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ABSTRACT

Parkinson’s disease (PD) affects motor functionalities, which are closely
associated with increased risks of falling and decreased quality of life. However, there is
no easy-to-use definitive tools for PD patients to quantify their falling risks at home. To
address this, in this dissertation, we develop Monitoring Insoles (MONI) with advanced
data processing techniques to score falling risks of PD patients following Falling Risk
Questionnaire (FRQ) developed by the U.S. Centers for Disease Control and Prevention
(CDC). To achieve this, we extract motion tasks from daily activities and select the most
representative features associated with PD that facilitate accurate falling risk scoring.

To address the challenge in uncontrolled daily life environments and to identify
the most representative features associated with PD and falling risks, the proposed data
processing method firstly recognizes foot motions such as walking and toe tapping from
continuous movements with stride detection and fast labeling framework, and then
extracts time-axis and acceleration-axis features from the motion tasks, at the end
provides a score of falling risks using regression. The data processing method can be
integrated into a mobile game to be used at home with MONI.

The main contributions of this dissertation includes: (i) developing MONI as a
low power solution for daily life use; (ii) utilizing stride detection and developing fast
labeling framework for motion recognition that improves recognition accuracy for daily
life applications; (iii) analyzing two walking and two toe tapping tasks that are close to

real life scenarios and identifying important features associated with PD and falling



risks; (iv) providing falling scores as quantitative evaluation to PD patients in daily life

through simple foot motion tasks and setups.
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1. INTRODUCTION **

1.1. Parkinson’s Disease and Falling Risks

Parkinson’s disease (PD) affects motor functionalities. Disordered motor
functionalities are closely associated with increased risks of falling and decreased quality
of life. As shown in Figure 1.1, the prevalence of PD increases with age, so does the
falling risks. Over 45% of PD patients experience falling every year and over 50% of
them have experienced multiple falls [1]. Medication and treatments associated with
falling expense for PD patients are close to double of healthy elderlies [2]. Thus, early
identification of patients with high falling risks is important [3].

However, falling risk evaluation normally requires frequent clinical visits [4],
where doctors can assess the risk of falling through questionnaires and observations.
However, the moment-to-moment assessments in such a supervised and controlled
environment may not reflect the actual conditions in daily life. Recently, the U.S.
Centers for Disease Control and Prevention (CDC) developed a Falling Risk
Questionnaire (FRQ) [5], which can be used as a pre-screening tool. Multiple studies [6,

7] have validated that the FRQ has high correlations to clinical examinations [8].

* Part of this chapter is reprinted from "Monitoring insole (MONI): A low power solution toward daily gait
monitoring and analysis." by Hua, R. and Wang, Y., IEEE Sensors Journal 19.15 (2019): 6410-6420.
Copyright © 2019 IEEE

T Part of this chapter is reprinted from "Robust Foot Motion Recognition Using Stride Detection and Weak
Supervision-based Fast Labelling." by Hua, R. and Wang, Y., IEEE Sensors Journal 21.14 (2021): 16245
—16255. Copyright © 2021 IEEE
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However, to fill out the questionnaire with subjective answers, patients may need

caregivers’ help [9] as PD patients tend to overestimate their ability [10].
Prevalence of PD increases with age
217%

. 1.33%
70.29%

0.01%

5064 6574

ymptom detection
>50% T
— Faller detection

Itipl 2y
multiple
falls expen:

\
year

>45%
fall per |
‘\' 1 //

Scoring with motion tasks

Figure 1.1 Statistics of age distribution, falling events and falling risk evaluation
approaches of PD patients.

As shown in Figure 1.1, besides FRQ and doctor’s assessments, falling risks can
also be evaluated through three different approaches as detailed below. Symptom
detection, such as detection of freezing of gait, is a popular approach to evaluate falling
risks of PD patients. However, freezing of gait may happen randomly and thus it is
difficult to prevent falling during sudden episodes. It only applies to patients who are at
mid- or late-stage and it is with a low symptom detection accuracy of 70% [11]. Another
approach is to differentiate faller from non-faller using machine learning [12]. Even
though it can be applied to all PD patients with an accuracy over 90% [13], it does not
provide guantitative evaluation on falling risks. Thus, there is an increasing demand for

scoring falling risks. This can be done through evaluation of multiple motion tasks [14],



and it can be applied to all PD patients; and thus with the quantitative scores, it can be
more effective to prevent falling as patients and their caregivers can have a better
understanding of the balance and falling conditions. However, it lacks ground truths for
the scores and thereby difficult to validate if the score is accurate for each PD patient.

Besides the challenges stated above, providing an at-home quantitative
evaluation of falling risks for PD patients still faces other challenges, such as easy setups
and processes for daily use. Once these challenges are addressed, PD patients can better
understand their falling risks and thus better prevent falling.
1.2. Smart Wearable Devices and Falling Risk Evaluation

For daily life uses, wearable devices need to be light-weighted, unobtrusive,
wireless communicated, portable, easy to don and doff, user friendly, cost-effective, and
low power consumed [15]. Inertial sensors (accelerometers, gyroscopes, and
measurement units (IMU)) are the mostly used devices for detecting falling and
evaluating falling risks [16, 17]. The device can be placed at chest, waist, wrist, shin,
thigh, in-shoe, and a combination of all these positions when using multiple devices
[18]. Figure 1.2 summarizes the typical steps of using smart wearable devices/sensors
for falling risk evaluation. Most studies [19] collect data in fully controlled environments
where subjects follow specific instructions and perform one type of motion at a time.
Then, various kinds of features are extracted from motion data and analyzed with
machine learning methods to either classify falling or non-falling or assessing PD
symptoms. The collected data is usually split into train, test and validation set to develop

the learning algorithms. There is always a challenge of data limitation lying in small



amount of available data or data lack of diversity. Moreover, daily life is fully
uncontrolled environments and thus the application of the machine learning algorithms
developed by fully controlled data is not suitable. Another type of data collection is to
continuously collect data in uncontrolled or semi-controlled environments [14]. Machine
learning algorithms automatically detect PD symptoms relying on patients’ self-labeling
to adjust the pretrained algorithms. Such method has a high requirement of low power
device and large amounts of resources for data storage. Additionally, unexpected
motions during the data collection and mistakes made by self-labeling may confuse the

algorithm and thus the results won’t be accurate.

Smart Wearable Data I:D Feature Extraction Learning-based Falling Risk
Devices/Sensors I::> Collection and Analysis I:> Algorithms [:> Evaluation

- Fully-controlled ®» validation
. Fi
N S
o 3
* —  Semi-controlled S test
. gl train
° Uncontrolled % ______ R .
o ~ (daily life) Time-axis Data SIpIIt tc;]develop
algorithms

Figure 1.2 Summary of steps of using smart wearables for falling risk evaluation.

Thus, to develop a robust data processing method, the data must be collected in
semi-controlled or uncontrolled environments and unexpected or mistakenly performed
motions needs to be removed before any feature extraction.

1.3. Smart Wearable Devices and Foot Motion Recognition
Among all kinds of motors and commonly used motions, such as voice and

pronounce [20], and hand movement and writing [21], for the use of PD detection and

4



falling risk evaluation (as shown in Figure 1.3), foot motions [22], including continuous
motions resulted from continuous full body movements (named as sequential motions)
and repetitive foot motions that are often produced repetitively (named as repetitive
motions), are commonly used in clinical tests [23, 24] for characterizing motor

functionality in supporting early-stage detection of neurodegenerative diseases, such as

PD.
Motor Motion
/al, lol, C 2 Voice Pronounce
/m/ (¢ Whole body Walk, Turn

Upper body (Hand) | Finger Tapping, Write

Lower body (Foot) Heel, Toe Tapping

Figure 1.3 Falling risk evaluation through different types of motors and motions.

Reliable smart devices facilitating daily foot motion recognition and monitoring
are in high demand to avoid frequent doctor visits. However, most existing devices,
designed for activity tracking, cannot be directly used for foot motion recognition. Some
wearable devices have the capacity, such as smart phones [25] and smart watches [26],
but their accuracy for recognizing foot motions from continuous movements under
uncontrolled environments are limited by their positions; while non-wearable devices,

such as cameras [27] and radar [28, 29], may produce higher accuracies but their
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application is limited by their field of view [30]. It requires high resolutions and/or
multiple devices to identify continuous fine-grained foot motions, such as toe tapping.
Smart insoles [31, 32] are portable, low-cost, easy to use, and can provide enough
information needed for foot motion recognition.

Recognizing foot motions from continuous movements in uncontrolled
environments faces two major challenges. The first is how to recognize the foot motions
of interest from the movements with high robustness. Not like fully controlled
experiments, where designed motions are always carried out individually and can be
recognized by traditional machine learning frameworks in high accuracies [33], in
uncontrolled environments, foot motions often have continuous and complex forms [34].
Thus, traditional machine learning methods underperform in such settings. Complex and
computation-hungry machine learning methods [35-38], such as Recurrent Neural
Network and Long Short-term Memory, can improve the accuracy but will need a very
large amount of training data. As motion data collection is quite expensive, these models
do not work well in leave-one-subject-out cross-validation due to a lack of training data.
Another limitation of existing studies on continuous movement recognition lies on data
preprocessing: how to fast and accurate segment continuous movement data. Most
studies [39-43] use sliding windows for segmentation, and the window size is often a
fixed threshold value determined by features analysis [44] or sensor sampling frequency
[45]. The resulted segment using this approach may contain multiple motions, leading to

inaccurate labeling. This can be improved by using an adaptive sliding window, such as



through greedy algorithms [46] or the regression models [47]. However, this requires
high computing complexity.

The second challenge is to extract ground truths from uncontrolled continuous
movements in an accurate, simple, and less-costly way. Existing ground truths are
typically manually extracted and labeled from video/camera recordings. This is very
time-consuming, and its application for uncontrolled settings is impossible due to
privacy concerns. Some studies [48] utilizes user self-reporting as ground truths, which
often has unavoidable mistakes. To address this, weak supervision, such as multiple
instance learning [49] or stratified labeling with weak classifiers [48], has shown
improved performance when recognizing a specific motion from a period of continuous
movements in uncontrolled environments. Another study trains classifiers [50] with
inaccurate labels (noises) and then use multilabel learning methods to further improve
recognition accuracy. These weak supervision methods can provide fast labeling options
for applications that do not require high quality labels [51], such as image and text
classification, but are not well explored in continuous movement recognition.

1.4. Design and Development of Monitoring Insoles (MONI)

Foot-worn wearable devices, satisfying all the requirements for daily life use,
become the next favorite for daily uses besides smart watches. Moreover, foot-worn
wearable devices can effectively measure lower limb movements, including local and
full body movements. Compared to the smart shoes [52-54], smart insoles [55] are

invisible, portable, compact, easily embedded with small-size electronics in a low



fabrication cost. Smart insoles are the best form of wearable devices for falling risk
evaluation in daily life through foot motions.
1.4.1. Review of Smart Insole-like Devices

Smart insole-like devices include smart shoes and smart insoles. Smart insoles
refer to designs in an insole shape, invisible from outside of the shoes, portable to be
fitted to any shoes, compact, easily integrating small-size electronics in a low fabrication
cost. Thus, smart insoles are very likely to be one of the top essential wearables in our
life soon, which is the focus in our review. Our review also includes some smart shoes
refer to designs with some parts attached to the shoe and some parts embedded in the
insole.

Daily life uses of smart-insole like devices would be desirable for applications of
gait studies in foot pressure measurement [56-77], gait spatiotemporal parameter
extraction [44, 55, 58, 78-97], and gait pattern analysis [82, 98-107], activity recognition
[31, 32, 44, 84, 88, 93, 95, 97, 108-116] for health monitoring, support to disease
diagnosis, rehabilitation, fitness training, foot gesture recognition for human machine
interaction [117-121] and so many more [122-127], rather than only being used in labs
or clinics as medical devices [15, 107, 128]. The key factors for daily life uses are data,
power, wearable factor, connectivity, cost, and robustness. During the past decade, the
proposed insole-like devices have transformed from bulky to light-weighted or even
“invisible” designs and the corresponding sensory signal processing algorithms have
achieved good performance in in-lab tests and been making progress in real-time

computations [40, 129-131]. Most recent studies [32, 80, 85, 86, 90, 92, 93, 95, 114,
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117, 132, 133] are being aggressive of taking daily life uses into considerations.
However, it is generally agreed that most of the current designs are not ready for daily
life uses mainly due to the reasons that uncontrolled factors in real life settings are not
well considered when validating the functionalities in lab settings. Even though various
types of wearable devices in diverse applications and their corresponding signal
processing and sensor information analysis focusing on big data technologies have been
making great progress in recent years, well reviewed by a great number of papers [128,
134-138], the machine learning frameworks and data analysis for smart insole-like
devices are still lack of robustness when exposed to new environments and new users
due to limited data from limited number and diversity of subjects in experiments.
Besides research studies, there are some emerging commercial products [139-
150] in the past years. Due to the relative high prices, specific functionalities and
complex setups, these products are not well-accepted for daily life uses, but only used
within small groups such as patients, clinics, and researchers [116, 123, 151-158].
Figure 1.4 is a technology-centered evolution map of smart insole-like devices
with a focus on the representative designs among the 79 prototypes from the past decade.
Technologies with significant impacts to the field in the past decade are
microelectromechanical systems (MEMS), flexible/textile electronics, machine learning,
sensor system integration and footstep energy harvesting within an insole shape. The
development is summarized into three periods: the primary exploration prior to year
2008, the fast development period from year 2008 to 2013 and the booming period from

year 2014 to 2019.
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1.4.2. MONI Design

After reviewing smart wearable devices for falling risk evaluation and foot
motion recognition, and the existing smart-insole like devices, MONI is designed and
developed specially for PD patients for the use of falling risk evaluation through simple
foot motions.
1.4.2.1. MONI Prototype

MONI (Figure 1.5), a smart insole designed with comfort, has a microcontroller
(MCU) (MSP430F149), two accelerometers (ACC) (ADXL362) and a Bluetooth (BLE)
Low Energy Module (CC2540). These modules are integrated into two Printed Circuit
Boards (PCB) with associated peripheral circuits: one under the heel, and the other one

under the first metatarsal of the right foot.

