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ABSTRACT 

 

Parkinson’s disease (PD) affects motor functionalities, which are closely 

associated with increased risks of falling and decreased quality of life. However, there is 

no easy-to-use definitive tools for PD patients to quantify their falling risks at home. To 

address this, in this dissertation, we develop Monitoring Insoles (MONI) with advanced 

data processing techniques to score falling risks of PD patients following Falling Risk 

Questionnaire (FRQ) developed by the U.S. Centers for Disease Control and Prevention 

(CDC). To achieve this, we extract motion tasks from daily activities and select the most 

representative features associated with PD that facilitate accurate falling risk scoring. 

To address the challenge in uncontrolled daily life environments and to identify 

the most representative features associated with PD and falling risks, the proposed data 

processing method firstly recognizes foot motions such as walking and toe tapping from 

continuous movements with stride detection and fast labeling framework, and then 

extracts time-axis and acceleration-axis features from the motion tasks, at the end 

provides a score of falling risks using regression. The data processing method can be 

integrated into a mobile game to be used at home with MONI.  

The main contributions of this dissertation includes: (i) developing MONI as a 

low power solution for daily life use; (ii) utilizing stride detection and developing fast 

labeling framework for motion recognition that improves recognition accuracy for daily 

life applications; (iii) analyzing two walking and two toe tapping tasks that are close to 

real life scenarios and identifying important features associated with PD and falling 
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risks; (iv) providing falling scores as quantitative evaluation to PD patients in daily life 

through simple foot motion tasks and setups. 
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1. INTRODUCTION *† 

 

1.1. Parkinson’s Disease and Falling Risks 

Parkinson’s disease (PD) affects motor functionalities. Disordered motor 

functionalities are closely associated with increased risks of falling and decreased quality 

of life. As shown in Figure 1.1, the prevalence of PD increases with age, so does the 

falling risks. Over 45% of PD patients experience falling every year and over 50% of 

them have experienced multiple falls [1]. Medication and treatments associated with 

falling expense for PD patients are close to double of healthy elderlies [2]. Thus, early 

identification of patients with high falling risks is important [3].  

However, falling risk evaluation normally requires frequent clinical visits [4], 

where doctors can assess the risk of falling through questionnaires and observations. 

However, the moment-to-moment assessments in such a supervised and controlled 

environment may not reflect the actual conditions in daily life. Recently, the U.S. 

Centers for Disease Control and Prevention (CDC) developed a Falling Risk 

Questionnaire (FRQ) [5], which can be used as a pre-screening tool. Multiple studies [6, 

7] have validated that the FRQ has high correlations to clinical examinations [8]. 

 

* Part of this chapter is reprinted from "Monitoring insole (MONI): A low power solution toward daily gait 

monitoring and analysis." by Hua, R. and Wang, Y., IEEE Sensors Journal 19.15 (2019): 6410-6420. 
Copyright © 2019 IEEE  
† Part of this chapter is reprinted from "Robust Foot Motion Recognition Using Stride Detection and Weak 

Supervision-based Fast Labelling." by Hua, R. and Wang, Y., IEEE Sensors Journal 21.14 (2021): 16245 

– 16255. Copyright © 2021 IEEE 
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However, to fill out the questionnaire with subjective answers, patients may need 

caregivers’ help [9] as PD patients tend to overestimate their ability [10].  

 

Figure 1.1 Statistics of age distribution, falling events and falling risk evaluation 

approaches of PD patients. 

 

As shown in Figure 1.1, besides FRQ and doctor’s assessments, falling risks can 

also be evaluated through three different approaches as detailed below. Symptom 

detection, such as detection of freezing of gait, is a popular approach to evaluate falling 

risks of PD patients. However, freezing of gait may happen randomly and thus it is 

difficult to prevent falling during sudden episodes. It only applies to patients who are at 

mid- or late-stage and it is with a low symptom detection accuracy of 70% [11]. Another 

approach is to differentiate faller from non-faller using machine learning [12]. Even 

though it can be applied to all PD patients with an accuracy over 90% [13], it does not 

provide quantitative evaluation on falling risks. Thus, there is an increasing demand for 

scoring falling risks. This can be done through evaluation of multiple motion tasks [14], 
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and it can be applied to all PD patients; and thus with the quantitative scores, it can be 

more effective to prevent falling as patients and their caregivers can have a better 

understanding of the balance and falling conditions. However, it lacks ground truths for 

the scores and thereby difficult to validate if the score is accurate for each PD patient.  

Besides the challenges stated above, providing an at-home quantitative 

evaluation of falling risks for PD patients still faces other challenges, such as easy setups 

and processes for daily use. Once these challenges are addressed, PD patients can better 

understand their falling risks and thus better prevent falling.  

1.2. Smart Wearable Devices and Falling Risk Evaluation 

For daily life uses, wearable devices need to be light-weighted, unobtrusive, 

wireless communicated, portable, easy to don and doff, user friendly, cost-effective, and 

low power consumed [15]. Inertial sensors (accelerometers, gyroscopes, and 

measurement units (IMU)) are the mostly used devices for detecting falling and 

evaluating falling risks [16, 17]. The device can be placed at chest, waist, wrist, shin, 

thigh, in-shoe, and a combination of all these positions when using multiple devices 

[18]. Figure 1.2 summarizes the typical steps of using smart wearable devices/sensors 

for falling risk evaluation. Most studies [19] collect data in fully controlled environments 

where subjects follow specific instructions and perform one type of motion at a time. 

Then, various kinds of features are extracted from motion data and analyzed with 

machine learning methods to either classify falling or non-falling or assessing PD 

symptoms. The collected data is usually split into train, test and validation set to develop 

the learning algorithms. There is always a challenge of data limitation lying in small 
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amount of available data or data lack of diversity. Moreover, daily life is fully 

uncontrolled environments and thus the application of the machine learning algorithms 

developed by fully controlled data is not suitable. Another type of data collection is to 

continuously collect data in uncontrolled or semi-controlled environments [14]. Machine 

learning algorithms automatically detect PD symptoms relying on patients’ self-labeling 

to adjust the pretrained algorithms. Such method has a high requirement of low power 

device and large amounts of resources for data storage. Additionally, unexpected 

motions during the data collection and mistakes made by self-labeling may confuse the 

algorithm and thus the results won’t be accurate.  

 

Figure 1.2 Summary of steps of using smart wearables for falling risk evaluation. 

 

Thus, to develop a robust data processing method, the data must be collected in 

semi-controlled or uncontrolled environments and unexpected or mistakenly performed 

motions needs to be removed before any feature extraction.  

1.3. Smart Wearable Devices and Foot Motion Recognition 

Among all kinds of motors and commonly used motions, such as voice and 

pronounce [20], and hand movement and writing [21], for the use of PD detection and  
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falling risk evaluation  (as shown in Figure 1.3), foot motions [22], including continuous 

motions resulted from continuous full body movements (named as sequential motions) 

and repetitive foot motions that are often produced repetitively (named as repetitive 

motions), are commonly used in clinical tests [23, 24] for characterizing motor 

functionality in supporting early-stage detection of neurodegenerative diseases, such as 

PD.  

 
Figure 1.3 Falling risk evaluation through different types of motors and motions. 

 

Reliable smart devices facilitating daily foot motion recognition and monitoring 

are in high demand to avoid frequent doctor visits. However, most existing devices, 

designed for activity tracking, cannot be directly used for foot motion recognition. Some 

wearable devices have the capacity, such as smart phones [25] and smart watches [26], 

but their accuracy for recognizing foot motions from continuous movements under 

uncontrolled environments are limited by their positions; while non-wearable devices, 

such as cameras [27] and radar [28, 29], may produce higher accuracies but their 
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application is limited by their field of view [30]. It requires high resolutions and/or 

multiple devices to identify continuous fine-grained foot motions, such as toe tapping. 

Smart insoles [31, 32] are portable, low-cost, easy to use, and can provide enough 

information needed for foot motion recognition.   

Recognizing foot motions from continuous movements in uncontrolled 

environments faces two major challenges. The first is how to recognize the foot motions 

of interest from the movements with high robustness. Not like fully controlled 

experiments, where designed motions are always carried out individually and can be 

recognized by traditional machine learning frameworks in high accuracies [33], in 

uncontrolled environments, foot motions often have continuous and complex forms [34]. 

Thus, traditional machine learning methods underperform in such settings. Complex and 

computation-hungry machine learning methods [35-38], such as Recurrent Neural 

Network and Long Short-term Memory, can improve the accuracy but will need a very 

large amount of training data. As motion data collection is quite expensive, these models 

do not work well in leave-one-subject-out cross-validation due to a lack of training data. 

Another limitation of existing studies on continuous movement recognition lies on data 

preprocessing: how to fast and accurate segment continuous movement data. Most 

studies [39-43] use sliding windows for segmentation, and the window size is often a 

fixed threshold value determined by features analysis [44] or sensor sampling frequency 

[45]. The resulted segment using this approach may contain multiple motions, leading to 

inaccurate labeling. This can be improved by using an adaptive sliding window, such as 
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through greedy algorithms [46] or the regression models [47]. However, this requires 

high computing complexity.  

The second challenge is to extract ground truths from uncontrolled continuous 

movements in an accurate, simple, and less-costly way. Existing ground truths are 

typically manually extracted and labeled from video/camera recordings. This is very 

time-consuming, and its application for uncontrolled settings is impossible due to 

privacy concerns. Some studies [48] utilizes user self-reporting as ground truths, which 

often has unavoidable mistakes. To address this, weak supervision, such as multiple 

instance learning [49] or stratified labeling with weak classifiers [48], has shown 

improved performance when recognizing a specific motion from a period of continuous 

movements in uncontrolled environments. Another study trains classifiers [50] with 

inaccurate labels (noises) and then use multilabel learning methods to further improve 

recognition accuracy. These weak supervision methods can provide fast labeling options 

for applications that do not require high quality labels [51], such as image and text 

classification, but are not well explored in continuous movement recognition.  

1.4. Design and Development of Monitoring Insoles (MONI) 

Foot-worn wearable devices, satisfying all the requirements for daily life use, 

become the next favorite for daily uses besides smart watches. Moreover, foot-worn 

wearable devices can effectively measure lower limb movements, including local and 

full body movements. Compared to the smart shoes [52-54], smart insoles [55] are 

invisible, portable, compact, easily embedded with small-size electronics in a low 
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fabrication cost. Smart insoles are the best form of wearable devices for falling risk 

evaluation in daily life through foot motions.  

1.4.1. Review of Smart Insole-like Devices 

Smart insole-like devices include smart shoes and smart insoles. Smart insoles 

refer to designs in an insole shape, invisible from outside of the shoes, portable to be 

fitted to any shoes, compact, easily integrating small-size electronics in a low fabrication 

cost. Thus, smart insoles are very likely to be one of the top essential wearables in our 

life soon, which is the focus in our review. Our review also includes some smart shoes 

refer to designs with some parts attached to the shoe and some parts embedded in the 

insole.  

Daily life uses of smart-insole like devices would be desirable for applications of 

gait studies in foot pressure measurement [56-77], gait spatiotemporal parameter 

extraction [44, 55, 58, 78-97], and gait pattern analysis [82, 98-107], activity recognition 

[31, 32, 44, 84, 88, 93, 95, 97, 108-116] for  health monitoring, support to disease 

diagnosis, rehabilitation, fitness training, foot gesture recognition for human machine 

interaction [117-121] and so many more [122-127], rather than only being used in labs 

or clinics as medical devices [15, 107, 128]. The key factors for daily life uses are data, 

power, wearable factor, connectivity, cost, and robustness. During the past decade, the 

proposed insole-like devices have transformed from bulky to light-weighted or even 

“invisible” designs and the corresponding sensory signal processing algorithms have 

achieved good performance in in-lab tests and been making progress in real-time 

computations [40, 129-131]. Most recent studies [32, 80, 85, 86, 90, 92, 93, 95, 114, 
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117, 132, 133] are being aggressive of taking daily life uses into considerations. 

However, it is generally agreed that most of the current designs are not ready for daily 

life uses mainly due to the reasons that uncontrolled factors in real life settings are not 

well considered when validating the functionalities in lab settings. Even though various 

types of wearable devices in diverse applications and their corresponding signal 

processing and sensor information analysis focusing on big data technologies have been 

making great progress in recent years, well reviewed by a great number of papers [128, 

134-138], the machine learning frameworks and data analysis for smart insole-like 

devices are still lack of robustness when exposed to new environments and new users 

due to limited data from limited number and diversity of subjects in experiments.  

Besides research studies, there are some emerging commercial products [139-

150] in the past years. Due to the relative high prices, specific functionalities and 

complex setups, these products are not well-accepted for daily life uses, but only used 

within small groups such as patients, clinics, and researchers [116, 123, 151-158].  

Figure 1.4 is a technology-centered evolution map of smart insole-like devices 

with a focus on the representative designs among the 79 prototypes from the past decade. 

Technologies with significant impacts to the field in the past decade are 

microelectromechanical systems (MEMS), flexible/textile electronics, machine learning, 

sensor system integration and footstep energy harvesting within an insole shape.  The 

development is summarized into three periods: the primary exploration prior to year 

2008, the fast development period from year 2008 to 2013 and the booming period from 

year 2014 to 2019. 
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Figure 1.4 A technology map of smart insole-like devices. 
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1.4.2. MONI Design 

After reviewing smart wearable devices for falling risk evaluation and foot 

motion recognition, and the existing smart-insole like devices, MONI is designed and 

developed specially for PD patients for the use of falling risk evaluation through simple 

foot motions.  

1.4.2.1. MONI Prototype 

MONI (Figure 1.5), a smart insole designed with comfort, has a microcontroller 

(MCU) (MSP430F149), two accelerometers (ACC) (ADXL362) and a Bluetooth (BLE) 

Low Energy Module (CC2540). These modules are integrated into two Printed Circuit 

Boards (PCB) with associated peripheral circuits: one under the heel, and the other one 

under the first metatarsal of the right foot. 

 

Figure 1.5 3D model of the prototype of the proposed MONI. Layers of the design 

are clearly shown. © 2021 IEEE. Reprinted with permission from [95]. 
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MSP430F149, ADXL362 and CC2540 are chosen particularly due to their 

ultralow power consumption.  MSP430F149 has six working modes (active mode and 

low power modes of LPM0 – LPM4) and a large internal storage (60 KB). ADXL362 

has three low-power operating modes (standby, wake-up and measure mode) and an on-

chip first in, fist out (FIFO) buffer (512 word-large). These modes can be smartly 

managed by the proposed WMM algorithm. In addition, ADXL362 has on-chip 

comparators to differentiate “activity” from “inactivity” with preset thresholds. 

1.4.2.1.1. Sensor Position 

It is reported that the most reliable sensor positions for characterizing typical gait 

patterns, such as heel strike, flat foot contact, toe-off and swing, would be the heel and 

metatarsals [159]. For early-stage PD assessments, gait characteristics extracted from the 

heel, lateral and medial arch, and first metatarsal play more critical roles compared to 

these extracted from other positions [89]. Many existing smart insoles use force sensors 

to measure temporal gait parameters and inertial sensors to extract spatial parameters, 

which is redundant for sensors. It has been proved by a variety of research that the 

temporal gait parameters can be accurately extract from inertial sensors attached to the 

shoe [160].  

