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ABSTRACT

This dissertation discusses how we can exploit sparsity, a statistical assumption that only a

small number of relationships between variables are non-zero, in the model selection for regression

and covariance matrix estimation.

In a linear model, the effects from the predictors to the response may vary for each individual.

In this case, the purpose of model selection is not only to identify significant predictors but also

to understand how their effects on the response differ by individuals. This can be cast as a model

selection problem for a varying-coefficient regression. However, this is challenging when there is

a pre-specified group structure among variables. We propose a novel variable selection method

for a varying-coefficient regression with such structured variables. Our method is empirically

shown to select relevant variables consistently. Also, our method screens irrelevant variables better

than existing methods. Hence, our method leads to a model with higher sensitivity, lower false

discovery rate and higher prediction accuracy than the existing methods. We apply this method to

the Huntington disease study and find that the effects from the brain regions to motor impairment

differ by disease severity of the patients, indicating the need for customized intervention.

In covariance matrix estimation, current approaches to introduce sparsity do not guarantee

positive definiteness or asymptotic efficiency. For multivariate normal distributions, we construct

a positive definite and asymptotically efficient estimator when the location of the zero entries is

known. If the location of the zero entries is unknown, we further construct a positive definite

thresholding estimator by combining iterative conditional fitting with thresholding. We prove our

thresholding estimator is asymptotically efficient with probability tending to one. In simulation

studies, we show our estimator more closely matches the true covariance and more correctly iden-

tifies the non-zero entries than competing estimators. We apply our estimator to Huntington disease

and detect non-zero correlations among brain regional volumes. Such correlations are timely for

ongoing treatment studies to inform how different brain regions are likely to be affected by these

treatments.
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1. INTRODUCTION

1.1 A Review of the Sparsity in Regression and Covariance Estimation

With ever increasing data for numerous variables being collected, a key interest is to distinguish

scientifically meaningful relationships between variables from noise in the data. For example, in

neuroscience, the data for numerous brain regions are analyzed to study the relationships between

each region and a disease of the brain but only a handful of regions may be related to the disease.

However, such scientific relationships are not clearly distinguished from the noisy relationships

between other brain regions and the disease. One statistical assumption to tackle this is sparsity,

meaning that only a small number of relationships between variables are non-zero and scientifically

meaningful. In this section, we review how the sparsity assumption has been used in diverse

statistical modeling such as varying-coefficient regression and covariance estimation problems.

1.1.1 Sparsity in Varying-coefficient Regression

In the analysis of linear relationships between a response variable and multiple predictors, we

often do not know which predictors are relevant to be included in the linear model to explain the

response variable. Since Least Absolute Shrinkage and Selection Operator (LASSO) has been

proposed by Tibshirani (1996), several penalization methods such as elastic net (Zou and Hastie,

2005), smoothly clipped absolute deviation (SCAD, Fan and Li (2001)) and minimax concave

penalty (MCP, Zhang (2010)) have been proposed as methods for variable selection of the linear

modelswhen there is no relationship between the predictors. When there is some structure among

the predictors (e.g. a categorical variable expressed with multiple dummy variables), the relation-

ship among the variables necessitates group-wise variable selection. The group LASSO (Yuan and

Lin, 2006) and the sparse group LASSO (Simon et al., 2013) addressed pre-defined group struc-

ture among predictors. Some literature on structured variable selection (Garcia and Müller, 2014;

Garcia et al., 2013; Yuan et al., 2009) considered the structure between main effect terms and other

variables such as interaction terms.

1



However, the effects from the predictors to the response may not be fixed across all individ-

uals but may differ by individuals, for example, differ by gender or age groups. To model such

differentiated relationships between a response variable and multiple predictors, we can use the

varying-coefficient model from Hastie and Tibshirani (1993). In the varying-coefficient model, the

regression coefficient of each predictor, called main predictor, is not fixed, but instead depends on

the values of other variables, called modifying variables.

Variable selection of the varying-coefficient models has been focused on the selection of either

the main predictors or the modifying variables, but rarely both. Selection of the main predictors

has been explored through regularized estimation of the functional coefficients as smooth functions

of continuous modifying variables (Wang et al., 2008; Wei et al., 2011) or as constant functions

of categorical modifying variables (Gertheiss and Tutz, 2012; Oelker et al., 2014). Selection of

the modifying variables has been explored using a tree-based approach such as classification and

regression trees (CART) (Wang and Hastie, 2014; Bürgin and Ritschard, 2015; Berger et al., 2017)

which captures potentially complex interactions among modifying variables and automatically se-

lects important variables.

Simultaneous selection of main predictors and modifying variables is related to the variable

selection for interaction models. These methods use hierarchical constraints to ensure that inter-

action terms between two predictors are included either when both predictors are in the model

(Lim and Hastie, 2015; Haris et al., 2016) or when only one of them is (Bien et al., 2013; She

et al., 2018). Tibshirani and Friedman (2019) handles the asymmetric relationship between the

main predictors and the modifying variables by proposing pliable LASSO. The pliable LASSO

uses hierarchical regularization to identify the significant main predictors first and then select the

modifying variables for the significant main predictors.

1.1.2 Sparsity in Covariance Matrix Estimation

Understanding the linear association between variables is important in many applications in-

cluding genetics (Butte et al., 2000; Rothman et al., 2009), finance (El Karoui et al., 2010; Xue

et al., 2012) and climotology (Bickel et al., 2008a). The linear association among variables is
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encoded in the covariance matrix and the sample covariance matrix is a popular estimator when

the sample size is greater than the number of variables. However, if some covariances are zero,

detection of zero covariances from the sample covariance matrix is hard because the sample co-

variance between any two variables will not be zero due to the noise in the data. Identification of

zero entries in the covariance matrix has been studied either by multiple testing (Drton et al., 2007)

or by inducing sparsity in the covariance matrix estimator when the variables can be ordered (Wu

and Pourahmadi, 2003; Huang et al., 2006; Bickel et al., 2008b) and when there is no ordering to

the variables (Bickel et al., 2008a; Rothman et al., 2009; Bien and Tibshirani, 2011).

When the variables can be ordered, such as in time series data, the correlation for the off-

diagonal entries far apart from the diagonal are often assumed to be smaller than those closer to

the diagonal. This structural information of the covariance matrix can be used to obtain sparse

covariance matrix estimators. Typical examples of such sparse covariance matrices include band-

ing estimators (Wu and Pourahmadi, 2003; Bickel et al., 2008b; Bien et al., 2016) and tapering

estimators (Furrer and Bengtsson, 2007; Cai et al., 2010).

When there is no ordering to the variables, methods for estimating sparse covariance matrices

can be divided into two categories. One class of the methods is based on penalized likelihood.

Lam and Fan (2009) studied the theoretical properties including the asymptotic normality of these

estimators. Bien and Tibshirani (2011) proposed an algorithm to solve such penalized likelihood

when the sample size is greater than the number of variables. The other class of the estimation

methods involves thresholding the sample covariance matrix. Bickel et al. (2008a) showed the

consistency of the universal thresholding in the operator norm and Cai and Liu (2011) proposed

the adaptive thresholding to account for the variability of the individual covariances. Rothman

et al. (2009) proposed the generalized thresholding that combines the thresholding with shrinkage

and showed operator norm consistency. Rothman et al. (2009) remarked the possibility to develop

asymptotic normality for non-zero entries in the thresholding estimators but did not discuss further.
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1.2 Research Challenges and Main Contributions

Despite substantial efforts to exploit sparsity, lingering challenges remain including sparsity in

the varying-coefficient regression and covariance matrix estimation. Driven by current interdisci-

plinary problems in neuroscience, I have developed methods that address those challenges.

1.2.1 High-dimensional Varying-coefficient Models

In a linear model, the effects of some predictors to the response may not be the same across all

individuals but, for example, differ between men and women or differ by age. Such differentiated

effects of predictors to the response can be modeled by a varying-coefficient model, a regression

model where each regression coefficient is not fixed but is instead a function of other variables such

as gender or age. When we assume sparsity of the varying-coefficient model, we have to select

not only the predictors but also the variables within the coefficient of each predictor. This is chal-

lenging because the number of parameters in this model can easily exceed the number of samples,

leading to a high-dimensional problem. Also, if there is a structure where several variables can be

grouped (e.g. dummy variables for a categorical variable), ignorance of the structure may lead to

inconsistent model selection by randomly selecting variables from the group of variables.

In this dissertation, we discuss model selection of a varying-coefficient model and proposes

a novel penalized regression method called svReg.This method uses a hierarchical group penalty

which plays two important roles. First, it imposes a hierarchical constraint that allows simultane-

ous selection of the predictors and the variables within the coefficient of each predictor. Second,

it penalizes a group of variables together if those variables can be grouped. This penalty allows us

to perform model selection of a varying-coefficient model while considering the grouping struc-

ture among variables. Hence our svReg method can be used for customizing the linear model

by subgroups or even by individuals. Also, we discover that weighting penalty terms differently

according to the size of each group of variables leads to select variables relevant to the response

variable more correctly while screening irrelevant variables more effectively. In simulation stud-

ies, the weighted hierarchical group penalty in our svReg lower the false discovery rate by 6% and
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increase the true positive rate by 2% compared to existing methods. When applied to Huntington

disease studies in neuroscience, our method detects differentiated effects from brain regions on

disease progression by patients.

1.2.2 Estimation of Covariance Matrices

Sparsity of a covariance matrix is useful to identify linear relationships between variables: zero

elements in the matrix mean no linear relationships and non-zero elements indicate the relation-

ship strength. However, constructing a positive definite estimator whose non-zero elements are

asymptotically efficient remains a challenge, thus invalidating many statistical analyses such as

discriminant analysis or reducing confidence in our estimation. When the locations of the zero

elements are known, the Gaussian maximum likelihood estimator is asymptotically efficient and

Chaudhuri et al. (2007) devised the iterative conditional fitting algorithm which converges to a

positive definite solution to the likelihood equation. However, whether the solution is asymptot-

ically efficient is unclear because the likelihood may have multiple local maxima and asymptotic

efficiency of these local solutions has not yet been proven. Moreover, the algorithm is available

only in low dimension when the sample size is greater than the number of variables. Lastly, the

algorithm does not tell us the locations of the zero elements when they are unknown.

In this dissertation, we first discuss asymptotic efficiency of a sparse covariance matrix estima-

tor when the locations of the zero elements are known. Specifically, we prove that the iterative con-

ditional fitting algorithm produces a positive definite and asymptotically efficient estimator when

the algorithm starts from a consistent estimator. We also propose modification to the iterative con-

ditional fitting algorithm for the case when the sample size is smaller than the number of variables.

The basic idea of this modification is to combine the algorithm with a shrinkage estimator whose

diagonal entries are greater than that of the sample covariance matrix. Since this modification uses

multiple uses of the ridge regression, we call this modified algorithm as the iterative conditional

ridge algorithm.

Building on this result, we extend to more common situations where the locations of the zero el-

ements are unknown. We propose a new thresholding estimator, COMET (COvariance Maximum-
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likelihood Estimation with Thresholding).This involves iterative conditional fitting of non-zero

elements determined by thresholding the sample covariance matrix, that is, by forcing sample

covariances below a threshold to zero. We prove the COMET is always positive definite and

asymptotically efficient with probability tending to one. Also, unlike other thresholding estima-

tors, we can appeal to the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) for the selection of the threshold, eliminating the needs for computationally expensive cross-

validation. In simulation studies, our estimator more closely matches the true covariance and more

correctly identifies the non-zero elements than competing estimators. Application to a Huntington

disease study detects non-zero correlations among brain regional volumes, which inform which

brain regions are likely to be affected by a treatment which targets a specific brain region.

1.3 Outline

The rest of the dissertation is organized as follows. In Chapter 2, we discuss the use of sparsity

in varying-coefficient regression problems. In Section 2.1, we pose a real-world problem in Hunt-

ington disease study where current statistical methods for varying-coefficient regression have some

limitations. In Section 2.2, we propose our main method, structural varying-coefficient regression,

to address those limitations of the existing methods. In Section 2.3, we conduct extensive simu-

lation studies to compare our method with other methods. In Section 2.4, we apply our method

to PREDICT-HD data from Huntington disease study and discuss its potential for developing cus-

tomized intervention for patients.

In Chapter 3, we discuss the estimation of a covariance matrix, focusing on the cases where

some of the entries in the matrix are exactly zero. In Section 3.1, we review estimation of a

covariance matrix with zero entries and discuss current challenges. In Section 3.2 we cast this

problem as estimation of the linear covariance model and discuss its interpretation under the linear

regression framework. Next, we propose a positive definite and asymptotically efficient estimator

of a covariance matrix with zero entries in Section 3.3 and check its efficiency through multiple

simulation studies in Section 3.4. However, such an asymptotically efficient estimator is available

only when the location of zero entries in a covariance matrix is known. In Section 3.5, we discuss
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the implication of unknown zero entries in the matrix.

Chapter 4 extends our discussion further by assuming that the location of the zero entries is

unknown. Section 4.1 reviews statistical methods such as thresholding to obtain a sparse covari-

ance matrix estimator and Section 4.2 gives greater details on those methods. Then, in Section

4.3, we propose a new thresholding estimator which is always positive definite and asymptotically

efficient with probability tending to one. We compare the performance of this estimator with other

thresholding estimators in extensive simulation studies in Section 4.4. In Section 4.5, we apply

these methods to PREDICT-HD data from Huntington disease study to identify the relationships

among different brain regions.

Chapter 5 concludes this dissertation by summarizing and suggesting a handful of topics for

future research. Optimization details of the structural varying-coefficient regression in Chapter 2

can be found in Appendix A. Mathematical proofs of theorems and propositions in Chapter 3 and

Chapter 4 are in Appendix B. Additional simulation and data analysis results for Chapter 4 are in

Appendix C.
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2. HIGH-DIMENSIONAL VARYING-COEFFICIENT MODELS*

2.1 Introduction

For Huntington disease, a genetically inherited neurodegenerative disorder, developing inter-

ventions to alleviate the symptoms of the disease is the goal of many clinical trials. One of the main

symptoms of the disease is motor impairment (Biglan et al., 2009; Paulsen et al., 2014b; Reilmann

et al., 2014) and the motor symptom is known to be related to regional brain atrophy, that is, the

loss of cells in some brain regions (Aylward et al., 2013). Hence, one interest in clinical trials is

to identify which brain regions are associated with motor impairment and stop or slow atrophy of

those regions to prevent motor impairment. For example, the clinical trial SIGNAL determines

the effect of an antibody on the regional brain volumes and assesses the motor functions of the

participants (Rodrigues and Wild, 2018) by total motor scores (TMS), a score from 0 to 124 with

higher indicating more severe impairment (Kieburtz et al., 2001).

Although the relationship between the total motor score and the volume of brain regions is well

understood (Aylward et al., 2013), we observed that how the change of brain volumes affects the

total motor score may not be the same across all patients but vary for different groups of patients.

For example, it is a standard practice in the field to categorize patients into three different groups

(high/medium/low) by disease severity, a variable that indicates the risk of being diagnosed with

Huntington disease in the next 5 years as in Zhang et al. (2011). In the top panels of Figure 2.1, the

effect from the reduction of caudate nucleus to the total motor score is larger for the high disease

severity group than for other groups as observed by the steeper regression line. This indicates that

patients in the high disease severity group may need different interventions than patients in other

groups since their motor function may deteriorate faster than others given a certain amount of

change in caudate nucleus volume. Hence, in addition to the identification of brain regions related

*Parts of this section have been modified with permission from [R. Kim, S. Müller and T. Garcia.
svReg: Structural Varying-coefficient regression to differentiate how regional brain atrophy affects motor im-
pairment for Huntington disease severity groups. Biometrical Journal. 2021. Volume 63. Pages 1254-1271.
(https://doi.org/10.1002/bimj.202000312) Copyright Wiley-VCH GmbH. Reproduced with permission]
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to motor impairment, understanding how their effects on motor impairment differ by patient groups

will enable us to develop interventions customized for each patient group.

Statistically, identifying brain regions and understanding how their effects on motor impair-

ment differ by patient groups can be cast as a model selection problem of a varying-coefficient

model (Hastie and Tibshirani, 1993). A varying-coefficient model is a regression model whose re-

gression coefficients can vary by each individual or group of individuals. To be specific, consider

a regression model with the total motor score as a response and the volume of brain regions as

main predictors. In a varying-coefficient model, the regression coefficient of each brain region is

not fixed but a function of other variables, called modifying variables. For example, if the disease

severity is a modifying variable for a brain region, the regression coefficient of that region will take

different value for each disease severity group so that we will end up with three different regression

models, one for each group. Likewise, other demographic variables such as gender and years of

education can also be considered as modifying variables which will divide the patients into smaller

subgroups.

A varying-coefficient model is a special form of an interaction model where the interaction

terms between main predictors and modifying variables are considered. In Figure 2.1, the interac-

tion effect between the volume of a brain region and the disease severity can be observed through

difference in the slope of the regression line for each disease severity group. To the best of our

knowledge, in the literature of Huntington disease, the disease severity and other demographic

variables such as gender and years of education have been treated as covariates or control vari-

ables (Aylward et al., 2013; Biglan et al., 2009; Misiura et al., 2017). However, their interaction

effects with brain regions have not been investigated yet. In Tabrizi et al. (2012) and Paulsen et al.

(2014a), a different rate of change in brain regional volumes over time was observed for each

disease severity group but the effect of the interaction on the total motor score was not considered.

Model selection of a varying-coefficient model includes two tasks: selection of main predictors

and selection of modifying variables. In the Huntington disease study, identifying brain regions

related to motor impairment corresponds to the selection of main predictors. Understanding how
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Figure 2.1: Scatter plots between total motor score and volume of brain regions. Least squares fits
by the group of scaled CAG-Age-Product (CAP) score, a measure of disease severity, are overlaid.
Solid line is the least squares fit of the ‘high’ disease severity group (circles), dashed line is the least
squares fit of the ‘medium’ disease severity group (triangles) and dotted line is the least squares fit
of the ‘low’ disease severity group (squares). Interaction effects between the volume of some brain
regions (left caudate, right caudate, right pallidum) and CAP score are observed through different
slopes of the least squares fit for each disease severity group. The difference in slopes is relatively
small for the left pallidum and ignorable for the left and the right vessel. The correlation coefficient
is 0.94 between the left caudate and the right caudate, 0.77 between the left pallidum and the right
pallidum, and 0.48 between the left vessel and the right vessel.
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the effects of those brain regions differ by patient groups corresponds to the selection of modifying

variables where the possible candidates of modifying variables include disease severity, gender and

years of education.

However, the literature on the varying-coefficient model has focused on variable selection of

either the main predictors or the modifying variables, but rarely both. Among others, selection of

main predictors has been explored when the modifying variable is a continuous variable (Wang

et al., 2008; Wei et al., 2011) or a categorical variable (Gertheiss and Tutz, 2012; Oelker et al.,

2014). In their work, only one modifying variable is considered so the interest is the selection of

main predictors and whether each regression coefficient is fixed or not. Selection among multi-

ple modifying variables has recently been explored through tree-based approaches (Berger et al.,

2017; Bürgin and Ritschard, 2015; Wang and Hastie, 2014), which estimate a tree of modifying

variables for each main predictor. Alternatively, the varying index coefficient model (Ma and Song,

2015; Na et al., 2019) achieves dimension reduction for multivariate modifying variables by using

different loading weight for each modifying variable. However, these approaches focus on the se-

lection of modifying variables and do not consider the selection of main predictors. The selection

of main predictors may be considered as an additional procedure to those methods but simultane-

ous selection of the main predictors and the modifying variables has not been sought. Tibshirani

and Friedman (2019) handles the variable selection of a varying-coefficient model by the pliable

LASSO (pLASSO), a generalization of the LASSO (least absolute shrinkage and selection opera-

tor) that selects both the main predictors and modifying variables, simultaneously.

Additional consideration for Huntington disease application is that there are pre-specified group

structures among main predictors and modifying variables. First, measurements of some brain re-

gions can be grouped according to the structural information on a brain and they are often highly

correlated. For example, the volume of the left caudate and the right caudate can be considered as

a group. Due to their high correlation coefficient (= 0.94), as shown in the top panels of Figure

2.1, the left caudate and the right caudate have similar negative relationship with the total motor

score. Second, the disease severity is a categorical variable with three categories (low, medium

11



and high), expressed in the design matrix for linear regression as a group of two binary dummy

variables. Since each of these binary variables contains only partial information for one categorical

variable, those two binary variables should be grouped.

The pliable LASSO (Tibshirani and Friedman, 2019) is designed to work well when there

is no pre-specified structure among the variables. However, if there is a group structure among

the main predictors with high within-group correlation, we claim that the pliable LASSO may

lead to inconsistent model selection by randomly selecting variables from those highly correlated

variables as the usual LASSO suffers (Zhao and Yu, 2006). This problem of the pliable LASSO

will be discussed with a simulation study in Section 2.3. Furthermore, modifying variables may

also have a pre-specified group structure as appeared in our Huntington disease problem. Since

ignoring such group structure may lead to selecting more variables than necessary (Yuan and Lin,

2006), it is desirable to account for such group structure in model selection.

In this chapter, we propose the novel structural varying-coefficient regression (svReg) for

a varying-coefficient model with structured variables. This method imposes hierarchical group

penalties on each group of main predictors and modifying variables to account for group structures

among variables. Such hierarchical group penalties have been studied in other regression settings.

To name a few, the group LASSO (Yuan and Lin, 2006) and the sparse group LASSO (Simon et al.,

2013) address pre-defined group structure among regressors and the network LASSO (Hallac et al.,

2015) extends the group LASSO to a network setting. Zhao et al. (2009) discussed the hierarchical

selection of grouped predictors for non-overlapping groups. Some literature on structured variable

selection (Garcia and Müller, 2014; Garcia et al., 2013; Yuan et al., 2009) considers the structure

between main effect terms and other variables such as interaction terms. Literature on interaction

models (Lim and Hastie, 2015; Bien et al., 2013) also considered the hierarchy between main ef-

fect and interaction. However, simultaneous selection of main predictors and modifying variables

for a varying-coefficient model with group-structured variables has not been explored yet.

The svReg addresses model selection of the varying-coefficient model as the pliable LASSO

but differs significantly from that. First, a pre-specified group structure and the within-group cor-

12



relation of the variables are considered in the svReg, whereas the pliable LASSO ignores such

group structure. This feature enables the svReg to be more flexible to the problems where the

group structure among the variables exists. Second, as discussed in Garcia et al. (2013, 2016)

regarding the use of weighted penalties, we discovered that weighting penalty terms accounting

for the different size of each group of variables led to more relevant variables and fewer irrelevant

variables being selected into the model. Hence, in addition to being more flexible by accounting

for the group structure, penalty terms are differently weighted in the svReg. Third, when some

modifying variables are selected in the model, the svReg algorithm identifies the groups of pos-

sibly significant modifying variables first and then selects variables from those identified groups

to reduce false selection while the pliable LASSO selects variables from the set of all modifying

variables. These important differences from the pliable LASSO allow the svReg to select relevant

variables consistently and better screen irrelevant variables with higher prediction accuracy. We

demonstrate the efficacy of our proposed method on real and simulated data, and provide a publicly

available R package svreg (https://github.com/Tanya-Garcia-Lab/svreg) for

implementation of our method.

2.2 The structural varying-coefficient regression model

2.2.1 Main Model

We consider a varying-coefficient linear model with a response variable, y, and p main predic-

tors, {xj}pj=1, and K modifying variables, {zk}Kk=1, as below:

y =

p∑
j=0

{
βj +

K∑
k=1

θjkzk

}
xj + ϵ, (2.1)

where x0 = 1, representing a potential intercept term and ϵ is the error term. In this model, {zk}Kk=1

modify how the j-th predictor xj affects the response y. When θjk = 0 for all j = 0, 1, . . . , p

and k = 1, . . . , K, this reduces to a plain linear model with fixed coefficients. The inclusion of

θjkzk terms within the coefficient of xj allows the coefficient to vary depending on the modifying

variables z1, . . . , zK . For independent subjects i = 1, . . . , N , we denote the response variable, yi,
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and p main predictors, {xij}pj=1, and K modifying variables, {zik}Kk=1.

In the Huntington disease study, our objective is to use the varying-coefficient model to identify

main predictors associated with total motor score (yi) and understand how their effects on total

motor score differ by patient groups where patients are grouped by modifying variables. Main

predictors in our model will be selected from volume measures of 50 brain regions ({xij}pj=1,

p = 50). However, some of these regions are not independent because they are parts of a larger

region. For example, caudate nucleus contains two parts, the left caudate and the right caudate,

and correlation coefficient between their volumes is 0.94. That is, these measurements can be

considered as a group of size two according to the structure of the brain. Likewise, lots of high

correlations among the brain regions can be explained by the structural information of the brain.

Hence we consider the structure among the brain regions so that the 50 main predictors are grouped

into 34 groups. Potential modifying variables will include gender (zi1), years of education (zi2)

and disease severity (zi3, zi4), hence K = 4. Here, disease severity is a categorical variable with 3

category levels (low, medium and high) depending on the likeliness of receiving a motor-diagnosis

in the next five years. Hence, disease severity is expressed with two binary dummy variables, zi3

and zi4, and these two variables should be treated as grouped variables. Our proposed method

will properly consider the group structure of the main predictors and the modifying variables by

imposing group-wise penalty.

2.2.2 Methodology

We propose a novel modification to the pliable LASSO (Tibshirani and Friedman, 2019) to

account for potential structure among the variables (e.g., grouping between variables). The pliable

LASSO is a generalization of the LASSO for varying-coefficient models but it ignores potential

structure among the variables, such as grouped main predictors (e.g., left and right caudate of

the brain could be considered as one group) or grouped modifying variables (e.g., categorical

disease severity group). Ignoring such group structure and within-group correlation may lead to

inconsistent model selection by randomly selecting variables from those highly correlated variables

(Zhao and Yu, 2006) or may lead to selecting more variables than necessary (Yuan and Lin, 2006).
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We thus propose a regression method with hierarchical penalties to account for grouped main

predictors and grouped modifying variables.

Let y be the N dimensional vector (y1, . . . , yN)T and let X,Z be the N×p and N×K matrices

containing main predictors and modifying variables respectively. Also, let xj be the j-th column

of X, zk be the k-th column of Z and let 1 be a N × 1 matrix of ones. The varying-coefficient

linear model (2.1) can be written in matrix form:

y = β01+ Zθ0 +

p∑
j=1

{(βj1+ Zθj) ◦ xj}+ ϵ, (2.2)

where θj = (θj1, . . . , θjK)
T . Here, ◦ is component-wise multiplication and captures the impact

of the modifying variables by allowing coefficients to vary for each subject. In this model, the

coefficient vectors {θj}pj=1 exist only within the coefficients of {xj}pj=1. Hence, for j = 1, . . . , p,

if xj turns out to be irrelevant (i.e. βj = 0), we want θj to be estimated as a zero vector. However,

βj can take a nonzero value even if θj is a zero vector, which results in a fixed coefficient for the j-th

predictor. This feature of the varying-coefficient model raises the need to impose an “asymmetric

weak hierarchy" constraint: θj can be nonzero only if βj is nonzero.

Suppose the p main predictors can be grouped into L groups (L ≤ p) and the K modifying

variables can be grouped into G groups (G ≤ K). Each group can contain one or more variables.

In our Huntington disease application, there are 50 main predictors of brain regional volumes

(p = 50) and these predictors can be grouped into 34 groups of brain regions (L = 34) according

to the pre-specified structure of the brain. For the modifying variables, we have three groups of

modifying variables (G = 3): gender, years of education and disease severity. The first two groups

contain one variable each. The disease severity group contains two dummy variables since disease

severity is a categorical variable with three categories. Hence, there are four modifying variables

(K = 4).
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We propose to optimize the following objective function:

J∗(β0,θ0,β,Θ) =
1

2N

N∑
i=1

r2i + λP ∗
α(β,Θ), (2.3)

where β = (β1, . . . , βp)
T , Θ = (θjk)

p,K
j=1,k=1 is a p×K matrix, and

ri = yi − β0 − zi•θ0 −
L∑

ℓ=1

xi[ℓ](β[ℓ] + θ[ℓ]•z
T
i•),

where zi• is the i-th row of Z, xi[ℓ] is the ℓ-th group of the main predictors for the i-th row of X,

β[ℓ] is a subset of β for the ℓ-th group of the main predictors, θ[ℓ]• is a subset of Θ for the ℓ-th

group of the main predictors and

λP ∗
α(β,Θ) = (1− α)λ

L∑
ℓ=1

√
pℓ

{
||(β[ℓ], vec(θ[ℓ]•))||2 +

G∑
g=1

√
pg√

1 +K
||vec(θ[ℓ][g])||2

}

+ αλ
∑
j,k

|θjk|1,

where pℓ is the size of the ℓ-th group of the main predictors, pg is the size of the g-th group of

the modifying variables, θ[ℓ][g] is a subset of Θ for the ℓ-th group of the main predictors and the

g-th group of the modifying variables and vec(·) is a vectorization operator. Note that β[ℓ] is a

pℓ dimensional column vector, θ[ℓ]• is a pℓ × K matrix and θ[ℓ][g] is a pℓ × pg matrix. The first

term of the penalty considers the hierarchy constraint between β[ℓ] and θ[ℓ]• as well as the group

structure among the variables through the L2 penalty. The second term of the penalty gives sparsity

to the individual coefficients θjk’s. The tuning parameter λ determines the magnitude of the overall

penalties so that the larger the λ is, the sparser the model is. Another tuning parameter α controls

the relative weight on the group penalty terms and penalties on individual components of Θ. For

a fixed λ, both the main predictors and the modifying variables will be penalized more as α → 0

whereas α → 1 will result in penalizing more on modifying variables only.

