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ABSTRACT 

 

The unconventional reservoirs have been a major source of the modern oil and 

gas industry. However, simulation of unconventional reservoirs with complex fracture 

conditions remains to be a difficult problem. The nano-scale porous system has 

increased the difficulty in modeling the multi-physics, multi-phase, multi-medium, and 

multi-component flow in fractured unconventional reservoirs. The fracture network 

dominates flow in the unconventional reservoirs but is hard to characterize due to its 

high complexity and uncertainty. The global Jacobian matrix is usually large in 

dimensions and ill-conditioned, for which specific techniques are required to enhance 

the simulator performance.  

This dissertation has proposed a workflow to simulate unconventional reservoirs 

with complex fracture conditions. A multi-component multi-phase reservoir simulator is 

developed based on the GURU framework with a capacity of multi-porosity-

permeability system model which accounts for multiple flow mechanisms including 

convection, diffusion, and adsorption/desorption. A fully implicit Jacobian system is set 

up by coupling the reservoir matrix with fracture and wellbore components. High-

performance computation techniques are applied to the simulator to enhance the 

computational performance by CPU- and GPU-based parallelization on the linear solvers 

and Jacobian construction. A parallel multi-stage preconditioner with respect to the 

corresponding subspaces of wellbore, fractures, saturation, and pressure is developed 

with adaptive settings which provides a better convergence rate for iterative solvers. An 
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LGR-EDFM model is developed to capture the large fractures in complex fracture 

networks. The hydraulic fractures are modeled using a novel imaging-based micro-

seismic interpretation method while the natural fracture network is characterized by a 

fractal model with empirical risk minimization calibration through histograms. All of 

these govern a numerical simulator with the capability to solve fractured unconventional 

reservoir problems. 

More specific research is also performed to further increase the knowledge and 

improve the accuracy of fractured unconventional simulations. A pre-stage initialization 

method is developed based on the fracking schedule simulation, which provides a better 

estimation of initial pressure and saturation profiles. Water flowback and hydrocarbon 

flow mechanisms are studied to get a better knowledge of unconventional reservoir 

physics. A non-Darcy water flux model is proposed based on the boundary layer theory 

to better describe the water flux in nano-pores. A domain decomposition solver is 

developed based on the EDFM fracture network to further increase the capability and 

computational performance. The fracture closure effects are studied using a dynamic 

EDFM method to better simulate the pressure depletion behavior during production.  
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NOMENCLATURE 

 

∅ Porosity 

𝑆 Saturation 

𝜏 Phase composition 

𝑡 Time 

𝑚𝐿 Langmuir isothermal adsorption coefficient 

𝑘 Permeability 

𝜑 Phase potential 

𝜇 Viscosity 

𝑞, 𝑄 Flux rate 

𝜌 Density 

𝑥𝑖 , 𝑦𝑖 Multiphase concentration 

𝜎𝑖 Transmissibility shape factor 

𝐶𝑖 Component concentration 

𝑃 Pressure 

𝑉 Volume 

𝑍 Real gas compressibility factor 

𝐺 Non-Darcy startup potential gradient 

𝑇 Temperature 

𝛿 PR-EoS coefficients 

𝐺(𝐧) Phase Gibbs energy 
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𝑓𝑖𝑗 Fugacity 

𝐾 VLE equilibrium coefficient 

𝐿 Fracture dimension 

𝑅𝑖
𝑘 Residual for component 𝑖 at timestep 𝑘 

𝑊𝐼 Wellbore index 

𝐽 Jacobian matrix 

𝑄 Iterator 

𝑆 Smoother 

𝑀 Decoupling multiplier matrix 

𝑈 Subspace converter 

Ti Transmissibility 

𝐷𝑓𝑟𝑎𝑐 Fracture fractal dimension 

𝑊𝑖 Weighting parameter 
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1. INTRODUCTION  

 

1.1. Research background and motivation 

1.1.1. Unconventional reservoirs 

The unconventional reservoirs have been playing a major role in the modern oil 

and gas industry, and their contribution to total production has been on an increasing 

historical trend (Figure 1.1) due to the demand for global fossil energy consumption 

(Holditch, 2003). However, efficient reservoir development and production from 

unconventional reservoirs has always been a hard problem due to its physical nature of 

high complexity and low permeability. Novel techniques like horizontal drilling with 

single-to-multistage hydraulic fracking (Ozkan et al., 2011; Rahim et al., 2012) has been 

introduced into the industry to enhance production performance in low permeability 

formations like tight oil sandstones and oil/gas shales by injecting a certain amount of 

liquid volume to raise pore pressure and cause shear failures in bulk rock. This not only 

breaks the rock to create multiple sets of larger flow channels inside the reservoir matrix 

known as hydraulic fractures but also opens up the pre-existing reservoir natural fracture 

(Zhao et al., 2021) and thus form a fracture network that is usually complex in geometry 

due to the reservoir heterogeneity (Sierra, 2016).  

The porous system in unconventional reservoirs adds another layer of complexity 

in unconventional reservoirs. Compared with the common case while only pore channels 

are considered, unconventional reservoirs can have multiple porous systems including 

hydraulic fractures, natural fractures, inorganic and organic matrices. The hydraulic and 
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natural fractures serve as pathways for the reservoir fluids and are thus flow dominators. 

On the other hand, the source matrix is partitioned into organic kerogen and inorganic 

clay particles due to their composing nature and physical behaviors (Odusina et al., 

2011; Passey et al., 2010). In such cases, the corresponding pore channels are 

considerably much smaller than in the conventional reservoirs, which are usually in 

nanoscale. Thus the wall effect (Tian et al., 2017) and hydrocarbon molecule movement 

behaviors (Wang et al., 2021) become non-negligible. All these multi-dimensional and 

multi-physics parts are then imported into the reservoir simulation models and raise the 

problem complexity by a great amount. 

 

 

Figure 1.1 US domestic crude oil production by source, MMSTB/D. (EIA, 2021)  
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1.1.2. Unconventional simulation with fractures 

Reservoir simulation is the technique to mimic the subsurface flow behavior 

through porous media using numerical mathematical models. It has been applied as one 

of the proven and efficient development and management methods for reservoir 

engineers to gain production estimations and predictions. Compared with conventional 

methods, simulation in unconventional reservoirs with fractures is usually far more 

difficult and complicated due to the multi-porosity multi-physics behavior in tight 

sandstones and shales (Feast et al., 2015) as well as the complex geometry of fracture 

network (Ren et al., 2016; Xiaogang et al., 2017). Challenges raised in modern 

unconventional reservoir simulations with complex fractures can be grouped into two 

categories of accuracy and performance, which will be discussed below. 

The first part is the accuracy of the simulation. The complex porosity system in 

fractured unconventional reservoirs has already been discussed a bit in the subsection 

above, which usually requires a multi-porosity reservoir characterization model to fully 

describe the reservoir behavior. Another issue is that the Darcy flow in unconventional 

reservoirs is usually limited. Non-Darcy flow models, especially for gas, are relatively 

common in unconventional simulations to account for different flow mechanisms 

including slippage flow, Knudsen diffusion, absorption/desorption, etc. (Cao et al., 2015; 

Fathi & Akkutlu, 2012; Zhang et al., 2017). The traditional black-oil approach can be 

used in some cases to describe said fluid behavior in limited conditions, but 

compositional simulators with nano-scale vapor-liquid equilibrium (VLE) calculations 

usually give better results. 
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It is also worth addressing that the fracture network characterization adds more 

issues to simulation accuracy. While the state-of-the-art approach in the industry uses 

micro-seismicity datapoints to set up hydraulic fracture networks (Cipolla et al., 2011), it 

still contains very high uncertainties and usually requires an extensive amount of history 

matching work (Anbalagan, 2019) to get a useable fracture distribution. Adding natural 

fractures into the network makes the problem even more complex, which has a 

significant impact on production behavior but is rarely studied. 

Computational performance usually behaves as the bottleneck in unconventional 

simulations, especially with complex fracture conditions. The compositional simulation 

itself is already a time-consuming process, in which the time cost grows dramatically 

with problem size and the number of components. Despite the relatively large problem 

size in unconventional simulations, adding fracture networks to bulk matrix usually 

result in an ill-conditioned sparse matrix (Norbeck et al., 2014), which can make the 

common linear solving approach unusable or cause significant computational 

performance issues. Thus, modern high-performance techniques like vectorization and 

parallelization as well as advanced linear solver methods become a must in 

unconventional reservoirs with complex fracture conditions. 

1.2. Study scopes 

The main scope of this dissertation is to give out a workflow to unconventional 

simulation with complex conditions based on the issues discussed above. The detailed 

scopes are listed below:  
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1) Develop a fully compositional, fully implicit reservoir simulator with multi-

physics and multi-continuum settings to simulate the production/injection 

process in unconventional reservoirs. 

2) Apply performance optimization techniques on the developed simulator for 

the capacity of large and complex unconventional problems with extreme 

fracture conditions. 

3) Develop reservoir modeling methods for complex fracture network 

characterization based on combined data analysis. 

4) Develop specific techniques to further analyze the unconventional problem 

and improves simulation accuracy. 

The general workflow described is illustrated in Figure 1.2. 

 

 

Figure 1.2 General workflow chart for fractured unconventional simulation 
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1.3. Chapter overview 

The organization of this dissertation is listed as follows: the 1st chapter discusses 

the background of this research area as well as technical difficulties to overcome; the 2nd 

chapter introduces the development process of an in-house simulator designed 

specifically for unconventional fractured simulations; the 3rd chapter applies 

performance optimization methods to the simulator and improves its computational 

efficiency; the 4th chapter shows a detailed approach to model unconventional reservoirs 

with complex fracture conditions; the 5th chapter gives out a few methods specifically 

designed for fractured unconventional simulation to further analyze the problem and 

improves accuracy, and finally the 6th chapter summarizes the work and talks about the 

conclusions drawn from this study. 

 



 

7 

 

2. UNCONVENTIONAL RESERVOIR NUMERICAL SIMULATOR 

 

2.1. Overview 

The numerical simulation method is an important approach used to investigate 

the multi-phase, multi-component, multi-physics fluid flow in porous media systems. 

Various research has been done to develop simulation methods for conventional 

reservoirs with decent pore size and high permeability. However, research on 

unconventional fractured reservoirs is relatively rare and still an ongoing process due to 

its high complexity and uncertainty. 

The geometry for fractured reservoirs is usually piecewise complex, for which 

the traditional block-centered Cartesian grid is no more capable to describe the boundary 

shapes. Therefore, common finite-difference methods fail to apply at the request of high 

simulation accuracy, and the finite-volume method (FVM) (Cao, 2002) with two-point-

flux-approximation (TPFA) is more favored due to its capability of handling 

unstructured meshes and complex geometries. On the other hand, the compositional 

simulation model has been performing better than the traditional black-oil model as it 

better describes the fluid (especially gas) behavior in nano-pores (Alharthy et al., 2016).  

In this dissertation, the code for unconventional reservoirs with complex fracture 

conditions has been developed based on an in-house reservoir simulator framework 

named General Unstructured Reservoir Utility (GURU) developed at Texas A&M 

University (Yan, 2017). It has the following capabilities: 

1) Fully implicit method for time discretization. 
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2) FVM with TPFA for spatial discretization. 

3) Multi-physics flow behavior with Darcy/non-Darcy convection flow, multi-

component adsorption/desorption, Knudsen diffusion, and gas slippage. 

4) Multi-phase multi-component VLE calculation for oil and gas. 

5) Multi-porosity multi-permeability model with fracture network 

implementations. 

2.2. Physical and mathematical model 

The first problem to accurately describe the fractured unconventional reservoirs 

is the flow mechanisms in the bulk matrix through nano-sized pores and inside complex 

fracture networks. The bulk unconventional matrix usually falls into two different 

categories: organic and inorganic (Figure 2.1).  The inorganic matrix consists of 

different minerals such as clay, quartz, and pyrite, and the organic matrix is known as 

porous kerogen particles distributed along with the inorganic matrix (Ambrose et al., 

2011). Nano-sized pores develop in the organic matrix (Wang & Reed, 2009) and these 

pores contain hydrocarbon molecules, which proves as a combination of desorption from 

the surface of organic matters and diffusion from kerogen bulk. On the other hand, pore 

spaces in the inorganic matrix are hydrophilic and easily blocked by water (Zhang et al., 

2012). Although connected with organic pores and are commonly larger, the inorganic 

matrix only takes desorbed hydrocarbon from the surface of the clay minerals into pore 

spaces and has a much weaker absorption capacity (Ji et al., 2012). Due to the intrinsic 

difference between these two shale matrices, it is appropriate to divide the matrix into 
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separate pore systems. A more detailed description of this multi-porosity system will be 

discussed in the next subsection. 

 

Figure 2.1 Organic and inorganic matters in fractured unconventional reservoirs, 

edited from Teng et al., 2016. 

 

From the said physical model, the generalized mass balance equation for a 

specific component at a specific simulation grid is written as: 

𝜕∅𝑖 ∑𝑆𝑗 𝜏𝑖,𝑗

𝜕𝑡
+
𝜕(1 − ∅𝑖)𝑚𝐿

𝜕𝑡
= ∇ ∙ (∑𝑘𝑖

𝑘𝑟𝑖𝜏𝑖,𝑗

𝜇𝑖
∇𝜑𝑖,𝑗) +∑𝑞𝑑,𝑖 +∑𝑞𝑠,𝑖 +∑𝑞𝑓,𝑖 (2.1) 

In which case 𝜏𝑖,𝑗 is the multiphase composition. For water, 𝜏 =  𝜌𝑤 and for 

hydrocarbon, 

𝜏𝑖,𝑗 = 𝑥𝑖𝜌𝑖,𝑗 + 𝑦𝑖𝜌𝑖,𝑗 (2.2) 

In Equation 2.1, the different terms are described from left to right as follows: 

1) The mass accumulation over the time domain. 

2) The adsorption/desorption. 

3) Darcy/non-Darcy convectional flow. 

4) The Knudsen diffusion. 
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5) The source and sink term for wellbore flux. 

6) Fracture-matrix convection and diffusion. 

For which the diffusion term is written as: 

𝑞𝑑,𝑖 = 𝜎𝑖𝑆𝑖𝐷𝑖∇𝐶𝑖 (2.3) 

And the fracture-matrix flux has its convection and diffusions, 

𝑞𝑓,i = 𝜎 (𝑘𝑖,𝑗
𝑘𝑟𝑖𝜏𝑖,𝑗

𝜇𝑖
∆𝜑𝑖,𝑗) + 𝑞𝑑,𝑖,𝑓 (2.4) 

The 𝑚𝐿 stands for Langmuir adsorption/desorption parameter, with the form: 

𝑚𝐿 = 𝜌𝑏𝜌𝑟,𝑖𝑉𝐿,𝑖

𝑃𝑖,𝑗
𝑍𝑖

𝑃𝑖,𝑗
𝑍𝑖
+ 𝑃𝐿,𝑖

(2.5) 

The 𝛻𝜑𝑖,𝑗 is the potential gradient in simulation grids. To account for the non-

Darcy start-up pressure gradient effect (Xiao et al., 2010), the gradient is written in the 

corresponding piecewise function form: 

𝛻𝜑𝑖,𝑗 = {

0, 𝛻𝜑𝑖,𝑗 < 𝐺

(1 −
𝐺

𝛻𝜑𝑖,𝑗
)𝛻𝜑𝑖,𝑗 , 𝛻𝜑𝑖,𝑗 > 𝐺

(2.6) 

The equation-of-state for hydrocarbons in the simulator is calculated using the 

Peng-Robinson model (PR EoS) (Peng & Robinson, 1976).  

