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ABSTRACT 

 

 The Gulf Coast is the most important U.S. oil and gas region and contains 

substantial industry infrastructure and assets. The coastal location makes that energy 

infrastructure vulnerable to extreme weather like hurricanes, and projections show that 

climate change may worsen the situation. This dissertation examines the impact of 

hurricane forecasts on aspects of the Gulf Coast oil and gas industry. The analysis is 

based on two data sources. First, we used refinery oil input and offshore production data 

to portray industry activity. Second, we used NOAA information on hurricane forecasts 

and resultant incidence. Then in three essays, we studied hurricane and associated 

forecast effects on oil input and offshore operations as well as the effects of inaccurate 

forecasting.  

 In the first essay, we explore the relationship between the oil input to refineries 

and forecast hurricane characteristics using econometrics. In the second essay, we study 

relationships between forecast hurricane characteristics and offshore platform production 

shutdowns and evacuations. In the third essay, we study the effects of hurricane forecast 

inaccuracies in terms of refinery oil input.  

Across these essays, we find that stronger hurricane forecasts are associated with 

offshore shutdowns and oil input reductions and in turn substantial economic losses. In 

addition, we find hurricane forecast inaccuracy adds to economic losses.  
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1. INTRODUCTION  

 

The U.S. Gulf Coast is the most prominent oil and gas production/refining region 

in the U.S., as it contains more than 47% of the nation’s petroleum refining capacity as 

well as over 50% of the nation’s natural gas processing capacity. Also, it contains about 

15% the nation’s offshore oil production and 5% of its offshore natural gas production 

(EIA, 2019a). Furthermore, according to a 2013 Texas Sea Grant publication, which 

drew information from a study by Entergy, energy assets on the Gulf Coast, 

predominately located in Texas and Louisiana in Gulf Coast, are worth approximately 

$800 billion (Texas Sea Grant, 2013). 

However, the Gulf Coast oil and gas assets are vulnerable to extreme weather 

events. The region has experienced flooding events at an unprecedented frequency in 

recent years (with multiple floods in the 100 to 500-year classes within just the last 

decade). It is also impacted by hurricanes landing in this region with 24 storms in about 

last two decades. We've also observed increased Gulf of Mexico sea surface 

temperatures and rising sea levels which are key factors in intensifying the strength of 

hurricanes and their ability to penetrate inland. Furthermore, climate change is 

contributing to both warmer waters and increased sea levels. Such developments make it 

likely we will face a future with more severe and more damaging hurricanes. Also 

damages to infrastructure including energy systems have been large under recent major 

hurricanes (e.g., major damages occurred under hurricane Harvey in 2017). Climate 

change related projections show the threat is likely to increase in future.  
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In this study I examine the economic damages associated with previous 

hurricanes. In particular, I will study the impact of hurricanes on oil inputs to refineries 

and the operation of offshore platforms on the U.S. Gulf Coast.  

This is not the first study to address economic impacts of hurricanes. Some 

studies have examined impacts on the general economy level (Nordhaus, 2006; Petterson 

et al., 2006; Strobl, 2011; Strobl, 2012; Coffman and Noy, 2012), while others have 

focused on a specific sector like agriculture (Chen and McCarl, 2009), general business 

(Burrus Jr et al., 2002; Gordon et al., 2010; Zhang et al., 2009), tourism (Coffman and 

Noy, 2012), and energy (Fink et al., 2010; Reed et al., 2010). However, most of them 

address direct physical damages and losses caused by past hurricanes. In fact, the impact 

of hurricane is not only embodied in direct effects like damages due to flooding 

associated with heavy rainfall or damages due to high wind speeds. There are also losses 

due to suspended business operations such as an anticipatory shutdown of oil and gas 

production and processing which reduces revenue and profits. We cannot find studies 

addressing this latter issue, so our study will focus mainly on changes in operational 

levels and not on direct physical damages. Furthermore, we believe in terms of 

anticipatory actions that refineries and offshore platforms make shutdown and 

processing reduction decisions based on hurricane forecasts. But such forecasts could be 

inaccurate and thus cause anticipatory actions to occur when they're not needed and can 

cause regions to not take anticipatory actions when they would have been appropriate. 

The business interruption costs borne under such circumstances could be reduced by 
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more accurate forecasts and we will try to estimate costs and effects under such 

circumstances. 

This thesis contains three essays that are developed to contribute to the research 

directions mentioned above: 

The first essay (Chapter 2) examines the impact of NOAA-issued hurricane 

strength and projected impact path characteristics on oil inputs to petroleum refineries 

located on the Gulf Coast and estimates the economic loss resulting from the reductions 

in those inputs.  

The second essay (Chapter 3) examines the economic impact of hurricane wind 

speed forecasts, but this time looks at consequences for shutdowns of offshore oil and 

gas production platforms.  

The third essay (Chapter 4) extends the first essay examining forecast accuracy 

considering possible errors in terms of wind speed and region impacted as it influences 

refinery oil input estimating the economic loss from forecast inaccuracy.  
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2. THE ECONOMIC IMPACTS OF HURRICANE ON THE U.S. GULF COAST 

PETROLEUM REFINERIES 

 

2.1. Introduction 

The Gulf Coast area is an important region in the U.S. oil and gas system. A huge 

amount of oil and gas industry resources and infrastructure are present in this region, 

both onshore and offshore. According to the Energy Information Administration (EIA, 

2019a), 17% of the total U.S. crude oil production and 5% of U.S. natural gas production 

arise from offshore wells in the Gulf of Mexico.  Additionally, 45% of total U.S. 

petroleum refining capacity and 51% of total U.S. natural gas processing capacity are 

located onshore in the Gulf Coast.   

This region is vulnerable to extreme weather events like hurricanes and 

consequently the energy industry is vulnerable. For example, in 2017, hurricane Harvey 

that made landfall in Texas, caused the shutdown of approximately 2.2 million barrels 

per day of processing capacity or roughly 45% of the Texas Gulf Coast capacity (Jacobs, 

2017). While this is of current concern it is also true that there are projections indicating 

that under climate change the intensity and frequency of hurricanes is likely to increase 

(Nordhaus, 2006).  

Vulnerability arises as elements of petroleum refining can be greatly affected by 

hurricane winds and precipitation. Equipment such as empty tanks, roof tops, piping, and 

connections between storage and processing units are vulnerable to high winds (Cruz 

and Krausmann, 2013; Schaeffer et al., 2012) while flooding as another concern 
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(Knudson et al., 2020). In 2007, refineries in Corpus Christi and Houston area were 

closed due to Hurricane Harvey (CNN Business, 2017). 

Recent hurricanes have damaged the industry and it is likely that under 

continuing climate change those damages may increase (US EPA, n.d.).  Thus, this 

research will examine the impact of the hurricane on petroleum refining activity in the 

U.S. Gulf Coast energy sector.  

2.2. Background 

This study focuses on hurricane influences on the energy sector and the resultant 

economic impacts. There are several bodies of the literature that deal with components 

of that issue, and we will cover general economic damage estimates associated with 

hurricanes, energy sector influences from hurricanes and methods employed for 

hurricane related analysis.  

2.2.1. General Hurricane and Disaster Economic Damage Estimates 

Many studies have addressed the economic impact of hurricanes – some studying 

the issue on an economy wide level, while others address influences on specific sectors 

or industries. Examples of general hurricane economic impact studies include (but are 

not limited to) studies of hurricanes’ effect on GDP (Nordhaus, 2006), economic growth 

rates (Strobl, 2011, 2012),  multiple economic sectors (Petterson et al., 2006), and 

regional economic and social characteristics (dominant industries, employment, 

population, income level, etc. - Coffman and Noy, 2012). Examples of studies 

addressing hurricane impacts on a specific sector or industry include (but are not limited 

to) those addressing the agricultural sector (Chen and McCarl, 2009), the business sector 
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(Burrus Jr et al., 2002; Gordon et al., 2010; Zhang et al., 2009), the energy sector (Fink 

et al., 2010; Reed et al., 2010), and tourism (Coffman and Noy, 2012).  

2.2.2. Effects on Oil and Gas 

There are also studies examining energy industry impacts. These have addressed  

hurricane effects on oil and gasoline prices (Fink et al., 2010), developing country 

economies (Strobl, 2012), and reconstruction decisions (Petterson et al., 2006; Vigdor, 

2008). Most of the literature we have reviewed discusses short-term impact (Burrus Jr et 

al., 2002; Fink et al., 2010; Gordon et al., 2010; Nordhaus, 2006; Petterson et al., 2006; 

Reed et al., 2010; Tierney, 1997; Weiderman and Bacon, 2008; Zhang et al., 2009). 

However, Coffman and Noy (2012) investigated the long-term time to recover from 

hurricane impacts and indicate that the effect lasted 18 years after an event. Some of this 

literature concentrates on specific hurricanes (Coffman and Noy, 2012; Gordon et al., 

2010; Petterson et al., 2006; Reed et al., 2010; Vigdor, 2008; Weiderman and Bacon, 

2008), while others address the issue on a more general level (Burrus Jr et al., 2002; Fink 

et al., 2010; Nordhaus, 2006; Strobl, 2011; Tierney, 1997; Zhang et al., 2009).  

2.2.3. Methods Employed 

Here to broaden our literature search, we also reviewed literature that analyzed 

the economic impact of natural disasters (i.e., earthquakes) or other extreme weather 

events (Tierney, 1997; Zhang et al., 2009). That literature reveals various approaches for 

studying disaster impacts. Some develop direct damage estimates such as infrastructure 

damage or general physical damage (Tierney, 1997; Reed et al., 2010), while others 
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investigate indirect damage like business interruption and accompanying economic loss 

(Gordon et al., 2010).  

The methodologies used in the literature span a number of fundamental 

approaches. Some studies concentrate on damage accounting and / or documenting 

losses and aftermath issues.  Others use econometric methods and explore the 

relationship between hurricane characteristics and economic performance. 

Some literature simply focuses on event documentation and general damage 

discussion. Their  contributions in cases derive from the large data set collected by them. 

Tierney (1997) documents the direct physical damages and outlines empirical findings 

on the ways that earthquakes affected business operations based on a large representative 

sample from a survey. Burrus et al. (2012) conduct a survey on industry businesses to 

examine the impact of low-intensity hurricanes on business interruptions finding that the 

cumulative impact generated by the high strike frequency of low-intensity hurricanes is 

equivalent to a high-intensity hurricane strike. Some studies address impacts after the 

hurricane departs. For instance, Petterson et al. (2006) assess the impact of hurricane 

Katrina on the Gulf Coast from a socio-economic perspective and discuss what 

happened in the policy debate on reconstruction of New Orleans and areas in the 

Mississippi Delta. Vigdor (2008) discusses New Orleans rebuilding from the economic 

perspective by comparing the equilibrium before and after Hurricane Katrina. Zhang et 

al. (2009) build a conceptual model that accounts for the different vulnerability 

dimensions (e.g., capital, labor, supplier, customer, etc.) of business effects from 

disasters.  
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There is also literature studying this issue using econometric methods. Nordhaus 

(2006) employed ordinary least squares (OLS) and regressed the damage-GDP ratio on 

maximum sustained wind speed at landfall in an effort to estimate the wind speed effect 

on the hurricane damage. Reed et al. (2010) used a linear regression model to estimate 

the relationship between  utility interruption frequency and wind speed. Strobl (2011, 

2012) used a fixed effect panel regression model to regress coastal county GDP growth 

rate as it was influenced by hurricane intensity in the form of a destruction index based 

on wind speeds (2011).  They also extended the study to developing countries in Central 

America and the Caribbean (2012). Gordon et al. (2010) use a multiregional interstate 

economic model (NIEMO), to examine the business interruption impact of the 

hurricanes on the oil refining sector. Coffman and Noy (2012) use synthetic control 

methodology to explore the long-term impact of Hurricane Iniki that hit the Hawaiian 

island of Kauai in 1992 using the other unaffected Hawaiian Islands as a control group.  

