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ABSTRACT

The availability of large-scale spatial and temporal data has fueled increasing interest in sta-

tistical modelling and analysis. With the recent development of data collection and data storage

techniques, the observation scopes can sometimes involve a extremely vast range or an explosive

amount of cases. Then this always leads to an inevitable focus that there tend to be some heteroge-

neous properties among observations. Thus, the research was conducted to explain the variability

in spatial or temporal data considering the correlation of observations.

We first considered the intensity estimation problem for large spatial point patterns on complex

domains in R2 (e.g., domains with irregular boundaries, sharp concavities, and/or interior holes

due to geographic constraints) and linear networks, where many existing spatial point process

models suffer from the problems of “leakage" and computation. We proposed an efficient intensity

estimation algorithm to estimate the spatially varying intensity function and to study the varying

relationship between intensity and explanatory variables on complex domains. The method is built

upon a graph regularization technique and hence can be flexibly applied to point patterns on com-

plex domains such as regions with irregular boundaries and holes, or linear networks. An efficient

proximal gradient optimization algorithm is proposed to handle large spatial point patterns. Nu-

merical studies were conducted to illustrate the performance of the method. Besides, we apply

the method to study and visualize the intensity patterns of the accidents on the Western Australia

road network, and the spatial variations in the effects of income, lights condition, and population

density on the Toronto homicides occurrences.

In addition, the spatial inhomogeneity occurred in various scenarios, especially for the data

laying in a vast-scale space. we further established a spatially adaptive sampling design approach

based in an estimation of the spatially varying underlying contamination distribution. This part of

research was motivated by an Arsenic exposure data which were collected through drinking wa-

ter in private wells across the Iowa state. From the public and environmental health management

perspective, it is critical to allocate the limited resources to establish an effective arsenic sampling
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and testing plan for health risk mitigation. we propose a statistical regularization method to auto-

matically detect spatial clusters of the underlying contamination risk from the currently available

private well arsenic testing data in the USA, Iowa. This approach allows us to develop a sam-

pling design method that is adaptive to the changes in the contamination risk across the identified

clusters.

Finally, we further looked into the cluster issues in structured temporal point data. How to

cluster event sequences from heterogeneous point processes is a challenging task, especially when

event sequences are repeatedly observed and associated with multiple event types. To solve this

problem, we proposed an efficient model-based clustering framework, based on a novel multivari-

ate mixture of functional point processes (MFPP). The proposed model generated event sequences

from a multi-level log-Gaussian Cox process, which allows to uncover complex inner patterns

among sequences, by imposing multiple latent random effects. We prove the identifiability of our

mixture model and developed an effective semi-parametric Exponential-Solution (ES) algorithm

to the proposed model. The effectiveness of the proposed framework is demonstrated through

simulation studies and real data analyses.
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NOMENCLATURE

u Spatial coordinate

s, t Timestamp

λ(·) Intensity function

C Number of clusters

ω Cluster indicator

G Connection graph

E Edge set

V Vertex set

H Oriented incidence matrix corresponding to E

MST Minimum spanning tree

k-NN k-Nearest neighbor graph

ϵ-NN ϵ-Radius nearest neighbor graph
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1. INTRODUCTION

With recent technological advancement, large-scale, high-resolution, and irregularly data con-

cerning real-time human scattered activities can be collected through various venues nowadays.

For example, social media platforms such as Twitter and Facebook produce a myriad of user gen-

erated content on a daily basis, and Taxi service companies such as Uber and Lyft maintain pick-

up/drop-off records of all taxi drivers. The complexity and magnitude of these new data call for

new innovative statistical modeling tools. We plan to answer this call by proposing a series of new

nonparameteric and semi-parametric point process models for spatial or temporal point patterns of

structured human activities. To illustrate, we first introduce two scenarios that the team has access

to as motivating examples.

Events on Complex Domains We collected two motivating datasets on complex domains. The

first one is the traffic accident locations on the Western Australia road network shown in the right

panel of Figure 1.1, where the interest lies in studying the spatial variation of accident occurrences.

The left panel in Figure 1.1 shows the homicides locations that occurred in Toronto, where the city

boundary has a very irregular shape especially near Toronto islands. The Toronto data set also

includes several additional covariates such as the records of average income, night lights, and

population density. Therefore, the questions of interest include not only the intensity of crime

events but also the relationships between crime intensity and regional characteristics. In particular,

for a large city like Toronto, we may expect that such relationships may vary, and in some places

rather abruptly, across the study domain.

Sampling Design for Spatial Observations The motivating dataset was collected by the Uni-

versity of Iowa State Hygienic Laboratory from July 1st, 2015 to June 16th, 2020, which contains

water Arsenic concentrations in totally 14,570 sampled wells across Iowa state. The spots of wells

were highly unevenly distributed (Figure 1.2). Based on the risk categories, we characterize the

wells that contain higher than 0.01 mg/L arsenic as high risk wells, and use a binary variable to

denote whether a well is at high risk. Obviously the arsenic risk varies in different regions of Iowa.
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Figure 1.1: Left: map of homicide locations in Toronto during 2000−2014; Right: traffic networks
and road accidents on Western Australia in 2011;

We aimed to detect this spatially varying arsenic exposure risk, and then establish an effective

arsenic sampling and testing plan for health risk mitigation.

Repeatedly Observed Event Sequences The motivating data was collected using Twitter API

and consists of posting times of 500 university official accounts from April 15, to May 14th, 2021.

Figure 1.3 displays posting time stamps of seven selected accounts in five consecutive days. While

the daily posting patterns vary across different accounts, the posting date seems to also play an

important role. Specifically, all accounts cascade a barrage of postings on April 16th while few

postings appear on April 18th. Lastly, each posting is associated with a specific type of activity,

namely, tweet, retweet, or reply. Our main interest is to cluster these multi-category, dynamic

posting patterns into subgroups.

As we can see in these motivating examples, spatial and temporal point pattern data contain

rich information about human activities or events, and have become increasingly prevalent in many

disciplines. However, the development of new statistical tools for handling such highly structured

data much behind the data availability. The proposed research aims to narrow this gap by achieving

following specific aims.

In the Chapter 2, we aim to find solutions to the intensity estimation problem for spatial point
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Figure 1.2: Spatial distribution of the Arsenic contamination presence/absence observations.

Figure 1.3: The activities of selected accounts on Twitter.

patterns on complex domains in R2 (e.g., domains with irregular boundaries, sharp concavities,

and/or interior holes due to geographic constraints) and linear networks, where many existing

spatial point process models suffer from the problems of “leakage" and computation. we developed

a simple yet effective approach based on a fused lasso regularization method on a graph for the

estimation of piece-wise constant spatial intensity functions. We propose penalties on regression

coefficients to encourage sparsity on the differences among regression coefficients that are close
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in space. The fused lasso methods have gained increasing popularity owning to its flexibility of

learning clustered structures. The work in this chapter was previously published and can refer to

Yin and Sang (2021) for more details.

In the Chapter 3, we proposed to cluster the Iowa into several sub-regions, so that the arsenic

exposure risks are homogeneous in each sub-region. In light of Chapter 2, the varying coefficient

model and the graph-fused lasso regularization demonstrated their merits to cluster some irregular

space with piece-wise constant properties. In the same way, we proposed a logistic model with

spatially varying coeffients for the binary outcomes across the Iowa state. The work in this chapter

was previously published and can refer to Yin et al. (2021a) for more details.

In the Chapter 4, we further looked into the cluster issues in structured temporal event se-

quences which are repeatedly observed. An important goal in studying human activity patterns

is to identify user groups displaying similar behavioral patterns. One can further look into each

cluster to better understand the underlying cause for certain activity patterns and to make some

necessary adjustments (e.g. behavioral interventions). The goal of this project is to develop a uni-

fied approach to model human activity patterns and simultaneously form user clusters accordingly.

The work in this chapter was previously published and can refer to Yin et al. (2021b) for more

details.
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2. FUSED SPATIAL POINT PROCESS INTENSITY ESTIMATION WITH VARYING

COEFFICIENTS ON COMPLEX CONSTRAINED DOMAINS

2.1 Introduction

Numerous problems in geosciences, social sciences, ecology, and urban planning nowadays

involve extensive amounts of spatial point pattern data recording event occurrence. Examples in-

clude locations of invasive species, pick-up locations of Taxi trips, addresses of 911 calls, and

traffic accidents on roads, to name a few. In many such applications, the primary problem of inter-

est is to characterize the probability of event occurrence. In the presence of additional covariates

information, another problem of interest is to study the effect of these covarites on event occur-

rence probability, considering the spatial dependence of observations. Spatial point process models

have been widely used for the analysis of point patterns, in which the intensity function, denoted

as ρ(u), is used to describe the likelihood for an event to occur at location u.

In practice, many spatial point patterns data are collected over complex domains with irregular

boundaries, peninsulas, interior holes, or network geographical structures. In this chapter, we

consider two motivating data examples on such complex domains. The first one is the traffic

accident locations on the Western Australia road network shown in the right panel of Figure 1.1,

where the interest lies in studying the spatial variation of accident occurrences. The left panel in

Figure 1.1 shows the homicides locations that occurred in Toronto, where the city boundary has

a very irregular shape especially near Toronto islands. The Toronto data set also includes several

additional covariates such as the records of average income, night lights, and population density.

Therefore, the questions of interest include not only the intensity of crime events but also the

relationships between crime intensity and regional characteristics. In particular, for a large city

like Toronto, we may expect that such relationships may vary, and in some places rather abruptly,

across the study domain.

Thus far, many methods have been introduced to model the first-order spatially varying in-
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tensity function ρ(u). Popular point process models include the spatial Poisson point processes,

the log-Gaussian Cox Processes, and the Gibbs point processes. See a review by Møller and

Waagepetersen (2007). Intensity estimations of these models are often done using maximum com-

posite likelihoods (Guan, 2006), estimating equations (Guan et al., 2015) or Bayesian inference

methods (Leininger et al., 2017; Gonçalves and Gamerman, 2018; Shirota and Banerjee, 2019).

Nonparametric methods have also been widely used for estimating the spatially varying intensity

functions, including the edge-corrected kernel smoothing estimators by Diggle (1985); Jones et al.

(1996), the Voronoi estimator by Barr and Schoenberg (2010) using the inverse of the area of the

Voronoi cell for each observed location, and a local likelihood estimation procedure in analogy to

geographically weighted regression by Fotheringham et al. (2003).

Yet, statistical analysis of point patterns on complex domains presents severe challenges to

many of the classical point process models reviewed above. Mainly, the commonly adopted Eu-

clidean assumption underpinning some of these methods no longer holds for point patterns on

complex domains. For example, two locations on a road network that are close by Euclidean dis-

tance may actually lie on two separate roads. Moreover, the large data size will aggravate the

challenges in modeling point patterns on complex domains. There is a great need to develop spa-

tial point pattern analysis tools that are computationally efficient to solve the so called “leakage"

problem encountered on complex domains.

For some particular types of complex domain such as line networks, a number of intensity

estimation methods have been developed recently. Kernel estimators of the intensity function on

a line network were investigated in McSwiggan et al. (2017); Moradi et al. (2018); Rakshit et al.

(2019), adapting the idea of edge-correction using path lengths. Other variations of kernel density

estimation methods are reviewed in Baddeley et al. (2020). It is known that kernel estimators

are, by nature, more suitable for estimating relatively smooth intensity functions because of the

use of smoothing kernel functions. When intensity function exhibits discontinuities and abrupt

changes in space, as discussed in Baddeley et al. (2020), piece-wise constant estimators become

an appealing alternative as they have a strong adaptivity to changes. One research in this direction
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is the aforementioned Voronoi estimator by Barr and Schoenberg (2010). However, the method

suffers from the high variance in the estimator. To reduce the variance, Moradi et al. (2019)

extended it by a bootstrap resample smoothing procedure. Recently, Bassett and Sharpnack (2019)

proposed to estimate the density of points on a network as opposed to the intensity function based

on a total variation regularization method. While each represents advancements in estimating

intensity or density of points, none has incorporated spatial covariates in estimation.

When spatial covariates are available, various methods (Baddeley et al., 2012; McSwiggan,

2019) have been developed to incorporate covariate information with the goal to investigate the

effect of spatial covariates on point patterns. However, to the best of our knowledge, there has

been very limited work for dealing with varying regression coefficients for spatial point patterns,

even in the simpler case where point patterns are observed in the Euclidean space. One notable

exception is the work by Pinto Junior et al. (2015), which modeled the regression coefficients as

a multivariate Gaussian process in a similar fashion as the spatially varying coefficients (SVC)

linear regression model proposed by Gelfand et al. (2003). Despite the model richness and flexi-

bility, the SVC model is known to involve heavy computation in the presence of large spatial data

due to the requirement of Metropolis MCMC and the need to invert a large covariance matrix.

The intractability of the likelihood function of the spatial Poisson process further aggravates the

issue. To address the computation issue, Pinto Junior et al. (2015) partitioned the study region

into a small number of subregions according to administrative areas and assumed that latent spatial

random effects take constant values within each subregion. However, in some applications, such

a pre-determined partition may be unavailable or fail to accurately reflect the complex underlying

environmental and geological conditions.

In light of these limitations in the current literature, we develop a simple yet effective approach

based on a fused lasso regularization method on a graph for the estimation of piece-wise constant

spatial intensity functions. We propose penalties on regression coefficients to encourage sparsity

on the differences among regression coefficients that are close in space. The fused lasso methods

have gained increasing popularity owning to its flexibility of learning clustered structures. How-
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ever, to our knowledge, there is limited work that has investigated its performance for point pattern

data analysis. In addition, we extend the approach to a piece-wise constant coefficient spatial

point process model when explanatory variables are available, which models the varying relation-

ships between point patterns and covariates. We formulate the estimation problem into penalized

Poisson-based and Logistic based composite likelihoods optimizations, for which we solve by an

efficient proximal gradient algorithm. We tailor the algorithm to utilize spatial graph structures to

speed up computations. The choices of graphs play important roles in the modeling and compu-

tation of fused lasso problems. We consider various spatial graphs to represent spatial geometry

of complex domains and compare their performance. Finally, we introduce this method to the

analysis of the Western Australia accident data and the Toronto homicides data. The results of

our analysis reveal several interesting clustering patterns of traffic accidents and the spatial crime

distribution in relation to a number of key environmental, social, and economic variables.

The chapter is organized as follows. In Section 2.2, we review the basic mathematical for-

mulations and definitions of spatial point processes. We then introduce our method in Section

2.3.1, followed by the computation algorithm in Section 2.3.2. Sections 2.4 and 2.5 include the

simulations to illustrate the model performance and the applications to the two real data sets. We

offer conclusions and discussions in Section 2.6. Additional implementation details and numerical

results are included in Appendix A.

2.2 Preliminaries

2.2.1 Observation Domain

In this study, we consider spatial points on two important types of observation domains. The

first type is a bounded domain D ⊂ R2 that can be fully covered by finitely many rectangles.

The commonly assumed planar window [a1, a2] × [b1, b2] is a special case of this type. For any

locations u1, u2 in a planar window, the Euclidean distance is used to measure the distance between

two locations, denoted as d(u1, u2). One example of this type is given in Figure 1.1, where the

observation domain is the city of Toronto, which has irregular city limit boundaries. For any Borel
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subset B ⊆ D, the Lebesgue measure |B| is the area of B.

In the second type, we assume D is a linear network. Let [u, v] = {tu+ (1− t)v : 0 ≤ t ≤ 1}

denotes a line segment in the plane with endpoints u, v ∈ R2. A linear network is defined as the

finite union D = ∪η
i=1[ui, vi] of line segments [u1, v1], . . . , [uη, vη] embedded in the same plane.

One commonly used distance d(u1, u2) is the shortest-path distance between u1 and u2 on the

network. For any subset B ⊆ D, the measure |B| represents the total length of all segments in B.

An example of the line network is shown in the right panel of Figure 1.1, where the road network

in the state of Western Australia is drawn in grey lines, and red points mark the traffic accident

locations in 2011.

2.2.2 Spatial Point Processes

Let X be a spatial point process on D with the locally finite property, i.e., the random cardi-

nality NX(B) = #{u : u ∈ X ∩ B} is almost surely finite for any B ⊂ D. Assume that, for any

bounded B ⊂ D, if there exits a non-negative and locally integrable function ρ(·) : B 7→ R such

that,

E{NX(B)} =

∫
B

ρ(u)du

then ρ(·) is called the intensity function of X. The intensity function is of key interest in point

pattern analysis as ρ(u)|du| is interpreted as the approximate probability that an event occurs in

the infinitesimal set du.

Poisson point processes are one of the most fundamental and tractable spatial point process

models. In practice, ρ(·) is often varying over D, i.e. X is inhomogeneous and can also depend on

some spatial covariates z(u). In our study, we model the intensity function with a general log-linear

form,

ρ(u;β) = exp{zT (u)β}, u ∈ D (2.1)

where z(u) =
(
z1(u), . . . , zp(u)

)T is a p-dimensional vector of spatial covariates associated with

the spatial location u, and β ∈ Rp is the vector of regression parameters.

There are several other popular parametric point process models whose marginal intensity func-

9



tions take the same log-linear form as in (2.1). The class of Cox process models is one such exam-

ple. Let Λ = {Λ(u) : u ∈ D} denote a real, nonnegative valued random field. If the conditional

distribution of X given Λ is a Poisson process on D with intensity function Λ, then X is said to be

a Cox process driven by Λ. Popular examples of Cox processes models include the Neyman-Scott

process and the log Gaussian Cox process. See a review in Chapter 17 of Gelfand et al. (2010).

2.2.3 Composite Likelihoods

To estimate β in (2.1), one commonly used method is to construct unbiased estimating equa-

tions and obtain estimators by maximizing the corresponding composite likelihoods. The Poisson

based composite log-likelihood function (Waagepetersen, 2007) and the logistic based composite

log-likelihood function (Baddeley et al., 2014) have been used widely in the literature, which are

respectively given by:

ℓPL(β) =
m∑
i=1

log ρ(ui;β)−
∫
D

ρ(u;β)du (2.2)

ℓLRL(β) =
m∑
i=1

log(
ρ(ui;β)

δ(ui) + ρ(ui;β)
)−

∫
D

δ(u) log(
ρ(u;β) + δ(u)

δ(u)
)du, (2.3)

where {u1, . . . , um} denotes a set of observed points from a point process, and δ(u) is a non-

negative real-valued function. When point process is a Poisson process, the Poisson based com-

posite log-likelihood function in (2.2) is identical to the full log-likelihood function. For other

point processes models, the use of composite likelihood can be justified by the theory of estimat-

ing functions (Guan, 2006). It can be shown (see, e.g., Guan, 2006; Choiruddin et al., 2018) that the

estimators obtained by maximizing both Poisson based and logistic based composite log-likelihood

are the solution to the two corresponding unbiased estimating equations for β.

Nevertheless, the composite likelihood based inference produces a less efficient estimator com-

pared with the full likelihood based estimator, due to the loss of information incurred when only

using the first-order moment information of the point process. To improve its efficiency, several

methods have been developed to carefully select the weights when combining composite likeli-

hood terms (Guan and Shen, 2010). For simplicity, we only consider the unweighted composite
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likelihoods in the chapter, but remark that the methods can be potentially generalized to the use of

weighted composite likelihoods.

In practice, numerical approximations are needed for the composite likelihood inference be-

cause both the evaluations of (2.2) and (2.3) involve integral terms. For equation (2.2), Berman

and Turner (1992) developed a numerical quadrature method that employs Riemann sum approxi-

mation to the integral part. To implement this, the domain D is partitioned into M −m quadrats.