Upper Insole Foam

Bluetooth Module

Case

Cover of
the Case

Case

Cover of
the Case

Heel Board Bottoiiof

the Shoe

Battery Foam  First Metatarsal Board

Figure 1.5 3D model of the prototype of the proposed MONI. Layers of the design
are clearly shown. © 2021 IEEE. Reprinted with permission from [95].
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MSP430F149, ADXL362 and CC2540 are chosen particularly due to their
ultralow power consumption. MSP430F149 has six working modes (active mode and
low power modes of LPMO — LPM4) and a large internal storage (60 KB). ADXL362
has three low-power operating modes (standby, wake-up and measure mode) and an on-
chip first in, fist out (FIFO) buffer (512 word-large). These modes can be smartly
managed by the proposed WMM algorithm. In addition, ADXL362 has on-chip
comparators to differentiate “activity” from “inactivity” with preset thresholds.
1.4.2.1.1. Sensor Position

It is reported that the most reliable sensor positions for characterizing typical gait
patterns, such as heel strike, flat foot contact, toe-off and swing, would be the heel and
metatarsals [159]. For early-stage PD assessments, gait characteristics extracted from the
heel, lateral and medial arch, and first metatarsal play more critical roles compared to
these extracted from other positions [89]. Many existing smart insoles use force sensors
to measure temporal gait parameters and inertial sensors to extract spatial parameters,
which is redundant for sensors. It has been proved by a variety of research that the
temporal gait parameters can be accurately extract from inertial sensors attached to the
shoe [160].

Therefore, MONI only has two accelerometers, one under the heel and one under
the first metatarsal, as shown in Figure 1.6(a). Data collected from the first metatarsal
and the heel, as shown in Figure 1.6(b), represent the movement of the front and the
back of the foot, and contain the most typical gait characteristics, which favors the

activity recognition as well.
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Figure 1.6 (a) Axis Directions of Accelerometer and Sensor Position; (b) The raw
data collected by MONI beneath the right foot, with 25 seconds’ regular walking in
a straight routine; the y-axis of (b) is acceleration in gravity g = 9.81 m/s2. Note
that, the X, y and z-axis of the accelerometer align with the lateral-medial, anterior-
posterior, and superior-inferior directions of the user. © 2021 IEEE. Reprinted
with permission from [95].
1.4.2.2. Early Version of MONI

Built from the lab prototype, the early version of MONI still has two
accelerometers with the sampling frequency of 150 Hz, positioned at the heel and the

first metatarsal area, respectively (Figure 1.7). The rigid printed circuit boards are

connected via flat flexible cables and all the electronics are sandwiched between black
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high-density tape foams. The Bluetooth Low Energy (BLE) module is connected to the
inner side of the shoe. To be fit for different shoe sizes, flexible cables can be switched
so that the accelerometers are ensured to be at the same position. In our experiment, we
install MONI in the same kind of shoes with different sizes for all the subjects to collect

foot motion data, for further evaluation of the user’s motor functionality.

Electronics and Electronics

their positions Sandwiched between

within the insole high density double
tape foam

Figure 1.7 The prototype and in-shoe installation of the early version of MONI. ©
2021 IEEE. Reprinted with permission from [161].
1.4.2.3. Upgraded Version of MONI

The MONI, upgraded from our previous versions [161], contains two
accelerometers positioned at the heel and the first metatarsal, a microcontroller (MCU)
and a Bluetooth Low Energy (BLE) module. This upgraded MONI has all electronics are
sandwiched between two high-density textile foam layers, and then buried into epoxy

resin for protection. As shown in Figure 1.8(a), the battery is connected via jumpers
14



through two holes at the inner side of the insole for the ease of power-on and off. In the
future, the battery can be directly connected to the electronics layer. For different shoe
sizes, the electronic components are the same, but the length of flexible cables and the
size of high-density textile foams are different. We prepare 6 pairs of upgraded MONI
inserted in shoes with size 8 to 13. As shown in Figure 1.8, being unobtrusive, portable,
and comfortable, the upgraded MONI can collect comprehensive foot motion

information from PD patients in daily life.

(a) MONI 1 ™ (b) In shoes

Flexible
Cables

Epoxy resm )
_____-» MCU & BLE 1\
-]

Figure 1.8 The prototype of upgraded MONI (size 8): (a) the bottom layer (the
foam with electronics), and the top layer (the high-density textile foam); (b) the top
view and (c) the side view inside a pair of MONI inserted in shoes.
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1.4.3. A Low-power Solution for Daily Life Use

A Working-mode Management (WMM) algorithm is designed to be
implemented in MONI in real time, which minimizes the power consumption of MONI.
The WMM algorithm features six working modes, namely Deep Sleep Mode, Check
Mode, Idle Mode, Data Acquire Mode, BLE-ON Mode and Sleep Timer Mode. It is
developed to ensure that MONI can sample the right amount of effective data from foot
motions such as walking throughout a day, while remaining at Deep Sleep Mode if
possible. It can be disenabled if continuous data collection is needed.

The WMM algorithm, a finite state machine implementation, smartly evaluates,
classifies, and judges the output acceleration signals, while taking full advantage of low-
power features of the MCU and accelerometers to achieve mode alternation. Moreover,
to ensure an accurate and efficient assessment, the data will be sampled during
continuous walking (or other foot motions) without stopping. The following subsection
introduces the classification and detailed alternations of the six working modes of

MONI, as shown in Figure 1.9(a).
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Figure 1.9 Working flow of Mode Management in the proposed WMM algorithm;
(b) The Power Trace of an example mode alternation: each mode is tested
separately with a supply voltage of 3.3V as shown in TABLE I. The example
alternation follows: Deep Sleep Mode-> Check Mode -> Idle Mode -> Data Acquire
Mode -> Idle Mode -> Data Acquire Mode -> Idle Mode -> Data Acquire Mode -> Idle
Mode -> Data Acquire Mode -> Idle Mode -> Data Acquire Mode -> BLE-ON Mode -
> Sleep Timer Mode (5 minutes) -> Deep Sleep Mode. © 2021 IEEE. Reprinted with

permission from [95].

Deep Sleep Mode: both accelerometers sample data at a low frequency (12.5
Hz). If acceleration variation reaches the preset threshold value of 0.2 g, MONI will be
switched to the Check Mode.

Check Mode: MONI receives an ACC Activity signal, suggesting the possibility
of walking or other foot motions. The AAR algorithm will further identify whether it is a
motion, MONI will be switched to the Idle Mode. Otherwise, MONI will be switched
back to the Deep Sleep Mode.

Idle Mode: accelerometers sample data at 25 Hz, which has been proven enough

for gait parameter extraction [19-20], and the on-chip FIFO is activated for data
17



recording. The FIFO will be full in 6.8s with a storage of 170 sub-datasets (three axis
acceleration data (X, y, z) as a sub-dataset). Once the FIFO is full, a signal (ACC
Watermark) generated by the accelerometer will trigger MONI to the Data Acquire
Mode. If the FIFO is not full and the sampling data is smaller than a preset threshold for
a period (1 s), a signal (ACC inactivity) from the accelerometer will bring MONI back to
the Deep Sleep Mode, and all data recorded in FIFO will be cleared. Such a design
ensures that a series of acceleration data of continuous walking will be recorded,
eliminating any “inactivity” data for efficient gait analysis.

Data Acquire Mode: MCU reads the datasets from accelerometers and stores
them into its internal storage. The internal counter automatically adds by one when
reading ends. MONI goes back to the Idle Mode to continuously record acceleration
data. If the internal counter reaches five, suggesting that five sets of data (as a group of
data) from each accelerometer are stored, MONI will be switched to the BLE-ON Mode.

BLE-ON Mode: a controlled MOSFET switch is turned on. A group of data (five
sets) of each accelerometer will be sent through the BLE module to a smart phone, and
then MONI will enter the Sleep Timer Mode.

Sleep Timer Mode: an internal timer runs. Length is adjustable depending on
how active the user is. If the user is highly active, it is suggested to use a longer timer so
that data will be better scattered throughout the day. When the timer overflows, the
system will go back to the Deep Sleep Mode to start a new round of alternation. By
setting up the Sleep Timer Mode, MONI ensures that data is sampled throughout the

whole day instead of in a continuous time period.
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Table 1.1 details the breakdown of power consumption, execution time and status
of each component in each mode. The execution time of the Deep Sleep Mode will be
determined based on how active the user is. A simple mode alternation example with the
power trace of WMM is shown in Figure 1.9(b). The average power is 16.745 mW
without the Deep Sleep Mode. When the Deep Sleep Mode is applied, the daily power
can be further minimized.

Table 1.1 Power consumption, execution time, and status of each component (MCU,
ACC and BLE). © 2021 IEEE. Reprinted with permission from [95].

Working Power Execution
MCU ACC BLE

Mode Consumption Time
Deep Sleep | 0.88 mW / LPM4 Measure OFF
Check 32.47 mW 0.57s Active Measure OFF
Idle 0.88 mW 10.31s LPM4 Measure OFF
Data

36.59 mW 0.32s Active Standby OFF
Acquire
BLE-ON 80.07 mW 26.23 s Active Standby ON
Sleep

18.23 mW 300s LPM3 Standby OFF
Timer

1.5. Scopes and Objectives of the Dissertation

The dissertation aims to provide quantitative analysis of falling risks for PD

patients in daily life to help prevent falling at home through foot motions in easy setups

and simple processes using MONI as shown in Figure 1.10. To achieve the goal, the
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dissertation mainly focuses on the data processing method for MONI, which
incorporates foot motion recognition, feature extraction and analysis, and falling risk

scoring through foot motion tasks to provide compatible results to the FRQ.

Game Over!
Your Falling Risk Score

6

Score>=4
Doctor visit is suggested

Data Processing
1

I [ |
: Foot motion = Feature = Scoring with
i recognition extraction regression

Figure 1.10 Proposed quantitative falling risk scoring with built-in data processing
using MONI.

The main contributions of this dissertation includes: (i) designing and developing
versions of MONI to be used in daily life (introduced in Chapter 1); (ii) utilizing stride
detection and developing fast labeling framework for motion recognition that improves
recognition accuracy for daily life uses; (iii) analyzing two walking and two toe tapping
tasks and identifying important features associated with PD and falling risks; (iv)
providing falling scores as quantitative results to PD patients in daily life through the
simple foot motion tasks.

Chapter 2 presents our proposed method of fast labeling framework for robust
foot motion recognition in daily life. The Chapter first introduces experiment done using
early version of MONI and subjects who participate. Datasets are built and stated. Then,
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the proposed motion recognition methods are detailed, and the validation of the proposed
motion recognition method used for gait feature analysis is presented. Finally, based on
the literature review, foot motions are selected to be used for falling risk analysis for PD.

Chapter 3 focuses on walking-based falling risk evaluation. Through literature
review, two tasks (walking and walking with a cup full of water) are analyzed. Gait and
acceleration-axis features are extracted. Features associated with PD are identified and
falling risks are evaluated through regression models which provide a falling risk score
compatible to the clinically verified falling risk questionnaire.

Compared to walking-based falling risk evaluation, Chapter 4 investigates toe
tapping-based falling risk evaluation. Using coordination dynamics, two toe tapping
tasks are designed (anti-phase and in-phase tapping). Time-axis and acceleration-axis
features are extracted and analyzed. Features to distinguish PD from HC are identified
and falling risks are evaluated through the same regression methods in Chapter 3.

In the end, Chapter 5 compares our method to other similar methods and
summarizes the dissertation in the contributions and future work to make the proposed

data processing method for MONI be used in real life.
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2. FOOT MOTION RECOGNITION"#8

Foot motion recognition in daily life faces two challenges imposed by traditional
machine learning frameworks: how to robustly recognize various foot motions from
continuous movements in uncontrolled environments, and how to accurately extract
ground truths. To address these challenges, we propose a stride detection method to
robustly identify each stride (over 99% accuracy). We then investigate two weak
supervision-based fast labeling frameworks to automatically label the stride
segmentations. Finally, we use these two frameworks to identify foot motions from
continuous movements integrated on a route map. The route map can be replaced by a
virtual-reality video game to play in daily life so that the user’s long-term foot
functionality can be profiled and evaluated. We test our proposed approaches using the
early version of MONI with twenty-two subjects whose movement data are collected
through the route map setting while video camera recordings serve as the ground truth.
The route map integrates seven foot motions in one complete play, which includes three

continuous motions resulted from continuous full-body movements (named as sequential

* Part of this chapter is reprinted from "Monitoring insole (MONI): A low power solution toward daily gait
monitoring and analysis." by Hua, R. and Wang, Y., IEEE Sensors Journal 19.15 (2019): 6410-6420.
Copyright © 2019 IEEE

T Part of this chapter is reprinted from "A Customized Convolutional Neural Network Model Integrated
with Acceleration-Based Smart Insole Toward Personalized Foot Gesture Recognition.” by Hua, R., and
Wang, Y., IEEE Sensors Letters 4.4 (2020): 1-4. Copyright © 2020 IEEE

t Part of this chapter is reprinted from "Age-Dependent Mobility Decline Analysis Through Sequential
Foot Motion Reproduction.” by Hua, R. and Wang, Y., IEEE Sensors Letters 5.11 (2021): 1-4. Copyright
© 2021 IEEE

§ Part of this chapter is reprinted from "Daily locomotor movement recognition with a smart insole and a
pre-defined route map: Towards early motor dysfunction detection." By Hua, R., and Wang, Y., 2019
IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT): pp 87-90.
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motions) and four repetitive foot motions that are produced repetitively (named as
repetitive motions). Compared to the best traditional machine learning methods, our
proposed approach improves the leave-one-subject-out cross-validation accuracy of all
subjects by 6.12% for the three sequential motions, 2.71% for the four repetitive motions
and 4.90% for the total of seven foot motions. In addition, our proposed method saves
25% to 50% time in data labeling. Figure 2.1 is the abstract of this chapter.

Route Map Containing 7 Foot Motions Foot Motion Recognition
= Using Smart Insole MONI

.............
.............
ooooooooooooooooo

RO
oooooooooooooooo

motions: walk, turn, step over obstacle)
19)3Wo019]|999y

The Loop (Containing 3 continuous

Machine Learning:
Stride detection + Weak

L A — e & ‘ -
g W, I . .
4 repetitive (| I supervise fast labelling
! motions in the )
| \. 3

Figure 2.1 Graphical abstract of Chapter 2. © 2021 IEEE. Reprinted with
permission from [161].

| B —

2.1. Experiment

The route map (Figure 2.2) has one loop containing three sequential motions:
walking, half turning and stepping over obstacles. Four repetitive motions are performed
in the end of the loop, including tapping heel, tapping toes, stomping, and kicking

independently from the loop. These seven foot motions are selected from the standard
23



clinical tests of Balancing Test [23] and Unified Parkinson Disease Rating Scale
(UPDRYS) [24] for the purpose of evaluating foot motor functionality. The route map (10
ft * 10 ft) can be easily replaced by a virtual game setting.

A complete play includes one loop of the route map from the start to the end
point (following blue arrows) for continuous motion data collection, followed by a

collection of four repetitive motions.