This optimization addresses the model selection of the varying-coefficient model as the pliable
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LASSO (Tibshirani and Friedman, 2019) but differs in three ways. First, if there is a pre-specified

group structure among the modifying variables, such structure can be considered in the model

selection through the penalty terms ||vec(θ[ℓ][g])||2 imposed on each group of modifying variables.

The use of such penalty terms differentiates our method from the pliable LASSO because the

sparsity at the group level in terms of the modifying variables cannot be attained in the pliable

LASSO. For example, dummy variables for the CAP score, a categorical modifying variable, in our

Huntington disease study will be treated as stand-alone variables in the pliable LASSO. However,

the purpose of the model selection is not to determine the significance of each dummy variable but

to identify whether the CAP score is significant or not. Hence, although we have several dummy

variables for a categorical modifying variable, those variables should be treated as a group. Second,

a group structure among the main predictors can also be considered in our method. For example,

our method can be applied to the brain imaging data for Huntington disease study where the left

part of the brain regions tend to be highly correlated with the right part. The pliable LASSO

does not account for the grouping of such correlated main predictors. Lastly, the penalty terms

in our method are weighted differently depending on the size of the group of main predictors

and modifying variables. we discovered that such weighted penalty terms led to more relevant

variables and fewer irrelevant variables being selected into the model as discussed in Garcia et al.

(2013, 2016). We call this method the structural varying-coefficient regression (svReg). Typically,

we suggest to standardize the main predictors and modifying variables to have mean zero and

variance one as in the LASSO unless all the variables are measured in the same unit (Hastie et al.,

2015).

2.2.3 Optimization

We use a blockwise coordinate descent to obtain the global minimum of equation (2.3). Denote

zi[g] as a subset of zi• for the g-th group of the modifying variables. Also, denote r(−ℓ)
i as the partial
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residual for the ℓ-th group of the main predictors,

r
(−ℓ)
i = yi −

∑
h̸=ℓ

{
xi[h](β[h] + θ[h]•z

T
i•)
}

and denote r
(−ℓ)(−g)
i as the partial residual for the g-th group of modifying variables,

r
(−ℓ)(−g)
i = r

(−ℓ)
i − xi[ℓ]

∑
m̸=g

θ[ℓ][m]z
T
i[m].

The procedure for estimating {βj}pj=0 and {θjk}p,Kj=0,k=1 is given in Algorithm 1. Details of the

optimization of the algorithm can be found in Appendix A.

In the step 2-(2)-(b)-(i) of the Algorithm 1, if the variables of the ℓ-th group are uncorrelated

with variance one, that is
∑N

i=1 x
T
i[ℓ]xi[ℓ]/N = I , the closed form solution of β̂[ℓ] is available as

below:

β̂[ℓ] = max
{
1−

(1− α)λ
√
pℓ

||Rℓ||2
, 0

}
·Rℓ

where Rℓ =
∑N

i=1 x
T
i[ℓ]r

(−ℓ)
i /N . Note that this takes the similar form with the solution of the

group LASSO proposed by Yuan and Lin (2006). Also, when there is only one predictor, say

j-th predictor, in the ℓ-th group, this solution is equivalent to the pliable LASSO (Tibshirani and

Friedman, 2019) as below:

β̂j =

(
N∑N
i=1 x

2
ij

)
S(1−α)λ

(
1

N

N∑
i=1

xijr
(−j)
i

)
.

However, in our Huntington disease study, the main predictors with group structure have high

within-group correlation and no closed form solution for β̂[ℓ] is available. For the group LASSO,

Friedman et al. (2010) proposed that the solution for β̂[ℓ] can be found by sequential optimization

of each parameter in β[ℓ]. This one-dimensional search over the parameters in β[ℓ] uses optimize

function in the R package, which finds the minimum or maximum of a univariate function using
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Algorithm 1 Algorithm for the structural varying-coefficient regression

1. Given initial estimate of (β,Θ), compute β̂0 and θ̂0 from the regression of the residual on Z. As
the initial estimate, (β,Θ) = (0,0) can be used. Then, the response variable y is regressed on Z
to compute β̂0 and θ̂0. Otherwise, if several values of λ are tried (e.g. in the cross-validation), the
svReg estimate of (β,Θ) with the previous λ value can be used as the initial estimate. In this case,
the residual y −

∑p
j=1

{
(β̂j1+ Zθ̂j) ◦ xj

}
is regressed on Z to compute β̂0 and θ̂0.

2. Given λ, α and convergence tolerance ϵ, repeat the following procedure until convergence:
|J∗(old)(β̂0, θ̂0, β̂, Θ̂)− J∗(new)(β̂0, θ̂0, β̂, Θ̂)| < ϵ where J∗(β̂0, θ̂0,β,Θ) is equation (2.3).

(1) Compute J∗(old)(β̂0, θ̂0, β̂, Θ̂) with the current estimate of (β̂0, θ̂0, β̂, Θ̂).

(2) For a cycle of ℓ = 1, 2, . . . , L:

(a) Check (β̂[ℓ], θ̂[ℓ]•) = 0 by checking (β̂[ℓ], θ̂[ℓ][g]) = 0 for all g = 1, 2, . . . , G.

∥∥∥∥ 1

N

N∑
i=1

xT
i[ℓ]r

(−ℓ)
i

∥∥∥∥
2

≤ √
pℓ(1− α)λ, and

∥∥∥∥Sαλ

(
1

N

N∑
i=1

vec(xT
i[ℓ]zi[g])r

(−ℓ)(−g)
i

)∥∥∥∥
2

≤ √
pℓ(1 +

√
pg√

1 +K
)(1− α)λ,

where Sλ(x) = x(1− λ/|x|)+ denotes the soft-thresholding operator.

If all conditions are satisfied, set (β̂[ℓ], θ̂[ℓ]•) = 0 and skip to (d).

(b) If (β̂[ℓ], θ̂[ℓ]•) ̸= 0, check θ̂[ℓ]• = 0 by checking θ̂[ℓ][g] = 0 for all g = 1, 2, . . . , G.

(i) First, compute β̂[ℓ] by one dimensional optimization of each parameter in β[ℓ] until
convergence.

(ii) Then, check θ̂[ℓ]• = 0 given β̂[ℓ] by checking θ̂[ℓ][g] = 0 for all g = 1, 2, . . . , G.

∥∥∥∥Sαλ

{
1

N

N∑
i=1

vec(xT
i[ℓ]zi[g])(r

(−ℓ)(−g)
i − xi[ℓ]β̂[ℓ])

}∥∥∥∥
2

< (1− α)λ

√
pgpℓ√
1 +K

.

If (ii) is satisfied for all g = 1, . . . , G, set β[ℓ] = β̂[ℓ] and θ̂[ℓ]• = 0 and skip to (d).

(c) If β̂[ℓ] ̸= 0 and θ̂[ℓ]• ̸= 0 (i.e. if there exists g∗ such that θ̂[ℓ][g∗] ̸= 0):
(i) Use a generalized gradient procedure with approximation through the majorization-

minimization algorithm to find (β̂[ℓ], θ̂[ℓ][NZ]) where θ[ℓ][NZ] denotes the set of
nonzero θ[ℓ][g]’s

(ii) With the updated β̂[ℓ], check the condition in 2-(2)-(b)-(ii) for all g = 1, 2, . . . , G
again to confirm whether θ[ℓ][NZ] contains the same set of θ[ℓ][g]’s.

(iii) If the composition of θ[ℓ][NZ] changed, repeat (i)-(iii) with the updated θ[ℓ][NZ].

(d) Compute β̂0 and θ̂0 from the regression of the current residual on Z.

(3) Compute J∗(new)(β̂0, θ̂0, β̂, Θ̂) with the current estimate of (β̂0, θ̂0, β̂, Θ̂).
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golden section search and successive parabolic interpolation. We adopt this approach to compute

β̂[ℓ] in 2-(2)-(b)-(i) of the Algorithm 1. With this procedure, the pliable LASSO can be extended

to problems where there are pre-specified group structure among the main predictors.

2.2.4 Comparison with the Pliable LASSO

The pliable LASSO proposed in Tibshirani and Friedman (2019) optimizes the objective func-

tion as below:

J(β0,θ0,β,Θ) =
1

2N

N∑
i=1

r2i + λPα(β,Θ), (2.4)

where ri = yi − β0 − zi•θ0 −
∑p

j=1 xij(βj + θj•z
T
i•) and

λPα(β,Θ) = (1− α)λ

p∑
j=1

(||(βj,θj•)||2 + ||θj•||2) + αλ
∑
j,k

|θjk|1.

The penalty term ||θj•||2 in equation (2.4) is for penalizing the group of all modifying variables

as a whole for the "asymmetric weak hierarchy" constraint between the coefficients for the main

predictors and the modifying variables and the term |θjk|1 is for penalizing each modifying vari-

able. Hence, there is no consideration of the group structure among the modifying variables in

equation (2.4). This may lead to spurious selection of irrelevant modifying variables as shown in

our simulation study in Section 2.3. Assuming L = p for simplicity, The svReg in equation (2.3)

corrects this limitation by replacing the penalty term ||θj•||2 with the terms {||θj[g]||2}Gg=1, which

penalize each group of modifying variables with weight √pg/
√
1 +K. This weight accounts for

the size of each group of modifying variables, pg, and also finds balance between ||(βj,θj•)||2

(K + 1 parameters) and ||θj[g]||2 (pg parameters).

Remark 1. As noted in Tibshirani and Friedman (2019), the claim that the solutions to the objec-

tive function J(β0,θ0,β,Θ) satisfy the asymmetric weak hierarchical property relies on a conti-

nuity argument and has not yet been proven rigorously. Likewise, our claim that the solutions to

the objective function J∗(β0,θ0,β,Θ) satisfy the asymmetric weak hierarchy has not been proven

yet. By construction of the penalties in J∗(β0,θ0,β,Θ), we expect that the probability of the
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continuous random variable β̂j to be zero while θ̂j• ̸= 0 will be zero for any j = 1, . . . , p.

The introduction of the penalties {||θj[g]||2}Gg=1 instead of ||θj•||2 differentiates the svReg from

the pliable LASSO since it not only allows the asymmetric weak hierarchy constraint to be satisfied

between βj and θj as in the pliable LASSO but also allows the group structure of the modifying

variables to be considered in the model selection. Also, even when there is no group structure

among the modifying variables, the svReg is different from the pliable LASSO since each modify-

ing variable is penalized individually by such penalty. This enables the selection of the modifying

variables to be implemented at more granular level in the svReg than the pliable LASSO. We found

that such penalties lead to better model selection by increasing the sensitivity and the specificity as

shown in the simulation study in Section 2.3.4.

Also, in equation (2.4), the group structure among the main predictors is not considered. This

may lead to incorrectly screening true relevant variables when the variables are grouped variables

with high within-group correlation as the LASSO which tends to randomly select variables among

highly correlated variables (Zhao and Yu, 2006). Our proposed remedy for this inconsistent vari-

able selection is to group the variables using the information on the group structure of the main

predictors so that the grouped variables are selected into the model or screened from the model

together. Also, all the L2 penalty terms are weighted differently by
√
pℓ in equation (2.3), account-

ing for different size of each group of the main predictors. This weight is analogous to the weight

used in the group LASSO penalty (Yuan and Lin, 2006).

The use of weighted penalties in the svReg accounts for the different size of each group of

main predictors and modifying variables. We discovered that imposing such different weights on

the penalty terms leads to better variable selection performance as shown in Section 2.3. The

improvement in model selection through weighted penalties has also been studied in Garcia et al.

(2013, 2016).

In the algorithm 1, the svReg identifies the groups of possibly significant modifying variables

first and then selects variables from those identified groups to reduce false selection. This is dif-

ferent from the pliable LASSO algorithm because the pliable LASSO selects variables from the

21



set of all modifying variables. Such identification of significant group first in the svReg allows the

group structure of the modifying variables to be considered in the algorithm. Also, such algorithm

is expected to increase the sensitivity in the selection of the grouped modifying variables since the

significance of each group of modifying variables is evaluated at the group level, instead of being

evaluated at individual variable level.

2.3 Simulation Study

2.3.1 Simulation Design

We compared our structural varying-coefficient regression proposed in Section 2.2 with the

LASSO (Tibshirani, 1996) and the pliable LASSO (Tibshirani and Friedman, 2019) in some sim-

ulation settings. First, we considered the case when we have both continuous and categorical

modifying variables. Second, we additionally considered the correlation between main predictors

so that the highly correlated main predictors can be considered as grouped variables.

Setting 1 (Structured modifying variables): We generated 50 standard Gaussian independent

predictors with sample size N = 100. We also generated twenty modifying variables: ten contin-

uous variables, zi1, . . . , zi10, and ten categorical variables of three categories, zi11, . . . , zi30. Note

that each categorical variable is expressed with two dummy variables, hence those two variables

can be considered as grouped variables. The continuous modifying variables were generated from

the standard Gaussian distribution. The categorical modifying variables were generated from the

multinomial distribution with equal probability. The response was generated for i = 1, . . . , 100

from

yi = xi1 + xi2 + (1 + zi1)xi4 + (1− zi2 + zi11 − zi12)xi5 + ϵi,

where ϵi ∼ N(0, 1). In Setting 1, the number of parameters is 1,550 (50 in β and 1,500 in Θ).

Setting 2 (Structured main predictors & modifying variables): As in Setting 1, we consid-

ered 50 main predictors in Setting 2. Let {Xi}50i=1 denote the i-th main predictor. We generated X3
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and X6 to be correlated with {X1, X2} and {X4, X5}, respectively, as follows:

xi3 =
2

3
xi1 +

2

3
xi2 +

1

3
γi and xi6 =

2

3
xi4 +

2

3
xi5 +

1

3
δi

where γi ∼ N(0, 1) and δi ∼ N(0, 1). Other main predictors were standard Gaussian with sample

size N = 100 and independent to each other. By this construction, xi3 and xi6 are normally

distributed with mean 0 and variance 1 as other main predictors. Given the high correlation, we

treated {X1, X2, X3} and {X4, X5, X6} as grouped variables when we fitted the svReg. This

simulation setting is similar to that used in Zhao and Yu (2006) to create dependence between

predictors in a model where the model selection result of the LASSO can be inconsistent. The

modifying variables and the response were generated as in Setting 1. In Setting 2, the number of

parameters is 1,550 (50 in β and 1,500 in Θ).

Setting 3 (High dimensional main predictors & structured modifying variables): We gen-

erated 200 standard Gaussian independent predictors with sample size N = 100. The modifying

variables and the response were generated as in Setting 1. In Setting 3, the number of parameters

is 6,200 (200 in β and 6,000 in Θ).

We applied three methods to the simulated data: the LASSO, the pliable LASSO and the

svReg. In the LASSO, all combinations of the interaction between main predictors and modifying

variables are considered to avoid model misspecification since the true models contain interaction

terms that need to be considered. Since both the LASSO and the pliable LASSO ignore the group

structure of the main predictors and the modifying variables, the svReg is expected to perform

better than those methods in selecting relevant main predictors and screening irrelevant categorical

modifying variables. The LASSO was fitted using the R package glmnet and the pliable LASSO

and the svReg were fitted using our R package svReg.

We ran 100 simulations and used 10-fold cross-validation in each simulation to find the optimal

value of the tuning parameter λ. In the cross-validation, we used decreasing λ’s from 10 to 0.01 by

0.01 to find the solution path of the parameters. The λ value which minimizes the mean squared
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error in the cross-validation was chosen for the model estimation. Such choice of λ using the

cross-validation is one choice that allows a ‘fair’ comparison of the three considered shrinkage

procedures. While cross-validation is a common practice for selecting λ, it may not be the best

default approach to select the weight parameter α for the pliable LASSO and the svReg. From

our experience, cross-validation often chose very large alpha values which forced the solution to

converge to the LASSO solution without any modifying variables by shrinking all the interaction

terms to zero. Such property of the weight parameter α was also described in Tibshirani and

Friedman (2019) for the pliable LASSO. Hence, to avoid such extreme empirical choices of α,

we fixed it at 0.5 for our analysis, which gives balanced weight between the penalties on the main

predictors and the modifying variables.

2.3.2 Methods for Evaluation

To evaluate the model selection performance of the three methods, we computed the false

discovery rate (FDR) (Benjamini and Hochberg, 1995), sensitivity and specificity, the average

percentage of time variables are selected, and predictive accuracy as measured by the mean squared

errors. We also visualise findings in so-called difference curves as introduced in Garcia et al.

(2016).

The FDR is defined as the ratio of the number of irrelevant variables selected over the total

number of variables selected. It measures how likely the method makes “false selection" so a

high value of FDR is undesirable. Since the pliable LASSO ignores the group structure of the

categorical modifying variables and treats the dummy variables separately, it is expected to select

more irrelevant modifying variables spuriously than the structural varying-coefficient regression,

leading to higher FDR.

Sensitivity is a measure of the “true positive rate" and it is the ratio of the number of relevant

variables selected over the number of true relevant variables. Specificity is a measure of the “true

negative rate" and it is the ratio of the number of irrelevant variables screened over the number of

true irrelevant variables. Both high sensitivity and high specificity are desirable. In addition, we

report the geometric mean of sensitivity and specificity (=
√

Sensitivity × Specificity) as used in
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Kubat et al. (1998).

We also computed the average percentage of time the variables are selected. The average

percentage is computed for the relevant variable group and irrelevant variable group of the main

predictors and the modifying variables separately. High percentage of selection is desirable for the

relevant variable groups and vice versa for the irrelevant variable groups.

The predictive performance can be evaluated by the mean squared error (MSE) from the V-fold

cross-validation. In V-fold cross-validation, the data is split into (V − 1) sets for a training set and

a test set. The training set is used to fit a model (“training" step) and then, the fitted model is used

for calculating the MSE of the response for the test set (“testing" step).

Lastly, we measured the computation time for the simulated data from each setting. We fitted

each method to the data for decreasing values of λ from 10 to 0.1 in steps of 0.1. We repeated

such task 10 times and measured the average computation time for each method. All timings were

carried out using the R package microbenchmark on 1.6 GHz Intel Core i5 processor.

For a sample of size N , details of the V-fold cross-validation procedure are written below.

1. Permute the data randomly and label them from 1 to V sequentially. By doing this, each data

point is assigned to one of the V groups.

2. Iterate the process below for the v-th group from group 1 to group V .

(a) Consider the v-th group as the test set and all the other groups as the training set.

(b) Fit a linear model of the form of equation (2.2) using the training set.

3. Using the fitted models for v = 1, . . . , V , calculate MSE as below:

MSE =
1

N

∑
v

nv∑
i=1

(yi − ŷi)
2

where nv is the number of data points for the v-th group and i is the index for the elements

of the test set.
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2.3.3 Simulation Results

Simulation results are reported in Table 2.1. In this table, we compared the LASSO, the pliable

LASSO and the structural varying-coefficient regression with respect to variable selection and

prediction accuracy. All models were estimated with the tuning parameter λ which gives the

minimum MSE from 10-fold cross-validation.

Setting 1 Setting 2 Setting 3
(structured modifying (structured main & (high-dimensional

variables) modifying variables) main predictors)

metric covariates LASSO pLASSO svReg LASSO pLASSO svReg LASSO pLASSO svReg
Percentage Main Relevant 1.00 1.00 1.00 0.95 0.95 1.00 0.99 1.00 1.00

of selection Irrelevant 0.48 0.27 0.21 0.47 0.28 0.26 0.19 0.15 0.11

Modifying Relevant continuous 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00

categorical 0.84 1.00 1.00 0.84 1.00 1.00 0.86 0.98 1.00

Irrelevant continuous 0.72 0.78 0.57 0.64 0.80 0.68 0.72 0.72 0.57

categorical 0.73 0.80 0.56 0.71 0.79 0.70 0.72 0.74 0.54

False discovery rate (FDR) 0.84 0.81 0.75 0.84 0.81 0.79 0.88 0.86 0.82
Sensitivity 0.96 1.00 1.00 0.93 0.98 1.00 0.96 0.99 1.00
Specificity 0.43 0.54 0.66 0.45 0.53 0.59 0.74 0.78 0.84
Geometric mean of sensitivity and specificity 0.63 0.73 0.81 0.64 0.71 0.76 0.84 0.88 0.91
Mean squared error (MSE) 2.57 2.62 2.46 2.55 2.69 2.53 3.37 2.94 2.68
Computation time (sec) 0.03 131 470 0.03 168 426 0.10 319 1,625

Table 2.1: Simulation results for the LASSO, the pliable LASSO (pLASSO) and the structural
varying-coefficient regression (svReg). In Setting 1, 50 independent main predictors, 10 continu-
ous modifying variables and 10 categorical modifying variables with 3 categories were generated.
In Setting 2, correlation between main predictors were additionally considered. In Setting 3, 200
main predictors were generated for the same setting as Setting 1. All values are the average of the
100 simulations. MSE is computed with the tuning parameter λ which gives minimum MSE from
10-fold cross validation. For the pliable LASSO and the structural varying-coefficient regression,
α is set to 0.5.

The pliable LASSO and the svReg select relevant modifying variables better than the LASSO

since they correctly specify a varying-coefficient model and treat those modifying variables as the

effect modifiers of the main predictors. Both methods also screen irrelevant variables better than

the LASSO which leads to lower false discovery rate and higher specificity. Also, both work well

even for the case when the number of main predictors is greater than the sample size (p > n).

In Setting 1 and Setting 3, the strength of the svReg over the pliable LASSO is observed in
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screening irrelevant variables, which in turn leads to lower FDR by up to 6% points and higher

specificity by up to 12% points than the pliable LASSO. Hence, by considering the group structure

among the modifying variables, the svReg identifies relevant variables correctly while making

fewer inclusion of irrelevant variables than the pliable LASSO, which will eventually lead to a

more parsimonious and correct model with easier interpretation.

In Setting 2, additional benefit of the svReg over the LASSO and the pliable LASSO can be

found in consistent selection of relevant main predictors when those predictors are structured. As

discussed in Zhao and Yu (2006), the LASSO fails to select the relevant main predictors consis-

tently when the predictors are correlated and this is shown in Table 2.1 by the percentage of se-

lection of the relevant main predictors (= 0.95) being less than one. Interestingly, similar pattern

is observed in the pliable LASSO. Although model selection consistency of the pliable LASSO is

not within the scope of this dissertation, this simulation result indicates that the pliable LASSO

also suffers from the problem of inconsistent variable selection when the variables are highly cor-

related. On the other hand, in the svReg, those correlated variables were grouped to be selected or

screened together. Hence, the svReg shows consistent result of variable selection for the relevant

main predictors with 2% point higher sensitivity than the pliable LASSO.

In terms of prediction accuracy, the cross-validation MSE of the structural varying-coefficient

regression shows an improvement over the pliable LASSO by up to 9% in all simulation settings.

This reflects the gain from accounting for the group structure among the modifying variables.

Figure 2.2 compares the receiver operating characteristic (ROC) curves of the LASSO, the

pliable LASSO and the structural varying-coefficient regression. The ROC curve compares the

true positive rate with the false positive rate over the different values of the penalty parameter,

λ. True positive rate measures how well the method selects relevant variables and false positive

rate measures the extent of incorrectly including irrelevant variables in the model. The structural

varying-coefficient regression (solid red curve) shows higher true positive rate and lower false

positive rate than other methods. Thus, we can conclude that structural varying-coefficient regres-

sion selects relevant variables more correctly while including fewer irrelevant variables than other
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Figure 2.2: Receiver operating characteristic (ROC) curve of the LASSO (dotted curve), the pliable
LASSO (dashed curve) and the structural varying-coefficient regression (solid curve) for Setting
1, Setting 2 and Setting 3. The structural varying-coefficient regression shows the lowest false-
positive ratio for a fixed true-positive ratio. For the pliable LASSO and the structural varying-
coefficient regression, α is set to 0.5.

methods.

Figure 2.3 compares the three methods by plotting the average percentage of selection using a

difference curve, a visualisation introduced in Garcia et al. (2016). In a difference curve, the aver-

age percentage of time selected for each group of variables is compared to the “ideal" percentage

of selection, which is 100% for relevant variables and 0% for irrelevant variables. That is, a better

method in terms of variable selection has a lower curve in the plot. In all simulation settings, the

curve of the structural varying-coefficient regression is below that of the pliable LASSO, which in-

dicates that the svReg outperforms the pliable LASSO in selecting relevant variables and screening

irrelevant variables.

2.3.4 Simulation without Structured Variables

Although the motivation of developing the structural varying-coefficient regression was to deal

with the structured main predictors and modifying variables, we can apply our method to the spe-

cial case when there is no structure among variables. We compared the performance of the svReg

with the pliable LASSO. For this purpose, 50 standard Gaussian independent main predictors and

20 continuous modifying variables (Setting 4) or binary modifying variables with equal proba-

bility (Setting 5) were generated. The sample size N was 100. The response was generated for
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Figure 2.3: Difference curves of the LASSO (dotted curve), the pliable LASSO (dashed curve) and
the structural varying-coefficient regression (solid curve) for Setting 1, Setting 2 and Setting 3. In
a difference curve, a method with lower curve outperforms a method with upper curve in selecting
relevant variables and screening irrelevant variables. In both settings, “main" represents main
predictors, “continuous" represents continuous modifying variables and “categorical" represents
categorical modifying variables with 3 categories. The structural varying-coefficient regression
generally shows lower difference than the LASSO and the pliable LASSO for both settings. For
the pliable LASSO and the structural varying-coefficient regression, α is set to 0.5.
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i = 1, . . . , 100 from

yi = xi1 + xi2 + (1 + zi1)xi3 + (1− zi2)xi4 + ϵi

where ϵi ∼ N(0, 1). In Setting 4 and 5, the number of parameters is 1,050 (50 in β and 1,000 in

Θ).

The result from this simulation is given in Table 2.2. As in Table 2.1, the svReg selects fewer

irrelevant main predictors than the pliable LASSO by 5% to 10% points and fewer irrelevant mod-

ifying variables by 17% to 24% points. This leads to lower FDR and higher specificity for the

structural varying-coefficient regression. Also, the prediction error of the svReg is lower than that

of the pliable LASSO.

Setting 4 Setting 5
(continuous) (binary)

metric covariates pLASSO svReg pLASSO svReg
Percentage Main Relevant 1.00 1.00 1.00 1.00

of selection Irrelevant 0.28 0.18 0.21 0.16

Modifying Relevant 1.00 1.00 0.91 0.96

Irrelevant 0.76 0.52 0.63 0.46

False discovery rate (FDR) 0.82 0.75 0.78 0.73
Sensitivity 1.00 1.00 0.97 0.99
Specificity 0.59 0.72 0.67 0.75
Geometric mean of sensitivity and specificity 0.75 0.84 0.80 0.85
Mean squared error (MSE) 2.24 2.11 1.59 1.54
Computation time (sec) 72 320 31 234

Table 2.2: Simulation results for the pliable LASSO (pLASSO) and the structural varying-
coefficient regression (svReg) when there is no structure among the main predictors or modify-
ing variables. 50 independent main predictors and 20 continuous (Setting 4) or binary (Setting 5)
modifying variables were considered. All values are the average of the 100 simulations. MSE is
computed with the tuning parameter λ which gives minimum MSE from 10-fold cross validation.
For the pliable LASSO and the svReg, α is set to 0.5.

