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ABSTRACT

As the scope of human spaceflight continues to expand, the Human Systems Integration (HSI)

developed to support complex missions must be robust and efficient. This risk has been outlined

in the Human Research Roadmap (HRR) as the “Risk of Adverse Outcomes Due to Inadequate

Human Systems Integration Architecture”[1], short name HSIA. One of the most critical elements

of any human spaceflight mission is training, which prepares flight operations teams with the re-

sources necessary to carry out that mission. As more distant destinations such as the Moon or

Mars are targeted for human spaceflight, ensuring crew have the tools they need to overcome new

types of challenges will be a significant focus when developing new training infrastructures. With

the nature of such missions, there are several knowledge gaps associated with HSIA that motivate

investigating how training should be carried out on such missions.

This research focuses on studying these gaps and using the findings to create a conceptual

demonstration for a tool that can be used to assist in the training infrastructure that supports future

spaceflight missions. This tool is called the Simulation Builder, Analysis, and Development (Sim-

BAD) tool, which is a User Interface (UI) that utilizes the Space Collaborative Real-time Analysis

and Flight Toolkit to build virtual training environments. There are four main objectives that in-

centivize the development of this tool, the improved collaboration between groups in the flight

operations team, a training framework that is capable of being packaged on board a spacecraft, a

framework that accounts for dynamic mission parameters, and a heightened level of autonomy for

crew on missions. These objectives have been driven by the findings from an examination of cur-

rent spaceflight training methods, previous research on training for future missions, and elements

of the HSIA risk that pertain to training.

The SimBAD tool was designed with features that were motivated by these objectives to effec-

tively create a virtual training facility. These features allow the user to control the environments,

systems, procedures, events, and evaluations that are constructed together inside a virtual simu-

lation. Giving this control to users as well as access to the environment through Virtual Reality
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(VR) is the overall method through which this thesis argues the objectives of the concept are met.

These objectives are determined to be met and results for analysis are created through a demon-

stration of the concept. For this research the demonstration is done through several scenarios that

are constructed in simulations using the SimBAD tool. The first is a simulation of IntraVehicular

Activities (IVA) procedures being executed on board the International Space Station (ISS) which

demonstrates the tool is able to account for dynamic mission parameters; the second is a simula-

tion of two users inside a Mars habitat performing a comms check procedure that demonstrates

capability for improved collaboration between groups on the flight operations team. The UI and

VR platform demonstrate the tool is capable of packaging on board a spacecraft as well as in-

creasing the autonomy the crew has during their mission. The elements of SimBAD establish a

closed-loop infrastructure as a virtual training facility that offers improvements towards human

spaceflight in HSI, particularly for future exploration missions by offering functionality towards

the construction of simulated scenarios with procedure capability, dynamic event scripting, and

simulation evaluation.
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1. INTRODUCTION

1.1 Motivation

Human spaceflight is growing more complex as mission objectives evolve and become in-

creasingly ambitious. Autonomy and automation are also concerns as distance increases on these

missions [3]. Ensuring crew, vehicle, and mission safety will become more difficult as the systems

grow more complicated. Integration between these systems will also intensify, and the interdepen-

dence of the systems will need to be considered. NASA’s HRR contains a database for categorized

risks, evidence reports, and knowledge gaps that apply to human research as it pertains to the ad-

vancement of human spaceflight. The HSIA risk describes these concerns and outlines several

knowledge gaps to be filled in order to properly mitigate the risk. These gaps highlight different

deficiencies in what is known about HSI that are crucial to implementing one that is sufficient for

more ambitious human spaceflight missions. Several of these gaps prescribe how future architec-

tures must have the capability for testing and training within the constraints that future missions

will provide. The infrastructure necessary to test flight elements; hardware, software, and proce-

dures; as well as train crews on those elements must be sufficiently effective with respect to the

complexity of the systems and systems integration.

Applying these concerns to a potential mission to Mars highlight the areas in which the current

human spaceflight infrastructure needs improvements. A vehicle capable of transporting a crew to

Mars and back would require a dense set of subsystems such as radiation and thermal protection,

Environmental Control and Life Support System (ECLSS), power, communication, propulsion, as

well as be capable of ExtraVehicular Activity (EVA) and robotic operations, all while carrying a

lander for the Martian surface which will then incorporate its own set of subsystems. Logistically,

the travel distance and duration between our planet and Mars is also a point of concern. As the ve-

hicle travels further from ground stations on Earth, communications will degrade and the ground’s

capability to support operations will decrease. Crews will need to be able to remain proficient on

1



the procedures for vehicle systems during landing, surface operations, and launch phases without

having access to typical ground training facilities. Bringing these facilities on the voyages would

be convenient, but highly impractical. However, developing a virtual facility that offers comparable

training could provide a solution that mitigates the problems associated with these missions.

1.2 Background

1.2.1 HSIA

This specific scenario illustrates several issues that will be encountered as human spaceflight

programs venture further from the surface of the Earth. This research delves deeper into the HSI

challenges that will be faced on these expeditions. Training is one of the elements of a program

that enhances the interface between the systems used to conduct a flight and the human oper-

ating them. This element is important for giving operators, both ground support and crew, an

appropriate amount of context for the systems in order to utilize them effectively. Training also

builds situational awareness by increasing the knowledge of the mission environment and how the

systems interact with it. Enhancing these improves operational capability and increases the ef-

fectiveness and efficiency with which missions can be carried out. The HSIA risk, as currently

outlined in NASA’s HRR, describes how different facets of missions to the Moon or Mars would

see decreased operational capacity without improvements to the current architecture used for HSI.

HSIA assigns the perceived adverse outcomes to the need for increased crew independence and

operational complexity on future exploratory expeditions. Training is one way in which adverse

outcomes can be mitigated as future operations are designed to fulfill those needs. This thesis ap-

plies that risk to training infrastructures to answer the question “How can the training element be

improved to mitigate or avoid these adverse outcomes?”

Knowledge gaps associated with the HSIA risk are defined in the HRR and help contextualize

the what kind of decisions to make when designing elements of HSI. These knowledge gaps have

been determined to be the primary paths forward to understanding and eventually mitigating the

HSIA risk. They describe the background that defines what still needs to be determined and how it

2



applies to the risk, as well as identify the targets for considering the gap to be filled. Four of these

in particular are used in the development of SimBAD and influence design decisions to make the

tool suitable for future spaceflight missions, the HSIA-201, 501, 601, and 701 gaps.

HSIA-201 calls for a better understanding of the demands of future missions and systems

on individuals and teams and how those demands will affect crew health and performance. The

specific challenge faced during these missions that this thesis will focus on is the increased distance

from Earth, how that affects crew performance, and what improvements could be made to mitigate

that.

HSIA-501 calls for a better understanding of how HSI will be used to develop dynamic and

adaptive mission procedures and processes to mitigate individual and team performance on earth-

independent exploration missions. This thesis focuses on developing a concept for a tool that

enables a more dynamic mission design process in both the pre- and in-flight phases. Accounting

for unknown mission parameters in real time and having an adaptable infrastructure that allows for

said parameters would be a valuable capability to have for these scenarios.

HSIA-601 calls for a better understanding of HSI training procedures, regimens, and standards

for all phases of a mission to help reduce demands on crew; support meaningful work during long-

duration missions; and mitigate potential decrements in operationally-relevant performance during

future missions. This knowledge gap is the most directly applicable to the material in this thesis.

Getting a better sense for how to accomplish these is one of the main drivers for the development of

SimBAD. Decreasing demand on the workload assigned to crew as well as the training necessary

for the crew to be considered ready will be important as these workloads and training requirements

increase. Having the capacity to better prioritize or assign these workloads through an improved

infrastructure is necessary for future missions.

HSIA-701 calls for a better understanding for how human-automation-robotic systems can be

best utilized so that they provide a comprehensive awareness of the state of the crew. This is im-

portant in the context of missions with increasing autonomy and crew independence as they will

need to be able to acquire and interpret pertinent information to their own capabilities. This thesis
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focuses on developing an element of the tool that allows this within the training infrastructure.

Incorporating this into training would help establish a closed loop for training regimens by provid-

ing feedback to the user that enables them to augment their regimen. Having this capability will

increase a crew’s level of autonomy and is necessary for future missions.

1.2.2 History of Human Spaceflight Operations

The history of human spaceflight training provides important context here, more specifically,

how systems engineering and integration had changed to fill the requirements created by the in-

creasing complexity of spaceflight through recent decades. Human Spaceflight began with the

Mercury Program, where the astronaut corps was entirely consisting of test pilots. Test pilot cul-

ture drove the development of training infrastructure, as most of the human spaceflight operational

capabilities were inherited from those programs in the military. One of the main discoveries made

during this period was the need for detailed systems knowledge from the operators, and this drove

much of the development of operations through Gemini and into the Apollo program. This is where

the need for the engineering support team was discovered and reprioritized flight rules, the regu-

lations and procedures adopted for flying spacecraft in various conditions, as the main operational

focus of a mission. Even at these early stages of the development of human spaceflight operations,

simulations were a critical function in the process[4].

The primary objectives of the Gemini program were to improve upon the operational capabil-

ities needed to conduct rendezvous and docking between two vehicles in Low Earth Orbit (LEO),

conduct a guided reentry of a crewed capsule, and conduct EVAs outside of a vehicle. During

Apollo, the last operational capability, performing successful scientific operations and explorations

tasks in space, was developed and perfected to complete the trajectory of the flight operations team

that had been working on human spaceflight up until this point[5]. Interestingly, no broad formal

application of systems engineering was administered to the program up until this point to support

the growing complexity of the operations being carried out by operators. This changed during Sky-

lab, where the complexity of subsystems became great enough and the interdependence between

them was significant, so the need for a stronger relationship between the engineers and operators at
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Figure 1.1: Mission Control, MOD and FOD Logos

every level of the design became apparent. A tangible example of this relationship was between the

flight operations team at JSC and the engineering team at the Marshall Spaceflight Center (MSFC),

where the teams would conduct reviews of the systems and ensure operational compatibility. The

value of this relationship was proven during the various flights of the Skylab program[6].

This would evolve into what would formally become known as the Mission Operations Direc-

torate (MOD) when the Space Shuttle program began development, and later into the ISS program.

The Shuttle orbiter was the most systemically complex human rated spacecraft designed up until

this point in spaceflight, and so the need for a structure that could provide mission elements such

as preparation, training, and real-time operations was evident. Each division within the MOD was

responsible for individual integration within itself, as well as horizontal integration with the sys-

tems that other divisions were responsible for, as well as with external support teams. After the

decommissioning of the Shuttle orbiter, MOD was consolidated with the Flight Crew Operations

Directorate (FCOD) into the current group in charge of human spaceflight operations, the Flight

Operations Directorate (FOD). The evolution of the logo used to designate each group from each

significant era of human spaceflight is shown in Fig. 1.1. This change resulted in a group that was

responsible for training the flight controllers as well as the crew. The significant detail of how this

structure evolved was that it led to opening up channels towards making the resources between

groups more congruent and integrated as missions and the systems that supported said missions

became more complex.

5



1.2.3 The Flight Operations Team

Using the Mission Control Center (MCC) at Johnson Space Center (JSC) as an example for a

standard crewed spaceflight program, the flight operations team is composed of the crew, the flight

controllers, the training team, and the engineering support teams[7]. In practice there are more

organizations that support flight operations such as the Human Health and Performance (HH&P)

organization, but the four groups listed are the core that are considered for this research to most

directly apply. These groups are all critical to nominal human spaceflight operations for their

different roles and responsibilities. Understanding these roles and responsibilities is crucial to un-

derstanding how to improve systems engineering, specifically human factors, for future missions.