\End Loop:

-

/ s o o o 0 qpft—>

oo SR

Figure 2.2 Photographic representation of the pre-designed route map experiment
set-up. © 2021 IEEE. Reprinted with permission from [161].
2.2. Subjects and Datasets

We collect three types of foot motion datasets (Table 2.1) with two experiments
using the route map shown in Figure 2.2. Sequential Motion Dataset is collected when
subjects looping the route map from the start to the end, and data is segmented with

stride detection method presented in Chapter 2.4. Repetitive Motion Dataset is collected
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separately after the looping when subjects are in the standing posture and performing
repetitive foot motions of Tap Heel, Tap Toe, Stomp and Kick. Subjects perform each
repetitive motion continuously following instructions to start and end typically within 10
- 15s. Repetitive motion data is segmented with a 1.5s sliding window. We add walking
data (collected separately by asking subjects to walk at their own pace and segmented
with a 1.5s sliding window) as the noise data set to Repetitive Motion Dataset. Each
experiment is repeated five times by each subject, indexed as experiment process 1 to 5.
Ground truth is collected by manually labelling the video camera recording. Route Map
Dataset is the combination of Sequential Motion Dataset and Repetitive Motion Dataset
without the noise data set (walking).

There are a total of twenty-two subjects (Max Age: 89, Min Age: 20; Max
Height: 188cm, Min Height: 155cm; Max Weight: 95.25kg, Min Weight: 47.63 kg; Max
Shoe Size (U.S.): 12, Min Shoe Size (U.S.): 6) participated in the route map experiment,

while the sequential motion data of two subjects are lost during the experiment.
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Table 2.1 Three types of foot motion datasets by subjects.

No. of No. of Height Weight

Motions Motions Subjects (cm) (kg) Age

Walk
. Half Turn
Sequential | 3 Step Over 20 172.8 74.3 41.4

Obstacles

Kick
Stomp
Tap Heels
Tap Toes

Repetitive | 4 22 173.7 74.2 38.8

Walk
Half-Turn
Step Over
Route Obstacles
Map 7 Kick 20 172.8 74.3 41.4
Stomp
Tap Heels

Tap Toes

2.3. Data Preprocessing

Figure 2.3 shows the flowchart of data preprocessing, and the feature set is used
to develop the recognition algorithm. As stated in the previous Section 2.2, raw data is
first filtered with a 4th order low-pass filter with the cut-off frequency of 10 Hz and
offset errors are removed by normalization on all axes. Stride detection is applied to
sequential motions and continuous data is segmented into strides as the segments.
Sliding window with a fixed size of 1.5s is used for repetitive motions and continuous
data is segmented into short windows as the segments. Acceleration features are then
extracted from the segments. A label to the segment is added which is from the ground

truth (camera recordings) or from our proposed fast labeling framework.
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Figure 2.3 Flowchart of data preprocessing.

2.4. Stride Detection

Filtering and Segmentation Feature Ground Truth*
Raw data o ; . :
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detection
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- - Row 2 —
Acceleration | | Low—pass filter Acceleration Labelling I:> -
raw data Removing offset errors features segments
Rown :
Repetitive Motions
L | Fixed siiding | *Ground Truth:
window manually extracted from camera recordings

proposed labeling methods

Figure 2.4 shows the flowchart of our stride detection method. The raw data from

each accelerometer are (x, Y1, Zt)p, Where t is the index of N sampling points: te[1, N] for

each axis, and p e[heel, first metatarsal] is the position of each accelerometer. A 4%

order low-pass filter with the cut-off frequency of 10 Hz is applied. The standard

deviation std: of (x., yt, zt)p is calculated for all the sampling points as the 4" axis. The

discrete differential transform of all the 4-axis data is (4xt, Ay, Az, Astdy)p for each

accelerometer.
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Figure 2.4 Flowchart of the proposed stride detection method. © 2021 IEEE.
Reprinted with permission from [161].

Next, we define the stride window containing wp data points (window size) of 4-
axis as (Axt, Ay, Az, Astdy)p. The stride window moves one point forward each step for a
total of Ws steps, where Ws=N-wp+1. The data points within the stride window for step
JE[1, Wq] is (dpjz, dpj2, ..., dpjwp)ax, Where ax is one of the axes in (X, y, z, std). The mean
values (Mx;j, My;j, Mz;, Mstd;)ax of the stride window are calculated, and then compared to
the start point threshold values (ths)ax and the end point threshold values (thg)ax to
determine the start and the end point of each stride.

After the start and the end point of the stride are identified, we move the start
point of each stride (2*wp) data points ahead and move the end point (2*wp) data points

behind to make sure that a complete stride is detected. This is defined as the modified
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stride window to identify each stride with high accuracies for further use in continuous
movement segmentation. There is an additional judgement to remove some incomplete
or partial strides: If the size of the modified stride window is larger than (40%*150),
where 150 is the number of datapoints collected per second), it is a full stride.

We find that the key parameter to identify the start point of the stride is the
threshold value (ths), from both accelerometers, while the critical parameters to detect
the end point of the stride are the threshold values (the)x, (the)y and (the)sw of both
accelerometers. The stride window size wp is also crucial to the detection accuracy.

The stride detection only applies to sequential motions including walking, half-
turning and stepping over obstacles (Table 2.1) from twenty subjects. The threshold
value (ths), to detect the start point of a stride is set as 0.002 for both accelerometers.

We perform nested grid search for the threshold values the for axes of (x, y, std),
where the best combination values are 0.003, 0.0015 and 0.002 as shown in Figure 2.5(a-
c), and best value of wp is 7 in Figure 2.5(d). These best threshold values, red dots in
Fig. 7(a-d), work well for all twenty subjects despite different subject characteristics of
age, height, weight, and shoe size. Figure 2.5(¢e) shows the stride detection for each
subject under the best combination of the threshold values. There are a total of 1145
strides, where our stride detection method detects 1143 strides correctly. That is, our

method has a detection accuracy of 99.83%.
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Figure 2.5 Threshold value the search; (d) threshold value wp search; (e) detection
accuracy for each subject. © 2021 IEEE. Reprinted with permission from [161].

Our stride detection method reaches an average accuracy of 99.83% for twenty

subjects with a wide variety of characteristics in age, height, weight and shoe size. The

discrete differential transform on acceleration data minimizes the influence of the

threshold values (the)ax on individuals with wide varieties. In such way, a slight change

of (the)ax won’t affect the accuracy much as shown in Figure 2.5(a-c). Fine-tuning these

threshold values would work well for new subjects. Thus, our proposed stride detection
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method is robust and effective for foot motions of walking, half-tuning and stepping
over obstacles.

Compared to the existing studies [162-169] using different methods as shown in
Table 2.2, our methods show the best accuracy and applied to stride detection in
different kinds of sequential motions (besides walking).

Table 2.2 Comparison to the existing studies using different methods.

Method Motion Accuracy Pros Cons
Peak- 93%-99% Low computation Only.effectlv.e to
detection Low accuracy specific motion
Dynamic
time 99%
wrapping
Walk _ Large amount of
Hidden o1 High training datg
Markov 0 accuracy/robustness | high computation
demand
Residual
neural 96%
networks
V\z/;]llg ’S-I’;:pr " Low computation Effegtive _to
Our method 99% : motions in
over + high accuracy .
experiment
obstacle

2.5. Feature Extraction

After the segmentation of sequential and repetitive motions, using the stride
detection and sliding window, respectively, we will move forward for feature extraction.
After reviewing the most representative features from acceleration data [170] for activity

recognition, we manually craft 19 features to be extracted from the 4-axis segmented
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data of both accelerometers in time-domain. Table 2.3 lists the math description of the
selected features used in this study, where (d1, da, ..., dn) represents a total of n
segmented datapoints of each stride in time series. We then sort these datapoints in the
order of smallest to largest and denote as data array D to be used in the training and test

datasets.

Table 2.3 Math description of features of interest. © 2021 IEEE. Reprinted with
permission from [161].

Feature Math Description Feature Math Description
Name Name
In ) 1 o 5
Mean = - d; Skewness —_— d; —
nu n i—1 l n0_3 i=1( l H.)
1 n
Minimum min(d,, dy, - d,) Kurtosis — (d; — w)*
no i=1
n
Maximum max(dy,d,,---d,,) | Signal Power Z z
=1
. . Root Mean I N
Median median(d,, d,, - d,) Square - l=1di
o
Number of
Sg;gﬁ;i S p 5 Positive N/A
- ;zizl( i~ H) Peaks
. Number of
o
Comes | 3
Peaks
Peak-to-Peak X —min
Amplitude
Percentile(D,ny) =
(n,/100) x D, where
n, = Interquartile .
Percentiles | 10, 25, 50,75,90 and Range Iie;ZiZleteil(f(;SZ)S)
Dis (dq,dy, -+ dy) ’
sorted from smallest
to largest
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2.6. Fast Labeling Framework

For the benchmark framework in Figure 2.6(a), we use KNN, RF and SVM as
the end classifier as they are commonly used and have low computational costs
compared to deep learning models. The benchmark framework needs all the available
training data labelled with ground truths, and then uses this training dataset to train and
test each classifier. The trained classifier generates a recognition result y for new dataset.

We investigate two types of fast labeling frameworks: Label Model Framework
(LMF), which uses the label model to label training datasets and then provides
recognition results as shown in Figure 2.6(b), and Combined Framework (CF)
integrating the benchmark and the LMF framework as shown in Figure 2.6(c). The weak
supervision is applied to these two fast labeling frameworks by using weak classifiers as

the label functions.
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Figure 2.6 Fast labeling framework (a) Benchmark: traditional machine learning
framework; (b) LMF; (c) CF. © 2021 IEEE. Reprinted with permission from [161].
2.6.1. Label Model Framework (LMF)

We first split the total available training data into two groups: True-labelled
Dataset (TD) and Unlabeled Dataset (UD). TD contains data labeled with ground truths,
and UD contains unlabeled data. Next, we produce a set of labels from the label function
module containing different label functions. Finally, a label model is applied to generate

a final label from the set of labels as the final recognition result. All the label functions
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are weak classifiers (SVM, RF or KNN), which are first trained with TD without fine-
tuning hyperparameters and then the hyperparameters are tuned with UD with labels
provided by the label model as shown in Figure 2.6(b). After these processes, LMF is
ready to provide recognition results for the new dataset.
2.6.1.1. Data Splitting

We define two strategies to split training data into TD and UD. One strategy is to
split data based on subject characteristics including age, height, weight, and shoe size.
This ensures that the TD and UD both have data from different subjects with similar
characteristics. The other strategy is to split data using experiment process index. This
ensures that the TD and UD both have data from the same subjects. Here, we set the
splitting ratio between TD and UD as 1:1 or 3:1. The ratio of 1.1 saves 50% of manually
labeling time, while 3:1 saves 25%. Thus, in total, there are four different data
preparation of TD and UD based on the splitting.
2.6.1.2. Label Functions

Each label function represents a weak classifier (SVM, RF or KNN) trained with
TD without fine tuning all the hyperparameters. Each label function module provides a
set of labels for the UD or the new dataset.
2.6.1.2.1. Label Function Module

Two label function modules are defined: MODULEL1 has three label functions,
while MODULE?2 has five label functions. Each label function in the module provides a
label as shown in Figure 2.7, MODULE2 uses possibility check to determine the labels

produced by each label function (Figure 2.7(b)). The possibility is computed by
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classifiers, which is the confidence of the classification result. If the confident possibility
pt; of the label 4; from LFi, where i<=4, is larger than the threshold value P, the label is
recorded as Ji; if not, the label from LFi is set as ABSTAIN (can’t decide). The 5" label
function provides a label As without the possibility check, which ensures that there is at
least one label available for the situation where all the first four label functions provide

ABSTAIN.

(a) MODULE1

Label Functions: LF;| — Label 4,
Label Functions: LF,| — Label 41,
Label Functions: LF3| — Label A5

LF; (Polarity = number of class, Coverage = 1, Overlaps = 1, Same Conflicts)
e [1;3])
(b) MODULE2 NG ABSTAIN
Label Functions: LF

Label Functions: LF, Poss‘i:bility Ye abali
Label Functions: LF3  { ; ep[li, aD abel 4

Label Functions: LF,

Label Functions: LF 5 > Label 15
LF; (Polarity < number of class, Coverage < 1, Overlaps < 1, Different Conflicts)
(i€ [1,4])

Figure 2.7 Label function module (a) MODULEZ1; (b) MODULE2. © 2021 IEEE.
Reprinted with permission from [161].
2.6.1.2.2. Label Function Properties

We use the properties of polarity, coverage, overlaps and conflicts to determine
which label function is used. Polarity is the set of valid labels the label function provides
(excluding ABSTAIN). Coverage shows the fraction of the dataset a label function
covers. Overlaps mean the fraction of the dataset where this label function and at least

one other label function provides a valid label (not ABSTAIN). Conflicts represent the
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fraction of the dataset where this label function disagrees with at least one other label
function.

For MODULEL, the polarity of each label function includes all classes in the
dataset; the coverage for each label function is one; overlaps are one and every label
function has the same conflicts, as every label function provides a valid label (not
ABSTAIN) for every data segment, as summarized in Figure 2.7(a).

For MODULEZ2, the label functions checked with possibility pti do not cover the
whole dataset due to the reason that such label function may provide ABSTAIN when the
possibility of the label is lower than the threshold value Pw. Thus, except LFs has
polarity of all classes in the dataset, coverage of one and overlap of one, other label
functions are with coverage, overlaps and conflicts smaller than one, as shown in Figure
2.7(b).
2.6.1.2.3. Label Function Selection

Label functions are selected based on their properties. The general selection rule
is that the label functions in the module should be diverse. That is, label function module
should include different kinds of classifiers, imbalanced accuracies on different classes,
and with limited coverage, less overlaps, and less conflicts. By checking the properties
of each label function and the accuracy for each class of the training dataset TD, we can
decide which label function to be used in the label function module.
2.6.1.3. Label Model

Two kinds of label models are explored to combine the set of labels to a final

label for an unlabeled dataset, named as the unweighted majority vote model and the
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Snorkel label model [171]. The unweighted majority vote model treats all the labels (41,
J2, ..., Av) equally, where v is the number of label functions in the label function module.
That is, the final label is the label appears maximum number of times within the set of
labels. If there are two or more labels (tied options) are with the same maximum number
of times, the label model selects the final label randomly from the tied options.

Different from direct voting, the Snorkel label model [51] is a generative model
that learns from the correlations and dependencies between label functions by estimating
the conditional label function probabilities. If the Snorkel label model can’t decide the
final label due to the situation of tied options, it randomly selects one label among the
tied options.

2.6.2. Combined Framework (CF)

Modified from the LMF, an end classifier (either KNN, SVM or RF) is added at
the end of the LMF as shown in Figure 2.6. The LMF in the CF is only used to label the
UD with the majority vote model as the label model. These labels provided by LMF with
data in UD are combined with TD as the training dataset to train the end classifier.
Different from the LMF, label functions are not fine-tuned.