The reason why the structural varying-coefficient regression outperforms the pliable LASSO
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for the variable selection purpose is related to the screening conditions for zero coefficients. In the

pliable LASSO, the screening condition for (β̂j, θ̂j•) = 0 involves the calculation of the quantity

as below: ∥∥∥∥Sαλ

(
1

N

N∑
i=1

xijzi•r
(−j)
i

)∥∥∥∥
2

, (2.5)

and the screening condition is applied to the L2-norm of the vector of coefficients for all modifying

variables as a group (i.e., the size of this group is K). On the other hand, the corresponding

condition for the structural varying-coefficient regression involves the calculation of the quantity

as below: ∥∥∥∥Sαλ

(
1

N

N∑
i=1

xijzi[g]r
(−j)(−g)
i

)∥∥∥∥
2

. (2.6)

Note the
∑N

i=1 xijzi[g]r
(−j)(−g)
i takes a scalar value for a continuous modifying variable without

any group structure with other modifying variables. In (2.6), each continuous modifying variable

is treated as one group of variable (i.e., the size of each group is one) and the screening condition

is applied to the coefficient for each modifying variable. Thus, the difference between (2.5) and

(2.6) is that (2.6) will penalize each continuous modifying variable individually, while (2.5) will

penalize all modifying variables as a group. Even if some elements of the coefficient vector are

large and others are small, (2.5) can take large value which leads to possibly non-zero coefficients

for all modifying variables whereas (2.6) will take small values for those elements.

Also, once some of the {θj[g]}Gg=1 turn out to be zero, the svReg uses gradient descent procedure

only for the nonzero θj[g]’s. This is not the case in the pliable LASSO where the gradient descent

is performed for all {θjk}Kk=1 if θj• is nonzero. This allows the svReg to find the zero coefficients

more efficiently than the pliable LASSO.

Figure 2.4 compares those two methods in how the number of nonzero coefficients changes as

the algorithm iterates for one simulation case. As the number of iterations increases, both meth-

ods keep excluding less significant variables from the model. However, the structural varying-

coefficient regression ends up with fewer, but true nonzero β’s and θ’s than the pliable LASSO.

Also, the structural varying-coefficient regression finds those significant variables with fewer itera-
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Figure 2.4: Number of nonzero coefficient estimates for main predictors (left panel) and modify-
ing variables (right panel) plotted along the number of iterations of the algorithm for the pliable
LASSO (dotted green curve) and the structural varying-coefficient regression (solid red curve). As
both algorithms iterate, the coefficients of less significant variables shrink to zero and only signifi-
cant variables remain in the model with nonzero coefficients. The pliable LASSO algorithm stops
iteration at 78 while the structural varying-coefficient regression stops at 61. Also, the speed of
excluding insignificant variables is faster in the structural varying-coefficient regression than the
pliable LASSO. At the end, the pliable LASSO ends up with five nonzero β’s (one false discovery)
and five nonzero θ’s (three false discoveries). The structural varying-coefficient regression leads to
four nonzero β’s and two nonzero θ’s, only the true significant terms. This is one simulation case
from the simulation experiment. The tuning parameter λ is 0.35 and α is 0.5.

tions than the pliable LASSO. Hence, the structural varying-coefficient regression can be preferred

over the pliable LASSO regardless of whether there are categorical modifying variables or not.

2.4 Brain Regions Affecting Motor Impairment in Huntington Disease

2.4.1 Clinical Research Problem

We applied our method to the Neurobiological Predictors of Huntington Disease (PREDICT-

HD), a large observational study from 2001 to 2013 on potential neurobiological markers of Hunt-

ington Disease (HD). We focus on the data of N = 710 subjects who are “at risk" of HD with CAG

(cytosine, adenine, guanine) repeats greater than or equal to 36. Subjects at risk means that they

may or may not exhibit Huntington disease symptoms, whereas those with CAG repeat less than

36 is expected not to develop HD symptoms. The majority of the subjects were female (63.5%).
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On average, the subjects were 40.5 years old, had 42.4 CAG repeats (ranges from 37 to 61), and

had 14.2 years of education.

In this study, participants enter the study at different phase of the disease. Hence, each partici-

pant is subject to different “disease severity" or different proximity to HD diagnosis. As a measure

of disease severity, we used the scaled CAG-Age-Product (CAP) score, the product of CAG re-

peats and age as proposed in Zhang et al. (2011). CAP score is often used as a categorical variable

to remove the within-group variability with three categories: low, medium and high. Participants

categorized as “high" are regarded as having high probability of being diagnosed with HD based

on motor functions in the next 5 years. In our data, about 27% of the subjects are categorized as

“low" with CAP score less than 0.67 and about 37% of the subjects as “high" with CAP score

greater than 0.85.

In the PREDICT-HD study, the interest is to identify brain regions which are associated with

motor impairment. As a measure of motor impairment, we used the total motor score (TMS),

a measurement of the overall motor impairment ranging from 0 (no impairment) to 124 (high

impairment). As covariates, we used the volume measures of brain regions. Also, as explained

above, each subject has different disease severity. If we ignore this feature of the data, the effect

from the brain regions on motor impairment will be mixed with the effect of the disease severity

and the model will not capture the “pure" effect of the brain regions. For this reason, CAP score

has been used as another covariate or control variable (Garcia et al., 2016; Zhang et al., 2011) in

addition to the volume measures of brain regions.

However, including the CAP score simply as another covariate assumes that the effects of

brain regions on motor impairment are fixed regardless of the CAP score. This assumption is

questionable since there may be a different pattern between, for example, the high CAP group and

the low CAP group. In Figure 2.1, the least squares regression line between total motor score and

volume of brain regions were fitted for the high/medium/low CAP score groups separately. In the

top left panel, covariate is the volume of the left caudate and the response variable is the total motor

score. It can be clearly observed that the slope of the high CAP group (solid line) is different from
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that of low (dotted line) or medium (dashed line) CAP group. This difference in slope indicates

that the effect of the left caudate on total motor score depends on whether a participant has high

CAP score or not. On the other hand, in the bottom right panel where the covariate is the volume of

the right vessel, the difference in slopes is not as clear as in the left caudate. These results indicate

that the effects of some brain regions may differ by participant groups but other brain regions may

not.

Thus, our interest in this analysis is not only to identify brain regions associated with motor

impairment but also to understand how their effects on motor impairment differ by participant

groups. This can be achieved by fitting a varying-coefficient regression with the total motor score

as a response, volumes of brain regions as main predictors and the CAP score as a modifying

variable. In addition, we included gender and years of education as possible modifying variables

since the effects of brain regions on motor impairment may also differ by participant groups defined

by these variables. Since the CAP score data contains information of both age and CAG repeat by

its definition, those two variables were not used as modifying variables.

For estimating the varying-coefficient model, the pliable LASSO (Tibshirani and Friedman,

2019) and the svReg were used. As discussed in Section 2.2, the svReg can consider the pre-

specified structure of the variables, whereas the pliable LASSO cannot. Since some main predic-

tors represent the left part and the right part of a brain region (e.g. left caudate vs. right caudate),

those main predictors were grouped in the svReg. Also, since the CAP score is expressed as

a group of two binary dummy variables, those dummy variables were also regarded as grouped

modifying variables in the svReg. Additionally, we considered the LASSO allowing for interac-

tion terms to be selected as in Section 2.3. However, the LASSO is not appropriate for fitting a

varying-coefficient model since some main predictors may not be selected even if their interac-

tion terms are selected by the LASSO. Hence, we compared the pliable LASSO and the svReg

applied to the PREDICT-HD study. For both methods, the tuning parameter λ was selected based

on 10-fold cross-validation and the weight parameter α was set to 0.5.
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2.4.2 Analysis Results

Table 2.3 summarizes results for the pliable LASSO (left table) and the svReg (right table).

The first column for each method shows the fitted parameters, β, for the main predictors (brain

regions) and the other columns show the fitted parameters, θ, for the modifying variables (gender,

years of education, CAP score) in the coefficient of each main predictor, as defined in equation

(2.2). Here, “CAP(medium)" and “CAP(high)" express the binary variable for the medium CAP

score group and the high CAP score group, respectively.

From the nonzero θ estimates for basal ganglia (brain regions related to motor movements

including caudate, putamen and pallidum), we can infer that the effects from these brain regions

to motor impairment differ by CAP score groups. Particularly, the θ estimates for CAP(high) take

negative values, meaning that high CAP score group has steeper slope as observed in Figure 2.1

than low or medium CAP score group. This indicates that the motor function of the high CAP

score group may deteriorate faster than other groups given a certain amount of volume change in

those brain regions.

Interestingly, the θ for CAP(high) in the coefficient of the left pallidum was determined to be

zero by the svReg. This means that the effect of left pallidum on motor impairment may not differ

significantly between the high CAP score group and other groups. This is consistent with Figure

2.1 where the differences in slopes are relatively small for the left pallidum. Note that, for the

pliable LASSO, this θ estimate is zero simply because the main effect of the left pallidum was not

selected. However, the main effect of the left pallidum may have been excluded randomly by the

pliable LASSO due to its high correlation with the right pallidum. Hence, the pliable LASSO does

not clearly tell us whether the effect of the left pallidum on motor impairment is the same across

all participants or differ by disease severity groups whereas the svReg does. The least squares

regression of the total motor score on each brain region allowing for interaction with the disease

severity also indicates that the interaction between each brain region and CAP(high) is significant

for all regions in basal ganglia except for the left pallidum. These least squares regression results

can be found in Table 2.4.
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The θ’s for CAP(medium) in the coefficients of the putamen were determined to be zero by the

svReg, whereas the pliable LASSO estimated a positive θ value for CAP(medium) in the coefficient

of the right putamen. However, the θ’s for CAP(medium) are expected to take negative values as

those for CAP(high) because the baseline category is the low CAP group. Thus, the positive

θ parameter by the pliable LASSO may have been selected spuriously, meaning that the effect

of right putamen on motor impairment may not differ significantly between the low CAP group

and the medium CAP group. This can also be inferred from Figure 2.1 where the least squares

fit slopes for the low group and the medium group were indistinguishable. Hence, the svReg

resulted in selecting fewer irrelevant θ’s than the pliable LASSO. This result is consistent with

the simulation study in Section 2.3 where the svReg selected fewer irrelevant variables than the

pliable LASSO. Correct screening of irrelevant variables will not only result in models with smaller

standard errors but also enable clinicians to avoid unnecessary segmentation of the patients in

developing customized interventions for patient groups.

To the best of our knowledge, our study is the first to identify the interaction effect between

CAP score and the volume of brain regions to motor impairment. This implies the genuine effect

from the brain regions to motor impairment can be better understood when the CAP score is taken

into account as a modifying variable in a varying-coefficient model. This knowledge can be useful

in developing interventions or treatments which target specific group of patients. For example, a

newly developed treatment may have some side effect. In this case, we may want to minimize the

dosage of the treatment to reduce the risk of the side effect. From our research, we know that the

high CAP score group will suffer more severe motor impairment than other groups given some

change of the volume of caudate. If the degree of motor impairment is tolerable for low-medium

CAP score group but not for high CAP score group, clinicians may need to use the treatment only

for the high CAP score group or use different dosage for each group.

2.5 Discussion

In this chapter, we proposed a new variable selection method for a varying-coefficient model

with pre-specified group structure among variables. We showed in multiple simulation settings
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Lateral Ventricle
Cerebellum Cortex

Thalamus Proper
Caudate
Putamen

Pallidum

Vessel
Choroid Plexus

CorticalWhiteMatter
3rd Ventricle
4th Ventricle

CSF
WM Hypointensity

Optic Chiasm
CC Posterior

Table 2.3: Parameter estimates of the selected brain regions by the pliable LASSO (pLASSO) and
the structural varying-coefficient regression (svReg) for PREDICT-HD data. Parameter values are
based on scaled data. Parameters not selected are shown as blank. The first column for each method
contains the fixed part of the regression coefficients of main predictors (β’s in equation (2.2)). The
other columns represent the varying part of the regression coefficients of main predictors (θ’s in
equation (2.2)). That is, the parameters from the second to fifth columns are the coefficients of the
interaction terms between the brain regions (in row) and the modifying variables (in column). For
the grouped brain regions (those with two lines), “L" represents the left part of the corresponding
brain region and “R" represents the right part of the brain region. Tuning parameter λ is selected
from 10-fold cross-validation. α is set to 0.5.
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(model 1) (model 2) (model 3) (model 4) (model 5) (model 6)
Left.Caudate −0.005∗∗∗

(0.001)

Right.Caudate −0.004∗∗∗

(0.001)

Left.Putamen −0.003∗∗∗

(0.0004)

Right.Putamen −0.003∗∗∗

(0.0004)

Left.Pallidum −0.005∗∗∗

(0.001)

Right.Pallidum −0.010∗∗∗

(0.001)

CAPmed −12.831∗∗∗ −12.840∗∗∗ −12.726∗∗∗ −11.652∗∗∗ −5.454∗∗∗ −9.386∗∗∗

(2.753) (2.714) (2.541) (2.346) (1.888) (2.269)

CAPlow −14.079∗∗∗ −12.401∗∗∗ −14.170∗∗∗ −13.775∗∗∗ −7.001∗∗∗ −11.301∗∗∗

(3.267) (3.182) (3.191) (3.080) (2.311) (2.662)

Left.Caudate:CAPmed 0.004∗∗∗

(0.001)

Left.Caudate:CAPlow 0.004∗∗∗

(0.001)

Right.Caudate:CAPmed 0.003∗∗∗

(0.001)

Right.Caudate:CAPlow 0.003∗∗∗

(0.001)

Left.Putamen:CAPmed 0.002∗∗∗

(0.001)

Left.Putamen:CAPlow 0.003∗∗∗

(0.001)

Right.Putamen:CAPmed 0.002∗∗∗

(0.001)

Right.Putamen:CAPlow 0.003∗∗∗

(0.001)

Left.Pallidum:CAPmed 0.003
(0.002)

Left.Pallidum:CAPlow 0.004∗

(0.002)

Right.Pallidum:CAPmed 0.007∗∗∗

(0.002)

Right.Pallidum:CAPlow 0.008∗∗∗

(0.002)

Constant 20.508∗∗∗ 18.861∗∗∗ 19.500∗∗∗ 18.588∗∗∗ 12.157∗∗∗ 17.570∗∗∗

(1.777) (1.733) (1.611) (1.465) (1.088) (1.400)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.4: Results for least squares regression of the total motor score on the volumes of basal
ganglia regions and disease severity including interaction terms. Standard error for each coefficient
is written in parenthesis.
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that ignoring this group structure among variables reduced the specificity by up to 12% points and

increased the false discovery rate by up to 6% points. It also led to inconsistent selection of relevant

main predictors when there is group structure with high within-group correlation and this lowered

the sensitivity by 2% points. We applied our method to the Huntington disease study and found

that the effect from basal ganglia to motor impairment differs by disease severity of the patients.

Such knowledge suggests that different medical interventions might be needed depending on each

patient’s disease severity.

If other variables in addition to the disease severity are identified as relevant modifying vari-

ables in future study, that can be used for extending to the so called personalized interventions

which account for the traits of each individual. For example, if gender (male or female) and years

of education (integer between 0 and 20) have turned out to be relevant modifying variables, the

maximum number of possible models is 126 (= 3 × 2 × 21). Each of these models reflects the

individual traits determined by the values of the three modifying variables for each patient and this

individualized regression model will be useful for developing personalized interventions.

In our application, the group structure among the variables is pre-defined and the number of

the groups for the main predictors (L) and the modifying variables (G) are known. Our pro-

posed method has been developed assuming such structural information is available. However,

such information may not be available in some other applications. In this case, one additional

consideration is the correlation among variables, which needs to be dealt with. For example, the

unknown group structure among the variables can be addressed by selecting highly correlated vari-

ables together in the model. For a linear model with fixed coefficients, the selection of correlated

variables was addressed by the elastic net (Zou and Hastie, 2005) as a modification of the LASSO.

For a varying-coefficient model, similar modification to the pliable LASSO might be considered

for future research.

In our analysis, we considered only the linear combination of the modifying variables as the

varying-coefficient in equation (2.1). This is consistent with the basic setting discussed in Tib-

shirani and Friedman (2019) but both the pliable LASSO and the svReg can be generalized to
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consider a non-parametric form of the varying-coefficient such as splines. The literature on the

varying index coefficient model (Ma and Song, 2015; Na et al., 2019) addresses the estimation of

non-linear functional coefficient for a family of models in which the model (2.1) is a special case.

This branch of literature might serve as a starting point for future research.

Our method is designed for a regression model. However, it can be extended to accommodate

survival models or generalized linear models by changing the objective function in equation (2.3).

For example, our method can be applied to Cox’s proportional hazard model by adding the svReg

penalty λP ∗
α(β,Θ) in equation (2.3) to the log partial likelihood of the hazard model. A similar

attempt has recently been made by Du and Tibshirani (2018) for extending the pliable LASSO to

the Cox’s proportional hazard model. However, as with the pliable LASSO for a linear model,

their method does not account for the pre-specified structure of the variables. The extension of the

svReg to the hazard model is expected to select relevant variables consistently and screen irrelevant

variables better than the method by Du and Tibshirani (2018) as was the case for the linear model

settings and this will be future research.
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3. EFFICIENT ESTIMATION OF A COVARIANCE MATRIX WITH ZERO ENTRIES

3.1 Introduction

In multivariate analyses, the strength of relationships between variables is often identified with

a covariance matrix and estimation of the covariance matrix is critical in a variety of statistical

analyses in genetics, finance and so on. In some applications, covariance matrices are often as-

sumed to contain some zero entries, meaning that there is no linear association between those

variables. For example, in genetics, Butte et al. (2000) developed the relevance network among

genes assuming that the unconnected genes have zero covariance. Similarly, Rothman et al. (2009)

used a covariance matrix with zero entries for gene clustering problems where genes with zero

covariance are not clustered together. In finance, covariance matrices with zero entries have been

applied to the investment portfolio selection to avoid risk underestimation (El Karoui et al., 2010;

Xue et al., 2012). For climate data analysis, Bickel et al. (2008a) exploited the zero covariance

between different spatial locations to separate the temperature pattern between continents.

Whether some entries of a covariance matrix are zero may or may not be known a priori.

Sometimes, such prior information is available from external sources. For example, in finance and

insurance industry, covariance matrices are used for allowing diversification effect between lines

of business when quantifying the corporate risk. The regulators of the industry often use “expert

judgment" to construct such covariance matrices and may force some entries to zero (BCBS, 2010;

Calibration, 2010). On the other hand, when such prior information is unavailable, zero entries

of a covariance matrix can be identified from data by some model selection procedures. Such

selection procedures have been studied in, for example, Drton and Perlman (2004); Drton et al.

(2007); Bickel et al. (2008a); Rothman et al. (2009); Bien and Tibshirani (2011).

Once the zero entries are determined in a covariance matrix, the covariance matrix can be es-

timated with the zero constraint on those entries. Imposing zero constraint on the entries of a

covariance matrix is a special form of the linear covariance model (Anderson, 1970, 1973) where

41



a covariance matrix is modeled by a linear combination of some known matrices. For a Gaussian

random vector, maximum likelihood estimation of the covariance matrix with such linear con-

straints may lead to an optimization problem with multiple local solutions (Chaudhuri et al., 2007;

Zwiernik et al., 2017) due to non-concavity of the log-likelihood function (Bien and Tibshirani,

2011).

Existence of multiple local solutions is problematic because asymptotic properties of the global

maximum solution such as consistency and asymptotic efficiency may not be shared by the other

local solutions. Since the lack of the knowledge on the asymptotic distribution limits the discussion

on the variability of the estimator, asymptotic properties of an estimator should be understood

unless the estimator is guaranteed to be a global maximum. Zwiernik et al. (2017) discussed some

probabilistic conditions under which the Gaussian log-likelihood function is concave so that a

solution from any hill-climbing methods will converge to the global maximum. However, with

finite samples, whether the solution from such hill-climbing methods is the maximum likelihood

estimator is still not guaranteed.

For maximum likelihood estimation of the Gaussian linear covariance model, Anderson (1973)

proposed an iterative scheme which finds a local solution to the normal likelihood equation and

proved asymptotic efficiency of the solution from the scheme when the sample size is greater

than the number of variables. However, convergence of the iteration is not guaranteed so it may

fail to reach a solution. Also, Anderson (1973)’s scheme requires a positive definite estimator as

an initial estimator but no easy guidance yet exists to construct this initial estimator. Zou et al.

(2017) proposed conditions under which consistency and asymptotic efficiency of the maximum

likelihood estimator can be achieved even when the number of variables is greater than the sample

size. However, this result is based on the unimodal assumption, that is, it is assumed that only one

local maximum exists and it is the unique global maximum.

For covariance matrices with zero constraint, asymptotically efficient estimators have been

proposed for some approximations to the maximum likelihood estimation. Kauermann (1996)

discussed dual estimation of the covariance matrix with zero constraint which has a unique, positive
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definite and asymptotically efficient solution. Wermuth et al. (2006) derived approximations to

maximum likelihood estimates that are asymptotically efficient. However, both methods do not

exactly give the solution to the maximum likelihood estimation, meaning that there will be other

estimators which will more likely generate the observed data than those estimators.

The iterative conditional fitting algorithm proposed by Chaudhuri et al. (2007) finds a local so-

lution to the maximum likelihood estimation of covariance matrices with zero constraint when the

sample size is greater than the number of variables. Since it guarantees convergence to a positive

definite local maximum or saddle point, it resolves the limitation of Anderson (1973)’s algorithm.

However, unlike the solution from the Anderson (1973)’s algorithm, asymptotic bahaviors of the

solution from the iterative conditional fitting algorithm have not been understood yet. This lack

of understanding on the asymptotic properties has limited the discussion on the variability of the

covariance matrix estimator from the iterative conditional fitting algorithm. Also, this algorithm

works only when the sample size is greater than the number of variables, which further limits the

use of this algorithm in practice.

In this chapter, we combine the advantages of asymptotic efficiency of Anderson (1973) and

the convergence property of Chaudhuri et al. (2007) when the location of the zero entries is known.

Specifically, we prove that the iterative conditional fitting algorithm will produce a positive defi-

nite and asymptotically efficient covariance estimator when the algorithm starts from a consistent

estimator as in Anderson (1973). In contrast to Anderson (1973), we suggest an easy and explicit

way to construct this initial consistent estimator.

Second, we extend the iterative conditional fitting algorithm to the case when the sample size is

smaller than the number of variables. We propose the iterative conditional ridge algorithm which

replaces the least squares regression in each iteration of the iterative conditional fitting algorithm

with the ridge regression. The solution from the iterative conditional ridge algorithm is positive

definite and provides asymptotically efficient estimators of the off-diagonal non-zero entries. This

estimator contains some bias in the diagonal entries but extent of the bias can be controlled under

any positive constant.
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Last, based on the understanding of the asymptotic behavior of the iterative conditional fitting

algorithm, we discuss the implication of model underfitting and overfitting when the true covari-

ance model is unknown. Specifically, we claim that model underfitting may induce additional bias

to the estimator whereas overfitting increases variability of the estimator.

3.2 Covariance Matrices with Zero Entries

For a random vector y = (Y1, Y2, . . . , Yp)
T with zero mean vector and unknown covariance

matrix Σ, we consider the estimation of the covariance matrix with a pre-defined zero constraint.

This problem can be cast as estimation of the linear covariance model (Anderson, 1973) as below:

Σ = Σ(σ) = σ1G1 + . . .+ σKGK (3.1)

where each Gk for k = 1, . . . , K is a p × p symmetric matrix of 0’s and 1’s for representing a

non-zero element of Σ such that 1 in Gk indicates the location of the non-zero element in Σ and

β = (σ1, . . . , σK)
T are parameters for estimation. The parameter space for this model is

Θ = {σ : Σ(σ) is positive definite}.

Note that model (3.1) is general enough to include any p × p unconstrained covariance matrix

by Σ = (σij) =
∑

i≤j σijUij =
∑K

k=1 σkGk where Uij contains 1’s as the (i, j)-th and (j, i)-th

elements and 0’s elsewhere, K = p(p+ 1)/2 and each σkGk corresponds to one of σijUij .

For example, with the constraint that (1, 3)-th entry is zero, a 3 × 3 matrix Σ = (σij) can be

modeled by a linear combination of G1, . . . ,G5 as below:

Σ = σ1


1 0 0

0 0 0

0 0 0

+ σ2


0 0 0

0 1 0

0 0 0

+ σ3


0 0 0

0 0 0

0 0 1

+ σ4


0 1 0

1 0 0

0 0 0

+ σ5


0 0 0

0 0 1

0 1 0


so that σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ12 = σ21 and σ5 = σ23 = σ32.
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3.2.1 Some Estimators of Covariance Matrices with Zero Entries

3.2.1.1 Ordinary Least Squares (OLS) Estimator

Anderson (1970) discussed the ordinary least squares estimator, σ̂OLS , as a consistent estimator

for σ in the model (3.1) as below:

σ̂OLS = argminσ||S −Σ(σ)||2F .

where S is the p× p sample covariance matrix and || · ||F denotes the Frobenius norm. By differ-

entiating the objective function ||S−Σ(σ)||2F with respect to σ, this method finds the solution for

the estimating equation for k = 1, . . . , K:

trace{Σ(σ)Gk} = trace(SGk) (3.2)

Using the equation (3.1), the equation (3.2) for all k = 1, . . . , K can be written as, for k =

1, . . . , K and ℓ = 1, . . . , K,

{trace(GkGℓ)}kℓσ = {trace(SGk)}k (3.3)

where {trace(GkGℓ)}kℓ is a K ×K matrix and {trace(SGk)}k is a K-dimensional column vec-

tor. Note that the equation (3.3) is the linear system with a closed form solution as σ̂OLS =

{trace(GkGℓ)}−1
kℓ {trace(SGk)}k.

For the covariance estimation with zero constraints, one can show that σ̂OLS is the vector of

the sample covariances for the unconstrained non-zero entries. That is, Σ(σ̂OLS) =
∑K

k=1 S ◦Gk

where ◦ denotes the Hadamard product. Hence, each component of σ̂OLS has the same property as

the sample covariance. For example, σ̂OLS is a consistent estimator of σ since the (i, j)-th entry

of the sample covariance matrix, sij , converges to σij in Σ by the law of large numbers.

One problem of the OLS estimator is that it may not lead to a positive definite matrix. For
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example, consider a sample covariance matrix as below:

S =


1 0.9 0.9

0.9 1 0.9

0.9 0.9 1


which is a positive definite matrix. If we impose a zero constraint on the (2, 3)-th (and (3, 2)-th)

entry, the OLS estimator is

Σ(σ̂OLS) =


1 0.9 0.9

0.9 1 0

0.9 0 1


and this matrix is not positive definite, hence cannot be a valid covariance matrix. To solve this,

Zou et al. (2017) imposed the additional positive definite constraint to the OLS estimator and

proposed a numerical algorithm to compute this constrained OLS estimator. The constrained OLS

has the same asymptotic distribution as the OLS estimator. For the details, see Zou et al. (2017).

3.2.1.2 Maximum Likelihood Estimator (MLE)

Under the normal assumption, Anderson (1973) proposed the maximum likelihood estimator

of σ which tries to maximize the log-likelihood as below:

ℓ(Σ) = −log det Σ− tr(SΣ−1) (3.4)

where S is the p×p sample covariance matrix. By differentiating the objective function ℓ(Σ) with

respect to σ, Anderson (1973) tried to find the solution for the score equation for k = 1, . . . , K:

trace{Σ(σ)−1Gk} = trace{SΣ(σ)−1GkΣ(σ)−1}. (3.5)
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Using the equation (3.1), the score equation (3.5) for all k = 1, . . . , K can be written as, for

k = 1, . . . , K and ℓ = 1, . . . , K,

[trace{Σ(σ)−1GkΣ(σ)−1Gℓ}]kℓβ = [trace{SΣ(σ)−1GkΣ(σ)−1}]k (3.6)

where [trace{Σ(σ)−1GkΣ(σ)−1Gℓ}]kℓ is a K × K matrix and [trace{SΣ(σ)−1GkΣ(σ)−1}]k

is a K-dimensional column vector. Anderson (1973) proposed an iterative scheme which up-

dates σ̂ by [trace{(Σ(i−1))−1Gk(Σ
(i−1))−1Gℓ}]kℓσ̂ = [trace{S(Σ(i−1))−1Gk(Σ

(i−1))−1}]k and

sets Σ(i) = Σ(σ̂). Anderson (1973) suggested the OLS estimator as the starting point of the it-

eration. However, neither the OLS estimator nor the following subsequent estimators through the

iteration may not be positive definite. Also, the convergence of this algorithm is not guaranteed

since the likelihood may decrease through the iteration (Drton and Richardson, 2002).

For the problem of maximum likelihood estimation with zero constraints, Chaudhuri et al.