All of the above-mentioned studies provide valuable approaches that might be 

usable in hurricane (or disaster) impact estimation. Some of the literature also links 

hurricane intensities (e.g., wind speeds or other index calculated from wind speeds) to 

damages. The limitation of them, however, is that most of them use observed hurricane 

intensity rather than forecasted intensity. But it is likely that the shutdown decisions are 

made in advance of landfall based on forecasts. In this paper, we will use the forecast 

information on hurricane intensity and study the effects of forecasts on volume of 

petroleum refinery use of crude oil. Here we choose to use forecast hurricane 

characteristics based on a fundamental assumption that petroleum refineries and related 
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entities make pre storm shutdown or reduced operation decisions based on forecasts and 

that this will be reflected in the volume of crude oil input to the refineries.  

2.3. Data 

We will examine the relationship between refinery crude oil usage and hurricane 

characteristics, trying to explore how refineries react to alternative hurricane forecast 

characteristics.   

For estimating effects on refinery operation, we use data on weekly refiner net 

crude oil input as measured in thousand barrels per day to Gulf Coast refineries (those 

located in Petroleum Administration for Defense District 3, PADD3 (EIA, 2019d). For 

hurricane forecast characteristics, we use data on two main items – hurricane strength 

(category of the hurricane) and landfall location. Details on these data follow.  

2.3.1. Weekly Refiner Net Input of Crude Oil 

The main activity of refineries is to input crude oil and then refine it into 

petroleum products such as gasoline, diesel, and jet fuel. Both crude oil availability from 

production/imports and the amount of time refineries can operate are affected by 

hurricanes. Refineries may need to limit operations if the supply of crude oil is affected 

although crude oil inventory could buffer that. Also, they would limit crude oil inputs if 

they were shut down in anticipation of landfall. Some of these forces seem to be at work, 

since the data appear to show steady input on normal days but shocks during hurricane 

season (Figure 2.1).  

The data we use is drawn from an Energy Information Agency (EIA) database 

(EIA, 2019d) that gives weekly refiner net input of crude oil (in thousand barrels per 
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day).  We use data for the Gulf Coast (PADD3) region that covers the time span from 

2001 to 2018. PADD3 as defined by the Petroleum Administration for Defense Districts 

(PADDs - EIA, 2012), covers Texas, Louisiana, New Mexico, Alabama, Arkansas, and 

Mississippi. The region is an important location for refineries as in 2018, 38 out of the 

56 US refineries were located in the Texas and Louisiana Gulf Coast region (EIA, 

2019b). The oil input data is obtained from EIA (2019b).   

 
Figure 2.1 Time series of weekly oil input to refineries in PADD3 

 

 

The reason why we use the refinery input (crude oil) supply instead of output 

(e.g. gasoline) is that the input is mostly influenced by wind while the output is mostly 

disrupted by the rainfall and flooding according to an expert working in the oil industry 

in Houston, Texas. When the wind speed is high, offshore crude oil production often 

ceases due to unsafe operating conditions, and crude oil imports via barges are affected 

by closed ports because of unsafe shipping conditions.  
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2.3.2. Hurricane Characteristics    

The hurricane characteristic data we use are forecasts instead of strike data. This 

is because our fundamental assumption is that those refineries and crude oil suppliers 

will make operational decisions before hurricanes strike as it takes time to implement 

decisions thus relying on forecasts. Many previous news reports show support for this 

assumption. For instance, CNN news reports indicate refineries in the Corpus Christi 

region shut down in anticipation of a direct hit from Hurricane Harvey in 2017 (Disis et 

al., 2017). Also, an NPR news report says refineries in the Houston area shut down 

ahead of Hurricane Ike in 2008 (Housley, 2008).  

The hurricane characteristics data we use cover two things: forecasted hurricane 

strength and forecasted first landfall location. We discuss these individually next.  

2.3.1.1. Hurricane Strength 

The Saffir-Simpson Hurricane Wind Scale (SSHWS)  is used herein to describe 

the hurricane strength. This scale classifies hurricanes into one of five categories (from 1 

to 5, where 1 is indicates the lowest level of strength  and 5 indicates the highest level).  

This indicator is established based on the sustained wind speed (Table 2.1). Also, 

tropical storms and depressions are also a possible influence on the industry and are 

defined when conditions preceding a hurricane exist but sustained wind speeds do not 

reach the lowest level of hurricane strength covered in the SSHWS indicator. 

Collectively tropical depressions, tropical storms, and hurricanes are called tropical 

cyclones. (NOAA, 2019a) 
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We use historical hurricane SSHWS category forecasts issued by National 

Oceanic and Atmospheric Administration (NOAA) National Hurricane Center (NHC). 

These data contain information on forecast SSHWS category at different future times, 

such as what are the forecast storm characteristics 24-hours from the time the forecast is 

issued, 36-hours out, 48-hours out, and 72-hours out. For example, a 48-hour forecast 

tells us the probability distribution of the hurricane falling into each of the SSHWS 

categories in the next 48 hours. We use the strength category with the maximum 

probability as the forecast category for each time horizon.  

Table 2.1 Saffir-Simpson hurricane wind scale 

Category Wind Speed 

(miles per hour)   

Five ≥ 157   

Four 130–156  

Three 111–129   

Two 96–110  

One 74–95  

Tropical storm 39–73  

Tropical depression ≤ 38  

 

Figures 2.2 displays the observed amount of oil inputs to PADD 3 refineries 

distribution versus the SSHWS hurricane category forecast as it varies across the four 

forecast windows. The vertical axis is the same in each of the four figure panels and is 
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oil input per day in thousand barrels. The horizontal axis shows the five SSHWS 

hurricane categories, where 0 represents conditions where there is no hurricane or 

tropical storm in the forecast, H0 represents conditions where there is a tropical storm in 

the forecast, and H1 - H4 represent days when the forecast is for a storm of a particular 

SSHWS category. We group the H1 and H2 cases because there are very few 

observations falling into those two categories. H5 is omitted as there were no such 

forecasts in our data. Generally, the oil refinery input data show as forecasts indicates 

higher and higher categories, the oil input falls across all of the forecast horizons 

excepting for the 72-hour forecast where the mean oil input in H3 is a little higher than 

that in H1and2. Also notice that there are no data for the H4 case in 72-hour forecast 

window since the data do not show such a case.  
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Figure 2.2 Box and whiskers plot of PADD 3 total refinery oil input as it 

corresponds to different levels of Saffir-Simpson scale forecast strength by time 

window 

 

2.3.1.2. Hurricane Landfall Location 

The impact of hurricanes on refineries not only depends on the hurricane strength 

but also on proximity of the hurricane path. Hurricanes landing in the Corpus Christi 

area may not influence refineries in and around New Orleans causing them to shut down, 

while hurricanes close to New Orleans may not affect activity in Corpus Christi. Since 

we do not have oil input data by refinery but rather only for the whole Gulf Coast region, 

we add information of the proportion of the refinery capacity that is located in the 
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forecasted strike region (Figure 2.3).  We do this because we anticipate that storms 

threatening regions with higher capacity share will be more influential than those that 

threaten lower capacity sub-regions.  To do this we define four sub-regions on the Gulf 

Coast (Figure 2.3).  We use the names Corpus Christi area, Houston-Galveston area, 

Beaumont-Port Arthur area, and the New Orleans-Baton Rouge area for these sub-

regions.  

To calculate the refinery capacity share by sub-region, we first identified the 

location of the 38 PADD3 refineries along the Gulf Coast within an ARCGIS map.  

Then we examined the resultant map and defined our four sub-regions along with the 

total capacity of refineries located in each sub-region based on data from the 2018 EIA 

refinery capacity report (EIA, 2018b). We then computed regional capacity shares by 

taking the ratio of regional capacity to total PADD3 capacity. The resultant refinery 

capacity shares for the four areas are Corpus Christi 11%, Houston-Galveston 31%, 

Beaumont-Port Arthur 29%, and New Orleans-Baton Rouge 29% (Figure 2.3). With 

these four shares, we then compute the affected share based on the forecast strike 

envelope for a storm. For example, if Corpus Christi and Houston-Galveston fall in the 

forecast landfall area then we would compute the affected share as 42% (11% + 31%).  

In terms of defining the regions in the forecast landfall area we use the NHC 

hurricane warning and tropical storm warning area (NOAA, 2019b).  Here we look at the 

map of the warning areas and include all of our 4 sub-regions that the storm area on the 

map covers.  
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Figure 2.3 Four groups of refineries with their capacity shares 

 

2.4. Methods 

Our main goal is to look at damages that hurricanes and their forecasts cause 

within the energy industry.  To do this we will explore the relationship between refinery 

oil input and hurricane characteristics. We do a regression with weekly oil input as the 

dependent variable and forecast hurricane characteristics as independent variables along 

with other factors. The hurricane characteristic data include hurricane strength and 

affected share of refinery capacity in the forecast landfall area. The hurricane strength 

measure is the assigned Saffir-Simpson wind scale index. We use dummy variables to 

represent the forecast incidence of each hurricane category (H1, H2, H3, and H4) or 

tropical storm (H0) forecast excepting Category 5 as there were no Category 5's in our 

data. The base is a week without any hurricane or tropical storm forecast (i.e. sustained 

29% 
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wind speed <= 39 miles per hour). As mentioned in Data, forecast hurricane category 

has different time horizons (windows), 24-hour, 36-hour, 48-hour, and 72-hour forecast, 

indicating the forecasted hurricane category at the landing location before the associated 

time. Thus, in our regression, we use these for time horizons’ forecast in four 

specifications.  

In addition to strength and affected share, we control for several other factors. 

We observe there is regular ups and downs in Figure 2.1, which   due to the seasonality. 

Also, the gradual uptrend in the oil input was also noted. Thus, we first decomposed the 

time series of data to see whether we could find trend or seasonal factors using a basic 

additive time series model (Hyndman and Athanasopoulos, 2018).  Stylistically this 

assumes the time series consists of three components as follows: 

yt = Tt + St + Rt 

where  Tt is the trend component 

             St is the seasonal component 

             Rt is the remaining component. 

The trend component Tt is obtained by using moving average of the symmetric 

windows at time t. Seasonal component St, is then computed by averaging, for each time 

unit (week in this case), over all periods, after removing the trend component. Then the 

remaining component is the portion left after taking out trend and season components 

from the original data (Hyndman and Athanasopoulos, 2018).  

We choose additive model over multiplicative model because multiplicative 

model is more appropriate when the variations in the seasonal pattern or around a trend 
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are proportional to the level of the time series (Hyndman and Athanasopoulos, 2018), 

meaning that the spread-out the of data varies across the seasonal pattern or around 

trend. We check the stationarity using the augmented Dickey-Fuller (ADF) test and find 

that the data is stationary, further indicating the mean and variance of data are constant 

over time, and thus additive model is more appropriate. 

Figure 2.4 shows the decomposition of additive time series of the refinery oil 

input from 2001 to 2018 using weekly data. The estimated trend captures the gradual 

increase of the oil input in those 18 years. The 18 years’ refinery oil input shows a 

general uptrend, and the upward tendency is especially obvious since 2010. The two dips 

in the trend may be due to the long time to recover from Hurricanes Katrina and Rita in 

2005 as well as from Hurricanes Ike and Gustav in 2008. The seasonal component 

exhibits with the same up and down pattern each year indicating a seasonal effect exists. 