2.6.3. Weak Supervision

There are multiple noise sources in the label functions where the weak
supervision is employed. We identify three major noise sources: (i) the label functions,
which are weak classifiers trained by a limited amount of data with true labels, and thus
are insufficient for our tasks of foot motion detection when applied to new dataset; (ii)

the UD, which is labeled by the label model, not 100% accurate compared to ground
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truths, and thus these labels with the data in UD are used to fine-tune the weak classifiers
in the LMF; and (iii) both the unweighted majority vote model and Snorkel label model,
which randomly choose a label among tied options.
2.6.4. Evaluation Strategy
2.6.4.1. Benchmark

We use the traditional supervised machine learning models (KNN, SVM and RF)
as the end classifier in the benchmark framework (Figure 2.6(a)). Available data are all
labeled with ground truths, which are manually extracted from video recordings. As
shown in Figure 2.8, the validation dataset is the data from subject denoted as S; where
l€]1, A] and A is the total number of subjects in that dataset (Table 2.1). S is the symbol
for all data from all subjects. (S - S)) contains data of the whole dataset minus data from
subject indexed I. The training dataset and testing dataset containing data (S - S;) with a

ratio of 8:2 as shown in Fig. 6(a).
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Figure 2.8 Evaluation strategy of (a) Benchmark: traditional machine learning
framework; (b) LMF and CF. © 2021 IEEE. Reprinted with permission from [161].
2.6.4.2. LMF and CF

As shown in Figure 2.8(b), different from the dataset preparation for the
benchmark, we split the available data (S - Si) with two ratios (TD : UD = 1:1 or 3:1)
following the defined data splitting strategies of subject characteristics and experiment
process indexes, respectively. In total, we have four different data preparations to be
used for comparison and analysis of the impact of different data splitting strategies and
ratios for our proposed methods.

Note that we have an even number of subjects for all three datasets in Table 2.1,

so that we can split the subjects with approximate ratios of 1:1 and 3:1. As each subject
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repeats the experiment process five times, data from one experiment process is
symbolled as Siq, where S denotes the data from subject | and g&[1,5] is the index of
experiment process. We only use four times’ data (Si1, Si2, Si3, Si4) so that we can split
the data by the ratio of 1:1 and 3:1 (TD : UD).

For LMF and CF, we split training and test dataset from both TD and UD with
the ratio of 9:1 instead of 8:2 used for the benchmark, and the 10% of TD and UD
together make the test dataset. Note that, all available data are labeled with ground truths
from video recordings for the use of validation. To clarify, 90% of UD with labels from
our label models are in the training dataset and 10% of UD with their true labels are in
the test dataset for the LMF and CF framework.

2.6.5. Motion Recognition Results

Table 2.4 to Table 2.6 summarize the cross-validation accuracy of all subjects
from benchmarks, LMF and CF frameworks for MODULE1 and MODULE?2,
respectively. For MODULEZ2, we present results from the probability check threshold
value Pw = 0.75 for Sequential Motion Dataset, Pw = 0.97 for Repetitive Motion Dataset
and Pw = 0.95 for Route Map Dataset. These Pt values provide an average overlap of
about 60% to 70% between label functions and averaged conflicts less than 1%. Besides
these P values for probability check, we also explore other values as shown in Figure
2.11.

In Table 2.4 to Table 2.6, the color in blue and red indicate the improved and
degraded accuracy compared to that in the black (benchmark) with the same end

classifier. As there is no available benchmark for LMF, we use the benchmark of
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traditional RF, which has better results than SVM or KNN to quantify the accuracy

improvement.

Table 2.4 Sequential motion dataset — cross-validation accuracy. © 2021 IEEE.
Reprinted with permission from [161].

MODULE1
Framework- Benchmark User Experiment Process
Classifier Characteristics Index

1.1 3.1 1:1 3.1
'\-/'(\)’{eF'MaJO“ty N/A 82.44% 192.32% [88.61%  [93.87%
LMF-Snorkel N/A 81.15% [89.63% [82.37%  [89.67%
Label Model
CF-KNN 73.41% 70.45% |72.47% |71.55% 72.78%
CF-SVM 80.04% 76.37% |78.99% [76.06% 78.24%
CF-RF 87.75% 85.01% |88.72% |85.07% 86.73%

MODULE2 (P = 0.75)
Framework- Benchmark User Experiment Process
Classifier Characteristics Index

11 3:1 1:1 3.1
'\-/'(\)’:E'Malo“ty N/A 87.62% [91.94% [90.72%  [92.50%
::MF'Snorke' N/A 86.64% [92.12% [90.94%  [92.97%
abel Model

CF-KNN 73.41% 71.73% |72.03% [72.78% 72.27%
CF-SVM 80.04% 79.54% |79.10% [78.67% 78.91%
CF-RF 87.75% 83.17% [86.34% |85.90% 85.92%
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Table 2.5 Repetitive motion dataset — cross-validation accuracy

MODULE1
Framework- Benchmark User Experiment Process
Classifier Characteristics Index

1:1 3:1 1:1 3:1
LMF-Majority Vote N/A 08.09% [98.78% [98.77% 99.39%
kﬂ'\é'gélsnorke' Label |\ 97.34% [98.61% [98.77%  |99.32%
CF-KNN 74.91% 75.46% [75.36% [74.65% 74.68%
CF-SVM 91.60% 91.78% [91.89% [91.63% 92.04%
CF-RF 96.68% 96.33% [96.80% [96.77% 96.79%

MODULE?2 (P = 0.97)

Framework- Benchmark User Experiment Process
Classifier Characteristics Index

1:1 3:1 1:1 3:1
LMF-Majority Vote N/A 07.89% [98.84% [98.87% 99.38%
k/l'\ggjnorke' Label | \/a 97.78% |98.76% 198.88%  |99.37%
CF-KNN 74.91% 75.27% |75.23% |74.61% 74.59%
CF-SVM 91.60% 01.75% [91.55% [91.82% 92.02%
CF-RF 96.68% 96.80% [96.54% [96.72% 97.08%
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Table 2.6 Route map dataset — cross-validation accuracy. © 2021 IEEE. Reprinted
with permission from [161].

MODULE1
Framework- Benchmark User Experiment Process
Classifier Characteristics Index
1:1 3:1 11 3:1
LMF-Majority Vote N/A 95.85% | 97.51% 97.29% 97.98%
LMF-Snorkel Label
N/A 94.71% | 96.61% 96.83% 97.70%
Model
CF-KNN 74.31% 75.53% | 74.96% 74.39% 74.82%
CF-SVM 89.59% 88.60% | 89.40% 89.39% 89.06%
CF-RF 93.08% 92.87% | 93.80% 93.75% 93.80%
MODULE?2 (P = 0.95)
Framework- Benchmark User Experiment Process
Classifier Characteristics Index
1:1 3:1 1:1 3:1
LMF-Majority Vote N/A 95.56% | 97.36% 97.39% 97.91%
LMF-S&%(SI Label N/A 955206 | 97.24% | 97.34% | 97.89%
CF-KNN 74.31% 75.36% | 75.04% 74.32% 74.71%
CF-SVM 89.59% 88.67% | 89.91% 89.54% 89.27%
CF-RF 93.08% 91.93% | 93.93% 93.91% 93.95%

2.6.5.1. Sequential Motion Recognition

In Table 2.4, the CF does not work well where the results from most of the data
splitting strategies and splitting ratios degrade up to 5%. However, the LMF works well
and make improvements up to 6.12% and 5.12%, with both the majority vote model and

the Snorkel label model, respectively.
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2.6.5.2. Repetitive Motion Recognition

Our proposed methods improve an average up to 2.71% on the cross-validation
accuracy from Table 2.5. Compared to CF, both MODULE1 and MODULE?2 with LMF
make improvements for any strategy or ratio of splitting data.

2.6.5.3. Route Map

In Table 2.6, when the SVM is used as the end classifier, our proposed methods
do not work well on making improvements. Except this case, other strategies of building
our proposed frameworks make improvements up to 4.90% with the data splitting
strategy of experiment process index, ratio=3:1 and MODULEL.

2.6.5.4. Robustness

We use the cross-validation accuracy of all subjects to evaluate the robustness. In
general, LMF provides better results than CF (Table 2.4 to Table 2.6). The LMF using

MODULEZ1 with majority vote with TD : UD = 3:1 (based on experiment process

index), produces the highest validation accuracy of all subjects for all three datasets. The

results are detailed below:

e Compared to the best benchmark framework, it improves the accuracy up to 2.71%
for Repetitive Motion Dataset, up to 4.90% for Route Map Dataset, and up to 6.12%
for Sequential Motion Dataset with appropriate data splitting strategies and ratios.
The CF also makes improvements. But for most data preparation scenarios, the
improvements are not as good as that of the LMF for all three datasets.

e Table 2.7 presents the cross-validation results of sensitivity, specificity, precision,

and F1-score. These metrics are close to each other, indicating that the LMF
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framework has a balanced performance in identifying true positives, false positives,
true negatives, and false negatives.

e Figure 2.9 shows its validation accuracy for each subject, compared with the best
benchmark result (from RF). We can see improved and/or maintained (if it is already
100% with RF) for all subjects. Thus, the robustness is highly improved not only for
cross-validation accuracy, but also for validation accuracy of individual subjects.

Figure 2.10 shows the confusion matrices (not normalized) from subject Sy as an
example to present cross-classes performance. The LMF is trained with other subjects’

data but is validated with subject Sxo. The validation accuracy for subject Sxo is 98.04%,

99.59% and 99.20% for the sequential motions, repetitive motions, and route map,

respectively.

Table 2.7 Cross-validation metrics summary with LMF using MODULE1 with

majority vote as the end classifier that provides the maximum improvements. ©
2021 IEEE. Reprinted with permission from [161].

Cross-validation Sequential Motion Repetitive Motion Route Map
Metrics Dataset Dataset Dataset
Accuracy 93.87% 99.39% 97.98%
Sensitivity 93.17% 99.77% 96.16%
Specificity 95.94% 99.85% 99.67%
Precision 93.87% 98.09% 95.41%
F1-score 94.14% 99.76% 96.80%
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Figure 2.9 Validation accuracy of our method: LMF using MODULE1with
majority vote with data preparation of TD : UD = 3:1 (based on experiment process
index) , comparison to the best benchmark results for each subject. © 2021 IEEE.
Reprinted with permission from [161].
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Figure 2.10 Confusion matrices from subject Sxo as an example to show cross-
classes performance a) Sequential Motion Dataset, b) Repetitive Motion Dataset, c)
Route Map Dataset. © 2021 IEEE. Reprinted with permission from [161].

2.6.5.5. More Discussion on Fast Labeling Framework

2.6.5.5.1. Data Preparation

We explore two strategies of data splitting: TD and UD with two splitting ratios.
In total, we have four different data preparations. The purpose of exploring data
preparations is to understand how similarities of subject characteristics and their
individual differences influence the results. The purpose of exploring different ratios is

to evaluate how much time that we can save in labeling.
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Regardless of the splitting strategies, from the red colored (degraded) and blue
colored (improved) accuracies of columns of 1:1 and 3:1 ratio in Table 2.4 to Table 2.6,
we can see that the 3:1 ratio makes more improvement than 1:1 ratio for the most cases,
but not too much when both have improvements. Regardless of the splitting ratio, from
columns of subject characteristics and experiment process index in Table 2.4 to Table
2.6, we can tell data splitting by experiment index is a better strategy as the
improvements are more consistent and higher than the subject characteristic based
splitting strategy for most cases. This explains that taking the subjects’ similarities into
consideration when preparing TD and UD can largely improve the evaluation
performance. In addition, our proposed methods also make improvements by using
subject characteristic based splitting strategy when it comes to individual differences.
2.6.5.5.2. Label Function

It is obvious that label functions are key components, as they implement noises
of weak supervision into our frameworks by labeling UD. Here, we use weak classifiers
as the label functions (chosen from a combination of KNN, SVM or RF). All these weak
classifiers do not work well for the foot motion tasks and only trained by TD.

From the results, we find that MODULE?2 is more robust compared to
MODULEL1 as it improves accuracies from most data preparations. The P value needs
to be decided for the use of probability check for MODULE?2 based on the label function
properties. Figure 2.11 shows the relationship between the P value and the averaged
conflicts and overlaps, the first four functions in MODULEZ2. If the Pt value is set too

small, it is the same as MODULEZ1 since all label functions would provide a valid label
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(not ABSTAIN). If the Pt value is set too large, the first four functions may provide
ABSTAIN all the time and the final label would be decided by the 5™ label function only.
Thus, when selecting the Py value, we use the value that provides about 60% to 70%
overlaps between label functions and small conflicts between each other. Table 2.8 gives
an example of the MODULEZ2 we use for the route map dataset with Py = 0.95 to show
the label function properties. In our future work, we will explore how overlaps and

conflicts affect the results and how to quantitively find the best values of Pih.
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Figure 2.11 MODULEZ2: Properties vs. Probability threshold Pw. © 2021 IEEE.
Reprinted with permission from [161].
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Table 2.8 MODULEZ2: Label Function property summary. © 2021 IEEE. Reprinted
with permission from [161].

Label
Function

Polarity Coverage | Overlaps | Conflicts

Walk, half-turn, step over obstacle,
LF. tap heel, tap toes, kick foot, stomp (7 | 58.42% | 58.42% | 0.04%
classes)

Walk, half-turn, step over obstacle,

0, 0, 0,
L2 tap heel, tap toes, kick foot (6 classes) S287% | 52.86% | 0.00%
LFs Walk, half-turn, step over obstacle, 3710% | 37.10% | 0.64%
tap heel (4 classes)
Walk, half-turn, step over obstacle, 0 0 0
LFs tap heel, Kick foot (5 classes) 36.97% | 36.97% | 0.69%
Walk, half-turn, step over obstacle,
LFs tap heel, tap toes, kick foot, stomp (7 1 68.98% | 0.73%

classes)

2.7. Validation of Fast Labeling Framework on Mobility Analysis

To validate and apply our fast labeling framework to mobility analysis, we first
prove that sequential motions (Gait -> U-turn -> Gait) can be reproduced with an
average accuracy of 96.13% through testing with 6 elderlies and 16 young adults. Next,
we extract 21 temporal motion features from reproduction results, rank these features
through univariate feature ranking, and identify their importance to age-dependent
mobility analysis. In the end, we analyze errors caused by reproduction and prove the
applicability of the proposed method. We believe that this easy-to-use mobility
monitoring approach with the simple setup can facilitate at-home mobility monitoring
and evaluation for elderlies with high accuracies.
2.7.1. Method

The mobility analysis is performed in the following steps (Figure 2.12):

acceleration data collection using the early version of MONI (Figure 2.13(a)), data
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preprocessing with low pass filtering and segmentation into strides, sequential motion
reproduction using the LMF and temporal motion extraction for mobility analysis. The
LMF, recently developed by our team [161] can accurately reproduce continuous
movements and provide ground truth labels for data collected from uncontrolled
environments. In this letter, the LMF is fine-tuned with an optimized dataset split ratio
and a label function module of 5 label functions. Each analysis step is detailed the

following section.