(2007) proposed the iterative conditional fitting algorithm which always converges and gives a

positive definite solution. The details of the iterative conditional fitting algorithm will be discussed

in Section 3.3.1. Note that the iterative conditional fitting algorithm is applicable only for the

covariance matrix estimation with zero constraints and, unlike Anderson (1973)’s algorithm, it

cannot be applied to estimate σ of model (3.1) in general.

Note that the log-likelihood function ℓ(Σ) takes the form of the sum of a convex function

and a concave function (Bien and Tibshirani, 2011). Without the linear constraint (3.1) on the

covariance matrix, the log-likelihood function (3.4) is uniquely maximized when Σ = S (Watson,

1963; Zwiernik et al., 2017). However, with the linear constraint (3.1), maximization of the log-

likelihood (3.4) is not a convex optimization problem and may have multiple solutions of local

maxima (Chaudhuri et al., 2007). Hence, a solution of the score equation (3.5) computed from

Anderson (1973)’s algorithm or Chaudhuri et al. (2007)’s iterative conditional fitting algorithm

may be just one of the multiple local maxima and may not be the MLE.
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3.2.1.3 Feasible Generalized Least Squares Estimator (FGLS)

Since the computation of the MLE requires iteration of a numerical algorithm such as Anderson

(1973)’s algorithm, Zou et al. (2017) proposed the feasible generalized least squares estimator,

σ̂FGLS , for improving computational efficiency as below:

σ̂FGLS = argminσvec(S −Σ(σ))T (Σ(σ̂OLS)⊗Σ(σ̂OLS))vec(S −Σ(σ)).

where S is the p× p sample covariance matrix and vec(·) converts a matrix to a vector by stacking

columns of the matrix. The estimating equations can be written as, for k = 1, . . . , K and ℓ =

1, . . . , K,

[trace{Σ(σ̂OLS)−1GkΣ(σ̂OLS)−1Gℓ}]kℓσ = [trace{SΣ(σ̂OLS)−1GkΣ(σ̂OLS)−1}]k (3.7)

where [trace{Σ(σ̂OLS)−1GkΣ(σ̂OLS)−1Gℓ}]kℓ is a K × K matrix. Although the equation (3.6)

and (3.7) look similar to each other, the equation (3.7) has a closed form solution and can be solved

without numerical iterations.

As in the OLS estimator, one problem of the FGLS estimator is that it may not lead to a positive

definite matrix. To solve this, Zou et al. (2017) imposed the additional positive definite constraint

to the FGLS estimator and proposed a numerical algorithm to compute this constrained FGLS

estimator. The constrained FGLS has the same asymptotic distribution as the FGLS estimator. For

the details, see Zou et al. (2017).

3.2.2 Interpretation with the Linear Regression Framework

Given n samples of (Y1, . . . , Yp) which has zero mean vector and unknown covariance matrix

Σ and given the n × p matrix Y for samples of size n, let S = Y TY /(n − 1) be the unbiased

estimator of Σ, that is, the sample covariance matrix. For the model (3.1), define a p(p+1)/2×K

matrix G = [g1, . . . , gK ] such that gk = vech(Gk) for k = 1, . . . , K where vech(·) converts a

symmetric matrix to a vector by stacking columns of the lower diagonal entries of the matrix. For
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example, for a 2× 2 matrix S =

s11 s12

s21 s22

, vech(S) = (s11, s21, s22)
T . Then we can rewrite the

linear covariance model (3.1) as below:

vech(Σ) = Gσ.

Since the sample covariance matrix S contains some error in each entry of the matrix, it is ex-

plained by the model with error terms as below:

vech(S) = Gσ + e (3.8)

where e is a p(p+ 1)/2-dimensional vector of the errors. Note that the model (3.8) takes the same

form as the linear regression model

y = Xβ + e (3.9)

where y is the n-dimensional vector of response variable, X is the n× p design matrix and e is a

n-dimensional vector of the errors.

Also, define a p2 × K matrix Q = [q1, . . . , qK ] such that qk = vec(Gk) for k = 1, . . . , K

where vec(·) converts a matrix to a vector by stacking columns of the matrix. Then, the estimating

equations for the OLS, FGLS and MLE can be expressed in matrix multiplication form as below:

OLS (eq.(3.3)): QTQσ = QTvec(S);

FGLS (eq.(3.7)): QT (Σ(σ̂OLS)−1 ⊗Σ(σ̂OLS)−1)Qσ = QT (Σ(σ̂OLS)−1 ⊗Σ(σ̂OLS)−1)vec(S);

MLE (eq.(3.6)): QT (Σ(σ)−1 ⊗Σ(σ)−1)Qσ = QT (Σ(σ)−1 ⊗Σ(σ)−1)vec(S).

In this section, we will discuss how these estimating equations can be interpreted as estimating σ

in model (3.8) with different assumptions on e.
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3.2.2.1 OLS Estimator for the Gauss-Markov Model

In the linear regression model (3.9), the OLS estimator of β is defined as the solution of the

normal equation XTXβ = XTy and it is the best linear unbiased estimator (BLUE) when the

model is correct and the errors are assumed to be independent and identically distributed (i.i.d).

That is, the OLS estimator is the BLUE for the Gauss-Markov model which is defined as the model

(3.9) with the assumptions that E(e) = 0 and Cov(e) = σ2In.

Likewise, we can consider the model (3.8) with the assumptions as below:

E(e) = 0; Cov(e) = σ2I p(p+1)
2

× p(p+1)
2

. (3.10)

These assumptions are the exact Gauss-Markov model assumptions for the model (3.8). Hence,

the solution to the normal equation for model (3.8)

GTGσ = GTvech(S)

is the BLUE for this model. However, this normal equation is different from the equation (3.3) for

the OLS estimator. Hence, the solution of this equation is not equal to σ̂OLS in general since it

minimizes ||vech(S −Σ)||2F whereas σ̂OLS minimizes ||vec(S −Σ)||2F .

Remark 2. For the linear covariance model with zero constraints, minimization of ||vech(S −

Σ(σ))||2 gives the same solution as the minimization of ||vec(S−Σ(σ))||2. For the linear covari-

ance model (3.1) in general, they are not equivalent.

Next, we consider a slight modification to the above Gauss-Markov assumption (3.10) as be-

low:

E(e) = 0; Cov(e) = σ2(DT
pDp)

−1 = σ2D+
p D

+T
p (3.11)

where Dp is a duplication matrix (page 299 of Abadir and Magnus (2005)) which transforms
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vech(A) into vec(A) for a p × p symmetric matrix A by Dpvech(A) = vec(A) and D+
p =

(DT
pDp)

−1DT
p is the Moore-Penrose inverse of Dp (page 317 of Abadir and Magnus (2005)).

Denoting W = (DT
pDp)

−1, the identity matrix I in assumption (3.10) is replaced by W in as-

sumption (3.11). Note that W is a p(p+ 1)/2× p(p+ 1)/2 diagonal matrix with diagonal entries

1 (n times) and 0.5 (n(n− 1)/2 times) (page 314 of Abadir and Magnus (2005)).

With the assumption (3.11), the weighted least sqaures estimator of β for model (3.8) can be

considered as below:

σ̂ = (GTW−1G)−1GTW−1vech(S)

= (GTDT
pDpG)−1GTDT

pDpvech(S)

= (QTQ)−1QTvec(S)

= σ̂OLS.

Hence, the OLS estimator σ̂OLS is the weigheted least squares estimator and, under the assumption

(3.11), it is the BLUE for σ (page 83 of Monahan (2008)). The variance of the weighted least

squares estimator can be obtained from the diagonal elements of the matrix below (page 165 of

Rencher and Schaalje (2008)):

Cov(σ̂OLS) = σ2(GTW−1G)−1 = σ2(QTQ)−1.

3.2.2.2 The Aitken Model with Fixed Error Variance

Now, we add normality assumption for (Y1, . . . , Yp), that is, (Y1, Y2, . . . , Yp)
T ∼ Np(0,Σ).

With the normality assumption, it is known that (n − 1)S follows the Wishart distribution with

(n−1) degress of freedom (Johnson et al., 2002), that is, (n−1)S ∼ Wp(n−1,Σ) or, equivalently,

S ∼ Wp(n − 1, (n − 1)−1Σ), which has mean Σ. For a Wishart matrix Z ∼ Wp(n − 1,V), the

covariance of vech(Z) is equal to 2(n − 1)D+
p (V ⊗ V)D+T

p (page 317 of Abadir and Magnus
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(2005)). Hence, in model (3.8),

Cov(e) = Cov(vech(S)) =
2

n− 1
D+

p (Σ⊗Σ)D+T
p .

Note that, when Σ = Ip (hence, Σ ⊗ Σ is an identity matrix), Cov(e) takes the same form as in

the assumption (3.11) with σ2 replaced by 2/(n− 1).

In estimating σ̂OLS , it is assumed that Cov(e) = σ2D+
p D

+T
p . Hence, unless Σ = Ip, σ̂OLS is

based on the mis-specified Cov(e). When the error variance is mis-specified, the OLS estimator is

still unbiased but may no longer be the BLUE estimator (Monahan, 2008; Rencher and Schaalje,

2008). In this case, the variance of the OLS estimator can be obtained from the diagonal elements

of the matrix computed as below:

Cov(σ̂OLS) = (GTDT
pDpG)−1GTDT

pDpCov(vech(S))DT
pDpG(GTDT

pDpG)−1

=
2

n− 1
(GTDT

pDpG)−1GTDT
pDpD

+
p (Σ⊗Σ)D+T

p DT
pDpG(GTDT

pDpG)−1

=
2

n− 1
(GTDT

pDpG)−1GTDT
p (Σ⊗Σ)DpG(GTDT

pDpG)−1

=
2

n− 1
(QTQ)−1QT (Σ⊗Σ)Q(QTQ)−1.

The structure of Cov(e) for the normal random vector raises the need for extending the Gauss-

Markov model to incorporate various structures of the error variance. One may consider the Aitken

model for the linear regression. That is, we can define the Aitken model for the linear covariance

model to be the model (3.8) with the assumptions as below:

E(e) = 0 and Cov(e) = V.

where V is a known p(p + 1)/2 × p(p + 1)/2 positive definite matrix. For this model, we can

construct the generalized least squares (GLS) estimator of β as the solution of the equation below:

GTV−1Gσ = GTV−1vech(S) (3.12)
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and the GLS estimator can be shown to be the BLUE (page 83 of Monahan (2008)).

However, the Aitken model cannot be used for the covariance estimation of the normally dis-

tributed random vectors since Cov(e) is unknown and contains Σ which needs to be estimated.

One possible approach to address the unknown error variance is to fix Cov(e) with any estimator

of Σ. For example, we can compute the feasible generalized least squares estimator σ̂FGLS by

assuming that the error variance can be obtained by the OLS estimator of σ as below:

E(e) = 0; Cov(e) =
2

n− 1
D+

p (Σ(σ̂OLS)⊗Σ(σ̂OLS))D+T
p . (3.13)

With this assumption, the equation (3.12) can be rewritten as

QT (Σ(σ̂OLS)−1 ⊗Σ(σ̂OLS)−1)Qσ = QT (Σ(σ̂OLS)−1 ⊗Σ(σ̂OLS)−1)vec(S).

since {D+
p (Σ(σ̂OLS)⊗Σ(σ̂OLS))D+T

p }−1 = DT
p (Σ(σ̂OLS)−1⊗Σ(σ̂OLS)−1)Dp and DpG = Q

(Abadir and Magnus, 2005). Note that this equation is equivalent to equation (3.7) by the relation

trace(ABCD) = vec(D)T (A⊗CT )vec(BT ) (page 283 of Abadir and Magnus (2005)).

The problem with the FGLS estimator is that Cov(e) is fixed based on Σ(σ̂OLS) whereas the

final estimator for the Σ is Σ(σ̂FGLS). Hence, the FGLS estimator still has the problem of mis-

specification of the error variance structure. However, the FGLS estimator is an asymptotically

efficient estimator (Anderson, 1973; Zou et al., 2017).

3.2.2.3 Estimating the Unknown Error Variance using MLE Approach

Given n samples of a random vector (Y1, Y2, . . . , Yp)
T ∼ Np(0,Σ) and if we do not make

any additional assumption on the unknown error variance in model (3.8), a covariance model for

estimating Σ can be constructed as the model (3.8) with the assumptions as below:

E(e) = 0; Cov(e) =
2

n− 1
D+

p (Σ(σ)⊗Σ(σ))D+T
p . (3.14)
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The above assumption on Cov(e) is actually redundant since it is implied by the normality of

(Y1, Y2, . . . , Yp). However, we show the structure of Cov(e) above for comparison with the Gauss-

Markov model and the Aitken model. Note that the parameter vector σ appears not only as the

regression coefficient vector but also determines the covariance structure of the error vector. Hence,

although the model (3.1) takes the form of a linear model in terms of σ, it is strictly not a linear

model of σ since the errors of the data also depend on σ.

However, the estimating equation for this model can still be derived similarly as the Aitken

model by GT{Cov(e)}−1Gσ = GT{Cov(e)}−1vech(S) which leads to:

QT (Σ(σ)−1 ⊗Σ(σ)−1)Qσ = QT (Σ(σ)−1 ⊗Σ(σ)−1)vec(S) (3.15)

which is equivalent to equation (3.6) for estimating the MLE. Hence, the model (3.8) with the as-

sumptions (3.14) provides an alternative approach for obtaining the estimating equation for MLE.

Note that, in Section 3.2.1.2, we obtained equation (3.6) by differentiating the log-likelihood. Also,

since the MLE is known to be asymptotically efficient (Anderson, 1973; Zou et al., 2017), the so-

lution of the equation (3.15) is an asymptotically efficient estimator of σ.

Since the estimating equation (3.15) is equivalent to the estimating equation for MLE, it can

be solved by the methods for computing the MLE such as Anderson (1973)’s algorithm and, for

the special problem of covariance estimation with zero constraints, the iterative conditional fitting

algorithm by Chaudhuri et al. (2007). Anderson (1973)’s algorithm is indeed similar to the pro-

cedure called the estimated generalized least squares (EGLS, page 84 of Monahan (2008)) which

computes the GLS estimator for the Aitken model with unknown error variance by solving the

GLS estimating equation (3.12) iteratively.

3.3 An Asymptotically Efficient Estimator of a Covariance Matrix with Zero Entries

3.3.1 Iterative conditional fitting for Gaussian models

Consider n observations y1, . . . ,yn of a random vector (Y1, . . . , Yp)
T ∼ Np(0,Σ) with n > p

and Σ = (σij)
p
i,j=1 is a p × p positive definite matrix. When some entries of Σ are known to be
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zero, let σ be the vector of parameters for the non-zero entries in Σ and denote Σ = Σ(σ). The

log-likelihood function is

ℓ(σ) = −np

2
log(2π)− n

2
log|Σ(σ)| − n

2
tr[S{Σ(σ)}−1] (3.16)

where S = n−1
∑n

i=1 yiy
T
i is the sample covariance matrix, and the maximum likelihood estima-

tor of σ is consistent and asymptotically efficient.

Iterative conditional fitting (Chaudhuri et al., 2007) estimates the non-zero entries in a covari-

ance matrix by solving the normal likelihood equation (3.16). Given the location of the zero entries

in Σ, the algorithm starts from a positive definite matrix with zero values in those entries (e.g. the

identity matrix always meets such constraints) and updates the non-zero entries of the jth column

of the matrix for j = 1, . . . , p, iteratively until convergence.

The update of the jth column is conducted by the maximization of a conditional likelihood

function for Yj given the probability distribution of Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)
T . Let σjj

be the variance of Yj and Σ−j,j be the vector of covariances between Yj and Y−j . If the joint

distribution of Y−j is fixed with a known covariance matrix Σ̃−j,−j , the conditional likelihood

function is:

L(σjj,Σ−j,j | Σ̃−j,−j) =
n∏

i=1

(2πτj)
− 1

2 e
−

(yij−yTi,−j(Σ̃−j,−j)
−1Σ−j,j)

2

2τj (3.17)

where τj = σjj − ΣT
−j,j(Σ̃−j,−j)

−1Σ−j,j and yij and yi,−j are the ith observation of Yj and Y−j ,

respectively. Since the location of the zero entries in Σ−j,j is known, only the non-zero entries in

Σ−j,j and σjj are estimated via the maximization of (3.17). Such constrained maximization can

be circumvented using the so-called ‘pseudo-variables’ which convert the constrained regression

to the standard regression so that the usual least squares technique can be used. The details of the

iterative conditional fitting algorithm is described in Algorithm 2.

Chaudhuri et al. (2007) proved convergence of iterative conditional fitting to one of positive

definite local solutions. However, due to multiple local solutions (Chaudhuri et al., 2007; Zwiernik
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et al., 2017) of the normal likelihood (3.16), different starting values for the iterative conditional

fitting algorithm may lead to different local solutions. For example, Chaudhuri et al. (2007) sug-

gested the identity matrix as one choice for the starting value. Since the asymptotic distribution

of a local solution may not be equal to that of the maximum likelihood estimator, consistency and

asymptotic efficiency of a solution from iterative conditional fitting is unclear.

3.3.2 Asymptotic efficiency of iterative conditional fitting

The theorem below discusses consistency and asymptotic efficiency of the non-zero entries in

a covariance matrix computed from iterative conditional fitting.

Theorem 1. Let σ̂ be a solution computed from iterative conditional fitting with a consistent

estimator of Σ as the starting value. Then, as n → ∞,

n
1
2 (σ̂ − σ) → N(0, I(σ)−1)

where I(σ) is the Fisher information matrix.

Remark 3. The Fisher information matrix I(σ) is derived as negated expectation of the Hessian

matrix (Chaudhuri et al., 2007). Using the notation Q in Section 3.2.2, I(σ) can be written as

I(σ) = −E

(
∂2ℓ

∂σ2

)
=

n

2
QT (Σ−1 ⊗Σ−1)Q.

Remark 4. The solution from iterative conditional fitting is a matrix with zero entries whereas

σ̂ and σ are vectors of non-zero estimators and parameters in the matrix, respectively. By σ̂

computed from iterative conditional fitting, we mean the vector of non-zero entries in the lower (or

upper) triangular part of the solution matrix.

Remark 5. By a solution computed from iterative conditional fitting in Theorem 1, we mean the

result of applying the iterative conditional fitting algorithm with any finite number of iterations.

Theorem 1 states that we can find a consistent and asymptotically efficient solution by starting

the algorithm from a consistent estimator of Σ. In addition, the proof of Theorem 1 in Appendix
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Algorithm 2 Iterative Conditional Fitting (Chaudhuri et al., 2007)

Consider a random vector (Y1, . . . , Yp)
T ∼ Np(0,Σ) and construct a n×p matrix Y = (yij)

n,p
i=1,j=1

for n observations of the random vector. Let Y (j) and Y (−j) denote the columns in Y for Yj and
Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)

T , respectively. Also, let sp(j) be the set of indices for variables
that are marginally dependent with Yj .

1. Set an initial estimator Σ̂
(0)

from the space of positive definite matrices with the zero constraint
(e.g. an identity matrix) and set r = 0.

2. With any p× p matrix M , we will use M−j,−j to denote a (p− 1)× (p− 1) partitioned matrix

of M without the jth column and row. Set Σ̂
(r,0)

= Σ̂
(r)

and repeat the following updates for
j = 1, . . . , p:

• Set Σ̂
(r,j)

−j,−j = Σ̂
(r,j−1)

−j,−j and construct a matrix of ‘pseudo-variables’ as below:

Zj = Y (−j)(Σ̂
(r,j)

−j,−j)
−1

and let Zj
sp(j) denotes the matrix of sp(j)th columns of Zj .

• Update the off-diagonal non-zero elements of the j-th column of Σ̂
(r,j)

by

Σ̂
(r,j)

sp(j),j = {(Zj
sp(j))

T (Zj
sp(j))/n}

−1(Zj
sp(j))

TY (j)/n (3.18)

and set the other entries of the j-th column to zero. Then, update the j-th row of Σ̂
(r,j)

as the

transpose of the updated j-th column of Σ̂
(r,j)

.

• Update the j-th diagonal element of Σ̂
(r,j)

by

σ̂jj = (Y (j) − Zj
sp(j)Σ̂

(r,j)

sp(j),j)
T (Y (j) − Zj

sp(j)Σ̂
(r,j)

sp(j),j)/n

+ (Σ̂
(r,j)

sp(j),j)
T (Σ̂

(r,j)

−j,−j)
−1
sp(j),sp(j)Σ̂

(r,j)

sp(j),j (3.19)

3. Set Σ̂
(r+1)

= Σ̂
(r,p)

4. Iterate step 2 and 3 until a predetermined convergence criterion is met

57



B.1 does not require the starting value to include any zero entries. Hence, for the choice of the

starting value, the sample covariance matrix S can always be used because it is a positive definite

and consistent estimator of Σ. Such starting values without any zero entries were not considered in

Chaudhuri et al. (2007) because the convergence of iterative conditional fitting was shown for the

parameter space of matrices with zero entries. However, after one cycle of the algorithm starting

from any positive definite matrix, the resulting matrix lies within the parameter space by having

zero entries as constrained. Hence, the algorithm still converges.

3.3.3 An algorithm for p > n case

The iterative conditional fitting algorithm requires the sample covariance matrix S to be in-

vertible. However, when the sample size n is smaller than the number of variables p, S is not

invertible. Hence, the algorithm works only when p < n. To remedy this, we consider an objective

function as below:

ℓ∗(Σ) = −np

2
log(2π)− n

2
log|Σ| − n

2
tr{(S + ϵIp)Σ

−1} (3.20)

which replaces S in the normal log-likelihood by S+ ϵIp for some ϵ > 0. This approach is similar

to the optimization of the L1-penalized likelihood (4.1) by Bien and Tibshirani (2011) when p > n.

First, we discuss maximization of the objective function (3.20) without any zero constraint on

the entries in Σ. If the joint distribution of Y−j is fixed with a known covariance matrix Σ̃−j,−j ,

the next proposition states that the function (3.20) is maximized by the ridge regression. Note that

the normal log-likelihood (3.16) is maximized by the least squares regression for β and σjj given

the distribution of Y−j ∼ Np−1(0, Σ̃−j,−j).

Proposition 1. Suppose the distribution of Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)
T is Np−1(0, Σ̃−j,−j).
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Then, ℓ∗(Σ) is maximized by Σ̂−j,j and σ̂jj which satisfy

Σ̂−j,j = argminΣ−j,j

1

n

n∑
i=1

(yij − yTi,−jβ)
2 + ϵ||β||2

=
{
Σ̃

−1

−j,−j

( 1
n

n∑
i=1

yi,−jy
T
i,−j + ϵI

)
Σ̃

−1

−j,−j

}−1{ 1
n

n∑
i=1

(Σ̃
−1

−j,−jy
T
i,−j)yij

}
σ̂jj =

1

n

n∑
i=1

(yij − yTi,−jβ̂)
2 + ϵ||β̂||2 + ϵ+ Σ̂

T

−j,j(Σ̃−j,−j)
−1Σ̂−j,j

where β = Σ̃
−1

−j,−jΣ−j,j and β̂ = Σ̃
−1

−j,−jΣ̂−j,j .

Next, we consider the constrained maximization of (3.20) when some entries in Σ are known to

be zero. In the iterative conditional fitting algorithm, the constrained optimization with zero entries

is circumvented by the least squares regression with pseudo variables which are constructed from

the data for Y−j and the fixed estimator for Σ−j,−j . Similarly, we use the data for Y−j and the

estimator for Σ−j,−j but, based on Proposition 1, we replace the least squares regression with the

ridge regression to maximize (3.20) instead of (3.16). Hence, we propose the iterative conditional

ridge algorithm for the case of p > n in Algorithm 3. The main difference between this algorithm

and the iterative conditional fitting algorithm is that the least squares regression is replaced by the

ridge regression in each iteration of the algorithm. As the iterative conditional fitting algorithm,

this algorithm always converges to a positive definite matrix.

Let σϵ be the vector of parameters for the non-zero entries in Σ + ϵIp. The next corollary of

Theorem 1 shows that the solution computed from iterative conditional ridge is an asymptotically

efficient estimator of Σ + ϵIp. This solution contains bias to the diagonal entries but extent of

the bias can be controlled under any positive constant ϵ. Also, it contains no additional bias to

off-diagonal entries so can be used to obtain consistent and efficient estimators of the pairwise

covariances.

Corollary 1. Let σ̂ be a solution computed from iterative conditional ridge with a consistent
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Algorithm 3 Iterative Conditional Ridge

For a random vector (Y1, . . . , Yp)
T ∼ Np(0,Σ), let Y = (yij)

n,p
i=1,j=1 denote a n × p matrix for

n independent observations. Let Y (j) and Y (−j) denote the columns in Y for Yj and Y−j =
(Y1, . . . , Yj−1, Yj+1, . . . , Yp)

T , respectively. Also, let sp(j) be the set of indices for variables that
are marginally dependent with Yj .

1. Set an initial estimator Σ̂
(0)

from the space of positive definite matrices with the zero con-
straint (e.g. an identity matrix) and set r = 0.

2. With any p×p matrix M , we will use M−j,−j to denote a (p−1)× (p−1) partitioned matrix

of M without the jth column and row. Set Σ̂
(r,0)

= Σ̂
(r)

and repeat the following updates
for j = 1, . . . , p:

• Set Σ̂
(r,j)

−j,−j = Σ̂
(r,j−1)

−j,−j and let P = (Σ̂
(r,j)

−j,−j)
−1
sp(j) denotes the matrix of sp(j)th columns

of (Σ̂
(r,j)

−j,−j)
−1.

• Update the off-diagonal non-zero elements of the j-th column of Σ̂
(r,j)

by

Σ̂
(r,j)

sp(j),j = {P T (Y (−j)TY (−j)/n+ ϵIp−1)P}−1P TY (−j)TY (j)/n

and set the other entries of the j-th column to zero. Then, update the j-th row of Σ̂
(r,j)

as the transpose of the updated j-th column of Σ̂
(r,j)

.

• Update the j-th diagonal element of Σ̂
(r,j)

by

σ̂jj = (Y (j) − Y (−j)P Σ̂
(r,j)

sp(j),j)
T (Y (j) − Y (−j)P Σ̂

(r,j)

sp(j),j)/n

+ ϵ(1 + Σ̂
(r,j)T

sp(j),jP
TP Σ̂

(r,j)

sp(j),j) + (Σ̂
(r,j)

sp(j),j)
T (Σ̂

(r,j)

−j,−j)
−1
sp(j),sp(j)Σ̂

(r,j)

sp(j),j

3. Set Σ̂
(r+1)

= Σ̂
(r,p)

4. Iterate step 2 and 3 until a predetermined convergence criterion is met
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estimator of Σ+ ϵIp as the starting value. Then, as n → ∞,

n
1
2 (σ̂ − σϵ) → N(0, I(σϵ)

−1)

where I(σϵ) is the Fisher information matrix.

Remark 6. Using the notation Q in Section 3.2.2, I(σ) can be written as

I(σϵ) =
n

2
QT{(Σ+ ϵIp)

−1 ⊗ (Σ+ ϵIp)
−1}Q.

Remark 7. Corollary 1 assumes that the number of variables p is fixed. Asymptotic efficiency of

the iterative conditional ridge algorithm when both n and p increase remains as an open question.

Remark 8. For fixed p, S + ϵIp is a consitent estimator of Σ + ϵIp and can be considered as the

starting value for the iterative conditional ridge algorithm.

3.4 Simulation Study

When the location of the zero entries in Σ is known, we showed that iterative conditional fitting

and iterative conditional ridge estimate the non-zero entries with minimum variance asymptotically

in Theorem 1 and Corollary 1, respectively. In this section, we check whether the variability of the

non-zero entries is reduced by those algorithms with finite samples.

We generate 100 datasets from Np(0,Σ) where the correlation matrix Σ is determined by one

of the following models.

• Moving average model: the moving average process of order one where ρij = 0.5 if |i−j| =

1 and ρij = 0 otherwise.

• Banded model: ρij = 0.8 if |i − j| = 1, ρij = 0.6 if |i − j| = 2, ρij = 0.4 if |i − j| = 3,

ρij = 0.2 if |i− j| = 4 and ρij = 0 otherwise.

The moving average model and the banded model are typical covariance models that have been

used in many covariance estimation studies such as Rothman et al. (2009) and Qiu and Liyanage
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(2019). Both models contain exact zero entries and the proportaion of the zero entries increases as

the number of variables p increases. Each simulated dataset contains 25 samples (n = 25) of the

normal random vector of dimension 10 or 50 (p = 10 or p = 50). For p = 10, the non-zero entries

are estimated by the iterative conditional fitting algorithm. For p = 50, the non-zero entries are

estimated by the iterative conditional fitting ridge with ϵ = 0.01.