𝑝𝛼 =
𝑅𝑇

𝑉𝛼 − 𝑏𝛼
−

𝑎𝛼(𝑇)

(𝑉𝛼 + 𝛿1𝑏𝛼)(𝑉𝛼 + 𝛿2𝑏𝛼)
(2.7) 

Where the real-gas factor is given in a cubic form: 

𝑍𝛼
3 + [(𝛿1 + 𝛿2 − 1)𝐵𝛼 − 1]𝑍𝛼

2 + [𝐴𝛼 + 𝛿1𝛿2𝐵𝛼
2 − (𝛿1 + 𝛿2)𝐵𝛼(𝐵𝛼 + 1)]𝑍𝛼

−[𝐴𝛼𝐵𝛼 + 𝛿1𝛿2𝐵𝛼
2(𝐵𝛼 + 1)] = 0

(2.8) 
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 Vapor-liquid-equilibrium (VLE) is used to determine the phase state and the 

compositional molecular concentration for each oil and gas component with respect to 

the composition, pressure, and temperature (Figure 2.2). In this dissertation, a few 

assumptions are made to simplify the calculations: 

1) Water will always be a separate liquid phase compared to oil and gas.  

2) The other components are not soluble in the water phase. 

 

Figure 2.2 Multi-phase VLE with flash calculation 

 

Two sets of calculations are two be made for VLE calculations, known as the 

stability analysis and the flash calculation. Stability analysis is used to measure whether 

a specific phase is stable enough and is not going to split into more phases. It is only 

necessary to test the heaviest component among the multi-phase multi-component model 

to measure the overall stability of the mixture. Flash calculation is another method that 

calculates the molecular fraction of every component in every single phase as well as the 

molecular fraction of every phase. Both methods come from the theory of minimizing 
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the Gibbs free energy (Ebel et al., 2000). For a multi-phase multi-component system, the 

isothermal constant-pressure equation of Gibbs energy minimization can be written as: 

𝐺(𝐧)

𝑅𝑇
=∑∑𝑛𝑖𝑗

𝑛𝑐

𝑖=1

𝑛𝑝

𝑗=1

ln𝑓𝑖𝑗 (2.9) 

This dissertation uses an implicit method to solve for phase-component VLEs by 

combining Newton-Raphson iteration with initial values calculated by successive 

substitution (NR-SS). A brief illustration of the residual Jacobian matrix is shown as 

Equation 2.10. 

𝐽𝑉𝐿𝐸 =

[
 
 
 
 
 
 
 
 
 
𝜕𝑅𝑓,1

𝜕 ln𝐾1

𝜕𝑅𝑓,1

𝜕 ln𝐾2
…

𝜕𝑅𝑓,1

𝜕 ln𝐾𝑛

𝜕𝑅𝑓,1

𝜕𝑓𝑣
𝜕𝑅𝑓,2

𝜕 ln𝐾1
…

𝜕𝑅𝑓,2

𝜕 ln𝐾2
…

…

𝜕𝑅𝑓,2

𝜕 ln𝐾𝑛
…

𝜕𝑅𝑓,2

𝜕𝑓𝑣
…

𝜕𝑅𝑓,𝑛

𝜕 ln𝐾1

𝜕𝑅𝑓,𝑛

𝜕 ln𝐾2
…

𝜕𝑅𝑓,𝑛

𝜕 ln𝐾𝑛

𝜕𝑅𝑓,𝑛

𝜕𝑓𝑣
𝜕𝑅𝑟
𝜕 ln𝐾1

𝜕𝑅𝑟
𝜕 ln𝐾2

…
𝜕𝑅𝑟
𝜕 ln𝐾𝑛

𝜕𝑅𝑟
𝜕𝑓𝑣 ]

 
 
 
 
 
 
 
 
 

(2.10) 

 

Further analysis shows that the Newton-Raphson iterations used in VLE 

calculation has generally a smaller region of convergence despite fast converging. In rare 

cases when several components have almost similar properties, the Newton-Raphson can 

simply fail. Thus, to further stabilize the VLE process, it is necessary to save the solution 

at every solving step. 

The compositional fluid properties are calculated using separate correlations. 

Water viscosity is calculated using the Kestin model (Kestin et al., 1981) shown below: 

𝜇(𝑝, 𝑇,𝑚) = 𝜇0(𝑇,𝑚)[1 + 𝛽(𝑇,𝑚) ⋅ 𝑝] (2.11) 
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The oil and gas viscosities are calculated by Lohrez-Bray-Clark correlation 

(Lohrenz et al., 1964), shown in Equation 2.12. 

𝜇 = 𝜇0 +
1

휀
[(𝛼1𝜌

4 + 𝛼2𝜌
3 + 𝛼3𝜌

2 + 𝛼4𝜌
1 + 𝛼5)

4 − 0.0001] (2.12) 

The permeability calculations are more complex due to the usage of the multi-

porosity-permeability model. It will be discussed in the next subsection. 

 

2.3. Multi-porosity-permeability model with fracture network 

As mentioned in Figure 2.1, unconventional reservoirs have more complex 

lithology and pore structures compared with conventional plays. In fractured 

unconventional systems, the fracture network dominates fluid transportation while the 

matrix holds major fluid storage. Thus, common single-porosity models are replaced by 

multi-porosity settings (Figure 2.3) to better describe the coexistence of different pore 

systems (Ambrose et al., 2010; Sondergeld et al., 2010).  

 

Figure 2.3 The multi-porosity model setting (Sondergeld et al., 2010) 
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In this dissertation, the dual-porosity model from Warren and Root (Warren & 

Root, 1963) is further extended into a generalized form (Yan et al., 2013) and the matrix 

is further spliced by organic kerogen and inorganic clay matters to form a triple-porosity 

dual-permeability reservoir model with smaller-than-grid-dimension micro fractures and 

coupled with embedded discrete fracture model (EDFM), shown in Figure 2.4. 

 

Figure 2.4 The triple-porosity dual-permeability model with fracture coupling 

 

For computational performance, we further define the fluid flow pattern inside 

different porosity types. Fluid flow can appear from organic to inorganic pores and vice-

versa, while only the one-dimensional flow is allowed for fluids to enter the micro-

fractures. The micro-fracture system is then combined with the EDFM system which 

serves as the large-scale flow pathway.  



 

15 

 

The shape factors for matrix-microfracture flow are derived from Kazemi’s 

model (Kazemi et al., 1976) with the following form: 

𝜎 = 4(
𝑘𝑖

𝐿𝑖
2 +

𝑘𝑗

𝐿𝑗
2 +

𝑘𝑘

𝐿𝑘
2) (2.13) 

Besides the Darcy convection, Langmuir absorption/desorption, and diffusion 

process mentioned above, more fluid flow mechanisms are also implemented with 

respect to this multi-porosity-permeability model. Fluid follows Darcy flow inside 

fractures, and slippage flow takes control when flowing from matrix pores to fractures 

(Teng et al., 2016). This gives us a continuous, linear superposition model for gas flow 

in shale (Civan, 2010) considering slip flow and Knudsen diffusion. Water flow in shale 

is less studied compared with hydrocarbon. Using steady-state Darcy flow in both pore 

space and fractures (Sun & Schechter, 2015; R.-h. Zhang et al., 2019) can significantly 

simplify the calculation and saves computational time with the cost of accuracy. This 

Darcy versus non-Darcy effect will be further discussed in Chapter 5.  

Fractures with dimensions larger than grid size are modeled separately using 

EDFM by injecting fracture planes into the matrix system and connecting them together 

using non-neighbor connections (NNC). A more detailed description of the EDFM 

method, as well as transmissibility calculations, can be found in Chapter 4. 

2.4. Global Jacobian system with wells and fractures 

To obtain the unconditionally stable nature with respect to time-step size, the 

fully implicit method (FIM) is used to manage the time discretization. The said method 

requires solving a large Jacobian system of linear equations at every Newton-Raphson 
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iteration step. The residual Jacobian can be derived based on the governing mass-balance 

partial differential equations, where the residual has the form of: 

𝑅𝑖
𝑘+1 =

1

∆𝑡
(𝑁𝑖

𝑘+1 − 𝑁𝑖
𝑘 + 𝐷𝑖

𝑘+1 − 𝐷𝑖
𝑘) +∑𝑞𝑖,𝑓𝑙𝑢𝑥 +∑𝑞𝑖,𝑠𝑟𝑐 = 0 (2.14) 

 

The constructed residual Jacobian for the reservoir with respect to the matrix and 

EDFM fracture systems has the form of Figure 2.5.  With proper reordering of fracture-

matrix items, it can be divided into different sub-matrices: 

1) The fracture-to-fracture sub-matrix (top-left). 

2) The matrix-to-matrix sub-matrix (bottom-right). 

3) & 4) The fracture-matrix sub-matrix (top-right and bottom-left, similar by 

transposing). 

 

Figure 2.5 The residual Jacobian matrix for matrix-fracture system with sub-

division (left) and illustration of datapoints (right), edited from Yan et al. 2017 

 

Wellbore settings are calculated using the Peaceman model (Peaceman, 1990) 

with the form of Equation 2.15.  
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𝑄𝑖 = 𝑊𝐼∑𝑥𝑖,휀𝑗
𝑘𝑟𝑗

𝜇𝑗
(𝑃𝑗 − 𝑃𝑏ℎ)

𝑛𝑝

𝑗=1

(2.15) 

We use the implicit well method to couple wellbore flow into the reservoirs. By 

constructing the well residual Jacobian and attaching them after the degree-of-freedom 

(DOF) of reservoir Jacobian, the following block-matrix can be generated: 

[
𝐽𝑅𝑅 𝐽𝑅𝑊
𝐽𝑅𝑊

𝑇 𝐽𝑊𝑊
] [
𝑢𝑅
𝑢𝑊
] = [

𝑓𝑅
𝑓𝑊
] (2.16) 

Whereas 𝐽𝑅𝑅 is the reservoir residual Jacobian, 𝐽𝑊𝑊 is the well residual Jacobian, 

and 𝐽𝑅𝑊 is the coupled well-reservoir submatrix. An illustration of this global Jacobian 

system is shown in Figure 2.6. 

 

Figure 2.6 The illustration of global Jacobian with implicit well settings 

 

It is worth noticing that coupling the well Jacobian using this implicit format will 

worsen the ellipticity of pressure functions as the wellbore equations behave differently 

compared with the matrix. Thus, the Jacobian matrix conditions badly due to the large 

differences between fracture and matrix flow as well as wellbore behavior, making the 
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system no longer diagonal dominating and ill-conditioned and requiring further 

preconditioning before the linear solving phase. 

2.5. Case study 

A case study is performed to test and further validate the simulator designed 

above using a single well model settings from the YOST reservoir. The original 

reservoir model contains 3.95 million corner-point grids as well as 168 large-scaled 

hydraulic fractures connected to a horizontal wellbore with reasonably high 

heterogeneity. The illustration of model properties is shown in Figure 2.7 and Figure 

2.8. 
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Figure 2.7 The illustration of YOST well model depth (top) and porosity (bottom) 
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Figure 2.8 The illustration of YOST wellbore with hydraulic fractures 

 

The simulation is performed with GURU, and the results are shown in Figure 

2.9. A decent match is observed between the history data and simulated well bottom-

hole pressure, which provides a good validation for GURU’s accuracy and capability.  
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Figure 2.9 Yost well model validation. 

 

Another case study is performed to further test GURU’s robustness by 

performing upscaling to the YOST well model. The upscaled 1.5 million and 0.39 

million cell models match with the original model (Figure 2.10), proving that GURU 

has enough accuracy, robustness, and capability to hold unconventional reservoir 

simulations with complex fracture conditions.  
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Figure 2.10 Yost well model upscaling case study 
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3. UNCONVENTIONAL PERFORMANCE OPTIMIZATION 

 

3.1. Overview  

The time-consuming part of unconventional reservoir simulation comes down to 

mathematics. When we tune the GURU with test cases, it is well found that the most 

CPU-extensive tasks come from the Newton-Raphson iterations used in FIM 

discretization (Douglas et al., 1959; Monteagudo & Firoozabadi, 2007). Although FIM is 

the state-of-the-art mathematical method in the petroleum industry due to its 

unconditional stability and low restriction on timestep settings, it requires to construct 

and solve a large, usually sparse, highly coupled, ill-conditioned Jacobian linear system 

of equations at every Newton step. This Jacobian construction can easily take up to 50% 

of CPU time, as well as linear solving which can go up to 80% in some extreme cases. 

Thus, the performance in unconventional simulations with complex fracture conditions 

is all about optimizing the time-cost for these two steps. 

The linear solving method can be divided into two categories: direct and iterative 

methods (Saad, 2003). The direct method like Gaussian elimination solves the linear 

system of equations without mathematical error and does not require a set-up stage, thus 

can be effective for problems with dense matrix and limited size like VLE calculations. 

Iterative methods have a generally lower request of memory and better scalability 

compared to the direct methods. Thus, they have been widely used to solve the global 

Jacobian matrix. For reservoir simulators without strict symmetricity, Krylov subspace 

methods like GMRES and BiCGstab are more favored. When the Jacobian becomes 



 

24 

 

complex and the condition number worsens, preconditioning methods (Xu, 1992) are 

used to accelerate the converging speed for such iterative solvers. 

Due to the further development of modern multi-core computer architectures, 

developers can further accelerate the unsatisfactory simulator performance by making 

full use of the hardware’s computing power. Converting from the serial program to 

parallel may also require redesigning the parallel algorithms from previous serial ones. 

Much research has been proposed in this field (Mesbah et al., 2019; Werneck et al., 

2019; Yang et al., 2019), and the dissertation will talk about the method developed and 

used for GURU using both multi-core CPU and GPU accelerations. 

3.2. Iterative solvers  

3.2.1. General linear iterative methods  

This section talks about a basic problem in the field of scientific computation. 

Given a large sparse real matrix 𝐴 ∈ 𝑅𝑁×𝑁 of any form and a corresponding real vector 

𝑥 ∈ 𝑅𝑁, it is expected to find a real vector 𝑏 ∈ 𝑅𝑁 that satisfies, 

𝐴𝑥 = 𝑏 (3.1) 

The iterative solver converts the linear system of equations into a new form. By 

picking up a set of initial guesses for 𝑥𝑖
(0)(𝑖 = 1,2,⋯ ,𝑁), results get updated based on 

calculations from every iteration and gradually converge to an approximate solution with 

satisfactory tolerance. The general form of iterative solver can be written as: 

𝑥𝑘+1 = 𝑥𝑘 + 𝑄(𝑏 − 𝐴𝑥𝑘) (3.2) 

Whereas the matrix 𝑄 is known as the iterator. Preconditioning methods are 

developed such that the obtained 𝑄 ≈ 𝐴−1 to simplify the iteration calculations. More 
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detailed discussions on solvers and preconditioners are listed in the following 

subsections. 

3.2.2. Jacobian matrix storage methods  

The global Jacobian for unconventional reservoirs with EDFM fractures can be 

written in the following form with reordering (Yamazaki et al., 2011).  

𝐽𝑅 = [

𝐽𝑚𝑚 𝐽𝑚𝑓 𝐽𝑚𝑤

𝐽𝑚𝑓
𝑇 𝐽𝑓𝑓 𝐽𝑚𝑤

𝐽𝑚𝑤
𝑇 𝐽𝑓𝑤

𝑇 𝐽𝑤𝑤

] (3.3) 

Whereas any element of J for a specific grid can be written as a block matrix of 

residuals with respect to pressure temperature and component concentrations. This 

matrix can be extremely large but sparse, thus it is necessary to design specific methods 

to store it inside memory properly. 

