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ABSTRACT 

 

Widespread use and availability of antibiotics has led to infectious and pathogenic 

bacteria developing antibiotic resistance. Various environmental factors, such as 

temperature, relative humidity, and wind, can also induce stress in bacterial cells, 

activating antibiotic resistance mechanisms to increase their survivability against harsh 

and extreme conditions. These bacteria can survive for a longer time and travel further 

distances if they become airborne, which is the case in many livestock facilities. Despite 

the increasingly recognized role of the environment in spreading pathogens, the 

mechanisms underlying environmental effects on the transmission of airborne bioparticles 

including viruses, bacteria and fungi remain poorly understood. In this research, aerosol, 

manure, and lagoon samples were collected from multiple locations throughout an open 

stall dairy facility in summer, winter, and spring to estimate the microbiome richness, 

taxonomic diversity, and antibiotic resistance. Temperature, relative humidity, and air 

velocity measurements at each sampling location were also recorded to examine 

environmental effects. Computational fluid dynamics (CFD) was utilized to investigate 

air flow movements and patterns within and around the dairy facility. CFD simulation 

results were compared with experimental air velocity measurements to confirm and 

validate their accuracies. Among the aerosol samples from three different seasons, 

samples collected in winter had the highest number of sequenced denoised reads, but had 

the least bacterial diversity. Disk diffusion test against eight different antibiotics revealed 

that bacteria showed strongest resistance in the winter aerosol samples and weakest 
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resistance in spring aerosol samples. Air velocities obtained by CFD simulations using 

ANSYS closely matched with experimental measurements around the dairy barn, but were 

slightly off inside due to the lack of obstacles in the simulations. It was shown that in 

winter, there was a high turbulence in the western side of the barn where also the strongest 

antibiotic resistance was detected in aerosol samples. Antibiotic resistant bacteria were 

revealed to be transported with air flow from the dairy barn out into the environment. This 

research as able to demonstrate the correlation of environmental factors on the microbiome 

diversity and antibiotic resistance of bacteria samples collected in different seasons as well 

as show the CFD can be used to estimate and model the air flow around a dairy facility 

accurately. 
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NOMENCLATURE 

 

ARG Antibiotic resistance gene 

ARB Antibiotic resistant bacteria 

OTU Operational taxonomy unit 

ASV Amplicon sequence variant 

HVAC Heating, ventilation, air conditioning 

CFD Computational fluid dynamics 

RANS Reynolds averaged Navier-Stokes 

k turbulent kinetic energy 

ε turbulent dissipation rate 

WWC Wetted Wall Cyclone 

QIIME2 Quantitative Insights Into Microbial Ecology 2 

DADA2  Divisive Amplicon Denoising Algorithm 2 

H Height of building 

Uy Velocity at height y 

Uref  Velocity at the reference height 

yref Reference height, 1.5 m 

α Power law exponent, 0.14 

U* Friction velocity 

Kν von Karman’s constant, 0.4 

Cμ Model constant, 0.09 

z0 Surface roughness length, 0.025 m 

 



 

viii 

 

TABLE OF CONTENTS 

 

 Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ............................................................. vi 

NOMENCLATURE .........................................................................................................vii 

TABLE OF CONTENTS ............................................................................................... viii 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES .......................................................................................................... xiv 

1. INTRODUCTION .......................................................................................................... 1 

1.1. The discovery and mechanisms of antibiotics......................................................... 1 

1.2. Emergence and mechanisms of antibiotic resistance .............................................. 2 
1.3. Spread of antibiotic resistance in the environment ................................................. 4 

1.4. Environmental effects on the dissemination and survivability of bacteria in 

bioaerosol ....................................................................................................................... 7 

1.5. Analyzing the microbiome diversity in environmental samples ............................. 8 
1.6. Computational fluid dynamics modelling in predicting air flow and aerosol 

dissemination ................................................................................................................ 11 

2. RESEARCH OBJECTIVES AND HYPOTHESIS ..................................................... 15 

2.1. Research objective................................................................................................. 15 
2.2. Research objective 1. Investigate environmental effects on bacteria diversity in 

a dairy facility in three seasons .................................................................................... 17 

2.2.1. Task 1. Collect bioaerosols, manure, lagoon water, and lagoon air from 

various locations in a dairy facility and record temperature, relative humidity, 

and air velocity measurements on the days of sampling. ......................................... 17 
2.2.2. Task 2. Perform microbiome analysis on extracted bacterial DNA to 

determine genus and species of aerosolized bacteria ............................................... 18 



 

ix 

 

2.3. Research Objective 2. Examine factors triggering antibiotic resistance in 

aerosol, manure, and water samples. ............................................................................ 18 

2.3.1. Task 1. Perform KB tests on bacteria isolates from bioaerosol and manure 

samples to examine their resistance against various antibiotics. .............................. 18 
2.3.2. Task 2. Compare environmental factors in each sampling seasons to 

identify how they affect antibiotic resistance. .......................................................... 19 
2.4. Research Objective 3. Model the movement of antibiotic resistant bacteria in 

dairy facility using computational fluid dynamics ....................................................... 19 
2.4.1. Develop a 3D computational fluid dynamic model of the dairy facility. ....... 19 
2.4.2. Compare and validate model with experimental results (air velocities, 

microbiome analysis). .............................................................................................. 20 

3. METHODOLOGY ....................................................................................................... 22 

3.1. Sampling location .................................................................................................. 22 
3.2. Sample collection .................................................................................................. 23 

3.3. Kirby-Bauer disk diffusion test ............................................................................. 25 
3.4. DNA extraction ..................................................................................................... 27 

3.5. 16S rRNA sequencing ........................................................................................... 27 
3.6. Microbiome analysis ............................................................................................. 28 
3.7. Computational fluid dynamics modeling .............................................................. 28 

3.7.1. Design 3D model of dairy facility .................................................................. 28 
3.7.2. Boundary domain ........................................................................................... 30 

3.7.3. Mesh ............................................................................................................... 31 
3.7.4. Boundary conditions ....................................................................................... 33 

4. RESULTS ..................................................................................................................... 36 

4.1. Microbiome diversity ............................................................................................ 36 

4.2. Environmental measurements ............................................................................... 42 
4.3. Antibiotic resistance test ....................................................................................... 45 
4.4. CFD simulation ..................................................................................................... 49 

4.4.1. Grid convergence index .................................................................................. 49 
4.4.2. Air flow around dairy barn ............................................................................. 50 

5. DISCUSSION .............................................................................................................. 59 

5.1. Effect of seasonal and environmental factors on microbiome diversity ............... 59 

5.2. Antibiotic resistance mapping ............................................................................... 62 

5.3. Comparison between experimental and simulation air velocity measurements ... 63 
5.4. Further works ........................................................................................................ 66 

6. CONCLUSIONS .......................................................................................................... 69 

REFERENCES ................................................................................................................. 71 



 

x 

 

APPENDIX ...................................................................................................................... 89 

 

 

 

 

  

 

  



 

xi 

 

LIST OF FIGURES 

 Page 

Figure 3.1 A. Open stall dairy facility. Red circle indicates the barn where samples 

were collected. B. Inside view of dairy barn. Arrow points towards north. N 

indicates north. .................................................................................................. 23 

Figure 3.2 Locations where aerosol and manure samples were collected. N indicates 

north. ................................................................................................................. 25 

Figure 3.3 Wetted Wall Cyclone sampling systems used for aerosol sample 

collection. .......................................................................................................... 25 

Figure 3.4 A. Isometric view of the dairy barn. B. Enlarged front view of the dairy 

barn seen from the north. N indicates north. .................................................... 29 

Figure 3.5 Dimensions of simplified cow model ............................................................. 30 

Figure 3.6 Two different computational domains for three sampling seasons. N 

indicates north. .................................................................................................. 31 

Figure 3.7 A. Mesh seen from the side. B. Close up mesh around the fans and cows. .... 33 

Figure 4.1 Total relative abundance of A. top 10 phyla and B. top 20 genera in 

aerosol, manure, and lagoon samples from different seasons. S19 - Summer 

19, W20 - Winter 20, S21 - Spring 21, L – lagoon. .......................................... 38 

Figure 4.2 Relative abundance of A. top 10 phyla and B. top 20 genera in aerosol, 

manure, and lagoon samples from different seasons. S19 - Summer 19, W20 

- Winter 20, S21 - Spring 21, L – lagoon, A - aerosol, M – manure. 

Numbers indicate locations in dairy barn where samples were collected. ....... 39 

Figure 4.3 Alpha rarefaction curve of aerosol, manure, and lagoon samples from 

different seasons. This indicates that around 7,000 sequence reads were 

sufficient to display the majority of taxonomic profile in each sample. .......... 41 

Figure 4.4 Alpha diversity measure comparison using Shannon index among aerosol, 

manure, and lagoon samples from different seasons. ....................................... 41 

Figure 4.5 Beta diversity measure comparison using Bray-Curtis metric among 

aerosol, manure, and lagoon samples from different seasons. ......................... 42 



 

xii 

 

Figure 4.6 Temperature and relative humidity measurements recorded during 

bioaerosol sample collection at each location in A. Summer 2019, B. Winter 

2020, and C. Spring 2021. ................................................................................ 44 

Figure 4.7 Antibiotic resistance heatmap in aerosol, manure and lagoon samples from 

different locations in A. Summer 2019, B. Winter 2020, and C. Spring 

2021. A - aerosol, M – manure, LA – lagoon air, LW – lagoon water, AM – 

Ampicillin, CFP – Cefoperazone, CF – Cephalothin, IPM – Imipenem , GM 

– Gentamycin, TE – Tetracycline, SXT – Sulfamethoxazole-trimethoprim, 

CIP – Ciprofloxacin. ......................................................................................... 46 

Figure 4.8 Antibiotic resistance pattern for aerosol samples in A. Summer 2019, B. 

Winter 2020, and C. Spring 2021. Samples that were resistant to four of 

more antibiotics are circled in red. N indicates north. ...................................... 47 

Figure 4.9 Antibiotic resistance pattern for manure samples in A. Summer 2019, B. 