Therefore, MONI only has two accelerometers, one under the heel and one under 

the first metatarsal, as shown in Figure 1.6(a). Data collected from the first metatarsal 

and the heel, as shown in Figure 1.6(b), represent the movement of the front and the 

back of the foot, and contain the most typical gait characteristics, which favors the 

activity recognition as well. 
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Figure 1.6 (a) Axis Directions of Accelerometer and Sensor Position; (b) The raw 

data collected by MONI beneath the right foot, with 25 seconds’ regular walking in 

a straight routine; the y-axis of (b) is acceleration in gravity g = 9.81 m/s2. Note 

that, the x, y and z-axis of the accelerometer align with the lateral-medial, anterior-

posterior, and superior-inferior directions of the user. © 2021 IEEE. Reprinted 

with permission from [95]. 

 

1.4.2.2. Early Version of MONI 

Built from the lab prototype, the early version of MONI still has two 

accelerometers with the sampling frequency of 150 Hz, positioned at the heel and the 

first metatarsal area, respectively (Figure 1.7). The rigid printed circuit boards are 

connected via flat flexible cables and all the electronics are sandwiched between black 
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high-density tape foams. The Bluetooth Low Energy (BLE) module is connected to the 

inner side of the shoe. To be fit for different shoe sizes, flexible cables can be switched 

so that the accelerometers are ensured to be at the same position. In our experiment, we 

install MONI in the same kind of shoes with different sizes for all the subjects to collect 

foot motion data, for further evaluation of the user’s motor functionality. 

 

Figure 1.7 The prototype and in-shoe installation of the early version of MONI. © 

2021 IEEE. Reprinted with permission from [161]. 

 

1.4.2.3. Upgraded Version of MONI 

The MONI, upgraded from our previous versions [161], contains two 

accelerometers positioned at the heel and the first metatarsal, a microcontroller (MCU) 

and a Bluetooth Low Energy (BLE) module. This upgraded MONI has all electronics are 

sandwiched between two high-density textile foam layers, and then buried into epoxy 

resin for protection. As shown in Figure 1.8(a), the battery is connected via jumpers 
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through two holes at the inner side of the insole for the ease of power-on and off. In the 

future, the battery can be directly connected to the electronics layer. For different shoe 

sizes, the electronic components are the same, but the length of flexible cables and the 

size of high-density textile foams are different. We prepare 6 pairs of upgraded MONI 

inserted in shoes with size 8 to 13. As shown in Figure 1.8, being unobtrusive, portable, 

and comfortable, the upgraded MONI can collect comprehensive foot motion 

information from PD patients in daily life. 

 

Figure 1.8 The prototype of upgraded MONI (size 8): (a) the bottom layer (the 

foam with electronics), and the top layer (the high-density textile foam); (b) the top 

view and (c) the side view inside a pair of MONI inserted in shoes. 
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1.4.3. A Low-power Solution for Daily Life Use 

A Working-mode Management (WMM) algorithm is designed to be 

implemented in MONI in real time, which minimizes the power consumption of MONI. 

The WMM algorithm features six working modes, namely Deep Sleep Mode, Check 

Mode, Idle Mode, Data Acquire Mode, BLE-ON Mode and Sleep Timer Mode. It is 

developed to ensure that MONI can sample the right amount of effective data from foot 

motions such as walking throughout a day, while remaining at Deep Sleep Mode if 

possible. It can be disenabled if continuous data collection is needed.  

The WMM algorithm, a finite state machine implementation, smartly evaluates, 

classifies, and judges the output acceleration signals, while taking full advantage of low-

power features of the MCU and accelerometers to achieve mode alternation. Moreover, 

to ensure an accurate and efficient assessment, the data will be sampled during 

continuous walking (or other foot motions) without stopping. The following subsection 

introduces the classification and detailed alternations of the six working modes of 

MONI, as shown in Figure 1.9(a). 
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Figure 1.9 Working flow of Mode Management in the proposed WMM algorithm; 

(b) The Power Trace of an example mode alternation: each mode is tested 

separately with a supply voltage of 3.3V as shown in TABLE I. The example 

alternation follows: Deep Sleep Mode-> Check Mode -> Idle Mode -> Data Acquire 

Mode -> Idle Mode -> Data Acquire Mode -> Idle Mode -> Data Acquire Mode -> Idle 

Mode -> Data Acquire Mode -> Idle Mode -> Data Acquire Mode -> BLE-ON Mode -

> Sleep Timer Mode (5 minutes) -> Deep Sleep Mode. © 2021 IEEE. Reprinted with 

permission from [95]. 

 

Deep Sleep Mode: both accelerometers sample data at a low frequency (12.5 

Hz). If acceleration variation reaches the preset threshold value of 0.2 g, MONI will be 

switched to the Check Mode. 

Check Mode: MONI receives an ACC Activity signal, suggesting the possibility 

of walking or other foot motions. The AAR algorithm will further identify whether it is a 

motion, MONI will be switched to the Idle Mode. Otherwise, MONI will be switched 

back to the Deep Sleep Mode.  

Idle Mode: accelerometers sample data at 25 Hz, which has been proven enough 

for gait parameter extraction [19-20], and the on-chip FIFO is activated for data 
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recording. The FIFO will be full in 6.8s with a storage of 170 sub-datasets (three axis 

acceleration data (x, y, z) as a sub-dataset). Once the FIFO is full, a signal (ACC 

Watermark) generated by the accelerometer will trigger MONI to the Data Acquire 

Mode. If the FIFO is not full and the sampling data is smaller than a preset threshold for 

a period (1 s), a signal (ACC inactivity) from the accelerometer will bring MONI back to 

the Deep Sleep Mode, and all data recorded in FIFO will be cleared. Such a design 

ensures that a series of acceleration data of continuous walking will be recorded, 

eliminating any “inactivity” data for efficient gait analysis.   

Data Acquire Mode: MCU reads the datasets from accelerometers and stores 

them into its internal storage. The internal counter automatically adds by one when 

reading ends. MONI goes back to the Idle Mode to continuously record acceleration 

data. If the internal counter reaches five, suggesting that five sets of data (as a group of 

data) from each accelerometer are stored, MONI will be switched to the BLE-ON Mode. 

BLE-ON Mode: a controlled MOSFET switch is turned on. A group of data (five 

sets) of each accelerometer will be sent through the BLE module to a smart phone, and 

then MONI will enter the Sleep Timer Mode.  

Sleep Timer Mode: an internal timer runs. Length is adjustable depending on 

how active the user is. If the user is highly active, it is suggested to use a longer timer so 

that data will be better scattered throughout the day. When the timer overflows, the 

system will go back to the Deep Sleep Mode to start a new round of alternation. By 

setting up the Sleep Timer Mode, MONI ensures that data is sampled throughout the 

whole day instead of in a continuous time period.  
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Table 1.1 details the breakdown of power consumption, execution time and status 

of each component in each mode. The execution time of the Deep Sleep Mode will be 

determined based on how active the user is. A simple mode alternation example with the 

power trace of WMM is shown in Figure 1.9(b). The average power is 16.745 mW 

without the Deep Sleep Mode. When the Deep Sleep Mode is applied, the daily power 

can be further minimized. 

Table 1.1 Power consumption, execution time, and status of each component (MCU, 

ACC and BLE). © 2021 IEEE. Reprinted with permission from [95]. 

Working 

Mode 

Power 

Consumption 

Execution 

Time 

MCU ACC BLE 

Deep Sleep 0.88 mW / LPM4 Measure OFF 

Check 32.47 mW 0.57 s Active Measure OFF 

Idle 0.88 mW 10.31 s LPM4 Measure OFF 

Data 

Acquire 

36.59 mW 0.32 s Active Standby OFF 

BLE-ON 80.07 mW 26.23 s Active Standby ON 

Sleep 

Timer 

18.23 mW 300 s LPM3 Standby OFF 

 

1.5. Scopes and Objectives of the Dissertation 

The dissertation aims to provide quantitative analysis of falling risks for PD 

patients in daily life to help prevent falling at home through foot motions in easy setups 

and simple processes using MONI as shown in Figure 1.10. To achieve the goal, the 
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dissertation mainly focuses on the data processing method for MONI, which 

incorporates foot motion recognition, feature extraction and analysis, and falling risk 

scoring through foot motion tasks to provide compatible results to the FRQ.  

 

Figure 1.10 Proposed quantitative falling risk scoring with built-in data processing 

using MONI. 

 

The main contributions of this dissertation includes: (i) designing and developing 

versions of MONI to be used in daily life (introduced in Chapter 1); (ii) utilizing stride 

detection and developing fast labeling framework for motion recognition that improves 

recognition accuracy for daily life uses; (iii) analyzing two walking and two toe tapping 

tasks and identifying important features associated with PD and falling risks; (iv) 

providing falling scores as quantitative results to PD patients in daily life through the 

simple foot motion tasks. 

Chapter 2 presents our proposed method of fast labeling framework for robust 

foot motion recognition in daily life. The Chapter first introduces experiment done using 

early version of MONI and subjects who participate. Datasets are built and stated. Then, 
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the proposed motion recognition methods are detailed, and the validation of the proposed 

motion recognition method used for gait feature analysis is presented. Finally, based on 

the literature review, foot motions are selected to be used for falling risk analysis for PD. 

Chapter 3 focuses on walking-based falling risk evaluation. Through literature 

review, two tasks (walking and walking with a cup full of water) are analyzed. Gait and 

acceleration-axis features are extracted. Features associated with PD are identified and 

falling risks are evaluated through regression models which provide a falling risk score 

compatible to the clinically verified falling risk questionnaire.  

Compared to walking-based falling risk evaluation, Chapter 4 investigates toe 

tapping-based falling risk evaluation. Using coordination dynamics, two toe tapping 

tasks are designed (anti-phase and in-phase tapping). Time-axis and acceleration-axis 

features are extracted and analyzed. Features to distinguish PD from HC are identified 

and falling risks are evaluated through the same regression methods in Chapter 3.  

In the end, Chapter 5 compares our method to other similar methods and 

summarizes the dissertation in the contributions and future work to make the proposed 

data processing method for MONI be used in real life.  
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2. FOOT MOTION RECOGNITION*†‡§ 

 

Foot motion recognition in daily life faces two challenges imposed by traditional 

machine learning frameworks: how to robustly recognize various foot motions from 

continuous movements in uncontrolled environments, and how to accurately extract 

ground truths. To address these challenges, we propose a stride detection method to 

robustly identify each stride (over 99% accuracy). We then investigate two weak 

supervision-based fast labeling frameworks to automatically label the stride 

segmentations. Finally, we use these two frameworks to identify foot motions from 

continuous movements integrated on a route map. The route map can be replaced by a 

virtual-reality video game to play in daily life so that the user’s long-term foot 

functionality can be profiled and evaluated. We test our proposed approaches using the 

early version of MONI with twenty-two subjects whose movement data are collected 

through the route map setting while video camera recordings serve as the ground truth. 

The route map integrates seven foot motions in one complete play, which includes three 

continuous motions resulted from continuous full-body movements (named as sequential 

 

* Part of this chapter is reprinted from "Monitoring insole (MONI): A low power solution toward daily gait 

monitoring and analysis." by Hua, R. and Wang, Y., IEEE Sensors Journal 19.15 (2019): 6410-6420. 

Copyright © 2019 IEEE 
† Part of this chapter is reprinted from "A Customized Convolutional Neural Network Model Integrated 

with Acceleration-Based Smart Insole Toward Personalized Foot Gesture Recognition." by Hua, R., and 

Wang, Y., IEEE Sensors Letters 4.4 (2020): 1-4. Copyright © 2020 IEEE 
‡ Part of this chapter is reprinted from "Age-Dependent Mobility Decline Analysis Through Sequential 

Foot Motion Reproduction." by Hua, R. and Wang, Y., IEEE Sensors Letters 5.11 (2021): 1-4. Copyright 

© 2021 IEEE 
§ Part of this chapter is reprinted from "Daily locomotor movement recognition with a smart insole and a 

pre-defined route map: Towards early motor dysfunction detection." By Hua, R., and Wang, Y., 2019 

IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT): pp 87-90.  



 

23 

 

motions) and four repetitive foot motions that are produced repetitively (named as 

repetitive motions). Compared to the best traditional machine learning methods, our 

proposed approach improves the leave-one-subject-out cross-validation accuracy of all 

subjects by 6.12% for the three sequential motions, 2.71% for the four repetitive motions 

and 4.90% for the total of seven foot motions. In addition, our proposed method saves 

25% to 50% time in data labeling. Figure 2.1 is the abstract of this chapter.  

 

Figure 2.1 Graphical abstract of Chapter 2. © 2021 IEEE. Reprinted with 

permission from [161]. 

 

2.1. Experiment 

The route map (Figure 2.2) has one loop containing three sequential motions: 

walking, half turning and stepping over obstacles. Four repetitive motions are performed 

in the end of the loop, including tapping heel, tapping toes, stomping, and kicking 

independently from the loop. These seven foot motions are selected from the standard 
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clinical tests of Balancing Test [23] and Unified Parkinson Disease Rating Scale 

(UPDRS) [24] for the purpose of evaluating foot motor functionality. The route map (10 

ft * 10 ft) can be easily replaced by a virtual game setting. 

A complete play includes one loop of the route map from the start to the end 

point (following blue arrows) for continuous motion data collection, followed by a 

collection of four repetitive motions.  

 

Figure 2.2 Photographic representation of the pre-designed route map experiment 

set-up. © 2021 IEEE. Reprinted with permission from [161]. 

 

2.2. Subjects and Datasets 

We collect three types of foot motion datasets (Table 2.1) with two experiments 

using the route map shown in Figure 2.2. Sequential Motion Dataset is collected when 

subjects looping the route map from the start to the end, and data is segmented with 

stride detection method presented in Chapter 2.4. Repetitive Motion Dataset is collected 
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separately after the looping when subjects are in the standing posture and performing 

repetitive foot motions of Tap Heel, Tap Toe, Stomp and Kick. Subjects perform each 

repetitive motion continuously following instructions to start and end typically within 10 

- 15s. Repetitive motion data is segmented with a 1.5s sliding window. We add walking 

data (collected separately by asking subjects to walk at their own pace and segmented 

with a 1.5s sliding window) as the noise data set to Repetitive Motion Dataset. Each 

experiment is repeated five times by each subject, indexed as experiment process 1 to 5. 

Ground truth is collected by manually labelling the video camera recording. Route Map 

Dataset is the combination of Sequential Motion Dataset and Repetitive Motion Dataset 

without the noise data set (walking).  

There are a total of twenty-two subjects (Max Age: 89, Min Age: 20; Max 

Height: 188cm, Min Height: 155cm; Max Weight: 95.25kg, Min Weight: 47.63 kg; Max 

Shoe Size (U.S.): 12, Min Shoe Size (U.S.): 6) participated in the route map experiment, 

while the sequential motion data of two subjects are lost during the experiment.  
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Table 2.1 Three types of foot motion datasets by subjects. 

