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ABSTRACT

In many applications, spatial data often display heterogeneous dependence patterns and

may be subject to irregular geographic constraints. In light of these challenges, this disser-

tation develops several novel Bayesian methodologies for modeling non-trivial spatial data.

The first part of this dissertation develops a Bayesian partition prior model for a finite

number of spatial locations using random spanning trees (RSTs) of a spatial graph, which

guarantees contiguity in clustering and allows to detect clusters with arbitrary shapes and

sizes. We embed this model within a hierarchical modeling framework to estimate spa-

tially clustered coefficients and their uncertainty measures in a regression model. We prove

posterior concentration results and design an efficient Markov chain Monte Carlo algorithm.

In the second part, we propose a new class of locally stationary stochastic processes, where

local spatially contiguous partitions are modeled by a soft partition process via predictive

RSTs for flexible cluster shapes. This valid nonstationary process model allows to knit

together local models such that both parameter estimation and prediction can be performed

under a coherent framework, and to capture both abrupt changes and smoothness in a spatial

random field. We study the posterior concentration theories for this Bayesian process model.

Finally, we consider Bayesian ensemble models for nonparametric regression on complex

constrained domains. We first propose a Bayesian additive regression model using RST man-

ifold partition models as weak learners, which are capable of capturing any irregularly shaped

spatially contiguous partitions while respecting intrinsic geometries and domain boundary

constraints. For applications that also involve possibly high dimensional features without

known multivariate structures, we further develop a Bayesian additive multivariate deci-

sion trees model that combines univariate split rules and novel multivariate split rules in

each weak learner. The proposed multivariate split rules are built upon predictive spanning

tree bipartition models on reference knots, which are capable of achieving flexible nonlinear

decision boundaries on manifold feature spaces while reducing computations.
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1. INTRODUCTION

Spatial data arise from diverse disciplines such as geoscience, meteorology, and environ-

mental science. The main objective of spatial data analysis is to model dependence among

observations to facilitate parameter inference and out-of-sample prediction. In many appli-

cations, the spatial dependence structure can be fairly complicated. To name a few, the

temperature-salinity relationship in ocean water and the precipitation over the contiguous

United States can exhibit substantially different spatial patterns across some borders. Ac-

counting for complex spatial dependence can be more challenging for data collected from

irregularly shaped domains due to geographic constraints such as lakes and coasts. New

methodologies in spatial statistics need to be developed for data with non-trivial spatial

patterns.

Spanning trees have recently been demonstrated as an effective modeling tool for spatially

varying dependence (Li and Sang, 2019; Teixeira et al., 2015, 2019), as they naturally induce

contiguous partitions on a finite set with flexible shapes. Following a similar path, we propose

several novel Bayesian models with sound theoretical guarantee and efficient computation

algorithms for various non-trivial spatial analysis problems.

In Chapter 2, we consider statistical models where the latent variables of interest are

assumed to have spatially clustered patterns. One prominent example is the spatially varying

coefficient regressions where the coefficients are homogeneous within clusters but can change

abruptly across clusters. We propose to use a Bayesian random spanning tree (RST) partition

model to guarantee spatial contiguity in clustering, to allow for flexible cluster shapes, and

to deliver uncertainty quantification, while most existing methods cannot achieve these at

the same time. Bayesian posterior concentration theory and an efficient Markov chain Monte

Carlo algorithm are developed for the proposed model.

Nonstationary spatial process models are important tools in spatial statistics as they pro-

vide a coherent framework for modeling heterogeneous spatial dependence and out-of-sample
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prediction. In particular, locally stationary process models are able to adapt to local and

nonstationary data features by partitioning the spatial domain into some local subregions.

However, there are several challenging questions surrounding them on how to obtain flexible

partitions and how to perform prediction near partition boundaries. In Chapter 3, we extend

the RST partition model on a finite set to a soft partition process model on a spatial domain,

upon which we develop a new class of locally stationary Gaussian process models to capture

both abrupt changes and smoothness in a spatial random field. We also study the poste-

rior concentration theory concerning the asymptotic behavior of this Bayesian nonstationary

process model.

In Chapter 4, we consider a nonparametric regression problem with covariates lying on

a complex constrained spatial domain, or more generally, a compact Riemannian manifold.

Most existing literature either assumes a globally smooth true function or ignores intrinsic

geometries of the domain. We develop a novel ensemble learning method adapting to different

local smoothness levels. The proposed model utilizes RST-based manifold partition models

as weak learners, which are capable of capturing any irregularly shaped spatially contiguous

partitions while respecting intrinsic geometries and domain boundary constraints.

The RST ensemble model in Chapter 4 only considers structured features with known

multivariate structures (e.g., spatial locations possibly lying on a Riemannian manifold).

In many applications such as housing price prediction, it is of interest to also incorporate

unstructured features, i.e., features without multivariate structures or with unknown multi-

variate structures (e.g., square footage and housing age). In Chapter 5, we develop a new

class of Bayesian additive multivariate decision trees models that combine univariate split

rules for handling possibly high dimensional unstructured features and novel multivariate

split rules for structured features in each weak learner. The proposed multivariate split rules

are built upon predictive spanning tree bipartition models on reference knots, which allow

for highly flexible nonlinear decision boundaries on manifold feature spaces.
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2. A BAYESIAN CONTIGUOUS PARTITIONING METHOD FOR LEARNING

CLUSTERED LATENT VARIABLES ∗

2.1 Introduction

Spanning trees have gained popularity as a flexible computing tool in computational

geometry (Preparata and Shamos, 2012) and clustering analysis (Zahn, 1970; Grygorash

et al., 2006), since they are capable of guaranteeing contiguous clustering configurations and

detecting clusters with irregular shapes. A spanning tree of a connected graph is a subgraph

connecting all vertices in the graph without cycles, in which any two vertices are connected

by exactly one edge. A partition of vertices is induced when some edges in a spanning tree

are removed such that vertices connected to each other form a cluster. A large body of

existing literature on spanning trees is based on machine learning algorithms directly using

observed points or point-level features (e.g., Assunção et al., 2006; Guo, 2008; Aydin et al.,

2018), whereas the development of spanning tree based modeling and inference framework

involving clustered latent variables is still at its infancy.

Our main contribution is to propose a Bayesian model-based spanning tree partition-

ing method, along with theoretical justifications and efficient computational algorithms, to

model clustered latent variables with a focus on spatially clustered varying coefficient mod-

els. Most existing literature in spatial regression assume regression coefficients are constants

or smoothly varying in space (Fotheringham et al., 2003; Gelfand et al., 2003; Mu et al.,

2018). But in many applications, relationships among spatial variables may change abruptly

across some boundaries. There is a great need to detect spatially clustered patterns with

uncertainty measures in such relationships that allow practitioners to conduct and interpret

subregional analysis. The work in this chapter is among the first to develop a Bayesian

approach for detecting contiguous clusters in regression coefficients.
∗Reprinted from Luo, Z. T., Sang, H., and Mallick, B. (2021b). A Bayesian contiguous partitioning

method for learning clustered latent variables. Journal of Machine Learning Research, 22(37):1–52. The
authors hold the copyright.

3



The Bayesian Spatially Clustered Coefficient Model (BSCC) uses different spanning trees

for each covariate and treats them as unknown parameters. Model specifications of space

partitions are done by assigning priors on spanning trees, and then the number and the

positions of removed edges given a spanning tree. As a result, it allows an adaptive spatial

order for cluster detection. Indeed, we show that the sample space of partitions induced from

the Bayesian random spanning tree models accommodates all possible contiguous partitions

with arbitrary shapes and sizes, defined from connected components of any given graph. Most

existing clustering methods which we will review in Section 2 do not possess this property.

We emphasize that this property has two important implications. First, it allows us to

simplify a complex combinatorial graph partitioning problem into a more compact tree based

prior representation that can facilitate computation while maintaining flexibility. Second,

the method enjoys great flexibility in the cluster shapes and naturally induces spatially

contiguous clusters so that practitioners can interpret clusters as subregions. And the number

of clusters is treated as random and determined from data.

An additional advantage of the BSCC is that the Bayesian inference allows us to assess

uncertainties in the position of spatial boundaries and the estimated regression models within

clusters. Moreover, although we concentrate on the Gaussian spatial regression models in

this chapter, the proposed partitioning prior model is generic and we propose extensions

of the method for embedding in and adaption to various Bayesian hierarchical modeling

frameworks that involve latent piecewise constant variables. Finally, since the method is built

upon graphs such as triangular meshes, it can be used as a flexible prior on non-exchangeable

partitions of data or latent variables distributed on graphs/networks in complex geometric

domains.

The regression problem we consider in this chapter is high-dimensional in nature with n

samples and np unknown regression coefficients. We prove that the proposed model achieves

posterior consistency, under an asymptotic framework for piecewise constant functions de-

fined on random graphs with a diverging number of vertices. Theoretical guarantee of
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Bayesian binary treed methods is developed recently (Linero and Yang, 2018; Ročková and

van der Pas, 2020; Ročková and Saha, 2019). However, to the best of our knowledge, theo-

retical properties of spanning tree based Bayesian partition models haven’t been investigated

in the literature.

The inference of the proposed method is performed in a Bayesian framework, where we

extend the conventional reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm

(Green, 1995) by employing various computation strategies such as parallel tempering, low-

rank matrix operations, Cholesky factor updates/downdates, and collapsed Gibbs sampling

that greatly improves the computation efficiency for large data sets. The RJ-MCMC proce-

dure allows partitions and spanning trees to be updated adaptively so it can achieve high

accuracy in cluster recovery and coefficient estimation, as evidenced by our numerical results

that demonstrate striking improvements over competing methods.

The rest of the chapter is organized as follows. In Section 2.2, we review other re-

lated model-based clustering approaches. In Section 2.3, we present the Bayesian Spatially

Clustered Coefficient regression model, state the theoretical results, develop computation

algorithms for Bayesian model implementation, and discuss hyperparameter selection. In

Section 2.4, we present extensions to other hierarchical model settings. Section 2.5 presents

some simulation studies to illustrate the performance of our method. In Section 2.6, we

apply the BSCC model to an ocean temperature and salinity data set. Section 2.7 concludes

our method with some discussion. The proof of the main theoretical results, the detailed im-

plementation and discussion of the RJ-MCMC algorithm, and additional simulation results

are provided in the Appendix.

2.2 Related Work

A large body of model based spatial partition approaches have been proposed in vari-

ous contexts. Methods such as Markov connected component fields (Gangnon and Clayton,

2000) and product partition models (Hegarty and Barry, 2008; Page and Quintana, 2016)

take into account spatial information for clustering, but may not fully guarantee spatial
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contiguity or allow for arbitrary cluster shapes. Mixture models such as Dirichlet processes

(e.g., Gelfand et al., 2005; Blei and Frazier, 2011; Zhang et al., 2014; Ma et al., 2020) are

popular Bayesian nonparametric methods for clustering but tend to produce many small

clusters. Space partitioning approaches, such as binary treed methods and Voronoi tessella-

tions (Green and Sibson, 1978), have also been widely used in statistics to model responses

locally in a region of the input space. Examples of binary treed methods include CART

(Breiman et al., 1984; Chipman et al., 1998; Denison et al., 1998), BART (Chipman et al.,

2010) and treed Gaussian processes (Gramacy and Lee, 2008; Konomi et al., 2014), where the

input space is partitioned into non-overlapping regions by making binary splits recursively.

On the other hand, Voronoi tessellation based models (e.g., Knorr-Held and Raßer, 2000;

Denison and Holmes, 2001; Kim et al., 2005; Feng et al., 2016) define regions by a number

of center locations such that points within a region are closer to its center than any other

centers. However, both methods put considerable constraints on the shape of the regions.

Voronoi tessellations imply a convexity assumption on the region shapes, and binary treed

approaches only produce rectangle shaped regions. Spatial scan statistics (Kulldorff and

Nagarwalla, 1995; Kulldorff, 1997) and their variants are also popular approaches to detect

spatial clusters. Lin (2014) and Lin et al. (2016) consider Poisson regression models with

spatially clustered intercepts using spatial scan statitstics. Lee et al. (2017) develop spatial

cluster detection for regression coefficients using spatial scan statistics where the candidate

clusters are often assumed to be circular windows.

Our method is motivated from Li and Sang (2019), who propose a fused lasso regular-

ization and optimization method for spatially varying coefficient models, called the SCC,

which uses a Euclidean distance based minimum spanning tree (MST) as the “spatial order"

to encourage homogeneity between the regression coefficients at two adjacent locations. The

method pursues a sparse solution on the difference between the two edge-connected coeffi-

cients, where the zero element indicates that two vertices belong to the same cluster, while

the non-zero element corresponds to a cut set of edges which, if removed from the MST,
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will partition the vertices into a number of clusters. Nevertheless, the method does not pro-

duce uncertainty measures of parameter estimations. In addition, a fixed Euclidean MST is

used as the spatial order for the regression coefficient of each covariate, which leads to over-

clustering especially with small sample sizes as it only induces a restricted partition space

to which the actual partition may not belong. In contrast, the Bayesian method developed

in this work seeks to find the true spatial order by treating different spanning trees for each

covariate as unknown parameters. We will show in Section 2.5 that this has a significant

impact on the results, evidenced by the nearly 80% reduction in the mean square error of

BSCC compared with that of SCC in simulation studies.

Most recently, Teixeira et al. (2015, 2019) also develop a Bayesian spatial partitioning

model based on spanning trees for the clustering of spatial and spatial temporal responses,

respectively. The idea is to construct a random partition model based on random spanning

trees, where probabilistic prior models are assigned to the spanning trees and the edge re-

moval probabilities. Their methods have shown a superior performance in terms of clustering

accuracy for a number of spatial and spatial temporal clustering tasks, indicating a great

potential of the random spanning tree methods. Following a similar spirit, the proposed

model offers a new random spanning tree model which complements and differs from theirs

in several main aspects. First, we extend beyond a single spanning tree partition model

for spatial response data to a general hierarchical model setting for the multiple partitions

of latent variables. Second, Teixeira et al. (2019) assume a uniform prior on the spanning

tree space and an approximate sampler is used to sample a spanning tree in their MCMC

algorithm. We overcome this issue by assigning uniform priors to edge weights in the original

graph, which induces priors on the spanning tree space. An exact sampler based on this prior

setting is proposed in this chapter. Third, they model the prior probability of a partition

given a spanning tree by assigning a Beta-distributed prior on the edge inclusion probability

without discussing the choice of its hyperparameters. We argue, from a theoretical point of

view, that such choice needs careful considerations as it reflects penalty on the number of
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clusters and has profound effect on the asymptotic behavior of posterior distributions. In this

work, we explicitly assign a penalized complexity prior on the number of partitions for which

we prove the posterior consistency and design a tailored efficient RJ-MCMC algorithm. In

addition, the posterior inference of their partitions relies on a pre-specified threshold of the

edge inclusion probability, whereas our method allows us to directly obtain posterior samples

of partitions. Finally, we derive a number of original non-asymptotic (e.g., Proposition 2)

and asymptotic theories (e.g., Theorem 3), which provide a rigorous justification for the use

of random spanning tree models.

2.3 Methodology

We begin with a varying coefficient regression model in the spatial context to illustrate

our Bayesian partitioning method, and outline extensions to other hierarchical models with

latent clustered variables in Section 2.4.

Let [{x(si), y(si)}, i = 1, . . . , n] be the spatial data observed at locations s1, . . . , sn ∈

D ⊂ Rd, where x(si) = {x1(si), . . . , xp(si)}T ∈ Rp is a vector of covariates and y(si) is a

scalar of response. We consider a model

y(si) = xT(si)β(si) + ε(si), ε(si)
i.i.d.∼ N(0, σ2), (2.1)

where β(si) = {β1(si), . . . , βp(si)}T are unknown coefficients quantifying the relationships

between the response and covariates, and ε(si) are independently and identically distributed

(i.i.d.) random noises. Clearly, this is a high-dimensional regression problem as there are n

samples and np unknown regression coefficients. Assumptions need to be made on β(si) to

regularize this ill-posed problem. Previous spatial high-dimensional regression models often

assume sparsity (Chu et al., 2011) or smoothness in β(si) (Gelfand et al., 2003; Mu et al.,

2018).

In this chapter, we are interested in detecting clustering patterns in β(si). For each

individual βm(si) (m = 1, . . . , p), we assume there is a covariate-specific unknown disjoint
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partition such that βm(si) is a spatially piecewise constant, i.e., βm(si) = βm(sj) if si and sj

are in the same cluster. Alternatively, one may assume there is a single common unknown

partition for the whole vector β(si), i.e., {β1(si), . . . , βp(si)}T = {β1(sj), . . . , βp(sj)}T if si

and sj are in the same cluster. The advantage of the first assumption is that it allows us to

make inference for the partition in each covariate. We adopt this assumption in this chapter

since one may expect different cluster structures in coefficients for different covariates, but

it is straightforward to extend our method to the second one.

In the Bayesian framework, we need to assign priors for the unknown partitions and to

sample from the space of partitions for inference. In many spatial applications, as aforemen-

tioned, it is desired to consider partitions of locations with spatially contiguous clusters such

that only adjacent locations are clustered together. When a complete order of regression

coefficients is available, such as in time series problems (Kowal et al., 2019), we could obtain

contiguous clusters easily by finding change points in the ordered coefficients. However, it

is known that spatial data do not have a natural order. In this chapter, we propose to use

spanning tree as the spatial order for cluster detection and by treating it as an unknown

parameter, our method can adaptively learn the spanning tree order and detect changes in

the tree-ordered coefficients.

Below, we give formal definitions for contiguous partitions and clusters, and construct a

spanning tree model for such partitions.

2.3.1 A Prior Model for Contiguous Partitions

Consider an undirected graph G0 = (V0, E0), where V0 = {s1, . . . , sn} is the vertex set

and the edge set E0 is a subset of {(si, sj) : si, sj ∈ V0, si 6= sj}. Note that in E0, (si, sj) is

an unordered pair. Given a spatial data set, we can construct an undirected graph G0 to

represent the relationship of spatial adjacency or neighborhood. For regularly spaced data,

a lattice graph is a common choice. For irregularly spaced data, one straightforward way for

construction is to connect a vertex with all its neighbors within a certain radius. Another

approach is the Delaunay triangulation (Lee and Schachter, 1980), which constructs triangles
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Figure 2.1: (a) A graph constructed by the Delaunay triangulation, with edges longer than
0.2 removed. (b) An example of a partition with 5 clusters induced by removing the set of
red dashed edges from a spanning tree of the graph in (a). Different clusters are marked by
different colors.

with a vertex set V0 such that no vertex is inside the circumcircle of any triangle. In practice,

edges longer than a certain threshold are removed to ensure spatial proximity of neighboring

vertices. Figure 2.1(a) demonstrates an example of the Delaunay triangulation. We will

show in Section 2.3.3 that spatial graphs constructed by these two approaches achieve nice

theoretical properties.

In graph theory, a sequence of edges {(si0 , si1), . . . , (sit−1 , sit)} ⊆ E0 is called a path of

length t between si0 and sit if all sij ’s are distinct. It is called a cycle if si0 = sit and all

other vertices are distinct. A graph G0 is said to be connected if for any two vertices there

exists a path between them. In this chapter we assume G0 is always connected. A subgraph

(V , E),V ⊆ V0, E ⊆ E0 is called a connected component of G0 if it is connected and there

is no path between any vertex in V and any vertex in V0 \ V := {s ∈ V0 : s 6∈ V}, the

difference between sets V0 and V . Now one can define spatially contiguous partitions and

clusters formally based on the notion of connected components (Teixeira et al., 2019).

Definition 2.1. Given an undirected graph G0 = (V0, E0), a subset C ⊆ V0 is a spatially

contiguous cluster if there exists a connected subgraph (C, EC), EC ⊆ E0. A spatially contigu-
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ous partition of V0 is a collection of disjoint spatially contiguous clusters π = {C1, . . . , Ck}

such that ∪kj=1Cj = V0.

For conciseness, henceforth, we refer to spatially contiguous partitions and clusters as

partitions and clusters, respectively. Our goal is to develop a partition model for a given

spatial graph. However, it is a long-standing challenging task since the number of all possible

partitions grows rapidly as the number of locations. Following the similar ideas as in Teixeira

et al. (2015, 2019) and Li and Sang (2019), we consider a much more compact representation

of spatially contiguous partitions based on spanning trees.

A spanning tree of a graph G0 is defined as a subgraph T = (V0, ET ), ET ⊆ E0 that

connects all vertices without any cycle. Therefore, a spanning tree has |V0| vertices and

|V0| − 1 edges, where |V0| denotes the cardinality of set V0. By definition, there can be

multiple spanning trees for a given graph. Suppose that weights we are assigned to each

edge e ∈ E0 , and then an MST is a spanning tree (V0, ET ), ET ⊆ E0 that has the minimal

sum of weight
∑

e∈ET we.

A partition with k+1 clusters can also be defined by a spanning tree and a subset of edges

Ek ⊆ ET of cardinality k. Specifically, as shown in Figure 2.1(b), if a set of k edges is removed

from a spanning tree T , we create a subgraph of T that has k + 1 connected components,

and the vertex set of each component forms a cluster. Throughout this chapter, we say a

partition is induced by a spanning tree T if the partition can be obtained by removing a

subset of edges from ET .

Below, we show the sample space of partitions induced from random spanning trees

accommodates all possible contiguous partitions.

Proposition 2.2. Let G0 = (V0, E0) be a connected graph and π = {C1, . . . , Ck} be an ar-

bitrary spatially contiguous partition of V0. There exists at least one spanning tree T =

(V0, ET ), ET ⊆ E0 and a subset Ek−1 ⊆ E of cardinality k − 1 that induce π.

Proposition 2.2 implies that we can represent any partition by a spanning tree and a

subset of its edge set. It is notable that there is no assumption on the shape and size of
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each cluster in the partition. The detailed proof of Proposition 2.2 is provided in Appendix

A.1.1.

The above discussion suggests that the prior model specification for partitions boils down

to assigning prior models for spanning trees and the removed edge set given a spanning tree.

Conditional on a spanning tree T and the number of clusters k, we can impose a prior on

the space of partitions induced by the spanning tree, or equivalently, on the selection of

(k− 1)-sized subsets of ET . Then we can assign a prior on the space of all possible spanning

trees and a prior on the number of clusters.

Formally, let T (m) be a spanning tree of G0 that can induce π(m), the partition associated

with the mth covariate. Conditional on T (m) and km, we assume independent uniform priors

on all possible π(m)’s with km clusters that are induced by T (m) (also see Teixeira et al. 2015,

2019 for an alternative prior model on partitions):

p
{
π(m) | km, T (m)

}
∝ 1{π(m) is induced by T (m) and has km clusters}, (2.2)

independently for m = 1, . . . , p, where 1(·) is an indicator function. From the perspective

of variable selection, our prior is equivalent to assigning equal probability to all possible

selections of km − 1 edges from the edge set of size n− 1.

To specify the prior on T (m), we let w(m) = {w(m)
ij }(si,sj)∈E0 be a vector of edge weights

associated with the mth covariate, where w(m)
ij is the weight for edge (si, sj). We assign

independent and identical Unif (0, 1) prior on w(m)
ij and let T (m) be the MST given w(m), i.e.,

T (m) = MST{w(m)}, w
(m)
ij

i.i.d.∼ Unif (0, 1), (2.3)

where MST(w) means an MST of the graph G0 based on edge weights w given by Prim’s

algorithm. Recall that an MST is a spanning tree that has minimal sum of edge weights

and it is determined by the edge weights of the original graph. Also note that for any given

spanning tree of the original graph, there exists a set of edge weights such that the resulting
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MST produces that spanning tree. Therefore, the prior on edge weights induces a prior

model on the resulting spanning tree. Note, however, that our induced prior on the space of

spanning trees is not uniform, in contrast to the prior in Teixeira et al. (2015, 2019), who

use an approximate sampler to update spanning trees. Our prior setting leads to an exact

update of T (m) in our RJ-MCMC algorithm (see Section 2.3.4 for details).

Finally, we assign the following prior to the number of clusters for each coefficient, fol-

lowing the setup of Knorr-Held and Raßer (2000) and Feng et al. (2016):

P(km = k) ∝ (1− c)k, for k = 1, . . . , n, 0 ≤ c < 1 (2.4)

independently for all m. This prior is a geometric distribution truncated to the support

{1, . . . , n} with prior mean E(km) = 1/c − n(1 − c)n/{1 − (1 − c)n} when 0 < c < 1;

when c = 0 the prior becomes a truncated discrete uniform distribution with prior mean

E(km) = (1 + n)/2. It is noted that this prior has a geometrically decaying probability with

hyperparameter c controlling the decaying rate, and hence serves as a prior to penalize the

model with a large number of clusters. If c is closer to 1 we have a stronger penalization

for the large number of clusters. The choice of c plays a crucial role in high-dimensional

settings. We will show in Section 2.3.3 that a theoretically viable choice is to let − log(1− c)

grow at the same rate as log(|V0|). It is possible to assign a prior on km conditional on T (m);

however, when there is no a priori information about the true partitions and the spanning

trees that induce them, we assume that the priors for km are independent of T (m).

2.3.2 Bayesian Hierarchical Spatially Clustered Coefficient Models

Let π(m) = {C(m)
1 , . . . , C(m)

km
} (m = 1, . . . , p) be the spatial partition of the regression

coefficient associated with the mth covariate, β(m) = {β(m)
1 , . . . , β

(m)
km
}T be the vector of all

different values of the mth coefficient, where β(m)
j is the coefficient value associated with

cluster C(m)
j . With a slight abuse of notation, we denote si ∈ C(1)

j1
∩ · · · ∩ C(p)

jp
for some

j1, . . . , jp, if the regression coefficient at si for the mth covariate belongs to C(m)
jm

. Choosing

13



conjugate priors for other model parameters, our hierarchical model can be written as

y(si) | {β(m)}pm=1, σ
2, λ,

{
π(m), km,w

(m)
}p
m=1

ind.∼ N

{
p∑

m=1

β
(m)
jm

xm(si), σ
2

}
, (2.5a)

β(m) | σ2, λ, π(m), km
ind.∼ Nkm

(
0, λ−1σ2Σm

)
, (2.5b){

π(m), km,w
(m)
}p
m=1
∼

p∏
m=1

p
{
π(m) | km,w(m)

}
p(km)p{w(m)},

(2.5c)

σ2 ∼ IG(a0/2, b0/2), (2.5d)

λ ∼ Gamma(c0/2, d0/2), (2.5e)

where Nkm represents the km-dimensional multivariate normal distribution, Σm is a km×km

covariance matrix, IG(a, b) is the inverse-Gamma distribution, Gamma(a, b) is the Gamma

distribution in shape-rate parameterization, and a0, b0, c0, d0 are hyperparameters. The no-

tation “ind.” means that we assume (2.5a) holds independently for all i = 1, . . . , n and place

independent prior (2.5b) on β(m) for all m = 1, . . . , p. The priors in (2.5c), (2.5d), and (2.5e)

are also assumed to be mutually independent. We allow the prior of β(m) to accommodate

spatial dependence among clusters if one assumes spatial structures in Σm. In the case

where there is no prior information on the spatial dependence structure of β(m), one can

set Σm = Ikm , the km × km identity matrix. We only consider this independent case in this

chapter for simplicity. Note that it is also possible to choose other priors for β(m), σ2, and

λ. For example, one can place non-informative priors on σ2 and λ. And we specify indepen-

dent and identical priors for the partitions of each regression coefficient, {π(m), km,w
(m)},

following the method described in Section 2.3.1.

2.3.3 Theoretical Properties

To ease notations, we present our theoretical results for p = 1 case,

y(si) = x(si)β(si) + ε(si),
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where x(si), β(si) ∈ R, though the result can be extended to a more general case. In this

subsection, we let xi and βi denote x(si) and β(si), respectively. Let β = (β1, . . . , βn)T.

Given a spanning tree T = (V0, ET ), we define G∗T = {(si, sj) ∈ ET : β∗i − β∗j 6= 0}, where β∗i

is the true value of βi with the corresponding true partition denoted as π∗. We assume that

the number of clusters in π∗, denoted by k∗, is fixed. G∗T represents the edges of T that have

nonzero jumps in β∗, the true value of β. When π∗ is induced by T so that there is exactly

one jump in ET that crosses two distinct clusters, |G∗T |+1 equals k∗. Otherwise, |G∗T | will be

larger than k∗ − 1. Indeed, in this case, we get a nested partition of the true π∗ when G∗T is

removed from ET . We let Tn be the set of all spanning trees of the graph G0 with n vertices,

and define g∗n = maxT ∈Tn |G∗T | + 1 such that g∗n − 1 is the maximum number of edges that

have nonzero jumps in β∗ among all possible spanning trees.

We adopt the following asymptotic notations. Given two positive sequences {an} and

{bn}, an � bn means limn→∞ (an/bn) = ∞ and an � bn means 0 < lim infn→∞ (an/bn) ≤

lim supn→∞ (an/bn) <∞. We also denote the L2 norm by ‖·‖.

Our results on posterior consistency rely on the following assumptions as n→∞:

(C1) xi is non-random, and |xi| ≤M0 for some M0 > 0 and any i.

(C2) log (max1≤i≤n |β∗i |/σ∗) = O(log n), where σ∗ is the fixed true value of σ as n grows.

(C3) The graph satisfies g∗n ≺ n/ log n. Let Pn be the number of all unique partitions

nested in π∗ that have at most g∗nqn clusters for a given sequence qn →∞. We assume

that logPn = O(g∗n log n).

(C4) 1− c � n−α for some constant α > 0.

Assumption (C1) is a commonly adopted assumption which states that the covariate space

is bounded. Assumption (C2) constrains the asymptotic growth rate of the magnitude of the

true coefficients (see, e.g., Song and Cheng, 2020). Assumption (C3) restricts the number of

edges that have nonzero jumps in β∗ for any possible spanning tree, and essentially excludes
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graphs that are too dense. We will show that g∗n ≺ n/ log n is satisfied by commonly used

spatial designs and graphs with probability tending to 1 in Proposition 2.5. The second

part of Assumption (C3) constrains the complexity of the space of partitions to ensure the

existence of test functions in our proof. Assumption (C4) imposes restriction on the tail

behavior of our penalized complexity prior such that it provides enough probability mass

around the true model. Similar conditions on prior hyperparameters are common in Bayesian

high-dimensional regression literature (see, e.g., Armagan et al., 2013; Yang et al., 2016).

The following theorem states that if Assumptions (C1)-(C4) hold, the posterior distri-

bution of the predicted responses from BSCC model concentrates around the true means

asymptotically.

Theorem 2.3. (Posterior consistency for fixed spatial graph designs) Let µ and µ∗ be n-

dimensional vectors such that µi = xiβi and µ∗i = xiβ
∗
i . Under Assumptions (C1)-(C4),

there exists a constant M1 > 0 and εn �
√
g∗n log n/n such that the posterior distribution

satisfies

Πn

(
1√
n
‖µ− µ∗‖ ≥M1σ

∗εn | y
)
−→ 0

with probability one.

The detailed proof is provided in Appendix A.1.2.

We verify that the first part of Assumption (C3) holds with probability tending to 1

for some common choices of spatial designs and spatial graphs. In the spatial context, we

consider an asymptotic framework for piecewise constant functions that are defined on spatial

random graphs with a diverging number of vertices in R2. Before giving the proposition, we

will first describe a formulation for the sampling region and a nonuniform random spatial

design for irregularly spaced data, and then a technical definition of piecewise constant

functions will be introduced.

Below, we state assumptions on the sampling region D and the sampling design of n

points sD1 , · · · , sDn in D.
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(C5) Spatial sampling region. Assume D is homeomorphic to the unit square with the

Euclidean metric and a bi-Lipschitz homeomorphism FD : D → [0, 1]2. Under this

assumption, Sn = (s1, s2, · · · , sn), where si = FD(sDn ) for i = 1, · · · , n is the mapping

of the original sampling point to [0, 1]2. This condition allows us to consider a study

region with a variety of shapes as long as it is topologically equivalent to a unit square.

(C6) Spatial design and spatial graph. Given n ∈ N, we assume Sn is a sequence of n

independent points where each point is distributed on [0, 1]2 with a probability density

function ps such that 0 < pmin
s ≤ ps(s) ≤ pmax

s < ∞. We assume the spatial graph on

Sn is constructed by (i) the radius-based nearest neighbor (R-NN) graph with a radius

γ1 �
√

log n/n and γ1 > γ0, where γ0 is the maximum edge length of the MST on

Sn ; or (ii) the Delaunay triangulation graph where the edges are removed if they are

longer than γ2, where γ2 �
√

log n/n and γ2 > γ0. We will refer to it as the restricted

Delaunay triangulation in the proof.

Notice that |G∗T | is essentially the number of edges across the cluster boundaries of the

true coefficient, which is viewed as a piecewise constant function defined on the spatial

domain D. To bound maxT ∈Tn |G∗T |, we work with the following definition of piecewise

constant functions, in which the cluster boundary set is introduced.

Definition 2.4. (see, e.g., Willett et al. 2006) We say that a function g : [0, 1]2 → R is

piecewise constant if there exists a cluster boundary set Bg such that:

1. The cluster boundary set Bg has a υn-covering number N(Bg, υn, ‖ · ‖) ≤ M2υ
−1
n , for

some constant M2 > 0.

2. The function g is locally constant on [0, 1]2\Bg, i.e., g(s) = g(s′) if s and s′ belong to

the same connected component of [0, 1]2\Bg.

The next proposition states that the condition g∗n ≺ n/ log n is met under Assumption

(C5) and (C6) with high probability. The proof is delayed to Appendix A.1.3.
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Proposition 2.5. Assume further the true regression coefficient β∗,D is a function β∗,D(sD) :

D → R such that β∗(s) : [0, 1]2 → R is piecewise-constant on [0, 1]2 with the boundary set

Bβ∗. Under Assumptions (C5) and (C6), there exist positive constants M3,M4 > 0, such

that g∗n ≤M3

√
n log n holds with probability at least 1− exp

(
−M4

√
n log n

)
.

Combining Theorem 2.3 and Proposition 2.5 gives the following posterior concentration

result under the random spatial graph in Assumption (C6). The proof is given in Ap-

pendix A.1.4.

Corollary 2.6. (Posterior consistency for random spatial graph designs) Let P̃n be the

number of all unique partitions nested in π∗ that have at most M3qn
√
n log n clusters, where

π∗ is the true partition corresponding to β∗(s) in Proposition 2.5 given Sn. Assume that

log P̃n ≤ M5n
1/2 log3/2 n with probability tending to one for some constant M5 > 0 not

depending on Sn. Under Assumptions (C1), (C2) and (C4)-(C6), there exists a constant

M6 > 0 and ε̃n � n−1/4 log3/4 n such that the posterior distribution satisfies

Πn

(
1√
n
‖µ− µ∗‖ ≥M6σ

∗ε̃n | y,Sn
)
−→ 0

in probability.

2.3.4 Computational Strategies

We extend conventional RJ-MCMC algorithm to sample the partitions, the values of

coefficients, and other parameters simultaneously. Standard RJ-MCMC algorithm may suffer

from poor mixing and slow convergence, because of the potentially multimodal posterior

(which is common in many partition models such as Chipman et al. 1998) and the large

space of spanning trees. We propose several strategies to address computational issues.

Let y = {y(s1), . . . , y(sn)}T be the vector of responses, β̃ = [{β(1)}T, . . . , {β(p)}T]T ∈ RK

be the stacked vector of coefficients, where K =
∑p

m=1 km, and X̃ = [X̃1 · · · X̃p] ∈ Rn×K be

the design matrix associated with β̃, where each sub-matrix X̃m ∈ Rn×km is constructed in

18



the following way. The (i, j)th element of X̃m is set to be xm(si) if the ith location belongs

to cluster C(m)
j for some j ∈ {1, . . . , km}; otherwise, it is set to be zero.

We first rewrite the data model and the prior model for β̃ in matrix forms as

y | β̃, σ2, λ,
{
π(m), km,w

(m)
}p
m=1
∼ Nn

(
X̃β̃, σ2In

)
β̃ | σ2, λ,

{
π(m), km,w

(m)
}p
m=1
∼ NK

(
0, λ−1σ2IK

)
Integrating out β̃, the marginal distribution of y becomes

y | σ2, λ,
{
π(m), km,w

(m)
}p
m=1
∼ Nn

(
0, σ2Pλ

)
, (2.6)

where Pλ = In + λ−1X̃X̃T. It allows us to sample from the collapsed posterior distribution

of
[{
π(m), km,w

(m)
}p
m=1

, σ2, λ
]
as follows

p
[{
π(m), km,w

(m)
}p
m=1

, σ2, λ | y
]
∝

(σ2)−n/2|Pλ|−1/2 exp

(
− 1

2σ2
yTP−1

λ y

)
· (σ2)−a0/2−1 exp

(
− b0

2σ2
y

)
×

λc0/2−1 exp

(
−d0

2
λ

)
·

p∏
m=1

{(
n− 1

km − 1

)−1

· (1− c)km
}
. (2.7)

Standard uncollapsed MCMC can lead to poor mixing due to the strong dependence of β̃.

This collapsed posterior greatly improves the efficiency and mixing in searching the posterior

of partitions.

Since the number of clusters in each partition is unknown, we employ the reversible jump

MCMC (Green, 1995) to sample from the posterior in (2.7). Within each iteration of RJ-

MCMC, we further iterate through each covariate from m = 1 to p. In each inner iteration,

one of the following four possible moves is performed.

(a) Birth: Fixing the spanning tree T (m), add a new cluster to π(m) by splitting an existing

cluster.
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(b) Death: Fixing T (m), randomly remove an existing cluster by merging it into an adjacent

cluster.