Winter 2020, and C. Spring 2021. Samples that were resistant to four of 

more antibiotics are circled in red. N indicates north. ...................................... 48 

Figure 4.10 Grid convergence index of velocity profiles at location 15 from heights 0 

to 2 m in A. Summer 2019, B. Winter 2020, and C. Spring 2021. ................... 50 

Figure 4.11 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Summer 2019. Red rectangle indicates 

where cow models were placed in CFD simulations. B. Enlarged velocity 

contour showing air flow dynamics around 10 simplified cow models. N 

indicates north. .................................................................................................. 52 

Figure 4.12 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Winter 2020. Red rectangle indicates 

where cow models were placed in CFD simulations. B. Enlarged velocity 

contour showing air flow dynamics around 10 simplified cow models. .......... 53 

Figure 4.13 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Spring 2021. Red rectangle indicates 

where cow models were placed in CFD simulations. B. Enlarged velocity 

contour showing air flow dynamics around 10 simplified cow models. .......... 54 

Figure 4.14 Velocity contour maps shown over the whole computational domain from 

the west along the center of the dairy barn in A. Summer 2019, B. Winter 

2020, and C. Spring 2021. ................................................................................ 55 

Figure 4.15 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Summer 2019. B. Enlarged 



 

xiii 

 

velocity contour showing air flow dynamics around the barn walls, ceilings, 

and cow models. ............................................................................................... 56 

Figure 4.16 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Winter 2020. B. Enlarged 

velocity contour showing air flow dynamics around the barn walls, ceilings, 

and cow models. ............................................................................................... 57 

Figure 4.17 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Spring 2021. B. Enlarged 

velocity contour showing air flow dynamics around the barn walls, ceilings, 

and cow models. ............................................................................................... 58 

Figure 5.1 Comparison of experimental air velocity measurements (●) and simulated 

air velocity measurements (○) at heights of 0.8 m and 1.5 m in A. Summer 

2019, B. Winter 2020, and C. Spring 2021. ..................................................... 65 

Figure 6.1 Antibiotic resistance shown in radar charts for aerosol and manure samples 

in Summer 2019. Red zone indicates resistance zone of inhibition for the 

eight antibiotics and black lines show zone of inhibition of each sample to 

each antibiotic. .................................................................................................. 89 

Figure 6.2 Antibiotic resistance shown in radar charts for aerosol and manure samples 

in Winter 2020. Red zone indicates resistance zone of inhibition for the 

eight antibiotics and black lines show zone of inhibition of each sample to 

each antibiotic. .................................................................................................. 90 

Figure 6.3 Antibiotic resistance shown in radar charts for aerosol and manure samples 

in Spring 2021. Red zone indicates resistance zone of inhibition for the 

eight antibiotics and black lines show zone of inhibition of each sample to 

each antibiotic. .................................................................................................. 91 

 

 

 

 

 

 

 



 

xiv 

 

LIST OF TABLES 

 Page 

 

 

Table 3.1 Minimum inhibitory concentration of antibiotic disks used for Kirby-Bauer 

disk diffusion test and zone of inhibition ranges for resistance ........................ 26 

Table 3.2 Grid sizes and total cell numbers for each simulation used to test grid 

converegence index .......................................................................................... 32 

Table 3.3 Velocities and direction of natural ventilation and fan velocity. ..................... 35 

 

 

 

 

 

 

 

 

 



1 

 

1. INTRODUCTION 

 

1.1. The discovery and mechanisms of antibiotics 

Antibiotics are molecules, either extracted from natural products or artificially 

synthesized, that possess certain activities against bacteria to inhibit their growth or kill 

them. Although the term antibiotic is sometimes used interchangeably with antimicrobial, 

antibiotic more specifically targets bacteria while antimicrobial can act against other 

microorganisms as well, such as parasites, fungi, and viruses. The first antibiotic to be 

developed was a man-made, synthetic agent called salvarsan by Paul Ehrlich in 1910 that 

was used to treat syphilis. This drug was derived from a crystalline power known as atoxyl, 

or arsanilic acid, and was found to be effective against the disease-causing bacterium 

Treponema pallidum (Burke, 1925). Advancement in antibiotic was followed by the 

discovery of prontosil, a sulfonamide drug, by Gerhard Domagk in 1932 (Otten, 1986). 

Sulfonamides were and still is widely used in hospitals and clinics due to its broad 

capability to counteract different infectious diseases and bacteria. Another famous 

development of antibiotic was the discovery of penicillin by Alexander Fleming in 1928 

and the successful isolation of the compound by Ernst Chain, Norman Heatley, and 

Howard Florey in 1939 (Abraham et al., 1941). This novel drug was then actively mass 

produced to save countless soldiers to combat infections during World War II. Since the 

1940s, more and more antibiotics, such as streptomycin, tetracycline, chloramphenicol, 

and ciprofloxacin, were introduced to fight against various bacterial infections and 

diseases (Nicolaou and Rigol, 2018).  
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Different classes of antibiotics use various mechanisms of action to inactivate 

bacteria. Majority of antibiotics can be categorized by four principal modes of action that 

inhibit: (1) cell wall synthesis, (2) protein synthesis, (3) DNA synthesis, and (4) folic acid 

metabolism (Tenover, 2006). Bacterial cell walls are targeted by antibiotics containing a 

β-lactam ring in their structures that inhibit active sites of enzymes necessary for 

synthesizing the peptidoglycan layer. Some examples of these β-lactam antibiotics include 

ampicillin, cefoperazone, cephalothin, and imipenem (Williams, 1996). A different type 

of antibiotics, such as gentamycin and tetracycline, attach to either the 30S or 50S subunit 

of bacterial ribosomes to inactivate the protein synthesis pathway (Yoneyama and 

Katsumata, 2006). Bacterial DNA is replicated with the help of DNA gyrase and 

topoisomerase IV in nicking the double strand. These enzymes are another target for 

antibiotics to bind and stop the DNA replication process. Ciprofloxacin uses this 

mechanism to inhibit bacteria (Kapoor et al., 2017). One of the earliest antibiotics to be 

discovered, sulfonamides, inhibit folic acid metabolism, which in turn disrupts DNA 

synthesis. Sulfonamide drugs are often used in conjunction with trimethoprim to create a 

synergistic effect in inhibiting folic acid metabolism. Sulfamethoxazole-trimethoprim is 

an example of this combination of antibiotic (Eliopoulos and Huovinen, 2001). 

 

1.2. Emergence and mechanisms of antibiotic resistance  

However, successful discoveries and implementations of antibiotics were quickly 

followed by equally successful developments of antibiotic resistance in bacteria. 

Numerous antibiotics are developed from secondary metabolites naturally produced by 
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bacteria. As they are used to treat bacterial infections in human patients, those products 

are used to protect themselves or kill competing microorganisms in their environment 

(Hutchings et al., 2019). Bacteria that produce antibiotics have developed mechanisms to 

express antibiotic resistance mechanisms concurrently or in advance. They are also 

capable of communicating with antibiotic non-producing cells to signal the expression of 

antibiotic resistance (Mak et al., 2014).  

Resistance to antibiotics can either be intrinsic in nature or be acquired by various 

means. An example of intrinsic resistance could be if the bacteria does not possess the 

specific target site for a selected antibiotic to bind to. Similar to antibiotics, antibiotic 

resistance also has several mechanisms of action that prevent them from inhibiting 

essential biochemical pathways in bacteria. These mechanisms, such as reduced 

permeability through cell membrane, increased antibiotics efflux, modified target sites, 

and inactivation of antibiotics, increase bacteria’s survivability against broad classes of 

antibiotics (Blair et al., 2015). Reducing the permeability of antibiotics through the 

bacterial cell membrane can prevent certain antibiotics from entering the system. This first 

line of defense is achieved by down-regulating or replacing porin enzymes in the outer 

membrane (Tamber and Hancock, 2003). There are several substrate-specific efflux 

pumps that can pump out certain antibiotics and multidrug resistance efflux pumps that 

can transport multiple antibiotics out through the membrane (Uddin and Ahn, 2018). It 

was shown in a study that when linezolid, which targets the ribosomal subunit, was used 

on Streptococcus pneumoniae, mutations occurred in the gene that encodes the ribosome, 

preventing the binding of the antibiotic to the modified target site (Billal et al., 2011). 
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Another mechanism in which bacteria gain antibiotic resistance is to produce enzymes 

that can hydrolyze specific antibiotics. A well-known example is β-lactamases that can 

degrade β-lactam antibiotics (Ghafourian et al., 2015).  

Adverse environmental conditions and stresses can also induce adaptive responses 

similar to antibiotic resistance in bacteria to increase their survivability and spread such 

mechanisms. When the integrity of bacterial cell envelope is threatened by external 

factors, bacteria activates response certain mechanisms, such as membrane modification 

and inducing efflux systems, which are similar to antibiotic resistance (Poole, 2012). 

Persisters, or dormant cells, also display accelerated antibiotic resistance by increasing the 

number of culturable cells and mutation rates (Windels et al., 2019). It was observed when 

Pseudomonas aeruginosa was exposed to heat shock treatments, there was an 

overexpression of aminoglycoside resistance, indicating that exposure to higher 

temperatures increases resistance against antibiotics (Kindrachuk et al., 2011). A similar 

trend was shown when Listeria monocytogenes was cold-stressed at 10 °C for 24 hours. 

The treated bacteria showed significantly increased resistance (P < 0.05) against nine 

different antibiotics. This resistance was still present even after the bacteria was incubated 

at 37 °C for 24 hours (Al-Nabulsi et al., 2015).  

 

1.3. Spread of antibiotic resistance in the environment 

Many of the above-mentioned mechanisms of resistance are encoded by antibiotic 

resistant genes (ARGs) located either in the bacterial DNA or plasmids. Surviving bacteria 

then passes on those ARGs through horizontal gene transfer, or conjugation. Although the 
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phenomena of gene transfer are extensively studied in laboratory settings, it is thought that 

sharing of ARGs occur much more frequently and abundantly in nature (Davies and 

Davies, 2010). Mobile genetic elements, such as transposons and integrons, are located 

either in plasmids or chromosomes and can “jump” around different locations in the 

bacterial DNA. Many transposons and integrons, such as the class 1 integron-integrase 

gene (intI1), are known to carry ARGs (Zheng et al., 2020). This enables recipient bacteria 

to acquire resistance against different antibiotics without ever having being exposed to 

them, leading to the emergence of superbugs, or multiple drug resistance microorganisms. 

Every year, it is reported that over 60,000 patients in United States and 25,000 patients in 

Europe die from bacterial infections caused by those antibiotic resistant bacteria (ARB). 