The remainder figure shows three major decreases of the oil input happened in August 

2005, August 2008, and August 2017, which correspond to the time when Hurricane 

Katrina and Rita (2005), Ike and Gustav (2008), as well as Harvey (2017) came. Thus, 

we assume that this remaining pattern could be explained by the hurricane 

characteristics. Since the effect of the shutdown may last and thus it would take time for 

the recovery of the production, in addition to the forecasted hurricane strength and 

affected share, we also add one dummy variable (TC_1w) to indicate the lag effect of the 

hurricane or tropical storm, where 1 indicates there was a hurricane or tropical storm in 
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the last week, while 0 indicates no such event last week.

 

Figure 2.4 Decomposition of additive time series of oil input 

 

To capture these components, our estimated model is: 

yt = Tt + St + Rt  

                                                                 R̂t = βXt + et 

where  yt is the refinery oil input in PADD3 in week t, 

Rt is the remainder component, 

             Xt is a vector of hurricane characteristics including the forecasted 

hurricane strength and affected capacity share in week t as well as the lag effect variable, 

et is a White noise error term. 
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In this model, we first use a time series decomposition that yields the remainder 

component (Rt) by removing the trend and seasonal components. Then we fit a model 

using generalized least squares (GLS) since the error term are correlated due to the time 

series data.    

2.5. Results 

The relationship of the forecasted hurricane category in different time horizons 

and the oil input to refineries in Gulf Coast region are preliminarily shown in Figure 2.2, 

where shows higher the forecast category accompanied with more reduction in the oil 

input to refineries. To further explore their correlation, time series decomposition model 

and GLS model are used. Results from the model using GLS are summarized in Table 

2.2 and visualized in Figure 2.5.  

Table 2.2 presents the results from four specifications that vary in terms of which 

forecast time window is used: 24-hour, 36-hour, 48-hour, and 72-hour forecast windows  

respectively. The numbers in the tables are the estimated coefficients for the 

corresponding variables, while the numbers in parenthesis are the standard errors and the 

asterisk represent significance level. Log-likelihood as well as Akaike Inference 

Criterion (AIC) and Bayesian Inference Criterion (BIC) are also presented for each 

specification.  

We find that specification using the 36-hour forecast window, exhibits the best fit 

among these four. It has the highest log-likelihood and the lowest AIC as well as BIC.  
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Looking to hurricane related significance, we find regardless of forecast horizon 

that hurricanes of category 3 or greater and affected share show significant results with a 

negative sign. Lower categories and tropical storms forecasts are uniformly insignificant. 

These results indicate high strength hurricane forecasts are associated with oil input 

reduction.  

Also notice that all the coefficients of affected share in the estimations for all 

four forecast windows are negative and statistically significant at 0.01 level. This is 

consistent with our expectation that the more capacity that is threatened the larger the oil 

input reduction. We also find that the coefficients for the lag effect TC_1w, which 

indicates whether a hurricane forecast happened a week ago, are significant and 

negative.  This indicates that it takes time to restart operations after a forecast has caused 

an operational reduction in the form of lower oil input.  

Figure 2.5 explores the results further showing the estimated effect of hurricane 

strength in four different forecast windows. The y-axis represents the PADD 3 total 

refinery oil input (in thousand barrels) after adjusting for trend and seasonality. Notice 

that the values on the y-axis are all negative indicating hurricanes have a negative effect 

on the oil input. The x-axis shows the effect of different hurricane strengths, from 

tropical storm (H0) to Category 4 (H4). As mentioned above, we group hurricane 

Category 1 (H1) and Category 2 (H2) because there are not enough observations in the 

data. We can see generally, the higher the forecast hurricane category, the more the oil 

input reduction. Notice that some of the effects are insignificant (details can be viewed 

in Table 2.2) but are still plotted for comparison. For instance, the effect of tropical 
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storm (H0), is not very consistent with others since it shows positive in the 24-hour 

forecast, but this effect is not statistically significant (see Table 2.2). Generally, lower 

category of hurricane and tropical storm tend to be statistically insignificant. Whereas 

major level hurricane (category 3 or above) are all statistically significant in all time 

windows. Notice that the Figure 5(d) does not show H4 due to no observation category 4 

forecasts in the 72-hour forecast window within our data. 
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Table 2.2 GLS results 

 

24h 36h 48h 72h 
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Figure 2.5 The estimated effect of hurricane strength in different forecast windows 

 

 
 

Figure 2.6 Affected share effect on four regions 
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Figure 2.6 shows the affected share effect from the regression model on four 

regions based on their share of their refineries’ capacities (Corpus Christi 11%, Houston-

Galveston 31%; Beaumont-Port Arthur 29% and New Orleans-Baton Rouge 29%). 

These affected share effects are calculated for 2 weeks, the week of hurricane event and 

the following week which is influenced. We can see clearly Houston-Galveston has the 

largest affected amount in all four forecast horizons because it has the largest share 

(31%). Corpus Christi has the smallest affected amount due to its smallest share among 

the four regions (11%).   

2.6. Discussion 

2.6.1. Alternative Methods 

In this work, we used additive decomposition model to analyze the effect of 

hurricane on the refineries’ operations. Before we applied the additive decomposition 

model, we tried different methods and models, one of which worth mentioning was the 

autoregressive integrated moving average with exogeneous variables (ARIMAX) model. 

The exogeneous variables, which are the characteristics of hurricane forecasts in our 

case, are the focus. We first checked the stationarity of the time series of the oil input. 

Then we determine the order (number of lags) for the ARIMAX model (p, d, q), where p 

represents the order of the autoregressive model, d represents the degree of differencing, 

and q represents the order of moving average model, through the auto-correlation 

function (ACF) and partial auto-correlation function (PACF), and get order of (1, 0, 0) 

which is also called AR(1). We did not end up choosing this model as our method 

mainly because of two reasons. First, the ARIMAX model does not directly control for 
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trend and seasonal effects; and second, the loglikelihood measure of model fit for the 

ARIMAX model is less than that for the decomposition model, while the Akaike 

information criterion (AIC) of the ARIMAX model is greater than the decomposition 

model.  All indicate that our decomposition method model better fits the data than does 

the ARIMAX.  

The decomposition model results, as mentioned above, shows greater major 

hurricane category forecast is associated with greater oil input reduction.  

2.6.2. Economic Loss 

Now let us estimate the economic loss associated with the operational 

adjustments that led to lower oil inputs. To estimate that loss we need a rough measure 

of the change in refinery output.  To do this we use the so called 3:2:1 crack spread 

procedure (EIA, 2012). That 3:2:1 crack spread procedure approximates product yield 

from a typical U.S. refinery.  This assumes that for every three barrels of crude oil input, 

the refinery produces two barrels (42 gallons per barrel) of gasoline and one barrel of 

distillate fuel which we will treat as equivalent to diesel. Then using the price of those 

items, we calculate the estimated output sale loss per day. Notice that, the prices may go 

up due to the short supply of the oil input from the Gulf Coast region, but it is also 

possible that the increased prices will be pulled down by more supply from other 

regions. Here for illustration and simplicity, we assume the prices are constant for 

reference. We use the Gulf Coast conventional gasoline price and the Gulf Coast ultra-

low sulfur diesel price drawn from EIA (2020):  This results in the formula 

Estimated output sale loss per day =  (Gulf Coast conventional gasoline price × 
2

3
 × 42  
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+ Gulf Coast ultra-low sulfur diesel price × 
1

3
 × 42) 

× reduction in oil input in barrels/per day 

For example, other things being equal, given a 36-hour before landfall forecast of 

a category 3 hurricane, refinery oil input is estimated to drop by 523,245 barrels per day. 

In this case, the estimated output sale loss using the average price computed over August 

2010-2019 prices ($2.28/gallon for gasoline and $2.36/gallon for diesel) will be $51M 

per day and $357M for the event week. Taking account of the lag effect (TC_1w), which 

would lead to oil input reduction of 364,319 barrels per day in the next week, so the 

estimated output sale loss would be $35M per day and $245 for the lag week. Thus, the 

total loss of output sale for this hurricane event for the affected two weeks would be 

$602M. Similarly, with a 36-hour forecast of a category 4 or above hurricane, the 

estimated oil input reduction will be 889,433 barrels per day, which will lead to 

approximately $86M output sale loss per day, and thus $847M for the whole event 

considering lag effect as well, if everything else is constant.   

We can also estimate the effect of the affected share using this estimation 

equation. Using the equations associated with the 36-hour forecast, as an example, we 

can find that a 20% increase in the affected share (the approximate difference between 

corpus and the other areas) will be accompanied with reduction of 129,158 barrels in oil 

input, which could lead to $12.5M output sale loss per day.  

Furthermore, this affected share effect also implies that the inaccuracy in 

hurricane forecasts may result in additional output sales losses. For example, if a 

hurricane was forecasted to go to the direction of Houston-Galveston area (share is 31%) 
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but eventually only affected Corpus Christi (share is 11%), then the forecasted affected 

share and associated loss would be 20% more than if the forecast had correctly identified 

corpus Christi along with the lost in corpus Christi due to an strike from a storm that the 

36 hour forecast said would not arrive. This additional 20% affected share would be 

estimated to lead to $12.5M output sale loss per day. The effect of the incorrect forecast 

could be explored more in the future work. 

2.6.3. Operating Profit Loss 

Economic loss has been addressed above, but the industry would be more 

interested in the how their profits would be affected. To estimate the affected profit, 

refining costs need to be subtracted from the potential revenue that could have been 

earned without hurricane events.  

Refining process converts crude oil to gasoline and diesel. So, the operating 

profit could be obtained through: 

Estimated profit loss per day =  (Gulf Coast conventional gasoline price × 
2

3
 × 42  

+ Gulf Coast ultra-low sulfur diesel price × 
1

3
 × 42 

-Crude oil price/barrel 

-Refining cost of gasoline/barrel 

-Refining cost of diesel/barrel) 

× reduction in oil input in barrels/per day 

Typical refining costs producing these two products are $0.60 per gallon for 

gasoline and $0.49 per gallon for diesel (What Determines Retail Prices for Gasoline and 

Diesel, 2016). Continuing our example in the above part, given a 36-hour before landfall 
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forecast of a category 3 hurricane, we would get operating profit loss of $140M on the 

event week and the lag week.   

2.6.4. Price Change 

Notice that when estimating the economic loss and the operating profit loss, we 

used the fixed prices that were calculated from averaging the past years of August prices 

as references for illustrative reason. We used monthly prices for August because August 

is the month when hurricanes come frequently. Using August prices may capture some 

of the effects of hurricanes on prices, but since they are monthly prices and are averaged 

across past years, the price increase, if there is any, brought by the short supply due to 

hurricane cannot be fully reflected. This increase in prices will to some extent make up 

the loss in the producer surplus result from short supply.   

2.7. Conclusions 

Energy facilities on the U.S. Gulf Coast are vulnerable to hurricanes. With 

climate change, this impact may become more severe in the future. This study explores 

the economic impact of the hurricane characteristics on refinery oil intake in the US Gulf 

Coast region.  To do this we estimate a relationship using generalized least squares 

applied to the residuals after removing trend and seasonal effects.  The estimation is 

done using EIA data on amount of oil input entering refineries from 2001 - 2018.  The 

results indicate that forecast of stronger hurricanes (Category 3 and above) cause 

reductions in oil input and thus refinery operations.  We also find that oil input falls with 

increases in the capacity that falls within the forecast strike zone. Moreover, given a 36-

hour forecast of a category 3 hurricane we estimate associated output sale losses to be 
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$51M per day over the strike week plus $35M per day in the a recovery period. 