(c) Change: Fixing T (m), randomly remove an existing cluster by merging it into an

adjacent cluster, and then add a new cluster by splitting an existing cluster, so that

the number of clusters remains unchanged.

(d) Hyper : Update parameters σ2, λ, and w(m) (and hence T (m)). Specifically, σ2 is up-

dated by a Gibbs step, w(m) is updated by sampling a set of edge weights such that the

resulting MST can induce the current sample of π(m) using an exact algorithm derived

below, and λ is updated by a Metropolis-Hastings procedure with a symmetric random

walk proposal.

The exact update of T (m) is done by a Metropolis-Hastings algorithm to sample edge

weights followed by Prim’s algorithm. From (2.7) we have the full conditional of w(m)

proportional to

1
[
π(m) is induced by MST{w(m)} and 0 < w

(m)
ij < 1 for all (si, sj) ∈ E0

]
. (2.8)

We propose a new w(m) by sampling w(m)
ij from i.i.d. Unif (1/2, 1) if si and sj are in different

clusters and sampling w(m)
ij from i.i.d. Unif (0, 1/2) if si and sj are in a same cluster. The

resulting spanning tree from Prim’s algorithm based on the proposed edge weights is guaran-

teed to induce the current partition π(m) (Teixeira et al., 2015). The acceptance probability

for w(m) is always 1. To see this, first notice that (2.8) remains the same for the proposed

weights, and thus the likelihood ratio is 1. The prior ratio is also 1 since we assume a uniform

prior on w(m). Due to the design of proposal distribution, the proposal ratio is again 1 as

the sets of cross-cluster edges and within-cluster edges are preserved. The sample of T (m) is

the MST generated by Prim’s algorithm. Note that this sampler is exact in the sense that

there is no approximation in this sampling scheme. The induced chain of spanning trees is

irreducible, as suggested by the following proposition.

20



Algorithm 1: RJ-MCMC algorithm
Initialize partitions and edge weights

{
π(m), km,w

(m)
}p
m=1

;
for t← 1 to T do

for m← 1 to p do
Propose a birth, death, change, or hyper step with certain probabilities ;
if birth step then

Propose a new cluster by splitting an existing cluster in π(m) ;
else if death step then

Randomly remove an existing cluster by merging it to a neighboring
cluster in π(m) ;

else if change step then
Randomly remove an existing cluster by merging it to a neighboring
cluster, then propose a new cluster by splitting an existing cluster ;

else if hyper step then
Update σ2 using Gibbs sampling ;
Update w(m) (and hence T (m)) by a Metropolis-Hastings step ;
Update λ by a Metropolis-Hastings step ;

Accept proposed change with probability α1;

Discard samples from burn-in period;

Proposition 2.7. For any spanning tree T of G0 that induces a partition π, the spanning

tree sampling algorithm described above generates T with strictly positive probability.

The proof of Proposition 2.7 is postponed to Appendix A.1.5.

We set the probability for each move to be rB(k) = 0.425, rD(k) = 0.425, rC(k) = 0.1,

and rH(k) = 0.05, respectively. Adjustments are made for boundary cases when km = 1 or n.

The choice of these probabilities works well empirically in our studies. But we remark that

these probabilities can be modified if desired. For the first three moves, a new partition is

accepted with probability α1 = min(1, A·P ·L), where A,P ,L are the prior ratio, proposal

ratio, and likelihood ratio, respectively. For the fourth move, hyper, the spanning tree is

updated adaptively to the current estimate of the partition, thus allowing for the search of

spanning trees that can induce the true partitions. The RJ-MCMC algorithm is summarized

in Algorithm 1 and detailed in Appendix A.2.

After obtaining samples of θ =
[{
π(m), km,w

(m)
}p
m=1

, σ2, λ
]
, it is straightforward to
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obtain a sample of β̃ by sampling from p(β̃ | θ,y), which takes the following closed form

β̃ | θ,y ∼ NK

{
(X̃TX̃ + λIK)−1X̃Ty, σ2(X̃TX̃ + λIK)−1

}
.

One computation bottleneck is the evaluation of the likelihood function in (2.6), which

involves the inversion of the n × n matrix In + λ−1X̃X̃T. Recall that the dimension of X̃

is n ×K, where K is the summed number of clusters over all covariates. As K is typically

much smaller than n, we take advantage of the low-rank structure and apply the Sherman-

Woodbury-Morrison formula to reduce the problem to computing yTX̃(λIK + X̃TX̃)−1X̃Ty.

The update of the above quadratic form in each MCMC iteration can be further simplified

by the fact that most columns of X̃ are unchanged in a birth, death, or change step. For

instance, in a birth step, X̃ is changed by adding one column and modifying another, which

can be done by removing one column and adding two. The Cholesky decomposition of

λIK+X̃TX̃ can therefore be updated efficiently from the Cholesky factor at the previous step

following the supernodal sparse Cholesky update/downdate algorithms (Chen et al., 2008;

Osborne, 2010). X̃Ty can also be updated by changing one element and adding/removing

another. The overall time complexity to update the quadratic term is O(nK), whereas

directly evaluating it requires O(nK2) operations.

Finally, it is common to have multimodal posterior distributions for some parameters

near cluster boundaries. We employ parallel tempering (Geyer, 1991) to better explore the

posterior and improve mixing. Specifically, we run d chains in parallel with the likelihood

function tempered by different “temperatures”. The target distribution of the jth chain is

pj(θ | y) ∝ {`(θ | y)}νj p(θ),

where `(θ | y) is the likelihood, p(θ) is the prior, and 1 = ν1 > · · · > νd > 0 are called

the inverse temperatures. Note that the first chain has the same target distribution as

the conventional RJ-MCMC algorithm does. We choose the inverse temperatures from the
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sigmoidal temperature ladder used in Gramacy and Taddy (2010) and Payne et al. (2020).

Every a certain number of iterations (which is called a swap interval), all chains swap their

parameters θ with their neighboring chains with some probabilities. For a swap attempt

between the jth and the (j + 1)th chains, the acceptance probability is given by

α2 = min

{
1,

pj(θj−1 | y) · pj−1(θj | y)

pj(θj | y) · pj−1(θj−1 | y)

}
,

where θj is the parameter in the jth chain. The draws from the first chain are the MCMC

samples from the desired posterior distribution. Generally, a chain with lower inverse tem-

perature has higher acceptance rates in reversible jump moves, allowing it to reach regions

that are hard to visit by chains with higher inverse temperatures. Samples from these regions

can then be passed to chains with higher inverse temperatures by the swap procedure, which

speeds up the exploration of the posterior sample space.

2.3.5 Selection of c

The hyperparameter c has profound effect on the asymptotic behavior of posterior dis-

tributions and thus it is rather important to carefully specify the order of c with respect to

the sample size n. Following Assumption (C4), we set 1 − c = n−α so that the posterior

consistency result in Theorem 2.3 can be guaranteed. In practice the constant α is unknown

and the selection of c boils down to choosing appropriate positive α.

We propose to use Watanabe-Akaike information criterion (WAIC; Watanabe, 2010) to

select α, which takes the form

WAIC = −2
n∑
i=1

log

(
1

S

S∑
s=1

`(θs|yi)

)
+ 2pWAIC,

where yi is a shorthand for y(si), θs is the sth (s = 1, . . . , S) MCMC sample of the param-

eters, and pWAIC is a term quantifying model complexity. In addition to the widely used
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complexity term

pWAIC1 = 2
n∑
i=1

{
log

(
1

S

S∑
s=1

`(θs|yi)

)
− 1

S

S∑
s=1

log `(θs|yi)

}
,

a numerically more stable alternative

pWAIC2 = V S
s=1 log `(θs|yi),

where V S
s=1 represents the unbiased sample variance, is also recommended (Gelman et al.,

2014). An α that leads to lower WAIC is preferred. Note that WAIC is applicable because

our model assumes conditional independence of y given the parameters and the spatial

dependence is modelled via the latent partition structure of the parameters.

2.4 Extensions to Other Hierarchical Models

The preceding Bayesian spanning tree partitioning prior model can be extended to other

hierarchical model settings. Let {yi, i = 1, . . . , n} be the observations at each vertex of

an undirected graph G0 = (V0, E0), where G0 encodes prior knowledge on the relationships

among vertices to encourage neighboring vertices sharing identical models. Examples of such

graphs can go beyond spatial domains to more complex domains such as brain networks, road

networks or social networks.

Given a partition π = {C1, . . . , Ck} of the vertices, we let yc1 , · · · ,yck denote the corre-

sponding partition of observations. Conditional on the vector of latent cluster-specific model

parameters, denoted as θ(j), j = 1, . . . , k, and the vector of global model parameters η, we

assume a conditionally independent data-level model for yc1 , · · · ,yck as follows

k∏
j=1

f(ycj | θ(j),η, π)

The Bayesian approach then proceeds by assigning prior models for θj and η conditional

on the graph partition π. Finally, the Bayesian spanning tree partitioning prior model
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introduced in Section 2.3.1 is adopted to model π.

There are many general settings in which the above hierarchical model with clustered

latent variables arises as the data-level model can take various forms. One example is to

consider generalized linear models (GLMs) for non-Gaussian data, which were also considered

in Teixeira et al. (2015, 2019) for a spatial Poisson count response data. Commonly used

non-Gaussian data level models include: (i) binary response at locations, modeled using logit

or probit regression, and (ii) count data at locations, modeled using Poisson regression. We

model the link function of mean responses using a clustered varying coefficient model,

g(E(yi)) = xT
i β(j), for i ∈ Cj (2.9)

The prior models for the partitions can be assigned in the same way as in Section 2.3.1.

If one simplifies the model by assuming a single common unknown partition for the whole

vector of regression coefficients, a prior model such as a multivariate normal can be assigned

for each β(j) independently. For this single partition case, in addition to our prior model,

one may also consider the spanning tree partitioning prior proposed in Teixeira et al. (2015,

2019).

Another example is to consider a locally stationary Gaussian process model, in a similar

spirit of the treed Gaussian process approach (Gramacy and Lee, 2008; Konomi et al., 2014).

Conditional on the partition, data within each cluster is modeled as a stationary Gaussian

process with latent cluster-specific covariance parameters φj and a global nugget effect τ 2,

that is,

yi = µj + ω
(j)
i + εi, for i ∈ Dj (2.10)

where ω(j)
i is modeled as a zero mean Gaussian process with covariance function C(·;φj),

and Dj is a subregion in the input space such that the nearest observed location from any

input point within Dj belongs to Cj. Given a partition, [{µj,φj}, τ 2] are assigned with prior

models following the typical Bayesian stationary Gaussian process conventions (Banerjee
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et al., 2014).

The RJ-MCMC algorithm presented in Section 2.3.4 can be adapted to sample the par-

titions and other parameters of the above models from their posterior distributions

p
[
{π, k,w} , {θ(j)}j=1:k,η | y

]
∝{
k∏
j=1

f(ycj | θ(j),η, π)

}
p({θ(j)}j=1:k | π)p(π, k,w)p(η) (2.11)

We remark that, in the Gaussian regression model, we marginalize out local cluster-specific

parameters when sampling partitions to speed up mixing. But in the general case, the

collapsed likelihood function may not be achievable. Nevertheless, in the birth, death and

change moves in the RJ-MCMC algorithm, the calculation of the likelihood ratio can still be

simplified since it only involves a subset of data that have changes in cluster memberships.

Data augmentation tricks such as Albert and Chib (1993) for probit models and Polson et al.

(2013) for logistic regression can also be applied to derive MCMC algorithms.

2.5 Simulation Studies

2.5.1 Simulation Setup

In this section, we assess the performance of the BSCC method by some simulation

studies. For the ease of comparison with SCC, we use the same simulation setting as in

Li and Sang (2019). 1000 spatial locations are generated uniformly in a square domain

[0, 1]× [0, 1]. We generate responses at each location from a linear model with an intercept

term and two covariates

y(si) = x1(si)β1(si) + x2(si)β2(si) + β3(si) + ε(si), ε(si)
i.i.d.∼ N(0, σ2). (2.12)

We set the true coefficients to be constant within each cluster, the true value of σ to

be 0.1, and the numbers of clusters to be 4 for β1, 5 for β2 and 6 for β3, respectively. We

consider different clustering patterns for each coefficient, which are shown in Figure 2.2. In
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Figure 2.2: Spatial structures of true coefficients and the Delaunay triangulation used in
BSCC.

particular, the shapes of true clusters for β3 are designed to be highly irregular, with the

goal of examining the capacity of the BSCC to capture irregular cluster boundaries.

The two covariates are generated such that there is a spatial correlation among locations.

Since in practice many spatial covariates are correlated with each other, we also introduce

linear dependence between x1(si) and x2(si). Specifically, let {ζ1(si)} and {ζ2(si)} be two

independent realizations of a spatial Gaussian process with zero mean and an isotropic ex-

ponential covariance function given by cov {ζm(si), ζm(sj)} = exp (−‖si − sj‖ /φ) ,m = 1, 2,

where φ is the range parameter controlling the strength of spatial correlation. Then x1(si)

and x2(si) are obtained by a linear transformation given by x1(si) = ζ1(si), x2(si) =

rζ1(si) +
√

1− r2ζ2(si). We consider a moderate collinearity case by setting r = 0.75. For

spatial correlation within each covariate, three cases are considered, namely, a weak correla-

tion with φ = 0.1, a moderate correlation with φ = 0.3, and a strong correlation with φ = 1.

For each value of φ, the simulations are repeated 100 times with a same set of true values of

coefficients.

We construct the initial graph using the Delaunay triangulation, removing edges longer

than 0.1. We consider four candidates α = 0.0075, 0.0150, 0.1000, 0.3333, which give c =
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0.05, 0.1, 0.5, 0.9, respectively. The other hyperparameters are set to be a0 = b0 = 1 and

c0 = d0 = 10−6, and the standard deviation for the random walk proposal in the hyper

step of our RJ-MCMC algorithm is chosen to be 0.9. For each simulated data set, we run

d = 8 tempered chains in parallel with the lowest inverse temperature td = 0.35. We run

each chain for 100, 000 iterations, discarding the first 50, 000. We set the thinning interval

to be 20 iterations and the swap interval to be 100. A total of 2, 500 posterior samples are

collected.

As is common in many Bayesian partition models (e.g., Denison et al., 1998; Gra-

macy and Lee, 2008; Payne et al., 2020), we use the maximum a posteriori (MAP)

estimator for point estimation. The posterior distribution used here is the full

p
[
β,
{
π(m), km,w

(m)
}p
m=1

, σ2, λ | y
]
derived from (2.5) (instead of the collapsed version

in Equation 2.7). We also calculate the 95% highest posterior density (HPD) interval for

each βm(si) from the MCMC samples.

Most existing software for spatial clustering is designed for spatial response data or

spatial points. The BSCC method is compared with the frequentist SCC method (Li and

Sang, 2019) and a Dirichlet process mixture (DPM) model for spatial regressions proposed

by Ma et al. (2020), due to the lack of other available software for multiple regressions with

spatially clustered coefficients. In SCC a fixed MST is used and the tuning parameter for

penalization is chosen by BIC. The original DPM model in Ma et al. (2020) includes a

term for spatial random effects modeled by a Gaussian process. For fair comparison, we

drop this term since our model doesn’t include these smoothly varying effects (the results of

the original version of DPM models are included in Appendix A.3.4). The DPM model is

essentially a Bayesian linear varying coefficient model with a Dirichlet process prior on the

coefficients to capture cluster patterns. Inference of the DPM model is based on MCMC, and

we run the chain for 20, 000 iterations, discard the first half, and collect posterior samples

every 10 iterations from the second half. MAP estimators are also used for the DPM model.
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α = 0.0075 α = 0.0150 α = 0.1000 α = 0.3333
(c = 0.05) (c = 0.10) (c = 0.50) (c = 0.90)

WAIC1 49 37 13 1
WAIC2 53 38 8 1

Table 2.1: Number of data sets (out of 100) with moderate spatial correlation in which
WAIC prefers a certain value of α.

The performance of coefficient estimation is quantified by the mean squared error (MSE)

MSEβ =
1

np

n∑
i=1

p∑
m=1

{β̂m(si)− βm(si)}2.

We assess the performance of partition recovery by the Rand index, which is the proportion

of agreements of the estimated partitions and the true ones. A Rand index that is closer to

1 indicates a better recovery of the true partition.

We implement the BSCC method in R using the deldir package for the Delaunay trian-

gulation, the igraph package for graph operations, and the ramcmc package for the Cholesky

update/downdate. The code will be made publicly available upon publication. The imple-

mentation of the SCC method is adapted from the R package glmnet. The DPM model is

implemented in R using the nimble code provided in Ma et al. (2020). All computations

were performed on a Linux server with two 2.4GHz 14-core processors and 64GB of memory.

2.5.2 Simulation Results

We first consider selecting the hyperparameter α (or equivalently, c) using WAIC. Table

2.1 shows the number of data sets with moderate spatial correlation in which WAIC prefers

each candidate value of α. The value α = 0.0075, which leads to c = 0.05, is preferred in

most of the data sets by both criteria. As a result, the rest results of the simulation studies

are all based on c = 0.05. The sensitivity analysis of α is shown in Appendix A.3.1.

We then assess the performance of BSCC based on 100 repeated experiments. The box-

plots of MSEs of BSCC, SCC, and DPM under three different settings of spatial correlation
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Figure 2.3: Boxplots of MSEs for BSCC, SCC, and DPM methods under 3 different settings
of spatial correlation for predictors. 100 simulations are run for each setting. The average
MSEβ over 100 simulations is shown above each box.

for predictors are shown in Figure 2.3. We can see that as the spatial correlation for pre-

dictors increases, all methods give higher MSEs. Under all settings, the MSE of BSCC is

substantially lower than those of SCC and DPM. For instance, when the spatial range pa-

rameter of predictors is φ = 0.3 (moderate correlation), the average MSE of BSCC is nearly

1/6 and 1/35 of the counterparts of SCC and DPM, respectively. Even when the spatial

correlation is strong (φ = 1), a less favorable case for parameter estimation, BSCC still

provides a much more accurate coefficient estimation than SCC and DPM.

In terms of the performance in partition recovery, we compare the average Rand indices

of BSCC, SCC, and DPM, over 100 simulations under each setting of spatial correlation.

The results are presented in Table 2.2. BSCC considerably outperforms SCC and DPM in

estimating the cluster patterns. Under weak or moderate spatial correlation, BSCC almost

perfectly recovers the true partition, suggested by the high Rand indices close to 1. When

the covariates are strongly correlated over the spatial domain, the Rand index of BSCC

degenerates slightly, but overall still indicates remarkably accurate partition recovery.
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Rand index

Spatial correlation
β1 β2 β3

BSCC SCC DPM BSCC SCC DPM BSCC SCC DPM

Weak 0.986 0.716 0.686 0.990 0.819 0.781 0.997 0.852 0.822
Moderate 0.983 0.722 0.681 0.987 0.825 0.773 0.994 0.853 0.812
Strong 0.964 0.726 0.680 0.972 0.830 0.770 0.970 0.849 0.809

Table 2.2: The average Rand indices for BSCC, SCC, and DPM methods over 100 simula-
tions.
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Figure 2.4: The estimated β̂3(si) from (a) BSCC, (b) SCC, and (c) DPM in one simulated
data set with moderate spatially correlated predictors (φ = 0.3). The MAP estimate of the
spanning tree is shown in (a), and the minimum spanning tree used by SCC is shown in (b).
Points with absolute values greater than 2 are marked in gray.

Next, we analyze the result from one simulated data set under the setting with a moderate

spatial correlation (φ = 0.3) in covariates. The data set that has a median MSE among 100

data sets is chosen for illustration.

Figure 2.4 shows the estimated β̂3(si) from BSCC, SCC, and DPM. While all methods can

approximately capture the true patterns shown in Figure 2.2(c), BSCC gives a much more

consistent result in terms of both partition recovery and parameter estimation. In contrast,

the result from SCC has more mis-classified points and gives larger estimation errors. The

result from DPM is noisier, and the clusters it identifies are not spatially contiguous. The
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results for β̂1(si) and β̂2(si) are similar and thus omitted. The numbers of clusters given by

BSCC are 5 for β1, 5 for β2, and 6 for β3, while the ones given by SCC are 92, 69, and 132,

respectively. DPM results in 23 clusters for each coefficient. The results suggest that BSCC

can recover the true partitions in a highly accurate way, including the irregularly shaped

partition of β3.

The improvement of BSCC over SCC is largely attributed to the fact that BSCC allows

the spanning tree to be updated so that it has a consistent ordering with the true partitions.

To illustrate, we show an example in Figure 2.5, which is a zoom-in version of Figure 2.2(c)

and Figure 2.4(a, b) on the selected window [0.6, 0.8]× [0.65, 0.9]. The points within the red

circles are mis-classified by SCC but correctly classified by BSCC. The reason is that the

MST in Panel (c) used in SCC is not able to induce the true partition; the mis-classified

points are only connected to the neighboring cluster (marked by green points) instead of the

true cluster (marked by orange ones), as they should be. As a result, there is no hope for

SCC to recover the true partition due to the use of an inconsistent fixed ordering spanning

tree. In contrast, the MCMC procedure in BSCC can fix this issue by updating the spanning

tree such that it connects points in a more desirable way, as is shown in Figure 2.5(b).

Another advantage of BSCC over SCC is that the Bayesian inference procedure naturally

comes with an uncertainty measure. Distributions of posterior samples of β2 at four repre-

sentative locations are shown in Figure 2.6, where 95% HPD intervals are marked by red

segments. For a location in the interior of a cluster (i.e., far away from the true boundaries),

which is shown in Panel (a), the posterior distribution is unimodal, and the HPD interval

is narrow and covers its true coefficient (marked by the blue dashed line). The parameter

estimation is accurate in this situation. Panels (b - d) show locations close to a true bound-

ary of β2. The posterior distribution in Panel (b) displays a similar pattern as Panel (a). A

different pattern is shown in Panels (c) and (d), where the distributions are multimodal and

have wider HPD intervals. Notice that lower modes in Panels (c) and (d) appear near the

true values of β2 in the neighboring clusters (indicated by the green dash-dotted line), and
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Figure 2.5: Zoomed version of Figure 2.2(c) and Figure 2.4(a, b) into the region [0.6, 0.8]×
[0.65, 0.9]. Some of the points mis-classified by SCC but correctly classified by BSCC are
marked by red circles.

the HDP intervals also contain these values. In Panel (d) there is also a third mode between

−0.5 and 0, probably because this location is assigned to some small-sized clusters in some

of the MCMC samples. Overall, the posterior distributions assign a substantial amount of

mass around the true coefficients. The multimodality reflects the uncertainty that a point

near a boundary may be classified into either cluster around it. Posterior distributions of

other locations display similar patterns.

Finally, we remark that the computational expense of BSCC is in general reasonable,

thanks to the use of multiple computation strategies carefully designed for the collapsed

RJ-MCMC algorithm in Section 2.3.4. With a moderate spatial correlation for covariates,

the average time over 100 simulations to run 100, 000 iterations with 8 parallel chains is 20

minutes. As a comparison, DPM takes 56.3 minutes to finish 20, 000 MCMC iterations on

average. Increasing spatial correlation has no impact on the running time.
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Figure 2.6: Distributions of posterior samples of β2 at four locations (see the text for details).
Red segments indicate 95% HPD intervals. True coefficient values are marked by blue dashed
lines and true values of β2 in neighboring clusters are marked by green dash-dotted lines.
Note the scales of horizontal axes are different.
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2.6 Real Data Analysis

2.6.1 Data Set

We apply our BSCC method to analyze the temperature-salinity (T-S) relationship of

seawater in the Atlantic Ocean. Our goal is to identify the Antarctic Intermediate Water

(AAIW) characterized by a negative T-S relationship (Talley, 2011). The identification

of the AAIW could provide valuable information about Earth’s climate change and thus

is an important research question in geoscience. It is known that the T-S relationship is

relatively homogeneous within certain regions but could change abruptly across the borders

of individual water masses. Therefore, the T-S relationship is often assumed to be a spatially

piecewise constant in oceanography.

The data of temperature and salinity is downloaded from National Oceanographic Data

Center (https://www.nodc.noaa.gov/OC5/woa13/). We chose a random sample of 5, 130

spatial locations from the observations in the segment of the Atlantic basin along 25◦W

between 60◦S and the equator. The distributions of both temperature and salinity have

strong anisotropic spatial patterns as a result of the Ocean’s geometry, which has a width

of around 20,000 km and a thickness of about 4 km. To eliminate the anisotropy, we follow

a rescaling method commonly used in oceanic studies (Vallis, 2017) by letting (sh, sv) =

(s0
h/L, s

0
v/H), where s0

h (s0
v) is the original latitude (depth) and L (H) is the horizontal

(vertical) length of the ocean.

2.6.2 Analysis Results

The relationship of temperature and salinity is modeled by

Sal(si) = β0(si) + β1(si)Temp(si) + ε(si),

where Sal(si) and Temp(si) are the salinity and temperature at location si = (sh,i, sv,i),

respectively, β0(si) is the intercept, and β1(si) denotes the T-S relationship of interest. Both

35

 https://www.nodc.noaa.gov/OC5/woa13/


●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

● ●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
sh

s v

BSCC(a)

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

● ●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.00

0.25

0.50

0.75

1.00

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
sh

s v

SCC(b)

−0.2

−0.1

0.0

0.1

0.2

Figure 2.7: The T-S relationship β1 estimated from (a) BSCC and (b) SCC. The contour of
β1 = 0 given by interpolation is shown as the black dashed line.

β1 and β0 are assumed to be spatially piecewise constant. We adopt the same prior as the

simulation studies described in Section 2.5.1 except that we only consider a candidate set

of α ∈ {0.0075, 0.015, 0.1} due to computational expense. The optimal model selected by

WAIC corresponds to α = 0.1, which gives c = 0.574. We run d = 20 chains with lowest

temperature td = 0.1. Each chain is run for 1, 500, 000 iterations with the first 1, 000, 000 as

burn-in period. The swap and the thinning intervals are set to be 100 and 50, respectively,

giving 10, 000 posterior samples in total. Typically such a long chain is needed for large data

sets in Bayesian high dimensional regression models to get reliable uncertainty estimates

(e.g., Zhou and Guan, 2019; Guan and Stephens, 2011).

The traceplot of posterior samples of σ2 displays satisfactory convergence and mixing

performance. The slope estimates from BSCC as well as SCC are shown in Figure 2.7,

and the estimated boundaries of the AAIW regions (points with negative slope estimates)

are marked by black dashed lines in Figure 2.7. BSCC gives 68 clusters for the slope β1.

In contrast, SCC gives 1141, which is too large for interpretation. A band-shaped AAIW

region located near the sea surface from sh = −0.30 to sh = −0.50 is identified by BSCC. Its

encompassing region covers the well-recognized generation site of AAIW and the low-salinity
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Figure 2.8: The magnitude of spatial difference quotient of the T-S relationship estimated
by (a) BSCC and (b) SCC. Note the color scales in two panels are different. Points with
magnitudes less than 5 are marked in gray.

tongue which is believed to be associated with AAIW (Talley, 2011). We also notice that

BSCC gives a spatially contiguous region of AAIW, while SCC does not.

As suggested by geophysical theory, the T-S relationship may change dramatically across

the boundary of AAIW (Talley, 2011). We quantify the change of the estimated T-S rela-

tionship by the magnitude of spatial difference quotient (Simmonds, 2012), which is given

by

D(si) =
[
{β1(si)−β1(si1 )}2

d21 sin2 γ
+
{β1(si)−β1(si2 )}2

d22 sin2 γ
− 2{β1(si)−β1(si1 )}{β1(si)−β1(si2 )} cos γ

d1d2 sin2 γ

] 1
2
,

where si1 and si2 are two nearest location of si, dj is the distance between si and sij , j = 1, 2,

and γ is the angle between vectors (sh,i1−sh,i, sv,i1−sv,i) and (sh,i2−sh,i, sv,i2−sv,i). Figure 2.8

shows the results from BSCC and SCC. Consistent with the theoretical results in geophysics,

the change of β1 given by BSCC is abrupt around the boundary. For the results from SCC,

the change has much smaller magnitude, partly due to the shrinkage effect of the L1 penalty

on the differences between neighboring regression coefficients.

Finally we illustrate the uncertainty of the T-S relationship estimation in Figure 2.9. The
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Figure 2.9: Potential AAIW regions estimated from BSCC. Points with negative β̂1 from
MAP estimation are shown in purple. Locations where 95% HPD intervals of β1 include 0
are marked by green crosses. Note that only the region [−0.5,−0.25]× [0, 0.4] is shown.

T-S relationship of purple points are estimated to be negative with high certainty. We find

3 locations along the boundary of the AAIW region whose 95% HPD intervals of β1 include

0, and they can be viewed as part of the potential boundary of AAIW.

2.7 Conclusions and Discussion

In this chapter, a novel spatial regression method, called Bayesian Spatially Clustered

Coefficient regression, is developed to estimate the clustered relationship among spatial vari-

ables. Our BSCC method is based on a model-based spatially contiguous clustering method

defined via connected components of an undirected graph, which we prove can be induced

by a spanning tree and a suitable subset of its edge set. A prior for spatial partitions is

therefore developed hierarchically by assigning priors to spanning trees as well as their edge

sets. We prove that the BSCC model achieves posterior consistency for point estimation

under this prior. However, results for posterior selection consistency (i.e., the property that

the posterior distribution of partitions concentrates at the true partition) are non-trivial to

prove, and we leave this for future research.

For computation, we propose an RJ-MCMC algorithm to sample spanning trees and
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partitions from their posterior distributions. Various computation methods such as parallel

tempering are utilized to facilitate convergence. Our simulation studies demonstrate that

BSCC remarkably outperforms its competitors SCC and DPM. In particular, BSCC achieves

nearly 80% reduction in MSE in our simulation studies when compared with its frequentist

counterpart, SCC, partially for the reason that the MCMC procedure can effectively fix the

mis-classification in SCC by proposing a more desired spanning tree. We also present an

application of BSCC to the detection of water masses by estimating the spatial clustering

patterns of T-S relationship in the Atlantic basin.

One potential research direction is to further improve the convergence and mixing of the

BSCC algorithm. A long burn-in period is typically needed before the chain converges for

our simulated and real data. For binary tree based methods, efficient proposals for new

partitions have been well-studied in literature (Chipman et al., 1998, 2010; Wu et al., 2007).

For the proposed spanning tree based model, we have tried to propose new partitions adap-

tively by splitting an existing cluster at boundaries. However, we did not observe substantial

improvement in terms of mixing and convergence (see Appendix A.4.2 for details). Modifi-

cations of proposals in the current RJ-MCMC algorithm are currently under investigation.

Nevertheless, we remark that based on our numerical experiments, even when the chain does

not fully converge, one can often still get reasonably accurate point estimations of partitions

and coefficient values, though the reliability of uncertainty measures such as HPD intervals

and Bayesian model averaging might be a concern. Hyperparameter selection is another re-

maining challenge in the model. Despite the utility of the proposed hyperparameter selection

method in Section 2.3.5, a careful choice of the candidate set for α is still required to achieve

better performance when one has little information about the number of clusters a priori.

Our current model in (2.1) assumes that the intercept and other regression coefficients

are spatially piecewise constant. It is straightforward to generalize (2.1) to be y(si) =

x1(si)
Tβ(si)+x2(si)

Tα(si)+ε(si), where β has clustering patterns andα is smoothly varying.

Incorporating a spatial Gaussian process random effect into the BSCC model is a special
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case of it.
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3. A NONSTATIONARY SOFT PARTITIONED GAUSSIAN PROCESS MODEL VIA

RANDOM SPANNING TREES

3.1 Introduction

Gaussian processes (GPs) have been a widely used modeling tool in spatial statistics, ma-

chine learning, and computer experiments. In the past decades, nonstationary GPs have at-

tracted much attention for their flexibility in modeling varying spatial dependence structures

over the spatial domain. Despite many progress on nonstationary spatial process models in

the literature, it is still considered one of the most important but challenging topics in spatial

statistics to develop flexible, computationally efficient, and theoretically justified nonstation-

ary models. The idea of locally stationary process models has gained great popularity in

spatial statistics and machine learning literature, due to its advantages in adapting to local

and nonstationary data features and naturally allowing for reduced computations using local

model results. However, there are several vital questions surrounding such methods: i) how

many partitions to use? ii) how to identify locally stationary partitions (regions)? iii) how

to achieve consensus predictions from local models, especially at boundaries?

Some existing work on locally stationary GPs relies on predetermined subregions. Park

et al. (2011) used uniform grids for roughly evenly distributed data points. For unevenly

distributed data points, k-d tree partitions with rectangular shapes (Shen et al., 2006) and

spatial hierarchical clustering algorithms (Heaton et al., 2017) were used in the literature.

Gerber and Nychka (2021) considered an overlapping domain partitioning method and used

a parallel cross-validation algorithm to estimate local covariance parameters and perform

spatial predictions. Alternative to these are the model-based partitioning methods. Risser

et al. (2019) considered GP models based on Gaussian mixture clustering of spatial loca-

tions, where GP parameters and partitions are estimated separately. Bolin et al. (2019)

developed a mixture of GP model for data on a uniform grid, where the clusters are modeled
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by a Markov random field and hence may not be spatially contiguous. The binary-treed GP

models proposed in Gramacy and Lee (2008) partitioned input space into non-overlapping

regions by making binary splits recursively, and hence only producing rectangular shaped

clusters with boundaries always parallel to the input-space axes. Kim et al. (2005) assumed

the partition is defined by a number of centering locations such that points within a cluster

are closer to its center than any other centers, which leads to convex-polygon-shaped clus-

ters (a.k.a. Voronoi cells). The Vonoroi tessellation based method was extended in Pope

et al. (2021) by allowing a subregion to be formed by multiple convex polygons, which does

not guarantee spatial contiguity of subregions, and in Gosoniu and Vounatsou (2011) by

assuming a mixture of cell-specified models with distance-based weights. Despite the ben-

efits of locally stationary models, a common criticism of many methods is that they are

lack of a coherent global process for inference and predictions. Moreover, the constraints

imposed on the shape of clusters in the current literature considerably limit the applications

and interpretabilities of local stationary models for real problems, where it is of interest for

practitioners to detect and locate spatial nonstationarities that may have highly irregular

structures. Most recently, the spanning-treed partitioning model has been demonstrated as

an efficient modeling tool for highly flexible spatially contiguous cluster shapes (Li and Sang,

2019; Teixeira et al., 2019; Luo et al., 2021b). Nonetheless, these works have been restricted

to the partition of a finite set of observed locations in regression settings. Besides the afore-

mentioned locally stationary GP models, a variety of nonstationary covariance functions of

GP have been proposed to model the heterogeneity of spatial dependence based on the ideas

of kernel convolutions, dimension expansions, spatial deformations,basis representations and

stochastic partial differential equations. We refer the interested readers to Risser (2016) and

Fouedjio (2017) for a comprehensive review.

In light of these challenges and limitations, our contribution is to develop a new class

of nonstationary GP models with flexible and desirable dependence structures for high-

dimensional spatial values. The proposed nonstationary model is constructed from locally
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stationary stochastic processes on a partitioned domain. We propose a general framework to

extend an arbitrary partition on a finite set of reference knots to the whole spatial domain, by

introducing a soft space partition process that utilizes neighborhood information. Built upon

the latent space partition, a valid global spatial process model, called a soft partitioned GP

(SPGP), is further defined to knit together local models such that the predictive distributions

admit Gaussian mixture structures that can lead to better performance in prediction and

uncertainty quantification. The idea of building spatial processes from finite dimensional

models has shown great promise in recent literature (see, e.g., Lindgren et al., 2011; Datta

et al., 2016). Our formulation adds to this line of work, but the motivation and model

specifications are vastly different from the existing literature.

To address the key and challenging issue of learning space partitions with flexible shapes

and sizes, we embed the proposed SPGP model in a Bayesian hierarchical modeling setting

and assign a spanning-treed partition prior on the finite reference set, although our general

framework of constructing SPGP can adopt any other partition priors such as binary trees,

Voronoi tessellations, and product partition models. We formally define spatially contiguous

space partitions and prove that, a key and unique advantage of the proposed partition model

over existing partition methods is that it fully accommodates all possible contiguous parti-

tions. Local partitions can be automatically learned from the data for discontinuities/abrupt

changes recovery, and smoothness in spatial random fields can be captured by Bayesian model

averaging of SPGP. We also make a theoretical contribution to study the Bayesian poste-

rior concentration concerning the infill asymptotic behavior of this Bayesian nonstationary

process model. These theoretical results provide important guidance for hyper-parameter

selections in practice. To the best of our knowledge, Bayesian theoretical properties of locally

partitioned GP models haven’t been investigated in the literature. Moreover, the modeling

framework allows flexible choices of reference knots, which, if selected to be smaller sets,

naturally deliver a speed-up computation algorithm. We offer several other computation

strategies to take advantage tree structures and recently developed block-based fast algo-
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rithms for GP models with massive spatial data.

The rest of this chapter is organized as follows. Section 3.2 describes a general framework

to construct a SPGP. Section 3.3 develops a SPGP model based on random spanning-treed

partitions and states its theoretical properties. In Section 3.4, we discuss some computational

strategies. We then demonstrate the model performance with synthetic data in Section 3.5

and with real precipitation data in Section 3.6. Finally, Section 3.7 concludes the chapter

with some discussions. Technical proofs, details of posterior inference, and supplementary

results on the synthetic and real data are provided in Supplementary Materials.