In Figure 3.1, we compare the variability of sample covariances with the solution from iterative

conditional fitting or iterative conditional ridge for the moving average model. In upper panels of

Figure 3.1, the intervals between the 5th percentile and 95th percentile of the sample covariances

are wider than those of the solutions from iterative conditional fitting. Also, for the off-diagonal

entries whose true covariances are equal to 0.5, sample covariance take negative values in some

simulated datasets whereas iterative conditional fitting estimates positive values in all simulated

datasets. Similar pattern is observed for iterative conditional ridge when p = 50.

In Figure 3.2, the reduction of the variability is observed more clearly with narrower intervals

between the 5th percentile and 95th percentile for the solution from iterative conditional fitting or

iterative conditional ridge than the sample covariances. Particularly, the sample covariances for the

entries where ρij = 0.2 often take negative values whereas the solutions from iterative conditional

fitting or iterative conditional ridge are mostly positive and concentrated at 0.2. The results in

Figure 3.2 and Figure 3.2 suggest that we can estimate the non-zero entries in a covariance matrix

with less variability than the sample covariances by using the iterative conditional fitting (or ridge)

algorithm.

3.5 Implication of model selection

A fundamental assumption underlying the properties of the maximum likelihood estimator is

that the model is correctly specified (White, 1982). Similarly, we assumed that we knew which

entries of Σ are zero or non-zero (“correct model"). In practice, the location of the zero entries

is often unknown and model selection procedures such as multiple testing (Drton et al., 2007) or

thresholding (Bickel et al., 2008a; Rothman et al., 2009) are required to identify the location of the

zero entries in the covariance matrix. However, the location of the zero entries selected from such
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sample covariance iterative conditional fitting

(p
=
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)

σ̂
ij

σ̂
ij

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

sample covariance iterative conditional ridge

(p
=
10
0)

σ̂
ij

σ̂
ij

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

Figure 3.1: Estimates of non-zero parameters of the first-order moving average model with n = 25
and p = 10 or p = 50 are plotted with gray dots for 100 simulated datasets. Diagonal entries
are indexed from 1 to p and the first upper off-diagonal entries are indexed from p + 1 to 2p − 1.
The x-axis indicates index of each non-zero parameter. Dotted curves represent the mean of 100
estimates for each parameter. The 95th percentile and 5th percentile are drawn by solid curves. For
iterative conditional ridge, ϵ = 0.01.
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sample covariance iterative conditional fitting
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)

σ̂
ij

σ̂
ij

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

sample covariance iterative conditional ridge

(p
=
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0)

σ̂
ij

σ̂
ij

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

——— i = j ——— —– |i − j| = 1 —–
(diagonal) (off-diagonal)

Figure 3.2: Estimates of non-zero parameters of the banded model with n = 25 and p = 10 or
p = 50 are plotted with gray dots for 100 simulated datasets. Diagonal entries are indexed from 1
to p, the first upper off-diagonal entries from p+1 to 2p− 1, the second upper off-diagonal entries
from 2p to 3p− 2 and so on. The x-axis indicates index of each non-zero parameter. Dotted curves
represent the mean of 100 estimates for each parameter. The 95th percentile and 5th percentile are
drawn by solid curves. For iterative conditional ridge, ϵ = 0.01.
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procedures may not coincide (“incorrect model") with the true covariance matrix.

The properties of the maximum likelihood estimator under such incorrect models are well

known for the linear regression. Specifically, an overfitted model will increase the variability of

the estimator while an underfitted model may induce bias (page 76 of Monahan (2008)). White

(1982) discussed the properties of the maximum likelihood estimator under a misspecified model,

that is, an underfitted model. Such model misspecification has also been considered in the model

selection and several information criteria have been proposed for generalized linear models (Lv

and Liu, 2014), generalized linear mixed models (Yu et al., 2018) and for time series (Hsu et al.,

2019).

To discuss the properties of the maximum likelihood estimator of non-zero entries in a co-

variance matrix under overfitting or underfitting, we consider three models. The correct model

contains the same zero entries as the true covariance matrix and we denote its parameter vector

as σC . An overfitted model contains more non-zero parameters in addition to the parameters in

the correct model. We donote its parameter vector as σO = (σC ,σO\C) where σO\C represents

overfitted parameters. An underfitted model, also referred to as a misspecified model, is a reduced

model with fewer parameters than the correct model. We donote its parameter vector as σU such

that σC = (σU ,σC\U) where σC\U represents underfitted parameters. We assume that iterative

conditional fitting starts from a consistent estimator of Σ as required in Theorem 1.

First, we compare the asymptotic variance of the estimators of the non-zero entries between

the correct model and the overfitted model. Similar to Theorem 1, asymptotic normality of the

solution computed from iterative conditional fitting for an overfitted model can be shown. That is,

denoting σ̃O as the solution for the overfitted model, as n → ∞,

n
1
2 (σ̃O − σO) → N(0, I(σO)

−1)

where I(σO) is the Fisher information matrix. We can compare the asymptotic variance of the

non-zero entries between the correct model and the overfitted model by comparing the diagonal
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entries of I(σC)
−1 and I(σO)

−1. Note that I(σC)
−1 is equivalent to I(σ)−1 in Theorem 1. As

analogous to linear regression, Proposition 2 below states that overfitting will lead to increased

variability in the estimation of the non-zero entries of Σ.

Proposition 2. Let σ̂C and σ̃O = (σ̃C , σ̃O\C) be solutions computed from iterative conditional

fitting for the correct model and an overfitted model, respectively. The standard error of each

element in σ̂C is less than or equal to the standard error of the corresponding element in σ̃C

asymptotically.

Proposition 2 implies that, if some zero entries are identified, iterative conditional fitting gives

a more efficient estimator of Σ than the sample covariance matrix. This result is interesting be-

cause the covariance estimation of two normal random variables can be improved in efficiency by

considering their covariance with other normal random variables. For a bivariate normal distribu-

tion of X and Y , the covariance parameters {σ2
X , σ

2
Y , σXY } are usually estimated by the sample

covariance {s2X , s2Y , sXY }. However, if there are other normal random variables, we can find a

more efficient estimator of {σ2
X , σ

2
Y , σXY } by considering the whole covariance matrix of all those

variables with zero constraints on some entries of the matrix.

Next, we discuss the properties of iterative conditional fitting for an underfitted model. For

this, we define a matrix QC with entries of 0 or 1 that satisfies vec(Σ) = QCσC as defined in

Chaudhuri et al. (2007) for the correct model. Here, vec(·) is the vectorization operator which

stacks columns of a matrix to a vector. Then, we split columns of QC by [QU ,QC\U ] such that

QCσC = QUσU +QC\UσC\U . Proposition 3 below discusses that underfitting may induce bias

to the estimator of the non-zero entries of the covariance matrix.

Proposition 3. Let σ̃U be a solution computed from iterative conditional fitting for an underfitted

model. Then, as n → ∞,

σ̃U → σU + (QT
UWQU)

−1QT
UWQC\UσC\U

where W = Σ(σ̃U)
−1 ⊗Σ(σ̃U)

−1.
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In Proposition 3, if σC\U = 0, the model is not underfitted and the difference between σ̃U

and σU is caused by the randomness of the data, that is, the difference between S and Σ which

converges to zero as the sample size increases. If we multiply QU to the left side of the bias term

(QT
UWQU)

−1QT
UW, it is the projection matrix of the generalized least squares. Hence, the bias

depends on how QC\U is related to the space of the fitted covariance matrix with the columns of

QU . If QC\U is orthogonal to the space, QU(Q
T
UWQU)

−1QT
UWQC\U will be a zero matrix and

there will be no bias due to underfitting even if σC\U is not a zero vector. Hence, the bias induced

by underfitting the model depends on:

• σC\U : the magnitude of the missed (or underfitted) components; and

• QU(Q
T
UWQU)

−1QT
UWQC\U : how much of the missed components lie in the space of the

fitted covariance matrix

Remark 9. This result is analogue of underfitting the linear regression model that can be found at

page 77 of Monahan (2008).

3.5.1 Example: Estimation bias due to underfitting

We will see several examples of underfitted models below. In some examples, the underfitting

does not lead to additional bias. In other examples, the estimated non-zero entries of the covariance

matrix contain bias induced by the underfitting. For simplicity, in all examples below, it is assumed

that the sample covariance matrix is equal to the true covariance matrix. This eliminates the effects

of noise and the difference between σ̃U and σU depends only on the bias due to underfitting.

Example 1: Consider a sample covariance matrix

S =

 1 0.5

0.5 1

 .

The true covariance matrix Σ is equal to S so the correct model for this covariance matrix is as
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below:

Σ(σ) = σ1G1 + σ2G2 + σ3G3

where

G1 =

1 0

0 0

 ,G2 =

0 0

0 1

 ,G3 =

0 1

1 0


and the true parameters are σT = (σ1, σ2, σ3) = (1, 1, 0.5). However, we will fit a model with the

constraint that σ3 = 0 so our model is an underfitted model as below:

Σ(σU) = σ1G1 + σ2G2

where σU = (σ1, σ2)
T . By solving equation (3.5) for this underfitted model with the itera-

tive conditional fitting algorithm or Anderson (1973)’s algorithm, one can obtain the solution

σ̂U = (1, 1)T . Hence, in this example, the underfitting (missing G3 in the model) does not in-

duce bias in the estimation of β1 and β2. One can check that (QT
UWQU)

−1QT
UWQC\U = (0, 0)T

so QU(Q
T
UWQU)

−1QT
UWQC\U gives a zero vector where QU = [vec(G1), vec(G2)], QC\U =

vec(G3) and W = I2 ⊗ I2.

Example 2: Consider a sample covariance matrix

S =


1 0.5 0

0.5 1 0.5

0 0.5 1

 (= Σ).

The correct model for this covariance matrix is as below:

Σ(σ) = σ1G1 + σ2G2 + σ3G3 + σ4G4 + σ5G5
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where

G1 =


1 0 0

0 0 0

0 0 0

 ,G2 =


0 0 0

0 1 0

0 0 0

 ,G3 =


0 0 0

0 0 0

0 0 1

 ,G4 =


0 1 0

1 0 0

0 0 0

 ,G5 =


0 0 0

0 0 1

0 1 0

 .

and the true parameters are σT = (σ1, σ2, σ3, σ4, σ5) = (1, 1, 1, 0.5, 0.5). However, we will fit an

underfitted model with G1, . . . ,G4 as below:

Σ(σU) = σ1G1 + σ2G2 + σ3G3 + σ4G4.

Solving equation (3.5) for this underfitted model gives the solution σ̂U = (1, 1, 1, 0.5)T . Hence,

in this example, the underfitting does not induce bias in the estimation of σU . One can check that

(QT
UWQU)

−1QT
UWQC\U = (0, 0, 0, 0)T so QU(Q

T
UWQU)

−1QT
UWQC\U gives a zero vector

where QU = [vec(G1), vec(G2), vec(G3), vec(G4)], QC\U = vec(G5) and W = Σ(σ̂U) ⊗

Σ(σ̂U).

Example 3: Consider a sample covariance matrix

S =



1 0.5 0 0

0.5 1 0.5 0.25

0 0.5 1 0.5

0 0.25 0.5 1


(= Σ).

The correct model for this covariance matrix is as below:

Σ(σ) = σ1G1 + σ2G2 + σ3G3 + σ4G4 + σ5G5 + σ6G6 + σ7G7 + σ8G8

69



where

G1 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,G2 =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


,G3 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


G4 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



G5 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


,G6 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


,G7 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


G8 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


and the true parameters are σT = (σ1, . . . , σ8) = (1, 1, 1, 1, 0.5, 0.5, 0.5, 0.25). However, we will

fit an underfitted model with G1, . . . ,G7. Solving equation (3.5) for this underfitted model gives

the solution

Σ(σ̂U) =



1 0.5 0 0

0.5 1 0.41 0

0 0.41 0.9 0.36

0 0 0.36 1


Hence, in this example, the underfitting induces bias in the estimation of β−. One can check that

(QT
UWQU)

−1QT
UWQC\U = (0, 0,−0.4, 0, 0,−0.36,−0.55)T so the estimators of σ3, σ6 and σ7

are biased where QU = [vec(G1), . . . , vec(G7)], QC\U = vec(G8) and W = Σ(σ̂U)⊗Σ(σ̂U).

Example 4: Consider a sample covariance matrix

S =



1 0.5 0 0

0.5 1 0.5 0.05

0 0.5 1 0.5

0 0.05 0.5 1


(= Σ).
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We fit the same underfitted model as in Example 3. Solving equation (3.5) for this underfitted

model gives the solution

Σ(σ̂U) =



1 0.5 0 0

0.5 1 0.48 0

0 0.48 0.97 0.47

0 0 0.47 1


Note that the same entries in the matrix are biased but the amount of the bias is less than Example

3. This is because the missed component G8 in Example 4 has less covariance (σ8 = 0.05) than in

Example 3 (σ8 = 0.25).

3.5.2 Asymptotic variance of the MLE for an underfitted model

Proposition 2 tells us that eliminating spurious non-zero entries by imposing zero constraints

reduces the standard error of the remaining non-zero entries of the MLE. However, if we eliminate

some non-zero entries, it does not always reduce the standard error of the remaining non-zero

entries. That is, Proposition 2 does not hold for the underfitted model. This is because, in the

underfitted model, the standard error of the estimator depends not only on the true covariance

matrix but also on the biased estimator whose bias is incurred by the underfitting.

To see this, we will compare the observed Fisher information matrix for the correct model and

the underfitted model. The negative Hessian matrix for the likelihood function (3.16) is (Chaudhuri

et al., 2007):

−∂2ℓ(Σ)

∂σ2
= −n

2
QT [{Σ−1 ⊗Σ−1} − {(Σ−1SΣ−1)⊗Σ−1} − {Σ−1 ⊗ (Σ−1SΣ−1)}]Q.

where Q = [q1, . . . , qK ] is a p2×K matrix such that qk = vec(Gk) for k = 1, . . . , K. Denote Σ̂
C

as the MLE of the correct model and Σ̂
U

as the MLE of the underfitted model. Then, we can prove

that the observed Fisher information matrix evaluated at Σ̂
C

converges to the Fisher information
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matrix because Σ̂
C

converges to Σ in probability:

−E

(
∂2ℓ(Σ̂

C
)

∂σ2

)
→ n

2
QT (Σ−1 ⊗Σ−1)Q.

On the other hand, the observed Fisher information matrix evaluated at Σ̂
U

does not converge

to the Fisher information matrix because Σ̂
U

does not converge to Σ and has different limit. That

is, denoting this limit of Σ̂
U

as Σ∗, we can prove that the observed Fisher information matrix

evaluated at Σ̂
U

converges to

−n

2
QT [{Σ∗−1 ⊗Σ∗−1} − {(Σ∗−1ΣΣ∗−1)⊗Σ∗−1} − {Σ∗−1 ⊗ (Σ∗−1ΣΣ∗−1)}]Q.

Example: Consider a sample covariance matrix

S =


1 0.5 −0.4

0.5 1 0.5

−0.4 0.5 1

 (= Σ).

The correct model for this covariance matrix is as below:

Σ(σ) = σ1G1 + σ2G2 + σ3G3 + σ4G4 + σ5G5 + σ6G6

where

G1 =


1 0 0

0 0 0

0 0 0

 ,G2 =


0 0 0

0 1 0

0 0 0

 ,G3 =


0 0 0

0 0 0

0 0 1



G4 =


0 1 0

1 0 0

0 0 0

 ,G5 =


0 0 0

0 0 1

0 1 0

 ,G6 =


0 0 1

0 0 0

1 0 0
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and the true parameters are σT = (σ1, σ2, σ3, σ4, σ5, σ6) = (1, 1, 1, 0.5, 0.5,−0.4). The MLE is

equal to the sample covariance matrix S and standard error of each element of S can be obtained

from the observed Fisher information matrix as below:
0.0141 0.0112 0.0108

0.0112 0.0141 0.0112

0.0108 0.0112 0.0141

 .

However, if we fit an underfitted model with G1,G2,G3,G5,G6 as below:

Σ(σU) = σ1G1 + σ2G2 + σ3G3 + σ5G5 + σ6G6,

the MLE for this underfitted model is
1 0 −0.87

0 1 0.93

−0.87 0.93 1.81


and standard error of each element of the MLE can be obtained from the observed Fisher informa-

tion matrix as below: 
0.0141 0 0.0132

0 0.0141 0.0141

0.0132 0.0141 0.0227

 .

Remark 10. This result is different with linear regression under the i.i.d error assumption. In

the linear regression, the variance of the regression coefficient does not depend on the estimated

parameter. In the MLE for the linear covariance model, the variance of the regression coefficient

depends on the estimated parameter.

73



3.5.3 Likelihood Ratio Test for Model Adequacy

Given a specific covariance model (3.1) determined by the zero constraint, one may need to

examine whether the true parameter lies within the parameter space of the specific model. Let Θ0

be the parameter space of the specific covariance model with the zero constraint and Θu be the

parameter space of the unconstrained model so that Θ0 ⊆ Θu. Also, let σ be the vector of non-

zero elements of the true covariance matrix Σ. The null and alternative hypotheses can be stated

as below:

H0 : σ ∈ Θ0 verses H1 : σ /∈ Θ0. (3.21)

One way to test the hypotheses (3.21) is to compare the likelihood of the tested model with

that of the unconstrained model by the likelihood ratio test (LRT). In LRT, the null hypothesis is

rejected if (Johnson et al., 2002)

Λ =
maxθ∈Θ0 L(θ)

maxθ∈Θu L(θ)
< c

where L(θ) is the likelihood function and c is a suitably chosen constant. Note that the denominator

of Λ is the the likelihood of the sample covariance matrix and Λ is always less than one. The choice

of the constant c depends on the sampling distribution of Λ. However, for a large sample size, the

sampling distribution of Λ can be approximated by a chi-square distribution as below:

−2 lnΛ ∼ χ2
p(p+1)

2
−K

.

where K = |σ| is the number of coefficient parameters in the model (3.1).

If the covariance model is correct or overfitted, we expect −2 lnΛ will follow a chi-squared

distribution with degrees of freedom p(p + 1)/2−K because the null hypothesis in (3.21) is true

under such models. For an underfitted model, however, the null hypothesis is not true. Hence, we

expect H0 in (3.21) to be rejected by the likelihood ratio test if the model is an underfitted model.
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Figure 3.3 summarizes a simulation study for the sampling distribution of the likelihood ratio

for a correct model, an overfitted model and an underfitted model. For the simulation, 1,000

datasets of sample size n = 1000 were generated from a ten-dimensional multivariate normal

distribution with the covariance matrix whose (i, j)-th element σij is as below:

σij = 0.65 if |i− j| = 1;

σij = 0.375 if |i− j| = 2;

σij = 0.165 if |i− j| = 3; and,

σij = 0 otherwise. (3.22)

The correct model imposes zero constraint on the zero entries in the covariance matrix. The over-

fitted model fits non-zero values for the 4-th off-diagonal entries in addition to the non-zero entries

of the correct model. The underfitted model imposes additional zero constraint on the (7,10)-th

and (10,7)-th entries in addition to the zero constraint of the correct model.

In the left panels of Figure 3.3, the empirical sampling distribution of −2 lnΛ (histogram) is

compared to the chi-squared distribution (curve). The right panels of Figure 3.3 show the empirical

distribution of p-values from the likelihood ratio test. Under the null-hypothesis, the p-value is

known to follow a uniform distribution (Efron, 2012). For both the correct model and the overfitted

model, the sampling distribution of −2 lnΛ coincides with the chi-squared distribution and the p-

value follows the uniform distribution, indicating that the true parameter is within the parameter

space of the models considered.
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Figure 3.3: The empirical distribution of the test statistic −2 lnΛ (left panels) and the p-value
(right panels) of the likelihood ratio test for a correct model, an overfitted model and an underfitted
model. In the left panels, the curves represent the null hypothesis.
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4. A POSITIVE DEFINITE THRESHOLDING ESTIMATOR OF A COVARIANCE MATRIX

VIA MAXIMUM LIKELIHOOD

4.1 Introduction

Estimation of a covariance matrix plays an important role in a variety of statistical problems

such as classification, clustering and principal component analysis. However, the number of pa-

rameters in a covariance matrix grows quadratically as the dimension increases and this leads to

high variability in estimation. That is, when there are p variables, the covariance matrix of those

p variables contains p × (p + 1)/2 parameters to estimate. Hence, unless the sample size n is

large enough compared to the number of parameters, the estimate of the covariance matrix from

the sample may not be reliable. This suggests that reducing the number of parameters is a critical

problem in the estimation of covariance matrix to control the variability.

One way to reduce the number of parameters in a covariance matrix is to assume that the

covariance matrix has a certain structure. For example, compound symmetry structure and the first

order autoregressive structure requires only one parameter to be estimated in the correlation matrix.

Banding (Wu and Pourahmadi, 2003; Bickel et al., 2008b) and tapering (Furrer and Bengtsson,

2007; Cai et al., 2010) of the covariance matrix have also been studied when the correlation for the

off-diagonal entries far apart from the diagonal are assumed to be smaller than those closer to the

diagonal. These structured covariance matrices are implemented in available software packages

(Fitzmaurice et al., 2012), making them readily usable and popular in applications.

However, assuming such structure in a covariance matrix is problematic when the true covari-

ance matrix does not have such structure or is different from the assumed structure. This motivates

the estimation of unstructured covariance matrix that allows us to capture any structure in the co-

variance matrix with flexibility. Using the modified Cholesky decomposition, Pourahmadi (1999)

proposed an unconstrained and statistically interpretable reparameterization of a positive definite

covariance matrix with the regression coefficients and the variance of innovation. This approach
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was combined with the penalized likelihood estimation in Huang et al. (2006) to reduce the num-

ber of parameters. Under this approach, the Cholesky factor is assumed to contain many zero

off-diagonal entries.

An alternative approach which reduces the number of parameters of an unstructured covariance

matrix is to assume sparse covariance matrix. That is, the true covariance matrix is assumed to

contain many zero entries and the parameters are estimated for those nonzero entries only. One

simple approach to obtain sparse covariance matrix estimator is through thresholding the sample

covariance matrix: setting a threshold and simply cutting-off the entries below the threshold to

zero and leave the other entries unchanged. This estimator has the advantage of computational

simplicity and reduced variability since it avoids estimating small entries so that the noise for those

entries are not accumulated to the total noise of the estimator (Fan et al., 2016). This estimator has

also been shown to be asymtotically consistent, which leads to a positive definite matrix with

probability tending to one (Bickel et al., 2008a; Rothman et al., 2009).

However, with finite sample, the positive definiteness of the thresholding estimator is not guar-

anteed (Bickel et al., 2008a) since the thresholding the sample covariance matrix can cause the

eigenvalues of the matrix to take negative values. This is problematic since positive definiteness

is a basic requirement for a valid covariance matrix and losing positive definiteness will invalidate

many statistical analyses such as discriminant analysis where covariance matrices are used as an

input. The hard-thresholding estimator has been extended to generalized thresholding estimator

by Rothman et al. (2009) which encompasses hard-thresholding and soft-thresholding as special

cases but they are also not guaranteed to be positive definite.

The positive definiteness problem of the thresholding estimators has been addressed by en-

forcing a positive constraint on the eigenvalues. In Xue et al. (2012) and Liu et al. (2014), this

constraint has been imposed on the soft-thresholding estimator which uses the convex L1 penalty

to shrink the nonzero entries by the amount of the threshold. Wen et al. (2016) proposed a method

to find a positive definite solution of other thresholding estimators with non-convex penalty terms

such as the hard-thresholding estimator.
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In this chapter, we propose a new thresholding estimator that involves iterative conditional

fitting (or iterative conditional ridge) of non-zero entries determined by thresholding the sample

covariance matrix. The basic idea of this method is to perform constrained maximum likelihood es-

timation for nonzero entries after thresholding the sample covariance matrix. We prove this thresh-

olding estimator is always positive definite and asymptotically efficient with probability tending to

one. By finding the maximum likelihood estimator for the reduced set of parameters, the parameter

estimates will feature higher accuracy than other thresholding estimators.

Certainly, a valid concern with any thresholding estimators is that their performance depends

on the selection of the threshold (Bickel et al., 2008a). One value of our thresholding estimator

is that we can now appeal to the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) since our estimator is based on maximizing the normal likelihood. Our approach

not only allows us to select the threshold but also easily answer a question posed by Li and Zou

(2016): what is the analogue of AIC or BIC for the covariance matrix estimation? To the best of

our knowledge, we are the first to use AIC and BIC to select the threshold for covariance matrix

estimation with thresholding. We discuss theoretical properties of AIC and BIC to support our

choice of the threshold parameter. In multiple simulation studies, we compare the performance of

AIC and BIC with the popular cross-validation approach (Bickel et al., 2008a; Cai and Liu, 2011)

and the analytically derived threshold from Qiu and Liyanage (2019).

4.2 Some estimators of a sparse covariance matrix

To address the problem of numerous parameters, sparsity of the true covariance matrix is as-

sumed so that the number of the parameters can be reduced. There are two broad approaches for

estimating the sparse covariance matrix. One approach is to consider the natural ordering of the

covariates, meaning that the correlation between the covariates far from each other is low. For

example, in time-series data, the measurements for each time point can be ordered by the time and

the correlation between measurements far from each other in time is often expected to be lower

than that between measurements close to each other. Hence, the covariance matrix will have some

structure such as Toeplitz matrix. Using this information on the structure can reduce the number
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of the parameters to estimate in the covariance matrix.

However, there are many cases when such natural ordering of the covariates does not exist. In

this case, we need a “permutation-invariant" method which does not assume any ordering between

the covariates. This is the focus of this section and we will discuss three approaches to obtain

sparse covariance matrices: thresholding, penalizion and hypothesis testing.

4.2.1 Thresholding estimators

The simplest approach to obtain a sparse covariance matrix estimator is hard-thresholding:

simply cutting-off the entries below the threshold to zero and leave the other entries unchanged.

This can be obtained by solving the following optimization problem.

Σ̂ = argmin(
1

2
||Σ− S||2F +

λ2

2
||Σ||0)

where S is the sample covariance matrix, || · ||F is the Frobenius norm and || · ||0 is L0 norm of

the non-diagonal entries of a matrix. This hard-thresholding estimator of the covariance matrix

has been shown to be asymtotically positive definite (Bickel et al., 2008a). However, with finite

sample, the positive definiteness of the hard-thresholding estimator of the covariance matrix is not

guaranteed, restricting the use of the hard-thresholding in practice.

The threshold parameter λ can be either a constant for all elements in Σ or different for all

elements. The former is called the universal thresholding. Despite its simplicity, the universal

thresholding does not take into account the possible heteroscedasticity of the entries of the empir-

ical covariance matrix. To address such different variance for each entry of S, Cai and Liu (2011)

proposed the adaptive thresholding where different threshold is used for each element in Σ.

The thresholding estimator was extended to the generalized thresholding estimator (Rothman
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et al., 2009) whose (i, j)-th element σ̂ij satisfies the following conditions:

(i) |σ̂ij| ≤ |sij|

(ii) σ̂ij = 0 if |sij| ≤ λ

(iii) |σ̂ij − sij| ≤ λ

where sij is the (i, j)-th element of the sample covariance matrix S and λ is the threshold.

The generalized thresholding estimator encompasses hard-thresholding and soft-thresholding

as special cases. The most notable estimator is the soft-thresholding estimator which can be ob-

tained by solving the following optimization problem.

Σ̂ = argmin(
1

2
||Σ− S||2F + λ||Σ||1)

where S is the sample covariance matrix, || · ||F is the Frobenius norm and || · ||1 is L1 norm of

the non-diagonal entries of a matrix. One can show that the solution to this problem is simply soft-

thresholding the non-diagonal entries, that is, cutting-off the entries below the threshold to zero and

shrink the other entries by the amount of the threshold. As with the hard-thresholding estimator,

the solution to the above optimization problem is not necessarily a positive definite matrix.

4.2.1.1 Spectral projection for positive definiteness

To make a non-positive definite matrix to a positive definite matrix, one can consider a pro-

cedure so called spectral projection. Let Σ̂
HT

be a hard-thresholding estimator of the covariance

matrix Σ and let Σ̂
HT

= VΛVT be the eigen-decomposition of Σ̂
HT

where Λ is a diagonal matrix

of the eigenvalues of Σ̂
HT

. If Σ̂
HT

is not positive definite, some diagonal entries of Λ will take

zero or negative values. By replacing those entries with a small number ϵ and multiplying back

with V and VT , the resulting matrix will be a positive definite matrix. However, after the spectral

projection, the result may lose the sparsity pattern of the Σ̂
HT

. That is, some or many of the zero

entries of Σ̂
HT

will take non-zero values after the spectral projection, hence not appropriate for
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Table 4.1: Illustration of the hard thresholding and soft thresholding the sample covariance at λ

estimating sparse covariance matrix.