Defining what each role contributes to the program aids in understanding what directions the roles

can be taken for future operations to enhance the operations themselves as well as introduce im-

proved Systems Engineering and Integration (SE&I) processes[6].

The crew is the group that receives a majority of support from the other three, being the main

operational appendage that carries out the mission. Most if not all aspects of human spaceflight

operations are developed around what the crew needs to do their job. The flight controllers are the

direct support line to the crew and vehicle. This group consists of the specialists that act as the

experts for one or more designated aspects of the mission in support of the overall team. Flight

controllers are also responsible for producing operational products, or the procedures, plans, and

flight rules for the mission. The training team is responsible for coming up with the training

protocols for all necessary team members. This could range from a crew member needing to train

for an EVA in the Neutral Buoyancy Lab (NBL), to a flight controller trainee running through an

on-console simulation of mission operations. Lastly, the engineering support team is composed of

members of the design community as well as mission vendors, whose responsibility is to be able

to assist in any situation where context is needed from the source for certain faults or off nominal

operations that the other parts of the flight operations group may not have the expertise. Future

missions will change the current dynamic by limiting how the crew receives support from the other

groups. With increasing distance from the ground, immediate support will become less feasible,
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which indicates a need for improve the capability of the support available onboard the spacecraft

carrying crew.

Increasing the level to which these teams are able to integrate with one another is a neces-

sary change for the flight operations team as missions exhibit increased amounts of operational

complexity. As interactions between flight operation systems expand, the systems engineering ar-

chitecture between these systems will need to be capable of supporting this. Increasing the capacity

for which disciplines are able to collaborate with each other during the design process is something

that would be beneficial from an operations standpoint. Effectively this would mean increasing the

degree to which operators would be able to understand the perspective of their colleagues, which

is crucial for when subsystems become more deeply coupled. For example, giving insight into

the training team from a flight controller’s perspective would make it more likely that the training

team would be able to identify faults in current procedures or unnecessary steps. Supplying the

engineering support team with a training team perspective would benefit the engineers in designing

hardware that is more easily trained on and more intuitive for the crew. There are benefits to be

found when collaboration is enabled in every direction inside the flight operations team.

1.2.4 Autonomy, Automation and their relationship to Human Spaceflight

Autonomy and automation are two concepts that are also significant in the discourse surround-

ing future space missions[8]. In their fundamental terms, autonomy is defined as being attributed

to systems that can operate outside of human interaction[9], while automation is defined as the

capability for a function to be carried out independently[10]. In the context of a human spaceflight

mission, autonomy is defined as the ability for a system to respond to a fault on its own, which can

range from the system simply sensing that an aspect of the state of the crew, vehicle or mission

has changed, or making a decision on an action to be taken without human input[11]. Autonomy

in terms of independence from input from ground support is closer to the scope of this research.

Automation in that same context is when any process or function of a mission is carried out by a

computer without the crew or ground support. It should be noted that these two terms do not nec-

essarily have to be mutually exclusive, the best example being how an autonomous system could
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include the capability to initiate an automatic process.

While autonomy is focused on more directly in this thesis, differentiating it from automation

is necessary when discussing the human spaceflight systems in this context. There are several

dimensions of automation, with four specific stages being defined by Parusuraman, Sheridan and

Wickens. These incorporate differing levels of information processing and can vary in levels of

individual automation with each stage, ranging from the human making all decisions, to the com-

puter executing decisions based on human approval, to the human being ignored in a process by the

computer. The four stages of information processing defined are sensory processing, information

perception, decision making, and response selection.

With these terms defined within the scope of this thesis, motivating objectives for the training

infrastructure concepts being formulated becomes easier. The knowledge gap defined in HSIA-501

in NASA’s HRR most closely describes the way in which autonomy should be conceptualized here.

The most relevant distinction to make between the common usage for autonomy and how it’ll be

used in the context of this research is that autonomy in this context refers to a level of independence

from ground support, and not necessarily autonomy from human intervention entirely. This is

achieved by creating a training tool that allows crew to build their own simulations and procedures

without crew Automation will be present but to a low degree, mainly with the computer executing

functions defined by the operator for the compilation of simulations, procedures, and performance

data.

8



1.3 Objectives

This thesis has four research objectives aimed at improving the training infrastructure motivated

by the trajectory of human spaceflight operations and supported by an analysis of training within

current programs. The final product will be a conceptual demonstration of a virtual training tool

and facility that utilizes different elements to meet these objectives:

1. To enable improved collaboration between Flight Operations Teams

2. To have the capacity to account for unknown missions parameters in real time

3. To be packageable on board a spacecraft

4. To include a method for evaluation and monitoring of training performance metrics

With respect to the knowledge gaps from the HSIA risk, HSIA-201 and 601 provide motivation

for objective three, HSIA-501 motivates objectives one and two, and HSIA-701 motivates objective

4. The literature review in this paper will build upon these concepts and influence the design of

SimBAD, which functions as a UI for SpaceCRAFT[12] and allows users to construct and change

parameters in custom simulations. Users are also able to to implement procedures, script events

in the simulations, and designate evaluation methods for simulations. Fulfilling these objectives

would validate SimBAD as a conceptual demo for a tool to be used as part of a training framework

for future human spaceflight missions. With these objectives realized, the contributions of this

project are:

• A closed-loop training infrastructure as a virtual training facility

• A simulation tool that provides high fidelity scenarios through scriptable, cascadable events

Closing the loop in this context means having all of the functionality necessary to develop a

training regimen that is all operable and executable without ground support. SimBAD offers this

by giving the user the ability to create virtual environments, write procedures, script expected con-

ditions, and evaluate simulation metrics for continuous and autonomous iteration of the training
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loop. Having the functionality of specific events being scriptable within the simulation is a very

significant contribution, because with the other elements of the tool it creates a framework that can

potentially capture more aspects of the exploration scenarios than other simulation platforms to a

larger degree. This creates a unique infrastructure that allows for defining the interdependence be-

tween systems and environmental conditions that gives a better situational awareness of a scenario

which is especially important when validating operations in the exploration context.
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2. LITERATURE REVIEW*

2.1 Previous to Current Training Methods

The established infrastructure for training a crew for human spaceflight operations is effective 

for supporting the current mission objectives of human spaceflight programs. Those objectives are 

to support science and maintain a human presence in LEO. The current platform for this used by 

NASA is the ISS, where astronauts conduct spacecraft-related and science operations that extend 

our knowledge and capabilities on long duration missions. The ISS is a joint international project 

between the US, Canada, Japan, Russian, and European space agencies and was constructed using 

the US Space Shuttle and Russian Proton and Soyuz rockets. The work done on this craft acts as a 

testbed for new and developing technologies that will take crews to the Moon and beyond. Some 

of the most important operations carried out are the scientific and extra-vehicular ones in terms of 

directly contributing to the knowledge base needed for future mission operations. For this reason, 

many of the training facilities are focused on supporting these aspects of an expedition.

The three facilities discussed in this thesis to describe the current state of crew training methods 

are the NBL, the VR lab, and the Space Vehicle Mockup Facility (SVMF). There are more facilities 

used for training than these, and there are others used for training other elements of the flight op-

erations team (such as flight controllers), but these will not be discussed in as much detail because 

the main focus of this research is to develop a tool for simulation software, and the main capability 

of these facilities are as simulators. Simulators are historically one of the best ways to train for 

spaceflight as the conditions of actual spaceflight conditions are difficult to replicate on the ground 

in a way that important information can be conveyed. Another result of the increasing complexity 

of spaceflight missions is the broad scope of situations for which a crew must be p repared. Most 

simulators can only capture a set number of conditions and may be specifically used only to train 

for specific situations and types of o perations. The NBL and VR Lab focus on teaching EVA and

*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and 
Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace 
Conference (AERO), Copyright 2022 IEEE
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Figure 2.1: NBL at the Sonny Carter Training Facility (left) and the VR Lab at JSC (right)

Figure 2.2: The SVMF in Building 9 at JSC

robotic operations skills, while the ISS mockup in the SVMF is useful for payloads, science, and

overall vehicle familiarity. Beyond these purposes, these facilities lack fidelity as simulators for

the real vehicle and actual spaceflight conditions.

The NBL (Fig. 2.1) is one of the most effective methods for familiarizing astronauts with all the

operational aspects of EVAs. Residing in the Sonny Carter Training Facility near JSC in Houston

Texas, the NBL contains a 6.2 million gallon pool with a depth of 40.5 ft and a perimeter of 202

ft by 102 ft. This capability is used in the form of submerging large real-scale mockups of space
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vehicles that can then be used to simulate an environment as close as can be achieved on the ground

to a microgravity environment outside a craft. Astronauts in their EVA suits, assisted by a team

of divers, can submerge in the pool and use weights to make themselves naturally buoyant, such

that the force of buoyancy from the air in the suits is canceled out by the force of gravity. In

this configuration, astronauts are able to practice operations that have been planned out for future

missions or gain familiarization with EVA operations. Getting familiar with the subtle aspects

of an EVA such as the way the suit fits, how to use tools, even translating one’s position are all

important for crews to gain a better context before flight. There are still some areas of spaceflight

that this facility is not able to replicate, specifically actual microgravity as well as IVA operations.

While the weights on the suit do keep astronauts fixed to one spot in the water, gravity still affects

them inside the suit causing them to remain susceptible to sliding around inside the EVA suit

itself. Despite these limitations, the value of the facility in what it offers as a training resource far

outweighs those[13].

The VR Lab at JSC (Fig. 2.1) trains for similar elements of spaceflight as the NBL, but focuses

on different aspects of those elements which is more suited to the different techniques in simula-

tion. The advantages and disadvantages of this facility are also different from the previous facility,

which is another area to compare. Specifically, the VR Lab focuses on supporting EVA and robotic

operations training[14]. This is mainly done by displaying a virtual environment for users that can

be interacted with with different control input methods for different scenarios. The main advantage

of this system is to give the user a high-fidelity three-dimensional representation of the subject of

the simulation that is interactable. These physical models and their respective functionalities are

developed virtually out of the lab to be displayed inside the sim. This is one of the major differ-

ences between the VR Lab and the other two simulators, which utilize the physical mock ups by

themselves to enhance the simulator’s fidelity. This gives users a more detailed perspective of the

environment they’re training for, with the virtual environment having a very high level of visual

fidelity. This aids in familiarization with the vehicle as well as experiencing different orientations

or lighting conditions you’d likely encounter on an actual EVA. Robotic operations can also be
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simulated in this environment, with virtual models replacing the hardware and the control systems

integrated into the simulation so that the movement and behavior is accurately represented. This

allows users to familiarize themselves with the robotic controls as well as the context associated

with operation inside the ISS, such as line-of-sight from within the cupola module or the dynamics

of the robotic arm when commanding movement. Despite all this capability and simulator fidelity,

there are still subtle areas in which the facility is limited. One of the biggest problems with doing

a spacewalk in VR is that despite the user having all the visual cues for their orientation, their

vestibular system will always betray the ocular system by indicating a gravitational pull. While

haptic feedback control is available in the VR Lab, accurately designing controls for the feel and

touch of virtual objects is still a challenge and finer details, such as the exact shape of hardware,

or what the feeling is to press the correct button on an object are almost impossible to replicate in

a way that can be done as well as EVA training in the NBL.

The SVMF (Fig. 2.2) is located in one of the buildings at JSC, and houses multiple physical

mockups of vehicles as well as some payloads in modules that have been replicated for simula-

tion purposes. The main objective of the facility is to support engineering and mission operations.