More details on how we divide a 2-D bounded domain and a line network can be found in Ap-

pendix A. The M −m dummy points, denoted by {ui, i = m+ 1, . . . ,M}, are then placed at the

centroid of each quadrat. The Poisson based composite log likelihood is approximated by

ℓPL(β) ≈
M∑
i=1

vi{yi log ρ(ui;β)− ρ(ui;β)}, (2.4)

where {ui ∈ D, i = 1, · · · ,M} consists of the m observed points and M −m dummy points. vi

is the quadrature weight corresponding to each ui. We set vi = ai/ni, where ni denotes the total

number of observed points and dummy points in the quadrat that ui resides, and ai denotes the

Lebesgue measure of the quadrat of ui such that
∑M

i=m+1 ai = |D|. The working response data

becomes yi = v−1
i ∆i, where ∆i is an indicator of whether point i is an observation (∆i = 1) or a

dummy point (∆i = 0).

The Berman-Turner approximation in (2.4) often requires a great amount of dummy points,

consequently incurring extra computational cost. Baddeley et al. (2014) showed that the logistic

likelihood in (2.3) requires a smaller number of dummy points to perform competitively with the

Berman-Turner approximation. The method approximates (2.3) by

ℓLRL(β) ≈
m∑
i=1

log
ρ(ui;β)

δ(ui) + ρ(ui;β)
+

M∑
i=m+1

log
δ(ui)

δ(ui) + ρ(ui;β)
(2.5)

where the integration term is calculated by Monte Carlo integration, and the dummy points are

drawn from a Poisson point process over D with an intensity function δ(u) that is independent from

X. Applying the Campbell’s formula (Moller and Waagepetersen, 2003), it is straightforward to
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show that the expectation of the second term in (2.5) equals to the integral part in (2.3). We follow

the suggestion of Baddeley et al. (2014) and choose δ(u) = (M−m)/|D| in our numerical studies.

2.3 Methodology

2.3.1 Spatially Varying Coefficient Models

A traditional way to model the log-linear term of the intensity function is to treat regression co-

efficients as constants in space as in (2.1). In the proposed model, we are interested in estimating a

piece-wise constant intensity function in an intercept-only log-linear model or detecting clustering

patterns in β when covariates are available. Below, we introduce a varying coefficient log-linear

intensity model (SVCI) for spatial point processes via a graph regularization method.

To elaborate, suppose a set of spatial points is observed at locations u1, . . . , um ∈ D. We as-

sume that these spatial points are a realization from a point process X with an intensity function

ρ(u) that depends on the p-dimensional spatial explanatory variables z(u) = {z1(u), . . . , zp(u)}.

As an extension of the constant coefficients regression model, we assume that the regression co-

efficients are spatially varying across D, denoted as β(u) = {β1(u), . . . , βp(u)}T . The spatially

varying coefficient models inherit the simplicity and easy interpretation of the traditional log-linear

model in (2.1), yet they still enjoy great flexibility that allows practitioners to investigate locally

varying relationships among variables.

Let βk =
(
βk(u1), . . . , βk(um)

)T denote the vector of regression coefficients associated with

the k-th covariate, for k = 1, . . . , p. We assume that each βk has its own spatially clustered pattern

and is a piece-wise constant function on D; the coefficients are homogeneous in the same spatial

cluster and varying across different clusters. In many spatial applications involving point patterns

such as traffic accidents, crime locations and pick-up/drop-off locations of Taxi trips, it is desirable

to consider spatially contiguous clustering configurations such that only adjacent locations are

clustered together. This way, the practitioners can detect discontinuities across boundaries and

easily interpret the detected clusters as local regions to facilitate subsequent regional analysis.

Before introducing our regularization method, we formally define spatially contiguous cluster
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of points using the notion of connected components in graph theory. Consider an undirected graph

denoted as G = (V,E), where V = {ui ∈ D, i = 1, . . . ,M} is the set of vertices which in our case

consists of both observed points and dummy points, and E is the edge set consisting of a subset of

{(ui, uj) : ui, uj ∈ V}. In graph theory, a graph G is said to be connected if for any two vertices

there exists a path between them. A subgraph Gs is called a connected component of G if it is

connected and there is no path between any vertex in Gs and any vertex in G \ Gs, where G \Gs

denotes the subgraph on the set V \ Vs. Now we can define spatially contiguous clusters as the

connected components of a graph G. As a result, a spatially contiguous partition of V is defined as

a collection of disjoint connect components such that the union of vertices is V.

This motivates us to construct a graph based regularization model, which permits contiguous

cluster identifications of regression coefficients for each covariate in the log-linear point process

model. Let β∗
k =

(
βk(um+1), . . . , βk(uM)

)T , for k = 1, . . . , p, denote the vector of regression co-

efficients at the dummy points associated with the k-th covariate. Denote the vector of the stacked

regression coefficients at both the observed and dummy points by β = (βT
1 ,β

∗,T
1 , . . . ,βT

p ,β
∗,T
p )T ∈

RpM . We estimate β by minimizing the penalized negative composite log likelihood objective

function:

Q(β) = − 1

|D|
ℓ̃c(β) +

p∑
k=1

∑
(i,j)∈E

Pλ(βk(ui)− βk(uj)), (2.6)

where ℓ̃c(β) is either the approximation of the Poisson based composite log-likelihood or the lo-

gistic regression-based composite log-likelihood function with the following expressions:

ℓ̃PL(β) =
M∑
i=1

vi{yi log ρ(ui;β(ui))− ρ(ui;β(ui))}, (2.7)

ℓ̃LRL(β) =
m∑
i=1

log
ρ
(
ui;β(ui)

)
δ(ui) + ρ

(
ui;β(ui)

) +
M∑

i=m+1

log
δ(ui)

δ(ui) + ρ
(
ui;β(ui)

) . (2.8)

The second term in the objective function (2.6) adds a graph pairwise fused regularization to the
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negative composite log-likelihood function. E is the edge set of a graph G, and (i, j) ∈ E implies

that there is an edge in E connecting the points at ui and uj . Pλ(·), a non-negative function tuned

by parameter λ, penalizes the pairwise difference of regression coefficients whose corresponding

locations are connected by an edge in E. One popular choice is the L1-penalty,

Pλ(t) = λ∥t∥1

which is often referred to as the graph fused lasso penalty in the literature (Tibshirani et al., 2011;

Arnold and Tibshirani, 2016; Li and Sang, 2019). The L1 penalty encourages sparsity in the

pairwise differences between the coefficients of edge-connected locations. As a result, the edges in

the graph can be classified into a set that corresponds to the non-zero elements of |βk(ui)−βk(uj)|,

and another set that corresponds to the zero elements of |βk(ui)−βk(uj)|. The solution of L1 fused

lasso penalty naturally leads to a piece-wise constant estimate of βk for each covariate and hence a

well defined spatially contiguous partition of the vertices for each regression coefficient function.

λ is a non-negative tuning parameter that determines the strength of penalization and ultimately

influences the estimated number of clusters. We use the Bayes information criterion (BIC) to select

an optimal value of λ (Choiruddin et al., 2021). Specifically, BIC = −2ℓ̃c + df logm, where ℓ̃c is

the approximated composite log likelihood as in (2.7) and (2.8), m is the number of observations,

and df is the degree of freedom of β̂. Following Tibshirani et al. (2011), df is estimated by the

summation of the number of clusters for each regression coefficient βk.

We remark that there are other choices of sparsity inducing penalty functions, including adap-

tive lasso (Zou, 2006), smoothly clipped absolute deviation (SCAD, Fan and Li, 2001), and min-

imax concave penalty (MCP, Zhang, 2010). There are also other criteria for tuning parameter se-

lection, including Akaike information criterion (AIC), generalized cross-validation (GCV, Golub

et al., 1979), and extended Bayesian information criterion (EBIC, Chen and Chen, 2012). In this

chapter, we choose to use L1 penalty together with BIC to demonstrate the utility of our method

for its computational simplicity. The method itself can adopt other forms of penalty functions and
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model-selection criteria which may further improve its performance.

The selection of edge set E is a key ingredient in our SVCI model by playing two important

roles. First, the corresponding graph G reflects the prior assumptions about the spatial structure and

the contiguous constraint of the regression coefficients. In particular, we rely on G to incorporate

the relational information among points on complex constrained domains so that we can relax the

Euclidean assumption. Second, as we will explain in Section 2.3.2, the computation speed and

storage complexity of the optimization algorithm are largely determined by the structure of G.

We seek to construct a graph fused lasso regularization to achieve a good balance between model

accuracy and computational efficiency.

For point patterns on a bounded observation domain, one natural choice is to construct a nearest

neighbor graph that connects each vertex with its k nearest neighbors (K-NN) or neighbors within

a certain radius (r-NN). In practice, the number of neighbors in K-NN or the radius in r-NN needs

to be chosen with care to guarantee that G is a connected graph. It is known in machine learning

literature (see, e.g., Shaw and Jebara, 2009) that K-NN graphs can effectively preserve the intrinsic

manifold structure of the data. Another approach is the Delaunay triangulation (Lee, 1980), which

constructs triangles with a vertex set such that no vertex is inside the circumcircle of any triangle.

In practice, edges longer than a certain threshold are removed to ensure the spatial proximity of

neighboring vertices. Triangular graphs have also shown their capabilities in preserving complex

topological structures of the data. See Lindgren et al. (2011); Mu et al. (2018) for examples.

Moreover, when a graph has certain simple structures such as a chain or a tree graph, several recent

work (Padilla et al., 2018; Li and Sang, 2019) showed that these simple graph structures enable

simplified algorithms to solve the graph fused lasso problem. This motivates us to adopt a similar

strategy to replace the original graph by a minimum spanning tree graph, defined as the subgraph

that connects all vertices with no cycles and with minimum total edge weights. We will investigate

and compare the performance of the proposed SVCI model with different types of graphs in the

numerical studies in Section 2.4 and Appendix Section A3.

For point patterns on a linear network, we use an edge set that only connects pairs which are
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Figure 2.1: A simple illustration of connections in linear networks

natural neighbors. To illustrate how we define natural neighbors, we provide a simple example of a

linear network (black segments) and 5 spatial points (red nodes) near an intersection in Figure 2.1.

For any interior point such as point B, defined as a point where there exists one other point on each

side of the same line, we connect it with its two adjacent points {A, C}. For any boundary point

such as point A, defined as a point where there is no other point on the path between it and the

intersection point, we connect it with {B, D, E}, i.e., its adjacent interior point on the same line and

its adjacent boundary points on the neighboring lines that share the same intersection.

2.3.2 Computation

Once we construct the edge set E, the objective function in (2.6) can be written in a matrix

form, and the estimate of β is obtained by solving the following fused lasso optimization problem:

β̂ = argmin
β∈RpM

{− 1

|D|
ℓ̃c(β) + λ

p∑
k=1

∥Hβk∥1}, (2.9)

where H is an m′′ ×M incidence matrix corresponding to the edge set E with m′′ edges. Specif-

ically, for the l-th edge of E connecting vertices ui and uj , the penalty term |βk(ui) − βk(uj)| is

represented as |Hlβk|, where Hl is the l-th row of H and contains only two nonzero elements; 1

at the i-th column index and −1 at the j-th.

The path following type of algorithms (Arnold and Tibshirani, 2016) and alternating direction
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methods of multipliers (ADMM, Boyd et al., 2011) have been developed to solve graph fused lasso

problems. However, the computation of these algorithms can be expensive for a general graph with

a large number of nodes and edges. Note the number of nodes in our graph is typically a large

number in practice because both the numbers of observations and dummy points are included. It

is, therefore, computationally challenging to directly apply these conventional algorithms for the

implementation of our model.

We note that the two approximated log composite likelihood functions in (2.7) and (2.8) co-

incide with the forms of the log likelihood function of a weighted Poisson linear regression and a

logistic linear regression, respectively, both of which are concave functions of β. Below, we pro-

pose to combine the proximal gradient method and the alternating direction method of multipliers

to solve the convex optimization problem in (2.9). In particular, we take advantage of specific

structures of our selected spatial graphs to speed up computation.

Specifically, with the current estimate of the parameters being β(t), we follow the proximal

gradient method (Beck and Teboulle, 2009) to update the value of β iteratively by solving:

β(t+1) = argmin
β

1

2

∥∥β −R(t)
∥∥2

2
+

λ

L

p∑
k=1

∥Hβk∥1, (2.10)

where L is the local Lipschitz constant of − 1
|D| ℓ̃c(β

(t)), ∇ℓ̃c(β
(t)) is the first derivative of ℓ̃PL(β)

or ℓ̃LRL(β) evaluated at β(t), and R(t) = β(t) + (1/L) 1
|D|∇ℓ̃c(β

(t)). We can choose L to be the

maximum eigenvalue of the Hessian matrix of − 1
|D| ℓ̃c(β) evaluated at β(t).

Now the optimization at each iteration boils down to solving (2.10), for which we propose

to use the ADMM algorithm (Wahlberg et al., 2012). By introducing auxiliary variables θ =

{θ1, · · · ,θp}, Equation (2.10) is equivalent to:

s.t. θk = Hβk, ∀k = 1, . . . , p
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Its augmented Lagrangian function is:

1

2

∥∥β −R(t)
∥∥2

2
+

λ

L

p∑
k=1

∥θk∥1 +
γ

2

p∑
k=1

∥Hβk − θk∥22 + γ

p∑
k=1

uT
k (Hβk − θk),

where u = {u1, . . . ,up} are Lagrangian multipliers, and γ is a penalty parameter. ADMM alter-

nately optimizes {β,θ,u} by solving the following three subproblems:



β(t+1) = argmin
β

{
∥∥β −R(t)

∥∥2

2
+ γ

p∑
k=1

∥Hβk − θ
(t)
k + u

(t)
k ∥22},

θ
(t+1)
k = argmin

θk

{λ
L
∥θk∥1 +

γ

2
∥Hβ

(t+1)
k − θk + u

(t)
k ∥22}, k = 1, . . . , p

u
(t+1)
k = u

(t)
k +Hβ

(t+1)
k − θ

(t+1)
k , k = 1, · · · , p

where t denotes the t-th iteration.

The above sub optimization problems have the following analytical results:


β

(t+1)
k : (In + γHTH)−1[R

(t)
k + γHT (θ

(t)
k − u

(t)
k )]

θ
(t+1)
k : S(Hβ

(t+1)
k + u

(t)
k ;

λ

Lγ
),

u
(t+1)
k = u

(t)
k +Hβt+1

k − θt+1
k ,

for each k = 1, . . . , p, where S(z, λ) is the soft-thresholding operator, and

R
(t)
k = β

(t)
k + (1/L)

1

|D|
∇ℓ̃c(β

(t)
k )

It is noted that the above optimization steps are separable for the parameters associated with each

k, and hence can be conveniently solved in a parallel fashion. In addition, under our choice of

the spatial graphs, the graph Laplacian matrix HTH is a sparse matrix. As a result, the update of

β(t) only involves the linear solver of the sparse matrix (In + γHTH)−1, whose sparse Cholesky

factorization can be pre-computed efficiently using the R package Matrix. We iterate the above

ADMM steps until convergence.
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2.4 Simulation Studies

In this section, we conduct simulation studies to investigate the performance of the SVCI

model. We design two different data generation scenarios:

• Scenario 1: Point patterns are generated from a Poisson point process on a planar window,

where the log intensity is a linear function of an intercept and two covariates with clustered

regression coefficients, i.e., ρ(u;β(u)) = exp{β0(u) + z1(u)β1(u) + z2(u)β2(u)}.

• Scenario 2: Point patterns are generated from a Poisson point process on a linear network.

We consider two sub-scenarios: (a) The log intensity is a piece-wise constant function, i.e.,

ρ(u;β(u)) = exp{β0(u)}; (b) The log intensity is a linear function of an intercept and two

covariates with clustered regression coefficients as in Scenario 1.

In Scenario 1, we focus on examining the performance of our method under different model

choices, including the choice of graphs used in the graph fused lasso penalty and the choice

between the Poisson likelihood based SVCI (SVCI-PL) and the logistic likelihood based SVCI

(SVCI-LRL). For comparison studies, to the best of our knowledge, there are very limited existing

methods available for spatially clustered coefficient log linear point process models on complex

domains as reviewed in the Introduction, except for the simple case of an intercept-only log-linear

model. As such, Scenario 2(a) is included so that we can compare SVCI with the nonparametric

kernel density estimation method on a linear network (KDE.lpp) proposed in McSwiggan et al.

(2017), the fast KDE method (KDEQuick.lpp) in Rakshit et al. (2019), and the resample-smoothed

Voronoi intensity estimation method (Voronoi.lpp) in Moradi et al. (2019). For the case that has

spatial covariates as in Scenario 2.(b), the comparison is made with the LGCP model (Møller et al.,

1998), in which the inhomogeneity of the intensity function is modeled by a latent spatial Gaussian

process random effects model.

Given the estimator β̂ defined in (2.9), we predict the coefficients at any given new location

u ∈ D\{u1, . . . , uM} according to β̂(u) =
∑M

i=1 1{ui∈NK(u)}β̂(ui)/K, where NK(u) denotes the

K nearest neighbors of u. To quantify the performance of parameter estimation, we evaluate the
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estimation accuracy of βk(u) by the mean integrated squared error (MISEβ , Davis (1977)), defined

as:

MISEβ =
1

p|D|

p∑
k=1

∫
D

(βk(u)− β̂k(u))
2du.

We implement our methods in R and provide the codes in https://github.com/LihaoYin/SVCI.

The data generations are done using the R package spatstat (Baddeley and Turner, 2005).

The competing KDE.lpp and KDEQuick.lpp methods are implemented using density.lpp and

densityQuick.lpp in the R package spatstat, respectively. Voronoi.lpp is implemented

using densityVoronoi.lpp also in the R package spatstat. The competing LGCP method

is implemented in R using the lgcp function provided in geostatsp (Brown, 2015). In KDE-

Quick and KDE.lpp, bandwidth was selected by maximizing the approximated log-likelihood from

a candidate set of bandwidths in a neighborhood of the optimal tuning parameter that minimizes

MISE. In Voronoi.lpp, we set nrep = 100 and select the probability f by maximizing the ap-

proximated log-likelihood from a candidate set in a neighborhood of the optimal f that minimizes

MISE.

All computations were performed on a Mac Pro with 2.4 GHz Intel Core i7 laptop with 8GB

of memory.

2.4.1 Simulation Scenario 1

In Simulation Scenario 1, we consider a spatial 2D window D = [0, R]2 ⊂ R2, where the

true regression coefficients in the log-intensity function are assumed to have clustering patterns as

shown in the top panel of Figure 2.2. We simulate the two covariates {z1(u)} and {z2(u)} from two

independent realizations of a spatial GP with mean zero and an isotropic exponential covariance

function taking the form of Cov{zk(u), zk(v)} = σ2 exp(−∥u − v∥/ϕ), k = 1, 2, u, v ∈ [0, R]2,

where the range parameter ϕ = 0.3R corresponding to a moderate spatial correlation setting, and

σ2 = 1.

Under one chosen fixed coefficient pattern, we experiment with a range of R values to simulate

one realization from the Poisson point process model described in Scenario 1 such that the number
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of simulated points ranges from 800 to 6000 on average, in order to examine the performance of

SVCI as the sample size increases with the expanding domain. Furthermore, we report the model

performance under three different choices of the number of dummy points, denoted as nd2: (a)

nd2 < m; (b) nd2 = m; (c) nd2 > m, where m is the number of the observed points. We also

compare with an LGCP model with intensity function log ρ(u) = z(u)Tβ+ ϕ(u), where β are the

constant-coefficients across the domain, and ϕ(u) is a spatial Gaussian process with a zero mean

and a Mátern correlation function.