 No. of 

Motions 
Motions 

No. of 

Subjects 

Height 

(cm) 

Weight 

(kg) 
Age 

Sequential 3 

Walk 

Half Turn 

Step Over 

Obstacles 

20 172.8 74.3 41.4 

Repetitive 4 

Kick 

Stomp 

Tap Heels 

Tap Toes 

22 173.7 74.2 38.8 

Route 

Map 
7 

Walk 

Half-Turn 

Step Over 

Obstacles 

Kick 

Stomp 

Tap Heels 

Tap Toes 

20 172.8 74.3 41.4 

 

2.3. Data Preprocessing 

Figure 2.3 shows the flowchart of data preprocessing, and the feature set is used 

to develop the recognition algorithm. As stated in the previous Section 2.2, raw data is 

first filtered with a 4th order low-pass filter with the cut-off frequency of 10 Hz and 

offset errors are removed by normalization on all axes. Stride detection is applied to 

sequential motions and continuous data is segmented into strides as the segments. 

Sliding window with a fixed size of 1.5s is used for repetitive motions and continuous 

data is segmented into short windows as the segments. Acceleration features are then 

extracted from the segments. A label to the segment is added which is from the ground 

truth (camera recordings) or from our proposed fast labeling framework.  
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Figure 2.3 Flowchart of data preprocessing. 

 

2.4. Stride Detection 

Figure 2.4 shows the flowchart of our stride detection method. The raw data from 

each accelerometer are (xt, yt, zt)p, where t is the index of N sampling points: t∈[1, N] for 

each axis, and p∈[heel, first metatarsal] is the position of each accelerometer. A 4th 

order low-pass filter with the cut-off frequency of 10 Hz is applied. The standard 

deviation stdt of (xt, yt, zt)p is calculated for all the sampling points as the 4th axis. The 

discrete differential transform of all the 4-axis data is (Δxt, Δyt, Δzt, Δstdt)p for each 

accelerometer. 
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Figure 2.4 Flowchart of the proposed stride detection method. © 2021 IEEE. 

Reprinted with permission from [161]. 

 

Next, we define the stride window containing wp data points (window size) of 4-

axis as (Δxt, Δyt, Δzt, Δstdt)p. The stride window moves one point forward each step for a 

total of Ws steps, where Ws=N-wp+1. The data points within the stride window for step 

j∈[1, Ws] is (dpj1, dpj2, …, dpjwp)ax,  where ax is one of the axes in (x, y, z, std). The mean 

values (Mxj, Myj, Mzj, Mstdj)ax of the stride window are calculated, and then compared to 

the start point threshold values (thS)ax and the end point threshold values (thE)ax to 

determine the start and the end point of each stride. 

After the start and the end point of the stride are identified, we move the start 

point of each stride (2*wp) data points ahead and move the end point (2*wp) data points 

behind to make sure that a complete stride is detected. This is defined as the modified 
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stride window to identify each stride with high accuracies for further use in continuous 

movement segmentation. There is an additional judgement to remove some incomplete 

or partial strides: If the size of the modified stride window is larger than (40%*150), 

where 150 is the number of datapoints collected per second), it is a full stride.  

We find that the key parameter to identify the start point of the stride is the 

threshold value (thS)z from both accelerometers, while the critical parameters to detect 

the end point of the stride are the threshold values (thE)x, (thE)y and (thE)std of both 

accelerometers. The stride window size wp is also crucial to the detection accuracy.  

The stride detection only applies to sequential motions including walking, half-

turning and stepping over obstacles (Table 2.1) from twenty subjects. The threshold 

value (thS)z to detect the start point of a stride is set as 0.002 for both accelerometers. 

We perform nested grid search for the threshold values thE for axes of (x, y, std), 

where the best combination values are 0.003, 0.0015 and 0.002 as shown in Figure 2.5(a-

c), and best value of wp is 7 in Figure 2.5(d). These best threshold values, red dots in 

Fig. 7(a-d), work well for all twenty subjects despite different subject characteristics of 

age, height, weight, and shoe size. Figure 2.5(e) shows the stride detection for each 

subject under the best combination of the threshold values. There are a total of 1145 

strides, where our stride detection method detects 1143 strides correctly. That is, our 

method has a detection accuracy of 99.83%. 
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Figure 2.5 Threshold value thE search; (d) threshold value wp search; (e) detection 

accuracy for each subject. © 2021 IEEE. Reprinted with permission from [161]. 

 

Our stride detection method reaches an average accuracy of 99.83% for twenty 

subjects with a wide variety of characteristics in age, height, weight and shoe size. The 

discrete differential transform on acceleration data minimizes the influence of the 

threshold values (thE)ax on individuals with wide varieties. In such way, a slight change 

of (thE)ax won’t affect the accuracy much as shown in Figure 2.5(a-c). Fine-tuning these 

threshold values would work well for new subjects. Thus, our proposed stride detection 
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method is robust and effective for foot motions of walking, half-tuning and stepping 

over obstacles.  

Compared to the existing studies [162-169] using different methods as shown in 

Table 2.2, our methods show the best accuracy and applied to stride detection in 

different kinds of sequential motions (besides walking).  

Table 2.2 Comparison to the existing studies using different methods. 

Method Motion Accuracy Pros Cons 

Peak-

detection 

Walk 

93%-99% 
Low computation 

Low accuracy 

Only effective to 

specific motion 

Dynamic 

time 

wrapping 

99% 

High 

accuracy/robustness 

Large amount of 

training data 

high computation 

demand 

Hidden 

Markov 
91% 

Residual 

neural 

networks 

96% 

Our method 

Walk, Turn 

and Step 

over 

obstacle 

99% 
Low computation 

+ high accuracy 

Effective to 

motions in 

experiment 

 

2.5. Feature Extraction 

After the segmentation of sequential and repetitive motions, using the stride 

detection and sliding window, respectively, we will move forward for feature extraction. 

After reviewing the most representative features from acceleration data [170] for activity 

recognition, we manually craft 19 features to be extracted from the 4-axis segmented 
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data of both accelerometers in time-domain. Table 2.3 lists the math description of the 

selected features used in this study, where (d1, d2, …, dn) represents a total of n 

segmented datapoints of each stride in time series. We then sort these datapoints in the 

order of smallest to largest and denote as data array D to be used in the training and test 

datasets.  

Table 2.3 Math description of features of interest. © 2021 IEEE. Reprinted with 

permission from [161]. 

Feature 

Name 
Math Description 

Feature 

Name 
Math Description 

Mean 𝜇 =
1

𝑛
∑ 𝑑𝑖

𝑛

𝑖=1
 Skewness 

1

𝑛𝜎3
∑ (𝑑𝑖 − 𝜇)3

𝑛

𝑖=1
 

Minimum 𝑚𝑖𝑛(𝑑1, 𝑑2, ⋯ 𝑑𝑛) Kurtosis 
1

𝑛𝜎4
∑ (𝑑𝑖 − 𝜇)4

𝑛

𝑖=1
 

Maximum 𝑚𝑎𝑥(𝑑1, 𝑑2, ⋯ 𝑑𝑛) Signal Power ∑ 𝑑𝑖
2

𝑛

𝑖=1
 

Median 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑1, 𝑑2, ⋯ 𝑑𝑛) 
Root Mean 

Square 
√

1

𝑛
∑ 𝑑𝑖

2
𝑛

𝑖=1
 

Standard 

Deviation 

𝜎

= √
1

𝑛
∑ (𝑑𝑖 − 𝜇)2

𝑛

𝑖=1
 

Number of 

Positive 

Peaks 

N/A 

Coefficients 

of Variation 

𝜎

𝜇
 

Number of 

Negative 

Peaks 

N/A 

Peak-to-Peak 

Amplitude 
𝑚𝑎𝑥 −𝑚𝑖𝑛   

Percentiles 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐷, 𝑛𝑘) =
(𝑛𝑘/100) × 𝐷, where 

𝑛𝑘 =
10,  25,  50,75,90 and 

𝐷 is  (𝑑1, 𝑑2, ⋯ 𝑑𝑛) 

sorted from smallest 

to largest 

Interquartile 

Range 

  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝐷,  75)
− 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐷,  25) 
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2.6. Fast Labeling Framework 

For the benchmark framework in Figure 2.6(a), we use KNN, RF and SVM as 

the end classifier as they are commonly used and have low computational costs 

compared to deep learning models. The benchmark framework needs all the available 

training data labelled with ground truths, and then uses this training dataset to train and 

test each classifier. The trained classifier generates a recognition result y for new dataset. 

We investigate two types of fast labeling frameworks: Label Model Framework 

(LMF), which uses the label model to label training datasets and then provides 

recognition results as shown in Figure 2.6(b), and Combined Framework (CF) 

integrating the benchmark and the LMF framework as shown in Figure 2.6(c). The weak 

supervision is applied to these two fast labeling frameworks by using weak classifiers as 

the label functions.  
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Figure 2.6 Fast labeling framework (a) Benchmark: traditional machine learning 

framework; (b) LMF; (c) CF. © 2021 IEEE. Reprinted with permission from [161]. 

 

2.6.1. Label Model Framework (LMF) 

We first split the total available training data into two groups: True-labelled 

Dataset (TD) and Unlabeled Dataset (UD). TD contains data labeled with ground truths, 

and UD contains unlabeled data. Next, we produce a set of labels from the label function 

module containing different label functions. Finally, a label model is applied to generate 

a final label from the set of labels as the final recognition result. All the label functions 
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are weak classifiers (SVM, RF or KNN), which are first trained with TD without fine-

tuning hyperparameters and then the hyperparameters are tuned with UD with labels 

provided by the label model as shown in Figure 2.6(b). After these processes, LMF is 

ready to provide recognition results for the new dataset. 

2.6.1.1. Data Splitting  

We define two strategies to split training data into TD and UD. One strategy is to 

split data based on subject characteristics including age, height, weight, and shoe size. 

This ensures that the TD and UD both have data from different subjects with similar 

characteristics. The other strategy is to split data using experiment process index. This 

ensures that the TD and UD both have data from the same subjects. Here, we set the 

splitting ratio between TD and UD as 1:1 or 3:1. The ratio of 1:1 saves 50% of manually 

labeling time, while 3:1 saves 25%. Thus, in total, there are four different data 

preparation of TD and UD based on the splitting.  

2.6.1.2. Label Functions 

Each label function represents a weak classifier (SVM, RF or KNN) trained with 

TD without fine tuning all the hyperparameters. Each label function module provides a 

set of labels for the UD or the new dataset. 

2.6.1.2.1. Label Function Module 

Two label function modules are defined: MODULE1 has three label functions, 

while MODULE2 has five label functions. Each label function in the module provides a 

label as shown in Figure 2.7, MODULE2 uses possibility check to determine the labels 

produced by each label function (Figure 2.7(b)). The possibility is computed by 
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classifiers, which is the confidence of the classification result. If the confident possibility 

pti of the label λi from LFi, where i<=4, is larger than the threshold value Pth, the label is 

recorded as λi; if not, the label from LFi is set as ABSTAIN (can’t decide). The 5th label 

function provides a label λ5 without the possibility check, which ensures that there is at 

least one label available for the situation where all the first four label functions provide 

ABSTAIN. 

 

Figure 2.7 Label function module (a) MODULE1; (b) MODULE2. © 2021 IEEE. 

Reprinted with permission from [161]. 

 

2.6.1.2.2. Label Function Properties 

We use the properties of polarity, coverage, overlaps and conflicts to determine 

which label function is used. Polarity is the set of valid labels the label function provides 

(excluding ABSTAIN). Coverage shows the fraction of the dataset a label function 

covers. Overlaps mean the fraction of the dataset where this label function and at least 

one other label function provides a valid label (not ABSTAIN). Conflicts represent the 
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fraction of the dataset where this label function disagrees with at least one other label 

function. 

For MODULE1, the polarity of each label function includes all classes in the 

dataset; the coverage for each label function is one; overlaps are one and every label 

function has the same conflicts, as every label function provides a valid label (not 

ABSTAIN) for every data segment, as summarized in Figure 2.7(a).  

For MODULE2, the label functions checked with possibility pti do not cover the 

whole dataset due to the reason that such label function may provide ABSTAIN when the 

possibility of the label is lower than the threshold value Pth. Thus, except LF5 has 

polarity of all classes in the dataset, coverage of one and overlap of one, other label 

functions are with coverage, overlaps and conflicts smaller than one, as shown in Figure 

2.7(b).  

2.6.1.2.3. Label Function Selection 

Label functions are selected based on their properties. The general selection rule 

is that the label functions in the module should be diverse. That is, label function module 

should include different kinds of classifiers, imbalanced accuracies on different classes, 

and with limited coverage, less overlaps, and less conflicts. By checking the properties 

of each label function and the accuracy for each class of the training dataset TD, we can 

decide which label function to be used in the label function module.  

2.6.1.3. Label Model 

Two kinds of label models are explored to combine the set of labels to a final 

label for an unlabeled dataset, named as the unweighted majority vote model and the 
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Snorkel label model [171]. The unweighted majority vote model treats all the labels (λ1, 

λ2, …, λv) equally, where v is the number of label functions in the label function module. 

That is, the final label is the label appears maximum number of times within the set of 

labels. If there are two or more labels (tied options) are with the same maximum number 

of times, the label model selects the final label randomly from the tied options. 

Different from direct voting, the Snorkel label model [51] is a generative model 

that learns from the correlations and dependencies between label functions by estimating 

the conditional label function probabilities. If the Snorkel label model can’t decide the 

final label due to the situation of tied options, it randomly selects one label among the 

tied options.  

2.6.2. Combined Framework (CF) 

Modified from the LMF, an end classifier (either KNN, SVM or RF) is added at 

the end of the LMF as shown in Figure 2.6. The LMF in the CF is only used to label the 

UD with the majority vote model as the label model. These labels provided by LMF with 

data in UD are combined with TD as the training dataset to train the end classifier. 

Different from the LMF, label functions are not fine-tuned. 

2.6.3. Weak Supervision 

There are multiple noise sources in the label functions where the weak 

supervision is employed. We identify three major noise sources: (i) the label functions, 

which are weak classifiers trained by a limited amount of data with true labels, and thus 

are insufficient for our tasks of foot motion detection when applied to new dataset; (ii) 

the UD, which is labeled by the label model, not 100% accurate compared to ground 
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truths, and thus these labels with the data in UD are used to fine-tune the weak classifiers 

in the LMF; and (iii) both the unweighted majority vote model and Snorkel label model, 

which randomly choose a label among tied options. 

2.6.4. Evaluation Strategy 

2.6.4.1. Benchmark 

We use the traditional supervised machine learning models (KNN, SVM and RF) 

as the end classifier in the benchmark framework (Figure 2.6(a)). Available data are all 

labeled with ground truths, which are manually extracted from video recordings. As 

shown in Figure 2.8, the validation dataset is the data from subject  denoted as Sl where 

l∈[1, A] and A is the total number of subjects in that dataset (Table 2.1). S is the symbol 

for all data from all subjects. (S - Sl) contains data of the whole dataset minus data from 

subject indexed l. The training dataset and testing dataset containing data (S - Sl) with a 

ratio of 8:2 as shown in Fig. 6(a).  
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Figure 2.8 Evaluation strategy of (a) Benchmark: traditional machine learning 

framework; (b) LMF and CF. © 2021 IEEE. Reprinted with permission from [161]. 