Furthermore, our output sale loss estimation also shows that forecast inaccuracy in terms 

of strike region would increase revenue loss.    

There are some limitations of the study. First, in addition to hurricane strength 

and affected share, other factors like precipitation amount may also be important as it 

affects refinery output processing. Future study may improve the model by adding 

forecast precipitation data. 

Second, we use four forecast windows individually and not in terms of days 

before the actual strike. This means that our study is static rather than dynamic. In other 

words, using these four forecast windows separately in four different specifications and 

not differentiating them on how near they are to the strike does not allow us to examine 

the effect of changes in forecast category over time plus the increasing certainty of the 

information as the strike draws near. Adding more work on dynamics may improve the 

estimation although the low level of hurricane incidence limits our ability to add many 

more variables. 

The study was also hampered by our inability to obtain more regionalized data 

(for instance, industry level data) as we desired to study effects in our four areas of being 

in or out of forecasts and the actual location of the strike.  Obtaining and using such data 

would provide additional insight. 

Finally, our economic analysis was not very sophisticated and would be 

improved by taking into account of the different lengths of lag effect loss from different 

categories of hurricane, operating costs of the refineries during the affected weeks, as 
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well as losses resulting from the inaccuracy forecast if there is any. Also, the economic 

loss estimation can also involve a price change, and future study could estimate the loss 

from consumer surplus’s perspective as well.  

 



1 

 

3. THE ECONOMIC IMPACT OF HURRICANES ON OFFSHORE OIL AND 

NATURAL GAS OPERATIONS 

 

3.1. Introduction 

Offshore oil and gas production in the Gulf of Mexico is an important part of the 

U.S. energy system. Gulf based offshore crude oil production accounts for 17% of total 

U.S. crude oil production, and 5% of natural gas production (EIA, 2019a). Moreover, 

regional offshore production has been increasing in the past years. From 2005 to 2015, it 

grew by 6.5% (EIA, 2016). More from 2017 to 2019, the Gulf of Mexico crude oil 

production increased from 1.65 million barrels per day to 1.8 million barrels per day or 

12.5 %  (EIA, 2017, 2018, 2019c). Though production dropped in 2020 during the 

coronavirus pandemic, it is expected to increase in the future. (COMMODITIES, 2021) 

However, this region is vulnerable to extreme weather events like hurricanes. 

Historically, many of the large monthly declines in U.S. crude oil production are 

associated with hurricanes. For example, Hurricanes Gustav and Ike in 2008 caused 

offshore crude oil production to decrease by more than 1 million barrels per day (EIA, 

2019b). Similarly, in 2005, Hurricanes Katrina and Rita caused the shutdown of 

substantial offshore production with operations not fully recovering for more than six 

months (EIA, 2019b). Additionally, according to IPCC AR5 (Wong et al., 2014), climate 

change is expected to increase the intensity of tropical cyclones/hurricanes (increasing 

precipitation rates, and maximum wind speeds) although their frequency is likely to 

remain unchanged or decrease. Projections are for substantial industry damages.  For 
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example, the Energy Report (Zamuda, 2013) from the Department of Energy (DOE) 

says the economic impacts of storms and sea level rise on the U.S. Gulf Coast energy 

industry could reach $8 billion per year by 2030.  

These economic impacts are mainly attributed to physical damages to energy 

infrastructure and business interruption, with business interruption such as 

operation/production shutdown and crude oil supply decreases accounting for a 

substantial portion. When hurricanes occur, offshore platforms and rigs, which are large 

structures that float with an anchor or are fixed to the seabed are vulnerable. They house 

facilities for well drilling, production and partial processing of produced crude oil and 

natural gas. But when hurricanes threaten those structures are evacuated for the sake of 

safety with production interrupted.  In turn this affects oil and gas production. For 

example, two-thirds of the economic losses in the energy industry during 2004 Hurricane 

Ivan were due to interrupted operations (Zamuda, 2013). 

The magnitude of the historical and projected damages arising under this 

situation makes it important and urgent to explore hurricane impacts on the industry, and 

here we study the effects on offshore operations.  

The chapter contains several sections. The first presents a literature review on the 

economic impact of hurricanes on the energy sector. Section 3 describes the data used in 

the study. Section 4 introduces the regression model used and explains why it was 

chosen. The estimation results are presented in Section 5.  Then section 6 contains more 

discussion and an estimation of economic impact. In the last section (Section 7), we 

summarize the conclusions and reflect on limitations of the study. 
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3.2. Literature Review 

This study examines the economic impact of hurricanes on offshore crude oil and 

natural gas production and operation. Our exploration of the previous literature covers 

three main individual aspects 1) broad studies on the economic impact of hurricanes; 2) 

studies on the implications of hurricanes for components of the energy sector; and 3) 

studies on the hurricane impacts on the economics of the energy sector.  

3.2.1. Economic Impact of Hurricanes 

Many studies have addressed the economic impact of hurricanes. Some have 

constructed estimates at a macro level, addressing indicators such as GDP (Nordhaus, 

2006), economic growth rate (Strobl, 2011, 2012), distribution across multiple economic 

sectors (Petterson et al., 2006), and regional economy impacts (dominant industries, 

employment, population, income level, etc. - Coffman and Noy, 2012). Others study the 

economic impact on a specific sector or industry like the agricultural sector (Chen and 

McCarl, 2009), business sector (Burrus Jr et al., 2002; Gordon et al., 2010; Zhang et al., 

2009), energy sector (Fink et al., 2010; Reed et al., 2010), and tourism (Coffman and 

Noy, 2012). However, we could not find studies that have targeted effects on offshore 

entities.  

3.2.2. Energy System Impacts 

The extent of energy system vulnerability to hurricanes differs between onshore 

and offshore facilities. Onshore impacts involve infrastructure damage, power outages, 

and business interruptions all potentially caused by high winds and flooding. Offshore 
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impacts involve platform and pipeline damage or destruction, mostly caused by intense 

winds and storm surges.  

To better understand hurricanes’ offshore impact, we review literature addressing 

hurricane impacts on offshore infrastructure and operation. Those studies address a 

number of different impacts. Among them, many address vulnerability from a structural 

and technical perspective. Wisch (2006) assesses the impact of hurricanes on deep-water 

facilities. Cruz and Krausmann (2008) review the damage caused by Hurricanes Katrina 

and Rita on the offshore oil and gas industry and identify lessons learned from it 

proposing adaptation recommendations. Kaiser and Yu (2010) assess structural damage 

(like destroyed platforms) that was observed in Hurricanes Gustav and Ike in 2008.  

They also analyze the redevelopment decision making process and predict the 

redevelopment rate. They assert that redevelopment is likely to happen if the value of 

remaining reserves is estimated to be greater than cleanup and redevelopment costs.  

Some studies examine energy sector vulnerability to extreme weather and 

climate change in a general and broad way. For instance, Burkett (2011) explores how 

climate and climate change has affected the offshore operations and production of oil 

and natural gas. Schaeffer et al. (2012) presents an overview of the impacts of climate 

change on the energy system. Cruz and Krausmann (2013) analyze the vulnerability of 

the oil and gas sector to climate change and extreme weather events identifying 

adaptation and mitigation strategies in oil and gas sector.  

Some studies look at the issue from the environmental and hazardous perspective 

examining effects triggered by hurricanes at offshore oil and gas facilities. Examples 
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include estimates of the costs of oil spills (Pine, 2006) and hazardous-materials releases 

(Cruz and Krausmann, 2009).  

3.2.3. Off Shore Implications 

In our literature review we find few studies addressing the economic impact of 

hurricanes on the offshore production and operation. Some studies explore and analyze 

the threats of climate change and extreme weather on offshore operation (Burkett, 2011; 

Cruz and Krausmann, 2013; Kaiser and Yu, 2010; Schaeffer et al., 2012), but very few 

of them link the hurricane characteristics with offshore production and operation 

characteristics. 

Kaiser (2008), however, does use a regression model to examine the impact of 

tropical cyclones on offshore hydrocarbon production. The paper estimates the total 

shut-in production of hydrocarbon caused by tropical cyclones considering hurricane 

intensity, duration, and path. Kaiser’s (2008) paper and our study share the similarity of 

the linkage to hurricane characteristics, but the main differences between the two are the 

goal and assumptions. Kaiser’s (2008) goal is to estimate the total production shutdown 

given what actually happened (the number of hurricanes, the observed category of 

hurricanes, the observed path of hurricanes, and the total duration of hurricanes) in the 

season.  

In our study, one important assumption differentiating feature is that we will 

examine the extent to which oil and gas production shutdown and rig evacuation 

depends on the  hurricane forecast characteristics, while the ones after the hurricane has 

passed depend on many other factors like damage magnitude, clean-up, and repair needs. 
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Due to that assumption, we only focus our shutdown or evacuation rate before the 

hurricanes estimates . Also, we use shut-in production provided by the Bureau of Safety 

and Environmental Enforcement (BSEE) as a regressor to see how forecast hurricane 

characteristics affect shutdown and evacuation proportion.  

3.3. Data 

To investigate the impacts of hurricanes offshore oil and natural gas production 

we need data on offshore production and hurricane characteristics. We discuss those 

items below.  

3.3.1. Effects on Offshore Oil and Natural Gas Production 

When severe weather systems like tropical cyclones approach to the Gulf of 

Mexico they create threats for crude oil and natural gas production facilities and 

structures.  As a result, production starts to shut down and personnel on offshore 

platforms and rigs begins the process of evacuation (BSEE, n.d.). Platforms and rigs 

refer to the large structures with facilities used for well drilling in order to extract and 

process crude oil and natural gas, and the main difference between them is that platforms 

are fixed to the seabed while rigs are movable (The Shipping Law Blog, 2018.) The 

Bureau of Safety and Environmental Enforcement (BSEE) monitors the situation and 

creates reports on offshore crude oil and natural gas production shutdowns as well as 

platform and rig evacuation on a daily basis. Since the total number of offshore 

production facilities has changed during 2001 - 2018, we use the shutdown proportions 

rather than the absolute count. Similarly, we use evacuation proportions rather than total 

number.  



 

38 

 

One thing that needs to be pointed out is that platform recovery and return to 

operation could take days to months. For example, oil and natural gas production 

shutdowns caused by Hurricanes Gustav and Ike in 2008 took about 6 months to come 

down to normal levels while those caused by Hurricanes Katrina and Rita in 2005 took 

about 9 months to recover (BSEE, 2019). However, the length of the recovery time may 

be influenced by many forces, such as hurricane intensity and duration as well as non-

hurricane factors like time needed to complete safety checks. In this study we are 

focused on how hurricane wind speed directly influences offshore production and 

operation and try to minimize the effect of other factors by only using the shutdown and 

evacuation proportions before the shutdown peak.  

3.3.2. Forecast Hurricane Wind Speed 

The hurricane data we use in this study are forecast data, under the assumption 

that energy entities make operational decisions based on forecast information. The  

hurricane forecast data we use arise from the National Oceanic and Atmospheric 

Administration (NOAA, 2019), and provide the probability distribution of the hurricane 

category forecast. We also calculate expected forecast wind speed as a weighted average 

of the median wind speed of each category times the forecast category probabilities.  

Before and during a tropical cyclone, NOAA provides storm forecasts at least 

every 6 hours with different forecast time horizons including 24-hour, 36-hour, 48-hour, 

and 72-hour, indicating where and how strong the storm would be in the next 24, 36, 48, 

and 72 hours. To make these data useful to our model, we create a timeline that at a 

given time has synchronized observations of forecast from all four prior forecasts. In 
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other words, with this transformation we can know what the forecasts were for that time 

in the relevant prior 24-, 36-, 48-, and 72-hour forecasts. To make those data compatible 

with the offshore production and evacuation data, we summarize the data into daily 

expected forecasted wind speed by averaging the 4 appropriate forecasts.   