3.2 A Soft Partitioned Gaussian Process

In many environmental applications, spatial data often exhibits a dependence structure

that is not homogeneous in space. Oftentimes data within a subregion are relatively ho-

mogeneous while there could be substantial difference among the subregions. To introduce

a valid global process model to characterize spatially heterogeneous dependence, we begin

with a finite partitioned Gaussian distribution model on S = {s1, . . . , sn} ⊆ D ⊆ Rd, and

extend the finite partition to a soft partition process to probabilistically model the cluster

memberships of any given locations in Section 3.2.2. These two modeling components are

then used to build the soft partitioned GP in Section 3.2.3.

3.2.1 Gaussian Densities on a Finite Partitioned Set

We consider the case where the set S is partitioned into a few disjoint subsets so that

each subset can be treated as having homogeneous spatial dependence and modeled sep-

arately. Formally, for a generic set A (which can be either finite or infinite), we say

πk(A) = {A1, . . . ,Ak}, where Aj ⊆ A for j = 1, . . . , k, is a partition of A if it satisfies

∪kj=1Aj = A and Aj ∩ Aj′ = ∅ for all j 6= j′, and each Aj is called a cluster. In spatial

settings, it is desired to impose spatial contiguity constraints on partitions such that each

cluster can be interpreted as a subregion. The modeling of πk(S) is a key ingredient in our

method. We will introduce a new stochastic process based method via random spanning
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trees to model πk(S) with an unknown k in Section 3.3.1. But for now we assume πk(S)

to be given, to stress the fact that the soft partitioned GP modeling is a general framework

that can be built upon a wide range of partition models.

Given a generic partition πk(S), we allow each w(Sj) = {w(s) : s ∈ Sj} to be a realization

of different zero-mean Gaussian processes characterized by a covariance function C(·, ·|θj),

i.e.,

w(Sj)|πk(S) ∼ Nnj {0,C(Sj,Sj|θj)} (3.1)

independently for all j = 1, . . . , k, where nj = |Sj| is the number of locations in the cluster

Sj. The joint distribution of w(S) = {w(S1), . . . ,w(Sk)} conditional on πk(S) is therefore

Gaussian with a block-diagonal covariance matrix whose jth block is C(Sj,Sj|θj). In Sec-

tion 3.2.3, we will extend this joint distribution to a well-defined stochastic process whose

covariance function locally admits the form C(·, ·|θj) in the interior of a cluster.

3.2.2 A Soft Partition Process

In order to extend the Gaussian density on a finite partitioned set to a valid process, a

key fist step is to extend the partition on a finite set S to a partition process on D. Given

πk(S), we define z(s) ∈ {1, . . . , k} be the cluster membership of any location s ∈ D such

that z(s) = j with probability one if s ∈ Sj.

Let U be any finite subset of D such that U ∩S = ∅. Let Nu,` be the `th nearest neighbor

of u ∈ U in S under a given metric d(·, ·) on D. Intuitively, a location u ∈ U is expected to

share the same cluster membership as one of its neighbors in S, and if u is near the boundary

of a cluster in πk(S), such that z(Nu,`) 6= z(Nu,`′) for some small ` 6= `′, it is more ideal to

assign a cluster membership to u probabilistically to reflect the partitioning uncertainty and

subsequently allow for model averaging. This motivates us to consider a random membership

assignment model for z(U) following a similar spirit as the soft decision boundary proposed

by Linero and Yang (2018) in a regression additive decision tree setting. More specifically,

we assume that z(U) is independent from z(S) and each z(u), u ∈ U , follows an independent
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and identical (iid) categorical distribution with probabilities α = (α1, . . . , αL) that sum to

1:

P {z(u) = z(Nu,`)} = α`, for ` = 1, . . . , L, (3.2)

where L is the pre-specified maximal number of neighbors to be considered. We denote this

catergorical distribution by Cat {z(Nu,1), . . . , z(Nu,L)|α1, . . . , αL}. This assumption essen-

tially means that u is assigned the same cluster membership as its `th nearest neighbor in S

with probability α`, for ` = 1, . . . , L. The probabilities α are assumed to be known a priori.

Choices of α include (i) α` = 1/L for all `, which leads to a discrete uniform distribution on

the neighboring clusters, and (ii) distance-based probabilities such as α` ∝ 1/d(u, Nu,`), for

` = 1, . . . , L.

It is easy to see that this construction defines a stochastic process {z(v) : v ∈ D} given

πk(S) that takes value in {1, . . . , k}, such that the joint distribution for any finite set V ⊆ D

satisfies p
(
z(V)

)
=
∏

v∈V p
(
z(v)

)
, where p

(
z(v)

)
is a degenerated distribution on j if v ∈ Sj

or the categorical distribution in (3.2) if v 6∈ S. We refer to this process as an L nearest

neighbor soft partition process (L-SPP) conditional on πk(S). A realization of it at V in fact

defines a partition πk(V) = {V1, . . . ,Vk}, where Vj = {v ∈ V : z(v) = j} for j = 1, . . . , k.

3.2.3 Extension to a Soft Partitioned Gaussian Process

To extend (3.1) to a legitimate spatial process on D, we first define the distribution of

w(U) given w(S) for any finite set U that is disjoint from S. Given a realization of the

L-SPP z(U) =
(
z(u1), . . . , z(ur)

)
conditional on πk(S), U can be partitioned into clusters

Uj = {u ∈ U : z(u) = j}. The conditional distribution of w(U) given w(Sj), z(Uj), and

πk(S) is assumed to be

w(Uj)|w(Sj), z(Uj), πk(S) ∼ Nrj {µ(Uj|Sj,θj), Σ(Uj|Sj,θj)} , (3.3)
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independently for j = 1, . . . , k, where rj = |Uj|, and

µ(Uj|Sj,θj) = C(Uj,S|θj)C−1(Sj,Sj|θj)w(Sj), (3.4)

Σ(Uj|Sj,θj) = C(Uj,Uj|θj)−C(Uj,Sj|θj)C−1(Sj,Sj|θj)C(Sj,Uj|θj). (3.5)

Combining (3.1) and (3.3), for any finite subset V of D with the associated cluster member-

ships z(V), the density of w(V) given z(V) and πk(S) is given by

p
(
w(V)|z(V)

)
=

∫
p
(
w(U)|w(S), z(U)

)
p(w(S))

∏
{s∈S\V}

d(w(s)) where U = V \ S. (3.6)

The dependence on πk(S) and parameters Θ = (θ1, . . . ,θk) is made implicit in (3.6) for

conciseness. Note that if V ⊆ S then p(w(U)|w(S), z(U)) = 1 and if S \ V = ∅ then

the integration in (3.6) is not needed. A mean-zero GP on D is therefore defined by (3.6)

conditional on an L-SPP on D, with a covariance function

C‡(v,v′|z(v), z(v′),Θ) =


C
(
v,v′|θj

)
, if v,v′ ∈ Dj for some j ∈ {1, . . . , k},

0, otherwise,

where Dj = {s ∈ D : z(s) = j} is the collection of all locations in D that are assigned to the

jth cluster.

Marginalizing out the L-SPP, the unconditional density of p(w(V)) for any finite subset

V ⊆ D is therefore given by a Gaussian mixture

p
(
w(V)

)
=
∑
z(V)

p
(
w(V)|z(V)

)
p
(
z(V)

)
, (3.7)

where the summation is over all possible combinations of cluster memberships z(V). As

shown in Appendix B.1.1, the density (3.7) satisfies Kolmogorov’s consistency criteria and

thus implies a valid spatial process on D, which we call an L nearest neighbor soft partitioned
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Gaussian process (L-SPGP) conditional on a partition πk(S). The covariance function of

this process is given by

C‡(v,v′|Θ) =
k∑
j=1

κjC(v,v′|θj), (3.8)

where the weights κj = P{z(v) = j} × P{z(v′) = j} is the probability that both locations

belong to the jth cluster. Note that for any location v ∈ D, P{z(v) = j} =
∑L

`=1 αj1(Nv,` ∈

Sj) if v 6∈ S, and P{z(v) = j} = 1 if v ∈ Sj, where 1(·) is an indicator function. Therefore, κj

is completely determined by the neighborhood structures. In particular, C‡(v,v′|Θ) reduces

to C(v,v′|θj) if v,v′ ∈ Int(Sj), where Int(Sj) is the interior space corresponding to cluster Sj

defined by Int(Sj) := Sj∪{u ∈ D\S : all of the L nearest neighbors of u in S belong to Sj}.

If C(v,v′|θj) is taken to be a stationary covariance function, then L-SPGP is locally sta-

tionary within Int(Sj). Note that this process can also be viewed as a finite mixture of

GPs defined on D with spatially varying mixture weights, where each mixture component is

GP(0, C). Although the covariance function (3.8) seems similar to the ones obtained from

discrete kernel convolution, they are essentially different approaches, in the the sense that

the weights {κj} comes from the uncertainty of partitioning a domain instead of some kernel

functions.

For further illustration of L-SPGP, let us consider two examples.

Example 3.1. Let S be the locations where the realization of the process {w(v)} is observed

and u 6∈ S be a location on which we want to do prediction. The conditional (also called

predictive or kriging) distribution is given by a Gaussian mixture

w(u)|w(S), πk(S) ∼
L∑
`=1

α` N1

(
µ(u|Sj(`),θj(`)),Σ(u|Sj(`),θj(`))

)
, (3.9)

where j(`) = z(Nu,`). The uncertainty of cluster memberships of u for prediction is captured

by the Gaussian mixture structure. We refer the mean and variance of the Gaussian mixture

in (3.9) as kriging mean and kriging variance at u, respectively. Note that each mixture

component in (3.9) may not be distinct; in the case where j(`) = j(`′), the `th and `′th
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components are identical. When j(1) = · · · = j(L) = J (i.e., when u ∈ Int(SJ)), (3.9)

reduces to the same predictive distribution given by (3.3), suggesting that u can be assigned

to the Jth cluster with high certainty.

In general, the number of neighbors L controls the smoothness of the kriging mean at

u near the boundary set D \ ∪kj=1 Int(Sj). As L increases, we have a larger boundary set,

allowing for capturing partitioning uncertainty in a larger area, and the smoothing effects

are stronger for locations within the boundary set. See Figure B.2 in Supplementary Section

B.3.1 for an illustration of the kriging means and standard deviations (SDs) across D = [0, 1]2

with various values of L and a discrete uniform distribution for neighbor choices.

Example 3.2. Consider the L = 1 case. Then the SPGP becomes a piecewise GP in

the sense that it takes the form GP(0, C(·, ·|θj)) in the unioned region ∪s∈SjVS(s), where

VS(s) = {v ∈ D : d(v, s) < d(v, s′) for any s′ ∈ S and s′ 6= s} is the Voronoi cell with

nucleus s for the Voronoi tessellation based on S. In particular, when each Sj is a singleton,

the SPGP contains the piecewise GP based on Voronoi tessellations (Kim et al., 2005) as

a special case. In our framework, a generic partition model is allowed for Sj so that the

Voronoi cells with nuclei in Sj can be merged freely, leading to a piecewise GP with a more

flexible space partition than the model in Kim et al. (2005).

3.3 Bayesian Spanning-Treed Gaussian Process Models

3.3.1 A Predictive Spanning-Treed Prior for Partitions

The SPGP defined in Section 3.2.3 is conditional on a partition πk(S). In a Bayesian

modeling framework, πk(S) is treated as unknown and assigned a prior model. As we stressed

in Introduction, it is desired to impose contiguity constraints for spatial partitioning prob-

lems. Henceforth, we will focus on spatially contiguous partitions and refer to them simply

as partitions when there is no risk of ambiguity.

Instead of directly modeling πk(S), we consider a more general approach that builds par-

titions on a latent set to enable dimension reductions, referred to as the predictive spanning-
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treed partition prior, and prove its richness in characterizing contiguous partitions. More

precisely, we let S∗ = {s∗1, . . . , s∗m} be a set of pre-specified reference knots, which may or

may not coincide with S. We assume that πk(D) is a partition of the domain obtained from

assigning s ∈ D to the same cluster as its nearest neighbor in S∗ under πk(S∗). That is, we

have Dj = D ∩
(
∪s∗∈S∗j VS∗(s

∗)
)
. A partition πk(S) can be derived by setting Sj = S ∩ Dj.

See Figure 3.1(b, c) for an illustration on how πk(D) and πk(S) are determined by πk(S∗). As

will be discussed in Section 3.4.3, this formulation provides a natural framework to achieve

scalability for large spatial data sets by choosing m � n. The prior models on πk(D) and

πk(S) can therefore be induced by a prior model on πk(S∗).

Motivated by the success of spanning tree models for capturing contiguous partitions

in linear regression settings (see, e.g., Luo et al., 2021b), we assign a spanning tree based

partitioning prior for πk(S∗). This prior has the advantages that (i) its support is rich enough

to accommodate all possible spatially contiguous partitions of S∗ (see also Proposition 3.3),

(ii) it allows the number of clusters to be determined by the data, and (iii) it can facilitate

computation by simplifying a complicated combinatorial partitioning problem on a graph

into a compact representation based on spanning trees.

Let G = (S∗, E) be an undirected graph with vertex set S∗ and edge set E ⊆ {(s∗i , s∗i′) : i 6=

i′}, where (s∗i , s
∗
i′) is an unordered set. Guided by our theoretical results (see Assumption

SD in Section 3.3.3), G is specified as a radius-based nearest neighbor (R-NN) graph or

a Delaunay triangulation with edges longer than a threshold removed such that locations

connected by an edge are spatially adjacent. An example of a Delaunay triangulation graph

is shown in Figure 3.1(a).

A spanning tree of G is defined as a subgraph T = (S∗, ET ), ET ⊆ E that connects all

vertices without any cycle. Let ωi,i′ be the weight of the edge (s∗i , s
∗
i′) in G and ω = {ωi,i′ :

(s∗i , s
∗
i′) ∈ E}. A minimum spanning tree (MST) is a spanning tree that has minimal sum of

edge weights
∑

(s∗i ,s
∗
i′ )∈ET

ωi,i′ .

A well-known property of spanning trees is that after a set of k−1 edges is removed from
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Figure 3.1: (a) A Delaunay triangulation graph on reference knots S∗. The true space
partition is represented by the dashed lines. (b) A spanning tree of the graph (grey lines)
and a partition π3(S∗) and the corresponding Voronoi cells on S∗ induced by removing the
two dashed edges. (c) A partition π3(S) of observed locations S (marked by dots) induced
by π3(S∗) (black crosses). (d) A space partition π3(D) when S∗ is set to be S.

T , we obtain a graph with k connected subgraphs. By treating the jth connected subgraph

as cluster S∗j , we obtain a spatially contiguous partition πk(S∗). We say πk(S∗) is induced

by T in this case. See Figure 3.1(b) for an example of π3(S∗) induced from a spanning tree.

The estimation of πk(S∗) amounts to learning the spanning tree (may not be unique) and its

removed edges that induce the true partition. This property implies that a prior on πk(S∗)

can be assigned hierarchically, by first placing priors on the number of clusters k and the

spanning trees in G, and then the positions of the k − 1 removed edges.

Formally, conditional on T and k we assume a uniform prior on all possible partitions

induced by T :

p {πk(S∗) | k, T } ∝ 1 {πk(S∗) is induced by T and has k clusters} . (3.10)

Regarding the prior on T , a seemingly natural choice is to assume a discrete uniform dis-

tribution on all possible spanning trees of G. However, it is challenging to sample from this

uniform distribution. We opt to place an iid uniform prior on edge weights ω instead, which

induces a prior model on the spanning tree space via

T = MST(ω), ωi,i′
iid∼ Unif (0, 1), (3.11)
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where MST(ω) means an MST of the graph G based on edge weights ω. This MST space

constructed from random edge weights consists of all possible spanning trees of G. We will

show in Section 3.4 that this prior also leads to an exact and fast spanning tree sampler,

taking advantage of the Prim’s algorithm for MST constructions.

Finally, we assume a truncated geometric distribution on k such that

P(k = j) ∝ (1− c)j, for j = 1, . . . , k̄m, 0 ≤ c < 1, (3.12)

where k̄m is the pre-specified maximum number of clusters and c is a hyperparamter control-

ling the decaying rate of the prior probability so that models with large number of clusters

can be penalized. Guided by our theoretical results in Section 3.3.3, we recommend speci-

fying k̄m such that it scales with
√
m logm (see Assumption P1). As discussed before, this

prior on latent πk(S∗) induces predictive spanning treed priors on πk(S) and πk(D). Below,

we state two propositions concerning the supports of the prior models on a finite set S∗ and

an infinite set D = [0, 1]d, respectively. The definitions of contiguous partitions and proofs

of both propositions are delayed to Appendix B.1.2. The first proposition states that the

support of the predictive spanning-treed partition prior contains any spatially contiguous

partitions on S∗ (and hence S when S = S∗) with no more than k̄m clusters.

Proposition 3.3. Let πk(S∗) = {S∗1 , . . . ,S∗k} be an arbitrary spatially contiguous partition.

Then πk(S∗) is within the support of the prior defined by (3.10), (3.11), and (3.12) if k ≤ k̄m.

The next proposition shows that the predictive spanning-treed partition prior on the

domain can approximate any fixed partition of D arbitrarily well as S∗ becomes denser. As

shown in Figure 3.1(d), if we choose a denser S∗ (which is S in this example), the determined

πk(D) better approximates the true partition (cf. Figure 3.1(b)).

Proposition 3.4. Let πk(D) = {D1, . . . ,Dk} be an arbitrary fixed spatially contiguous par-

tition of D = [0, 1]d. If S∗ is a sequence of m locations distributed independently on D with

a probability density function ps such that infs∗∈D ps(s
∗) > 0 and k ≤ k̄m, then there exists a
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partition πk(S∗) = {S∗1 , . . . ,S∗k} with positive prior probability such that

L
{
Dj∆

(
∪s∗∈S∗j VS∗(s

∗)
)}
−→ 0 for j = 1, . . . , k,

asm→∞ almost surely under the data generating process of S∗, where L(·) denotes Lebesgue

measure and ∆ denotes symmetric difference of sets.

3.3.2 Spanning-Treed Gaussian Process Regressions

We embed the proposed L-SPGP with a spanning-treed partition prior into a spatial

regression setting. Consider a point-referenced response variable y(s) ∈ R at a generic

location s ∈ D along with a vector of covariates x(s) ∈ Rp. We denote the collection of

responses and the design matrix corresponding to a generic finite subset A of D by y(A)

and X(A), respectively.

We consider a spatial regression model specified as

y(s) = βTx(s) + w(s), s ∈ D,

where the residual process w(s) is modeled as a zero-mean L-SPGP conditional on a partition

πk(S), which is fully determined by πk(S∗) as discussed in Section 3.3.1. Finally, we complete

the hierarchical model by assigning a spanning-treed prior to πk(S∗). We call this model the

spanning-treed Gaussian process (STGP) regression. The hierarchical model of STGP for

observations can be written as

y(Sj)|β,Θ, πk(S)
ind.∼ Nnj {X(Sj)β, C(Sj,Sj|θj)} , (3.13a)

β|λ ∼ Np (µβ, λIp) , λ ∼ IG(aλ, bλ), (3.13b)(
πk(S∗), k, T

)
∼ p
(
πk(S∗)|k, T

)
p(k)p(T ), (3.13c)

where p(πk|k, T ), p(T ), and p(k) are specified in (3.10), (3.11), and (3.12) respectively. Note

that we assume all clusters share the same coefficients. One may instead assume cluster-
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specified coefficients; however, we argue that this may cause identifiability issues between

spatially varying regression means and spatial random effects and hence a poor parameter

estimation, though we can still obtain reasonable prediction accuracy of the responses.

We complete the hierarchical model by specifying the local covariance function. One

popular choice is the stationary Matérn family (Banerjee et al., 2004) including both isotropic

models σ2ρ(s, s′|φ, ν)+τ 2
1(s = s′), where σ2, φ, ν and τ 2 are the variance, range, smoothness

and nugget effect variance parameters respectively, and geometric anisotropic models. Priors

for local covariance parameters are assigned following standard GP models.

Finally, consider a new location u 6∈ S where we intend to predict the response y(u)

given x(u) and y(S). Following (3.9), the posterior predictive distribution of y(u) is

y(u)|y(S),β,Θ, πk(S) ∼
L∑
`=1

α` N1

(
µ̃(u|Sj(`),θj(`)),Σ(u|Sj(`),θj(`))

)
, (3.14)

with µ̃(U|S,θ) = X(U)β + C(U ,S|θ)C−1(S,S|θ) {y(S)−X(S)β} .

3.3.3 Theoretical Properties

In this subsection we establish posterior concentration results for the STGP regression

model under the assumption that D = [0, 1]2 and the true spatial field is a piecewise smooth

function. Our theoretical results can be easily extended to a more general domain that is

homeomorphic to the unit square with the Euclidean metric and a bi-Lipschitz homeomor-

phism. Throughout this subsection, we focus on the case where S∗ = S. Assuming y(s) has

zero mean for simplicity, our model can be written as

y(s) = w̃(s) + ε(s), ε(s) ∼ N1

{
0, τ 2(s)

}
(3.15)

where w̃(s) is assigned a spanning-treed isotropic GP prior with local Matérn parameters

{σ2
j , φj} and a common smoothness parameter ν, and ε(s) is the nugget effect with a piecewise

constant variance {τ 2
j }.
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We adopt the following notations. Given two positive sequences {an} and {bn},

an = o(bn) means limn→∞ (an/bn) = 0 and an � bn means 0 < lim infn→∞ (an/bn) ≤

lim supn→∞ (an/bn) <∞. The posterior given data (y(S),S) is denoted by Πn(·|y(S),S).

We first state the assumptions on the true data generating process. We assume the

responses are generated according to (3.15) with a piecewise smooth true mean function

w̃∗(s) and a piecewise constant true nugget variance τ ∗2(s). More precisely, we let π∗k∗(D) =

{D∗1, . . . ,D∗k∗} be the true contiguous partition of [0, 1]2 with some fixed k∗ and a fixed

boundary set B∗ ⊂ [0, 1]2 (see Supplementary Section B.1.2 for the definition). We assume

the following smoothness conditions on the true spatial field in each D∗j .

Assumption T. We assume w̃∗(s) and τ ∗2(s) satisfy

w̃∗(s) =
k∗∑
j=1

w̃∗j (s)1(s ∈ D∗j ), τ ∗(s) =
k∗∑
j=1

τ ∗j 1(s ∈ D∗j ),

for some functions w̃∗j ∈ Cβ[0, 1]2 ∩Hβ[0, 1]2 and constants τ ∗j > 0 that are fixed as n grows,

where Cβ[0, 1]2 and Hβ[0, 1]2 are the Hölder space and the Sobolev space of regularity β,

respectively. Further, we assume that w̃∗j (·) is within the support of a GP prior with an

isotropic Matérn covariance σ2∗
j ρ(·, ·|φ∗j , ν) for some constants σ∗2j , φ∗j , and a known ν ≥ β.

We adopt a random design framework where the number of sampling locations within a

fixed domain diverges to infinity. We assume the following on the spatial design and spatial

graph of n points s1, . . . , sn in D.

Assumption SD. Given n ∈ N, we assume S is a sequence of n independent points where

each point is distributed on [0, 1]2 with a probability density function ps such that 0 < pmin
s ≤

ps(s) ≤ pmax
s <∞. We assume the spatial graph on S is constructed by (i) the R-NN graph

with a radius γ1 �
√

log n/n and γ1 > γ0, where γ0 is the maximum edge length of the MST

on S; or (ii) the Delaunay triangulation graph where the edges are removed if they are longer

than γ2, where γ2 �
√

log n/n and γ2 > γ0.
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Given the true space partition and a spatial graph G = (S, E), we say an edge (si, si′) ∈ E

is across the true boundary B∗ if si ∈ D∗j and si′ ∈ D∗j′ for some j 6= j′. If the set of all

edges within a spanning tree T that are across B∗ is removed, one obtains a partition of S,

denoted by π∗k∗T (S), that is nested in the true partition π∗k∗(S) = (S ∩ D∗1, . . . ,S ∩ D∗k∗) of

S, and with the number of clusters k∗T ≥ k∗. Assumption SD guarantees that the maximum

number of edges across B∗ in any spanning tree scales with
√
n log n with probability tending

to 1 (Luo et al., 2021b). This implies k∗T ≤ c1

√
n log n for some constant c1 > 0 and any

T . This bound plays a crucial role in establishing the prior concentration around the true

model.

We further assume the priors satisfy the following condition, which guarantees the par-

tition π∗k∗T (S) is within the support of the prior given an arbitrary spanning tree T . It also

regularizes the partition model so that the number of obtained clusters is not too large.

Assumption P1. We assume k̄n satisfies c1

√
n log n ≤ k̄n ≤ c′1

√
n log n for some constants

c′1 > c1.

We are now ready to state our first posterior concentration result. We denote by p(y|s)

the conditional density of the response given the sampled location, whereas the true one is

denoted by p∗(y|s). Note that p(y|s) depends on the partition and covariance parameters.

The following theorem shows that p(y|s) concentrates in a weak neighborhood of p∗(y|s)

asymptotically under a random spatial design for S. Its proof is deferred to Appendix B.1.4.

Theorem 3.5 (Weak consistency). Define the weak ε-neighborhood of true density p∗(y|s)

for any bounded continuous function g and any ε > 0 as

Wg,ε =

{
p :

∣∣∣∣∫ g(y|s)p(y|s)ps(s)dyds−
∫
g(y|s)p∗(y|s)ps(s)dyds

∣∣∣∣ < ε

}
.

Under Assumptions T, SD, and P1, the posterior distribution satisfies Πn

(
W c
g,ε | y(S),S

)
→

0 almost surely under p∗(y|s)ps(s).
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To establish posterior contraction rate results, we need additional assumptions on the

priors and the spatial graph. Let εn be a sequence going to zero such that εn � (log n/n)δ

with some constant 0 < δ < min{β/(8ν + 8− 4β), 1/4− 1/(2α)}, where α = bνc.

Assumption P2.

(P2-1) Assume that ν ≥ max(3, β).

(P2-2) There exist sequences φ̃n, σ̃n and Mn satisfying that, as n→∞,

− log Πφ(φ < φ̃−1
n )/(nε2n)→ +∞, − log Πσ(σ2 > σ̃−2

n )/(nε2n)→ +∞,

k̄n(Mn/εn)2/α = o(nε2n), M2
nσ̃

2
nφ̃
−2α
n /(nε2n)→ +∞.

(P2-3) Πτ is supported on [a, b] ⊂ R with 0 < a ≤ τ ∗2j ≤ b < +∞ for all j = 1, . . . , k∗.

Assumption SG. Let ξn(k) be the number of unique spatially contiguous partitions with k

clusters of the graph G on S. We assume G is constructed such that log
(
max1≤k≤k̄n ξn(k)

)
=

O(nε2n).

Assumptions (P2-1) and (P2-2) on the priors of covariance functions allow us to construct

a sieve on w̃ that has desired tail probability and metric entropy; similar assumptions can be

found in Ghosal and Roy (2006) and Payne et al. (2020). Assumption (P2-3) is a standard

assumption in the literature for nonparametric regressions with GP priors (see van der Vaart

and van Zanten, 2008; Bhattacharya et al., 2014, among others), which is used to construct

a sieve on τ 2. Assumption SG excludes some graphs that are too dense and constrains the

complexity of the space of all possible partitions so that the test functions with desired

probability of type-I errors exist.

The next theorem suggests that the posterior contracts with rate εn at p∗(y|s) with respect

to expected total variation distance. Note that this rate is slower than the minimax rate for

customary GP regressions with Matérn kernels (van der Vaart and van Zanten, 2011) as we

pay a price for estimating the unknown partition structure using the flexible spanning-treed

prior. The detailed proof is provided in Appendix B.1.5.
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Theorem 3.6 (Posterior contraction). Under the same assumptions in Theorem 3.5 as well

as Assumptions P2 and SG, the posterior distribution satisfies

Πn

(∫
|p(y|s)− p∗(y|s)| ps(s)dyds ≥Mεn | y(S),S

)
−→ 0

almost surely under p∗(y|s)ps(s) for some constant M > 0.

3.4 Computational Strategies

3.4.1 Estimation

The unknown parameters of the proposed STGP regression model mainly involve the

spanning-treed partition parameters
(
πk(S), k, T

)
, the associated cluster-specified covari-

ance parameters Θ =
{
τ 2
j , σ

2
j , θ̃j

}
j=1:k

with local correlation parameters θ̃j, and the global

parameters (β, λ). Conditional on
(
πk(S), k, T

)
and Θ, global parameters can be updated

via standard Bayesian inference methods. In particular, we sample β and λ from their pos-

terior conditional distributions, which follow a multivariate normal and an inverse gamma

distribution, respectively. The detailed forms are included in Supplementary Section B.2.

Below, we focus on the adaptive estimation of spanning treed partitions
(
πk(S), k, T

)
and covariance parameters Θ conditional on (β, λ). As the number of clusters is assumed

unknown, this trans-dimensional inference is done via a tailored reversible jumpMarkov chain

Monte Carlo (RJ-MCMC) sampler (Green, 1995; Luo et al., 2021b). Taking advantage of the

tree structure, each RJ-MCMC move can be achieved by simply adding and/or deleting an

edge in the tree, or updating trees via efficient MST algorithms. The acceptance ratio of the

proposed RJ-MCMC move involves the calculation of likelihood ratios, a major computation

bottleneck in standard RJ-MCMC algorithms. We will show that, each RJ-MCMC move

under STGP only changes the cluster memberships of a smaller subset of observations, and

hence only the likelihood ratios involving this subset of data need to be calculated. An

additional advantage of the locally stationary model is that it allows to estimate cluster-

specific parameters Θ using only the data in each subregion. In doing so, STGP naturally
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leads to a reduced computation from fitting a global GP model to a number of local GP

models.

Specifically, we reparametrize the covariance function by setting σ2
j = τ 2

j σ̄
2
j and place

a conjugate inverse Gamma prior for τ 2 = {τ 2
j }j=1:k that allows us to integrate τ 2

j out

analytically when we update the partitions and other cluster-specific parameters, which

improves mixing and convergence of our sampler.

To collect samples from
(
{σ̄2

j , θ̃j}j=1:k, πk(S), k, T
)
|(τ 2,β, λ), one of the four moves —

birth, death, change, and hyper — is performed with probabilities rb(k), rd(k), rc(k), and

rh(k), respectively. The first three moves modify the partition πk(S∗), which in turn deter-

mines a modification of πk(S).

In a birth move, one of the k clusters in πk(S∗) is randomly chosen with equal probabilities,

and then the chosen cluster is split into two by randomly removing an edge in T that connects

vertices in the cluster. Suppose that S∗j0 is chosen to be split into S∗j1 and S∗j2 . In the case

where S∗ 6= S, Sj0 is also split into two clusters Sj1 and Sj2 , by assigning s ∈ Sj0 to Sj1 (or

Sj2) if its nearest neighbor in S∗ belongs to S∗j1 (or S∗j2). One of Sj1 and Sj2 is uniformly

chosen to inherit the parameters (σ̄2, θ̃) from the original cluster. As there is no conjugate

prior for σ̄2 or θ̃, standard Metropolis-Hastings (M-H) updates can lead to low efficiency.

To address this, following Payne et al. (2020), the (σ̄2, θ̃) for the other new cluster, say Sj2 ,

are chosen to maximize p
{

y(Sj2)|σ̄2, θ̃,−
}
p(σ̄2)p(θ̃), where p(σ̄2) and p(θ̃) are the prior

densities for σ̄2 and θ̃, respectively, and p
{

y(Sj)|σ̄2
j , θ̃j,−

}
is the likelihood function of

y(Sj) with τ 2 integrated out. The M-H ratio is therefore

(1− c)× rd(k + 1)

rb(k)
×
p
{

y(Sj1)|σ̄2
j1
, θ̃j1 ,−

}
p
{

y(Sj2)|σ̄2
j2
, θ̃j2 ,−

}
p
{

y(Sj0)|σ̄2
j0
, θ̃j0 ,−

} , (3.16)

which only involves likelihood functions on subsets of S.

Opposite to the birth move, a death move randomly merges two adjacent clusters in

πk(S∗). Specifically, an edge in T that connects two distinct clusters in πk(S∗) is uniformly
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selected and then the two clusters are merged. The corresponding two clusters in πk(S) are

also merged accordingly. The parameters (σ̄2, θ̃) of the merged clusters are chosen using

a similar maximum a posteriori (MAP) approach as in the birth move. The M-H ratio is

analogous to (3.16). In a change move, a death move is performed followed by a birth move,

so that the number of clusters is unchanged. This move is designed to encourage better

mixing of the Markov chain.

A hyper move updates the spanning tree using the exact sampler similar as in Luo et al.

(2021b), which adaptively learns a desired spanning tree spatial order to better recover the

true partition. We sample the edge weight ωi,i′ of G from iid Unif(1/2, 1) if the vertices s∗i

and s∗i′ are in different clusters under πk(S∗), and otherwise from iid Unif(0, 1/2). A new

spanning tree is the MST generated by Prim’s algorithm using the new edge weights.

Finally we update the parameters {τ 2
j }j=1:k by sampling from their inverse gamma full

conditionals, whose closed forms are given in Supplementary Section B.2.

3.4.2 Prediction

Posterior predictive inference in the STGP model can be achieved via (3.14). Let

U = {u1, . . . ,ur} be a collection of locations where the responses are unobserved, i.e.,

ui 6∈ S for i = 1, . . . , r. Conditional on a posterior draw of the parameters, we can sam-

ple from y(U)|
(
y(S),Θ, πk(S), k, T

)
. The detailed algorithm is provided in Supplementary

Section B.2. Note that the prediction algorithm is parallelizable, as predictions at each Uj

are independent and only depend on the observations from one subregion at a time given a

sample of cluster memberships.

Thanks to the Gaussian mixture structure in the predictive distributions, the predic-

tion uncertainty at points near boundaries will be reflected by their oftentimes multi-modal

predictive distributions. As discussed in Section 3.2.3, the kriging mean predictive surface

around the estimated boundary becomes smoother as L grows. The surface can be further

smoothed by using Bayesian model averaging to account for model estimation uncertainties

(Gramacy and Lee, 2008). We remark that the usual kriging means and SDs estimates may
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not be the ideal choice to summarize the possibly multi-modal spatial prediction results of

the STGP model at boundaries. Instead, we recommend to use the highest posterior density

(HPD) region to capture multimodality by disjoint HPD intervals.

3.4.3 Computation for Large Data Sets

Despite of the several advantages of the aforementioned tailored RJ-MCMC algorithm,

there are still two major computational bottlenecks that need to be mitigated for very large

spatial data sets.

First, the MCMC algorithm described in Section 3.4.1 involves graph operations that

can be time-consuming when we set S∗ = S due to the large graph. A larger graph is also

associated with a larger spanning treed partition space that may cause slower convergence

and mixing of MCMC. We can mitigate this by specifying S∗ of size m� n, which allows us

to perform graph operations on a graph with fewer vertices and edges. The time complexity

is O(m) for a birth step in the MCMC algorithm and O(m logm) for a hyper step. Possible

choices of S∗ include regular grids and random subsets of the observed locations from k-means

clustering or k-d tree partitions.

Similar to customary GP models, another major computational challenge of the STGP

models comes from the cubic time complexity of matrix operations. Despite that the MCMC

procedure only involves solving the linear system with a local covariance matrix C(Sj,Sj|θj),

computation may still be an issue when a cluster contains a large amount of observations.

Fortunately, the induced prior model on πk(S) provides a natural framework to incorporate

block-based likelihood approximation methods. For each knot s ∈ S∗, the Voronoi cell

VS∗(s
∗) not only merges to form a partition on S, but defines a block in the domain (see also

Figure 3.1(b)). Using this blocking scheme, recent block-based scalable GP methods, such

as the block version of NNGP methods (Datta et al., 2016; Zhang et al., 2019), full-scale

approximations with blocks (Konomi et al., 2014) and the meshed GP method (Peruzzi

et al., 2020), can be conveniently embedded into the current algorithm to speed up the

local likelihood calculation by grouping observations within a Voronoi cell into a block. The
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stationary assumption underpinning some of these computation approximation algorithms

now holds locally, so we expect that they would achieve a good approximation.

Finally, we remark that the reduced graph and blocking scheme can also provide a warm

initialization of the original graph and the spanning tree at S∗ to facilitate MCMC conver-

gence. Specifically, one can fit an independent GP regression model within each Voronoi cell

to obtain initial posterior parameter estimates, and then construct a data-driven graph by

using the distance between the two initial posterior distributions of local parameters from

the reference knots’ corresponding Voronoi cells. This step can be naturally handled in a

parallel fashion.

3.5 Simulation Studies

In this section, we assess the performance of the STGP regression model by some sim-

ulated data. We consider a squared spatial domain D = [0, 1]2 that is partitioned into

two regions D∗1 and D∗2 with the boundary given by a circle of radius 0.3 centered at

(0.5, 0.5). We generate n = 500 spatial locations S uniformly in [0, 1]2 for training data.

To examine prediction performance, we also generate r = 100 hold-out locations U in the

following way: with probability 0.75 a hold-out location is generated uniformly in a ring

{(sh, sv) ∈ [0, 1]2 : 0.22 < (sh− 0.5)2 + (sv − 0.5)2 < 0.42}; with probability 0.25 we draw lo-

cations uniformly in its complement. This sampling scheme allows us to assess the prediction

performance primarily at the locations near the true boundary where the abrupt changes

happen. See Figure 3.2(a) for the sampled locations.

