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ABSTRACT

There are several methods in the exploration of Convolutional Neural Network’s (CNN’s) inner

workings. However, in general, finding the inverse of the function performed by CNN as a whole

is an ill-posed problem. We propose an Adjoint Operator-based method to reconstruct, given an

arbitrary unit in the CNN (except for the first convolutional layer), its effective hypersurface in the

input space that replicates the unit’s decision surface conditioned on a particular input image. We

gradually study CNN’s inner workings through two steps. First, we consider a CNN without any

bias for the reconstruction, which reduces the difficulties in the analysis. Next, we embed input

images into an enlarged space (that considers bias as a part of the input) to enable the reconstruction

of CNN’s processing that includes bias vectors. Both steps confirm that any reconstructed effective

hypersurface would give nearly the exact output value of that CNN unit when an inner product is

computed with the original input. Also, we find that CNN unit’s decision is primarily conditioned

on the input. Further analysis in adversarial attacks reveals that CNN’s decision is very sensitive

and brittle, explaining why adversarial examples can effectively deceive CNNs.
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1.1 Adversarial attacks on the ResNet20 CNN model [1]. (a): A targetless attack
makes the CNN mistakenly recognize an input “horse” as a “dog”. The upper
left corner illustrates the original “horse” image; The upper-right corner produces
adversarial noise using [2]; The lower-left corner is the contaminated image using
a summation of the two; The lower right corner is the noise multiplied by a factor
of 10. (b): A targeted attack can fool the CNN to output any intended class as
long as the injected noise pattern is appropriately generated. The lower two rows
illustrate 9 noise patterns as described in [3] (scaled by 10×); The upper two rows
illustrate the images which are the sums of the “horse” image and its corresponding
adversarial noise from the lower two rows; A label in the upper two rows reports
the CNN’s prediction when we feed that contaminated image into ResNet20 (The
image labeled “horse” does not contain any noise, i.e., “No Advr” was added). . . . . . . 2

2.1 Computational procedures for applying AdjointBackMap to a unit. Given a CNN
model (Green) and an input image x0 (“Frog”), an effective hyperplane shows how
a unit c (Red) in an intermediate layer is activated from the perspective of the input
space X . The unit c’s value comes from a kernel wr1×r2 convolving on its in-
channel (in-ch) feature map. F refers to the forward propagation that computes the
feature map. Then, the effective hyperplane can be computed through the following
procedures: 1© Compute the jacobian matrix JF(z(x0)) in Eq.(2.3); 2© Transpose
the matrix according to Eq.(2.4) to get its adjoint matrix J∗F(z(x0)); 3© Compute
the effective hyperplane through J∗F(z(x0))wr1×r2 . Since we consider wr1×r2 as
an element in the dual of the in-ch feature map, i.e., Y∗, the kernel is projected
to the dual of the input space, i.e., X ∗, which forms an effective hyperplane that
determines the unit’s activity. A dotted link connects an element with the space it
belongs to. Different colors distinguish different spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.2 Principles of AdjointBackMap over a CNN. We deploy our theory on two kinds
of layers in a CNN: (a) Conv layers, and (b) FC layers. Elements from the same
normed space are colored identically. Specific hyperparameters such as feature
map size are used for easier tracking. F denotes the path from the input image
to an in-channel (in-ch) 3 × 3 receptive field (or the global pooling [4] layer) for
convolving with the layer’s kernel w3×3 (or multiplying with the layer’s weights
w64×1). Its adjoint operator, J∗F(z(x0)), maps the kernel w3×3 (or w64×1) back to
the image space X . The “〈· | ·〉” notation is the dot-product defined in Eq.(2.1).
The symbol “=” means that the dot-product between the input image (x0) and the
reconstructed effective hyperplane (J∗F(z(x0))w3×3) equals the unit’s value (or the
predicted class value using J∗F(z(x0))w64×1) of a convolved feature map (or the
FC layer) computed from the CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Overview of RM4 ∼ RM1 on a concrete CNN (RM0 is illustrated in Fig.2.2(b)).
Elements from the same space are colored identically. F represents the path from
an input x to in-ch feature maps. The adjoint operator, J∗F(z(x)), projects the
corresponding conv kernel (w3×3,s,j,i) back to the input space to reconstruct an
effective hypersurface HAdj . (a) RM4: Analyze a unit in a convolved feature map;
(b)RM3: Analyze a unit pooled globally from an in-ch convolved feature map; (c)
RM2: Analyze a unit in an out-ch feature map; (d) RM1: Analyze a unit pooled
globally from an out-ch feature map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Histograms of relative errors between units directly computed by CNN (ci) and
their values reconstructed by our method (pi), from Conv1∼5 layers and the FC
layer (before ReLU6) of VGG7 (Eq.(2.16), (2.17)). Data were collected from 10k
test samples. The x-axis is the error, and the y-axis is the frequency. The total
count varies depending on the out-ch feature map size (see table A.1, 3rd column).
From (a1) to (a6), the percentage of relative errors (Eq.(2.18)) being ≤ 1% are
99.9996%, 99.9996%, 99.9996%, 99.9989%, 99.9989%, 99.996%, respectively. . . . . . 21

2.5 Histograms of relative errors between units directly computed by CNN (ci) and
their values reconstructed by our method (pi), from Conv1∼18 layers and the FC
layer (before ReLU19) of Fixup-ResNet20. The plotting convention is the same as
Fig.2.4. The total count varies depending on the out-ch feature map size (see table
A.2, 4th column). From (a1) to (a19), the percentages of relative errors (Eq.(2.18))
being ≤ 1% are greater or equal to 99.997%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Visualization of RM0 on VGG7. HAdj
k (z(xi)) patterns are mapped from the FC

layer (Eq.(2.9)) by RM0 (three figures: a, b, c, and the corresponding inputs:
x0,x1,x2). The number of subfigures in a plot equals the number of classes. . . . . . . . . . 25

2.7 Visualization of RM0 on Fixup-ResNet20. Details are similar to Fig.2.6. . . . . . . . . . . . . 26
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2.8 Comparison of FFTs of the input image vs. those of the CNNs’ effective hyper-
planes (k = 8, “ship” class). Columns (a)-(c) show the FFTs (Fast Fourier Trans-
form, without the DC component) of the data in column (d). Since both the input
image (top row, “Ship”) and the hyperplanes (second and third rows, for VGG7
and Fixup-ResNet20) have RGB channels, FFTs of the three separate channels are
shown. The ship image’s spectrum has a very strong low-frequency component
(the first row), while those of the hyperplanes have stronger amplitudes in higher
frequency ranges (the second and third rows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Comparison of FFTs of the input image vs. those of the CNNs’ effective hyper-
planes (k = 8, “ship” class). See Fig.2.8 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Comparison of FFTs of the input image vs. those of the CNNs’ effective hyper-
planes (k = 6, “frog” class). See Fig.2.8 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Two equivalent models of a trained artificial neuron. Left: A conventional artificial
neuron with two inputs x0, x1, whose weights are w0, w1, respectively. Node b
denotes a bias. Node s denotes a summation unit, and node n denotes an activation
function. Middle: An equivalent model to the left. We treat the bias b as the
product of the additional input xb = 1, and a weight w2 = b. Right: Another
equivalent model to the left. We treat bias b as the third input xb = b but multiplying
a weight w2 = 1. Our analysis uses the last model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 An equivalent model of a trained 4-layer CNN (proved in Eq.(3.19), Section 3.4).
Top: A CNN consists of three Conv layers, one global pooling layer, and one FC
layer. Once training is finished, all parameters will be fixed. Bottom: We convert
the trained CNN to an equivalent model. In this case, the bias values from all
layers are sequentially concatenated as a big vector, xb = [b0; b1; b2; b3]. That
vector will be fed in as an additional input tensor. Each layer picks its own bias
from the xb to compute. xb[bi] denotes that the corresponding part for bi will be
recovered from the tensor xb. Note: xb is fixed after the CNN is trained, regardless
of the input xn presented during inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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3.3 Principles of AdjointBackMapV2. Our reconstruction method applies to units in
(a) Conv layers, and (b) FC layers. We color elements from the same normed
space identically. The normed space X is an input space that involves two embed-
ded subspaces XI and Xb. Considering a fixed image x0 ∈ XI and the trained bias
values in the CNN (a fixed xb ∈ Xb), F depicts the CNN’s forward computation
path from the input end to an r1 × r2 receptive field on an in-ch feature map or
the global pooling layer. Its adjoint operator, J∗F(z([x0; xb])), projects the corre-
sponding kernel or weights back to the input space X . Riesz Representation unites
X ,X ∗ or Y ,Y∗, together. The “〈· | ·〉” notation represents a dot-product defined
in Eq.(3.1). The symbol “=” means that a dot-product between the extended input
and the reconstructed effective hyperplane is equal to the unit’s linear activation
value (the weighted sum) of a convolved feature map or an FC layer’s output val-
ue, as long as the CNN is activated with ReLU or Leaky ReLU. See Section 3.2 for
a step-by-step walk-through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Batch normalization (BN) and its reduction. (a) A standard BN’s implementation
from Eq.(3.5); (b) Reduction of BN to be compatible with our analysis (similar to
Fig.3.2, via Eq.(3.6)). Besides, this transformation lowers the computations and
DRAM consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Two factors (in-ch merge & global pooling (g_p)) determine four RMs involved in
the Conv layers. (a) RM4: Without either in-ch merge or g_p; (b) RM3: Without
in-ch merge and with g_p; (c) RM2: With in-ch merge but without g_p; (d) RM1:
With both in-ch merge and g_p. The usage of colors is similar to Fig.3.3. An over-
sized pink mask in either (b) or (d) denotes an effective hypersurface reconstructed
in response to a stride-wise summation of the convolved feature map. The symbol
“〈· | ·〉” refers to the inner product defined in Eq.(3.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN
(cl) and their values reconstructed by our method (ĉl) on CIFAR-10 using VGG7.
The x-axis and y-axis indicate the error and frequency (10k test samples), respec-
tively. a1~a5 is collected from Conv1~5 layer, and a6 is collected from the FC
layer. In terms of the 4th column of table.B.1, a1 to a6 should have relative errors
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3.7 Histograms of relative errors (Eq.(3.29)) between units directly computed by C-
NN (cl) and their values reconstructed by our method (ĉl) on CIFAR-10 using
ResNet20. Similar to Fig.3.6, a1~a18 is collected from Conv1~18 layer, and a19
is collected from the FC layer. In terms of the 5th column of table.B.4, a1 to a18
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3.8 Histograms of relative errors (Eq.(3.29)) between units directly computed by C-
NN (cl) and their values reconstructed by our method (ĉl) on CIFAR-10 using
ResNet20-Fixup. Details are similar to Fig.3.7. Percentages of εl ≤ 1% for all
subplots are listed in Table 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN
(cl) and their values reconstructed by our method (ĉl) on CIFAR-100 using VGG7.
Details are similar to Fig.3.6 except that the quantity of relative errors in a6 is 1m.
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3.10 Histograms of relative errors (Eq.(3.29)) between units directly computed by C-
NN (cl) and their values reconstructed by our method (ĉl) on CIFAR-100 using
ResNet20. Details are similar to Fig.3.7 except that the quantity of relative errors
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3.11 Histograms of relative errors (Eq.(3.29)) between units directly computed by C-
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4.1 Procedures for Experiment 2 (for models w/o bias). In general, this experiment is
designed to numerically measure the fluctuation of a single effective hypersurface
in response to different adversarial noise. Red box: We first generate 9 target-
ed adversarial noise, {Advri | i ∈ {0, 1, ..., 9}}, which can fool a CNN model
to incorrectly classify the “horse” (x0, its label index = 7) to the 9 classes, where
Advr7 = θX denotes no noise. Black box: Then, we collect the 10 effective hyper-
planes in response to these adversarial noise, HAdj

k=7(z(x0 + Advri)). XYZ axes:
At last, we use tSNE to project these hyperplanes (red) in 3D space with 10 more
hyperplanes (black) of images having different classes ({xi | i ∈ {1, 2, ..., 10}},
not “horse”) for comparison. Note adversarial attacks do not affect our reconstruc-
tion capability (marked by “=” in the figure. We rotate the dot-product “〈· | ·〉” to

“

〈·
|·
〉

” for a compact layout.). Check Section 4.2 for details.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Experiment 1, VGG7 (w/o bias): Visualizing VGG7’s hyperplanes under an ad-
versarial example (“horse” to “dog”). (a1) Original “Horse” (top left), adversarial
noise (top right), and the final adversarial input (bottom left). Effective hyperplanes
of the FC’s prediction (RM0) under the original input (a2), under the adversarial
input (a3), and the differences between a2 and a3 (a4). (a5) Differences between
original and adversarial-based hyperplanes using RM3 on Conv1 (low-level units,
and HAdj

{j,i} refers to eq.(21) in Appendix of [5]).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Experiment 1, Fixup-ResNet20 (w/o bias): Visualizing Fixup-ResNet20’s hyper-
planes under adversarial input (“horse” to “dog”). The format is the same as
Fig.4.2. (a5) is mapped from Conv1 of Residual Block 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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4.4 Experiment 2 (for models w/o bias): Effective hypersurfaces of unit k = 7 (horse
unit) under targeted attacks and their tSNE projections. Top row: VGG7; Bottom
row: Fixup-ResNet20. For VGG7, (a1) Hyperplanes for the same output unit k = 7
(correct class index) under targeted adversarial noise Sa: {HAdj

k=7(z(x0 +Advri)) |
Advri ∈ Sa} by RM0 (see text for details). The top two rows show the hyper-
planes of unit k = 7, reconstructed from different adversarial inputs (based on the
same horse image). The two bottom rows are the corresponding targeted adver-
sarial noise (10×, for visualization purposes; the black one means 0 adversarial
noise, for the correct class “horse”). (b1) tSNE projections of the hyperplanes in
a1 (red points), plotted along with the projections of hyperplanes for unit k = 7
given images of different classes, i.e., non-horse classes (black points). Note that
the spread due to adversarial noise and spread due to class variation are almost the
same. (a2) and (b2) show the same as above for Fixup-ResNet20. The same kind
of spread can be seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Experiment 3 (for models w/o bias): Factor Analysis of the effective hypersur-
face with down-scaled adversarial noise compared to Gaussian noise. (Red) 50
effective hyperplanes computed from 50 adversarial examples (original image plus
adversarial noise from Sb); (Blue) 50 effective hyperplanes computed from 50
non-adversarial examples (original image plus Gaussian noise from Sg). Effec-
tive hyperplanes of adversarial cases (Red) are significantly more spread out than
non-adversarial cases (Blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Experiment 1, VGG7 (with bias): Visualization of VGG7’s effective hypersur-
faces {HAdj

k }9k=0 with and without adversarial noise. (a1): A “Bird” image. (a2):
An adversarial noise. (a3): The scaled-up noise. (a4): An adversarial example
(x0 + Advr) that fools VGG7 to predict “Cat”. (b1): The effective hypersurfaces
for predicting 10 classes with the original “Bird” input. The first two rows il-
lustrate the image parts of the hypersurfaces, {HAdj,I

k (z([x0; xb]))}9k=0 (A square
represents HAdj,I

k (z([x0; xb])) that has a shape of 32 × 32 × 3); The last two rows
present the bias parts, {HAdj,b

k (z([x0; xb]))}9k=0 (A square visualizes a 384-d vector,
HAdj,b
k (z([x0; xb])), being reshaped to 24×16). (b2): The 10 effective hypersurfaces

with (a4) as the input. (b3): The difference between with and without adversarial
noise. The results are very interesting since the hypersurfaces themselves are very
different, despite the appearance of the original (a1) v.s. The adversarial image (a4)
is almost identical to the human eyes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Experiment 1, ResNet20 (with bias): Visualization of ResNet20’s effective hyper-
surfaces {HAdj

k }9k=0 with and without adversarial noise. The adversarial example
(a4) fools ResNet20 to predict “Deer”. The last two rows of (b1) present the bias
parts of the effective hypersurfaces, {HAdj,b

k (z([x0; xb]))}9k=0 (A square visualizes
a 1152-d vector, HAdj,b

k (z([x0; xb])), being reshaped to 36× 32). Check Fig.4.6 for
other details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xv



4.8 Experiment 1, ResNet20-Fixup (with bias): Visualization of ResNet20-Fixup’s ef-
fective hypersurfaces {HAdj

k }9k=0 with and without adversarial noise. The adversar-
ial example (a4) fools ResNet20-Fixup to predict “Airplane’. The last two rows of
(b1) present the bias parts of the effective hypersurfaces, {HAdj,b

k (z([x0; xb]))}9k=0

(A strip visualizes a 37-d vector, HAdj,b
k (z([x0; xb]))). Check Fig.4.6 for other de-

tails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Experiment 2, VGG7 (with bias): Visualize the effective hypersurface for the
”Bird” unit in response to different adversarial noise. k = 2 denotes the “Bird”
index. (a1): The 9 scaled-up adversarial noise samples (for visualization pur-
poses) {Advrm | m ∈ {0, ..., 9},Advr2 = θ} generated from targeted attack-
s. Each Advrm, when added to the “Bird”, can fool VGG7 to the specific class
index m; Advr2 does not have noise. (a2): The sums of (a1) and the original
“Bird” image, the adversarial inputs. The subtitle “label:bird” depicts the original
x0. (b1): The effective hypersurface for the “Bird” unit in response to the inputs
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k=2 ; The last two rows
illustrate the bias part HAdj,b

k=2 . The “label:bird” illustrates the hypersurface’s re-
sponse without adversarial noise. (c1): tSNE projection of the image parts (Red),
{HAdj,I

k=2 (z([x0 + Advrm; xb]))}9m=0, to a 3-d space. (c2): tSNE projection of the
bias parts (Red), {HAdj,b
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4.10 Experiment 2, ResNet20 (with bias): Visualize the effective hypersurface for the
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

1.1.1 Overview

Convolutional Neural Networks (CNNs) have seen great success in computer vision (CV). It

is inspired by receptive fields found in biological vision [6], implemented by convolution [7], and

trained by backpropagation [8]. Hardware advancements like GPUs [9] have enabled the fast train-

ing of CNNs on large datasets. Architectural evolution, such as AlexNet [10], VGG [11], ResNet

[12], NASNet [13] have uplifted CNN’s generalization capability, securing their dominance in the

machine learning field.

Despite many successes in CV, CNN’s inner workings remain largely unexplained. That mys-

tery attracts tremendous studies probing into the black box. Early attempts found that CNNs grad-

ually learn more complex visual features through their multi-layer convolutional architectures.

Deconvolution [14] can illustrate what is represented in each layer: edge features at lower layers

and object features at higher layers. CAM [15] and its successor, Grad-CAM [16] can highlight

specific features in the input image that contributes most to the decision made by CNN. Especially,

a guided backpropagation proposed in [16, 17] locates input features that directly influence the

output, indicating which specific part the CNN used for its final decision.

However, it is well-known that CNNs are vulnerable to adversarial attacks [2, 3]. Usually,

these adversarial patterns, being imperceptible to our human vision, can unexpectedly result in

catastrophic classification or recognition failures. For example, Fig.1.1(a) shows an adversarial

pattern that makes a prevalent ResNet20 mistakenly recognize a horse as a dog by simply adding

low-level noise. Furthermore, we can fool the model to output an arbitrary label in a classification

task as long as we add targeted noise to the “horse” image. Recent research [18] showed that a

small physical pattern, pasted on a T-shirt (a T-shirt worn by a human with an adversarial pattern),

could evade a CNN-based YOLO-v2 person detector. Nevertheless, these contaminated examples
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are either visually identical or easily identified to our human vision, while the well-trained CNN

turns a blind eye to them.

