σ2 0�0

τ1 0�0

τ2 0�0

τ3 0�0

,//////////////.
//////////////-

ÞÑ S0 �

�
�����

1
3π0 0 0

0 1
3π0 0

0 0 1
3π0

�
����� (6.139)

contains the residual pressure π0 inside a tetrahedron.
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Figure 6.1: deformation history during the shock wave

6.3 Numerical Implementation

Here, the capabilities of the presented alveolar septa formulations and its finite element

simulation subjected to shock waves that happened in a microsecond are demonstrated as

an example.

The physical and material properties of alveolar membranes, along with their variance,

are presented in Table 5.6. The material properties describing dilation, viz., M1, M2, and

ξ1max, were taken from Ref. [28] to model a visceral pleura membrane. The squeeze moduli,

viz., N1 and N2, are in the same proportions as those of dilation, as reported in [28] for the

visceral pleura. The shear properties, viz., G1, G2, and γ1max, are our best estimates based

upon very limited data [61].

Figure 6.1 presents the imposed deformation history to the alveolar membrane considering

a compression first, and then an expansion as the alveolar septa is decompressed after the

shock wave. The assumed deformation history illustrated here is described by

F0 �

���1 0

0 1

��� Ñ FN �

���1 0

0 b

��� (6.140)

although, all elements of deformation gradients remain the same as their initial value, vis,
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Figure 6.2: Alveolar membrane response for the squeeze mode caused by deformation histo-
ries.

F0, F22 varies exponentially from its initial value to its final value in FN .

The top row in Fig. 6.2 presents the displacement, velocity, and acceleration of node one

as assigned in Fig. 5.2 through the imposed far-field deformation history that engages the

squeeze modes. The second row demonstrates all vertices of the pentagon that appropriately

show the behavior of alveolar septa when exposed to a traveling shock wave.

A ballistic impact produces a shock wave that rises rapidly to form over-pressure or peak

pressure and then rapidly decreases to form a small pressure. Figure 6.3 illustrates the nodal

forces for a 2D pentagon at node one during the time that shock wave happens. The black

line is the nodal force from this theory written in Python with one pentagonal element. The

blue points are the results from Ansys using the Neo-Hookean model written in FORTRAN,

with 123 rectangular and triangular elements.

The simulation results in Fig. 6.4 present the equivalent stress distribution in the alveolar

septa during the shock wave. Based on the simulation, the top and bottom parts of the
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Figure 6.3: A comparison of the analytical solution and Ansys result of forces at node 1 of
the pentagon.

(a) Von Mises stress at time
t � 0.4µs.

(b) Von Mises stress at time
t � 0.5µs.

(c) Von Mises stress at time
t � 0.6µs.

Figure 6.4: Simulation results

pentagon have the highest level of von Mises pressure.
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7. SUMMARY

Through this dissertation, the components for a convected metric tensor and its inverse

described in an oblique, Cartesian, coordinate system are derived whose axes are tangents to

a triad of curvilinear coordinate axes originating at some particle of interest in a deforming

body. Strains and strain rates are constructed in terms of these metrics, along with a velocity

gradient, all quantified in this locally convected coordinate system. Quotient laws, and

their associated Jacobians of transformation, are derived that map vector and tensor fields

from this convected coordinate system in-to and out-of the Lagrangian and experimentor’s

coordinate systems.

We also derived two sets of thermodynamically admissible stress-strain pairs. The clas-

sical theory of elasticity and our two-mode theory of elasticity have two independent pa-

rameters for describing an isotropic elastic response, e.g., Young’s modulus E and Poisson’s

ratio ν. Whereas, our three-mode elastic theory has three independent moduli for describing

an uniform elastic response, viz., the bulk K, shear G, and squeeze N moduli. Whenever

N � E{p1�νq � 2G, the three-mode model reduces to the two-mode model, and to classical

elasticity whenever the deformations are infinitesimal. So why are there three, independent,

elastic moduli present in our three-mode elastic theory, while only two exist in the classical

theory? Whenever stress power is described in terms of a symmetric strain rate, as in classic

theory, the work done can be decomposed into two modes: volumetric and deviatoric. In

this description, elastic responses are quantified through the bulk K and shear G moduli.

Whereas, whenever stress power is described in terms of a triangular measure for strain rate,

as in our theory, the work done can be decomposed into three modes: one volumetric mode

and two deviatoric modes. One deviatoric mode describes motions of squeeze (e.g., pure

shear), whose eigenvectors for stretch will not rotate in the body, while the other deviatoric

mode describes motions of simple shear, whose eigenvectors for stretch will rotate in the

body. The volumetric mode has an elastic response quantified through the bulk modulus K,
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while the two deviatoric modes have elastic responses quantified through the squeeze N and

shear G moduli, with N being unique to our theory.

Also, the Eulerian triangular decompositions of deformation has been analyzed. Phys-

ically observable stretch/strain components comprising the triangular Laplace stretch has

been derived. Consideration of stress power, i.e., rate of working done by stretch rate, has

enabled derivation of work conjugate stress-stretch tensors as-well-as thermodynamically

conjugate scalar pairs of stress-strain attributes with physical meaning. Significantly, the

Eulerian formulation containing an Eulerian, lower-triangular, stretch tensor has not been

developed elsewhere in the mechanics literature.

The developed constitutive model is implemented as a microscopic alveolar model whose

homogenized response describes the macroscopic behavior of parenchyma in lung. Such a

model can be used in lieu of physical experiments to help develop and parameterize a better

continuum lung model for use in finite element analyses. The need for such a model is to

improved PPE to better protect a person from BABT and BLI when impacted by ballistic

projectiles or blast waves.

The geometry of an individual alveolus is modeled as an irregular dodecahedron com-

prising 20 alveolar vertices, 30 1D alveolar chords, and 12 2D pentagonal alveolar septa, all

enveloping a 3D alveolar sac. Implicit elastic constitutive equations are used to model these

alveolar chords and septa. Alveolar chords are modeled as collagen and elastin fibers loaded

in parallel. Damage is accounted for through the rupture of individual alveolar fibers and

septa, and the tearing of capillaries that lead to blood and interstitial fluids leaking into its

alveolar sac. Material properties for the individual fibers and septa are assigned through

probability distribution functions to account for their biologic variability.