The responses are generated from (3.15) using isotropic Matérn covariance functions,

where the true parameters of the processes in D∗1 and D∗2 have well-separated microergodic

parameters ϑ = σ2/φ2ν , and ν is treated as known. It is shown in Zhang (2004) that ϑ

matters more in prediction and can be consistently estimated, while σ2 and φ cannot. We

specify the reference knots S∗ = S. We follow the theoretical results in Section 3.3.3 to

choose spatial graphs and priors for partitions. The detailed true parameter values, prior

specifications and other model choices can be found in Supplementary Section B.3.2.
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In both studies we compare the STGP model with treed Gaussian process (TGP) models

(Gramacy and Lee, 2008), nonstationary Gaussian process (NSGP) models developed in

Paciorek and Schervish (2006) and Risser and Turek (2020), and stationary Gaussian process

(SGP) spatial regressions with isotropic Matérn covariance functions (see, e.g., Banerjee

et al., 2014).

We run MCMC algorithms for each model for 30, 000 iterations, discarding the first half,

and thin the chains every 10 iterations, yielding 1, 500 posterior draws for inference.

We first examine partition recovery performance between STGP and TGP. Figure 3.2

shows the MAP estimates of the partition. Due to the use of binary trees, TGP gives 4

rectangular clusters that do not match the true ones. The partition given by STGP, on

the other hand, is fairly consistent to the truth considering that the estimation results are

based on just one realization of the random field. For instance, the true cluster inside the

true boundary is successfully recovered by Clusters 3 and 4 in Figure 3.2(a). This is also

evidenced by the higher in-sample adjusted Rand indices (ARIs; Hubert and Arabie, 1985)

in the first row of Table 3.1. Note that the in-sample ARI for STGP does not depend on

the choice of L. The ARIs for the hold-out locations based on the MAP partition estimates

are shown in the second row of Table 3.1. The STGP models with L = 1, 3, 5 have higher

ARIs than TGP does, suggesting that the membership prediction from STGP agrees more

with the true partition. For the STGP models, we also note that the ARI for the hold-out

data is higher when L = 1, which is not surprising since locations close to each other tend

to share the same cluster membership. However, as we will see later, setting L = 3 leads to

better predictive performance although it may not has the best partition estimate.

Next, we consider estimation accuracy of covariance parameters measured by the mean

square error of the MAP estimate of the log microergodic parameter log(ϑ), denoted as

MSEϑ. Note that MSEϑ for STGP does not depend on L. For SGP, ϑ̂(s) reduces to a

constant σ̂2/φ̂2ν . The resulting MSEϑ’s are given in the third row of Table 3.1. The STGP

model has the lowest estimation error, which means it can estimate the spatially varying
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Figure 3.2: (a) True y(s) of the training data sets. (b, c) MAP partition estimates given by
STGP and TGP. The true boundary is marked by the red circle.

Table 3.1: Performance metrics of STGP and its competing methods.

STGP (L = 1) STGP (L = 3) STGP (L = 5) TGP NSGP SGP
In-sample ARI 0.694 0.694 0.694 0.367 — —
Hold-out ARI 0.485 0.356 0.298 0.007 — —
MSEϑ 6.555 6.555 6.555 24.227 — 43.427
MSPEy 0.198 0.130 0.139 0.116 0.236 0.138
Mean CRPSy 0.159 0.130 0.135 0.156 0.207 0.186
Mean LogSy 2.012 -0.429 -0.411 0.126 0.534 0.520

covariance parameters more accurately.

Finally, we analyze the performance of out-of-sample prediction. As shown in the fourth

row of Table 3.1, the TGP model has the lowest mean squared prediction error (MSPE),

followed by the STGP model with L = 3. We argue that, nonetheless, MSPE is not the

most ideal metric to evaluate the performance of probabilistic prediction as it may not fully

take into account the posterior predictive distributions. As a result, it is more sensible to

compare scoring rules such as average CRPS and LogS (Gneiting and Raftery, 2007), which

are presented in the last two rows in Table 3.1. The STGP models with L = 3 and 5 have

the best scores overall among all models, while the one with L = 1 has a comparable CRPS

as TGP does. The superior performance of the STGP models with L = 3 and 5 over the

one with L = 1 is partly because they produce a smoother interpolation of the spatial field
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Figure 3.3: Posterior mean predictive surfaces (a-d) and SD surfaces (e-h) form the true
data generating model, STGP with L = 3, TGP, and NSGP.

that is more robust to misclassification of cluster memberships. By setting L > 1 the model

is more likely to correctly classify u with some positive probability when u does not belong

to the cluster containing its nearest neighbor, allowing for better prediction performance

and uncertainty quantification near the true boundary. We also observe that compared with

CRPS, LogS is more sensitive to misclassification in the sense that a misclassified hold-out

location near the true boundary can lead to a large LogS when L = 1.

Figure 3.3 displays posterior mean predictive surfaces and posterior prediction SDs from

STGP with L = 3, TGP, and NSGP. We also include the kriging results from the model

where the true partition and other parameters are known as a benchmark. The mean pre-

dictive surface from STGP closely approximates the true one. Due to the Gaussian mixture

predictive distributions and Bayesian model averaging, we obtain a smooth surface near the

true boundary rather than a sharp jump. As desired, the prediction SDs are higher around

the true boundary, capturing the uncertainty from the unknown partition. Note that the
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locations near the top-left part of the true boundary have lower SDs, because of the relatively

smaller jump in the true field in this region that reults in smaller uncertainty in prediction.

In the surface from TGP, some discontinuities can be observed near the estimated bound-

aries, and some of them appear in the interior of a true cluster where the true surface is

smooth. The SD plot from TGP provides little information for inferring the true boundary.

Despite the NSGP predictive surface captures some patterns of the true field, it generates

some poor predictions with fairly large or small values near the true boundary, and the high

uncertainty region from it does not cover the bottom-left part of the true boundary. The

results are not surprising because NSGP is better suited for the case where the change of

covariance is relatively smooth. In contrast, the advantage of our method is more prominent

when the true covariance function has abrupt changes or clustering patterns.

Since it is insufficient to visualize a possibly multi-modal posterior predictive distribution

via its mean and SD, we further examine the plots of predictive densities for selected locations

(see, e.g., Figure B.3 in Supplementary Section B.3.2). Our results confirm that STGP can

quantify prediction uncertainty in a desirable way, where the higher mode appears near the

true value and the corresponding 95% HPD interval also covers the true value. In contrast,

the posterior predictive densities from TGP and NSGP fail to capture the multimodality

when prediction locations are near the true boundaries.

We have also investigated the case where the data is generated from anisotropic processes.

Overall, the findings are consistent with the isotropic case. See Supplementary Section B.3.3

for details.

3.6 Real Data Analysis

We apply the STGP regression model to analyze the precipitation data over the contigu-

ous United States (CONUS)∗. The data set consists of daily average precipitation over the

2018 water year (October 1, 2017 to September 30, 2018) obtained from the Global Histori-
∗The data set is publicly available at https://sites.google.com/site/markdrisser/data-sets?

authuser=0.
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Figure 3.4: (a) Log precipitation rate measured at n = 1689 GHCN-D stations and the
Delaunay triangulation graph used for model fitting. r = 75 hold-out locations near the
Rocky Mountains are marked as red triangles. (b, c) MAP partition estimates of the training
locations given by STGP and TGP.

cal Climatology Network-Daily database (GHCN-D), and was analyzed in Risser and Turek

(2020). As noted in Risser and Turek (2020), the precipitation data in the western half of

the CONUS is highly nonstationary due to the heterogeneous topography and the diverse

physical phenomena related to precipitation. As a result, we focus on the precipitation data

measured at GHCN-D stations located to the west of 90◦W and use n = 1689 uniformly se-

lected locations out of 1939 stations for model fitting. We perform a logarithmic transform of

the precipitation rates following Risser and Turek (2020) so that the GP assumption is more

applicable. The observed locations and the associated log precipitation rates are shown in

Figure 3.4(a). The goal of this analysis is to demonstrate how well the STGP model recovers

the local stationarity structure in the precipitation data and predicts the precipitation at

unobserved locations, especially around boundaries.

To model the log precipitation rates, we consider a STGP regression with a spatially

constant mean function (i.e., a spatially constant intercept) and a geometric anisotropic

Matérn covariance function. As in the simulation studies, we compare the STGP model with

TGP and NSGP. The detailed specifications of all models can be found in Supplementary

Section B.4. We also perform predictive analysis of the log precipitation rates at the hold-out

locations in the same manner as in Section 3.5.

Figure 3.4(b, c) shows the MAP estimates for partitions from STGP and TGP. The par-
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tition given by STGP can be largely explained by the topography in the CONUS: Cluster

1 covers the Interior Plains and the Interior Highlands to the east of the Rocky Mountains,

while Cluster 3 corresponds to the mountainous regions including the Rocky Mountain Sys-

tem, the Intermontane Plateaus, and most parts of the Pacific Mountains. The small Cluster

2 mainly consists of the dessert region in southern California with low precipitation rates.

This suggests that the STGP model can capture the geographic heterogeneity in the precip-

itation data. The TGP model identifies more clusters, some of which partly overlap with the

clusters from STGP but others are quite different. For example, in the partition from STGP,

the northern Montana region shares the same cluster membership as the regions to its east,

while this is not the case in the one obtained from TGP. One possible reason is that binary

trees used in TGP may partition an irregularly shaped region into several subregions with

horizontal or vertical boundaries. Another possible reason is that the TGP model uses a less

flexible separable exponential covariance function compared with the geometric anisotropic

one in STGP.

As in the simulation studies, we use MSPE, average CRPS, and average LogS to quantify

the performance of predicting out-of-sample log precipitation rates. Table 3.2 summarizes

the results based on r1 = 75 hold-out locations between 100◦W and 115◦W near the Rocky

Mountains that contain many boundary points identified by STGP and TGP. The STGP

models achieve the best predictive performance in all three metrics. We have also investigated

the prediction results based on r2 = 175 hold-out locations that are not near the Rocky

Mountains area, which suggest comparable performance of all models under this prediction

scenario. The details are provided in Supplementary Section B.4. In summary, our results

indicate that the gain in the prediction performance when using STGP over other methods

is more prominent for boundary locations.

We have also examined the predictive surfaces and SDs at equally spaced points. The

results from all three models look similar and are provided in Supplementary Section B.4.

68



Table 3.2: Prediction performance for the precipitation data on r1 = 75 hold-out locations.

STGP (L = 1) STGP (L = 3) STGP (L = 5) TGP NSGP
MSPE 0.073 0.073 0.075 0.093 0.081
Mean CRPS 0.145 0.143 0.143 0.159 0.152
Mean LogS -0.001 -0.017 -0.019 0.076 0.083

3.7 Conclusions and Discussion

In this chapter, we have developed a novel soft partitioned Gaussian process to capture

local stationarity structures. Our process is based on a soft partition process on the spatial

domain. We complement this process model with a flexible partition prior based on a predic-

tive random spanning tree model and embed it into a Bayesian hierarchical spatial modeling

framework, leading to the spanning-treed Gaussian process model. The prediction of STGP

utilizes a mixture of L Gaussian distributions, where L is the number of nearest neighbors

used for determining cluster memberships. A systematic way for choosing L using methods

such as model selection criteria is under investigation.

Although in this work we only focus on univariate GPs, the proposed general modeling

framework can be extended along several directions. It is straightforward to embed SPGP

in a spatial GLM framework for the analysis of non-Gaussian spatial responses. Another

future research direction is to extend the univariate process into multivariate cases, possibly

with multiple spanning-treed partitions and tree based graphical models (Gao et al., 2021).

Extension to soft partitioned versions of other types of stochastic processes is also possible if

the conditional distribution is available. Finally, it is known that nearest neighbor graphs and

Delaunay triangular meshes are capable of capturing more complex geometries. Therefore,

a promising direction of future research is to extend our graph-based SPGP to build locally

stationary processes on complex domains.

On the computational side, we have demonstrated that scalability can be straightfor-

wardly achieved by specifying a small-sized set of reference knots. The ideal choice of refer-

ence knots may depend on the true but unknown partition. A possible way to achieve this
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is to treat the choice of reference knots as random so that the distribution of knots can be

learned from data and adapt to the true partition.

Our theoretical results on the STGP models suggest that the posterior distribution of the

conditional density concentrates in a weak or total variation neighborhood, and we establish

a contraction rate for the latter case. We remark that the rate can be potentially improved

if the complexity of the spanning-treed partition space can be better bounded. For linear

prediction (or kriging) problems, posterior asymptotic efficiency can possibly be established

following a similar spirit of Li (2020). We leave these as future works.
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4. BAST: BAYESIAN ADDITIVE REGRESSION SPANNING TREES FOR COMPLEX

CONSTRAINED DOMAIN ∗

4.1 Introduction

Over the past few decades, data collected from complex constrained domains have at-

tracted much attention in machine learning and spatial statistics. Domains with non-trivial

geometries, such as irregular boundaries, sharp concavities, and/or interior holes due to ge-

ographic constraints (e.g., lakes and coasts), impose challenges on statistical modeling, as

the Euclidean assumption underpinning many traditional statistical and machine learning

methods no longer holds for data with intrinsic geometries.

In this chapter, we consider nonparametric regression problems with features lying on

constrained domains or, more generally, compact Riemannian manifolds. To be more specific,

we model the response variable Y (s) ∈ R at a location s on a compact Riemannian manifold

M as

Y (s) = f(s) + ε(s), ε(s)
iid∼ N(0, σ2), (4.1)

for some unknown function f : M → R and noise variance σ2. In many applications,

the true function f(·) may not be globally smooth but has discontinuities/abrupt changes

across some narrow boundary regions in the domain. For example, housing prices can be

substantially different in two neighboring communities, and ocean chlorophyll data that are

separated by a narrow peninsula can exhibit distinct spatial patterns. It is of great need

to develop new methodologies that can both respect intrinsic geometries of the domain and

capture complicated local discontinuity patterns in the true function.

There is growing literature on nonparametric regression and smoothing for complex do-

mains. Spline smoothing methods (Ramsay, 2002; Lai and Schumaker, 2007; Wang and
∗Reprinted from Luo, Z. T., Sang, H., and Mallick, B. (2021a). BAST: Bayesian Additive Regression

Spanning Trees for Complex Constrained Domain. Advances in Neural Information Processing Systems, 34.
The authors hold the copyright.
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Ranalli, 2007; Wood et al., 2008; Scott-Hayward et al., 2014) have been developed for data

on constrained domains, but most of them focus on domains in R2. Sangalli et al. (2013)

generalized the spline methods to constrained regions in R3. For more general Rieman-

nian manifolds, kernel based smoothing models, including kernel regressions (Pelletier, 2006;

Henry and Rodriguez, 2009) and local regressions (Aswani et al., 2011; Cheng and Wu, 2013;

Di Marzio et al., 2014), were developed. Gaussian process (GP) regression is another pop-

ular tool for nonparametric regression problems, and many works focus on developing valid

covariance kernels on spheres (see Jeong and Jun, 2015; Guinness and Fuentes, 2016; Guella

et al., 2018, among others). More recently, a few practical GP models for constrained do-

mains and Riemannian manifolds were studied in the literature (Lin et al., 2019; Niu et al.,

2019; Borovitskiy et al., 2020; Dunson et al., 2020). However, most of the aforementioned

approaches assume globally smooth true functions and thus may not fully adapt to the ones

with local discontinuities.

Ensemble tree models (Breiman, 2001; Chen and Guestrin, 2016) have been widely used

in traditional nonparametric regression problems. One prominent example is the Bayesian

additive regression trees (BART) model (Chipman et al., 2010), due to its versatility and

capability of producing uncertainty measures. However, to our knowledge, ensemble meth-

ods have not been used for nonparametric regression on complex constrained domains, and

almost all ensemble tree methods rely on binary decision tree partition models as their en-

semble members (weak learners). Nevertheless, binary trees may not be ideal to capture

possibly highly irregular partitions on complex domains as they can only make splits parallel

to Euclidean coordinate axes. For instance, in the U-shape domain shown in Figure 4.1(c),

a complicated and over-clustered binary treed partition is needed to approximate a simple

partition with three clusters (marked by different colors). Moreover, the rectangular parti-

tions do not comply to irregular domain constraints, which may cause the so called “leakage”

problems on complex domains. With a similar partitioning idea, Menafoglio et al. (2018)

proposed a Voronoi tessellation based model to account for domain constraints, but their
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method imposes convexity restrictions on partitions. Most recently, spanning treed partition

models have been demonstrated as an effective tool for characterizing partitions with flexible

shapes (Li and Sang, 2019; Teixeira et al., 2019; Luo et al., 2021b), but their focus is on

traditional two-dimensional Euclidean spaces and linear regression settings.

Our contribution in this chapter is to propose a novel Bayesian additive regression span-

ning trees (BAST) model for nonparametric regressions on complex constrained domains

with efficient Bayesian inference algorithms. The backbone of BAST is a new random span-

ning tree (RST) manifold partition model, which replaces binary decision trees in each weak

learner. RST is capable of capturing irregularly shaped partitions with a small number of

spanning tree edge cuts while respecting intrinsic geometries and domain boundary con-

straints. Equipped with a soft prediction scheme, we show that BAST achieves a superior

prediction performance over other competing methods on various tasks, thanks to its strong

local adaptivity to different levels of smoothness.

The rest of the chapter proceeds as follows. In Section 4.2, we present the RST partition

models on manifolds and develop a new Bayesian nonparametric regression model with RST

ensembles. Section 4.3 discusses algorithms for Bayesian inference. In Section 4.4, we illus-

trate the model performance by simulation experiments and a real chlorophyll data set in Aral

Sea. Section 4.5 concludes the chapter with some discussions. Additional details on Bayesian

inference, hyperparameter selection, and sensitivity analysis are provided in Supplementary

Materials. The code of BAST is available at https://github.com/ztluostat/BAST.

4.2 Bayesian Nonparametric Regressions with Additive Spanning Trees

4.2.1 A Spanning Treed Partition Model on Manifolds

Our novel nonparametric regression model is built upon an ensemble of partitions of

observations. In this subsection, we introduce a stochastic partition model for data on a

compact Riemannian manifold via random spanning trees (RSTs), which will serve as a

building block to develop the sum-of-spanning-trees model in Section 4.2.2.
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Let M be a d-dimensional compact Riemannian manifold that is known a priori, and

S = {s1, . . . , sn} ⊆ M be a finite set of locations on M where the data are observed. We

are interested in partitioning S into several disjoint subsets such that each subset consists of

nearby locations where the data are relatively homogeneous that can be modeled separately.

For spatial data, it is often desired to impose contiguity constraints on partitions. Below, we

introduce the notion of spatially contiguous partitions on a manifold based on a spatial graph

whose edges encode the relationship of spatial adjacency or neighborhood. Let G = (S, E)

be a connected undirected graph with vertex set S and edge set E that connects s ∈ S to its

“close neighbors”. The construction of spatial graphs on a manifold will be discussed later

in this subsection. We say π(S) = {S1, . . . ,Sk}, where Sj ⊆ S for j = 1, . . . , k, is a spatially

contiguous partition of S with respect to G if ∪kj=1Sj = S, Sj ∩ Sj′ = ∅ for all j 6= j′, and

there exists a connected subgraph Gj = (Sj, Ej) of G for each j. We call each Sj a cluster,

which consists of locations that are connected to each other and thus is spatially contiguous

with respect to the spatial graph. Henceforth, when there is no risk of confusion, we will

refer to spatially contiguous partitions simply as partitions. Figure 4.1(a) shows an example

of a partition with three clusters.

For constrained domains in R2 such as the U-shaped domain in Figure 4.1, spatial graphs

can be constructed via constrained Delaunay triangulations (CDTs; Chew, 1989). Specif-

ically, let G0 be a CDT mesh on S ∪ SB, where SB is a set of locations on the domain

boundaries. Then the induced subgraph of G0 on S can be chosen as a spatial graph G.

Edges longer than a certain threshold can be removed if desired. See Figure 4.1(a) for an

example of G constructed via CDT. For a general manifold, motivated by the nice adaptive

properties of nonparametric regressions based on K nearest neighbor (K-NN) graphs on

manifolds (Kpotufe, 2011; Madrid Padilla et al., 2020), one may construct G by a K-NN

graph that connects s ∈ S to its K nearest neighbours with respect to geodesic distance.

Given G, we model partitions on manifolds in a similar spirit as the spanning treed

partition models developed for two-dimensional Euclidean spaces (Li and Sang, 2019; Teixeira
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Figure 4.1: (a) A constrained Delaunay triangulation graph on a U-shaped domain. (b) A
partition with three clusters obtained by removing the red edges in a spanning tree. (c) A
binary treed partition nested in the three-cluster partition in (a, b).

et al., 2019; Luo et al., 2021b). Specifically, a connected subgraph T = (S, ET ) of G is called

a spanning tree of G if it has no cycle. A well-known property of spanning trees is that

if a set of k − 1 edges in ET is removed, we obtain a disconnected subgraph of T with k

connected components, which naturally defines a partition π(S) with k clusters by letting

Sj be the vertex set of the jth component. In this case, we say π(S) is induced by T . See

Figure 4.1(b) for an example. This property implies that we can simplify a complicated

graph partition modeling problem to modeling spanning trees as well as the number and

locations of removed edges.

Mathematically, conditional on T and k we assume a discrete uniform distribution on all

possible partitions induced by T :

p {π(S) | k, T } ∝ 1 {π(S) is induced by T and has k clusters} , (4.2)

where 1(·) is an indicator function.

Next, we consider a probabilistic model on the spanning tree space. Let ωe be the weight

for an edge e ∈ E and ω = {ωe : e ∈ E}. We assume an iid uniform distribution on the edge

weights and let T be the resulting minimum spanning tree (MST), i.e., the spanning tree
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with minimum
∑

e∈ET ωe:

T = MST(ω), ωe
iid∼ Unif (0, 1), (4.3)

where MST(ω) denotes an MST of G based on the edge weights ω. Note that we are

not assuming a discrete uniform distribution on the spanning tree space, with which it is

challenging to sample spanning trees for Bayesian inference. As we will show in Section 4.3.1,

our model specification leads to an exact and fast spanning tree sampler, taking advantage

of the Prim’s algorithm for MST constructions.

Finally, we assume a truncated Poisson distribution with mean parameter λk on the

number of clusters:

k ∼ Poisson(λk) · 1(1 ≤ k ≤ k̄), (4.4)

where k̄ is the pre-specified maximum number of clusters.

The following proposition states that the support of RST is rich enough to accommodate

all possible spatially contiguous partitions on a manifold with no more than k̄ clusters.

The proof is postponed to Appendix C. Note that similar results do not hold for binary

treed partition models. See Figure 4.1(c) for a counterexample where there does not exist a

rectangle containing all the blue points without including any green or red ones.

Proposition 4.1. Let π(S) = {S1, . . . ,Sk} be an arbitrary spatially contiguous partition.

Then π(S) is within the support of the partition model defined by (4.2), (4.3), and (4.4) if

k ≤ k̄.

4.2.2 A Sum-of-spanning-trees Regression Model

Given the data {Y (si), si}ni=1, we consider the nonparametric regression problem (4.1).

Instead of assuming global continuity, we assume f(·) belongs to a broad class of piecewise

smooth functions. We propose to model f(·) using a summation of weak learners based on

the flexible RST partitions.
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Given a partition π(S) induced by T with k clusters and cluster-wise constants µ =

(µ1, . . . , µk) ∈ Rk, we define a mapping from S to R as

g(s|π, T , k,µ) = µj if s ∈ Sj,

where we write π = π(S) for conciseness. This piecewise constant function on S serves as

a weak learner for f(·), which approximates f(·) by µj locally in Sj. A Bayesian additive

spanning trees (BAST) model is a summation of piecewise constant functions based on

various spanning-treed partitions. Specifically, for a pre-specifiedM ∈ N, BAST models f(·)

as

f(s) =
M∑
m=1

g(s|πm, Tm, km,µm), s ∈ S, (4.5)

where πm = πm(S) = {Sm1 , . . . ,Smkm} is a partition with km clusters induced by a spanning

tree Tm of G and µm = (µm1, . . . , µmkm). Although in principle the spatial graphs for each

weak learners need not be identical, we focus on the case where they share a common G for

simplicity.

For s ∈ S, the additive structure (4.5) implies that f(s) equals the summation of the

µmj’s corresponding to the clusters from each weak learner that s lies in. Figure 4.2 illustrates

a summation of two spanning treed partitions. This together with the shrinkage priors to be

discussed in Section 4.2.3 allows each weak learner to explain a small amount of the variation

in the response variable. The step function approximation also allows for capturing both

smoothness and discontinuities/abrupt changes in f(·) (Ročková and van der Pas, 2020). In

particular, our model is more efficient than some existing ensemble binary tree and smoothing

methods in recovering irregularly shaped regions where discontinuities happen, thanks to

the versatility of RST in capturing highly flexible cluster shapes for complex constrained

domains.
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Figure 4.2: Demonstration of the partition obtained by adding two spanning treed partitions.

4.2.3 Prior Regularization

Similar to BART (Chipman et al., 2010), shrinkage priors play an important role in

regularizing weak learners and preventing overfitting for BAST. In this subsection we discuss

the specification of prior models, which admits the form

p
(
{πm, Tm, km,µm}Mm=1, σ

2
)

=

{
M∏
m=1

p(µm|πm, Tm, km)p(πm, Tm, km)

}
p(σ2).

We assign an iid RST prior for (πm, Tm, km) given by (4.2), (4.3), and (4.4). Small values

of λk and k̄ in (4.4) are typically chosen to restrict the number of clusters in each partition,

leading to simpler piecewise constant structures in each weak learner which prevent overfit-

ting and encourage better mixing in Markov chain Monte Carlo. Note that we regularize

the number of clusters in a more direct way than binary treed partition priors (Chipman

et al., 1998, 2010) which implicitly penalize large numbers of clusters by increasing the prior

probability that a node is terminal as the depth of the node.

Rescaling Y (s) into [−0.5, 0.5], we opt to place a shrinkage prior that concentrates around

0 for µm following (Chipman et al., 2010). Conditional on (πm, Tm, km), we choose a conju-

gate prior for µm given by

µm|πm, Tm, km ∼ Nkm(0, σ2
µIkm), (4.6)
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independently for m = 1, . . . ,M , where σµ is assumed to depend on the number of weak

learners, specifically, σµ = 0.5/(a
√
M) with a > 0. Intuitively, when we have a larger number

of weak learners, it is desired to impose stronger shrinkage effects by choosing a smaller σµ

such that each learner is not too influential to the overall fit. A default choice of a can be

a = 2, which assigns 0.95 prior probability for f(s) that lies in [−0.5, 0.5].

Finally, we assign a conjugate inverse-χ2 prior on σ2: σ2 ∼ νλs/χ
2
ν . We fix ν = 3 and

choose λs in a data-driven way such that the prior satisfies P(σ2 < σ̂2) = 0.90 similarly as in

BART (Chipman et al., 2010), where σ̂2 is the sample variance of Y = {Y (s1), . . . , Y (sn)}.

4.3 Bayesian Inference

4.3.1 Estimation

Inference of BAST is based on a tailored backfitting Markov chain Monte Carlo

(MCMC) algorithm (Hastie and Tibshirani, 2000), in which we successively sample

(π1, T1, k1,µ1), . . . , (πM , TM , kM ,µM), and σ2 from their respective full conditionals. Our

sampler for the full conditional p (πm, Tm, km,µm|−), where − stands for all other param-

eters and the data Y, consists of two successive steps: (i) we first analytically integrate

µm out and sample from the collapsed conditional distribution for the partition parameters

p(πm, Tm, km|−), and (ii) we then sample µm from p(µm|πm, Tm, km,−). This design leads to

better mixing and convergence performance of the sampler by avoiding the trans-dimensional

problem for µm’s. Thanks to the conjugate priors, sampling from p(µm|πm, Tm, km,−) and

p(σ2|−) follows standard procedures, and we leave the details to Appendix A.1.

Below, we focus on the sampling of the RST partition parameters. To draw samples

of (πm, Tm, km), one of the four moves — birth, death, change, and hyper — is performed

with probabilities rb(km), rd(km), rc(km), and rh(km), respectively (Luo et al., 2021b). The

first three moves modify the partition by proposing a new partition induced by the current

spanning tree, and the hyper move updates Tm by sampling from its full conditional via an

efficient sampling algorithm. Each move is detailed below and some of them are visualized
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Figure 4.3: Partitions and spanning trees obtained after (b) a birth, (c) a death, or (d) a
hyper move from the original partition and tree in (a).

in Figure 4.3.

In a birth move, one of the clusters is split into two by randomly removing an edge in

Tm that connects vertices belonging to the same cluster. Denoting the new partition by π∗m,

the Metropolis-Hastings (M-H) acceptance ratio is given by

min

{
1,

λ

(km + 1)
× rd(km + 1)

rb(km)
× L (Y|π∗m, Tm, km + 1,−)

L (Y|πm, Tm, km,−)

}
, (4.7)

where L (Y|πm, Tm, km,−) is the integrated likelihood with µm marginalized out, whose

closed form can be found in Appendix A.1. Opposite to the birth move, a death move

randomly merges two adjacent clusters in πm. Specifically, an edge in Tm that connects two

distinct clusters in πm is uniformly selected and then the two clusters are merged into one.

The M-H ratio is analogous to (4.7). In a change move, a death move is performed followed

by a birth move, so that the number of clusters is unchanged. This move is designed to

encourage better mixing of the sampler.

Finally, a hyper move updates Tm using an exact sampler, which adaptively learns a

spanning treed spatial order so that we can obtain a partition that is more compatible to

the homogeneity pattern of data in subsequent MCMC iterations. Specifically, we sample

the edge weight ωe of G from iid Unif(1/2, 1) if two endpoints of e are in different clusters

under πm, and otherwise from iid Unif(0, 1/2). A new spanning tree is the MST generated
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by Prim’s algorithm using the new edge weights. It can be shown that the resulting MST

induces the current partition (Teixeira et al., 2019) and is an exact sample from its full

conditional distribution (Luo et al., 2021b).

The overall computational complexity per MCMC iteration isO
(
M((1−rh)n+rhn log n)

)
,

where rh is the probability that a hyper step is selected which takes O(n log n) using Prim’s

algorithm for CDT and K-NN graphs, and O(n) is the computation complexity required

when birth/death/change steps are selected because a closed form marginal likelihood with-

out matrix inversion is available when calculating acceptance ratios. In practice, we suggest

a small value of rh such as 0.1 to reduce the computation and allow the algorithm to spend

more iterations on learning a good partition compatible with the current tree. To further

reduce computation complexity, we have done some preliminary exploration of using differ-

ent but fixed spanning trees for each weak learner during MCMC (i.e., setting rh = 0). As

shown in Appendix B.1.3, this significantly speeds up the computation while the prediction

performance remains comparable.

4.3.2 Prediction

The prediction at an unobserved location u 6∈ S involves two steps. First, in each

weak learner, we randomly assign u to one of its nearby clusters subject to the manifold

constraints, using a soft prediction scheme in a similar spirit to Linero and Yang (2018).

Second, the prediction is obtained by summing the constants corresponding to the clusters

that u belongs to over all weak learners.

Specifically, to obtain cluster memberships for u, we define its neighbor set Nu ⊆ S

as follows. For a constrained domain in R2, Nu is chosen as the vertices of the triangle

containing u in the CDT mesh that belong to S (i.e., vertices on the domain boundary

are excluded; see Appendix A.2 for detailed discussions). For general manifolds in higher

dimensional spaces, Nu is specified as the set of K nearest neighbors of u in S with respect

to the geodesic distance.

Let zm(v) ∈ {1, . . . , km} be the cluster membership of a generic location v ∈M from the
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mth weak learner such that zm(s) = j if s ∈ Smj . Intuitively, u is expected to share the same

cluster membership as one of its neighbors in S, and if u is near the boundary of a cluster

in a partition, it is more ideal to assign z(u) probabilistically to reflect the partitioning

uncertainty and adapt for smoother functions. This motivates us to consider the following

random assignment for zm(u)’s: given Nu and a posterior sample of the partitions, zm(u)

is sampled independently such that P {zm(u) = zm(Nu,`)} = α`, for ` = 1, . . . , |Nu|, where

Nu,` is the `th element in Nu and α` satisfies
∑|Nu|

`=1 α` = 1. One can specify α` by setting

α` = 1/|Nu| for all `, or via inverse geodesic distance weighting such as α` ∝ 1/dbg(u, Nu,`),

where dg(·, ·) is the geodesic distance and b is some positive power.

At the second step, we sum µm,zm(u) over m = 1, . . . ,M to obtain a posterior predictive

value of E{Y (u)} given samples of zm(u)’s. A point predictor for Y (u) can then be taken

as the mean of the posterior draws, which allows us to average models with different RST

partition structures.

Finally, we remark that the prediction algorithm is highly parallelizable, as the predictive

sampling for each RST partition is independent.

4.4 Experiments

4.4.1 U-shape Example

We first examine the BAST’s performance of recovering piecewise smooth functions via

some simulation experiments on a rotated U-shaped domain shown in Figure 4.4(a). Our

true function f(·) is constructed based on the one in Ramsay (2002), denoted as fR(·).

We create discontinuities along a circle of radius 0.9 centered at the origin as follows. For

locations inside the circle, we flip fR by setting f = −fR. For locations outside the circle,

we set f = 2fR for those in the lower arm of the domain, and f = fR for those in the

upper arm, such that the jump in the lower arm has a larger magnitude. We uniformly

generate n = 500 locations in the domain as training data and 200 out-of-sample locations

for prediction. Figure 4.4(a) shows the true function in the training data. The responses are
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generated according to (4.1) with different levels of noise σ = 0.1, 0.5, 1, and each noise level

is replicated for 50 times.

The spatial graph G is constructed via CDT. We use M = 20 weak learners and set

λk = 4 and k̄ = 10 to restrict the size of each partition. The prediction is based on the CDT

graph, and we use inverse distance weighting with b = 1 to sample cluster memberships. The

probabilities for MCMC moves are set as rb = rd = rc = 0.3 and rh = 0.1, with adjustments

for cases where km = 1 or k̄. We compare BAST with BART (Chipman et al., 2010), and two

other nonparametric regression methods for constrained domains, the soap film smoothing

(SFS; Wood et al., 2008) and the sparse intrinsic Gaussian process (inGP) regression (Niu

et al., 2019). For BART, we use the same number of weak learners as in BAST and use

its default settings. We run the MCMC for both BAST and BART for 20, 000 iterations,

discarding the first half and retaining samples every 5 iterations. Our MCMC diagnostics

suggest no convergence issue of BAST. We specify 32 equally spaced knots for SFS and set

its basis dimension as 40. For sparse inGP, we use 24 equally spaced knots and simulate

Brownian motions for 100, 000 times. The prediction performance over 200 out-of-sample

testing locations is assessed by mean squared prediction errors (MSPEs) and mean absolute

prediction errors (MAPEs). For the two Bayesian approaches BAST and BART, we also

compare their probabilistic prediction performance gauged by continuous ranked probability

scores (CRPSs) based on their posterior predictive distributions (see, e.g., Gneiting and

Raftery, 2007). For all the metrics, lower values indicate better performance.

Table 4.1 summarizes the average performance metrics over 50 replicates for each noise

level. BAST outperforms all its competitors in terms of all the metrics under all the noise

levels. This is because BAST partitions the training data in a way that adapts to both the

domain constraints and the irregularly shaped discontinuity boundaries, thanks to the flexible

RST partitions. In contrast, the binary treed partitions adapt to neither types of boundaries,

and neither of SPS and inGP captures discontinuities in the true function. This is also

evidenced by Figure 4.4(b-e), where absolute prediction errors (APEs) of the test data in one
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Table 4.1: Prediction performance of BAST and its competing methods in the U-shape
domain example. Standard errors are given in parentheses.

BAST BART SFS inGP

σ = 0.1
MSPE 0.189 (0.001) 1.541 (0.075) 0.418 (0.001) 0.814 (0.002)
MAPE 0.188 (0.001) 0.436 (0.010) 0.340 (0.001) 0.610 (0.001)
Mean CRPS 0.142 (0.001) 0.380 (0.009) — —

σ = 0.5
MSPE 0.464 (0.006) 1.704 (0.053) 0.680 (0.007) 1.057 (0.010)
MAPE 0.491 (0.004) 0.686 (0.008) 0.591 (0.004) 0.752 (0.004)
Mean CRPS 0.371 (0.003) 0.575 (0.007) — —

σ = 1
MSPE 1.283 (0.018) 2.650 (0.056) 1.491 (0.020) 1.823 (0.025)
MAPE 0.888 (0.007) 1.072 (0.008) 0.951 (0.007) 1.051 (0.008)
Mean CRPS 0.693 (0.006) 0.889 (0.008) — —
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Figure 4.4: (a) True function in the training data for the U-shape domain example. (b-e)
APEs of one test data set with σ = 0.1. The discontinuity boundaries are marked as red
circles. Black squares in (c) indicate APE > 4.10.
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replicate with σ = 0.1 are shown. The APEs from BAST are small for most locations except

for those near the discontinuity boundaries. SFS also has similar patterns; however, errors

near the discontinuity boundaries are much higher due to the global smoothness assumption

in SFS. The general APE pattern for inGP is similar to SFS, except that it has larger errors,

possibly due to the low-rank approximation of covariance functions. With the same number

of weak learners, BART has larger errors near the upper discontinuity boundary, as more

rectangular partitions are needed to well approximate irregular boundaries. Moreover, it also

gives poor prediction at some locations near the domain boundary between the two arms,

probably because binary treed partitions do not take into account the domain boundary

when making axis parallel splits, and hence force some boundary locations in one arm to

share the same cluster memberships with those locations in the other arm. We have also

experimented using more weak learners in BART, and the results in Appendix B.1.1 suggest

that BAST with a fewer number of weak learners still outperforms BART. Computation

time for each method is reported and compared in Appendix B.1.3.