The decrease in effectiveness and development of antibiotics with the increase and spread 

of antibiotic resistance is shifting the world towards a post-antibiotic era (Zaman et al., 

2017).  

Resistance against antibiotics is a phenomenon not only observed in hospitals, but 

is also prevalent in the environment and other facilities (Edelsberg et al., 2014; Gao et al., 

2018; Mirhoseini et al., 2016). Bacteria in the environment exposed to antibiotics and 

pharmaceutical ingredients near industrial effluents quickly develop antibiotic resistance 

due to selective pressure (Larsson, 2014). Due to overuse of antibiotics and disposal of 

unused antibiotics, wastewater and wastewater treatment facilities have shown increase in 

antibiotic resistant genes and bacteria, both in effluents and air (Hassoun-Kheir et al., 

2020; Kumar and Pal, 2018). A study in an office workspace showed that bacteria in the 

air were pathogenic and resistant to multiple antibiotics (Brągoszewska and Biedroń, 
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2018). They can even interact with each other and form biofilms for additional protection 

and survival. Air samples collected from 174 automobile air conditioner filters around the 

world in 19 urban cities demonstrated the presence and abundance of multiple ARGs being 

transmitted through the air (Li et al., 2018). It has also been reported that ARGs against 

tetracycline and sulfonamide can naturally occur in soils without prior exposure to 

antibiotics. Antibiotic resistance was detected in soil samples from organic farms, where 

the use of antibiotics is restricted but animal manures are sometimes applied (Cadena et 

al., 2018).  

Use of antibiotics and spread of antibiotic resistance are also prominent in 

livestock facilities. For the past several decades, antibiotics have been globally used in 

food production for growth promotion, therapeutic, and prophylactic reasons. Although 

many countries have been successful in reducing and banning the use of antibiotics in 

animal feeds, antibiotics have become deeply rooted into livestock production in other 

first world countries, despite continuous efforts and warnings by international 

governments and organizations (Kirchhelle, 2018). In 2019 alone, more than 11 million 

kg of medically important antibiotics were marketed in United States for food-producing 

animals, such as cattle (FDA, 2020). As a result, resistant genes against several antibiotics, 

such as ampicillin, tetracyclines, and sulfonamides, are found in surfaces, air, manure, and 

soil from different livestock facilities (Adams et al., 2018; Ling et al., 2013; Munir and 

Xagoraraki, 2011). These ARGs can then become airborne and transported via particulate 

matter (PM) and wind (McEachran et al., 2015). Accumulation and dispersion of ARGs 
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in livestock facilities to surrounding environment pose a critical threat to the health of both 

animals and people if not monitored properly. 

 

1.4. Environmental effects on the dissemination and survivability of bacteria in 

bioaerosol  

Bacteria resistant to antibiotics can become airborne and spread from livestock 

facility into the open environment in the form of bioaerosols. Bioaerosol, or biological 

aerosol, are airborne liquid droplets that contain viable microorganisms, such as bacteria, 

fungi, and viruses, or other particles, such as pollen, toxins, and dust (Cox and Wathes, 

1995). The constituents and density of aerosolized ARB depends on the particle size and 

origin of bioaerosols. Aerosol droplets can be as large as 100 μm in diameter, but particle 

diameters below 10 μm are of interest because if inhaled, they can reach deep into the 

human respiratory tract and cause adverse health effects (Fernstrom and Goldblatt, 2013). 

The size and number of aerosolized particles can be used to calculate their concentration. 

Depending on where the bioaerosol were generated is also of concern in order to determine 

their level of danger. ARB can be suspended in the air by simple everyday human 

activities, such as sneezing and coughing, or by aeration systems in wastewater treatment 

facilities, raindrops, spraying, irrigation, evaporation, and composting (Mirskaya and 

Agranovski, 2018). Bioaerosol provides a protection layer around ARB, enabling them to 

survive for a longer time and travel great distances without drying out.  

Different environmental factors, such as temperature and relative humidity, affect 

the viability of aerosolized bacteria. Researches have been conducted using various ranges 
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of temperature and relative humidity to determine the survivability of airborne bacteria 

(Hoeksma et al., 2015; Marthi et al., 1990; Tang, 2009). It has been shown that bacteria 

can survive in bioaerosol between 10 to 30 °C, but the survivability is shown to be 

decreasing above 24 °C. The effect of relative humidity on airborne bacteria was less 

predictable as bacteria showed variable death and survival rates in different ranges of 

humidity. One explanation for this could be that because relative humidity is a ratio of the 

amount of water vapor pressure in the air over the total water vapor pressure possible in 

saturated air at a given temperature (Zhao et al., 2012). This signifies that relative humidity 

is a dependent variable reliant on temperature.  

 

1.5. Analyzing the microbiome diversity in environmental samples 

Bacteria collected from environmental samples are too diverse in species and 

numerous that it requires powerful and efficient tools for detailed analysis. Sequencing 

method for DNA was first introduced by Frederick Sanger in 1977 using a chain 

termination method and gel electrophoresis to identify its nucleotide sequences (Sanger et 

al., 1977). This discovery revolutionized the field of genetics and the advancement of 

modern equipment and methods in DNA sequencing. This led to next generation 

sequencing technologies that significantly lowered the cost and time per sequencing 

(Mardis, 2008). There are different types of DNA sequencing, such as whole genome 

sequencing and targeted region sequencing, that can be tailored towards specific research 

interests.  
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Examining bacteria diversity in environmental samples can be challenging because 

not all bacteria are culturable in the lab, meaning that although they may still be viable, 

they cannot grow on growth media (Oliver, 2005). In this case, 16S rRNA sequencing is 

well-known and commonly utilized procedure that can be used to overcome this challenge. 

One of the main advantages of using 16S rRNA gene, which is about 1,500 base pairs 

long, is that it is found in almost every bacterium (Janda and Abbott, 2007). It has nine 

variable regions surrounded by conservative regions that enable the classification of 

bacterial taxonomy (Claesson et al., 2010). In Illumina sequencing, DNA sequences are 

first fragmented into smaller sequences. Adapters are ligated to the ends of the DNA 

fragments and loaded onto a flow cell where they are amplified using the bridge 

amplification method. Then fluorescently-labeled dNTPs are attached to the DNA single 

strands emitting specific color lights. These images are automatically recorded to create 

sequence reads for all the DNA fragments. The reads are compiled together and are aligned 

with a reference genome to identify which taxonomy they belong (Illumina, 2017). 

Sequenced reads can be further analyzed using an open-source pipeline called 

QIIME2 (pronounced “chime 2”), which stands for Quantitative Insights Into Microbial 

Ecology (Caporaso et al., 2010). This tool incorporates various tools interpret raw 

sequence data from assigning operational taxonomic units (OTUs), denoising sequences, 

aligning reads, building phylogenetic trees, arranging taxonomy, and comparing 

diversities (Hall and Beiko, 2018). Once the reads are imported into the QIIME2 

environment, sequences that are usually 97% similar to each other are clustered into the 

same OTU using DADA2 (Divisive Amplicon Denoising Algorithm 2) (Callahan et al., 
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2016). A more accurate form of distinguishing errors between sequences was developed 

to assign amplicon sequence variants (ASVs), which can detect sequence differences by 

one nucleotide (Callahan et al., 2017). A machine learning Python module is used in 

conjunction with a pre-trained naïve Bayes classifier re-trained against the SILVA 

database to classify taxonomies down to the species level (Pedregosa et al., 2011; Pruesse 

et al., 2007). Phylogenetic trees are generated using MAFFT and FastTree in QIIME2 to 

create a diversity metric between reads (Katoh and Standley, 2013; Price et al., 2010).  

Similarities and differences between bacterial species in a sample can be compared 

using alpha and beta diversity measures. Alpha diversity illustrates the microbiome 

diversity within a sample while beta diversity shows similarities or dissimilarities of two 

environments (Whittaker, 1960). QIIME2 generates several metrics for alpha diversity, 

such as Faith’s phylogenetic diversity and Shannon index, and beta diversity, such as 

UniFrac and Bray-Curtis (Bray and Curtis, 1957; Faith, 1992; Hall and Beiko, 2018; 

Lozupone and Knight, 2005; Shannon, 1948). In alpha diversity, richness – number of 

different species – and diversity – evenness or proportion of each species – are taken into 

account while beta diversity compares only diversity, or abundance, between samples 

(Konopiński, 2020). Alpha rarefaction curve indicates whether sufficient number of reads 

within a sample were sequenced in order to capture the majority of species. It has been 

shown that around 5,000 denoised reads were sufficient to capture most of the taxonomic 

profile within a sample using alpha diversity (Lundin et al., 2012). These methods provide 

a detailed overview of the diverse bacterial taxonomy present in environmental samples. 
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1.6. Computational fluid dynamics modelling in predicting air flow and aerosol 

dissemination 

Bacteria enclosed in bioaerosols are also exposed to turbulent air flow, whether it 

is mechanically generated by the heating, ventilation, and air conditioning (HVAC) 

systems or naturally generated by wind. Computational fluid dynamics (CFD) is a 

powerful tool that is used to simulate and analyze complex air flow behavior. The rapid 

advancement and ease of accessibility to CFD tools enabled the performance of numerous 

complex simulations to investigate multiple variables, such as ventilation and heat 

transfer, in buildings (Wang and Zhai, 2016). In order to accurately portray the turbulent 

or laminar movement of fluid dynamics, certain processes, such as mesh generation, grid 

convergence, viscous turbulence model, boundary conditions, and numerical schemes, 

must be carefully and thoroughly planned out in the CFD simulations (Wang et al., 2018).  