(a) (b)

Figure 1.1: Adversarial attacks on the ResNet20 CNN model [1]. (a): A targetless attack makes
the CNN mistakenly recognize an input “horse” as a “dog”. The upper left corner illustrates the
original “horse” image; The upper-right corner produces adversarial noise using [2]; The lower-left
corner is the contaminated image using a summation of the two; The lower right corner is the noise
multiplied by a factor of 10. (b): A targeted attack can fool the CNN to output any intended class
as long as the injected noise pattern is appropriately generated. The lower two rows illustrate 9
noise patterns as described in [3] (scaled by 10×); The upper two rows illustrate the images which
are the sums of the “horse” image and its corresponding adversarial noise from the lower two rows;
A label in the upper two rows reports the CNN’s prediction when we feed that contaminated image
into ResNet20 (The image labeled “horse” does not contain any noise, i.e., “No Advr” was added).

1.1.2 Motivation

Explainable CNN is facing a non-negligible challenge from adversarial attacks. An adversarial

example can fool CNN to misclassify an object and, at the same time, manipulate the basis of the

CNN’s prediction [19, 20], to misinterpret the object’s features, despite the same visual features

being shared with its original image. Recently, a study [21] found that popular interpretation algo-

rithms do not necessarily show the correct reasoning used in CNN’s predictions. These conflicts
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motivate us to study CNN’s inner workings and explore its decision processes. Specifically, we

ask three fundamental questions:

• Given a unit from a convolved feature map or a class output from the fully-connected (FC)

layer inside a CNN, how is the output value factorized in the input end?

• What happens inside a CNN when an adversarial example strikes?

• Why is a CNN model vulnerable to adversarial examples?

Theoretically, these questions demand systematic modeling of CNN. The modeling is expected to

correctly reflect what features or pixels the CNN recruits from an input image for its prediction

and present robustness to various adversarial attacks.

1.1.3 Approach

CNN stacks layers of convolutions and nonlinear activation functions, which are cumbersome

for analysis. To overcome this, we propose a novel algorithm based on Adjoint Operators (Adjoint-

BackMap) that aims at precisely reconstructing effective hypersurfaces (an effective hypersurface

is a function of the input that produces hyperplanes) of CNN units. Our mathematical proof and

experiments have verified that:

1. Given an arbitrary unit in the CNN, we can precisely replicate its output value through a

dot product between the input and an effective hyperplane generated from the reconstructed

effective hypersurface.

2. Our reconstruction algorithm faithfully reproduces an arbitrary unit’s activation value re-

gardless of the input being normal or adversarial.

Based on that, we study the CNN and adversarial attacks through three steps:

1. We first consider precisely modeling the CNN without bias so that the difficulty of analysis

could be appropriately reduce.
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2. Furthermore, we consider slightly extending the input space to include bias as part of the

input space so that we could reuse our analysis framework above.

3. Finally, we apply our theory to analyze CNN models under adversarial examples.

1.2 Related Works

1.2.1 Interpretable CNN

Understanding CNN’s inner workings is an active research direction towards explainable AI. In

general, explainable AI intends to find concrete features employed by CNN’s prediction that shares

similarities with our human eyes. Recent studies can be summarized into three tracks: inversion,

perturbation, and activation map.

Inverse methods usually try to invert the CNN model. These methods invert a learned feature

map in CNN back to the input space to visualize parts of the input image contributing to the feature

map’s output. Early attempts included Deconvolutions [14] that deconvolved a layer’s feature maps

to reproduce the local inputs, Guided-BP [17] that backpropagated a feature map back to input

using reversed gradients, and inverse approximation [22] that used estimation to revert a high-level

feature map from the input perspective.

Perturbation is another path to estimate feature importance inside a CNN. It treats a deep learn-

ing model as a black box and observes how prediction changes when input varies. Essentially, this

method is similar to gradients or saliency maps [23, 24, 25, 26, 27, 28, 29, 30, 31]. A variant in

this path is to maximize a class logit by iterating the CNN’s input, and the final pattern returned

from the iteration will be claimed as the feature visualized for the prediction [32].

Activation map was first introduced in [15, 16]. It generates a weighted activation map, a

channel-wise summation of feature maps (pulled from the last layer right before global pooling)

multiplied by the corresponding fully-connected (FC) layer’s weights to highlight the contributing

area for an explanation. Usually, this weighted activation map is smaller than the input image

since poolings are usually employed inside a CNN. For example, consider an input image having a

resolution of 32× 32× 3. Its weighted activation map will generate a heatmap with a resolution of
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8 × 8 from a CNN to be over the input image and to highlight features contributing to the CNN’s

decision. Usually, a resizing step (8 × 8 → 32 × 32) is necessary for that activation map before

overlaying on the input image.

Generally, these methods estimate features that contribute to CNN’s decision. Therefore, weak-

nesses are inevitable since the estimations contain relative errors that might lead to misinterpreta-

tion. As we know, CNN is theoretically not invertible because bijection does not hold in the model.

Inverting a feature map for analysis violates this principle. Also, CNN takes a high-dimensional

image to activate nonlinear functions layer by layer, which implies essential features derived from

perturbation might be a small part of the prediction factors. A vulnerability in activation maps

comes from the necessary resizing step for the weighted activation map. That resizing implies that

every 4× 4 square of the input image corresponds to a unit of the activation map. However, CNN

is composed of multi-layer convolutions, and its effective receptive field, a receptive region in the

input image that contributes to a unit’s computation [33], gradually gets enlarged as the layer goes

high. The unit’s effective receptive field, pulled from a high-level layer, is actually much larger

than the assumed 4 × 4. Even the whole image area might be responsible for the unit. Therefore,

applying the resized activation map to the input image may violate the effective receptive field

principle.

As we mentioned, a recent study [21] found that popular interpretation algorithms do not nec-

essarily show the correct underlying principle for CNN’s prediction. Therefore, it is still too early

to claim whether CNN is explainable or not.

1.2.2 Theories of CNN

CNN’s internal working principle remains unclear despite many explainable trials. As we men-

tioned, [34, 19, 20] found that interpretation of neural network is fragile, and adversarial examples

manipulate an interpretable suggestion to any desired patterns with ease, which leaves a hard hit

to explainable AI because of missing comprehensive mathematical supports. However, an accu-

rate theory for CNN can not be found overnight. Early attempts [35, 36] approached CNNs using

Wavelet Theory to find correlations between CNN and filter banks for better interpretations. A re-
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cent study [37] proposed a Neural Tangent Kernel (NTK) method approximating a neural network

learned by gradient descent to kernel regression. However, vulnerabilities are inevitable in these

methods. Wavelet theory presumed a convolutional layer as an LTI (Linear Time-Invariant) system,

which is not satisfied due to the layer’s bias and the nonlinear activation function. The foundation

of NTK relies on an approximation between the weight update policy and the following differential

equation.

w(t+ 1) = w(t)− ∂L(x,y,w(t))

∂w
,

dw(t)

dt
= lim

ε→0

w(t+ ε)−w(t)

ε
= −∂L(x,y,w(t))

∂w
,

(1.1)

where w(t) is the weight at time t, and L(x,y,w(t)) is the loss function with inputs x and labels

y. This approximation commits relative errors and whether these errors are negligible remains

questionable due to high dimensional weight matrices. Besides, the NTK regime suffers theoretical

challenges [38]. These imply that the theoretical foundation of CNN is not easy to establish.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 considers CNN without bias,

modeling the CNN’s convolution with adjoint operators, and introduces our reconstruction theory

that gives five reconstruction modes (RMs) depending on the unit’s location in the CNN. Experi-

ments proposed in the chapter verify the theory and visualize the results. Chapter 3 upgrades the

theory in Chapter 2 to take all the layers’ bias values as part of the input and generalizes our re-

construction algorithm to CNNs that either use batch normalization or conventional bias. Chapter

4 presents an application of our theory to explore the fundamentals of adversarial attacks on CNN

models. Chapter 5 summarizes all findings in this dissertation and discusses potential research for

future exploration.
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2. MODELING CNN WITHOUT ANY BIAS

2.1 Overview

This chapter aims to model convolution – the architectural feature that distinguishes CNN from

other deep neural networks. Convolution is usually implemented with a receptive-field-sized kernel

on an in-channel (in-ch) feature map in a CNN layer. Conventionally, the kernel was modeled as a

filter [35, 36]. As we know, besides the limitation mentioned in Section 1.1, CNN stands out from

image classification tasks which essentially involve the geometrical separation – an application

topic evolved from the Hahn-Banach theorem [39] in Dual Space. Therefore, we innovatively con-

sider CNN’s convolution from an algebraic dual perspective [5]. Then, we convert our derivations

to an algorithm.

2.2 Theory

We will model the convolution of CNN theoretically first.

We define an element-wise inner product on an input image space X (norm induced) as

〈x | x′〉 =
H∑
i=1

W∑
j=1

C∑
k=1

xi,j,kx
′

i,j,k, (2.1)

where x or x
′ ∈ X is an image having height H , width W , and channels C. A CNN takes an

image x0 ∈ X and propagates it through the convolutional/pooling layers to produce an in-ch

feature map, to be subsequently convolved with a kernel wr1×r2 , with a receptive field of size

r1 × r2 (denoted by Y). We use F(·) to refer to the forward propagation that computes the feature

map and assume that the CNN does not have any bias, implying F(θX ) = θY . Also, we assume

that the CNN is activated with either ReLU [40] or Leaky ReLU [41]. Then, we model convolution

using the dual form [42, 43],

c = F(x0) ~ wr1×r2 = 〈F(x0),wr1×r2〉, (2.2)
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where c ∈ R denotes a unit’s value in the out-channel (out-ch) feature map; wr1×r2 is a hyperplane

on Y and wr1×r2 ∈ Y∗. The proof (Section 2.4) turns Eq.(2.2) to the equation below.

c = F(x0) ~ wr1×r2 = 〈JF(z(x0))x0,wr1×r2〉, (2.3)

where z(x0) = kx0 establishes the second “=” with k ∈ R+; JF = ∂F
∂x

is a Jacobian operator that

maps X → B(X ,Y); and JF(z(x0)) ∈ B(X ,Y).

Considering the Hilbert space X , we use Riesz Representation theorem [44] and an Adjoint

operator of the Jacobian, J∗F(z(x0)), to simplify Eq.(2.3),

c = 〈JF(z(x0))x0,wr1×r2〉 = 〈x0 | J∗F(z(x0))wr1×r2〉 = 〈x0 | (JF(z(x0)))
Twr1×r2〉, (2.4)

where J∗F(z(x0)) ∈ B(Y∗,X ∗). As Riesz Representation suggests that X ∗ is X itself, the adjoint

operator will map a convolutional kernel in any layer of a CNN (except for the first convolutional

layer) back to the input image space, which serves as an effective hyperplane, packing all decision

hyperplanes from the input, all the way forward to the specific unit in the layer’s out-ch feature

map. We summarize the computational procedures in Fig.2.1.

We mention two things:

1. Eq.(2.3) is not linear since ∃x, y ∈ X , such that, JF(z(αx+βy))(αx+βy) 6= αJF(z(x))x+

βJF(z(y))y for scalars α, β;

2. We will view this J∗F(z(x0))wr1×r2 in the dual space instead of in the input image space if

the Riesz Representation is not applied. In other words, Riesz Representation frees us from

visualizing two distinct spaces.

2.3 Algorithm

2.3.1 Layers considered for analysis

Generally, we deploy our AdjointBackMap on two kinds of layers in a CNN (Fig.2.2):
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Figure 2.1: Computational procedures for applying AdjointBackMap to a unit. Given a CNN mod-
el (Green) and an input image x0 (“Frog”), an effective hyperplane shows how a unit c (Red) in
an intermediate layer is activated from the perspective of the input space X . The unit c’s value
comes from a kernel wr1×r2 convolving on its in-channel (in-ch) feature map. F refers to the
forward propagation that computes the feature map. Then, the effective hyperplane can be com-
puted through the following procedures: 1© Compute the jacobian matrix JF(z(x0)) in Eq.(2.3);
2© Transpose the matrix according to Eq.(2.4) to get its adjoint matrix J∗F(z(x0)); 3© Compute

the effective hyperplane through J∗F(z(x0))wr1×r2 . Since we consider wr1×r2 as an element in the
dual of the in-ch feature map, i.e., Y∗, the kernel is projected to the dual of the input space, i.e.,
X ∗, which forms an effective hyperplane that determines the unit’s activity. A dotted link connects
an element with the space it belongs to. Different colors distinguish different spaces.

1. We map a kernel from any convolutional layer (except for the first layer, in which case the

kernel is already in X ∗) back to the input space and visualize it as an effective hyperplane

that accumulates all decision hyperplanes on the forward path from the input to the activation

value on the out-ch feature map at that layer (Fig.2.2(a));

2. We map weight vectors in the FC layer back to the input image space and visualize a recon-

structed hyperplane that directly determines the CNN’s prediction (Fig.2.2(b)).

2.3.2 Premise

AdjointBackMap requires two necessary conditions to function as intended:
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(a) Conv (b) FC

Figure 2.2: Principles of AdjointBackMap over a CNN. We deploy our theory on two kinds of
layers in a CNN: (a) Conv layers, and (b) FC layers. Elements from the same normed space are
colored identically. Specific hyperparameters such as feature map size are used for easier tracking.
F denotes the path from the input image to an in-channel (in-ch) 3 × 3 receptive field (or the
global pooling [4] layer) for convolving with the layer’s kernel w3×3 (or multiplying with the
layer’s weights w64×1). Its adjoint operator, J∗F(z(x0)), maps the kernel w3×3 (or w64×1) back to
the image space X . The “〈· | ·〉” notation is the dot-product defined in Eq.(2.1). The symbol “=”
means that the dot-product between the input image (x0) and the reconstructed effective hyperplane
(J∗F(z(x0))w3×3) equals the unit’s value (or the predicted class value using J∗F(z(x0))w64×1) of a
convolved feature map (or the FC layer) computed from the CNN.

1. CNN should not have any bias. Otherwise, Eq.(2.3) cannot be established appropriately1;

2. The CNN should be activated with ReLU/Leaky ReLU/other functions whose derivatives

are piecewise constants and satisfy Eq.(2.12) in Section 2.4. Therefore, care should be taken

when deploying our method on a CNN using activation functions whose derivative is not

piecewise constant (like tanh).

These necessary conditions ensure that the effective hypersurface reconstructed by AdjointBackMap

can reproduce a CNN unit’s activation, given an arbitrary input image. That is, if we dot-product

(Eq.(2.1)) an effective hyperplane to the input image directly, the returned value will precisely

1Note that this is not a hard requirement. This condition makes our derivation and results more understandable.
See Appendix of [5] for details.
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match the unit’s activation value obtained from the convolved feature map or the activation value

from the FC layer. This is a crucial point that distinguishes our model from other methods. We

also discuss two examples (Table 4.1 and 4.2), indicating that numerical precision is essential for

analyzing CNNs.

2.3.3 Five Reconstruction Modes (RMs)

In practice, AdjointBackMap provides five reconstruction modes (RMs) that depend on which

unit in what layer is being considered for analysis. Four of them act on a convolutional layer and

one on the FC layer. We name the five RMs as RM4 to RM0. In the view of the input end, RM4

and RM3 parse a single kernel’s behavior; RM2 and RM1 focus on a group of in-ch kernels’

activities; RM0 analyzes final class output. Fig.2.3 (RM4 to RM1) and Fig.2.2 (RM0) illustrate

the basic concepts. Conv layers have four RMs due to two factors in CNN’s convolution (Fig.2.3):

1. With or without global pooling (g_p): Fig.2.3(b)&(d) [RM3 and RM1] vs. Fig.2.3(a)&(c)

[RM4 and RM2], respectively;

2. With or without in-ch merge during convolution: Fig.2.3(c)&(d) [RM2 and RM1] vs.

Fig.2.3(a)&(b) [RM4 and RM3], respectively.

We explain using a concrete example with specific hyperparameters such as kernel size, number

of channels, etc., to make it easier to track. Suppose a CNN takes a 32× 32× 3 (height × width ×

channels) RGB image x. Its third convolutional layer has in-ch feature maps of shape 16×16×32.

That layer has convolutional kernels of 3 × 3 × 32 × 64 (height × width × in-channels × out-

channels). The convolutional stride is 2 with padding ‘same’ [45].

2.3.3.1 RM4 (Fig.2.3(a))

Convolutional kernels are mapped separately along in-channels. AdjointBackMap works on

kernels, one at a time (32×64 kernels). Also, each stride move is backward mapped independently.

An effective hypersurface, HAdj
s,j,i : X → X , reconstructed through RM4 are (from Eq.(2.4)),

HAdj
s,j,i(z(x)) = J∗Fs,j,i

(z(x))w3×3,s,j,i, (2.5)
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(a) RM4: w/o g_p or in-ch merge (b) RM3: w g_p and w/o in-ch merge

(c) RM2: w/o g_p and w in-ch merge (d) RM1: w both g_p and in-ch merge

Figure 2.3: Overview of RM4 ∼ RM1 on a concrete CNN (RM0 is illustrated in Fig.2.2(b)).
Elements from the same space are colored identically. F represents the path from an input x to in-
ch feature maps. The adjoint operator, J∗F(z(x)), projects the corresponding conv kernel (w3×3,s,j,i)
back to the input space to reconstruct an effective hypersurface HAdj . (a) RM4: Analyze a unit
in a convolved feature map; (b) RM3: Analyze a unit pooled globally from an in-ch convolved
feature map; (c) RM2: Analyze a unit in an out-ch feature map; (d) RM1: Analyze a unit pooled
globally from an out-ch feature map.

where s ∈ {0, 1, ..., 63}, j ∈ {0, 1, ..., 31}, i ∈ {0, 1, ..., 63}, Fs,j,i denotes a forward path from the

input to the receptive field with its (j, i)th kernel and a stride move s. In this case, an input image x

brings its effective hyperplane HAdj
s,j,i(z(x)) (∈ X ) of a shape 32×32×3. The number of backward

mappings is 8× 8× 32× 64. This is the most basic application that strictly follows our theory. We
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can analyze what a single kernel is actually doing, from the perspective of the input image space,

on its effective receptive field [33] with a stride offset.

2.3.3.2 RM3 (Fig.2.3(b))

Only convolutional kernels are mapped separately along in-channels. A kernel’s stride moves

are summed, which results in a single backward mapping. In detail, a 3 × 3 kernel reconstructs

its effective hypersurface at a stride move s. The total stride moves of the kernel are 8 × 8 that

is also the number of effective hypersurfaces to be summed for the single backward mapping,

i.e., 64 effective hypersurfaces sum together pixel-wise to form a single 32 × 32 × 3 effective

hypersurface, HAdj
j,i : X → X . And that effective hyperplane HAdj

j,i (z(x)) highlights the input area

that determines the unit pooled globally from an in-ch convolved feature map.

HAdj
j,i (z(x)) =

8×8−1∑
s=0

J∗Fs,j,i
(z(x))w3×3,s,j,i =

63∑
s=0

HAdj
s,j,i(z(x)). (2.6)

The last “=” also shows the relationship to RM4.