The common approach is to store the sparse Jacobian matrix using the 

compressed sparse row (CSR) method or block-compressed sparse row (BCSR) method 

(Saad, 2011). Both methods save the non-zeros of Jacobian and keep dual lists for their 

column numbers and the starting index of row numbers while the BCSR further split the 

matrix into smaller dense submatrices. However, there can be differences in performance 

depending on how the data in the matrix are ordered and stored. For a specific 2-D two-

phase problem, it is possible to store the non-zeros either according to its CSR DoF or its 

BCSR grid pattern, which is shown in Figure 3.2. 
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Figure 3.1 The non-zeros for a 2-dimensional 2-phase problem sparse Jacobian 

based on CSR DoF (left) and BCSR grid pattern (right) 

 

Tests have been performed on both cases, and the grid pattern storage mode 

generally gives out better computational efficiency. This is due to the local storage of 

submatrix for the DoFs on every grid unit give out better memory access and less cache 

missing. Thus, BCSR with grid pattern is implemented in GURU to replace CSR for 

better performance. 

3.3. The multi-stage preconditioner 

The multi-porosity-permeability model with multi-component settings can be 

solved for the following DoFs: 

1) Pressure, 𝑃. 

2) Temperature (will be reduced in isothermal models), 𝑇.  

3) Saturation (concentration) for every component, 𝑆 = [𝑆1, 𝑆2,⋯ , 𝑆𝑛]
𝑇. 

As the different DoF are measured with separate equations, their mathematical 

quality also differs. In this dissertation, every DoF is assigned with its corresponding 

auxiliary space, and preconditioners can be designed based on the subspaces separately.  
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3.3.1. Schur complement methods for preconditioning 

Preconditioning can be a key factor to improve the computational efficiency, 

especially in reservoir cases where the eigenvalue distributions of Jacobian can be 

poorly distributed. An illustration of a simple test sample eigenvalue distributions is 

shown for 20x20x6 grids with 2 wells in Figure 3.3. It can be easily noticed that this 

Jacobian is poorly conditioned. When it comes to the even more complex Jacobian in 

fractured unconventional reservoirs, preconditioner becomes an urgent need.  

 

Figure 3.2 The eigenvalue distribution for a test case 10x10x3  

 

There have been a few common methods for sparse matrix preconditioning, 

including the incomplete LU factorization (ILU) (Concus et al., 1985; Meyerink, 1983), 

the multigrid method (MG), and the corresponding algebraic multigrid (AMG) (Brandt, 

1984; Falgout, 2006; Notay, 2010). The ILU preconditioner can be easy to design and 

have good efficiency in medium-sized single-phase simulations. However, its 

convergence gets gradually worsens with enlarged problem sizes which can cause 
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problems. AMG is more suitable for the elliptical pressure equations and has better 

capability than ILU. But as the non-symmetricity and heterogeneities get larger in 

unconventional reservoirs as well as the preconditioners applied, the ellipticity gets 

destroyed and the AMG performance can significantly degenerate or simply becomes 

non-usable.  

The constrained pressure residual (CPR) method (Wallis, 1983; Wallis et al., 

1985) takes advantage of both ILU and AMG based on the mathematical nature that the 

pressure functions are elliptical (without the effect of capillary pressure) while the 

concentration/saturation functions are more towards hyperbolic (Roy et al., 2019). It 

serves as a decent decoupling method in reservoirs where the pressure subblocks are 

more dominating by reducing the coupled relationship between pressure and 

concentration blocks and solving the approximate Schur complement (Smith, 1997) 

pressure system. The basic equation of CPR is shown as below by finding a decoupling 

matrix 𝑀 as the multiplier for Equation 3.1, 

𝑄CPR = 𝑆(𝐼 − 𝐴𝑀) +𝑀 (3.4) 

The general idea of the pressure-saturation (concentration) decoupling process 

can be described as below: 

[𝐼 −𝐽𝑃𝑆𝐽𝑆𝑆
−1

0 𝐼
] [
𝐽𝑃𝑃 𝐽𝑃𝑆
𝐽𝑆𝑃 𝐽𝑆𝑆

] = [
𝐽𝑃𝑃 − 𝐽𝑃𝑆𝐽𝑆𝑆

−1𝐽𝑆𝑃 0
𝐽𝑆𝑃 𝐽𝑆𝑆

] (3.5) 

For which the modified matrix reduces the Schur complement of 

concentration/saturation submatrix to zero. The 𝑆 in Equation 3.4 represents the 

smoother, for which ILU-based methods are commonly used. Common approaches to 

generate the 𝑀 matrix includes alternative block factorization (ABF), quasi-IMPES, and 
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true-IMPES methods (Cusini et al., 2015). Among the three methods, the ABF generates 

a strongly nonsymmetric pressure submatrix and destroys its ellipticity in full. The 

IMPES-based methods keep the symmetricity better, while, the true-IMPES approach 

keeps the ellipticity of pressure equations by most although is also harder to build up 

compared with the quasi method. A table representing tests of different decoupling 

approach results is shown in Table 3.1. The classical AMG is used to solve the original 

pressure functions directly and results are compared with the decoupled pressure sub-

matrix from the three CPR methods to compare the time consumption and numbers of 

iterations. It is found that the ABF method greatly increases the iteration numbers of 

pressure functions, while quasi- and true-IMPES methods tend to keep up with the 

classical AMG iterations. Thus, the quasi-IMPES is selected in this dissertation to be the 

desired CPR decoupling method for the pressure-concentration problem. 

Table 3.1 Comparison of the different CPR decoupling methods.  
Classical AMG ABF quasi-IMPES true-IMPES 

Case Time Iters Time Iters Time Iters Time Iters 

1 6.01 11 19.01 31 7.97 13 8.02 13 

2 10.21 5 15.57 12 10.43 6 10.31 6 

3 28.6 8 37.6 10 36.4 10 39.17 10 

4 114.9 13 175.2 20 138.6 15 142.9 15 

5 50.83 11 158.7 33 102.4 19 98.12 18 
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The decoupling matrix for the quasi-IMPES method is described as below: 

𝑀𝑞𝑢𝑎𝑠𝑖−𝐼𝑀𝑃𝐸𝑆 = [
𝐼 −𝑑𝑖𝑎𝑔(𝐽𝑃𝑆)𝑑𝑖𝑎𝑔(𝐽𝑆𝑆)

−1

0 𝐼
] (3.6) 

The CPR method can be reorganized into a multi-stage multiplicative 

preconditioner form in pressure auxiliary space, which is written as: 

𝐼 − 𝑄CPR𝐴 = (𝐼 − 𝑆𝐴)(𝐼 − 𝑈𝑃𝑄𝑃𝑈𝑃
𝑇𝐴) (3.7) 

Whereas 𝑄𝑃 is the Schur complement for pressures generated using the quasi-

IMPES method, and the 𝑈𝑃 is the auxiliary space convertor for pressure-to-global space 

with the following form: 

𝑈𝑃 = [
𝐼𝑃
0
] ∈ 𝑅𝑁×𝑁𝑃 (3.8) 

For the more complex problem within unconventional reservoirs with complex 

fracture conditions, the traditional CPR method is no more capable enough to hold the 

major difference in wellbore flux as well as fracture networks in the multi-porosity-

permeability model. Thus, a further developed multi-stage preconditioner is developed 

based on a similar but more advanced approach. The detailed process is discussed in the 

next subsection. 

3.3.2. General multi-stage pressure-saturation preconditioner 

It is easy to further extend the CPR multiplicative preconditioner into a more 

generalized case with 𝑁 different auxiliary spaces by creating multiple individual Schur 

complements, for which a general form of such CPR-type multi-stage multiplicative 

preconditioner can be written in the following form: 
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𝐼 − 𝑄ms𝐴 = (𝐼 − 𝑆𝐴)∏(𝐼 − 𝑈𝑖𝑄𝑖𝑈𝑖
𝑇𝐴)

𝑁

𝑖=1

(3.9) 

The multi-component multi-phase model has a complex saturation 

(concentration) part, which requires an extra stage of preconditioning for both pressure 

and saturation space. Thus, A preconditioner is written as: 

𝐼 − 𝑄ms-ps𝐴 = (𝐼 − 𝑆𝐴)(𝐼 − 𝑈𝑃𝑄𝑃𝑈𝑃
𝑇𝐴)(𝐼 − 𝑈𝑆𝑄𝑆𝑈𝑆

𝑇𝐴) (3.10) 

The pseudo-code description of this two-stage preconditioning can be shown as 

below: 

Table 3.2 The two-stage preconditioner for pressure-saturation problem 

Step 1. Given the residual vector 𝑟 and initial set of vectors 𝑥0. 

Step 2. Solve the saturation (concentration) problem based on the following equation: 

𝑥1 ← 𝑥0 + 𝑈𝑆𝐵𝑄𝑆𝑈𝑆
𝑇(𝑟 − 𝐴𝑥0) (3.11) 

Step 3. Solve the pressure problem based on the following equation: 

𝑥𝑠 ← 𝑥1 + 𝑈𝑃𝑄𝑃𝑈𝑃
𝑇(𝑟 − 𝐴𝑥1) (3.12) 

Step 4. Smoothing the solved vector 𝑥𝑠 with Gauss-Seidel smoothing. 

𝑥 ← 𝑥𝑠 + 𝑆(𝑟 − 𝐴𝑥𝑠) (3.13) 

Step 5. Global preconditioning the vector 𝑥 with ILU (0). 

 

In the table above, the 𝑄𝑃 part is solved approximately using a single-stage AMG 

V-cycle, while the 𝑄𝑆 part is obtained with one iteration of the Gauss-Seidel iteration. 

Global smoother 𝑆 is also taken by Gauss-Seidel, followed by another stage of global 

Jacobian preconditioning generated using ILU after the smoothing in Equation 3.13. 
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Tests have been performed to validate such preconditioner with implementations 

using a 7-component conceptual reservoir model with different problem sizes solved by 

PGMRES and tolerance error 10−3. Comparisons are made to the common ILU (0) 

preconditioned PGMRES approach, and results are shown in Figure 3.3. 

 

Figure 3.3 Comparison of two-stage preconditioner to ILU preconditioner 

 

It is worth noting that the ILU preconditioner is still capable to solve the problem 

effectively in such cases. However, the iteration number gets much larger with respect to 

the increased problem size. On the other hand, the 𝑄ms-ps preconditioner performs better 

with much lower iteration numbers, and the iteration number keeps stable for different 

sized problems. This can be effective in large and complex systems. However, small 

matrices may not benefit much from the reduced iteration numbers as the set-up phase 

for this multi-stage preconditioner requires an extra amount of time. 
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3.3.3. Multi-stage preconditioner for fractures and wells 

Adding fracture systems and wells make the system more complex as they hold 

different flow equations, and the numerical quantity differs which significantly worsens 

the matrix condition.  In this dissertation, fractures and wells are added into the matrix 

Jacobian by extending the global matrices, shown in Figure 3.4.  

 

Figure 3.4 Extending the global matrix for fractures and well systems 

 

The fracture numbers and well connections are usually much less than the 

reservoir matrix. However, they have significant contributions to the reservoir flow 

model and are coupled deeply in the global Jacobian. Thus, the 𝑄ms-ps preconditioner 

does not give out a satisfactory convergence rate. It is necessary to set up a new CPR-

style multi-stage preconditioner accounting for both the wells and fractures based on the 

𝑄ms-ps for the global Jacobian, in the form below: 

𝐼 − 𝑄msg𝐴 = (𝐼 − 𝑆𝐴)(𝐼 − 𝑈𝑃𝑄𝑃𝑈𝑃
𝑇𝐴)(𝐼 − 𝑈𝑆𝑄𝑆𝑈𝑆

𝑇𝐴)(𝐼 − 𝑈𝐹𝑄𝐹𝑈𝐹
𝑇𝐴)(𝐼 − 𝑈𝑊𝑄𝑊𝑈𝑊

𝑇 𝐴)(3.14) 

The pseudo-code description of this multi-stage preconditioning can be shown as 

below: 
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Table 3.3 The multi-stage preconditioner for fracture and well system 

Step 1. Given the residual vector 𝑟 and initial set of vectors 𝑥0. 

Step 2. Solve the well system based on the following equation: 

𝑥1 ← 𝑥0 + 𝑈𝑊𝑄𝑊𝑈𝑊
𝑇 (𝑟 − 𝐴𝑥0) (3.15) 

Step 3. Solve the fracture system based on the following equation: 

𝑥2 ← 𝑥1 + 𝑈𝐹𝑄𝐹𝑈𝐹
𝑇(𝑟 − 𝐴𝑥1) (3.16) 

Step 2. Solve the saturation (concentration) problem based on the following equation: 

𝑥3 ← 𝑥2 + 𝑈𝑆𝑄𝑆𝑈𝑆
𝑇(𝑟 − 𝐴𝑥0) (3.17) 

Step 3. Solve the pressure problem based on the following equation: 

𝑥𝑠 ← 𝑥3 + 𝑈𝑃𝑄𝑃𝑈𝑃
𝑇(𝑟 − 𝐴𝑥1) (3.18) 

Step 4. Smoothing the solved vector 𝑥𝑠 with Gauss-Seidel smoothing. 

𝑥 ← 𝑥𝑠 + 𝑆(𝑟 − 𝐴𝑥𝑠) (3.19) 

Step 5. Global preconditioning the vector 𝑥 with ILU (0). 

 

Equation 3.17 counts back into the method mentioned in Table 3.2 by 

performing calculations separately for pressure and saturation using Equation 3.11 and 

3.12. A global Gauss-Seidel is also performed on Equation 3.18 as well as a next-stage 

ILU preconditioning to obtain the final preconditioner 𝑄msg. 

The 𝑄𝑊 and 𝑄𝐹 here require explicit care in this system. In the form of an 

extended matrix, their decoupling process can also be calculated using the Schur 

complement method to obtain the desired stage-preconditioner with satisfactory 

accuracy. Specifically for the wells and fractures, both the inverse of their Schur 
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complements and the inverse of the corresponding subspace matrices are approximated 

using a two-stage AMG V-cycle. 

It is also worth noting that the order used to solve the multiple subspaces is 

important. In unconventional simulations with fractures and wells, it is chosen that we 

perform the preconditioning firstly to wells, then to fractures, move to saturations, and 

the last to pressures, and smooth the global Jacobian only once after solving all subspace 

problems. This provides higher robustness in reservoir simulation tests. 

A case study has been performed on a reservoir with 200x200x3 grids and a 7-

component fluid model. Multiple fracture models are created to validate the multi-stage 

preconditioners and comparisons are made with respect to the ILU (0). Results of 

iterations and CPU times are shown in Figure 3.5 and Figure 3.6, respectively. 

 

Figure 3.5 Comparison of multi-stage preconditioner to ILU preconditioner, 

iteration numbers. The ILU preconditioned case failed to converge for the 128-

fracture case after 500 iterations, thus only the finished iteration number is listed. 
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Figure 3.6 Comparison of multi-stage preconditioner to ILU preconditioner, CPU 

time cost. The ILU preconditioned case failed to converge for the 128-fracture case 

after 500 iterations, so the result for only these 500 are listed. 