There are several governing equations that drive CFD simulations. Probably the 

most important equations that derives all other equations are the Navier-Stokes equations 

on the conservation of mass and momentum. These equations can be further solved three 

different techniques: direct numerical simulation (DNS), large eddy simulation (LES), and 

Reynolds averaged Navier-Stokes (RANS) (Joshi et al., 2011). This research will be 

focusing on the RANS method because DNS and LES approaches require too much 

computational time and power. The  

In RANS, equations of mass and momentum conservation for incompressible 

flow, where density is constant, can be written as follows (Jehad et al., 2015): 
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where the Reynolds stresses (𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) are solved using turbulence models. Two most 

commonly used turbulence models are two-equation models – k-ε and k-ω – that solve for 

turbulent kinetic energy (k) and dissipation rate (ε) or specific dissipation rate (ω). The 

standard k-ε model is widely used as it can accurately and robustly predict indoor air flow 

simulations using the following equations (Launder and Spalding, 1983): 
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where Cμ is 0.09, Cε1 is 1.44, Cε2 is 1.92, σk is 1.0, and σε is 1.3. Another k-ε 

turbulence model called realizable k-ε model can better predict swirls and turbulence than 
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the standard model (Shih et al., 1995). The equations are same as the standard k-ε model, 

but the ε component is modified to: 

 

𝜕𝑈𝑗𝜀

𝜕𝑥𝑗
= (𝜇 +

𝜇𝑡
𝜎𝜀
) ∇2𝜀 + 𝐶1𝑆𝜌𝜀 − 𝐶2

𝜌𝜀2

𝑘 + √𝜐𝜀
(8) 

 

where 𝐶1 = 𝑚𝑎𝑥 [0.43,
𝜂

(𝜂+5)
], 𝜂 =

𝑆𝑘

𝜀
, 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 , C2 is 1.0, σk is 1.0, and σε is 

1.2. For k-ω turbulence, a shear stress transport (SST) k-ω model is commonly used as it 

is shown to perform better than the standard k-ε model, providing better accuracy and 

stability in turbulent flows around the walls and corners (Menter, 1993). Different 

turbulence models have their strengths and weaknesses, so they must be taken into 

consideration when using for CFD simulation and analysis (Zhai et al., 2007).  

As mentioned before, CFD is used widely to examine air flow patterns and aerosol 

movement in various buildings. Studies have been conducted using CFD to investigate the 

effects of natural ventilation on a poultry house (Rojano et al., 2019), wastewater treatment 

plant (Maïzi et al., 2010), and dairy barns (Tomasello et al., 2019; Wu et al., 2012). A 

combination of natural and mechanical ventilation in dairy barns have been investigated 

(Pakari and Ghani, 2021). A much larger scale simulation is also possible to predict air 

flow over urban downtown (Ramirez et al., 2018). However, simulation results must 

always be validated with experimental measurements to provide an accurate 

understanding of fluid flow. In most cases, the variables of interest, such as air velocity, 

temperature, relative humidity, odor, particle size, or chemical concentration, are 
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measured and recorded on site. There are other scenarios where a scaled-down 3D model 

of the building is placed in a wind tunnel to simulate air flow to better visualize and 

measure the desired variables (Fossum et al., 2012; Saha et al., 2020). Numerous 

researches demonstrate that CFD simulations can accurately predict air flow patterns to 

monitor how bioaerosol are dispersed in buildings and their surrounding environment. 
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2. RESEARCH OBJECTIVES AND HYPOTHESIS 

 

2.1. Research objective 

With the widespread use and availability of antibiotics, more and more infectious 

and pathogenic bacteria have developed resistance to increase their chances of survival 

and reproduction. More exposure to antibiotics hastens the development and spread of 

antibiotic resistant bacteria (Alanis, 2005). Bacteria can transfer genes that encode 

resistance mechanisms against certain antibiotics to other species of bacteria via horizontal 

gene transfer. This is causing superbugs and multi-drug resistant bacteria to emerge, 

making it harder to treat bacterial diseases and hindering the production of new antibiotics. 

This is especially true in many livestock facilities where numerous antibiotics are used for 

medical purposes (Adams et al., 2018; Kirchhelle, 2018; Ling et al., 2013). The overuse 

of antibiotics and accumulation of manure in livestock facilities can create severe health 

risks for both the animals and humans. There are several researches on how different 

environmental factors, such as temperature, relative humidity, and wind, affect the 

survivability of bacteria in the atmosphere (Li et al., 2018; Nguyen et al., 2020; Wu et al., 

2019). Computational fluid dynamics simulations are incorporated into many studies on 

livestock buildings to understand and predict how air flow patterns behave according to 

both natural and mechanical ventilations systems (Pakari and Ghani, 2021; Rojano et al., 

2019; Saha et al., 2020; Tomasello et al., 2019; Wu et al., 2012). However, the effects of 

these variables on the development and dissemination of antibiotic resistance in bacteria 

are not clearly understood.  
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It is hypothesized that ARGs are not only triggered by the use and exposure of 

antibiotics, but also by different environmental factors, such as temperature, relative 

humidity, and wind. These variables could cause stress to develop in bacterial cells, 

triggering certain genes related to antibiotic resistance to increase their survivability 

against harsh and extreme conditions. Intensive research has been performed to understand 

the effects of environmental factors on the survivability of bacteria or inactivation of 

ARGs in aerosols and livestock manure, but it is not clear how antibiotic resistance is 

triggered and developed in bacteria under different stresses (Asheshov, 1966; Diehl and 

LaPara, 2010; Li et al., 2020b; Lin et al., 2017; MacFadden et al., 2018; Sun et al., 2016; 

Zhang et al., 2015). To prevent the spread of antibiotic resistant bacteria, it is crucial to 

gain a better understanding on how antibiotic resistance is activated in various 

environmental conditions.  

Therefore, the objective of this research is to investigate how different 

environmental factors affect the development of antibiotic resistance in bacteria. To 

investigate, this study will be conducted in three steps. First, the bacterial microbiome 

richness and diversity in bioaerosol, manure, and lagoon samples collected from a dairy 

barn will be investigated and compared to different environmental samples, such as 

temperature and relative humidity, across three different seasons – summer, winter, and 

spring. Second, antibiotic resistance patterns in aerosol and manure samples from the three 

seasons will be investigated using the Kirby-Bauer disk diffusion method. Finally, CFD 

will be used to model and simulate air flow patterns in the dairy facility to analyze hotspots 

with high concentrations of bacteria exhibiting antibiotic resistance.  
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2.2. Research objective 1. Investigate environmental effects on bacteria diversity in 

a dairy facility in three seasons 

2.2.1. Task 1. Collect bioaerosols, manure, lagoon water, and lagoon air from various 

locations in a dairy facility and record temperature, relative humidity, and air 

velocity measurements on the days of sampling. 

Sampling will be conducted in a dairy facility in Stephenville in different seasons 

to collect bioaerosols, manure, and lagoon samples. The facility holds about 400 cows that 

are milked 3 times a day. There are 36 axial fans with water sprayers mounted on poles 

for evaporative cooling. Fans are all facing the northern side of the facility. Floors are 

periodically flooded with lagoon water from the northern side to the southern side to sweep 

out manure. Wetted Wall Cyclone (WWC) bioaerosol collectors will be used to collect 

aerosols by atomizing small amounts of collection liquid (milli-Q water) into the inlet 

section using an air blast atomizer (McFarland et al., 2010). The cyclones will collect air 

samples in various locations for 15 minutes at 100 L/min. Weather and environmental 

conditions, such as temperature, relative humidity, and wind speed, on the days of 

sampling will be monitored and recorded. The number of operational axial fans and their 

airflow speed and direction will also be recorded. 
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2.2.2. Task 2. Perform microbiome analysis on extracted bacterial DNA to determine 

genus and species of aerosolized bacteria 

Bacterial DNA from the isolated colonies will be extracted using the alkaline lysis 

method (Zhou et al., 1990). The extracted DNA will be sent to the Texas A&M Institute 

for Genome Sciences and Society (TIGSS) for 16S rRNA Illumina sequencing using the 

Swift library preparation kit to obtain its microbiome data. The obtained sequences will 

be analyzed using QIIME2, naive Bayesian classifier, and SILVA database to identify the 

taxonomy of airborne bacteria. This information will be utilized to examine hotspots of 

antibiotic resistance and most frequently found genus and species of bacteria. Microbiome 

data from the two sampling periods will be compared to examine how different seasonal 

and environmental variables are correlated with different airborne bacteria species and 

antibiotic resistance. 

 

2.3. Research Objective 2. Examine factors triggering antibiotic resistance in 

aerosol, manure, and water samples. 

2.3.1. Task 1. Perform KB tests on bacteria isolates from bioaerosol and manure 

samples to examine their resistance against various antibiotics. 

Collected samples will be plated on the same day of collection on TSA (Tryptic 

Soy Agar, Becton Dickinson) plates to obtain total culturable counts and colony forming 

units (CFUs). Kirby-Bauer disk diffusion test will be performed on isolated bacterial 

colonies to determine their level of resistance to eight different antibiotics. The zones of 

inhibition will be measured and compared with the antimicrobial susceptibility testing 
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standards from the Clinical and Laboratory Standards Institute to determine the level of 

resistance against antibiotics. 

 

2.3.2. Task 2. Compare environmental factors in each sampling seasons to identify 

how they affect antibiotic resistance. 

Environmental conditions, such as temperature, relative humidity, and wind 

velocities are expected to be different during different sampling trips. These will be 

recorded in each sampling location during collection periods using a HOBO data logger 

and hot-wire anemometer. Meteorological data for the collection day will also obtained 

from the weather station located in the dairy facility. Antibiotic resistance mapping 

obtained using KB tests will be compared with weather and environmental measurements 

across different seasons to investigate how they are related.  

 

2.4. Research Objective 3. Model the movement of antibiotic resistant bacteria in 

dairy facility using computational fluid dynamics 

2.4.1. Develop a 3D computational fluid dynamic model of the dairy facility. 

The mechanical blueprint of the dairy facility layout will be used to design a 3D 

model and calculate air flow simulations. First, a simple model of the dairy facility will 

be created in SolidWorks and then imported in the ANSYS Fluent to investigate the air 

flow patterns from the open environment wind and from the axial fans. For simplification 

and reducing the computational power and load, obstacles within the dairy barn, such as 

fences, poles, and water troughs, will be removed. The CFD simulations will enable the 
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prediction of how air flow behaves around and within the open dairy barn. Cows will 

added to the model in a simplified form using a cylindrical configuration of their body or 

a porous media assumption (R. Mondaca and Y. Choi, 2016). The heat emission from each 

cow will also be considered in the simulation (Beck et al., 2019; Li et al., 2021).   