As discussed in Section 2.3, the selection of connection graphs for the fused lasso penalty

plays critical roles on estimation accuracy and computation speed. In this study, we compare the

performance of SVCI using three types of connection graphs, including the minimum spanning

tree graph (MST), the Delaunay triangulation (DTs) and the K-nearest neighbor graph (K-NNs, K

is set to be 3, 4, 5). Also see a comparison study between K-NNs and r-NNs in Appendix Section

A3. We run 100 repeated experiments of the SVCI model using each connection graph for both

SVCI-PL and SVCI-LRL with a fix number of dummy points nd2 = m.

In Table 2.1, we report the averaged MISE of the estimates β̂ (MISEβ). There are several

noticeable observations. First, a denser graph such as the 5-NN graph produces a more accurate

estimation result compared with that of a sparser graph such as the MST or 3-NN graph. The bot-

tom panel of Figure 2.2 illustrates an example of the estimated coefficients using the 5-NN graph

when m = 2000 and nd2 = m, which demonstrates the capability of SVCI in capturing the clus-

ter structure in the regression coefficients and detecting the abrupt changes across the boundaries

of adjacent clusters. However, there is clearly a trade off between the estimation accuracy and

computation efficiency when using different graphs; as reported in the left panel of Figure 2.3,

the computation time (in seconds) using the 5-NN or Delaunay triangulation graph is roughly 1.5

times of the computation time using the MST. Second, the parameter estimation is more accu-

rate when m grows larger, as evidenced by the decreasing value of MISEβ . Finally, SVCI-LRL

produces comparable results with those from SVCI-PL when m = 800 or using the MST graph,

but it notably outperforms SVCI-PL when m ≥ 1600. This is consistent with the findings in
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Figure 2.2: Upper panel: the true regression coefficients, β1(u), β2(u) and β0(u), in Scenario 1;
Lower panel: the estimated coefficients from one simulation using the 5NN graph when m = 2400,
nd2 = m

Baddeley et al. (2014), which showed that for datasets with a large number of points or a highly

structured point pattern, the logistic likelihood method produces a less biased estimator than its

Poisson counterpart.

We further examine the performance of the SVCI model in terms of recovering the true intensity

function. Given β̂(u), we obtain the estimate of the log intensity function by log ρ̂(u) = zT (u)β̂(u)

for u ∈ D. The right panel of Figure 2.3 compares the MISE of log ρ̂(u) from SVCI-PL, SVCI-

LRL and LGCP, respectively. It is noted that SVCI-LRL maintains its superior performance when

predicting the intensity function in comparison with SVCI-PL. Besides, both versions of SVCI

produce more accurate estimates than LGCP when estimating the intensity function with clustered

regression coefficients.

Next we examine the performance of SVCI in recovering the clusters of coefficients. Table 2.2

reports the Rand index for each of the SVCI estimates β̂1, β̂2 and β̂0 averaged over 100 simula-

tions, using the 5-NN graph and setting nd2 = m. Rand index measures the proportion of pairs
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consisting of a true parameter and the corresponding estimated parameter that agree by virtue of

belonging either to the same cluster or to different clusters. Overall, SVCI achieves an accurate

cluster recovery result, evidenced by the relatively high Rand index value ranging from 0.73 to

0.93 in all settings. We also find that SVCI-LPL surpasses SVCI-PL in detecting spatial clusters.

Finally, an interesting observation is that β̂0 has a lower Rand index value than that of β̂1 and β̂2,

which might be the consequence of having more clusters in the true function of β0(u).

Finally we check the sensitivity of the model performance to the number of dummy points. We

fix m = 1600 and consider three different numbers of dummy points denoted by nd2. Table 2.3

presents the averaged MISEβ and the associated computation time over 100 simulations. For the

Poisson likelihood, the default choice suggested in the R package spatstat is nd2 ≈ 4m. In

our experiments, however, as presented in Table 2.3, both SVCI-PL and SVCI-LRL achieve the

minimal MISEβ when nd2 = 602, i.e. when the number of dummy points roughly equals the

number of points. Moreover, based on the results in Table 2.3, we observe that when nd2 is

not too large, both SVCI-PL and SVCI-LRL seem to achieve a smaller MISEβ but at a higher

computation cost as nd2 increases. Weighing the trade-off between computation efficiency and

estimation accuracy, we recommend to use nd2 ≈ m in practice.

Table 2.1: Scenario 1: mean integrated squared error of β (MISEβ) averaged over 100 simulations
for different values of m with nd2 = m, different connection graphs, and the Poisson-based SVCI-
PL method and the logistic regression based SVCI-LRL method.

Method
m = 800 m = 1600 m = 2400 m = 3600 m = 6000

PL LRL PL LRL PL LRL PL LRL PL LRL
MISEβ

MST 0.234 0.243 0.222 0.224 0.189 0.191 0.152 0.146 0.130 0.125
3-NN 0.223 0.230 0.204 0.182 0.189 0.184 0.155 0.142 0.127 0.115
4-NN 0.214 0.209 0.200 0.181 0.157 0.132 0.133 0.116 0.115 0.098
5-NN 0.209 0.195 0.184 0.153 0.141 0.119 0.122 0.105 0.095 0.078
DT 0.215 0.211 0.174 0.141 0.128 0.111 0.113 0.097 0.080 0.072
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Table 2.2: Scenario 1: Rand index of the estimates β̂1, β̂2 and β̂0 (averaged over 100 Monte Carlo
simulations) of SVCI-PL and SVCI-LRL for different values of m, using nd2 = m and 5-NN
connection graphs.

m = 800 m = 1600 m = 2400 m = 3600 m = 6000
PL LRL PL LRL PL LRL PL LRL PL LRL

Rand Index
β̂1 0.817 0.839 0.857 0.874 0.883 0.903 0.897 0.915 0.917 0.930
β̂2 0.817 0.836 0.851 0.867 0.879 0.906 0.893 0.917 0.914 0.925
β̂0 0.729 0.760 0.742 0.773 0.767 0.786 0.787 0.806 0.803 0.825

Table 2.3: Scenario 1: comparing the MISEβ (averaged over 100 simulations) and computation
time (in seconds) between SVCI-PL and SVCI-LRL for different numbers of dummy points, using
m = 1600 and 5-NN connection graphs.

dummy points
SVCI-PL SVCI-LRL

MISEβ time(s) MISEβ time(s)
nd2 = 302 0.195 1.54 0.164 1.61
nd2 = 402 0.184 1.86 0.153 1.81
nd2 = 602 0.182 2.38 0.151 2.30
nd2 = 802 0.190 3.35 0.167 3.24

2.4.2 Simulation Scenario 2

In Scenario 2, we generate spatial points on the chicago linear network from the R package

spatstat. The network shown in the left panel of Figure 2.4 depicts the road network in an area of

Chicago, USA near the University of Chicago (Baddeley and Turner, 2005). We bound the linear

network in a window D = R × [0, 1]2 and increase R to expand D, so that the linear network that

resides in D grows with D at the same rate to obtain an increasing number of realizations on the

network.

We first consider a simplified case where there is no covariate available. We focus on the

estimation of intensity function whose true value is a piece-wise constant function, that is, the

intensity function ρ(u) = exp{β0(u)}, and the true value of β0(u) has a clustered pattern as shown

in the left panel of Figure 2.4. The original graph is constructed following the method described
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Figure 2.3: Left: computation time to solve the optimization for one tuning parameter using differ-
ent connection graphs; Right: the boxplots of MISEβ for SVCI-PL, SVCI-LRL with 5-NN graphs
and LGCP. Reported results are averaged over 100 Monte Carlo simulations under Scenario 1.

in the last paragraph of Section 3.1. The upper part of Table 2.4 presents the MISE of log ρ, i.e.,

the log intensity function for each value of m. In general, we obtain similar findings on the linear

network as on the planar window presented in Scenario 1; MISE from both the Poisson based

and logistic based SVCI models show a convergence tendency as the domain expands and m goes

up, and the logistic likelihood based method achieves a slightly more accurate estimation than the

Poisson based method with a large number of points. It is clear from Table 2.4 that both SVCI-

PL and SVCI-LRL outperform the KDE based and resample-smoothed Voronoi based intensity

estimation methods in almost all settings. Previous studies (Barr and Schoenberg, 2010) show that

KDE estimators may suffer from the problem of having substantial bias and high variance when

there are abrupt changes in the intensity. Both SVCI and Voronoi.lpp are designed to alleviate

this problem, as evidenced by their improved performance over the two KDE methods in Table

4. Nevertheless, SVCI seems to be more effective than Voronoi.lpp to capture abrupt changes or

clustering patterns. We illustrate an example in the right panel of Figure 2.4, which plots the true

and the estimated log intensity along a selected road segment from one simulation. It clearly shows

that SVCI captures the intensity with discontinuities more efficiently than KDE.lpp.
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Figure 2.4: Left: the true log intensity β0(u) on the chicago network in Scenario 2(a); Right: the
true and the estimated log intensity functions along one road segment corresponding to the line
between the two black arrows in the left panel of Figure 2.4.

We also compare the computation time of each method and report the detailed results in Ap-

pendix Table A2 for various values of m. Taking m = 2400 as an example, to get one estimate,

KDE.lpp requires 4.95 seconds, KDEQuick.lpp requires 0.084 seconds, and Voronoi.lpp requires

4.95 seconds. In contrast, SVCI-LRL needs 0.93 seconds to construct the connection graph and

1.11 seconds to get an estimate. Although SVCI is not the fastest among the compared meth-

ods, overall, its computation is still reasonable and competitive, especially considering its superior

performance in intensity estimations.

We then consider the case with an intercept and two covariates as described in Scenario 2(b).

The true regression coefficients are plotted in the subfigures (a-c) of Figure 2.5. The subfigures

(d-f) of Figure 2.5 give the estimated coefficients from SVCI on the chicago network. The

results demonstrate that our method is capable of capturing clustered coefficient patterns on a

linear network. In addition, the log intensity estimation results presented in the lower part of

Table 2.4 are in general consistent with the findings presented in Scenario 1 and Scenario 2(a);

the performance of the SVCI model with the logistic regression likelihood or with a larger m is

more preferable. Table 2.4 displays the results from LGCP as a comparison, which indicate a clear

improvement in estimation accuracy when using SVCI over LGCP.
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Figure 2.5: Upper panel (a-c) : the spatial structures of true coefficients β1(u), β2(u) and β0(u) in
Scenario 2(b); Lower panel (d-f): the estimated coefficient surfaces from in one simulation using
SVCI-LRL with m = 2400.

Table 2.4: Scenario 2: mean integrated squared error of log intensity (MISElog ρ) averaged over
100 simulations for different values of m. We compare the two estimating equations, the Poisson
likelihood (PL) and the logistic regression likelihood (LRL), with their competitors.

Method
MISElog ρ

m = 800 m = 1600 m = 2400 m = 3600 m = 6000

(a): ρ(u) = exp{β0(u)}
SVCI-PL 0.128 0.101 0.084 0.057 0.041

SVCI-LRL 0.117 0.095 0.074 0.042 0.030
KDE.lpp 0.157 0.140 0.112 0.084 0.061

KDEQuick.lpp 0.133 0.127 0.109 0.075 0.054
Voronoi.lpp 0.128 0.120 0.094 0.067 0.048

(b): ρ(u) = exp{z1(u)β1(u) + z2(u)β2(u) + β0(u)}
SVCI-PL 0.177 0.152 0.135 0.114 0.085

SVCI-LRL 0.165 0.141 0.122 0.097 0.072
LGCP 0.227 0.202 0.188 0.154 0.137
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2.5 Real Data Analysis

We consider two real data examples to illustrate the performance of the proposed method.

The first Toronto Homicide data example has a moderate data size with 1398 points and three

explanatory variables on a domain with irregular boundaries. And the second Western Australia

Traffic Accidents data has a larger data size with 14, 562 points on a linear road network. In both

studies, we use SVCI-LRL and nd2 ≈ m, due to their favorable performance in our simulation

studies.

2.5.1 Toronto Homicide Dataset

We apply the proposed SVCI model to the analysis of the Toronto Homicide dataset. The

raw dataset contains the information of 1398 homicides occurred in Toronto, Canada during 1990

to 2014, recording the locations of murder scenes, homocide types and information of victims

obtained from the Toronto Star Newspaper (http://www.thestar.com/news/crime/

torontohomicidemap.html). The data can be accessed from the R package geostatsp

(Brown et al., 2015). We select the more recent data since 2000 and delete the data which have

duplicated locations. There remain 764 homicide cases for the final analysis. Figure 1.1 shows

the entire Toronto city and the locations of the selected cases within a 42 × 31 km rectangle win-

dow. Notably, the old Toronto region in the middle of the coast has more frequent occurrences of

homicides.

The data also contains the records of average income, night lights and population density of

Toronto city in 2006, and we use them as explanatory variables. Figures 2.6 (a-c) show the obser-

vations of the three variables. As can be seen, there is a large spatial variation of these variables

across the city. We scale and center each spatial covariates before running our point process mod-

els.

We focus on the investigation of the relationship between the distribution of homicides and the

three explanatory variables. We first fit a log Gaussian cox process model with constant regression
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Figure 2.6: Left Panel: patterns of covariates; Right Panel: patterns of estimates; (a,d) Average
income of the residents in Toronto; (b,e) Light intensity in Toronto night; (c,f) Population density
in Toronto;
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coefficients as a benchmark for comparisons, whose intensity function takes the form

log{ρ(u)} = β0 + Income(u)β1 + Night(u)β2 + Pdens(u)β3 + ϕ(u)

where β1, β2 and β3 are the constant regression coefficients and ϕ(u) is a spatial Gaussian process

with a zero mean and a Matern correlation function. The estimated parameter estimates from

LGCP are β1 = −0.918, β2 = 0.378, β3 = 0.207 and β0 = 1.096, respectively. These estimates

imply that the homicides are more likely to occur in the area with a lower average income, a better

lights condition and a denser residential population.

We then fit the SVCI model with a 5-NN graph assuming that homicide locations follow a

spatial point process with the following intensity function,

log{ρ(u)} = β0(u) + Income(u)β1(u) + Night(u)β2(u) + Pdens(u)β3(u).

Here βk(u), k = 0, 1, 2, 3 are spatially varying coefficients, whose estimates are shown in Figure

2.6(d-f). It takes about 0.072 seconds to construct the 5-NN graph and 0.69 seconds to get an

estimate of β for each tuning parameter. Clearly, the results of SVCI reveal more details about the

effects of covariates than those from LGCP. 3, 4 and 3 major clusters are detected for β1, β2 and β3

respectively. Overall, the signs of βk(u) are the same as the results of LGCP. For example, the esti-

mates of β1(u) range from -2 to 0, indicating a negative relationship between income and homicide

occurrence as is expected. Such a negative relationship is most prominent in the western region of

Toronto whereas a weaker relationship is observed near the upper east corner of Toronto City. For

both β2(u) and β3(u), we observe a small cluster at the Old Toronto region, which has the most

concentrated homicide cases. It is notable that the relationships between light intensity/population

density and homicides occurrence in the Old Toronto region differ significantly from the rest of

Toronto city; a stronger positive relationship is observed for both variables.
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2.5.2 Western Australia Traffic Accidents

In this section, we study the traffic accidents data in the state of Western Australia for the year of

2011, as shown in Figure 1.1. The data were originally provided by the Western Australian State

Government Department of Main Roads and are made publicly available as part of the Western

Australian Whole of Government Open Data Policy. The data can also be accessed from the R

package spatstat.Knet. It consists of 14, 562 locations of accidents on a road network with

115, 169 road segments constrained in a [217.4, 1679.1]× [6114.9, 7320.6] km rectangle window.

The grey lines in Figure 1.1 represent the traffic network of Western Australia, and each red

point marks an accident spot. It is clear from this Figure that accidents are highly concentrated

around the Perth metropolitan area located in the western coastal region. This region contains

nearly 75% of the population in Western Australia. By contrast, the remote eastern region has a

much sparser road network and a smaller number of traffic accidents. Our goal is to estimate the

intensity function over this network to investigate the spatial variation of accident occurrences.

We build the SVCI model of the intensity function with a spatially varying intercept, ρ(u; β) =

exp{β0(u)}. In this study, we don’t have any spatial covariates available and hence we focus on

detecting the clustered patterns of the intensity function ρ(u). SVCI takes about 1.75 minutes

to construct a connection graph using the graph construction method in Section 3.1 and takes on

average 5.01 seconds to get an estimate of β for each tuning parameter. 23 clusters are detected,

and Figure 2.7 plots the estimated log intensity log ρ̂(u) on the road network. In the western part

of the city near downtown, there are many small clusters, indicating more local variations in traffic

accidents intensities in these regions. In contrast, the eastern and northern part of the city has a

fewer number of clusters. We also notice that ρ̂(u) has a large spatial variation, ranging from 0 per

kilometer in some remote eastern areas to nearly 50 accidents per kilometer in some busy roads in

the Perth metropolitan area.

We zoom into the sub-region of [372, 431]× [6434, 6501] km displayed in Figure 2.8 (a) to have

a detailed investigation of the traffic accident rates in the densely populated Perth metropolitan

area. It is clear that several roads are having substantially higher intensities than the rest of the
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Figure 2.7: Intensity estimates for the accidents on the Western Australian road network.

Figure 2.8: (a): Intensity estimates map for the accidents in the metropolitan Perth Area; (b):
Intensity estimates map by zooming into the red circle area in the left panel.
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roads, many of which are along the major freeways of the city. In particular, we observe very

high intensity values at or near the center of the city marked by the purple color. Indeed, these

roads and intersection are located at the Perth Central Business District. In contrast, although

having dense local road networks, many residential areas away from highways have relatively

lower intensity values. One advantage of SVCI lies in its capability of capturing intensity functions

with abrupt changes. To give an example, we highlight a road segment on Highway 5 in Perth by

a red circle in Figure 2.8 (a), and show the zoomed map in Figure 2.8 (b). It is noticeable that a

sudden jump in the estimated intensity function appears near the southwest end of the road. After

verifying with the Google satellite image, we confirm that the northeast part of the road passes

through a large residential area, whereas the southwest part is a commercial and public service

area (restaurants/shops/school/church/hospital) that is expected to have a higher rate of accidents.

2.6 Conclusions

In this study, we propose a varying coefficient log-linear intensity model, referred to as the

SVCI model, for the visualization and analysis of spatial point processes. We utilize a graph fused

lasso regularization to estimate the clustering patterns of the regression coefficients. The method

guarantees spatially contiguous clustering configurations with highly flexible cluster shapes and

data-driven cluster sizes. It supplements the current research on intensity estimation, which pri-

marily focuses on relatively smooth intensity functions without covariates or spatially constant

regression coefficients. The method also has the advantage of being applicable to a broad range of

complex domains such as line networks and spatial domains with irregular boundaries. The com-

putation of the model is made highly efficient by using a proximal gradient optimization algorithm.

Numerical studies show that our method produces more accurate intensity estimations than several

competing methods such as the KDE-based methods (McSwiggan et al., 2017; Rakshit et al., 2019)

and the resample-smoothing Voronoi intensity estimation method (Moradi et al., 2019), when in-

tensity functions exhibit discontinuous changes on linear networks. The computation of SVCI is in

general reasonable compared to its competitors considered in this chapter. The method is applied

to identify spatially heterogeneous patterns in the determinants of Toronto crime events and the
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intensity of traffic accidents in Western Australia.