Besides being a trainer for crews, the facility also acts as a ground analog for systems in orbit,

allowing the flight operations team to troubleshoot problems on the ISS from the ground. One

type of procedures that are practiced using these mockups is emergency procedures, which are the

most important for crew to be able to execute properly. Because the mockups have internal repre-

sentations of the modules on the ISS, this facility is the most viable for practicing IVA operations

compared with the NBL and VR Lab. This is also a facility through which scientific operations

can be taught and practiced. One of the issues with conducting science on the ISS is the sheer

amount of materials needed to conduct so many experiments. These must be properly stowed and

catalogued in order for the procedures that dictate how the science is carried out by the astronauts

to be correct. Familiarizing with payload racks and the locations and procedures for different ex-

periments and hardware is important for increasing the efficiency of quiescent station operations

and keep crew schedules from becoming unmanageable. Being able to conduct this kind of train-
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ing and preparation on the ground is very useful to the human spaceflight program when the crew’s

time is one of the most valuable commodities. There are still limitations to what this facility is

capable of in terms of accurate representation of spaceflight conditions, most notably the lack of

any kind of replication of a microgravity environment or partial functionality from some parts of

the mockups. This does not detract from the capability to help crew familiarize with the internal

layout of the ISS or the locations of different hardware and experiments. This also is not an issue

for the operational support given through providing resources for comprehensive run-throughs of

procedures.

2.1.1 Analog Missions

One of the most prominent methods for evaluating the effects of extreme environments on hu-

man systems is by conducting analog missions[15]. There are already multiple examples of analog

facilities for different surface operations such as the moon or Mars. NASA’s desert Research and

Technology Studies (RATS), NASA Extreme Environments Mission Operations (NEEMO), and

Hawai’i Space Exploration Analog and Simulation (HI-SEAS) are good examples of current facil-

ities that are working towards simulating these hostile environments and helping develop technolo-

gies and operations that can be used when those missions eventually fly. Other facilities focus on

simulating conditions like Isolation, Confinement, and Extreme (ICE) environments in order to as-

sess human factors for long duration or long distance missions. The Human Exploration Research

Analog (HERA), Crew Health and Performance Exploration Analog (CHAPEA), and Scientific

International Research In a Unique terrestrial Station (SIRIUS) programs are examples where the

human factors instead of the environment itself are the main focus of the research conducted.

The NEEMO missions in particular have been very valuable experiences for training astronauts

to cope with ICE environments while maintaining an operational and scientific focus[16]. The

Aquarius habitat (Fig. 2.3), located 12 miles offshore from Key Largo in Florida, is where these

analog missions take place. This program was developed by specialists from the astronaut training

team in order to give astronauts, engineers, and scientists the opportunity to become “aquanauts”

and experience the challenges faced during asteroid, moon, or Mars expeditions. At a depth of 60
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Figure 2.3: The Aquarius habitat used for the NEEMO Program

ft, the base sits at an external pressure of around 2.5 atmospheres, giving a unique added layer of

fidelity to the simulated environment, where concerns about the pressure difference inside and out-

side the habitat exist. The interior of the base is congruent with that of a space vehicle, and is about

the same size as the US Laboratory module on the ISS. The habitat is able to support operations

from the inside for activities ranging from habitat science to EVA procedures. Recent missions

have begun to use this testbed to experiment on different operational techniques for situations with

time delays like would be experienced during a Mars Mission[17]. While the results support the

claim that operations such as EVA can be conducted meaningfully with these time delays, it is

also recommended that methods for planning EVAs that include a degree of crew autonomy are

developed.

Other analogs such as the HERA project have done research that give insight into how the

human condition is affected by ICE environments and what kind of ways these missions need to

be planned and supported[18]. The HERA facility is run through the Human Research Program

(HRP) by the Flight Analogs (FA) team of the Research Operations and Integration (ROI) (formerly

ISS Medical Projects) element. The facility is a two-floor, four part cylindrical habitat (Fig. 2.4)

consisting of a core, a loft, an airlock, and a hygiene module. Communication and autonomy
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Figure 2.4: The habitat used for the HERA Program

studies are one of the types conducted at this facility as stated in NASA’s HERA facility and

capabilities information document (2019). Another similar facility to this is SIRIUS, which is

located in Russia and while also consists of four main habitation/experimentation modules, the

total habitat space is about four times as large (450 m3 compared to 148.6 m3 for the HERA

habitat). The research objectives are similar, with behavioral studies being done in order to develop

countermeasures for the adverse effects of ICE environments, such as in this 2011 paper[19] which

looked at the effects of low- versus high-level autonomy in a 105-day Mars mission analog. The

results of which showed an interesting effect on the mission control personnel after high levels of

autonomy was given to the crew. While the astronauts managed to complete their tasks without a

discernible loss in performance, the flight operations team supporting the mission reported higher

levels of anxiety. The effects of autonomy on things like emergency procedures was not within the

scope of this research.

2.2 Future Training Methods

As more radical changes are made to the infrastructure used to conduct human spaceflight mis-

sions, upgrades and new methods will be needed to the training infrastructure in order to support
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that infrastructure. The two most pertinent concerns to training and testing required are the level

of complexity and interdependence of the systems and the lack of communications capability as

the distance from Earth increases. With the first concern there are two potential solutions to this

based around the same assumption, which is that in some form the knowledge to sustain the ve-

hicle and her systems will all need to be on board. While a connection to the ground will likely

be maintained even despite large gaps in time between data going to and from the vehicle, any

fault with the communications system would leave the vehicle unable to sustain itself if any high

priority operational capability is left on the ground.

The first solution is to develop an onboard infrastructure that allows for the vehicle to be op-

erated autonomously as well as carry out automated procedures. To briefly reiterate, the vehicle’s

capability to operate autonomously would mean being able to maintain an awareness of the status

and health of the vehicle and react to changes, while automation in this sense means the capac-

ity for a procedure to be carried out without manual aid. There are also two different levels of

autonomy that could be discussed in this situation, which will be elaborated on in the procedure

design section of this thesis. This solution is more dependent on the vehicle’s hardware itself and

the design than the crew, which would lessen the operational load on the crew and allow them to

focus on more important crew dependent tasks. The other solution would be to develop a system

that relies more on the crew in the sense that most vehicle functionality will become a crew respon-

sibility, especially once a considerable communications lag is being experienced. Realistically a

combination of these solutions would be best, considering the benefits and drawbacks of automatic

vs manual operation in this context. Taking as much operational load off of the crew as possible

would decrease the amount of training needed to prepare crews for flight, but would increase the

complexity of the system managing autonomy and automation for the vehicle.

One important component of training for these future missions is a result of the intertwined

human factors associated with future spaceflight missions, particularly the difference between

team and individual training. SimBAD offers the potential for increased crew independence from

ground support for training. Having a closed loop for training and iterating through different regi-
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mens would decrease the dependence on personnel being necessary to support training conducted

in-flight. Crew cohesion will be an important human factor for these missions. Like with the

subsystems of a vehicle, the crew themselves will likely be interdependent on each other which

provides its own set of questions to be answered. A 2015 NASA technical report[20] identifies

different competencies tied to different training requirements, those being a combination of task

and team specific and generic requirements. The work in this thesis will set up a testbed for sup-

porting some of the training guidelines identified and listed in the study, particularly computer-,

simulation-based, and self-paced training.

One likely augmentation to training for future missions is to conduct more comprehensive

training while in transit. A key logistical note to make is that a vehicle carrying a crew to another

celestial body will likely prioritize transportation as opposed to science such as with the ISS.

Especially during longer missions, there will likely be significant downtime during quiescent ops.

This is a good opportunity to utilize on-board training methods, which can help hone skills and

techniques of crew members for different operations, teach new information, or assist in Just-

in-time training preparations. A potential method for this is gamification[21][22], where crews

would use game-like elements in order to supplement training and knowledge retention. Utilizing

techniques like these within the limited space and capability afforded by a space vehicle would

compensate for the setbacks encountered from the environment.

2.2.1 VR Training

Simulators that utilize mockups are historically a very effective way at conveying significant

information, familiarizing users, and practicing skills on hardware. Some of the limitations of this

method for achieving these objectives, specifically for the NASA human spaceflight program or

government-funded programs in general, are the financial and logistical risks they pose as they

become more viable for training. For example, a simulator like the NBL gives EVA operational

experience that is not replicable by any other simulator where astronauts can don the EVA suits

and simulate motion like that of a real spacewalk. The drawback is that the facility requires a large

amount of resources to maintain, from the space needed to house the pool and the vehicle mockups
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to the manpower required in the form of divers who support the simulated spacewalks. The biggest

advantage of using VR to simulate space environments is that the resources needed to maintain a

virtual environment is significantly less compared to a facility like the NBL. This is the purpose

for having the VR lab at JSC, as well as expressing the capability to test and train other hardware

that cannot be simulated in other situations such as the Simplified Aid For EVA Rescue (SAFER)

system, the mass handling system Charlotte, and robotic environment[23].

Research in the field of VR training has been done to support the conclusion that it suffices

as a viable training method, particularly in the ways that it is currently being utilized for. Virtual

EVA training with a haptic feedback system in order to simulate the sensation of handling mass

while in a microgravity environment[24][25] is one example. Another paper studying the usage of

VR in conjunction with telerobotic operations as it pertains to refresher training [26] builds upon

that training done at JSC’s VR lab by applying it in a way that could be useful to long-duration

missions where refresher training would improve knowledge retention. Other research is also

being done outside the capability that the VR lab typically developed, such as in the area of IVA

operations as opposed to EVA and robotic ops. Cubesat building was used as an example in a 2020

paper[27], which demonstrated the usefulness of preparing for a simpler task such as building a

cubesat. This research also supported the conclusion that VR technology could be used to support

on-orbit refresher training. Other elements being researched that would provide addendums to the

practicality of VR in the training applications for human spaceflight are collaborative training and

the simulation of failure modes[28]. Understanding the different uses of virtual simulations will

help build a basis for the development of the SimBAD VR training platform in this thesis.

While there is plenty of research supporting the use of VR in general in different training sce-

narios, one major aspect of this emerging technology that should also be considered is the nature

of the virtual environment itself. A VR headset is not the only way to display virtual information,

different methods of doing so and understanding the pros and cons of each can provide insight

that helps design a better environment for whatever virtual training method gets flown. One ex-

ample is a virtual environment using walls and projectors instead of a headset[29], which while
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is not as desirable given the space requirements for flight conditions, does present an alternative

option for virtual training on the ground, which could be useful considering most VR headsets

have historically been known to cause motion sickness due to the brain processing the different

signals coming from the ocular and vestibular systems. This study also reinforced the necessity

of high levels of “presence”, which will be elaborated further in section 2.3. Another example of

a unique application of a virtual environment was the Human Engineering Modeling and Perfor-

mance (HEMAP) lab[30], which was run at Kennedy Space Center (KSC), and was developed in

order to investigate the interaction between crew, ground support, and spaceflight hardware. The

facility works very similarly to a motion capture studio, where users put on black suits with white

dots on them, and the environment is constructed out of PVC piping. Sensors track the environ-

ment and the personnel, and are able to send data to computers that interpret what’s been captured

and construct a virtual environment with it. The biggest factor here that is different from regular

VR is that the ones who are viewing the virtual environment are not the crew themselves, but the

support engineers running the simulation. In this situation, the users are effectively the support

engineers and not the ones interacting with the environment directly. This is another case where

the technology is better suited for ground than in-flight operations. The significance to be taken

from this technology is that this kind of system invokes a more involved amount of cooperation

between support engineers and the crew who is actually embarking on the task, where the support

team has more insight and a more direct perspective on the procedures and gain a more valuable

operational awareness.

In environments dedicated specifically to educating users on tasks, particularly technical ones,

VR has been shown to allow for higher usability than with standard teaching methods [31]. This

area of training gets more into the difference between classroom training and simulations. A lot of

knowledge is transferred to crew through classroom settings, where material is presented directly

to the students, normally with checks for comprehension at certain milestones such as quizzes,

tests, or checkouts. However, this is not the most effective method at knowledge transfer, and is

conducted due to limited time and resources for planning any other method. VR offers a solution
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helping users learn the same material with a much more interactive and engaging experience and

could be used to educate crew members in orbit on topics that normally would have been learned

in the classroom setting on the ground, which would save the flight operations team time and

resources.