It is shown that geometric strains for the three physical dimensions that arise in this

analysis are equivalent during uniform deformations when they are defined as geometric

strains. Adopting Laplace stretch as our fundamental kinematic variable, thermodynamic

conjugate pairs are established for these three geometric dimensions. These thermodynamic
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strains equate with the above geometric strains under conditions of uniform deformation,

plus they allow for the handling of nonuniform deformations, in particular, pure and sim-

ple shears. New to this implementation are the following: i) Sets of consistent interpola-

tion/extrapolation procedures for 1D rods, 2D triangles and pentagons, and 3D tetrahedra,

which allow physical fields to be mapped between the nodes and Gauss points of an element

in a reproducible manner; ii) Shape functions and a Gauss integration formula suitable for

constructing a pentagonal finite element, which is used to model alveolar septa; iii) Nonlin-

ear strain-displacement matrices for 2D pentagons and 3D tetrahedra that employ Laplace

stretch as their kinematic variable; and iv) A numerical algorithm that employs both secant

and tangent stiffness matrices in its finite element solver.
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APPENDIX A

QUOTIENT LAWS

Quotient laws determine how the components of vector and tensor fields map from one

coordinate system into another coordinate system [36]. They are linear transformations.

They are not tensor equations [10].

Usage of the word ‘push’ implicates moving a field forward through a linked set of con-

figurations: Lagrangian ÞÑ convected ÞÑ experimentor’s ÞÑ Eulerian. While usage of the

word ‘pull’ implicates moving a field backwards through these configurations: Lagrangian

Ðß convected Ðß experimentor’s Ðß Eulerian.
The quotient laws preserve symmetry for covariant and contravariant tensors, whenever

it exists, but not for mixed tensors (the exception being stretch U [69]). The quotient laws

presented below preserve triangularity for mixed tensors, whenever it exists, but not for

covariant or contravariant tensors.

A.1 Field Transfer: Convected Fields ô Experimentor’s Fields

The transfer of vector and tensor fields between the oblique convected and the ortho-

normal experimentor’s coordinate systems is governed by its Jacobian (or coordinate gradi-

ent) whose inverse exists. This Jacobian can appear in one of four forms

Y :�
�Bx̃r
Bξc

�
, Y�1 �

�Bξr
Bx̃c

�
, YT �

�Bx̃c
Bξr

�
, Y�T �

� Bξc
Bx̃r

�
(A.1)

where coordinates x̃i locating a particle in the experimentor’s coordinate system with base

vectors tẽiu, while coordinates ξ i locate the same particle in the convected coordinate system

with base vectors t~giu. Matrices Λ and Γ do not commute, and as such, Y � ΓΛ is distinct

from U � ΛΓ. Jacobian Y maps tangent vectors from the oblique convected basis t~giu into
the orthonormal basis of the experimentalist tẽiu, while Jacobian Y�T maps normal vectors

156



from the oblique convected basis into the orthonormal basis. Jacobians Y�1 and YT run

these maps in the reverse direction.

Given this set of Jacobian matrices, all covariant vectors rw � rwi ẽi and ω � ωi ~g i push

ω ÞÑ rw and pull ω Ðß rw via

rw � Y�Tω and ω � YT rw, (A.2a)

all contravariant vectors rw � rwi ẽi and ω � ω i ~gi push ω ÞÑ rw and pull ω Ðß rw via

rw � Yω and ω � Y�1 rw, (A.2b)

all covariant tensors �W � �Wij ẽi b ẽj and Ω � Ωij ~g i b ~g j push Ω ÞÑ �W and pull Ω Ðß �W
via

�W � Y�TΩY�1 and Ω � YT�WY, (A.2c)

all contravariant tensors �W � �W ij ẽi b ẽj and Ω � Ωij ~gi b ~gj push Ω ÞÑ �W and pull

Ω Ðß �W via

�W � YΩYT and Ω � Y�1�WY�T, (A.2d)

and all mixed (right covariant) tensors �W � �W i
j ẽi b ẽj and Ω � Ωi

j ~gi b ~g j push Ω ÞÑ �W
and pull Ω Ðß �W via

�W � YΩY�1 and Ω � Y�1�WY. (A.2e)

These maps are for absolute vector and tensor fields, since the Jacobian determinant det Y �
abc plays no role here.
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A.1.1 Derivatives

A time derivative d taken in the convected coordinate system pushes forward as a Lie

derivative d̄ in the experimentor’s coordinate system. To quantify these Lie derivatives we

need

dH :� dH i
j ẽi b ẽj with dH i

j �
Bdx̃i
Bξk

Bξk
Bx̃j (A.3)

or, alternatively, in terms of Jacobian Y, dH � dY � Y�1 whose components populate an

upper-triangular matrix.

With a velocity gradient dH defined over tẽiu now in hand, the material derivative of a

covariant vector described in t~giu pushes forward into the experimentor’s frame with base

vectors tẽiu as dω ÞÑ d̄rw, given that ω ÞÑ rw, whose Lie derivative is defined by

d̄rw � Y�T � dω d̄rw :� drw� dHT � rw, (A.4a)

the derivative of a contravariant vector pushes as dω ÞÑ d̄rw, given that ω ÞÑ rw, whose Lie

derivative is defined by

d̄rw � Y � dω d̄rw :� drw� dH � rw, (A.4b)

the derivative of a covariant tensor pushes as dΩ ÞÑ d̄�W, given that Ω ÞÑ �W, whose Lie

derivative is defined by

d̄�W � Y�T � dΩ �Y�1 d̄�W :� d�W� dHT � �W� �W � dH, (A.4c)

the derivative of a contravariant tensor pushes as dΩ ÞÑ d̄�W, given that Ω ÞÑ �W, whose Lie

derivative is defined by

d̄�W � Y � dΩ �YT d̄�W :� d�W� dH � �W� �W � dHT, (A.4d)

158



and the derivative of a mixed tensor pushes as dΩ ÞÑ d̄�W, given that Ω ÞÑ �W, whose Lie

derivative is defined by

d̄�W � Y � dΩ �Y�1 d̄�W :� d�W� dH � �W� �W � dH (A.4e)

wherein dHT is taken to mean Y�T�dYT � Γ�T�dΓT�Γ�TpdΛ �Λ�1qΓT whose components

populate a lower-triangular matrix.