2.3.3.3 RM2 (Fig.2.3(c))

Convolutional kernels are merged in-channel-wise for mapping, and the kernels’ strides are

separated for projections. Thus, the number of backward mappings is 8× 8× 64, and each one has

its shape of 32× 32× 3. An effective hypersurface, HAdj
s,i : X → X , reconstructed from RM2 are,

HAdj
s,i (z(x)) =

31∑
j=0

J∗Fs,j,i
(z(x))w3×3,s,j,i =

31∑
j=0

HAdj
s,j,i(z(x)). (2.7)

Similarly, the last “=” reveals its relationship to RM4. This effective hypersurface shows how a

unit is activated in the out-ch feature map.

2.3.3.4 RM1 (Fig.2.3(d))

Convolutional kernels are merged in-channel-wise. A kernel’s stride moves are summed for a

projection as well. Thus the total number of effective hypersurfaces is 64 (the number of channels
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to be pooled), and each HAdj
i (z(x)) has its shape of 32× 32× 3 that carries what the in-ch kernels

jointly extract from the RGB image from the global pooling perspective.

HAdj
i (z(x)) =

31∑
j=0

8×8−1∑
s=0

J∗Fs,j,i
(z(x))w3×3,s,j,i

=
31∑
j=0

HAdj
j,i (z(x)) =

63∑
s=0

HAdj
s,i (z(x)).

(2.8)

Relationships to RM3 and RM2 are listed in the second line of Eq.(2.8).

2.3.3.5 RM0 (Fig.2.2(b))

AdjointBackMap deploys on the weight vectors {wk} where k denotes class index in the FC

layer of the CNN. The output value for class k (before going through an activation) is determined

by an effective hyperplane HAdj
k (z(x)) of a shape 32× 32× 3, i.e.,

HAdj
k (z(x)) = J∗F(z(x))wk, (2.9)

where k ∈ {0, 1, ..., (N−1)}, withN denoting the number of output units of the CNN (the number

of classes).

2.3.4 Implementation

We use convolution to compute duality in Eq.(2.4) as they are equivalent, and duality can

use hardware acceleration. Due to computationally expensive Jacobian, Eq.(2.5) ∼ Eq.(2.9) are

optimized and summarized in Algorithm 1. Note: conv2d, unstack, stack, expanddim, and matmul

are functions defined in Tensorflow [45]. Padding of conv2d is the same as training. Also, conv2d

has an ‘axis’ choice to replace the transpose in Eq.(2.4).

Although an effective hyperplane acquired from AdjointBackMap is in the same space as the

original input image, the scalar element values of the effective hyperplane might not lie on the

same interval, [0, 1], as its original image. In that case, we properly normalize the value to enable

its visualization. We will explain more about this in our experiments.
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Algorithm 1: AdjointBackMap from RM4 to RM0

Input: 1. xd: input (d = H ×W × C); 2. z: function for Eq.(2.3); 3. T: pre-trained
model; 4. l: layer index; 5. s: stride during training; 6. mode: RM to be used (one
of RM0 to RM4).

Output: Effective hyperplane HAdj(z(xd))
Function AdjointBackMap(xd, z,T, l, s, L):

z0 = z(xd)
switch mode do

case ‘RM0’ do // 1. FC layer
load wfc,cin×clabels ,Fg_p,cin from T

JF =
∂Fg_p,cin
∂xd

return matmul(JF(z0), wfc,cin×clabels , axis=‘cin’)
case ‘RM4’ or ‘RM3’ do // 2. Without in-ch merge

load Fl,Hl×Wl×cin ,wl,r1×r2×cin×cout from T at l
JF,d×Hl×Wl×cin =

∂Fl,Hl×Wl×cin

∂xd

wu = unstack(wl,r1×r2×cin×cout , axis=‘cin’)
JF,u = unstack(JF,d×Hl×Wl×cin , axis=‘cin’)
Empty container R, j = 0
while j < cin do

JF = expanddim(JF,u[j], axis=‘cin’)
w = expanddim(wu[j], axis=‘cin’)
R.append(conv2d(JF(z0), w, stride=s, axis=‘(Hl,Wl, cin, cout)’))
j = j + 1

hd×Ho×Wo×cin×cout = stack(R, axis=‘cin’)
if mode is ‘RM4’ then // 2.1. without g_p

return hd×Ho×Wo×cin×cout

else if mode is ‘RM3’ then // 2.2. with g_p
return sum(hd×Ho×Wo×cin×cout , axis=‘(Ho,Wo)’)

case ‘RM2’ or ‘RM1’ do // 3. With in-ch merge
load Fl,Hl×Wl×cin ,wl,r1×r2×cin×cout from T at i
JF =

∂Fl,Hl×Wl×cin

∂xd

hd×Ho×Wo×cout = conv2d(JF(z0), wl,r1×r2×cin×cout , stride=s,
axis=‘(Hl,Wl, cin, cout)’)

if mode = ‘RM2’ then // 3.1. without g_p
return hd×Ho×Wo×cout

else if mode = ‘RM1’ then // 3.1. with g_p
return sum(hd×Ho×Wo×cout , axis=‘(Ho,Wo)’)

return NULL
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2.4 Proof of Eq.(2.3)

We prove that Eq.(2.3) holds for z(x) = kx, for some k ∈ R+ when the neural network (with-

out any bias) is activated with either ReLU or Leaky ReLU. We only prove F(x) = JF(z(x))x

since the rest is trivial.

For any single convolutional layer l, without loss of generality, a pixel p of the feature map is

activated after in-channel (in-ch) kernels wl,r1×r2×cin are convolved on their in-ch receptive field

feature maps xl−1,r1×r2×cin (Eq.(2.1), Eq.(2.4)),

c =
∑
j

〈xl−1,r1×r2,j | wl,r1×r2,j〉 ,

ρ = σ(c),

(2.10)

where j denotes in-ch index and σ is an activation function (either ReLU or Leaky ReLU). Also,

∑
j

〈
xl−1,r1×r2,j

∣∣∣∣ ∂c

∂xl−1,r1×r2,j

〉
=
∑
j

〈xl−1,r1×r2,j | wl,r1×r2,j〉 = c. (2.11)

From the above, we have

∑
j

〈
xl−1,r1×r2,j

∣∣∣∣∣∣ ∂p

∂xl−1,r1×r2,j
z(xl−1,r1×r2

)

〉

=
∑
j

〈
xl−1,r1×r2,j

∣∣∣∣dpdcwl,r1×r2,j

〉

=

 r, kc < 0

c, kc ≥ 0
, k ∈ R+

= ρ.

(2.12)

where r = 0 for the ReLU, or r = −0.2c for the default Leaky ReLU in TensorFlow. Hence,

fl(xl−1) = Jfl(z(xl−1))xl−1 holds for any receptive field of convolutional layers (fl depicts a map-

ping from in-ch features to its activated out-channel (out-ch) features in the lth layer). Also, it
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holds for any avg- or max-pooling layer (Avg pooling is equivalent to convolving feature map-

s with an averaging kernel, and max pooling is equivalent to convolving with a one-hot kernel.)

Then, stacked layers of convolutions can be simplified as multiplications (×) of Jacobian matrice,

i.e.,

F(x) = fl(xl−1) = Jfl(z(xl−1))xl−1

= Jfl(z(xl−1))× ...× Jf1(z(x0))× Jf0(z(x))x

= JF(z(x))x,

(2.13)

which works pointwise for any image vector x.

We mention two things:

1. The proof also works for activation functions having piecewise constant derivatives when

k = 1 is applied;

2. Although our theory requires no bias, it does not imply we cannot have any bias at all. In fact,

we can alleviate the limitation with “equivalent bias” by incorporating the bias into CNN’s

input. For example, considering a CNN that takes an affine image x
′ (the normalization of

an image x) as the input,

x
′
= kx + b, k > 0, (2.14)

and generates two output values to classify a binary outcome {0, 1}. By the above proof and

Eq.(2.19), its decision boundary C is,

C = {x | 〈kx + b | hk=0(x
′
)〉 ≥ 〈kx + b | hk=1(x

′
)〉}

= {x | k〈x | hk=0(x
′
)− hk=1(x

′
)〉+ b× (hk=0(x

′
)− hk=1(x

′
)) ≥ 0},

(2.15)

where hk∈{0,1} is the effective hypersurface that determines the CNN’s output value. Here

b × (hk=0(x
′
) − hk=1(x

′
)) serves as an equivalent bias for the CNN’s decision boundary.

This equivalent form allows bias to be incorporated into our theory.
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2.5 Experiments

Below, we discuss how we conduct experiments on CNN models (without bias) using Adjoint-

BackMap.

2.5.1 Pre-trained model

We discuss how we trained our CNN models for subsequent analysis using AdjointBackMap.

2.5.1.1 Dataset

We used CIFAR-10 [46] as our dataset. The CIFAR-10 dataset contains 50, 000 32× 32 RGB

(value range [0, 1]) images for training and 10, 000 for testing, and there are 10 classes. All images

are normalized with RGB means (0.4914, 0.4822, 0.4465) and standard deviations (0.2023, 0.1994,

0.2010) [1]. We separated the 50, 000 samples into one training set and one validation set with a

ratio of 9 : 1, i.e., 45, 000 and 5, 000, respectively. All analyses were conducted on the test set.

2.5.1.2 Data augmentation

We used data augmentation for training. An input color image goes through random flipping

of left to right, random adjustment of saturation within [0.0, 2.0], random adjustment of contrast

within [0.4, 1.6], random adjustment of brightness with 0.5, resizing to 36 × 36 × 3, and then

randomly cropped to 32× 32× 3.

2.5.1.3 Model

We used two models: (1) VGG [11] with 7 activation layers (VGG7, without bias) and (2) 20-

layer ResNet with fixup initialization [1] [47](Fixup-ResNet20), with weight rescaling and without

bias, the same as Figure 1 (Middle) of [1]. The learnable parameters of VGG7 and Fixup-ResNet20

are listed as tables A.1 and A.2 (Appendix), respectively.

2.5.1.4 Cost and accuracy

We regularized the kernels by L1 (factor 10−4). We used cross-entropy with softmax as a cost.

Accuracy was measured by a prediction index (the predicted class) being exactly matched with its

label (Top-1 accuracy).
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2.5.1.5 Training, validation, test

We trained and validated VGG7 and Fixup-ResNet20 with GD (gradient descent) optimizer on

an RTX2080Ti GPU. The batch size was 100. We list additional details in Table 2.1. We trained

with different learning rates or epochs so that both models could learn sufficiently. We trained with

45, 000 samples every epoch and validated the trained model on 5, 000 samples every two epochs,

and the trained models would be saved if a higher validation accuracy was achieved. We tested the

models on the CIFAR-10’s test set. The last column in Table 2.1 shows the test accuracy of the

two models. Although these accuracy results are modest, since the main focus of our work is on

the analysis of trained CNNs, these were deemed sufficient for our purpose.

Model/LR intervals 1st interval 2nd interval 3rd interval Total Test Acc
VGG7 2× 10−4, [0, 199] 10−4, [200, 249] 5× 10−5, [250, 300] 301 85.6%

Fixup-ResNet20 2× 10−3, [0, 99] 10−3, [100, 149] 5× 10−4, [150, 200] 201 90.3%

Table 2.1: Details of training schedule (learning rate: LR) and results for VGG7/Fixup-ResNet20.
“2× 10−4, [0, 199]” denotes that the learning rate (LR) 2× 10−4 was maintained during the 0th to
the 199th training epoch.

2.5.2 Five experiments with respect to five RMs

We first verify that k = 1
8

satisfies Eq.(2.3). With that, we conducted five visualization experi-

ments related to five RMs (we only show RM0 in the main text, and RM4 to RM1 are shown in

Appendix of [5]).

2.5.2.1 Verification of k = 1
8

(i.e., z(x) = kx = 1
8
x) satisfying Eq.(2.3)

Generally, we use Eq.(2.1) and (2.7) to experimentally verify Eq.(2.3) on two types of layers:

1. On every convolutional layer;

2. On the fully connected (FC) layer.
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2.5.2.1.1 On every conv layer: A convolutional layer (except the first layer) is equipped with k-

ernels, wr1×r2×cin×cout , which convolve the in-ch feature maps (F(x))Hl×Wl×cin for an input image

x (shape: 32 × 32 × 3). The hyperplanes returned from RM2 of Algorithm 1 are {HAdj
s,i (z(x)) |

s ∈ {0, 1, ..., (Hl×Wl−1)}, i ∈ {0, 1, ..., (cout−1)}}. For our trained VGG7 or Fixup-ResNet20,

we verify that setting k = 1
8

(so that HAdj
s,i (z(x)) = HAdj

s,i (x
8
)) leads to

cs,i = ((F(x))Hl×Wl×cin ~ wr1×r2×cin,i)s︸ ︷︷ ︸
A unit’s actual value from a conv layer

= 〈x | HAdj
s,i (z(x))〉︸ ︷︷ ︸

The reconstructed value through a dot-product

= ps,i, (2.16)

where ()s denotes taking a real value from () at a stride move s. Verifying RM2 is equivalent to

verifying RM4, RM3, RM1.

2.5.2.1.2 On the FC layer: Suppose ck denotes an activation value for the class index k of the

FC layer, i.e., ck = Fk(x). Algorithm 1 works on the weights of the FC layer with RM0 to

generate a hyperplane, HAdj
k (z(x)), where z(x) = x

8
. According to Eq.(2.9) and (2.1), we verify

that,

ck = Fk(x)︸ ︷︷ ︸
A predicted class value from the FC layer unit k

= 〈x | HAdj
k (z(x))〉︸ ︷︷ ︸

The reconstructed class value of unit k through a dot-product

= pk. (2.17)

2.5.2.1.3 Experiment: We validate Eq.(2.16) and (2.17) on the CIFAR-10’s 10, 000 test sam-

ples. Since errors are inevitable in decimal computation using the single-precision floating-point

(32-bit float, FP32 for short) data type, we calculate the relative errors between feature map u-

nits (or 10 output units of the FC layer), ci, and the dot-product-based reconstructed values pi

(Eq.(2.16) or (2.17)) as

ei =
pi − ci
ci, 6=0

, (2.18)

where i ∈ {0, 1, ..., (cout − 1)} (or i ∈ {0, 1, ..., 9}) denotes the ith out-ch feature map (or the ith

unit value of the FC layer before ReLU6); ci, 6=0 substitutes all zeros inside ci with the smallest

positive number of the FP32 data type to avoid any divide by zero exception.
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2.5.2.1.4 Results: We show 6 histograms of relative errors of VGG7 in Fig.2.4 (5 conv layers +

1 FC layer = 6), and 19 histograms of relative errors in Fixup-ResNet20 in Fig.2.5 (18 conv layers

+ 1 FC layer = 19). The size of each layer (the out-ch feature maps) is shown in the 3rd column of

table A.1 (VGG7) and the 4th column of table A.2 (Fixup-ResNet20), Appendix. We collect a set

of relative error values from each layer in the two models (a total of 6 + 19 layers), then compute

the histograms from these sets. In sum, the histograms verify that HAdj
s,i (z(x)) and HAdj

k (z(x))

achieve Eq.(2.3) with over 99.99% of the relative errors being ≤ 0.01 in both convolutional layers

and the FC layer of both models (VGG7 and Fixup-Resnet20). Therefore the results confirm that

AdjointBackMap successfully reconstructs effective hypersurfaces that precisely determine either

the feature map or the FC output.

Thus we conclude that our model satisfies Eq.(2.3) when z(x) = x
8
.

(a1) Conv1 (a2) Conv2 (a3) Conv3 (a4) Conv4 (a5) Conv5 (a6) FC

Figure 2.4: Histograms of relative errors between units directly computed by CNN (ci) and their
values reconstructed by our method (pi), from Conv1∼5 layers and the FC layer (before ReLU6)
of VGG7 (Eq.(2.16), (2.17)). Data were collected from 10k test samples. The x-axis is the error,
and the y-axis is the frequency. The total count varies depending on the out-ch feature map size
(see table A.1, 3rd column). From (a1) to (a6), the percentage of relative errors (Eq.(2.18)) being
≤ 1% are 99.9996%, 99.9996%, 99.9996%, 99.9989%, 99.9989%, 99.996%, respectively.

2.5.2.2 Visualization of RM0:

RM0 works on the FC layer’s weights to generate a set of hyperplanes {HAdj
k (z(x))}9k=0 (E-

q.(2.9)), one for each final FC layer output unit. Each HAdj
k (z(x)) represents an effective hyper-

plane that determines the kth value of the FC output (VGG7: before ReLU6, Fixup-ResNet20:

before ReLU19). That is, the VGG7 (or Fixup-ResNet20) taking an image and passing forward
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(a1) Conv1 (a2) Conv2 (a3) Conv3 (a4) Conv4 (a5) Conv5 (a6) Conv6 (a7) Conv7

(a8) Conv8 (a9) Conv9 (a10) Conv10 (a11) Conv11 (a12) Conv12 (a13) Conv13 (a14) Conv14

(a15) Conv15 (a16) Conv16 (a17) Conv17 (a18) Conv18 (a19) FC

Figure 2.5: Histograms of relative errors between units directly computed by CNN (ci) and their
values reconstructed by our method (pi), from Conv1∼18 layers and the FC layer (before ReLU19)
of Fixup-ResNet20. The plotting convention is the same as Fig.2.4. The total count varies depend-
ing on the out-ch feature map size (see table A.2, 4th column). From (a1) to (a19), the percentages
of relative errors (Eq.(2.18)) being ≤ 1% are greater or equal to 99.997%.

through layers to make a prediction is equivalent to doing ten inner products between the image

and our reconstructed hyperplanes {HAdj
k (z(x))}9k=0. Note that each HAdj

k (z(x)) has a shape of

32 × 32 × 3, the same as the input image. We apply the same visualization techniques as RM4

(Appendix of [5]).

2.5.2.2.1 Results: We use two images (ship, frog) (same as those used for RM4 in the Ap-

pendix of [5]). Also, we use an additional image that has the same ship label. The results are

shown in Figures 2.6, 2.7. See Section 2.5.3 below for an interpretation of these results.

2.5.3 Interpretation of results

As the layer goes high, the effective receptive field enlarges. (Effective receptive field refers to

the receptive field region in the input image that contributes to the unit’s computation: see [33] for

details.) It is evident from the plots of both RM4 and RM2 (Appendix of [5]: in each grid cell,

the non-black areas mark the effective receptive field). The reason is that if a kernel in Conv0 has a

shape of 3×3, the same size kernel in Conv1 actually will have a maximal effective receptive field
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of 5 × 5 from the original input perspective because of stride = 1, and this trend continues as we

go up the hierarchy. However, few kernels fully utilize their effective receptive fields. Some layer

has a kernel that takes null from the input image (its effective receptive field blacks out), which

makes HAdj
{s},j,i(z(x)) very sparse (eq.(20) in Appendix of [5]).

[48] has explored CNN’s inner workings in the frequency domain. Several examples in their

Figure 2 have illustrated that the high frequency “noise” filtered from an input image can convince

CNN of the label while the image’s low-frequency content, recognizable for our vision, deceives

the CNN. They concluded that CNN might exploit the high-frequency image components which

are not perceivable to humans. Our reconstructions of units’ decision process observe that effective

hyperplanes, regardless of the reconstruction mode (RM4 to RM0), are not human recognizable

patterns in the spatial domain either. For example, patterns of HAdj
k=8(z(x)) (k = 8 is the image’s

label) in Figures 2.6(a,b), 2.7(a, b) show neither a clear ship shape nor a rough contour of a ship.