 

It is worth noting that adding fractures and wells significantly worsens the 

Jacobian condition. ILU becomes significantly slower and even unusable when fracture 

numbers are large. On the other hand, the iteration number of the global multi-stage 

preconditioner slightly increases but mostly stays stable, and it significantly reduces the 

iteration number and has a much smaller CPU time cost. 

3.3.4. Linear solvers for the subspace problems 

The pressure subspace and saturation subspace behave differently based on their 

mathematical form of equations. Thus, it is necessary to develop different solving 

strategies for them specifically.  
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The pressure subspace is usually large in DoFs. We would like to keep its 

ellipticity by using CPR-based quasi-IMPES decoupling, and thus the system can be 

approximated fast using classical AMG methods. 

The saturation (concentration) subspace, on the other hand, is hyperbolical, and 

the saturation profile is mostly dominated by the pressure distribution. Due to this 

physical behavior, it is appropriate to perform a reorder to obtain a downwind scheme 

(Courant et al., 1952), which can theoretically generate a lower triangular matrix. A 

model with two components and 2-D grids is illustrated for the saturation matrix as 

below: 

𝐽𝑆 = [
𝐽𝑆1,𝑆1 𝐽𝑆1,𝑆2
𝐽𝑆2,𝑆1 𝐴𝑆2,𝑆2

] (3.19) 

 

 

Figure 3.7 Reordering method for downwind scheme with respect to the pressure 

profile. The blue arrows show the pressure difference among the grids.  

 



 

38 

 

The reordering method based on pressure difference is shown in Figure 3.7. A 

comparison between the grid-index ordering and downwind ordering is shown in Figure 

3.8. 

 

Figure 3.8 Matrix non-zeros for the illustrated case in Figure 3.7 with grid-index 

ordering (left) and downwind ordering (right).  

 

Compared to the grid-index method, the downwind reordering provides a better 

pattern, which can be solved effectively using the Gauss-Seidel method. 

 

3.4. Parallelization of Unconventional Simulator 

Parallel computation is a method to execute multiple instructions at a single time. 

The design of parallelization is to accelerate the computational speed and raise the 

capability of solving larger and more complex problems (Figure 3.9). Compared with 

the serial mode, the parallel computation has the following aspects: 

1) A problem is broken into discrete parts that can be solved concurrently. 

2) Each part is further broken down into a series of instructions. 

3) Instructions from each part execute simultaneously on different processors. 

4) An overall control/coordination mechanism is employed. 



 

39 

 

 

Figure 3.9 Illustration of parallel computation method, edited from Introduction to 

Parallel Computation (Grama et al.). 

 

3.4.1. Parallel programming models 

The computational efficiency benefits a lot from parallel computation, especially 

by making more use of hardware capability. The modern CPUs and GPUs are designed 

with multi-core architectures. Thus, it becomes necessary to design programs running 

parallelly. Multiple methods and interfaces have been developed to allow parallel 

programming on different hardware, for which the dissertation will give a brief review 

of a few widely used models. 

OpenMP (Dagum & Menon, 1998) is a parallel programming model designed for 

shared-memory multi-core CPU architectures. By providing a high-level abstract 

description of control functions and a fork-join model, it allows the compiler to 

automatically build parallel programs. It is easy to design and use, but not efficient for 
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cases with complex thread communication. Nor can it be used in distributed-memory 

architectures, for which MPI is more preferred. 

MPI (Forum, 1994) is a standard for message-passing interfaces between 

processes. It provides a model for designing parallel programs with message-passing 

models. This model has the capability to be used on both shared and distributed 

architectures and has much wider portability and better CPU efficiency compared to 

OpenMP. MPI is one of the key techniques in the field of large-scale numerical 

simulation, however, programs need to be designed with much care and effort. 

CUDA (Nickolls et al., 2008) is a software and hardware architecture for GPU 

computing designed by NVIDIA. Compared with the multi-core CPUs, GPUs have 

much larger numbers of computing processors (cores) using a SIMD architecture 

(Figure 3.10) which allows much higher floating-point performance. However, GPU is 

only more effective for computation with less logical complexity since GPU does not 

support advanced mechanisms like branch prediction and the cores are generally weaker 

compared to CPUs. 
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Figure 3.10 Illustration of GPU acceleration (Goyat & Sahoo, 2019) 

 

3.4.2. Optimize the Jacobian construction 

The Jacobian construction is one of the most time-consuming parts in 

unconventional compositional simulations as massive calculations are expected for every 

single grid at every Newton iteration step. However, the process only reads connection 

data from the last calculated Newton step, for which calculations can be made 

individually without data dependency. Thus, the Jacobian construction process in the 

unconventional simulation itself is a vectorized process and can be highly parallelizable 

conceptually. A test case with 200x200x3 grids has been made to test the parallelized 

performance for Jacobian matrix construction, and the results are shown in Figure 3.11. 

However, raising the thread numbers to a much higher value does not give out 

satisfactory performance increases due to the complexity involved in VLE calculations. 
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Figure 3.11 Case study of parallelized Jacobian matrix construction. 

 

It is also worth noting that the Jacobian construction can be further optimized 

since the geometry of the Jacobian does not change with time in the case of static 

connection profiles. Thus, it is appropriate to create a hash table (Cormen et al., 2009) 

for the reordered BCSR Jacobian method with respect to grid indexing and avoid further 

access and operations on matrix storage and ordering. 

3.4.3. Parallelization of Gauss-Seidel 

The Gauss-Seidel (GS) is one of the most common iterative methods in matrix 

computations. It is used in GURU both as the smoother for global Jacobian and the 

pressure subspace AMG V-cycle as well as the solving method for saturation subspace. 

It serves as an improved method to the Jacobi iteration, with the following form of linear 

equations and matrix-vector operations: 
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{
  
 

  
 𝑥(0) = (𝑥1

(0), 𝑥2
(0),⋯ , 𝑥𝑛

(0))
𝑇
(initial vector)

𝑥𝑖
(𝑘+1) =

(𝑏𝑖 − ∑ 𝐴𝑖𝑗
𝑖−1
𝑗−1 𝑥𝑗

(𝑘) − ∑ 𝐴𝑖𝑖𝑥𝑗
(𝑘+1)𝑛

𝑗=𝑖 )

𝐴𝑖𝑖
𝑖 = 1,2,⋯ , 𝑛;

𝑘 = 0,1,⋯ , the iteration numbers

 (3.20) 

�⃗�𝑘+1 = �⃗�𝑘 + (𝐷 + 𝐿)−1(�⃗⃗� − 𝐴�⃗�𝑘) (3.21) 

 

As in the GS process, at iteration step 𝑘 + 1, the calculated variables 𝑥𝑗
(𝑘+1)

, 𝑗 =

1,2,⋯ , 𝑖 − 1 are used to get the i-th component 𝑥𝑖
(𝑘+1)

. This significantly improves the 

convergence rate compared to Jacobi iterations, while on the other hand, also makes the 

GS process a conceptually serial algorithm. 

Implementations are made to obtain better parallel performance for GS with 

respect to lowering the convergence rate. The most famous method is the black-red 

Gauss-Seidel (Koester et al., 1994). The structured grids are partitioned into multiple 

groups and marked as different colors, and the vertex set is divided into subgroups for 

which iterations are performed parallelly on the same color. For example, in the black-

red GS of Figure 3.12, firstly all the red vertices are computed in parallel, and then all 

the black vertices are calculated in parallel with respect to the red in serial. The four-

color or more colored diagrams can also be used in this manner. 
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Figure 3.12 Multicolor GS method based on grid structures: black-red color (left) 

and four-color (right). 

 

It is worth noting that the maximum number of multi-color groups cannot exceed 

the total number of non-zero entries. It is not desirable to have too many groups, as the 

grouping algorithms become inefficient, and the performance of the parallel part is 

weakened. At the most extreme condition, the multi-color GS reduces to Jacobi iteration, 

which is fully parallelizable but slow to converge. 

Further research on the grouping method shows that the non-zeros with smaller 

absolute values in a row show less impact in Gauss-Seidel iterations (Vaněk et al., 

1996). Thus, it is possible to build up a connection matrix based on the neighborhood 

coupling effect to further improve the parallel performance of multi-color GS. The 

connection matrix is generated as below: 

𝐶𝑖𝑗 =

{
 
 

 
 𝑤, |𝑎𝑖𝑗| >

1

𝑛
∑|𝑎𝑖𝑘|

𝑛

𝑘=1

0, |𝑎𝑖𝑗| ≤
1

𝑛
∑|𝑎𝑖𝑘|

𝑛

𝑘=1

 ∀ 𝑖, 𝑗 = 1,2,⋯ , 𝑛, 𝑖 ≠ 𝑗  (3.22) 



 

45 

 

In which case the weight factor value of 𝑤 > 0 shows that the value is strongly 

coupled while the value of 0 is weakly coupled. This allows further regrouping, and the 

parallel performance is enhanced. A case study has been performed on the multi-color 

GS with connection matrix regrouping (MS-GS-CR) and normal multicolor GS (MS-

GS) in the test reservoir model solved by classical AMG with different thread numbers. 

The results are shown in Table 3.4. 

Table 3.4 Case study of the multi-color GS method 

 Threads 1 2 4 8 16 

MS-GS Newton 151 151 151 157 191 

Linear 1378 1378 1378 1723 1935 

GS-CR Newton 137 137 134 134 133 

Linear 1416 1416 1405 1402 1398 

 

The comparison shows that the multicolor GS with connection regrouping is 

mostly stable with strong scalability. It is also worth noting that the regular multicolor 

GS performs significantly better under low thread numbers while the regrouping method 

has much better parallel performance. Thus, picking the appropriate method according to 

the hardware architecture can be important in the Gauss-Seidel iterations. 

3.4.4. Parallelizing the linear solver 

While the Krylov subspace linear iterative solvers are not conceptually fully 

parallelizable at every step, there are quite a few matrix-vector and vector-vector 

operations which can significantly benefit from the parallelization. This subsection gives 
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out an algorithm on a parallelized version of PGMRES in Table 3.5, which is used in 

GURU as the linear solver.  

Table 3.5 The parallel PGMRES algorithm description 

Step 1. Select the initial guess vectors 𝑥0. Calculate the residual vector: 

𝑟0= b − 𝐴𝑥0 (3.23) 

Step 2. Calculate the 𝑝1 vector: 

𝑝1 = 
𝑟0
‖𝑟0‖

(3.24) 

Step 3. Solve the Arnoldi process for vector 𝑃𝑛 and matrix �̃�𝑛. For 𝑗 = 1, 2,⋯ , 𝑛, 

�̄� = 𝐴𝑄�⃗�𝑗 (3.25) 

 ℎ𝑖,𝑗 = (�̄�，𝑝𝑖)， 𝑖 = 1, 2,⋯ 𝑗 (3.26) 

𝑝𝑗+1 = �̄� −∑ ℎ𝑖,𝑗

𝑗

𝑖=1

𝑝𝑖 (3.27) 

 ℎ𝑗+1，𝑗 = ||𝑝𝑗+1|| (3.28) 

 𝑝𝑗+1 =
𝑝𝑗+1

ℎ𝑗+1,𝑗
(3.29) 

Step 4. Solve the minimalization problem for 𝑦: 

‖𝛽𝑒1 − �̃�𝑛𝑦‖ = 𝑚𝑖𝑛
𝑧∈𝑅𝑛

‖‖𝑝1‖𝑒1 − �̃�𝑛𝑧‖ (3.30) 

Step 5. Solve the residual 𝑟𝑛: 

𝑥𝑛 = 𝑥0 + 𝑄𝑃𝑛𝑦𝑛 (3.31) 

𝑟𝑛 = 𝑏 − 𝐴𝑥𝑛 (3.32) 
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Table 3.5 Continued The parallel PGMRES algorithm description 

Step 6. If ‖𝑟𝑛‖ ≤ 𝑡𝑜𝑙, end the iteration. Else, go to Step 3 with updated 𝑥0 and 𝑝1. 

𝑥0 = 𝑥𝑛 (3.33) 

𝑝1 =
𝑟𝑛
‖𝑟𝑛‖

(3.34) 

 

It is worth noting that many of these equations in this PGMRES can be 

parallelized, including Equation 3.24, 3.25, 3.31 as matrix-vector multiplication and 

Equation 3.26 as a vector-vector inner product. The algorithm is coded using OpenMP 

and CUDA on CPU and GPU systems, and a case study has been performed to measure 

the effect of parallelization using the strong scalability test on a reservoir problem. The 

results are shown in Table 3.6. 

Table 3.6 Case study of the parallelized PGMRES algorithm 

Threads Time Speedup 

1 2898.25 1.00 

2 1937.83 1.50 

4 1305.67 2.22 

8 1099.91 2.63 

16 571.02 5.08 

GPU 234.99 12.33 

 

An increasing trend is obtained based on the thread number. CUDA on GPU 

performs significantly better compared to OpenMP on CPU. The production and 
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pressure curves are matched on every run, proving that the parallel algorithm is stable 

and robust. 

3.4.5. Parallelizing the multi-stage preconditioner 

The CPR-style multi-stage preconditioner can also be further optimized. The 

Gauss-Seidel process can be parallelized using the multi-color method mentioned in the 

previous subsection. In the specific algorithm provided by Table 3.3, the AMG V-cycles 

in the subspace calculations are parallelized using traditional four-color GS as well as 

the saturation subspace. The connection reordering GS is further applied to the pressure 

subspace for better parallelization performance. 

On the other hand, the preconditioner is further developed using a two-step 

adaptive setup method. The first step is used to reduce the unnecessary AMG set-up cost 

in the computation of subspace stage-preconditioners by reusing the calculated 

preconditioner from the last AMG iteration.  A limitation coefficient 𝛿 is applied for 

classical AMG with respect to the convergence and residual of the current stage: 

‖𝑟𝑖‖

‖𝑟𝑖−1‖
≤ 𝛿 (3.35) 

Whereas 𝑟𝑖 is the residual vector of the i-th iteration. This dissertation also 

provides a definition of 𝛿 for automatic processing with respect to the iteration error 

tolerance 휀 as: 

𝛿 = 휀
‖𝑟0‖

‖𝑟𝑖‖
(3.36) 

The second step of this adaptive method is applied to the global multi-stage 

preconditioner. It is observed that the Jacobian matrix within a certain timestep does not 
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vary much between the adjacent Newton-Raphson iterations. Thus, it can be unnecessary 

to regenerate the preconditioner 𝐵 matrix at every Newton step. An adaptive coefficient 

𝜇 is used as the control variable with respect to the number of linear solver iterations. 

The algorithm is described in Table 3.7. 

Table 3.7 The adaptive multi-stage preconditioner for a NR-iteration 

Step 1. Generate preconditioner 𝑄𝑖.  

Step 2. Solve the Newton step at 𝑖 and obtain the iteration number 𝑘𝑖: 

𝑥𝑖+1 = 𝑥𝑖 +𝑄𝑖(𝑏𝑖 − 𝐴𝑖𝑥𝑖) (3.37) 

Step 3. For 𝑖 = 𝑖 + 1, If 𝑘𝑖 < 𝜇, go to step 2 with: 

𝑄𝑖+1 = 𝑄𝑖 (3.38) 

Else, go to step 1. 