Moving forward, this work could be further refined in several ways. First, SVCI only considers

a small fixed number of covariates. However, in practice, practitioners may face a large number of

available covariates but lack a strong theory to inform variable selection. There is a need of a more

general model that allows researchers to undergo variable selection and spatial cluster identification

simultaneously for point processes. Second, the SVCI estimator does not come with an uncertainty

measure that makes it hard for statistical inference, a common issue shared by many regularization

based approaches. We may consider a Bayesian version of the method or a bootstrapping based

approach to address the inference problem. Third, an interesting research direction is to extend

the finite dimensional graph regularization based method to an infinite dimensional process-based

clustered coefficient model such that spatial predictions can be done in a more rigorous way. Fi-

nally, the method can be extended by considering a weighted composite log-likelihood to further

improve statistical efficiency for non-Poisson point processes (Guan and Shen, 2010).
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3. RISK BASED ARSENIC RATIONAL SAMPLING DESIGN FOR PUBLIC AND

ENVIRONMENTAL HEALTH MANAGEMENT

3.1 Introduction

Arsenic (As) is ranked as the 20th most abundant element in the Earth’s crust and has been

studied internationally. Groundwater contaminated with arsenic has been recognized as a global

threat, negatively impacting human health (Podgorski and Berg, 2020; DeSimone and Hamilton,

2009). The primary human exposure to arsenic is drinking water with additional contributors such

as food and air (Almberg et al., 2017; Vahter, 2009; Sohel et al., 2009). Arsenic is a potent human

carcinogen, which can cause bladder, lung, and skin cancers (Argos et al., 2012). Furthermore,

arsenic and its metabolites can cross the placental barrier and create risk for adverse maternal and

fetal health, leading to adverse birth outcomes (Bloom et al., 2014). The Environmental Protection

Agency (EPA) federal drinking water standard established 0.01 mg/L as the arsenic maximum

contaminant levels (MCLs) in drinking water. In the USA, approximately 41.8 million (13% of the

total US population) people obtain drinking water from private wells, and the private wells are not

regulated under the current EPA regulation (Association, 2020). The recent national Water-Quality

Assessment Program from the United States Geological Survey (USGS) reports that more than one

out of five wells contain contaminants at concentrations exceeding the EPA MCLs or USGS health-

based screening levels. Among the various pollutants that exceed the EPA maximum contaminant

levels, arsenic contamination is a common finding. Because private wells are not regulated in the

US, in the Midwest region, a significant percentage of the population depending on private wells

for drinking water is at risk due to drinking water arsenic contamination (Schnoebelen et al., 2017).

Arsenic testing in private well water represents a fundamental mean that helps mitigate the arsenic

risk in the rural population for public and environmental health. In reality, many of the private

wells are not tested, which presents a significant challenge for health risk mitigation. From the

management perspective, a scientifically sound sampling plan to test a representative sample size
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is needed to characterize the environmental arsenic hazard with limited resources.

Sampling theory can be used to guide a large number of chemical and biological analyses for

environmental control and consumer safety (Minkkinen, 2004). As for arsenic testing, a systematic

sampling plan is critical for risk assessment to draw science and data-based conclusions and make

the best usage of limited resources. The EPA has published guidance for data quality objectives

with regard to sampling design (USEPA). One of the key preparations for a sampling design is to

determine the sample size and sampling error for representative sample collection.

Understanding sample statistical distributions is critical when selecting a sampling method,

sampling strategy, and sample size. Application of probability distribution can help develop a

science-based sampling plan and estimate the chemical and biological hazards in the environment.

Previously, binomial probability theory has been well studied for sample size determination for

estimating a binomial proportion (Gonçalves et al., 2012). Application examples include the sam-

pling plan in product inspection and surveillance (Lee et al., 2016), epidemiology (Sepúlveda and

Drakeley, 2015), and medical diagnostics (Joseph and Reinhold, 2005). In many of these applica-

tions, a univariate binomial distribution is considered, that is, the underlying binomial proportion

parameter is assumed to be a constant in the study. However, due to the spatial heterogeneity na-

ture of arsenic distribution in the earth’s crust and groundwater, the traditional binomial sampling

scheme based on a univariate binomial distribution may not be suitable to survey the target private

well population. There is a great need to develop new sampling schemes capable of accounting for

the spatially heterogeneity nature of the arsenic distribution.

In terms of arsenic contamination, quite a few statistical and mathematical models have been

used to estimate and predict arsenic concentrations in groundwater and private wells. Logistic

models for binomial distributions are widely adopted to estimate the spatial distribution of As

contamination probability at both global and regional levels (Amini et al., 2008; Ayotte et al.,

2006; Winkel et al., 2008; Podgorski et al., 2017; Winkel et al., 2011; Rodríguez-Lado et al.,

2013; Yang et al., 2012). For instance, a logistic linear regression model has been used to predict

the high arsenic domestic well population in the US (Ayotte et al., 2017). Furthermore, boosted
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regression tree models (weak-learner ensemble models) and traditional logistic linear models have

been compared to estimate and predict arsenic contamination probabilities in drinking water wells

in the Central Valley, California (Ayotte et al., 2016). Similar to those statistical models, predictive

variables are used to predict geogenic arsenic in drinking water wells in glacial aquifers, north-

central USA (Erickson et al., 2018). Machine learning models have also been used to predict

arsenic concentrations in groundwater in Asia (Tan et al., 2020). Nevertheless, the aforementioned

models primarily focus on the estimation and prediction of arsenic distributions rather than the

sampling design. Moreover, most methods often rely on a rich set of predictors and training data

set to guarantee model accuracy. To the best of our knowledge, there is very limited work that

combines the model-based estimation of varying arsenic distributions with the binomial sampling

design method.

To close this gap in the current literature for spatial binomial distribution sampling design, the

current study proposes a spatially adaptive sampling design approach, by estimating a spatially

clustered underlying contamination distribution. We apply this method to determine the data loca-

tions to understand arsenic contamination in private wells in Iowa. The method is different from

traditional spatial sampling design methods (Zhu and Stein, 2006; Diggle et al., 2010) that often

assume continuous process-based spatial models for relatively smooth spatial fields. In contrast,

we model the underlying contamination risk as a spatially clustered function for a straightforward

interpretation of the result. It also has the advantage of detecting discontinuous spatial hetero-

geneity in the arsenic distribution and then borrowing information within each identified spatially

homogeneous cluster for an adaptive sampling design. The method is built upon a graph fused lasso

regularization method (Tibshirani et al., 2005), which automatically detects clusters of spatial units

and estimates the underlying spatially varying contamination distributions simultaneously. Thanks

to the flexibility of graphs, our spatial clustering model enjoys several nice properties. First, it

leads to very flexible cluster shapes naturally satisfying spatial contiguity constraints. Second, the

method automatically learns the number of clusters from the data, relaxing the limitation in other

clustering algorithms that require to specify the number of clusters a priori.
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Another unique advantage of estimating a spatially clustered contamination distribution over

other contamination distribution estimation methods lies in its easy integration with the traditional

binomial sampling theory. Within each identified spatial cluster, the contamination distribution

can be treated as having a common binomial proportion, for which we propose and compare two

different sample size determination methods at different levels of acceptance precision and con-

fidence. Given the sample size calculations, a remaining sample design task is to determine the

sampling locations. In our study, both the candidate wells and the available tested wells are dis-

tributed highly unevenly in the study region. To ensure the sampling design has a balanced spatial

coverage, we propose a practical algorithm based on spatial point processes to distinguish areas

that have been sufficiently-sampled and insufficiently-sampled, and determine new sampling loca-

tions accordingly. This new strategy, presumably more adaptive than traditional sampling without

considering heterogeneity in sampling distributions, can potentially provide more precise tools to

efficiently allocate sample collection efforts and resources.

3.2 Materials and Methods

3.2.1 Sample Collection and Analysis

For the private well samples, the data used to build the model was collected as part of the

Iowa Grants-to-Counties (GTC) program. The Iowa GTC program was established in 1987 after

the Iowa legislature passed the Iowa Groundwater Protection Act to protect groundwater. Arsenic

testing has been included as part of the GTC program based on Iowa Administrative Code (of Pub-

lic Health, 2016). A total of 14, 570 samples were collected and analyzed at the University of Iowa

State Hygienic Laboratory from July 1st, 2015 to June 16, 2020. As part of the GTC program, the

local health department collects the private well samples by conducting a home visit, and sending

them to a laboratory for analysis. It should be noted that the selection of the laboratory is at the

county’s discretion.

For all the samples analyzed at the State Hygienic Laboratory, the water sample is collected

either at the tap faucet or outside the house. Samples are collected in a 4 oz. HDPE plastic bot-
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tle containing 1 mL of 1 + 1 nitric acid as a preservative. Cooling is not required for sampling.

Samples are screened for turbidity following Standard Methods 2130 B using a HACH model

2100N Turbidimeter. Samples exceeding 1 nephelometric turbidity units (NTU) are digested prior

to analysis. The arsenic analysis is performed based on the Iowa State Hygienic Laboratory stan-

dard operating procedure (SOP), similar to the EPA 200.2 method. Briefly, a 50-mL aliquot is

transferred from a well-mixed sample to a polypropylene digestion tube (Environmental Express

#UC475-GN). One mL of 1+1 nitric acid and 0.5 mL of 1 + 1 hydrochloric acid (Fisher, Trace

Metal Grade) are added to the tubes. Digestion is accomplished using a hot block (Environmen-

tal Express #SC154) at approximately 85◦C. The sample volume is reduced to 10 mL, and then

the sample is covered with a watch glass (Environmental Express #SC505), and refluxed for 30

minutes. The tubes are cooled and diluted to 25 mL with reagent water. The samples are further

diluted to 50 mL using a mixture of 2% nitric acid and 1% hydrochloric acid. The samples are

then analyzed for arsenic using an Agilent 7500 CE inductively coupled plasma mass spectrometer

following EPA method 200.8. Approximately 5 mL of sample is transferred to a polypropylene

autosampler tube for analysis. The instrument is calibrated using a multi-point calibration curve

(0, 1, 5, 50, 100, 500 ug/L). Standards are matrix-matched to the sample. Thus, digested samples

are not analyzed in the same run with direct analysis samples. Internal standards are introduced

via a mixing tee at the instrument. Yttrium is used as the internal standard for arsenic. Results are

not reported unless all quality controls pass their acceptance limits per the method.

The raw data amount to 14, 570 previously collected observations of Arsenic tests in total

(Figure 1.2). Based on the risk categories, we characterize the wells that contain higher than 0.01

mg/L arsenic as high risk wells, and use a binary variable to denote whether a well is at high risk.

We exclude the observations whose location information is absent. We also aggregate the repeated

measurements at the same locations into one single observation, by setting the binary value to be

1 if there is at least one concentration measurement exceeding MCL. A visual presentation of the

private well arsenic testing is available through the Iowa Department of Public Health website1.

1https://tracking.idph.iowa.gov/Environment/Private-Well-Water
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3.2.2 Estimation of spatially clustered contamination probabilities

Let y(si) denote the binary variable at a well location si, for i = 1, . . . , n, coded as being 1

if the arsenic concentration at si is exceeding the EPA MCL (i.e., 0.01 mg/L), and 0 otherwise.

Here, n is the total number of available tested wells. We propose a spatially varying binary logistic

model for y(s). Specifically, we assume

P
(
y(si) = 1

)
∼ Bernoulli

(
p(si)

)
, for i = 1, . . . , n, (3.1)

where p(si) is the probability of the well located at si being contaminated. In the logistic regression

model, we model the probability p(si) as

p(si) =
1

1 + exp{−β(si)}

or equivalently, log p(si)
1−p(si)

= β(si), where β(si) is interpreted as the log-odds of the arsenic con-

tamination event that y(si) = 1. Let β =
(
β(s1), . . . , β(sn)

)
be the stacked regression parameters

for all the observed well locations. It follows that the corresponding logistic regression log likeli-

hood function takes the form:

ℓ(β) = −
n∑

i=1

log(1 + eβ(si)) +
n∑

i=1

y(si)β(si) (3.2)

It is noted from (3.1) that we relax the assumption of having a constant contamination prob-

ability p, or equivalently, contamination log-odds, β, over the whole study region, and instead

assume it is varying over space. This assumption is reasonable for a large study region like Iowa

due to the anticipated spatial heterogeneity in the arsenic concentration in groundwater and private

wells. Specifically, we assume p(s) is a spatially clustered function, that is, there exists a number

of geographical clusters such that p(s) stays relatively homogeneous within each cluster but varies

across clusters. This will facilitate the easy visualization and interpretation of the varying con-

tamination probability across different identified clusters. We will show in Section 3.2.3 that the
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spatially clustered contamination probability estimation also leads to an efficient spatially adaptive

sampling design strategy.

We consider a flexible regularization model for pursing the clustered pattern of β(s) and p(s).

Regularization methods have gained large popularity in modern high dimensional statistics and

machine learning methods for various statistical learning tasks (Bühlmann and Van De Geer, 2011).

They have proved to be effective in imposing structural assumptions on model parameters such as

sparsity, smoothness, and clustering to avoid over-fitting problems. The regularization method for

the Arsenic contamination model is performed in the following steps:

1. Construct a spatial graph, denoted as G = (V,E) where V = {v1, v2, ..., vn} is the vertex set

with n vertices and E is the edge set. For a spatial problem, each vertex represents a spatial

location. For example, in the arsenic case study, each vertex vi represents a well location

si, and the edge set E reflects the prior assumption on the neighborhood structure of well

locations based on spatial proximity. The edge set selection is an important component of

the method, which we will discuss later in this section.

2. Use the graph from step 1 to construct a homogeneity pursuit regularization, also called the

fused lasso penalty function (Tibshirani et al., 2005, 2011) , for β as follows:

ρ
∑

(i,j)∈E

|β(si)− β(sj))|. (3.3)

3. Combine the penalty function in (3.3) with the logistic log-likelihood function in (3.2) to

form a penalized objective function, which we minimize to obtain an estimator of β as

follows:

β̂ = argmin
β

Q(β) = argmin
β

{− 1

n
ℓ(β) + ρ

∑
(i,j)∈E

|β(si)− β(sj)|}. (3.4)

4. After obtaining β̂, calculate the estimate of the contamination probability from p̂(si) =
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1

1 + exp(−β̂
(
si)

) .

The fused lasso regularization in step 2 is used to impose the assumption that the arsenic contam-

ination probabilities at two wells are more likely to take the same value if they are connected by

an edge in E of the specified spatial graph. The objective function Q(β) in (3.4) takes a similar

form as the standard negative log-likelihood function from Bernoulli distributions for binary ar-

senic data, but with an added fused lasso regularization term to encourage spatial clustering of β.

As a result, when estimating the arsenic contamination probabilities from this penalized objective

function Q(β), we not only use the information from the binary arsenic testing data in the first like-

lihood term, but also take into account the spatial information from the spatial-graph based fused

lasso penalty in the second term. ρ is a regularization tuning parameter determining the strength

of fused lasso penalty and ultimately influencing the estimated number of clusters of wells. The

solution of L1 norm penalty results in an exact fusion or separation between β(si) − β(sj), that

is, the edges in the graph are classified into two sets, one consists of all the non-zero elements of

β(si)− β(sj) corresponding to pairs of neighboring wells that have different contamination prob-

abilities, and the other set consists of all the zero elements of β(si)− β(sj) corresponding to pairs

of neighboring wells that share the same contamination probability. As such, this regularization

automatically leads to spatially clustered contamination probabilities.

The choice of graph plays two important roles in the method; it not only reflects the prior

information about the geological topology and spatial clustering constraint of the data, but also

determines the computation complexity of the algorithm. Some natural graph choices for spatial

data include the k nearest neighbor graphs, graphs connecting neighbors within a certain radius,

and spatial Delaunay triangulation graphs (see, e.g., Li and Sang (2019)). Alternatively, graphs

can be constructed based on some preliminary estimates of parameters. For instance, the differ-

ences between the initial estimates of parameters at any two vertices can be used as the distance

metric between vertices to replace the spatial Euclidean distance when constructing graphs. In this

chapter, we take a hybrid approach to construct the graph; the k nearest neighbor edge set connect-

ing counties is determined based on the sample proportion within each county, and the k nearest
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neighbor edge set within each county is determined based on the Euclidean distance.

There are several advantages of using the fused lasso penalty function for cluster detection.

First, this penalization allows to detect clusters and estimate model parameters simultaneously.

Second, this method guarantees to achieve a spatially contiguous clustering configuration such

that only adjacent locations are clustered together. Another appealing property of this method is

that the resulting clusters have very flexible shapes. We explain this point using the notion of con-

nected components in graph theory; spatially contiguous clusters can be defined as the connected

components of a graph G, and accordingly, a spatially contiguous partition of V can be defined as

a collection of disjoint connect components such that the union of vertices is V . It is easy to show

that any spatially contiguous partition with arbitrary cluster shapes can be recovered by removing

a set of edges from a spatial graph (Li and Sang, 2019). In addition, the number of clusters does

not need to be fixed a priori. Instead, we can determine it by a data-driven information criterion

approach described later in this section. Finally, besides its capability to capture piece-wise con-

stant coefficients, previous theoretical studies proved that this penalty has a strong local adaptivity

in that it is also capable of capturing piece-wise Lipschitz continuous functions (Madrid Padilla

et al., 2020), which implies that the method can also approximate a spatially smoothly varying

contamination probability reasonably well.

We now discuss how to solve the optimization in (3.4) to obtain the parameter estimation

results. Note that − 1
n
ℓ(β) is convex and differentiable with respect to β, and

∑
(i,j)∈E |β(si) −

β(sj)| is also convex. Therefore we propose an iterative algorithm combining the proximal gradient

method (Beck and Teboulle, 2009) and the alternating direction method of multipliers (ADMM)

(Boyd et al., 2011) for this convex optimization problem. Specifically, given the current estimate

β(t), we let g(t) = β(t) + (1/L) 1
n
∇ℓ(β(t)), where L is the Lipschitz constant of − 1

n
ℓ(β), and

∇ℓ(β(t)) is the first derivative of ℓ(β) evaluated at β(t). For the logistic regression model in (3.2),

we can choose L to be 1/n. Following the proximal gradient algorithm, we then update the value
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of β by solving:

βt+1 = argmin
β

1

2

∥∥β − g(t)
∥∥2

2
+

ρ

L

∑
(i,j)∈E

|β(si)− β(sj)|. (3.5)

We use the ADMM algorithm (Wahlberg et al., 2012) to solve the optimization in (3.5). We will

release the R code of our algorithm as a supplementary file upon acceptance of this manuscript for

publication.

Finally, the parameter estimation algorithm involves the selection of the tuning parameter ρ.

In high dimensional statistics, data-dependent model selection criteria, such as generalized cross-

validation (Golub et al., 1979), Bayesian information criterion (BIC) (Schwarz et al., 1978) and

extended Bayesian information criterion (Chen and Chen, 2008) have been commonly used to

determine the value of ρ. For the numerical studies in this chapter, we use BIC with the form,

BIC = −2ℓ(β̂) + k log n, where k is the estimated number of clusters. The “optimal" ρ is selected

by minimizing BIC from a candidate set.

3.2.3 Spatially adaptive sampling design

We now turn the attention to the sampling design problem for the determination of the sample

size and sample locations of wells. Recall in Section 3.2.2 we have obtained a spatially clustered

contamination probability p(s), that is, within each identified spatial cluster, each sample is as-

sumed to have the same probability of being contaminated. This allows us to employ existing

sampling design methods based on the univariate binomial distribution with a constant p within

each cluster, while adapting to the value of p across clusters. The method leads to a simple but

efficient sampling strategy accounting for the spatial variation in p(s).

Sample size determination and confidence interval construction methods for a constant- pro-

portion binomial distribution have been well studied in the statistics literature. Popular methods

include the Clopper-Pearson exact method, Wilson score method, Wald test, Bayesian Jeffreys

method, and Agresti–Coull method, among others. For a review and comparison of different meth-

ods, see, for example, Newcombe (1998) and Gonçalves et al. (2012). In this work, we consider
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two methods, the modified Jefferey and the Wilson score methods, following the recommendations

by Gonçalves et al. (2012).