 

2.6.4.2. LMF and CF  

As shown in Figure 2.8(b), different from the dataset preparation for the 

benchmark, we split the available data (S - Sl) with two ratios (TD : UD = 1:1 or 3:1) 

following the defined data splitting strategies of subject characteristics and experiment 

process indexes, respectively.  In total, we have four different data preparations to be 

used for comparison and analysis of the impact of different data splitting strategies and 

ratios for our proposed methods.  

Note that we have an even number of subjects for all three datasets in Table 2.1, 

so that we can split the subjects with approximate ratios of 1:1 and 3:1. As each subject 
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repeats the experiment process five times, data from one experiment process is 

symbolled as Slq, where Sl denotes the data from subject l and q∈[1,5] is the index of 

experiment process. We only use four times’ data (Sl1, Sl2, Sl3, Sl4) so that we can split 

the data by the ratio of 1:1 and 3:1 (TD : UD).  

For LMF and CF, we split training and test dataset from both TD and UD with 

the ratio of 9:1 instead of 8:2 used for the benchmark, and the 10% of TD and UD 

together make the test dataset. Note that, all available data are labeled with ground truths 

from video recordings for the use of validation. To clarify, 90% of UD with labels from 

our label models are in the training dataset and 10% of UD with their true labels are in 

the test dataset for the LMF and CF framework.  

2.6.5. Motion Recognition Results 

Table 2.4 to Table 2.6 summarize the cross-validation accuracy of all subjects 

from benchmarks, LMF and CF frameworks for MODULE1 and MODULE2, 

respectively. For MODULE2, we present results from the probability check threshold 

value Pth = 0.75 for Sequential Motion Dataset, Pth = 0.97 for Repetitive Motion Dataset 

and Pth = 0.95 for Route Map Dataset. These Pth values provide an average overlap of 

about 60% to 70% between label functions and averaged conflicts less than 1%. Besides 

these Pth values for probability check, we also explore other values as shown in Figure 

2.11.  

In Table 2.4 to Table 2.6, the color in blue and red indicate the improved and 

degraded accuracy compared to that in the black (benchmark) with the same end 

classifier. As there is no available benchmark for LMF, we use the benchmark of 
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traditional RF, which has better results than SVM or KNN to quantify the accuracy 

improvement.  

Table 2.4 Sequential motion dataset – cross-validation accuracy. © 2021 IEEE. 

Reprinted with permission from [161]. 

Framework-

Classifier 
Benchmark 

MODULE1 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority 

Vote 
N/A 82.44% 92.32% 88.61% 93.87% 

LMF-Snorkel 

Label Model 
N/A 81.15% 89.63% 82.37% 89.67% 

CF-KNN 73.41% 70.45% 72.47% 71.55% 72.78% 

CF-SVM 80.04% 76.37% 78.99% 76.06% 78.24% 

CF-RF 87.75% 85.01% 88.72% 85.07% 86.73% 

Framework-

Classifier 
Benchmark 

MODULE2 (Pth = 0.75) 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority 

Vote 
N/A 87.62% 91.94% 90.72% 92.50% 

LMF-Snorkel 

Label Model 
N/A 86.64% 92.12% 90.94% 92.97% 

CF-KNN 73.41% 71.73% 72.03% 72.78% 72.27% 

CF-SVM 80.04% 79.54% 79.10% 78.67% 78.91% 

CF-RF 87.75% 83.17% 86.34% 85.90% 85.92% 
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Table 2.5 Repetitive motion dataset – cross-validation accuracy 

Framework-

Classifier 
Benchmark 

MODULE1 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority Vote N/A 98.09% 98.78% 98.77% 99.39% 

LMF-Snorkel Label 

Model 
N/A 97.34% 98.61% 98.77% 99.32% 

CF-KNN 74.91% 75.46% 75.36% 74.65% 74.68% 

CF-SVM 91.60% 91.78% 91.89% 91.63% 92.04% 

CF-RF 96.68% 96.33% 96.80% 96.77% 96.79% 

Framework-

Classifier 
Benchmark 

MODULE2 (Pth = 0.97) 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority Vote N/A 97.89% 98.84% 98.87% 99.38% 

LMF-Snorkel Label 

Model 
N/A 97.78% 98.76% 98.88% 99.37% 

CF-KNN 74.91% 75.27% 75.23% 74.61% 74.59% 

CF-SVM 91.60% 91.75% 91.55% 91.82% 92.02% 

CF-RF 96.68% 96.80% 96.54% 96.72% 97.08% 
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Table 2.6 Route map dataset – cross-validation accuracy. © 2021 IEEE. Reprinted 

with permission from [161]. 

Framework-

Classifier 
Benchmark 

MODULE1 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority Vote N/A 95.85% 97.51% 97.29% 97.98% 

LMF-Snorkel Label 

Model 

N/A 94.71% 96.61% 96.83% 97.70% 

CF-KNN 74.31% 75.53% 74.96% 74.39% 74.82% 

CF-SVM 89.59% 88.60% 89.40% 89.39% 89.06% 

CF-RF 93.08% 92.87% 93.80% 93.75% 93.80% 

Framework-

Classifier 
Benchmark 

MODULE2 (Pth = 0.95) 

User 

Characteristics 

Experiment Process 

Index 

1:1 3:1 1:1 3:1 

LMF-Majority Vote N/A 95.56% 97.36% 97.39% 97.91% 

LMF-Snorkel Label 

Model 
N/A 95.52% 97.24% 97.34% 97.89% 

CF-KNN 74.31% 75.36% 75.04% 74.32% 74.71% 

CF-SVM 89.59% 88.67% 89.91% 89.54% 89.27% 

CF-RF 93.08% 91.93% 93.93% 93.91% 93.95% 

 

2.6.5.1. Sequential Motion Recognition 

In Table 2.4, the CF does not work well where the results from most of the data 

splitting strategies and splitting ratios degrade up to 5%. However, the LMF works well 

and make improvements up to 6.12% and 5.12%, with both the majority vote model and 

the Snorkel label model, respectively. 
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2.6.5.2. Repetitive Motion Recognition 

Our proposed methods improve an average up to 2.71% on the cross-validation 

accuracy from Table 2.5. Compared to CF, both MODULE1 and MODULE2 with LMF 

make improvements for any strategy or ratio of splitting data.  

2.6.5.3. Route Map 

In Table 2.6, when the SVM is used as the end classifier, our proposed methods 

do not work well on making improvements. Except this case, other strategies of building 

our proposed frameworks make improvements up to 4.90% with the data splitting 

strategy of experiment process index, ratio=3:1 and MODULE1.  

2.6.5.4. Robustness 

We use the cross-validation accuracy of all subjects to evaluate the robustness. In 

general, LMF provides better results than CF (Table 2.4 to Table 2.6).  The LMF using 

MODULE1 with majority vote with TD : UD = 3:1 (based on experiment process 

index), produces the highest validation accuracy of all subjects for all three datasets. The 

results are detailed below:   

• Compared to the best benchmark framework, it improves the accuracy up to 2.71% 

for Repetitive Motion Dataset, up to 4.90% for Route Map Dataset, and up to 6.12% 

for Sequential Motion Dataset with appropriate data splitting strategies and ratios. 

The CF also makes improvements. But for most data preparation scenarios, the 

improvements are not as good as that of the LMF for all three datasets.   

• Table 2.7 presents the cross-validation results of sensitivity, specificity, precision, 

and F1-score. These metrics are close to each other, indicating that the LMF 
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framework has a balanced performance in identifying true positives, false positives, 

true negatives, and false negatives. 

• Figure 2.9 shows its validation accuracy for each subject, compared with the best 

benchmark result (from RF). We can see improved and/or maintained (if it is already 

100% with RF) for all subjects. Thus, the robustness is highly improved not only for 

cross-validation accuracy, but also for validation accuracy of individual subjects. 

Figure 2.10 shows the confusion matrices (not normalized) from subject S20 as an 

example to present cross-classes performance.  The LMF is trained with other subjects’ 

data but is validated with subject S20. The validation accuracy for subject S20 is 98.04%, 

99.59% and 99.20% for the sequential motions, repetitive motions, and route map, 

respectively. 

Table 2.7 Cross-validation metrics summary with LMF using MODULE1 with 

majority vote as the end classifier that provides the maximum improvements. © 

2021 IEEE. Reprinted with permission from [161]. 

Cross-validation 

Metrics 

Sequential Motion 

Dataset 

Repetitive Motion 

Dataset 

Route Map 

Dataset 

Accuracy 93.87% 99.39% 97.98% 

Sensitivity 93.17% 99.77% 96.16% 

Specificity 95.94% 99.85% 99.67% 

Precision 93.87% 98.09% 95.41% 

F1-score 94.14% 99.76% 96.80% 
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Figure 2.9 Validation accuracy of our method: LMF using MODULE1with 

majority vote with data preparation of TD : UD = 3:1 (based on experiment process 

index) , comparison to the best benchmark results for each subject. © 2021 IEEE. 

Reprinted with permission from [161]. 
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Figure 2.10 Confusion matrices from subject S20 as an example to show cross-

classes performance a) Sequential Motion Dataset, b) Repetitive Motion Dataset, c) 

Route Map Dataset. © 2021 IEEE. Reprinted with permission from [161]. 

 

2.6.5.5. More Discussion on Fast Labeling Framework 

2.6.5.5.1. Data Preparation 

We explore two strategies of data splitting: TD and UD with two splitting ratios. 

In total, we have four different data preparations. The purpose of exploring data 

preparations is to understand how similarities of subject characteristics and their 

individual differences influence the results. The purpose of exploring different ratios is 

to evaluate how much time that we can save in labeling.  
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Regardless of the splitting strategies, from the red colored (degraded) and blue 

colored (improved) accuracies of columns of 1:1 and 3:1 ratio in Table 2.4 to Table 2.6, 

we can see that the 3:1 ratio makes more improvement than 1:1 ratio for the most cases, 

but not too much when both have improvements. Regardless of the splitting ratio, from 

columns of subject characteristics and experiment process index in Table 2.4 to Table 

2.6, we can tell data splitting by experiment index is a better strategy as the 

improvements are more consistent and higher than the subject characteristic based 

splitting strategy for most cases. This explains that taking the subjects’ similarities into 

consideration when preparing TD and UD can largely improve the evaluation 

performance. In addition, our proposed methods also make improvements by using 

subject characteristic based splitting strategy when it comes to individual differences. 

2.6.5.5.2. Label Function 

It is obvious that label functions are key components, as they implement noises 

of weak supervision into our frameworks by labeling UD. Here, we use weak classifiers 

as the label functions (chosen from a combination of KNN, SVM or RF). All these weak 

classifiers do not work well for the foot motion tasks and only trained by TD. 

From the results, we find that MODULE2 is more robust compared to 

MODULE1 as it improves accuracies from most data preparations. The Pth value needs 

to be decided for the use of probability check for MODULE2 based on the label function 

properties. Figure 2.11 shows the relationship between the Pth value and the averaged 

conflicts and overlaps, the first four functions in MODULE2. If the Pth value is set too 

small, it is the same as MODULE1 since all label functions would provide a valid label 
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(not ABSTAIN). If the Pth value is set too large, the first four functions may provide 

ABSTAIN all the time and the final label would be decided by the 5th label function only. 

Thus, when selecting the Pth value, we use the value that provides about 60% to 70% 

overlaps between label functions and small conflicts between each other. Table 2.8 gives 

an example of the MODULE2 we use for the route map dataset with Pth = 0.95 to show 

the label function properties. In our future work, we will explore how overlaps and 

conflicts affect the results and how to quantitively find the best values of Pth. 
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Figure 2.11 MODULE2: Properties vs. Probability threshold Pth. © 2021 IEEE. 

Reprinted with permission from [161]. 
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Table 2.8 MODULE2: Label Function property summary. © 2021 IEEE. Reprinted 

with permission from [161]. 

Label 

Function 
Polarity Coverage Overlaps Conflicts 

LF1 

Walk, half-turn, step over obstacle, 

tap heel, tap toes, kick foot, stomp (7 

classes) 

58.42% 58.42% 0.04% 

LF2 
Walk, half-turn, step over obstacle, 

tap heel, tap toes, kick foot (6 classes) 
52.87% 52.86% 0.00% 

LF3 
Walk, half-turn, step over obstacle, 

tap heel (4 classes) 
37.10% 37.10% 0.64% 

LF4 
Walk, half-turn, step over obstacle, 

tap heel, kick foot (5 classes) 
36.97% 36.97% 0.69% 

LF5 

Walk, half-turn, step over obstacle, 

tap heel, tap toes, kick foot, stomp (7 

classes) 

1 68.98% 0.73% 

 

2.7. Validation of Fast Labeling Framework on Mobility Analysis 

To validate and apply our fast labeling framework to mobility analysis, we first 

prove that sequential motions (Gait -> U-turn -> Gait) can be reproduced with an 

average accuracy of 96.13% through testing with 6 elderlies and 16 young adults. Next, 

we extract 21 temporal motion features from reproduction results, rank these features 

through univariate feature ranking, and identify their importance to age-dependent 

mobility analysis. In the end, we analyze errors caused by reproduction and prove the 

applicability of the proposed method. We believe that this easy-to-use mobility 

monitoring approach with the simple setup can facilitate at-home mobility monitoring 

and evaluation for elderlies with high accuracies. 

2.7.1. Method 

The mobility analysis is performed in the following steps (Figure 2.12):  

acceleration data collection using the early version of MONI (Figure 2.13(a)), data 
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preprocessing with low pass filtering and segmentation into strides, sequential motion 

reproduction using the LMF and temporal motion extraction for mobility analysis. The 

LMF, recently developed by our team [161] can accurately reproduce continuous 

movements and provide ground truth labels for data collected from uncontrolled 

environments. In this letter, the LMF is fine-tuned with an optimized dataset split ratio 

and a label function module of 5 label functions. Each analysis step is detailed the 

following section. 

 

Figure 2.12 Flowchart of mobility analysis steps. © 2021 IEEE. Reprinted with 

permission from [184]. 

 

2.7.1.1. Experimental Setup 

Each motion data set is collected following schematic in Figure 2.13(b). Each 

subject, wearing MONI on their right side, starts at a standing posture, walks 10 ft. 

(Gait-I), makes a U-turn at the U-turn point (U-turn), and then walks back to where the 

subject starts (Gait-II). The sequential motions include three periods of motions: Gait-I, 

U-turn, and Gait-II. We test our early version of MONI on 6 elderlies at a senior facility 
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(Figure 2.13(c)) and 16 healthy young adults in our lab (Figure 2.13(d)). Each subject 

performs the sequential motions 5 times and follows the “start” instruction each time on 

the same vinyl sheet. The ground truth is manually extracted from camera recordings.  

 

Figure 2.13 (a) Photographic representation of MONI (right-side); (b) Simple 

setup: a round-trip of 10-ft walking (Gait-I and Gait-II) and a U-turn; 

Experimental setup using a square vinyl sheet of 10-ft long at (c) the senior facility 

and (d) our research lab at Texas A&M University for sequential foot motion data 

collection: the blue and red tapes on one side of the mat indicating the start/end and 

U-turn point. © 2021 IEEE. Reprinted with permission from [184]. 