A.2 Field Transfer: Convected Fields ô Lagrangian Fields

To push a Lagrangian field quantified in a coordinate system with base vectors t~Eiu into
a convected field quantified in our locally, convected, coordinate system with base vectors

t~giu or, vice versa, to pull a convected field back into the Lagrangian basis, one must first

construct the quotient law that governs this particular type of field transfer. We begin with

the fact that Laplace stretch U � U i
j ẽi b ~Ej is a gradient, which itself is a product of

gradients in that

U i
j �

Bx̃i
BX j

� Bx̃i
Bξk

Bξk
BXj

or U � YZ so that F � RYZ (A.5)

wherein Lagrangian coordinates X i exist in basis t~Eiu, experimentor’s coordinates x̃i exist

in basis tẽiu, while physical coordinates ξk exist in basis t~giu. We note that F � F i
j ~eib ~Ej,

R � ~ei b ẽj, Y � Y i
j ẽi b ~g j, and Z � Z i

j ~gi b ~Ej.

Like Y, Z is a Jacobian matrix pertaining to a coordinate transformation, this time

between the convected and Lagrangian coordinate bases. It too appears in four forms

Z :�
� Bξr
BX c

�
, Z�1 �

�BX r

Bξc
�
, ZT �

� Bξc
BX r

�
, Z�T �

�BX c

Bξr
�

(A.6)

where Z � Y�1U � Λ�1Γ�1ΛΓ, with transposes ZT � UTY�T � ΓTΛΓ�TΛ�1 and Z�T �
YTU�T � ΛΓTΛ�1Γ�T populating lower-triangular matrices.

Jacobian Z maps tangent vectors from the Lagrangian basis t~Eiu into the convected basis
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t~giu, while Jacobian Z�T maps normal vectors from the Lagrangian basis into the convected

basis. Their inverses reverse the direction of these maps.

From this strategy, covariant vectors w � wi
~Ei and ω � ωi ~g i have maps that pull

w Ðß ω and push w ÞÑ ω as

w � ZTω ω � Z�Tw, (A.7a)

contravariant vectors w � wi ~Ei and ω � ω i ~gi have maps that pull w Ðß ω and push w ÞÑ ω

as

w � Z�1ω ω � Zw, (A.7b)

covariant tensors W � Wij
~Ei b ~Ej and Ω � Ωij ~g i b ~g j have maps that pull W Ðß Ω and

push W ÞÑ Ω as

W � ZTΩZ Ω � Z�TWZ�1, (A.7c)

contravariant tensors W � W ij ~Ei b ~Ej and Ω � Ωij ~gi b ~gj have maps that pull W Ðß Ω
and push W ÞÑ Ω as

W � Z�1ΩZ�T Ω � ZWZT, (A.7d)

and mixed (right covariant) tensors W � W i
j
~Ei b ~Ej and Ω � Ωi

j ~gi b ~g j have maps that

pull W Ðß Ω and push W ÞÑ Ω as

W � Z�1ΩZ Ω � ZWZ�1. (A.7e)
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APPENDIX B

NUMERICAL APPROXIMATIONS FOR LAPLACE STRETCH

Let the physical components for Laplace stretch at step n be denoted by

Un � ΛnΓn �

������
U1

1pnq U1
2pnq U1

3pnq

0 U2
2pnq U2

3pnq

0 0 U3
3pnq

������ �

������
an anγn anβn

0 bn bnαn

0 0 cn

������ (B.1)

with analogous components assigned to steps n� 1 and n� 1, as required.

In a typical numerical application, one would be given the deformation gradient at the

beginning and end of a time step of size h, say, denoted here as Fn and Fn�1, whose affiliated

Laplace stretch Un and Un�1 would come from Eq. (2.15). With this information, finite

difference formulæ can be constructed to acquire approximations for differential changes in

the physical components of Laplace stretch a, b, c, α, β and γ.

The forward difference formula for Laplace stretch dUn � Un�1�Un
h

�Ophq gives

dan � an�1 � an
h

dαn � bn�1

bn

�αn�1 � αn
h

	
dbn � bn�1 � bn

h
dβn � an�1

an

�
βn�1 � βn

h



dcn � cn�1 � cn

h
dγn � an�1

an

�γn�1 � γn
h

	 (B.2)

while the backward difference formula dUn�1 � Un�1�Un
h

�Ophq gives

dan�1 � an�1 � an
h

dαn�1 � bn
bn�1

�αn�1 � αn
h

	
dbn�1 � bn�1 � bn

h
dβn�1 � an

an�1

�
βn�1 � βn

h



dcn�1 � cn�1 � cn

h
dγn�1 � an

an�1

�γn�1 � γn
h

	 (B.3)
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with there being a distinction in how the shear rates are approximated.

Equations (B.2 & B.3) are first-order approximations for these derivatives. Second-order

approximations can be established whenever n ¡ 0 and when the step size for step rn, n� 1s
equals the step size for step rn�1, ns, where state n � 0 associates with an initial condition.

The central difference formula for Laplace stretch dUn � Un�1�Un�1
2h �Oph2q gives

dan � an�1 � an�1

2h dαn � bn�1

bn

�αn�1 � αn
2h

	
� bn�1

bn

�αn � αn�1

2h

	
dbn � bn�1 � bn�1

2h dβn � an�1

an

�
βn�1 � βn

2h



� an�1

an

�
βn � βn�1

2h



dcn � cn�1 � cn�1

2h dγn � an�1

an

�γn�1 � γn
2h

	
� an�1

an

�γn � γn�1

2h

	 (B.4)

while the backward difference formula dUn�1 � 3Un�1�4Un�Un�1
2h �Oph2q gives

dan�1 � 3an�1 � 4an � an�1

2h dαn�1 � 2bn
bn�1

�αn�1 � αn
h

	
� bn�1

bn�1

�αn�1 � αn�1

2h

	
dbn�1 � 3bn�1 � 4bn � bn�1

2h dβn�1 � 2an
an�1

�
βn�1 � βn

h



� an�1

an�1

�
βn�1 � βn�1

2h



dcn�1 � 3cn�1 � 4cn � cn�1

2h dγn�1 � 2an
an�1

�γn�1 � γn
h

	
� an�1

an�1

�γn�1 � γn�1

2h

	 (B.5)

both of which require values associated with state n� 1 to be stored.
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APPENDIX C

PIVOTING STRATEGY

Paul et al [34] introduced a pivoting strategy that selects an optimal co-ordinate relabel-

ing with respect to preserving the invariant directional qualities inherited through the QR

factorization of a 3 � 3 matrix. The rotated 1 direction is selected to align with that axis

which has minimal transverse shear, as determined through the functions

F1 :�
a
F 2

21 � F 2
31

L
F11 ¥ 0 (C.1a)