Also, hyperplane patterns of Fig.2.6(a) (or Fig.2.7(a)) are significantly different from Fig.2.6(b)

(or Fig.2.7(b)), although they are for the same class (ship) input. We also observe that these

hyperplane patterns have strong amplitudes in higher frequency ranges. FFT results, presented in

Figures 2.8, 2.9, and 2.10, show that an effective hyperplane has much wider spectra than those

in the input image, which implies that CNN indeed takes higher frequency information that may

not be perceivable to our humans, confirming the observation in [48]. We further note that RM3

and RM1 (Appendix of [5]) have object-like colored shapes at low-level convolutional layers.

However, they gradually turn to irregular pixels as the layer goes high. Even the same kernel

shows different hyperplane patterns dependent on the stride location. This means that a kernel

may decide differently from what appears in the input image when it moves to a different receptive

field, although the kernel itself does not physically change during the strides. All of the above

considered, we can conclude that the CNN’s decision is sensitive to values in each input image

pixel.

As the proof (Section 2.4) of Eq.(2.3) reveals, changing an input image x forces HAdj(z(x))

to vary at the same time. This has been experimentally tested in Figures 2.4, 2.5. Specifically,
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given VGG7’s or Fixup-ResNet20’s entire computation on input image x denoted as N , for each

kth class value, Nk(x), we have

Nk(x) = 〈x | HAdj
k (z(x))〉. (2.19)

Therefore, the CNN decision process is largely conditioned on the input.
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(a) {HAdj
k (z(x0))}9k=0, VGG7 (x0) Ship

(b) {HAdj
k (z(x1))}9k=0, VGG7 (x1) Ship

(c) {HAdj
k (z(x2))}9k=0, VGG7 (x2) Frog

Figure 2.6: Visualization of RM0 on VGG7. HAdj
k (z(xi)) patterns are mapped from the FC layer

(Eq.(2.9)) by RM0 (three figures: a, b, c, and the corresponding inputs: x0,x1,x2). The number
of subfigures in a plot equals the number of classes.
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(a) {HAdj
k (z(x0))}9k=0, Fixup-ResNet20 (x0) Ship

(b) {HAdj
k (z(x1))}9k=0, Fixup-ResNet20 (x1) Ship

(c) {HAdj
k (z(x2))}9k=0, Fixup-ResNet20 (x2) Frog

Figure 2.7: Visualization of RM0 on Fixup-ResNet20. Details are similar to Fig.2.6.
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Red-ch FFT Green-ch FFT Blue-ch FFT (x0) Ship

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=8(z(x0)), VGG7

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=8(z(x0)), ResNet20
(a) (b) (c) (d)

Figure 2.8: Comparison of FFTs of the input image vs. those of the CNNs’ effective hyperplanes
(k = 8, “ship” class). Columns (a)-(c) show the FFTs (Fast Fourier Transform, without the DC
component) of the data in column (d). Since both the input image (top row, “Ship”) and the hy-
perplanes (second and third rows, for VGG7 and Fixup-ResNet20) have RGB channels, FFTs of
the three separate channels are shown. The ship image’s spectrum has a very strong low-frequency
component (the first row), while those of the hyperplanes have stronger amplitudes in higher fre-
quency ranges (the second and third rows).
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Red-ch FFT Green-ch FFT Blue-ch FFT (x1) Ship

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=8(z(x1)), VGG7

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=8(z(x1)), ResNet20
(a) (b) (c) (d)

Figure 2.9: Comparison of FFTs of the input image vs. those of the CNNs’ effective hyperplanes
(k = 8, “ship” class). See Fig.2.8 for details.
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Red-ch FFT Green-ch FFT Blue-ch FFT (x2) Frog

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=6(z(x2)), VGG7

Red-ch FFT Green-ch FFT Blue-ch FFT Hk=6(z(x2)), ResNet20
(a) (b) (c) (d)

Figure 2.10: Comparison of FFTs of the input image vs. those of the CNNs’ effective hyperplanes
(k = 6, “frog” class). See Fig.2.8 for details.
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3. MODELING CNN WITH BIAS

3.1 Overview

Applying adjoint operators to a general CNN is intractable since bias is usually added right

after convolution. However, this challenge can be addressed [49] if we treat bias as another input

component that multiplies with a weight value = 1.0 (Fig.3.1). This way, we preserve the exact

computation of the CNN with bias units while maintaining our previous analysis framework for

CNN without bias units. This is all fine since we are dealing with an already trained, weight-fixed

CNN for analysis only.

Figure 3.1: Two equivalent models of a trained artificial neuron. Left: A conventional artificial
neuron with two inputs x0, x1, whose weights arew0, w1, respectively. Node b denotes a bias. Node
s denotes a summation unit, and node n denotes an activation function. Middle: An equivalent
model to the left. We treat the bias b as the product of the additional input xb = 1, and a weight
w2 = b. Right: Another equivalent model to the left. We treat bias b as the third input xb = b but
multiplying a weight w2 = 1. Our analysis uses the last model.

3.2 Theory

We will discuss how we model the usual convolution (with bias) in CNN. Although the intuitive

idea to map any unit’s kernel or weights back to the input space is similar to the one discussed in
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Figure 3.2: An equivalent model of a trained 4-layer CNN (proved in Eq.(3.19), Section 3.4). Top:
A CNN consists of three Conv layers, one global pooling layer, and one FC layer. Once training
is finished, all parameters will be fixed. Bottom: We convert the trained CNN to an equivalent
model. In this case, the bias values from all layers are sequentially concatenated as a big vector,
xb = [b0; b1; b2; b3]. That vector will be fed in as an additional input tensor. Each layer picks
its own bias from the xb to compute. xb[bi] denotes that the corresponding part for bi will be
recovered from the tensor xb. Note: xb is fixed after the CNN is trained, regardless of the input xn
presented during inference.

Section 2.2, the mathematical scaffold in this section will differ from the previous case due to the

incorporated bias term.

Let XI and Xb be two subspaces containing input images and the collected bias values, respec-

tively. We can then construct a normed space X where X = XI×Xb. A point in this space X

would be a concatenation of the input image xn and the vector xb containing all bias values from

the trained CNN: [xn; xb] (see Fig.3.2). We consider an element-wise inner product in X (induces

the norm on X ) defined as,

〈[xH×W×C ; bL×1] | [yH×W×C ; dL×1]〉 =
H−1∑
i=0

W−1∑
j=0

C−1∑
k=0

xi,j,kyi,j,k +
L−1∑
l=0

bldl

= 〈xH×W×C | yH×W×C〉+ 〈bL×1 | dL×1〉,

(3.1)

where H,W,C means the height, width, and color channels of the input image; and L is the total

number of bias values in the CNN. The first equivalence is by definition, and we use the second
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equivalence for tensor implementation.

To follow the description below, please refer to Fig.3.3 as you go along. Suppose F is the entire

computation performed in a CNN’s forward path from an input to an r1 × r2 receptive field on an

in-channel (in-ch) feature map (depicted by a normed space Y); Bias vectors from all layers in the

trained CNN are sequentially concatenated into a vector xb (Fig.3.2). F takes the combination of

an image xn ∈ XI and the vector xb ∈ Xb as the input. Then, a kernel wr1×r2 convolving on the

receptive field, F([xn; xb]), before adding the bias vector, can be described in a dual form [42, 43],

c([xn; xb]) = F([xn; xb]) ~ wr1×r2

= 〈F([xn; xb]),wr1×r2〉 = 〈JF(z([xn; xb]))[xn; xb],wr1×r2〉,
(3.2)

where c : X → R points to a unit in the convolved feature map (before the addition of the bias);

JF : X → B(X ,Y) is a Jacobian operator; The third “=” holds when the CNN is activated with

ReLU or Leaky ReLU, and z([xn; xb]) = k[xn; xb] for an appropriate k ∈ R+ (proved in Section

3.4). Eq.(3.2) implies that wr1×r2 (∈ Y∗) is a local hyperplane on Y (see [5]).

For a fixed image x0, and the vector xb constructed from a trained CNN, the Adjoint operator

J∗F(z([x0; xb])) will lead to the following equalities:

c([x0; xb]) = 〈JF(z([x0; xb]))[x0; xb],wr1×r2〉 = 〈[x0; xb] | J∗F(z([x0; xb]))wr1×r2〉

= 〈[x0; xb] | Jᵀ
F(z([x0; xb]))wr1×r2〉

= 〈x0 | (Jᵀ
F(z([x0; xb]))[x0])wr1×r2〉+ 〈xb | (Jᵀ

F(z([x0; xb]))[xb])wr1×r2〉

(3.3)

where Jᵀ
F(z([x0; xb]))[x0],J

ᵀ
F(z([x0; xb]))[xb] intends to divide the adjoint operator into two parts

(two operators) in response to x0 and xb; The second “=” and the last “=” holds thanks to the

Riesz Representation theorem [43] and the distributive property of a linear operator, respectively.

Riesz Representation also contributes to the unification of X and X ∗ or Y and Y∗. Therefore,

we have wr1×r2 ∈ Y and J∗F(z([x0; xb])) ∈ B(Y ,X ). The two operators (Eq.(3.4)) will map a

convolution kernel from a convolutional layer or a weight vector from the FC layer all the way
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back to the image subspace XI and the bias subspace Xb, respectively.

J∗F(z([x0; xb]))[x0]wr1×r2 ∈ XI ,

J∗F(z([x0; xb]))[xb]wr1×r2 ∈ Xb.
(3.4)

The two will jointly reconstruct an effective hypersurface representing all decision hyperplanes

forward from the input to an arbitrary unit of the out-ch feature map or a class value of the FC

layer. We name this method AdjointBackMapV2 and observe these three fundamental properties:

1. The mapping, JF(z([xn; xb])) (i.e., (JF)◦(z) : X → B(X ,Y)), is not linear since ∃x1,x2 ∈

XI , such that, JF(z(α[x1,xb] + β[x2,xb])) 6= αJF(z([x1,xb])) + βJF(z([x2,xb])) for two

scalars, α, β;

2. Eq.(3.4) suggests a single effective hyperplane will have two components instead of two

separate effective hyperplanes;

3. A connection to the theory of [5] comes from Eq.(3.3) that, if all bias were zeroed out from

the CNN’s layers, the extended norm space X would shrink to the XI that is identical to the

input space discussed in [5]. In other words, AdjointBackMapV2 is more general than our

previous theory introuduced in Section 2.2.

3.3 Algorithm

This section will rewrite our previous algorithm (Section 2.3) to fit the more general theory.

3.3.1 Layers considered for analysis

The AdjointBackMapV2 is designed to work on two types of layers inside a CNN. Fig.3.3

illustrates our principles in detail.

1. Any kernel of a convolutional layer (except the kernels from the first layer, which have al-

ready been elements in X ∗) can be projected back to a joint space X concatenating the input

images and bias vectors. This back-mapped pattern determines the pixel’s linear activation

value (the weighted sum) of an out-channel (out-ch) feature map;
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2. Any weight vector of the FC layer can also be projected back to space X . This back mapped

pattern determines the linear activation value of the classification output unit.

(a) (b)

Figure 3.3: Principles of AdjointBackMapV2. Our reconstruction method applies to units in (a)
Conv layers, and (b) FC layers. We color elements from the same normed space identically. The
normed space X is an input space that involves two embedded subspaces XI and Xb. Considering
a fixed image x0 ∈ XI and the trained bias values in the CNN (a fixed xb ∈ Xb), F depicts the
CNN’s forward computation path from the input end to an r1×r2 receptive field on an in-ch feature
map or the global pooling layer. Its adjoint operator, J∗F(z([x0; xb])), projects the corresponding
kernel or weights back to the input space X . Riesz Representation unites X ,X ∗ or Y ,Y∗, together.
The “〈· | ·〉” notation represents a dot-product defined in Eq.(3.1). The symbol “=” means that
a dot-product between the extended input and the reconstructed effective hyperplane is equal to
the unit’s linear activation value (the weighted sum) of a convolved feature map or an FC layer’s
output value, as long as the CNN is activated with ReLU or Leaky ReLU. See Section 3.2 for a
step-by-step walk-through.

3.3.2 Premise

Our algorithm’s necessary condition is the third equality (“=”) between the left and right-

hand sides in Eq.(3.2). Alternatively, any CNN neuron holding Eq.(3.26) should satisfy our re-

quirements. The proof in Section 3.4 reveals that any piecewise linear operations attached to
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a CNN’s layers will not affect the equality. Thus, usual architectural techniques like shortcut-

s/concatenations/multiple receptive-field kernels’ sizes fall under the scope of our analysis. In that

case, most variants of CNNs activated with ReLUs or Leaky ReLUs could be analyzed with our

method. Our method may not be appropriate for investigating a network activated with functions

whose derivatives are not piecewise constants, such as tanh. In general, we insist that numerical

precision should be considered when studying a CNN’s inner workings (i.e., the method should

reproduce the output values precisely), while existing methods of shaping a kernel as a filter did

not achieve this.

3.3.3 Incorporating batch normalization

Usually, bias serves CNNs in two operational modes:

1. Acting as trainable parameters attached after convolution operations;

2. Used as moving parameters that track channel-wise average batch values (BN, batch nor-

malization [50]).

The first one has a similar network topology as Fig.3.2, which is trivial for our theory to accommo-

date. The batch normalization case is more complex than the first. In the lth layer, the in-channel

(in-ch) feature maps xl−1 will convolve with the layer’s kernels wl. The moving mean vector, µ,

and moving variance vector, σ2, will normalize the convolved results before activating the layer’s

neuron. We summarize the BN computation below.

BN(xl−1) = γ × (xl−1 ~ wl − µ)√
σ2 + ε

+ β, (3.5)

where γ, β are two learnable parameters that weight feature maps channel-wise; a preset ε prevents

any divide by zero exceptions (TensorFlow [45] sets ε = 0.001). We can reduce its complexity
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using Eq.(3.6) (Fig.3.4),

BN([xl−1; b
′
]) = xl−1 ~ w

′

l + b
′

w
′

l =
(γ ×wl)√
σ2 + ε

, b′ = (β − γ × µ√
σ2 + ε

).
(3.6)

It suggests that a CNN trained to use BNs is equivalent to a similar network graph illustrated in

Fig.3.2 if w
′

l and b
′ are extracted from the trained CNN’s batch normalization layer. Therefore,

applying our theory to a CNN with BNs is as trivial as the first bias operational mode. Besides,

Eq.(3.6) significantly reduces both computations and DRAM consumption since fewer multiplica-

tions and parameters are required when compared to Eq.(3.5). Note that transformation is possible

since we deal with a trained and fixed CNN.

(a) (b)

Figure 3.4: Batch normalization (BN) and its reduction. (a) A standard BN’s implementation from
Eq.(3.5); (b) Reduction of BN to be compatible with our analysis (similar to Fig.3.2, via Eq.(3.6)).
Besides, this transformation lowers the computations and DRAM consumption.

3.3.4 Five reconstruction modes (RMs)

Our AdjointBackMapV2 approach provides five reconstruction modes (RMs) to reconstruct the

effective hypersurface, depending on the location of the unit in the CNN, and on the convolution

operation’s variant: RM0 will project from the FC layer, and the remaining four (RM4~RM1)

will project from a convolutional layer. For the four, generally, two factors will distinguish one

RM from others:
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1. With or without in-ch merge during convolution;

2. With or without global pooling.

All RMs and their algebraic relationships between the forward and backward paths are illustrated in

Fig.3.5. Note: although the factors for classifying this section’s RMs are similar to those mentioned

in [5], their principles are significantly different from [5]’s due to bias being considered.

To help keep track of the steps in the following, we use concrete numerical values. Suppose

a CNN with Leaky ReLU as its activation function has been trained on CIFAR-10. It takes a

32 × 32 × 3 (height × width × channels) RGB image xn to predict 10 classes. Its lth Conv layer

has kernels wl,3×3×32×64 (h×w× in-chs× out-chs) convolving on 16×16×32 in-ch feature maps

with convolution stride = 2 and padding = “SAME” [45]. The implementation of 2-D convolution

[45] states: a kernel w3×3 only convolves on its corresponding 16× 16 in-ch feature map through

8×8 (a stride move s ranges from 0 to 63). Then, all 32 convolved feature maps are added together

in-channel-wise (in-ch summation) as an 8× 8 out-ch feature map that will be subsequently added

to the bias. Thus, the lth layer is supposed to produce an 8× 8× 64 out-ch feature map. Besides,

it may have global pooling [4] (g_p) applied right after the activated feature maps, before entering

the FC layer.

3.3.4.1 RM4 (Fig.3.5(a))

Neither merging nor global pooling is performed on either in-ch kernels or training strides. In

this case, a kernel will be individually mapped via HAdj
l,s,j,i, composed of HAdj,I

l,s,j,i and HAdj,b
l,s,j,i, to space

X , defined as:

HAdj,I
l,s,j,i(z([xn; xb])) = (J∗Fl−1,s,j,i

(z([xn; xb]))[xn])wl,3×3,s,j,i,

HAdj,b
l,s,j,i(z([xn; xb])) = (J∗Fl−1,s,j,i

(z([xn; xb]))[xb])wl,3×3,s,j,i

s ∈ {0, 1, ..., 63}, j ∈ {0, 1, .., 31}, i ∈ {0, 1, ..., 63},

(3.7)

where Fl−1,s,j,i denotes the forward path from the input end to an in-ch 3 × 3 receptive field

that will be convolved to the (j, i) out-ch unit at the stride move s. HAdj
l,s,j,i reflects how the lo-
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cal kernel behaves on the combined image and bias input when the stride moves. 〈[xn; xb] |

[HAdj,I
l,s,j,i(z([xn; xb])); H

Adj,b
l,s,j,i(z([xn; xb]))]〉 should be equal to the unit’s value before the in-ch sum-

mation. Fig.3.3(a) shows the details as well.

3.3.4.2 RM3 (Fig.3.5(b))

No merging is taken on any in-ch kernel’s convolution. But, global pooling will be applied

for mapping, i.e., the effective hypersurfaces from an individual kernel sum together pixel-wise

to reconstruct an effective hypersurface, HAdj
l,j,i. That effective hypersurface describes the local

kernel’s weighting on the input space, considering all stride moves merged. In other words, it

reveals how a feature sum could be generated from the space X ’s perspective, when an in-channel

convolved feature map is pooling globally, i.e.,

63∑
s=0

Fl−1,s,j,i([xn,xb]) ~ wl,3×3,s,j,i = 〈[xn; xb],H
Adj
l,j,i(z([xn; xb]))〉

= 〈xn,
63∑
s=0

(J∗Fl−1,s,j,i
(z([xn; xb]))[xn])wl,3×3,s,j,i〉

+〈xb,
63∑
s=0

(J∗Fl−1,s,j,i
(z([xn; xb]))[xb])wl,3×3,s,j,i〉,

(3.8)

where the distributive law and linearity in dual space support the last “=”. Thus, HAdj
l,j,i is composed

of two operators: HAdj,I
l,j,i and HAdj,b

l,j,i ,

HAdj,I
l,j,i (z([xn; xb])) =

63∑
s=0

HAdj,I
l,s,j,i(z([xn; xb])),

HAdj,b
l,j,i (z([xn; xb])) =

63∑
s=0

HAdj,b
l,s,j,i(z([xn; xb])).

(3.9)

The relationship to RM4 is evident from Eq.(3.9) (i.e., summation of Eq.(3.7) over s).

3.3.4.3 RM2 (Fig.3.5(c))

We do not apply the global pooling. Instead, the kernels’ back maps will merge in-channel-

wise to reconstruct an effective hypersurface HAdj
l,s,i that determines the unit’s linear activation value
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of an out-ch feature map. Its two operators, HAdj,I
l,s,i and HAdj,b

l,s,i , are defined below,

HAdj,I
l,s,i (z([xn; xb])) =

31∑
j=0

HAdj,I
l,s,j,i(z([xn; xb])),

HAdj,b
l,s,i (z([xn; xb])) =

31∑
j=0

HAdj,b
l,s,j,i(z([xn; xb])).