Acceleration| | Stride Reproductionin [ | Temporal motion
data detection strides features

— Mobility analysis

' 1
1
Sovaridotin [fug | o
P A | Labeled | functions :
Dataset / Label Function Majority\ :
Acceleration (TD) Module __vote |
feature L e Label Functions: LF gsLabel A, i
extraction niabe! ; ‘R
Labeled | | Label Functions: LF; p=Label 1, Possible.,ER°°°9“i“°“5
Dataset . . label y | | result:y H
1(UD) : : TG
Label Functions: LF ; ksLabel 4,
Label Model Framework (LMF) /

Figure 2.12 Flowchart of mobility analysis steps. © 2021 IEEE. Reprinted with
permission from [184].
2.7.1.1. Experimental Setup

Each motion data set is collected following schematic in Figure 2.13(b). Each
subject, wearing MONI on their right side, starts at a standing posture, walks 10 ft.
(Gait-1), makes a U-turn at the U-turn point (U-turn), and then walks back to where the
subject starts (Gait-11). The sequential motions include three periods of motions: Gait-I,
U-turn, and Gait-11. We test our early version of MONI on 6 elderlies at a senior facility
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(Figure 2.13(c)) and 16 healthy young adults in our lab (Figure 2.13(d)). Each subject
performs the sequential motions 5 times and follows the “start” instruction each time on

the same vinyl sheet. The ground truth is manually extracted from camera recordings.

N2 A

Accelerometer

Flexible Cable g“_:

Figure 2.13 (a) Photographic representation of MONI (right-side); (b) Simple
setup: a round-trip of 10-ft walking (Gait-1 and Gait-11) and a U-turn;
Experimental setup using a square vinyl sheet of 10-ft long at (c) the senior facility
and (d) our research lab at Texas A&M University for sequential foot motion data
collection: the blue and red tapes on one side of the mat indicating the start/end and
U-turn point. © 2021 IEEE. Reprinted with permission from [184].

We group all subjects into two categories based on their age and summarize their
characteristics in Table 2.9. This includes the average age, height, weight, shoe-size,
gender, self-reported mobility limitation, and body mass index (BMI), where BMI> 25 is

overweight.
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Table 2.9 Statistics of subject characteristics. © 2021 IEEE. Reprinted with
permission from [184].

Average A. Elderly Group B. Health Young Group
Age 82.83 23.60
Gender *M (2), *F (4) *M (14), *F (2)
Height 166.67 cm 174.47 cm
Weight 77.64 kg 70.91 kg
BMI >25 (6), <=25 (0) >25 (4), <= (12)
Shoe-size 8.67 (US) 9.27 (US)
Foot Motor Functionali
Limitations Y "N (4), "L (2) *N (16)

& Male; ® Female; ¢ Normal; ¢ Limited mobility due to motor dysfunctions

2.7.1.2. Sequential Motion Reproduction with Fast Labeling Framework

The acceleration data is first filtered by a 4™ order Butterworth low-pass filter
with a cut-off frequency of 10 Hz since the peak frequency of the motion is around 3-5
Hz for all the motion data. A stride detection method [161] is applied and segments the
sequential motions into strides. Next, 150 statistical features [161] are extracted from
each stride (acceleration data) to build a dataset D. We implement the LMF with weak
supervision recently developed by our team [161] to reproduce sequential motions of
gait and U-turn, as shown in the blue shaded area in Figure 2.12. The dataset D is first
split into an optimized ratio of 1:1 to be true-labeled dataset (TD) and unlabeled dataset
(UD), where true-labeled dataset is labeled with the ground truth manually extracted
from camera recordings. The label function module consists of five weak classifiers,
roughly trained by TD, including three Random Forest (RF) and two Support Vector
Machine (SVM) with different hyperparameters. The first four label functions include

two RF and two SVM. Each provides a recognition result (label) and run through a
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possibility check on the confidence of the result. If the confidence of the result is higher
than 90%, the label is recorded. Otherwise, the label is set as ABSTAIN (can’t decide).
The possibility check does not apply to the 5™ label function, which ensures the label
function module provides at least one motion label. After the label function module
provides a set of five labels including ABSTAIN if there is, the unweighted majority vote
is applied to provide a final label, which is the label appears maximum number of times
within the set of labels, except ABSTAIN. If there are tied options, the majority vote will
select a final label randomly from the tied options.
2.7.1.3. Temporal Motion Features

In total, we extract 21 temporal motion features from the reproduced sequential
motions. These are gait features and motion-related features referencing to TUG-derived
parameters [172], including durations, stride parameters and phase-correlated features,
as shown in Table 2. Univariate statistical tests are used to rank these features to
differentiate elderly and healthy young groups. The Analysis of VVariance (ANOVA) F-
value [173] is calculated for each feature by Scikit-learn [174]. The features are ranked
by the F-value. The highest represents the most relevance with age. The same features
are also extracted from the true motion phases from camera recordings as the ground
truth. The same method of feature ranking is applied to the ground truth, and the results

of feature extraction and ranking from reproduction and ground truth are compared.
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Table 2.10 Candidate temporal motion features for evaluation. © 2021 IEEE.
Reprinted with permission from [184].

Motion Temporal Motion Features Total
motion duration, average stride duration, number of
Gait-1, Gait-1l | strides, cadence (strides/min), stride-to-stride variability 14
(standard deviation, mean, coefficient of variability)
U-turn motion duration, average stride duration, number of strides 3
total sequential motion duration, ratio of Gait-1 and 1l
Motion-correlated| durations, ratio of Gait-I1 and U-turn durations, ratio of 4
Gait-11 and U-turn durations

2.7.2. Results and Discussion
2.7.2.1. Results of Sequential Motion Reproduction

The reproduction accuracy is used to validate the LMF. All 22 subjects complete
the sequential motions five times. The first four are used to build the dataset D, while
last time is used to validate the reproduction. Within D, two times are treated as TD and
the other two are UD. A traditional machine learning framework (RF as the classifier) is
used as the benchmark, where the whole dataset D is labeled with ground truth manually
extracted from the camera recording. Temporal motion features are extracted from the
reproduction results from the last time of sequential motions and the ground truth. Errors
of temporal motion feature extraction caused by the results of reproduction are analyzed
for each age group. Figure 2.14(a) shows that the average reproduction accuracy for all
subjects is improved from 91.55% (benchmark) to 96.13%. Figure 2.14(b) shows the
reproduction examples for subject 1 (elderly) and subject 16 (adult) with an accuracy of
100%. For subject 10 and 13, the U-turn is not detected and thus they are removed for
feature ranking within each group. The reason why LMF has better results in sequential

motion reproduction than the benchmark is because the label function module introduces
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weak supervision by providing labels from model-based label functions to the

framework.

(a) Reproduction Accuracy
B Our Method E Benchmark RF
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Figure 2.14 (a) Reproduction results for every subject comparison to benchmark;
(b) Reproduction results for four subjects as examples. © 2021 IEEE. Reprinted
with permission from [184].
2.7.2.2. Results of Temporal Motion Feature Ranking

Figure 2.15(a) shows the feature ranking from the reproduction results and the
ground truth. From top to bottom, it is ranked as the most age-related to the least age-
related. The top two features are stride-to-stride standard deviation (SD) and coefficient

of variability (CV) from motion of Gait-Il. The top two features from the reproduction

results and the ground truth are the same. The feature space plot with the top two
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mobility representing features in Figure 2.15(b), shows that the two groups are clearly

separated, suggesting that these two features are correlated with age.

(a) Univariate Feature Selection - Age Groups

Gait-ll CV

Gait-ll SD

Gait-Il cadence (strides/min)
Gait-1 cadence (strides/min)

ratio of Gait-l and Il duration
Gait-l1 CV

U-turn duration

Gait-1 SD

Uturn average stride duration
Gait-ll duration

Gait-ll # stride

Gait-1 # stride

total motion duration

Gait-l duration

Gait-ll mean

Gait-1l average stride duration
ratio of Gait-1l and U-turn duration
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Figure 2.15 (a) Feature ranking; (b) Feature space plot with the top two features
correlated with the two age groups. © 2021 IEEE. Reprinted with permission from

[184].
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2.7.2.3. Mobility Analysis

We observe that for both groups, the average stride duration, cadence, number of
strides, ratio of Gait-1 and Il duration and ratio of Gait-11 and U-turn duration have
exhibited a linear increase with age. Group A uses a greater number of strides and longer
durations to finish each motion, and shows a larger stride-to-stride variation and standard
deviation compared to Group B. That is, the age-related mobility decline can be
represented by typical features including a larger stride-to-stride variation, a larger
cadence, a greater number of strides, and a longer duration of finishing the same motion
task. The last feature is equivalent to smaller stride length since their walking distance
for Gait | and 11 is 10 ft. These results agree with the literature finding [175] which
reports step regularity and motion duration are top features to distinguish performance
difference across ages after using multivariate analyses to identify aging effects on TUG.
2.7.2.4. Error Analysis

Table 2.11 shows feature errors caused by reproduction within Group A and B.
The Error and Error % are both calculated against the ground truth and averaged by all
subjects. The error for counting the number of strides is much larger than others
(12.500%) as all finish walking with 2-5 strides, and a miscounting could cause
significant error. The reproduction accuracy for all other temporal motion features is
decent with an average error below 10%. From the feature ranking in results of Figure
2.15(a), the features of the number of strides for each motion are not top-ranked features
by ground truths. Summarized from Table 2.11, the error caused by reproduction is

acceptable and our proposed method as shown in Figure 2.12 is applicable.
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Table 2.11 Average errors of temporal motion feature extraction from
reproduction and the error percentage of each group. © 2021 IEEE. Reprinted with
ermission from [184].

Motion Feature A B
Error Error % |Error Error %
# stride -0.167 -5.556% |-0.071 |-2.632%
duration -0.151 -4.530% |-0.080 |-2.636%
average stride duration 0.001 0.067% |-0.001 |-0.085%
Gait-I cadence (strides/min) -0.053 -0.094% |0.048 |0.089%
SD -0.006 -7.509% |0.000 |0.686%
mean 0.007 0.684% |-0.002 |-0.140%
CV -0.006 -8.649% 10.000  |0.809%
# stride 0.000 0.000% |0.071 [2.941%
duration 0.000 0.000% |0.090 [3.195%
average stride duration 0.000 0.000% [0.001 |0.061%
Gait-11 cadence (strides/min) 0.000 0.000% |-0.027 |-0.052%
SD 0.000 0.000% |0.000  [0.629%
mean 0.000 0.000% |0.000 [0.011%
CV 0.000 0.000% |0.000 |0.616%
# stride 0.167 12.500% |0.000  |0.000%
U-turn duration 0.151 3.378% |-0.010 |-0.260%
average stride duration -0.182 -5.201% |-0.034 |-1.164%
total motion duration 0.000 0.000% |0.000 |0.000%
ratio of Gait-1 and Il 0051 -5.457% |-0.083 |-7.189%
Motion dur_atlon -
correlated 1210 Of GAILTand UM g 071 1901196 L0015 |-1.752%
uration
ratio of Gait-lland U-m Lo 36 434206 0020  [2.550%
uration

2.7.2.5. Sequential Effects

Figure 2.15 suggests the sequential effects: though the motion of Gait-1 and Gait-
Il are the same in nature, their feature importance ranking is different. As shown in
Table 2.12, Gait-Il is more important than Gait | while U-turn is the least important one

for Group A and B, where number of * represents the importance of the phase (more *
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means more important). Interestingly, we observed that if we group subjects based on
their BMI: overweight group (10) and normal weight (12) in Table 1, the top two
features are the same as these for age-related groups. However, for these groups, the
most important motion is Gait-11 while U-turn and Gait-1 are close. To conclude, we
believe that features from Gait-11 can best assess both age and BMI-related mobility
decline. Future work will include recruiting more elderly subjects and Middle Ages
subjects to increase the data diversity and balance.

Table 2.12 Importance for Age and BMI-related mobility analysis. © 2021 IEEE.
Reprinted with permission from [184].

Age BMI
Gait-1 ** *
U-turn * *
Gait-11 Fkk Fkk

2.7.2.6. Conclusion

This letter proposes the use of MONI and setup for age-dependent mobility
decline analysis. The proposed LMF achieves an accuracy of 96.13% to reproduce
sequential foot motions of gaits and U-turns. On top of the reproduction results, 21
temporal motion features are extracted and analyzed with ANOVA to present the age-
dependent mobility decline and sequential effects are proven to be important for
mobility analysis. Errors associated with motion reproduction results are analyzed and
the proposed method is proven to be applicable. This study provides a promising
solution for elderlies to evaluate their mobility at home with simple setup using MONI

through sequential motion reproduction.
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2.8. Summary

We evaluate different data splitting strategies and splitting ratios to give an
insight of how subjects’ similarities and differences influence the performance of the
proposed framework. Knowledge learned from these results are summarized below: (i)
the LMF works better than the CF for all three datasets; (ii) for LMF, the majority vote
model (slightly better) and the Snorkel label model have similar results for all three
datasets; and (iii) the results from MODULE?2 are more consistent and robust than those
from MODULEL1 for different data preparation cases.

Our proposed methods have the following uniqueness and advantages of: (i) the
use of stride (the start to end of the stride) as the adaptive sliding window to segment
continuous movements into data segments with a robust stride detection method, (ii)
improvement of the cross-validation accuracy on different types of foot motion datasets
with efficient computation based on traditional machine learning models of KNN, SVM
and RF, (iii) thorough evaluation of strategies to group data into TD and UD, (iv) 25% to
50% of time savings in manually labeling training data, and (v) the use of weak
supervision by using weak classifiers and LMF labeled training data to achieve high
robustness needed by uncontrolled environments and new subjects.

It is worth to note that the size of Sequential Motion Dataset is much smaller
than the other two datasets, and the walking data is two times more than the half-turn
and step over obstacle data (unbalanced), so that its cross-validation accuracy is much
lower than that of the other datasets. This can be addressed by using a larger and more

balanced dataset in the future. We will explore auto feature selection, importance
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ranking, advanced neuron network models to process larger datasets. We expect our

proposed method would produce significant improvement of accuracy and robustness.

This chapter explores weak supervision-based fast labeling on continuous

movements with a robust stride detection method for foot motion recognition. The

results show improvements in validation accuracy for all the subjects. The chapter well

addresses the challenge of recognizing foot motions from continuous movements in

uncontrolled environments and provides a solution to robust and fast data labeling.

Compared to existing studies as shown in Table 2.13, our method has a significantly

better accuracy in motion recognition when applied to multiple motions.

Table 2.13 Comparison to existing studies.