It is worth noting that when 𝜇 = 0 is selected, this method simplifies to the 

general multi-stage preconditioning form. Picking up the 𝜇 value can be important for 

simulation performance optimization to find the balance between preconditioner set-up 

time cost and the linear solver acceleration. Case studies have been performed to analyze 

the performance of this method, shown in Table 3.8. 
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Table 3.8 Case study of the parallelized PGMRES algorithm 

μ 0 50 100 

Threads Time Speedup Time Speedup Time Speedup 

1 2898.25 1.00  2798.21 1.04  2920.01 0.99  

2 1937.83 1.50  1827.21 1.59  1926.66 1.50  

4 1305.67 2.22  1201.67 2.41  1395.09 2.08  

8 1099.91 2.63  1067.11 2.72  1160.34 2.50  

16 571.02 5.08  541.99 5.35  581.01 4.99  

 

Unfortunately, there has been no easy way to obtain the desired 𝜇 value to obtain 

peak performance as the coefficient can be affected by the Jacobian structure, the 

problem size, the parallel thread numbers, etc. It is necessary to run a few numerical 

tests and hand-pick a value for performance optimization. 

3.5. Case study 

A few case studies have been performed on the real field reservoir data to further 

test the simulator’s performance. Strong scalability tests have been performed on a 

Hansen well model with 1 horizontal wellbore, 100 fractures, and 80 thousand grid 

blocks. An illustration of this field model is shown in Figure 3.13. Tests are performed 

for different CPU threads as well as GPU, and the numerical simulation speedups are 

compared with respect to the serial case at a total of 561 seconds, shown in Figure 3.14. 
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Figure 3.13 Illustration of Hansen well model. 

 

 

Figure 3.14 Hansen well strong scalability test. 
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Significant although not ideal speedups for CPU multi-process performance have 

been obtained on the Hansen well model case study. GPU gives out peak performance 

which significantly outperforms all the other CPU cases. However, the CPU case with 

16 threads does not work as well as expected, which may be caused by the 

communication delay and setup cost in such a specific case. 

Another weak scalability test has also been performed on the YOST model 

described in Chapter 2. The results are shown in Figure 3.15. 

 

Figure 3.15 YOST model weak scalability test. 

 

The results obtained for 3 different cases with 0.39, 1.5, and 3.9 million cells are 
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parallelization and preconditioning methods developed in this chapter are 

computationally stable and scalable with respect to this fractured unconventional 

reservoir simulator. GPU still outperforms the CPU in all cases, but it is expected to 

change with much smaller cases. 

A few other optimization approaches based on the parallelization and domain 

decomposition methods are also proposed to further enhance the performance for 

unconventional reservoirs with more extreme fracture conditions with respect to larger 

fracture matrix size and complex fracture network connections. However, they will not 

be able to be analyzed without the prerequisite knowledge of the developed EDFM 

method. Thus, they are not implemented in the case studies in this chapter and will be 

discussed in Chapter 5. 
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4. FRACTURED UNCONVENTIONAL RESERVOIR MODELING  

 

4.1. Overview 

Fractured unconventional reservoirs usually have a complex fracture network 

consisting of natural and hydraulic fractures, which serve as the dominating flow paths 

in hydrocarbon production. The shape, dimensions, and connections in said fracture 

network have significant impacts on unconventional simulation results. Thus, it is 

necessary to propose a method to characterize the fracture network precisely and 

efficiently with respect to the complexity and uncertainty as well as the bulk reservoir. 

The multi-porosity model has already been discussed in this dissertation for its 

capability of modeling fracture flows. However, this method is derived based on a few 

very specific and uniform assumptions and therefore is not suitable for the large and 

complex fracture networks in unconventional reservoirs. Actually, significant errors can 

occur while using it for fracture-dominated reservoir performances (Gale et al., 2014; 

Ouillon et al., 1996). 

 In the past decades, a few other different approaches have been proposed to 

better model the fractures, which fall into three different categories: local grid 

refinement (LGR), discrete fracture network (DFN), and embedded discrete fracture 

model (EDFM).  

LGR fracture model is introduced into the petroleum industry firstly as an 

extended version of the continuous-continuum model (Azim & Abdelmoneim, 2013). 

This approach models the fractures by reshaping the local grids into smaller dimensions 
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and creating the fracture flows using permeability multipliers for equivalent flux 

volumes (Figure 4.1). This approach tends to give very fast simulation results but 

usually fails to preserve the nature of fracture geometry and complex flow behaviors. 

 

Figure 4.1 Illustration of LGR fractures. 

 

 DFN is another approach based on unstructured gridding and discretizing 

methods, which explicitly requires the unstructured grids to conform to the shape and 

size of fractures (Sun & Schechter, 2015). This forms a global grid system without the 

need to assume anything for fracture network geometries, which allows the precise 

modeling of flux inside fractures and between fracture and matrix (Figure 4.2). 

However, DFN results in an excessively large number of grid cells from the fact that 

grid refinement is required close to the fracture regions for convergence, which can be 

challenging to compute efficiently.  
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Figure 4.2 Illustration of DFN fractures. 

 

EDFM (Lee et al., 2000) takes the accuracy advantage from DFN to models the 

fractures discretely. But it does not require the matrix grids to conform to fracture 

geometry. Instead, it embeds the fractures directly into the matrix system using none-

neighbor connections (Figure 4.3). Much research has been done to further extend the 

usage of the EDFM method by implementing the EDFM model into 3-dimensional cases 

(Moinfar et al., 2013) and coupling the fracture grids based on grid subdivisions (Yang 

et al., 2018). However, convergence issues may occur when two or more fractures 

interact in a coarse matrix grid (Ţene et al., 2017), for which further modifications on the 

EDFM is needed to provide precise and efficient solutions. 

Due to its capability of computational efficiency as well as the flexibility to 

create fracture networks, it is selected as the desired fracture modeling method in this 

dissertation. 
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Figure 4.3 Illustration of EDFM fractures. 

 

4.2. Matrix model 

As with EDFM fracture models, matrix gridding becomes less of an issue in 

unconventional reservoirs as the regional flow is always dominated by the fracture 

network. However, the idea of orthogonal connections still comes into consideration 

when building up the matrix grids to improve the convergence rate of the global matrix. 

The grid orientation effect also has a remarkable influence on the pressure and 

concentration profiles dominated by fracture-matrix connections using TPFA. Thus, a 

point-based gridding method is used to create a PEBI-like (Helnemann et al., 1991) 

unstructured system for the global matrix grid. 
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A given shape of reservoir region can be divided into subsystems of 𝑛 convex 

hulls. For every convex hull, grid center points are placed under a centroid Voronoi 

tessellation (CVT) organization (Du et al., 1999) to preserve the best grid similarity. An 

illustration is shown in Figure 4.4 for the creation of uniform PEBI grids using this 

method.   

 

Figure 4.4 Illustration of CVT-based matrix gridding. 

 

Reservoir boundaries are captured using another method named restricted 

Voronoi diagram (RVD) (Merland et al., 2011). It cuts the Voronoi cells directly with 

surfaces outside the central region and reconstructs the grid boundaries (Figure 4.5). 

This allows for easy implementation of complex reservoir layers and geological bodies 

like faults and pinch-outs. 
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Figure 4.5 Illustration of RVD-based grid boundaries. 

 

Case studies have been performed on a few real reservoir models. The result of a 

layered reservoir with multiple faults is shown in Figure 4.6. 
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Figure 4.6 Case study of reservoir model with wells and faults using CVT point 

settings (top) and generated reservoir grid systems (bottom). 

 

It is worth noting that, if the CVT points are placed in a uniform manner both 

row-wise and column-wise, this method degenerates into creating normal structured 

Cartesian grids. It can be convenient to have such ability for testing and case studies. 
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4.3. Fracture model 

Based on the dimension of reservoir matrix grids, it is possible to split the 

reservoir fractures into different categories. In GURU, fractures with dimensions smaller 

than the matrix grid are modeled using the micro-fracture layer in the multi-porosity-

permeability model, while fractures with larger dimensions are modeled explicitly using 

EDFM, which forms the connections into a fracture network. 

The fracture model used in this dissertation is named LGR-EDFM which is based 

on the c-EDFM method (Chai et al., 2016) with further modifications and functional 

extensions into general unstructured grid systems as well as improved convergence. The 

transmissibility for fracture-fracture (F-F) and fracture-matrix (F-M) connections are 

listed in Table 4.1. 

Table 4.1 Transmissibility formulations for c-EDFM, modified from Chai (2016). 

Type Tnnc Annc knnc dnnc 

F-F 1

Tf1
-1 + Tf2

-1 
lf1,f2min (wf1, wf2) --- --- 

F-M Anncknnc
dnnc

 
AF-M 2

kF
-1 + kM

-1 
1

V
∫df dv 

 

To further extend the usage of c-EDFM on fractured unstructured grid systems, a 

two-step LGR implementation has been performed to improve the convergence rate on 

traditional EDFM. The first step is to refine the connected matrix cells based on fracture 

surfaces (Figure4.7). For fractures that only partially thrust the matrix, an extension is 

performed so that the corresponding cell also gets split. This eliminates the hard part of 
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measuring the connection surfaces between the fracture plane and an arbitrary shaped 

unstructured matrix grid. 

 

Figure 4.7 LGR-EDFM grid splitting. Notice that the bottom-right cell is partially 

thrust by fracture but still splits into multiple grids. 

 

After the splitting process, the corresponding cells are then merged with the outer 

layer of surrounding unchanged matrix grids, which provides a space to perform the next 

step of local grid refinement. The LGR is processed is applied to the new grids based on 

a CVT-like point-based structure, creating smaller grids (Figure 4.8) which allow better 

pressure convergence between the matrix and fractures. 
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Figure 4.8 Grid LGR for EDFM. Smaller cells are created for better convergence.  

 

A case study has been performed to test the efficiency of the LGR-EDFM 

method in a 200x200x3 reservoir with different numbers of intersecting fractures using 

the multi-stage preconditioned GURU. The results are shown in Figure 4.9. The LGR 

helps to get a better convergence rate by reducing the iteration numbers, which is much 

less sensitive compared to classical EDFM approaches. However, this does not always 

guarantee less CPU time as the enlarged grid numbers and Jacobian generally require 

more computations and thus may outperform the good of lessened iteration numbers in 

small cases. 
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Figure 4.9 Grid LGR for EDFM. Smaller cells are created for better flux 

convergence.  

 

4.4. Fracture network characterization 

To better simulate the unconventional reservoir with complex fracture 

conditions, it is important to get an accurate characterization of the fracture network., 

which consists of both hydraulic fractures and natural fractures.  

Various research has been performed on hydraulic fracture characterizations. The 

state-of-the-art approaches in the field practices build up hydraulic fractures by injecting 

planar surfaces according to micro-seismic data (Le Calvez et al., 2007; Maxwell et al., 

2002; Warpinski et al., 1998) and well log information (Molenaar et al., 2012; 
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Sookprasong et al., 2014). On the other hand, research on the natural fracture part is 

relatively rare. The randomized fracture plot (L. ZHANG et al., 2019) has been used to 

describe the natural fracture distribution by generating randomized distributions based 

on fracture intensities using a Poisson process and modeling them together with bulk 

rock using DFN. As the fracture network is generated using randomized probabilistic 

methods, it is usually hard to preserve geological knowledge, and that are geologically 

unrealistic distributions can occur frequently. Due to the large uncertainty in fracture 

distributions, extensive usage of history matching has always been required to create 

models for both hydraulic and natural fractures, and the time cost can be extremely large 

to obtain a usable model.  

In this dissertation, a novel numerical approach for characterizing the fracture 

network using a hybrid fracture model has been proposed. Hydraulic fractures are 

modeled using imaging methods from micro-seismic location point clouds, while the 

natural fractures are characterized using a fractal model. Calibration methods have been 

proposed to further reduce the uncertainty of generated fracture networks. 

4.4.1. Hydraulic fracture characterization 

The current hydraulic fracture characterization methods make full use of the 

micro-seismic data from the unconventional well fracking. The datapoint clouds are 

interpreted into a fracture network model by evaluating the distribution of micro-seismic 

events. A typical workflow is approached by using the micro-seismic event width to 

length aspect ratio (WLAR) to fit either planer surfaces or fracture networks by rotating 

(Shakiba & Sepehrnoori, 2015), shown in Figure 4.10. The green line here represents 
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horizontal wellbore, the blue represents a planar hydraulic fracture of the main fracture 

with low WLAR from micro-seismic clouds, while the red represents a fracture network 

model including main and second-level fractures with high WLAR from micro-seismic 

clouds. 

 

Figure 4.10 2-D Illustration of different hydraulic fracture models from micro-

seismic clouds.  

 

However, these characterization methods may fail to capture the complex nature 

of hydraulic fracture networks. On the other hand, they usually require high-quality data 

from multi-well array systems for accuracy, whereas single-well observations have 

shortcomings in the determination of accurate fracture geometries and locations (Seibel 

et al., 2010). To improve the situation, in this dissertation, an imaging-based data-driven 

hydraulic fracture characterization method is developed with automatic clustering, which 
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provides a more generalized model with the capability to model multi-well as well as 

single well systems with respect to multistage hydraulic fracturing micro-seismic data 

clouds.  

There have been multiple imaging algorithms to build up planes from datapoint 

clouds. However, they cannot be directly imported into hydraulic fracture 

characterization. As the algorithms only select data based on statistics, they may create 

fracture planes with geologically unrealistic connections. Thus, a pre-build clustering 

stage becomes necessary to limit the imaging algorithms within specific regions. This 

dissertation uses an iteration clustering method based on the fracture spacing and 

fracking stage information to better construct the clustered regions for datapoints. 

To perform the fracture network characterization, a filtering stage with a 

maximum fracture length is firstly applied to rule out the noise data. Then a guided 

initial guess of clustering is set up based on the fracture spacing information. K-mean 

clustering is performed for every staged data as an initial evaluation, and then a bi-wing 

iteration is performed with different cluster numbers to estimate a satisfactory clustering 

by adaptively combining and dividing the micro-seismic data from the neighboring 

stages to find a specific cluster number with minimized evaluating residual.   

A more detailed workflow is listed below: 

1) Plot the well and micro-seismic cloud events in 3-D space. 

2) Perform filtering with respect to a given maximum allowed fracture length.  

3) Along the wellbore, measure the start and endpoint of hydraulic fracking by 

projecting the micro-seismic data onto the wellbore line along the direction of 
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the primary strike angle and measure the outermost projecting locations to 

obtain the effective length 𝐿. 

4) Set up an initial guess set of clustering based on the facture spacing 

information. The total number of clusters 𝑛0 equals the effective length 𝐿 

divided by the fracture spacing 𝑑𝑓: 

𝑛0 =
𝐿

𝑑𝑓
(4.1) 

The initial clustering centers are selected along the wellbore, at the 

perforation locations. 

5) Perform an initial K-mean clustering (Lloyd, 1982) for every micro-seismic 

event datapoint in every staged fracking process. The evaluation function is 

shown below: 

𝐽0 = ∑∑𝑟𝑛𝑘

𝑛0

𝑘=1

𝑁

𝑛=1

‖𝑥𝑛 − 𝜇𝑘‖
2 (4.2) 

6) Perform Step 4) and 5) for a bi-wing iteration for adaptive selecting of a 

better cluster number, for which 𝑛1 = 𝑛0 + 1 and 𝑛−1 = 𝑛0 − 1. Calculate 𝐽1 

and  𝐽−1.  

7) The stop evaluation criteria are set as: 

𝐽0 ≤ 𝐽1 𝑎𝑛𝑑 𝐽0 ≤ 𝐽−1 (4.3) 

If the stop criteria are met, satisfactory clustered results are obtained. Else, set 

𝑛0 to either 𝑛−1 or 𝑛1 in response to the smaller  𝐽−1 and 𝐽1 values, and run 

the new bi-wing iteration until the stop criteria are met. 
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8) For every clustered dataset and its neighbors, perform a RANSAC (Bolles & 

Fischler, 1981) and DBSCAN (Yu et al., 2021) to generate the planar fracture 

networks.   