(3.10)

Eq.(3.10) also relates RM2 to RM4 (i.e., summation of Eq.(3.7) over j).

3.3.4.4 RM1 (Fig.3.5(d))

We map with both merging and global pooling considered. Then, a reconstruction will be con-

ducted using HAdj
l,i that determines the linear activation value of the feature maps for the global-

pooling layer. Its two parts, HAdj,I
l,i and HAdj,b

l,i , and their relationships to RM3, RM2 are summa-

rized below.

HAdj,I
l,i (z([xn; xb])) =

31∑
j=0

HAdj,I
l,j,i (z([xn; xb])) =

63∑
s=0

HAdj,I
l,s,i (z([xn; xb]))

HAdj,b
l,i (z([xn; xb])) =

31∑
j=0

HAdj,b
l,j,i (z([xn; xb])) =

63∑
s=0

HAdj,b
l,s,i (z([xn; xb])).

(3.11)

3.3.4.5 RM0 (Fig.3.3(b))

Mapping an FC weight vector wk is independent of the factors that govern the convolution

operation. An effective hypersurface HAdj
k (z([xn; xb])) reconstructed in this way represents the

whole decision process towards a predicted value for the kth class. HAdj
k consists of two operators

HAdj,I
k and HAdj,b

k (k ∈ {0, 1, ..., 9}) as well.

HAdj,I
k (z([xn; xb])) = (J∗Fg_p

(z([xn; xb]))[xn])wk,

HAdj,b
k (z([xn; xb])) = (J∗Fg_p

(z([xn; xb]))[xb])wk.

(3.12)
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(a) RM4 (b) RM3

(c) RM2 (d) RM1

Figure 3.5: Two factors (in-ch merge & global pooling (g_p)) determine four RMs involved in the
Conv layers. (a) RM4: Without either in-ch merge or g_p; (b) RM3: Without in-ch merge and
with g_p; (c) RM2: With in-ch merge but without g_p; (d) RM1: With both in-ch merge and
g_p. The usage of colors is similar to Fig.3.3. An oversized pink mask in either (b) or (d) denotes
an effective hypersurface reconstructed in response to a stride-wise summation of the convolved
feature map. The symbol “〈· | ·〉” refers to the inner product defined in Eq.(3.1).

3.3.5 Implementation

Computing a jacobian is expensive, and we still use convolution to accelerate our effective

hypersurface reconstruction. Since we consider bias this time, the computational procedures are

different from the previous one (Algorithm 1). Eq.(3.7)~(3.12) are optimized and compiled in
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Algorithm 2. The paddings should be identical to those used during training. Tensorflow [45]

functions matmul, unstack, stack, expanddim, conv2d, sum, are used in the algorithm. The trans-

pose in Eq.(3.3) is achieved via an ‘axis’ option of the conv2d. From the algorithm we can see how

the different reconstruction modes (RMs) are related.

3.4 Proof of Eq.(3.2)

We show z([xn; xb]) = k[xn; xb](k ∈ R+) achieves the third equality (“=”) in Eq.(3.2) if the

units in the CNN are activated with ReLU or Leaky ReLU activation function. We also generalize

this conclusion to any piecewise linear activation function when k = 1 is applied.

3.4.1 Notations and concepts

Let N : XI → RK be a CNN (without the last softmax layer) with L convolutional layers,

and RH×W×C be an instance of input image space XI where H,W,C denote height, width, color

channels of an image. Suppose xn ∈ RH×W×C is an input image; The lth layer has convolutional

kernels wrl,1×rl,2×cl,in×cl,out and bias bl (0 ≤ l ≤ L− 1). We use cl(xn) to represent the convolved

feature maps with a bias vector added in the lth layer, and ĉl(xn) the vectorization of cl(xn),

where ·̂ is a vectorization operator. We use pl(xn) to represent the activated feature maps in the

lth layer (the layer has an activation σl)), and p̂l(xn) the vectorization of pl(xn). Their shapes are

cl,pl ∈ Rhl×wl×cl,in and ĉl, p̂l,bl ∈ Rml where ml = hlwlcl,in. Specifically, (h−1, w−1, c−1,in) =

(H,W,C), m−1 = HWC, and p̂−1(xn) = ĉ−1(xn) = x̂i ∈ Rm−1 . Then, their relationships can

be described as below:

cl(xn) = pl−1(xn) ~ wrl,1×rl,2×cl,in×cl,out + bl

= ĉl(xn) = Al(p̂l−1(xn)) = Wl(p̂l−1(xn)) + bl,

pl(xn) = σl(cl(xn)) = σl(ĉl(xn)) = p̂l(xn),

(3.13)

where Wl ∈ Rmt×mt−1 is the matrix representation for the layer’s convolution, and Al is an

affine operator that describes the convolution and bias addition. The neural network parameters,

{(Wl,bl)}l=L−1l=0 defines the composition of convolutions, average/max poolings (average pooling
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Algorithm 2: AdjointBackMapV2 with five modes (RM4 to RM0)
Input: 1. x: input image (shape: d1 = H ×W × C); 2. b: input bias vector concatenated

from a trained model (shape: d2); 3. z: the function for Eq.(3.2); 4. Fl: a forward
mapping to in channels of the lth layer; 5. wl: the weights at the lth layer; 6. s: the
convolution stride used during training; 7. M : RM to be used.

Output: Two parts of an effective hypersurface: HAdj,I(z([x; b])),HAdj,b(z([x; b]))
Function AdjointBackMapV2(x,b, z,F,wl, s, L):

z0 = z([x; b])
if M is ‘RM0’ then // 1. FC layer

JF,x,d1×cg_p,in ,JF,b,d2×cg_p,in =
∂Fcg_p,in

∂x
,
∂Fcg_p,in

∂b

return matmul(JF,x,d1×cg_p,in(z0), wfc,cg_p,in×clabels , axis=‘cg_p,in’),
matmul(JF,b,d2×cg_p,in(z0), wfc,cg_p,in×clabels , axis=‘cg_p,in’)

JF,x,d1×hl×wl×cl,in ,JF,b,d2×hl×wl×cl,in =
∂Fhl×wl×cl,in

∂x
,
∂Fhl×wl×cl,in

∂b

switch M do
case ‘RM4’ or ‘RM3’ do // 2. Without in-ch merge

wr1×r2×cl,out = unstack(wl,r1×r2×cl,in×cl,out , axis=‘cl,in’)
JF,x,d1×hl×wl

= unstack(JF,x,d1×hl×wl×cl,in , axis=‘cl,in’)
JF,b,d2×hl×wl

= unstack(JF,b,d2×hl×wl×cl,in , axis=‘cl,in’)
j = 0, Empty container Rx, Rb

while j < cl,in do
JF,x = expanddim(JF,x,d1×hl×wl

[j], axis=‘cl,in’)
JF,b = expanddim(JF,b,d2×hl×wl

[j], axis=‘cl,in’)
w = expanddim(wr1×r2×cl,out [j], axis=‘cl,in’)
Rx.append(conv2d(JF,x(z0), w, stride=s, axis=‘(hl, wl, cl,in, cl,out)’))
Rb.append(conv2d(JF,b(z0), w, stride=s, axis=‘(hl, wl, cl,in, cl,out)’))
j = j + 1

HI ,Hb = stack(Rx, axis=‘cl,in’), stack(Rb, axis=‘cl,in’)
if M is ‘RM4’ then // 2.1 without g_p

return HI , Hb

else if M is ‘RM3’ then // 2.2 with g_p
return sum(HI , axis=‘(hl,o, wl,o)’), sum(Hb, axis=‘(hl,o, wl,o)’)

case ‘RM2’ or ‘RM1’ do // 3. With in-ch merge
HI = conv2d(JF,x,d1×hl×wl×cl,in(z0), wl,r1×r2×cl,in×cl,out , stride=s,
axis=‘(hl, wl, cl,in, cl,out)’)

Hb = conv2d(JF,b,d2×hl×wl×cl,in(z0), wl,r1×r2×cl,in×cl,out , stride=s,
axis=‘(hl, wl, cl,in, cl,out)’)

if M = ‘RM2’ then // 3.1 without g_p
return HI , Hb

else if M = ‘RM1’ then // 3.2 with g_p
return sum(HI , axis=‘(hl,o, wl,o)’), sum(Hb, axis=‘(hl,o, wl,o)’)

return NULL
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is equivalent to convolving with rl,1 × rl,2-sized averaging kernels, and max pooling is equivalent

to convolving with rl,1 × rl,2-sized one-hot kernels), and batch normalizations inside the CNN N.

We formalize the pixel-wise activation function σl as following,

σl(c) = max(c, 0) + γlmin(c, 0),∀c ∈ R, (3.14)

where the leakiness γl = 0 implies σl being ReLU, and 0 < γl < 1 implies σl being Leaky ReLU.

The convolutional layers are terminated at l = L − 1, and the overall final output of the CNN

N(xl) ∈ RK is given by,

cL(xn) = ĉL(xn) = AL(ĉL−1(xn)) = WLĉL−1(xn) + bL

N(xn) = p̂L(xn) = σL(ĉL(xn)).

(3.15)

Combining the above, we have (◦ denotes the operator composition),

N(xn) = (σL ◦AL ◦ σL−1 ◦AL−1 ◦ ...σ1 ◦A1 ◦ σ0 ◦A0)(p̂−1(xn)). (3.16)

3.4.2 Representation of the equivalent topology in Fig.3.2

We use M =
∑L

l=0ml, which is equal to xb’s dimensions. For 0 ≤ l ≤ L, we introduce a

restriction operator rl : RM → Rml , by

rl(vb) = yl,∀vb = [y0; y1; ...; yL] ∈ RM with yl ∈ Rml . (3.17)

Note that vb is a variable vector who has an instance xb. Then, we define a sequence of auxiliary

mappings {Cl}l=L−1l=0 by the recurrence relation: for [x̂i; vb] ∈ Rm−1×RM ,

C0([x̂i; vb]) = W0x̂i + r0(vb),

Cl([x̂i; vb]) = Wl(σl−1(Cl−1([x̂i; vb]))) + rl(vb), 0 ≤ l ≤ L− 1,

CL([x̂i; vb]) = WL(σL−1(CL−1([x̂i; vb]))) + rL(vb).

(3.18)
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Combining Eq.(3.13) and (3.15), we get:

cl(xn) = ĉl(xn) = Cl([x̂i; xb]), (3.19)

where vb is replaced by xb.

3.4.3 Proof of Eq.(3.2)

From Eq.(3.17), for any [x̂i; vb] ∈ Rm−1×RM , we define a sequence of matrices {Jl([x̂i; vb])}Ll=0by

the recurrence relation:

J0([x̂i; vb]) = [W0,R0] ∈ Rm0×(m−1+M),

Jl([x̂i; vb]) = WlΣl−1([x̂i; vb])Jl−1([x̂i; vb]) + [Ol,Rl], 0 ≤ l ≤ L− 1

JL([x̂i; vb]) = WLΣL−1([x̂i; vb])JL−1([x̂i; vb]) + [OL,RL],

(3.20)

where [·, ·] is an operator that concatenates two matrices; Rl ∈ Rmt×M for 0 ≤ l ≤ L − 1,

and RL ∈ Rk×M , is the matrix representations of the restriction operator rl; Ol ∈ Rmt×m−1 is

a zero matrix; Σl([x̂i; vb]) ∈ Rmt×mt is the Jacobian matrix of ReLU or Leaky ReLU in the lth

convolutional layer, which is precisely given by,

Σl([x̂i; vb]) = diag

(
1 + γl

2
+

1− γl
2

sgn(Cl([x̂i; vb]))

)
. (3.21)

In fact, Jl([x̂i; vb]) is the Jacobian matrix of Cl at [x̂i; vb]. We point out that Eq.(3.21) performs

a hierarchal separation of the domain in the sense that, given a sequence of binary vectors e =

{el}Ll=0 with el ∈ {−1, 1}ml for 0 ≤ l ≤ L, the Jacobian matrix Jl shares on the same value on the

subdomain Ωl(e), where

Ω0(e) = Rm−1×RM ,

Ωl(e) = {[x̂i; vb] ∈ Ωl−1(e) : sgn(Cl−1([x̂i; vb])) = el}, 0 ≤ l ≤ L.
(3.22)
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As a direct consequence, for any 0 ≤ l ≤ L and k ∈ R+, we will have,

Jl(k[x̂i; vb]) = Jl([x̂i; vb]). (3.23)

Note that vb = xb is the case we discussed in Section 3.2.

With the above definitions, we can rewrite Eq.(3.18) as,

Cl([x̂i; vb]) = Jl([x̂i; vb])[x̂i; vb]. (3.24)

Together with the fact that Jl([x̂i; vb]) is piecewise constant, Eq.(3.24) reveals that Cl is a piecewise

linear function which passes through the origin in Rm−1+M . Furthermore, Eq.(3.13), (3.15) can be

rewritten as,

cl(xn) = Jl(k[p̂−1(xn); xb])[p̂−1(xn); xb], 0 ≤ l ≤ L, k ∈ R+, (3.25)

which proves the third equality in Eq.(3.2). For any piecewise linear activation function σ(x), the

following property holds,

σ(x0) = x0 ×
dσ(x)

x x=x0

, x0 ∈ R. (3.26)

This implies that the proof works for any piecewise linear activation σ(x) (whose derivative is

piecewise constant) as long as we apply k = 1 and properly replace Σl in Eq.(3.21) according to

the selected σ(x).

3.5 Verification experiments

This section will further verify our theory experimentally.

As we mentioned in Section 3.3, there are two operational modes of CNN’s bias:

1. Conventional parameters trained for adjusting the channels’ output;

2. Auxiliary parameters trained for batch normalization.

We select three CNN models that involve either of these two operational modes. Also, these three

models include both supported activation functions: ReLU and Leaky ReLU. Generally, we will
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verify the nontrivial Eq.(3.2) on every layer of the CNN (except the first layer, the reason has

been discussed in Section 3.3). The hardware and software used for this verification are listed in

Appendix B.1.

3.5.1 Pre-trained CNNs and their equivalent topologies

We elaborate training/validation/test settings on all models. We also discuss how we convert a

trained CNN model to an equivalent version using Eq.(3.6).

3.5.1.1 Dataset and augmentation

We used the CIFAR-10 and CIFAR-100 ([46]; RGB images of 10/100 classes; Resolution:

32 × 32; Pixel value range: [0, 1]; Each one includes two sets: 50k training, 10k test). In each

dataset, training was conducted on 45k of the 50k set (randomly selected), and validation is con-

ducted on the remaining 5k; The test is performed on the 10k set. Data augmentation methods are

employed in training. An input image sequentially goes through the random left or right flipping,

the random adjustments of saturation(within [0, 2.0])/contrast(within [0.4, 1.6])/brightness(within

0.5), the random croppings to 32× 32× 3 after resizing to 36× 36× 3.

3.5.1.2 Models and their conversions

We use three standard models: VGG7 [11] with 7 ReLUs, ResNet20 ([12], code: [51]) with

20 Leaky ReLUs, and ResNet20-Fixup (the rightmost one in Figure 1 in [1], an input image

requires normalization on its RGB channels using mean [0.4914, 0.4822, 0.4465] and variance

[0.2023, 0.1994, 0.2010], code: [47]) with the Fixup initialization and 20 ReLUs. The first two use

the second bias operational mode (batch normalization), and the last uses the first bias operational

mode (conventional bias mode). Their parameters are listed in tables B.1, B.4, and B.5, respective-

ly. VGG7 and ResNet20 are trained with BN layers first. After training, we extract w, γ, β, µ, σ2

(Eq.(3.5)) to compute and collect the corresponding w
′ and b

′ with Eq.(3.6), layer by layer. Then,

we rebuild every architectural layer with its w
′ and b

′ to construct an equivalent model (Fig.3.4).

Similarly, ResNet20-Fixup is trained first; We extract all kernels and biases after training. We re-

built every layer (we merge any convolutional layer having a multiplier, check the third column of
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table B.5) to construct an equivalent model. We verify that every rebuilt model achieves identical

accuracy as its pre-trained version. We employ the rebuilt ones for our experiments.

3.5.1.3 Loss function, accuracy, training, validation, test

We used a summation of the kernels’ regularization on the L1 norm and the cross-entropy on a

prediction’s softmax as the loss function. We used Top-1 accuracy. Training, validation, and test

were conducted on an RTX3090 GPU. All three CNN models were trained with Gradient Descent

optimizers (GD) on a batch size of 100. Tables 3.1 and 3.2 showed additional details. We trained

on the 45k samples every epoch and validated the trained model on the 5k samples every two

epochs. The trained model would be saved if a higher validation accuracy was reached. We tested

with the 10k test samples.

Models/lr intervals 1st interval 2nd interval 3rd interval Total Test Acc
VGG7 0.01, [0, 299] 0.002, [300, 399] 0.0005, [400, 500] 501 89.5%

ResNet20 0.01, [0, 99] 0.001, [100, 149] 0.0002, [150, 200] 201 91.6%
ResNet20-Fixup 0.002, [0, 79] 0.001, [80, 119] 0.0005, [120, 150] 151 91.2%

Table 3.1: Details for training VGG7/ResNet20/ResNet20-Fixup on CIFAR-10. “0.01, [0, 299]”
denotes the learning rate (lr) 0.01 during the training interval, maintained during the 0th to the
299th training epoch. Note that the classification accuracies are modest at best, but since our thrust
is primarily theoretical, we did not attempt to further fine-tune the default hyperparameters in the
available open-source implementations that we used.

Models/lr intervals 1st interval 2nd interval 3rd interval Total Test Acc
VGG7 0.01, [0, 499] 0.002, [500, 599] 0.0005, [600, 700] 701 63.2%

ResNet20 0.01, [0, 99] 0.001, [100, 149] 0.0002, [150, 200] 201 68.8%
ResNet20-Fixup 0.002, [0, 39] 0.001, [40, 79] 0.0005, [80, 120] 121 64.0%

Table 3.2: Details for training VGG7/ResNet20/ResNet20-Fixup on CIFAR-100. Check Table 3.1
for notations.
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3.5.2 Verifying Eq.(3.2) on the CNN models

As we mentioned, we will experimentally verify that z([xn; xb]) = [xn;xb]
8

achieves the equality

in Eq.(3.2).