3.4. Methods 

Our main goal is to explore whether there is a relationship between the forecast 

hurricane wind speed and the offshore production shutdowns and evacuations. We 

examine four different dependent variables (oil production shutdown, natural gas 

production shutdown, oil platform evacuation, and rig evacuation). Note these dependent 

variables are all expressed as proportions, ranging from 0 to 1, shown in Figure 3.1. In 

this case, models with no restriction on the dependent variable like ordinary least squares 

(OLS) are not appropriate. On the other hand, uses of assumed Beta distributions are 

flexible and often used for modelling proportional dependent variables, and it allows 

different density shapes. Here we assume that the dependent variables are beta-

distributed, so we use beta regression.  
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Figure 3.1 Distribution of the dependent variables 

 

The beta regression model was introduced by Ferrari and Cribari-Neto (2004) 

and is designed for estimation when dependent variables are continuous and limited to 

the interval (0,1). This beta regression model stems from the typical beta density: 

f(y; p, q) = 
Γ(𝑝+𝑞)

Γ(𝑝)Γ(𝑞)
𝑦𝑝−1(1 − 𝑦)𝑞−1,     0 < y < 1, 

where p > 0, q > 0, and Γ(∙) is the gamma function. The mean and variance of response y 

are 

E(y) = 
𝑝

𝑝+𝑞
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and  

Var(y) = 
𝑝𝑞

(𝑝+𝑞)2(𝑝+𝑞+1)
 

Instead of using p and q, the beta regression model proposes an alternative way 

to parameterize the beta density by setting μ = p/(p + q) and 𝜙 = p + q: 

f(y; μ, 𝜙) = 
Γ(𝜙)

Γ(μϕ)Γ((1−𝜇)𝜙)
𝑦μ𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1,     0 < y < 1, 

where 0 < 𝜇 <1, 𝜙 > 0, so that it can easily model the mean of the response: 

E(y) = 𝜇 

and the variance of y is  

Var(y) = 
𝜇(1−𝜇)

1+𝜙
 

As in our case, we assume the dependent variable y is beta-distributed, so we 

have y ~ 𝛣(𝜇, 𝜑), and the model is  

g(𝜇𝑖) = 𝑋𝑖
Tβ 

where  𝑋𝑖 is a vector of the expected forecast wind speed over four different time 

horizons as well as the hurricane threshold which is a dummy variable that indicates 

whether the forecast wind speed is large enoung to be declared a hurricane; and 𝜇𝑖 is the 

mean of oil shutdown proportion / natural gas shutdown proportion / platform 

evacuation proportion / rigs evacuation proportion before peak in these four models 

respectively. 

Notice that g(∙): (0, 1) → ℝ is a link function, which could take the different 

forms, including logit g(𝜇) = log(𝜇/(1- 𝜇)); probit g(𝜇) = Φ−1(𝜇); log-log g(𝜇) = -log{-

log(𝜇)}; complementary log-log g(𝜇) = log{-log(1- 𝜇)}; and Cauchy g(𝜇) = tan{π(𝜇 – 
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0.5)}. In our case, logit link is chosen for it has the lowest AIC and/or highest log-

likelihood among those link functions.  

Given this model we will study whether and how much production interruption 

or evacuation is affected.  To do this, data are collected on four dependent variables 

giving the proportion of facilities a) that produce crude oil are shutdown; b) that produce 

natural gas are shutdown; c) that are producing platforms that are evacuated, and d) that 

are producing rigs that are evacuated. In each model, we have four differing independent 

variable specifications involving expected wind speed forecast from four different 

forecast windows, including 24, 36, 48, as well as 72-hour forecast.  

3.5. Results 

After model comparisons among different link functions used in beta regression, 

we keep the logit link function results because they have either the highest R2 and log-

likelihood and/or the lowest AIC.  The regression results are presented in Table 3.1 – 

3.4. The tabled numbers are the coefficients from the beta regression model giving the 

effects of the windspeed on the dependent variable across different forecast horizons, 

while the numbers in the parenthesis are their standard error. We can find that generally 

for oil shutdown rate and gas shutdown rate models, hurricane threshold shows statistical 

significance in all forecast horizons expect 72-hour forecast. Whereas the forecast wind 

speed is statistically significant in these two models for 72-hour forecast windows. In 

modelling the platform evacuation rate, forecast wind speed displays statistical 

significance in 24 and 72-hour forecast; while in the model of rig evacuation rate,  

forecast wind speed shows significance in all four forecast horizons.  
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Table 3.1 Beta regression summary with response of oil shutdown rate 
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Table 3.2 Beta regression summary with response of natural gas shutdown rate 
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Table 3.3 Beta regression summary with response of platform evacuation rate 
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Table 3.4 Beta regression summary with response of rig evacuation rate 
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Figures 3.2 – 3.5 present regression results for the four dependent variables: oil 

shutdown rate, gas shutdown rate, platform evacuation rate, and rig evacuation rate, 

respectively. Each contains four graphs showing the four different forecast horizons 

used. The horizontal axis represents the average forecast wind speed, and the vertical 

axis represents the proportion shutdown or evacuated.  

For instance, Figure 3.2 shows the relationship between oil production offshore 

facility shutdown proportion and the expected forecast wind speed using four different 

forecast windows from each of the 24h, 36h, 48h and 72h forecasts. Generally speaking, 

we find the higher the forecast wind speed is associated with larger oil production 

shutdown proportion across all four forecast windows. Moreover, there is a big jump in 

the oil shutdown rate when the forecast wind speed rises to 74 miles per hour (mph), 

which is the threshold for definition of hurricane Category 1. When the expected 

forecast wind speed is below 74 mph but above 39 mph (the condition for  a tropical 

depression or tropical storm forecast), the oil production shutdown proportion is 

typically below 25%. Whereas when the forecast wind speed is above 74 mph, the oil 

production shutdown is at least 60%.  Combining the regression results in Table 3.1, we 

can find that this jump is largely captured by the variable hurricane threshold that we 

used in the model. This indicates that the oil shutdown rate is mainly associated with the 

hurricane threshold. In other words, whether there will be a hurricane may play a more 

important role on the shutdown decision than what wind speed the hurricane will be. 

Similar patterns are found in the model with dependent variable of gas shutdown 

rate, where the hurricane threshold captures the main difference in the natural gas 
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shutdown rate. However, the models for evacuation rate do not show an obvious jump 

when the forecast wind speed reaches hurricane levels (74 mph). Instead, the curves for 

those cases are relatively flatter, which is due to the bad high leverage points in statistics, 

in other words, some observations show high forecast wind speed but low evacuation 

rates in this case. This flatter pattern is consistent with the regression results in Figure 

3.4 and 3.5, where forecast wind speed shows statistical significance rather than 

hurricane threshold, as we mentioned. With further investigation, we find that this is 

probably due to two reasons: 1) the evacuation rate for platform and rig indicate the 

proportion of the platform/rigs that personnel has been evacuated from, and the 

evacuation rate in our sample is generally less than the oil and gas shutdown rate at a 

certain expected forecast wind speed; 2) shutting-in oil and gas production is a standard 

safety procedure, but evacuation is typically subject to mandatory notice, and 3) 

hurricane path and affected regions may be different. 
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Figure 3.2 Beta regression results with response of oil shutdown rate 

 

 

Figure 3.3 Beta regression results with response of natural gas shutdown rate 
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Figure 3.4 Beta regression results with response of platform evacuation rate 

 

 

Figure 3.5 Beta regression results with response of rig evacuation rate 
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3.6. Discussion 

3.6.1. Further Interpretation 

The beta regression results show two main conclusions: 1) for oil shutdown rate 

and gas shutdown rate models, effect of hurricane threshold is positive and statistically 

significant. This indicates that a hurricane forecast is associated with an obvious oil 

shutdown rate increase; 2) for platform evacuation rate and rig evacuation rate models, 

the forecast wind speed effects are positive and statistically significant, demonstrating 

that shutdown and evacuation rates increase with forecast wind speed. The interpretation 

of the coefficients, however, is not straightforward, but can be analyzed as the following 

way. For instance, the coefficient of hurricane threshold in the oil shutdown rate model 

using 24-hour forecast horizon is 1.440, indicating that when there is a hurricane forecast 

(no matter which category), the log odds of the offshore oil production shutdown rate 

(log(𝜇/(1- 𝜇))) would increase by 1.440. Therefore, the odds of the offshore oil 

production shutdown rate (𝜇/(1- 𝜇)) would increase multiplicatively by 4.22, 

demonstrating that the ratio of the rate of shutting down oil production (𝜇) and the rate 

of not shutting down (1- 𝜇) would increase 4.22. If the original shutdown rate is 30% (so 

rate of not shutting down is 70%), then given there is a hurricane forecast, the shutdown 

rate will become 65% (because 30%/70% × 4.22 ≈ 65%/35%), other things being equal.   

Take rig evacuation rate model as another example, the coefficient of expected 

forecast wind speed using 24-hour forecast horizon is 0.031. This means when expected 

forecast wind speed increases by 20 mph, the log of the odds of the offshore rig 
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evacuation rate (log(𝜇/(1- 𝜇))) would increase by 0.62 (0.031 × 20). Accordingly, the 

odds of the rig evacuation rate (𝜇/(1- 𝜇)) would increase multiplicatively by 1.86 for 

every 20 mph increase in the forecast wind speed. In other words, suppose the original 

shutdown rate is 30% (so rate of not shutting down is 70%), with  the expected forecast 

wind speed increases by 20 mph, the rig evacuation rate will become 44% (because 

30%/70% × 1.86 ≈ 44%/56%).   

3.6.2. Economic Loss and Profit Loss 

Knowing the significant impact, the next issue we need to consider is the 

economic implication. What does the odds change mean for industry economics? Let’s 

use an example to illustrate. At the hurricane wind speed of category 1 (74 mph), the 

estimated gas production shutdown rate is 55%, and if the expected forecast wind speed 

increases by 20 mph to 94 mph, the estimated shutdown rate would be 65%, whose odds 

is 1.52 times of the odds of 47.8% ( because 0.65/(1-0.65) ≈ 1.52 * 0.55/(1-0.55)). 

Similarly, if the expected forecast wind speed further increased by 20 mph to 114 mph, 

the estimated gas shutdown rate would become 75% (0.75/(1-0.75) ≈1.52 * 0.65/(1-

0.65)).  

For economic estimation of the associated damages, we compute the expected 

volume of production lost times the oil price. We obtain the average offshore U.S. Gulf 

of Mexico oil production in August (when most hurricane occurs) of the past five years 

(2016-2020),  1.7 million barrels per day, as well as the average offshore U.S. Gulf of 

Mexico crude oil first purchase price ($ per barrel) in August in the past five years 

(2016-2020), $50.78 per barrel, from EIA. Under this assumption, 20 mph increase in 
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the expected forecast wind speed from the threshold of the hurricane Category 1 (74 

mph) would reduce about 10% of the oil production, about 170 thousand barrels per day, 

and therefore lead to roughly $8.6M per day loss of revenue. If use typical operating 

margin of oil and gas production companies, roughly 15% (Andriy Blokhin, n.d.), then 

the estimation of the profit loss from oil production shutdown by 10% would be $1.29M 

per day. Similarly, 10% reduction of the gas production resulting from 20mph increase 

in forecast wind speed will lead to approximately $800 thousands loss of revenue and 

thus $120 thousands loss of operating profits.  