Recognition Se_gment (No. of motions) Motion Accura No._of
method ation cy subjects
Greedy (6) Lay down, Stand, Sit, 0
Xgboost Gaussian | Walk, Downstairs, Upstairs 79.4% 30
Adaboost SI_|d|ng (7_) Walk, Sit, Stand, Run,_ 95.35% | 10
windows | Bicycle, Lay down, Upstairs
Hierarchical (4) Walk, Downstairs, 0
hidden Markov N/A Upstairs, Run 88.88% | N/A
Threshold SI_|d|ng (4) Stand from_ a chair, _ 9233% | 10
judgements windows | Walk, Turn, Sit on the chair
- (5) Walk, Sit, Stand up,
Recurrent Neural SI_|d|ng Bend to pick object, Drink 96% 16
Networks windows
water, Fall
More efficient - I
Recurrent Neural SI_|d|ng (?10) ACt'V't'.eS from 91% 25
windows | different public datasets
Networks
. Stride
Fast labeling . .
framework an_d_ (7) Lower limb motions 97.98% | 20
Sliding (Route Map)
(Our method) .
Window
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With MONI and setup for age-dependent mobility decline analysis, foot motion
recognition using fast labeling framework is proven to be applicable before motion
feature extraction and analysis. The proposed LMF achieves an accuracy of 96.13% to
reproduce sequential foot motions of gaits and U-turns. On top of the reproduction
results, 21 temporal motion features are extracted and analyzed with ANOVA to present
the age-dependent mobility decline and sequential effects are proven to be important for
mobility analysis. Errors associated with motion reproduction results are analyzed and
the proposed method is proven to be applicable. This work provides a promising solution
for elderlies to evaluate their mobility at home with simple setup using MONI through
sequential motion reproduction.

2.9. Selected Motions for PD Falling Risk Evaluation

As shown in Table 2.14, within all the foot motions, we summarize from
commonly used effective clinical exams and tests and select the most effective and
simplest sequential motions: walking, and repetitive motion: toe tapping for PD falling
risk evaluation.

Table 2.14 Foot motions used in clinical examinations and tests.

Application Clinical tests al/blc|d|e|f|g
PD rating/diagnosis | UPDRS x x
Balancing BESTest x | x| x| x| x
Mobility and falling | Timed-up and Go x | x

Lower body (Leg) | Leg strength/dominance test x | x
For elderlies, difficult to perform

a: Walk; b: Turn; c: Step over obstacle; d: Toe tapping; e: heel tappmg f: K|ck g

Stomp
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3. WALKING-BASED FALLING RISK EVALUATION

Motor functionality decline caused by Parkinson’s disease (PD) can be
represented by gait disorders, leading to high risks of falling and serious injuries. Most
existing studies on falling risk evaluation mainly rely on gait analysis using wearable
sensors but do not usually provide quantitative results to patients. In real-life scenarios,
walking is always associated with other activities, thus gait changes due to distracted
attention. This study aims to investigate how PD patients perform during walking while
holding a full cup of water in hand compared to age-matched healthy controls (HC) with
Monitoring Insoles (MONI) developed in our lab. Experiments, including two tasks:
walking and walking with water in hand, are done with 10 PD patients and 8 HCs.
Results are compared between groups and between tasks through statistical analysis of
63 gait and 864 acceleration-axis features. The results suggest acceleration-axis features
can better differentiate PD from HC during walking with water in hand with an accuracy
of 82.37% compared to walking (72.63%). To evaluate falling risks with the task of
walking with water in hand, a Bayesian Ridge model developed by gait and acceleration-
axis features provides falling risk scores compatible with the Fall Risk Questionnaire
(FRQ) developed by the U.S. Centers for Disease Control and Prevention (CDC) with an
(error £ standard deviation) = (0.03£0.38). This study assesses and evaluates features of
PD and HC in walking motion and walking while holding a cup of water to provide a
more quantitative and understandable falling risk score to PD patients using MONI.

Figure 3.1 is the abstract of Chapter 3.
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Figure 3.1 Graphical abstract of Chapter 3.

3.1. Walking Tasks

Aiming to reduce the burden of trips to clinics and provide an objective
evaluation of falling risks in real time, research studies [44, 90, 176] focus on developing
smart insoles to automatically evaluate walking in daily life to support falling risk
estimation for elderlies. Other studies [177, 178] focus on gait analysis to detect motor
functionality disorder in PD, such as freezing of gait and bradykinesia [179]. To predict
the falling of PD, most recent studies focus on detecting pre-freezing of gait [11] with
acceleration or force data and different machine learning methods, reporting 80-95% of
accuracy [180]. However, such prediction only applies to PD in the mid-severe stages.
Walking evaluated by these studies is a single task and most of the experiments done by
the studies are controlled without considering environmental or physical factors. In daily
routine, walking is always associated with other activities [181], such as carrying a cup

of coffee. Such dual tasks distract attention from walking and may increase risks of
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falling [182]. Thus, results from these studies, which only consider walking, are not
accurate or do not reflect how PD patients perform in real-life scenarios. It is more
valuable to evaluate dual tasks with smart insoles for PD and explain how they link to
falling risks to assist with real-life applications.

Referencing to dual-task Timed-Up and Go test [183] and different one from
existing studies [31] using smart insoles for gait analysis, our study aims to investigate
the gait and acceleration-axis features of PD and age-matched healthy controls (HC)
through two tasks: simple walking and walking with attention distracted by holding a
full cup of water in hand, using upgraded Monitoring Insoles (MONI) [184]. Figure 3.2

shows the acceleration data plot of the two tasks.
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Figure 3.2 Acceleration data plots of the two tasks.
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3.1.1. Experiment

The subject walks 23 ft. at his/her comfortable pace in a straight line in Task 1;
and then repeats Task 1 with a full cup of water in a single hand as Task 2, as shown in
Figure 3.3. Compared to Task 1, Task 2 requires the subject’s attention to avoid spilling
water at his/her best during walking. Thus, the experiment is more relevant to real-life
scenarios where attention is distracted while walking. The motion data is recorded by a
pair of MONI, including two accelerometers positioned at the heel and the first

metatarsal area, respectively. The ground truth is recorded by a camera.

(a) Task 1

Figure 3.3 Subjects in experiment.

3.1.2. Subjects

In total, 10 PD patients and 8 HC subjects participated in the experiment.
Subjects are grouped as PD and HC Group as recorded in Table 3.1 with the summarized
information of each group. To determine if a subject is a faller or non-faller, FRQ with
12 YES/NO questions is used, which is validated to have a high correlation to clinical
falling examination [15]. Every subject filled the questionnaire before the experiment.
FRQ is transformed into a score, scaling in between [0, 14] when a YES counts as 1

point. The scaling is up to 14 points since the first two questions count for 2 points each.
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Table 3.1 Group summary: subjects’ characteristics.

Group PD HC

Gender Female (2) ®, Male (8)  |Female (6), Male (2)
L 0 60, 130 0
PD Stage 1(5),2(2),3(1),4(2) |N/A

Falling Faller (7), Non-faller (3) |Faller (1), Non-faller (7)
Falling Score (mean + std ?)|5.70 + 3.40 1.50 £ 1.60

3.2. Gait Features

Human walking is a periodical movement, represented by strides. A stride (two

steps) is divided into gait phases of stance (heel strike to toe-off) and swing (toe-off to

heel strike) [15]. It has been proven that gait events can be extracted from accelerometry

signals [33]. Gait events of heel strike and toe-off of the left and right foot can be

directly extracted from MONI. From heel strike and toe-off events, the following gait

features (Figure 3.4) can be extracted for both right and left sides.
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Figure 3.4 Gait events and gait phases definition.

In the following subsections, we state the method of identifying gait events and
the results, following by gait feature extraction.
3.2.1. Gait Event and Phase Identification

To remove high-frequency noises within acceleration data, a 4" order
Butterworth low-pass filter with 2.5Hz cut-off frequency is used. Walking including four
events in a stride: left heel strike (HSy.), left toe-off (T0,.f;), right heel strike
(HSyigne) and right toe-off (T0,;4p,,) are identified with differential transformation. As
Figure 3.5 shows, HS.s; and HS,.;4p, are detected from the z-axis of the heel

acceleration while TOy.¢, and T O, 4p, are detected from the y-axis of the first metatarsal
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acceleration. First, differential calculations are applied to the y-axis data of the heel and
first metatarsal. Next, the heel strike event is detected as the mean of the peak and the
zero-crossing prior to the peak from the differentiation from the heel y-axis acceleration.
With the detected heel strike event, its prior toe-off event is found as the zero-crossing
before the peak of y-axis data from the first metatarsal. To extract gait parameters, the
detected events are put in arrays and defined as Aysiere, Aroterts Ansrignt aNd Arorighe.
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Figure 3.5 Gait events pinpointed on heel and first metatarsal acceleration traces
(data from left side in black; data from right side in red).
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Table 3.2 shows results of the correct number of gait events detected by our

method compared to video recordings in percentage for the two tasks and two groups,

respectively.

Table 3.2 Gait event detection accuracy.

PD HC
Task 1 97.86% 97.37%
Task 2 98.34% 97.28%

Compared to the other studies listed in Table 3.3, our work shows a compatible

accuracy and works well for walking and walking with water.

Table 3.3 Comparison to existing studies using different methods.

No. of | No. of

Method Task Sensor PD HC Accuracy
Zero-crossing detection 0
(specific features)?® IMU 6 0 100%
SVM# IMU 49 0 93.9%
4-state Finite State 0
Machine + SVM?*° Walk IMU 1 1 93%
Heuristics fﬁ thresholds Accelerometer | 12 11 >94%
on features
Freq”ency;‘ﬁoma'” Accelerometer | 128 0 97%
Transform

Walk Accelerometer | 10 8 98%
Our method Walk with Accelerometer | 10 8 98%

water

3.2.2. Gait Feature Extraction

Since the subject starts walking with either right or left side, the first left toe-off

is defined to be the first event during walking for all subjects, and thus any event from

Aysrignt and Argrigne @head of 1% element in Argpf, is removed from the arrays when

extracting stride duration and gait phases of swing, step, stance, and double support

73




duration. Due to the unstable speed at the start and the end of the tasks, the first and the
last stride is also removed. 4 types of functions are applied to stride and 4 gait phases (5
in total): mean, standard deviation (std), variability (var) and coefficient of variance
(CoV), which makes 20 features in total. Ratios between gait phases to stride duration
are calculated (4 features) and the total number of strides from a single side before any
removal is another feature. In total, 25 gait features are extracted from a single side. In
addition, 13 features are extracted with both sides. Before any removal on event arrays,
the total task duration can be extracted as the duration between the first and the last
event, as one feature. Gait symmetry is calculated with 3 methods (ratio index,
symmetry index, and Robinson index) [185] for left and right swing, stance, step, and
double support duration (12 features). Thus, in total, 63 gait features are extracted.
3.3. Acceleration-axis Features

Since PD symptoms are within the 2-12 Hz range, the acceleration data is filtered
with a low-pass filter with a 12 Hz cut-off frequency. Based on Aysiert, Aroieft
Apsrignt and Arorigne after removals, the start and the end of each stride are identified
and thus acceleration data can be segmented into stride, swing, and step. In total, 432
acceleration-axis features are extracted from a single side. That is, 18 statistical features
are extracted from 4 axes of the 2 accelerometers within each stride, swing, and step,
respectively. The 18 statistical features include: mean, minimum, maximum, median,
std, CoV, peak-to-peak amplitude (PPA), Percentile=10, 25, 50, 75, 90, interquartile

range, skewness, kurtosis, signal power, root mean square (RMS) and the number of
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positive peaks. Axes include x, y, z, and the std of x, y, and z. In total, 864 acceleration-
axis features (2 sides) are extracted for each task.
3.4. Feature Analysis

As shown in Figure 3.6, to identify features with statistically significant
differences between the means of PD and HC groups for the same task and the means
between tasks for the same group, a two-way Analysis of Variance (ANOVA) with
replication is used for 864 acceleration-axis features. The result of two-way ANOVA
provides p-values of group factor, task factor, and interaction. If the p-value for
interaction is not significant, a pairwise comparison is performed to check if the
significance exists in groups (PD: Task1 vs. Task2, HC: Taskl vs. Task2) or in tasks
(Task1: PD vs. HC; Task2: PD vs. HC) with Turkey’s Test [186]. For gait features,
Mann-Whitney U Test [187] is used to identify the features with significant differences
between the means of groups, and Wilcoxon Signed Rank Test [188] is used to identify
the features with significant differences between the means of tasks. The reason for
using different statistical analyses is because data of gait features is not normally
distributed, but data of acceleration-axis features follows a normal distribution, checked

with Shapiro-Wilk Test [189].
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Figure 3.6 Methods of Identifying Statistically Significant Differences between two

means.

3.4.1. Results of Gait Feature Analysis

3.4.1.1. Between Groups

In our experiment, HC uses an average of 7.28s to finish Task 1 while PD uses

7.70s; and HC uses 7.77s to finish Task 2 while PD uses 7.93s. Thus, Task 2 takes

longer to finish for both groups. It is noticed that both groups use larger stride duration

and a greater number of strides in Task 2. The ratio of stance in a stride shows a

significant difference in Task 2 (63.08%) than Task 1 (59.34%) for PD compared to HC

(Task 2: 63.90% and Task 1: 61.87%), which means PD uses a longer stance duration to

stabilize the walking performance in Task 2, These features have the changes with the

same trending for two groups between Task 1 and Task 2 as shown in Table 3.4

Summary of duration and number of strides for each group and task.

Table 3.4 Summary of duration and number of strides for each group and task.

Group PD-Taskl|HC-Taskl1l|PD-Task2|HC-Task?2
Task Duration (s) |7.70 7.28 7.93 7.77
Stride Duration (s)|1.05 1.07 1.13 1.12
Number of Stride |6.75 7.5 7 7.25
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The results indicate no statistically significant difference between the mean of
PD and HC for all gait features of the two tasks. The feature with the most significance
is the symmetry angle of the left and right stride duration (p-value = 0.191) in Task 2 as
shown in Figure 3.7, where PD is a bit unbalanced in gait symmetry in Task 2. Notice
that PD and HC have the same symmetry angle in Task 1, but Task 2 changes the gait

symmetry of PD walking performance (Figure 3.7).
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Figure 3.7 Symmetry angle (Inverse Tangent ( x 180/pi)

right stride duration

where 45 degree is 100% symmetry.

3.4.1.2. Between Tasks for PD
The results indicate significant differences between tasks in ratio of stance
duration in a stride, ratio of swing duration in a stride, number of strides to finish tasks,

and average stance duration for PD. The p-values are summarized in Table 3.5. These
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features specify that PD group user longer duration when foot is on the ground in Task 2
than Task 1, as the ratio of stance in a stride is 63.08% for Task 2 vs. 59.34% for Task 1.