A case study has been performed using this workflow for a field Hansen well, 

and the processes and results are shown in the Figure 4.11, Figure 4.12, and Figure 

4.13. 

 

Figure 4.11 Planar illustration of a single Hansen well micro-seismic cloud 

information.  
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Figure 4.12 Planar illustration of a single Hansen well micro-seismic cloud 

information with adaptive clustering (red). Ten clusters are found with the 

algorithm. 
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Figure 4.13 Planar illustration of a single Hansen well micro-seismic cloud 

information with RANSAC hydraulic fracture network (red).  

 

Simulation has been performed to test the efficiency and accuracy of this method. 

A comparison of well BHP is shown in Figure 4.14. A decent bottom-hole pressure 

curve is obtained without the requirement of excessive creating of fracture models and 

history matchings, which is desired in unconventional simulation with hydraulic 

fractures. 
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Figure 4.14 Simulation results with the hydraulic fracture network.  

 

4.4.2. Natural fracture characterization 

Studies have shown that the natural fractures in unconventional reservoirs 

contain highly self-similarity. Thus, it is appropriate and efficient to characterize the 

natural fracture distribution in unconventional reservoirs using fractal geometry theory. 

In the unconventional reservoir system, the fracture number and length are observed to 

follow the fractal scaling law  (Hu et al., 2020; Miao et al., 2015): 

𝑁𝑓𝑟𝑎𝑐 = (𝐿𝑚𝑎𝑥/𝐿𝑚𝑖𝑛)
𝐷𝑓𝑟𝑎𝑐  (4.4) 

Thus, the probability density function can be derived in the form shown below: 

𝑓(𝐿𝑓𝑟𝑎𝑐) = 𝐷𝑓𝑟𝑎𝑐 ∙ 𝐿𝑚𝑖𝑛
𝐷𝑓𝑟𝑎𝑐 ∙ 𝐿𝑓𝑟𝑎𝑐

−𝐷𝑓𝑟𝑎𝑐−1  (4.5) 
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Whereas 𝐷𝑓𝑟𝑎𝑐 is the fractal dimension of natural fracture. 

The fracture intensity can then be calculated as: 

𝑑𝑓𝑟𝑎𝑐 =

(2 − 𝐷𝑓𝑟𝑎𝑐) ∙ ∅ ∙ [1 − ∅

1−𝐷𝑓𝑟𝑎𝑐
2−𝐷𝑓𝑟𝑎𝑐]

𝛼 ∙ (1 − 𝐷𝑓𝑟𝑎𝑐) ∙ (1 − ∅) ∙ 𝐿𝑚𝑎𝑥
 (4.6)

 

Whereas the ∅ is fracture porosity and 𝛼 is a fracture proportionality coefficient. 

The correlated fracture length in the global system can be then obtained using the 

following equation: 

𝐿𝑓𝑟𝑎𝑐 =
𝐿𝑚𝑖𝑛

(1 − 𝑃(𝑟𝑎𝑛𝑑[0~1]))
𝐷𝑓𝑟𝑎𝑐

 (4.7) 

While 𝑃 is the cumulative probability function and 𝑟𝑎𝑛𝑑[0~1] stands for a 

randomized seed between 0 and 1, which is used to generate probabilistic natural 

fracture length.  

The orientation of fractures is assumed to form a normal distribution along the 

mean direction (Balberg et al., 1991). Thus, all fractures are assigned with randomized 

deviation from the locally measured fracture orientation distribution method (Priest, 

1993) for fractures. 

The fracture centers in the system are generated using randomized distributions. 

Once the centers are generated, the 2-D probabilistic map of natural fracture distribution 

can then be established, and natural fracture properties can be calculated based on 

fracture length and fractal dimensions. A sample of a natural fracture system is shown in 

Figure 4.15. 



 

74 

 

 

Figure 4.15 Illustration of a generated natural fracture network.  

 

However, this fractal map still contains a large amount of uncertainty (Niven & 

Deutsch, 2012). To further develop the fracture network based on known geostatistical 

information, an empirical risk minimization method is performed to further calibrate the 

model and reduce the uncertainty.  

In this calibration process, one set of fracture distribution realization is generated 

as the initial guess, and the loss function is developed as shown below with respect to 

fracture spacing, fracture density, and fracture length for every individual fracture in the 

whole dataset: 
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𝐿𝑖 = 𝑊𝑠𝑝𝑎𝑐∑(𝑆 − 𝑆𝑖)
2

𝑖

+𝑊𝑑𝑒𝑛∑(𝐷 − 𝐷𝑖)
2

𝑖

+𝑊𝑙𝑒𝑛∑(𝐿 − 𝐿𝑖)
2

𝑖

(4.8) 

Whereas the 𝑆, 𝐷, and 𝐿 are the histogram data of local fractures. 

The empirical risk for the dataset is obtained as: 

𝑅 =
1

𝑁
∑𝐿𝑖

𝑁

𝑖=1

(4.9) 

An iteration phase is started by trying to replace a current existing fracture with 

another newly generated one and thus obtaining a smaller global empirical risk. The 

specific current existing fracture is picked out using a loop for all fractures and the one 

with the largest risk is removed from the dataset. This process gives out a nicely 

matched fracture realization with respect to the given histograms of the fracture 

properties. 

Sensitivity analysis has been performed for different properties of the fractal 

natural fracture model. Multiple realizations of fracture maps have been generated using 

different fractal dimensions, for which the maps are shown in Figure 4.16. Simulation 

results are shown in Figure 4.17. 
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Figure 4.16 Numerical simulation case on natural fracture fractal dimensions. 

Lmin=0.2, Lmax=20, Dt=1.5, 1.6, 1.7, and 1.8, respectively.  
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Figure 4.17 Numerical simulation results on natural fracture fractal dimension 

sensitivity analysis.  

 

As seen from the results, the fracture fractal dimension has a significant impact 

on total reservoir production. The higher the fractal dimension is, the larger the 

production can be, and the relationship approximately follows a near-linear trend. This is 

because the fractal dimension is directly tied to the total number of fractures, which 

dominates the overall performance of the shale reservoir. 

Another sensitivity analysis is performed on the fracture length. The maps are 

shown in Figure 4.18. Simulation results are shown in Figure 4.19. 
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Figure 4.18 Numerical simulation case on natural fracture length. Dt=1.5, 

Lmin/Lmax = [0.1/10], [0.2/20], [0.3/30], [0.4/40], respectively.  
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Figure 4.19 Numerical simulation results on natural fracture length sensitivity 

analysis.  

 

The simulation results show that the fracture length also has a positive impact on 

global production as expected. However, the relationship between production and 

fracture length is not linear. When the maximum fracture length setting is increased from 

10 to 20 meters, we see a huge jump in total gas production. This results from the fact 

that fractures with too small lengths cannot form efficient networks with natural 

fractures, and its drainage area is limited. 

4.5. Case study 

A single well case from the Permian Basin is demonstrated here to further 

analyze the performance of our fractured reservoir model. Multistage hydraulic 
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fracturing has been performed on this well, and the hydraulic fracture network, in this 

case, is shown in Figure 4.20. The generated natural fracture network is shown in 

Figure 4.21. 

 

Figure 4.20 Sketch of the hydraulic fracture distribution along this horizontal 

wellbore in the Permian Basin. The blue line represents the horizontal wellbore, 

and the purple lines represent the hydraulic fractures.  

 

 

Figure 4.21 The generated natural fracture network for Permian well study.  
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Simulation with GURU is performed, and the results are compared with a few 

other commonly used fracture network modeling methods. The results are shown in 

Figure 4.22. 

 

Figure 4.22 Comparison of bottom-hole pressure curves for the Permian well case 

study.  

 

From the simulation results, the GURU approach developed in this dissertation 

gives a better estimation of the bottom-hole pressure with respect to historical data. The 

randomized natural fracture model shows somewhat similar results in the early stage of 

simulation, but the late stages failed to match with field measurements. The dual 

permeability model shows the worst agreement with historical production data and even 

differed in trend, inferring that the multi-medium method does not have enough 
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capability to handle models with complex fracture conditions in unconventional 

reservoirs.



83 

 

5. FRACTURED RESERVOIR SIMULATION TECHNIQUES1 

 

5.1. Pre-stage initialization 

The initialization methods can be important in unconventional reservoirs with 

fractures, especially when hydraulic fracturing is performed. Water is injected into the 

wellbore and enters the formation during fracking, which causes the redistribution of 

pressure and saturation profiles in the fractured regions and leads to noticeable 

differences during production. Current methods either use a global setting with 

equilibrium initialization or just derive a multiplier for the stimulated regions, which 

may work in conventional cases but fail to preserve enough accuracy in fractured 

unconventional reservoirs. 

A pre-stage initialization is proposed in this section based on the fracture 

pumping schedule by simulating the fracking fluids as a water injection process and 

obtaining non-equilibrium initialized pressure and saturation profiles. A numerical test is 

performed on a conceptual model, which is developed with four hydraulic fractures and 

a uniform natural fracture spacing of 30 ft. The grid map is shown in Figure 5.1. 

 

 

_______________________________________________________________________ 

1 Part of this chapter is reprinted with permission from “Jiang, Y., Killough, J., Li, L., Cui, X., & Tang, J. 

(2021). EDFM-based Multi-Continuum Shale Gas Simulation with Low Velocity Non-Darcy Water Flow 

Effect. SPE Reservoir Simulation Conference,” Copyright [2021] by Society of Petroleum Engineers. 
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Figure 5.1 Grid and fracture distribution for the test case.  

 

Comparisons are made for the water saturation before and after the water 

injecting phase. The results are shown in Figure 5.2. The water saturation near hydraulic 

fractures changes from 50% to about 82% after this pre-simulation stage, and saturation 

distribution in grids along hydraulic fractures has varied shapes and is not uniform along 

different sides. This is reasoned from the connection between hydraulic fractures and 

natural fractures, which cannot be preserved directly using multipliers. 
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Figure 5.2 Water saturation profile before (top) and after (bottom) pre-stage water 

injection process.  

 

Studies have also been made to evaluate the effectiveness of this pre-stage 

initialization. Different cases are run for the initialization methods and results are 

compared in Figure 5.3. The blue curve represents simulation which is initialized using 

non-equilibrium pressure and saturation profiles from pre-stage simulation. The red 
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curve represents a simulation case initialized using multipliers for pressure and 

saturation inside SRV regions. The yellow curve represents a model initialized with only 

the initial pressure and saturation conditions without any modification. The results of the 

blue and red curves have reached somewhat a decent agreement while the multiplier 

initialization method turns out to have higher production in early-stage and lower 

production later. This is because the SRV evaluation methods it uses do not handle 

natural fracture distributions accurately enough. On the other hand, the yellow curve 

ignores fracking fluid imbibition, which results in a much larger difference in production 

profiles and shall not be considered as a valid initialization method. 

 

Figure 5.3 Gas production rate using different initialization methods.  
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5.2. Water flowback 

Water flowback is an important factor in evaluating the fracking process for 

unconventional reservoirs. When water is pumped into the wellbore and breaks the 

formations, some enter the pores and flow back during the early production stage. 

Current knowledge holds the opinion that the higher the flowback, the better the fracking 

process is. However, some field practices observe the opposite performance. 

A numerical test is proposed to analyze the flowback effect on gas production. 

Three cases with different flowback percentages varying from 40% to 80% are proposed, 

and the results are provided in Figure 5.4. 

 

Figure 5.4 Gas production rate using different flowback data.  
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As seen from the results, the early-stage production is enhanced when we have a 

higher flowback percentage. This is reasoned from less water imbibition and less 

formation damage as higher relative gas permeability gives out higher rates. The later 

production, on the other hand, shows a different trend that lower flowback profiles have 

slightly higher cumulative production. This matches the observation for a few shale gas 

field practices, but currently, no widely accepted explanation has been given out yet for 

this behavior. One possible explanation can be that the fracking fluid imbibition gives 

out extra pressure support inside reservoirs, which does not decline as fast as normal 

reservoir pressure during gas production. 

5.3. Hydrocarbon transportation mechanism analysis 

There are multiple hydrocarbon transport mechanisms which were discussed in 

Chapter 2. A numerical test is performed to measure how different mechanisms like 

adsorption/desorption and diffusion affect the overall production by removing the 

diffusion and absorption terms in governing equations. The results are shown in Figure 

5.5. 
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Figure 5.5 Hydrocarbon transportation mechanisms.  

 

A 10-year cumulative gas production simulation is performed. The Knudsen 

diffusion has shown a massive impact on total gas production, which weights the 

highest. The Langmuir absorption-desorption of gas in organic matters has also shown a 

large impact, while the inorganic desorption is negligible. This can be used as a guide 

when performance weights more than accuracy that a few mechanisms can be safely 

removed without much hassle. 

5.4. Non-Darcy water flux 

While the Darcy flow model simplifies the calculation and saves computational 

time, the water flux in nano-pores experimentally shows strong non-Darcy behavior. 
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Field experiences show that using the Darcy model tends to overestimate water 

production. 

A non-Darcy water model is proposed based on the boundary layer theory. The 

non-Darcy correlation for water can be derived as a multiplier to the potential gradient, 

which has the following form: 

𝛼 = ∇𝜑𝑤,𝑚 (1 −
𝛿

𝑟0
)
4

(1 −
8𝜏0

3𝑟0 (1 −
𝛿
𝑟0
) ∇𝜑𝑤,𝑚

) (5.1) 

Whereas 
𝛿

𝑟0
  and 

8𝜏0

3𝑟0
 are fitting parameters from lab test data (Yu, 2012). 

A numerical experiment is performed to evaluate the effect of non-Darcy water 

flux by comparing the results with a simulation case done using a normal potential 

gradient. The result is shown in Figure 5.6. Compared with the Darcy flow, non-Darcy 

tend to give out much less water flux in the early stage. This agrees with field practice, 

while the Darcy flux commonly overestimate the water flux amount. 
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Figure 5.6 Hydrocarbon transportation mechanisms.  

 

5.5. Domain decomposition solver for complex fracture conditions 

The flow in unconventional reservoirs is dominated by the fracture network, 

which is smaller but rather difficult to converge due to the flux between matrix and 

fracture surfaces. On the other hand, the reservoir bulk matrix is usually large in problem 

size, but the condition is usually much better. Thus, a domain decomposition solver is 

designed to take the benefit from both parts. 
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The EDFM fracture model couples the fracture network with corresponding 

matrix grids with non-neighbor connections (NNC). Thus, a grid domain decomposition 

can be directly made to split all grids with fractures from the bulk reservoir as well as 

further splitting the rest parts of the bulk matrix into colored connection graphs. The 

reservoir problem is then divided into smaller models which are connected to each other 

via the boundary conditions (Figure 5.7). 

 

Figure 5.7 Colored graph of grid domain decomposition. The red lines represent 

the fracture network, the green region is marked as the fracture sub-domain, while 

the other colors are matrix sub-domains. Note that this decomposition will request 

all matrix sub-domains to communicate with the fracture sub-domain, which can 

create unexpected performance barriers. 

 

Once the grid domain decomposition is finished, it becomes possible to solve all 

the sub-domains using a Schwarz method (Smith, 1997; Toselli & Widlund, 2004). 