Consider a univariate binomial distribution where a random sample of size n is drawn from a

large population, X is the number of 1’s (e.g., the number of contaminated wells), and p is the

probability of a randomly selected well is contaminated. We seek to find the sample size, n, such

that, for a given p and acceptance precision level δ, the expected length of the confidence interval,

EL(n, p) := E [∆(X)] is equal to 2δ, where ∆(X) is the length of confidence interval, and the

expectation is taken over the binomial distribution of X . The modified Jefferey and the Wilson

score methods are described below.

1. The Wilson score test confidence interval takes the form

2X + z21−α/2 ± z1−α/2

√
z21−α/2 + 4X(1−X/n)

2
(
n+ z21−α/2

)
This method is derived from Pearson’s chi-square test, where the center of the interval is a

weighted average of sample proportion and 1/2, such that it is more suitable than the com-

monly used Wald method for extreme probability or small sample sizes. The Wilson method

also has the advantage of yielding an analytical formula for the sample size as follows

nW =
−z21−α/2[4δ

2 − 2p(1− p)] + z21−α/2

√
[4δ2 − 2p(1− p)]2 − 4δ2 (4δ2 − 1)

4δ2
, (3.6)

where nW is the required sample size for a given estimate of p and an acceptance precision

level δ.

2. The modified Jeffreys method is derived from a Bayesian approach, which uses the non-

informative Jeffrey’s prior Beta(1/2, 1/2) to derive the posterior credible interval for p,

while modifying the formula at the boundary values. For 1 < X < n, the credible interval is

[
Betaα/2(X + 1/2, n−X + 1/2),Beta1−α/2(X + 1/2, n−X + 1/2)

]
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The expressions when X takes boundary values are provided in Table 1 of Gonçalves et al.

(2012). The modified Jeffreys method enjoys similar coverage properties as those of the

Wilson score method. But it has an additional advantage of yielding a credible interval that

is equal-tailed. For modified Jeffreys,

EL(n; p) =
n∑

X=1

∆(X)

(
n

X

)
pX(1− p)n−X ,

which is a function of sample size n depending on a given p. The sample size can be calcu-

lated by solving EL(n; p) = 2δ. It follows that the required sample size using the modified

Jeffreys method, denoted as nJ , takes the form

nJ = EL−1(2δ; p). (3.7)

nJ does not have a closed form and has to be solved numerically. In practice, it is often cal-

culated by an approximated solution such that |EL(n; p)−2δ| is less than a certain tolerance.

Spatial sampling design involves the determination of sample size, as well as the locations of

sampling points. One simple and commonly used spatial sampling design is the uniform random

sampling, where each location is chosen independently and uniformly within each cluster. How-

ever, two complications arise when applying this method for the Arsenic study. First, the number

of all available candidate wells are not uniformly distributed in space. Second, a large number

of wells have been tested where the sampling locations were arbitrarily chosen before the formal

statistical sampling design, which results in a highly unbalanced sampling in space with some ar-

eas over-sampled and the other areas insufficiently-sampled. The design for the new sample well

locations needs to exclude those previously tested wells. Our goal is to sample the candidate wells

with the expectation that the combined new sample wells and the previously tested wells are spa-

tially uniformly distributed in each cluster except for the over-sampled areas. To achieve this goal,

we utilize the connection between the uniform distribution in space and the spatial Poisson point

process model, and adopt the thinning sampling idea from the latter. As a preliminary, we intro-
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duce the intensity function of the spatial point processes (Diggle, 1985), which characterizes the

probability that a point occurs in an infinitesimal ball around a given location. If there is a point

process X on D ⊂ R2, let N(B) denote the expected number of points within any subset B ⊂ D.

The intensity function λ(s) at location s ∈ D is defined as,

λ(s) = lim
|b(s)|→0

N(b(s))

|b(s) ∩D|

where b(s) denotes a small ball containing s, and measure | · | denotes the area. If λ(s) = λ

is a constant for all s ∈ B, then X is called a homogeneous point process on B, implying the

point has the same probability to occur at each location in B. Besides, the intensity function

determines the expected number of points on B by E[N(B)] =
∫
B
λ(s)ds. It is known that,

conditional on the number of points, the locations from a homogeneous Poisson point process

are uniformly distributed on B. Therefore, the desired sample well locations have the intensity

function λ̂(s) = ni/ai for s located in cluster i, to render the sampled wells evenly-distributed.

Here ni and ai denote the number of required samples and the area in cluster i respectively.

The detailed sampling algorithm is described below. First, we use the nonparametric intensity

estimation approach via R function density.ppp in package spatstat to estimate the candi-

date well intensity function, denoted as λ̂candi(s), and the previously tested well intensity, denoted

λ̂exist(s). To exclude the previously tested wells in Iowa from new samples, we calculate the target

intensity from λ̂targ(s) = max{λ̂(s)− λ̂exist(s), 0}. Locations that have negative λ̂(s)− λ̂exist(s)

values correspond to the over-sampled areas where the intensity of previously tested wells ex-

ceeds the required sampling density. We will leave them out when drawing new samples. Finally,

for other areas, each candidate well will be selected with probability λ̂targ(s)/λ̂candi(s), where s

is the location of the candidate well. The last step is based on the assumption that λ̂candi(s) is

large enough to bound λ̂targ(s), and indeed there are adequate wells available in Iowa to meet this

assumption. As a result, the algorithm guarantees that the combined new samples and existing

samples other than the over-sampled areas will be (nearly) uniformly distributed, and the expected
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Figure 3.1: The number of tested wells in each county in Iowa.

sample size meets the requirement in Table 3.1.

3.3 Results

3.3.1 Descriptive Statistical Analysis Results

After the data pre-processing steps, there remain 9842 observations at different locations. Fig-

ure 1.2 shows the spatial distribution of the observations, and Figure 3.1 shows the spatial map of

the number of observations in each county. From the existing tested data, the most tested regions

include northern central Iowa, a few counties in the western central, southwestern, and eastern

central Iowa regions (Figure 3.1). Less than 20% of the counties have more than 100 tests per

county. There are fewer tests per county in the southern, northeastern, and northwestern regions.

We show in Figure 3.2 the sample proportion of the contaminated wells among all the tested wells

at each county, as a means to visualize a rough empirical estimate of the arsenic risk and its spatial

pattern. Even though we see an uneven testing distribution, which means uneven sampling at the

current testing scale, we observe that the arsenic risk characterization appears to be independent of

the testing density (Figures 3.1 and 3.2).

3.3.2 Risk clusters and regional management

Ayotte et al. Ayotte et al. (2017) use a predictive logistic regression model to estimate arsenic

presence in regions with limited arsenic data. In that study, a total of 20450 domestic well samples
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Figure 3.2: This figure illustrates the sample proportion of the contaminated wells among all the
observed tested wells for each county in Iowa; Grey color indicates there is no observed data in the
county.

are used to develop the model to estimate for the whole conterminous US. Unique to our research,

we do not aim to establish a predictive model to accurately predict the arsenic contamination in a

given region, as the risk of As has been already recognized by the state and many local health risk

management agencies. We aim to utilize the locally clustered arsenic risks to estimate a sample

size with minimum bias, which can be managed with appropriately allocated resources. In order to

do that, we define the binary existence of arsenic in a given private well is higher than 0.01 mg/L,

which is the current EPA regulation level. In other words, we regard if the private well contains

less than 0.01 mg/L arsenic, then the health risks are absent in a risk-based sampling scheme. We

first model and estimate the underlying contamination risk as a spatially clustered function follow-

ing the method described in Section 3.2.2 for the straightforward interpretation of the result and

easy implementation of the sampling design. The optimization result partitions the whole state

into three risk clusters based on the estimated arsenic presence probability (Figure 3.3). The three

risk probabilities (p) are 0.03, 0.21, and 0.33 for clusters 1, 2, and 3, respectively. The risk cluster

assignment is consistent with some previous observations and predictions. For example, cluster

1 is largely consistent with the estimations in Ayotte et al. (2017). Cluster 2 is also highlighted

with potential high As contamination in the same study. Furthermore, a targeted As study per-

formed in Cerro Gordo County (Northern Central Iowa) has sampled 68 wells over three years
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(Schnoebelen et al., 2017). The study reveals one potential mechanism of As mobilization in the

shallow aquifer. The naturally occurring sulfide minerals (typically pyrite) in the bedrock aquifers

could be the source of As. Under the oxidizing condition, the As mobilization could happen from

rocks to the water. Significantly, the Cerro Gordo study has resulted in a policy change for arsenic

testing and well completion locally. Interestingly, cluster 3 at the border of Iowa and Nebraska is

identified as a new As "hotspot" in this current study. Notably, the cluster 3 region overlaps with

the Missouri alluvial plain. The Missouri River valley contains up to around 150 feet of highly-

permeable alluvial sediments. Alluvial sediments could be quite heterogeneous in their gravel,

sand, silt, and clay compositions, dependent on the locations. At the same time, those sediments

could contain a large percent of argillaceous materials composed of organics, clays, and silts. The

presence of argillaceous materials could assist in disseminating arsenic pyrite from the materials

themselves or from ferrous hydroxides coating the sand grains, which often contain arsenic as

well. Furthermore, diverse geochemical and bacterially mitigated reactions (i.e., oxidation, reduc-

tion, adsorption, precipitation, methylation, and volatilization) can participate actively in arsenic

recycling within alluvial aquifers. As the alluvial aquifers are largely unconfined, the water table’s

movement up and down in the aquifer can mobilize arsenic from the argillaceous material or the

ferrous hydroxide coating the sand grains through oxidation reactions. The potential high arsenic

concentration in the private well in the alluvial plain (i.e., cluster 3) could be attributed to the

permeable alluvial sediments and their unique properties.

3.3.3 Sample design

Based on the estimated probability clusters, we further estimate the ideal sample size based

on various acceptance precision and confidence levels. Based on the publicly available database

(Iowa Private Well Tracking System), it is estimated there are more than 300,000 private wells in

Iowa. Among them, 291, 882 wells are geo-coded. The total geo-coded well population locations

are shown in Figure 3.4, clearly indicating an uneven spatial distribution in Iowa. Based on the

regional cluster risk probability, we thus define three different cluster regions (clusters 1, 2, and

3) with different risk cluster ranks. For clusters with a reasonable testing coverage, we have three

50



Figure 3.3: Partition of the map in terms of estimated p; In cluster 1, p̂ = 0.02869485; In cluster
2, p̂ = 0.2088291; In cluster 3, p̂ = 0.3373494; The numbers of observations in each cluster are
6482, 3194 and 166 respectively.

Figure 3.4: Locations of the 291, 882 candidate wells in Iowa, after discarding the wells in absence
of their location information.
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Table 3.1: Expected number of well sampling in each cluster;

Confidence Level Method Cluster 1 Cluster 2 Cluster 3
90% Wilson 8766 1017 523

Jeffrey 8746 1015 523
95% Wilson 12446 1444 743

Jeffrey 12420 1442 743
99% Wilson 21497 2493 1282

Jeffrey 21456 2492 1284

probabilities. For cluster 1, the estimated probability for As concentration higher than 0.01 mg/L

probability is 0.03. For clusters 2 and 3, the probabilities are 0.21 and 0.34, respectively. If we

define the precision acceptance as 10% of the probability, the precision acceptance is 0.003 for

cluster 1 ( e.g. 10% of 0.03), 0.021 for cluster 2, and 0.034 for cluster 3. Table 3.1 provides the

calculated required sample size for each cluster under three different confidence levels (90%, 95%,

and 99%) using both the Wilson in (3.6) and Jeffrey methods in (3.6). For example, at the 95%

confidence interval, the estimated sample size based on the Jeffrey method is 12446 for cluster 1.

Applying the same criteria to clusters 2 and 3, the estimated sample size would be 1442 for cluster

2 and 743 for cluster 3. The sample sizes calculated by the Wilson method only slightly differ from

those of the Jeffrey method. Accordingly, at the 99% confidence interval, we estimate that 21456,

2492, and 1282 samples are needed for clusters 1, 2, and 3, respectively.

In the existing As data set, there are 6482, 3194, and 166 tested wells already collected from

clusters 1, 2 , and 3, respectively. It is noted that the sample size of the tested wells within each

cluster constitutes a large proportion or exceeds the required sample size calculated in Table 3.1.

However, we recognize the current As data collection is operated at the county level since the local

environmental health jurisdiction resides in each county. County level data generation results in

an uneven spatial distribution of sampling locations for the whole state discussed in Section 3.3.2.

Therefore, although some areas are over-sampled, new samples still need to be collected at those

places that are only sparsely sampled previously.

We follow the method presented in Section 3.2.3 to determine the locations of new sampling
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Figure 3.5: An example of sampling results; 8174, 313 and 586 additional wells are sampled in
each cluster respectively in this example.

locations. We use the private wells in the current Iowa PWTS database as the target sampling

population (Figure 3.4). The goal is to achieve a spatially balanced sampling design that meets

the required sample size, while accounting for the fact that both the candidate wells and existing

tested wells are distributed highly non-uniformly in space. To illustrate, we give an example of

the sampling scenario using the sample size calculated from the Wilson method for the 95% CI

in Figure 3.5. The dense red point clouds reveal the previously over sampled areas in this Figure.

Cluster 2 has the largest proportion of previously over-sampled areas. Only a relatively small

number of additional wells (marked by green dots) need to be sampled, mostly are located in the

middle west of this region. In contrast, most areas in cluster 1 have not been sampled and tested

previously, with exceptions in several counties (e.g., Buchanan, Butler, and Clinton). In cluster 3,

although the spatial coverage of the existing tested samples is nearly uniform, our method suggests

that an additional number of wells need to be collected to achieve the desired confidence level

and precision accuracy. Overall, it is noted that the locations of samples in Figure 3.5 appear

to be uniformly distributed except for the previously over-sampled areas. Looking more closely,

we observe that the intensity/density of samples differs across the identified risk clusters, due to
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adopting a spatially adaptive sampling design according to each cluster’s own contamination risk.

3.4 Conclusions

It is commonly recognized that many conditions such as geological, geochemical, and hy-

drologic variables, impact arsenic presence in groundwater. For example, It has been observed

high arsenic concentrations are often found in more arid western US (Ayotte et al., 2017). Fur-

thermore, precipitation and recharge show significant correlations with arsenic concentrations in

domestic wells in the conterminous US. Among various conditions, glaciated terrain, bedrock ge-

ology, soil hydrology, soil tile drainage, water table depth and climate factors can also impact

arsenic concentrations in groundwater. Particularly, Iowa’s groundwater resources are majorly sur-

ficial aquifers and bedrock aquifers. For a long history contacting with glaciers, many parts of

Iowa soil/dirt contain glacier age materials with moderate to low permeability. The water table be-

neath those materials occurs at relatively shallow depths and varies from 3 to 30 feet below ground

(Prior et al., 2003).The micro-environment such as pH, soil, and water bacterial activity, oxida-

tion and reduction reactions (Redox), coexistence with other elements (e.g., iron) can also play a

significant role in arsenic concentration in groundwater. Taking account of all those macro and

micro-environmental conditions is a shared challenge for all current available predictive models to

estimate arsenic concentrations at the county, state/province, or region levels.

There are several potential benefits to adopt the proposed sampling design. First, the sample

size estimate suggests future feasible random sampling targets, given the total Iowa private well

population. As the sample sizes are dependent on the arsenic probabilities, we present options for

the same probability with different sampling precision goals. We also recognize there are regions

with too few or no data points (Figure 3.2, thus warrant further sampling for probability estimate).

Second, the method developed in this study helps pinpoint future sampling locations with ade-

quate statistical power. From the resource management perspective, future planning can prioritize

the high-risk well sampling, eliminate redundant testing, and collect representative samples for

risk assessment purposes. In practice, sample collections and management are often conducted at

certain administration levels. It is desired to develop a sampling design method that is easy and fast
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to implement at each administration unit. Third, this design presents future opportunities to inves-

tigate practical solutions to coordinate joint efforts across counties for the efficient implementation

of the sampling design method.

Moving forward, this work could be further refined in several ways. First, the estimator we

obtained by optimizing the regularized log-likelihood function does not come with an uncertainty

measure. As such, the sample size calculation is only based on a point estimate of the contamina-

tion risk. A potential solution is to consider a Bayesian version of the method. In principle, the

modified Jeffrey’s method for sample size calculation can be adapted to account for the uncertainty

in the estimate of the contamination probability p, where the expected length of the confidence in-

terval used in (3.7) can be taken over both the distributions of p and the binomial random variable

X instead of X only. Second, we assume that the clusters of wells are spatially contiguous, and

the contiguity constraint is defined with respect to the choice of a spatial graph. However, in prac-

tice, the spatial contiguity constraint may not dominate the clustering configuration globally, in the

sense that two or more locally contiguous clusters that are remote in space may actually have very

similar arsenic concentrations, and hence should be classified into the same cluster. The method

presented in this chapter needs to be modified to handle the case with both globally dis-contiguous

and locally contiguous clusters. One idea is to perform a two-step analysis, where in the first step

we obtain local spatial clusters from the method presented in this chapter, and in the second step,

conduct another clustering analysis without any spatial constraint based on the local clustering

results from the first step. Third, the model can be further improved with more representative sam-

ples. As we noted, there are counties without testing data, which presents a gap for risk analysis.

We expect collecting data in those regions helps build a more comprehensive evaluation of arsenic

health risk at the state level. Overall, the current study presents a targeted approach to save cost

and time for effective public health management strategy. The rational sampling design focuses on

risk categories, which assures that preventive measures and mitigation practices are implemented

where most needed.
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4. ROW-CLUSTERING OF A POINT PROCESS-VALUED MATRIX

4.1 Introduction

Large-scale, high-resolution, and irregularly scattered event time data has attracted enormous

research interest recently in many applications, including medical visiting records (Lasko, 2014),

financial transaction ledgers (Xu et al., 2020) and server logs (Husin et al., 2013). Given a collec-

tion of event time sequences, one research thread is to identify groups displaying similar patterns.

In practice, the significance of this task emerges in multifarious scenarios. For example, matching

users with similar activity patterns on social media platforms is beneficial to ads recommendations;

clustering patients by their visiting records may help predict the course of the disease progression.

Our study is motivated by a dataset we collected from Twitter, which consists of posting times

of 500 university’s official accounts during April 15, 2021 to May 14th, 2021. Figure 1.3 displays

posting time stamps of seven selected accounts in five consecutive days. While the daily posting

patterns varied across different accounts, the date on which a posting was made seemed to also play

an important role. Specifically, all accounts cascaded a barrage of postings on April 16th while

few postings appeared on April 18th. Lastly, each posting was associated with a specific type

of activity, namely, tweet, retweet, or reply. Our main interest is to cluster these multi-category,

dynamic posting patterns into subgroups.

To characterize the highly complex posting patterns, we propose a mixture model of Multi-

level Marked Point Processes (MM-MPP). We assume that the event sequences from each cluster

are realizations of a multi-level log-Gaussian Cox process (LGCP) (Møller et al., 1998), which has

been demonstrated useful for modelling repeatedly observed event sequences (Xu et al., 2020) . We

here extend their work to the case of mixture models and propose a semiparametric Expectation-

Solution algorithm to learn the underlying cluster structure. The proposed learning algorithm

avoids iterative numerical optimizations within each ES step and hence is computationally effi-

cient. In addition, we design an algorithm that can take advantage of array programming and GPU
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acceleration to further speed up computation.

In summary, our main contributions in this chapter are two folds: (1) we propose an MM-

MPP model for repeatedly observed multi-category event sequences; and (2) we develop a highly

efficient semiparametric ES algorithm for event sequence clustering.