2.3 Simulations

Simulators have several aspects about them that make them viable for different situations when

training operators. Knowing what those aspects are helps design more effective simulators that

fulfill different elements of a mission, whether that be procedure familiarity, environment familiar-

ity, or knowledge of a specific skill or technique. The medical field is one in which simulators are

widely used and the level of expertise being taught is typically on par with the skills and techniques

being taught to astronauts. Operators in both fields need to have a well-refined skill set in order

to be able to carry out their jobs, and also be able to use these skills in high-intensity situations.

For this reason, studying the way in which professionals in the medical field define their simulation

methods is a good way to understand techniques that can be generally definitive, and then reapplied

to human spaceflight applications.

A good place to start defining a simulator is with the five main aspects that compose a simu-

lation. These are Fidelity, Reliability, Validity, Learning, and Feasibility [32]. Fidelity is defined

as the degree to which the simulation resembles the real-life experience. Reliability is the measure

to which the performance can be consistently recorded through each iteration of the simulation.

Validity is the whether the method of simulation has construct, concurrent, or predictive validity,

or how much trust can be put in the method for providing results that will correlate to actual per-

formance. Learning is simply defined as whether or not the trainee actually learns what they were

supposed to from the curriculum. Finally, Feasibility is the degree to which the simulation method

is affordable to implement considering the resources required for the specific method.

Another paper introduces an interesting concept known as the “Miller’s Pyramid” [2], shown

in Fig. 2.5, which is a categorization technique used to discern the level to which a trainee has

acquired a skill or identify what a certain simulation method is meant to convey. The bottom of
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Figure 2.5: Miller’s Pyramid, which categorizes different levels of understanding [*Reprinted with
permission from [2]

this pyramid is the “knows” region, where the most basic knowledge of a concept resides. Further

up is the “knows how” region, where the knowledge of how a concept works exists. Second from

the top of the pyramid is the “shows how” area, where actual demonstrations of a concept would

happen. At the top is the “does” section, this is where the trainee would be able to actually execute

a concept. To relate these to spaceflight concepts, the “knows” and “knows how” regions would

be covered by training materials such as classroom learning, quizzes, tests, and checkouts. The

“shows how” section would be demonstrated through simulations or other scenarios in which a

trainee would be required to exhibit the knowledge they’re supposed to have learned in an environ-

ment that is not the real operation environment. Which leaves the top of the pyramid, the “does”

block, which would be the trainee taking their knowledge and experience and applying it in the

real life situation. Another paper on clinical skills produced some interesting findings with the

correlation between the level of expertise of a user and the level of complexity of a simulation rela-

tive to the user’s experience level[33]. Simply put, simulations developed for professionals would

not be effective in the hands of amateurs, and simulations developed to be simple for beginner-

level users would not be useful for professionals. This is significant when considering astronaut

training methods, because astronauts, even astronaut candidates, are highly-qualified individuals.

However, some skills still require an acknowledgement that the users will be beginners and the

simulations must be tailored accordingly. This means that the level of complexity of a simulation
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must be honed to a more sensitive degree, such that astronauts with more experience can find the

simulation useful, and the astronauts with less experience are able to learn and develop their skills.

2.4 Procedure Design

In human spaceflight, procedures have become some of the most important forms of documen-

tation for programs and an integral part of the flight operations team’s nominal routine. Between

the three main operations products that are developed by flight controllers, procedures are the ones

that deal with the most day-to-day operations. The purpose of Flight Rules are to dictate in what

fashion a flight will be conducted with constraints and requirements, and flight plans indicate the

pre-determined schedule for which activities in the flight will take place and in what order. Pro-

cedures describe in detail how these activities need to be carried out and give the highest level of

detail for human spaceflight operations. The development of procedures is normally dictated by

specific activity requirements and Flight Rules, which eventually propagates down to operations.

Designing procedures for singular subsystems is relatively simple, but when developing them for

more complex subsystems that require a high level of cross-system knowledge, development be-

comes more difficult proportionally.

Procedure design is where the topic of autonomy and automation are also brought back up

for elaboration. While both concepts have been defined, there is a lower level of definition for

different types of autonomy and automation that gives a better understanding of the potential oper-

ational conditions that could be experienced during Long Duration Spaceflight Missions (LDSM).

Specifically, there are two levels of autonomy to be discussed in order to understand how different

procedures could be designed for different types of activities. The first is a relatively high level of

autonomy where the vehicle and the crew are autonomous, where the crew is considered part of the

vehicle’s operational capacity. The second is a lower level of autonomy where the vehicle is con-

sidered separate from the crew and would be able to notice and react to faults on its own without

crew intervention. Understanding the difference between these two levels of autonomy is helpful to

understanding and categorizing different procedures based on the necessity of the crew, therefore

optimizing their time for more crucial duties. In situations where the higher level of autonomy is
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administered where the vehicle and crew are independent of ground support for however long, the

scenario where the crew themselves design a procedure becomes a possibility for consideration.

Unorthodox situations like this should be considered and reconciled before these missions fly.

With regards to automation, infrastructure for running procedures without support from a crew

member has existed on the station for most of its operational lifetime. A vehicle that complex

being run completely manually would require more personnel than can fit on the vehicle. This

alone proves the need for reliable and widespread automation on a vehicle traveling long distances.

For the Shuttle and ISS, the timeliner tool[34] has historically been the means through which

procedure automation is carried out, typically with payload and core systems. Flight Controllers

used this tool to write scripts for sequences of actions and events that would be sent as a chain of

command to the hardware onboard the shuttle/station which would be able to then read and enact

those commands automatically and in proper succession. The tool is a scripting language that has

syntax similar to that of what would be encountered in a manual procedure, making readability

and learnability easy for users already familiar with that format. This characteristic of the tool

is important when considering other tools that build procedures, even ones that aren’t automatic.

Creating a user interface that is congruent with existing procedure nomenclature is important for

the tool’s usability, especially for a human spaceflight program such as NASA’s. In a similar vein,

procedures that can be built by the crew members themselves would also be something useful

for a human spaceflight mission, and so half of that struggle would be creating something that is

robust and easy to use. A 2018 thesis noted several aspects of designing electronic procedures that

would make them useful for in-flight situations, specifically ones that would require Just-In-Time

Training (JITT) [35].

2.4.1 Emergency Procedure Design

In the hierarchy of what elements of human spaceflight take the most priority, ensuring crew

safety will always come first, secondary to that is the vehicle health and status, with mission

success being the third and lowest priority of those three. With this hierarchy in mind, emergency

procedures become some of the most important operational products that come out of the flight
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operations team. Emergency situations are difficult to anticipate and properly prepare for, and

crews are also not likely to have to deal with them in flight. Because vehicles are designed with

avoiding hazardous situations in mind, these situations rarely occur but are frequently trained for.

This causes a potential for a disparity in the crew reaction during a procedure and the crew reaction

during an actual event. There are several ways to avoid this. One way is to simulate an emergency

situation randomly inside of a simulation of nominal operations, catching the crew off guard and

eliciting a genuine response. One of the best ways to prevent that is to create a simulation that is

as close to the hazardous event without becoming actually dangerous, in order to encourage the

proper reaction and state of mind from the crew for them to deal with events. VR is a good method

for doing this, as sights and sounds can all be simulated with a high degree of fidelity and incur the

proper response from crews and prepare them for the situation they might end up encountering.

2.5 Long Distance Spaceflight Missions Human Factors

In long-duration transits, there are several physiological effects that should be noted when de-

signing missions to far-off destinations in order to properly ascertain the state of the crew during

all phases of the expeditions. The two most significant risks when it comes to crew performance

are crew behavioral and mental health, and physiological health detriments in the form of muscle

atrophy caused by the microgravity environment. In both cases, the ability of the crew to per-

form their job is diminished and affects mission outcome. While the effects of microgravity on

the muscles and bones is more well known and counteracted by consistent exercise and simulated

loading on specific muscle and bone groups, the mind is less well understood. Countermeasures

are currently being researched, but likely one of the most helpful methods for counteracting a de-

cline in the mental state is consistent exercise, similar to how muscle atrophy is mitigated. ICE

environments are particularly stressful on a human being when it comes to mental health, which is

why carefully designing the environment itself is important to ensure the crew can manage them-

selves for the entire duration of the mission. This means everything from the subtle differences in

different lighting conditions to stimulate the body’s circadian rhythm, to choosing crew members

that engage with the other members well in professional, personal, and even cultural senses. Be-
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cause the environment is so important, it follows that manufacturing a virtual one for the crew is a

potential countermeasure being considered. Showing users images that aren’t of a cramped, sterile

spacecraft but of their home or a more natural environment could help offset some of the negative

effects on mental state induced by spaceflight. VR could also be used to maintain mental acuity,

especially for tasks that might be lower priority for the mission, and therefore easier to forget along

the way to the destination.

2.6 VR Hardware

In the last several decades, the capability of graphical representation of virtual objects has

exploded exponentially and opened up many opportunities as to what they can be utilized. Under-

standing the hardware for VR is necessary to properly ascertain what the capability is for use in

spaceflight scenarios, and arguably more importantly is analyzing how this hardware could inte-

grate with a vehicle and become flight certified. Two of the biggest concerns with the hardware

are power draw and thermal output. VR systems utilize some of the most visually acute graphics

systems to date. The Graphics Processing Unit (GPU) of the system dictates the visual acuity of

the simulation, but while a better GPU will result in a higher level of fidelity, it will also result

in a higher power draw. This is also true for the Central Processing Unit (CPU), which performs

the computational work for the system. The effect on the power is similar, but the contribution to

the simulation is different. Instead of enabling better visual acuity, the CPU will dictate how fast

the simulation can run, and how many subsystems in the background are able to be simulated. A

worse CPU means you might not be able to properly perform the computations needed to propagate

a simulated ship’s movement, for example.

Most VR systems, like the ones used for some activities carried out in the VRL, are composed

of three components: The headset, controllers, and infrared “lighthouses” that track the position of

the headset and controllers. The Vive system depicted in Fig. 2.6 shows how this setup can look. A

VR system translates the infrared sensor data communicated between the headset and controllers

to output position data. That position data is then sent to the computer to be interpreted in a virtual

environment and displayed back to the headset through the GPU. Depending on the system a user
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Figure 2.6: Vive Pro 2 wireless VR system with hardware elements annotated

may experience up to 6 Degrees of Freedom (DOF) within the virtual space. A system with 6DOF

tracking shows the full 3 dimensional position and yaw-pitch-roll orientation of the headset and

controllers.This assists in creating a sense of presence as minute head movements can be tracked

and displayed to the user. Other technologies such as eye tracking or haptic feedback can help

mitigate issues with nausea or increase the amount of sensory immersion inside a simulation.

2.7 SpaceCRAFT

The simulation platform that the SimBAD tool is based on requires some definitions and con-

text in order to have a proper discussion of what SimBAD is adding to the current platform. This

context is also useful to comment on what can be upgraded in future versions of SpaceCRAFT to

make it more useful for the objectives that SimBAD is focused on fulfilling. SpaceCRAFT can

be defined with two vital components and the supplemental architecture that supports those com-

ponents. These two components are the Compute_Server and the Unreal Engine 4 (UE4) client.