The above loss estimation focused on the producer surplus change in the Gulf 

Coast region and used fixed price as reference. From another perspective, there are some 

concerns on the estimation of the economic estimation here. One concern is that the 

reduction in the supply of crude oil and natural gas from the Gulf Coast region can be 

made up by the supply from other region or imports. If consider the producer surplus in 

whole society, then no economic loss from reduced revenue should be counted. Another 

concern is that if the supply gets negatively affected, crude oil prices should increase as 

a response, which will reduce the loss in producer surplus. Both of those concerns 

depend on more empirical supports and could be further studied as an extension and 

from a different angel.  

3.7. Conclusions 

In this essay, we report on a study of the economic impact of hurricanes on 

offshore U.S. Gulf of Mexico oil and gas production.  The study explores the 

relationship between forecast wind speed and offshore facticity shutdown rate as the 
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evacuation rate for platforms and rigs. Beta regression is used as we assume the 

dependent variables in all four models are beta-distributed proportions. Results show 

that the shutdown and evacuation rates rise with an increase in the forecast wind speed 

and/or with the declaration that a hurricane will occur. The revenue loss on the 

production reduction of crude oil and natural gas are estimated to be $9.4M per day, with 

operating loss amounting to $1.4M per day. Also, it is likely that this is a lower bound 

estimate as the number of offshore facilities is increasing and thus in the future without 

changes in hurricane characteristics this would likely become larger.  Moreover, if the 

projected climate change influenced hurricane intensity increases come to pass then 

revenue loss would also increase.   

There are several limitations of our study which also suggest possible research 

extensions. One should notice that the forecast wind speed we use in the study is an 

expected value, which is obtained by calculating the average of the mean wind speed of 

each category weighted by the forecast category probabilities. Averaging however, pulls 

the forecast wind speed to the middle and away from the highest possible speed in the 

forecast. This may not reflect the wind speed decision makers consider.  They may be 

conservative and plan for a more than average win speed and thus react to a more severe 

expected threat. Perhaps the model should be estimated with a maximum speed or a form 

of an upper confidence interval. For instance, if the forecast shows that Category 4 is the 

most likely category, whose mean wind speed is 143 mph, but the calculated expected 

wind speed is only 112 mph (Category 3), then the Category 4 wind speed cannot be 



 

55 

 

reflected in our model. This is a common issue when using average values. Future study 

can improve this by also considering the distribution of the forecast.  

Another limitation is that we only include the forecast wind speed as an 

explanatory variable. In a more realistic world, offshore oil and gas production and 

operation could be influenced by hurricane path as for example there are more rigs off 

the Louisiana coast than off the Texas coast. We could again include explanatory 

variables like percent of facilities in the forecasted path. 

Additionally, apart from weather events, some other events like pandemic, 

political, and economic events may also have influence on the offshore production. This 

issue, however, is in fact limited by the data we gathered. As mentioned in the Data part, 

the offshore oil and gas production as well as platform and rig evacuation rates come 

from BSEE, and these data are only released when there is or will be a tropical cyclone. 

If we intend to study what and how incidents or weather events may have impact on the 

offshore crude oil and natural gas production, then continuous data is required. Future 

study could improve the study through the improved data.  

Moreover, further study could also explore the recovery phase from the 

shutdown, since different recovery times will also alter revenue loss. Furthermore, 

concerns of the consumer and producer surplus in the whole society as well as the crude 

oil and natural gas prices change result from decreased supply could also be considered 

and further studied.   
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4. THE ECONOMIC IMPACT OF HURRICANE FORECAST ACCURACY ON 

GULF COAST PETROLEUM REFINERIES 

 

4.1. Introduction 

The U.S. Gulf Coast is an important region in the U.S. oil and gas industry (EIA, 

2019a). Many petroleum refineries are located in this area. However, this region is 

vulnerable to hurricanes. In 2017, hurricane Harvey caused the shutdown of 

approximately 2.2 million barrels per day of refining capacity or roughly 45% of the 

Texas Gulf Coast capacity (Jacobs, 2017). Also, with climate change, the intensity of 

hurricane and tropical storms is likely to increase (Kishtawal et al., 2012; US EPA, n.d.). 

Refineries and other entities make shut-down decisions based on forecasts. When 

hurricanes or tropical storms move toward the United States the NOAA National 

Hurricane Center issues a forecast. In the previous chapters we studied the economic 

impact of hurricanes on the Gulf Coast oil and gas operations, where found that 

hurricane forecast characteristics negatively impacts oil input to refineries and offshore 

activity.  However, in doing that we did not consider forecast accuracy. Forecasts are not 

always perfect predictors of intensity, strike location, and timing.  This raises the 

question, does an inaccurate forecast impose added cost on the refineries? If yes, then 

how large is that cost and where does the impact come from? This chapter aims to 

explore and answer these questions.  
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4.2. Background 

Recent experience shows an increase in the impact of hurricanes and tropical 

storms on the U.S. Gulf coastal region and projections indicate that climate change is 

likely to further exacerbate this (US EPA, n.d.). This makes the issue of hurricane 

forecast accuracy an important research area.  

Some studies have focused on making better use of models and frameworks as 

means to improve hurricane forecast accuracy. For instance, in 2008 NOAA established 

the ongoing Hurricane Forecast Improvement Project (HFIP) to increase the knowledge 

on vulnerability and to improve forecasts accuracy so as to mitigate the impacts (Gall et 

al., 2013). Also, Taskin and Lodree (2011) explored ways to improving forecast 

accuracy through nesting the National Hurricane Center’s hurricane prediction model 

into a Bayesian decision framework.  

Hurricane forecasting, however, is not just a meteorological, technical, forecast 

accuracy problem it is also an economic problem with associated and consequential 

actions.  Societal decisions also involve allocating scarce resources to save lives, reduce 

economic impact, and invest in research for improvement. Previous literature found that 

larger errors in the prediction in hurricane landfall location cause higher damage 

(Martinez, 2020). Also, developing and enhancing hurricane forecasts could be costly. 

Research and discussion directed toward increasing the economic value of hurricane 

forecasts can help public officials make decisions on investing in such improvements 

(Considine et al., 2004). Previous literature covers hurricane forecast economic 

dimensions in a number of ways.  
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Some literature analyzes the economics of hurricane or more generally hazard 

forecasts using willingness to pay approaches.  In other words, they study how 

individuals perceive the need to fund activities to improve hurricane forecasting 

accuracy (Lazo et al., 2010; Lazo and Waldman, 2011; Nguyen et al., 2013; Mozumder 

et al., 2015; Park and Yoo, 2018; Ahsan et al., 2020; Rahaman and Iqbal, 2021; Wehde 

et al., 2021; Molina et al., 2021). For example, Lazo et al. (2010), Lazo and Waldman 

(2011), and Molina et al. (2021) conducted a survey to analyze household willingness to 

pay for the improvement of hurricane forecast attributes such as more accurate forecasts 

of landfall time and location, wind speed, and storm surge. Lazo et al. (2010) found 

significant willingness to pay for improved information on those items. Molina et al. 

(2021) found that the highest willingness to pay is for improvements in accuracy on 

wind speed, followed by the storm track (path) and precipitation (Nguyen et al., 2013; 

Park and Yoo, 2018). Further study willingness to pay finding similar value is places on 

accuracy improvement. Study result shows that 3.4% of U.S. economic output variation 

account for weather variability (Lazo and Waldman, 2011). 

Some other studies have addressed the value of improved accuracy by examining 

effects on the cost of evacuation and the loss from potentially avoidable evacuation. 

These studies embody an assumption which is used in our study as well: inaccurate 

hurricane forecasts can improperly assert areas are at risk or overstate risk and in turn 

cause excessive and costly evacuation.  They also assume that could be avoided under 

improved forecast accuracy. Anderson and Burnham (1973) studied and estimated the 

potential savings from the reduction of the average forecast error, using a combination of 
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game-theory and decision theory approaches finding that the potential savings to 

economic sector from reduction of forecast error to one-half of current value would be at 

least $15.2M in the first year in 1973 U.S. dollars. Considine et al. (2004) studied the 

value of hurricane forecast for the oil and  gas producers through analyzing the costs of 

evacuation and potential costs of not evacuating, drawing the conclusion that costs 

decrease as forecast accuracy improves. Similar results were also found by Martinez 

(2018) that 60% in the improvement in hurricane forecast accuracy is associated with 

15% - 30% reduction in evacuation costs. 

While the literature reviewed above has studied the economic value of hurricane 

forecasts, they have generally concentrated on the economic impact to households and 

the general business sector without a great deal of focus on the multi-billion-dollar oil 

and gas refining industry. Considine et al. (2004) did examine impacts on offshore oil 

and gas production and the evacuation of offshore platforms and rigs but not on shore 

components. Our study will extend that work focusing on impacts to petroleum 

refineries on shore. To do this we extend the work in the earlier chapter that found 

hurricane forecast attributes / characteristics have statistically significantly negative 

impact on oil input to refineries.  

4.3. Data 

As mentioned, we will examine whether and how, if yes, inaccurate hurricane 

forecasts would negatively affect decisions on the oil input to refineries and in turn 

enhanced economic impact. To achieve this, we build upon the model results from essay 

1 in chapter 2, which explores the economic impact of the hurricane characteristics on 
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the oil input to Gulf Coast refineries. There we drew the conclusion that both hurricane 

category forecast and hurricane strike location forecast negatively affect crude oil input 

to refineries. In particular the higher the forecasted hurricane category or the larger the 

share of the capacity in the warning region the greater the reduction in oil input (i.e. the 

more the oil input shutdown). As a result, a further question is raised: What if the 

forecast is inaccurate? Will the inaccuracy in the forecast cause different decision 

making on the shutdown of the refineries? What will be the influence of this inaccuracy 

if there is any? To answer these questions, we need to figure out the difference between 

the forecast data and the actual outcome, which arises from the observed data we get 

after hurricanes. Details of our approaches to using the data are in the following section.   

4.3.1. Hurricane Characteristics 

In the model of Chapter 2, the hurricane characteristic data used are forecasts 

rather than observed strike data. This is based on our fundamental assumption that 

refineries and crude oil supplier make operational decisions before hurricanes strike 

because it takes time to implement decisions. In this chapter, we want to know how the 

effect of the differences between the forecast and the observed hurricane characteristics. 

Here we examine this in terms of hurricane strength and hurricane landfall location.   

4.3.1.1. Difference in Hurricane Strength Between Forecast and Observation 

In chapter 2 we found that hurricane strength has a statistically significant impact 

on oil input to refineries. Previously, we got the hurricane strength information from the 

forecast issued by the National Oceanic and Atmospheric Administration (NOAA) 

National Hurricane Center (NHC). In this chapter, we also collect data on the actual 
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hurricane strength category upon landfall. The interest is the difference in hurricane 

strength between the forecast and what actually happened. The strength measure we use 

involves the mean wind speed by category in the Saffir-Simpson Hurricane Wind Scale 

(SSHWS) indicator.  In the SSHWS the hurricane categories do not reflect constant 

differences in wind speed interval. This means, the difference of the impact between 

Category 3 and Category 1 is not the same as that between Category 4 and Category 2, 

even though both of them have the difference of two levels of hurricane categories. To 

solve this problem, the differences in mean wind speed is computed between the forecast 

and the observed categories.  