Hyperparameters of BAST can be tuned using standard cross-validation techniques. Our

results in Appendix B.1.2 show that the fine-tuned BAST with respect to M , k̄ and the

shrinkage parameter a for σµ achieves better performance than the default version in Ta-

ble 4.1, but the performance of them is close to each other. We have also conducted additional

sensitivity analyses to the hyperparameters M , k̄, and λk in Appendix B.1.2, which suggests

that the performance of BAST is in general robust to them.

4.4.2 Bitten Torus Example

To illustrate BAST for more general manifolds, we consider a bitten torus example sim-

ilar to Niu et al. (2019). A torus is a two-dimensional manifold embedded in R3 that is

parameterized by (θ, φ), where θ is the angle for the torus and φ is the angle for the tube.

Let R be the fixed distance from the center of the tube to the center of the torus, and r be

the fixed radius of the tube. The Cartesian coordinate (x, y, z) on a torus can be written as

x = (R + r cos θ) cosφ, y = (R + r cos θ) sinφ, and z = r sin θ. We create a bitten torus by
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(a) (b) (c) (d)

Figure 4.5: (a) True function and training locations (marked as black dots). (b-d) Predictive
surfaces of BAST and its competing methods. All plots are viewed along the negative
direction of the z-axis.

setting φ ∈ [π/6, 1.7π] and θ ∈ [0, 2π].

We consider a piecewise smooth true function f(x, y, z) defined on the bitten torus. We

divide the torus into three subregions corresponding to θ ∈ [π/6, 3π/4], θ ∈ (3π/4, 5π/4],

and θ ∈ (5π/4, 1.7π], respectively. The true functions in the first and the third regions are

the same as the one used in Niu et al. (2019), while we set the one in the second region as the

negative of the function in Niu et al. (2019), such that there are jumps along θ = 3π/4 and

5π/4. We generate responses at n = 500 random locations according to (4.1) with σ = 0.1

as training data. The true function and the training locations are shown in Figure 4.5.

We construct the spatial graph by a 10-NN graph based on the geodesic distance. Since

the geodesic distance of a torus has no analytic form, we approximate it as in Isomap

algorithm (Tenenbaum et al., 2000). Specifically, we first construct a weighted, Euclidean

distance based nearest neighbor graph on some fine grids and the training locations. Then

we approximate the geodesic distance between two training locations by the length of the

shortest path between them in the graph. For prediction at an unobserved location u, we

use its 5 nearest neighbors in S based on the geodesic distance as its neighbor set Nu. We

compare BAST with BART that uses Cartesian coordinates as features and sparse inGP

that uses 24 equally spaced knots, as SFS is only applicable for domains in R2. Other model

specifications are the same as those in Section 4.4.1.
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Table 4.2: Prediction performance of BAST and its competing methods in the bitten torus
example. Standard errors are given in parentheses.

BAST BART inGP
MSPE 0.487 (0.002) 1.115 (0.041) 2.283 (0.005)
MAPE 0.307 (0.001) 0.406 (0.009) 1.159 (0.003)
Mean CRPS 0.225 (0.002) 0.355 (0.008) —

As in the previous experiment, we compare the prediction performance at 200 random

out-of-sample locations. The average performance metrics over 50 replicates in Table 4.2

suggest that BAST provides the most accurate prediction. We further compare the predictive

surfaces of the three methods based on 2, 500 grid points in Figure 4.5(b-d). As expected,

both BAST and BART capture the piecewise structure in the true function, whereas inGP

does not. In the interior of each subregion, BAST and BART approximate the true smooth

functions fairly accurately. The major difference between the two methods occurs near the

discontinuity boundaries. In the surface from BART, some partition boundaries are parallel

to the Euclidean coordinate axes such as those near x = −5 and y = ±2, due to the

use of binary trees, while this pattern does not appear in the one from BAST. Overall,

the blue subregion recovered by BAST is more consistent with the truth. Notice that the

estimated function at the discontinuity boundaries from BAST is smoother thanks to its soft

prediction scheme. We have also experimented with different noise levels in Appendix B.2,

and the findings are consistent.

4.4.3 Application to Chlorophyll Data

We apply BAST to analyze average remote sensed chlorophyll data in the Aral data

over 1998-2002, which are available in the R package gamair (Wood, 2006). The chlorophyll

measurements at 485 equally spaced locations are shown in Figure 4.6(a). The southern part

of the domain is separated by the isthmus of the peninsula near 59◦E, and both shores of

the peninsula have substantially different chlorophyll levels. It is thus desired to take into

account this geographical constraints when modeling the data. The goal of our analysis is
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Table 4.3: Prediction performance of BAST and its competing methods for the chlorophyll
data.

BAST BART SFS inGP
MSPE 2.346 2.933 2.894 3.191
MAPE 0.905 1.172 1.071 1.200
Mean CRPS 0.633 0.955 — —

to assess how well BAST captures the patterns of chlorophyll and predicts for unobserved

locations in this complex spatial domain.

We follow Niu et al. (2019) to rescale the domain and model the chlorophyll level as a

function of the scaled longitude and latitude plus some Gaussian noise. We use a same setup

for BAST as in Section 4.4.1, except that we set M = 30 and k̄ = 5 to encourage smaller

sizes of partitions as the number of weak learners is increased. For prediction, we sample

the cluster membership of an out-of-sample location u using equal sampling probabilities

α` = 1/|Nu|. For BART, SFS, and sparse inGP, we also use the same settings as in the

simulation experiments but with 30 trees for BART and 42 equally spaced knots for both

SFS and inGP. The MCMC algorithms for BAST and BART are run for 30, 000 iterations,

keeping samples every 5 iterations from the second half.

We first compare the prediction performance of all the models via 10-fold cross-validation.

In the end, the chlorophyll level at each observed location is predicted exactly once, and we

compare MSPEs and MAPEs based on all locations in the data set. Similarly, the mean

CRPSs over all locations are compared between BAST and BART. Table 4.3 shows prediction

performance metrics for four models. BAST achieves the best performance among all the

models.

Next, we turn to the predictive surfaces from each model, which are shown in Figure 4.6(b-

e). All models capture the general patterns of the data. The predictive surfaces from SFS and

inGP are fairly smooth, while some sharp jumps can be observed in the one from BART. The

surface from BAST is somewhat in between, and preserves small-scale spatial dependence of
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Figure 4.6: (a) Observed chlorophyll data. (b-e) Predictive surfaces from BAST and its
competitors.

the data. At the southern part of the eastern basin, BART identifies a rectangular region

with high chlorophyll level, while the corresponding region obtained from BAST has irregular

shape, which is more consistent with the data and the results from SFS and inGP. This is

due to the highly flexible RST partition model that can give irregularly shaped clusters.

4.5 Conclusion and Discussion

In this chapter, we developed a novel Bayesian nonparametric regression model on known

manifolds and complex constrained domains using additive RST partitions. The RST weak

learner enjoys flexibly shaped partitions while respecting the intrinsic geometries and domain

constraints. The additive piecewise constant structure further allows BAST to approximate

piecewise smooth functions with irregular boundaries of discontinuities, as evidenced by our

simulation studies and real data analysis. In the case where the manifold is unknown, one

may estimate the geodesic distance from the data (see, e.g., Meng et al., 2008, and references

therein) to construct spatial graphs. We leave this scenario for future research.

Similar to its binary treed counterpart BART, BAST is promising to serve as prior mod-

els in many other Bayesian hierarchical modeling settings, such as classification models with

binary and multinomial responses (Chipman et al., 2010; Murray, 2020), survival analysis

(Bonato et al., 2011; Sivaganesan et al., 2017), causal inference (Hahn et al., 2020), and vary-

ing coefficient regressions (Deshpande et al., 2020). As BAST is built upon a spatial graph,

it is an interesting direction to extend our methodology for classification and regression on
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general graphs and networks (e.g., Borovitskiy et al., 2021). Finally, theoretical justifica-

tions are important but usually challenging for ensemble methods. For example, theoretical

studies of BART have begun emerging only very recently (Ročková and van der Pas, 2020;

Ročková and Saha, 2019). Posterior concentration results of BAST for estimating the true

function can be potentially established in similar manners as BART, but non-trivial exten-

sions are required to theoretically handle the complex spanning tree partition on manifolds

and hence beyond the scope of this work.
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5. BAMDT: BAYESIAN ADDITIVE PARTIAL MULTIVARIATE DECISION TREES

FOR NONPARAMETRIC REGRESSION

5.1 Introduction

In this chapter, we focus on a nonparametric regression problem with response Y ∈ R

(e.g., housing price). We consider features s ∈M with known multivariate structures, where

M may be a Euclidean space or a compact Riemannian manifold. For instance, s may repre-

sent the coordinates of a location in a spatial domain with or without boundary constraints.

In addition to s, we also consider features x ∈ X ⊆ Rp either without multivariate structures

or with unknown multivariate structures (e.g., square footage and housing age). To be more

precise, we model Y as

Y = f(s,x) + ε, ε
iid∼ N(0, σ2), (5.1)

where f : D → R is an unknown function defined on the joint input feature space D, and σ2 is

an unknown noise variance. Throughout this chapter, we will refer to s as structured features,

x as unstructured features, and the regression setting in (5.1) as structured regression.

Structured regression problems are increasingly common in many applications. Examples

include spatial regressions and image analysis on complex constrained domains with non-

trivial geometries, such as cities with irregular boundaries or interior holes (e.g., lakes and

parks), road networks, and brain cortical surfaces, as well as prediction problems on networks

using both network topology and node attributes as predictors. The general model formula-

tion in (5.1) encompasses many classes of models as special specifications of f(s,x). Below,

we focus on reviewing semi-parametric or nonparametric methods due to their flexibility in

function estimation compared to parametric methods.

Related work. Spline smoothings and Gaussian process (GP) regressions are popular

choices for nonparametric structured regression problems, and there have been some recent

extensions of these methods for data on complex domains (Wood et al., 2008; Scott-Hayward
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et al., 2014; Niu et al., 2019; Borovitskiy et al., 2020; Dunson et al., 2020). However,

these methods often assume globally smooth true functions and thus may not fully adapt

to functions with local discontinuities. And the effects of structured features and other

unstructured features are usually modeled separately. For example, conventional spatial GP

regressions (Gelfand et al., 2010) add a parametric model such as a linear regression for the

effects of unstructured features to a GP model for spatial effects. However, the parametric

model for the regression mean part suffers the risk of being mis-specified, and the additive

form could not capture the potential interactions between the effects of s and x.

Alternatively, ensemble and boosting tree methods such as random forest (Breiman, 2001)

and XGBoost (Chen and Guestrin, 2016) have gained great success in nonparametric pre-

diction tasks, owning to their ability to capture both smooth and discontinuous patterns

with strong local adaptivities for function estimations. In particular, Bayesian Additive Re-

gression Trees (BART; Chipman et al., 2010) and their variants (see, e.g., Tan and Roy,

2019; He et al., 2019) offer a flexible Bayesian treatment of boosting to probabilistically

model and estimate (latent) nonparametric functions in various modeling contexts, while

producing uncertainty measures. These models are also appealing for handling a relatively

large number of unstructured features; the decision tree weak learner often assumes a sim-

ple axis-parallel split rule based on a univariate feature at each decision node, allowing the

method to more conveniently adapt to the increasing dimension of features. Nevertheless,

the simple axis-parallel univariate split rule comes with a cost: the feature space can only be

partitioned into (hyper) rectangular shapes which may not comply to irregular domain con-

straints and function discontinuity boundaries in the multivariate structured feature space.

This limitation has motivated some attempts to relax the axis-parallel decision boundary

assumption by considering more flexible decision split rules based on multivariate features

(for review, see, e.g., Cañete-Sifuentes et al., 2021; Fan et al., 2021). However, stringent

parametric assumptions such as linear or quadratic split rules (Yıldız, 2011; Blaser and Fry-

zlewicz, 2016) are often made in these attempts, and their estimation procedures are usually
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not likelihood-based and hence are lacking of uncertainty measures.

Most recently, Luo et al. (2021a) proposed a Bayesian additive model built upon random

spanning tree partitions as each weak learner. However, the method is applicable to the

case with structured features only. It is not straightforward to extend their method to

structured regression problems with additional unstructured features, since their partition

model is not formulated as decision trees. Moreover, their model is defined only for a finite

number of observations. Therefore, although function estimation can be done following

Bayesian inference, the out-of-sample prediction of their method is based on a two-step soft

nearest neighbor approach due to the lack of a coherent Bayesian model defined on the whole

manifold.

Our contributions. In light of these limitations in the current literature, we propose

a new Bayesian nonparametric structured regression model for f , which is built upon an

ensemble of novel partially structured multivariate decision trees (MDTs). Specifically, our

decision tree recursively splits data into nodes of the tree starting from a root node. We

model each node split rule by a mixture model between a multivariate split based on the

structured feature, s, and a univariate split based on one unstructured feature of x. This

allows us to combine their merits for capturing the complex effects of s and handling possibly

high dimensional x, and to model the interactions between s and x. The multivariate split

rules are built upon a novel bipartition model via predictive spanning trees. It differs from

those of existing MDT methods in that: 1) it allows highly flexible decision boundary shapes

while fully respecting intrinsic geometry of the structured feature space; 2) it is built on any

arbitrary subset of the manifold so that both parameter estimation and prediction can be

performed under a unified framework; 3) the predictive spanning tree can be constructed

on a reduced dimensional reference knot set that is allowed to vary across weak learners,

which can be viewed as an adaptive and multivariate extension of the binning ideas used in

boosting methods such as lightGBM (Ke et al., 2017) for reduced computations.
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5.2 Bayesian Structured Regression with Additive Multivariate Decision Trees

In Section 5.2.1, we introduce a new model of multivariate split rules for structured

features lying on a manifold via predictive spanning tree partitions. In Section 5.2.2, we

propose a novel decision tree model combining both multivariate split rules for structured

features and univariate split rules for unstructured features. A Bayesian additive model

of the proposed decision trees is developed in Section 5.2.3 for nonparametric structured

regression problems.

5.2.1 Multivariate Splits via Predictive Spanning Tree Bipartitions

LetM be a known d-dimensional connected compact Riemannian manifold embedded in

a Euclidean space with a geodesic distance metric dg, and S∗ = {s∗1, . . . , s∗t} ⊆ M be a finite

set of reference knots on M which may or may not coincide with the observed structured

features. Typical choices of S∗ include grid points covering M or a random subset of the

observed values of s. The decision tree models to be introduced in Section 5.2.2 would require

a bipartition of certain subset Mη of M corresponding to a decision tree node η (see the

colored region in Figure 5.1(a) for an example ofMη). Let S∗η ⊆ S∗ denote the union of the

nearest reference knot of each point inMη under dg. Note that knots in S∗η may not belong

toMη. Below, we consider how to induce a bipartition of a genericMη from a bipartition

of S∗η .

For a generic set A, we use π2(A) = {A1,A2} to denote a bipartition of A that satisfies

∅ $ A1 $ A and A2 = A \ A1. Let dg(s,B) := inft∈B dg(s, t) be the distance between s and

a non-empty subset B of M. Given π2(S∗η ) = {S∗η,1,S∗η,2}, π2(Mη) = {Mη,1,Mη,2} can be

obtained by setting

Mη,1 = {s ∈Mη : dg(s,S∗η,1) ≤ dg(s,S∗η,2)}, (5.2)

Mη,2 =Mη \Mη,1. (5.3)

We also call π2(Mη) a multivariate split ofMη.
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We now construct the bipartition model of S∗η . Since similar structured features tend to

have similar effects on Y , it is desired to guarantee local contiguity of π2(S∗η ), in the sense

that each local cluster in S∗η,j only contains knots that are close to each other with respect

to distance dg.

Spanning tree partition models have recently been proposed as an effective tool to model

contiguous partitions of graphs (Li and Sang, 2019; Teixeira et al., 2019; Luo et al., 2021b).

They simplify the complicated combinatorial problem of graph partitions by representing

partitions as connected components induced by pruning an edge from a spanning tree of the

graph. However, there exist some major challenges that prevent us from directly applying

these methods to model the bipartition of S∗η . Specifically, the original spanning tree partition

models consider a fixed set of vertices at the observed locations. In our case, S∗η is a subset of

reference knots that varies in size and locations as the decision tree node η changes. Moreover,

there may exist gaps between local clusters of knots due to interactions between multivariate

splits and univariate splits as shown in Figure 5.1(a). If one naively uses an undirected

spanning tree graph on the whole reference set S∗ with edges E∗, denoted as G∗T = (S∗, E∗),

removing an arbitrary edge from G∗T as in Luo et al. (2021a) does not necessarily lead to a

valid π2(S∗η ). Constructing a different spanning tree for each S∗η is not an ideal alternative

either due to the expensive computational costs.

In this chapter, we propose a new bipartition model for S∗η that is still based on G∗T but

with a different edge removal rule. Specifically, we consider a spanning tree, G∗T , where each

knot is only connected to its near neighbors with respect to dg so that it represents the

topology of the structured feature space. For instance, G∗T can be specified as the minimum

spanning tree (MST) of a graph G∗ on S∗ using edge lengths under dg as edge weights.

Following Luo et al. (2021a), G∗ can be constructed using constrained Delaunay triangula-

tions (CDTs; Lee and Schachter, 1980) for constrained domains in R2 or K nearest neighbor

graphs with respect to distance dg for general manifolds. See Section D.1 for more discussion

on constructing G∗ in practice.
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Figure 5.1: (a) A spanning tree graph G∗T on reference knots and a colored subset Mη of
a U-shaped domain. A bipartition of S∗η (marked by blue points) after the blue edge is
removed from G∗T is shown by different point shapes. A multivariate bipartition decision of
Mη induced by π2(S∗η ) is marked by different colors. (b) A univariate decision tree partition
that approximates π2(Mη), where blue lines represent decision boundaries.

Instead of randomly removing an edge from E∗, we consider a path in G∗T connecting

two distinct knots in S∗η , which is unique as G∗T is a spanning tree. If an edge e∗ in the

path is removed from G∗T , we obtain two connected components in the resulting subgraph,

which naturally defines a valid bipartition of S∗η by letting S∗η,k = S∗η ∩ C∗k , where C∗k is the

vertices in the kth connected component of G∗T , and therefore induces a multivariate split of

Mη. Note that the endpoints of e∗ may not belong to S∗η asMη can be disconnected. This

property motivates a generative prior model for π2(Mη) to be introduced in Section 5.2.2.

Figure 5.1(a) illustrates an example of a spanning tree bipartition π2(S∗η ) and the induced

π2(Mη), where Mη is a disconnected subset of a U-shape domain. Note that a similar

partition in Figure 5.1(b) given by a univariate decision tree has more splits. Note also that

the spanning tree bipartition fully respects the intrinsic geometry ofM, while a univariate

split does not.
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Figure 5.2: (a, c) Two psMDTs with input domainD ⊆M×R, whereM is a two-dimensional
U-shaped domain. (b, d) Partitions of D projected onto M corresponding to the psMDTs
in (a) and (c). The spanning tree edges removed in multivariate splits are marked in white.

5.2.2 Partially Structured Multivariate Decision Trees

The spanning tree based splits developed in Section 5.2.1 can serve as building blocks

for a new class of MDTs involving structured features, called partially structured MDTs

(psMDTs). A psMDT recursively divides the joint input space D ⊆ M × X into subsets

represented by tree nodes. Note that D may not equal to the product space ofM and X ,

because x and s may not be independent. Let η be a non-terminal node in a psMDT and

η1 and η2 be its two offspring nodes. In a psMDT, η either performs a multivariate split

using all structured features, or a univariate split using one of the unstructured features,

to divide the associated subset Dη ⊆ D into π2(Dη) = {Dη,1,Dη,2} corresponding to η1 and

η2, respectively. We remark that interaction effects between structured and unstructured

features can be naturally captured when the hierarchical splitting of psMDTs involves both
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s and x.

Multivariate splits using structured features. A multivariate split divides Dη by

bipartitioning Mη, the projection of Dη onto M. For a given Mη, we follow the method

described in Section 5.2.1 to first split the corresponding S∗η into π2(S∗η ) to obtain π2(Mη)

via (5.2) and (5.3), and then set Dη,k = Dη∩(Mη,k×X ) for k = 1, 2. Compared to univariate

decision trees, the multivariate splits allow psMDTs to generate flexible partitions with a

fewer number of nodes. Moreover, since the multivariate splits rely on geodesic distance,

psMDTs fully respect the intrinsic geometry and boundary constraints ofM.

Univariate splits using unstructured features. In a univariate split, Dη is divided

into

Dη,1 = {(x, s) ∈ Dη : xj(η) ≤ cη} (5.4)

Dη,2 = Dη \ Dη,1, (5.5)

where xj(η) is the jth coordinate of x selected at node η, and cη is a node-specific cutoff.

Figure 5.2 shows two examples of psMDTs and the partitions they define. Note the

hierarchical splits involving both s and x may create disconnectedMη. Before we introduce

the psMDT generating process, we remark that, although both psMDTs, denoted as T , and

spanning trees G∗T in Section 5.2.1 are referred to as “trees,” they are fundamentally different

concepts for different purposes. A psMDT is a binary decision tree defining a partition of D,

and its vertices/nodes represent subsets of D. On the other hand, G∗T encodes an ordering

of the multivariate structured knots, and its vertices are the reference knots inM.

Similar to the generative process for univariate decision trees (Chipman et al., 1998), a

psMDT can be recursively generated in the following manner:

1. Start with a trivial psMDT that only contains a root node representing the full input

space D.

2. Split a terminal node η representing Dη with probability psplit(η). If η splits, apply one
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of the following split rules to obtain π2(Dη).

(a) With probability pm, perform a multivariate split using the structured features s.

(b) Otherwise, perform a univariate split using one of the unstructured features x.

3. Apply Step 2 to each offspring node of η by setting η as η1 and η2, respectively.

To generate a multivariate split, we first partition Mη into π2(Mη) by generating a

bipartition of S∗η . Motivated by the property in Section 5.2.1, we assume the following

generative process of π2(Mη):

1. Randomly sample two distinct knots s∗i and s∗j from S∗η .

2. Randomly sample an edge e∗ from the unique path in G∗T connecting s∗i and s∗j .

3. Remove e∗ from G∗T to obtain π2(S∗η ) and the induced π2(Mη) via (5.2) and (5.3).

Then, we let Dη,k = Dη ∩ (Mη,k × X ) be the subset represented by η’s offspring ηk, for

k = 1, 2.

The generating process of splits using unstructured features follow a similar path as

in Chipman et al. (1998) and Denison et al. (1998). Specifically, one of the unstructured

features xj(η) is randomly chosen, and a random cutoff value cη is uniformly drawn from its

candidate set, which typically depends on the feature and training data. Then we set Dη,1

and Dη,2 as in (5.4) and (5.5).

Probability for splits psplit. Following Chipman et al. (1998), we specify psplit(η) as

psplit(η) = α(1 + dη)
−β, (5.6)

where dη is the depth of a node η, and α and β are positive constants. This specification

implies that the probability of a node being non-terminal decreases exponentially with its

depth and hence implicitly controls the size of a psMDT. We will discuss the choice of α and

β in Section 5.3, where we adopt the psMDT generating process as a prior model.
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Probability for multivariate splits pm. This probability controls the portions of

multivariate structured splits among all decision tree nodes. The larger pm is, the more

structured information is used for growing a psMDT. When there is no a priori information

about the true function, pm = max{d/(d+p), p̄m} is a reasonable default choice, where p̄m is

chosen to prevent pm from being dominated by p in high dimensional settings where p� d.

5.2.3 A Bayesian Sum-of-multivariate-decision-trees Model

A psMDT, T , partitions the input spaceD into ` disjoint subsets {D1, . . . ,D`} represented

by its ` terminal nodes. To apply psMDTs to nonparametric regression tasks, given T and

µ = (µ1, . . . , µ`), we define a piecewise constant mapping from D to R as

g(s,x|T,µ) = µj, if (s,x) ∈ Dj.

Using g as a weak learner, a Bayesian additive partially multivariate decision trees (BAMDT)

regression model utilizes a summation of piecewise constant functions to approximate the

true function f by assuming

E(Y |s,x) =
M∑
m=1

g(s,x|Tm,µm),

where Tm is a psMDT with `m terminal nodes, µm = (µm1, . . . , µm`m) are the terminal node

specific constants for Tm, and M ∈ N is the pre-specified number of weak learners.

Like other additive tree models such as BART (Chipman et al., 2010) and gradient boost-

ing trees (Friedman, 2001), BAMDT is able to adapt to different smoothness levels and/or

discontinuities in the true function. The highly flexible psMDT partitions further allow

BAMDT to more effectively capture irregularly shaped decision boundaries where disconti-

nuities or sharp changes happen, while respecting the intrinsic geometry of the structured

feature spaceM.

The regularization prior model of BAMDT is specified in a similar way as BART, which

100



admits the form

p
(
{Tm,µm}Mm=1, σ

2
)

=

{
M∏
m=1

p(µm|Tm)p(Tm)

}
p(σ2).

The psMDT generating process in Section 5.2.2 is adopted as a prior for Tm’s, that is, we

assume a priori that each Tm is an iid sample from the generating process. We recommend

choosing the reference set with a reduced size compared to the number of observations so that

computations can be done more efficiently on a reduced spanning tree graph. Nevertheless,

this dimension reduction strategy leads to coarser decision tree boundaries in each weak

learner. To increase the diversity of psMDTs in the ensemble, we use different sets of reference

knots (and hence different spanning trees) for each Tm, which allows each weak learner to

explore and learn a different portion of f so that finer discontinuity boundaries in data might

be better recovered from ensembles. Following Chipman et al. (2010), we choose α = 0.95

and β = 2 in (5.6), which assigns most of the prior probability to small psMDTs with 2

or 3 nodes and penalizes large Tm’s. Shallow psMDTs encourage better mixing and faster

convergence in Markov chain Monte Carlo.

Conditional on Tm, we place a conjugate Gaussian prior for µm

µm|Tm ∼ N`m(0, σ2
µI`m),

where I` is an ` × ` identity matrix and σ2
µ = 0.5/(a

√
M) with a > 0. This prior imposes

stronger shrinkage on µm towards zero when we have more weak learners, and therefore

prevents overfitting given that we rescale Y into [−0.5, 0.5]. We choose a = 2 by default,

which assigns 0.95 prior probability to E(Y |s,x) within [−0.5, 0.5].

The shrinkage prior for µm’s, together with the prior for Tm’s that favors small psMDTs,

ensures that each weak learner only explains a small proportion of response variability,

and hence prevent each ensemble membership to be too influential to the overall fit. This

therefore regularizes the model to keep it from overfitting the training data.
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We complete the prior specification by choosing a conjugate inverse-χ2 prior for σ2 in

the form of σ2 ∼ νλs/χ
2
ν for λs > 0 and some degree of freedom ν. We choose ν = 3 and

calibrate the prior by selecting λs such that P(σ2 < σ̂2) = 0.90 a priori, where σ̂2 is the

sample variance of the responses.

5.3 Bayesian Inference

Bayesian inference of BAMDT is based on a tailored backfitting Markov chain

Monte Carlo (MCMC) sampler (Hastie and Tibshirani, 2000), which successively draws

(T1,µ1), . . . , (TM ,µM), and σ2 from their respective full conditional distributions. To

sample from [Tm,µm|−], where − stands for all other parameters and the response data

Y = (Y1, . . . , Yn), we first draw Tm from the collapsed full conditional p(Tm|−) =∫
p(Tm,µm|−)dµm, and then sample µm from [µm|Tm,−]. Thanks to the conjugate priors

for µm and σ2, the distributions [µm|Tm,−] and [σ2|−] admit straightforward closed-form

expressions, which are detailed in Appendix D.2.

To sample a new psMDT T ∗m from p(Tm|−), we randomly grow or prune the existing Tm

with equal probability to obtain a tree proposal. In a growing move, one of Tm’s terminal

nodes, denoted by η, is randomly chosen and split into two offspring nodes following Step

2 of the psMDT generating process in Section 5.2.1. A pruning step does the opposite by

first randomly selecting a node with two terminal offspring and then removing its children.

The proposed T ∗m is then accepted or rejected following standard Metropolis-Hastings (MH)

procedure, and we leave the details to Appendix D.2. Note that the MH acceptance probabil-

ity involves a likelihood ratio L(Y|T ∗m,−)/L(Y|Tm,−), where L(Y|Tm,−) is the likelihood

with µm integrated out. This ratio can be evaluated using its analytical form, thanks to the

conjugate Gaussian prior for µm. The time complexity to draw Tm is O(max{n, t}) since we

utilize a spanning tree that has t− 1 edges for multivariate splits.

Using posterior draws of {(Tm,µm)}Mm=1, we can perform prediction for Ynew

given (snew,xnew). A posterior sample of E(Ynew|snew,xnew) is obtained by summing

g(snew,xnew|Tm,µm) over m = 1, . . . ,M . A point predictor of Ynew can be taken as the
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posterior mean of E(Ynew|snew,xnew) draws.

Similar to BART, BAMDT offers a natural importance metric for variable selection based

on MCMC samples. Let rz be a split rule involving feature z, where z can be s or one

coordinate of x = (x1, . . . , xp). For z = s, rz corresponds to a multivariate split; when

z = xj, rz refers to a univariate split on xj. The relative importance of z is measured by

the proportion of rz used in the sum-of-psMDT model, denoted by vz. We use the posterior

mean of vz as a metric to evaluate the importance of z. A higher metric indicates that z is

more favored in model fitting, and thus it is more likely that z provides more information

for predicting Y .

5.4 Experiments

5.4.1 Simulation Studies

We demonstrate the performance of BAMDT using some synthetic data. The structured

feature spaceM that we consider is a two-dimensional U-shaped domain as shown in Fig-

ure 5.3(a) that is divided into three subsets by a circle centered at the origin with radius

0.9. We generate n = 500 uniform random locations in M. The geodesic distance on M

is approximated using the method in Section D.1. The unstructured feature space is set to

be X ⊆ [0, 1]p with p ∈ {2, 10} (but only one coordinate of x is involved in the true data

generating process). We independently generate xj for j = 1, . . . , p, but introduce spatial

dependence among locations within each xj to mimic real applications. Using the same data

generating scheme, we also simulate features for a test data set of size ntest = 200.

As shown in Figure 5.3(a), we consider a true piecewise smooth function defined on D,

where we design two jumps across the surfaces {(sh, sv) ∈ M : s2
h + s2

v = 0.92} × X . The

true function only depends on (s, x1) and their interaction. The responses in the training

and test data sets are generated according to (5.1), where we consider different noise levels

σ ∈ {0.1, 0.5}. We simulate 50 replicates for each level of p and noise. Detailed data

generating process can be found in Section D.3.1.
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Figure 5.3: (a) True f(s,x) on a two-dimensional U-shaped domainM in the setting of p = 2.
(b-d) Predictive surfaces f̂(s,x) of BAMDT, BART, and GP regression using one data set
with σ = 0.1. Red circles indicate discontinuity surfaces in the true function projected to
M.

104



We use M = 50 weak learners in BAMDT. For each weak learner, we randomly sample

t = 100 locations from the training data as reference knots. We construct spatial graphs G∗

on reference knots using CDTs following Luo et al. (2021a), and choose their MSTs based

on geodesic distance as the spanning trees for multivariate split rules. We use 100 equally

spaced grid points as candidates of univariate split cutoffs for each unstructured feature.

The probability of performing a multivariate split is set to be pm = 2/(2 + p). We run the

MCMC algorithm for 30, 000 iterations, discarding the first half and retaining samples every

10 iterations.

We compare BAMDT with BART and spatial GP regression (see, e.g., Gelfand et al.,

2010) that are implemented in R packages BART (McCulloch et al., 2019) and GpGp (Guinness,

2018), respectively, since we focus on the methods that can provide uncertainty measures.

The input features of BART include x and the Cartesian coordinates of s. For BART, we use

the same number of weak learners and the same MCMC setting as in BAMDT, and all other

hyperparameters are set to be the default values. For the GP regression, the mean function is

specified as a linear function of x and the covariance kernel is chosen to be isotropic Matérn.

We evaluate prediction performance of BAMDT and its competitors using the test data

set. Point predictors of BAMDT and BART are based on posterior means, while the one

for GP regression is the krigging mean. We use mean square prediction error (MSPE) and

mean absolute prediction error (MAPE) to measure point prediction accuracy. We also

compare the accuracy of probabilistic prediction using continuous ranked probability scores

(CRPSs; Gneiting and Raftery, 2007). For the two Bayesian models BAMDT and BART,

CRPS is computed using posterior samples of E(Ynew|snew,xnew); for GP regression, CRPS

is evaluated using the kriging distribution. For all the metrics, lower values indicate better

performance.

Table 5.1 summarizes the average prediction performance of BAMDT and its competitors

over 50 replicates in different settings. In all settings, BAMDT outperforms other methods

in terms of all performance metrics. In particular, the comparison between BAMDT and
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BART suggests that the proposed MDTs enhance the performance in complex restricted

domains while inheriting BART’s feature selection capacity. Indeed, the feature importance

metric from BAMDT can better identify the truly relevant features (s, x1) compared with

BART. As an example, in the setting of p = 10 and σ = 0.1, the average percentage of splits

involving (s, x1) in BAMDT is 73.98%, while the one in BART is 54.62%.

To better examine the prediction from all the models, we present the mean predictive

surfaces (as a function of s) in Figure 5.3(b-d) from the models fitted using one randomly

selected data set with p = 2 and σ = 0.1. All three models can recover the general pattern

of the true function, but the result from BAMDT matches the ground truth best. BAMDT

performs fairly well in the interior of each subregion of M, while there are some visible

errors around the discontinuity surfaces marked by the red circle, which are expected due

to larger uncertainties in data around discontinuities. The predictive surface from BART

displays some artificial rectangular decision boundaries such as those in the upper arm, due

to the sole use of univariate split rules. There is also some noticeable “leakage” effect in the

prediction of BART as evidenced by the underestimation in some regions in the lower arm

that are near the upper arm. These undesired patterns are overcome in BAMDT thanks

to the use of the multivariate split rules that can generate flexible shaped partition and

respect the domain boundary. Unlike BAMDT or BART, the predictive surface from GP

regression is too smooth relative to the truth and loses some small scale spatial patterns. We

have also compared the predictive uncertainty at different spatial locations in Section D.3.2.

Our result suggests that the discontinuity surfaces in the true function are characterized

by higher uncertainty from BAMDT, while this pattern does not appear in BART or GP

regression. We have also included sensitivity analysis of BAMDT and discussed the results

in Section D.3.2.

5.4.2 Application to Sacramento Housing Price Data

We apply BAMDT to analyze housing price data in Sacramento County, California,

available in R package caret (Kuhn, 2021). We focus on n = 405 data points from Cities
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Table 5.1: Prediction performance of BAMDT and its competing methods in simulations.
Standard errors are in parentheses.

BAMDT BART GP

p = 2

σ = 0.1
MSPE 0.374 (0.015) 1.405 (0.035) 0.620 (0.002)
MAPE 0.281 (0.004) 0.612 (0.008) 0.499 (0.001)
Mean CRPS 0.219 (0.003) 0.508 (0.007) 0.398 (0.001)

σ = 0.5
MSPE 0.685 (0.011) 1.679 (0.035) 0.949 (0.009)
MAPE 0.567 (0.004) 0.829 (0.007) 0.723 (0.004)
Mean CRPS 0.438 (0.003) 0.656 (0.006) 0.528 (0.003)

p = 10

σ = 0.1
MSPE 0.495 (0.022) 1.219 (0.027) 0.662 (0.002)
MAPE 0.317 (0.005) 0.688 (0.009) 0.545 (0.001)
Mean CRPS 0.252 (0.005) 0.552 (0.008) 0.415 (0.001)

σ = 0.5
MSPE 0.756 (0.018) 1.580 (0.030) 1.008 (0.010)
MAPE 0.584 (0.005) 0.878 (0.008) 0.754 (0.004)
Mean CRPS 0.453 (0.005) 0.686 (0.007) 0.544 (0.003)

of Sacramento and Elk Grove. The observed housing price and city boundary∗ are shown

in Figure 5.4(a). Note that the City of Sacramento is divided by the American River near

38.6◦N. We model the logarithm of housing price (in U.S. dollars) as a function of the

house location (in latitude and longitude), number of bedrooms, number of bathrooms, and

square footage. We treat the location as a structured feature s and all other covariates

as unstructured features x. The goal is to examine BAMDT’s performance in predicting

housing prices with new features.

We fit BAMDT, BART, and spatial GP regression to the data. The settings of them are

identical to those in Section 5.4.1, except that we use t = 150 knots for BAMDT.

We first compare prediction performance of the three models using 5-fold cross-validation.

Table 5.2 shows the performance metrics computed using the original price scale (instead of

log scale). BAMDT achieves better prediction accuracy than the other two methods in all

metrics.

Next, we turn to the mean predictive surface from each model fitted using all the ob-

servations. We consider a representative house with median unstructured features, namely,
∗City shape file is retrieved from Sacramento County GIS (2015)
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Figure 5.4: (a) Observed housing price (in U.S. dollars). (b-d) Predicted price for a repre-
sentative house from BAMDT, BART, and GP regression.

three bedrooms, two bathrooms, and 1436 square feet. We display its predicted price at dif-

ferent locations in Figure 5.4(b-d) to examine the marginal spatial effect on housing prices.

The predictive surfaces from BART and GP regression fail to respect the boundary con-

straints, especially near the American River. In contrast, there is a clear jump across the

river in the surface from BAMDT. As in the simulation studies, BART only identifies axis-

parallel discontinuities, while BAMDT could detect more flexible discontinuity boundaries

with meaningful interpretations such as the one along U.S. Highway 50. Compared with

BAMDT and BART, the GP regression tends to give lower predictions in the regions of low

housing price, possibly due to the lack of interaction between s and x in the model, and

its predicted price changes smoothly near U.S. Highway 50. We have also examined feature

importance and the marginal effect of square footage in Appendix D.4.