 

We group all subjects into two categories based on their age and summarize their 

characteristics in Table 2.9. This includes the average age, height, weight, shoe-size, 

gender, self-reported mobility limitation, and body mass index (BMI), where BMI> 25 is 

overweight. 
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Table 2.9 Statistics of subject characteristics. © 2021 IEEE. Reprinted with 

permission from [184]. 

Average A. Elderly Group B. Health Young Group 

Age 82.83 23.60 

Gender *M (2), *F (4) *M (14), *F (2) 

Height 166.67 cm 174.47 cm 

Weight 77.64 kg 70.91 kg 

BMI >25 (6), <=25 (0) >25 (4), <= (12) 

Shoe-size 8.67 (US) 9.27 (US) 

Foot Motor Functionality 

Limitations 
*N (4), *L (2) *N (16) 

a Male; b Female; c Normal; d Limited mobility due to motor dysfunctions 

 

2.7.1.2. Sequential Motion Reproduction with Fast Labeling Framework 

The acceleration data is first filtered by a 4th order Butterworth low-pass filter 

with a cut-off frequency of 10 Hz since the peak frequency of the motion is around 3-5 

Hz for all the motion data. A stride detection method [161] is applied and segments the 

sequential motions into strides. Next, 150 statistical features [161] are extracted from 

each stride (acceleration data) to build a dataset D. We implement the LMF with weak 

supervision recently developed by our team [161] to reproduce sequential motions of 

gait and U-turn, as shown in the blue shaded area in Figure 2.12. The dataset D is first 

split into an optimized ratio of 1:1 to be true-labeled dataset (TD) and unlabeled dataset 

(UD), where true-labeled dataset is labeled with the ground truth manually extracted 

from camera recordings. The label function module consists of five weak classifiers, 

roughly trained by TD, including three Random Forest (RF) and two Support Vector 

Machine (SVM) with different hyperparameters. The first four label functions include 

two RF and two SVM. Each provides a recognition result (label) and run through a 
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possibility check on the confidence of the result. If the confidence of the result is higher 

than 90%, the label is recorded. Otherwise, the label is set as ABSTAIN (can’t decide). 

The possibility check does not apply to the 5th label function, which ensures the label 

function module provides at least one motion label. After the label function module 

provides a set of five labels including ABSTAIN if there is, the unweighted majority vote 

is applied to provide a final label, which is the label appears maximum number of times 

within the set of labels, except ABSTAIN. If there are tied options, the majority vote will 

select a final label randomly from the tied options.  

2.7.1.3. Temporal Motion Features 

In total, we extract 21 temporal motion features from the reproduced sequential 

motions. These are gait features and motion-related features referencing to TUG-derived 

parameters [172], including durations, stride parameters and phase-correlated features, 

as shown in Table 2. Univariate statistical tests are used to rank these features to 

differentiate elderly and healthy young groups. The Analysis of Variance (ANOVA) F-

value [173] is calculated for each feature by Scikit-learn [174].  The features are ranked 

by the F-value. The highest represents the most relevance with age. The same features 

are also extracted from the true motion phases from camera recordings as the ground 

truth. The same method of feature ranking is applied to the ground truth, and the results 

of feature extraction and ranking from reproduction and ground truth are compared. 
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Table 2.10 Candidate temporal motion features for evaluation. © 2021 IEEE. 

Reprinted with permission from [184]. 

Motion Temporal Motion Features Total 

Gait-I, Gait-II 

motion duration, average stride duration, number of 

strides, cadence (strides/min), stride-to-stride variability 

(standard deviation, mean, coefficient of variability) 

14 

U-turn motion duration, average stride duration, number of strides 3 

Motion-correlated 

total sequential motion duration, ratio of Gait-I and II 

durations, ratio of Gait-I and U-turn durations, ratio of 

Gait-II and U-turn durations 

4 

 

2.7.2. Results and Discussion 

2.7.2.1. Results of Sequential Motion Reproduction 

The reproduction accuracy is used to validate the LMF. All 22 subjects complete 

the sequential motions five times. The first four are used to build the dataset D, while 

last time is used to validate the reproduction. Within D, two times are treated as TD and 

the other two are UD. A traditional machine learning framework (RF as the classifier) is 

used as the benchmark, where the whole dataset D is labeled with ground truth manually 

extracted from the camera recording. Temporal motion features are extracted from the 

reproduction results from the last time of sequential motions and the ground truth. Errors 

of temporal motion feature extraction caused by the results of reproduction are analyzed 

for each age group. Figure 2.14(a) shows that the average reproduction accuracy for all 

subjects is improved from 91.55% (benchmark) to 96.13%. Figure 2.14(b) shows the 

reproduction examples for subject 1 (elderly) and subject 16 (adult) with an accuracy of 

100%. For subject 10 and 13, the U-turn is not detected and thus they are removed for 

feature ranking within each group. The reason why LMF has better results in sequential 

motion reproduction than the benchmark is because the label function module introduces 
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weak supervision by providing labels from model-based label functions to the 

framework. 

 

Figure 2.14 (a) Reproduction results for every subject comparison to benchmark; 

(b) Reproduction results for four subjects as examples. © 2021 IEEE. Reprinted 

with permission from [184]. 

 

2.7.2.2. Results of Temporal Motion Feature Ranking 

Figure 2.15(a) shows the feature ranking from the reproduction results and the 

ground truth. From top to bottom, it is ranked as the most age-related to the least age-

related. The top two features are stride-to-stride standard deviation (SD) and coefficient 

of variability (CV) from motion of Gait-II. The top two features from the reproduction 

results and the ground truth are the same. The feature space plot with the top two 
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mobility representing features in Figure 2.15(b), shows that the two groups are clearly 

separated, suggesting that these two features are correlated with age.  

 

Figure 2.15 (a) Feature ranking; (b) Feature space plot with the top two features 

correlated with the two age groups. © 2021 IEEE. Reprinted with permission from 

[184]. 
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2.7.2.3. Mobility Analysis 

We observe that for both groups, the average stride duration, cadence, number of 

strides, ratio of Gait-I and II duration and ratio of Gait-II and U-turn duration have 

exhibited a linear increase with age. Group A uses a greater number of strides and longer 

durations to finish each motion, and shows a larger stride-to-stride variation and standard 

deviation compared to Group B. That is, the age-related mobility decline can be 

represented by typical features including a larger stride-to-stride variation, a larger 

cadence, a greater number of strides, and a longer duration of finishing the same motion 

task. The last feature is equivalent to smaller stride length since their walking distance 

for Gait I and II is 10 ft. These results agree with the literature finding [175] which 

reports step regularity and motion duration are top features to distinguish performance 

difference across ages after using multivariate analyses to identify aging effects on TUG. 

2.7.2.4. Error Analysis 

Table 2.11 shows feature errors caused by reproduction within Group A and B. 

The Error and Error % are both calculated against the ground truth and averaged by all 

subjects. The error for counting the number of strides is much larger than others 

(12.500%) as all finish walking with 2-5 strides, and a miscounting could cause 

significant error. The reproduction accuracy for all other temporal motion features is 

decent with an average error below 10%. From the feature ranking in results of Figure 

2.15(a), the features of the number of strides for each motion are not top-ranked features 

by ground truths. Summarized from Table 2.11, the error caused by reproduction is 

acceptable and our proposed method as shown in Figure 2.12 is applicable.  
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Table 2.11 Average errors of temporal motion feature extraction from 

reproduction and the error percentage of each group. © 2021 IEEE. Reprinted with 

permission from [184]. 

Motion Feature 
A B 

Error Error % Error Error % 

Gait-I  

# stride -0.167 -5.556% -0.071 -2.632% 

duration -0.151 -4.530% -0.080 -2.636% 

average stride duration 0.001 0.067% -0.001 -0.085% 

cadence (strides/min) -0.053 -0.094% 0.048 0.089% 

SD -0.006 -7.509% 0.000 0.686% 

mean 0.007 0.684% -0.002 -0.140% 

CV -0.006 -8.649% 0.000 0.809% 

Gait-II 

# stride 0.000 0.000% 0.071 2.941% 

duration 0.000 0.000% 0.090 3.195% 

average stride duration 0.000 0.000% 0.001 0.061% 

cadence (strides/min) 0.000 0.000% -0.027 -0.052% 

SD 0.000 0.000% 0.000 0.629% 

mean 0.000 0.000% 0.000 0.011% 

CV 0.000 0.000% 0.000 0.616% 

U-turn 

# stride 0.167 12.500% 0.000 0.000% 

duration 0.151 3.378% -0.010 -0.260% 

average stride duration -0.182 -5.201% -0.034 -1.164% 

Motion 

correlated 

total motion duration 0.000 0.000% 0.000 0.000% 

ratio of Gait-I and II 

duration 
-0.051 -5.457% -0.083 -7.189% 

ratio of Gait-I and U-turn 

duration 
-0.071 -9.011% -0.015 -1.752% 

ratio of Gait-II and U-turn 

duration 
-0.036 -4.342% 0.020 2.559% 

 

2.7.2.5. Sequential Effects 

Figure 2.15 suggests the sequential effects: though the motion of Gait-I and Gait-

II are the same in nature, their feature importance ranking is different.  As shown in 

Table 2.12, Gait-II is more important than Gait I while U-turn is the least important one 

for Group A and B, where number of * represents the importance of the phase (more * 
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means more important). Interestingly, we observed that if we group subjects based on 

their BMI: overweight group (10) and normal weight (12) in Table 1, the top two 

features are the same as these for age-related groups. However, for these groups, the 

most important motion is Gait-II while U-turn and Gait-I are close. To conclude, we 

believe that features from Gait-II can best assess both age and BMI-related mobility 

decline. Future work will include recruiting more elderly subjects and Middle Ages 

subjects to increase the data diversity and balance.  

Table 2.12 Importance for Age and BMI-related mobility analysis. © 2021 IEEE. 

Reprinted with permission from [184]. 
 Age BMI 

Gait-I ** * 

U-turn * * 

Gait-II *** *** 

 

2.7.2.6. Conclusion 

This letter proposes the use of MONI and setup for age-dependent mobility 

decline analysis. The proposed LMF achieves an accuracy of 96.13% to reproduce 

sequential foot motions of gaits and U-turns. On top of the reproduction results, 21 

temporal motion features are extracted and analyzed with ANOVA to present the age-

dependent mobility decline and sequential effects are proven to be important for 

mobility analysis. Errors associated with motion reproduction results are analyzed and 

the proposed method is proven to be applicable. This study provides a promising 

solution for elderlies to evaluate their mobility at home with simple setup using MONI 

through sequential motion reproduction.   
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2.8. Summary 

We evaluate different data splitting strategies and splitting ratios to give an 

insight of how subjects’ similarities and differences influence the performance of the 

proposed framework. Knowledge learned from these results are summarized below: (i) 

the LMF works better than the CF for all three datasets; (ii) for LMF, the majority vote 

model (slightly better) and the Snorkel label model have similar results for all three 

datasets; and (iii) the results from MODULE2 are more consistent and robust than those 

from MODULE1 for different data preparation cases.  

Our proposed methods have the following uniqueness and advantages of: (i) the 

use of stride (the start to end of the stride) as the adaptive sliding window to segment 

continuous movements into data segments with a robust stride detection method, (ii) 

improvement of the cross-validation accuracy on different types of foot motion datasets 

with efficient computation based on traditional machine learning models of KNN, SVM 

and RF, (iii) thorough evaluation of strategies to group data into TD and UD, (iv) 25% to 

50% of time savings in manually labeling training data, and (v) the use of weak 

supervision by using weak classifiers and LMF labeled training data to achieve high 

robustness needed by uncontrolled environments and new subjects.  

It is worth to note that the size of Sequential Motion Dataset is much smaller 

than the other two datasets, and the walking data is two times more than the half-turn 

and step over obstacle data (unbalanced), so that its cross-validation accuracy is much 

lower than that of the other datasets. This can be addressed by using a larger and more 

balanced dataset in the future. We will explore auto feature selection, importance 
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ranking, advanced neuron network models to process larger datasets. We expect our 

proposed method would produce significant improvement of accuracy and robustness.  

This chapter explores weak supervision-based fast labeling on continuous 

movements with a robust stride detection method for foot motion recognition. The 

results show improvements in validation accuracy for all the subjects. The chapter well 

addresses the challenge of recognizing foot motions from continuous movements in 

uncontrolled environments and provides a solution to robust and fast data labeling. 

Compared to existing studies as shown in Table 2.13, our method has a significantly 

better accuracy in motion recognition when applied to multiple motions.  

Table 2.13 Comparison to existing studies. 

Recognition 

method 

Segment

ation 
(No. of motions) Motion 

Accura

cy 

No. of 

subjects 

Xgboost 
Greedy 

Gaussian 

(6) Lay down, Stand, Sit, 

Walk, Downstairs, Upstairs 
79.4% 30 

Adaboost 
Sliding 

windows 

(7) Walk, Sit, Stand, Run, 

Bicycle, Lay down, Upstairs  
95.35% 10 

Hierarchical 

hidden Markov 
N/A 

(4) Walk, Downstairs, 

Upstairs, Run 
88.88% N/A 

Threshold 

judgements 

Sliding 

windows 

(4) Stand from a chair, 

Walk, Turn, Sit on the chair 
92.33% 10 

Recurrent Neural 

Networks 

Sliding 

windows 

(5) Walk, Sit, Stand up, 

Bend to pick object, Drink 

water, Fall 

96% 16 

More efficient 

Recurrent Neural 

Networks 

Sliding 

windows 

(>10) Activities from 

different public datasets 
91% 25 

Fast labeling 

framework 

(Our method) 

Stride 

and 

Sliding 

Window 

(7) Lower limb motions 

(Route Map) 
97.98% 20 
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With MONI and setup for age-dependent mobility decline analysis, foot motion 

recognition using fast labeling framework is proven to be applicable before motion 

feature extraction and analysis. The proposed LMF achieves an accuracy of 96.13% to 

reproduce sequential foot motions of gaits and U-turns. On top of the reproduction 

results, 21 temporal motion features are extracted and analyzed with ANOVA to present 

the age-dependent mobility decline and sequential effects are proven to be important for 

mobility analysis. Errors associated with motion reproduction results are analyzed and 

the proposed method is proven to be applicable. This work provides a promising solution 

for elderlies to evaluate their mobility at home with simple setup using MONI through 

sequential motion reproduction.   

2.9. Selected Motions for PD Falling Risk Evaluation 

As shown in Table 2.14, within all the foot motions, we summarize from 

commonly used effective clinical exams and tests and select the most effective and 

simplest sequential motions: walking, and repetitive motion: toe tapping for PD falling 

risk evaluation.  

Table 2.14 Foot motions used in clinical examinations and tests. 

Application Clinical tests a b c d e f g 

PD rating/diagnosis UPDRS ₓ   ₓ    

Balancing BESTest ₓ ₓ ₓ ₓ ₓ   

Mobility and falling Timed-up and Go ₓ ₓ      

Lower body (Leg) Leg strength/dominance test      ₓ ₓ 

For elderlies, difficult to perform   ₓ   ₓ ₓ 

a: Walk; b: Turn; c: Step over obstacle; d: Toe tapping; e: heel tapping; f: Kick; g: 

Stomp
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3. WALKING-BASED FALLING RISK EVALUATION 

 

Motor functionality decline caused by Parkinson’s disease (PD) can be 

represented by gait disorders, leading to high risks of falling and serious injuries. Most 

existing studies on falling risk evaluation mainly rely on gait analysis using wearable 

sensors but do not usually provide quantitative results to patients. In real-life scenarios, 

walking is always associated with other activities, thus gait changes due to distracted 

attention. This study aims to investigate how PD patients perform during walking while 

holding a full cup of water in hand compared to age-matched healthy controls (HC) with 

Monitoring Insoles (MONI) developed in our lab. Experiments, including two tasks: 

walking and walking with water in hand, are done with 10 PD patients and 8 HCs. 