4.2 Related Work

Modelling of Event Sequences The most traditional models for event sequences can stretch

back to the time series models with discretized time-lagged observations (Liao, 2005; Maharaj,

2000; Van Wijk and Van Selow, 1999). These methods rely on the mixture of time series models,

such as the ARMA model (Kalpakis et al., 2001) and the Markov model (Ge and Smyth, 2000; Luo

et al., 2016). This kind of model have two major issues. The first is that they always depend on

certain assumptions, such as auto-regression (Kalpakis et al., 2001) or stationarity (Ge and Smyth,

2000). Point processes have been widely used to model event sequences (Daley and Vere-Jones,

2003), although most existing work rely on strong parametric assumptions. One prominent exam-

ple is the Hawkes process (Hawkes and Oakes, 1974), which accounts for temporal dependence

among events by a self-triggering mechanism. However, existing Hawkes processes often assume

that the triggering function only relies on the distance between two time points and hence are not

suitable to model the data in our case that have multi-level variations. One way to account for

variations from multiple sources is to exploit Cox process models, whose intensities are modeled

by latent random functions. One popular class of Cox processes is the log-Gaussian Cox pro-

cess (LGCP) (Møller et al., 1998), whose latent intensity functions are assumed to be Gaussian

processes. Recently, Xu et al. (2020) proposed a multi-level LGCP model to account for differ-

ent sources of variations for repeatedly observed event data. However, clustering of repeatedly

observed marked event time data was not considered in their work.

Clustering of Event Sequences. Extensive research has been done on this topic. To our

knowledge, clustering models for point processes can be summarized into two major categories:

distance-based clustering (Berndt and Clifford, 1994; Bradley and Fayyad, 1998; Pei et al., 2013)

and distribution-based clustering (Xu and Zha, 2017; Luo et al., 2015). The former measures
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the closeness between event sequences based on some extracted features and then uses classical

distanced-based clustering algorithms such as k-means (Bradley and Fayyad, 1998; Peng et al.,

2008) or EM algorithms (Wu et al., 2020a). The second approach, also referred to as model-

based clustering, assumes that event sequences are derived from a parametric mixture model of

point processes. One notable thread is the mixture model of the Hawkes point processes. For

example, Xu and Zha (2017) proposed a Dirichlet mixtures of Hawkes processes (DMHP) under

the Expectation-Maximization (EM) framework to identify clusters. However, existing EM al-

gorithms for event sequence clustering have a common issue that they typically require iterative

numerical optimizations within each M-step, which would drastically overburden the computation.

This computational issue will be accentuated when event data are repeatedly observed and have

marks.

4.3 Model-based Row-clustering for a Matrix of Marked Point Processes

Notation. Mathematically, suppose that we observe daily event sequences from n accounts

during m days. For account i on day j, let Ni,j denote the total number of events, ti,j,l ∈ (0, T ]

denote the l-th event time stamp, and ri,j,l ∈ {1, · · · , R} denote the corresponding event types

(marks). The activities of account i on day j can be summarized by a set Si,j = {(ti,j,l, ri,j,l)}
Ni,j

l=1 ,

recording the time stamps and types for all Ni,j events. This general notation can also describe

other marked event sequences which are repeatedly observed on m non-overlapping time slots.

We represent the collection of all marked daily event sequences as an n × m matrix S, whose

(i, j)th entry is a marked event sequence Si,j . We aim to cluster the rows of S to identify potential

heterogeneity in account activity patterns, while taking into account the dependence across rows

and columns to characterize the complex event patterns and interactions among accounts, days,

and event types.

4.3.1 A Mixture of Multi-level Marked LGCP Model

Given a matrix of daily event sequences S , we can separate each matrix entry Si,j according

to their marks (event types). Let Sr
i,j = {ti,j,l|ri,j,l = r} record the time stamps of event type
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r ∈ {1, · · · , R}. We model each Sr
i,j by an inhomogeneous Poisson point process conditional on a

latent intensity function: λr
i,j(t|Λr

i,j) = exp{Λr
i,j(t)}, where Λr

i,j(t) : [0, T ] 7→ R is the random log

intensity function on [0, T ]. Following Xu et al. (2020), we assume a multi-level model for Λr
i,j(t):

Λr
i,j(t) = Xr

i (t) + Y r
j (t) + Zr

i,j(t), t ∈ [0, T ], (4.1)

for i = 1, · · · , n, j = 1, · · · ,m and r = 1, · · · , R. In model (4.3.1), Xr
i (t), Y

r
j (t) and Zr

i,j(t)

are random functions on [0, T ], characterizing the variations of account i, day j and the residual

deviation, respectively. In addition, we also take into account the dependence across event types

when modelling Xr
i (t), Y

r
j (t) and Zr

i,j(t), while assuming independence across accounts, that is,

for any (r, r′), Xr
i (t) and Xr′

i′ (t) are independent when i ̸= i′, Y r
j (t) and Y r′

j′ (t) are independent

when j ̸= j′, and Zr
i,j(t) and Zr′

i′,j′(t) are independent if (i, j) ̸= (i′, j′).

We assume that Xi(t) = {Xr
i (t)}Rr=1 is a mixture of multivariate Gaussian processes with

C components in order to detect heterogeneous clusters. We introduce a binary vector ωi =

{ω1,i, · · · , ωC,i}′ to encode the cluster membership for account i, where ωc,i = 1 if account i be-

longs to the c-th cluster and 0 otherwise. In analogy to other model-based clustering approaches,

the unobserved cluster membership ωi are treated as missing data and assumed to follow a cate-

gorical distribution with parameter π = {π1, · · · , πC}, where πc indicates the probability that an

account belongs to the c-th cluster. Conditional on π, we assume that Xr
i (t)’s in different clusters

have heterogeneous behavioral patterns, characterized by their corresponding cluster-specific mul-

tivariate Gaussian processes with mean functions µr
x,c(t) = E[Xr

i (t)|ωc,i = 1] and cross covariance

functions Γr,r′
x,c (s, t) = Cov[Xr

i (s), X
r′
i (t)|ωc,i = 1], for s, t ∈ [0, T ], and r, r′ = 1, · · · , R. Here,

µr
x,c(t) characterizes the cluster-specific first-order intensity function, and Γr,r′

x,c (s, t) describes the

temporal dependence patterns within and across event types.

Similarly, we assume Yj(t) = {Y r
j (t)}Rr=1 and Zi,j(t) = {Zi,j(t)

r}Rr=1 are both mean-zero

multivariate Gaussian processes to account for dependence of day-level and residual random ef-

fects within and across event types, respectively. The covariance functions take the forms: Γr,r′
y (t) =

Cov[Y r
j (t), Y

r′
j (t)], and Γr,r′

z (t) = Cov[Zr
i,j(t), Z

r′
i,j(t)]. As the heterogeneity patterns are assumed
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to be mainly explained by the account-level effect X, both Γr,r′
y (t) and Γr,r′

z (t) are assumed to be

homogeneous across all clusters.

A Single-level Special Case. When m = 1, our data matrix S only has one column of event

sequences. The multi-level model in (4.1) reduces to a single-level model:

λr
i,1(t|Λr

i,1) = exp{Λr
i,1(t)}, Λr

i,1 = Xr
i (t), t ∈ [0, T ] (4.2)

where Xi(t) = {Xr
i (t)}Rr=1 has the same model specification as in the multi-level case described

earlier. We remark that it is still of importance to consider this special case, as even in this simpler

case limited work has been done for the clustering of repeatedly observed marked point processes.

4.3.2 The Likelihood Function

We denote the parameters concerning Xi(t) in cluster c as Θx,c and the parameters concerning

Yj(t) and Zi,j(t) as Θy and Θz, respectively. Therefore, the parameters in model (4.1) consist of

Ω = {π,Θy,Θz,Θx,c, c = 1, · · · , C}. When m = 1, Ω = {π,Θx,c, c = 1, · · · , C} representing

the parameters involved in model (4.2). The complete data D consists of the observed data S

and the unobserved latent variables
{
{ωi}ni=1,L

}
, where L =

{
{Xi(t)}, {Yi(t)}, {Zi,j(t)}

}
for

model (4.1) and L = {{Xi(t)}} for model (4.2). Let Si be the i-th row of S representing activities

of the i-th account. In our mixture model, the probability of the observed data S can be written as

p(S; Ω) = EωEL

[
n∏

i=1

PP(Si|L) | {ωi}ni=1; Ω

]
, (4.3)

where the expectations are taken with respect to the conditional distribution of latent variables L

and ωi’s, and PP(Si|L) is the conditional probability of a Poisson point process,

PP(Si | L) =
m∏
j=1

R∏
r=1

 ∏
t∈Sr

i,j

λr
i,j(t | Λr

i,j) exp

[
−
∫ T

0

λr
i,j(s | Λr

i,j)ds)

] , (4.4)

where, conditional on L, Λr
i,j(t) has the form as (4.1) for m > 1 and as (4.2) for m = 1.
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4.4 Row-clustering Algorithms

Existing mixture model-based clustering methods typically rely on likelihood-based Expecta-

tion -Maximization algorithms (Aitkin and Rubin, 1985) by treating unobserved latent variables,{
{ωi}ni=1,L

}
in our case, as missing data. However, standard EM algorithms are computation-

ally intractable for the models we consider here. One computation bottleneck is the numerical

optimizations involved in M-steps, which require many iterations due to the lack of close-form

solutions when updating parameters. Moreover, the computation burden is severely aggravated by

the fact that the expectations in E-step (see (4.3) for an example) involve an intractable multivariate

integration.

In Section 4.4.1, we describe a novel efficient semi-parametric Expectation-Solution algorithm

for the single-level model in (4.2) to bypass the computation challenges described above. We then

show in Section 4.4.2 that the learning task of multi-level models in (4.1) can be transformed and

solved by utilizing an algorithm similar to that of single-level models.

4.4.1 Learning of Single-level Models

The ES algorithm (Elashoff and Ryan, 2004) is a general iterative approach to solving es-

timating equations involving missing data or latent variables. The algorithm proceeds by first

constructing estimating equations based on a complete-data summary statistic, which may arise

from a likelihood, a quasi-likelihood or other generalized estimating equations. Similar to the EM

algorithm, the ES algorithm then iterates between an expectation (E)-step and a solution (S)-step

until convergence to obtain parameter estimates. The detailed steps of a general ES algorithm

framework are included in Supplementary S.2. The EM framework is a special case of ES when

estimating equations are constructed from full likelihoods and using complete data as the summary

statistic.

Due to the lack of closed-form for the likelihood function (4.3), we opt to design our algorithm

under the more flexible and general ES framework for parameter estimations of the single-level

models in (4.2), i.e., m = 1. The algorithm is summarized in Algorithm 1 and detailed below.
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As a preliminary, we give the form of the expectation of the conditional intensity function given

cluster memberships as follows:

ρrc(t) = E[λr
i,1(t) | ωc,i = 1] = exp[µr

x,c(t) + Γr
x,c(t, t)/2]. (4.5)

The form of the second-order conditional intensity function is

ρr,r
′

c,i = E[λr
i (s)λ

r′

i (t) | ωc,i = 1]

= E{exp[Xr
i (s) +Xr′

i (t)|ωc,i = 1]}

= ρrc(s)ρ
r′

c (t) exp[Γ
r,r′

x,c (s, t)] (4.6)

for i = 1, · · · , n, r, r′ = 1, · · · , R, where the last equality is derived following the moment gener-

ating function of a Gaussian random variable.

Estimating Equations. We carefully construct estimating equations of unknown parameters

with three considerations in mind: (1) the expectation of the estimating equations over the com-

plete data should be zero; (2) the conditional expectation of the estimating equation can be solved

efficiently in the S-step; (3) the estimating equations should be fast to calculate.

Let K(·) be a kernel function and Kh(t) = h−1K(t/h) with bandwidth h. We define

Ar,r′

c (s, t;h) =
n∑

i=1

ωc,ia
r,r′

i (s, t;h), where ar,r
′

i (s, t;h) =

u̸=v∑∑
u∈Sr

i ,v∈Sr′
i

Kh(s− u)Kh(t− v)

ng(s;h)g(t;h)
;

Br
c (t;h) =

n∑
i=1

ωc,ib
r
i (t;h), where bri (t;h) =

∑
u∈Sr

i

Kh(t− u)

ng(t;h)
,

for c = 1, ..., C, and r, r′ = 1, ..., R, where g(x;h) =
∫
Kh(x − t)dt. Using the Campbell’s

Theorem (Moller and Waagepetersen, 2003) and the moment generating function of the normal

distribution, it is straightforward to show that E
[
Ar,r′

c (s, t;h)|ω
]
≈ πcρ

r
c(s)ρ

r′
c (t) exp[Γ

r,r′
x,c (s, t)]

and that E [Br
c (t;h)|ω] ≈ πcρ

r
c(t), provided that h is sufficiently small. This motivates us to
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consider the following estimating equations:


Ar,r′

c (s, t;h)− πcρ
r
c(s)ρ

r′

c (t) exp[Γ
r,r′

x,c (s, t)] = 0

Br
c (t;h)− πcρ

r
c(t) = 0∑n

i=1 ωc,i

n
− πc = 0.

(4.7)

Expectation (E-step). Given an observed data S and a current parameter estimate Ω∗, we

calculate the conditional expectation of the estimation equations in (4.7). Note that the three es-

timating equations are all linear with respect to {ωc,i, c = 1, · · · , C, i = 1, · · · , n}. Therefore,

the conditional expectations of the estimating equations are obtained by replacing wc,i with its

conditional expectation Eω[ωc,i|S; Ω∗], which has the following form:

Eω[ωc,i|S; Ω∗] =
π∗
cf(Si|ωc,i = 1;Ω∗)∑C

c=1 π
∗
cf(Si|ωc,i = 1;Ω∗)

, (4.8)

where f(Si|ωc,i = 1;Ω∗) = EL[PP(Si|L)|ωc,i = 1;Ω∗]. Here PP(·) is the conditional distribution

function of Si given ωc,i and Ω∗ as defined in (4.4). We propose to approximate f(Si|ωc,i = 1;Ω∗)

by its Monte Carlo counterpart,

f̂(Si | ωc,i = 1;Ω∗) ≈ 1

Q

∑
P̂P(Si | X(q)

c (t)), (4.9)

where Q is the Monte Carlo sample size, X(q)
c (t)’s are independent samples from the multivariate

Gaussian process with parameters Θ∗
x,c, and P̂P(·) is a numerical quadrature approximation of PP(·)

following Berman and Turner (1992):

P̂P(Si|X(t)) = exp


R∑

r=1

∑
u∈S̃r

i,1

vu[yuX
r(u)− expXr(u)]

 . (4.10)

In the above, S̃r
i,1 is the union of Sr

i,1 and a set of regular grid points, vu is the quadrature weight

corresponding to each u and yu = v−1
u ∆u, where ∆u is an indicator of whether u is an observation
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Algorithm 1 Learning of the Single-level model in (4.2)
Input: S = {Si}ni=1, the number of clusters C, the bandwidth h;
Output: Estimates of model parameters, π̂, µ̂r

x,c(t), Γ̂
r,r′
x,c (s, t), for c = 1, · · · , C, r, r′ = 1, · · · , R;

Calculate the components ar,r
′

i ’s and cri ’s;
Initialize Ω∗ = {π∗,Θ∗

x,c, c = 1, · · · , C} randomly;
Repeat:

E-Step:
Calculate Eω[ωc,i|S; Ω∗] as (4.8);
Calculate Eω[A

r,r′
c (s, t)|S; Ω∗] and Eω[B

r
c (t)|S; Ω∗];

M-Step:
Update π∗, µr∗

x,c(t) and Γr,r′∗
x,c (s, t) according to (4.11),(4.12) and (4.13);

End;
Until: Reach the convergence criteria;
π̂ = π∗, µ̂r

x,c = µr∗
x,c(t) and Γ̂r,r′

x,c (s, t) = Γr,r′∗
x,c (s, t);

(∆u = 1) or a grid point (∆u = 0).

Solution (S-step). In this step, we update the parameters by finding the solutions to the ex-

pected estimating equations from the E-step. For c = 1, · · · , C, r, r′ = 1, · · · , R and r ̸= r′, the

solutions take the following closed forms:

π∗
c =

∑n
i=1 E[ωc,i|S; Ω∗]

n
, (4.11)

Γr,r′∗
x,c = log

π̂cEω[A
r,r′
c (s, t;h)|S; Ω∗]

Eω[Br
c (s;h)|S; Ω∗]Eω[Br′

c (t;h)|S; Ω∗]
, (4.12)

µr∗
x,c(t) = log

Eω[B
r
c (t;h)|S; Ω∗]

π̂c exp[Γ̂r
x,c(t, t)/2]

. (4.13)

Sampling Strategies. The multi-dimensional functional form of X(g)
c renders the sampling

procedures in (4.9) intractable. Given the parameters Θx,c, one solution is to find a low-rank repre-

sentation of Xi with the functional principal components analysis (FPCA) (Ramsay and Silverman,

2005). Specifically, we approximate the latent Gaussian process Xi in cluster c nonparametrically

using the Karhunen-Lòeve expansion (Watanabe, 1965) as: Xr
i (t) = µc+ < ξi,ϕ(t) >, for
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r = 1, · · · , R, where ξi is a vector of normal random variables, and ϕ(t) is a vector of orthogonal

eigenfunctions. Using FPCA, we can obtain the sampling of Xi from the sampling of ξi indirectly.

More detailed sampling procedure via FPCA can be seen in Supplementary B.2.

Model Selection. Our clustering procedures require choosing the proper number of clusters

C and bandwidth h. In model-based clustering, one popular method for choosing the number

of clusters is based on the Bayes information criterion (BIC) (Schwarz et al., 1978). Since the

probability f(S|ω) is already calculated in each iteration, one can directly use this term for the

BIC calculation. The choice of kernel bandwidth h also plays an important role for model stability.

A small h may produce unstable clustering results while a large h would dampen the characteristics

of each cluster. We use an adaptive h that maximizes the likelihood in each iteration. Specifically,

we pre-calculate a series of ar,r′c and brc for different candidates of h. Then in each iteration, we

select the one that gives the maximum likelihood.

Remarks. The most significant advantage of our method is that it avoids expensive iterations

inside each E-step and S-step, unlike other EM algorithms for mixture point process models (Xu

and Zha, 2017). The elements ar,r
′

i,h and cri,h in the estimating equations can be pre-calculated before

E-S iterations to save computations. Moreover, the S-step is fast to execute thanks to the closed-

form solutions. We will analyze the overall computation complexity of the learning algorithm in

Section 4.4.4.

4.4.2 Learning of Multi-level Models

We now consider developing the learning algorithm of multi-level models in (4.1), assuming we

repeatedly observe R types of events from n accounts on m days with m > 1. Below, we propose

a method to transform the learning task of a multi-level model into a problem that can be solved by

a two-step procedure, where the second step is mathematically equivalent to a single-level model

and hence can be conveniently solved by a similar algorithm as in Algorithm 1.

For a given account i, consider the aggregated event sequence S̄r
i· = ∪m

j=1S
r
i,j for each row of

S and event type r. If we assume a multi-level model for each Sr
i,j as in (4.1), conditional on latent

variables L, S̄r
i· is a superposition of m independent Poisson processes and hence can be viewed as
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a new Poisson process with intensity functional λr
i·(t|L) =

∑m
j=1 expΛ

r
i,j(t). We approximate the

distribution of S̄r
i· by a Poisson process with a marginal intensity function,

λ̄r
i (t) = EY Z{λr

i·(t|L)|Xi(t)} = m exp{X̃r
i (t)} (4.14)

where X̃i = {X̃1
i , · · · , X̃R

i } is a new multivariate mixture Gaussian process with mean function

µ̃r
x,c(t) = µr

x,c+Γr,r
y (t, t)/2+Γr,r

z (t, t)/2 and covariance function Γ̃r,r′
x,c (s, t) = Γr,r′

x,c (s, t), if account

i belongs to cluster c. When m is large, we expect the above approximation is accurate.