F2 :�
a
F 2

12 � F 2
32

L
F22 ¥ 0 (C.1b)

F3 :�
a
F 2

13 � F 2
23

L
F33 ¥ 0 (C.1c)

after which the rotated 3 direction is selected so as to minimize the transverse shear acting

across its 1-2 plane, with the Fij being evaluated in basis p~ı,~, ~kq.
Algorithm 1 establishes the reference co-ordinate system that one ought to use for anal-

ysis. It is rectangular Cartesian with base vectors p~E1, ~E2, ~E3q.
There are six cases that can arise. Their associated orthogonal matrices are

rP0s �

�
�����

1 0 0

0 1 0

0 0 1

�
����� rP1s �

�
�����

1 0 0

0 0 1

0 1 0

�
����� rP2s �

�
�����

0 1 0

1 0 0

0 0 1

�
�����

rP3s �

�
�����

0 0 1

1 0 0

0 1 0

�
����� rP4s �

�
�����

0 1 0

0 0 1

1 0 0

�
����� rP5s �

�
�����

0 0 1

0 1 0

1 0 0

�
����� (C.2a)
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Algorithm 1 Co-ordinate Pivoting to get Upper-Triangle Dominance in F̂.
if F1 ¤ F2 and F1 ¤ F3 then

if |F32| ¤ |F23| then
F̂ :� PT

0 FP0, rt~E1ut~E2ut~E3us :� rt~ı ut~ ut~kus � rt~ı ut~ ut~kusP0
else

F̂ :� PT
3 FP3, rt~E1ut~E2ut~E3us :� rt~ ut~ı ut~kus � rt~ı ut~ ut~kusP3

end if
else if F2 ¤ F1 and F2 ¤ F3 then

if |F13| ¤ |F31| then
F̂ :� PT

1 FP1, rt~E1ut~E2ut~E3us :� rt~ ut~kut~ı us � rt~ı ut~ ut~kusP1
else

F̂ :� PT
4 FP4, rt~E1ut~E2ut~E3us :� rt~kut~ ut~ı us � rt~ı ut~ ut~kusP4

end if
else (F3 ¤ F1 and F3 ¤ F2 )

if |F21| ¤ |F12| then
F̂ :� PT

2 FP2, rt~E1ut~E2ut~E3us :� rt~kut~ı ut~ us � rt~ı ut~ ut~kusP2
else

F̂ :� PT
5 FP5, rt~E1ut~E2ut~E3us :� rt~ı ut~kut~ us � rt~ı ut~ ut~kusP5

end if
end if

whose affiliated components for the re-indexed deformation gradient are

rF̂1s �

�
�����
F11 F12 F13

F21 F22 F23

F31 F32 F33

�
����� rF̂2s �

�
�����
F11 F13 F12

F31 F33 F32

F21 F23 F22

�
����� rF̂3s �

�
�����
F22 F21 F23

F12 F11 F13

F32 F31 F33

�
�����

rF̂4s �

�
�����
F22 F23 F21

F32 F33 F31

F12 F13 F11

�
����� rF̂5s �

�
�����
F33 F31 F32

F13 F11 F12

F23 F21 F22

�
����� rF̂6s �

�
�����
F33 F32 F31

F23 F22 F21

F13 F12 F11

�
����� (C.2b)

where case 1 is the default case whose operator P0 is the identity tensor.
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APPENDIX D

IMPLICIT ELASTICITY

Both explicit (i.e., Green [70]) and implicit (i.e., Rajagopal [71]) elastic material models

are put forward in this appendix for one’s consideration when choosing a material model to

represent biologic fibers and membranes.

D.1 Alveolar Chords as Green (Explicit) Thermoelastic Fibers

A Green thermoelastic fiber has a Gibbs free-energy potential described by an explicit

function of state, viz., Gpθ, F q where dG � �η dθ� 1
ρ
e dF (cf. Eqn. 5.26a), out of which one

derives the governing thermoelastic constitutive equations, viz., for entropy

η � �Bθ Gpθ, F q, (D.1a)

and for strain

e :� lnpL{L0q � �ρ BF Gpθ, F q. (D.1b)

Providing an energy function establishes a material model.

D.1.1 Hookean Fibers

Herein we consider a Gibbs free-energy potential suitable for describing a Hookean fiber

Gpθ, F q � �η0pθ � θ0q � C

�
θ ln

�
θ

θ0



� pθ � θ0q



�
F � F0
ρ

�
α ln

�
θ

θ0



�
F � F0

2E



(D.2)

normalized so that Gpθ0, F0q � 0 with initial conditions of η0 � �Bθ Gpθ0, F0q and e0 �
�ρ BFGpθ0, F0q � 0 in our reference state associated with fields θ0 and F0. Introducing

lnpθ{θ0q presumes that temperature θ is absolute, i.e., it is measured in Kelvin, not centi-
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grade, so in our application θ0 � 310 K is body temperature.

D.1.2 Secant Material Properties

Upon subtituting the Gibbs free-energy function (D.2) into the constitutive equations

(D.1a & D.1b) governing entropy and strain, respectively, results in the matrix expression

$'&'% η � η0

lnpL{L0q

,/./- �

���Cs αs{ρθ
αs 1{Es

���
$'&'%lnpθ{θ0q
F � F0

,/./-
which rearranges into a form that is more suitable for our needs, specifically

$'&'% η � η0

F � F0

,/./- �

���Cs � α2
sEs{ρθ αsEs{ρθ

�αsEs Es

���
$'&'% lnpθ{θ0q

lnpL{L0q

,/./- (D.3a)

with material properties: a specific heat (evaluated at some reference force F0) of

Cs :� η � η0

lnpθ{θ0q
����
F�F0

(D.3b)

with Cs � α2
sEs{ρθ being a heat capacity (evaluated at some reference length L0), plus a

thermal strain coefficient (evaluated at some reference force F0) of

αs :� lnpL{L0q
lnpθ{θ0q

����
F�F0

, (D.3c)

and an elastic compliance (evaluated at some reference temperature θ0) of

1
Es

:� lnpL{L0q
F � F0

����
θ�θ0

. (D.3d)

D.1.3 Tangent Material Properties

Upon differentiating the constitutive equations for entropy and strain found in Eqns.