Finally, we examine the prediction uncertainty for the representative house. Figure 5.5
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Figure 5.5: Posterior predictive standard deviation of log-price for a representative house
from (a) BAMDT, (b) BART, and (c) GP regression.

Table 5.2: Prediction performance of BAMDT and its competing methods in Sacramento
housing data set.

BAMDT BART GP
Root MSPE 62128 64607 69701
MAPE 43110 45224 48790
Mean CRPS 34107 35940 35633

shows the predictive standard deviation of log-price from the three models. There is a

narrow band with high uncertainty near U.S. Highway 50 and Sacramento Zoo from BAMDT

that separates the downtown area and East Sacramento from southern regions. This band

corresponds to an abrupt price change in Figure 5.4(b), and thus it is associated with higher

prediction uncertainty.
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5.5 Conclusion and Discussion

In this chapter, we proposed a new Bayesian additive decision tree model for structured

regressions. The method relaxes the limitations of conventional BART methods due to axis-

parallel split rules by allowing a flexible mixture of univariate and multivariate split rules in

decision tree weak learners. The proposed multivariate split rules are built upon a manifold

bipartition model via predictive spanning trees that is capable of complying to intrinsic

geometry and boundary constraints of the structured feature space.

Thanks to its Bayesian nature, BAMDT is promising to serve as a flexible nonpara-

metric prior for modeling latent functions in various hierarchical modeling settings. The

method has great potential beyond predictive regression tasks to other machine learning

tasks such as classification, density estimation, survival analysis, and causal inference, to

name a few. Besides these extensions, future research may also include theoretical investiga-

tions of function approximation performance via Bayesian posterior concentration theories,

and computational accelerations via extensions of informed MCMC and importance sam-

pling (Zanella and Roberts, 2019; Griffin et al., 2021), spike and slab lasso (Ročková and

George, 2018), or variational Bayes inference (Blei et al., 2017).
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6. CONCLUSION

Motivated by many applications involving complex spatial data, this dissertation has

studied Bayesian spanning-tree-based models from four aspects. First, we introduce a prob-

abilistic spanning tree partition model on a finite number of spatial locations to address the

problem of learning spatially clustered relationship between the response variable and the

covariates. Then we extend the finite partition model to the spatial domain by developing a

soft stochastic partition process, which serves as a building block for a new class of locally

stationary Gaussian process (GP) models. Third, we consider nonparametric regression with

structured features (e.g., spatial locations) on a complex constrained domain, and propose

a Bayesian additive ensemble model based on random spanning tree (RST) manifold par-

titions. Finally, a novel partially structured multivariate decision tree model is developed

for nonparametric ensemble learning by incorporating both predictive-spanning-tree-based

multivariate decision rules and univariate decision rules. The main results of this dissertation

are summarized as follows.

In Chapter 2, we propose an RST partition model on a finite set of spatial locations that

enjoys highly flexible cluster shapes and sizes and guarantees spatial contiguity of the clusters.

Utilizing it as a prior model, a Bayesian spatially clustered coefficient (BSCC) regression

model is developed with an efficient MCMC sampler. We study the theoretical properties of

the RST partition model and derive posterior concentration results of BSCC. The superior

performance of BSCC is demonstrated via simulation studies and the temperature-salinity

data from the Atlantic Ocean.

In Chapter 3, a soft partition process is introduced to generalize the partition model on

a fixed finite location set to a stochastic process, based upon which we propose a legitimate

locally stationary GP model. Combined with a predictive RST space partition prior, we

develop a spanning-treed GP regression model and establish its posterior consistency and

contraction results. The performance of the proposed model is examined using simulated
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data and the precipitation data in the contiguous United States.

Chapter 4 and Chapter 5 study nonparametric regression problems on non-trivial spatial

domains. In Chapter 4, we focus on nonparametric regression with structured features

only. We extend the flexible RST partition model to a finite set of spatial locations on a

compact Riemannian manifoldM such that the intrinsic geometries and domain boundary

constraints of M are fully respected. Using this partition model as a weak learner, a new

Bayesian ensemble model, called the Bayesian additive regression spanning trees (BAST),

is proposed for nonparametric function estimation and prediction on complex constrained

domains. We apply BAST to constrained domains in R2 and manifolds embedded in R3 to

illustrate its utility.

In Chapter 5, we address a more general nonparametric regression problem involving both

structured and unstructured features, where the structured features possibly lie on a compact

Riemannian manifold. We introduce a novel multivariate split rule using structured features

based on predictive spanning tree manifold bipartitions that can fully respect the intrinsic

geometries of the structured feature space. We develop a partially structured multivariate

decision tree (psMDT) that uses multivariate split rules for structured features and univariate

split rules for possibly high dimensional unstructured features. A Bayesian additive psMDT

model is then proposed and demonstrated to achieve good performance in synthetic data

and a real housing price data set.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2 ∗

A.1 Proofs of Main Results

A.1.1 Proof of Proposition 2.2

To prove Proposition 2.2, we first introduce a lemma.

Lemma A.1. (Proposition 8.1.1 of Diestel 2016) Every connected graph contains at least

one spanning tree.

Now we prove Proposition 2.2.

Proof of Proposition 2.2. We first construct a subgraph of G0 and then show that it is a

spanning tree that induces π. Consider the following procedure with initial values t = 1 and

T 0 = (T 0, E0) = (∅, ∅):

1. If t = 1, pick an arbitrary vertex v ∈ V0; otherwise, pick a vertex v ∈ V0\V t−1 that is

connected to a vertex in T t−1 by an edge e (the existence of v is guaranteed since G0

is connected). Without loss of generality suppose v belongs to Ct.

2. By Lemma A.1 we know there is a spanning tree T ∗ = (V∗, E∗) of the subgraph (Ct, ECt),

where ECt ⊆ E0 is the set of edges whose endpoints belong to Ct. If t = 1 let T t = T ∗;

otherwise, let T t = (V t−1 ∪ V∗, E t−1 ∪ E∗ ∪ {e}), where V t−1 and E t−1 are the vertex

set and edge set of T t−1, respectively.

3. If T t contains all vertices in G0, then stop; otherwise, let t := t+ 1 and go to step 1.
∗Reprinted from Luo, Z. T., Sang, H., and Mallick, B. (2021b). A Bayesian contiguous partitioning

method for learning clustered latent variables. Journal of Machine Learning Research, 22(37):1–52. The
authors hold the copyright.
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We show that each T t, t ≥ 1 is a tree by induction arguments. By construction T 1 is a tree.

Suppose T t−1 is a tree, then T t is also a tree since both T t−1 and T ∗ are trees.

Therefore, the final T t that contains all vertices of G0 is a spanning tree and the collection

of e’s in each iteration is Ek−1. This completes the proof of Proposition 2.2.

A.1.2 Proof of Theorem 2.3

To prove Theorem 2.3 we need some lemmas.

Lemma A.2. (Lemma 1 of Laurent and Massart 2000) Let χ2
d be a chi-square distribution

with degree of freedom d. Then the following concentration inequalities hold for any x > 0:

P
(
χ2
d > d+ 2x+ 2

√
dx
)
≤ exp(−x)

and

P
(
χ2
d < d− 2

√
dx
)
≤ exp(−x).

Lemma A.3. (Lemma 6 of Barron 1998) Let fθ be the likelihood function with parameter

θ ∈ Θn, f ∗ ≡ fθ∗ be the true probability density of data generation with true data generation

parameter θ∗, Eθ,E∗ denote the expectations under θ and θ∗ respectively, P∗ denote the

probability measure for data generation under θ∗, and Π, Πn denote the prior distribution

on Θn with density π(θ) and the posterior, respectively. Let Bn and Cn be two subsets of the

parameter space Θn, and φn be a test function satisfying φn (Dn) ∈ {0, 1} for any data Dn.

If Π (Bn) ≤ bn,E∗ {φ (Dn)} ≤ b′n, supθ∈Cn Eθ {1− φ(Dn)} ≤ cn, and

P∗
(
m (Dn)

f ∗ (Dn)
≥ an

)
≥ 1− a′n

where m (Dn) =
∫

Θn
π(θ)fθ (Dn) dθ is the marginal likelihood of Dn. Then for any ∆n > 0,

P∗
(

Πn (Cn ∪Bn | Dn) ≥ bn + cn
an∆n

)
≤ ∆n + a′n + b′n.
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Next we give the proof of Theorem 2.3. With some abuse of notations we use i ∈ Cj to

denote that the ith location belongs to the jth cluster and (i, j) to denote the edge connecting

si and sj throughout the proof. We also denote the L1 and supremum norm by ‖·‖1 and

‖·‖∞, respectively.

Proof of Theorem 2.3. Given an arbitrary partition π with k clusters, for the jth cluster, we

define an estimator as

β̂(j) =

∑
i∈Cj xiyi∑
i∈Cj x

2
i

,

where yi = y(si). Further define β̂π(y) ∈ Rn such that the ith element β̂π,i(y) = β̂(j) if i ∈ Cj

under π, and σ̂2
π(y) = ‖y − µ̂π(y)‖2 /(n− k), where µ̂π,i(y) = xiβ̂π,i(y).

Step 1: Inspired by Song and Cheng (2020), we define a test function

φ(y) = 1{ ‖µ̂π(y)− µ∗‖ ≥
√
nσ∗εn and

∣∣σ̂2
π(y)− σ∗2

∣∣ > σ∗2εn

for some πk nested in π∗ with k ≤ (1 + δ)g∗n}

for some fixed δ > 0 chosen later. Let ◦ denote the Hadamard product of two vectors. We

define

Cn =

{
(β, σ) : ‖x ◦ β − µ∗‖ ≤M1

√
nσ∗εn and

1− εn
1 + εn

< σ2/σ∗2 <
1 + εn
1− εn

}c
\Bn,

and

Bn =
{

(β, σ) : The partition underlying β has at least δg∗n clusters
}
.

For any πk nested in π∗ with k ≤ (1 + δ)g∗n and the jth cluster Cj in πk, we have

β̂(j) ∼ N
(
β∗(j), σ

∗2/
∑

i∈Cj x
2
i

)
, where β∗(j) is the true coefficient in Cj, and thus

∑
i∈Cj(xiβ̂(j)−

xiβ
∗
(j))

2 ∼ σ∗2χ2
1. Hence, ‖µ̂π(y)− µ∗‖2 /σ∗2 ∼ χ2

k.

We now bound the type-I error of the test function. Since k = O (g∗n) ≺ nε2
n by Assump-
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tion (C3) and εn � (g∗n log n/n)1/2, from the concentration inequality for χ2 distribution in

Lemma A.2, we have

P(β∗,σ∗)

(
‖µ̂π(y)− µ∗‖ ≥

√
nσ∗εn,

∣∣σ̂2
π(y)− σ∗2

∣∣ > σ∗2εn
)

≤ P(χ2
k ≥ nε2

n) ≤ exp
(
−c′1nε2

n

)
,

for some constant c′1 > 0. Therefore, using a union bound and the second part of Assumption

(C3),

E(β∗,σ∗){φ(y)} ≤ Pn · exp
(
−c′1nε2

n

)
≤ exp

(
−c1nε

2
n

)
, (A.1)

for some constant c1 > 0 and large nε2
n/(g

∗
n log n).

Next we bound the type-II error. We rewrite

Cn = C(1)
n ∪ C(2)

n

where

C(1)
n =

{
(β, σ) : ‖x ◦ β − µ∗‖ > M1

√
nσ∗εn,

σ2

σ∗2
<

1 + εn
1− εn

}
∩Bc

n

and

C(2)
n =

{
σ :

σ2

σ∗2
≤ 1− εn

1 + εn
or

σ2

σ∗2
≥ 1 + εn

1− εn

}
∩Bc

n.

For any (β, σ) ∈ Cn, let π be the corresponding partition of β and T be a span-

ning tree inducing π. Define π̂ to be the partition formed by removing the edges{
(i, j) ∈ ET : |βi − βj| > 0 or |β∗i − β∗j | > 0

}
from T . Then π̂ is nested in both π and π∗,

and has no more than (1 + δ)g∗n clusters (this is due to the construction of Bc
n and g∗n). For
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any β ∈ C(1)
n , we have

P(β,σ)

(
‖µ̂π̂(y)− µ∗‖ ≤

√
nσ∗εn

)
= P(β,σ)

(
‖µ̂π̂(y)− x ◦ β) + x ◦ β − µ∗‖ ≤

√
nσ∗εn

)
≤ P(β,σ)

(
‖µ̂π̂(y)− x ◦ β‖ ≥ ‖µ∗ − x ◦ β‖ −

√
nσ∗εn

)
≤ P(β,σ)

(
‖µ̂π̂(y)− x ◦ β‖ ≥ (M1 − 1)

√
nσ∗εn

)
,

where the last inequality is due to the fact that when β ∈ C(1)
n , ‖µ∗ − x ◦ β‖ > M1

√
nσ∗εn.

Note also that within each cluster Cj under π̂,
∑

i∈Cj

(
µ̂π̂,i(y)− xiβ(j)

)2
=

(∑
i∈Cj

xiεi

)2∑
i∈Cj

x2i
∼

σ2χ2
1, where β(j) is the value of β in Cj, and hence ‖µ̂π̂(y)− x ◦ β‖2 /σ2 ∼ χ2

k̂
under the true

parameters (β, σ), where k̂ is the number of clusters in π̂. Therefore,

P(β,σ)

(
‖µ̂π̂(y)− µ∗‖ ≤

√
nσ∗εn

)
≤ P

(
χ2
k̂
≥ 1− εn

1 + εn
(M1 − 1)2nε2

n

)
≤ exp

(
−c′2(M1 − 1)2nε2

n

)
(A.2)

for large M1 and some constant c′2 > 0.

Now consider (β, σ) ∈ C
(2)
n . By the normality of y we have ‖y − µ̂π̂(y)‖2 ∼ σ2χ2

n−k̂.

Therefore, since σ ∈ C(2)
n ,

P(β,σ)

(∣∣σ̂2
π̂(y)− σ∗2

∣∣ < σ∗2εn
)

= P(β,σ)

(∣∣∣∣∣‖y − µ̂π̂(y)‖2

σ∗2(n− k̂)
− 1

∣∣∣∣∣ < εn

)

= P(β,σ)

(
(1− εn)

σ∗2

σ2
<
‖y − µ̂π̂(y)‖2

σ2(n− k̂)
< (1 + εn)

σ∗2

σ2

)

≤ P(β,σ)

(∣∣∣∣∣‖y − µ̂π̂(y)‖2

σ2
− (n− k̂)

∣∣∣∣∣ > (n− k̂)εn

)

≤ P
(∣∣∣χ2

n−k̂ − (n− k̂)
∣∣∣ > (n− k̂)εn

)
≤ exp

(
−c2nε

2
n

)
, (A.3)
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for some constant c2 > 0 and large n.

Combining (A.2) and (A.3), we obtain

sup
(β,σ)∈Cn

E(β,σ){1− φ(y)} ≤ max
{

exp
(
−c′2(M1 − 1)2nε2

n

)
, exp

(
−c2nε

2
n

)}
≤ exp

(
−c2nε

2
n

)
, (A.4)

if M1 is chosen to be large.

Step 2: Let m(y) be the marginal likelihood, f ∗(y) be the true likelihood and ε =

y − x ◦ β∗ be the vector of error terms.

We claim that, with probability P (‖ε‖ ≤ 2
√
nσ∗),

H̃n :=

{
(β, σ) :

∥∥∥∥ 1

σ
(β − β∗)

∥∥∥∥
∞
≤ g∗n

log n

n
, 0 ≤ σ2 − σ∗2 ≤ σ∗2g∗n

log n

n

}
⊂ Hn,

where Hn is defined as

Hn =

{
(β, σ) : exp

(
− 1

2σ2
‖x ◦ β∗ − x ◦ β + ε‖2 +

‖ε‖2

2σ∗2
− n log

σ

σ∗

)

≥ exp(−c′3g∗n log n)

}

for some constant c′3 > 0. Thus,

m(y)

f ∗(y)
≥
∫
Hn

exp

(
− 1

2σ2
‖x ◦ β∗ − x ◦ β + ε‖2 +

‖ε‖2

2σ∗2
− n log

σ

σ∗

)
p
(
β, σ2

)
dβdσ2

≥ Π(Hn) · exp (−c′3g∗n log n) ≥ Π(H̃n) · exp (−c′3g∗n log n) . (A.5)
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To see the claim, write

1

2σ2
‖x ◦ β∗ − x ◦ β + ε‖2 − ‖ε‖

2

2σ∗2
+ n log

σ

σ∗

=
‖x ◦ β∗ − x ◦ β‖2

2σ2︸ ︷︷ ︸
I

+
(x ◦ β∗ − x ◦ β)T ε

σ2︸ ︷︷ ︸
II

−‖ε‖2

(
1

2σ∗2
− 1

2σ2

)
︸ ︷︷ ︸

≤ 0 since σ ≥ σ∗

+
n

2
log

σ2

σ∗2︸ ︷︷ ︸
III

.

Noticing that when (β, σ) ∈ H̃n and ‖ε‖ ≤ 2
√
nσ∗, by Assumption (C1) and the first part

of Assumption (C3) we have

I ≤ M2
0

σ2
‖β − β∗‖2 ≤ nM2

0

∥∥∥∥β − β∗σ

∥∥∥∥2

∞
≤M2

0

g∗2n (log n)2

n
= O (g∗n log n) ,

by Hölder’s inequality and σ∗ ≤ σ we have

II ≤ 2

∥∥∥∥x ◦ β∗ − x ◦ β
σ

∥∥∥∥
∞
· ‖ε‖1 ·

1

σ∗
≤ 2M0

σ∗

∥∥∥∥β∗ − βσ

∥∥∥∥
∞
·
√
n ‖ε‖

≤ 2M0

σ∗

∥∥∥∥β∗ − βσ

∥∥∥∥
∞
·
√
n · 2
√
nσ∗ = O (g∗n log n) ,

and

III ≤ n

2

g∗n log n

n
= O (g∗n log n) .

The claim then follows.

Next we show the prior assigns sufficient probability mass to H̃n. Notice that Π(H̃n) =∑
T ∈Tn Π(H̃n | T )Π(T ) ≥ minT ∈Tn Π(H̃n | T ), and for each T , Π(H̃n|T ) ≥ Π(π∗T | T )Π(H̃n |

π∗T ), where π∗T is the partition obtained by removing the edges in G∗T from T . The number

of clusters in π∗T , denoted by k∗T , is upper bounded by g∗n.
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First consider Π(πT | T ) = Π(k = k∗T )
(
n−1
k∗T −1

)−1. By Assumption (C4),

log Π(k = k∗T ) ≥ log
(1− c)g∗n∑n
k=1(1− c)k

= (g∗n − 1) log (1− c) + log c− log{1− (1− c)n}

≥ −2αg∗n log n. (A.6)

In addition,

− log

(
n− 1

g∗n − 1

)
≥ −g∗n log n. (A.7)

Now we consider

Π(H̃n|π∗T ) = Π
( 1

σ
|β(j) − β∗(j)| ≤

g∗n log n

n
for j = 1, 2, . . . , k∗T ,

0 ≤ σ2 − σ∗2 ≤ σ∗2g∗n
log n

n

)
.

Since the prior for β(j) is given by

β(j) | λ, σ
iid∼ N(0, λ−1σ2), λ ∼ Gamma(c0/2, d0/2),
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by Assumption (C2) and (C3) we have, conditional on 0 ≤ σ2 − σ∗2 ≤ σ∗2g∗n
logn
n

,

Π

(
1

σ
|β(j) − β∗(j)| ≤

g∗n log n

n
for all j = 1, 2, . . . , k∗T

∣∣∣∣ σ)
=

∫ ∞
0

k∗T∏
j=1

Π

(
1

σ
|β(j) − β∗(j)| ≤

g∗n log n

n

∣∣∣∣ λ, σ) p(λ)dλ

≥
∫ ∞

0

(
g∗n log n

n

)k∗T ( λ

2π

)k∗T /2
exp

(
−k

∗
T
2
λZ2

)
· p(λ)dλ,

where Z = max
1≤j≤k∗T

|β∗(j)|
σ∗

+ 1 = max
1≤i≤n

|β∗i |
σ∗

+ 1,

≥ c̃3 ·
(
g∗n log n

n

)g∗n
Γ

(
k∗T + c0

2

)
·
[

1

2
{d0 + g∗nZ

2}
]−(g∗n+c0)/2

,

where c̃3 is a constant not involving n,

≥ exp (−c′′3g∗n log n) (A.8)

for some constant c′′3 > 0 when n is sufficiently large.

Finally, for some constant c′′′3 > 0,

Π

(
0 ≤ σ2 − σ∗2 ≤ σ∗2g∗n

log n

n

)
≥ σ∗2g∗n

log n

n
· min
σ2∈[σ∗2, σ∗2(1+g∗n logn/n)]

p(σ2)

≥ exp (−c′′′3 g∗n log n) . (A.9)

Combining (A.6), (A.7), (A.8) and (A.9) we obtain Π(H̃n | T ) ≥ exp (−c3g
∗
n log n) and thus

Π(H̃n) ≥ exp (−c3g
∗
n log n), for some constant c3 > 0 not depending on T . Hence, with

probability

P
(
‖ε‖ ≤ 2

√
nσ∗
)
≥ P(χ2

n ≤ 4n) ≥ 1− exp(−c4n), (A.10)

for some constant c4 > 0, we have

m(y)

f ∗(y)
≥ exp (−(c3 + c′3)g∗n log n) . (A.11)
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Step 3: By Assumption (C4), for any T and some constant c5 > 0 not depending on T ,

Π (Bn | T ) ≤ Π(k ≥ δg∗n)

=

∑n
k=δg∗n

(1− c)k∑n
k=1(1− c)k

=
(1− c)δg∗n−1{1− (1− c)n−δg∗n+1}

1− (1− c)n

= O(1) · (1− c)δg∗n−1

≤ exp{−c5δg
∗
n log n}.

We therefore have

Π (Bn) =
∑
T ∈Tn

Π (Bn | T ) Π(T ) ≤ exp{−c5δg
∗
n log n}. (A.12)

Combining parts: By Lemma A.3, (A.1), (A.4), (A.11), (A.12) and (A.10), it follows

that for sufficiently large δ and nε2
n/(g

∗
n log n),

P∗
{

Πn

(
1√
n
‖µ− µ∗‖ ≥M1σ

∗εn | y
)
≥ ρn

}
≤ P∗ {Πn (Cn ∪Bn | y) ≥ ρn}

≤ exp(−g∗n log n) + exp(−c4n) + exp(−c1nε
2
n), (A.13)

with

ρn =
exp (−c2nε

2
n) + exp (−c5δg

∗
n log n)

exp(−g∗n log n) exp{−(c3 + c′3)g∗n log n}
→ 0. (A.14)

The result then follows from Borel-Cantelli lemma as the right-hand-side of (A.13) is

summable.

A.1.3 Proof of Propositon 2.5

We begin with the following lemmas.
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Lemma A.4. (Chernoff Bounds for Sum of Bernoulli Trials). Let z =
∑n

i=1 Zi, where

Zi = 1 with probability pi and Zi = 0 with probability 1 − pi, and all Zi are independent.

Then P
(
z ≥ (1 + δ2)E(z)

)
≤ exp

(
− δ22

2+δ2
E(z)

)
= exp

(
− δ22

2+δ2

∑n
i=1 pi

)
, for all δ2 > 0.

Lemma A.5. Under Assumption (C6), both the R-NN graph and the restricted Delaunay

triangulation graph are connected graphs with probability 1 as n tends to infinity.

Proof of Lemma A.5. By Theorem 1.1 in Penrose (1999), it is readily to check that the

minimum value of the radius γ1 such that R-NN is connected equals the maximum edge

length of the MST on Sn, and it scales with {(πpmin
s )−1 log n/n}1/2 with probability 1 as

n tends to infinity. Notice that the MST is a subgraph of the Delaunay triangulation.

By letting γ2 � (log n/n)1/2 and be larger than the maximum edge length of the minimum

spanning tree, the restricted Delaunay triangulation contains all edges in the MST and hence

is still a connected graph.

Then we prove Proposition 2.5.

Proof of Proposition 2.5. Let d(s,B) = min
sb∈B
‖s − sb‖ denote the distance from a point s ∈

R2 to a closed set B ⊂ R2. For the boundary set Bβ∗ , given υn > 0, we define the υn-

neighborhood of Bβ∗ as

N (Bβ∗ , υn) =
{
s ∈ R2 : d(s,Bβ∗) < υn

}
.

When Assumption (C6) holds, the maximum edge lengths in the R-NN graph and the

restricted Delaunay triangulation graph scale with (log n/n)1/2. Therefore, by letting υn �

(log n/n)1/2 and υn ≥ max(γ1, γ2), we can show that for any edge crossing Bβ∗ , both of its

endpoints must fall within N (Bβ∗ , υn).

We then define a set of edges from the original graph that have both endpoints within
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υn distance to the boundary set Bβ∗ as follows

EB(υn) :=
{

(i, j) : (i, j) ∈ E0 and max {d (si,Bβ∗) , d (sj,Bβ∗)} ≤ υn
}
.

From the Definition 2.4, it is readily to check that the edge differences are all zero when

(i, j) ∈ E0\EB(υn), i.e.,
∑

(i,j)∈{E0\EB(υn)}

∥∥β∗i − β∗j∥∥0
= 0, where ‖·‖0 is the L0-norm.

For any given spanning tree T , |EB(υn) ∩ ET | < z, where z = |Sn ∩ N (Bβ∗ , υn)| denotes

the number vertices falling within N (Bβ∗ , υn). The last inequality holds because EB(υn)∩ET

is a spanning forest and hence its total number of edges is less than z.

Recall the boundary set Bβ∗ has a υn-covering number N(Bβ∗ , υn, ‖ · ‖) ≤ M2υ
−1
n , it

follows that the υn-packing number M(Bβ∗ , υn, ‖ · ‖) ≤ M2υ
−1
n . From triangular inequality,

there exists a maximal υn-packing for Bβ∗ , denoted as sc,1, · · · , sc,k with the packing number

k ≤M2υ
−1
n such that

⋃
j=1,...,k

B (sc,j, υn/2) ⊂ N (Bβ∗ , υn) ⊂
⋃

j=1,...,k

B (sc,j, 2υn) (A.15)

where B (sc, υn) denotes a ball centered at sc with radius υn.

Therefore, z follows a binomial distribution with size n and

E(z) ≤ E
(
|Sn ∩ {

⋃
j=1,...,k

B (sc,j, 2υn)}|
)

≤ nkE
(
|si ∩B (sc,j, 2υn) |

)
= nk

∫
B(sc,j ,2υn)∩[0,1]2

ps(s)ds

≤ 4πnkυ2
np

max
s := Emax = O(nkυ2

n).

Let z̃ be another binomial distribution that is independent from z with size n and E(z̃) =
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Emax. From Lemma A.4,

P{z ≥ (1 + δ2)Emax} ≤ P{z̃ ≥ (1 + δ2)Emax} ≤ exp

(
− δ2

2

2 + δ2

Emax

)
(A.16)

for all δ2 > 0. When υn � (log n/n)1/2, Emax = O(nkυ2
n) = O(nυn) = O

{
(n log n)1/2

}
.

Let δ2 = 1, then P (z ≥ 2Emax) ≤ exp (−Emax/3) = exp{−M4(n log n)1/2} for some con-

stant M4 > 0. It implies with probability going to 1, the number of vertices falling within

N (Bβ∗ , υn) is O{(n log n)1/2}.

Finally we have

|G∗T | =
∑

(i,j)∈ET

‖β∗i − β∗j ‖0 =
∑

(i,j)∈EB(υn)∩ET

‖β∗i − β∗j ‖0 +
∑

(i,j)∈{E0\EB(υn)}∩ET

‖β∗i − β∗j ‖0

≤ |EB(υn) ∩ ET |+
∑

(i,j)∈E0\EB(υn)

‖β∗i − β∗j ‖0 < z.

Since z does not depend on the choice of T , we have g∗n = maxT ∈Tn |G∗T | < z. Combining

with the result in (A.16), we complete the proof.

A.1.4 Proof of Corollary 2.6

Proof. For Sn satisfying g∗n ≤M3(n log n)1/2 and log P̃n ≤M5n
1/2 log3/2 n, following the same

proof of Theorem 2.3 with g∗n, Pn and εn replaced by M3(n log n)1/2, P̃n and ε̃n respectively,

we have

P∗
{

Πn

(
1√
n
‖µ− µ∗‖ ≥M6σ

∗ε̃n | y,Sn
)
≥ ρn | Sn

}
≤ exp(−M3n

1/2 log3/2 n) + exp(−c4n) + exp(−c1nε̃
2
n),

where ρn has the same form as (A.14), with possibly different constants that do not depend

on Sn. Let Qn be the event that g∗n ≤ M3(n log n)1/2 and log P̃n ≤ M5n
1/2 log3/2 n hold.
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Then

P∗
{

Πn

(
1√
n
‖µ− µ∗‖ ≥M6σ

∗ε̃n | y,Sn
)
≤ ρn

}
≥
∫
Qn

P∗
{

Πn

(
1√
n
‖µ− µ∗‖ ≥M6σ

∗ε̃n | y,Sn
)
≤ ρn | Sn

}
ps(Sn)dSn

≥
{

1− exp(−M3n
1/2 log3/2 n)− exp(−c4n)− exp(−c1nε̃

2
n)
}
· P(Qn).

The result then follows since P(Qn)→ 1 and ρn → 0 as n tends to infinity.

A.1.5 Proof of Propositon 2.7

We begin with a brief review of Prim’s algorithm for finding the MST and set up some

notations. Prim’s algorithm starts with an arbitrary vertex s0 of G0. In the t-th iteration,

let T t = (V t, E t) be a connected subgraph of the MST and Ẽ(V t) ⊂ E0 be the set of all edges

in E0 that has one and only one endpoint in V t (for t = 0, we define T 0 = ({s0}, ∅)). T t is

constructed by picking the edge in Ẽ(V t−1) with the least edge weight and adding this edge

and its endpoint that is not in V t−1 into T t−1. The algorithm stops when V t includes all the

vertices in G0.

Proof of Propositon 2.7. Let At be the event that T t is a connected subgraph of T . It suffices

to show that At happens with nonzero probability for all t. Notice that by Prim’s algorithm,

At ⊂ At−1 and thus

P(At) = P(At|At−1)P(At−1). (A.17)

Consider two cases: (i) all vertices in V0 \ V t−1 have different cluster memberships than the

ones in V t−1, and (ii) otherwise. For (i), let e be an arbitrary edge in Ẽ(V t−1). Then

P(At|At−1) ≥ P({e has the minimal weight among Ẽ(V t−1)}) > 0. (A.18)

The strict inequality is due to the i.i.d. Unif(1/2, 1) on the weights of Ẽ(V t−1). For (ii), let e
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be an edge in Ẽ(V t−1) connecting two endpoints in the same cluster. Then (A.18) still holds

due to the way that we sample edge weights. The proposition then follows by induction

arguments on t using (A.17).

A.2 RJ-MCMC Algorithm

In this appendix we provide details of our RJ-MCMC algorithm.

Recall from Section 2.3.4 that in each iteration of RJ-MCMC, we further iterate through

each covariate from m = 1 to p. In each inner iteration one of the following four moves,

birth, death, change, and hyper, is performed with probabilities rB(km), rD(km), rC(km) and

rH(km), respectively. We set rB(k) = rD(k) = 0.425 for k ∈ {2, 3, . . . , n − 1}, rB(k) = 0.85

for k = 1, rD(k) = 0.85 for k = n, rC(k) = 0.1 and rH(k) = 0.05 for k ∈ {1, . . . , n}.

Detailed implementation as well as acceptance probability of each move are given as

follows.

(a) Birth (km → km + 1): Randomly choose one edge from n− km edges in the spanning

tree T (m) that connect vertices belonging to a same cluster with equal probability.

Suppose the chosen edge connects two endpoints si, si′ ∈ C(m)
j with i < i′. By removing

this edge we split C(m)
j into two connected components, one containing si and other

containing si′ . We set the component containing si′ to be a new cluster C(m)?
km+1 and set

the other one to be C(m)?
j . We let C(m)?

l = C(m)
l for l = 1, . . . , j − 1, j + 1, . . . , km. By

doing so we propose a new partition π(m)?.

The acceptance probability is

α1 = min{1, A · P · L}, (A.19)

where

A =
km

n− km
· (1− c)
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is the prior ratio,

P =
rD(km + 1)

rB(km)
· n− km

km

is the proposal ratio,

L =
p
[
y | π(m)?, km + 1, T (m),

{
π(l), kl, T (l)

}
l 6=m , σ

2, λ
]

p
[
y | {π(m), km, T (m)}pm=1 , σ

2, λ
]

is the likelihood ratio whose numerator and denominator are given by (2.6).

(b) Death (km + 1→ km): Randomly choose one edge from km edges in the spanning tree

T (m) that connect different clusters with equal probability. Suppose the chosen edge

connects two endpoints si ∈ C(m)
j and si′ ∈ C(m)

j′ with i < i′. We merge these two

clusters to be C(m)?
j and remove C(m)

j′ . We set C(m)?
l = C(m)

l for l < j′, and C(m)?
l = C(m)

l+1

for l ≥ j′. Then we propose π(m)?. The acceptance probability is the reciprocal of the

one in birth step, i.e., 1/α1, where α1 is given by (A.19).

(c) Change (km → km): First perform a death step by merging C(m)
j1

and C(m)
j2

to be C(m)?

j′1
,

and then perform a birth step by splitting C(m)?
j3

to be C(m)??
j3

and C(m)??
k . The acceptance

probability is α1 = min{1, A · P · L}, where A = 1, P = 1, and

L =
p
[
y | π(m)??, km, T (m),

{
π(l), kl, T

(l)
}
l 6=m , σ

2, λ
]

p
[
y | {π(m), km, T (m)}pm=1 , σ

2, λ
] .

(d) Hyper : In this step T (m), σ2 and λ are updated. We first update σ2 by a Gibbs step:

σ2 ∼ IG

(
n+ a0

2
,

1

2
[b0 + yTP−1

λ y]

)
.

To update w(m) (and hence T (m)), a Metropolis-Hastings procedure is utilized. We first

sample edge weights of the cross-cluster edges from i.i.d. Unif (1/2, 1) and edge weights

of those within-cluster edges from i.i.d. Unif (0, 1/2). Then we propose a new spanning
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tree using Prim’s algorithm based on the new weights. The proposed spanning tree

is guaranteed to induce the current partition π(m) (Teixeira et al., 2015). Since the

full conditional of w(m) remains the same for the proposed weights, the acceptance

probability is always 1.

Finally we update λ using a Metropolis-Hastings step with a symmetric random walk

proposal. We propose λ? by

log λ? ∼ N(log λ, σ2
MH),

and the acceptance probability is α1 = min{1, A · P · L · λ?/λ}, where

A =

(
λ?

λ

)c0/2−1

exp{−d0(λ? − λ)/2}

is the prior ratio, P = 1 is the proposal ratio, and

L =
p
[
y |

{
π(m), km, T (m)

}p
m=1

, σ2, λ?
]

p
[
y | {π(m), km, T (m)}pm=1 , σ

2, λ
]

is the likelihood ratio.

A.3 Additional Simulation Results

In this appendix we provide results on additional simulation settings.

A.3.1 Sensitivity Analysis of c

We first examine how sensitive the results from BSCC model to α. We reconsider the 100

data sets with moderate spatial correlation that are used in the Simulation Studies section.

We fit BSCC models with four candidates α ∈ {0.0075, 0.0150, 0.1000, 0.3333}, which give

c = 0.05, 0.1, 0.5, 0.9, respectively.

Figure A.1 shows MSEs for BSCC models under different candidate values of α (or

equivalently, c). We can see in all settings BSCC outperforms SCC in terms of MSEs, and
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Figure A.1: Boxplots of MSEs for BSCC method under 4 different choices of hyperparameter
α (or equivalently, c). 100 simulations are run for each choice. The average MSEβ over 100
simulations is shown above each box. MSEs for SCC method is also shown for reference.

overall the MSEs for BSCC are not sensitive to α (or c). However, careful choice of α does

lead to improvements in MSEs.

Recall that Table 2.1 in the main text shows the number of data sets in which WAIC

prefers a candidate value of α. In most of the data sets α = 0.0075 or 0.0150 is preferred,

which are two models with least MSE (see Figure A.1). Also notice that α = 0.3333 that

leads to higher MSE is rarely chosen by WAIC.

In summary, our simulation results suggest that the MSE performance is fairly robust

to the choice of α (and thus c), as long as the value of α is within a reasonable range (e.g.,

α ≤ 0.1 in this example). We hence recommend using WAIC to determine the desired range

of α.

A.3.2 Simulations under Different σ

In this subsection we evaluate the performance of BSCC under different settings of signal-

to-noise ratio (SNR). We regenerate data sets from (2.12) with σ ∈ {0.1, 0.5, 0.75, 1}, and 100
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Figure A.2: Boxplots of MSEs for BSCC and SCC methods under 4 different choices of noise
standard deviation σ. 100 simulations are run for each choice. The average MSEβ over 100
simulations is shown above each box.

data sets are generated for each value of σ. The rest data generating settings are the same

as the ones for data sets with a moderate spatial correlation. The choices of σ correspond

to different levels of SNR—as σ in increases, the variation in the residuals becomes larger

with respect to spatially varying effects in x(s)Tβ(s). We fit BSCC and SCC models to each

data set using the same settings as in the main text.