Air flow simulations of the dairy facility model will be performed using ANSYS 

Fluent. Appropriate inlet, outlet, and wall parameters will be assigned in the mesh design 

regarding air velocity, pressure, and heat transfer. Boundary conditions will be set using 

the realizable k-ε turbulence model with enhanced wall treatment to perform a realistic 

and accurate CFD simulation and analysis. Turbulent properties will be calculated from 

the collected data points to investigate the how aerosolization and airflow patterns affect 

the development of antibiotic resistance in bacteria. Grid convergence index (GCI) will 

be calculated to validate that the uncertainties and errors in the fluid equations are 

accurately depicted. Particle tracking can be performed in ANSYS Fluent to investigate a 

more accurate simulation of different particle sizes and how they behave under the 

summer and winter air flow conditions. 

 

2.4.2. Compare and validate model with experimental results (air velocities, 

microbiome analysis). 

Hot-wire anemometers will be utilized to record air velocity measurements at the 

15 locations where aerosol samples are collected to verify and validate the CFD simulation 

results. The temperature and relative humidity measurements taken with the HOBO data 

loggers will be included in the model. Weather data from the days of sample collection 
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will be obtained to examine how environmental wind along with the air movement from 

the 36 axial fans affect the air flow within the dairy facility. 
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3. METHODOLOGY 

 

3.1. Sampling location 

Three sampling campaigns in different seasons – Summer 2019, Winter 2020, 

Spring 2021 – were taken to an open-stall dairy farm in Texas to collect manure and 

aerosol samples. An aerial view of the dairy farm is shown in Figure 3.1A. There were 9 

rows of 4 axial fans (J&D Manufacturing, Eau Claire, WI) – a total of 36 fans – located 

within the dairy facility moving air from the southern side to the northern side (Figure 

3.1B). All fans were placed 4.5 m from the ground, tilted 15 degrees downwards, and 

operating at a velocity of 8.3 m/s. Water sprayers were attached to the fans to provide 

evaporative cooling for the cows. Fans were not operational in the winter as the 

temperature was cooler and there was no need for additional cooling of the cows. The 

facility held around 400 cows that were milked 3 times a day. When they were being 

milked, floors were flooded with lagoon water to wash off manure, which flowed down 

opposite to the direction of airflow. The accumulated water eventually flowed back into 

the lagoon and was reused for flooding. No antibiotics were incorporated into the 

feedstock. If cows became sick and had to take antibiotics, they were relocated to a nearby 

stall until antibiotics were removed from their system. 
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Figure 3.1 A. Open stall dairy facility. Red circle indicates the barn where samples 

were collected. B. Inside view of dairy barn. Arrow points towards north. N indicates 

north. 

 

3.2. Sample collection 

In all sampling campaigns, 15 aerosol samples and 10 manure samples were 

collected at the respective locations shown on Figure 3.2. Wetted Wall Cyclones (WWCs) 
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(Figure 3.3) was utilized for aerosol collection as it could continuously collect bioaerosols 

with an average collection efficiency over 86 % (McFarland et al., 2010). The WWC 

sampling collected aerosols at a rate of 100 L/min for 15 minutes into 50 mL Falcon tubes 

prefilled with a solution of milli-Q (MQ) water and 10 % phosphate buffer saline (PBS) 

to increase survivability of aerosolized bacteria. Dairy manure samples were manually 

collected into 50 mL Falcon tubes. Collected aerosol and manure samples were 

immediately stored in an ice box. A HOBO data logger (U12-013, Onset, Bourne, MA) 

was placed in each location for 15 minutes to record temperature and relative humidity 

(RH). Measurements were taken every five seconds throughout the collection period with 

an accuracy of ± 0.35 °C and ± 2.5 % RH, respectively. Weather data was obtained from 

a weather station (Crop Link Pro, Valley, Omaha, NE) that was located at the dairy facility. 

Air velocities were also measured in each location using a hot-wire anemometer (Model 

8360, TSI Inc., Shoreview, MN, USA) at heights of 0.8 m and 1.5 m above the ground 

representing the heights of cows laying down and standing up, respectively. 

Measurements were taken every 6 seconds for a minute, three times, resulting in 30 air 

velocity measurements recorded in each location and height. 
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Figure 3.2 Locations where aerosol and manure samples were collected. N indicates 

north. 

 

 

Figure 3.3 Wetted Wall Cyclone sampling systems used for aerosol sample collection. 

 

3.3. Kirby-Bauer disk diffusion test 

An aliquot of manure and aerosol samples were plated on tryptic soy agar (TSA, 

Becton Dickinson) plates on the day of sampling and incubated at 37 °C overnight. The 

colonies were then streak-plated on another set of plates and tested for antibiotic resistance 

using the Kirby-Bauer test. The eight antibiotic disks that were used in this test and their 

concentrations are listed in Table 3.1. The zone of inhibition was measured and compared 
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using the standards from Clinical and Laboratory Standards Institute to determine if the 

bacteria was susceptible, intermediately resistant, or resistant to different antibiotics 

(CLSI, 2014). Each antibiotic has different diameter ranges for zone of inhibition to 

determine whether the bacteria demonstrate resistance or not. If the bacteria grew in 

between the resistant (R) and susceptible (S) ranges, they were classified as intermediately 

resistant (I).  

 

Table 3.1 Minimum inhibitory concentration of antibiotic disks used for Kirby-

Bauer disk diffusion test and zone of inhibition ranges for resistance 

Antibiotics 
Concentration 

(μg/disk) 

Zone of inhibition (mm) 

Resistant 

(R) 

Intermediately 

resistant (I) 

Susceptible 

(S) 

Ampicillin (AM) 10 ≤ 13 14 - 16 17 ≤ 

Cefoperazone 

(CFP) 
75 ≤ 15 16 - 20 21 ≤ 

Cephalothin (CF) 30 ≤ 14 15 - 17 18 ≤ 

Imipenem (IPM) 10 ≤ 19 20 - 22 23 ≤ 

Gentamycin (GM) 10 ≤ 12 13 - 14 15 ≤ 

Tetracycline (TE) 30 ≤ 11 12 - 14 15 ≤ 

Sulfamethoxazole- 

trimethoprim (SXT) 

SX (23.75), 

T (1.25) 
≤ 10 11 – 15 16 ≤ 

Ciprofloxacin (CIP) 5 ≤ 15 16 - 20 21 ≤ 
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3.4. DNA extraction 

Bacteria DNA from each manure and aerosol sample were extracted using the 

alkaline lysis method (Zhou et al., 1990). First, cells were lysed in TENS buffer (10x TE 

buffer, 0.1M NaOH, 20 % SDS). Then proteins were precipitated by 3N sodium acetate 

and removed after centrifugation. Poly Acryl Carrier (PC152, Molecular Research Center 

Inc., Cincinnati, OH) was added to the supernatant and the DNA was precipitated using 

isopropanol. The DNA was centrifuged, isopropanol was discarded, and the pellet was 

washed with ethanol. Then the pellet was hydrated in DNAse-free Milli-Q water. 

 

3.5. 16S rRNA sequencing 

Isolated bacterial DNA from seven aerosol samples, four manure samples, one 

lagoon air sample, and one lagoon water sample from the three sampling campaigns were 

sent to the Texas A&M Institute for Genome Sciences and Society (TIGSS) for 16s rRNA 

sequencing using the Swift library preparation kit. DNA samples were quantified via high 

sensitivity dsDNA Qubit Fluorometric assay and checked with the Agilent Genomic DNA 

tape on the Agilent TapeStation. DNA samples were normalized to equal concentrations 

and then sequencing libraries were generated using the Swift Biosciences 16S +ITS 

amplicon sequencing library preparation kit following the manufacturer’s protocol. 

Resulting libraries were quantified via qPCR using the KAPA Library Quantification Kit 

for Illumina specific libraries (Roche). Sample concentrations were normalized and used 

to produce an equimolar 4 nM library pool. This library pool was denatured and diluted to 
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a final loading concentration of ~8 pM and run on an Illumina MiSeq 2x250 v2 sequencing 

kit.  

 

3.6. Microbiome analysis 

Once the sequences were received in a fastq format, they were imported into the 

QIIME2 environment version 2019.1 and denoised using Divisive Amplicon Denoising 

Algorithm 2 (DADA2) to eliminate sequencing errors and chimeras (Callahan et al., 

2016). Generated amplicon sequence variants (ASVs) were trained using naive Bayesian 

classifier and compared with SILVA database to obtain taxonomy information of bacteria 

(Pruesse et al., 2007). A phylogenetic tree was created to observe the alpha and beta 

diversity measures between samples. Faith’s phylogenetic diversity was used to examine 

the number of species in a sample, or richness, and the Shannon index was used to 

investigate the richness and diversity, or proportion of species abundance, in a sample. 

 

3.7. Computational fluid dynamics modeling 

3.7.1. Design 3D model of dairy facility 

A 3D model of the dairy barn was built in SolidWorks using the blueprint and 

additional information provided by the facility (Figure 3.4). The length and width of the 

facility was 139.1 m and 30.7 m, respectively. Height was 3.7 m on the side and 9.8 m in 

the center of the barn. There was an opening through the middle of the roof. For 

simplification of the CFD simulation, fences, poles, floor layers, and troughs were 

excluded from the model. To understand how air flow is affected by areas where cows are 
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clustered together, 10 simplified cow models were placed in the southern side of the barn 

(Figure 3.5). The cow geometry was taken from another research paper that compared 

different cow models in CFD simulations (R. Mondaca and Y. Choi, 2016). The model 

was then imported into ANSYS Fluent 2020 R1 and simulations were performed using 

the Grace cluster in the high performance research computing (HPRC) system.  

  

 

Figure 3.4 A. Isometric view of the dairy barn. B. Enlarged front view of the dairy 

barn seen from the north. N indicates north. 
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Figure 3.5 Dimensions of simplified cow model 

 

3.7.2. Boundary domain 

Weather data obtained in each sampling times indicated wind blowing from the 

environment at different speeds and directions. In order to incorporate this factor into the 

simulation, a boundary domain was built around the dairy barn. With the advancement of 

CFD techniques and wind tunnel experiments, different guidelines have been set up to 

design the computational domain (Franke and Baklanov, 2007; Tominaga et al., 2008). 

For a single building, it is recommended to set the inlet and top boundary at least 5H away 

from the building, where H represents the height of the building. For this CFD analysis, 

H was set to be 9.8 m. The outlet boundary should be at least 10H away from the building. 