Also, as we did in Chapter 2 we consider different forecast windows - 24-hour, 

36-hour, 48-hour, and 72-hour forecasts. Notice that the n-hour forecast data we use are 

the hurricane strength forecast at the landfall location n hours before it lands in Gulf 

Coast region. For instance, 48 hours before landfall in Gulf Coast, the 48-hour forecast 

tells what the hurricane strength at the landfall location will be; while 24 hours later, in 

other words, 24 hours before landfall in Gulf Coast, the 24-hour forecast updates the 

hurricane strength at landfall location. Therefore, in this chapter, we use forecast from 

these forecast windows.  
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Table 4.1 Saffir-Simpson hurricane wind scale 

Category Wind Speed 

(miles per hour) 

Mean Wind Speed 

(miles per hour) 

Five ≥ 157 _ 

Four 130–156 143 

Three 111–129 120.5 

Two 96–110 103 

One 74–95 84.5 

Tropical storm 39–73 56 

Tropical depression ≤ 38 _ 

 

4.3.1.2. Difference in Hurricane Landfall Locations Between Forecast and 

Observation 

The hurricane landfall (strike) location is also important in characterizing the 

results of decision making on oil input. If the forecast says the hurricane will go to the 

direction of Corpus Christi, Texas, then refineries in New Orleans, Louisiana may not 

take action. However, the hurricane path is dynamic and can change with forecasts 

updated up to 4 times every day. In this case, 48-hour forecast of the landfall location 

can be different from the actual landfall location.  

Following Chapter 2, we use four sub-regions (Corpus Christi, Houston-

Galveston, Port Arthur-Beaumont, and New Orleans) that have differing capacity shares 

(11%, 31%, 29%, and 29%) based on the data from the 2018 EIA refinery capacity 
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report (EIA, 2018b). In our analysis the differences between the forecast and actually 

observed hurricane strike locations will be represented by the difference in the capacity 

shares between the forecast and the outcome. For instance, in a past hurricane event, if 

the 48-hour forecast said the hurricane would go to the direction of Houston-Galveston 

area (31%) and Port Arthur-Beaumont area (29%), which would make the affected share 

be 60%, but the hurricane eventually struck Corpus Christi area with the actually 

observed affected share of 11%, then the difference in the affected share would be 49%. 

Later in this chapter, we will explore, for example, how this 49% affected share 

difference brought by the inaccurate forecast impacts oil inputs.  

4.3.2. The Difference of the Weekly Refiner Net Input of Crude Oil 

With the difference of the hurricane characteristics between forecast and the 

observation, we also need to know what this does to oil input to refineries, so that we can 

explore their relationship.  

Previously, we used the weekly input of crude oil to refineries in the Gulf Coast 

(PADD3) region that covers the time span from 2001 to 2018, provided by the Energy 

Information Agency database (EIA, 2019b). After taking out seasonal and trend effects 

using additive decomposition, we get a stationary series on oil input, which then are 

related to the hurricane forecast accuracy characteristics. This time, since the 

explanatory variables are differences of the hurricane characteristics between forecast 

and the observation, we will use differences in oil input to refineries.  

In Chapter 2, we built a model that predicts oil input to refineries (shutdown 

amount) given hurricane characteristics. Using that model, we predict the amount of the 
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oil input to refineries with the observed hurricane strength and affected shared of 

capacity (determined by the landfall location). This predicted value can be viewed as the 

oil input to refineries (shutdown amount) under an accurate forecast, because with an 

accurate forecast we should get same hurricane characteristics as the observation. 

Similarly, we get the oil input to refineries under the alternative forecast windows, which 

could be the same or not with the observation and can be viewed as the original forecast. 

Our goal here is to take the difference between oil input to refineries under original 

forecast and that under accurate forecast.  

4.4. Method 

The main goal of this chapter is to explore whether and how, if yes, inaccurate 

forecasts will have economic impact on the refinery oil input. The idea is developed 

from Chapter 1, where we have drawn the conclusion that both hurricane strength and 

the hurricane landfall location have statistically significant impact on the refineries’ oil 

input. Similarly, to study the (inaccurate) hurricane characteristics forecast on the oil 

input to refineries, we use the time series decomposition method, removing the effect of 

trend and seasonality that are imbedded in this data, and only use the remainder of 

weekly oil input.  

Time series decomposition models have different forms – additive form, where 

the time series data is considered as the sum of the decomposed patterns, and 

multiplicative form, where the time series data is taken as the product of the decomposed 

patterns (Prema and Rao, 2015). Additive decomposition model works when the 

seasonal patterns do not change that much along the time, while multiplicative 
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decomposition model is effective when the variations in the seasonal pattern or around 

trend are proportional to the level of the time series (Prema and Rao, 2015; Hyndman 

and Athanasopoulos, 2018). For this reason, we choose additive decomposition model 

over multiplicative decomposition model. We also check the stationarity of the weekly 

oil input data using the augmented Dickey-Fuller (ADF) test. That test result shows that 

this time series data is stationary, indicating that the mean and variance of data are 

constant over time, so no further adjustment is needed. The additive decomposition 

model is shown as follows:  

yt = Tt + St + Rt 

where  Tt is the trend component 

             St is the seasonal component 

             Rt is the remaining component. 

In the decomposition, firstly, Tt, the trend component, is extracted by using 

moving average of the symmetric windows at time t. Seasonal component St, is 

computed by averaging, for each time unit (week in this case), over all periods, after 

removing the trend component. Then the remaining component Rt is the portion left after 

taking out trend and seasonal components from the original data (Hyndman and 

Athanasopoulos, 2018).  

Previously, we regressed the remaining component of oil input on the hurricane 

characteristics forecast to find their relationship. So, using the model from Chapter 2, we 

can get predictions of oil input to refineries under two situations. In the first situation, we 
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can get the oil input shutdown decision taken in response to the original forecast (may be 

inaccurate): 

R̂inaccurate = βXoriginal forecast 

Under the second situation, we can get the oil input shutdown decision that would 

have occurred based on a perfect forecast (where forecasts in strength and capacity 

affected matches the actual observation): 

R̂accurate = βXobserved 

 Under our hypothesis, the difference (∆R) in the oil input decision between the 

two situations could be explained by the difference in the hurricane forecast: 

∆R = α1|∆x1| + α2|∆x1|*sign(∆x1)  + α3|∆x2| + α4|∆x2|*sign(∆x2) + e 

where  

∆R = R̂inaccurate  - R̂accurate                                                                                  (1)  

∆X = Xoriginal forecast - Xobserved = [
∆x1
∆x2

]                                            (2) 

∆R  is the difference in the oil input remainder components between original 

  forecast and accurate forecast, 

∆x1  is the difference in affected share of capacity (related to hurricane path), 

∆x2  is the difference in hurricane strength,  

e  is a white noise error term. 

Notice that we used the absolute value and the sign value (1 if positive or -1 if 

negative) of the difference in hurricane characteristics to capture the effect of difference 

from both sides. In other words, without the absolute value and sign value of the 

explanatory variables, the model would only examine the cases where the original 
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forecast portends a stronger storm than landfalls, since with the opposite case, the results 

would show benefits. This is not plausible because it does not make sense to draw 

conclusion that inaccurate forecast can bring benefits. Adding absolute value and sign 

value solved this issue.  

There are different forecast windows for the original forecast in previous study, 

thus here we maintain those windows as different scenarios or specifications when 

calculating the difference in the hurricane characteristics (∆X). We add the interaction 

terms in the model as needed. The results of the model are shown and discussed in the 

next part.  

4.5. Results 

 

Table 4.2 shows regression results of the model. Three columns represent the 

estimations of the difference in the oil input remainder that arises between the original 

forecast and the observation in each of the 24-hour, 36-hour, and 48-hour forecasts. 

Notice that we do not include the 72-hour window because some hurricanes and tropical 

storm with lower categories do not have such forecasts, so difference is impossible to 

obtain. The rows represent the explanatory variables or terms – the absolute value of the 

difference in the affected share of capacity between original forecast and the 

observation, the product of the absolute value and the sign value of the difference in the 

affected share of capacity between original forecast and the observation, the absolute 

value of difference in the wind speed in miles per hour between the original forecast and 

the observation, as well as the product of the absolute value and the sign value of the 
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difference in wind speed between original forecast and the observation. The numbers in 

the tables are the estimated coefficients for the corresponding variables, while the 

numbers in parenthesis are standard errors and the asterisks represent significance level.  

We can find that generally both affected share of capacity and hurricane strength 

are statistically significant and negative for 24-hour and 36-hour forecasts but only 

affected share of capacity is significant for 48-hour forecast.  

The specific effect on the oil input decision difference can be interpreted by the 

difference in the hurricane characteristics. For example, in the scenario of 24-hour 

forecast window, we can find that other things being equal, if there is a 10% inaccuracy 

in the affected capacity forecast, then about 74 thousand barrels of oil input to refineries 

per day would be falsely reduced. Under a 36-hour and 48-hour forecast window, this 

10% inaccuracy in the affected share of capacity would have an added 28 and 36 

thousand barrels impact, respectively. From these results, if the refineries management 

make shutdown decision based on the 24-hour forecast, and the forecast report said the 

hurricane would go to the direction where both Houston-Galveston and Corpus Christi 

would be at risk (receive hurricane warnings), but eventually the hurricane struck Corpus 

Christi, we would estimate that this inaccuracy forecast would lead to 229 thousand 

barrels of oil input reduction, with other things held constant. 

Forecast inaccuracies can also involve hurricane strength. Here as explained in 

the Data section, we use differences in forecast wind speed in miles per hour. The results 

show, for example, that if the 24-hour forecast says the landfall hurricane category will 

be Category 2 but it turned out to be Category 1, then the estimated oil input to refineries 
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would be reduced by 117 thousand barrels of oil input per day. This is calculated using 

the estimated coefficient times the difference in the mean wind speeds in Category 1 

(84.5 mph) versus Category 2 (103 mph), using the 24-hour forecast window estimation.  

If we compare the results across the scenarios of forecast window, we can find 

that model with forecast window of 24-hour has the relatively largest coefficient of 

determination. Also, the coefficient of determination goes down the as the forecast 

window becomes longer to 48-hour. One possible explanation is that as the strike time 

shows the hurricane closer to the Gulf Coast, then forecast reliability increases. 

Table 4.2 Regression results 
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4.6. Discussion 

4.6.1. Economic Loss 

Given the results above, we now can estimate the economic loss associated with 

hurricane forecast inaccuracy. The economic loss of refineries can be estimated by 

estimating loss in output. As in chapter 2, we use the crack spread procedure with the 

rate of 3:2:1 (EIA, 2012) to estimate a typical U.S. refinery’s output yield based on the 

input. The 3:2:1 crack spread indicates that a refinery can use three barrels of the crude 

oil as input to produce two barrels of gasoline and one barrel of distillate fuel. Each 

barrel equals 42 gallons. Thus, if we get the average prices of the output gasoline and 

distillate fuel, we can use this relationship to estimate the output loss from inaccurate 

hurricane forecast. The estimation formula is the following:  

Estimated output sale loss per day =  (Gulf Coast conventional gasoline price × 
2

3
 × 42  

+ Gulf Coast ultra-low sulfur diesel price × 
1

3
 × 42) 

× reduction in oil input in barrels/per day 

Here we use a 12-year average price for U.S. Gulf Coast conventional gasoline 

over the interval August 2010-2021 for gasoline ($2.09/gallon) and a 12-year average 

price for U.S. Gulf Coast Ultra-Low Sulfur No 2 Diesel for the distillate fuel price 

($2.14/gallon).  Data used in these calculations are drawn from EIA (2021a; 2021b).  