The Compute_Server is the code responsible for running the simulations from a simulation con-

figuration, or ‘sim config’ file, as well as performing all of the necessary calculations prescribed

by the user set systems and entities. The UE4 client element of the platform utilizes the graphical

processing power of UE4, which visualizes all of the models and environments. The interaction

between these two components is driven by the Compute_Server, which sends data to entities in-
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Figure 2.7: SpaceCRAFT Simulation with ISS and Soyuz models for Proximity Operations Anal-
ysis

side the simulation, which affect different entity parameters based on the situation being simulated.

This interaction is shown in Fig. 2.8. SpaceCRAFT also has a multi-user capability that SimBAD

takes advantage of to apply the simulation builder concept to a collaborative level, which is one of

the objectives for this research

SimBAD is adding onto the current capabilities of SpaceCRAFT in order to help develop a

professional version of the platform. The main goal of the tool is to create a functional user inter-

face for creating sim config files. Currently the only method for creating these files is manually,

which is a non-intuitive process given SpaceCRAFT has a specific .JSON file schema that the

Compute_Server can interface with. Adding this functionality is essential to meet the requirement

of allowing users to have the freedom to build their own space environment simulations. The other

goals are secondary, and deal more with adding operational functionality to the platform from

several different angles. There are three secondary components that SimBAD adds, procedure

management, failure mode management, and procedure evaluation methods management. While

SpaceCRAFT is able to simulate a myriad of different situations under different conditions, there

is currently not an infrastructure for adding in procedures to run through in simulations. Adding
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Figure 2.8: Diagram of SpaceCRAFT Platform Architecture

this would give the platform a lot more operational flexibility in what it could potentially be used

for in the realm of human spaceflight systems integration and training. A real-time event manager

would further increase this flexibility, adding onto the platform’s event-driven system that could

be responsive to different environmental scenarios affecting the systems in a sim and adding a

necessary level of realism. Procedure Evaluation methods would be a useful addition for tracking

different metrics inside a simulation, and allow for the post-processing of data as well as easier

quantification of user performance while executing a procedure or mitigating a failure inside of a

simulation. Overall, these secondary additions would greatly append onto the operational capa-

bility of the platform and increase the viability of general use for public and private space entities

who are aiming to expand their human spaceflight program.
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3. SIMBAD CONCEPTUAL DESIGN*

SimBAD is a toolkit that utilizes multiple smaller individual tools that compartmentalize the

overall functionality into more manageable and understandable groups. These are all composed of

UE4 UI, UE4 C++, SpaceCRAFT API, and JSON components to different degrees depending on

the objective of the element. Splitting up these elements into parts helps manage the workload for

the project, as well as support nomenclature that is easier and more digestible for users. Having

each element contain its own separate sub-functionalities is a helpful choice when debugging prob-

lems inside the codebase itself and help construct a more focused approach to the development of

the element. The framework this helps install is also useful for helping users understand the Space-

CRAFT platform and how sim config files are used inside the architecture, as well as assist in vi-

sualizing how SimBAD works at a high level. Having an improved method for Human-Computer

Interaction (HCI) would assist implementing an effective HSI on future spaceflight missions that

would benefit from increased levels of autonomy.

One facet of the current state of SpaceCRAFT is how simulations are initialized inside the

current front end of the platform, which takes pre-built sim configs. This is a limit on users as

there is not currently any method for editing these configs inside any of the UI in SpaceCRAFT.

Users previously were required to understand the JSON schema used by the platform that gets

parsed into the Compute Server and edit those files directly. This added more layers of complexity

than is viable to SpaceCRAFT’s objective of being more usable than current space environment

simulators. SimBAD adds functionality that takes those layers of complexity away from the user’s

experience by appending onto the front end a UI that takes user input that creates and edits sim

configs before the simulation has started. The functions in SimBAD are called using the UE4 C++

API, and depending on the specific function uses other libraries for more specific actions such as

reading data, writing or formatting data.

*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and
Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace
Conference (AERO), Copyright 2022 IEEE
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Figure 3.1: Block Diagram showing the place SimBAD fits in the architecture used to run simula-
tions

The timeline for how simulations are initialized and run inside the platform is also impor-

tant for understanding at what point along that timeline SimBAD fits best. As an example, the

current approach for starting simulations is exhibited in the Space Teams activity, which is a pro-

gram that uses SpaceCRAFT to teach students about spaceflight and exploration using different

pre-built simulations loaded onto a compiled version of the platform. On the surface level this

version mainly consists of the graphical side of the platform, or the UE4 front end and simulations

themselves. The difference between the platform here and other projects built using UE4 such as

video games is the Compute Server. This has been compiled separately but lives in the same file

directory as the packaged SpaceCRAFT executable. The Compute Server is able to override the

game engine’s computational processes in places where they incur a large amount of approxima-

tion error that is not conducive for scientifically accurate simulations. In the Space Teams activity,

the user is presented with a front end that allows them to choose between the different available

simulations. When a simulation is chosen, a command is sent to both the game engine and the

Compute Server to start the simulation on both sides of the platform. At this point the Compute

Server is reading and parsing the sim config data, preparing systems to run their processes and

wiring those to entities and their data before sending those entities back to the game engine to be

loaded and rendered. The game engine, after running the command, loads a different, empty level

that has an engine-based Entity Manager object loaded into it that takes in the entity data from the
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compute server and then loads in the corresponding engine assets and renders them for the user.

At this point the simulation has begun and the quiescent backend processes handle the behavior of

the objects inside the simulation.

While SimBAD is built upon the SpaceCRAFT platform, SimBAD is a higher level tool that

provides the functionality necessary to implement a virtual training facility. SimBAD utilizes re-

sources from the SpaceCRAFT platform, appends new components, and creates new functionality

that enables integrated virtual crew training on the ground, in space, or simultaneously from remote

locations. Specifically with regard to entities and systems, SimBAD adds new methods through

which users can interact with them as well as utilize them within the other elements. Some unique

features that are core to SimBAD’s capabilities are procedure scripting and integration with VR

simulation, complex scenario design and execution using a new Event Manager, and simulation

evaluation tools to assess performance during a particular simulation. The amalgamation of these

elements creates a closed-loop infrastructure that operates as a virtual training facility. This is the

essential contribution of this work. The SpaceCRAFT platform is the vehicle through which Sim-

BAD achieves this, but the concept could be applied to other platforms. Like with coding projects,

although a script in one language can’t be used in another, the overall algorithm can be transposed

as long as the underlying concept is understood.

3.1 Simulation Environment (SimE)

The SimE element is composed of the simulation “entities”, which is a term that comes from

the SpaceCRAFT API and refers to all objects that will be spawned inside of a simulation. The

SimE manages these entities as well as the relationships between them, or with the systems that are

declared in the SimSys element of the tool. This occurs before the simulation startup as mentioned

in the previous section as editing the entities focuses mostly on the sim config file itself, which

cannot be edited mid-sim. This means that the user engaging with SimBAD occurs after the pro-

gram has started running but before any simulation has begun. The UE4 client is the component

that contains the UI for the user to engage with and displays the current sim config information

and has controls that can change this information.
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Figure 3.2: SimE menu showing listed entities in the upper dialog and their parameters in the lower
dialog

Entities are data structures that consist of a list of parameters that describe the state of the

system. Some of these parameters are required such as the name, entity type, and system name

tags, which are present in all entities regardless of their type or purpose. Besides these and some

others used for engine purposes, parameters are specific per entity and can be customized based on

their function in the simulation. For example, an asteroid in a simulation may have a set location

and velocity to dictate its motion, and a spacecraft in the simulation may have a relative location

and velocity as well as other parameters not necessary in the asteroid entity such as power, oxygen,

thermal properties, etc. Displaying entities information in the UI requires for the background

functions of the tool to parse that information from the JSON file and put it into a format that can

be read from, Sim Config, to SpaceCRAFT code, to the UE4 UI.

There are two areas in which the entity data is displayed. The first is a list of entities and their

required parameters (name, type, and system name tags), which gives a concise view of what is

going into the simulation. The second is a list of the parameters given a selected entity that the user

can alternate between and edit at any point in this stage of the simulation building process. Both of
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these lists in the UI are editable, so the user can create, edit, or remove entities or their parameters

at any time.

3.2 Simulation Systems (SimSys)

The SimSys element of SimBAD is mostly similar to the SimE element, with the key difference

being the focus on the SpaceCRAFT Systems as opposed to the entities. SpaceCRAFT Systems

are scripts containing custom functionality that will be carried out by the Compute_Server during

runtime of the simulation. Systems dictate how the entities interact with one another and enable the

functionality to allow the environment to operate as written by the user. Examples of the kinds of

behaviors that systems are responsible for is power being supplied to a module, CO2 input and O2

output from an oxygen generation device, or the gravitational field of a celestial body. The SimSys

element manages these systems and their relevant attributes and displays their info in a way for the

user to easily access and edit these during simulation or procedure testing and iteration. Like with

the SimE UI, the top dialog has users select, add or delete systems from the config with the bottom

dialog giving users the ability to select, add, delete, or modify the system’s instance parameters.

3.3 Simulation Procedures (SimP)

Enabling the use of procedures in the simulation adds a high level of viability for the Space-

CRAFT platform and SimBAD as a tool. The SimP element of the tool is used to allow users to

create and edit procedures of their own to use inside of the simulations themselves. This is one of

the new additions to the SpaceCRAFT platform and enables users to use it as a means to assist in

the development of ops products. This helps achieve one of the main goals of the platform, which

is to be a resource in human spaceflight operations. The format of how SimBAD incorporates

procedures is through a new JSON schema, which is separate from the sim config JSON file. This

element deviates from the first two in that way since it is independent of the sim config schema,

but because it is still a JSON file much of the same logic can be used in the functions that read and

write to the procedure files.

The SimP dialog (Fig. 3.4) allows users to create and edit their own procedures to be used
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Figure 3.3: SimSys menu showing listed Systems in the upper dialog and their instance parameters
in the lower dialog

Figure 3.4: SimP menu showing available procedures in the left dialog with details to the right
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inside of a simulation. The first dialog shows users the procedures that are available to the user.

The second loads up the details of a procedure for editing and adding elements. Each procedure

consists of tasks, with each task containing its own checklist of steps to be carried out with Notes,

Cautions, and Warnings (NCWs) added to the front of the task. Each step contains a description

of the action to be taken as well as an NCW if one is specified. This format was motivated with

NASA’s format for human spaceflight procedures in mind. This sets a solid baseline and allows

for easy formatting changes in future situations.

3.4 Event Manager (EM)

The EM is another new addition to SpaceCRAFT along with the Simulated Procedures element

that is necessary functionality towards making the platform more viable as a simulation tool. The

purpose of this element is to set up event-driven simulations that allows for more realistic levels

of interaction between entities in the simulation, the systems that drive the behavior of the entities,

and the users. Adding this level of fidelity to simulations would increase the usefulness of the

platform as one that can account for the unpredictable nature of spaceflight. One of the most

important aspects of a good space environment simulator is the ability to be able to train astronauts

for unexpected situations because being able to react calmly in any situation could make a huge

difference at any given moment during an actual mission. Scripting a sequence of events to occur

and have the trainees inside the simulation to deal with is an excellent way for trainers to create

training regimens that teach crews the specific actions and reactions the regimen is attempting to

condition the crews for.

The EM is a comparable element to SimSys in that it deals with the behavior of elements inside

the simulation. The distinction between this element and SimSys is that while SimSys deals with

the explicit behaviors of individual objects or systems in a simulation, the EM allows for more

implicit behaviors being scripted. The most pertinent description of this would be with anomalies.

SimSys helps users dictate what the nominal behavior inside a sim would be, while the EM is

better for dictating off-nominal behavior. This helps to define the simulation as a more realistic

scenario than one that simply shows the expected behavior of simulated elements, and being more
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Figure 3.5: EM UI showing dialog for Criteria list on left and Event list on right

viable as a training tool through that functionality.