For this research, wind flow directions were not parallel to the lateral boundaries, but at 

an angle. Therefore, two lateral boundaries were set as inlets at a distance of 6H, the other 

two lateral boundaries were set as outlets at a distance of 10H and the top boundary was 

set at 7H away from the building. Wind direction for Summer 2019 and Winter 2020 were 
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different from Spring 2021, so two different domains were used for the CFD simulation 

(Figure 3.6).   

 

Figure 3.6 Two different computational domains for three sampling seasons. N 

indicates north. 

 

3.7.3. Mesh 

Three different meshes (coarse, medium, fine) were built for the three sampling 

times to analyze the grid convergence (Table 3.2). This is to ensure that the grid sizes are 

fine enough to not affect the results obtained from the CFD simulations. Cells were larger 

around the computational domain and became more refined along the dairy barn. 
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Tetrahedral cells were automatically generated in ANSYS using different grid sizes. 

Inflation layers were created on the floor and walls of the dairy barn. Face sizes around 

the fans and cows were refined to 0.05 m to more accurately simulate air flow properties 

(Figure 3.7). The tetrahedral cells were then converted into polyhedral cells to reduce the 

number of total cells by around 4-fold and ease the necessary computational processing 

power and time (Sosnowski et al., 2017).  

 

Table 3.2 Grid sizes and total cell numbers for each simulation used to test grid 

converegence index 

Sampling season Grid size Tetrahedral cells Polyhedral cells 

Summer 2019 

Coarse 11,134,436 2,300,686 

Medium 16,932,162 4,841,176 

Fine 20,580,839 5,604,925 

Winter 2020 

Coarse 11,134,436 2,300,686 

Medium 16,936,051 4,841,753 

Fine 20,584,544 5,606,325 

Spring 2021 

Coarse 11,134,972 2,300,806 

Medium 16,954,347 4,857,777 

Fine 20,555,229 5,583,627 
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Figure 3.7 A. Mesh seen from the side. B. Close up mesh around the fans and cows. 

 

3.7.4. Boundary conditions 

The nine different models were imported to ANSYS Fluent to perform air flow 

simulations in steady state. The energy equation and realizable k-ε turbulence model with 

enhanced wall treatments were utilized. Wind velocities and directions for each season are 

stated in Table 3.3, along with the fan velocity if they were operational. Boundary 

conditions for the inlet velocity profile of the computational domain was calculated using 

the following power law:  

 

𝑈𝑦 = 𝑈𝑟𝑒𝑓 (
𝑦

𝑦𝑟𝑒𝑓
)

𝛼

(9) 
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where Uy is the velocity at height y, Uref is the velocity at the reference height, yref, 

and α is the power law exponent. Here yref was set to 1.5 m and α was set to 0.14 according 

to another similar study (Tomasello et al., 2019). 

Turbulent kinetic energy and dissipation rate profiles were calculated using 

Equations 2 and 3 to simulate a developed flow across the facility: 

 

𝑘 =
𝑈∗

2

√𝐶𝜇
(10)

     

𝜀 =
𝑈∗

3

𝐾𝑣(𝑦 + 𝑧𝑜)
(11) 

 

where k is turbulent kinetic energy, ε is turbulent dissipation rate, U* is friction 

velocity, Kν is von Karman’s constant (0.4), Cμ is model constant, and z0 is surface 

roughness length (Richards and Hoxey, 1993). Here Cμ was set to 0.09 and z0 was set to 

0.025 m (Ramponi and Blocken, 2012). Friction velocity was calculated using the 

following equation: 

 

𝑈∗ =
𝐾𝑣𝑈𝑟𝑒𝑓

ln (
𝑦𝑟𝑒𝑓 + 𝑧𝑜
𝑦𝑟𝑒𝑓

)
(12)
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Fan inlets were also set as velocity inlets. Outlets were set as pressure outlets and 

the top boundary was set as symmetry. Floors, walls, cows, and fans were set as walls with 

no-slip condition. The cow models were given a heat flux value of 205 W/m2 to mimic 

the heat generation from actual cow bodies. The SIMPLE solver was used along with a 

second order discretization scheme (Patankar and Spalding, 1972). Convergence was set 

to be achieved when the residuals for the continuity, velocities, kinetic energy, and 

turbulence energy dissipation were lower than 10-4 and the residuals for energy was lower 

than 10-6.  

 

Table 3.3 Velocities and direction of natural ventilation and fan velocity.  

Time 
Ambient velocity 

(m/s) 

Wind 

direction 

Fan velocity 

(m/s) 

Summer 2019 4.25 WSW 8.3 

Winter 2020 3.70 W 0 

Spring 2021 0.36 SE 8.3 
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4. RESULTS 

 

4.1. Microbiome diversity 

The total relative abundance of phylum and genera richness in aerosol, manure, 

and lagoon samples for each of the three sampling seasons were combined and observed 

(Figure 4.1). Relative abundance of each individual sample collected at different locations 

and seasons are shown in Figure 4.2. The top 10 most common phyla and top 20 most 

common genera were identified from each sample. All other phyla and genera were 

grouped and labeled as “Other.” These two plots of combined and individual relative 

abundance display an overview and detailed insight into the phylum and genera richness 

across different seasons and samples. In the phylum level, Firmicutes was most abundant 

(46 %), followed by Proteobacteria (31 %), Actinobacteriota (16 %), and Bacteroidota (4 

%). The most abundant genera were Bacillus (37 %), Acinetobacter (21 %), 

Sphingomonas (7 %), and Ruminococcaceae UCG-005 (4 %).  

A total of 5,561,995 sequence reads were denoised from 9,746,520 raw sequences 

imported from all the aerosol, manure, and lagoon samples. The highest read was 632,921 

reads in aerosol sample from location 15 in Winter 2020 while the lowest was 10,459 

reads in manure sample from location 6 in Spring 2021. Out of the aerosol samples, Winter 

2020 had the highest read of 2,972,547, followed by Summer 2019 with 1,013,373 reads 

and Spring 2021 with 236,463 reads. The reads were clustered into 1,829 ASVs, 45 phyla, 

and 790 genera. The number of total genera in aerosol samples from Summer 2019, Winter 

2020, and Spring 2021 were 431, 13, and 338, respectively. This shows that although 
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Winter 2020 aerosols had the highest denoised sequence reads, or richness, they did not 

have the most diverse taxonomic classifications. In manure samples from Summer 2019, 

Winter 2020, and Spring 2021, the total sequence reads were 685,582, 77,707, and 58,423 

respectively, while the number of genera were 226, 169, and 137, respectively. A total of 

132,714 reads and 152 genera were generated for lagoon aerosol samples while lagoon 

water samples had 128,188 reads and 353 genera.  
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Figure 4.1 Total relative abundance of A. top 10 phyla and B. top 20 genera in 

aerosol, manure, and lagoon samples from different seasons. S19 - Summer 19, W20 

- Winter 20, S21 - Spring 21, L – lagoon. 

A.  

B.  
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Figure 4.2 Relative abundance of A. top 10 phyla and B. top 20 genera in aerosol, 

manure, and lagoon samples from different seasons. S19 - Summer 19, W20 - Winter 

20, S21 - Spring 21, L – lagoon, A - aerosol, M – manure. Numbers indicate locations 

in dairy barn where samples were collected. 

 

A.  

B.  
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An alpha rarefaction curve was produced to discern the required sequencing depth 

to estimate the total bacterial taxonomic diversity in the samples (Figure 4.3). Since the 

lowest sequence read was slightly above 10,000 reads, this was set as the sampling depth. 

It was shown that 10,000 sequences could sufficiently display most of the taxonomic 

diversity in the samples across seasons, indicated by plateauing of curves. As was depicted 

by the relative abundance, Winter 2020 aerosol samples had the lowest diversity while 

Summer 2019 manure samples had the highest diversity. Alpha diversity comparison 

using Shannon index revealed that there was a significant difference (P < 0.05) in the 

richness and diversity of aerosol and manure samples in all three seasons (Figure 4.4). The 

Bray-Curtis dissimilarity metric was used to create a principal coordinate analysis (PCoA) 

plot (Figure 4.5). It could be observed that aerosol and manure samples in Summer 2019 

were clustered closely together as were the samples from Spring 2021. Aerosol and 

manure samples collected in Winter 2020, however, did not form a cluster, but showed a 

more dispersed pattern, signifying that they had dissimilar microbiome diversity. 
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Figure 4.3 Alpha rarefaction curve of aerosol, manure, and lagoon samples from 

different seasons. This indicates that around 7,000 sequence reads were sufficient to 

display the majority of taxonomic profile in each sample. 

 

 

Figure 4.4 Alpha diversity measure comparison using Shannon index among aerosol, 

manure, and lagoon samples from different seasons. 
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Figure 4.5 Beta diversity measure comparison using Bray-Curtis metric among 

aerosol, manure, and lagoon samples from different seasons. 

 

4.2. Environmental measurements 

Temperature and relative humidity measurements for all three visits were plotted 

and compared in Figure 4.6. The average temperature measurements for Summer 2019, 

Winter 2020, and Spring 2021 were 28.2 °C, 13.2 °C, and 26.4 °C, respectively, and 

relative humidity measurements were 59.5 %, 53.4 %, and 59.0 %, respectively. From the 

weather data obtained from the dairy facility, it was shown that the average temperature 

for the three seasons were 27 °C, 13 °C, and 22 °C, respectively, which closely matched 

with the HOBO data logger measurements. High fluctuations of temperature and relative 
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humidity measurements were observed in Summer 2019 at different locations. The 

sunlight during sample collection was directed mostly to the eastern and southern side of 

the barn. Therefore, temperature values were higher in locations 1 through 5, and 10, 

where there was most sunlight. This trend was also observed in Spring 2021 where 

locations 1 through 5 had the highest temperatures. Locations 11 through 15 were located 

in the center shielded from the sunlight by the ceiling and cows, resulting in a lower 

temperature.  
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Figure 4.6 Temperature and relative humidity measurements recorded during 

bioaerosol sample collection at each location in A. Summer 2019, B. Winter 2020, 

and C. Spring 2021. 
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4.3. Antibiotic resistance test 

A cumulative heatmap is shown in Figure 4.7. The resistance patterns of bacteria 

in bioaerosol and manure samples to different antibiotics for the three seasons are shown 

in Figures 4.8 and 4.9, respectively. Enlarged version of the radar charts can be seen in the 

Appendix. Throughout all three seasons, manure samples were consistently shown to be 

strongly resistant to all eight antibiotics. Aerosol samples, however, had different 

resistance patterns for each sampling period. For Summer 2019, aerosol samples collected 

from the southwestern side and center lane of the barn were more resistant than other 

aerosol samples. Strongest resistance pattern was shown diagonally from the southwestern 

to northeastern side of the barn, which aligned with the natural ventilation direction. 