Addictive Schwarz is preferred in this case due to its nature of being highly 
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parallelizable. Boundary values are saved as ghost cells and passed between the 

connected sub-domains at every simulation timestep. 

However, this method must be used with enough care. The first issue a user may 

face is that the decomposition of sub-domain grids can have a significant impact on 

solver performance, as they must wait for communication from every other connected 

sub-domain to exchange their solved boundary values for the current timestep. Thus, it is 

preferred to have every sub-domain connected to the least-possible number of other 

subdomains with the least-possible number of boundary ghost cells to reduce the 

communication cost. 

The second issue comes from the nature that the fracture sub-domain is much 

harder to solve compared with the other sub-domains. This may result in waiting time 

cost of computational resources, for which a load balancing control is required to both 

balance the static load by decomposing different sub-domain with adequate sizes and 

balance the dynamic load by automatically assigning tasks to corresponding 

computational resources. 

A CUDA implementation of this domain decomposition solver is proposed with 

an MPI-based load balancing program. Performance has been tested and comparisons 

are made with respect to the global solver. Results are shown in Figure 5.8. 
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Figure 5.8 Performance test for the domain decomposition solver. 

 

 

The performance of this domain decomposition solver is only slightly ahead of 

the global solver on a single GPU. However, when the case becomes extremely large 

and the usage of distributed memory architectures becomes a must, the domain 

decomposition solver is expected to perform much better. 

5.6. Fracture closure effect 

Fractures are not constant in length and width during fracturing and production. 

The fractures are monitored to close in practices when the reservoir is being produced 

and the pressure depletes inside fractures. This led to the shrinking of fracture 

conductivity as well as a reduction in stimulated rock volume (Figure 5.9). 
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Figure 5.9 Fracture closure effect during pressure depletion. 

 

The current approach to model this behavior usually goes to a transmissibility 

curve method (Xiong et al., 2021), which creates transmissibility multiplier curves with 

respect to the rock pressure for different regions and reduces the fracture conductivity 

directly. However, this method does not consider that the closure of fractures can lead to 

disconnection from the fracture network. This dissertation provides an approach to 

model this process by using a dynamic EDFM gridding technique (Jiang, Killough, Li, et 

al., 2021), which uses the pressure and temperature computed at every simulation 

timestep to explicitly recalibrate the fracture length with a propagation model (Jiang, 

Killough, Wu, et al., 2021) and update the fracture-fracture and fracture-matrix 

connections. A workflow of this process is shown in Figure 5.10. 
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Figure 5.10 Workflow of dynamic EDFM method. 

 

Simulations have been performed to further test this fracture closure behavior 

using this dynamic gridding method. For the test case, one can monitor that the fracture 

closure removes the hydraulic fracture from the outermost natural fractures (Figure 

5.11), which causes a noticeable difference in the production curve (Figure 5.12). 
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Figure 5.11 Case study of dynamic fracture closure. 
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Figure 5.12 Case study of dynamic fracture closure. 
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6. CONCLUSIONS  

 

Simulation of unconventional reservoirs with complex fracture conditions has 

long been a challenging task due to the high complexity and uncertainty of the reservoir. 

The difficulty comes from both the modeling and the computing. In this dissertation, a 

complete workflow has been proposed for this problem, including: 

1) A reservoir simulator GURU with the multi-component, multi-physics, multi-

porosity-permeability setting. The fully implicit Jacobian is created for both 

matrix and fractures as well as wells. 

2) The performance of GURU is further optimized to enhance its capability to 

solve larger and more complex problems. A parallel linear solver is 

developed as well as a CPR-type multi-stage parallel preconditioner with 

adaptive settings. Implementations on both CPU and GPU have been 

finished. 

3) An accurate and efficient fractured unconventional modeling method is 

proposed. This includes a CVT-type point-based matrix gridding method as 

well as an LGR enhanced EDFM fracture gridding method. 

4) New methods have been proposed for fracture network characterization. 

Hydraulic fractures are characterized using a micro-seismic data-driven 

imaging method while the natural fractures are captured using a fractal model 

with empirical risk minimization calibration. 
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5) Specific topics related to unconventional reservoir simulation with complex 

fracture conditions have been discussed, including the initialization methods, 

water flowback effect, hydrocarbon transportation mechanisms, non-Darcy 

water flow effect, and fracture closure effect. 

6) A domain decomposition solver is developed based on the nature of fractured 

reservoir performance and EDFM modeling. CUDA and MPI 

implementations are finished which pushes GURU’s capability to a new 

scale. 



 

101 

 

REFERENCES 

 

Alharthy, N. S., Teklu, T. W., Nguyen, T. N., Kazemi, H., & Graves, R. M. (2016). 

Nanopore Compositional Modeling in Unconventional Shale Reservoirs. SPE 

Reservoir Evaluation & Engineering, 19(03), 415-428. 

https://doi.org/10.2118/166306-pa  

 

Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. 

(2010). New Pore-scale Considerations for Shale Gas in Place Calculations. SPE 

Unconventional Gas Conference,  

 

Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., Akkutlu, I. Y., & Sondergeld, C. H. 

(2011). Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. 

SPE Journal, 17(01), 219-229. https://doi.org/10.2118/131772-pa  

 

Anbalagan, H. P. (2019). Case Study: Analysis of Stimulated Reservoir Volume 

Properties Through Application of Embedded Discrete Fracture Modelling  

 

Azim, R. A., & Abdelmoneim, S. S. (2013). Modeling hydraulic fractures in finite 

difference simulators using amalgam local grid refinement (LGR). Journal of 

Petroleum Exploration and Production Technology, 3(1), 21-35. 

https://doi.org/10.1007/s13202-012-0038-6  

 

Balberg, I., Berkowitz, B., & Drachsler, G. E. (1991). Application of a percolation 

model to flow in fractured hard rocks. Journal of Geophysical Research: Solid 

Earth, 96(B6), 10015-10021. https://doi.org/https://doi.org/10.1029/91JB00681  

 

Bolles, R. C., & Fischler, M. A. (1981). A RANSAC-based approach to model fitting 

and its application to finding cylinders in range data. IJCAI,  

 

Brandt, A. (1984). Algebraic multigrid (AMG) for sparse matrix eqations. Sparsity and 

its Applications, 257-284.  

 

Cao, H. (2002). Development of techniques for general purpose simulators. Stanford 

University.  

 

Cao, Y., Yan, B., Alfi, M., & Killough, J. E. (2015). A Novel Compositional Model of 

Simulating Fluid Flow in Shale Resrvoirs - Some Priliminary Tests and Results. 

SPE Reservoir Characterisation and Simulation Conference and Exhibition,  

 

https://doi.org/10.2118/166306-pa
https://doi.org/10.2118/131772-pa
https://doi.org/10.1007/s13202-012-0038-6
https://doi.org/https:/doi.org/10.1029/91JB00681


 

102 

 

Chai, Z., Yan, B., Killough, J. E., & Wang, Y. (2016). Dynamic Embedded Discrete 

Fracture Multi-Continuum Model for the Simulation of Fractured Shale 

Reservoirs. International Petroleum Technology Conference,  

 

Cipolla, C. L., Fitzpatrick, T., Williams, M. J., & Ganguly, U. K. (2011). Seismic-to-

Simulation for Unconventional Reservoir Development. SPE Reservoir 

Characterisation and Simulation Conference and Exhibition,  

 

Civan, F. (2010). Effective Correlation of Apparent Gas Permeability in Tight Porous 

Media. Transport in Porous Media, 82(2), 375-384. 

https://doi.org/10.1007/s11242-009-9432-z  

 

Concus, P., Golub, G. H., & Meurant, G. (1985). Block Preconditioning for the 

Conjugate Gradient Method. SIAM Journal on Scientific and Statistical 

Computing, 6(1), 220-252. https://doi.org/10.1137/0906018  

 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to 

Algorithms, Third Edition. The MIT Press.  

 

Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic 

differential equations by finite differences. Communications on Pure and Applied 

Mathematics, 5(3), 243-255. 

https://doi.org/https://doi.org/10.1002/cpa.3160050303  

 

Cusini, M., Lukyanov, A. A., Natvig, J., & Hajibeygi, H. (2015). Constrained pressure 

residual multiscale (CPR-MS) method for fully implicit simulation of multiphase 

flow in porous media. Journal of Computational Physics, 299, 472-486. 

https://doi.org/https://doi.org/10.1016/j.jcp.2015.07.019  

 

Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-memory 

programming. IEEE Computational Science and Engineering, 5(1), 46-55. 

https://doi.org/10.1109/99.660313  

 

Douglas, J., Jr., Peaceman, D. W., & Rachford, H. H., Jr. (1959). A Method for 

Calculating Multi-Dimensional Immiscible Displacement. Transactions of the 

AIME, 216(01), 297-308. https://doi.org/10.2118/1327-g  

 

Du, Q., Faber, V., & Gunzburger, M. (1999). Centroidal Voronoi tessellations: 

Applications and algorithms. SIAM review, 41(4), 637-676.  

 

Ebel, D. S., Ghiorso, M. S., Sack, R. O., & Grossman, L. (2000). Gibbs energy 

minimization in gas+ liquid+ solid systems. Journal of Computational 

Chemistry, 21(4), 247-256.  

 

https://doi.org/10.1007/s11242-009-9432-z
https://doi.org/10.1137/0906018
https://doi.org/https:/doi.org/10.1002/cpa.3160050303
https://doi.org/https:/doi.org/10.1016/j.jcp.2015.07.019
https://doi.org/10.1109/99.660313
https://doi.org/10.2118/1327-g


 

103 

 

EIA. (2021). Annual Energy Outlook 2021. [www.eia.gov/aeo].  

 

Falgout, R. D. (2006). An introduction to algebraic multigrid.  

 

Fathi, E., & Akkutlu, I. Y. (2012). Lattice Boltzmann Method for Simulation of Shale 

Gas Transport in Kerogen. SPE Journal, 18(01), 27-37. 

https://doi.org/10.2118/146821-pa  

 

Feast, G., Boosari, S. S. H., Wu, K., Walton, J., Cheng, Z., & Chen, B. (2015). Modeling 

and Simulation of Natural Gas Production from Unconventional Shale 

Reservoirs. International Journal of Clean Coal and Energy, Vol.04No.02, 10, 

Article 54685. https://doi.org/10.4236/ijcce.2015.42003  

 

Forum, M. P. (1994). MPI: A Message-Passing Interface Standard.  

 

Gale, J. F. W., Laubach, S. E., Olson, J. E., Eichhubl, P., & Fall, A. (2014). Natural 

fractures in shale: A review and new observations. AAPG Bulletin, 98(11), 2165-

2216. https://doi.org/10.1306/08121413151  

 

Goyat, S., & Sahoo, A. (2019). Scheduling algorithm for CPU-GPU based 

heterogeneous clustered environment using map-reduce data processing. ARPN 

Journal of Engineering and Applied Sciences, 14, 213-221.  

 

Grama, A., Gupta, A., Karypis, G., & Kumar, V. Introduction to Parallel Computing.  

 

Helnemann, Z. E., Brand, C. W., Munka, M., & Chen, Y. M. (1991). Modeling 

Reservoir Geometry With Irregular Grids. SPE Reservoir Engineering, 6(02), 

225-232. https://doi.org/10.2118/18412-pa  

 

Holditch, S. A. (2003). The Increasing Role of Unconventional Reservoirs in the Future 

of the Oil and Gas Business. Journal of Petroleum Technology, 55(11), 34-79. 

https://doi.org/10.2118/1103-0034-jpt  

 

Hu, B., Wang, J., & Ma, Z. (2020). A Fractal Discrete Fracture Network Based Model 

for Gas Production from Fractured Shale Reservoirs. Energies, 13(7), 1857. 

https://www.mdpi.com/1996-1073/13/7/1857  

 

Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation 

of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 

27(12), 2533-2545. 

https://doi.org/https://doi.org/10.1016/j.apgeochem.2012.08.027  

 

www.eia.gov/aeo
https://doi.org/10.2118/146821-pa
https://doi.org/10.4236/ijcce.2015.42003
https://doi.org/10.1306/08121413151
https://doi.org/10.2118/18412-pa
https://doi.org/10.2118/1103-0034-jpt
https://www.mdpi.com/1996-1073/13/7/1857
https://doi.org/https:/doi.org/10.1016/j.apgeochem.2012.08.027


 

104 

 

Jiang, Y., Killough, J., Li, L., Cui, X., & Tang, J. (2021). EDFM-based Multi-

Continuum Shale Gas Simulation with Low Velocity Non-Darcy Water Flow 

Effect. SPE Reservoir Simulation Conference,  

 

Jiang, Y., Killough, J. E., Wu, X., & Cui, Y. (2021). Transient Temperature Impact on 

Deep Reservoir Fracturing. Geofluids, 2021, 6653442. 

https://doi.org/10.1155/2021/6653442  

 

Kazemi, H., Merrill, L. S., Jr., Porterfield, K. L., & Zeman, P. R. (1976). Numerical 

Simulation of Water-Oil Flow in Naturally Fractured Reservoirs. Society of 

Petroleum Engineers Journal, 16(06), 317-326. https://doi.org/10.2118/5719-pa  

 

Kestin, J., Khalifa, H. E., & Correia, R. J. (1981). Tables of the dynamic and kinematic 

viscosity of aqueous NaCl solutions in the temperature range 20–150 °C and the 

pressure range 0.1–35 MPa. Journal of Physical and Chemical Reference Data, 

10(1), 71-88. https://doi.org/10.1063/1.555641  

 

Koester, D. P., Ranka, S., & Fox, G. C. (1994, 14-18 Nov. 1994). A parallel Gauss-

Seidel algorithm for sparse power system matrices. Supercomputing 

'94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing,  

 

Le Calvez, J. H., Craven, M. E., Klem, R. C., Baihly, J. D., Bennett, L. A., & Brook, K. 

(2007). Real-Time Microseismic Monitoring of Hydraulic Fracture Treatment: A 

Tool To Improve Completion and Reservoir Management. SPE Hydraulic 

Fracturing Technology Conference,  

 

Lee, S., Jensen, C., & Lough, M. (2000). Efficient finite-difference model for flow in a 

reservoir with multiple length-scale fractures. SPE Journal, 5(03), 268-275.  

 

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information 

Theory, 28(2), 129-137. https://doi.org/10.1109/TIT.1982.1056489  

 

Lohrenz, J., Bray, B. G., & Clark, C. R. (1964). Calculating Viscosities of Reservoir 

Fluids From Their Compositions. Journal of Petroleum Technology, 16(10), 

1171-1176. https://doi.org/10.2118/915-pa  

 

Maxwell, S. C., Urbancic, T. I., Steinsberger, N., & Zinno, R. (2002). Microseismic 

Imaging of Hydraulic Fracture Complexity in the Barnett Shale. SPE Annual 

Technical Conference and Exhibition,  

 

Merland, R., Levy, B., & Caumon, G. (2011). Building PEBI Grids Conforming To 3D 

Geological Features Using Centroidal Voronoi Tessellations. 

https://doi.org/10.5242/iamg.2011.0064  

https://doi.org/10.1155/2021/6653442
https://doi.org/10.2118/5719-pa
https://doi.org/10.1063/1.555641
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.2118/915-pa
https://doi.org/10.5242/iamg.2011.0064


 

105 

 

Mesbah, M., Vatani, A., Siavashi, M., & Doranehgard, M. H. (2019). Parallel processing 

of numerical simulation of two-phase flow in fractured reservoirs considering the 

effect of natural flow barriers using the streamline simulation method. 