There are several different situations in which the event manager is useful and adds novelty to

the SpaceCRAFT platform. Systems faults are a great example of how this functionality could be

utilized. Adding in the possibility for systems to fail along with adding their normal functionality

is important for making the virtual versions of the systems as realistic as their actual counterparts

which properly familiarizes users with the behavior of said systems. Being able to prevent, mitigate

or resolve failures is incredibly important in spaceflight and having a simulation platform that can

replicate failure conditions in a robust and consistent way is crucial for adequately preparing a

crew for a complex mission. Another situation this kind of event-driven system is useful for is

one where there could be a cascading series of events caused by each other. This could be a set

of failures such as a power failure leading into an oxygen generation failure, or something such

as a power overcurrent issue resulting from multiple systems in use at the same time due to an

improper scheduling of procedures. In cases like these, it also shows how having a simulator with

this level of realism would also be a significant resource as a planning and logistics tool for a

flight operations team. Planning specific tasks to be carried out at different times during a mission

is already an important part of human spaceflight, with certain procedures having requirements
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Figure 3.6: SimEval UI showing the three dialogs used to get data from simulations: Entities,
Parameters, and Procedures

that frequently clash with one another and require special attention to make the flow of events as

efficient as possible.

3.5 Simulation Evaluation (SimEval)

The SimEval element of the SimBAD toolkit is another new addition to the platform that helps

users quantify performance inside of a simulation and use that to iterate through different scenar-

ios and under different circumstances. Being able to review performance data has always been an

important aspect of running simulations for training members of the flight operations team. Being

able to look back on a simulation that was run in order to gain an understanding of where mistakes

were made or where certain actions could have been improved is a valuable attribute for a simula-

tion platform to have. This would give opportunities for several different techniques of monitoring

crew training, designing procedures, or improving human systems integration.

Crew training could be monitored and give a training team the information to gauge how well

any given crew member is doing in a situation where the trainee is being trained on a procedure

they aren’t familiar with. Not only would this help the trainee understand in what areas they might

need to improve, the training team could also use that data to improve a particular training method
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to compare between performances. This situation is also similar to one where training methods

were researched in a study [17] where times were recorded to quantify trainee performance. An-

other situation where this functionality would be viable is where a mission planning team could

run through different combinations of scenarios in different circumstances and determine the best

timeline to send on the mission. Historically, timeline development like this has been estimated

to a certain degree by the planning team and then rectified after the mission during crew debriefs.

Having this resource available to the planning team so they have crew perspective beforehand

could provide important improvements in timeline efficiency without having to put a crew through

a sequence of tasks in the first place. This is also valuable in a situation such as a Moon or Mars

mission, where crew debriefs may not be as valuable considering the time between Shuttle mis-

sions and ISS expeditions were relatively short meaning the turnaround for amending a timeline

was short. This may not be afforded in longer missions with larger times between missions.
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4. TECHNICAL APPROACH*

This section of the paper describes the details of the different elements of SimBAD in the

context of how they function within the backend side of the tool. Each section details the different

methods and data structures that are used by the tool for each individual element. The purpose

of this section of the thesis is to effectively give readers instructions on how to format data in a

simulation platform to create other tools like this one. The objective is for this concept to enable

others like it to be created and developers of training tools based in virtual simulations a framework

to work off of and potentially avoid unnecessary “reinventing the wheel”.

Understanding how SimBAD works also requires an understanding of how the different com-

ponents of the SpaceCRAFT platform operate in the backend. Most of the SimBAD elements

require access to core elements of the code base and therefore understanding how the backend

works so that the tool is developed parallel to the current functionality and appending onto it in

a way that is intuitive to developers who are already familiar with the current code. The most

significant characteristic of SpaceCRAFT that applies to SimBAD is the relationship between the

UE4 client and the Compute Server. The client is the interface that the user will be interacting with

and is composed as a customized platform version of the UE4.27 game engine, and the Compute

Server contains the backend processes taking input from the user and refreshes the state of the

simulation based on how those inputs react to the entities and systems inside the simulation.

The C++ functions that cover the functionality utilized by these elements are split between sev-

eral different files that contain different classes and data structures to best divide the potential work

as efficiently as possible. On the SpaceCRAFT UE4 engine side, the SimBAD_Functionality C++

is a class which consists of a source and header file inside the UE4 project’s source code directory.

The majority of functions that are kept here are for writing nodes that can be used in Blueprint code.

Blueprint coding is a form of coding specific to the Unreal Engine that uses nodes with different

*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and
Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace
Conference (AERO), Copyright 2022 IEEE
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functions in order to dictate the behavior of client assets. While this style of coding is relatively

simple compared to C++, it’s also more restrictive and generally slower, which is why as much

functionality is inside C++ classes instead. However, to interface with UE4 through a UI, some

blueprints are still created in order to better interface with menu-specific functionality and actions,

normally in the form of setting buttons on menus to specific functions that are referenced from the

SimBAD_Functionality class. Apart from the client side of the functionality, there is also Compute

Server functionality that is being added that will be separate from other classes. The first and most

significant file on the server side of the platform is the SimConfigEditor, which is a SpaceCRAFT

API C++ class that holds functionality that operates on data types that aren’t available in the UE4

C++ API. The most common occurrence this class is used is when input data from the user is sent

back to be written to the JSON config. Along with this, the SimBAD_EventManager and Sim-

BAD_EvalMethods are SpaceCRAFT API System classes that correspond to the fourth and fifth

elements of SimBAD.

4.1 SimE & SimSys

The entity and system data held within the sim config file are not immediately capable of being

sent to the UI.This requires a custom SpaceCRAFT UE4 engine C++ data structure that can have

all of the necessary server-side entity data written to it to be parsed into UE4. This data is read using

the SimBAD_Functionality class but written using a combination of this class and the SimConfig

Editor. Fig. 4.1 shows a flow diagram for the sim config data. Once data is read from the JSON

file through the SpaceCRAFT code and into the UE4 C++ class that contains the functionality that

interfaces with the UI and displayed to the user, the user is able to interact with this data.

Automating this process in a way that is robust and can be broadly applied to all kinds of

simulations requires a relatively complex logic. One of the main issues come from converting

data from JSON structures to structures that can be read into UE4, and another comes from the

problems that arise when dealing with the multitudes of data types that SpaceCRAFT can handle

and pass through the Compute Server from sim configs. One of the complications when dealing

with the client side of the platform is that the Unreal Engine uses its own set of data types and
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Figure 4.1: Flow Diagram showing the direction in which data is read/written. Blue boxes use
UE4 C++ and red boxes use SpaceCRAFT API

structures, not the standard ones available in vanilla C++. The SpaceCRAFT API is also using its

own set of custom data types, which means there has to be a lot of conversion between things as

simple as a platform string, and a UE4 string that can be displayed in a UI. The SpaceCRAFT API

has functionality to read the platform data types of individual parameters and convert them into

more conventional data. However, no conversion for the entire entity data structure into a format

readable by UE4 existed until SimBAD. The structure is referred to as FEntityConfig, shown in

Fig. 4.2, which is congruent with UE4 data types such as FString and FVector. The structure is

composed of several elements that are populated when the JSON config is parsed and read in C++

code, after which the entire structure is sent through to the blueprint side of UE4 code where the

struct is read into its different components so it can be added to the displays.

When data on the display is changed and committed, the input gets sent back through the

blueprint and back to the SimBAD_Functionality class. Because the data needs to go back to

the original JSON config file, the data has to be directed to the SimConfigEditor class on the

server side of the platform. This is split up in this way such that editing config data is possible

outside of the SimBAD functions, having these methods restricted to a UE4 C++ class would make

writing to a sim config inefficient if another server process needed to perform that action but had

to reference the Unreal Engine library first. This highlights the main advantage of having different
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Figure 4.2: FEntityConfig Data structure used by the SimE backend

Figure 4.3: FSystemConfig Data Structure used by the SimSys Backend

functions separated into different parts of the platform in a way that makes the data management

most efficient. Once data has been sent back through the SimBAD_Functionality class on the

UE4 side to the SimConfigEditor class on the server side, the function uses other methods from

the RapidJSON library, which is an API that interfaces with JSON files with both read and write

functionality. To add back in the parameter to its proper location, the entire config is read and

loaded, then finds and gets a reference to the parameter being changed. The config is loaded again

but this time in order to write to the file as opposed to read, before being closed and saved. Once

this function runs, the UI will refresh itself and display the change that was just committed.

As with the SimE element, a data structure FSystemConfig was created in the SimBAD_Functionality
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class to define system data in a way that can be interpreted and read in by the SimBAD UI. The pro-

cess for getting this data from the config is also similar, but unlike entities, SpaceCRAFT does not

have functionality for interpreting systems into usable data types. However this is the only differ-

ence, and system information is otherwise read from the JSON, structured into the FSystemConfig

and sent through the SimBAD_Functionality class and back into the UI to be displayed to the user.

Similar to the UI display for entities, a system has its most important information displayed in a list

with other systems, along with a second list that gives Instance Parameters of the selected system.

The main difference is the existence of Instance Parameters as opposed to normal parameters for

entities. While regular entity parameters can be changed by systems during a sim, system instance

parameters are constant and set during the initialization of the class when the Computer Server

starts. However this difference does not encourage any new methodology for committing edited

values to the sim config, and so the code logic used for these parameters is relatively the same as

with Entity parameters. Values are passed from the UI through the SimBAD_Functionality class

in SC engine code to the SimConfigEditor class on the server side and then written to the actual

file.

4.2 SimP

Procedure files are a new addition to SpaceCRAFT and require their own files similar to a

sim config, using the JSON formatting to contain data. The structure of a procedure file is more

complex than either the entity or the system data structures used in the sim config. There are two

JSON objects in a procedure file, one for the procedure metadata which consists of the procedure

name, number, and revision and a second for the procedure data itself. Procedure data is structured

using a JSON object that contains three nested data arrays, one for Task data, one for NCW data,

and the final one for If Statement data. The Task data array is composed of a task name, objective,

and checklist which is itself another nested array of the actual steps that describe how to complete

a task. Because this Task object is an array, there is room for multiple different tasks in one

procedure. The NCW data array contains elements that are structured by assigned the type, task

number, step number, and message. The type indicates whether the message is a note, a caution, or
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Figure 4.4: Procedure File Format used in Procedure JSON files

a warning and each is displayed differently inside the UI to help the user more easily differentiate

between them. Assigning task and step numbers indicates at what point the note will appear in the

procedure, and the message data contains the string that will be displayed. Lastly the IF statement

contains an array of data objects that is structured similarly to the NCW elements, but lacks a

“type” object since there is no need to differentiate between types of if statements. While this is

structured similarly to the NCW data, it is not included as that part of the procedure structure to

leave room for future plans to add data that can add references to other procedures, which would

be a useful feature in an if statement of a procedure.

This procedure JSON structure, like with the entities and systems from the sim configs, needs

a SC engine side data structure counterpart to convert the data into a format that can be interpreted

by the client and displayed on the UI. The Procedure Display is similar again to the SimEn and

SimSys displays in that the metadata of the procedure is displayed as a list of the available pro-

cedures being used, with the specific data per procedure listed below with tasks, steps, and their

accompanying messages. While the client side data structures FEntityConfig and FSystemConfig
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Figure 4.5: FProcedureConfig Data Structure with corresponding Data Structures for the nested
structure format used

are self-contained, the structure for procedures contains other nested structures for each of the three

data arrays in the JSON. The main structure is referred to as FProcedureConfig, which contains the

metadata as three strings, and then a UE4 TArray of more custom structures. They are referred to as

the FTask Config, and FNCWConfig, and FIFConfig data structures and are structured respective

to the way the corresponding arrays contain data objects. Having this nested container structure

allows for iterating through the procedure’s data and adding items to the UI in a nested list.