Table 3.5 Gait features with significant differences between tasks for PD.
Feature name p-value
Ratio of left stance in a stride/0.004
Ratio of left swing in a stride|0.006
Right number of strides 0.026
Left average stance duration |0.049

3.4.2. Results of Acceleration-axis Feature Analysis
3.4.2.1. Between Groups

The feature with the most significant difference between groups is the
acceleration value at percentile=10 from the y-axis of left side first metatarsal
acceleration in a stride from Task 2 (p-value = 0.006), where PD has a very small
acceleration value (mean: 0.016 g) compared to HC (mean: 0.049 g) as shown in Figure
3.8. Other features show significant differences are the median acceleration value of the
z-axis from the left first metatarsal acceleration during swing (p-value = 0.015, Figure
3.9), the interquartile range of std-axis from the left heel acceleration during swing (p-
value = 0.018), and the skewness of x-axis from the first metatarsal acceleration in a

stride (p-value = 0.027) from Task 1.
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Figure 3.9 Feature with the most significant difference between groups from Task
1.
3.4.2.2. Between Tasks for PD

Two-way ANOVA results show there are statistically significant interactions

between the factors of groups and tasks for acceleration-axis features. With the pairwise
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comparison, there is no significant difference in acceleration-axis features found for HC
between Task 1 and Task 2. However, only one feature (Kurtosis of z-axis from right-
side heel acceleration in a step) with p-value = 0.037 shows a significant difference

between Task 1 and Task 2 for PD (Figure 3.10).
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Figure 3.10 Feature with significant differences between tasks for PD.

3.5. PD vs. HC Classification

Through identifying the features with significant differences, conclusions can be
made to assess feature differences between PD and HC for the two tasks. Classification
of PD and HC is performed to further consolidate the conclusion about the importance of
gait and acceleration-axis features, respectively. Classification models of Random Forest
(RF), Support Vector Machine (SVM), and K-Nearest-Neighbors (KNN) are used and
only the model that provides the best results is reported in results.

Concluding from feature analysis, gait features do not have statistically

significant differences between the means of groups while acceleration-axis features are
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in the opposite. Classification of PD and HC is performed based on gait feature set F;
and acceleration-axis feature set F,¢ for Task 1 and Task 2, where F; includes the same
type of gait features and Fy, includes the same type of acceleration-axis features
extracted from a single stride and its gait phases. To fairly evaluate, a non-randomly 5-
fold Cross-Validation (CV) and a random shuffling 8-fold CV are used. As Table 3.6
shows, the F,; shows more accuracy in PD and HC classification compared to F,; and
Task 2 provides higher accuracy compared to Task 1, which means Task 2 can better
differentiate PD from HC. The classification results verify the statistical feature analysis.

Table 3.6 Classification results.

Task 1 Task 2
Dataset Type Fgs Fy Fi Fy
Model RF RF | SVM RF
5-fold CV 61.79%]64.00%)|70.57%|80.57%

8-fold Random Shuffle CV|75.00%|81.259%|92.19%|84.17%
Average Accuracy 68.40%]72.63%|81.38%|82.37%

3.6. Falling Risk Evaluation

With gait and acceleration-axis features, falling risks are estimated by the scores
compatible to the FRQ that provides PD quantitative analysis of their falling risk under
Task 1 and Task 2, respectively. A baseline method without feature selection and an
optimized method with Pearson’s correlation feature selection are then compared. In the
optimized method, the features with a p-value of Pearson’s correlation to the falling
score less than 0.005 are selected. In Task 1, 2 gait features (Table 3.7) and 63
acceleration-axis features are selected; in Task 2, 3 gait features (Table 3.8) and 72

acceleration-axis features are selected. Regression models of Linear Regression (LR),
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Kernel Ridge (KR), Bayesian Ridge (BR), and Gradient Boosting Regressor (GBR) are
used and only the best model is reported in results below.

Table 3.7 Gait features with significant linear correlation to falling risk score: Task
1.

Feature name Pearson p-value
Number of strides left 0.012
Total time to finish task|Start->end|0.035

Table 3.8 Gait features with significant linear correlation to falling risk score: Task
2.

Feature name Pearson p-value
Number of strides left 0.001
Total time to finish task/Start->end0.014
Number of strides right 0.025

After analyzing the walking performance between PD and HC, and between Task
1 and Task 2, falling risks are estimated through three different feature sets: F, F,; and
the combination (F;s + F,). With regression methods previously introduced, a score is
provided to be compatible with FRQ which is used for falling risk estimation in clinical
prescreening. The average accuracy and std of the two evaluation methods are used, as
shown in Figure 3.11, to determine the improvement of the optimized method and the
best results. The best outcome (errortstd) from the baseline method is (0.25+0.41) from
BR developed with F,, from Task 2. With feature selection in the optimized method, all

results are improved. The best result (0.03+0.38) is from BR developed with (Fg + Fys)
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from Task 2. Hence, it concludes that compared to walking (Task 1), walking with water

in hand (Task 2) can better assess falling risks for PD and HC.
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Figure 3.11 Average error + std of falling risk estimation scores between non-
randomly 5-fold CV and random shuffling 8-fold CV.
3.7. Summary

In this Chapter, we study and identify the feature differences between PD and
HCs in walking and walking while holding a full cup of water in hand (closer to real-life
scenarios). It concludes that acceleration-axis features from Task 2 — walking with water
in hand can differentiate PD from HC the best with 82.37% accuracy. Meanwhile,
falling risks are evaluated with BR regression through walking with water in hand and
provide quantitative results to PD patients, compatible with FRQ with (errortstd) =
(0.03£0.38) in scoring. With the use of MONI, the proposed method can be transformed
into a mobile game and provide a real-time evaluation to PD patients in daily practice

and support physical therapy with the recorded evaluation results.
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4. TOE TAPPING-BASED FALLING RISK EVALUATION

Typical symptoms of Parkinson’s disease (PD) include freezing of gait, shuffling
steps, and stooped posture, which introduce high risks of falling. Existing studies
characterize and analyze PD symptoms through walking using wearable sensors. In
addition, toe tapping is often used in clinical motor examination representing rotational
agility in lower extremities, which is a critical factor in PD motor functionality and
relates to falling. In this letter, we investigate the time and acceleration feature
differences between PD patients and their age-matched healthy control (HC) subjects
through alternating and synchronized toe tapping. Monitoring Insoles (MONI) are used
to collect acceleration data with 10 PD patients and 9 HC subjects. In total, 87 time-axis
and 1152 acceleration-axis features are extracted and analyzed between the two groups.
The results suggest acceleration-axis features are with more significance in differing PD
and HC than time-axis features. The results show toe tapping motion can better
distinguish PD and HC with an accuracy of 87.65% using the acceleration-axis feature
set compared to 57.07% with time-axis feature set. To help PD patient understand their
falling, falling risks are estimated in scores using Linear Regression, with (error +
standard deviation) = (0.97+0.85) to be compatible to Fall Risk Questionnaire (FRQ)
developed by the U.S. Centers for Disease Control and Prevention (CDC). Our method
and the experiment can be easily transformed into a mobile game for daily life use and

provides falling risk scores to PD patients without occupying spaces.

84



Monitoring Insoles

PD Patient

— left-side

— right-side

J ST —

o .TWWWT_ |-

First Metatarsal x-axi

Heel x-axis

10 20 30 40

20 30 40

e
wn

(=]

o
2y

Acceleration (g)

First Metatarsal y-ax

wn

(=

Heel y-axis

N
o

10 20 30 40

20 30 40

—IH&HWW&——

Heel z-axis

First Metatarsal z-axjs
1

"o 10 20 30 40
Time (s)

20 30 40

In-phase
Toe Tapping

Time-axis & Acceleration-axis
Feature Extraction + Regression

Falling Risk
Score

Figure 4.1 Graphical abstract of Chapter 4.

4.1. Toe Tapping Tasks

Gait analysis and characterization are vital in falling risk estimation for PD [190].

Existing methods focus on evaluating walking performance with wearable sensors to

produce objective falling analysis or prediction in daily life automatically. Numerous

studies [178, 179, 191] extract gait parameters from straight/treadmill walking using

inertial measurement units (IMU), and then compare PD’s gait to age-matched healthy

85



control (HC) subjects to make conclusions of falling risks [192]. However, the
controlled experiment does not represent real-life scenarios, and the complicated setup
of sensors is not suitable for daily life use. Some other studies develop smart wearable
devices, such as insoles [44], to segment sequential motions (including sequence of
walking, turning, and stepping over obstacles) and then extract gait parameters to study
sequential effects [184] to falling, but do not provide any quantitative or understandable
results to patients. Our recent study [193] estimates scores of falling risks referencing to
Falling Risk Questionnaire (FRQ) [5] through walking with a cup of water in hand and
can be applied to different stages of PD, but it requires a 23 ft. walking due to the reason
that walking typically requires 10 to 33 ft. so that gait can be analyzed.

Compared to walking, toe tapping is another motion included in clinical motor
examination tests [24] but does not require large space. Up to date, it is not well
investigated how the performance represents falling risks by smart wearable devices.
Very few studies [194] report PD’s rhythmic toe tapping performance compared to HC
subjects to assess leg muscles. Thus, there is an immediate need to explore how toe
tapping relates to falling risks and develop new methods and tools for falling risk
evaluation for PD patients for daily life use.

This work focuses on analyzing time-axis and acceleration-axis feature
differences of toe tapping motion of PD and HC through alternative (anti-phase) and
synchronized (in-phase) toe tapping tasks [195] in a game setting where subjects were

wearing a pair of Monitoring Insoles (MONI) to perform tasks following indicators.
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4.1.1. Experiment

Using coordination dynamics [195], two tasks were designed for bipedal control
with toe tapping motion. A pair of MONI, containing two accelerometers at the heel and
first metatarsal area, respectively, was used to collect foot motion data. Task 1 was the
anti-phase movement, which required alternative toe tapping between the left and the
right foot. Task 2 was the in-phase movement which was synchronized toe tapping. For
both tasks, the motion frequency between the left and the right foot was 1:1.

A user interface was designed with left and right foot indicators, as shown in
Figure 4.2, with initialization/configuration of task selection, period duration and
number of cycles included in the task. The indicators changed colors to blue or yellow
during the task at 1s interval as shown in Figure 4.3. When the color changed to blue, it
meant dropping toes to the ground; when changing to yellow, it meant lifting toes.
During the task, the heel worked like a pivot which only rotated. One period was defined
as the duration between two yellow colors (2s), as shown in Figure 4.3(c). Within the
20s task duration, there were 10 periods in total. When the task stopped, the indicators
were in red color. Each subject practiced each task twice and data was recorded for the

third trial.
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Figure 4.3 (a) Experimental setup; (b) User interface (during task); (c) Colors of
indicators changing during Task 1 and Task 2.
Figure 4.4 and Figure 4.5 show the acceleration data plot of Task 1 and Task 2,

respectively. It shows clear differences between PD and HC, as well as between PD
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stages. To show the differences clearly, Figure 4.6 is a zoomed view of 2 cycles of right
side and 1 cycle of left side in Task 1. We can clearly see the shaking of the acceleration

during the task between PD stage 4, PD stage 2 and HC.
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Figure 4.4 Task 1: acceleration data plot of PD and HC.
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Figure 4.6 Zoomed view of Task 1 acceleration data (y and z-axis) between PD
stage 4, PD stage 2 and HC.
4.1.2. Subjects

In total, 10 PD patients and 8 HC subjects participated in the experiment. Task 1
was more difficult for PD than Task 2. Thus, 2 PD patients (PD Stage 4) cannot follow
or perform Task 1, but they finished Task 2. Subjects were grouped as PD-Task1, PD-
Task2 and HC, as shown in Table 4.1 with the summarized information of each group.
Validated to have a high correlation to clinical falling examination [6, 7], a self-rated
Fall Risk Questionnaire (FRQ) including 12 YES/NO questions, developed by the U.S.
Centers for Disease Control and Prevention (CDC) was filled out by subjects to
determine a subject’s characteristics of fall. The FRQ answers were transformed into a

score to quantify falling risks in scores, scaling in between [0, 14] when a YES counts as
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1 point. The scaling was up to 14 points because the first two questions count for 2
points each.

Table 4.1 Group summary: subjects’ characteristics.

Group PD-Taskl PD-Task?2 HC

Gender F2(2)° M ©(6) F(2), M (8) F(8), M (1)
(51-60) (1) (51-60) (1)

A (61-70) (4) (61-70) (5) (61-70) (5)

ge (71-80) (2) (71-80) (3) (71-80) (4)

(Over 80) (1) (Over 80) (1)
1(4) 1(4)

PD Stage g gg g g; N/A
4 (1) 4 (3)

Eallin Faller (6), Non-faller |Faller (8), Non-faller |Non-faller

J ) 2 9)
fF)a”'”g Score (mean +5td |6 13, 3 4 6.20 + 3.08 1.00 + 1.31

4.2. Toe Tapping Event and Phase Identification

Toe tapping motion (Figure 4.7) includes 4 events: lift/drop start/end. With the 4
events identified, one motion period can be segmented into 4 phases: lift, in-the-air, drop
and on-the-ground. Firstly, a low-pass filter filtered raw acceleration data with a cut-off
frequency of 2.5 Hz. From the filtered acceleration data, y-axis data from the first
metatarsal acceleration clearly showed the phases (Figure 4.8(a)). Thus, events and
phases were identified with y-axis data and applied to all axes. Next, discrete differential
transformation was applied to the y-axis of the first metatarsal acceleration (Figure
4.8(b)). To extract the events within a cycle (defined as C: lift start to drop end), the
positive peak and negative peak were identified and then zero-crossings before and after

the peaks are found to be the events.
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=

Drop toe - plantarflexion

Figure 4.7 Toe tapping motion.

A total task duration included 10 periods for both Task 1 and Task 2. Besides
period, phase and cycle, cycle difference was defined as the duration difference between
the two continuous cycles; lift interval (L) was defined as the duration between two lift
start events and drop interval (D) was defined as the duration between two drop end

events.
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Figure 4.8 (a) Toe tapping motion events: @Lift Toe Start, @Lift Toe End,
@Drop Toe Start, @Drop Toe End; Phases: Lift Phase (1), In-the-air Phase (11),
Drop Phase (111), On-the-ground Phase (1V), Period (Phase I->1V), Cycle (Phase I-
>111); (b) Method of segmentation.
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4.3. Feature Extraction
4.3.1. Time-axis Features

In total, 87 time-axis features were extracted. From a single side, 40 time-axis
features were extracted from 5 functions of (minimal, maximal, mean, standard
deviation and variability) applied to 8 different durations (Phase I-1V, C, cycle
difference, L and D) from the 8 continuous periods in the middle of the task. Two more
extra features were extracted: the number of periods when Phase 11 = 0 and the number

of periods when Phase IV = 0. From both sides, 3 constant error of ratios (CER) [195]

mean(Xjeft)

were calculated as CER, = mean(rione)
right

— 1; where x is L, D or cycle difference.