Results are compared between groups and between tasks through statistical analysis of 

63 gait and 864 acceleration-axis features. The results suggest acceleration-axis features 

can better differentiate PD from HC during walking with water in hand with an accuracy 

of 82.37% compared to walking (72.63%). To evaluate falling risks with the task of 

walking with water in hand, a Bayesian Ridge model developed by gait and acceleration-

axis features provides falling risk scores compatible with the Fall Risk Questionnaire 

(FRQ) developed by the U.S. Centers for Disease Control and Prevention (CDC) with an 

(error ± standard deviation) = (0.03±0.38). This study assesses and evaluates features of 

PD and HC in walking motion and walking while holding a cup of water to provide a 

more quantitative and understandable falling risk score to PD patients using MONI. 

Figure 3.1 is the abstract of Chapter 3.  
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Figure 3.1 Graphical abstract of Chapter 3. 

 

3.1. Walking Tasks 

Aiming to reduce the burden of trips to clinics and provide an objective 

evaluation of falling risks in real time, research studies [44, 90, 176] focus on developing 

smart insoles to automatically evaluate walking in daily life to support falling risk 

estimation for elderlies. Other studies [177, 178] focus on gait analysis to detect motor 

functionality disorder in PD, such as freezing of gait and bradykinesia [179]. To predict 

the falling of PD, most  recent studies focus on detecting pre-freezing of gait [11] with 

acceleration or force data and different machine learning methods, reporting 80-95% of 

accuracy [180]. However, such prediction only applies to PD in the mid-severe stages. 

Walking evaluated by these studies is a single task and most of the experiments done by 

the studies are controlled without considering environmental or physical factors. In daily 

routine, walking is always associated with other activities [181], such as carrying a cup 

of coffee. Such dual tasks distract attention from walking and may increase risks of 
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falling [182]. Thus, results from these studies, which only consider walking, are not 

accurate or do not reflect how PD patients perform in real-life scenarios. It is more 

valuable to evaluate dual tasks with smart insoles for PD and explain how they link to 

falling risks to assist with real-life applications. 

Referencing to dual-task Timed-Up and Go test [183] and different one from 

existing studies [31] using smart insoles for gait analysis, our study aims to investigate 

the gait and acceleration-axis features of PD and age-matched healthy controls (HC) 

through two tasks: simple walking and walking with attention distracted by holding a 

full cup of water in hand, using upgraded Monitoring Insoles (MONI) [184]. Figure 3.2 

shows the acceleration data plot of the two tasks.  

 

Figure 3.2 Acceleration data plots of the two tasks. 
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3.1.1. Experiment 

The subject walks 23 ft. at his/her comfortable pace in a straight line in Task 1; 

and then repeats Task 1 with a full cup of water in a single hand as Task 2, as shown in 

Figure 3.3. Compared to Task 1, Task 2 requires the subject’s attention to avoid spilling 

water at his/her best during walking. Thus, the experiment is more relevant to real-life 

scenarios where attention is distracted while walking. The motion data is recorded by a 

pair of MONI, including two accelerometers positioned at the heel and the first 

metatarsal area, respectively. The ground truth is recorded by a camera. 

 

Figure 3.3 Subjects in experiment. 

 

3.1.2. Subjects 

In total, 10 PD patients and 8 HC subjects participated in the experiment. 

Subjects are grouped as PD and HC Group as recorded in Table 3.1 with the summarized 

information of each group. To determine if a subject is a faller or non-faller, FRQ with 

12 YES/NO questions is used, which is validated to have a high correlation to clinical 

falling examination [15]. Every subject filled the questionnaire before the experiment. 

FRQ is transformed into a score, scaling in between [0, 14] when a YES counts as 1 

point. The scaling is up to 14 points since the first two questions count for 2 points each. 
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Table 3.1 Group summary: subjects’ characteristics. 

Group PD HC 

Gender Female (2) b, Male (8) Female (6), Male (2) 

Age 
(51-60) (1), (61-70) (5) 

(71-80) (3), (Over 80) (1) 
(61-70) (5), (71-80) (3) 

PD Stage 1 (5), 2 (2), 3 (1), 4 (2) N/A 

Falling Faller (7), Non-faller (3) Faller (1), Non-faller (7) 

Falling Score (mean ± std a) 5.70 ± 3.40 1.50 ± 1.60 

 

3.2. Gait Features 

Human walking is a periodical movement, represented by strides. A stride (two 

steps) is divided into gait phases of stance (heel strike to toe-off) and swing (toe-off to 

heel strike) [15]. It has been proven that gait events can be extracted from accelerometry 

signals [33]. Gait events of heel strike and toe-off of the left and right foot can be 

directly extracted from MONI. From heel strike and toe-off events, the following gait 

features (Figure 3.4) can be extracted for both right and left sides.  
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Figure 3.4 Gait events and gait phases definition. 

 

In the following subsections, we state the method of identifying gait events and 

the results, following by gait feature extraction.  

3.2.1. Gait Event and Phase Identification 

To remove high-frequency noises within acceleration data, a 4th order 

Butterworth low-pass filter with 2.5Hz cut-off frequency is used. Walking including four 

events in a stride: left heel strike (𝐻𝑆𝑙𝑒𝑓𝑡), left toe-off (𝑇𝑂𝑙𝑒𝑓𝑡), right heel strike 

(𝐻𝑆𝑟𝑖𝑔ℎ𝑡) and right toe-off (𝑇𝑂𝑟𝑖𝑔ℎ𝑡) are identified with differential transformation. As 

Figure 3.5 shows, 𝐻𝑆𝑙𝑒𝑓𝑡 and 𝐻𝑆𝑟𝑖𝑔ℎ𝑡 are detected from the z-axis of the heel 

acceleration while 𝑇𝑂𝑙𝑒𝑓𝑡 and 𝑇𝑂𝑟𝑖𝑔ℎ𝑡 are detected from the y-axis of the first metatarsal 
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acceleration. First, differential calculations are applied to the y-axis data of the heel and 

first metatarsal. Next, the heel strike event is detected as the mean of the peak and the 

zero-crossing prior to the peak from the differentiation from the heel y-axis acceleration. 

With the detected heel strike event, its prior toe-off event is found as the zero-crossing 

before the peak of y-axis data from the first metatarsal. To extract gait parameters, the 

detected events are put in arrays and defined as 𝐴𝐻𝑆𝑙𝑒𝑓𝑡, 𝐴𝑇𝑂𝑙𝑒𝑓𝑡, 𝐴𝐻𝑆𝑟𝑖𝑔ℎ𝑡 and 𝐴𝑇𝑂𝑟𝑖𝑔ℎ𝑡. 

 

Figure 3.5 Gait events pinpointed on heel and first metatarsal acceleration traces 

(data from left side in black; data from right side in red). 
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Table 3.2 shows results of the correct number of gait events detected by our 

method compared to video recordings in percentage for the two tasks and two groups, 

respectively. 

Table 3.2 Gait event detection accuracy. 
 PD HC 

Task 1 97.86% 97.37% 

Task 2 98.34% 97.28% 

 

Compared to the other studies listed in Table 3.3, our work shows a compatible 

accuracy and works well for walking and walking with water.  

Table 3.3 Comparison to existing studies using different methods. 

Method Task Sensor 
No. of 

PD 

No. of 

HC 
Accuracy 

Zero-crossing detection 

(specific features)28 

Walk 

IMU 6 0 100% 

SVM29 IMU 49 0 93.9% 

4-state Finite State 

Machine + SVM30 
IMU 1 1 93% 

Heuristics & thresholds 

on features31 
Accelerometer 12 11 >94% 

Frequency-domain 

Transform32 
Accelerometer 128 0 97% 

Our method 

Walk Accelerometer 10 8 98% 

Walk with 

water 
Accelerometer 10 8 98% 

 

3.2.2. Gait Feature Extraction 

Since the subject starts walking with either right or left side, the first left toe-off 

is defined to be the first event during walking for all subjects, and thus any event from 

𝐴𝐻𝑆𝑟𝑖𝑔ℎ𝑡 and 𝐴𝑇𝑂𝑟𝑖𝑔ℎ𝑡 ahead of 1st element in 𝐴𝑇𝑂𝑙𝑒𝑓𝑡 is removed from the arrays when 

extracting stride duration and gait phases of swing, step, stance, and double support 
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duration. Due to the unstable speed at the start and the end of the tasks, the first and the 

last stride is also removed. 4 types of functions are applied to stride and 4 gait phases (5 

in total): mean, standard deviation (std), variability (var) and coefficient of variance 

(CoV), which makes 20 features in total. Ratios between gait phases to stride duration 

are calculated (4 features) and the total number of strides from a single side before any 

removal is another feature. In total, 25 gait features are extracted from a single side. In 

addition, 13 features are extracted with both sides. Before any removal on event arrays, 

the total task duration can be extracted as the duration between the first and the last 

event, as one feature. Gait symmetry is calculated with 3 methods (ratio index, 

symmetry index, and Robinson index) [185] for left and right swing, stance, step, and 

double support duration (12 features). Thus, in total, 63 gait features are extracted.  

3.3. Acceleration-axis Features 

Since PD symptoms are within the 2-12 Hz range, the acceleration data is filtered 

with a low-pass filter with a 12 Hz cut-off frequency. Based on 𝐴𝐻𝑆𝑙𝑒𝑓𝑡, 𝐴𝑇𝑂𝑙𝑒𝑓𝑡, 

𝐴𝐻𝑆𝑟𝑖𝑔ℎ𝑡 and 𝐴𝑇𝑂𝑟𝑖𝑔ℎ𝑡 after removals, the start and the end of each stride are identified 

and thus acceleration data can be segmented into stride, swing, and step. In total, 432 

acceleration-axis features are extracted from a single side. That is, 18 statistical features 

are extracted from 4 axes of the 2 accelerometers within each stride, swing, and step, 

respectively. The 18 statistical features include: mean, minimum, maximum, median, 

std, CoV, peak-to-peak amplitude (PPA), Percentile=10, 25, 50, 75, 90, interquartile 

range, skewness, kurtosis, signal power, root mean square (RMS) and the number of 
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positive peaks. Axes include x, y, z, and the std of x, y, and z. In total, 864 acceleration-

axis features (2 sides) are extracted for each task.  

3.4. Feature Analysis 

As shown in Figure 3.6, to identify features with statistically significant 

differences between the means of PD and HC groups for the same task and the means 

between tasks for the same group, a two-way Analysis of Variance (ANOVA) with 

replication is used for 864 acceleration-axis features. The result of two-way ANOVA 

provides p-values of group factor, task factor, and interaction. If the p-value for 

interaction is not significant, a pairwise comparison is performed to check if the 

significance exists in groups (PD: Task1 vs. Task2, HC: Task1 vs. Task2) or in tasks 

(Task1: PD vs. HC; Task2: PD vs. HC) with Turkey’s Test [186]. For gait features, 

Mann-Whitney U Test [187] is used to identify the features with significant differences 

between the means of groups, and Wilcoxon Signed Rank Test [188] is used to identify 

the features with significant differences between the means of tasks. The reason for 

using different statistical analyses is because data of gait features is not normally 

distributed, but data of acceleration-axis features follows a normal distribution, checked 

with Shapiro-Wilk Test [189].  
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Figure 3.6 Methods of Identifying Statistically Significant Differences between two 

means. 

 

3.4.1. Results of Gait Feature Analysis 

3.4.1.1. Between Groups 

In our experiment, HC uses an average of 7.28s to finish Task 1 while PD uses 

7.70s; and HC uses 7.77s to finish Task 2 while PD uses 7.93s. Thus, Task 2 takes 

longer to finish for both groups. It is noticed that both groups use larger stride duration 

and a greater number of strides in Task 2. The ratio of stance in a stride shows a 

significant difference in Task 2 (63.08%) than Task 1 (59.34%) for PD compared to HC 

(Task 2: 63.90% and Task 1: 61.87%), which means PD uses a longer stance duration to 

stabilize the walking performance in Task 2, These features have the changes with the 

same trending for two groups between Task 1 and Task 2 as shown in Table 3.4 

Summary of duration and number of strides for each group and task. 

Table 3.4 Summary of duration and number of strides for each group and task. 

Group PD-Task1 HC-Task1 PD-Task2 HC-Task2 

Task Duration (s) 7.70 7.28 7.93 7.77 

Stride Duration (s)  1.05 1.07 1.13 1.12 

Number of Stride 6.75 7.5 7 7.25 
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The results indicate no statistically significant difference between the mean of 

PD and HC for all gait features of the two tasks. The feature with the most significance 

is the symmetry angle of the left and right stride duration (p-value = 0.191) in Task 2 as 

shown in Figure 3.7, where PD is a bit unbalanced in gait symmetry in Task 2. Notice 

that PD and HC have the same symmetry angle in Task 1, but Task 2 changes the gait 

symmetry of PD walking performance (Figure 3.7).  

 

Figure 3.7 Symmetry angle (𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐓𝐚𝐧𝐠𝐞𝐧𝐭 (
𝒍𝒆𝒇𝒕 𝒔𝒕𝒓𝒊𝒅𝒆 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏

𝒓𝒊𝒈𝒉𝒕 𝒔𝒕𝒓𝒊𝒅𝒆 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏
) × 𝟏𝟖𝟎/𝒑𝒊) 

where 45 degree is 100% symmetry. 

 

3.4.1.2. Between Tasks for PD 

The results indicate significant differences between tasks in ratio of stance 

duration in a stride, ratio of swing duration in a stride, number of strides to finish tasks, 

and average stance duration for PD. The p-values are summarized in Table 3.5. These 
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features specify that PD group user longer duration when foot is on the ground in Task 2 

than Task 1, as the ratio of stance in a stride is 63.08% for Task 2 vs. 59.34% for Task 1.  

Table 3.5 Gait features with significant differences between tasks for PD. 

Feature name p-value 

Ratio of left stance in a stride 0.004 

Ratio of left swing in a stride 0.006 

Right number of strides 0.026 

Left average stance duration 0.049 

 

3.4.2. Results of Acceleration-axis Feature Analysis 

3.4.2.1. Between Groups  

The feature with the most significant difference between groups is the 

acceleration value at percentile=10 from the y-axis of left side first metatarsal 

acceleration in a stride from Task 2 (p-value = 0.006), where PD has a very small 

acceleration value (mean: 0.016 g) compared to HC (mean: 0.049 g) as shown in Figure 

3.8. Other features show significant differences are the median acceleration value of the 

z-axis from the left first metatarsal acceleration during swing (p-value = 0.015, Figure 

3.9), the interquartile range of std-axis from the left heel acceleration during swing (p-

value = 0.018), and the skewness of x-axis from the first metatarsal acceleration in a 

stride (p-value = 0.027) from Task 1.  
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Figure 3.8 Feature with the most significant difference between groups from Task 

2. 