(D.1a & D.1b), respectively, assuming that they are both sufficiently differentiable functions

166



of state, while adopting the expression for Gibbs free energy found in Eqn. (D.2), results in

the following constitutive equation

$'&'% dη

L�1 dL

,/./- � �

��� Bθθ G BθF G

ρ BFθ G ρ BFF G

���
$'&'%dθ

dF

,/./- �

���Ct αt{ρθ
αt 1{Et

���
$'&'%θ

�1 dθ

dF

,/./-
where we observe that the intensive and extensive variables now appear in rate or differential

form; hence, this formulation is hypo-elastic. [72] The material properties are: a specific heat

(at constant force) of

Ct :� dη
θ�1 dθ

����
dF�0

� Cs � αspF � F0q
ρ θ

� �θ Bθθ Gpθ, F q (D.4a)

where the tangent response for specific heat Ct relates to the secant response for specific

heat Cs via Ct � Cs � αspF � F0q{ρθ, with Ct � α2
tEt{ρθ being a heat capacity (at constant

strain), plus a thermal strain coefficient (at constant force) of

αt :� L�1 dL
θ�1 dθ

����
dF�0

� �ρθ BFθ Gpθ, F q � �ρθ BθF Gpθ, F q (D.4b)

where, typically, αt � αs, and an elastic compliance (at constant temperature) of

1
Et

:� L�1 dL
dF

����
dθ�0

� �ρ BFF Gpθ, F q (D.4c)

D.2 Alveolar Chords as Rajagopal (Implicit) Thermoelastic Fibers

In 2003, Rajagopal [71] introduced the idea of an implicit elastic solid. In 2016, Freed &

Rajagopal [62] constructed an elastic fiber model that convolves an explicit energy with an

implicit energy. In their approach, they decomposed fiber strain e :� lnpL{L0q into a sum

of two strains, viz., e � e1 � e2 wherein e1 :� lnpL1{L0q and e2 :� lnpL{L1q. Length L0 is a

reference fiber length, viz., its length whereat F � F0. Length L1 can be thought of as the

fiber’s length caused solely by a molecular reconfiguration under an applied load of F (e.g.,
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an unraveling of crimp in collagen, a network reorientation in elastin, a reconformation in

structural proteins, etc.).

Let the Gibbs free-energy potential be described by a function of the form

Gpθ, e, F q :� G1pe1, F q � G2pθ, F q with dG � �η dθ � 1
ρ
e dF (D.5)

where G1 is an implicit potential (a configuration energy) and G2 is an explicit potential (a

strain energy). This energy function leads to the constitutive equation with the material

properties of

Ct :� dη
θ�1 dθ

����
dF�0

� �θ Bθθ Gpθ, e, F q � �θ Bθθ G2pθ, F q (D.6a)

αt :� L�1 dL
θ�1 dθ

����
dF�0

� �ρθ BFθ Gpθ, e, F q � �ρθ BFθ G2pθ, F q (D.6b)

1
Et

:� L�1 dL
dF

����
dθ�0

� �
�
ρ Be1G1pe1, F q

��1�
e� ρ BF Gpθ, e, F q

�
� ρ BFF G2pθ, F q (D.6c)

where mass density ρ is a mass per unit length of line.

D.2.1 Biologic Fibers with Tangent Material Properties

The fiber model of Freed & Rajagopal [62] imposes a limiting constraint e1max onto the

internal strain of reconfiguration e1, viz., e1 ¤ e1max . Their model, when cast in terms of

a Gibbs free-energy function in the form of Eqn. (D.5), is described by an implicit energy

contribution of

G1pe1, F q � �
1
ρ

�
e1max

�
E1e1 � pF � F0q

�
� 2e1pF � F0q

	
(D.7a)

and explicit energy contribution of

G2pθ, F q � �η0pθ � θ0q � C

�
θ ln

�
θ

θ0



� pθ � θ0q



�
F � F0
ρ

�
α ln

�
θ

θ0



�
F � F0

2E2



(D.7b)
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that, collectively, depend upon temperature θ, force F , and an internal strain e1, whose free energy

is normalized so that G1pe1,0, F0q � 0 and G2pθ0, F0q � 0 with initial conditions e1,0 � 0, e2,0 �

�ρ BF G2pθ0, F0q � 0 and η0 � �Bθ G2pθ0, F0q. In fact, the explicit contribution to the free energy

adopted here is Hookean, cf. Eqn. (D.2). The resulting constitutive responses for entropy η and

force F are therefore described by the following differential matrix equation

$'&
'%

dη

dF

,/.
/- �

�
��Ct � α2

tEt{ρθ αtEt{ρθ

�αtEt Et

�
��
$'&
'%
θ�1 dθ

L�1 dL

,/.
/- (D.7c)

whose elastic tangent compliance is now described by

1
Etpθ, e, F q

�
e1max � e1

E1e1max � 2pF � F0q
�

1
E2

(D.7d)

wherein

e1 � e� α ln
�
θ

θ0



�
F � F0
E2

(D.7e)

and whose initial tangent modulus Etpθ0, e0, F0q is E1E2{pE1 � E2q (� E1 whenever E2 "
E1 ¡ 0) while its terminal tangent modulus Etpe1� e1maxq is E2. A transition strain occurs

at e1max p¡ 0q, which establishes the limiting state for internal strain e1, i.e., e1 ¤ e1max .

D.2.2 Biologic Fibers with Secant Material Properties

Material properties Ct, αt and Et for the above model, viz., those of Eqn. (D.7), describe

tangents to material response functions. For the thermal properties, their secant counterparts

Cs and αs relate to their tangent properties Ct and αt just as they do for a Green elastic

fiber. Only the elastic compliance needs to be addressed.

The tangent modulus Et is established through the relationship

1
Et

:� de
dF

����
dθ�0

� de1

dF

����
dθ�0

� de2

dF

����
dθ�0

�: 1
E1t

� 1
E2t

(D.8a)
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so that a fiber’s elastic compliance is described by

de � dF
Et

where 1
Et

� 1
E1t

� 1
E2t

(D.8b)

and, consequently, its elastic modulus is described by

dF � Et de where Et � E1tE2t

E1t � E2t
. (D.8c)

The implicit free-energy function introduced through Eqn. (D.7) produces a tangent com-

pliance of

1
Et

� e1max � e1

E1e1max � 2pF � F0q �
1
E2

(D.8d)

whose internal strain caused by molecular reconfiguration comes from

e1 � e� αt ln
�
θ

θ0



� F � F0

E2
. (D.8e)

The material properties of this model are: E1E2{pE1 � E2q p¡ 0q is the initial tangent

modulus, E2 p" E1 ¡ 0q is the terminal tangent modulus, e1max is the maximum strain

that can arise from a molecular reconfiguration, and αt is the thermal strain coefficient, all

quantified against a reference state described by θ0 and F0.