4.3.2. Acceleration-axis Features

The acceleration-axis features were extracted from Phase I-111 and C,
respectively. From a single side, 18 statistical features were extracted from 4 axes (X, y,
z and the standard deviation (std) of (x, y, z)) of the two accelerometers. A mean
function was applied to the acceleration in the 8 continuous periods in the middle,
respectively, for segmentations of Phases I-11l and C. Thus, in total, there were 1152
acceleration-axis features extracted from two sides (1152 = 2 sides * 4 axes * 2
accelerometers * 18 features * 4 segmentations * 1 function).
4.4. Feature Analysis

The time-axis and acceleration-axis features were checked with Shapiro-Wilk
Test to be a normal distribution. Since the group is an independent factor while the task

is a dependent factor, features were analyzed with a two-way Analysis of Variance
94



(ANOVA) with replication to determine if there is any feature with a statistically
significant difference in mean between groups for the same task. Through identifying the
features with significant differences, conclusions can be made if time-axis or
acceleration-axis features are more critical when differing PD and HC.
4.4.1. Results of Time-axis Features
4.4.1.1. Between Groups

The results indicated only one feature with statistical significance between means
of PD and HC: right-side minimal drop interval from Task 1 with a p-value of 0.031, as
shown in Figure 4.9. It showed PD uses smaller drop intervals (mean: 1.46) during the
periods compared to HC (mean: 1.61) in Task 1, while the two groups had the same drop
intervals for Task 2. As expected, the results indicated PD patients performed like HC

subjects in the simpler synchronized tapping.

1.9 1 [ Task1
. T | Task2
— 18-
4]
g 174
] 1.68
£ 1.61 1.7
S 161
e
o
E 15'
E 1.46 e 1
5 1.41 .
1.3
PD HC

Figure 4.9 Time-axis feature with significance.
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CER is the metric to evaluate their bipedal control performance (CER=0 means
perfect control during the task). To evaluate for groups, the absolute error of CER is
calculated as the average of absolute CER value. Absolute errors of CER; and CER|, for
HC Task 1 is 0.054 and 0.039 vs. 0.034 and 0.009 for PD Task 1. Absolute errors of
CER; and CER}, for HC Task 2 is 0.007 and 0.006 vs. 0.017 and 0.019 for PD Task 2.
We found PD performed better than HC in Task 1 while worse than HC in Task 2. In HC
group, two subjects performed very poorly in Task 1 with 0.1590 and 0.1818. The
ANOVA results of CERs did not show a significant difference between the two groups'
mean.

4.4.2. Results of Acceleration-axis Features
4.4.2.1. Between Groups

The results indicated 15 features with significant differences between groups for
Task 1 (Table 4.2) and 11 features for Task 2 (Table 4.3). Two features were the same as
shown in Figure 4.10. The minimal right-side heel z-axis acceleration in phase 11l had a
p-value of 0.013 for Task 1 and 0.003 for Task 2. The signal power of the left-side first
metatarsal z-axis acceleration from Phase | was 0.022 for both tasks. Within all these
features, 9 of them were extracted from phase I, 12 were from Phase 11; 0 is from Phase
I11 and 5 were from the cycle. The results indicated dropping was more important than
lifting and in-the-air phases. From these acceleration-axis features (acceleration values),
we concluded that PD used minor control during dropping toes while applying more

control during lifting than HC.
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Table 4.2 Acceleration-axis features with significant differences between groups:

Task 1.
Feature name p-value: (PD, taskl) vs. (HC,
taskl)
interquartile range of left-side lift duration std-heel |0.006
minimal of right-side cycle duration y-toe 0.007
percentile = 25 of left-side drop duration y-heel 0.010
minimal of right-side drop duration z-heel 0.013
skewness of left-side lift duration x-toe 0.017
number of positive peaks of left-side lift duration
std-toe 0.019
signal power of left-side lift duration z-toe 0.022
mean of right-side lift duration x-toe 0.023
percentile = 75 of right-side drop duration std-heel |0.030
minimal of right-side drop duration y-heel 0.033
median of right-side lift duration x-heel 0.037
percentile = 90 of right-side drop duration z-toe 0.038
coefficient of variance of left-side drop duration z-
toe 0.040
percentile = 75 of left-side drop duration y-toe 0.049
mean of right-side cycle duration x-toe 0.049

Table 4.3 Acceleration-axis features with significant differences between groups:

Task 2.

Feature name

(PD, task?) vs. (HC, task2)

minimal of right-side drop duration z-heel

0.003

mean of right-side lift duration std-toe 0.010
skewness of right-side drop duration z-toe 0.016
signal power of left-side lift duration z-toe 0.022
coefficient of variance of left-side cycle duration z-toe |0.030
minimal of right-side lift duration y-toe 0.030
mean of right-side drop duration std-toe 0.030
minimal of right-side drop duration y-toe 0.030
signal power of left-side lift duration y-toe 0.034

peak-to-peak amplitude of left-side cycle duration z-toe

0.038

percentile = 50 of left-side drop duration std-toe

0.038
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(a) Minimal of right-side heel z-axis acceleration from drop phase
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Figure 4.10 Acceleration-axis features showing significance in both tasks.

4.5. PD vs. HC Classification

The classification of PD and HC was performed to further prove the conclusion
with the two types of features from the tasks. Classification models of Random Forest
(RF), Support Vector Machine (SVM), and K-Nearest-Neighbors (KNN) were used in

this work.
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We found acceleration-axis features had more significance since there was only
one time-axis feature statistically significant differences between the means of groups
while there were 26 acceleration-axis features in total for both tasks. Classification of
PD and HC was performed based on time-axis feature set F;¢, which included the same
type of time-axis features. The acceleration-axis feature set F,; included the same type of
acceleration-axis features extracted from a single period in Task 1 and Task 2,
respectively. Same as our previous work of walking analysis, a non-randomly 5-fold
Cross-Validation (CV) and a random shuffling 8-fold CV were used for evaluation. As
shown in Table 4.4, the F,; indicated more accuracy in PD and HC classification
compared to F;, for both tasks. Task 1 and Task 2 were very similar in results of
classifying PD and HC. The classification results verified the statistical feature analysis.

Table 4.4 Classification results.

Task 1 Task 2
Dataset Type Fig Fq Fi F,
Model KNN | KNN | SVM | RF
5-fold CV Mean 51.03%|74.53%|50.51%|78.71%
8-fold Random Shuffling Mean|62.50%95.62%|63.64%96.59%
Average Accuracy 56.76%]85.08%|57.07%|87.65%

4.6. Falling Risk Evaluation

Falling risks were estimated in scores compatible with the FRQ that provides PD
guantitative feedback of their falling risks under Task 1 and Task 2, respectively. A
baseline method without feature selection and an optimized method with Pearson’s
correlation feature selection were compared with time-axis and acceleration-axis

features. In the optimized method, the features with a p-value of Pearson’s correlation to
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the falling score of less than 0.005 were selected. In Task 1, 6 time-axis features and 37
acceleration-axis features were selected; In Task 2, 6 time-axis features and 77
acceleration-axis features were selected. Regression models of Linear Regression (LR),
Kernel Ridge (KR), Bayesian Ridge (BR), and Gradient Boosting Regressor (GBR) were
used to predict the score.

Falling risks were estimated through three different feature sets: F, F,,, and the
combination (F;s + F,5). With the regression method introduced, a score was provided
to be compatible with FRQ. The average accuracy and std of the two evaluation methods
were shown in Figure 4.11 Average error + std of falling risk estimation scores between
non-randomly 5-fold CV and random shuffling 8-fold CV.to determine the improvement
of the optimized method and the best results. The best result (error + std) from the
baseline method was (1.36+0.92) from GBR developed with (F.s + F,) from Task 1.
With feature selection in the optimized method, overall results from Task 2 were
improved. The best result (0.97+0.85) was from LR developed with F,; from Task 2.
Thus, it concluded Task 2 can better assess falling risks for PD and HC when using

feature selection.
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Figure 4.11 Average error + std of falling risk estimation scores between non-
randomly 5-fold CV and random shuffling 8-fold CV.
4.7. Summary

The feature analysis results suggest Task 1 had more significant features than
Task 2. However, Task 2 had slightly better accuracy in classification and falling risk
estimation. This result may attribute to the poor performance in Task 1 from the two HC
subjects. More subjects will be participating in the future, and a long-term experiment
with PD can be conducted to determine if these toe-tapping tasks can be used as
cognitive training for PD to lower falling risks.

This study investigated toe tapping motion feature difference between PD
patients and HC subjects. It concluded acceleration-axis features were with more
importance than time-axis features when differentiating PD and HC through the two-way
ANOVA with replication method. Compared to walking, the in-phase toe tapping
motion showed better accuracy in distinguishing PD and HC (87.65%) and provided
(errortstd) = (0.97+0.85) falling risk scores compared to FRQ. This work provided a
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different perspective of estimating falling risks through toe tapping, which can be simply
transformed into mobile games for daily life use compared to traditional method of gait

analysis.
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5. SUMMARY

5.1. Comparison to Existing Studies
5.1.1. PD vs. HC Classification

Compared to the existing studies [12, 13, 21, 196, 197] that use different
methods, sensors and motion tasks for PD and HC classification and detection, the
results of our method in Chapter 3 and Chapter 4 are compatible, but the results are not
the most accurate, as shown in Table 5.1. The reason is that the number of PD patients
and HC subjects are smaller than the other studies. To further discuss, we compute the
patient similarity using normalized Euclidean Distance as shown in Figure Appendix
A.L. It shows a large difference between our PD patients.

Table 5.1 Comparison to existing studies using different types of motors and
motions.

Method Sensor Motion PD HC Accuracy
KNN Microphone Pronounce 23 8 90%
Hidden Markov Force Walk 15 16 90%
RF Force Walk 93 73 74%
CNN Force & Write 14 21 87%
Acceleration
Wavelet analysis + Acceleration Walk 15 16 90%
SVM
Acceleration Walk with 10 8 82%
water
Our work In-phase Toe
Acceleration P . 10 8 88%
Tapping

5.1.2. Falling Risk Score
Table 5.2 presents the comparison between our method of falling risk evaluation

to the most similar study [14]. Firstly, our method uses MONI which is specifically
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designed and developed for falling risk evaluation for PD where only accelerometers are

included. The tasks and number of PD patients and HC subjects are similar as both

studies involve sequential and repetitive foot motion but with variations. The only

difference is we are using FRQ as ground truth, which is validated by clinical studies to

have a high correlation to clinical tests; while the other study is using comparison

between PD and HC so their falling scores are difficult to validate.

Table 5.2 Comparison to the most similar existing study.

Method Study [14]: score method Our method
Device Commercial Insole MONI
Sensors Force_ Accelerometer
Bending sensor

» Lean with single leg . .
Tasks (with a belt) : ‘T’\(’;”:aw'tirr‘] water

- Walk ppIng
PD 7 (stage 2, 3) 8-10 (stagel-4)
HC 10 HC, 12 students 8-9 HC
Ground Truth Comparison between groups FRQ
Model Balancing Model (math) Regression
Scale [0,100] [0,14]

0.03 (walk with water)

Error N/A 0.95 (in-phase toe tapping)

5.2. Contributions

To summarize, this dissertation aims to provide quantitative analysis of falling

risks for PD patients in daily life to help prevent falling through analyzing foot motions

in easy setups and simple processes using MONI. MONI is designed and developed for

daily life use. The proposed data processing method includes robust foot motion

recognition to identify the foot motions from uncontrolled daily life environments and

feature extraction and selection for quantitative falling risk evaluation. The fast-labeling
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framework very well addresses the two challenges of robust foot motion recognition and
is validated to produce small errors in the next step: feature extraction. Walking and toe
tapping motions are analyzed and proven to be useful for falling risk evaluation for PD.
5.3. Future Work

To further validate the results in Chapter 3 and Chapter 4, more experiments
should be carried out by more PD patients with vs. without similar symptoms and
disease progression status. Medication states and PD stages may be incorporated with
current data processing technique to better address the heterogenicity of PD patients.

MONI can be better designed to provide better comfort for daily uses. An APP
can be designed to transform experimental tasks into mobile games while motion
recognition, feature extraction and falling risk scoring can be integrated into one APP for
real-time processing. And thus, a falling risk score can be generated after each game
play (task performance and evaluation) and a long-term data profiling can be generated

to provide doctors with medical assistance.
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APPENDIX A

PD PATIENTS AND HEALTHY CONTROL SUBJECTS

The gender, age group, motor functionality, such as gait functions, PD stage for
patients, are encoded into numbers to calculate Euclidean Distance. Figure Appendix
A.1 shows the normalized Euclidean Distance [0, 1] between each pair of PD patients,
where 1 (darkest color) means 100% similar and O (lightest color) means no similarity.
The patients with index (#) 1, 3, 4, 5 and 11 participate the experiment more than 3 times
within 2 months. There are 3 patients who are with 100% similarity to each other

(patient # 6, #8 and #10). The lowest similarity is O between patient # 3 and #9.

Patient Index (#)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(H11110.54 0.24 0.35 0.5 E ; 0.11 0.11 0.15 0.35

-

211.00 0.47 0.40 0.47 0.35 0.40

o N o O A W N

Patient Index (#)
> 2 3R 23 e

Y
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Figure Appendix A.1 PD patients’ similarity.
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Within the 16 PD patients, 10 of them participated the experiment in Chapter 3

and Chapter 4. Notice that few PD patients can’t finish the toe tapping tasks. #2 PD

patients’ data were lost during experiment. Within 11 HC subjects, 8 of them

participated the experiment in Chapter 3 and Chapter 4. Table Appendix A.1 shows the

participance of PD patients, while Table Appendix A.2 shows the participance of HC

subjects. The indexes in Table Appendix A.1 are the same as the indexes in Figure

Appendix A.1.
Table Appendix A.1 Participance of PD patients in experiment in Chapter 3 and
Chapter 4.
PD Walk Task 1 | Walk Task 2 Toe Tapping Task | Toe Tapping Task
Index 1 2
1 walker walker
2
3 X X X X
4 X X
5 X X X X
6 X X X X
7 X X X Can’t do
8 X X X X
9 X X X X
10 X X X X
11 X X
12 X X X X
13 Can’t do Can’t do
14 X X
15 X Can’t do
16 Can’t do Can’t do
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Table Appendix A.2 Participance of HC in experiment in Chapter 3 and Chapter 4.

Toe Tapping Task

Toe Tapping Task

HC Index | Walk Task 1 | Walk Task 2 1 5
1 X X X X
2 X X
3 X X X X
4 X X X X
5 X X X X
6 X X
7 X X X X
8 X X
9 X X X X
10 X X
11 X X
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