Aerosol samples from Winter 2020 showed an overall similar pattern to that of Summer 

2019, but the resistance against antibiotics were stronger in aerosol samples. Highest 

antibiotic resistance was shown in the southwestern side where wind from the environment 

was directly flowing into the barn. Spring 2021 aerosol samples had a unique antibiotic 

resistance mapping were almost all of the aerosol samples were specifically resistant 

against ampicillin and cephalothin. They also displayed less resistance towards majority 

of the antibiotics compared to Summer 2019 and Winter 2020 aerosol samples (Figure 

4.8C). Antibiotic resistance in the manure samples were also slightly weaker than in the 

previous two seasons.  
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Figure 4.7 Antibiotic resistance heatmap in aerosol, manure and lagoon samples 

from different locations in A. Summer 2019, B. Winter 2020, and C. Spring 2021. A 

- aerosol, M – manure, LA – lagoon air, LW – lagoon water, AM – Ampicillin, CFP 

– Cefoperazone, CF – Cephalothin, IPM – Imipenem, GM – Gentamycin, TE – 

Tetracycline, SXT – Sulfamethoxazole-trimethoprim, CIP – Ciprofloxacin. 

 

  

A.  B.  C.  
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Figure 4.8 Antibiotic resistance pattern for aerosol samples in A. Summer 2019, B. 

Winter 2020, and C. Spring 2021. Samples that were resistant to four of more 

antibiotics are circled in red. N indicates north. 

A.  

B.  

C.  
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Figure 4.9 Antibiotic resistance pattern for manure samples in A. Summer 2019, B. 

Winter 2020, and C. Spring 2021. Samples that were resistant to four of more 

antibiotics are circled in red. N indicates north. 

 

 

A.  

B.  

C.  
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4.4. CFD simulation 

4.4.1. Grid convergence index 

The average number of iterations until the CFD simulations converged for Summer 

2019, Winter 2020, and Spring 2021 were 845, 548, and 987 iterations, respectively. 

Average skewness and orthogonal quality were 0.781 and 0.218, respectively. Air velocity 

profiles from the floor to a height of 2.0 m in location 15 were compared in the three 

different grid sizes to examine grid convergence (Figure 4.10). It was shown that velocities 

for medium and fine mesh were well aligned, indicating that the different cell sizes 

resulted in the same output, while velocity profiles from the coarse mesh was slightly off 

from the other two. It was shown that the velocity profiles were developed consistent to 

the inlet boundary conditions. The medium mesh was shown to be sufficient enough for 

further analysis as it would require less computational processing power and cost, but 

reach the same results as the fine mesh simulations.  
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Figure 4.10 Grid convergence index of velocity profiles at location 15 from heights 0 

to 2 m in A. Summer 2019, B. Winter 2020, and C. Spring 2021. 

 

4.4.2. Air flow around dairy barn 

Velocity contour maps were created to illustrate the air flow patterns over the 

computational domain and within the dairy barn. Figures 4.11, 4.12, and 4.13 show the 

velocity contours from the top of the barn at height of 1.2 m from the ground in Summer 

2019, Winter 2020, and Spring 2021, respectively. Enlarged contour maps are also shown 

around the cow models to visualize how air flow behaves around them. Air velocity 

contours in Summer 2019 and Winter 2020 shared almost the same profile as the direction 

and magnitude of natural ventilation were similar to each other. However, as the fans were 

not operational in the winter, the top velocity contour for Summer 2019 and Winter 2020 

are slightly different in direction and magnitude of air flow as it exits the dairy barn. Air 

flow in Spring 2021 were mostly generated by the 36 axial fans and slightly affected by 

the lower wind velocity from the environment. However, all three seasons’ CFD 

A.  B.  C.  
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simulation indicated a turbulent region where the air velocities are drastically decreased 

as it moves around the cows. 

Figure 4.14 shows the velocity contours from the west over the whole 

computational domain along the center of the barn for the three sampling seasons. Wind 

velocities were higher in Summer 2019 and Winter 2020 than in Spring 2021, which 

formed turbulent air movement as it contacted the dairy barn walls and ceiling in the 

southern and northern side. Similar turbulence was observed from the southern side of the 

barn (Figures 4.15, 4.16, and 4.17). As the developed natural ventilation reached the dairy 

barn, it was shown to form swirls and eddies along the walls and roof. This phenomenon 

was more turbulent in Summer 2019 and Winter 2020 as expected due to the faster wind 

velocity. High turbulence in the western side of the barn correlates with the antibiotic 

resistance mapping shown in Figure 4.8. It was demonstrated that CFD simulations with 

the right initial boundary conditions obtained from experimental results can accurately 

depict air flow simulations even in open environments.  
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Figure 4.11 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Summer 2019. Red rectangle indicates where cow 

models were placed in CFD simulations. B. Enlarged velocity contour showing air 

flow dynamics around 10 simplified cow models. N indicates north. 

 

 

A.  

B.  

N 
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Figure 4.12 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Winter 2020. Red rectangle indicates where cow 

models were placed in CFD simulations. B. Enlarged velocity contour showing air 

flow dynamics around 10 simplified cow models. 

A.  

B.  

N 
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Figure 4.13 A. Velocity contour map over the whole computational domain shown 

from above at height of 1.2 m for Spring 2021. Red rectangle indicates where cow 

models were placed in CFD simulations. B. Enlarged velocity contour showing air 

flow dynamics around 10 simplified cow models. 

 

 

  

A.  

B.  

N 
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Figure 4.14 Velocity contour maps shown over the whole computational domain from 

the west along the center of the dairy barn in A. Summer 2019, B. Winter 2020, and 

C. Spring 2021.  

 

  

A.  

B.  

C.  

N 

N 

N 



 

56 

 

 

Figure 4.15 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Summer 2019. B. Enlarged velocity 

contour showing air flow dynamics around the barn walls, ceilings, and cow models. 

 

 

A.  

B.  



 

57 

 

 

Figure 4.16 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Winter 2020. B. Enlarged velocity 

contour showing air flow dynamics around the barn walls, ceilings, and cow models. 

 

A.  

B.  
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Figure 4.17 A. Velocity contour map over the whole computational domain shown 

from the south where the cows were located in Spring 2021. B. Enlarged velocity 

contour showing air flow dynamics around the barn walls, ceilings, and cow models. 

A.  

B.  



 

59 

 

5. DISCUSSION 

 

5.1. Effect of seasonal and environmental factors on microbiome diversity 

Microbiome diversity of aerosol, manure, and lagoon samples were investigated 

separately and in relation to the seasonal and environmental factors. It was observed that 

the manure samples in Summer 2019, Winter 2020, and Spring 2021 had similar 

microbiome diversity in the genera level. This was not the case for aerosol samples as 

their microbiome composition and diversity were significantly different from each other 

(P < 0.05). Also, only Spring 2021 aerosol and manure samples showed similar diversity, 

while Summer 2019 and Winter 2020 samples displayed high dissimilarity (P < 0.05).  

Sequenced bacterial DNA are assigned into taxonomy units called amplicon 

sequence variants (ASVs) that are very specific and can be used to classify their taxonomy 

according to their sequences. It is recommended that samples have at least 5,000 

sequences to capture the alpha diversity within the microbiome (Lundin et al., 2012). For 

aerosol and manure samples collected in the dairy barn across three seasons, the minimum 

sequence depth was higher than 10,000, providing sufficient microbiome diversity within 

the samples. Winter aerosol and manure samples had the lowest diversity while Summer 

2019 manure sample had the highest diversity. This indicates that the lower temperature, 

slightly lower relative humidity, and stronger wind were not favorable for a wide variety 

of aerosolized bacteria to survive in the environment. 

Seasonal effects on the microbiome diversity have been studied in other dairy-

related researches. It was shown that Firmicutes and Bacteroidota were the two 
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dominating phyla in bacterial communities found in dairy cows’ rumen over the course of 

five consecutive seasons (Noel et al., 2017). They also were two of the four most 

prominent phyla in aerosol and manure samples in this research over three seasons. 

Another study indicated that rumen samples in summer had the highest diversity while 

winter season had the lowest diversity, which is in agreement with this research (Islam et 

al., 2021). This pattern of microbiome composition changes according to different seasons 

were also observed in dairy milk and feces samples (Li et al., 2020a; Nikoloudaki et al., 

2021).  

It was previously shown that lower temperature and higher relative humidity may 

form a protective measure for aerosolized bacteria and increase their survivability when 

they become aerosolized (Marthi et al., 1990). Another study showed that increasing 

temperature decreased the relative recovery rates of E. coli and B. subtilis as they become 

inactivated with the rising heat (Jung et al., 2009). Although several studies demonstrated 

that temperature above 24 °C decrease the survivability of aerosolized bacteria, the exact 

effect of relative humidity is more unclear as it differs by their type (gram-negative, gram-

positive, or intracellular) and method of culturing (Fernstrom and Goldblatt, 2013; Tang, 

2009). Temperature in Winter 2020 was about 13 to 15 °C lower than Summer 2019 and 

Spring 2021, respectively, while relative humidity was lower by around 6 %. Results from 

KB test indicated that aerosols from Winter 2020 samples showed the most resistance 

against antibiotics compared to the other seasons, even though the overall microbiome 

diversity was lower. This could be due to the colder temperatures inducing mechanisms 

of survival in aerosolized bacteria that corresponds with antibiotic resistant mechanisms.  
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Another information worth noting is relative humidity and water content in 

aerosols. Relative humidity is often used to describe the amount of water vapor present in 

the air. The equation for calculating relative humidity is the amount of vapor pressure over 

the total saturation vapor pressure possible in a given temperature (Perry et al., 1997). 

Therefore, relative humidity is very dependent of temperature. A different parameter to 

look at water content in the air is vapor pressure. It was calculated that vapor pressure in 

Summer 2019, Winter 2020, and Spring 2021 corresponded to 2.28 kPa, 0.81 kPa, and 

2.03 kPa, respectively, using measured temperature and relative humidity data. The 

amount of water content in the air or aerosol should be investigated more deeply as they 

control mass and heat transfer in aerosols (Cummings et al., 2020; Tan et al., 2017).  