It follows then that its associated secant compliance obeys

1
Es

:� e

F � F0

����
θ�θ0

� e1

F � F0

����
θ�θ0

� e2

F � F0

����
θ�θ0

�: 1
E1s

� 1
E2s

(D.9a)

so the fiber’s compliance representation is described by

e � F � F0

Es
where 1

Es
� 1
E1s

� 1
E2s

(D.9b)
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and, therefore, its modulus representation is described by

F � F0 � Es e where Es � E1sE2s

E1s � E2s
. (D.9c)

where, upon integrating Eqn. (D.8d) by separation of variables, one arrives at a secant

compliance comprising a sum between

1
E1s

� e1max

F � F0

�
1�

?
E1e1maxa

E1e1max � 2pF � F0q

�
(D.9d)

and

1
E2s

� 1
E2

(D.9e)

with EspF ¤F0q � E1E2{pE1 � E2q.

D.3 Alveolar Septa as Green (Explicit) Thermoelastic Membranes

For a 2D membrane with a mass density of ρ per unit area, its response is comprising

uniform and non-uniform contributions. The thermodynamic conjugate fields pertaining to

uniform behaviors are: temperature θ and entropy η, and surface tension π and dilation

ξ, cf. Eqn. (5.37a). While the conjugate fields pertaining to non-uniform behaviors are:

normal stress difference σ and squeeze strain ε, and shear stress τ and shear strain γ, cf.

Eqn. (5.37b).

A Green thermoelastic membrane is assigned a Gibbs free-energy potential described by

Gpθ, π, σ, τq � Gupθ, πq � Gnpσ, τq where dG � �η dθ� 1
ρ

�
ξ dπ� ε dσ� γ dτ

�
from which one

derives its governing thermoelastic constitutive equations; specifically, for entropy

η � �Bθ Gpθ, π, σ, τq � �Bθ Gupθ, πq, (D.10a)
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for dilation

ξ � �ρ Bπ Gpθ, π, σ, τq � �ρ Bπ Gupθ, πq, (D.10b)

for squeeze

ε � �ρ Bσ Gpθ, π, σ, τq � �ρ Bσ Gnpσ, τq, (D.10c)

and for shear

γ � �ρ Bτ Gpθ, π, σ, τq � �ρ Bτ Gnpσ, τq (D.10d)

whereby specifying energies Gu and Gn produces a material model for membranes.

D.3.1 Hookean Membranes

In this appendix, we consider a function for the Gibbs free-energy potential that is suit-

able for describing biologic Hookean membranes; specifically: for governing their uniform

response, let

Gupθ, πq � �η0pθ � θ0q � C

�
θ ln

�
θ

θ0



� pθ � θ0q



�
π � π0

2ρ

�
2α ln

�
θ

θ0



�
π � π0

4M



(D.11a)

and for governing their non-uniform response, let

Gnpσ, τq � �
1
2ρ

�
σ2

2N �
τ2

G



(D.11b)

where symmetries Gnpσ, τq � Gnp�σ, τq � Gnpσ,�τq � Gnp�σ,�τq must hold because the

squeeze and shear variables can take on either sign. These free energies are normalized

so that Gupθ0, π0q � 0 and Gnpσ0, τ0q � 0 with initial conditions of η0 � �Bθ Gupθ0, π0q,
ξ0 � �ρ Bπ Gupθ0, π0q � 0, ε0 � �ρ Bσ Gnp0, 0q � 0 and γ0 � �ρ Bτ Gnp0, 0q � 0 for a reference

state with fields θ0, π0, σ0 � 0 and τ0 � 0.
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D.3.2 Secant Material Properties

D.3.2.1 Uniform Response

Substituting the Gibbs free-energy function of Eqn. (D.11a) into the constitutive equa-

tions governing entropy Eqn. (D.10a) and dilation Eqn. (D.10b) results in a matrix expression

of $'&'% η � η0

ln
a
A{A0

,/./- �

���Cs αs{ρθ
αs 1{4Ms

���
$'&'%lnpθ{θ0q
π � π0

,/./-
where ξ :� ln

a
A{A0. This matrix equation can be rearranged into a form that is more

suitable for our needs, viz.,

$'&'%η � η0

π � π0

,/./- �

���Cs � 4α2
sMs{ρθ 4αsMs{ρθ

�4αsMs 4Ms

���
$'&'% lnpθ{θ0q

ln
a
A{A0

,/./- (D.12a)

whose material properties are: a specific heat (evaluated at a reference surface tension π0)

of

Cs :� η � η0

lnpθ{θ0q
����
π�π0

(D.12b)

with Cs � 4α2
sMs{ρθ being a heat capacity in an absence of dilation, plus a thermal strain

coefficient (evaluated at a reference surface tension π0) of

αs :� lnpL{L0q
lnpθ{θ0q

����
π�π0

� 1
2

lnpA{A0q
lnpθ{θ0q

����
π�π0

, (D.12c)
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where lnpA{A0q � 2 lnpL{L0q is the surface dilation, with L{L0 being the stretch between

any two points on its surface, plus an elastic membrane compliance (evaluated at a reference

temperature θ0) of

1
Ms

:� lnpA{A0q
T � T0

����
θ�θ0

� 4 ξ

π � π0

����
θ�θ0

, (D.12d)

where T :� 1
2pσ11 � σ22q �: 1

2 π is the surface tension, with σij being components of the

Cauchy stress in this 2D space. These are secant material properties, hence the subscript

‘s’, whose values can be measured in experiments.

D.3.2.2 Non-Uniform Response

Substituting the Gibbs free-energy function of Eqn. (D.11b) into the constitutive equa-

tions governing squeeze (D.10c) and shear (D.10d) leads to the following matrix equation

$'&'%ε

γ

,/./- �

���1{2Ns 0

0 1{Gs

���
$'&'%στ

,/./-
that when inverted becomes $'&'%στ

,/./- �

���2Ns 0

0 Gs

���
$'&'%ε

γ

,/./- (D.13a)

whose material properties are: a squeeze compliance (in an absence of shear γ) of

1
Ns

:� lnpΓ{Γ0q
σ11 � σ22

����
g�g0

� 2 ε

σ

���
γ�0

(D.13b)
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where Γ :� a{b and Γ0 � a0{b0 are the current and reference stretches of squeeze, with

ε :� ln
a

Γ{Γ0 being the squeeze strain, and where σ :� σ11�σ22 establishes a normal stress

difference, plus a shear compliance (in an absence of squeeze ε) of

1
Gs

:� g � g0

Γσ21

����
Γ�Γ0

� γ

τ

���
ε�0

(D.13c)

where g and g0 are the current and reference magnitudes of shear, with γ :� g� g0 denoting

shear strain, and where τ :� Γσ21 establishes the thermodynamic shear stress.