International Journal of Heat and Mass Transfer, 131, 574-583. 

https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.097  

 

Meyerink, J. A. (1983). Iterative Methods for the Solution of Linear Equations Based on 

Incomplete Block Factorization of the Matrix. SPE Reservoir Simulation 

Symposium,  

 

Miao, T., Yu, B., Duan, Y., & Fang, Q. (2015). A fractal analysis of permeability for 

fractured rocks. International Journal of Heat and Mass Transfer, 81, 75-80.  

 

Moinfar, A., Varavei, A., Sepehrnoori, K., & Johns, R. T. (2013). Development of a 

Coupled Dual Continuum and Discrete Fracture Model for the Simulation of 

Unconventional Reservoirs. SPE Reservoir Simulation Symposium,  

 

Molenaar, M. M. M., Hill, D. J. J., Webster, P., Fidan, E., & Birch, B. (2012). First 

Downhole Application of Distributed Acoustic Sensing for Hydraulic-Fracturing 

Monitoring and Diagnostics. SPE Drilling & Completion, 27(01), 32-38. 

https://doi.org/10.2118/140561-pa  

 

Monteagudo, J. E. P., & Firoozabadi, A. (2007). Comparison of fully implicit and 

IMPES formulations for simulation of water injection in fractured and 

unfractured media. International Journal for Numerical Methods in Engineering, 

69(4), 698-728. https://doi.org/https://doi.org/10.1002/nme.1783  

 

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable Parallel 

Programming with CUDA: Is CUDA the parallel programming model that 

application developers have been waiting for? Queue, 6(2), 40–53. 

https://doi.org/10.1145/1365490.1365500  

 

Niven, E. B., & Deutsch, C. V. (2012). Non-random Discrete Fracture Network 

Modeling. In P. Abrahamsen, R. Hauge, & O. Kolbjørnsen (Eds.), Geostatistics 

Oslo 2012 (pp. 275-286). Springer Netherlands. https://doi.org/10.1007/978-94-

007-4153-9_22  

Norbeck, J. H., Huang, H., Podgorney, R., & Horne, R. N. (2014). An Integrated 

Discrete Fracture Model for Description of Dynamic Behavior in Fractured 

Reservoirs.  

 

Notay, Y. (2010). An aggregation-based algebraic multigrid method. Electronic 

transactions on numerical analysis, 37(6), 123-146.  

 

https://doi.org/https:/doi.org/10.1016/j.ijheatmasstransfer.2018.11.097
https://doi.org/10.2118/140561-pa
https://doi.org/https:/doi.org/10.1002/nme.1783
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1007/978-94-007-4153-9_22
https://doi.org/10.1007/978-94-007-4153-9_22


 

106 

 

Odusina, E., Sondergeld, C., & Rai, C. (2011). An NMR Study on Shale Wettability. 

Canadian Unconventional Resources Conference,  

 

Ouillon, G., Castaing, C., & Sornette, D. (1996). Hierarchical geometry of faulting. 

Journal of Geophysical Research: Solid Earth, 101(B3), 5477-5487.  

 

Ozkan, E., Brown, M., Raghavan, R., & Kazemi, H. (2011). Comparison of Fractured-

Horizontal-Well Performance in Tight Sand and Shale Reservoirs. SPE Reservoir 

Evaluation & Engineering, 14(02), 248-259. https://doi.org/10.2118/121290-pa  

 

Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., & Sinha, S. (2010). From 

Oil-Prone Source Rock to Gas-Producing Shale Reservoir – Geologic and 

Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. 

International Oil and Gas Conference and Exhibition in China,  

 

Peaceman, D. W. (1990). Interpretation of Wellblock Pressures in Numerical Reservoir 

Simulations Part 3—Off-Center and Multiple Wells Within a Wellblock. SPE 

Reservoir Engineering, 5(02), 227-232. https://doi.org/10.2118/16976-pa  

 

Peng, D.-Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. 

Industrial & Engineering Chemistry Fundamentals, 15(1), 59-64. 

https://doi.org/10.1021/i160057a011  

 

Priest, S. D. (1993). Discontinuity analysis for rock engineering. Springer Science & 

Business Media.  

 

Rahim, Z., Al-Anazi, H., Al-Kanaan, A., Habbtar, A., Al-Omair, A., Senturk, N., & 

Kalinin, D. (2012). Productivity Increase Using Hydraulic Fracturing in 

Conventional and Tight Gas Reservoirs – Expectation vs. Reality. SPE Middle 

East Unconventional Gas Conference and Exhibition,  

 

Ren, L., Su, Y., Zhan, S., Hao, Y., Meng, F., & Sheng, G. (2016). Modeling and 

simulation of complex fracture network propagation with SRV fracturing in 

unconventional shale reservoirs. Journal of Natural Gas Science and 

Engineering, 28, 132-141. 

https://doi.org/https://doi.org/10.1016/j.jngse.2015.11.042  

 

Roy, T., Jönsthövel, T., Lemon, C., & Wathen, A. (2019). A constrained pressure-

temperature residual (CPTR) method for non-isothermal multiphase flow in 

porous media.  

 

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.  

 

https://doi.org/10.2118/121290-pa
https://doi.org/10.2118/16976-pa
https://doi.org/10.1021/i160057a011
https://doi.org/https:/doi.org/10.1016/j.jngse.2015.11.042


 

107 

 

Saad, Y. (2011). Numerical methods for large eigenvalue problems: revised edition. 

SIAM.  

 

Seibel, M., Baig, A., & Urbancic, T. (2010). Single Versus Multiwell Microseismic 

Recording: What Effect Monitoring Configuration Has On Interpretation. 2010 

SEG Annual Meeting,  

 

Shakiba, M., & Sepehrnoori, K. (2015). Using Embedded Discrete Fracture Model 

(EDFM) and Microseismic Monitoring Data to Characterize the Complex 

Hydraulic Fracture Networks. SPE Annual Technical Conference and Exhibition,  

 

Sierra, L. (2016). Is Induced Fracture Complexity Always Required in Unconventional 

Reservoir Stimulation? SPE Argentina Exploration and Production of 

Unconventional Resources Symposium,  

 

Smith, B. F. (1997). Domain Decomposition Methods for Partial Differential Equations. 

In D. E. Keyes, A. Sameh, & V. Venkatakrishnan (Eds.), Parallel Numerical 

Algorithms (pp. 225-243). Springer Netherlands. https://doi.org/10.1007/978-94-

011-5412-3_8  

 

Sondergeld, C. H., Ambrose, R. J., Rai, C. S., & Moncrieff, J. (2010). Micro-Structural 

Studies of Gas Shales. SPE Unconventional Gas Conference,  

 

Sookprasong, P. A., Gill, C. C., & Hurt, R. S. (2014). Lessons Learned from DAS and 

DTS in MultiCluster, MultiStage Horizontal Well Fracturing: Interpretation of 

Hydraulic Fracture Initiation and Propagation through Diagnostics. IADC/SPE 

Asia Pacific Drilling Technology Conference,  

 

Sun, J., & Schechter, D. (2015). Optimization-Based Unstructured Meshing Algorithms 

for Simulation of Hydraulically and Naturally Fractured Reservoirs With 

Variable Distribution of Fracture Aperture, Spacing, Length, and Strike. SPE 

Reservoir Evaluation & Engineering, 18(04), 463-480. 

https://doi.org/10.2118/170703-pa  

 

Ţene, M., Bosma, S. B. M., Al Kobaisi, M. S., & Hajibeygi, H. (2017). Projection-based 

Embedded Discrete Fracture Model (pEDFM). Advances in Water Resources, 

105, 205-216. https://doi.org/https://doi.org/10.1016/j.advwatres.2017.05.009  

 

Teng, W., Jiang, R., Teng, L., Qiao, X., Jiang, Y., He, J., & Gao, Y. (2016). Production 

performance analysis of multiple fractured horizontal wells with finite-

conductivity fractures in shale gas reservoirs. Journal of Natural Gas Science 

and Engineering, 36, 747-759. 

https://doi.org/https://doi.org/10.1016/j.jngse.2016.10.030  

https://doi.org/10.1007/978-94-011-5412-3_8
https://doi.org/10.1007/978-94-011-5412-3_8
https://doi.org/10.2118/170703-pa
https://doi.org/https:/doi.org/10.1016/j.advwatres.2017.05.009
https://doi.org/https:/doi.org/10.1016/j.jngse.2016.10.030


 

108 

 

Tian, S., Ren, W., Li, G., Yang, R., & Wang, T. (2017). A Theoretical Analysis of Pore 

Size Distribution Effects on Shale Apparent Permeability. Geofluids, 2017, 

7492328. https://doi.org/10.1155/2017/7492328  

 

Toselli, A., & Widlund, O. (2004). Domain decomposition methods-algorithms and 

theory (Vol. 34). Springer Science & Business Media.  

 

Vaněk, P., Mandel, J., & Brezina, M. (1996). Algebraic multigrid by smoothed 

aggregation for second and fourth order elliptic problems. Computing, 56(3), 

179-196. https://doi.org/10.1007/BF02238511  

 

Wallis, J. R. (1983). Incomplete Gaussian Elimination as a Preconditioning for 

Generalized Conjugate Gradient Acceleration. SPE Reservoir Simulation 

Symposium,  

 

Wallis, J. R., Kendall, R. P., & Little, T. E. (1985). Constrained Residual Acceleration of 

Conjugate Residual Methods. SPE Reservoir Simulation Symposium,  

 

Wang, F. P., & Reed, R. M. (2009). Pore Networks and Fluid Flow in Gas Shales. SPE 

Annual Technical Conference and Exhibition,  

 

Wang, T., Tian, S., Li, G., Zhang, L., Sheng, M., & Ren, W. (2021). Molecular 

simulation of gas adsorption in shale nanopores: A critical review. Renewable 

and Sustainable Energy Reviews, 149, 111391. 

https://doi.org/https://doi.org/10.1016/j.rser.2021.111391  

 

Warpinski, N. R., Branagan, P. T., Peterson, R. E., Wolhart, S. L., & Uhl, J. E. (1998). 

Mapping Hydraulic Fracture Growth and Geometry Using Microseismic Events 

Detected by a Wireline Retrievable Accelerometer Array. SPE Gas Technology 

Symposium,  

 

Warren, J. E., & Root, P. J. (1963). The Behavior of Naturally Fractured Reservoirs. 

Society of Petroleum Engineers Journal, 3(03), 245-255. 

https://doi.org/10.2118/426-pa  

 

Werneck, L. F., de Freitas, M. M., de Souza, G., Jatobá, L. F. C., & Amaral Souto, H. P. 

(2019). An OpenMP parallel implementation using a coprocessor for numerical 

simulation of oil reservoirs. Computational and Applied Mathematics, 38(2), 33. 

https://doi.org/10.1007/s40314-019-0788-6  

 

Xiao, G., Jingjing, M., Yiwei, C., & Weixin, L. (2010). An Integration Approach for 

Evaluating Well Deliverability in Ultra Deep Sands. SPE Production and 

Operations Conference and Exhibition,  

https://doi.org/10.1155/2017/7492328
https://doi.org/10.1007/BF02238511
https://doi.org/https:/doi.org/10.1016/j.rser.2021.111391
https://doi.org/10.2118/426-pa
https://doi.org/10.1007/s40314-019-0788-6


 

109 

 

Xiaogang, L., Changyin, L., Liangping, Y., Zhiyu, S., & Zhaozhong, Y. (2017, 

2017/03). A Review and Prospect of Numerical Simulation of Complex 

Hydraulic Fracture Propagation in Unconventional Reservoirs. Proceedings of 

the 2017 2nd International Conference on Modelling, Simulation and Applied 

Mathematics (MSAM2017),  

 

Xiong, H., Yoon, S., & Jiang, Y. (2021). A Novel Method to Speedup Calibrating 

Horizontal Well Performance Model with Multi-Stage Fracturing Treatments and 

Its Applications in Delaware Basin. SPE Reservoir Simulation Conference,  

 

Xu, J. (1992). Iterative methods by space decomposition and subspace correction. SIAM 

review, 34(4), 581-613.  

 

Yamazaki, I., Li, X., S., Rouet, F.-H., & Uçar, B. (2011). Partitioning, Ordering, and 

Load Balancing in a Hierarchically Parallel Hybrid Linear Solver. 

https://hal.inria.fr/hal-00797207 

 

Yan, B. (2017). Development of general unstructured reservoir utility and fractured 

reservoir modeling  

 

Yan, B., Wang, Y., & Killough, J. E. (2013). Beyond Dual-Porosity Modeling for the 

Simulation of Complex Flow Mechanisms in Shale Reservoirs. SPE Reservoir 

Simulation Symposium,  

 

Yang, D., Xue, X., & Chen, J. (2018). High Resolution Hydraulic Fracture Network 

Modeling Using Flexible Dual Porosity Dual Permeability Framework. SPE 

Western Regional Meeting,  

 

Yang, H., Sun, S., Li, Y., & Yang, C. (2019). Parallel reservoir simulators for fully 

implicit complementarity formulation of multicomponent compressible flows. 

Computer Physics Communications, 244, 2-12.  

 

Yu, J., Byun, J., & Seol, S. J. (2021). Imaging discrete fracture networks using the 

location and moment tensors of microseismic events. Exploration Geophysics, 

52(1), 42-53. https://doi.org/10.1080/08123985.2020.1761760  

 

Yu, J. R. L. L. X. J. Y. R. Z. (2012). A nonlinear mathematical model for low-

permeability reservoirs and well-testing analysis. Acta Petrolei Sinica, 33(2), 

264-268. https://doi.org/10.7623/syxb201202011  

 

ZHANG, L., CUI, C., MA, X., SUN, Z., LIU, F., & ZHANG, K. (2019). A FRACTAL 

DISCRETE FRACTURE NETWORK MODEL FOR HISTORY MATCHING 

OF NATURALLY FRACTURED RESERVOIRS. Fractals, 27(01), 1940008. 

https://doi.org/10.1142/s0218348x19400085  

https://hal.inria.fr/hal-00797207
https://doi.org/10.1080/08123985.2020.1761760
https://doi.org/10.7623/syxb201202011
https://doi.org/10.1142/s0218348x19400085


 

110 

 

Zhang, R.-h., Zhang, L.-h., Tang, H.-y., Chen, S.-n., Zhao, Y.-l., Wu, J.-f., & Wang, K.-

r. (2019). A simulator for production prediction of multistage fractured 

horizontal well in shale gas reservoir considering complex fracture geometry. 

Journal of Natural Gas Science and Engineering, 67, 14-29. 

https://doi.org/https://doi.org/10.1016/j.jngse.2019.04.011  

 

Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-

matter type and thermal maturity on methane adsorption in shale-gas systems. 

Organic Geochemistry, 47, 120-131. 

https://doi.org/https://doi.org/10.1016/j.orggeochem.2012.03.012  

 

Zhang, Y., Yu, W., Sepehrnoori, K., & Di, Y. (2017). A Comprehensive Numerical 

Model for Simulating Fluid Transport in Nanopores. Scientific reports, 7, 40507-

40507. https://doi.org/10.1038/srep40507  

 

Zhao, X., Huang, B., & Grasselli, G. (2021). Numerical Investigation of the Fracturing 

Effect Induced by Disturbing Stress of Hydrofracturing [Original Research]. 

Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.751626  

https://doi.org/https:/doi.org/10.1016/j.jngse.2019.04.011
https://doi.org/https:/doi.org/10.1016/j.orggeochem.2012.03.012
https://doi.org/10.1038/srep40507
https://doi.org/10.3389/feart.2021.751626