Note that the model in (4.14) for the aggregated event sequence S̄r
i· is inherently reduced to

a single-level model. It allows us to separate the inference of the multi-level model in (4.1) into

two steps: (Step I) learn the parameters in Θy and Θz and denote the estimated parameters as

Γ̂r,r′
y (s, t) and Γ̂r,r′

z (s, t); (Step II) learn the clusters of the single-level model in (4.14) and estimate

the parameters π, µ̃r
x,c and Γ̃r,r′

x,c ; Afterwards, the parameters involved in Θx,c can be obtained by,

µ̂r
x,c(t) = µ̃r

x,c(t)− Γ̂r,r
y (t, t)/2− Γ̂r,r

z (t, t)/2, Γ̂r,r′

x,c (s, t) = Γ̃r,r′

x,c (s, t).

For the learning task in Step I, Xu et al. (2020) developed a semi-parametric algorithm to learn

the repeatedly observed event sequences. In analogy to their work, we propose a similar inference

framework to estimate Θy and Θx in our mixture multi-level model (4.1) and provide the details

in Supplementary 4.4.3. For step II, we resort to the single-level model algorithm described in

Section 4.4.1.

4.4.3 Step I of the Two-step Learning of the Multi-Level Model

We consider a multi-level model with the following latent intensity function:

λr
i,j(t) = exp{Xr

i (t) + Y r
j (t) + Zr

i,j(t)}, t ∈ [0, T ] (4.15)

for i = 1, · · · , n, j = 1, · · · ,m and r = 1, · · · , R.

As discussed in Section 4.4.2, the learning algorithm is decomposed into two steps as in Al-
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gorithm 2. In Step I, we seek to estimate the parameters in Θy and Θz. Other cluster-specific

model parameters such as cluster assignment probabilities π are estimated in Step II following

the procedure described in Section 4.4.2. Xu et al. (2020) developed a semi-parametric algorithm

to estimate the covariance functions of a multi-level log-Gaussian Cox process. We extend their

estimation method to also take into account unknown clustering when estimating Θy and Θz in

Step I. Interestingly, we will show that the resulting estimators of Θy and Θz do not depend on any

other cluster-specific parameters and hence avoid iterations between the two steps.

Specifically, following the formula of the moment generating function of a Gaussian random

variable, the marginal intensity functions can be calculated as

ρr(t) = E[λr
i,j(t)] =

C∑
c=1

πc exp{µr
x,c(t) + Γr,r

x,c(t, t)/2 + Γr,r
y (t, t)/2 + Γr,r

z (t, t)/2},

and derived in a similar way, the marginal second-order intensity functions are:

ρr,r
′

i,j,i′,j′(s, t) = E[λr
i,j(s)λ

r′

i′,j′(t)]

=
∑
c

∑
c′

E[exp{Y r
j (s) + Y r′

j′ (t) + Zr
i,j(s) + Zr′

i′,j′(t)}]

· E[ωc,iωc′,i′ ] · E[exp{Xr
i (s) +Xr′

i′ (t)}|ωc,i = 1, ωc′,i′ = 1]

for i, i′ = 1, · · · , n, j, j′ = 1, · · · ,m and r, r′ = 1, · · · , R.

We analyze the form of ρr,r
′

i,j,i′,j′ under four different situations and use Ar,r′ , Br,r′ , Cr,r′ or Dr,r′
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to represent its form under each situation respectively,

ρr,r
′

i,j,i′,j′(s, t) =

Ar,r′(s, t) ≡ exp{Γr,r′

y (s, t) + Γr,r′

z (s, t)}
∑
c

πcρ
r
c(s)ρ

r′

c (t) exp{Γr,r′

x,c (s, t)}, if i = i′, j = j′

Br,r′(s, t) ≡
∑
c

πcρ
r
c(s)ρ

r′

c (t) exp{Γr,r′

x,c (s, t)}, if i = i′, j ̸= j′

Cr,r′(s, t) ≡ exp{Γr,r′

y (s, t)}
∑
c,c′

πcπc′ρ
r
c(s)ρ

r′

c′ (t), if i ̸= i′, j = j′

Dr,r′(s, t) ≡
∑
c,c′

πcπc′ρ
r
c(s)ρ

r′

c′ (t), if i ̸= i′, j ̸= j′

(4.16)

It can be seen that Ar,r′(s, t), Br,r′(s, t), Cr,r′(s, t) and Dr,r′(s, t) captures different correlation

information, namely, the correlation within same-account same-day, within same-account across

different-day, within same-day across different-account, and across different-account different-day,

while integrating out the unknown cluster memberships of i and i′.

Following a similar derivation as Xu et al. (2020), the corresponding empirical kernel estimate

of ρr,r
′

i,j,i′,j′ under each situation is given by



Âr,r′(s, t;h) =
n∑

i=1

m∑
j=1

u̸=v∑∑
u∈Sr

i,j ,v∈Sr′
i,j

Kh(s− u)Kh(t− v)

nmg(s;h)g(t;h)

B̂r,r′(s, t;h) =
n∑

i=1

m∑
j=1

∑
j′ ̸=j

∑
u∈Sr

i,j

∑
v∈Sr′

i,j′

Kh(s− u)Kh(t− v)

nm(m− 1)g(s;h)g(t;h)

Ĉr,r′(s, t;h) =
n∑

i=1

∑
i′ ̸=i

m∑
j=1

∑
u∈Sr

i,j

∑
v∈Sr′

i′,j

Kh(s− u)Kh(t− v)

n(n− 1)mg(s;h)g(t;h)

D̂r,r′(s, t;h) =
n∑

i=1

∑
i′ ̸=i

m∑
j=1

∑
j′ ̸=j

∑
u∈Sr

i,j

∑
v∈Sr′

i′,j′

Kh(s− u)Kh(t− v)

n(n− 1)m(m− 1)g(s;h)g(t;h)

(4.17)

for r, r′ = 1, · · · , R, where Kh(t) = h−1K(t/h) is a kernel function with bandwidth h and

g(x;h) =
∫
Kh(x− t)dt is an edge correction term.
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Matching (4.16) with (4.17), we propose to estimate the covariance functions using,

Γ̂r,r′

y (s, t;h) = log
Ĉr,r′(s, t;h)

D̂r,r′(s, t;h)
, Γ̂r,r′

z (s, t;h) = log
Âr,r′(s, t;h)D̂r,r′(s, t;h)

B̂r,r′(s, t;h)Ĉr,r′(s, t;h)
(4.18)

Algorithm 2 Learning of the Multi-level model (4.1)
Input: S = {Sr

i,j}, the number of clusters C, the bandwidth h;

Output: Estimates of model parameters, π̂, Θ̂y, Θ̂z, Θ̂x,c, for c = 1, · · · , C;

Step I: Given S, obtain Θ̂y and Θ̂z using the estimation framework in Section 4.4.3;

Step II:

a) Aggregate the event sequences by S̄r
i· = ∪m

j=1S
r
i,j;

b) Based on {S̄r
i·}ni=1 from a), fit the single-level model with parameters {π, Θ̃x,c} using Algo-

rithm 1;

c) Calculate,

µ̂r
x,c(t) = µ̃r

x,c(t)− Γ̂r,r
y (t, t)/2− Γ̂r,r

z (t, t)/2− logm, Γ̂r,r′

x,c (s, t) = Γ̃r,r′

x,c (s, t)

4.4.4 Computational Complexity and Acceleration

Assume that the training event sequences belong to n accounts and C clusters and are repeat-

edly observed on m time slots. We also assume that the data contains R types of events and

each sequence consists of I time stamps on average. Let Q be the sampling size used in the Monte

Carlo integration in (4.9). In numerical implementation, we divide the interval [0, T ] into D equally

spaced grid points D = {0 = u1 < · · · < uD = T}. In Step I, it requires O(nmR2D2) computa-

tion complexity to estimate Θy and Θz, according to Xu et al. (2020). Computation complexity to
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pre-calculate ar,r
′

i (s, t;h)’s and bri (t;h)’s in (4.7) for all s, t ∈ D is of the order O(nmR2D2) if we

decomposition ar,r
′

i (s, t;h) as:

ar,r
′

i (s, t;h) =

∑
u∈Sr

i

Kh(s− u)

g(s;h)

∑
v∈Sr′

i

Kh(t− v)

g(t;h)

−
∑

u∈Sr
i ∩Sr′

i

Kh(s− u)Kh(t− v)

g(s;h)g(t;h)
.

In Step II, for each E-S iteration, we need O(CQR3) for sampling and O(nCIQR2) for other

calculations. Therefore, the overall computational complexity is O(R2(nmD2+CQR+nCIQ)).

To further reduce computation, we use array programming and GPU acceleration to calculate the

high-dimensional integration in the Monte Carlo EM framework (Wu et al., 2020b) to reduce the

runtime of (4.8). The details are included in Supplementary S.2, and a numerical demonstration is

given in Section 4.5.1.

4.5 Numerical Examples

We examine the performance of our MM-MPP framework for clustering event sequences via

synthetic data examples and real-world applications and compare the performances between the

proposed method and two other state-of-the-art methods. One competing method is a discrete

Fréchet distance-based method (DF) by Pei et al. (2013). Unlike other distance-based clustering

methods, the DF cluster can characterize interactions among events. Another is a model-based

clustering method based on the Dirichlet mixture of Hawkes processes (DMHP) by Xu and Zha

(2017). DMHP is chosen as a competitor due to its capability of accounting for complex point pat-

terns while performing clustering and making efficient variational Bayesian inference algorithms

under a nested EM framework.

We first defined some abbreviations

• ES: Expectation-Solution;

• LGCP: log-Gaussian Cox process;

• FPCA: Functional principal component analysis;
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• MM-MPP: Mixture Multi-level Marked Point Processes;

• MS-MPP: Mixture Single-level Marked Point Processes;

• MC: Monte Carlo

• DMHP: Dirichlet mixture of Hawkes processes;

• DF: discrete Fréchet;

4.5.1 Synthetic Data

Setting. We generate the synthetic data from the proposed mixture model of log-Gaussian Cox

processes in (4.1) and (4.2), in which there are R = 5 event types and daily time stamps reside in

[0, 2]. We set the number of clusters C from 2 to 5 and set the number of accounts in each cluster

to 500. We experiment with an increasing number of replicates (m = 1, 20 or 100), to check the

convergence of our method. When m = 1, we generate event sequences from the single-level

model in (4.2) without day-level variations. In this case, we compare the clustering results of DF,

DMHP with those of the single-level model (MS-MPP). When m = 20 or 100, we generate data

from the multi-level model in (4.1) and use the MM-MPP method to model the scenario where

event sequences are repeatedly observed. However, the two competing methods, DF and DMHP,

are not directly applicable for repeated event sequences. Therefore, in this case, we concatenate

{Sr
i,j}mj=1 sequentially into a new event sequence Sr

i· on [0,mT ] and then apply DF and DMGP

to this new sequence. The detailed settings of Xr
i (t)’s, Y r

j (t)’s and Zr
i,j(t)’s and other details of

synthetic data examples are elaborated in Supplementary S.3.

Results. We evaluate the clustering performance of each method over 100 repeated experi-

ments under each setting, using clustering purity (Schütze et al., 2008) as a evaluation metric. Ta-

ble 4.1 reports the averaged clustering purity of each method on the synthetic data. When m = 1,

MS-MPP obtains the best clustering result in terms of purity consistently across different numbers

of clusters. Especially when C increases, in which case there are more overlaps among clusters,

the advantage of MS-MPP becomes more prominent. When m = 20, 100, MM-MPP still signifi-
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cantly outperforms the other two competitors. It is also noticeable that the performance of DF and

DMPH, in general, deteriorates as m increases, although more repeated event sequences offer more

information for clustering. One explanation is that both DF and DMHP may incur bias due to ig-

noring different sources of variations for repeatedly observed event times. Another reason may be

that many existing Hawkes process models, such as DMHP, assume a constant triggering function

over time, which may not be flexible enough to characterize the data generated from models (4.1)

and (4.2).

Table 4.1: Clustering Purity on Synthetic Data.

m = 1 m = 20 m = 100
C DF DMPH MS-MPP DF DMPH MM-MPP DF DMPH MM-MPP
2 0.597 0.537 0.831 0.536 0.513 0.947 0.532 0.522 0.988
3 0.514 0.466 0.767 0.465 0.423 0.902 0.477 0.394 0.967
4 0.443 0.421 0.714 0.422 0.356 0.874 0.436 0.285 0.944
5 0.379 0.354 0.675 0.351 0.298 0.835 0.333 0.276 0.919

Our code can be accessed via https://github.com/LihaoYin/MMMPP. To show the

computational advantage of the proposed ES algorithm over the EM algorithm, Table 4.2 gives

the computation times of CPU-based EM, CPU-based ES, and GPU-based ES algorithms for 20

iterations in the estimation of model (4.1) with n = 500, 100, m = 20, R = 5 and C = 3. For

each iteration, 10, 000 MCMC samples are drawn to approximate (4.9). Table 4.2 demonstrates

that with the GPU acceleration, the computation time of the proposed ES can be reduced by more

than 20 folds in this case scenario compared to the EM algorithm, which is not suitable for array

programming (Harris et al., 2020).

4.5.2 Real-world Data

In this section, we apply our method to the following real-world datasets.

Twitter Dataset. The Twitter dataset consists of the postings of the official accounts of Amer-

ica’s top 500 universities from April 15, 2021, to May 14, 2021. The data set was scraped from
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Table 4.2: Running Time (in seconds) on Synthetic Data

Methods and devices n = 500 n = 1000
GPU-ES (RTX 8000 48G GPU) 30.09 51.42

CPU-ES (i7-7700HQ CPU) 275.87 505.07
CPU-EM (i7-7700HQ CPU) 568.36 1105.46

Twitter with the API rtweet (Kearney, 2019). The dataset involves three categories of postings

(tweet, retweet, and reply), indicating R = 3 in this study. As a result, the dataset contains n = 500

Twitter accounts for m = 30 consecutive days with a total of 233, 465 time stamps.

Chicago City Taxi Dataset The City of Chicago collected the information of all taxi rides

in Chicago since 2013 1. Each trip record in the dataset consists of drivers’ encrypted IDs, pick-

up/drop-off time stamps, and locations (in the form of latitude/longitude coordinates). We gathered

the trips of 9,000 randomly selected taxi drivers from Jan 1 to Dec 31, 2016, and more than 19 mil-

lion trip records were picked. We mapped the pick-up coordinates to their corresponding zoning

types according to Chicago Zoning Map Dataset2, which divides the city into nine basic zoning

districts3, as shown in Figure 4.1, including Residence (R), Business (B), Commercial (C), Manu-

facturing (M), etc. For this data set, we have n = 9000, m = 366, and R = 9.

Credit Card Transaction Dataset. The dataset contains 641, 914 transaction records of 5, 000

European credit card customers (n = 5000) during the period covering January 1 to December 31,

2016 (m = 366). We applied the univariate model (R = 1) without event marks to the dataset.

We evaluate and compare clustering stability based on a measure called clustering consistency

via K-trial cross-validations (Tibshirani and Walther, 2005; von Luxburg, 2009), as there are no

ground truth clustering labels. The detailed definition of clustering consistency and other real data

example details are included in Supplementary S.4.

Results. We compare the performance of DF, DMHP, and MM-MPP in terms of clustering

consistency for three data sets with K = 100 trials. The results in Table 4.3 suggest that MM-

1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
2https://data.cityofchicago.org/
3https://secondcityzoning.org/zones/
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Figure 4.1: Illustration for basic zoning districts in Chicago

MPP outperforms its competitors notably, demonstrating that our model can better characterize the

postings patterns and offer a more stable and consistent clustering than other methods. Figure 4.2

shows the histograms of the number of learned clusters for each method. For the Twitter dataset,

the median numbers of learned clusters are 3, 5, and 8 for MM-MPP, DMHP, and DF respectively.

Besides, the distribution of the number of clusters from our method seems to be the least variable,

indicating robustness in clustering. The robustness of our method may be partly attributed to the

flexibility of the latent conditional intensity functions that account for multi-level deviations within

each account. In contrast, other methods that fail to account for different sources of deviations may

treat them as sources of heterogeneity and consequently result in more clusters.

Table 4.3: Clustering Consistency on Real-World Datasets.

Method DF DMHP MM-MPP
Twitter 0.096 0.275 0.394

Credit Card 0.102 0.331 0.378
Chicago Taxi 0.045 0.142 0.153

More stories can be told by the estimated posting patterns. Given a predicted membership of

account i by ci = argmaxc Eω[ωc,i|S; Ω̂], Figure 4.3 displays the estimated curves of µ̂r
x,c for tweet
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Figure 4.2: Histogram of the number of clusters. Left: Twitter dataset; Right: Credit Card dataset;

events (r = 1), retweet events (r = 2) and reply events (r = 3) respectively for C = 3. Recall µ̂r
x,c

is interpreted as the baseline of intensity functions. This figure shows three different activity modes

for the selected Twitter accounts. The universities in cluster 1 marked by red curves in Figure 4.3

in general have a lower frequency of posting retweets and replies, especially during the daytime.

This group includes the most top university in America, such as MIT, Harvard, and Stanford. In

contrast, the accounts in cluster 2 are relatively more active in all three types of postings. We

further find that many accounts in this cluster belong to the universities with middle ranks.

Figure 4.3: Curves of µ̂r
x,c(t). Left: tweet events; Mid: retweet events; Right: reply events;
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We further applied the proposed MM-MPP to the Chicago Taxi dataset. As suggested by

BIC, the 9000 taxi drivers are clustered into 9 groups, whose averaged daily pick-up log intensity

functions are illustrated in Figure 4.4(a). We can see that the taxi drivers are clustered not only

according to their pick-up frequency but also by their working schedules. For example, the black

curves on Figure 4.4(a) corresponds to the most dominating group, which occupies 23.2% of the

sample. Figure 4.3(b) displays the curves of average log intensity (the black line) and log inten-

sity for each driver (gray lines) in the selected cluster. Figure 4.4(c-e) show the estimated µ̂x(t)

for pick-up in commercial, residence and manufacturing districts, respectively. While the pick-up

events are more likely to occur in commercial districts for this group during the daytime, they also

tend to pick up passengers at the residential district in the morning and to appear at the manufac-

turing district in the afternoon. These patterns are consistent with the schedules of passengers who

commute between homes and workplaces.

More results and discussions on chase credit dataset are included in our Supplementary file.

Figure 4.4: Left: Overall log-intensities for all clusters; Right: Log-intensity for one selected
cluster;

4.6 Conclusions

We propose a mixture of multi-level marked point processes to cluster repeatedly observed

marked event sequences. A novel and efficient learning algorithm is developed based on a semi-
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parametric ES algorithm. The proposed method is demonstrated to significantly outperform other

competing methods in simulation experiments and real data analyses.

The current model only focuses on events over temporal domains. However, clustering of spa-

tial patterns on 2- or 3-dimensional domains has also attracted much research interest (Hildeman

et al., 2018; Yin et al., 2020; Hessellund et al., 2021). It will be an interesting research topic to

extend the current model to such settings.

This work has no foreseeable negative societal impacts, but users should be cautious when

giving interpretation on clustering results to avoid any misleading conclusions.
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APPENDIX A

SUPPLEMENTARY FOR FUSED SPATIAL POINT PROCESS INTENSITY ESTIMATION

WITH VARYING COEFFICIENTS ON COMPLEX CONSTRAINED DOMAINS

A.1 Quadrat Scheme

For the quadrature approximation in (2.4), we need to divide the domain into small subdivisions

or quadrats. For the 2-D square domain, it is easy to add dummy points and draw regular equal-

sized rectangular quadrats on the domain using dummy.ppm and quad.ppm in the R package

spatstat. For planar domains with irregular boundary, we follow the routine quadrature ap-

proximation methods for irregular domains in R2 (Shen et al., 2009), where the domain is masked

by regular pixel grids, and we expand the domain slightly to include the whole pixel if it intersects

with domain boundary. See the left panel of Figure A.1 for an example.