4.2.1.2 Positive definite approximation of the thresholding estimators

To remedy the positive definiteness issue, the soft-thresholding estimator with eigenvalue con-

straint has been proposed by Xue et al. (2012) (for covariance matrix) and Liu et al. (2014) (for

correlation matrix). This estimator can be obtained by adding the constraint that the eigenvalues

of the soft-thresholding estimator to be larger than a small number ϵ as below:

Σ̂ = argminΣ⪰ϵI(
1

2
||Σ− S||2F + λ||Σ||1).

Note that the constraint Σ ⪰ ϵI has been added to the optimization for the soft thresholding esti-

mator. This constrained optimization problem can be solved by the alternating directions method

of multipliers (ADMM) algorithm proposed by Boyd et al. (2011). The eigenvalue constraint is

imposed by the iterative spetral projection within each iteration of the ADMM algorithm.

While the soft thresholding estimator is obtained by the convex optimization with L1 norm
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penalty, other generalized thresholding estimators may be obtained by a form of non-convex penal-

ties. For example, the hard thresholding estimator is based on the optimization with L0 norm

penalty. Although such thresholding estimators with non-convex penalties can reduce bias com-

pared to the soft thresholding estimator, optimization of such non-convex problems may be harder

than the positive definite optimization of the soft thresholding estimator. For example, Liu et al.

(2014) considered the non-convex minimax concave penalty for covariance matrix estimation but

the their algorithm often fails to converge. Wen et al. (2016) proposed an algorithm to find a

positive definite approximation of thresholding estimators with non-convex penalties and proved

convergence of their algorithm.

4.2.2 Penalized likelihood estimators

In thresholding approach, no assumption is made on the distribution of the covariates and

Frobenius loss with some penalty terms are minimized. Alternatively, one can consider some

distributional assumption such as Gaussian distribution and minimization of the log-likelihood

function combined with some penalties on each element of the covariance matrix. Specifically, for

the Gaussian model, Lam and Fan (2009) considered minimization of the penalized likelihood

Σ̂ = argmin{log|Σ|+ tr(SΣ−1) + λ||Σ||1} (4.1)

and showed the the solution is consistent and asymptotically normal. To solve the problem, Bien

and Tibshirani (2011) proposed a majorization-minimization algorithm which finds a positive def-

inite solution to this problem. However, the algorithm finds the exact solution to the penalized

likelihood only when the sample size n is greater than the number of variables p. For the case

of n < p, Bien and Tibshirani (2011) suggested replacing the sample covariance matrix S in the

penalized likelihood with S + ϵIp for some ϵ > 0.
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4.3 A positive definite thresholding estimator with efficiency

4.3.1 The COMET estimator

We now extend the setup in Section 3.3 by assuming the location of the zero entries in a

covariance matrix is unknown and use thresholding to identify the zero entries. Then, the non-zero

entries are estimated by iterative conditional fitting (or iterative conditional ridge when n < p). We

show that, as the sample size increases, thresholding the sample covariance matrix will recover the

support for the non-zero entries with probability tending to one so that iterative conditional fitting

will compute an asymptotically efficient estimator.

We define COMET (COvariance Maximum-likelihood Estimator with Thresholding) given a

p× p matrix of threshold Λ = (λij)
p
i,j=1 as:

Σ̂Λ = argmaxΣ≻0,σij1{|sij |<λij}=0ℓ(Σ) (4.2)

where ℓ(Σ) is the log-likelihood function for Np(0,Σ), Σ ≻ 0 constrains Σ̂Λ to be a positive defi-

nite matrix, 1 is the indicator function and σij and sij are the (i, j)th entry in Σ and S, respectively.

Here, λij can be either a constant for all (i, j)s or different for each (i, j). The former is called

the universal thresholding (Bickel et al., 2008a). Despite its simplicity, the universal thresholding

does not take into account the possible heteroscedasticity of the entries of the sample covariance

matrix. For example, under the normal assumption with the covariance matrix Σ = (σij)
p
i,j=1, nS

has a Wishart distribution whose (i, j)th entry has variance n(σ2
ij + σiiσjj). To address such dif-

ferent variance for each entry of S, Cai and Liu (2011) proposed the adaptive thresholding where

different threshold λij is used for each sij .

The definition of COMET means that it is the maximum likelihood estimator for the non-

zero entries determined by thresholding the sample covariance matrix. Although the global so-

lution is not guaranteed, we can find a positive definite local solution by iterative conditional fit-

ting. The COMET estimator is implemented in the ‘COmet’ function in our R package mgcov

(https://github.com/Tanya-Garcia-Lab/mgcov).
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The next theorem discusses the asymptotic distribution of COMET when the threshold for the

(i, j)th entry takes the form λij = Cijn
−α as proposed in El Karoui et al. (2008). We assume that

iterative conditional fitting starts from a consistent estimator of Σ.

Theorem 2. Given the p × p sample covariance matrix S = (sij)
p
i,j=1 and a matrix of threshold

Λ = (λij)
p
i,j=1, define σΛ as the vector of elements in {σij : |sij| ≥ λij, i ≥ j}. Let σ̂Λ be the

estimator of σΛ computed from iterative conditional fitting. If λij = Cijn
−α for a positive constant

Cij , α = 0.5− γ > 0 and γ > 0, then, as n → ∞,

n
1
2 (σ̂Λ − σΛ) → N(0, I(σ)−1)

with probability tending to one where σ is the non-zero parameter vector in Σ and I(σ) is the

Fisher information matrix.

Remark 11. By σ̂Λ computed from iterative conditional fitting, we mean the vector of non-zero

entries in the lower (or upper) triangular part of Σ̂Λ.

Remark 12. When n < p, Theorem 2 holds for the solution computed from the iterative conditional

ridge. In this case, σΛ represents the vector of elements in {σij : |sij| ≥ λij, i > j} ∪ {σij + ϵ :

i = j}.

4.3.2 Selection of the threshold

When a covariance matrix is estimated by thresholding, the performance of the estimator is

crucially dependent on the selection of the threshold parameter (Bickel et al., 2008a). The higher

the threshold is, the fewer non-zero entries the estimator has. Although an estimator with fewer

non-zero entries is more interpretable in the sense that it is simpler, it may fail to identify some

non-zero entries in the true covariance matrix. On the other hand, a model with too low threshold

may contain spurious non-zero entries.
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4.3.2.1 Cross-validation

Cross-validation has been widely used for the selection of threshold parameter for covariance

matrix estimation, for example, Bickel et al. (2008a) for the universal thresholding and Cai and

Liu (2011) for the adaptive thresholding. The basic idea of the cross-validation is to minimize the

Frobenius risk of the estimator empirically as below.

1. Split the sample of size n randomly into two pieces of size n1 = n(1− 1

logn
) and n2 =

n

logn
.

2. Given a threshold λ, construct a thresholding estimator Σ̂1(λ) for the sample of size n1.

3. Construct the sample covariance matrix S2 for the sample of size n2.

4. Repeat 1-3 and compute the average of ||Σ̂1(λ)− S2||2F .

5. Choose λ̂ which minimizes the average of ||Σ̂1(λ)− S2||2F .

4.3.2.2 Threshold by Qiu and Liyanage (2019)

Qiu and Liyanage (2019) proposed an analytical form for the adaptive thresholding which is

theoretically optimal for minimizing the Frobenius risk.

For n observations y1, . . . , yn of a random vector Y = (Y1, . . . , Yp) with mean zero and co-

variance matrix Σ = (σij)
p
i,j=1, the standardized covariance ηij is defined as below:

ηij =
n1/2

(log p)1/2
σijθ

−1/2
ij

where θij = var(YiYj). Qiu and Liyanage (2019) defined a set of indices whose cardinality is

critical to derive the optimal threshold as below:

S = {(i, j) : i > j, |ηij| ∈ [a1, 2]}

where a1 = 2−min{(2 + log n/log p)1/2, 2}.
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They considered the optimal threshold δopt for the standardized covariance as the minimizer of

the Frobenius risk for the adaptive thresholding estimator as below:

δopt = argminδE||Σ̂(δ)−Σ||2F

where Σ̂(δ) is an adaptive thresholding estimator (Cai and Liu, 2011) with the threshold δ. They

proposed a consistent estimator of δopt as below:

δ =

√
2

[
2− log {N2(log p)−1/2}

log p

]

where N2 is the cardinality of S. For details of the estimation of N2, see Qiu and Liyanage (2019).

4.3.2.3 Information criteria for the selection of COMET threshold

Existing methods for threshold selection such as cross-validation do not make any distributional

assumption when selecting the threshold. If a specific distribution such as the Gaussian distribu-

tion is assumed, such assumption may be taken into account when the threshold is selected. The

COMET estimator allows us to consider such distributional assumptions, providing information

criteria as additional tools for selecting the threshold. Given a family of models, one can select a

specific model which is optimal under a pre-defined information criterion. Typical choice of such

criterion includes Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

AIC and BIC can be defined for the covariance matrix with zero entries as below:

AIC = −2ℓ(σ) + 2|σ|

BIC = −2ℓ(σ) + log(n)|σ|

where ℓ(σ) is the log-likelihood (3.16) and |σ| is the number of non-zero parameters in Σ. Al-

though AIC and BIC are commonly used for model selection in general, they have not been used for

the thresholding estimators of a covariance matrix because other thresholding estimators (Bickel
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et al., 2008a; Rothman et al., 2009) have been estimated regardless of the likelihood. However, the

COMET estimator involves maximization of the likelihood. Hence, computation and minimization

of AIC and BIC are straightforward for the COMET estimator.

The use of such information criteria can be advocated by their theoretical properties. Particu-

larly, BIC is known to be asymptotically consistent in model selection: given a family of models

including the true model, BIC will select the true model with probability tending to one as n → ∞

(Hastie et al., 2009). Thus, in conjunction with the Theorem 1, the COMET estimator selected

by BIC will give an asymptotically efficient estimator with high probability when n is large. On

the other hand, AIC was shown to be asymptotically equivalent to leave-one-out cross-validation

(Stone, 1977). With a small sample, AIC may be preferred to BIC because BIC often chooses too

simple models due to higher penalty on the model complexity than AIC.

4.4 Simulation Study

4.4.1 Simulation settings

We compare the performance of COMET with the hard thresholding estimator (Bickel et al.,

2008a; Cai and Liu, 2011). The difference between these estimators is in how we estimate the non-

zero entries. In the hard thresholding, the non-zero entries are estimated by the sample covariances

whereas they are estimated by iterative conditional fitting (when n > p) or iterative conditional

ridge (when n ≤ p) in COMET.

We generate 100 datasets, each with sample size n ∈ {25, 50, 100, 200} and the number of

variables p ∈ {10, 50} from Np(0,Σ). The covariance matrix Σ for each dataset is constructed

by Σ = DRD where R is a p × p correlation matrix and D is a diagonal matrix whose diag-

onal entries are randomly drawn from the uniform distribution on (0.1, 10). The multiplication

of the matrix D to a correlation matrix introduces heteroscedasticity in covariances and such a

simulation approach was also used in Qiu and Liyanage (2019). We adopt this approach to mimic

the characteristics of our Huntington disease data where the covariance matrix shows strong het-

eroscedasticity. The correlation matrix R = (ρij)
p
i,j=1 is determined by one of the following
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models.

• Moving average model: the moving average process of order one where ρij = 0.3 if |i−j| =

1 and ρij = 0 otherwise.

• Autoregressive model: the autoregressive process of order one where ρij = 0.5|i−j|.

• Block model: the set of indices {1, . . . , p} is partitioned into 5 non-overlapping subsets

S1, . . . , S5 of equal size and the (i, j)th entry of Σ is ρij = 0.5I(i=j) + 0.5
∑5

k=1 I(i∈Sk,j∈Sk).

The moving average model and the autoregressive model are typical time series models that have

been used in many covariance estimation studies such as Rothman et al. (2009) and Qiu and Liyan-

age (2019). In the moving average model, most of the covariances are zero and identifying those

zero entries in the covariance matrix can reduce estimation error. On the other hand, the autore-

gressive model does not contain any zero entry but most of the covariance entries are close to zero

for large p such as p = 50. Hence, estimating those entries as zero can also reduce estimation error.

The block model has also been considered in many studies including Bien and Tibshirani (2011)

and Liu et al. (2014). In this model, the groups of variables in different blocks are independent to

each other and the maximum likelihood estimator for each block is equal to the sample covariance

matrix. Hence, if all zero and non-zero entries are correctly identified by a threshold, the COMET

estimator is equal to the hard thresholding estimator.

To account for the heteroscedasticity, the adaptive thresholding (Cai and Liu, 2011) is used for

both COMET and the hard thresholding. For the hard thresholding, the threshold is selected by the

cross-validation (Bickel et al., 2008a) and by the closed-form threshold (Qiu and Liyanage, 2019).

For COMET, AIC, BIC and the closed-form threshold (Qiu and Liyanage, 2019) are used for the

threshold selection.

4.4.2 Performance evaluation

Covariance matrix estimators are evaluated in two aspects: covariance estimation and support

recovery. Estimation aspect measures how close the estimator is to the true covariance matrix. Sup-
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port recovery aspect considers how well the zero entries and nonzero entries in the true covariance

matrix are detected in the estimator.

For comparing estimation performance, we use the Frobenius loss, ||Σ̂−Σ||F = {
∑

i,j(σ̂ij −

σij)
2}1/2, which measures the distance between the true covariance matrix Σ and an estimator

Σ̂. We also compute the entropy loss, −log|Σ̂Σ−1| + tr(Σ̂Σ−1) − p, a measure of the Kullback-

Liebler divergence of two multivariate normal densities (Pourahmadi, 2013). Both measures are

commonly used for comparing covariance estimation performance (Huang et al., 2006; Bien and

Tibshirani, 2011). For both measures, an estimator with lower value is more desirable.

For evaluating support recovery performance, we compare the true positive rate and the false

positive rate. The true positive rate is the tendency to correctly estimating non-zero entries in the

true covariance matrix as non-zero while the false positive rate is the tendency to falsely estimating

zero entries in the true covariance matrix as non-zero. These are standard measures for support

recovery (Rothman et al., 2009; Xue et al., 2012) and defined as below:

True positive rate =
#{(i, j) : σ̂ij ̸= 0, σij ̸= 0}

#{(i, j) : σij ̸= 0}

False positive rate =
#{(i, j) : σ̂ij ̸= 0, σij = 0}

#{(i, j) : σij = 0}

where # denotes the number of elements in a set. An estimator with higher true positive rate and

lower false positive rate is preferred.

We also check whether each estimator is a positive definite matrix, which is a requirement for

a valid covariance matrix. Since the solution from the iterative conditional fitting algorithm is

always positive definite, we can always find a positive definite COMET estimator. On the other

hand, hard thresholding the sample covariance matrix may result in losing the positive definiteness

of the matrix. Positive definite approximation of the thresholding estimators was studied in Wen

et al. (2016) for the universal thresholding but their method may need modification for the adaptive

thresholding which is out of the scope of our analysis.
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4.4.3 Simulation results

For estimation performance, we show boxplots of Frobenius loss and entropy loss for the case

of n = 100, p = 50 in Figure 4.1 and the case of n = 25, p = 50 in Figure 4.2. Support recovery

performance of the thresholding estimators for different n and p is plotted in Figure 4.3. Simulation

results for more cases are presented in Appendix C.1.

First, we compare the COMET estimators with different threshold parameters selected by AIC,

BIC and the closed-form threshold (Qiu and Liyanage, 2019). Due to higher penalty on model

complexity, BIC selects higher threshold than AIC. Because more zero entries in the true co-

variance matrix Σ are correctly estimated to be zero by higher threshold, BIC leads to lower false

positive rate, Frobenius loss and entropy loss than AIC. The closed-form threshold (Qiu and Liyan-

age, 2019) tends to select even higher threshold than BIC. When the sample size is greater than

the number of variable (e.g. n = 100, p = 50), such a high threshold is problematic because many

non-zero entries in Σ are estimated to be zero, as seen by low true positive rate in Figure 4.3. This

also results in higher Frobenius loss and entropy loss than BIC in Figure 4.1. However, when the

sample size is smaller than the number of variable (e.g. n = 25, p = 50), many zero entries in

Σ are spuriously estimated to be non-zero by BIC, as seen by high false positive rate in the lower

panels of Figure 4.3. As a result, the COMET estimators with BIC-threshold tend to show higher

Frobenius loss and entropy loss than the COMET estimators with the closed-form threshold in

Figure 4.2. Hence, for the selection of COMET threshold, we suggest BIC when n > p and the

closed-form threshold when n ≤ p.

Next, we compare the COMET estimator with the hard thresholding estimator whose threshold

parameter is selected by cross-validation or the closed-form threshold (Qiu and Liyanage, 2019).

When n > p, the COMET estimator with BIC-threshold tends to be closer to the true covariance

matrix Σ than hard thresholding estimators as seen by lower Frobenius loss and entropy loss in

Figure 4.1. When n ≤ p, the COMET estimator with the closed-form threshold shows comparable

results with hard thresholding estimators in Figure 4.2.

Regarding positive definiteness, the hard thresholding estimators often failed to be positive-
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Figure 4.1: Boxplots of Frobenius loss and entropy loss when n = 100 and p = 50; S, sample
covariance matrix; AIC, threshold selected by the AIC; BIC, threshold selected by the BIC; CF,
threshold selected by the closed-from threshold; CV, threshold selected by the cross-validation.
The estimator with grey box has the lowest mean.
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definite. For example, when n = 25 and p = 50, the hard thresholding estimators are not positive

definite for 100% of the simulated datasets from the block model. More results on the non-positive

definite hard thresholding estimators are presented in Appendix C.1. Since COMET estimators

are always positive definite, the COMET estimator is still preferred even when the sample size is

smaller than the number of variables.

4.4.4 Simulation for Non-Gaussian Models

One of the main difference between the COMET and other estimators is that the COMET is

based on the maximum likelihood estimation for Gaussian distribution. In this section, we compare

the COMET with other estimators for non-Gaussian settings.

As non-Gaussian models, we consider a log-normal distribution, Lognormal(µ, σ2) with µ = 0

and σ = 1, and an exponential distribution, Exp(λ) with λ = 1. The samples from these non-

Gaussian distributions are drawn by the following procedure.

1. Draw samples (yi1, . . . , yip)
T from Np(0,Σ) where Σ is equal to one of the correlation

matrix described in Section 4.2.1.

2. For each i and j, compute F−1{Φ(yij)} where Φ is the distribution function of the standard

normal distribution and F is the distribution function of either the log-normal distribution or

the exponential distribution.

From our simulation studies, we do not find strong outperformance of one method over others

as seen in Figure 4.4. For the log-normal distribution, the hard thresholding estimators tend to

show slightly lower Frobenius loss than the COMET with AIC-threshold or BIC-threshold. For

the exponential distribution, however, vice versa. This suggest that the COMET is as competitive

as other estimators for non-Gaussian cases.

4.5 Correlations between brain regions for Huntington Disease

We apply our method to the PREDICT-HD study, a large observational study from 2001 to 2013

on potential neurobiological markers of Huntington Disease. Huntington disease is a genetically
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Figure 4.4: Boxplots of Frobenius loss for lognormal distribution and exponential distribution
when n = 100 and p = 10; S, sample covariance matrix; AIC, threshold selected by the AIC; BIC,
threshold selected by the BIC; CF, threshold selected by the closed-from threshold; CV, threshold
selected by the cross-validation. The estimator with grey box has the lowest mean.
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inherited neurodegenerative disorder with cognitive and motor decline. Since those symptoms are

caused by volume loss or enlargement of some brain regions, treatments for the disease attempt

to interrupt the change of brain regional volumes. However, assessing the effect of a treatment

is challenging since brain regions are correlated to each other. For example, a treatment may

lower the level of protein called mutant Huntingtin (mHTT) in cerebrospinal fluid, a fluid that

surrounds the brain (Tabrizi et al., 2019). The level of mHTT in cerebrospinal fluid was found to

be negatively associated with the volume of caudate, one of the brain regions that control motor

functions (Rodrigues et al., 2020). In other words, the lower the level of the protein, the slower

the volume loss of caudate, thus the slower the motor decline, meaning that the treatment will

delay motor impairment. However, the treatment may affect other brain regions as well which

are correlated to caudate. Hence, to assess the effect of the treatment, which brain regions are

correlated to caudate needs to be identified first by detecting non-zero entries in a correlation

matrix.

To detect non-zero correlations, we estimate the covariance matrix of the brain regional vol-

umes by COMET with BIC-threshold. We use the PREDICT-HD data of 710 subjects who are

“at risk" of the Huntington disease. Subjects at risk have mutated gene with CAG (cytosine, ade-

nine, guanine) repeats greater than 35 and they will exhibit Huntington disease symptoms in their

life time. Volumes of 41 brain regions are measured by MRI scanners for each patient and the

41 × 41 covariance matrix of the volume measures of those regions are estimated by COMET.

Other thresholding estimators discussed in Section 4.4 have also been applied to the data but all

hard thresholding estimators were not positive definite. We therefore proceed with our analysis

using COMET with BIC-threshold which produced the most reliable positive definite estimator in

terms of estimation and support recovery in the simulation studies. Data analysis results for other

estimators are summarized in Appendix C.2.

In Figure 4.5, COMET with BIC-threshold identifies brain regions which have non-zero cor-

relations with the basal ganglia, a brain structure that controls motor movement and is known to

shrink prominently as the Huntington disease progresses. The regions with positive correlations
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coincide with regions which are known to shrink together with the basal ganglia (Reiner et al.,

2011). The negative correlations are explained by the enlargement of ventricular system, a set of

interconnected cavities, for Huntington disease patients (Reiner et al., 2011; Tabrizi et al., 2019).

However, such ventricular enlargement was not captured in earlier covariance studies (Minkova

et al., 2016; Coppen et al., 2016) where Bonferroni correction selected non-zero correlations con-

servatively, detecting only positive correlations. Bonferroni correction result for the PREDICT-

HD data is given in Appendix C.2. Our COMET correlation matrix in Figure 4.5 contains both

the positive and the negative correlations which inform us how each brain region will be affected

by a potential treatment. For example, if a treatment slows the shrinkage of the basal ganglia, the

shrinkage of positively correlated regions and the enlargement of negatively correlated regions will

also get slower, leading to slower decline of the functions controlled by those regions.

In contrast to the positive correlations, the structure of the negative correlations differs by the

regions of the basal ganglia: accumbens, caudate, putamen, and palidium. Figure 4.6 compares

the negative correlation structure through network graphs with each node representing each brain

region. A negative correlation between two regions is shown by an edge between two nodes, and

no edge means that the correlation between two regions is either zero or positive. These network

graphs indicate that each region of the basal ganglia affects other brain regions differently. For ex-

ample, Huntington disease is characterized by the shringkage of the basal ganglia and concomitant

enlargement of the lateral ventricles (Reiner et al., 2011; Degnan and Levy, 2014). Our correlation

matrix looks deeper into the correlations of lateral ventricles to each region of the basal ganglia

and reveals zero correlation to the caudate and non-zero correlations to other regions of the basal

ganglia. This implies that a treatment which targets the caudate may not affect the lateral ventri-

cles whereas another treatment which targets the putamen or the pallidum may affect the lateral

ventricles. A similar conclusion about the lack of association between the caudate and the lateral

ventricles was drawn in Milovanovic et al. (2018) for schizophrenia, a mental disorder which also

involves volume loss of the caudate as Huntington disease (Williams, 2016).
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Figure 4.6: Network graphs of the negative correlations by COMET with BIC-threshold for some
regions of the basal ganglia: left caudate, left putamen and left pallidum; WH: WM hypointensi-
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4.6 Discussion

The non-zero entries of the COMET estimator can be biased due to model misspecification. An

interesting avenue for research is the development of information criteria to mitigate model mis-

specification. Lv and Liu (2014) studied the model selection in misspecified models and extended

AIC and BIC to account for the misspecification bias in generalized linear models. They proposed

the generalized BIC with prior probability (GBICp) which admits a decomposition of the form

goodness of fit + model complexity + model misspecification,

whose last term has not been considered in AIC and BIC. Such extension to AIC and BIC can be

pursued for the selection of the threshold parameter for the COMET estimator.

Although we have focused on thresholding in this chapter, the maximum likelihood estimation

for the non-zero entries in a covariance matrix can also be combined with other selection proce-

dures for detecting non-zero entries. For example, we can combine iterative conditional fitting

with banding (Bickel et al., 2008b). Such a banding estimator will always be positive definite, a

property not owned by other banding estimators in general. We can also appeal to AIC and BIC

for the selection of the bandwidth parameter.
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5. SUMMARY AND CONCLUSIONS

In this age of big data, data are often collected on numerous variables. For example, in neu-

roscience, a brain is composed of many regions and the volume of each brain region is measured

for monitoring the progress of a neurodegenerative disease. However, as quoted by Rutherford

D. Rogers: “We are drowning in information and starving for knowledge", information on each

variable is not equally important to explain variables of our interest and there is a growing need to

extract essential relationships among the variables in the data.

A statistical assumption to address such problems is sparsity, meaning that only a small number

of relationships are non-zero. Driven by current interdisciplinary problems in neuroscience, this

dissertation proposes statistical methods that exploit sparsity in varying-coefficient regression and

covariance matrix estimation.

We believe that the methods proposed in this dissertation pose many interesting topics for future

research. We conclude this dissertation by suggesting some of those topics below.

5.1 Personalized Statistical Modeling and Applications

Although the structural varying-coefficient regression (svReg) was motivated by a neuroscience

problem, it can be applied to any areas where personalization is needed in regression modeling.

For example, the method can be used as a pricing method for personalized insurance products

(presented in Actuarial Research Conference 2021).

Such personalization can also be pursued in other statistical modeling such as covariance ma-

trix estimation. When the data can be split into several subgroups, the covariance matrix among

variables is estimated by either a common covariance matrix for all data (when we assume equal

covariance matrices between subgroups), or a separate covariance matrix for each subgroup (when

we do not assume equal covariance matrices). However, even if we can not assume equal co-

variances across all subgroups, some covariance entries may be common through all subgroups.

Since the penalty terms in the svReg considers differentiated modeling for each subgroup, such
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penalization techniques can be extended to the problem of covariance matrix estimation for each

subgroup.

5.2 Informed estimation of a covariance matrix

A covariance matrix is essential for the risk management in the finance and insurance industry,

for example, for regulatory purposes BCBS (2010); Calibration (2010). The regulators in the

industry often specifies some covariance entries with fixed values. However, insurance companies

often need to model covariance entries which are not specified by the regulator. When some

entries in a covariance matrix is known a priori or provided by external sources (e.g. regulations in

finance industry), we need an estimator which is subject to those constraints. Just replacing those

entries in a sample covariance matrix with the constrained values is not optimal in any sense (e.g.

maximizing the likelihood) and may lose positive definiteness.

This problem can be cast as a matrix completion problem where some entries of the matrix

are known and other missing entries need to be estimated. Georgescu et al. (2018) finds a closed-

form solution to such covariance matrices based on maximization of the determinant of the matrix.

Since this method does not depend on the data, it may be useful if there is no data to fill the

missing entries. However, if some data are available, considering those data will improve the

estimation. Also, the method in Georgescu et al. (2018) is applicable only when the missing

entries are patterned in certain ways.

We can potentially apply the iterative conditional fitting algorithm (Chaudhuri et al., 2007) to

such covariance matrix completion problems. For now, the iterative conditional fitting algorithm

estimates non-zero entries in a covariance matrix given some constraints that some entries are zero.

By some modification to the algorithm, it can be used when we have some "non-zero constraints"

(compared to the zero constraints). Because the iterative conditional fitting algorithm finds the

MLE for the unconstrained entries while it gaurantees positive definiteness, we can find a valid

and optimal solution to the missing entries in terms of likelihood maximization.
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5.3 Information Criteria to Address Misspecification for COMET

The non-zero entries of the COMET estimator can be biased due to model misspecification. An

interesting avenue for research is the development of information criteria to mitigate model mis-

specification. Lv and Liu (2014) studied the model selection in misspecified models and extended

AIC and BIC to account for the misspecification bias in generalized linear models.