We verify it on two types of layers: every Conv layer, and the FC layer. In other words, we

verify that the linear activation value of an out-ch feature map’s unit or the FC layer’s output

unit, computed through the original trained CNN, should be equal to the dot-product between the

input [xn; xb] and the reconstructed effective hyperplane HAdj( [xn;xb]
8

). The verification can be

described with two equations, Eq.(3.27) (Conv) and Eq.(3.28) (FC). Principles of the verification

are illustrated using a symbol ‘=” in these previous figures: Fig.3.5(c) (Conv), and Fig.3.3(b) (FC).

cl,s,i = Fl−1,s,i([xn; xb]) ~ wl,s,i︸ ︷︷ ︸
Original CNN activation (Conv)

= ĉl,s,i = 〈xn | HAdj,I
l,s,i (

[xn; xb]

8
)〉+ 〈xb | HAdj,b

l,s,i (
[xn; xb]

8
)〉︸ ︷︷ ︸

Reconstructed Conv unit activation using Adjoint

,

(3.27)

cfc,k = Ffc,k([xn; xb])︸ ︷︷ ︸
Original CNN activation (FC)

= ĉfc,k = 〈xn | HAdj,I
k (

[xn; xb]

8
)〉+ 〈xb | HAdj,b

k (
[xn; xb]

8
)〉︸ ︷︷ ︸

Reconstructed FC unit activation using Adjoint

,
(3.28)

where cl,s,i and cfc,k are true values (correspond to the left-hand side of the third “=” in Eq.(3.2))

while ĉl,s,i and ĉfc,k are approximated ones (correspond to the right-hand side of the third “=”

in Eq.(3.2)); cl,s,i labels a unit at the stride move s, in the ith out-ch feature map of the lth Conv

layer (i.e., a unit of cl); cfc,k labels the kth entry in the cfc, from the FC layer, for activating

a specific class unit. In detail, for an image xn, a dot-product should be verified to replicate a

unit’s linear activation value from the Conv or the FC layer, and this verification should go through

units’/predicted classes’ values of all layers except for the first one (which has been explained in

Section 3.3); Also, RM2 is entangled with RM4, RM3, RM1 (Eq.(3.7)~(3.11)), which implies

verifying RM2 is equivalent to verifying RM4~RM1. Since TensorFlow uses FP32 datatype

(single precision) to compute a decimal, rounding errors are inevitable and result in a fractional
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mismatch between cl and ĉl due to different computation paths. We measure relative errors ε for

evaluating the approximations, i.e.,

εl =
ĉl − cl
cl,6=0

, (3.29)

where l is either the Conv layer index or the FC layer; cl,6=0 substitutes all zeros inside cl with the

smallest positive float of FP32 to avoid any divide by zero exception.

3.5.3 Results

We verify our CNN’s unit reconstruction approach on VGG7/ResNet20/ResNet20-Fixup with

CIFAR-10 and CIFAR-100 test sets. Relative errors εl are collected layer by layer over the 10k

test samples for a CNN model. All relative errors are shown as histograms in Figures 3.6, 3.7,

3.8, 3.9, 3.10, and 3.11. VGG7 has 6 histograms (5 convs + 1 FC), and ResNet20/ResNet20-

Fixup each have 19 histograms (18 convs + 1 FC). Percentages of units with reconstruction error

εl ≤ 1% collected from all models’ layers are listed in Tables 3.3 and 3.4. In summary, all three

models show that over 99.97% of the units have relative reconstruction errors ≤ 1%. These results

experimentally validate that z([xn; xb]) = [xn;xb]
8

achieves Eq.(3.2).

Therefore, the soundness of our theory is experimentally confirmed.

(a1) (a2) (a3) (a4) (a5) (a6)

Figure 3.6: Histograms of relative errors (Eq.(3.29)) between units directly computed by CN-
N (cl) and their values reconstructed by our method (ĉl) on CIFAR-10 using VGG7. The x-
axis and y-axis indicate the error and frequency (10k test samples), respectively. a1~a5 is col-
lected from Conv1~5 layer, and a6 is collected from the FC layer. In terms of the 4th column
of table.B.1, a1 to a6 should have relative errors from 327.68m(= 32, 768 × 10k), 163.84m(=
16, 384 × 10k), 163.84m, 61.44m(= 6, 144 × 10k), 61.44m, and 100k, respectively. Percentages
of εl ≤ 1% for all subplots are listed in Table 3.3.
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εl/ % / Models VGG7 ResNet20 ResNet20-Fixup
ε1 99.9987 99.9999 99.9972
ε2 99.9978 99.9994 99.9992
ε3 99.9985 99.999 99.9993
ε4 99.9935 99.9977 99.9989
ε5 99.9933 99.9974 99.9974
ε6 99.991 (FC) 99.9919 99.9975
ε7 N/A 99.9835 99.9914
ε8 N/A 99.9839 99.9946
ε9 N/A 99.986 99.9954
ε10 N/A 99.9877 99.9959
ε11 N/A 99.9835 99.9953
ε12 N/A 99.9871 99.9955
ε13 N/A 99.9807 99.9935
ε14 N/A 99.9808 99.9935
ε15 N/A 99.978 99.9943
ε16 N/A 99.9781 99.9934
ε17 N/A 99.9764 99.9929
ε18 N/A 99.978 99.9927
ε19 N/A 99.989 (FC) 99.992 (FC)

Table 3.3: Percentages (%) of units with reconstruction error εl ≤ 1% collected from all layers
(involved in verification experiments) of VGG7/ResNet20/ResNet20-Fixup over the CIFAR-10
test set (10k samples). N/A indicates that the layer does not exist (VGG7 has only 6 layers, and its
Conv0 is not valid in our analysis scope).

50



εl/ % / Models VGG7 ResNet20 ResNet20-Fixup
ε1 99.9988 99.9997 99.9997
ε2 99.9978 99.9995 99.9995
ε3 99.998 99.9988 99.9993
ε4 99.9928 99.9963 99.9992
ε5 99.993 99.9968 99.9989
ε6 99.9807 (FC) 99.9833 99.9967
ε7 N/A 99.9789 99.9896
ε8 N/A 99.9751 99.9951
ε9 N/A 99.9878 99.9952
ε10 N/A 99.9808 99.9953
ε11 N/A 99.979 99.994
ε12 N/A 99.9839 99.9953
ε13 N/A 99.9767 99.9921
ε14 N/A 99.9746 99.9935
ε15 N/A 99.9744 99.9941
ε16 N/A 99.9726 99.993
ε17 N/A 99.9705 99.9935
ε18 N/A 99.9705 99.9949
ε19 N/A 99.9777 (FC) 99.9896 (FC)

Table 3.4: Percentages (%) of units with reconstruction error εl ≤ 1% collected from all layers
of VGG7/ResNet20/ResNet20-Fixup over the CIFAR-100 test set (10k samples). Check Table 3.3
for details.
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(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(a8) (a9) (a10) (a11) (a12) (a13) (a14)

(a15) (a16) (a17) (a18) (a19)

Figure 3.7: Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN
(cl) and their values reconstructed by our method (ĉl) on CIFAR-10 using ResNet20. Similar
to Fig.3.6, a1~a18 is collected from Conv1~18 layer, and a19 is collected from the FC layer. In
terms of the 5th column of table.B.4, a1 to a18 should have relative errors from 327.68m(a1~a6),
163.84m(a7~a12), 61.44m(a13~a18), and 100k(a19), respectively. Percentages of εl ≤ 1% for all
subplots are listed in Table 3.3.

(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(a8) (a9) (a10) (a11) (a12) (a13) (a14)

(a15) (a16) (a17) (a18) (a19)

Figure 3.8: Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN (cl)
and their values reconstructed by our method (ĉl) on CIFAR-10 using ResNet20-Fixup. Details
are similar to Fig.3.7. Percentages of εl ≤ 1% for all subplots are listed in Table 3.3.
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(a1) (a2) (a3) (a4) (a5) (a6)

Figure 3.9: Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN (cl)
and their values reconstructed by our method (ĉl) on CIFAR-100 using VGG7. Details are similar
to Fig.3.6 except that the quantity of relative errors in a6 is 1m. Percentages of εl ≤ 1% for all
subplots are listed in Table 3.4.

(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(a8) (a9) (a10) (a11) (a12) (a13) (a14)

(a15) (a16) (a17) (a18) (a19)

Figure 3.10: Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN
(cl) and their values reconstructed by our method (ĉl) on CIFAR-100 using ResNet20. Details are
similar to Fig.3.7 except that the quantity of relative errors in a19 is 1m. Percentages of εl ≤ 1%
for all subplots are listed in Table 3.4.
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(a1) (a2) (a3) (a4) (a5) (a6) (a7)

(a8) (a9) (a10) (a11) (a12) (a13) (a14)

(a15) (a16) (a17) (a18) (a19)

Figure 3.11: Histograms of relative errors (Eq.(3.29)) between units directly computed by CNN
(cl) and their values reconstructed by our method (ĉl) on CIFAR-100 using ResNet20-Fixup. De-
tails are similar to Fig.3.7 except that the quantity of relative errors in a19 is 1m. Percentages of
εl ≤ 1% for all subplots are listed in Table 3.4.
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4. CNN’S BEHAVIORS UNDER ADVERSARIAL ATTACKS

4.1 Overview

We present our theoretical framework in the analysis of adversarial attacks. We propose three

top-down experiments that rip through CNN’s internal response to these attacks. We find that

CNN’s decision process is extremely sensitive to adversarial experiments. This sensitive property

results in large fluctuations in the CNN’s decision when facing two visually identical images.

The sensitivity actually results from a weakness inside the CNN – its decision process lacks the

continuity that our human vision has.

4.2 Applications: Analyzing adversarial attacks to CNN without bias

This section studies CNN models (without bias) under adversarial attacks with our Algorithm

1. Generally, we propose three experiments to explore CNN’s decision process gradually. We first

analyze all the FC units’ effective hypersurfaces under one type of adversarial attacks and then

select one of these effective hypersurfaces as the representative to further probe its property under

various adversarial attacks. In detail, we select a “horse” image x0 (its label index is 7) from the

CIFAR-10 data set as the original image; Experiment 1, using RM0, visualizes the variations of

10 hypersurfaces from each of the 10 outputs of a trained model under adversarial noise; Experi-

ment 2 observes a single effective hypersurface and explores its variations under different targeted

adversarial noise; Experiment 3 further probes the effective hypersurface’s variations through com-

parisons between scaled-down adversarial noise (still misclassified) and Gaussian noise (correctly

classified) generated under the same noise conditions (mean and variance). We use Advr to denote

an adversarial “noise” and keep using z(x) = x
8
.

4.2.1 Experiment 1: Hypersurfaces reconstructed with or without an adversarial noise

We use the “basic iterative method” from [2, 3] to compute an adversarial noise. The factor in

[2] is 0.007. We use a factor of 0.04 (around 5×) because we normalize an input image with the

stds around 0.2. Computed “noise” is added to the input image, and we verify that the adversarial
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input fools VGG7 to predict “dog”, based on the “horse” input. We repeat the same experiment

for Fixup-ResNet20. We first have to verify Eq.(2.17) before visualizing the hyperplanes. The

output reconstruction results (Tables 4.1 and 4.2) show the output of the CNN in response to the

adversarial input x0+Advr (column marked “CNN”) and the activities based on the reconstructed

hyperplanes (columns marked “Recon w/ Hadv” and “Recon w/ Horig”). See the table caption for

details. The results show that with the hyperplane reconstructed using the matching input (in this

case, the adversarial input x0 + Advr), precise output values can be replicated (“Recon w/ Hadv”

column), while the values are off when non-matching input is used to reconstruct the hyperplane

(“Recon w/ Horig” column). This effect can be quite severe, as shown in the case of the Fixup-

ResNet20 (Table 4.2), since even the reconstructed output class is different (“cat”) from that of the

CNN (“dog”).

4.2.2 Experiment 2: Measuring the spread of a hypersurface in response to targeted adver-

sarial noise

We use the “iterative least-likely class method” from [3] to generate 9 targeted adversarial

noise patterns for the horse image, Sa = {Advri | i ∈ {0, 1, .., 9}} where Advr7 = θX (no

noise: 7 is the “horse” image’s label index). With such adversarial noise, our models (VGG7

and Fixup-ResNet20) can be fooled to produce any of the 9 incorrect classes. We first visualize

the reconstructed hyperplanes from the unit k = 7 (the “horse” unit) under targeted adversarial

attack (Fig.4.4(a1) and (a2)). To see how these hyperplanes are spread out, we used tSNE [52]

to project these hyperplanes in 3D space, and randomly select 10 more images ({x1, ...,x10}) of

different classes (not “horse”) for comparison. Specifically, we project {HAdj
k=7(z(x0 + Advri)) |

i ∈ {0, 1, ..., 9}} ∪ {HAdj
k=7(z(xj)) | j ∈ {1, 2, ..., 10}} using tSNE for analysis. We illustrate the

procedures in Fig.4.1.
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Class index k / Method CNN Recon w/ Hadv Recon w/ Horig

0 (airplane) 8.31594 8.315954 8.6690855
1 (automobile) 4.0766134 4.0766125 4.471591

2 (bird) 7.1327333 7.132732 7.3968844
3 (cat) 8.730146 8.730144 8.764506

4 (deer) 7.252265 7.252265 7.06274
5 (dog) 9.732837 9.732836 9.646278
6 (frog) 5.3150105 5.315008 5.101524
7 (horse) 9.613704 9.613699 7.970075
8 (ship) −1.3195618 −1.3195606 −1.1485753
9 (truck) 6.7904973 6.7904935 7.129147

Table 4.1: Experiment 1, VGG7 (w/o bias): Verifying the reconstructed output (Eq.(2.17)) when
adversarial noise is added. The original image x0 was a “horse” class. However, after adding ad-
versarial noise (x0+Advr), the CNN predicts “dog” (marked in bold). The second column (CNN)
shows the CNN’s output layer activities given the adversarial input (x0+Advr). The third column
(Recon w/ Hadv) shows the reconstructed output based on the hyperplane HAdj

k (z(x0 + Advr))
reconstructed from the same adversarial input. We can see that the output values are virtually
identical to those of the CNN in column 2. The fourth column (Recon w/ Horig) shows the recon-
structed output based on the hyperplane HAdj

k (z(x0)), this time, reconstructed from the original
(non-adversarial) input x0. That is, in this case, HAdj

k (z(x0)) was multiplied by the adversarial
input (x0 + Advr). We see that the slightly different reconstructed hyperplane (with or without
adversarial noise) leads to a slight difference in the final output value. This shows that our Ad-
jointBackMap gives precise replication of the CNN’s original output values, and this depends on
the use of the original input in the computation of the reconstructed hyperplane.

Class index k / Method CNN Recon w/ Hadv Recon w/ Horig

0 (airplane) −0.9798855 −0.97988594 0.0621146
1 (automobile) −2.5764616 −2.5764558 −0.5108745

2 (bird) −0.5919545 −0.59196144 −6.3072925
3 (cat) 10.356275 10.356285 7.726749

4 (deer) 5.80124 5.801249 −8.883365
5 (dog) 10.47916 10.47917 −0.43725738
6 (frog) 3.5252628 3.5252705 −1.7145596
7 (horse) 6.5016255 6.5016294 −19.942373
8 (ship) −6.2591143 −6.2591157 −1.7208233
9 (truck) 2.1569839 2.1569812 −0.61982846

Table 4.2: Experiment 2, Fixup-ResNet20 (w/o bias): Verifying the reconstructed output (E-
q.(2.17)) when adversarial noise is added.
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Figure 4.1: Procedures for Experiment 2 (for models w/o bias). In general, this experiment is
designed to numerically measure the fluctuation of a single effective hypersurface in response to
different adversarial noise. Red box: We first generate 9 targeted adversarial noise, {Advri | i ∈
{0, 1, ..., 9}}, which can fool a CNN model to incorrectly classify the “horse” (x0, its label index
= 7) to the 9 classes, where Advr7 = θX denotes no noise. Black box: Then, we collect the 10
effective hyperplanes in response to these adversarial noise, HAdj

k=7(z(x0 + Advri)). XYZ axes:
At last, we use tSNE to project these hyperplanes (red) in 3D space with 10 more hyperplanes
(black) of images having different classes ({xi | i ∈ {1, 2, ..., 10}}, not “horse”) for comparison.
Note adversarial attacks do not affect our reconstruction capability (marked by “=” in the figure.

We rotate the dot-product “〈· | ·〉” to “

〈·
|·
〉

” for a compact layout.). Check Section 4.2 for details.
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4.2.3 Experiment 3: Comparing the spread of hypersurfaces in response to adversarial vs.

Gaussian noise

First, we prepare 50 adversarial noise patterns Sb, based on Sa in Experiment 2, which are the

scaled-down version of those in Sa. That is, β ×Advri, where β is a small constant between 0.0

and 1.0. We make sure that images with added noise from Sb all lead to incorrect classification by

the CNN (VGG7 or Fixup-ResNet20).

Next, we generate 50 Gaussian noise patterns (32 × 32 × 3) using the same pixel mean and

variance statistically computed from Sb. Let us call these Gaussian-noise patterns Sg. When added

to the original image (the horse image), none of the Gaussian noise patterns in Sg can fool our

VGG7 or Fixup-ResNet20.

We project the noise-added input-based hyperplanes for output unit k = 7, {HAdj
k=7(z(x0 +n)) |

n ∈ Sb
⋃
Sg}, using Factor Analysis [52]. We repeat the experiment for both VGG7 and Fixup-

ResNet20. The results are shown in Fig.4.5.

4.2.4 Results

Experiment 1 is illustrated in Figures 4.2 and 4.3; Experiments 2 and 3 are illustrated in Figures

4.4 and 4.5, respectively. See figures’ captions for details.

4.2.5 Analysis

Experiment 1 reveals that HAdj
k (z(x0 + Advr)) (with noise) is significantly different from

HAdj
k (z(x0)) (without noise) for all classes (differences are directly illustrated in Fig.4.2(c) and

4.3(c). We learn from their a5 that this difference starts from Conv1, the second conv layer, through

the RM3 reconstruction on that layer, although no kernel in that layer changes. It implies that

effective hypersurfaces are very sensitive in response to small changes in the input, and either

VGG7 or Fixup-ResNet20 takes different roads to determine the final output of two perceptually

identical images, which is different from humans who may be tolerant to such small variations in

pixel value.

Experiment 2 (Fig.4.4) shows that although the adversarial noise has a very low magnitude,
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(a1) x0 + Advr (a2) {HAdj
k (z(x0))}

(a3) {HAdj
k (z(x0 + Advr))}

(a4) {HAdj
k (z(x0 + Advr))−HAdj

k (z(x0))}

(a5) HAdj
{j,i}(z(x0 + Advr))−HAdj

{j,i}(z(x0))

Figure 4.2: Experiment 1, VGG7 (w/o bias): Visualizing VGG7’s hyperplanes under an adversarial
example (“horse” to “dog”). (a1) Original “Horse” (top left), adversarial noise (top right), and the
final adversarial input (bottom left). Effective hyperplanes of the FC’s prediction (RM0) under
the original input (a2), under the adversarial input (a3), and the differences between a2 and a3
(a4). (a5) Differences between original and adversarial-based hyperplanes using RM3 on Conv1
(low-level units, and HAdj

{j,i} refers to eq.(21) in Appendix of [5]).
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(a1) x0 + Advr (a2) {HAdj
k (z(x0))}

(a3) {HAdj
k (z(x0 + Advr))}

(a4) {HAdj
k (z(x0 + Advr))−HAdj

k (z(x0))}

(a5) HAdj
{j,i}(z(x0 + Advr))−HAdj

{j,i}(z(x0))

Figure 4.3: Experiment 1, Fixup-ResNet20 (w/o bias): Visualizing Fixup-ResNet20’s hyperplanes
under adversarial input (“horse” to “dog”). The format is the same as Fig.4.2. (a5) is mapped from
Conv1 of Residual Block 0.
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VGG7 VGG7
(a1) Advri and HAdj

k=7(z(x0 +Advri)) (b1) tSNE proj: adv vs. different classes

Fixup-ResNet20 Fixup-ResNet20
(a2) Advri and HAdj

k=7(z(x0 +Advri)) (b2) tSNE proj: adv vs. different classes

Figure 4.4: Experiment 2 (for models w/o bias): Effective hypersurfaces of unit k = 7 (horse unit)
under targeted attacks and their tSNE projections. Top row: VGG7; Bottom row: Fixup-ResNet20.
For VGG7, (a1) Hyperplanes for the same output unit k = 7 (correct class index) under targeted
adversarial noise Sa: {HAdj

k=7(z(x0 + Advri)) | Advri ∈ Sa} by RM0 (see text for details). The
top two rows show the hyperplanes of unit k = 7, reconstructed from different adversarial inputs
(based on the same horse image). The two bottom rows are the corresponding targeted adversarial
noise (10×, for visualization purposes; the black one means 0 adversarial noise, for the correct
class “horse”). (b1) tSNE projections of the hyperplanes in a1 (red points), plotted along with the
projections of hyperplanes for unit k = 7 given images of different classes, i.e., non-horse classes
(black points). Note that the spread due to adversarial noise and spread due to class variation are
almost the same. (a2) and (b2) show the same as above for Fixup-ResNet20. The same kind of
spread can be seen.
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(a) VGG7 (b) Fixup-ResNet20

Figure 4.5: Experiment 3 (for models w/o bias): Factor Analysis of the effective hypersurface
with down-scaled adversarial noise compared to Gaussian noise. (Red) 50 effective hyperplanes
computed from 50 adversarial examples (original image plus adversarial noise from Sb); (Blue) 50
effective hyperplanes computed from 50 non-adversarial examples (original image plus Gaussian
noise from Sg). Effective hyperplanes of adversarial cases (Red) are significantly more spread out
than non-adversarial cases (Blue).

the resulting distances between reconstructed hyperplanes are very large (red points in the figure).