 

 

Figure 3.9 Feature with the most significant difference between groups from Task 

1. 

 

3.4.2.2. Between Tasks for PD 

Two-way ANOVA results show there are statistically significant interactions 

between the factors of groups and tasks for acceleration-axis features. With the pairwise 
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comparison, there is no significant difference in acceleration-axis features found for HC 

between Task 1 and Task 2. However, only one feature (Kurtosis of z-axis from right-

side heel acceleration in a step) with p-value = 0.037 shows a significant difference 

between Task 1 and Task 2 for PD (Figure 3.10).  

 

Figure 3.10 Feature with significant differences between tasks for PD. 

 

3.5. PD vs. HC Classification 

Through identifying the features with significant differences, conclusions can be 

made to assess feature differences between PD and HC for the two tasks. Classification 

of PD and HC is performed to further consolidate the conclusion about the importance of 

gait and acceleration-axis features, respectively. Classification models of Random Forest 

(RF), Support Vector Machine (SVM), and K-Nearest-Neighbors (KNN) are used and 

only the model that provides the best results is reported in results. 

Concluding from feature analysis, gait features do not have statistically 

significant differences between the means of groups while acceleration-axis features are 
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in the opposite. Classification of PD and HC is performed based on gait feature set 𝐹𝐺𝑠 

and acceleration-axis feature set 𝐹𝐴𝑠 for Task 1 and Task 2, where 𝐹𝐺𝑠 includes the same 

type of gait features and 𝐹𝐴𝑠 includes the same type of acceleration-axis features 

extracted from a single stride and its gait phases. To fairly evaluate, a non-randomly 5-

fold Cross-Validation (CV) and a random shuffling 8-fold CV are used. As Table 3.6 

shows, the 𝐹𝐴𝑠 shows more accuracy in PD and HC classification compared to 𝐹𝐺𝑠; and 

Task 2 provides higher accuracy compared to Task 1, which means Task 2 can better 

differentiate PD from HC. The classification results verify the statistical feature analysis.  

Table 3.6 Classification results. 
 Task 1 Task 2 

Dataset Type 𝐹𝐺𝑠 𝐹𝐴𝑠 𝐹𝐺𝑠 𝐹𝐴𝑠 

Model RF RF SVM RF 

5-fold CV 61.79% 64.00% 70.57% 80.57% 

8-fold Random Shuffle CV 75.00% 81.25% 92.19% 84.17% 

Average Accuracy 68.40% 72.63% 81.38% 82.37% 

 

3.6. Falling Risk Evaluation 

With gait and acceleration-axis features, falling risks are estimated by the scores 

compatible to the FRQ that provides PD quantitative analysis of their falling risk under 

Task 1 and Task 2, respectively. A baseline method without feature selection and an 

optimized method with Pearson’s correlation feature selection are then compared. In the 

optimized method, the features with a p-value of Pearson’s correlation to the falling 

score less than 0.005 are selected. In Task 1, 2 gait features (Table 3.7) and 63 

acceleration-axis features are selected; in Task 2, 3 gait features (Table 3.8) and 72 

acceleration-axis features are selected. Regression models of Linear Regression (LR), 
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Kernel Ridge (KR), Bayesian Ridge (BR), and Gradient Boosting Regressor (GBR) are 

used and only the best model is reported in results below.  

Table 3.7 Gait features with significant linear correlation to falling risk score: Task 

1. 

Feature name Pearson p-value 

Number of strides left 0.012 

Total time to finish task Start->end 0.035 

 

Table 3.8 Gait features with significant linear correlation to falling risk score: Task 

2. 

Feature name Pearson p-value 

Number of strides left 0.001 

Total time to finish task Start->end 0.014 

Number of strides right 0.025 

 

After analyzing the walking performance between PD and HC, and between Task 

1 and Task 2, falling risks are estimated through three different feature sets: 𝐹𝐺𝑠, 𝐹𝐴𝑠 and 

the combination (𝐹𝐺𝑠 + 𝐹𝐴𝑠). With regression methods previously introduced, a score is 

provided to be compatible with FRQ which is used for falling risk estimation in clinical 

prescreening. The average accuracy and std of the two evaluation methods are used, as 

shown in Figure 3.11, to determine the improvement of the optimized method and the 

best results. The best outcome (error±std) from the baseline method is (0.25±0.41) from 

BR developed with 𝐹𝐴𝑠 from Task 2. With feature selection in the optimized method, all 

results are improved. The best result (0.03±0.38) is from BR developed with (𝐹𝐺𝑠 + 𝐹𝐴𝑠) 
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from Task 2. Hence, it concludes that compared to walking (Task 1), walking with water 

in hand (Task 2) can better assess falling risks for PD and HC. 

 

Figure 3.11 Average error ± std of falling risk estimation scores between non-

randomly 5-fold CV and random shuffling 8-fold CV. 

 

3.7. Summary 

In this Chapter, we study and identify the feature differences between PD and 

HCs in walking and walking while holding a full cup of water in hand (closer to real-life 

scenarios). It concludes that acceleration-axis features from Task 2 – walking with water 

in hand can differentiate PD from HC the best with 82.37% accuracy. Meanwhile, 

falling risks are evaluated with BR regression through walking with water in hand and 

provide quantitative results to PD patients, compatible with FRQ with (error±std) = 

(0.03±0.38) in scoring. With the use of MONI, the proposed method can be transformed 

into a mobile game and provide a real-time evaluation to PD patients in daily practice 

and support physical therapy with the recorded evaluation results.  
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4. TOE TAPPING-BASED FALLING RISK EVALUATION 

 

Typical symptoms of Parkinson’s disease (PD) include freezing of gait, shuffling 

steps, and stooped posture, which introduce high risks of falling. Existing studies 

characterize and analyze PD symptoms through walking using wearable sensors. In 

addition, toe tapping is often used in clinical motor examination representing rotational 

agility in lower extremities, which is a critical factor in PD motor functionality and 

relates to falling. In this letter, we investigate the time and acceleration feature 

differences between PD patients and their age-matched healthy control (HC) subjects 

through alternating and synchronized toe tapping. Monitoring Insoles (MONI) are used 

to collect acceleration data with 10 PD patients and 9 HC subjects. In total, 87 time-axis 

and 1152 acceleration-axis features are extracted and analyzed between the two groups. 

The results suggest acceleration-axis features are with more significance in differing PD 

and HC than time-axis features. The results show toe tapping motion can better 

distinguish PD and HC with an accuracy of 87.65% using the acceleration-axis feature 

set compared to 57.07% with time-axis feature set. To help PD patient understand their 

falling, falling risks are estimated in scores using Linear Regression, with (error ± 

standard deviation) = (0.97±0.85) to be compatible to Fall Risk Questionnaire (FRQ) 

developed by the U.S. Centers for Disease Control and Prevention (CDC). Our method 

and the experiment can be easily transformed into a mobile game for daily life use and 

provides falling risk scores to PD patients without occupying spaces. 
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Figure 4.1 Graphical abstract of Chapter 4. 

 

4.1. Toe Tapping Tasks 

Gait analysis and characterization are vital in falling risk estimation for PD [190]. 

Existing methods focus on evaluating walking performance with wearable sensors to 

produce objective falling analysis or prediction in daily life automatically. Numerous 

studies [178, 179, 191] extract gait parameters from straight/treadmill walking using 

inertial measurement units (IMU), and then compare PD’s gait to age-matched healthy 
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control (HC) subjects to make conclusions of falling risks [192]. However, the 

controlled experiment does not represent real-life scenarios, and the complicated setup 

of sensors is not suitable for daily life use. Some other studies develop smart wearable 

devices, such as insoles [44], to segment sequential motions (including sequence of 

walking, turning, and stepping over obstacles) and then extract gait parameters to study 

sequential effects [184] to falling, but do not provide any quantitative or understandable 

results to patients. Our recent study [193] estimates scores of falling risks referencing to 

Falling Risk Questionnaire (FRQ) [5] through walking with a cup of water in hand and 

can be applied to different stages of PD, but it requires a 23 ft. walking due to the reason 

that walking typically requires 10 to 33 ft. so that gait can be analyzed.  

Compared to walking, toe tapping is another motion included in clinical motor 

examination tests [24] but does not require large space. Up to date, it is not well 

investigated how the performance represents falling risks by smart wearable devices. 

Very few studies [194] report PD’s rhythmic toe tapping performance compared to HC 

subjects to assess leg muscles. Thus, there is an immediate need to explore how toe 

tapping relates to falling risks and develop new methods and tools for falling risk 

evaluation for PD patients for daily life use.  

This work focuses on analyzing time-axis and acceleration-axis feature 

differences of toe tapping motion of PD and HC through alternative (anti-phase) and 

synchronized (in-phase) toe tapping tasks [195] in a game setting where subjects were 

wearing a pair of Monitoring Insoles (MONI) to perform tasks following indicators.  
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4.1.1. Experiment 

Using coordination dynamics [195], two tasks were designed for bipedal control 

with toe tapping motion. A pair of MONI, containing two accelerometers at the heel and 

first metatarsal area, respectively, was used to collect foot motion data. Task 1 was the 

anti-phase movement, which required alternative toe tapping between the left and the 

right foot. Task 2 was the in-phase movement which was synchronized toe tapping. For 

both tasks, the motion frequency between the left and the right foot was 1:1.  

A user interface was designed with left and right foot indicators, as shown in 

Figure 4.2, with initialization/configuration of task selection, period duration and 

number of cycles included in the task. The indicators changed colors to blue or yellow 

during the task at 1s interval as shown in Figure 4.3. When the color changed to blue, it 

meant dropping toes to the ground; when changing to yellow, it meant lifting toes. 

During the task, the heel worked like a pivot which only rotated. One period was defined 

as the duration between two yellow colors (2s), as shown in Figure 4.3(c). Within the 

20s task duration, there were 10 periods in total. When the task stopped, the indicators 

were in red color. Each subject practiced each task twice and data was recorded for the 

third trial.  
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Figure 4.2 Desktop APP user interface (Initialization). 

 

 

Figure 4.3 (a) Experimental setup; (b) User interface (during task); (c) Colors of 

indicators changing during Task 1 and Task 2. 

 

Figure 4.4 and Figure 4.5 show the acceleration data plot of Task 1 and Task 2, 

respectively. It shows clear differences between PD and HC, as well as between PD 
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stages. To show the differences clearly, Figure 4.6 is a zoomed view of 2 cycles of right 

side and 1 cycle of left side in Task 1. We can clearly see the shaking of the acceleration 

during the task between PD stage 4, PD stage 2 and HC.  

 

Figure 4.4 Task 1: acceleration data plot of PD and HC. 



 

90 

 

 

Figure 4.5 Task 2: acceleration data plot of PD and HC. 

 



 

91 

 

 

Figure 4.6 Zoomed view of Task 1 acceleration data (y and z-axis) between PD 

stage 4, PD stage 2 and HC. 

 

4.1.2. Subjects 

In total, 10 PD patients and 8 HC subjects participated in the experiment. Task 1 

was more difficult for PD than Task 2. Thus, 2 PD patients (PD Stage 4) cannot follow 

or perform Task 1, but they finished Task 2. Subjects were grouped as PD-Task1, PD-

Task2 and HC, as shown in Table 4.1 with the summarized information of each group. 

Validated to have a high correlation to clinical falling examination [6, 7], a self-rated 

Fall Risk Questionnaire (FRQ) including 12 YES/NO questions, developed by the U.S. 

Centers for Disease Control and Prevention (CDC) was filled out by subjects to 

determine a subject’s characteristics of fall. The FRQ answers were transformed into a 

score to quantify falling risks in scores, scaling in between [0, 14] when a YES counts as 
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1 point. The scaling was up to 14 points because the first two questions count for 2 

points each. 

Table 4.1 Group summary: subjects’ characteristics. 

Group PD-Task1 PD-Task2 HC 

Gender F a (2) b, M c (6) F (2), M (8) F (8), M (1) 

Age 

(51-60) (1) 

(61-70) (4) 

(71-80) (2) 

(Over 80) (1) 

(51-60) (1) 

(61-70) (5) 

(71-80) (3) 

(Over 80) (1) 

(61-70) (5) 

(71-80) (4) 

PD Stage 

1 (4) 

2 (2) 

3 (1) 

4 (1) 

1 (4) 

2 (2) 

3 (1) 

4 (3) 

N/A 

Falling 
Faller (6), Non-faller 

(2) 

Faller (8), Non-faller 

(2) 

Non-faller 

(9) 

Falling Score (mean ± std 
f) 

6.13 ± 3.48 6.20 ± 3.08 1.00 ± 1.31 

 

4.2. Toe Tapping Event and Phase Identification 

Toe tapping motion (Figure 4.7) includes 4 events: lift/drop start/end. With the 4 

events identified, one motion period can be segmented into 4 phases: lift, in-the-air, drop 

and on-the-ground. Firstly, a low-pass filter filtered raw acceleration data with a cut-off 

frequency of 2.5 Hz. From the filtered acceleration data, y-axis data from the first 

metatarsal acceleration clearly showed the phases (Figure 4.8(a)). Thus, events and 

phases were identified with y-axis data and applied to all axes. Next, discrete differential 

transformation was applied to the y-axis of the first metatarsal acceleration (Figure 

4.8(b)). To extract the events within a cycle (defined as 𝐶: lift start to drop end), the 

positive peak and negative peak were identified and then zero-crossings before and after 

the peaks are found to be the events.  
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Figure 4.7 Toe tapping motion. 

 

A total task duration included 10 periods for both Task 1 and Task 2. Besides 

period, phase and cycle, cycle difference was defined as the duration difference between 

the two continuous cycles; lift interval (𝐿) was defined as the duration between two lift 

start events and drop interval (𝐷) was defined as the duration between two drop end 

events.  

 

Figure 4.8 (a) Toe tapping motion events: ❶Lift Toe Start, ❷Lift Toe End, 

❸Drop Toe Start, ❹Drop Toe End; Phases: Lift Phase (I), In-the-air Phase (II), 

Drop Phase (III), On-the-ground Phase (IV), Period (Phase I->IV), Cycle (Phase I-

>III); (b) Method of segmentation. 
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4.3. Feature Extraction  

4.3.1. Time-axis Features 

In total, 87 time-axis features were extracted. From a single side, 40 time-axis 

features were extracted from 5 functions of (minimal, maximal, mean, standard 

deviation and variability) applied to 8 different durations (Phase I-IV, C, cycle 

difference, L and D) from the 8 continuous periods in the middle of the task. Two more 

extra features were extracted: the number of periods when Phase II = 0 and the number 

of periods when Phase IV = 0. From both sides, 3 constant error of ratios (CER) [195] 

were calculated as 𝐶𝐸𝑅𝑥 =
𝑚𝑒𝑎𝑛(𝑥𝑙𝑒𝑓𝑡)

𝑚𝑒𝑎𝑛(𝑥𝑟𝑖𝑔ℎ𝑡)
− 1; where 𝑥 is 𝐿, 𝐷 or cycle difference. 