Given n observations, let ℓn(θ) be the log-likelihood function for the parameter vector θ. Lv

and Liu (2014) defined the generalized AIC (GAIC) and the generalized BIC (GBIC) as below:

GAIC = −2ℓn(θ) + 2tr(Ĥn)

GBIC = −2ℓn(θ) + log(n) · p− log|Ĥn|

GBICp = −2ℓn(θ) + log(n) · p+ tr(Ĥn)− log|Ĥn|

where p is the number of predictors and Ĥn = Â
−1

n B̂n is an estimator of the so-called covari-

ance contrast matrix Hn. If the model is correctly specified, Hn = Ip so that tr(Hn) = p and

log|Hn| = 0, thus the GAIC and the GBIC will be close to AIC and BIC, respectively. The

estimation of Ĥn will be discussed later.

The GAIC incorporates the effects of model complexity and model misspefication in a single

term, tr(Ĥn). Such a term can be shown to be non-negative, meaning that the term is indeed a

penalty term for penalizing the complex models or misspecified models. The form of the GAIC

has also been studied by others (Takeuchi, 1976; Stone, 1977). For the GAIC, Lv and Liu (2014)

proposed a bootstrap estimator for tr(Ĥn).

In the GBIC, the model complexity and model misspefication are reflected in separate terms.

That is, the term log(n) · p penalizes the complex models as in the BIC while the term −log|Ĥn|

reflects the model misspecification. However, −log|Ĥn| is not always non-negative and thus is

not necessarily a penalty term. On the other hand, the GBICp can be rearranged as below:

GBICp = −2ℓn(θ) + {1 + log(n)} · p+ 2KL{N(0, B̂n);N(0, Ân)}
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where KL{N(0, B̂n);N(0, Ân)} = (1/2){tr(Ĥn)− log|Ĥn| − p} is the Kullback-Leibler diver-

gence of N(0, Ân) from N(0, B̂n), hence a positive value. That is,

GBICp = goodness of fit + model complexity + model misspecification.

where both the second and the third penalty terms are all non-negative. Note that the last term for

model misspecification has not been considered in our AIC and BIC for the COMET estimator.

Such extension to AIC and BIC can be pursued for the selection of the threshold parameter for the

COMET estimator.

104



REFERENCES

Abadir, K. M. and Magnus, J. R. (2005). Matrix algebra, volume 1. Cambridge University Press.

Anderson, T. W. (1970). Estimation of covariance matrices which are linear combinations or whose

inverses are linear combinations of given matrices. Essays in probability and statistics pages

1–24.

Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear

structure. The Annals of Statistics 1, 135–141.

Aylward, E. H., Harrington, D. L., Mills, J. A., Nopoulos, P. C., Ross, C. A., Long, J. D., Liu, D.,

Westervelt, H. K., and Paulsen, J. S. (2013). Regional atrophy associated with cognitive and

motor function in prodromal huntington disease. Journal of Huntington’s disease 2, 477–489.

BCBS, I. (2010). Developments in modelling risk aggregation. Basel Committee on Banking

Supervision .

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-

erful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Method-

ological) pages 289–300.

Berger, M., Tutz, G., and Schmid, M. (2017). Tree-structured modelling of varying coefficients.

Statistics and Computing pages 1–13.

Bickel, P. J., Levina, E., et al. (2008a). Covariance regularization by thresholding. The Annals of

Statistics 36, 2577–2604.

Bickel, P. J., Levina, E., et al. (2008b). Regularized estimation of large covariance matrices. The

Annals of Statistics 36, 199–227.

Bien, J., Bunea, F., and Xiao, L. (2016). Convex banding of the covariance matrix. Journal of the

American Statistical Association 111, 834–845.

Bien, J., Taylor, J., and Tibshirani, R. (2013). A lasso for hierarchical interactions. Annals of

Statistics 41, 1111.

Bien, J. and Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix. Biometrika 98,

105



807–820.

Biglan, K. M., Ross, C. A., Langbehn, D. R., Aylward, E. H., Stout, J. C., Queller, S., Carlozzi,

N. E., Duff, K., Beglinger, L. J., and Paulsen, J. S. (2009). Motor abnormalities in premanifest

persons with huntington’s disease: the predict-hd study. Movement Disorders 24, 1763–1772.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations and

Trends® in Machine learning 3, 1–122.

Bürgin, R. and Ritschard, G. (2015). Tree-based varying coefficient regression for longitudinal

ordinal responses. Computational Statistics & Data Analysis 86, 65–80.

Butte, A. J., Tamayo, P., Slonim, D., Golub, T. R., and Kohane, I. S. (2000). Discovering functional

relationships between rna expression and chemotherapeutic susceptibility using relevance net-

works. Proceedings of the National Academy of Sciences 97, 12182–12186.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal

of the American Statistical Association 106, 672–684.

Cai, T. T., Zhang, C.-H., Zhou, H. H., et al. (2010). Optimal rates of convergence for covariance

matrix estimation. The Annals of Statistics 38, 2118–2144.

Calibration, C. (2010). Solvency ii calibration paper (15.4. 2010). URL: https://eiopa. europa.

eu/fileadmin/tx_dam/files/publications/submissionstotheec/CEIOPS-Calibration-paper-

Solvency-II. pdf .

Chaudhuri, S., Drton, M., and Richardson, T. S. (2007). Estimation of a covariance matrix with

zeros. Biometrika 94, 199–216.

Coppen, E. M., van der Grond, J., Hafkemeijer, A., Rombouts, S. A., and Roos, R. A. (2016). Early

grey matter changes in structural covariance networks in huntington’s disease. NeuroImage:

Clinical 12, 806–814.

Degnan, A. J. and Levy, L. M. (2014). Neuroimaging of rapidly progressive dementias, part 1:

neurodegenerative etiologies. American Journal of Neuroradiology 35, 418–423.

Drton, M. and Perlman, M. D. (2004). Model selection for gaussian concentration graphs.

106



Biometrika 91, 591–602.

Drton, M., Perlman, M. D., et al. (2007). Multiple testing and error control in gaussian graphical

model selection. Statistical Science 22, 430–449.

Drton, M. and Richardson, T. S. (2002). A new algorithm for maximum likelihood estimation

in gaussian graphical models for marginal independence. In Proceedings of the Nineteenth

conference on Uncertainty in Artificial Intelligence, pages 184–191. Morgan Kaufmann Pub-

lishers Inc.

Du, W. and Tibshirani, R. (2018). A pliable lasso for the Cox model. arXiv preprint

arXiv:1807.06770 .

Efron, B. (2012). Large-scale inference: empirical Bayes methods for estimation, testing, and

prediction, volume 1. Cambridge University Press.

El Karoui, N. et al. (2008). Operator norm consistent estimation of large-dimensional sparse

covariance matrices. The Annals of Statistics 36, 2717–2756.

El Karoui, N. et al. (2010). High-dimensionality effects in the markowitz problem and other

quadratic programs with linear constraints: Risk underestimation. The Annals of Statistics

38, 3487–3566.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of the American Statistical Association 96, 1348–1360.

Fan, J., Liao, Y., and Liu, H. (2016). An overview of the estimation of large covariance and

precision matrices. The Econometrics Journal 19, C1–C32.

Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2012). Applied longitudinal analysis, volume

998. John Wiley & Sons.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). A note on the group lasso and a sparse group

lasso. arXiv preprint arXiv:1001.0736 .

Furrer, R. and Bengtsson, T. (2007). Estimation of high-dimensional prior and posterior covariance

matrices in kalman filter variants. Journal of Multivariate Analysis 98, 227–255.

Garcia, T. P. and Müller, S. (2014). Influence of measures of significance based weights in the

107



weighted lasso. Journal of the Indian Society of Agricultural Statistics 68, 131–144.

Garcia, T. P., Müller, S., Carroll, R. J., Dunn, T. N., Thomas, A. P., Adams, S. H., Pillai, S. D., and

Walzem, R. L. (2013). Structured variable selection with q-values. Biostatistics 14, 695–707.

Garcia, T. P., Müller, S., et al. (2016). Cox regression with exclusion frequency-based weights to

identify neuroimaging markers relevant to Huntington’s disease onset. The Annals of Applied

Statistics 10, 2130–2156.

Georgescu, D. I., Higham, N. J., and Peters, G. W. (2018). Explicit solutions to correlation matrix

completion problems, with an application to risk management and insurance. Royal Society

open science 5, 172348.

Gertheiss, J. and Tutz, G. (2012). Regularization and model selection with categorial effect modi-

fiers. Statistica Sinica 22, 957–982.

Hallac, D., Leskovec, J., and Boyd, S. (2015). Network lasso: Clustering and optimization in large

graphs. In Proceedings of the 21th ACM SIGKDD international conference on knowledge

discovery and data mining, pages 387–396. ACM.

Haris, A., Witten, D., and Simon, N. (2016). Convex modeling of interactions with strong heredity.

Journal of Computational and Graphical Statistics 25, 981–1004.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical

Society. Series B (Methodological) pages 757–796.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data

mining, inference, and prediction. Springer Science & Business Media.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical learning with sparsity: the lasso

and generalizations. CRC press.

Hsu, H.-L., Ing, C.-K., Tong, H., et al. (2019). On model selection from a finite family of possibly

misspecified time series models. Annals of Statistics 47, 1061–1087.

Huang, J. Z., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance matrix selection and

estimation via penalised normal likelihood. Biometrika 93, 85–98.

Johnson, R. A., Wichern, D. W., et al. (2002). Applied multivariate statistical analysis, volume 5.

108



Prentice hall Upper Saddle River, NJ.

Kauermann, G. (1996). On a dualization of graphical gaussian models. Scandinavian journal of

statistics pages 105–116.

Kieburtz, K., Penney, J. B., Corno, P., Ranen, N., Shoulson, I., Feigin, A., Abwender, D.,

Greenarnyre, J. T., Higgins, D., Marshall, F. J., et al. (2001). Unified huntington’s disease

rating scale: reliability and consistency. Neurology 11, 136–142.

Kubat, M., Holte, R. C., and Matwin, S. (1998). Machine learning for the detection of oil spills in

satellite radar images. Machine Learning 30, 195–215.

Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrix

estimation. Annals of statistics 37, 4254.

Li, D. and Zou, H. (2016). Sure information criteria for large covariance matrix estimation and

their asymptotic properties. IEEE Transactions on Information Theory 62, 2153–2169.

Lim, M. and Hastie, T. (2015). Learning interactions via hierarchical group-lasso regularization.

Journal of Computational and Graphical Statistics 24, 627–654.

Liu, H., Wang, L., and Zhao, T. (2014). Sparse covariance matrix estimation with eigenvalue

constraints. Journal of Computational and Graphical Statistics 23, 439–459.

Lv, J. and Liu, J. S. (2014). Model selection principles in misspecified models. Journal of the

Royal Statistical Society: Series B: Statistical Methodology pages 141–167.

Ma, S. and Song, P. X.-K. (2015). Varying index coefficient models. Journal of the American

Statistical Association 110, 341–356.

Milovanovic, N., Damjanovic, A., Milovanovic, S., Duisin, D., Malis, M., Stankovic, G.,

Rankovic, A., Latas, M., F Filipovic, B., and R Filipovic, B. (2018). Reliability of the bi-

caudate parameter in the revealing of the enlarged lateral ventricles in schizophrenia patients.

Psychiatria Danubina 30, 150–156.

Minkova, L., Eickhoff, S. B., Abdulkadir, A., Kaller, C. P., Peter, J., Scheller, E., Lahr, J., Roos,

R. A., Durr, A., Leavitt, B. R., et al. (2016). Large-scale brain network abnormalities in h

untington’s disease revealed by structural covariance. Human brain mapping 37, 67–80.

109



Misiura, M. B., Lourens, S., Calhoun, V. D., Long, J., Bockholt, J., Johnson, H., Zhang, Y.,

Paulsen, J. S., Turner, J. A., Liu, J., et al. (2017). Cognitive control, learning, and clinical

motor ratings are most highly associated with basal ganglia brain volumes in the premanifest

huntington’s disease phenotype. Journal of the International Neuropsychological Society 23,

159–170.

Monahan, J. F. (2008). A primer on linear models. CRC Press.

Na, S., Yang, Z., Wang, Z., and Kolar, M. (2019). High-dimensional varying index coefficient

models via stein’s identity. Journal of Machine Learning Research 20, 1–44.

Oelker, M.-R., Gertheiss, J., and Tutz, G. (2014). Regularization and model selection with cate-

gorical predictors and effect modifiers in generalized linear models. Statistical Modelling 14,

157–177.

Paulsen, J. S., Long, J. D., Johnson, H. J., Aylward, E. H., Ross, C. A., Williams, J. K., Nance,

M. A., Erwin, C. J., Westervelt, H. K., Harrington, D. L., et al. (2014a). Clinical and

biomarker changes in premanifest huntington disease show trial feasibility: a decade of the

predict-hd study. Frontiers in aging neuroscience 6, 78.

Paulsen, J. S., Long, J. D., Ross, C. A., Harrington, D. L., Erwin, C. J., Williams, J. K., Wester-

velt, H. J., Johnson, H. J., Aylward, E. H., Zhang, Y., et al. (2014b). Prediction of manifest

huntington’s disease with clinical and imaging measures: a prospective observational study.

The Lancet Neurology 13, 1193–1201.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data:

Unconstrained parameterisation. Biometrika 86, 677–690.

Pourahmadi, M. (2013). High-dimensional covariance estimation: with high-dimensional data,

volume 882. John Wiley & Sons.

Qiu, Y. and Liyanage, J. S. (2019). Threshold selection for covariance estimation. Biometrics 75,

895–905.

Reilmann, R., Leavitt, B. R., and Ross, C. A. (2014). Diagnostic criteria for huntington’s disease

based on natural history. Movement Disorders 29, 1335–1341.

110



Reiner, A., Dragatsis, I., and Dietrich, P. (2011). Genetics and neuropathology of huntington’s

disease. International review of neurobiology 98, 325–372.

Rencher, A. C. and Schaalje, G. B. (2008). Linear models in statistics. John Wiley & Sons.

Rodrigues, F. B., Byrne, L. M., Tortelli, R., Johnson, E. B., Wijeratne, P. A., Arridge, M., De Vita,

E., Ghazaleh, N., Houghton, R., Furby, H., et al. (2020). Longitudinal dynamics of mu-

tant huntingtin and neurofilament light in huntington’s disease: the prospective hd-csf study.

medRxiv .

Rodrigues, F. B. and Wild, E. J. (2018). Huntington’s disease clinical trials corner: August 2018.

Journal of Huntington’s disease 7, 279–286.

Rothman, A. J., Levina, E., and Zhu, J. (2009). Generalized thresholding of large covariance

matrices. Journal of the American Statistical Association 104, 177–186.

She, Y., Wang, Z., and Jiang, H. (2018). Group regularized estimation under structural hierarchy.

Journal of the American Statistical Association 113, 445–454.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013). A sparse-group lasso. Journal of

Computational and Graphical Statistics 22, 231–245.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and akaike’s

criterion. Journal of the Royal Statistical Society: Series B (Methodological) 39, 44–47.

Tabrizi, S. J., Leavitt, B. R., Landwehrmeyer, G. B., Wild, E. J., Saft, C., Barker, R. A., Blair,

N. F., Craufurd, D., Priller, J., Rickards, H., et al. (2019). Targeting huntingtin expression in

patients with huntington’s disease. New England Journal of Medicine 380, 2307–2316.

Tabrizi, S. J., Reilmann, R., Roos, R. A., Durr, A., Leavitt, B., Owen, G., Jones, R., Johnson, H.,

Craufurd, D., Hicks, S. L., et al. (2012). Potential endpoints for clinical trials in premanifest

and early huntington’s disease in the track-hd study: analysis of 24 month observational data.

The Lancet Neurology 11, 42–53.

Takeuchi, K. (1976). Distribution of information statistics and criteria for adequacy of models.

Mathematical Science 153, 12–18.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

111



Statistical Society. Series B (Methodological) pages 267–288.

Tibshirani, R. and Friedman, J. (2019). A pliable lasso. Journal of Computational and Graphical

Statistics pages 1–11.

Wang, J. C. and Hastie, T. (2014). Boosted varying-coefficient regression models for product

demand prediction. Journal of Computational and Graphical Statistics 23, 361–382.

Wang, L., Li, H., and Huang, J. Z. (2008). Variable selection in nonparametric varying-coefficient

models for analysis of repeated measurements. Journal of the American Statistical Associa-

tion 103, 1556–1569.

Watson, G. (1963). A note on maximum likelihood. Technical report, JOHNS HOPKINS UNIV

BALTIMORE MD.

Wei, F., Huang, J., and Li, H. (2011). Variable selection and estimation in high-dimensional

varying-coefficient models. Statistica Sinica 21, 1515.

Wen, F., Yang, Y., Liu, P., and Qiu, R. C. (2016). Positive definite estimation of large covariance

matrix using generalized nonconvex penalties. IEEE Access 4, 4168–4182.

Wermuth, N., Cox, D. R., Marchetti, G. M., et al. (2006). Covariance chains. Bernoulli 12, 841–

862.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Journal

of the econometric society pages 1–25.

Williams, M. (2016). An introduction to the caudate in schizophrenia. Oruen - The CNS Journal

2, 40–42.

Wu, W. B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance matrices of

longitudinal data. Biometrika 90, 831–844.

Xue, L., Ma, S., and Zou, H. (2012). Positive-definite ℓ1-penalized estimation of large covariance

matrices. Journal of the American Statistical Association 107, 1480–1491.

Yu, D., Zhang, X., and Yau, K. K. (2018). Asymptotic properties and information criteria for

misspecified generalized linear mixed models. Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 80, 817–836.

112



Yuan, M., Joseph, V. R., Zou, H., et al. (2009). Structured variable selection and estimation. The

Annals of Applied Statistics 3, 1738–1757.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68, 49–67.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The

Annals of statistics 38, 894–942.

Zhang, Y., Long, J. D., Mills, J. A., Warner, J. H., Lu, W., Paulsen, J. S., Investigators, P.-H., and

of the Huntington Study Group, C. (2011). Indexing disease progression at study entry with

individuals at-risk for Huntington disease. American Journal of Medical Genetics Part B:

Neuropsychiatric Genetics 156, 751–763.

Zhao, P., Rocha, G., Yu, B., et al. (2009). The composite absolute penalties family for grouped and

hierarchical variable selection. The Annals of Statistics 37, 3468–3497.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of Machine learning

research 7, 2541–2563.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 67, 301–320.

Zou, T., Lan, W., Wang, H., and Tsai, C.-L. (2017). Covariance regression analysis. Journal of the

American Statistical Association 112, 266–281.

Zwiernik, P., Uhler, C., and Richards, D. (2017). Maximum likelihood estimation for linear gaus-

sian covariance models. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 79, 1269–1292.

113



APPENDIX A

OPTIMIZATION OF THE SVREG*

Consider the case where there are L groups of p main predictors and G groups of K modifying

variables. The index for each group of main predictors is denoted by ℓ = 1, 2, . . . , L and the index

for each group of modifying variables is denoted by g = 1, 2, . . . , G. Assuming no intercept terms

for simplicity, the objective function of the structural varying-coefficient regression is

J∗(β,Θ) =
1

2N

N∑
i=1

[
yi −

L∑
ℓ=1

{
xi[ℓ](β[ℓ] + θ[ℓ]•z

T
i•)
}]2

+ λP ∗
α(β,Θ),

where zi• is the i-th row of Z, xi[ℓ] is the ℓ-th group of the main predictors for the i-th row of X,

β[ℓ] is a subset of β for the ℓ-th group of the main predictors, θ[ℓ]• is a subset of Θ for the ℓ-th

group of the main predictors and

λP ∗
α(β,Θ) = (1− α)λ

L∑
ℓ=1

√
pℓ

{
||(β[ℓ], vec(θ[ℓ]•))||2 +

G∑
g=1

√
pg√

1 +K
||vec(θ[ℓ][g])||2

}

+ αλ
∑
j,k

|θjk|1,

where pℓ is the size of the ℓ-th group of the main predictors, pg is the size of the g-th group of the

modifying variables, θ[ℓ][g] is a subset of Θ for the ℓ-th group of the main predictors and the g-th

group of the modifying variables and vec(·) is a vectorization operator.

The first step in the optimization is computing the subgradient equations of the objective func-

tion, which we will set to zero. For g = 1, 2, . . . , G, denoting ri = yi −
∑L

ℓ=1 xi[ℓ](β[ℓ] + θ[ℓ]•z
T
i•),

*Parts of this section have been modified with permission from [R. Kim, S. Müller and T. Garcia.
svReg: Structural Varying-coefficient regression to differentiate how regional brain atrophy affects motor im-
pairment for Huntington disease severity groups. Biometrical Journal. 2021. Volume 63. Pages 1254-1271.
(https://doi.org/10.1002/bimj.202000312) Copyright Wiley-VCH GmbH. Reproduced with permission]
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the subgradient equations are

dJ∗

dβ[ℓ]

= − 1

N

N∑
i=1

xT
i[ℓ]ri + (1− α)λ

√
pℓu

dJ∗

dθ[ℓ][g]

= − 1

N

N∑
i=1

xT
i[ℓ]zi[g]ri + (1− α)λ

√
pℓ(u

(g)
2 +

√
pg√

1 +K
u
(g)
3 ) + αλv(g)

where zi[g] denotes the g-th group of modifying variables and

u = β[ℓ]/||(β[ℓ], vec(θ[ℓ]•))||2 if (β[ℓ], vec(θ[ℓ]•)) ̸= 0

∈ {u : ||u||2 ≤ 1} if (β[ℓ], vec(θ[ℓ]•)) = 0

u
(g)
2 = θ[ℓ][g]/||(β[ℓ], vec(θ[ℓ]•))||2 if (β[ℓ], vec(θ[ℓ]•)) ̸= 0

∈ {u : ||vec(u)||2 ≤ 1} if (β[ℓ], vec(θ[ℓ]•)) = 0

u
(g)
3 = θ[ℓ][g]/||vec(θ[ℓ][g])||2 if vec(θ[ℓ][g]) ̸= 0

∈ {u : ||vec(u)||2 ≤ 1} if vec(θ[ℓ][g]) = 0

v(g) ∈ sign(θ[ℓ][g])

Define r
(−j)
i , the partial residual for j-th coordinate and r

(−j)(−g)
i , the partial residual for g-th

group of modifying variables in the j-th coordinate as below:

r
(−ℓ)
i = yi −

∑
h̸=ℓ

{
xi[h](β[h] + θ[h]•z

T
i•)
}

r
(−ℓ)(−g)
i = r

(−ℓ)
i − xi[ℓ]

∑
m ̸=g

θ[ℓ][m]z
T
i[m],

where zi[g] denotes a subset of zi• for the g-th group of the modifying variables.

115



Then the objective function can be rewritten as below:

J∗(β0,θ0,β,Θ) =
1

2N

N∑
i=1

{
r
(−ℓ)
i − xi[ℓ](β[ℓ] + θ[ℓ]•z

T
i•)
}2

+ λP ∗
α(β,Θ)

=
1

2N

N∑
i=1

[
r
(−ℓ)
i − xi[ℓ]

{
β[ℓ] +

G∑
g=1

θ[ℓ][g]z
T
i[g]

}]2
+ λP ∗

α(β,Θ)

=
1

2N

N∑
i=1

[
r
(−ℓ)(−g)
i − xi[ℓ]

{
β[ℓ] + θ[ℓ][g]z

T
i[g]

}]2
+ λP ∗

α(β,Θ).

Since the minimizer (β̂, Θ̂) of this objective function should satisfy ∂J∗/∂β[ℓ] = 0 and

∂J∗/∂θ[ℓ][g] = 0, the following equations hold for all g = 1, . . . , G.

1

N

N∑
i=1

xT
i[ℓ]xi[ℓ](β̂[ℓ] + θ̂[ℓ]•z

T
i•) =

1

N

N∑
i=1

xT
i[ℓ]r

(−ℓ)
i − (1− α)λ

√
pℓu

1

N

N∑
i=1

xT
i[ℓ]xi[ℓ](β̂[ℓ] + θ̂[ℓ][g]z

T
i[g])zi[g] =

1

N

N∑
i=1

xT
i[ℓ]zi[g]r

(−j)(−g)
i

− (1− α)λ
√
pℓ(u

(g)
2 +

√
pg√

1 +K
u
(g)
3 )− αλv(g)

Hence, (β̂[ℓ], θ̂[ℓ]•) = 0 if and only if (β̂[ℓ], θ̂[ℓ][g]) = 0 for all g = 1, . . . , G if

∥∥∥∥ 1

N

N∑
i=1

xT
i[ℓ]r

(−ℓ)
i

∥∥∥∥
2

≤ (1− α)λ
√
pℓ, and

∥∥∥∥Sαλ

{
1

N

N∑
i=1

vec(xT
i[ℓ]zi[g])r

(−j)(−g)
i

}∥∥∥∥
2

≤ (1 +

√
pg√

1 +K
)(1− α)λ

√
pℓ

where Sλ(x) is a component-wise soft-thresholding operator.

If (β̂[ℓ], θ̂[ℓ]•) ̸= 0, we need to check if β̂[ℓ] ̸= 0 and θ̂[ℓ]• = 0. For this, we first calculate β̂[ℓ]

assuming θ̂[ℓ]• = 0. For an orthogonal design, that is, if
∑N

i=1 x
T
i[ℓ]xi[ℓ]/N = I , the subgradient
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equation ∂J∗/∂β[ℓ] = 0 given θ̂[ℓ]• = 0 can be reduced as below:

β̂[ℓ] =
1

N

N∑
i=1

xT
i[ℓ]r

(−ℓ)
i − (1− α)λ

√
pℓu

= max

{
1−

(1− α)λ
√
pℓ

||
∑N

i=1 x
T
i[ℓ]r

(−ℓ)
i /N ||2

, 0

}
·

N∑
i=1

xT
i[ℓ]r

(−ℓ)
i /N

In general, however, there is no closed form solution of β̂[ℓ] given θ̂[ℓ]• = 0 and the solution can

be found by sequential optimization of of each parameter in β[ℓ] using the optimize function in

the R package as proposed by Friedman et al. (2010). Once the solution of β̂[ℓ] given θ̂[ℓ]• = 0

is computed, we check if θ̂[ℓ]• = 0 using the calculated β̂[ℓ]. From ∂J∗/∂θ[ℓ][g] = 0, we check

θ̂[ℓ][g] = 0 given β̂[ℓ] by checking the following conditions for all g = 1, . . . , G.

∥∥∥∥Sαλ

{
1

N

N∑
i=1

vec(xT
i[ℓ]zi[g])(r

(−ℓ)(−g)
i − xi[ℓ]β̂[ℓ])

}∥∥∥∥
2

< (1− α)λ

√
pgpℓ√
1 +K

If β̂[ℓ] ̸= 0 and θ̂[ℓ]• ̸= 0 (i.e. if there exists g∗ such that θ̂[ℓ][g∗] ̸= 0), we use a generalized

gradient procedure to find (β̂[ℓ], θ̂[ℓ][NZ]) where θ̂[ℓ][NZ] denotes the collection of nonzero θ̂[ℓ][g]’s.

This procedure is described below.

Let γ[ℓ] = (β[ℓ], vec(θ[ℓ]•)) = (β[ℓ], vec(θ[ℓ][1]), . . . , vec(θ[ℓ][G])) and let ℓ(γ[ℓ]) be the likelihood

part of the objective function J∗(β,Θ).

ℓ(γ[ℓ]) =
1

2N

N∑
i=1

[
yi −

L∑
ℓ=1

{
xi[ℓ](β[ℓ] + θ[ℓ]•z

T
i•)
}]2

.

The goal of this procedure is to minimize ℓ(γ[ℓ])+λP ∗
α(γ[ℓ]) in terms of β[ℓ] and nonzero θ[ℓ][g]’s

where

λP ∗
α(γ[ℓ]) = (1− α)λ

√
pℓ

{
||(β[ℓ], vec(θ[ℓ]•))||2 +

G∑
g=1

√
pg√

1 +K
||vec(θ[ℓ][g])||2

}
+ αλ

∑
j∈[ℓ],k

|θjk|1

for each coordinate ℓ using cyclic coordinate descent algorithm. Here, we use a majorization-
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minimization(MM) algorithm for optimization. In MM algorithm, the objective function is ma-

jorized with a surrogate function and this surrogate function is minimized instead of the objec-

tive function. Let γ̃[ℓ] = (β̃[ℓ], vec(θ̃[ℓ][1]), . . . , vec(θ̃[ℓ][G])) be the current value of γ[ℓ] and define

M(γ[ℓ]), the surrogate function for ℓ(γ[ℓ]) + λP ∗
α(γ[ℓ]) as below.

M(γ[ℓ]) = ℓ(γ̃[ℓ]) + (γ[ℓ] − γ̃[ℓ])
T∇γ [ℓ]

ℓ(γ̃[ℓ]) +
1

2t
||γ[ℓ] − γ̃[ℓ]||22 + λP ∗

α(γ[ℓ])

where t is the learning rate and should be sufficiently small to guarantee convergence. ∇γ [ℓ]
ℓ(γ̃[ℓ])

is the gradient of ℓ with respect to γ[ℓ].