4.3 EM

Creating events in SpaceCRAFT requires a specific methodology that utilizes the functionality

that exists within the API already. Entities and their parameters are the target in this current version

of logic implemented in SimBAD. The overarching concept driving the logic is that events are

caused by parameters in specific entities reaching thresholds that motivate some defined event.

Events are implemented as a specified “effect” that is applied to pertinent parameters wherever

it can be found in other entities in the simulation. This concept in mind covers a wide range of

potential events, for example, if a connector entity is not connected to a power source, the current

parameter of that entity would be 0 and would be below a threshold value for delivering power to
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Figure 4.6: Input JSON data used to define events

a rack entity, which contains hardware that relies on that power, and the applied effect would be to

set the value of the power parameters of those entities to 0.

Having a methodology to apply in a simulation is the first step towards adding this functionality,

from here understanding what data to have and how to structure it is the next step in making

the event manager functional. Having the concept already expanded upon in the context of the

SpaceCRAFT API helps make this part easier as the input and output data has been stated. The

event manager is actually a SpaceCRAFT system, so it can utilize instance parameter objects in the

sim config JSON file. Event data is input with three objects: Parameters to watch, event criteria,

and potential effects. The first is a list of strings that contains the names of parameters in the

sim that need to be watched. Criteria is dictated by two nested objects, the criteria type and the

threshold value. Currently the types of criteria established in this version are less than, equal to,

and greater than. The potential effects object is also characterized by a group of nested objects. The

first object is a list of effect parameter names for the script to search for to apply an effect. With

each parameter a corresponding type needs to be specified that tells the script how that parameter

is affected. The current effect types that are supported are scale, set, and add. Lastly, the value of

the effect is given.

While a sim is running, a script with the logic shown in the diagram in Fig 4.7 is executed at a
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Figure 4.7: Diagram showing Event Manager scripting logic

specified frequency from the user. This part of the code uses some of the information processing

nomenclature described in section 1.2.2 of this paper. Specifically, the methods this script runs

collectively act as an automatic process that uses information sensing and action implementation

in order to execute events. Contextualizing what the script is doing in this way is a good way to

motivate the development of the logic and account for different cases. The capability of the event

manager in this initial version of the system is not able to handle too many different cases. It shows

the functionality is available in SpaceCRAFT and having a tool like SimBAD can make that usable

in the context of a training tool.

4.4 SimEval

The Evaluation Methods element is also written as a SpaceCRAFT system like with the Event

Manager. This means that the input data that instructs the script what to do is given in instance

parameters in the sim config. There are three array objects that define what gets evaluated in

a simulation being run. The first object is a list of entities, the second is a list of parameters,

and the last is a list of procedures. These are all things that the script looks for and logs to a

Comma-Separated Value (CSV) file. With entities and parameters, for each simulation tick the

script updates, checking for entities on the list it was given. If that entity is on the list, the script
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Figure 4.8: Flow Diagram showing how data is sent from the simulation to the output file

steps in and checks the parameters. If a parameter is on the second list, then the value of that

parameter is logged to the specified CSV file. With procedures, the script watches one entity in

particular that is specifically communicating with the pawn in the client that is utilizing a procedure

UI in the sim. When the user steps through a procedure, a timestamp is sent to that entity on the

server which is then read and logged by the script.

This functionality enables several different scenarios that are useful in a training setting. Using

this with the event manager allows operators to script events, monitor the parameters that dictate

the event, and then quantify the reactions the users inside the simulation have. A simple example of

this is used for the ISS VR simulation done as one of the validation measures for this thesis. In that

case, a connector between a power source and a hardware module is scripted to fail. That behavior

is captured by the script and sent to the specified output file. The user then runs through a procedure

to mitigate this issue. The output file shows the times at which the user completed each step, which

can be used in cases where users are trying to determine the time it takes to complete a procedure,

or edit procedures and compare completion times against each other in order to determine a more

efficient sequence of events.
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5. RESULTS AND DISCUSSION*

Using SimBAD, several simulations have been built as proofs of concept for the several sim-

ulator aspects SimBAD wanted to improve upon for the SpaceCRAFT platform and add as viable

components of simulations that can be run. The first is a simulation that demonstrates both how

procedures can be used inside of a procedure as well as the event manager. Not only does this

simulation demonstrate the new functionality added as a procedure development tool, but is taking

a step further by using these elements at the same time by having events occur that require the

user to carry out procedures in a nested format and prioritize tasks based on the events occurring

in real time. The second simulation is a Mars base setting with two IVA astronauts completing

tasks inside the habitat. The functionality being demonstrated in this setting is that the two astro-

nauts will be users working together in the same sim, but in different physical locations connected

through the multi user functionality of SpaceCRAFT. Together both of these simulations show not

only important aspects of SimBAD’s contribution to the SpaceCRAFT platform as a training tool

on multiple fronts, but the swiftness with which users can create and run different simulations.

5.1 ISS VR Simulation

The first simulation built using this tool consists of a user conducting an IVA procedure inside

the ISS in VR and responding to a scripted anomaly. The pawn in the simulation that the user

possesses has a camera for a first-person view, with two floating hands to indicate hand placement.

The model is not very representative of the user’s body because the user would not be able to see

it very well anyways and is not necessary for establishing presence. However, the locomotion of

the pawn is designed to establish presence in a microgravity environment. The user can propel

themselves through the environment by grabbing onto the walls of the ISS interior and pushing

themselves in the direction they want to go, which will send them floating through the cabin as

*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and
Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace
Conference (AERO), Copyright 2022 IEEE
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Figure 5.1: User in the ISS VR simulation completing a task from a procedure

would happen in the real ISS. The other objects that the user interacts with also have microgravity

physics, so they float and bounce off walls.

The user also has a wrist-mounted menu for navigating a Caution & Warning UI as well as

a UI for reading and following procedures. This is the method through which the procedures

that were written for this simulation in SimBAD are to be executed by the user. There are three

procedures in this simulation. The first is a basic IVA stowage procedure that instructs the user to

traverse to a location with stowage bags and relocate them to different locations in other areas of

the station. The second procedure is one that is specifically carried out in the event of an anomaly.

After 120 seconds in the simulation, the event manager sets a connector (Fig. 5.1) to malfunction.

This causes the hardware module to fail and throws a caution to the wrist UI for the user. This

caution directs the user to the second procedure, which lists troubleshooting steps to bring the

module back online. Before the user traverses to the module’s location, they are instructed to

retrieve a CO2 probe and make sure the area is not experiencing a buildup of CO2 due to a failed

circulation fan. This probe will be malfunctioning as well, and the user will have to follow a

third procedure that troubleshoots the device. The third procedure has the user determine that a

replacement will be used instead, which works at which point the user returns to the hardware
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Figure 5.2: Multiple Users interacting inside the Mars VR multi user simulation

module power troubleshooting procedure. Once the user determines the connector is failed, the

user finds a replacement in a designated location. With the functioning connector installed, power

is restored to the module and the user carries out the rest of the initial stowage relocation procedure.

Once all three procedures are completed, the simulation is concluded.

5.2 Mars Surface Base Multi User Simulation

The second simulation built using SimBAD is a Mars Surface Base simulation with multiple

users interacting with each other. The virtual environment depicts a surface base located near the

Gale Crater of Mars. A few key differences between the other models in this simulation and the

ones used in the previous. First, because there are multiple people, the pawns occupied by the

users have full bodies instead of just hands like in the ISS simulation. This is because otherwise

it would be more difficult to know exactly where the other user was. The second difference is the

lack of interactable models. This is because the simulation only concerns demonstrating the basic

concept of having users be able to interact with each other, as opposed to the environment.
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The procedure that the users execute is one that requires both users to communicate with each

other. This is done by taking advantage of the multi user capability of SpaceCRAFT which includes

voice communication. To clarify which user is being referred to, they are given the designations

Crew 1 and Crew 2. Crew 1 and 2 start near the entrance of the habitat and verify they are using

the same procedure. Crew 2 relocates to a greenhouse module on one side of the habitat. Over

the communication system they coordinate back to Crew 1 if their comm quality is adequate. If

nominal, Crew 2 then relocates to the command module in the habitat and repeats the process.

After this, Crew 1 relocates to a second greenhouse on the other side of the habitat, and calls Crew

2. After affirming nominal communication Crew 1 meets Crew 2 in the command module and

confirms that the communication inside the habitat is adequate and coordinates that the procedure

has been completed.

5.3 Discussion

5.3.1 Pre- and In-flight training methods and Procedure Design

Both of these simulations help demonstrate that SimBAD can be used as a tool for training

in situations like will be experienced in future human spaceflight missions. This concept shows

that frameworks like this are conducive to mitigating the HSIA issues that are caused by mission

aspects such as the distance from earth, travel durations, and the unknown parameters that exist

in the nature of exploration missions. Crews will experience a high level of autonomy on these

missions and will need the capability to build augmentable training regimens for themselves, and

operate without the assistance of the training instructors.

Increased distance from Earth will eventually result in communication delays that will make

real time correspondence with that support impossible. Combining this with the other eventuality

that these kinds of missions will provide challenges that can’t be accounted for during the preflight

phases of the mission prep exacerbates the problem of training being inadequate. Since current

methods put so much emphasis on establishing regimens for the pre-flight phase, not enough has

been established during the in-flight phase. SimBAD accounts for this by only requiring a small
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amount of relatively lightweight hardware with low spatial requirements.

This distance also presents the issue associated with crew performance detriments due to

knowledge retention. For example, a Mars mission would require a crew to fly on a ship for at

least nine months before getting to the surface landing phase of the mission. In that time a pilot’s

skill will decrease without a device through which they can maintain that skill. An adequate in-

flight training tool will need to be able to simulate a landing for that pilot, allow them to carry out

procedures, add anomalies, and view performance metrics after the fact. These aspects are all a

part of SimBAD’s design and will help maintain operational effectiveness.

In the case of unaccountable mission parameters, it’s very likely situations will arise that call

for procedures to be developed after the mission has launched. In this scenario, giving crews

as many tools as they require to develop procedures for new aspects of a mission would greatly

increase the chances of success. While grounds will still be able to offer limited support in this

regime, the consideration of full loss of communication must be considered. This motivates the

need for a tool that supplies a closed loop for procedure. SimBAD offers this by allowing users to

create an entire simulation from scratch, have a high amount of control over the environment and

the behavior of the sim, and provides methods through which the user can quantify a performance

and utilize that information in the development of a procedure.

5.3.2 Collaborative Mission Development

Another aspect of these missions is the long development time needed to design a mission that

will be as effective and efficient as possible. Streamlining the processes used to create all of the

products and tools used for the missions will decrease the workload of groups in flight operations

teams while increasing the quality of the products they output. SimBAD presents a method that will

benefit these processes by enabling users to create procedures in high fidelity environments that can

simulate a large amount of mission parameters. Increasing the amount of situational awareness that

can be afforded to mission designers will support their work by increasing the amount of relevant

information afforded to them in an engaging way and providing context that may not be provided

in other settings. Not only this, but the capability to do this development with other teams in
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different physical locations, even individuals who may be in space, allows for a more constructive

development space.
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6. FUTURE WORK*

6.1 Tool Validation for Training

The next step for SimBAD is quantitative validation towards establishing it as a viable training

tool. When developing technologies for the field of human factors, the standard is for using data

from subject trials conducted and use case evaluation to move forward towards utilization in a

flight environment. Having a more specific idea of a use case regarding a program using this tool

would result in a requirements list that could be used to build a test matrix. For example, an entity

such as NASA might use SimBAD differently than one like a private launch provider. SimBAD

is already equipped with the SimEval element, which would streamline the verification process. It

should also be noted that SimBAD has potential in fields other than space but with similar levels of

required training. Places in extreme environments such as oil rigs or antarctic outposts would see

benefits from a tool like this, and could also provide an adequate proving ground for the technology.