We can appreciate more how large the gaps are between these hyperplanes when comparing their

spread to those of the reconstructed hyperplanes from input images of a totally different class

(black points in the figure).

Further, Experiment 3 uses scaled-down adversarial noise from Experiment 2 to lower the mag-

nitude of adversarial noise while maintaining their adversarial property (i.e., misclassification).

The spread of the corresponding reconstructed hyperplanes is still great. The spread is signifi-

cantly greater than the reconstructed hyperplanes based on Gaussian-noise-added inputs with the

same noise mean and variance. Fig.4.5 shows the stark difference in how these reconstructed

hyperplanes behave (red: image + adversarial noise; blue: image + Gaussian noise).

These experiments reveal that an effective hypersurface is brittle to adversarial noise despite

being visually indistinguishable to the human eyes. Visually similar images can easily knock off

a CNN by misleading its decision process because CNN is essentially different from our human

vision. Our AdjointBackMap-based analysis allows us to gain insights on why this is the case,
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through experiments like those carried out above.

4.3 Applications: Analyzing adversarial attacks to CNN with bias

This section will generalize the sensitivity analysis to models with bias considered. We will

revise the three experiments inherited from Section 4.2 to analyze effective hypersurfaces for CNN

using bias.

We use the same three models, VGG7, ResNet20, and ResNet20-Fixup, and the same setting

of z([xn; xb]) as Section 3.5 for our experiments. The dataset is the same as Section 4.2. We use

Advr to denote the adversarial “noise”.

4.3.1 Experiment 1: Visualize effective hypersurfaces with and without adversarial noise

We will visualize the effective hypersurfaces of RM0 and observe their differences with and

without the adversarial noise. Given a typical input image x0 (“Bird”), we employ the “basic

iterative method” (an untargeted attack method from [3]) to generate an adversarial noise sample.

Such a sample can deceive a CNN model when adding to the image. Unlike Experiment 1 in

Section 4.2, the effective hypersurface HAdj
k of a usual CNN model is composed of two parts:

HAdj,I
k and HAdj,b

k . We will normalize {HAdj,I
k }9k=0 to the same scale for visualization. For VGG7

or ResNet20, we will reshape its HAdj,b
k to a square before visualization; For ResNet20-Fixup, the

reshape will not be applied since its HAdj,b
k is small-dimension (dimensions are listed in table B.2

or B.3, Appendix). Before the experiment, we verified that the CNN’s decision hyperplanes for

adversarial example (x0 + Advr) are {HAdj
k (z([x0 + Advr; xb]))}9k=0, and incorrect input might

result in low precision of reconstruction (Check Tables 4.3, 4.4, 4.5). We illustrate visualization

results in Fig.4.6, 4.7, 4.8.

4.3.2 Experiment 2: Visualize an effective hypersurface in response to different adversarial

noise

We will focus on one of the effective hypersurfaces and explore its variations under different ad-

versarial noise. We select the effective hypersurface for the label (“Bird”) unit, HAdj
k=2. Given a CNN

model, we generate 9 adversarial noise samples using the “iterative least-likely class method” from
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Class (k) / Method VGG7’s FC Recon w/ Hadv Recon w/ Horig

airplane (0) 4.654 4.655 −4.927
automobile (1) −0.194 −0.194 3.109

bird (2) 10.561 10.561 −22.695
cat (3) 14.794 14.794 8.459

deer (4) 7.060 7.060 6.703
dog (5) 8.961 8.961 17.681
frog (6) 0.329 0.329 −3.711

horse (7) 2.009 2.009 −2.211
ship (8) 1.153 1.153 3.265
truck (9) 3.127 3.127 6.592

Table 4.3: Experiment 1, VGG7 (with bias): Verifying the effective hyperplanes’ reconstruction
for an adversarial example. Horig denotes the effective hyperplane for the original “Bird” image,
i.e., HAdj

k (z([x0; xb])). Hadv denotes the effective hyperplane for the adversarial example, i.e.,
HAdj
k (z([x0 + Advr; xb])), where Fig.4.6 illustrates Advr. VGG7 predicts the second column’s

values. The third or fourth column lists dot-products (reconstructed values) between the adversarial
example and the effective hyperplane of the adversarial example or the original “Bird” image,
respectively. The fourth column deviates from the predicted values and even hits an incorrect
class. This implies that a correct input is essential for maintaining reconstruction precision.

Class (k) / Method VGG7’s FC Recon w/ Hadv Recon w/ Horig

airplane (0) −0.575 −0.575 1.683
automobile (1) −3.718 −3.718 14.552

bird (2) 3.780 3.780 −33.297
cat (3) 7.480 7.480 20.085

deer (4) 9.631 9.631 20.219
dog (5) 2.895 2.895 20.013
frog (6) −4.851 −4.851 −18.750

horse (7) −4.921 −4.921 6.888
ship (8) 1.068 1.068 7.762
truck (9) −0.191 −0.191 8.563

Table 4.4: Experiment 1, ResNet20 (with bias): Verifying the effective hyperplanes’ reconstruction
for an adversarial example. Fig.4.7 illustrates the adversarial noise Advr. Check Table 4.3 for
details.
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Class (k) / Method VGG7’s FC Recon w/ Hadv Recon w/ Horig

airplane (0) 8.417 8.417 3.307
automobile (1) 2.965 2.965 3.379

bird (2) 4.406 4.406 −53.405
cat (3) 4.508 4.508 −20.650

deer (4) 7.583 7.583 −12.317
dog (5) −0.657 −0.657 −17.084
frog (6) 0.953 0.953 −17.560

horse (7) −0.394 −0.394 −7.833
ship (8) 8.019 8.019 11.134
truck (9) 3.787 3.787 4.604

Table 4.5: Experiment 1, ResNet20-Fixup (with bias): Verifying the effective hyperplanes’ recon-
struction for an adversarial example. Fig.4.8 illustrates the adversarial noise Advr. Check Table
4.3 for details.

(a1) x0 (a2) Advr (a3) Scaled a2 (a4) (a1) + (a2)

(b1) {HAdj
k (z([x0; xb]))} (b2) {HAdj

k (z([x0 + Advr; xb]))} (b3) (b2) - (b1)

Figure 4.6: Experiment 1, VGG7 (with bias): Visualization of VGG7’s effective hypersurfaces
{HAdj

k }9k=0 with and without adversarial noise. (a1): A “Bird” image. (a2): An adversarial noise.
(a3): The scaled-up noise. (a4): An adversarial example (x0 + Advr) that fools VGG7 to predict
“Cat”. (b1): The effective hypersurfaces for predicting 10 classes with the original “Bird” input.
The first two rows illustrate the image parts of the hypersurfaces, {HAdj,I

k (z([x0; xb]))}9k=0 (A
square represents HAdj,I

k (z([x0; xb])) that has a shape of 32 × 32 × 3); The last two rows present
the bias parts, {HAdj,b

k (z([x0; xb]))}9k=0 (A square visualizes a 384-d vector, HAdj,b
k (z([x0; xb])),

being reshaped to 24 × 16). (b2): The 10 effective hypersurfaces with (a4) as the input. (b3): The
difference between with and without adversarial noise. The results are very interesting since the
hypersurfaces themselves are very different, despite the appearance of the original (a1) v.s. The
adversarial image (a4) is almost identical to the human eyes.
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(a1) x0 (a2) Advr (a3) Scaled a2 (a4) (a1) + (a2)

(b1) {HAdj
k (z([x0; xb]))} (b2) {HAdj

k (z([x0 + Advr; xb]))} (b3) (b2) - (b1)

Figure 4.7: Experiment 1, ResNet20 (with bias): Visualization of ResNet20’s effective hypersur-
faces {HAdj

k }9k=0 with and without adversarial noise. The adversarial example (a4) fools ResNet20
to predict “Deer”. The last two rows of (b1) present the bias parts of the effective hypersurfaces,
{HAdj,b

k (z([x0; xb]))}9k=0 (A square visualizes a 1152-d vector, HAdj,b
k (z([x0; xb])), being reshaped

to 36× 32). Check Fig.4.6 for other details.

(a1) x0 (a2) Advr (a3) Scaled a2 (a4) (a1) + (a2)

(b1) {HAdj
k (z([x0; xb]))} (b2) {HAdj

k (z([x0 + Advr; xb]))} (b3) (b2) - (b1)

Figure 4.8: Experiment 1, ResNet20-Fixup (with bias): Visualization of ResNet20-Fixup’s ef-
fective hypersurfaces {HAdj

k }9k=0 with and without adversarial noise. The adversarial example
(a4) fools ResNet20-Fixup to predict “Airplane’. The last two rows of (b1) present the bias
parts of the effective hypersurfaces, {HAdj,b

k (z([x0; xb]))}9k=0 (A strip visualizes a 37-d vector,
HAdj,b
k (z([x0; xb]))). Check Fig.4.6 for other details.
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[3] (A targeted attack method). We name these samples as {Advrm | m ∈ {0, ..., 9},Advr2 = θ}

where adding Advrm to the “Bird” can fool the model from the label to the class index m, and

Advr2 = θ indicates no adversarial noise (zero noise). We illustrate the effective hypersurface’s

response to these samples in Fig.4.9, 4.10, 4.11. Also, we project the image parts and the bias

parts of generated hyperplanes to a 3-d space, respectively, using tSNE to see their dispersion. For

comparison, 10 more images (x1, ..., x10) of different classes (not “Bird”) are selected from the test

set.

4.3.3 Experiment 3: Comparing the spread of hypersurfaces in response to adversarial vs.

Gaussian noise

Given a CNN model (VGG7/ResNet20/ResNet20-Fixup), similar to Section 4.2.3, we loop a

β from 0.0 to 1.0 and scale down the 9 adversarial samples from Experiment 2 (Section 4.3.2),

i.e., β ×Advrm, to prepare 50 adversarial patterns that can deceive the CNN model and result in

misclassification of the “Bird” image. At the same time, we generate 50 Gaussian noise patterns

(32 × 32 × 3) using the same pixel mean and variance as those adversarial ones. These Guassian

noise patterns, when added to the “Bird”, will not affect the CNN model on predicting the “Bird”

image.

We use Factor Analysis to project image parts and bias parts of hyperplanes, generated from

the label-index (k = 2) hypersurface by taking the 100 noise patterns as inputs, to low-dimensional

spaces. We visualize the results in Fig.4.12, 4.13, 4.14.

4.3.4 Analysis

These three experiments reveal that CNN suffers from its brittle decision hypersurfaces. Exper-

iment 1 shows that the effective hyperplanes under an adversarial attack ((b2) of Fig.4.6, 4.7, 4.8)

significantly differ from the ones of the original image ((b1) of Fig.4.6, 4.7, 4.8). Even for a single

hypersurface, different adversarial noise samples can easily result in visible fluctuations in Experi-

ment 2 ((b1) of Fig.4.9, Fig.4.10, Fig.4.11); These differences are geometrically measured through

large distances among points of their (c1) and (c2) figures. In addition, Experiment 3 reveals that
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(a1) Scaled {Advrm}9m=0 (a2) {x0 + Advrm}9m=0

(b1) {HAdj
k=2(z([x0 + Advrm; xb]))}9m=0

(c1) tSNE of the first two rows of (b1)(c2) tSNE of the last two rows of (b1)

Figure 4.9: Experiment 2, VGG7 (with bias): Visualize the effective hypersurface for the ”Bird”
unit in response to different adversarial noise. k = 2 denotes the “Bird” index. (a1): The 9 scaled-
up adversarial noise samples (for visualization purposes) {Advrm | m ∈ {0, ..., 9},Advr2 = θ}
generated from targeted attacks. Each Advrm, when added to the “Bird”, can fool VGG7 to the
specific class index m; Advr2 does not have noise. (a2): The sums of (a1) and the original “Bird”
image, the adversarial inputs. The subtitle “label:bird” depicts the original x0. (b1): The effective
hypersurface for the “Bird” unit in response to the inputs from (a2). The first two rows illustrate
the image part HAdj,I

k=2 ; The last two rows illustrate the bias part HAdj,b
k=2 . The “label:bird” illustrates

the hypersurface’s response without adversarial noise. (c1): tSNE projection of the image parts
(Red), {HAdj,I

k=2 (z([x0 + Advrm; xb]))}9m=0, to a 3-d space. (c2): tSNE projection of the bias parts
(Red), {HAdj,b

k=2 (z([x0 + Advrm; xb]))}9m=0, to a 3-d space. Black dots are corresponding parts of
effective hyperplanes generated from 10 random images from different classes (not “Bird”). Note
that the spread due to adversarial noise (Red) is almost as broad as that due to inputs from different
classes. Check Section 4.3 for details.
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(a1) Scaled {Advrm}9m=0 (a2) {x0 + Advrm}9m=0

(b1) {HAdj
k=2(z([x0 + Advrm; xb]))}9m=0

(c1) tSNE of the first two rows of (b1)(c2) tSNE of the last two rows of (b1)

Figure 4.10: Experiment 2, ResNet20 (with bias): Visualize the effective hypersurface for the
“Bird” unit in response to different adversarial noise. Each Advrm in (a1), when added to the
“Bird”, can fool ResNet20 to another class. Check Fig.4.9 for details.
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(a1) Scaled {Advrm}9m=0 (a2) {x0 + Advrm}9m=0

(b1) {HAdj
k=2(z([x0 + Advrm; xb]))}9m=0

(c1) tSNE of the first two rows of (b1)(c2) tSNE of the last two rows of (b1)

Figure 4.11: Experiment 2, ResNet20-Fixup (with bias): Visualize the effective hypersurface for
the “Bird” unit in response to different adversarial noise. Each Advrm in (a1), when added to the
“Bird”, can fool ResNet20-Fixup to another class. Check Fig.4.9 for details.
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(a1) Image parts of hyperplanes (a2) Bias parts of hyperplanes

Figure 4.12: Experiment 3, VGG7 (with bias): Comparing the spread of hypersurfaces in response
to adversarial vs. Gaussian noise using Factor Analysis. Similar to Fig.4.5: (Red) 50 effective hy-
perplanes computed from 50 adversarial examples (original image plus adversarial noise patterns);
(Blue) 50 effective hyperplanes computed from 50 non-adversarial examples (original image plus
Gaussian noise patterns). Check Section 4.3.3 for details.

(a1) Image parts of hyperplanes (a2) Bias parts of hyperplanes

Figure 4.13: Experiment 3, ResNet20 (with bias): Comparing the spread of hypersurfaces in re-
sponse to adversarial vs. Gaussian noise using Factor Analysis. Color notations are the same as
Fig.4.12.
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(a1) Image parts of hyperplanes (a2) Bias parts of hyperplanes

Figure 4.14: Experiment 3, ResNet20-Fixup (with bias): Comparing the spread of hypersurfaces
in response to adversarial vs. Gaussian noise using Factor Analysis. Color notations are the same
as Fig.4.12.

despite adversarial noise patterns being imperceptible to human eyes, they can statistically result

in more considerable variations than the Gaussian patterns, although they share the same means

and variances. Therefore, we conclude that adversarial examples can easily deceive CNN due to

the brittleness of CNN’s decision.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The main goal of this dissertation is to investigate how a CNN works on input images by using a

mathematical analysis framework we introduced: AdjointBackMap. This framework circumvents

the difficulty of finding the inverse by mapping every convolution kernel (in higher layers) or

weight vector (in an FC layer) back to the input image space with the help of adjoint operators.

Given an arbitrary unit inside a CNN, our algorithm can reconstruct an effective hyperplane that,

when multiplied by the original input (through an inner product), will precisely replicate the output

value of the unit. Such an effective hyperplane accurately summarizes the CNN’s decision process

from the input end all the way up to the unit being considered. We divided our study into two parts:

CNN without bias and CNN with bias. For each part, we also applied our framework to analyze

adversarial attacks.

5.1.1 Model a CNN without bias

To simplify the problem, we first consider the normed space only consisting of all input images

to model CNN without bias. Our experiments showed that,

1. All effective hyperplanes reconstructed from high-level kernels are not human-recognizable

patterns. Since these patterns determine a high-level feature map or FC layer output, it

suggests that CNN’s decision process is not like that of human vision, unlike what other

interpretation approaches [15, 16] might suggest.

2. CNN’s decision process is largely conditioned on the current input image and is extremely

sensitive to adversarial noise. These observations explain why adversarial examples can

deceive CNNs because two effective hyperplanes of a CNN corresponding to two human-

indistinguishable images can be very different from each other.
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5.1.2 Model a CNN with bias

Next, we extend the normed space to include the bias from all trained CNN layers as anoth-

er input component. This way, we can also support CNN models that use batch normalization.

Based on this extended normed space, we upgrade our adjoint-operator-based algorithm to Ad-

jointBackMapV2, which maps high-level weights back to the extended space to reconstruct an

effective hypersurface. Unlike the previous reconstructions in AdjointBackMap, any effective hy-

persurface in this new version is composed of two parts: the part for the input image and the part

for the bias. Our experiments showed the following,

1. AdjointBackMapV2 achieves near 0 reconstruction error with three prevalent CNN models

(VGG7/ResNet20/ResNet20-Fixup, using either batch normalization or conventional bias)

on the CIFAR-10 and CIFAR-100 datasets.

2. Both image and bias parts of effective hypersurfaces reconstructed for units in the FC layer

are still very sensitive to adversarial noise. Since these effective hypersurfaces summarize

CNN’s decision process, the results strengthen our previous point that adversarial examples

can easily deceive CNN due to the brittleness of CNN’s decision.

5.2 Discussion and future work

Studying CNN’s inner workings is critical research for understanding such ”Black-box” model-

s. Despite many efforts in making CNNs interpretable, as we discussed in Section 1.1, adversarial

examples still hinder model explanation since two images that share visually similar features might

be very difficult for a CNN model to distinguish, and even deceive the interpretable explanations.