4.3.2. Acceleration-axis Features 

The acceleration-axis features were extracted from Phase I-III and 𝐶, 

respectively. From a single side, 18 statistical features were extracted from 4 axes (x, y, 

z and the standard deviation (std) of (x, y, z)) of the two accelerometers. A mean 

function was applied to the acceleration in the 8 continuous periods in the middle, 

respectively, for segmentations of Phases I-III and 𝐶. Thus, in total, there were 1152 

acceleration-axis features extracted from two sides (1152 = 2 sides * 4 axes * 2 

accelerometers * 18 features * 4 segmentations * 1 function). 

4.4. Feature Analysis 

The time-axis and acceleration-axis features were checked with Shapiro-Wilk 

Test to be a normal distribution. Since the group is an independent factor while the task 

is a dependent factor, features were analyzed with a two-way Analysis of Variance 
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(ANOVA) with replication to determine if there is any feature with a statistically 

significant difference in mean between groups for the same task. Through identifying the 

features with significant differences, conclusions can be made if time-axis or 

acceleration-axis features are more critical when differing PD and HC.  

4.4.1. Results of Time-axis Features 

4.4.1.1. Between Groups 

The results indicated only one feature with statistical significance between means 

of PD and HC: right-side minimal drop interval from Task 1 with a p-value of 0.031, as 

shown in Figure 4.9. It showed PD uses smaller drop intervals (mean: 1.46) during the 

periods compared to HC (mean: 1.61) in Task 1, while the two groups had the same drop 

intervals for Task 2. As expected, the results indicated PD patients performed like HC 

subjects in the simpler synchronized tapping.  

 

Figure 4.9 Time-axis feature with significance. 
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CER is the metric to evaluate their bipedal control performance (CER=0 means 

perfect control during the task). To evaluate for groups, the absolute error of CER is 

calculated as the average of absolute CER value. Absolute errors of 𝐶𝐸𝑅𝐿 and 𝐶𝐸𝑅𝐷 for 

HC Task 1 is 0.054 and 0.039 vs. 0.034 and 0.009 for PD Task 1. Absolute errors of 

𝐶𝐸𝑅𝐿 and 𝐶𝐸𝑅𝐷 for HC Task 2 is 0.007 and 0.006 vs. 0.017 and 0.019 for PD Task 2. 

We found PD performed better than HC in Task 1 while worse than HC in Task 2. In HC 

group, two subjects performed very poorly in Task 1 with 0.1590 and 0.1818. The 

ANOVA results of CERs did not show a significant difference between the two groups' 

mean. 

4.4.2. Results of Acceleration-axis Features 

4.4.2.1. Between Groups  

The results indicated 15 features with significant differences between groups for 

Task 1 (Table 4.2) and 11 features for Task 2 (Table 4.3). Two features were the same as 

shown in Figure 4.10. The minimal right-side heel z-axis acceleration in phase III had a 

p-value of 0.013 for Task 1 and 0.003 for Task 2. The signal power of the left-side first 

metatarsal z-axis acceleration from Phase I was 0.022 for both tasks. Within all these 

features, 9 of them were extracted from phase I, 12 were from Phase II; 0 is from Phase 

III and 5 were from the cycle. The results indicated dropping was more important than 

lifting and in-the-air phases. From these acceleration-axis features (acceleration values), 

we concluded that PD used minor control during dropping toes while applying more 

control during lifting than HC. 
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Table 4.2 Acceleration-axis features with significant differences between groups: 

Task 1. 

Feature name 
p-value: (PD, task1) vs. (HC, 

task1) 

interquartile range of left-side lift duration std-heel 0.006 

minimal of right-side cycle duration y-toe 0.007 

percentile = 25 of left-side drop duration y-heel 0.010 

minimal of right-side drop duration z-heel 0.013 

skewness of left-side lift duration x-toe 0.017 

number of positive peaks of left-side lift duration 

std-toe 0.019 

signal power of left-side lift duration z-toe 0.022 

mean of right-side lift duration x-toe 0.023 

percentile = 75 of right-side drop duration std-heel 0.030 

minimal of right-side drop duration y-heel 0.033 

median of right-side lift duration x-heel 0.037 

percentile = 90 of right-side drop duration z-toe 0.038 

coefficient of variance of left-side drop duration z-

toe 0.040 

percentile = 75 of left-side drop duration y-toe 0.049 

mean of right-side cycle duration x-toe 0.049 

 

Table 4.3 Acceleration-axis features with significant differences between groups: 

Task 2. 

Feature name (PD, task2) vs. (HC, task2) 

minimal of right-side drop duration z-heel 0.003 

mean of right-side lift duration std-toe 0.010 

skewness of right-side drop duration z-toe 0.016 

signal power of left-side lift duration z-toe 0.022 

coefficient of variance of left-side cycle duration z-toe 0.030 

minimal of right-side lift duration y-toe 0.030 

mean of right-side drop duration std-toe 0.030 

minimal of right-side drop duration y-toe 0.030 

signal power of left-side lift duration y-toe 0.034 

peak-to-peak amplitude of left-side cycle duration z-toe 0.038 

percentile = 50 of left-side drop duration std-toe 0.038 
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Figure 4.10 Acceleration-axis features showing significance in both tasks. 

 

4.5. PD vs. HC Classification 

The classification of PD and HC was performed to further prove the conclusion 

with the two types of features from the tasks. Classification models of Random Forest 

(RF), Support Vector Machine (SVM), and K-Nearest-Neighbors (KNN) were used in 

this work. 
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We found acceleration-axis features had more significance since there was only 

one time-axis feature statistically significant differences between the means of groups 

while there were 26 acceleration-axis features in total for both tasks. Classification of 

PD and HC was performed based on time-axis feature set 𝐹𝑡𝑠, which included the same 

type of time-axis features. The acceleration-axis feature set 𝐹𝑎𝑠 included the same type of 

acceleration-axis features extracted from a single period in Task 1 and Task 2, 

respectively. Same as our previous work of walking analysis, a non-randomly 5-fold 

Cross-Validation (CV) and a random shuffling 8-fold CV were used for evaluation. As 

shown in Table 4.4, the 𝐹𝑎𝑠 indicated more accuracy in PD and HC classification 

compared to 𝐹𝑡𝑠 for both tasks. Task 1 and Task 2 were very similar in results of 

classifying PD and HC. The classification results verified the statistical feature analysis.  

Table 4.4 Classification results. 
 Task 1 Task 2 

Dataset Type 𝐹𝑡𝑠 𝐹𝑎𝑠 𝐹𝑡𝑠 𝐹𝑎𝑠 

Model KNN KNN SVM RF 

5-fold CV Mean 51.03% 74.53% 50.51% 78.71% 

8-fold Random Shuffling Mean 62.50% 95.62% 63.64% 96.59% 

Average Accuracy 56.76% 85.08% 57.07% 87.65% 

 

4.6. Falling Risk Evaluation 

Falling risks were estimated in scores compatible with the FRQ that provides PD 

quantitative feedback of their falling risks under Task 1 and Task 2, respectively. A 

baseline method without feature selection and an optimized method with Pearson’s 

correlation feature selection were compared with time-axis and acceleration-axis 

features. In the optimized method, the features with a p-value of Pearson’s correlation to 
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the falling score of less than 0.005 were selected. In Task 1, 6 time-axis features and 37 

acceleration-axis features were selected; In Task 2, 6 time-axis features and 77 

acceleration-axis features were selected. Regression models of Linear Regression (LR), 

Kernel Ridge (KR), Bayesian Ridge (BR), and Gradient Boosting Regressor (GBR) were 

used to predict the score.  

Falling risks were estimated through three different feature sets: 𝐹𝑡𝑠, 𝐹𝑎𝑠, and the 

combination (𝐹𝑡𝑠 + 𝐹𝑎𝑠). With the regression method introduced, a score was provided 

to be compatible with FRQ. The average accuracy and std of the two evaluation methods 

were shown in  Figure 4.11 Average error ± std of falling risk estimation scores between 

non-randomly 5-fold CV and random shuffling 8-fold CV.to determine the improvement 

of the optimized method and the best results. The best result (error ± std) from the 

baseline method was (1.36±0.92) from GBR developed with (𝐹𝑡𝑠 + 𝐹𝑎𝑠) from Task 1. 

With feature selection in the optimized method, overall results from Task 2 were 

improved. The best result (0.97±0.85) was from LR developed with 𝐹𝑎𝑠 from Task 2. 

Thus, it concluded Task 2 can better assess falling risks for PD and HC when using 

feature selection. 
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Figure 4.11 Average error ± std of falling risk estimation scores between non-

randomly 5-fold CV and random shuffling 8-fold CV. 

 

4.7. Summary 

The feature analysis results suggest Task 1 had more significant features than 

Task 2. However, Task 2 had slightly better accuracy in classification and falling risk 

estimation. This result may attribute to the poor performance in Task 1 from the two HC 

subjects. More subjects will be participating in the future, and a long-term experiment 

with PD can be conducted to determine if these toe-tapping tasks can be used as 

cognitive training for PD to lower falling risks.  

This study investigated toe tapping motion feature difference between PD 

patients and HC subjects. It concluded acceleration-axis features were with more 

importance than time-axis features when differentiating PD and HC through the two-way 

ANOVA with replication method. Compared to walking, the in-phase toe tapping 

motion showed better accuracy in distinguishing PD and HC (87.65%) and provided 

(error±std) = (0.97±0.85) falling risk scores compared to FRQ. This work provided a 
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different perspective of estimating falling risks through toe tapping, which can be simply 

transformed into mobile games for daily life use compared to traditional method of gait 

analysis.  
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5. SUMMARY 

 

5.1. Comparison to Existing Studies 

5.1.1. PD vs. HC Classification 

Compared to the existing studies [12, 13, 21, 196, 197] that use different 

methods, sensors and motion tasks for PD and HC classification and detection, the 

results of our method in Chapter 3 and Chapter 4 are compatible, but the results are not 

the most accurate, as shown in Table 5.1. The reason is that the number of PD patients 

and HC subjects are smaller than the other studies. To further discuss, we compute the 

patient similarity using normalized Euclidean Distance as shown in Figure Appendix 

A.1. It shows a large difference between our PD patients.  

Table 5.1 Comparison to existing studies using different types of motors and 

motions. 

Method Sensor Motion PD HC Accuracy 

KNN Microphone Pronounce 23 8 90% 

Hidden Markov Force Walk 15 16 90% 

RF Force Walk 93 73 74% 

CNN 
Force & 

Acceleration 
Write 14 21 87% 

Wavelet analysis + 

SVM 
Acceleration Walk 15 16 90% 

Our work 

Acceleration 
Walk with 

water 
10 8 82% 

Acceleration 
In-phase Toe 

Tapping 
10 8 88% 

 

5.1.2. Falling Risk Score 

Table 5.2 presents the comparison between our method of falling risk evaluation 

to the most similar study [14]. Firstly, our method uses MONI which is specifically 
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designed and developed for falling risk evaluation for PD where only accelerometers are 

included. The tasks and number of PD patients and HC subjects are similar as both 

studies involve sequential and repetitive foot motion but with variations. The only 

difference is we are using FRQ as ground truth, which is validated by clinical studies to 

have a high correlation to clinical tests; while the other study is using comparison 

between PD and HC so their falling scores are difficult to validate.  

Table 5.2 Comparison to the most similar existing study. 

Method Study [14]: score method Our method 

Device Commercial Insole MONI 

Sensors 
Force 

Bending sensor 
Accelerometer 

Tasks 

• Lean with single leg 

(with a belt) 

• Walk 

• Walk with water 

• Toe tapping 

PD 7 (stage 2, 3) 8-10 (stage1-4) 

HC 10 HC, 12 students 8-9 HC 

Ground Truth Comparison between groups FRQ 

Model Balancing Model (math) Regression 

Scale [0,100] [0,14] 

Error N/A 
0.03 (walk with water) 

0.95 (in-phase toe tapping) 

 

5.2. Contributions 

To summarize, this dissertation aims to provide quantitative analysis of falling 

risks for PD patients in daily life to help prevent falling through analyzing foot motions 

in easy setups and simple processes using MONI. MONI is designed and developed for 

daily life use. The proposed data processing method includes robust foot motion 

recognition to identify the foot motions from uncontrolled daily life environments and 

feature extraction and selection for quantitative falling risk evaluation. The fast-labeling 
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framework very well addresses the two challenges of robust foot motion recognition and 

is validated to produce small errors in the next step: feature extraction. Walking and toe 

tapping motions are analyzed and proven to be useful for falling risk evaluation for PD.  

5.3. Future Work 

To further validate the results in Chapter 3 and Chapter 4, more experiments 

should be carried out by more PD patients with vs. without similar symptoms and 

disease progression status. Medication states and PD stages may be incorporated with 

current data processing technique to better address the heterogenicity of PD patients. 

MONI can be better designed to provide better comfort for daily uses. An APP 

can be designed to transform experimental tasks into mobile games while motion 

recognition, feature extraction and falling risk scoring can be integrated into one APP for 

real-time processing. And thus, a falling risk score can be generated after each game 

play (task performance and evaluation) and a long-term data profiling can be generated 

to provide doctors with medical assistance.  
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APPENDIX A 

PD PATIENTS AND HEALTHY CONTROL SUBJECTS 

 

The gender, age group, motor functionality, such as gait functions, PD stage for 

patients, are encoded into numbers to calculate Euclidean Distance. Figure Appendix 

A.1 shows the normalized Euclidean Distance [0, 1] between each pair of PD patients, 

where 1 (darkest color) means 100% similar and 0 (lightest color) means no similarity. 

The patients with index (#) 1, 3, 4, 5 and 11 participate the experiment more than 3 times 

within 2 months. There are 3 patients who are with 100% similarity to each other 

(patient # 6, #8 and #10). The lowest similarity is 0 between patient # 3 and #9.  

 

Figure Appendix A.1 PD patients’ similarity. 
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Within the 16 PD patients, 10 of them participated the experiment in Chapter 3 

and Chapter 4. Notice that few PD patients can’t finish the toe tapping tasks. #2 PD 

patients’ data were lost during experiment. Within 11 HC subjects, 8 of them 

participated the experiment in Chapter 3 and Chapter 4. Table Appendix A.1 shows the 

participance of PD patients, while Table Appendix A.2 shows the participance of HC 

subjects. The indexes in Table Appendix A.1 are the same as the indexes in Figure 

Appendix A.1.  

Table Appendix A.1 Participance of PD patients in experiment in Chapter 3 and 

Chapter 4. 

PD 

Index 
Walk Task 1 Walk Task 2 

Toe Tapping Task 

1 

Toe Tapping Task 

2 

1 walker walker   

2     

3 x x x x 

4 x x   

5 x x x x 

6 x x x x 

7 x x x Can’t do 

8 x x x x 

9 x x x x 

10 x x x x 

11 x x   

12 x x x x 

13   Can’t do Can’t do 

14   x x 

15   x Can’t do 

16   Can’t do Can’t do 
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Table Appendix A.2 Participance of HC in experiment in Chapter 3 and Chapter 4. 

HC Index Walk Task 1 Walk Task 2 
Toe Tapping Task 

1 

Toe Tapping Task 

2 

1 x x x x 

2   x x 

3 x x x x 

4 x x x x 

5 x x x x 

6 x x   

7 x x x x 

8 x x   

9 x x x x 

10   x x 

11   x x 

 