Because SimBAD is designed as a training tool, the ideal comparison to make would be against

other training methods. Evaluating the completion of procedures through different methods and

comparing the user’s preferences with the different simulators is one option for starting this anal-

ysis. Getting performance metrics such as procedure task and step durations for crew completion

are a baseline. Specific tasks would require matching metrics to properly assess performance and

simulator efficacy. For example, some procedures that require precision such as the construction of

a structure on the outside of a vehicle. Getting the output values of the locations of the structure el-

ements would give the evaluators the metrics to determine how well the procedure was conducted.

Other simulations might assess operational capability; users would be assessed on their ability to

properly prioritize an action given a specific situation. SimBAD’s EM is an element that would

make this a viable avenue for evaluation.
*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and

Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace
Conference (AERO), Copyright 2022 IEEE
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6.2 Multi User Procedures

One of the most viable areas for future research is to improve the usefulness of this tool in

a multi user, collaborative environment. Adding more infrastructure for users to be able to build

simulations and procedures from remote locations as well as from within the same building of-

fers a huge advantage when compared to other simulation platforms in that regard. The concepts

presented in the demonstration simulations of this thesis can be combined to a higher degree and

explore elements of mitigating HSIA risk on a lower level and provide more detailed findings with

regards to how multi user procedure development should be conducted.

The area of virtual assistance is also one that should be considered in future iterations of the

multi user elements that SimBAD uses. Having the tool allow for remote users to take an obser-

vation role and monitor training performances in real time, for example a trainer walking a crew

through a new procedure remotely, would be a valuable addition. Increasing the capability for

users to augment the simulation in real time is one area in which a multi user sim could benefit.

Having the event manager be usable in real time and at the command of a second user in the sim-

ulation is one example of how the presented concepts could be improved to meet the objectives of

this research to an even greater extent.

6.3 Intuitive Procedure Design

Intuitive procedure design is a specialized process of designing procedures for operators in

complex technical environments such as the ones astronauts are exposed to. Simply put, intuitive

procedures are ones that ideally require no prior training, and are designed in such a way that the

user can follow the steps laid out for them and successfully complete the task on their first attempt.

This concept would be incredibly beneficial, especially considering the concerns of mental strain

and crew workload on missions that will get more system-intensive and require them to retain more

information. Decreasing the overall information necessary for the crew to retain or practice while

the amount of systems and knowledge needed would balance the capabilities required from the

crew.
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This concept is also interesting within the system design phase of the mission itself. While the

engineering teams are designing the hardware and software to carry out the mission, the operations

teams can design their procedures and attempt to make them intuitive in the sense described. This

offers an avenue for the operations teams to make suggestions and collaborate on the design of

the systems so that they have intuitive procedures in mind from as early a stage of development as

possible. Building this into the systems from the start will make implementing intuitive procedures

easier and operations less intense.

6.4 Augmented Reality

While Virtual Reality is a proven method for training in space environments, another medium of

Extended Reality (XR) could also be very useful for achieving more effective results in procedure

development for space missions, Augmented Reality (AR). The advantage of AR as opposed to

VR is that the user can have most if not all of the UI elements previously available in VR, but now

is able to merge this setting with a real physical environment. This especially has implications for

intuitive procedure design, where instructions and steps can be presented in a more visual sense

than just through reading off a checklist. This also has implications, when combined with both an

established multi user setting, and intuitive procedure design, for a simulation builder that would

let ground teams create and test procedures without crew input in VR. After this, the teams could

then package and send that simulation data up to the vehicle, where the crew could don an AR

headset and perform the exact same procedure, but in an intuitive sense where no prior experience

was required.

Another potential avenue for this technology to be integrated is for the simulation building

process in the first place. Instead of interfacing with a UI on a flat screen to set up a simulation,

the user could construct their environment in AR and then use that for their sim or procedure.

Creating a procedure at this point would also be beneficial, and would save time in the future as

these virtual environments and procedures to be carried out would have been developed in parallel.

This would increase the likelihood that the procedures are as effective as they can be. Users could

also augment their procedures in real time as they were doing them while using AR and making
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Figure 6.1: Astronaut and Expedition 65 Flight Engineer Megan McArthur testing an AR headset
while on board the ISS - Credit: NASA

improvements and changes as the situation called for them.

6.5 Autonomous Mission Design

Another area to explore in the future, particularly when considering long-distance missions is

autonomous mission evaluation. This refers specifically to missions that require a level of crew

autonomy in quiescent ops or at the very least as a contingency in the event of some system failure

isolating the crew from their ground support teams. The idea posed here is that a tool like SimBAD

could be used by crews to design their own procedures and effectively carry part of the job of the

flight operations team independently. When considering a vehicle as complex as the one that will

be taking astronauts to destinations such as Mars, the subsystems aboard the vessel will require

more training than is available to be scheduled for crews before they launch. If there is a tool with

SimBAD’s capabilities on board with them, crews could use it to prepare for anomalous situations

or scenarios for which they might not have had time to train for on the ground.

The main improvement to be made on the framework introduced in this thesis is for the training

regimen design loop to be as closed as possible. I.e, the user needs to have as many elements of

potential environments as possible, methods in which to manipulate the environment, possibilities

for events to be scripted in the simulation, and feedback to be given afterwards. Development
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loops require an iterative process and doing this for procedures and training plans is no different.

One example of a valuable improvement to be made would be for post-processing methods to

give more detailed reports of simulation results. Currently, data is presented in a raw form and

leaves the processing to the user. Having other tools appended onto SimBAD for different types of

analysis would increase the level of autonomy that crews could achieve in this particular area.
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7. CONCLUSIONS*

The SimBAD tool presents a novel concept for improving the training element of HSI for fu-

ture human spaceflight missions by creating a closed-loop virtual training facility. This tool was

designed as a UI to append onto the SpaceCRAFT simulation platform to give users more control

over VR simulations they can build. SimBAD hands users full control of the objects in a simula-

tion and the systems that dictate their behavior SimBAD also adds functionality to create and edit

procedures to be used inside a simulation, script events between entities and systems, and monitor

user-defined parameters. The EM in particular adds a high level of fidelity to simulations and is a

useful element when considering exploration spaceflight and the nature of missions with relatively

low known mission parameters and high operational complexity. The use of these elements alto-

gether creates the concept that SimBAD demonstrates, which is a virtual facility that mitigates the

risk of inadequate HSI, specifically the training element in increasingly earth-independent space-

flight.

Four objectives were drafted to validate SimBAD as a viable concept to be used as a train-

ing tool in these environments: to be able to travel with crews in flight, to enable higher levels of

collaboration between groups on flight operations teams, to have a capacity to account for unknow-

able mission parameters in real time, and to have a capability for training performance evaluation.

These objectives were motivated through an analysis of current flight operations teams, training

regimens used for astronauts, and human spaceflight challenges outlined in NASA’s HRR. The

HSIA risk of the HRR is a significant concern regarding future spaceflight missions which de-

scribes the ways in which inadequate HSI will be detrimental to mission outcomes. This issue will

need to be mitigated before missions to distant destinations will become feasible. Applying this

particular risk to how training infrastructures should be implemented gives the objectives.

To validate these objectives, two simulations were built using this tool to exercise the capability

*Part of the data reported in this chapter is reprinted with permission from "Simulation Builder, Analysis, and
Development (SimBAD) Tool through the SpaceCRAFT Platform", William Young, 2022. 2022 IEEE Aerospace
Conference (AERO), Copyright 2022 IEEE
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for the concept to be implemented in a real world situation. An ISS IVA procedure was simulated

in VR which had the user follow several procedures and mitigate a scripted anomaly. Overall this

demonstrates the baseline capability of the tool as a training device. At a lower level the simula-

tion validates SimBAD as being able to account for dynamic mission parameters with the event

manager having functionality to script events. The second simulation was a communications check

procedure on a Mars surface base with two users taking advantage of the multi user capability of

the SpaceCRAFT platform. This shows that SimBAD is usable in settings where users that want

to collaborate from different physical locations, including situations where one user may be on a

vehicle in flight and another is on the ground. This simulation validates the tool as enabling better

collaboration between groups in flight operations teams. The development of the tool using VR

technology through the SpaceCRAFT platform validates the tool as being packageable on a space

vehicle. All of the hardware and software necessary to use this training infrastructure takes up a

relatively small amount of space, but does have relatively significant data storage and power usage

demands. Having the tool on board a craft also helps validate the capacity for increasing the ca-

pacity for the crew to operate autonomously. The evaluation methods element of SimBAD closes

the loop on this objective by giving users the ability to produce and analyze their own performance

data.

In conclusion, the SimBAD tool explores improvements to training methods in scenarios where

crews will experience higher levels of autonomy and mission complexity. The concepts presented

in this thesis take steps towards mitigating issues such as increased workload on crew, detriments

to crew knowledge retention, and unaccounted mission variability. The overall design of the tool

allows for enhancements to the way in which missions are designed during both pre- and in-flight

phases. Enabling seamless collaboration between teams and suggesting new methods for iterat-

ing through procedure design, as well as giving crew more chances for input in the process is

highly valuable for autonomous situations. Maintaining an effective training regimen that can be

maintained after a crew has already embarked on a mission and is in an operational environment

increases the capability of the flight operations team to complete their mission and achieve their
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objectives.
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APPENDIX A

PROCEDURES USED IN RESULTS

Figure A.1: Procedure 1 for Simulation 1 - IVA Stowage Procedure
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Figure A.2: Procedure 2 for Simulation 1 - IVA Science Module Power Failure Troubleshoot

Figure A.3: Procedure 3 for Simulation 1 - IVA CO2 Probe Failure Troubleshoot
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Figure A.4: Procedure 1 for Simulation 2 - Mars Surface Base Communications Check
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APPENDIX B

GOOGLE DRIVE LINKS TO VIDEO CAPTURES OF SIMULATIONS CREATED USING

SIMBAD

The material in this appendix is supplemental to the results of this thesis. Specifically, it en-

tails edited videos of the simulations described in section 5, "Results and Discussion". The first

video is narrated by the author describing the environment, models, and events occuring during

the simulation. The second contains audio recorded between the two users during the simulation

as they progress through the procedure. (If links do not function properly, send a message to

wcyoung18@gmail.com)

B.1 ISS IVA Simulation

https://drive.google.com/file/d/1_Kvf2A_sXFF5QaWU3vkh1v-mse-5a16q/

view?usp=sharing

B.2 Mars Surface Base Multi User Simulation

https://drive.google.com/file/d/1XY3biTOYcuXrW1Pp1CXZ0iTlPeil1Q4W/

view?usp=sharing
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APPENDIX C

IN-ENGINE SCREEN CAPTURES FROM ISS IVA SIMULATION

Figure C.1: User in simulation attempting to locate a specific stowage bag in the PMM of the ISS
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Figure C.2: User relocating a stowage bag to the Quest airlock

Figure C.3: User interacting with procedure UI to track progress and get information for tasks
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Figure C.4: User working through power cycle steps of replacement CO2 Probe

Figure C.5: User interacting with connector being replaced for Science Module Troubleshoot pro-
cedure
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APPENDIX D

IN-ENGINE SCREEN CAPTURES FROM MARS SURFACE BASE MULTI USER

SIMULATION

Figure D.1: User entering greenhouse of custom habitat on the surface of Mars near Gale Crater
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Figure D.2: Both users convening in habitat command module to carry out final procedure steps
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APPENDIX E

ADDITIONAL UI USED FOR SIMBAD

Figure E.1: SimBAD Front End

78



Figure E.2: In-Sim Procedure UI Design

Figure E.3: User interacting with In-Sim Procedure UI
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