To estimate the output sale loss per day, we use an illustrative example. Assume 

under the inaccurate hurricane forecast, the 24-hour forecast predicted a Category 2 

hurricane while it turned out to be Category 1 (i.e. the mean wind speed of the original 
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forecast was about 18.5 mph greater than the accurate one), also the 24-hour projected 

hurricane path was for hurricane warnings in the Houston-Galveston and Corpus Christi 

region while it actually went to Corpus Christi (i.e. the difference in the affected shared 

capacity was 31%), then the estimated crude oil input being affected (reduced) would be 

about 346 thousand barrels per day, other things being equal. In this case, the estimated 

output sale loss for this Gulf Coast region will be approximately $30M per day and 

$210M for the event week.   

Notice that this estimated sale loss solely comes from hurricane forecast 

inaccuracy. In other words, if the hurricane forecast accuracy improves, for example, to 

a level that is with accurate hurricane category (i.e. no difference in hurricane strength 

between the original forecast and the eventual observation) and lower errors in the 

landfall location (e.g. only 10% difference in the affected share of capacity between 

original forecast and the eventual observation), then sale loss from hurricane forecast 

inaccuracy would become 74 thousand barrels per day, which could reduce the output 

sale loss to $6.5M per day and $45.5M per week, a more than 75% improvement for loss 

prevention 

4.6.2. Operating Profit Loss 

Apart from the economic loss, industry commonly pay more attention to the 

profits to be affected. Thus, we can also value the hurricane forecast accuracy in term of 

profit loss. Operating profits are calculated by subtracting operating cost (here is refining 

cost) from the revenue as shown below: 



 

72 

 

Estimated operating profit loss per day =  (Gulf Coast conventional gasoline price × 
2

3
 × 

42  

+ Gulf Coast ultra-low sulfur diesel price × 
1

3
 × 42 

- Crude oil price/barrel 

- Refining cost of gasoline/barrel 

- Refining cost of diesel/barrel) 

× reduction in oil input in barrels/per day 

 

Typical refining costs are $0.60 per gallon ($25.20) for gasoline and $0.49 per 

gallon ($20.58) for diesel (What Determines Retail Prices for Gasoline and Diesel, 

2016). If we use the same example as the one mentioned above, where assume the 

hurricane forecast bring about 18.5 mph difference in wind speed as well as 31% 

difference in the affected share of capacity compared with the observation (or accurate 

forecast), then the hurricane forecast inaccuracy itself would amount to approximately 

$33M in profit loss for the event week.  

4.6.3. Price Endogeneity 

The above analysis and economic loss estimation are based on the very short 

term before taking into the account of the price endogeneity. In reality, we also need to 

consider the effect from the price change. Specifically, short supply due to the hurricane 

forecast inaccuracy could increase the price of the gasoline and diesel, and thus will 

reduce producer surplus loss (or even increase the producer surplus) to some extent. 
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However, on the other hand, the consumer surplus will be sure to get negatively affected 

due to the short supply and the increasing price.  

4.7. Conclusions 

Many petroleum refineries are located along the U.S. Gulf Coast. This region is 

vulnerable to hurricanes, and this vulnerability could increase under climate change. 

When there is a hurricane or tropical storm, refineries in this region typically either shut 

down or reduce production, with the severity of action based on the hurricane forecast 

issued by NOAA National Hurricane Center. The forecast, however, could be inaccurate.  

To study the economic impact of inaccurate forecasts we examine the 

relationship between the characteristics of a forecast versus actual characteristics and the 

difference in oil inputs to refineries.  In terms of forecast inaccuracies, we consider the 

differences between forecast and actual land strike wind speed and location associated 

affected share of refinery capacity. The model is built under different forecast windows, 

from 24-hour to 48-hour.  

The results show that inaccurate forecasts will lead to more larger oil input 

reductions along the U.S. Gulf Coast. This effect shows in both inaccurate forecasts of 

affected share of capacity and hurricane strength within the 24-hour and 36-hour 

forecasts but only in affected share of capacity in the 48-hour forecast window. 

Moreover, closer forecast windows (24-hour and 36-hour) display higher goodness of fit 

(i.e., higher coefficients of determination, R2) than in the farther out 48-hour forecast 

window. This is not too surprising because hurricane forecasts keep updating as 

hurricanes approach the land, more information can provide better forecast results.  
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.  

The potential losses in sales and operating profits are also estimated. In a 

hypothetical case, for example, suppose that the hurricane forecast (inaccurate) is 18.5 

mph higher than the actual storm as it makes landfall and that the affected share of 

capacity is 31% higher than the affected capacity. If the improvement provides accurate 

forecast in category and exhibits only a 10% error in affected share of capacity, then the 

improvement in forecast accuracy could result in preventing more than 75% of the value 

of the sales lost and the operating profit loss. But this loss estimation involves a no 

change in  prices assumption and thus is flawed. With price endogeneity, where lower 

supply of oil input can in turn increase the price of petroleum products, the producers 

may not lose as much while the consumers’ welfare would be diminished.  

There are some limitations of the study. First, the estimation of the impact of the 

inaccuracy in hurricane forecast on the refineries along the U.S. Gulf Coast is based on 

the approach used in the chapter 2 study. Thus, the estimation limitations there also carry 

over to here. Specifically, to explore of impact of the inaccuracy in hurricane forecast, 

we use two main determinants, the difference in the affected share of the capacity (which 

is associated with the hurricane landfall locations) and the difference in the hurricane 

strength in wind speed miles per hour. However other, omitted factors like rainfall may 

also have an impact. Thus, future study improving the previous study on the economic 

impact of hurricanes may also contribute to improve the model of this study.  

Also, in estimating the economic loss, we only consider the producer’s 

perspective ignoring price changes. Lower supply due to exogenous variables (hurricane 
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forecast inaccuracy here) will move the supply curve to the left and thus result in a 

higher equilibrium price. Then the loss in the producer surplus will be partially made up 

by the higher price. The consumers' surplus would definitely decrease due to the higher 

price. Thus, future work could estimate the loss from consumers’ perspective as well.   



1 

 

5. CONCLUSIONS 

 

5.1. Conclusions 

In this dissertation, we studied the impact of hurricane characteristics and 

hurricane forecast accuracy on aspects of oil and gas industry operations and production. 

The main conclusions by essay follow. 

In Chapter 2 (the first essay), we examined the economic impact of forecast 

hurricane characteristics on Gulf Coast refinery region wide weekly oil input. In doing 

this we first used time series decomposition to remove any trend and seasonal effect 

from the oil input data, and then regressed the remaining portion of the oil input on 

hurricane forecast characteristics including the hurricane forecast category and forecast 

affected share of capacity of the oil refineries that were within the forecast landfall path 

using generalized least squares. We included different forecast windows as different 

specifications, including 24-hour, 36-hour-, 48-hour, and 72-hour forecast.  

The results show that generally in each forecast window, the higher the forecast 

hurricane category or the higher the share of capacity in the forecast path, then the 

higher the reduction in oil input, other things being equal. To estimate the economic loss 

from that, we used a standard practice called the 3:2:1 crack spread to estimate the 

impacts on gasoline and distillate fuel sales losses from the crude oil input reduction. We 

also estimated changes in the operating cost of the refineries, allowing us to estimate 

changes operating profits given the change in sales cost. Taking 36-hour forecast of a 

Category 3 hurricane as an example, we find that the output sale loss could be as high as 
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$51M per day over the strike week and $35M per day over the following recovery 

period. 

In Chapter 3 (the second essay), we studied the economic impact of hurricane 

strength and path forecasts on offshore U.S. Gulf Coast oil and gas operations. We 

explored the relationship between the forecast wind speed and offshore oil and gas 

production shutdown rate as well as the platforms and rigs evacuation rate using Beta 

regression due proportional nature of the dependent variables. Similar to the work done 

in Chapter 2, four forecast windows were considered.  

We find that only the forecast that a hurricane will occur is associated with larger 

oil and gas platform shutdown rates but that forecasts of hurricane strength plays a role  

in evacuation rate. Namely whether an approaching storm is categorized as a hurricane 

appears to matter more in the shutdown decision than does the forecast wind speed. But 

for evacuation rates then wind speed is the important factor. A possible reason could be 

that oil and gas production shutdown is a standard safety procedure regardless of 

strength and takes some time, but that platform and rig evacuation depends on whether 

the storm appears strong enough to merit such action plus can happen more quickly. The 

essay also presents estimates of economic loss where we find that with a 20 mph 

increase in the expected forecast wind speed from the threshold of the hurricane 

Category 1 (74 mph), oil production and gas production would each decrease by about 

10% generating an estimated revenue loss of approximately $9.4M per day and 

operating profit loss of approximately $1.4M per day. Also, the revenue and profit loss 

are likely to be larger if the hurricane intensity increases under projected climate change.  
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The first two chapters examined the impact of hurricane forecast characteristics 

on onshore oil input and offshore oil and gas facility operation. However, forecasts are 

not perfect with historical performance showing differences between forecasts and actual 

landfall observations. Thus, in Chapter 4 (the third essay), we estimated the economic 

impact of hurricane forecast inaccuracies on the Gulf Coast refineries. We used the same 

basic approach as in Chapter 2 but looked at the effects of the differences between the 

original forecast and actual observation in wind speed and affected share of capacity 

using a multiple linear regression model. 

Results show that inaccurate forecast will result in larger reductions in oil input. 

Also, we find that both forecast inaccuracy in predicting the affected region (embodied 

as affected share of refining capacity) and in the hurricane strength (embodied as 

category mean wind speed) causes larger reductions in oil input, profits and sales. Also, 

we assumed a scenario where if the forecast hurricane strength is improved from one 

category difference to the same as observation, and the forecast share of capacity is 

improved from difference of 31% to 10%, then the improvement will result in 

preventing more than 75% of sale loss and profit loss.  

5.2. Limitations and Future Research 

There are some limitations to this work. First, there may be more potential 

hurricane attributes factors to consider. In all essays, we only considered hurricane 

strength (category or wind speed) and/or hurricane landfall location (embodied as 

affected share of capacity of refineries), whereas other weather factors such as 

precipitation amount and storm surge are also likely to affect petroleum refining process 
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and offshore oil and gas production. Also political, pandemic and economic events may 

also influence production. Future research could incorporate these factors perhaps 

improving estimation of the economic loss.  

The second limitation is about the refinery data we used in the Chapter 2 and 

Chapter 4. We were unable to get the oil input data at the refinery or regional level due 

to business confidentiality. Thus, in our study, we grouped the refineries along the U.S. 

Gulf Coast into four subgroups based on their geographic locations, and then used the 

share of capacity as the weight in each subgroup. This grouping method, on one hand 

allowed us to proceed without regional level data, but on the other hand still cannot 

provide as much information as would more disaggregate data. If it is possible to access 

more disaggregate data for the study in the future research, more insights would be 

provided.  

Moreover, we estimated economic loss and operating profit loss across all essays. 

We not only provided the loss per day but also estimated the loss for the whole event 

week plus the recovery period. The following week was used as the recovery period in 

our study for estimation, but the actual recovery period could be different subject to the 

specific events. For major and severe hurricane, the recovery period could be up to a few 

months (Crooks, 2021). Thus, further study could explore inclusion of information on 

recovery and thus have a better estimation of the economic loss.  

Finally, in estimating the output sale loss and the operating profit loss for the 

energy entities, out method is to use fixed average prices of the crude oil and the 

associated petroleum products including gasoline and diesel. If we consider price 
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response, then prices would likely increase as the supply curve would shift to the left. 

This indicates that economic loss from the hurricane forecast or forecast inaccuracy may 

not be (only) reflected on producers but would also be reflected on consumers. 

Consumer surplus will be negatively affected due to the price increase. Future study 

could consider this issue involving price changes and from consumers’ perspective.  
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