D.3.3 Tangent Material Properties

D.3.3.1 Uniform Response

Upon differentiating the constitutive equations for entropy and dilation found in Eqns. (D.10a

& D.10b), respectively, assuming they are both sufficiently differentiable functions of state,

while adopting the Gibbs free energy from Eqn. (D.11a), results in the following matrix

constitutive equation

$'&'%dη

dξ

,/./- � �

��� Bθθ Gu Bθπ Gu

ρ Bπθ Gu ρ Bππ Gu

���
$'&'%dθ

dπ

,/./- �

���Ct αt{ρθ
αt 1{4Mt

���
$'&'%θ

�1 dθ

dπ

,/./-
which is hypo-elastic in its construction. [72] This expression can be rearranged into

$'&'%dη

dπ

,/./- �

���Ct � 4α2
tMt{ρθ 4αtMt{ρθ

�4αtMt 4Mt

���
$'&'% θ�1 dθ

1
2A

�1 dA

,/./- (D.14a)

recalling that dξ � dA{2A, and with material properties defined accordingly: a specific heat

(at constant surface tension) of

Ct :� dη
θ�1 dθ

����
dπ�0

� Cs � αspπ � π0q{ρθ � �θ Bθθ Gu (D.14b)
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with Ct�4α2
tMt{ρθ denoting a heat capacity at constant dilation, and a lineal thermal strain

coefficient (at constant surface tension) of

αt :� L�1 dL
θ�1 dθ

����
dπ�0

� 1
2
A�1 dA
θ�1 dθ

����
dπ�0

�

$''&''%
�ρθ Bπθ Gu

�ρθ Bθπ Gu
(D.14c)

plus a compliance (at constant temperature) of

1
Mt

:� A�1 dA
dT

����
dθ�0

� 4 dξ
dπ

����
dθ�0

� �4ρ Bππ Gu. (D.14d)

D.3.3.2 Non-Uniform Response

From dG � dGu � dGn with dGu � �η dθ � 1
ρ
ξ dπ comes dGn � �1

ρ
pε dσ � γ dτq out of

which one obtains the constitutive equations governing non-uniform responses in a Green

elastic membrane, viz., ε � �ρ Bσ Gn and γ � �ρ Bτ Gn, that, assuming they are continuous

and differentiable functions of state, can be expressed as the matrix differential equation

$'&'%dε

dγ

,/./- � �ρ

���Bσσ Gn Bστ Gn

Bτσ Gn Bττ Gn

���
$'&'%dσ

dτ

,/./- �

���1{2Nt 0

0 1{Gt

���
$'&'%dσ

dτ

,/./-
where Bστ Gn � Bτσ Gn � 0, because the modes of squeeze and shear are taken to be decoupled.

The resulting matrix is readily inverted into a form that is more useful for us, namely

$'&'%dσ

dτ

,/./- �

���2Nt 0

0 Gt

���
$'&'%dε

dγ

,/./- (D.15a)

whose associated material properties are established via

1
Nt

:� Γ�1 dΓ
dpσ11 � σ22q

����
dγ�0

� 2 dε
dσ

����
dγ�0

� �2ρ Bσσ Gn (D.15b)
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and

1
Gt

:� 1
Γ

dg
dσ21

����
dΓ�0

� dγ
dτ

����
dε�0

� �ρ Bττ Gn (D.15c)

where the conjugate stresses are defined as σ :� σ11 � σ22 and τ :� Γσ21 with Γ :� a{b
being the stretch of squeeze from which it follows that Γ�1dΓ � 2 dε because the strain of

squeeze is given by ε � ln
a

Γ{Γ0. The squeeze compliance 1{Nt � 2 dε{dσ|γ is evaluated at

a constant shear γ, while the shear compliance 1{Gt � dγ{dτ |ε is evaluated at a constant

squeeze ε.

D.4 Alveolar Septa as Rajagopal (Implicit) Thermoelastic Membranes

We employ implicit elasticity here to derive a constitutive theory suitable for describing

biologic membranes.

D.4.1 Tangent Material Properties

D.4.1.1 Uniform Response

Like the implicit elastic fiber introduced in Eqn. (D.7), the uniform response of an implicit

elastic membrane with a strain-limiting dilation can be modeled using a Gibbs free energy

of the form Gupθ, ξ, πq :� G1pξ1, πq�G2pθ, πq where our definition for dilation ξ :� ln
a
A{A0

decomposes into a sum of two dilations: ξ1 :� ln
a
A1{A0 and ξ2 :� ln

a
A{A1 so that

ξ � ξ1 � ξ2, with like interpretations as those from their 1D fiber counterparts, viz., e, e1

and e2. Such a membrane’s tangent material properties are then given by

Ct :� �θ Bθθ Gupθ, ξ, πq � �θ Bθθ G2pθ, πq (D.16a)

αt :� �ρθ Bπθ Gupθ, ξ, πq � �ρθ Bπθ G2pθ, πq � �ρθ Bθπ G2pθ, πq (D.16b)

1{4Mt :� ��ρ Bξ1G1pξ1, πq
��1�

ξ � ρ Bπ Gupθ, ξ, πq
�� ρ Bππ G2pθ, πq (D.16c)

whose derivations are analogous to those for the implicit fiber derived in Eqn. (D.6).
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D.4.1.2 Uniform Biologic Membrane Model

Like our model for a biologic fiber, we consider a Gibbs free-energy function for describing

the uniform response of a biologic membrane whose implicit energy function takes on the

form of

G1pξ1, πq � �
1
ρ

�
ξ1max

�
4M1ξ1 � pπ � π0q

�
� 2ξ1pπ � π0q

	
(D.17a)

and whose explicit energy function is

G2pθ, πq � �η0pθ � θ0q � Ct

�
θ ln

�
θ

θ0



� pθ � θ0q



�
π � π0

2ρ

�
2αt ln

�
θ

θ0



�
π � π0
4M2




(D.17b)

thereby resulting an elastic tangent compliance, as established in Eqn. (D.16c), of

1
4Mtpθ, ξ, πq

�
ξ1max � ξ1

4M1ξ1max � 2pπ � π0q
�

1
4M2

(D.17c)

wherein

ξ1 � ξ � αt ln
�
θ

θ0



�
π � π0
4M2

(D.17d)

with ξ1max ¡ 0 being an upper bound on strain ξ1, i.e., ξ1 ¤ ξmax. Such a membrane has an

initial tangent stiffness Mtpθ0, ξ0, π0q of M1M2{pM1 �M2q (� M1 whenever M2 " M1 ¡ 0)

and it has a terminal tangent stiffness Mtpξ1�ξ1maxq of M2.