As for the partition on a linear work, Chapter 9 of Okabe and Sugihara (2012) discussed the

implementation of both equal-length and unequal-length network cells. Furuta et al. (2008); Shiode

(2008) proposed computational methods for dividing a network into equal-length network cells.

However, their methods are not a guarantee of success if we want to insert enough dummy points.

We propose to randomly draw dummy points from a homogeneous Poisson point process on the

linear network with intensity function δ(u) = (M − m)/|D|. Then we obtain the quadrats on

linear networks using the network Voronoi tessellation method (Chapter 4 of Okabe and Sugihara,

2012), each of which contains one dummy point as its centroid. See the right panel of Figure A.1

for an example.

A.2 Additional Numerical Results

We report the integrated squared bias (ISB) and variance (IV) for each β̂1(u), β̂2(u) and β̂0(u)

under both Scenario 1 and Scenario 2(b) in Table A.1. Specifically, ISB and IV are defined as:

ISB (βk(u)) = 1
|D|

∫
D

(
β̂k(u)− Eβ̂k(u)

)2

du; IV (βk(u)) = MISE (βk(u)) − ISB (βk(u)) . The

results generally agree well with the findings based on Rand index and the MISEβ , in the sense
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Figure A.1: Illustration of quadrat schemes for Toronto city (left) and a toy linear network example
(right); Left panel: boundary lines (red) of Toronto city and the grids (grey) covering the irregular
domain; Right panel: dummy points (red nodes) and their corresponding Voronoi quadrats (marked
by different shades of grey).

that SVCI-LRL achieves a slightly smaller bias and variance compared with SVCI-PL.

Table A.1: Scenario 1: The integrated squared bias and variance (in parentheses) of β̂1(u), β̂2(u)
and β̂0(u) respectively, in the case that m = 2400, and nd2 = m based on 5-NN connection
graphs.

β1(u) β2(u) β0(u)

Scenario 1
SVCI-PL 0.115(0.035) 0.116(0.032) 0.078(0.038)

SVCI-LRL 0.098(0.034) 0.105(0.033) 0.057(0.030)
Scenario 2(b)

SVCI-PL 0.099(0.028) 0.104(0.030) 0.108(0.035)
SVCI-LRL 0.105(0.028) 0.101(0.027) 0.093(0.030)

Under the setting of Scenario 1, we examine the performance of SVCI-PL based on K-NN

graphs with K = 3, 4, 5, 6, 9 and r-NN graphs with r = 0.02R or 0.03R. Figure A.2 shows the

MISE of β̂ versus the number of edges for each graph. We notice that MISE does not always

decrease as the graph includes more neighbors by increasing K of K-NN or r of r-NN. Both K-
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Figure A.2: Illustration of MISEβ versus the number of edges, under the setting of Scenario 1,
with m = 2400 and nd2 = m. ϵR indicates the SVCI-PL method based on an r-NN graph with a
radius ϵ×R.

NN and r-NN lose some estimation accuracy if there are too many neighbors. It also seems that

K-NN slightly outperforms r-NN in terms of MISE when K and r are chosen such that the two

graphs have a comparable number of edges.

Under the setting of Scenario 2(a), we compare the performance of SVCI-LRL using the 3-NN

graphs constructed based on the shortest-path distance and Euclidean distance metrics, respec-

tively. Overall, we observe very similar results between these two choices of distance metrics,

especially when m and nd2 go up. For example, when m = 2400, the MISEs of SVCI-LRL using

shortest-path distance and Euclidean distance metrics are 0.121 and 0.124, respectively, which are

very close to the result reported in Table 2.4 obtained using the graph constructed by connecting

natural neighbors on the Chicago network.

Table A2 reports the computation time of different methods with one tuning parameter, under

the setting of Scenario 2(a). We notice that the computation time of KDE.lpp and Voronoi.lpp
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vary notably with their tuning parameter, so for these two methods we select a range of tuning

parameters in the proximity of the optimal tuning parameter that minimizes MISE and report the

average computation times.

Table A.2: Scenario 2: Comparison of computation times (in seconds).

Method m = 800 m = 1600 m = 2400 m = 3600 m = 6000

Scenario 2(a): ρ(u) = exp{β0(u)}
SVCI-LRL 0.64 0.73 1.11 1.40 1.92
KDE.lpp 4.76 3.74 3.15 2.65 2.47

KDEQuick.lpp 0.055 0.062 0.081 0.094 0.102
Voronoi.lpp 3.24 3.73 4.35 4.52 4.83

For the Toronto Homicide data considered in Section 2.5.1, we compare the estimated log

intensity surfaces obtained by SVCI and LGCP in Figure A.3. Both methods seem to be capable

of capturing the inhomogeneity pattern in intensities and agree well with each other in most areas.

The most notable difference between the two methods occurs near Toronto islands, where we

observe more variations in intensity estimations by LGCP than those by SVCI possibly due to the

piece-wise homogeneity assumptions made in the latter.
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Figure A.3: Illustrate of the estimated log intensity function of the Toronto data with the observed
locations overlaid in blue dots; Left: the estimated log intensity surface by SVCI; Right: the
posterior mean estimate of the log intensity surface by LGCP;
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APPENDIX B

SUPPLEMENTARY FOR ROW-CLUSTERING OF A POINT PROCESS-VALUED MATRIX

B.1 Computational Details

B.1.1 ES Algorithm

The Expectation-Solution (ES) algorithm (Elashoff and Ryan, 2004; McLachlan and Krishnan,

2007) is a general extension of the Expectation-Maximization (EM) algorithm. It is an iterative

approach built upon estimating equations that involve missing data or unobserved variables. In the

E-step of each iteration, ES calculates the conditional expectations of estimating equations given

observed data and current parameter estimates. In S-step, it updates parameter values by finding

the solutions to the expected estimating equations. Since the estimating equations can be con-

structed from a likelihood, a quasi-likelihood, or other forms, the ES algorithm is more flexible

and general than the EM algorithm. In particular, when estimating equations are well designed

such that analytical solutions are available in S-step, ES algorithm may achieve an improved com-

putational efficiency over EM algorithms, which often involve expensive numerical optimizations

of the expected log-likelihood in each M-step.

We follow the notations and expressions in Elashoff and Ryan (2004). Let y denote the ob-

served data vector, z denote the unobserved data, and x = {y, z} be the complete-data. Let Ω

denote a d-dimensional vector of parameters. Given d-dimensional estimating equations with the

complete data as:

Uc(x;Ω) = 0

the ES algorithm entails a linear decomposition like:

Uc(x;Ω) = U1(y,S(x);Ω)

=

q∑
j=1

aj(Ω)Sj(x) + bΩ(y),
(B.1)
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where aj’s are vectors of size d only depending on parameters Ω, and S is a q-dimensional function

with components Sj only depending on the complete data. S(x) is referred to as a "complete-data

summary statistic". Given the parameters Ω∗, we calculate the expectation over z condition on y

and parameters Ω in E-step as following

h(y;Ω∗) = Ez[S(x)|y;Ω∗]

In view of the linearity in (B.1), we consider the conditionally expected estimation equations,

Ez[Uc(x;Ω)|y;Ω∗] = U1(y, h(y;Ω
∗);Ω) = 0 (B.2)

In the S-step, we update the parameters Ω by finding the solution to (B.2). We outline the ES

procedure in Algorithm 3.

Algorithm 3 ES Algorithm
Presupposition: Given estimating equations Uc(x;Ω) with a linear decomposition (B.1);
Input: Observed data y;
Output: Estimates of model parameters Ω;
Initialize Ω∗ randomly;
Repeat:

E-Step: Calculate h(y;Ω∗) = Ez[S(x)|y;Ω∗];
S-Step: Find Ω that solve U1(y, h(y;Ω

∗);Ω) = 0 in (B.2);
End;

Until: Reach the convergence criteria.

B.1.2 Sampling Strategy

The E-step in Section 4.4.1 involves the sampling of random functions X(q)
c for calculating the

Monte Carlo integration in (4.9). Given cluster-specific parameters Ωx,c, our goal is to draw mul-

tiple independent realizations of Xi(t)|ωc,i = 1, denoted as X(q)
c (t) = {X1(q)

c (t), · · · , XR(q)
c (t)}′.

Recall that the cross covariance functions of Xi(t) is Γr,r′
x,c (s, t) = Cov[Xr

i (s), X
r′
i (t)|ωc,i = 1],
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s, t ∈ [0, T ], for i = 1, · · · , n. When r = r′, the covariance function Γr,r
x,c(s, t) is a symmetric,

continuous and nonnegative definite kernel function on [0, T ] × [0, T ]. Then Mercer’s theorem

asserts that there exists the following spectral decomposition:

Γr,r
x,c(s, t) =

∞∑
k=1

ηrx,c,kϕ
r
x,c,k(s)ϕ

r
x,c,k(t),

where ηrx,c,1 ≥ ηrx,c,2 ≥ · · · > 0 are eigenvalues of Γr,r
x,c(s, t) and ϕr

x,c,k(t)’s are the corresponding

eigenfunctions which are pairwise orthogonal in L2([0, T ]). The eigenvalues and eigenfunctions

satisfy the integral eigenvalue equation,

ηrx,c,kϕ
r
x,c,k(s) =

∫ T

0

Γr,r
x,c(s, t)ϕ

r
x,c,k(t)dt

Accordingly, using the Karhunen-Loève expansion (Watanabe, 1965), Xr(q)
c (t) admits a decompo-

sition,

Xr
c (t) = µr

x,c(t) +
∞∑
k=1

ξrx,c,kϕ
r
x,c,k(t), (B.3)

where {ξrx,c,k}∞k=1 are independent normal random variables with mean 0 and variance {ηrx,c,k}∞k=1.

The expression in (B.3) has an infinite dimensional parameter space, which is infeasible for es-

timation. One solution is to approximate (B.3) by only keeping leading principal components,

Xr
c (t) ≈ µr

x,c(t) +

prc∑
k=1

ξrx,c,kϕ
r
x,c,k(t) (B.4)

where prc is a rank chosen to characterize the dominant characteristics of Xr
c while reducing com-

putational complexity. It leads to a reduced-rank representation of Γr,r
x,c(s, t) as:

Γr,r
x,c(s, t) ≈

prc∑
k=1

ηrx,c,kϕ
r
x,c,k(s)ϕ

r
x,c,k(t).

Similarly, when r ̸= r′, we can also approximate Γr,r′
x,c (s, t) using the truncated decomposition,
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Γr,r′

x,c (s, t) ≈
prc∑
k=1

pr
′

c∑
k′=1

ηr,r
′

x,c,k,k′ϕ
r
x,c,k(s)ϕ

r′

x,c,k(t). (B.5)

We denote ξrx,c = {ξrx,c,1, · · · , ξrx,c,prc}
′ and investigate the cross-covariance matrix of ξx,c =

{ξ1x,c, · · · , ξRx,c}, denoted as

Σx,c =


Σ1,1

x,c · · · Σ1,R
x,c

... . . . ...

ΣR,1
x,c · · · ΣR,R

x,c

 ,

where Σr,r′
x,c = Cov[ξrx,c, ξ

r′
x,c].

From Karhunen-Loève expansion in (B.3), we know Σr,r
x,c = diag(ηrx,c,1, · · · , ηrx,c,prc) for each

event type r. When c ̸= c′, we assume that ξrx,c and ξr
′

x,c′ are independent. However, when consid-

ering two different event types (i.e., r ̸= r′) within the same cluster, it is reasonable to account for

the correlation between ξrx,c and ξr
′

x,c to characterize interactions among events of different types.

Therefore, from (B.3) and (B.5), the (k, k′)-th entry of the covariance matrix Σr,r′
x,c is ηr,r

′

x,c,k,k′ when

r ̸= r′.

Now we can draw the samples ξ(q)x,c = {ξ1(q)x,c , · · · , ξR(q)
x,c } from the multivariate normal distribu-

tion with a mean zero and a covariance matrix is Σx,c, based on which we obtain the samples X(q)
c

using expansion (B.4).

B.1.3 GPU Acceleration

One computational bottleneck in our approach is the Monte Carlo (MC) approximation of the

high-dimensional integration in (4.9). Although we have employed the low-rank representations

by FPCA in Section B.1.2 to facilitate MC sampling, this step remains as the most computationally

expensive part if using a naive direct calculation, due to the massive number of sampling points for

a precise MC integration.

Many researchers have embarked their efforts on improving the performance of MC integra-

tion. One of the most popular frameworks is VEGAS (Lepage, 1978; Ohl, 1999) due to its user-

friendly interface. However, VEGAS, which is CPU-based, may be over-stretched with dimen-
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sionality going up since the required MC samples consequently increase dramatically. As notable

progress, GPU-based programs, like VegasFlow(Carrazza and Cruz-Martinez, 2020), extremely

boosts the computation speed compared to the CPU-version program. It accelerates the compu-

tation with the Numpy-like API syntax, such as Tensorflow, which is easy to communicate to

GPU. Similar treatments are implemented in our work, and the key is to transfer the summation

loop in (4.10) into the form of array programming (Harris et al., 2020). For example, when we

calculate Xq
c (t) in (B.4), the computation involves total prc × Q sampled ξrx,c,k and prc × I × n of

ϕr
x,c,k(u), if given c and r. It will greatly reduce the running time if we utilize array programming.

For example, in the case when we have n = 500 sequences and 10, 000 MC points, our MS-MPP

algorithm costs on average 30.09 seconds to run 20 ES iterations on RTX-8000 48G GPU. In

contrast, it costs 275.87 seconds on i7-7700HQ CPU if not using array programming.

B.2 Additional Simulation Studies

Setting of Xr
i (·)’s. In our synthetic data, we sample event sequences from C heterogeneous

clusters (C = 2, 3, 4 or 5). Each cluster contains 500 event sequences, and each event sequence

contains R = 5 event types. We experiment with each setting for J = 100 times and investigate

the average performance. In each trial, we set,

µr
x,c(t) = 1 +

50∑
k=0

ζkZ
r
c,k cos(kπt) +

50∑
k=0

ζkZ
′r
c,k sin(kπt), t ∈ [0, 2]

for r = 1, · · · , R and c = 1, · · · , C, where Zr
c,k’s and Z ′r

c,k’s are all independently sampled from

the uniform distribution U(−1, 1) and ζk = (−1)k+1(k + 1)−2. We set the covariance function of

Xr
i (t) as,

Γr,r
x,c(s, t) =

50∑
k=1

Z̃r
c,k|ζk| sin(kπs+ πZ̃r

c,k) sin(kπt+ πZ̃r
c,k)

for r = 1, · · · , R and c = 1 · · · , C, where Z̃r
c,k’s are independently sampled from uniform
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distribution U(0, 0.3). Meanwhile, we set the interventions among different event types as,

Γr,r′

x,c (s, t) =
50∑
k=1

50∑
k′=1

Žr,r′

c,k,k′

√
Z̃

[j]
c,kZ̃

[j′]
c,k′ |ζkζk′ | sin(kπs+ πZ̃r

c,k) sin(kπt+ πZ̃r
c,k),

for r ̸= r′, where Žr
c,k’s are independently sampled from uniform distribution U(−1, 1). The latent

variable Xr
i (t)’s are generated from Gaussian processes on [0, 2] with the parameters above.

Setting of Y r
j (·)’s and Zr

ij(·)’s. Furthermore, we generate event sequences for m (m = 1, 20

or 100) days. When m = 1, the event sequences are generated from the single-level model in (4.2),

which didn’t involve the variation Yj(t) and Zi,j(t). When m = 20 or 100, we incorporate Yj(t)

and Zi,j(t) in the intensity function and generate data with the multi-level model in (4.1).

We further describe the setup of the distributions of Y r
j (t)’s and Zr

i,j(t)’s. We let,

Ỹ r
j (t) =

2∑
k=1

ξYr,j,kϕ
Y
k (t), Zr

i,j(t) =
4∑

k=1

ξZr,i,j,kϕ
Z
k (t)

where ξYr,j,k’s and ξZr,i,j,k’s are all independent mean-zero normal variables. We set V ar[ξYr,j,k] =

0.2 and V ar[ξZr,i,j,k] = 0.05. We set {ϕY
1 (t), ϕ

Y
2 (t)} = {1, sin(2πt)} and {ϕZ

1 (t), . . . , ϕ
Z
4 (t)} =

{1[0,0.5], 1(0.5,1], 1(1,1.5], 1(1.5,2]} × 2 sin(4πt). Moreover, in order to model the dependence among

different days, we let Y r
j (t) = 0.8Ỹ

(
j t) + 0.6Ỹ r

j−1(t) for j > 1.

Evaluation Metric. For synthetic data, we introduce the criterion clustering purity (Schütze

et al., 2008) to evaluate the clustering accuracy.

Purity =
1

n

C∑
c=1

max
j∈{1,··· ,C}

|Wc ∩ Cj|,

where Wc is the estimated index set of sequences belonging to the cth group, Cj is the true index

set of sequence belonging to the jth cluster, and | · | is the cardinality counting the number of

elements in a set. The value of clustering purity resides in [0, 1] with a higher value indicating a

more accurate clustering (=1 if the estimated clusters completely overlap with the truth).

B.3 Additional Real Data Examples and Details
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Evaluation Metric

In the real data example, we evaluate and compare clustering stability based on a measure called

clustering consistency via K-trial cross validations (Tibshirani and Walther, 2005; von Luxburg,

2009), as there is no ground truth clustering labels.

It works with the following rationale: because random sampling does not change the clustering

structure of data, a clustering method with high consistency should preserve the pairwise relation-

ships of samples in different trials. Specifically, we perform the clustering with K trials. In the k-th

trial, we randomly separate the accounts into two folds. One fold contains 80% of accounts and

serves as the training set, and we predict the cluster memberships of remaining accounts with the

trained model. Let Mk = {(i, i′)|i, i′ belong to the same cluster} enumerate all pairs of accounts

with the same cluster index in the k-th trial. Then we define the clustering consistency as:

Clustering Consistency = min
k∈{1,··· ,K}

∑
k′ ̸=k

∑
(i,i′)∈Mk

1{cki = ck
′

i′ }
|K − 1||Mk|

where 1{·} is an indicator function and cji denote the learned cluster index of the account i in

the k-th trial.

Additional Results on Chase Credit Card Dataset.

In the credit card transaction dataset, there is a large variation in the frequencies in credit card

use across users. We removed the users with fewer than 100 total transactions. The BIC suggests

clustering the users into 3 groups. In each cluster, we obtained the estimated surface of covariance

function Γx,c(s, t), which is displayed in Figure B.1. Compared with clust 2 and 3, the latent

process Xi(t) in clust 1 has relatively larger variation. To offer a more straightforward view of the

correlation among events, we computed the average correlations as,

Corr(r) =

∑
|t−s|=r Ĉorr(t, s)∑

|t−s|=r 1

Where Ĉorr(t, s) = Γ̂x,c(t, s)/

√
Γ̂x,c(t, t)Γ̂x,c(s, s). Figure B.2 displays the averaged correla-
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Figure B.1: Credit Card Dataset: Estimated Γx,c(s, t) for each cluster;

Figure B.2: Credit Card Dataset: Averaged correlations versus time lags;

tions versus time lags. There appears to be a periodic pattern in credit card use for clust 1 and 3.

The users in clust 1 seemed to use their credit cards most frequently since the plot of clust 1 has

the most number of crests. It is consistent with our facts that users in clust 1 averagely used credit

cards 3.7 times a day, versus 1.3 times and 2.2 times a day for clust 2 and 3 respectively.
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