Figure A.2 presents boxplots of MSEs for both models under different choice of SNRs,

and Table A.1 shows average Rand indices. As expected, the MSE performance of both

methods degenerates as SNRs decrease. In terms of partition recovery, the Rand indices for

BSCC also decreases as σ becomes larger. When σ ∈ {0.1, 0.5, 0.75}, BSCC outperforms

SCC in both coefficient estimation and partition recovery. In the extreme case where σ = 1,

BSCC still has a better MSE but slightly lower Rand indices.
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Rand index

σ
β1 β2 β3

BSCC SCC BSCC SCC BSCC SCC

0.1 0.983 0.722 0.987 0.825 0.994 0.853
0.5 0.902 0.737 0.904 0.830 0.931 0.852
0.75 0.816 0.736 0.825 0.822 0.869 0.849

1 0.751 0.734 0.763 0.822 0.818 0.846

Table A.1: The average Rand indices for BSCC and SCC methods over 100 simulations
under 4 different settings of SNR.

A.3.3 Simulations under Different Cross-Correlations

In many spatial applications, in addition to spatial dependence within each covariate,

there may also be cross-dependence among covariates. In this subsection we investigate how

BSCC performs under different settings of cross-dependence.

As discussed in Section 2.5.1, the two covariates in the simulation data are generated

by a linear transformation of two independent Gaussian process realizations: x1(si) =

ζ1(si), x2(si) = rζ1(si)+
√

1− r2ζ2(si), where ζm (m = 1, 2) is the realization of a Gaussian

process and r controls the strength of cross-correlation between x1 and x2.

We consider r ∈ {0, 0.375, 0.75, 0.9}, which corresponds to zero, weak, moderate, and

strong cross-correlation cases, respectively. For each value of r, we regenerate 100 data sets

using the same true clustering patterns as Figure 2.2 in the main text shows. In practice,

however, one may expect highly correlated covariates to have similar clustering configurations

in their coefficients. As a result, we further consider a scenario where r = 0.9 and β1 shares

the same true partition as β2 (Figure A.3). We refer to this scenario as “correlated partitions”

in what follows. We fit BSCC and SCC models to each of them using the same settings as

in the main text.

Figure A.4 shows MSEs under the five settings, and BSCC outperforms SCC in all of

them. When β1 and β2 have different true clustering patterns, the MSE performance of

BSCC is fairly robust to multicollinearity. This result is not surprising for two reasons.
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Figure A.3: Spatial structures of true coefficients used in the correlated partitions scenario
in Section A.3.3, where β1 and β2 have the same true partitions.

First, we assume a ridge regression type of prior on β conditional on the partitions that

mitigates multicollinearity problems. Second, the matrix X̃TX̃ is well-conditioned when the

partitions of β1 and β2 are different, where X̃ is the transformed design matrix. When β1

and β2 share the same true partitions, the multicollinearity problem becomes more severe in

X̃ and we observe a drop in the accuracy of coefficient estimation.

The Rand indices under fives scenarios are shown in Table A.2. Similar to the findings

in terms of MSEs, the partition estimation performance of BSCC is robust when β1 and β2

have different true partitions. On the other hand, when they have an identical partition,

partition recovery for both coefficients become worse, probably due to the interference of the

posterior distributions of the two partitions, as pointed out by an anonymous reviewer.

A.3.4 Comparisons with DPM Models with Spatial Random Effects

In this subsection we compare our method to the original version of the DPM model

proposed by Ma et al. (2020), which includes a spatially varying intercept term modelled by

a Gaussian process (referred to as DPM-GP model). We adopt the same hyperparameter

settings as in the code provided in their paper, except that we set the maximum possible
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Figure A.4: Boxplots of MSEs for BSCC and SCC methods under 5 settings of cross-covariate
correlation. “Correlated partitions” refers to the scenario where β1 shares same true partition
as β2. 100 simulations are run for each choice. The average MSEβ over 100 simulations is
shown above each box.

number of clusters to 50. We run the chain for 20,000 iterations, discard the first half, and

collect posterior samples every 10 iterations after burn-in. It takes on average 11 hours

to run a DPM-GP model for one simulation data set used in the main text. Due to its

computational expensiveness, we only run the model for the first 10 data sets with a moderate

spatial correlation.

Figure A.5 and Table A.3 show the MSEs and Rand indices of BSCC, SCC, DPM,

and DPM-GP models for the 10 data sets, respectively. BSCC model achieves the best

performance among the four models in estimating coefficient values and partitions.
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Rand index

Cross-covariate correlation
β1 β2 β3

BSCC SCC BSCC SCC BSCC SCC

r = 0 0.984 0.719 0.988 0.824 0.994 0.853
r = 0.375 0.985 0.719 0.988 0.824 0.994 0.853
r = 0.75 0.983 0.722 0.987 0.825 0.994 0.853
r = 0.9 0.980 0.722 0.985 0.826 0.994 0.852

r = 0.9 with correlated partitions 0.961 0.830 0.963 0.829 0.989 0.853

Table A.2: The average Rand indices for BSCC and SCC methods over 100 simulations
under 5 different settings of cross-covariate correlation.

BSCC SCC DPM DPM-GP
β1 0.986 0.718 0.683 0.664
β2 0.984 0.822 0.776 0.751
β3 0.997 0.848 0.817 0.781

Table A.3: The average Rand indices for BSCC, SCC, DPM, and DPM-GP methods over
10 simulations with moderate spatial correlation.

A.4 Discussion on RJ-MCMC

A.4.1 Mixing of RJ-MCMC

In this subsection we discuss the mixing of tempered RJ-MCMC chains in more details.

We consider the data set with a moderate spatial correlation that is analyzed in the Simula-

tion Studies section of the main text, and compare the BSCC model fittings with and without

parallel tempering (which are referred to as tempered and untempered models/chains, re-

spectively, in what follows). Both chains are run for 50, 000 iterations after a burn-in period

of the same length, and we thin the chains by taking samples every 20 iterations. For the

tempered model, we adopt the sigmoidal temperature ladder (Gramacy and Taddy, 2010)

with minimum inverse temperature td = 0.35 and run 8 parallel chains. See Section 2.5.1 in

the main text for other settings of the RJ-MCMC algorithm.

Table A.4(a) shows acceptance rates of each move in each of the tempered chains. The
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Figure A.5: Boxplots of MSEs for BSCC, SCC, DPM, and DPM-GP methods for 10 data
sets with moderate spatial correlation. The average MSEβ over 10 simulations is shown
above each box.

chains with inverse temperatures less than 1 have flatter target distributions than the pos-

terior distribution, allowing for a more efficient exploration of the state space, as suggested

by the fact that most of the chains with low inverse temperatures have higher Metropolis-

Hastings acceptance rates. In particular, the acceptance rates for the Birth, Death, and

Change moves of the hottest chain (i.e., with the lowest inverse temperature) are at least

twice as high as their counterparts in the coolest chain.

Due to the higher acceptance rates, the hotter chains are able to visit the states that are

hard to visit by conventional samplers. These states are passed to cooler chains via state

swapping between chains. Acceptance rates of the swap attempts are shown in Table A.5.

The swap acceptance rates are lower for hotter chains, probably due to larger gaps between

adjacent inverse temperatures.

As a comparison, the acceptance rates for Metropolis-Hastings moves of the untempered

chain are lower (Table A.4(b)), suggesting that the parallel tempering techniques can improve
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(a) Tempered model
Chain # Inverse temperature Birth Death Change Hyper

1 1.000 0.177 0.179 0.090 0.495
2 0.989 0.211 0.211 0.116 0.543
3 0.967 0.276 0.277 0.184 0.554
4 0.922 0.184 0.187 0.096 0.486
5 0.841 0.169 0.172 0.084 0.489
6 0.708 0.174 0.176 0.083 0.508
7 0.532 0.239 0.241 0.140 0.526
8 0.350 0.364 0.364 0.264 0.548

(b) Untempered model
Birth Death Change Hyper
0.154 0.156 0.067 0.481

Table A.4: Acceptance rates of the four moves in (a) tempered model and (b) untempered
model.

Chain # 1 2 3 4 5 6 7 8
Inverse temperature 1.000 0.989 0.967 0.922 0.841 0.708 0.532 0.350
Acceptance rate 0.620 0.526 0.581 0.566 0.453 0.367 0.144 0.055

Table A.5: Swap acceptance rates of tempered chains.

the efficiency for exploring the posterior space.

Traceplots of the thinned posterior densities after burn-in of the tempered and untem-

pered models are shown in Figure A.6, where the densities for the tempered model are

computed based on the draws from the coolest chain. The chains from both models seem to

converge, but the tempered chain exhibits better mixing and less autocorrelation. The tem-

pered chain transits between high posterior regions and low posterior regions more quickly

and it visits low posterior regions more frequently.

Finally, we look at posterior distributions of the number of clusters for each coefficient

obtained from the tempered and untempered models, which are shown in Figure A.7. The

conventional untempered chain concentrates more on the regions near the posterior mode,

while with the aid of parallel tempering, the tempered chain is able to visit some partitions
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Figure A.6: Traceplot of thinned log posterior densities from tempered and untempered
model after burn-in period.

that the untempered chain never does. For the coefficient β3, for example, the tempered

chain frequently visits partitions with 6 clusters, which are missed by the untempered chain.

As indicated by the right tails, the untempered chain also underestimates the probability of

getting partitions with large number of clusters.

A.4.2 Boundary-Adjusted Proposals

In this subsection we include the results of applying boundary-adjusted proposals (BAPs)

for splitting clusters. The idea is that proposals splitting a cluster near its boundary is more

likely to be accepted, which might improve mixing. BAPs thus assign higher probability

on removing edges near boundaries. However, we do not observe satisfying improvement in

mixing for this proposal. We summarize our methods and numerical results below.

Given partitions of all covariates {π(m)}pm=1, we divide the vertex set V into two subsets,

namely, internal vertices and boundary vertices, using 3-nearest neighbors methods. Specif-

ically, a vertex is an internal vertex if all of its 3 nearest neighbors have the same cluster

memberships for all covariates; otherwise, we treat it as a boundary vertex. We further

divide the edge set E into three subsets to distinguish which edges are on the boundaries of

clusters that we should target at:
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Figure A.7: Posterior distributions of km, the number of clusters for coefficient βm, estimated
from MCMC samples of the tempered and untempered models.
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Birth Death Change Hyper
With BAP 0.142 0.145 0.068 0.477

Without BAP 0.154 0.156 0.067 0.481

Table A.6: Acceptance rates of the four moves with and without BAPs.

1. Between-cluster edges: We define an edge to be a between-cluster edge if it is connecting

two vertices belonging to different clusters.

2. Boundary edges: We define an edge to be a boundary edge if it is not a between-

cluster edge and at least one of its endpoints is a boundary vertex. BAPs place higher

probability on removing this type of edges.

3. Within-cluster edges: We define an edge to be a within-cluster edge if it is not a

between-cluster edge and both of its endpoints are internal vertices.

In BAPs, a cluster is uniformly chosen to be split. Then with probability pw, a within-

cluster edge that connects two vertices in this cluster is removed, and with probability 1−pw,

a boundary edge is chosen to remove.

In this following simulation, we apply BAPs to the data set analyzed in Section A.4.1.

We set pw = 0.2 and do not apply parallel tempering.

Figure A.8 shows the thinned posterior densities after burn-in of the models with and

without BAPs, and Table A.6 shows the acceptance rates of each move for both models. It

seems that applying BAPs does not improve our results in terms of mixing and acceptance

rates. Further investigations on more efficient partition proposals, including combining BAPs

with parallel tempering, are left as future works.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Proofs of Main Results

B.1.1 Kolmogorov Consistency of Soft Partitioned Gaussian Processes

Let V = {v1, . . . ,vm},m ∈ {1, 2, . . .} be an arbitrary finite subset of D. and w(V)

be a random vector on V with the density p(w(V)) defined in (3.7). We will show that

p(w(V)) satisfies Kolmogorov consistency conditions. We follow a similar proof as in Datta

et al. (2016), but adaptations are needed to handle the extra soft partition term z in the

conditional SPGP model formulation.

We start by showing that p(w(V)) is a proper density. In what follows, we use d(w(V))

as a shorthand of
∏

vi∈V d(w(vi)) in integrals. Note that the summation in (3.7) is over

finite number of terms and thus the exchangeability of integration and summation is trivial.

Let U = V \ S. We have

∫
p(w(V)) d(w(V)) =

∫ {∑
z(V)p(w(V)|z(V))p(z(V))

}
d(w(V))

=
∑
z(V)

∫ ∫
p(w(U)|w(S), z(U))p(w(S))p(z(V)) d(w(S \ V)) d(w(V))

=
∑
z(V)

p(z(V))

∫ {∫
p(w(U)|w(S), z(U)) d(w(U))

}
p(w(S)) d(w(S))

=
∑
z(V)

p(z(V))

∫
p(w(S)) d(w(S)) =

∑
z(V)

p(z(V)) = 1,

where the second equality uses (3.6) and the third one is due to (S \ V) ∪ V = S ∪ U .

Let τ(1), . . . , τ(m) be an arbitrary permutation of 1, . . . ,m. We now show that

p(w(vτ(1)), . . . ,w(vτ(m))) = p(w(v1), . . . ,w(vm)).
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Since S is fixed and the ordering of locations in (3.6) and (3.7) does not matter, we know

the density p(w(V)) is invariant under any permutation of locations in V .

Next, we show that for any v0 ∈ D, we have

p(w(V)) =

∫
p(w(V1)) d(w(v0)),

where V1 = V ∪ {v0}. We consider two cases. If v0 ∈ S, then

∫
p(w(V1)) d(w(v0)) =

∑
z(V1)

p(z(V1))

∫
p(w(V1)|z(V1)) d(w(v0))

=
∑
z(V1)

p(z(V1))

∫ ∫
p(w(V1 \ S)|w(S), z(V1 \ S))p(w(S)) d(w(S \ V1)) d(w(v0))

=
∑
z(V1)

p(z(V1))

∫
p(w(V \ S)|w(S), z(V \ S))p(w(S)) d(w(S \ V))

=
∑
z(V1)

p(z(V1))p(w(V)|z(V))

=
k∑
j=1

P(z(v0) = j)
∑

{z(V1):z(v0)=j}

p(z(V))p(w(V)|z(V))


=

k∑
j=1

{P(z(v0) = j)p(w(V))} = p(w(V)),

where we use the fact that V1 \ S = V \S, (S \V1)∪{v0} = S \V , and z(v0) is independent

from z(V) conditional on πk(S). In the other case where v0 6∈ S, using S \ V1 = S \ V , we
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have

∫
p(w(V1)) d(w(v0))

=
∑
z(V1)

p(z(V1))

∫ ∫
p (w(V \ S), w(v0)|w(S), z(V \ S) , z(v0))p(w(S)) d(w(S \ V1)) d(w(v0))

=
∑
z(V1)

p(z(V1))

∫ {∫
p (w(V \ S), w(v0)|w(S), z(V \ S) , z(v0)) d(w(v0))

}
p(w(S)) d(w(S \ V1))

=
∑
z(V)

p(z(V))

∫ { k∑
j=1

p (w(V \ S)|w(S), z(V \ S) , z(v0) = j)P(z(v0) = j)

}
p(w(S)) d(w(S \ V))

=
∑
z(V)

p(z(V))

∫
p (w(V \ S)|w(S), z(V \ S))p(w(S)) d(w(S \ V))

=
∑
z(V)

p(z(V))p(w(V)|z(V)) = p(w(V)).

B.1.2 Proof of Propositions 3.3 and 3.4

We first formally define spatially contiguous partitions of a discrete set and a continuous

domain, respectively (see, e.g., Castro et al. 2005; Luo et al. 2021b). For a generic set A, we

write its ε-covering numbers with respect to a norm ‖·‖ and a metric d as N(B, ε, ‖·‖) and

N(B, ε, d), respectively.

Definition B.1. (i) Given an undirected graph G = (S, E) with a finite vertex set S and

an edge set E , we say πk(S) = {S1, . . . ,Sk} is a spatially contiguous partition of S with

respect to G with k clusters if there exists a connected subgraph Gj = (Sj, Ej) of G for each

j = 1, . . . , k.

(ii) We say πk(D) = {D1, . . . ,Dk} is a spatially contiguous partition of a domain D ⊆ Rd

with k clusters if, there exists a boundary set B ⊂ D such that N(B, vn, ‖·‖2) ≤ c0v
−(d−1)
n

for some constant c0 > 0, and D1 \ B, . . . ,Dk \ B are the connected components of D in

topological sense.

Our definition of spatially contiguous partitions of a discrete set is with respect to the
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notion of spatial graphs, whose edges encode the relationship of spatial adjacency or neigh-

borhood.

Now we give proofs of Propositions 3.3 and 3.4.

Proofs of Propositions 3.3 and 3.4. Proposition 3.3 is a direct result combining Propositions

2 and 7 in Luo et al. (2021b). To prove Proposition 3.4, we follow Theorem 5.1 of Penrose

(2007), which states that with probability one under the data generating process of S∗,

L
{
Dj∆

(
∪s∗∈S∗∩D∗jVs∗

)}
−→ 0 for j = 1, . . . , k,

since k is fixed. Defining πk(S∗) such that S∗j = S∗ ∩ Dj, it follows from Proposition 3.3

that πk(S∗) is within the support of the spanning-treed partition prior, which completes the

proof.

B.1.3 Lemmas

We first provide some lemmas that will be useful for proving Theorems 3.5 and 3.6.

Throughout this and the following two subsections, we use the following notations. We

write y = y(S), yi = y(si), and εi = ε(si), and omit the underlying set A in a partition

π(A) for conciseness. We also let τ̄ ∗ = max1≤j≤k∗ τ
∗
j and τ

¯
∗ = min1≤j≤k∗ τ

∗
j . For a generic

function w(·) defined on [0, 1]2, we denote ‖w‖∞ = sups∈[0,1]2 |w(s)|.

We let p(y|s) be the density of y given s and p∗(y|s) be the corresponding true one. Let

dTV(p1, p2) =
∫
|p1(y|s)− p2(y|s)| ps(s)dy be the expected total variation distance between

two densities p1(y|s) and p2(y|s) for the random design s.

Lemma B.2. (Lemma 1 of Laurent and Massart 2000) Let χ2
d be a chi-square distribution

with degree of freedom d. Then the following concentration inequalities hold for any x > 0:

P
(
χ2
d > d+ 2x+ 2

√
dx
)
≤ exp(−x)
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and

P
(
χ2
d < d− 2

√
dx
)
≤ exp(−x).

Lemma B.3. (Proposition 5 of Luo et al. 2021b) Let Tn be the set of all possible spanning

trees of a spatial graph G with n vertices. Assume that B∗ is the true boundary set and π∗k∗T is

the partition induced by T ∈ Tn if the edges of T across B∗ are removed as in Section 3.3.3

(see the discussions before Assumption T and after Assumption SD). Let k∗T be the number

of clusters in k∗T . Under Assumption SD, there exist positive constants c1, c̃1 > 0, such that

maxT ∈Tn k
∗
T ≤ c1

√
n log n holds with probability at least 1− exp

(
−c̃1

√
n log n

)
.

The next lemma establishes an evidence lower bound for the STGP models. With

some abuse of notations, we let Π(·) and Π(·|T ) denote the marginal prior probabil-

ity measure and the prior probability measure conditional on T , respectively, such that

Π(·) =
∑
T ∈Tn Π(·|T )Π(T ), where Π(T ) is the marginal prior probability measure on T .

Lemma B.4. (Evidence lower bound) Under Assumptions T, SD. and P1, with probability

at least 1− exp (−4n)− exp
(
−c̃1

√
n log n

)
, we have

∫ n∏
i=1

p(yi|si)
p∗(yi|si)

dΠ(p) ≥ exp
(
−c2nε

2
n

)
, (B.1)

for some constants c2 > 0 and c̃1 as in Lemma B.3.

Proof of Lemma B.4. We will first show that (B.1) holds under the intersection of the events

E1 = {
∑n

i=1 ε
2
i /τ

∗2(si) ≤ 4n, for all i = 1, . . . , n} and E2 = {maxT ∈Tn k
∗
T ≤ c1

√
n log n},

where c1 is the constant in Lemma B.3. We will then show that the intersection of E1 and

E2 holds with a large probability.

We proceed by first showing that under E1 ∩ E2,

∫ n∏
i=1

p(yi|si)
p∗(yi|si)

dΠ(p|T ) ≥ exp
(
−c′2nε2n

)
Π(N |T ), (B.2)
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where c′2 = (τ
¯
∗2 + 4τ

¯
∗ + 1)/(2τ

¯
∗2) and

N =

{
(w̃, τ) : |w̃(si)− w̃∗(si)| < ε2n, 1 ≤ τ 2(si)

τ ∗2(si)
≤ 1 + ε2n, for all i = 1, . . . , n

}
.

To show this, notice that

∫ n∏
i=1

p(yi|si)
p∗(yi|si)

dΠ(p|T )

≥
∫
N

n∏
i=1

exp

{
1

2
log

τ ∗2(si)

τ 2(si)
− (w̃∗(si)− w̃(si) + εi)

2

2τ 2(si)
+

ε2
i

2τ ∗2(si)

}
dΠ(w̃, τ |T )

=

∫
N

n∏
i=1

exp

{
1

2
log

τ ∗2(si)

τ 2(si)
− (w̃∗(si)− w̃(si))

2

2τ 2(si)
− (w̃∗(si)− w̃(si))εi

τ 2(si)

−ε
2
i

2

(
1

τ 2(si)
− 1

τ ∗2(si)

)}
dΠ(w̃, τ |T )

=:

∫
N

n∏
i=1

exp {I + II + III + IV} dΠ(w̃, τ |T ).

Under N , I ≥ −1/2 · log(1 + ε2n) ≥ −ε2n/2, II ≥ −ε2n/(2τ¯
∗2), and IV ≥ 0. Further under E1,∑n

i=1 III ≥ −
∑n

i=1 |w̃∗(si)− w̃(si)| · |εi/τ(si)| /τ¯
∗ ≥ −(ε2n/τ¯

∗)
∑n

i=1 |εi/τ(si)| ≥ −2nε2n/τ¯
∗ by

using the inequality between L1 and L2 norms. (B.2) then follows.

Next we bound Π(N |T ) by considering the partition π∗k∗T obtained by removing all edges

in T across the true boundary. Let

N ′ :=

{
(w̃, τ) :

∥∥w̃j − w̃∗j∥∥∞ < ε2n, 1 ≤
τ 2
j

τ ∗2j
≤ 1 + ε2n, for each cluster Sj in π∗k∗T

}
⊆ N.
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Then since k∗T ≤ k̄n under E2 by Assumption P1, we have

Π(N |T ) ≥ Π(N ′|T )

=

k∗T∏
j=1

Πw̃

(∥∥w̃j − w̃∗j∥∥∞ < ε2n

)
×

k∗T∏
j=1

Πτ

(
1 ≤

τ 2
j

τ ∗2j
≤ 1 + ε2n

)
×
(
n− 1

k∗T − 1

)−1

× (1− c)k∗T

=: V × VI× VII× VIII, (B.3)

where Πw̃ and Πτ denote the prior probability measures on w̃j and τ 2
j , respectively.

Since π∗k∗T is nested in π∗k∗ , for a cluster S∗j in π∗k∗ , we can write S∗j = Sj1 ∪ · · · ∪ Sjm for

some distinct clusters Sj1 , . . . ,Sjm in π∗k∗T . Observe that Sj1 , . . . ,Sjm all share the same true

mean function w̃∗j and true variance τ ∗2j . Recall that k∗ is the fixed number of clusters in

the true π∗k∗ . We obtain

log V ≥ k∗T min
1≤j≤k∗T

log Πw̃

(∥∥w̃j − w̃∗j∥∥∞ < ε2n

)
= k∗T min

1≤j≤k∗
log Πw̃

(∥∥w̃j − w̃∗j∥∥∞ < ε2n

)
≥ c1

√
n log n min

1≤j≤k∗
log Πw̃

(∥∥w̃j − w̃∗j∥∥∞ < ε2n

)
,

where the last inequality holds under event E2. We further bound V using a similar argument

as in the proof of Theorem 2 in Payne et al. (2020). Choosing σj and φj within a bounded

neighborhood of the true σ∗j and φ∗j , respectively, then by Lemmas 3 and 4 in van der Vaart

and van Zanten (2011) on the concentration function of a Matérn covariance GP prior, we

have for some constant c̃2 > 0,

log V ≥ −c̃2nε
2
n. (B.4)
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Since the prior Πτ has a bounded density pτ on Ij := [τ ∗2j , τ
∗2
j (1 + ε2n)] for j = 1, . . . , k∗,

log VI ≥ k∗T min
1≤j≤k∗

log Πτ

(
τ ∗2j ≤ τ 2

j ≤ τ ∗2j (1 + ε2n)
)

≥ k∗T ×

{
log(τ

¯
∗2ε2n) + min

1≤j≤k∗
min
τ2j ∈Ij

log pτ (τ
2
j )

}

≥ c1

√
n log n(2 log εn + constant)

≥ −c̃′2nε2n, (B.5)

for some constant c̃′2 > 0. Finally, for some constant c̃′′2 > 0,

log VII + log VIII ≥ −k∗T log n+ k∗T log(1− c)

≥ −c1

√
n log n (log n− log(1− c))

≥ −c̃′′2nε2n. (B.6)

Combining (B.2)-(B.6), we have
∫ ∏n

i=1
p(yi,si)
p∗(yi,si)

dΠ(p|T ) ≥ exp (−c2nε
2
n) with constant

c2 = c′2 + c̃2 + c̃′2 + c̃′′2 under event E1 ∩ E2. Hence,

∫ n∏
i=1

p(yi|si)
p∗(yi|si)

dΠ(p) =
∑
T ∈Tn

Π(T ) ·
∫

p(yi|si)
p∗(yi|si)

dΠ(p|T ) ≥ exp
(
−c2nε

2
n

)
,

under E1 ∩ E2, since c2 does not depend on the choice of T .

Finally, using Lemma B.2, P(E1) ≥ 1 − exp (−4n). Combining with Lemma B.3, it is

easy to show P(E1 ∩ E2) ≥ P(E1) + P(E2) − 1 ≥ 1 − exp (−4n) − exp
(
−c̃1

√
n log n

)
. This

completes the proof.

Our last lemma is a useful tool for proving posterior concentration results by using test

functions and evidence lower bounds.

Lemma B.5. (Lemma A.3 of Song and Cheng 2020) Let p ∈ Pn be the likelihood func-
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tion with a prior Π on a family of densities Pn, p∗ ∈ P be the true probability density

of data generation, Ep,E∗ denote the expectations under p and p∗ respectively, P∗ denote

the probability measure corresponding to the data generation density p∗, and Πn(·|Dn) de-

note the posterior given the data Dn. Let Bn and Cn be two subsets of the parame-

ter space Pn, and ϕn be a test function satisfying ϕn (Dn) ∈ [0, 1] for any data Dn. If

Π (Bn) ≤ bn,E∗ {ϕn (Dn)} ≤ b′n, supp∈Cn Ep {1− ϕn(Dn)} ≤ cn, and

P∗
(∫
Pn

p (Dn)

p∗ (Dn)
dΠ(p) ≥ an

)
≥ 1− a′n.

Then

E∗ {Πn (Cn ∪Bn | Dn)} ≤ bn + cn
an

+ a′n + b′n.

B.1.4 Proof of Theorem 3.5

Proof of Theorem 3.5. Note that the random spatial design has a bounded density ps(s)

from Assumption SD. Also note that
∣∣∫ g(y|s)p(y|s)dy −

∫
g(y|s)p∗(y|s)dy

∣∣ < ε if and only

if
∫
g(y|s)p(y|s)dy−

∫
g(y|s)p∗(y|s)dy < ε and

∫
g(y|s)p∗(y|s)dy−

∫
g(y|s)p(y|s)dy =

∫
(1−

g(y|s))p(y|s)dy −
∫

(1− g(y|s))p∗(y|s)dy < ε, it suffices to show the result holds for

{
p :

∫
g(y|s)p∗(y|s)dy −

∫
g(y|s)p(y|s)dy < ε

}
, (B.7)

for any bounded continuous function g. Redefine Wg,ε as the set in (B.7).

From Remark 4.4.1 of Ghosh and Ramamoorthi (2003), there exist test functions ϕn(y,S)

such that E∗{ϕn(y,S)} ≤ c3nε and supp∈W c
g,ε

Ep{1 − ϕn(y,S)} ≤ c3nε, for some constant

c3 > 0. Since nε2n = o(n), we have by Lemma B.4

∫ n∏
i=1

p(yi|si)
p∗(yi|si)

dΠ(p) ≥ exp (−c′3nε) ,

for any constant c′3 > 0 and large enough n, with probability at least 1 − exp (−4n) −
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exp
(
−c̃1

√
n log n

)
. Choosing c′3 < c3, by Lemma B.5,

E∗
{

Πn(W c
g,ε|y,S)

}
≤ exp{−(c3 − c′3)nε}+ exp (−4n) + exp

(
−c̃1

√
n log n

)
+ exp(−c3nε).

It then follows from Markov inequality that, for any ζ > 0,

P∗
{

Πn(W c
g,ε|y,S) > ζ

}
≤ 1

ζ

[
exp{−(c3 − c′3)nε}+ exp (−4n) + exp

(
−c̃1

√
n log n

)
+ exp(−c3nε)

]
.

We finish the proof by a direct application of Borel-Cantelli lemma.

B.1.5 Proof of Theorem 3.6

Proof of Theorem 3.6. Note that the random spatial design has a bounded density ps(s)

from Assumption SD. It suffices to show that Theorem 2 holds under a fixed spatial design.

Let UMεn = {p : dTV(p, p∗) < Mεn} be anMεn total variation neighborhood of p∗(y|s) for

a large constant M > 0 chosen later. We proceed with three steps to verify the conditions

in Lemma B.5.

Step 1: Sieve construction. For a generic function w(s1, s2) defined on R2 and a vector

l = (l1, l2) ∈ {0, 1, 2, . . .}2, we let Dlw stand for (∂|l|/∂l1s1∂
l2s2)w(s1, s2), where |l| = l1 + l2.

Consider a partition πk of S. For the jth cluster, let Cπk,j = Cw
πk,j
×Cτ

πk,j
be a subset of the

parameter space of (w̃j, τ
2
j ), where

Cw
πk,j

=
{
w̃j :

∥∥Dlw̃j
∥∥
∞ < Mn, |l| ≤ α

}
, Cτ

πk,j
=
{
τ 2
j : a ≤ τ 2

j ≤ b
}
.

Further let Cπk =
∏k

j=1 Cπk,j be the product parameter space for a partition πk, and Cn be

the union of Cπk for all possible spatially contiguous partitions πk with k ≤ k̄n.

We now show that Cπk satisfies the desired tail probability condition under the prior.

Using Lemma 1 of Ghosal and Roy (2006), under Assumptions SD and P2, we have the

conditional prior probability of Cπk given (πk, k, T ) satisfies Π(Cc
πk
|πk, k, T ) ≤ k exp(−c4nε

2
n)
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for any constant c4 > 0 and large enough n. Hence,

Π(Cc
n|T ) =

k̄n∑
k=1

∑
πk

Π
(
Cc
πk
|πk, k, T

)
·
(
n− 1

k − 1

)−1

· (1− c)k

≤
k̄n∑
k=1

k exp
(
−c4nε

2
n

)
(1− c)k

≤ k̄2
n exp

(
−c4nε

2
n

)
≤ exp

{
−(c4 − 1)nε2n

}
,

where
∑

πk
means summing over all possible spatially contiguous partitions with k clusters

induced by T , and by letting Bn = U c
Mεn
∩ Cc

n we obtain

Π(Bn) ≤
∑
T ∈Tn

Π(Cc
n|T )Π(T ) ≤ exp

{
−(c4 − 1)nε2n

}
. (B.8)

Step 2: Existence of test functions. We verify the entropy conditions in Ghosal

et al. (2000) for the existence of test functions.

Let Cw
πk

=
∏k

j=1C
w
πk,j

and Cτ
πk

=
∏k

j=1C
τ
πk,j

. By Lemma 2 of Ghosal and Roy (2006), we

have for some constant c5 > 0 and any ε > 0,

logN
(
Cw
πk
, ε, ‖·‖∞

)
≤ c5k

(
Mn

ε

)2/α

.

We also cover Cτ
πk

by a 2ε2-grid. Then the log covering number of Cτ
πk

with respect to the

L2 norm is

logN
(
Cτ
πk
, ε, ‖·‖2

)
= k · log

b− a
2ε2

.

With some abuse of notations we also let Cπk denote the set of probability densities on

(y|s) determined by (w̃j, τ
2
j ) ∈ Cw

πk,j
× Cτ

πk,j
for j = 1, . . . , k under a partition πk. Similarly,

we let Cn be the union set of densities for all possible partitions.

Now we consider the covering number of Cπk , viewed as a set of densities, under the total

variation distance. We claim that, if for each cluster in πk we have
∥∥∥w̃(1)

j − w̃
(2)
j

∥∥∥
∞
< 2ε′ and
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∣∣∣τ (1)2
j − τ (2)2

j

∣∣∣ < 2ε′2, then dTV{p(1), p(2)} < c′5ε
′, for any ε′ > 0 and some constant c′5 > 0,

where p(i) is the density on (y|s) under {(w̃(i)
j , τ

(i)
j )}j=1:k ∈ Cπk for i = 1, 2.

To show the claim, using the KL divergence for Gaussian densities, we have for s ∈ Sj

under πk,

Ks

(
p(1), p(2)

)
: =

∫
p(1)(y|s) log

p(1)(y|s)

p(2)(y|s)
dy

=
1

2
log

τ
(2)2
j

τ
(1)2
j

− 1

2

(
1−

τ
(2)2
j

τ
(1)2
j

)
+

1

2

(
w̃

(1)
j (s)− w̃(2)

j (s)
)2

τ
(2)2
j

≤ 1

2
log

(
1 +

2ε′2

a

)
− 1

2
+

1

2

(
1 +

2ε′2

a

)
+

1

2

4ε′2

a

≤ 4

a
ε′2.

Therefore, the KL divergence between p(1) and p(2) can be bounded as

KL
(
p(1), p(2)

)
=

∫
Ks

(
p(1), p(2)

)
ps(s)ds ≤ 4

a
ε′2.

The claim then follows from

dTV

{
p(1), p(2)

}
≤
√

1

2
KL (p(1), p(2)) ≤

√
2

a
ε′.

The claim suggests that

logN (Cπk , εn, dTV) ≤ c′′5k

(
Mn

εn

)2/α

+ k log
c′′′5
ε2n

for some positive constants c′′5, c′′′5 > 0, and thus

logN (Cn, εn, dTV) ≤ log k̄n + log

(
max

1≤k≤k̄n
ξ(k)

)
+ c′′5k̄n

(
Mn

εn

)2/α

+ k̄n log
c′′′5
ε2n
≤ c̃5nε

2
n

by Assumptions P1, (P2-2) and SG, for some constant c̃5 > 0. Using Theorem 7.1 of Ghosal
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et al. (2000), there exist a test function ϕn(y,S) satisfying

E∗ {ϕn(y,S)} ≤ exp
(
c̃5nε

2
n

)
· exp (−c̃′5M2nε2n)

1− exp (−c̃′5M2nε2n)
≤ 2 exp

{
−
(
c̃′5M

2 − c̃5

)
nε2n
}
, (B.9)

sup
p∈Cn∩UcMεn

Ep {ϕn(y,S)} ≤ exp
(
−c̃′5M2nε2n

)
, (B.10)

for some constant c̃′5 > 0 and large n.

Step 3: Evidence lower bound. From Lemma B.4, we have (B.1) holds with proba-

bility at least 1− exp (−4n)− exp
(
−c̃1

√
n log n

)
, for some positive constants c̃1, c2 > 0.

Combining parts. Using Lemma B.5, we combine (B.8), (B.9), (B.10), and (B.1) to

obtain that

E∗
{

Πn

(
U c
Mεn|y,S

)}
≤ exp {−(c4 − 1)nε2n}+ exp (−c̃′5M2nε2n)

exp (−c2nε2n)

+ exp (−4n) + exp
(
−c̃1

√
n log n

)
+ 2 exp

{
−(c̃′5M

2 − c̃5)nε2n
}
. (B.11)

The result then follows from Markov inequality and Borel-Cantelli lemma if we choose c4

and M such that c4 − 1 > c2 and c̃′5M2 > max(c2, c̃5).

B.2 Details on Posterior Inference

B.2.1 Estimation

In this subsection, we provide details on estimations of parameters and partitions. Recall

that our MCMC algorithm proceeds as follows. Conditional on the global parameters (β, λ),

the spanning-treed partitions (πk(S), k, T ) and the associated cluster-specified parameters{
τ 2
j , σ̄

2
j , θ̃j

}
j=1:k

are updated via a reversible jump MCMC (RJ-MCMC) scheme. Then we

update β and λ using Gibbs samplers conditional on (πk(S), k, T ) and
{
τ 2
j , σ̄

2
j , θ̃j

}
j=1:k

.

To update the partitions and the associated covariance parameters, one of the birth,

death, change, and hyper moves are randomly performed with probabilities rb(k) = 0.4,
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Figure B.1: Partitions and spanning trees obtained after (b) a birth, (c) a death, or (d)
a hyper move from the original partition and tree in (a). Spanning tree edges across two
distinct clusters are marked by dashed lines.

rd(k) = 0.4, rc(k) = 0.19, and rh(k) = 0.01, respectively. Adjustments of the probabilities

are made for k = 1 or k̄m. This combination of probabilities worked well in our experiments,

but readers can modify them if desired. Each of the four moves adaptively updates the

partitions or the spanning trees. Figure B.1 shows examples of a birth, a death, and a hyper

move.