Our results conclude that this is because CNN’s robustness issues may result from the brittleness

of their effective hypersurfaces. It suggests that adjusting CNN’s architecture to reduce the sen-

sitivity of effective hypersurfaces might be a promising direction to overcome this weakness. In

addition, it would be worth extending our theory to other domains, like NLP (Natural Language

Processing), to see how a model there makes its decisions. In general, we expect our method will

help gain deeper insights into the hidden mechanisms of deep neural networks.
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APPENDIX A

APPENDIX FOR MODELING CNN WITHOUT BIAS

A.1 Hardware and software for verification experiments

We built TensorFlow 1.15.4 from the source code and enabled its functionality on AVX-2,

AVX-512, FMA3 instruction sets to speed up all experiments. The experiments were done on an

Intel 9940X CPU (with 128GB DRAM) or an Intel 10920X CPU (with 256GB DRAM).

A.2 Tables

Layer Parameters Out-channel Feature Maps
Conv0 3× 3× 3× 32 N/S
ReLU0 N/A N/S
Conv1 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU1 N/A N/S

Avg-pool-by-2 N/A N/S
Conv2 3× 3× 32× 64 16× 16× 64(= 16, 384)
ReLU2 N/A N/S
Conv3 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU3 N/A N/S

Avg-pool-by-2 N/A N/S
Conv4 3× 3× 64× 96 8× 8× 96(= 6, 144)
ReLU4 N/A N/S
Conv5 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU5 N/A N/S

Global-pool (g_p) N/A N/S
FC [96, 10] 10

ReLU6 N/A N/S

Avg-pool-by-2 denotes average pooling with a window size of 3
and stride size of 2;
N/A denotes no learnable parameters;
N/S denotes it is not necessary for our method.

Table A.1: Parameters in VGG7.
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Block (shortcut) Layer Parameters Out-channel Feature Maps
Conv0 3× 3× 3× 32 N/S
ReLU0 N/A N/S

Residual 0
(identity)

Conv1 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU1 N/A N/S
Conv2 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU2 N/A N/S

Residual 1
(identity)

Conv3 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU3 N/A N/S
Conv4 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU4 N/A N/S

Residual 2
(identity)

Conv5 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU5 N/A N/S
Conv6 3× 3× 32× 32 32× 32× 32(= 32, 768)
ReLU6 N/A N/S

Residual 3
(avg-pool+pad)

Conv7 (stride=2) 3× 3× 32× 64 16× 16× 64(= 16, 384)
ReLU7 N/A N/S
Conv8 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU8 N/A N/S

Residual 4
(identity)

Conv9 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU9 N/A N/S
Conv10 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU10 N/A N/S

Residual 5
(identity)

Conv11 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU11 N/A N/S
Conv12 3× 3× 64× 64 16× 16× 64(= 16, 384)
ReLU12 N/A N/S

Residual 6
(avg-pool+pad)

Conv13 (stride=2) 3× 3× 64× 96 8× 8× 96(= 6, 144)
ReLU13 N/A N/S
Conv14 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU14 N/A N/S

Residual 7
(identity)

Conv15 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU15 N/A N/S
Conv16 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU16 N/A N/S

Residual 8
(identity)

Conv17 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU17 N/A N/S
Conv18 3× 3× 96× 96 8× 8× 96(= 6, 144)
ReLU18 N/A N/S

Global-pool (g_p) N/A N/S
FC 96× 10 10

ReLU19 N/A N/S

avg-pool+pad denotes average pooling with a window size of 1 and stride size of 2,
and padding zero channels to match the quantity of out channels for summation;
weights rescaling is used after Conv2, 4, 6, 8, 10, 12, 14, 16, 18 but not listed here.

Table A.2: Parameters in Fixup-ResNet20 (refer to table A.1).
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Layer RM4 RM3 RM2 RM1 RM0
Conv0 N/A N/A N/A N/A N/A
Conv1 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv2 din × 16× 16× 32× 64 din × 32× 64 din × 16× 16× 64 din × 64 N/A
Conv3 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv4 din × 8× 8× 64× 96 din × 64× 96 din × 8× 8× 96 din × 96 N/A
Conv5 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A

FC N/A N/A N/A N/A din × 10

din denotes 32× 32× 3;
N/A denotes a layer where our AdjointBackMap is not applicable.

Table A.3: Dimensions of HAdj(z(x)) with different RMs On VGG7.

Layer RM4 RM3 RM2 RM1 RM0
Conv0 N/A N/A N/A N/A N/A
Conv1 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv2 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv3 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv4 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv5 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv6 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv7 din × 16× 16× 32× 64 din × 32× 64 din × 16× 16× 64 din × 64 N/A
Conv8 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv9 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A

Conv10 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv11 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv12 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv13 din × 8× 8× 64× 96 din × 64× 96 din × 8× 8× 96 din × 96 N/A
Conv14 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv15 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv16 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv17 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv18 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A

FC N/A N/A N/A N/A din × 10

din denotes 32× 32× 3;
N/A denotes a layer where our AdjointBackMap is not applicable.

Table A.4: Dimensions of HAdj(z(x)) with different RMs on Fixup-ResNet20.
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APPENDIX B

APPENDIX FOR MODELING CNN WITH BIAS

B.1 Hardware and software for verification experiments

Verification experiments (figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11) were conducted on Intel 10920X

(VGG7/ResNet20) and 9940X (ResNet20-Fixup) CPUs. Both set up ran TensorFlow 1.15.4 with

AVX-2, AVX-512, and FMA3 instruction sets enabled (built from source, the same as Section

A.1).

B.2 Tables

Original Layer Equivalent Layer Parameters Out-ch Feature Maps
Input (xn) Input ([xn; xb]) N/A N/A

Conv0 (w0) Conv0 (w′0) N/A N/A
BN0 B0 (xb[b

′
0]) N/A N/A

ReLU0 N/A N/A
Conv1 (w1) Conv1 (w′1) 3× 3× 32× 32 32× 32× 32(= 32, 768)

BN1 B1 (xb[b
′
1]) N/A N/A

ReLU1 N/A N/A
Avg-pool-2 N/A N/A

Conv2 (w2) Conv2 (w′2) 3× 3× 32× 64 16× 16× 64(= 16, 384)

BN2 B2 (xb[b
′
2]) N/A N/A

ReLU2 N/A N/A
Conv3 (w3) Conv3 (w′3) 3× 3× 64× 64 16× 16× 64(= 16, 384)

BN3 B3 (xb[b
′
3]) N/A N/A

ReLU3 N/A N/A
Avg-pool-2 N/A N/A

Conv4 (w4) Conv4 (w′4) 3× 3× 64× 96 8× 8× 96(= 6, 144)

BN4 B4 (xb[b
′
4]) N/A N/A

ReLU4 N/A N/A
Conv5 (w5) Conv5 (w′5) 3× 3× 96× 96 8× 8× 96(= 6, 144)

BN5 B5 (xb[b
′
5]) N/A N/A

ReLU5 N/A N/A
global-pool (g_p) N/A N/A

FC (wfc) 96× 10/100 10/100
ReLU6 N/A N/A

w
′
i and b

′
i are computed using Eq.(3.6);

xb is a sequentical concatenation of b
′
0~b

′
5;

Avg-pool-2: average pooling with window size of 3 and stride of 2;
N/A: it is not necessary for our method.

Table B.1: Parameters for VGG7.
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Equivalent Layer RM4 RM3 RM2 RM1 RM0

Conv0 N/A N/A N/A N/A N/A
Conv1 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv2 din × 16× 16× 32× 64 din × 32× 64 din × 16× 16× 64 din × 64 N/A
Conv3 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv4 din × 8× 8× 64× 96 din × 64× 96 din × 8× 8× 96 din × 96 N/A
Conv5 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A

FC N/A N/A N/A N/A din × 10/100

din = (32× 32× 3 + 384) where 384 = (32 + 64 + 96)× 2;
N/A: it is not necessary for our method.

Table B.2: Dimensions of HAdj( [xn;xb]
8

) with different RMs on VGG7.

Equivalent layer RM4 RM3 RM2 RM1 RM0

Conv0 N/A N/A N/A N/A N/A
Conv1 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv2 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv3 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv4 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv5 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv6 din × 32× 32× 32× 32 din × 32× 32 din × 32× 32× 32 din × 32 N/A
Conv7 din × 16× 16× 32× 64 din × 32× 64 din × 16× 16× 64 din × 64 N/A
Conv8 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv9 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A

Conv10 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv11 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv12 din × 16× 16× 64× 64 din × 64× 64 din × 16× 16× 64 din × 64 N/A
Conv13 din × 8× 8× 64× 96 din × 64× 96 din × 8× 8× 96 din × 96 N/A
Conv14 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv15 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv16 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv17 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A
Conv18 din × 8× 8× 96× 96 din × 96× 96 din × 8× 8× 96 din × 96 N/A

FC N/A N/A N/A N/A din × 10/100

For ResNet20: din = (32× 32× 3 + 1, 152) where 1, 152 = (32 + 64 + 96)× 6;
For ResNet20-Fixup: din = (32× 32× 3 + 37).

Table B.3: Dimensions of HAdj( [xn;xb]
8

) with different RMs on ResNet20/ResNet20-Fixup.
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Block (shortcut) Original layer Equivalent layer Parameters Out-ch feature maps
Input (xn) Input ([xn; xb]) N/A N/A

Conv0 (w0) Conv0 (w′0) N/A N/A
BN0 B0 (xb[b

′
0]) N/A N/A

Leaky_ReLU0 N/A N/A
Residual 0
(identity)

Conv1 (w1) Conv1 (w′1) 3× 3× 32× 32 32× 32× 32(32, 768)
BN1 B1 (xb[b

′
1]) N/A N/A

Leaky_ReLU1 N/A N/A
Conv2 (w2) Conv2 (w′2) 3× 3× 32× 32 32× 32× 32(32, 768)

BN2 B2 (xb[b
′
2]) N/A N/A

Leaky_ReLU2 N/A N/A
Residual 1
(identity)

Conv3 (w3) Conv3 (w′3) 3× 3× 32× 32 32× 32× 32(32, 768)
BN3 B3 (xb[b

′
3]) N/A N/A

Leaky_ReLU3 N/A N/A
Conv4 (w4) Conv4 (w′4) 3× 3× 32× 32 32× 32× 32(32, 768)

BN4 B4 (xb[b
′
4]) N/A N/A

Leaky_ReLU4 N/A N/A
Residual 2
(identity)

Conv5 (w5) Conv5 (w′5) 3× 3× 32× 32 32× 32× 32(32, 768)
BN5 B5 (xb[b

′
5]) N/A N/A

Leaky_ReLU5 N/A N/A
Conv6 (w6) Conv6 (w′6) 3× 3× 32× 32 32× 32× 32(32, 768)

BN6 B6 (xb[b
′
6]) N/A N/A

Leaky_ReLU6 N/A N/A
Residual 3

(avg-pool+pad)
Conv7 (w7, s = 2) Conv7 (w′7, s = 2) 3× 3× 32× 64 16× 16× 64(16, 384)

BN7 B7 (xb[b
′
7]) N/A N/A

Leaky_ReLU7 N/A N/A
Conv8 (w8) Conv8 (w′8) 3× 3× 64× 64 16× 16× 64(16, 384)

BN8 B8 (xb[b
′
8]) N/A N/A

Leaky_ReLU8 N/A N/A
Residual 4
(identity)

Conv9 (w9) Conv9 (w′9) 3× 3× 64× 64 16× 16× 64(16, 384)
BN9 B9 (xb[b

′
9]) N/A N/A

Leaky_ReLU9 N/A N/A
Conv10 (w10) Conv10 (w′10) 3× 3× 64× 64 16× 16× 64(16, 384)

BN10 B10 (xb[b
′
10]) N/A N/A

Leaky_ReLU10 N/A N/A
Residual 5
(identity)

Conv11 (w11) Conv11 (w′11) 3× 3× 64× 64 16× 16× 64(16, 384)
BN11 B11 (xb[b

′
11]) N/A N/A

Leaky_ReLU11 N/A N/A
Conv12 (w12) Conv12 (w′12) 3× 3× 64× 64 16× 16× 64(16, 384)

BN12 B12 (xb[b
′
12]) N/A N/A

Leaky_ReLU12 N/A N/A
Residual 6

(avg-pool+pad)
Conv13 (w13, s = 2) Conv13 (w′13, s = 2) 3× 3× 64× 96 8× 8× 96(6, 144)

BN13 B13 (xb[b
′
13]) N/A N/A

Leaky_ReLU13 N/A N/A
Conv14 (w14) Conv14 (w′14) 3× 3× 96× 96 8× 8× 96(6, 144)

BN14 B14 (xb[b
′
14]) N/A N/A

Leaky_ReLU14 N/A N/A
Residual 7
(identity)

Conv15 (w15) Conv15 (w′15) 3× 3× 96× 96 8× 8× 96(6, 144)
BN15 B15 (xb[b

′
15]) N/A N/A

Leaky_ReLU15 N/A N/A
Conv16 (w16) Conv16 (w′16) 3× 3× 96× 96 8× 8× 96(6, 144)

BN16 B16 (xb[b
′
16]) N/A N/A

Leaky_ReLU16 N/A N/A
Residual 8
(identity)

Conv17 (w17) Conv17 (w′17) 3× 3× 96× 96 8× 8× 96(6, 144)
BN17 B17 (xb[b

′
17]) N/A N/A

Leaky_ReLU17 N/A N/A
Conv18 (w18) Conv18 (w′18) 3× 3× 96× 96 8× 8× 96(6, 144)

BN18 B18 (xb[b
′
18]) N/A N/A

Leaky_ReLU18 N/A N/A
g_p N/A N/A

FC (wfc) 96× 10/100 10/100
Leaky_ReLU19 N/A N/A

xb is a sequentical concatenation of b
′
0~b

′
18;

avg-pool: average pooling with window size of 1 and stride of 2;
pad: padding zero channels to match the quantity of out-channels for summation.

Table B.4: Parameters for ResNet20 (refer to table B.1).
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Block (shortcut) Original layer Equivalent layer Parameters Out-channel feature maps
Input (xn) Input ([xn; xb]) N/A N/A

Conv0 (w0) Conv0 (w0) N/A N/A
B0 (b0) B0 (xb[b0]) N/A N/A

ReLU0 N/A N/A
Residual 0
(identity)

B1 (b1) B1 (xb[b1]) N/A N/A
Conv1 (w1) Conv1 (w1) 3× 3× 32× 32 32× 32× 32(32, 768)

B2 (b2) B2 (xb[b2]) N/A N/A
ReLU1 N/A N/A

B3 (b3) B3 (xb[b3]) N/A N/A
Conv2 (w2) Conv2

(w′2 = w2 ×M2)
3× 3× 32× 32 32× 32× 32(32, 768)

M2 (M2)
B4 (b4) B4 (xb[b4]) N/A N/A

ReLU2 N/A N/A
Residual 1
(identity)

B5 (b5) B5 (xb[b5]) N/A N/A
Conv3 (w3) Conv3 (w3) 3× 3× 32× 32 32× 32× 32(32, 768)

B6 (b6) B6 (xb[b6]) N/A N/A
ReLU3 N/A N/A

B7 (b7) B7 (xb[b7]) N/A N/A
Conv4 (w4) Conv4

(w′4 = w4 ×M4)
3× 3× 32× 32 32× 32× 32(32, 768)

M4 (M4)
B8 (b8) B8 (xb[b8]) N/A N/A

ReLU4 N/A N/A
Residual 2
(identity)

B9 (b9) B9 (xb[b9]) N/A N/A
Conv5 (w5) Conv5 (w5) 3× 3× 32× 32 32× 32× 32(32, 768)

B10 (b10) B10 (xb[b10]) N/A N/A
ReLU5 N/A N/A

B11 (b11) B11 (xb[b11]) N/A N/A
Conv6 (w6) Conv6

(w′6 = w6 ×M6)
3× 3× 32× 32 32× 32× 32(32, 768)

M6 (M6)
B12 (b12) B12 (xb[b12]) N/A N/A

ReLU6 N/A N/A
Residual 3

(avg-pool+pad)
B13 (b13) B13 (xb[b13]) N/A N/A

Conv7 (w7, s = 2) Conv7 (w7, s = 2) 3× 3× 32× 64 16× 16× 64(16, 384)
B14 (b14) B14 (xb[b14]) N/A N/A

ReLU7 N/A N/A
B15 (b15) B15 (xb[b15]) N/A N/A

Conv8 (w8) Conv8
(w′8 = w8 ×M8)

3× 3× 64× 64 16× 16× 64(16, 384)
M8 (M8)
B16 (b16) B16 (xb[b16]) N/A N/A

ReLU8 N/A N/A
Residual 4
(identity)

B17 (b17) B17 (xb[b17]) N/A N/A
Conv9 (w9) Conv9 (w9) 3× 3× 64× 64 16× 16× 64(16, 384)

B18 (b18) B18 (xb[b18]) N/A N/A
ReLU9 N/A N/A

B19 (b19) B19 (xb[b19]) N/A N/A
Conv10 (w10) Conv10

(w′10 = w10 ×M10)
3× 3× 64× 64 16× 16× 64(16, 384)

M10 (M10)
B20 (b20) B20 (xb[b20]) N/A N/A

ReLU10 N/A N/A
Residual 5
(identity)

B21 (b21) B21 (xb[b21]) N/A N/A
Conv11 (w11) Conv11 (w11) 3× 3× 64× 64 16× 16× 64(16, 384)

B22 (b22) B22 (xb[b22]) N/A N/A
ReLU11 N/A N/A

B23 (b23) B23 (xb[b23]) N/A N/A
Conv12 (w12) Conv12

(w′12 = w12 ×M12)
3× 3× 64× 64 16× 16× 64(16, 384)

M12 (M12)
B24 (b24) B24 (xb[b24]) N/A N/A

ReLU12 N/A N/A
Residual 6

(avg-pool+pad)
B25 (b25) B25 (xb[b25]) N/A N/A

Conv13 (w13, s = 2) Conv13 (w13, s = 2) 3× 3× 64× 96 8× 8× 96(6, 144)
B26 (b26) B26 (xb[b26]) N/A N/A

ReLU13 N/A N/A
B27 (b27) B27 (xb[b27]) N/A N/A

Conv14 (w14) Conv14
(w′14 = w14 ×M14)

3× 3× 96× 96 8× 8× 96(6, 144)
M14 (M14)
B28 (b28) B28 (xb[b28]) N/A N/A

ReLU14 N/A N/A
Residual 7
(identity)

B29 (b29) B29 (xb[b29]) N/A N/A
Conv15 (w15) Conv15 (w15) 3× 3× 96× 96 8× 8× 96(6, 144)

B30 (b30) B30 (xb[b30]) N/A N/A
ReLU15 N/A N/A

B31 (b31) B31 (xb[b31]) N/A N/A
Conv16 (w16) Conv16

(w′16 = w16 ×M16)
3× 3× 96× 96 8× 8× 96(6, 144)

M16 (M16)
B32 (b32) B32 (xb[b32]) N/A N/A

ReLU16 N/A N/A
Residual 8
(identity)

B33 (b33) B33 (xb[b33]) N/A N/A
Conv16 (w16) Conv16 (w16) 3× 3× 96× 96 8× 8× 96(6, 144)

B34 (b34) B34 (xb[b34]) N/A N/A
ReLU17 N/A N/A

B35 (b35) B35 (xb[b35]) N/A N/A
Conv18 (w18) Conv18

(w′18 = w18 ×M18)
3× 3× 96× 96 8× 8× 96(6, 144)

M18 (M18)
B36 (b36) B36 (xb[b36]) N/A N/A

ReLU18 N/A N/A
g_p N/A N/A

FC (wfc) 96× 10/100 10/100
ReLU19 N/A N/A

Mi denotes a multiplier [1];
xb is a sequentical concatenation of b0~b36.

Table B.5: Parameters for ResNet20-Fixup (refer to table B.4).
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