D.4.1.3 Non-Uniform Response

We seek an energetic construction that is consistent with the Freed & Rajagopal [62]

fiber model, but which is applicable to the non-uniform responses that planar membranes

can support. A Rajagopal elastic solid is implicit. Therefore, we choose a Gibbs free-energy
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function for governing non-uniform behavior that looks like

Gnpε, γ, σ, τq � G1pε1, σq � G2pσq � G3pγ1, τq � G4pτq (D.18)

which depend upon three squeeze strains ε :� ln
a

Γ{Γ0, ε1 :� ln
a

Γ1{Γ0 and ε2 :� ln
a

Γ{Γ1,

and three shear strains γ :� g�g0, γ1 :� g1�g0, and γ2 :� g�g1, both of which are additive

in the sense that ε � ε1 � ε2 and γ � γ1 � γ2, and as such, so are their differential rates of

change dε � dε1�dε2 and dγ � dγ1�dγ2. Strains ε1 and γ1 may be thought of as describing

an unraveling of molecular configuration, analogous to e1 in the fiber model of Eqn. (D.7),

and ξ1 in the uniform membrane model of Eqn. (D.17). No coupling between squeeze and

shear is assumed in this energy function. Energies G1 and G3 are Rajagopal elastic (they

have implicit dependencies upon state), while energies G2 and G4 are Green elastic (they

have explicit dependencies upon state).

From the thermodynamic expression �ρ dGn � ε dσ � γ dτ , the non-uniform Gibbs free

energy Gn, when expressed in the form of Eqn. (D.18), and given the definitions for squeeze

1{N and shear 1{G compliances put forward in Eqns. (D.15b & D.15c), one determines that

the tangent squeeze compliance is described by

1
2Nt

:� dε
dσ � ��ρ Bε1G1

��1�
ε� ρ BσpG1 � G2q

�� ρ Bσσ G2 (D.19a)

and that the tangent shear compliance is described by

1
Gt

:� dγ
dτ � ��ρ Bγ1G3

��1�
γ � ρ Bτ pG3 � G4q

�� ρ Bττ G4 (D.19b)

whose mathematical structure is similar to that of the Freed–Rajagopal fiber model presented

in Eqn. (D.7). The first collection of terms on the right-hand side of both formulæ is

Rajagopal elastic; the second is Green elastic.
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D.4.1.4 Non-Uniform Biologic Membrane Model

We now specify the Gibbs free-energy functions of Eqn. (D.18) such that they produce

tangent compliances 1{Nt and 1{Gt with like mathematical structure to Eqn. (D.17c) for

dilation, viz., 1{Mt. Specifically, we consider Gibbs free-energy functions of the form

�ρG1pε1, σq � sgnpε1q ε1max

�
2N1ε1 � σ

�� 2ε1σ (D.20a)

�ρG2pσq � σ2{4N2 (D.20b)

�ρG3pγ1, τq � sgnpγ1q γ1max

�
G1γ1 � τ

�� 2γ1τ (D.20c)

�ρG4pτq � τ 2{2G2 (D.20d)

where these energy functions have the same mathematical structure as the energies for bio-

logic fibers (Eqn. D.7) and uniform membranes (Eqn. D.17), less their temperature depen-

dence, and less their states of pre-stress, i.e., σ0 � 0 and τ0 � 0.

The sign functions, viz., sgnpε1q and sgnpγ1q, account for the fact that squeeze and shear

strains can be of either sign, but the Gibbs energy must remain negative. In effect, the

sign functions flip the limiting state between tension and compression, i.e., they change the

signs of ε1max and γ1max depending upon the respective signs of ε1 and γ1. As a consequence,

G1pε1, σq � G1p�ε1,�σq, G2pσq � G2p�σq, G3pγ1, τq � G3p�γ1,�τq and G4pτq � G4p�τq.
When substituted into Eqn. (D.19), these energy functions produce the following thermo-

elastic compliances

1
2Npε, σq �

sgnpε1q ε1max � ε1

2N1 sgnpε1q ε1max � 2σ �
1

2N2
ε1 � ε� σ

2N2
(D.21a)

1
Gpγ, τq �

sgnpγ1q γ1max � γ1

G1 sgnpγ1q γ1max � 2τ �
1
G2

γ1 � γ � τ

G2
(D.21b)

which provide the tangent operators that we will use to describe the non-uniform behavior

of a biologic membrane.
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D.4.2 Secant Material Properties

D.4.2.1 Uniform Response

Integrating by parts the tangent compliance governing dilation found in Eqn. (D.17c)

results in a secant compliance of

1
4Mspπq �

ξ1max

π � π0

��1�
a
M1ξ1maxb

M1ξ1max � 1
2pπ � π0q

�� 1
4M2

(D.22)

whereMspπ¤π0q �M1M2{pM1�M2q. This compliance applies to the thermodynamic equa-

tions governing the uniform secant response of our membranes, as established in Eqn. (D.12a).

D.4.2.2 Non-Uniform Response

Integrating by parts the tangent compliance governing squeeze in Eqn. (D.21a) provides

its secant compliance of

1
2Nspσq �

ε1max

|σ|

�
1�

?
N1ε1maxa

N1ε1max � |σ|

�
� 1

2N2
(D.23)

where Nspσ � 0q � N1N2{pN1 � N2q, while integrating by parts the tangent compliance

governing shear in Eqn. (D.21b) results in its secant compliance of

1
Gspτq �

γ1max

|τ |

�
1�

?
G1γ1maxa

G1γ1max � 2|τ |

�
� 1
G2

(D.24)

where Gspτ � 0q � G1G2{pG1 � G2q. These compliances apply to the thermodynamic

equations governing the non-uniform secant response of our membranes, as established in

Eqn. (D.13a).
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