In the birth, death, and change moves, as discussed in Section 3.4.1, covariance parame-

ters
(
σ̄2
j , θ̃j

)
are updated by maximizing p

{
y(Sj2)|σ̄2, θ̃,−

}
p(σ̄2)p(θ̃), where the likelihood

p
{

y(Sj)|σ̄2
j , θ̃j,−

}
admits the form

p
{

y(Sj)|σ̄2
j , θ̃j,−

}
=
baττ Γ(nj/2 + aτ )

(2π)nj/2Γ(aτ )

{
det C̃(Sj|σ̄2

j , θ̃j)
}−1/2

×
{
bτ +

1

2
(y(Sj)−X(Sj)β)T C̃(Sj|σ̄2

j , θ̃j)
−1 (y(Sj)−X(Sj)β)

}−(nj/2+aτ )

.

Here aτ and bτ are the shape and rate parameters for the inverse gamma prior on τ 2,

respectively, and C̃(Sj|σ̄2
j , θ̃j) = σ̄2

jρ(Sj,Sj | θ̃j) + Inj .

Conditional on (πk(S), k, T ) and
{
σ̄2
j , θ̃j

}
j=1:k

, we update the parameters {τ 2
j }j=1:k by
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sampling from their full conditionals with the closed form

τ 2
j |− ∼ IG

(
aτ +

nj
2
, bτ +

1

2
{y(Sj)−X(Sj)β}T C̃−1(Sj|σ̄2

j , θ̃j) {y(Sj)−X(Sj)β}
)
.

Finally, we update the global parameters. Specifically, we sample β and λ from their full

conditionals conditional on (Θ, πk, k, T ). The updates take closed forms:

β|− ∼ Np(Q
−1
β bβ, Q−1

β ),

with

Qβ =
k∑
j=1

X(Sj)TC−1(Sj,Sj|θj)X(Sj) + λIp, bβ =
k∑
j=1

X(Sj)TC−1(Sj,Sj|θj)y(Sj),

and

λ|− ∼ IG

(
aλ +

p

2
, bλ +

‖β‖2
2

2

)
.

B.2.2 Prediction

The algorithm for drawing posterior predictive samples is summarized Algorithm 2.

B.3 Supplementary Simulations

B.3.1 Kriging means and SDs

Figure B.2 illustrates the kriging means and standard deviations (SDs) across D = [0, 1]2

with various values of L and α` = 1/L for ` = 1, . . . , L, given a partition π2(S) = (S1,S2)

and w(S) at a set of uniformly drawn locations S. The partition π2 divides S into two

clusters: the one inside the grey circle and the other one outside the circle. w(S1) and

w(S2) are realizations of two different stationary GPs. Note how the kriging means become

smoother near the boundary as L increases. In the extreme case where L = 1, the kriging

mean is discontinuous around the boundary (Panel (a)). The higher kriging SDs near the
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Algorithm 2: Posterior predictive inference
Input : X(U), y(S), a posterior sample of (Θ, πk, k), number of neighbors L, and

a vector of probabilities for neighbor choice α.
for i← 1 to r do

Find the `th nearest neighbor of ui in S for ` = 1, . . . , L ;
Sample cluster membership z(ui) ∼ Cat{z(Nui,1), . . . , z(Nui,L)|α1, . . . , αL} ;

for j ← 1 to k do
Set Uj ← {u ∈ U : z(u) = j} ;
if Uj 6= ∅ then

Sample y(Uj) from a multivariate Gaussian distribution with mean
µ̃(U|S,θ) = X(U)β + C(U ,S|θ)C−1(S,S|θ) {y(S)−X(S)β} and
covariance matrix
Σ(U|S,θ) = C(U ,U|θ)−C(U ,S|θ)C−1(S,S|θ)C(S,U|θ) ;

Output: A posterior predictive sample y(U)

circle when L = 3 (Panel (e)) and L = 5 (Panel (f)) indicate the high uncertainty due to

the unknown cluster memberships of unobserved locations. In some applications, capturing

abrupt changes is a desired feature, whereas in other applications, the random fields near

the boundary can be relatively smooth across the partitions. An important implication

of this example is that L-SPGP can be a flexible tool that accommodates both situations

by choosing different L for modeling locally stationary spatial fields, as we will see in the

following sections.

B.3.2 Additional results of isotropic processes

The true model of simulation in Section 3.5 has a constant true nugget effect SD τ ∗(s) ≡

0.1 and true w̃(s) ∼ GP(β∗, σ∗2j ρ
∗
j) for s ∈ D∗j , j = 1, 2. We set the global constant intercept

as β∗ = 1. The true ρ∗j is taken to be an isotropic Matérn correlation function with ν = 5/2.

We set σ∗21 = 1, σ∗22 = 0.5, φ∗1 = 0.3, and φ∗2 = 1, so that the true processes in D∗1 and D∗2

have well-separated microergodic parameters ϑ = σ2/φ2ν .

Regarding prior and other model choices, we construct a Delaunay triangulation graph,

with edges longer than 0.1 removed. For the prior on k, we set k̄n = 111 ≈ 2
√
n log n and

c = 0.5. Priors for covariance parameters are specified as σ̄2
j

iid∼ IG(1, 10), τ 2
j

iid∼ IG(2, 0.1),
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Figure B.2: Illustration of kriging mean and SDs for L = 1, 3, 5, given w(S) and a partition
of S into two clusters separated by the grey circle. Locations in S are marked as black dots.

and φj
iid∼ t+1 (5), where t+df (s) stands for a half-t distribution with degree of freedom df and

scale parameter s, and fix ν = 5/2. We place an IG(2, 2) prior for λ, and specify µβ = 0. As

in Gramacy (2007) and Konomi et al. (2014), we restrict the minimum size of each cluster to

be 30 such that covariance parameters can be well-estimated. For out-of-sample prediction,

we use L = 1, 3, or 5 nearest neighbors to predict cluster memberships, and set the mixture

weights (see Equation 3.9) as α` = 1/L for ` = 1, . . . , L.

For the competing models, we specify the covariance functions in the TGP and the SGP

models as isotropic Matérn with ν = 5/2. In the NSGP model, we set τ 2(s) to be a constant

but allow for spatially varying variance and anisotropy covariance parameters, which are

modeled by a reduced-rank GP with 36 equally-spaced knots and a linear function of spatial

coordinates, respectively. In the SGP and NSGP models, the mean function is specified to

be a constant with a Guassian prior; in TGP we adopt a cluster-wise constant mean function
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to which we assign a Gaussian prior with inverse Gamma variance (which is similar to the

prior settings of STGP). All competing models are implemented in a Bayesian framework.

We use the R package tgp (Gramacy, 2007) to fit TGP models. Both NSGP and SGP models

are fitted by the R package BayesNSGP (Risser and Turek, 2020). Inferences are all based on

exact likelihood (i.e., without likelihood or covariance approximations) for fair comparisons.

We show the plots of predictive densities at two selected locations in Figure B.3. The first

chosen location is near the true boundary (called a boundary point). Its predictive density

from STGP is bimodal, suggesting the uncertainty that it can be classified into either cluster

near the true boundary since its neighbors do not belong to the same estimated cluster.

The higher mode appears near the true value. This again confirms that STGP can quantify

prediction uncertainty in a desirable way. The density from TGP is unimodal and its mode

does not match the true value, possibly because this location is not close to the estimated

boundary of TGP. The NSGP model gives a similar density as TGP does, except that its

95% HPD interval fails to cover the true value. Another location is selected to be an interior

point, that is, a location not close to the true boundary, whose predictive density is expected

to be unimodal as there is less uncertainty in cluster membership estimation. All three

models perform well in prediction in the sense that the posterior densities are all unimodal

with a mode near the true value.

B.3.3 Anisotropic processes

This study has a similar setup as in Section 3.5, except that the true data generating pro-

cess in D∗1 is anisotropic and that we consider the anisotropic STGP models. The correlation

function takes the form (Stein, 1999):

ρ(s, s′|θ̃) =
1

2ν−1Γ(ν)

(√
2ν d(s, s′|θ̃)

)ν
Kν

(√
2ν d(s, s′|θ̃)

)
,
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Figure B.3: Posterior predictive densities for a selected location near the true boundary
(a-c) and a location in the interior of a true cluster (d-f). Blue dashed lines indicate the true
values. 95% HPD intervals are marked by red segments.

with d(s, s′|φ1, φ2, ψ) = (s − s′)TΨTD−1Ψ(s − s′), where D = diag(φ1, φ2), Ψ =cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

 with φ1, φ2 > 0 and 0 ≤ ψ < π.

More specifically, ρ∗1 and ρ∗2 are geometric Matérn correlation functions above with true

parameters φ∗11 = 0.3, φ∗21 = 1, ψ∗1 = π/4, φ∗12 = φ∗22 = 1, and ψ∗2 = 0 (note that ρ∗2 is in

fact isotropic). Other data generating setting is the same as in Section 3.5. The generated

responses are visualized in Figure B.4(a).

We adopt the following priors for the covariance parameters in the anisotropic STGP

models: conditional on the number of clusters k, we assign φ`j
iid∼ t+1 (5) and ψj

iid∼ Unif(0, π)

for ` = 1, 2 and j = 1, . . . , k. Other settings on priors and spatial graphs are identical

to those in Study 1. Since the tgp package (Gramacy, 2007) does not support geometric

anisotropic kernels, we use a separable exponential correlation function for TGP instead.

We also specify the covariance function in SGP as geometric anisotropic Matérn, while we

employ the same NSGP model as in the previous study. We run the MCMC chain for 40, 000

iterations, discard the first half, and retain samples every 10 iterations for each model.

As shown in Figure B.4 and the in-sample ARIs in Table B.1, the STGP model does
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Figure B.4: (a) True y(s) of the training data used in Section B.3.3. (b, c) MAP partition
estimates given by STGP and TGP. Dots represents locations in the training data. The
true boundary is marked by the red circle. Lines in Panel (c) represent boundaries of the
estimated partition.

Table B.1: Performance metrics of STGP and its competitive methods in Simulation Study
2. CRPSy and LogSy are averaged over r = 100 hold-out locations. Bold numbers indicate
the best performance.

STGP (L = 1) STGP (L = 3) STGP (L = 5) TGP NSGP SGP
In-sample ARI 0.578 0.578 0.578 0.022 — —
Hold-out ARI 0.322 0.275 0.233 0.011 — —
MSPEy 0.092 0.048 0.056 0.057 0.074 0.061
Mean CRPSy 0.122 0.089 0.094 0.116 0.121 0.124
Mean LogSy 1.237 -0.576 -0.553 -0.199 -0.150 0.079

reasonably well in recovering the true partition, while the partition estimate from TGP does

not agree with the true one. As for the hold-out locations, the ARIs in the second row of

Table B.1 suggest that STGP models overall outperform TGP in terms of predicting cluster

memberships.

The out-of-sample prediction performance is summarized in Rows 3-5 of Table B.1. Sim-

ilarly to the isotropic case, the STGP models with L = 3 and 5 demonstrate superior

performance in prediction compared with their competitors, evidenced by the lower MSPEs

and scores. However, we note the underperformance of STGP with L = 1. This is because
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this model gives several small clusters around the true boundary (see Figure B.4(a)), and

hence introduces large errors at some locations near the boundary due to misclassification.

Fortunately, for the reasons discussed in Section 3.5, setting L = 3 or 5 can considerably

mitigates this problem. We therefore recommend proceeding with caution when using L = 1.

B.4 Supplementary Results on Real Data Analysis

The prior settings of STGP are the same as in Supplementary Section B.3.3 except that

we use a half-Cauchy prior for the spatial ranges, and an IG(2, 2) prior for σ̄2. We work

with Lambert conformal conic projection coordinates under which the Euclidean distances

approximate the great-circle distances. The spatial graph is again constructed via Delaunay

triangulation with edges longer than 5 removed.

As in the simulation studies, we compare the STGP model with TGP and NSGP. We

use the same settings as in Supplementary Section B.3.3, except that in NSGP we use 48

regular grids as knots for σ2(s) and assume the mean function has a linear regression form

using spatial coordinates as predictors.

The MCMC chains for all models are run for 50, 000 iterations, with the first half as

burn-in, and thinned by preserving samples every 5 iterations.

We first examine the predictive surfaces and SDs from all models shown in Figure B.5 at

2649 equally spaced points. The posterior mean predictive surfaces from all three models look

similar, except that the surface from the the STGP model with L = 3 is smoother than the

others. This is probably because TGP uses a less smooth separable exponential covariance

function and NSGP assumes a sophisticated GP model on σ2(s). The posterior predictive

SD surfaces also share a common pattern: the uncertainty is lower in the central CONUS

but much higher in the western region, especially in the southwestern area. The SD of the

STGP model near the boundary between MAP Clusters 2 and 3 (see also Figure 3.4(b))

is high, suggesting there may be an abrupt change in the true field across this boundary.

Besides, the overall predictive SD within Cluster 2 appears to be larger than that of the

other two clusters, possibly due to its smaller cluster size. Note that the uncertainty from
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Figure B.5: Maps of (a-c) posterior prediction mean and (d-f) posterior prediction SD of the
precipitation data from STGP with L = 3, TGP, and NSGP (all in log mm/day).

NSGP at the northwestern coast of California, where few GHCN-D stations are located, is

higher than the ones from STGP and TGP.

Next, we provide predictive performance results based on all r2 = 175 hold-out locations

that are not near the Rocky Mountains, to examine the prediction performance for points

that might be mostly within locally stationary clusters. Figure B.6 visualizes the hold-out

locations, and Table B.2 shows the prediction performance metrics based on them. The

results suggest that the STGP models have comparable prediction performance with TGP,

which is expected as both models assume similar stationary GPs in the interior of each

cluster. The results from NSGP are also comparable to the other two methods possibly

because the log precipitation rates at these locations are relatively stationary.
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Figure B.6: Log precipitation rate measured at n = 1689 GHCN-D stations and the Delaunay
triangulation graph used for model fitting. r2 = 175 hold-out locations that are not near the
Rocky Mountains are marked as red triangles.

Table B.2: Prediction performance metrics for the precipitation data on r2 = 175 hold-out
locations over the CONUS that are not near the Rocky Mountains. CRPS and LogS are
averaged over 175 hold-out locations. Bold numbers indicate the best performance.

STGP (L = 1) STGP (L = 3) STGP (L = 5) TGP NSGP
MSPE 0.032 0.032 0.032 0.034 0.031
Mean CRPS 0.089 0.089 0.089 0.090 0.086
Mean LogS -0.484 -0.485 -0.484 -0.521 -0.507
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 ∗

This appendix provides supplementary details and results of BAST. Section C.1 con-

tains additional details on Bayesian estimation and prediction. Supplementary simulation

details and results including hyperparameter tuning and computation time can be found in

Section C.2. Finally, Section C.3 provides the proof of Proposition 4.1.

C.1 Details on Bayesian Inference

C.1.1 Estimation

This appendix provides details on the Markov chain Monte Carlo (MCMC) algorithm

discussed in Section 4.3.1. We use gm to denote the n-dimensional vector of fitted values

at the training locations S from the mth RST partition, that is, the ith element of gm is

g(si|πm, Tm, km,µm). Let Xπm be an n × km binary matrix where the (i, j)th element is 1

if and only if si is in the jth cluster under the partition πm. We write the partial residual

term for the mth RST partition as

rm = Y −
∑
`6=m

g`.

Recall that our MCMC algorithm proceeds by successively sampling (π1, T1, k1,µ1),. . .,

(πM , TM , kM ,µM), and σ2 from their respective full conditional distributions. To sample

from p(πm, Tm, km,µm|−) for each m = 1, . . . ,M , we first sample the RST partition with

µm analytically integrated out, by performing a birth, a death, a change, or a hyper move

with probability rb(km) = 0.3, rd(km) = 0.3, rc(km) = 0.3, and rh(km) = 0.1, respectively.

Adjustments are made to the probabilities for the boundary cases where km = 1 and km =

∗Reprinted from Luo, Z. T., Sang, H., and Mallick, B. (2021a). BAST: Bayesian Additive Regression
Spanning Trees for Complex Constrained Domain. Advances in Neural Information Processing Systems, 34.
The authors hold the copyright.
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k̄. This probability specification works well in our experiments, but one can modify it if

desired. For the first three moves, the Metropolis-Hastings (M-H) acceptance ratio involves

the integrated likelihood of Y given by

L(Y|πm, Tm, km,−) ∝ |Pπm |−1/2 exp

(
−1

2
rTmP−1

πmrm

)
,

where Pπm = σ2In + σ2
µXπmXT

πm . The Sherman-Woodbury-Morrison formula is applied to

simplify the computation of P−1
πm and |Pπm|−1/2 as XπmXT

πm has a reduced rank km.

Conditional on a sample of (πm, Tm, km), we sample µm from p(µm|πm, Tm, km,−), which

is given by

[µm|πm, Tm, km,−] ∼ Nkm (Qmbm,Qm) ,

where Qm =
(

1
σ2 X

T
πmXπm + 1

σ2
µ
Ikm

)−1

and bm = XT
πmrm/σ

2.

Finally, we sample σ2 from its inverse-gamma full conditional given by

[σ2|−] ∼ IG

(
n+ ν

2
,

1

2

[
νλs + ‖Y −

M∑
m=1

gm‖2

])
,

where ‖·‖ is the Euclidean norm.

C.1.2 Prediction in Two-dimensional Constrained Domains

In this subsection we provide details on specifying the neighbor set Nu for prediction

at an unobserved location u in a constrained domain M ⊂ R2. A constrained Delaunay

triangulation (CDT) mesh can be constructed onM such that every unobserved location of

interest is contained in a triangle. In the case where at least one triangle vertex is in S, Nu

is specified as those triangle vertices that belong to S. Prediction at u is then performed as

stated in Section 4.3.2.

In the extreme case where no triangle vertex is in S, we choose Nu to be all the triangle

vertices (which lie on the domain boundary). To sample the cluster membership of u, we

need to determine the cluster memberships for vertices on the domain boundary, which can
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be done by, for instance, assigning a boundary vertex to the same cluster as its nearest vertex

in S with respect to the graph distance in the CDT mesh (when the number of vertices in

the CDT graph is large, we expect this to well approximate the geodesic distance). Once we

obtain the cluster memberships for boundary vertices, we can sample zm(u) from the cluster

memberships of the vertices in Nu as in Section 4.3.2.

C.2 Supplementary Simulation Results

We implement BAST in R and fit BART and SFS using R packages BART† (McCulloch

et al., 2019) and mgcv‡ (Wood, 2017), respectively. The code for inGP is adopted from

https://github.com/mu2013/Intrinsic-GP-on-complex-constrained-domain. Experi-

ments are performed on a Linux machine with two Intel Xeon E5-2680 v4 processors and

64GB memory.

C.2.1 U-shape Example

C.2.1.1 Comparison to BART with Larger Numbers of Weak Learners

To demonstrate that BAST is more efficient than its binary treed competitors in recover-

ing irregularly shaped regions where discontinuities happen in complex domains, we compare

BAST withM = 20 to BART with various numbers of weak learners. The experiment setup

is the same as in Section 4.4.1 except for the number of binary decision trees used in BART.

As shown in Table C.1, BAST outperforms BART even when BART uses more weak

learners, confirming that BART needs much more rectangular partitions to approximate

irregularly shaped discontinuity boundaries, while BAST can recover them with only a few

RST edge cuts.

C.2.1.2 Hyperparameter Selection and Sensitivity

We consider selecting hyperparameters of BAST via cross-validation (CV) in the U-shape

example with true noise standard deviation σ = 0.1. More specifically, for each replicate
†License: GPL (>= 2)
‡License: GPL (>= 2)
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Table C.1: Prediction performance of BAST with M = 20 weak learners in the U-shape
example. Results of BART with various larger numbers of weak learners M are included for
comparison. Standard errors are given in parentheses.

BAST (M = 20) BART (M = 50) BART (M = 100) BART (M = 200)

σ = 0.1
MSPE 0.189 (0.001) 1.430 (0.049) 1.302 (0.037) 1.219 (0.036)
MAPE 0.188 (0.001) 0.408 (0.006) 0.382 (0.005) 0.380 (0.004)
Mean CRPS 0.142 (0.001) 0.353 (0.006) 0.324 (0.004) 0.318 (0.003)

σ = 0.5
MSPE 0.464 (0.006) 1.694 (0.051) 1.628 (0.039) 1.532 (0.023)
MAPE 0.491 (0.004) 0.682 (0.007) 0.695 (0.005) 0.711 (0.005)
Mean CRPS 0.371 (0.003) 0.557 (0.006) 0.553 (0.005) 0.554 (0.004)

σ = 1
MSPE 1.283 (0.018) 2.546 (0.054) 2.441 (0.035) 2.429 (0.032)
MAPE 0.888 (0.007) 1.085 (0.007) 1.099 (0.007) 1.120 (0.007)
Mean CRPS 0.693 (0.006) 0.870 (0.007) 0.861 (0.006) 0.870 (0.006)

Table C.2: Candidate values of hyperparameters for CV in the U-shape example.

Method Hyperparameter Candidate values

BAST
# of weak learners M 20, 30, 50
Maximum # of clusters per partition k̄ 5, 10
µ-prior shrinkage parameter a 1, 2, 3

BART # of weak learners M 50, 100, 200
µ-prior shrinkage parameter a 1, 2, 3

data set, we choose the number of weak learnersM , the maximum number of clusters in each

RST partition k̄, and the shrinkage parameter a that controls prior concentration around

zero for µm using 5-fold CV within the training data based on MSPE. The candidate values

for each hyperparameter are summarized in Table C.2, and a total of 18 hyperparameter

combinations are considered for BAST. For comparision, we also choose the number of weak

learners and the prior shrinkage parameter of µm for BART using 5-fold CV, and their

candidate values can be also found in Table C.2.

Table C.3 shows the performance of BAST and BART using the hyperparameters cho-

sen by CV (referred to as BAST-cv and BART-cv, respectively). As a benchmark, the

performance metrics for BAST and BART using the hyperparameters in Section 4.4.1 are

also included (referred to as BAST-default and BART-default, respectively). The fine-tuned
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Table C.3: Prediction performance of BAST and BART with and without CV in the U-shape
example under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.186 (0.001) 0.189 (0.001) 1.277 (0.043) 1.541 (0.075)
MAPE 0.182 (0.001) 0.188 (0.001) 0.390 (0.005) 0.436 (0.010)
Mean CRPS 0.135 (0.002) 0.142 (0.001) 0.331 (0.005) 0.380 (0.009)

BAST-cv achieves better performance than BAST-default as expected, but the performance

of them is close to each other, suggesting that BAST is robust to the choices of hyper-

parameters in this example. Both versions of BAST outperform BART with and without

hyperparameter selection.

Next, we further investigate the sensitivity of the performance of BAST to hyperparam-

eters M , k̄, and λk (the mean parameter of the truncated Poisson prior for k), and how they

interact with each other. In general, for largeM , one may prefer smaller λk and k̄ to prevent

overfitting and encourage better mixing performance; for small M , one may afford larger λk

and k̄ which may lead to better fitting. Below, we show additional simulation results with

different values of M , λk, and k̄ using the data set in Figure 4.4(b).

Table C.4(a) shows the MSPE for various values of M with a fixed λk = 4 and a fixed

k̄ = 10. The prediction performance of BAST appears to be robust toM except for extremely

small M . Increasing M slightly improves the performance until the training data is over-

fitted. Next, we fix λk = 4 and examine the MSPEs for different combinations of M and k̄

shown in Table C.4(b). Again, the performance of BAST does not appear to be sensitive to

the choices of M or k̄. For a fixed M , increasing k̄ improves out-of-sample performance until

the model becomes too complex and overfits the training data. As expected, the optimal k̄

for larger M is smaller. Finally, we consider varying λk while fixing M = 20 and k̄ = 10.

As shown in the Table C.4(c), the MSPEs for different values of λk are comparable to each

other, and the optimal MSPE is achieved with a moderate value λk = 4.
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Table C.4: MSPE of BAST under different settings of M , k̄, and λk in a U-shape domain
data set with noise level σ = 0.1.

(a) MSPE under different values of M
M = 1 M = 5 M = 10 M = 20 M = 30 M = 50
25.54 0.203 0.196 0.192 0.186 0.188

(b) MSPE under different combinations of M and k̄
k̄ = 5 k̄ = 10 k̄ = 15

M = 20 0.189 0.192 0.184
M = 30 0.188 0.186 0.191
M = 50 0.188 0.188 0.190

(c) MSPE under different values of λk
λk = 2 λk = 4 λk = 6 λk = 8
0.199 0.192 0.193 0.194

C.2.1.3 Computation Time

Finally, we report in Table C.5 the average computation times (in seconds) of BAST

and its competing methods over 50 simulated data sets in Section 4.4.1 with noise level

σ = 0.1. The inference of BAST and BART is based on MCMC, and we remark that

BART in the R package bart is implemented efficiently in C++ while BAST is implemented

in pure R. The inference for SFS in the R package mgcv is based on an efficient optimization

algorithm for point estimations only as opposed to a full MCMC inference with uncertainty

quantifications, and hence achieves the fastest computation time. The model fitting of inGP

requires expensive Brownian motion simulations and thus takes longer time than BAST does.

A more computationally efficient implementation of BAST is under active investigation.

Our preliminary C++ implementation can reduce the computation time from 651.49 seconds

to 53.58 seconds. As mentioned in Section 4.3.1, computation can be further improved by

fixing spanning trees during MCMC. We refit BAST for the 50 simulated data sets in Section

4.4.1 with noise level σ = 0.1 by using different but fixed spanning trees for each weak

learner. While the average prediction performance remains comparable (MSPE = 0.190,
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Table C.5: Average computation time (in seconds) over 50 simulated data sets in the U-shape
example under noise level σ = 0.1.

BAST (in R) BART SFS inGP
651.49 sec. 15.83 sec. 0.68 sec. 787.32 sec.

Table C.6: Prediction performance of BAST and its competing methods in the bitten torus
example under different noise levels. Standard errors are given in parentheses.

BAST BART inGP

σ = 0.5
MSPE 0.754 (0.008) 1.358 (0.038) 2.601 (0.033)
MAPE 0.584 (0.003) 0.682 (0.006) 1.240 (0.010)
Mean CRPS 0.405 (0.003) 0.567 (0.006) —

σ = 1
MSPE 1.568 (0.020) 2.378 (0.050) 4.628 (0.445)*

MAPE 0.960 (0.007) 1.092 (0.009) 1.648 (0.067)*
Mean CRPS 0.706 (0.006) 0.904 (0.009) —

* The results for inGP under σ = 1 are based on 49 replicates due to numerical
errors in one replicate data set.

MAPE = 0.194, and mean CRPS = 0.145; also see Table 4.1 for baseline performance),

the computation time is reduced to 16.82 seconds using the C++ implementation, which is

comparable to BART.

C.2.2 Bitten Torus Example

We consider the bitten torus example in Section 4.4.2 with two additional noise levels

σ = 0.5 and σ = 1. The results are summarized in Table C.6. Consistent to the findings

under the noise level σ = 0.1, BAST performs the best among all three methods.

As in C.2.1, we also experiment with choosing hyperparameters via 5-fold CV for the data

sets with true noise level σ = 0.1. In addition to the BAST hyperparameters in Table C.2,

we also select K, the size of the predictive neighbor set Nu discussed in Section 4.3.2, from

its candidate values {3, 4, 5, 6}. As shown in Table C.7, BAST outperforms BART in both

CV and default settings. Our results again confirm that BAST performs reasonably well

even without hyperparameter tuning.
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Table C.7: Prediction performance of BAST and BART with and without CV in the bitten
torus example under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.463 (0.008) 0.487 (0.002) 0.850 (0.020) 1.115 (0.041)
MAPE 0.287 (0.004) 0.307 (0.001) 0.370 (0.004) 0.406 (0.009)
Mean CRPS 0.216 (0.003) 0.225 (0.002) 0.310 (0.004) 0.355 (0.008)

C.3 Proof of Proposition 4.1

Proof of Proposition 4.1. For any spatially continuous partition π(S) with k clusters, it fol-

lows from Proposition 2 of Luo et al. (2021b) that there exists a spanning tree T of G and a

set of k−1 edges in T that induce π(S). Hence, conditional on T , the conditional probability

for π(S) is strictly positive due to (4.2) and (4.4). To show T is within the support of (4.3),

note that T is the MST of G given the edge weights satisfying ωe ∈ (0, 1/2) if e ∈ ET and

ωe ∈ (1/2, 1) if e 6∈ ET . This completes the proof.
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APPENDIX D

SUPPLEMENTARY MATERIALS FOR CHAPTER 5

D.1 Details on Spanning Tree Bipartitions

As discussed in Section 5.2.1, the spanning tree graph G∗T on reference knots S∗ can be

obtained by finding the geodesic distance based MST of a graph G∗ = (S∗, E∗0 ), which is

constructed following Luo et al. (2021a). In practice, however, when the number of knots is

small or when the shape of M is highly irregular, the methods in Luo et al. (2021a) may

result in a disconnected G∗. To overcome this, one can augment E∗0 to make G∗ connected

using Algorithm 3.

Algorithm 3: Connecting connected components in G∗
Input: a graph G∗ = (S∗, E∗0 ) with Nc connected components.
Initialize C to be the vertices in one connected component of G∗.
for i = 1 to Nc − 1 do
Find the pair of vertices v1 ∈ C and v2 ∈ S∗ \ C that has the minimal geodesic
distance.
Add the edge (v1,v2) to E∗0 .
Set C ← C ∪ C ′, where C ′ is the connected component containing v2.

end for
Output: a connected graph G∗.

The constructions of the aforementioned graphs and π2(Mη) rely on the geodesic distance

dg inM. For many manifolds, dg has no analytical form. Fortunately, we can approximate dg

between any two locations in a way similar to Isomap algorithm (Tenenbaum et al., 2000). To

be more specific, we construct a dense weighted nearest neighbor graph based on Euclidean

distance on some fine grids in M and the locations of interest, and then approximate the

geodesic distance between the two locations by the length of the shortest path between them
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in the dense graph.

D.2 Details on Bayesian Inference

This appendix provides details on the Markov chain Monte Carlo (MCMC) algorithm in

Section 5.3. Given data (s1,x1, Y1), · · · , (sn,xn, Yn), let gm be the vector of in-sample fitted

values from the mth weak learner, i.e., the ith element of gm is g(si,xi|Tm,µm). Define the

partial residual from the mth weak learner as

rm = Y −
∑
k 6=m

gk.

As discussed in Section 5.3, our MCMC sampler successively draw samples from the

full conditional distributions of (T1,µ1), . . . , (TM ,µM), and σ2. To sample from each

p(Tm,µm|−), we proceed in two steps. First, we update Tm using a Metropolis-Hastings

(MH) sampler by drawing Tm from p(Tm|−), the full conditional distribution of Tm with

µm integrated out. Specifically, we propose a new psMDT T ∗m by a growing or a pruning

move as detailed in Section 5.3. In a growing move, letting η be the node we split, the MH

acceptance probability is given by

min

{
1,

α(1 + dη)
−β[1− α(2 + dη)

−β]2

1− α(1 + dη)−β
· Ns

Nm

· L(Y|T ∗m,−)

L(Y|Tm,−)

}
, (D.1)

where Ns is the number of terminal nodes in Tm, Ns is the number of non-terminal nodes with

two terminal children in Tm, and L(Y|Tm,−) is the likelihood of Y with µm marginalized

out. Thanks to the conjugate prior on µm, L(Y|Tm,−) can be explicitly evaluated by

L(Y|Tm,−) ∝ |Pm|−1/2 exp

(
−1

2
rTmP−1

m rm

)
,

where Pm = σ2In + σ2
µZmZT

m and Zm is an n × `m binary matrix whose (i, j)th element is

1 if and only if the ith observation is assigned to the jth terminal node of Tm. In practice,

utilizing the fact that Zm has reduced rank `m, we use Sherman-Woodbury-Morrison formula
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to simplify the computation of |Pm| and P−1
m . The MH acceptance probability of a pruning

move is analogous to (D.1).

The second step to sample from p(Tm,µm|−) is to draw µm from p(µm|Tm,−), which

admits a closed form

[µm|Tm,−] ∼ N`m

(
Q−1
m bm,Q

−1
m

)
,

with Qm = ZT
mZm/σ

2 + I`m/σ
2
µ and bm = ZT

mrm/σ
2.

Finally, the full conditional of σ2 is an inverse gamma distribution of the form

[σ2|−] ∼ IG

(
n+ ν

2
,

1

2

[
νλs + ‖Y −

M∑
m=1

gm‖2

])
,

where ‖·‖ is the Euclidean norm.

D.3 Supplementary Simulation Details

D.3.1 Details on Simulation Setup

We consider a two-dimensional U-shape domainM and generate uniform random loca-

tions s = (sh, sv) in M. Below, we discuss the generation of unstructured features x. In

many applications, there is oftentimes spatial dependence among locations within an un-

structured feature. To simulate spatially correlated features, we first find a homomorphism

(u1, u2) = h(sh, sv) from M to a rectangular region in R2. Then we simulate independent

realizations {ζ1}, . . . , {ζp} from a Gaussian process using Euclidean distance on (u1, u2). We

further use the transformation xj = Φ(ζj) to generate unstructured features within [0, 1],

where Φ is the cumulative distribution function of standard Gaussian distribution.

Motivated by Ramsay (2002), we construct a true function as f(s,x) = b0 +b1(u1x1 +u2
2)

for some constants b0 and b1, which only depends on the structured features s and one of

the unstructured features. We allow b0 and b1 to take different values in different subregions

ofM to create discontinuities. Specifically, we divideM into three subsets separated by a
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circle:

M1 = {(sh, sv) ∈M : s2
h + s2

v > 0.92 and sh < sv},

M2 = {(sh, sv) ∈M : s2
h + s2

v > 0.92 and sh > sv},

M3 = {(sh, sv) ∈M : s2
h + s2

v ≤ 0.92}.

We set b0 = −4 and b1 = 1 inM1, b0 = 4 and b1 = 1 inM2, and b0 = 0 and b1 = −0.5 in

M3.

D.3.2 Supplementary Results

In this appendix, we compare the predictive uncertainty using the same simulated data

used in Section 5.4.1 under the setting of p = 2 and σ = 0.1. The predictive uncertainty

at different spatial locations is shown in Figure D.1. As expected, the posterior predictive

standard deviation (SD) from BAMDT is higher around the discontinuity surfaces, reflecting

the uncertainty due to the unknown discontinuities. The uncertainty measures from BART

and GP regression, however, fail to capture this. In the predictive SD for BART, one

can observe some artificial axis-parallel high uncertainty regions probably resulting from

univariate splits on s. The uncertainty of GP regression at unobserved locations is generally

higher, possibly due to mis-specification of the model especially in the mean function.

We also examine the sensitivity of BAMDT’s prediction performance to the hyperparam-

eters using a data set under the setting of p = 2 and σ = 0.1. We consider different values of

the number of weak learners M , the number of reference knots t, and the prior probability

for performing a multivariate split pm. Prediction metrics are shown in Table D.1. Overall,

MAPE and mean CRPS are generally robust to different hyperparameter settings. There

is some variability in MSPE, probably due to the relatively large prediction errors near the

discontinuity surfaces. When the performance near discontinuity boundaries is a concern,

we recommend using standard hyperparameter selection methods such as cross-validation to

fine tune the model.
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Figure D.1: Posterior predictive standard deviation of (a) BAMDT, (b) BART, and (c) GP
regression in the setting of p = 2 and σ = 0.1. Blue circles indicate discontinuity surfaces in
the true function projected toM.

D.4 Supplementary Real Data Analysis

In this appendix, we provide more analysis on the Sacramento housing price data.

We first examine feature importance in BAMDT. 44.92% of the splits are attributed to

the structured feature s, suggesting that a large part of the variation in Sacramento housing

price can be explained by the spatial component of the model. The square footage feature

is the second important feature in BAMDT, followed by the number of bathrooms and

bedrooms. A similar feature importance pattern is found using BART.

In Section 5.4.2, we have examined the marginal effect of the spatial locations s. Below,

we focus on the marginal effect of square footage. We choose five representative locations

in Downtown Sacramento (green), North Natomas (cyan), North Sacramento (red), Valley

Hi / North Laguna (blue), and Elk Grove (pink), as shown in Figure D.2(a). Figure D.2(b)

shows the predicted price of houses with three bedrooms, two bathrooms, and various square

footage. As expected, there is a positive nonlinear relationship between price and square

footage at each location, and there is a noticeable change in the relationship near 1600 square

feet. The marginal effect of footage also depends on the locations; Downtown Sacramento

has the highest price per square feet, while North Sacramento has the lowest. 95% predictive

credible intervals of these two locations are also shown. The credible intervals are wider for
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Table D.1: Prediction performance of BAMDT under different settings of hyperparameters.

M t pm MSPE MAPE Mean CRPS
50 100 0.25 0.318 0.268 0.214
100 100 0.25 0.258 0.232 0.178
50 200 0.25 0.475 0.292 0.232
100 200 0.25 0.442 0.288 0.222
50 100 0.50 0.222 0.236 0.175
100 100 0.50 0.305 0.239 0.183
50 200 0.50 0.395 0.300 0.244
100 200 0.50 0.409 0.270 0.210
50 100 0.75 0.482 0.305 0.239
100 100 0.75 0.327 0.261 0.199
50 200 0.75 0.457 0.304 0.235
100 200 0.75 0.361 0.259 0.196

larger houses, probably because of the log-transformation of price in the model.
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Figure D.2: (a) Map of five representative locations. (b) Predicted price versus square
footage of the houses. Colored ribbons represent 95% predictive credible intervals of two
representative locations.
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