When cows were being milked, lagoon water was used to flood the floors to clean 

dairy manure. Water would flow from the northern side of the barn to the south as the 

floor was slanted in that direction. Because sunlight was shining directly towards the 

southern side, this accelerated the evaporation and aerosolization of accumulated flood 

water. There have been several studies on how direct sunlight causes inactivation of 

bacteria by damaging their cells and components (Ahmed et al., 2014; Hobday and 

Dancer, 2013; Nguyen et al., 2020; Tong and Lighthart, 1997). The intense and long 

exposure to sunlight on the southern side explains how additional environmental stress by 

sunlight could enable mechanisms of resistance against antibiotics were developed in 

aerosolized bacteria. 
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5.2. Antibiotic resistance mapping 

It was observed that aerosol samples from Summer 2019 and Spring 2021 were 

susceptible to imipenem. Imipenem is a family of thienamycin that is sometimes 

administered with cilastatin. Its mechanism of action is to inhibit cell wall synthesis by 

binding to penicillin binding proteins and inactivating them (Rodloff et al., 2006). 

Ampicillin, cephalothin, and cefoperazone also inhibit bacterial cell wall synthesis and 

showed effectiveness in some aerosol samples, but they were not as effective in manure 

samples. Aerosol and manure samples from Winter 2020, however, showed strong 

resistance against imipenem. 

Several of the identified bacteria genera were well known to be resistant to certain 

antibiotics. Bacteroidota, found in manure samples, produce beta-lactamases that provide 

resistant to antibiotics with beta-lactam rings, such as ampicillin and imipenem, although 

all manure samples from Summer 2019 were susceptible to imipenem (Wichmann et al., 

2014). It could be that the type of beta-lactamase produced by the collected Bacteroides 

species were not resistant to imipenem. A different study revealed that Acinetobacter was 

resistant to cephalosporin, which is another beta-lactam antibiotic (Wepking et al., 2017). 

Although cephalosporin was not used in this study, the mechanism of resistant towards 

this antibiotic could have also caused resistance against other antibiotics. (Burgos et al., 

2005) showed that Shigella found in dairy soil showed high resistance against 

chloramphenicol. Many of known ARB were detected in aerosol and manure samples at 

various locations and shown to be spreading to different locations throughout the dairy 

farm. 
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5.3. Comparison between experimental and simulation air velocity measurements 

Air velocities at the 15 sampling locations in Summer 2019, Winter 2020, and 

Spring 2021 were compared with that from the CFD simulations. Although the dairy barn 

model was simplified to remove some obstacles, experimental and simulation data seemed 

to match in certain locations (Figure 5.1). For all three sampling seasons, air velocities 

closely matched in both outskirts of the barn (Locations 1 – 10), but the simulation air 

velocities were slightly higher in the center (Locations 11 – 15). This could be due to the 

obstacles, such as cows and troughs, blocking the air flow in real life to decrease the 

experimental air velocities in the center. For simplification and to reduce computational 

loads, these obstacles were removed and hence, simulation air velocities were slightly 

higher than experimental measurements inside the barn. However, air velocity 

measurements from CFD simulations around the barn fell closely within the ranges of 

experimental measurements as natural ventilation mainly affected these areas.  

As shown in the weather data and CFD simulations, one major difference between 

Spring 2021 and the other two seasons was the velocity of natural ventilation. Average air 

velocity from the wind was 0.36 m/s in Spring 2021, while it was 4.25 m/s and 3.70 m/s 

for Summer 2019 and Winter 2020, respectively. The wind direction in spring was from 

the southeast while it was blowing from the west-southwest in summer and southwest in 

winter. Although all 36 fans were operational in Spring 2021, the weak ambient air 

velocity was not able to disseminate aerosolized bacteria far away from the dairy facility. 

However, Spring 2021 also had the most similar microbiome composition between the 
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aerosol and manure samples compared to other seasons as shown in Figure 4.2B. This 

could be an indication that lower air flow throughout the dairy facility enabled more 

collection of aerosols generated from the manure and flood water. Higher air velocities 

across the facility in Summer 2019 and Winter 2020 were shown to transport aerosolized 

and evaporated bacteria further away from the barn, leading more discrepancies to show 

up between the aerosol and manure taxonomy. 
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Figure 5.1 Comparison of experimental air velocity measurements (●) and simulated 

air velocity measurements (○) at heights of 0.8 m and 1.5 m in A. Summer 2019, B. 

Winter 2020, and C. Spring 2021. 

A.  

B.  

C.  
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5.4. Further works 

This research investigated the overall trend and effect of three different 

environmental factors, temperature, relative humidity, and wind, on the microbiome 

diversity and antibiotic resistance in bacteria samples collected from a dairy farm across 

summer, winter, and spring. Examining the influence of each environmental factor on a 

single species of bacteria under carefully designed laboratory experiments could provide 

deeper insight into how and what type of antibiotic resistance is being promoted. Whole 

genome sequencing can be coupled with microbiome analysis to investigate the changes 

in ARG expressions to formulate a more direct relationship on how different 

environmental factors trigger specific species of bacteria. In this method, aerosolization 

and nebulization of bacteria into bioaerosols would also be taken into consideration. This 

could provide a deeper insight into exact mechanisms behind the development of ARGs 

in bacterial communities. 

To more accurately simulate air flow around a building, or in this case a dairy barn, 

an effort can be made to develop a more complex and realistic 3D model of the facility 

that considers all or most of the present obstacles. Some obstacles such as the 400 cows 

can be simplified by using a porous media referred to as animal occupied zone (AOZ) to 

use the cow packing density instead of placing each individual simplified cow models 

throughout the barn. Heat generation from the cows can be accounted for using this 

method as well. This have been successfully studied and implemented in different studies 

on dairy cows (Doumbia et al., 2021; R. Mondaca and Y. Choi, 2016). This method can 
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be utilized to effectively and accurately model the effect of numerous cows without 

overloading the computational power and time required for the CFD simulations. 

As was shown in the dissertation, both natural and mechanical ventilation have 

significant effects on the transmission of aerosols. Pathogenic and antibiotic resistant 

bacteria entrained in the air flow may be transported from contaminated spaces to clean 

areas and impact on surfaces. They can also be transported to the open environment and 

neighboring areas to be deposited on residential buildings or agricultural farms. Being 

airborne imposes mechanical stresses on bacteria and may trigger their defense 

mechanisms. Resuspension of bioaerosols in turbulent air flow may additionally affect 

their resistance against antibiotics, as was demonstrated in the Winter 2020 aerosol 

samples. Therefore, it is critical to optimize the air flow patterns and develop mitigation 

strategies in livestock facilities to reduce the spread of antibiotic resistant and potentially 

pathogenic bacteria. CFD models and simulations can be used to provide different layouts 

and mechanical or HVAC ventilation system designs to combat the spread of bioaerosols. 

Modifications to facilities could include installations of doors, walls, or air curtains to help 

mitigate the air flow direction to remove harmful particles and aerosolized bacteria from 

desired locations (Drewry et al., 2018; Saha et al., 2020; Viegas et al., 2020). Once the 

model has been verified and validated by comparing simulated results with experimental 

measurements, modifications to the design can be made to investigate effective mitigation 

strategies. It is often expensive and time-consuming to wait until the renovation has 

concluded or the proper equipment to be installed for investigation. One of the main 

advantages of utilizing CFD simulations would be that it provides detailed analysis and 
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prediction of air flow in different facilities to track and monitor the movement of 

bioaerosols to help determine how moderations to the building or ventilation systems can 

be made to improve the air quality in occupied places. 
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6. CONCLUSIONS 

 

This study investigated the richness, diversity, and antibiotic resistance of bacterial 

communities in aerosol, manure, and lagoon samples collected in an open-stall dairy barn 

across three different seasons, Summer 2019, Winter 2020, and Spring 2021. Over 10,000 

denoised sequence reads were generated from all samples that were used to identify and 

compare the bacterial taxonomy profiles among different samples, locations, and seasons. 

Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota were shown to be the four 

most dominant phyla while Bacillus, Acinetobacter, Sphingomonas, and 

Ruminococcaceae UCG-005 were the four most dominant genera. Even though antibiotics 

were not administered to the dairy cows, strong antibiotic resistance was prevalent in 

manure samples and also displayed in aerosol samples consistently throughout three 

different seasons. Winter aerosol samples had the highest richness, lowest diversity, but 

strongest antibiotic resistance among the three seasons, demonstrating that lower 

temperature and higher relative humidity are correlated with stronger antibiotic resistance 

in aerosolized bacteria, despite low microbiome taxonomy abundance. Summer 2019 

aerosol samples showed stronger antibiotic resistance compared to Spring 2021 aerosol 

samples. CFD simulations indicated that the southern and western sides of the dairy barn 

had the most turbulence in Summer 2019 and Winter 2020 as wind from the environment 

caused swirls as it entered the building. This was well correlated with strong antibiotic 

resistance patterns in aerosol samples from these sampling seasons. Spring 2021 had much 

weaker natural ventilation, but the microbiome diversity in aerosol and manure samples 
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were similar to each other, unlike Summer 2019 and Winter 2020 samples. This study 

demonstrates the critical importance and necessity of careful investigation of seasonal 

variables and air flow in dairy facilities, especially if they are open to the environment, to 

accurately monitor hotspots where antibiotic resistance can occur in the bacterial 

communities.  
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APPENDIX 

 

 

Figure 6.1 Antibiotic resistance shown in radar charts for aerosol and manure 

samples in Summer 2019. Red zone indicates resistance zone of inhibition for the 

eight antibiotics and black lines show zone of inhibition of each sample to each 

antibiotic.  

 



 

90 

 

 

Figure 6.2 Antibiotic resistance shown in radar charts for aerosol and manure 

samples in Winter 2020. Red zone indicates resistance zone of inhibition for the eight 

antibiotics and black lines show zone of inhibition of each sample to each antibiotic.  
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Figure 6.3 Antibiotic resistance shown in radar charts for aerosol and manure 

samples in Spring 2021. Red zone indicates resistance zone of inhibition for the 

eight antibiotics and black lines show zone of inhibition of each sample to each 

antibiotic. 