Minimizing M(γ[ℓ]) is equivalent to minimizing

M̃(γ[ℓ]) =
1

2t
||γ[ℓ] − γ̃[ℓ] + t∇γ [ℓ]

ℓ(γ̃[ℓ])||22 + λP ∗
α(γ[ℓ]).

From ∂M̃/∂β[ℓ] = 0 and ∂M̃/∂θ[ℓ][g] = 0 for nonzero θ[ℓ][g]’s,

{
1 +

t(1− α)λ
√
pℓ

||(β[ℓ], vec(θ[ℓ]•))||2

}
β̂[ℓ] = β̃[ℓ] − t∇β[ℓ]

ℓ(γ̃[ℓ]){
1 +

t(1− α)λ
√
pℓ

||(β[ℓ], vec(θ[ℓ]•))||2
+

√
pg√

1 +K

t(1− α)λ
√
pℓ

||vec(θ̂[ℓ][g])||2

}
θ̂[ℓ][g] = Stαλ

{
θ̃[ℓ][g] − t∇θ[ℓ][g]

ℓ(γ̃[ℓ])
}

for nonzero θ[ℓ][g]. Note ||(β[ℓ], vec(θ[ℓ]•))||22 is equal to the sum of ||β̂[ℓ]||22 and ||vec(θ̂[ℓ][g])||22’s for

nonzero θ[ℓ][g]’s.

Let a = ||β̂[ℓ]||2, bg = ||vec(θ̂[ℓ][g])||2. Take the norm of both sides in each equation above

giving

1 + t(1− α)λ
√
pℓ

1√
a2 +

∑G
g=1 b

2
g

 a = ∥β̃[ℓ] − t∇β[ℓ]
ℓ(γ̃[ℓ])∥21 + t(1− α)λ

√
pℓ

 1√
a2 +

∑G
g=1 b

2
g

+

√
pg√

1 +K

1

bg

 bg =

∥∥∥∥vec
[
Stαλ

{
θ̃[ℓ][g] − t∇θ[ℓ][g]

ℓ(γ̃[ℓ])
}]∥∥∥∥

2
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for g such that θ[ℓ][g] ̸= 0. Also, let r = ||(β[ℓ], vec(θ[ℓ]•))||2 =
√

a2 +
∑G

g=1 b
2
g, c = t(1 −

α)λ
√
pℓ, h0 = ∥β̃[ℓ]− t∇β[ℓ]

ℓ(γ̃[ℓ])∥2 and hg =

∥∥∥∥vec
[
Stαλ

{
θ̃[ℓ][g] − t∇θ[ℓ][g]

ℓ(γ̃[ℓ])
}]∥∥∥∥

2

for g such

that θ[ℓ][g] ̸= 0. Then r satisfies the following quadratic equation.

r2 + 2cr + c2 − h2
0 +

∑
g:θ[ℓ][g] ̸=0

(2chg

√
pg√

1 +K
− h2

g − c2
pg

1 +K
) = 0.

Let r∗ be the positive root of the above equation. Then

â =
h0r

∗

r∗ + c

b̂g =
(hg − c

√
pg√

1+K
)r∗

r∗ + c
(for g such that θ[ℓ][g] ̸= 0).

If we plug â and b̂g’s in the gradient equation of M̃ , the solutions β̂[ℓ], θ̂[ℓ][g] satisfy

1 + t(1− α)λ
1√

â2 +
∑G

g=1 b̂
2
g

 β̂[ℓ] = β̃[ℓ] − t∇β[ℓ]
ℓ(γ̃[ℓ])1 + t(1− α)λ

 1√
â2 +

∑G
g=1 b̂

2
g

+

√
pg√

1 +K

1

b̂g

 θ̂[ℓ][g] = Stαλ

{
θ̃[ℓ][g] − t∇θ[ℓ][g]

ℓ(γ̃[ℓ])
}

for g such that θ[ℓ][g] ̸= 0. Letting c1, c2 be the constants multiplying β̂[ℓ] and θ̂[ℓ][g] above, we have

the update equations

β̂[ℓ] =
β̃[ℓ] − t∇β[ℓ]

ℓ(γ̃[ℓ])

c1

θ̂[ℓ][g] =
Stαλ

{
θ̃[ℓ][g] − t∇θ[ℓ][g]

ℓ(γ̃[ℓ])
}

c2
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APPENDIX B

TECHNICAL PROOFS

B.1 Proof of Theorem 1

We start from the following Lemma which establishes the consistency of the solution computed

from iterative conditional fitting.

Lemma 1. Let σ̂ be a solution to the normal likelihood equation computed from iterative con-

ditional fitting with a consistent estimator of Σ as the starting value. Then, σ̂ is a consistent

estimator of σ.

Proof of Lemma 1: Suppose the joint distribution of Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)
T is

fixed with a known covariance matrix Σ̃−j,−j and Σ̃−j,−j is a consistent estimator of the covariance

matrix of Y−j . When the j-th column of the iterative conditional fitting estimator is updated, the

conditional likelihood L(σjj,Σ−j,j|Σ̃−j,−j) in equation (2) in the main manuscript is maximized

by updating Σ−j,j and σjj with equations (3.18) and (3.19), respectively, given the location of the

zero entries in Σ−j,j . Let σ̂jj and Σ̂−j,j be such maximizer of the conditional likelihood computed

from the iterative conditional fitting algorithm. To prove Lemma 1, it is sufficient to show that σ̂jj

and Σ̂−j,j are consistent estimators of σjj and Σ−j,j , respectively.

Consider a n × p design matrix Y = (yij)
n,p
i=1,j=1 for n independent observations of a p-

dimensional random vector (Y1, . . . , Yp)
T ∼ Np(0,Σ). Define sets of indices V = {1, . . . , p},

sp(j) = {k ∈ V : σjk ̸= 0, k ̸= j} and nsp(j) = {k ∈ V : σjk = 0} so that {j} ∪ sp(j) ∪

nsp(j) = V . That is, sp(j) and nsp(j) designate the location of the non-zero and zero off-

diagonal entries of the j-th column of Σ, respectively. Let Y (j) and Y (−j) denote the columns

in Y for Yj and Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yp)
T , respectively. Then, we construct the matrix

Zj
sp(j) = Y (−j)(Σ̃−j,−j)

−1
•,sp(j) where • represents all indices. For any matrices A and B with equal

dimension, we will denote A
p→ B if the (i, j)-th element of A converges in probability to the

(i, j)-th element of B for all i and j.
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The iterative conditional fitting algorithm maximizes L(σjj,Σ−j,j|Σ̃−j,−j) under the constraint

Σnsp(j),j = 0. Hence, the estimation of Σ−j,j boils down to estimating Σsp(j),j . Based on the least

squares regression of Y j on Zj
sp(j), the iterative conditional fitting algorithm updates Σsp(j),j by

equation (3.18) as below.

Σ̂sp(j),j = {(Zj
sp(j))

T (Zj
sp(j))/n}

−1(Zj
sp(j))

TY (j)/n

= [{(Σ̃−j,−j)
−1
•,sp(j)}

T {(Y (−j))TY (−j)/n}{(Σ̃−j,−j)
−1
•,sp(j)}]

−1{(Σ̃−j,−j)
−1
•,sp(j)}

T {(Y (−j))TY (j)/n}.

By the law of large numbers, (Y (−j))TY (−j)/n
p→ Σ−j,−j and (Y (−j))TY (j)/n

p→ Σ−j,j .

Also, by the consistency of Σ̃−j,−j , Σ̃−j,−j
p→ Σ−j,−j . For a sequence of square matrices An,

limn→∞ A−1
n = A−1 if limn→∞An = A by the continuous mapping theorem. Hence,

Σ̂sp(j),j
p→ [{(Σ−j,−j)

−1
•,sp(j)}

TΣ−j,−j(Σ−j,−j)
−1
•,sp(j)]

−1{(Σ−j,−j)
−1
•,sp(j)}

TΣ−j,j

= {(Σ−j,−j)
−1
sp(j),sp(j)}

−1[{(Σ−j,−j)
−1
sp(j),sp(j)}

T , {(Σ−j,−j)
−1
nsp(j),sp(j)}

T ]

Σsp(j),j

Σnsp(j),j


= {(Σ−j,−j)

−1
sp(j),sp(j)}

−1(Σ−j,−j)
−1
sp(j),sp(j)Σsp(j),j

= Σsp(j),j.

The first equality above used the relation that, for a symmetric partitioned matrix

A BT

B C

,

[
AT BT

]A BT

B C


−1 A

B

 = A,

and rearranged the elements of Σ−j,j so that ΣT
−j,j = [ΣT

sp(j),j,Σ
T
nsp(j),j] without loss of generality.

The second equality above holds because all elements in Σnsp(j),j are zero. Since elements of

Σ̂nsp(j),j are set to be zero by the iterative conditional fitting algorithm, this proves Σ̂−j,j
p→ Σ−j,j .

Next, in maximizing L(σjj,Σ−j,j|Σ̃−j,−j), the iterative conditional fitting algorithm updates
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σjj by equation (3.19) and its consistency is shown as below.

σ̂jj = (Y (j) − Zj
sp(j)Σ̂sp(j),j)

T (Y (j) − Zj
sp(j)Σ̂sp(j),j)/n+ (Σ̂sp(j),j)

T (Σ̃−j,−j)
−1
sp(j),sp(j)Σ̂sp(j),j

= (Y (j))TY (j)/n− 2(Σ̂sp(j),j)
T (Zj

sp(j))
TY (j)/n+ (Σ̂sp(j),j)

T{(Zj
sp(j))

TZj
sp(j)/n}Σ̂sp(j),j

+ (Σ̂sp(j),j)
T (Σ̃−j,−j)

−1
sp(j),sp(j)Σ̂sp(j),j

p→ σjj − 2(Σsp(j),j)
T (Σ−j,−j)

−1
sp(j),sp(j)Σsp(j),j + 2(Σsp(j),j)

T (Σ−j,−j)
−1
sp(j),sp(j)Σsp(j),j

= σjj,

where the convergence in probability is from

(Zj
sp(j))

TY (j)/n
p→ (Σ−j,−j)

−1
sp(j),sp(j)Σsp(j),j

(Zj
sp(j))

TZj
sp(j)/n

p→ (Σ−j,−j)
−1
sp(j),sp(j)

and Σ̂sp(j),j
p→ Σsp(j),j .

Next, to establish the asymptotic normality of the iterative conditional fitting estimator, we will

use the following Lemma which results from Theorem 2 of Anderson (1973). For this Lemma, we

define a matrix Q with entries of 0 or 1 that satisfies vec(Σ) = Qσ as defined in Chaudhuri et al.

(2007).

Lemma 2. Let σ̃ be a consistent estimator of σ and σ̃∗ be the solution of the linear equation

QT{Σ(σ̃)−1⊗Σ(σ̃)−1}Qσ = QT{Σ(σ̃)−1⊗Σ(σ̃)−1}vec(S) where S is the sample covariance

matrix and ⊗ is the kronecker product. Then, as n → ∞,

√
n(σ̃∗ − σ) → N(0, I(σ)−1)

where I(σ) is the Fisher information matrix.

Proof of Theorem 1: By Lemma 1, σ̂ will be a consistent estimator of σ. Consider a solution
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σ̂∗ for the following linear equation:

QT{Σ(σ̂)−1 ⊗Σ(σ̂)−1}Qσ = QT{Σ(σ̂)−1 ⊗Σ(σ̂)−1}vec(S).

Then, since σ̂ is a consistent estimator of σ,
√
n(σ̂∗ − σ) → N(0, I(σ)−1) holds by Lemma

2. Note that σ̂ is a solution of the above linear equation because σ̂ is a solution of the normal

likelihood equation ∂ℓ(σ)/∂σ = 0, which can be written as below:

QT{Σ(σ)−1 ⊗Σ(σ)−1}Qσ = QT{Σ(σ)−1 ⊗Σ(σ)−1}vec(S).

Hence,
√
n(σ̂ − σ) → N(0, I(σ)−1) holds.

B.2 Proof of Proposition 1

Let (Y1, . . . , Yj−1, Yj+1, . . . , Yp)
T ∼ Np−1(0, Σ̃−j,−j) with known Σ̃−j,−j . Also, let β =

Σ̃
−1

−j,−jΣ−j,j and λj = σjj −ΣT
−j,jΣ̃

−1

−j,−jΣ−j,j . From the blockwise matrix inversion,

Σ−1 =

A BT

B C

 =

 λ−1
j −λ−1

j βT

−λ−1
j β Σ̃

−1

−j,−j + λ−1
j ββT

 (B.1)

where

A = (σjj −ΣT
−j,jΣ̃

−1

−j,−jΣ−j,j)
−1

B = −(σjj −ΣT
−j,jΣ̃

−1

−j,−jΣ−j,j)
−1Σ̃

−1

−j,−jΣ−j,j

C = Σ̃
−1

−j,−j + Σ̃
−1

−j,−jΣ−j,j(σjj −ΣT
−j,jΣ̃

−1

−j,−jΣ−j,j)
−1Σj,−jΣ̃

−1

−j,−j.

We derive the solution of ℓ∗(Σ) as below.

ℓ∗(Σ) = −np

2
log(2π)− n

2
log|Σ| − n

2
tr{(S + ϵI)Σ−1}

= −np

2
log(2π)− n

2
log|Σ| − n

2
tr(SΣ−1)− nϵ

2
tr(Σ−1).
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(i) Since |Σ| = |Σ̃
−1

−j,−j|(σjj−ΣT
−j,jΣ̃

−1

−j,−jΣ−j,j) = λj|Σ̃
−1

−j,−j|, log|Σ| = logλj+log|Σ̃
−1

−j,−j|. (ii)

Using the blockwise matrix inversion (B.1), we can prove that yTi•Σ
−1yi• = λ−1

j (yij − yTi,−jβ)
2 +

yTi,−jΣ̃
−1

−j,−jyi,−j where • represents all indices.

Hence,

tr(SΣ−1) =
1

n
tr(

n∑
i=1

yi•y
T
i•Σ

−1) =
1

n

n∑
i=1

tr(yi•yTi•Σ
−1) =

1

n

n∑
i=1

tr(yTi•Σ
−1yi•) =

1

n

n∑
i=1

yTi•Σ
−1yi•

=
1

n

n∑
i=1

λ−1
j (yij − yTi,−jβ)

2 +
1

n

n∑
i=1

yTi,−jΣ̃
−1

−j,−jyi,−j

(iii) Using the blockwise matrix inversion (B.1), we can prove that

tr(Σ−1) = λ−1
j + tr(Σ̃

−1

−j,−j) + tr(λ−1
j ββT )

= λ−1
j + tr(Σ̃

−1

−j,−j) + tr(λ−1
j βTβ)

= λ−1
j + λ−1

j βTβ + tr(Σ̃
−1

−j,−j).

From (i),(ii) and (iii), considering only the unknown terms β and λj ,

ℓ∗(Σ) = ℓ∗(β, λj)

= −n

2
logλj −

1

2

n∑
i=1

λ−1
j (yij − yTi,−jβ)

2 − nϵ

2
λ−1
j (1 + ||β||2) + (...).

Note that the above function is the ridge regression in term of β. Using the chain rule, the solution

for Σ−j,j can be obtained by

Σ̂−j,j =
{
Σ̃

−1

−j,−j

( 1
n

n∑
i=1

yi,−jy
T
i,−j + ϵI

)
Σ̃

−1

−j,−j

}−1{ 1
n

n∑
i=1

(Σ̃
−1

−j,−jy
T
i,−j)yij

}
.

The solution for λj can be obtained by

λ̂j =
1

n

n∑
i=1

(yij − yTi,−jβ̂)
2 + ϵ||β̂||2 + ϵ
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where β̂ = Σ̃
−1

−j,−jΣ̂−j,j . Hence the solution for σ̂jj is

σ̂jj = λ̂j + Σ̂
T

−j,j(Σ̃−j,−j)
−1Σ̂−j,j

=
1

n

n∑
i=1

(yij − yTi,−jβ̂)
2 + ϵ||β̂||2 + ϵ+ Σ̂

T

−j,j(Σ̃−j,−j)
−1Σ̂−j,j.

B.3 Proof of Proposition 2

For simplicity, we will prove Proposition 2 for the case when σO contains one more parameter

than σC . For larger σO, Proposition 2 can be shown similarly.

Define a matrix Q with entries of 0 or 1 that satisfies vec(Σ) = Qσ as defined in Chaudhuri

et al. (2007). Let K be the number of elements in σC . Define a p2 ×K matrix QC = [q1, . . . , qK ]

with entries of 0 or 1 that satisfies vec(Σ) = QCσC as defined in Chaudhuri et al. (2007). Also,

define a p2 × (K + 1) matrix QO = [QC , qK+1] = [q1, . . . , qK , qK+1]. By Theorem 1,
√
n(σ̂C −

σC) → NK(0, I(σC)
−1) and

√
n(σ̃O−σO) → NK+1(0, I(σO)

−1). By denoting A = Σ−1⊗Σ−1,

A is symmetric and positive-definite. Denote R1 = A
1
2QC and r2 = A

1
2qK+1. Then,

I(σC) =
1

2
QT

C(Σ
−1 ⊗Σ−1)QC =

1

2
QT

CA
1
2A

1
2QC =

1

2
RT

1R1

and

I(σO) =
1

2
QT

O(Σ
−1 ⊗Σ−1)QO =

1

2
[QC , qK+1]

TA[QC , qK+1]

=
1

2

 QT
CAQC QT

CAqK+1

qT
K+1AQC qT

K+1AqK+1

 =
1

2

RT
1R1 RT

1 r2

rT
2R1 rT

2 r2

 .

Note that the square roots of diagonal elements of I(σC)
−1/n are the standard error of parameters

in σ̂C . Also, the square roots of the first K diagonal elements of I(σO)
−1/n are the standard error

of parameters in σ̃C . We claim that the diagonal elements of I(σC)
−1 are less than the first K
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diagonal elements of I(σO)
−1. By Schur complement,

I(σO)
−1 = 2

RT
1R1 RT

1 r2

rT
2R1 rT

2 r2


−1

= 2

{RT
1R1 − (RT

1 r2)(r
T
2 r2)

−1(rT
2R1)}−1 (. . .)

(. . .) (. . .)

 .

Hence, our claim is:

diag[(RT
1R1)

−1] ≤ diag[{RT
1R1 − (RT

1 r2)(r
T
2 r2)

−1(rT
2R1)}−1].

Since {RT
1R1 − (RT

1 r2)(r
T
2 r2)

−1(rT
2R1)}−1 =

(RT
1R1)

−1 + (RT
1R1)

−1(RT
1 r2){(rT

2 r2)− (rT
2R1)(R

T
1R1)

−1(RT
1 r2)}−1(rT

2R1)(R
T
1R1)

−1,

defining a scalar value c = (rT
2 r2)− (rT

2R1)(R
T
1R1)

−1(RT
1 r2), our claim is equivalent to

c−1diag[(RT
1R1)

−1(RT
1 r2)(r

T
2R1)(R

T
1R1)

−1] ≥ 0

where 0 is a K-dimensional zero vector. Because I(σO) is positive-definite, both (RT
1R1) and

c = (rT
2 r2)− (rT

2R1)(R
T
1R1)

−1(RT
1 r2) are positive-definite, hence c > 0.

Define a K-dimensional column vector v = (v1, . . . , vK)
T to be v = (RT

1R1)
−1(RT

1 r2). Then,

diag[(RT
1R1)

−1(RT
1 r2)(r

T
2R1)(R

T
1R1)

−1] = diag(vvT ) = (v21, . . . , v
2
K) ≥ 0, hence the claim

holds.

B.4 Proof of Proposition 3

By the definition of QC and QU , QCσC = QUσU + QC\UσC\U = vec(Σ). Hence, if we

multiply QT
UW on both sides of this equation,

QT
UWQUσU +QT

UWQC\UσC\U = QT
UWvec(Σ). (B.2)

Note that σ̃U is the solution to the equation QT
UWQUσU = QT

UWvec(S), hence

QT
UWQU σ̃U = QT

UWvec(S). (B.3)
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By multiplying (QT
UWQU)

−1 to equation (B.2) and (B.3),

σU = (QT
UWQU)

−1QT
UWvec(Σ)− (QT

UWQU)
−1QT

UWQC\UσC\U ; and

σ̃U = (QT
UWQU)

−1QT
UWvec(S)

By combining these equations,

σ̃U − σU = (QT
UWQU)

−1QT
UWvec(S −Σ) + (QT

UWQU)
−1QT

UWQC\UσC\U .

and by taking expectation,

E(σ̃U)− σU = (QT
UWQU)

−1QT
UWQC\UσC\U .

the bias of σ̃U can be quantified as above.

B.5 Proof of Theorem 2

In the following lemma, we prove that thresholding the (i, j)-th entry of the sample covariance

matrix with λij = Cijn
−α will identify both the non-zero entries and zero entries of the true

covariance matrix (that is, "recover the support") with probability tending to 1. The proof of this

lemma follows the path for the Theorem 2 in Rothman et al. (2009).

Lemma 3. Let σij and sij be the (i, j)-th entry of Σ and the sample covariance matrix S, respec-

tively. If λij = Cijn
−α for a positive constant Cij , α = 0.5− γ > 0 and γ > 0, then

|sij| ≤ λij for all (i, j) such that σij = 0; and

|sij| > λij for all (i, j) such that σij ̸= 0

with probability tending to 1 as n → ∞.
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Proof of Lemma 3: First, we show |sij| ≤ λij for all (i, j) such that σij = 0 with prob-

ability tending to 1. Let sij be the (i, j)-th element of the sample covariance matrix and let

λ∗ = min[{Cij}pi,j=1] · n−α. Then, {(i, j) : |sij| > λij, σij = 0} ⊆ {(i, j) : |sij| > λ∗, σij = 0}.

Also, since {(i, j) : |sij| > λ∗, σij = 0} ⊆ {(i, j) : |sij − σij| > λ∗}, as n → ∞,

P
(∑

i,j

1{|sij |>λij ,σij=0} > 0
)
≤ P

(∑
i,j

1{|sij |>λ∗,σij=0} > 0
)

≤ P (max
i,j

|sij − σij| > λ∗)

≤
∑
i,j

P (|sij − σij| > λ∗)

≤
∑
i,j

var(sij)
(λ∗)2

(by Chebyshev inequality)

=
∑
i,j

(σ2
ij + σiiσjj)/n

(λ∗)2
(property of Wishart distribution)

≤ C∗

n1−2α
= C∗n−2δ.

Since the righthand of the above inequality converges to zero as n → ∞, |sij| ≤ λij with proba-

bility tending to 1 if σij = 0.

Next, we show |sij| > λij for all (i, j) such that σij ̸= 0 with probability tending to 1. Let h be

the lower bound for |σij| for all (i, j) and let λ∗∗ = max[{Cij}pi,j=1] · n−α. Then, {(i, j) : |sij| ≤

λij, |σij| > h} ⊆ {(i, j) : |sij| ≤ λ∗∗, |σij| > h}. Also, by triangle inequality, {(i, j) : |sij| ≤

λ∗∗, |σij| > h} ⊆ {(i, j) : |sij − σij| > |h− λ∗∗|}. Hence, as n → ∞,

P
(∑

i,j

1{|sij |≤λij ,σij ̸=0} > 0
)
≤
∑
i,j

(σ2
ij + σiiσjj)/n

(h− λ∗∗)2
(by Chebyshev inequality)

≤ C∗

nh2 − 2h ·max[{Cij}pi,j=1] · n1−α +max[{Cij}pi,j=1]
2 · n1−2α

.

Since the righthand of the above inequality converges to zero as n → ∞, |sij| > λij with proba-

bility tending to 1 if σij ̸= 0.
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Proof of Theorem 2: By Lemma 3, thresholding the sample covariance matrix with the thresh-

old λij = Cijn
−α will correctly identify the location of the zero entries in Σ with probability tend-

ing to 1. Given the correct location of the zero entries, we have shown the asymptotic efficiency of

iterative conditional fitting in Theorem 1.
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APPENDIX C

ADDITIONAL NUMERICAL RESULTS

C.1 Additional Simulation Results
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Figure C.1: Frobenius loss for the sample covariance matrix (“S"), the COMET by AIC (“AIC"),
BIC (“BIC") and Qiu and Liyanage (2019) (“CCF"), the hard thresholding by cross-validation
(“CV") and Qiu and Liyanage (2019) (“HCF") when p = 10. The estimator with grey box shows
the lowest Frobenius loss on average.
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Figure C.2: Frobenius loss for the sample covariance matrix (“S"), the COMET by AIC (“AIC"),
BIC (“BIC") and Qiu and Liyanage (2019) (“CCF"), the hard thresholding by cross-validation
(“CV") and Qiu and Liyanage (2019) (“HCF") when p = 50. The estimator with grey box shows
the lowest Frobenius loss on average.
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Figure C.3: Entropy loss for the sample covariance matrix (“S"), the COMET by AIC (“AIC"),
BIC (“BIC") and Qiu and Liyanage (2019) (“CCF"), the hard thresholding by cross-validation
(“CV") and Qiu and Liyanage (2019) (“HCF") when p = 10. The estimator with grey box shows
the lowest Frobenius loss on average.
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Figure C.4: Entropy loss for the sample covariance matrix (“S"), the COMET by AIC (“AIC"),
BIC (“BIC") and Qiu and Liyanage (2019) (“CCF"), the hard thresholding by cross-validation
(“CV") and Qiu and Liyanage (2019) (“HCF") when p = 50. The estimator with grey box shows
the lowest Frobenius loss on average.
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n p moving average model block model
AIC BIC CV CF AIC BIC CV CF

25 10 0.61/0.25 0.43/0.11 0.19/0.05 0.08/0.01 0.91/0.25 0.81/0.11 0.59/0.08 0.31/0.01

50 0.91/0.75 0.73/0.41 0.07/0.01 0.02/0.00 0.99/0.74 0.91/0.31 0.53/0.04 0.31/0.01

50 10 0.78/0.21 0.59/0.07 0.34/0.07 0.24/0.01 0.99/0.20 0.95/0.05 0.83/0.05 0.70/0.01

50 0.92/0.46 0.49/0.04 0.12/0.00 0.10/0.00 1.00/0.47 0.73/0.01 0.94/0.05 0.81/0.01

100 10 0.95/0.19 0.85/0.04 0.78/0.15 0.58/0.01 1.00/0.17 1.00/0.02 0.99/0.03 0.98/0.01

50 0.97/0.27 0.79/0.03 0.47/0.00 0.40/0.00 1.00/0.28 0.99/0.01 1.00/0.02 0.97/0.00

200 10 1.00/0.17 0.98/0.02 0.97/0.10 0.90/0.00 1.00/0.17 1.00/0.01 1.00/0.03 1.00/0.00

50 1.00/0.21 0.97/0.01 0.93/0.01 0.80/0.00 1.00/0.15 1.00/0.00 1.00/0.00 1.00/0.00

Table C.1: True positive rate (left) / false positive rate (right) under the moving average model
and the block model. The autoregressive model was not compared since there is no zero entry in
the covariance matrix. AIC and BIC were used for the COMET. Cross-validation (CV) and the
closed-form threshold (CF) were used for the hard thresholding. The estimator with the highest
true positive rate or the lowest false positive rate is shown in bold.

n p moving average autoregressive block
CV CF CV CF CV CF

25 10 4 0 32 33 11 2

50 76 2 98 64 100 100

50 10 0 0 10 27 0 0

50 0 0 98 95 100 100

100 10 0 0 1 2 0 0

50 0 0 87 83 61 69

200 10 0 0 0 0 0 0

50 0 0 1 1 0 1

Table C.2: Percentage of non-positive definite hard thresholding estimators. Cross-validation (CV)
and the closed-form threshold (CF) were used for selecting the threshold parameter.
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C.2 Additional Analysis Results for PREDICT-HD

Sample Bonferroni correction

AIC (δ = 0.31) CV (δ = 1.00)

BIC (δ = 0.72) CF (δ = 1.39)

Figure C.5: Heatmaps of the correlations for the sample covariance matrix, the covariance ma-
trix with Bonferroni correction and thresholding estimators; AIC, COMET with AIC-threshold;
BIC, COMET with BIC-threshold; CV, hard thresholding with cross-validation; CF, hard thresh-
olding with closed-from threshold. The covariance matrix with Bonferroni correction and both
hard thresholding estimators were not positive definite. Positive correlations are shown in red and
negative correlations are shown in blue. Zero correlations are shown in white. δ represents the
adaptive threshold selected.
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