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ABSTRACT

Electric propulsion is defining the space travel of this era with its more payload to fuel effi-

ciency and ability to result in robust deep space missions. Moreover, the complex sub-systems

of these low thrust engines (like DAWN’s NSTAR, NEXT, Psyche’s SPT-140) provide unprece-

dented system-level challenges for co-optimization of trajectory and spacecraft for a holistic op-

timized mission. This work describes novel extensions of classical indirect methods to optimize

such systems involving inequality constraints, discontinuities in states and controls and abrupt

time triggered events. Furthermore, innovative methods are introduced that enable multiple pre-

liminary trade-off aspects like mission objectives, propulsion constraints, solar power sub-systems

and parameters, trajectory design and operational constraints. These challenges are addressed by

an ingenious inclusion of spacecraft system level optimization in the preliminary mission design

phase. The result is an indirect multi-disciplinary optimization (MDO) family of methods for mis-

sions. The approach is a fusion of invariant embedding, and mixed integer nonlinear programming

with calculus of variation that very significantly expands the current class of trajectory optimiza-

tion problems solvable by classical methods. The algorithms enjoy local optimality guaranteed by

indirect methods though hybrid methods are employed to find the global optimal when multiple

local optimal solutions are suspected. For autonomous guidance, there are many considerations

like error in dynamics, bias in the sensors, actuator errors, sudden actuator failure, science op-

eration constraints, and orbit determination requirements, that are required to be accommodated.

This work introduces an original stochastic, covariance constrained guidance approach for track-

ing with associated contingencies for space missions. The designed algorithm achieves a desired

time varying error covariance bound relative to tracking the optimized nominal trajectory by adap-

tively tuning a feedback controller. This contribution is anticipated to be the initiating step towards

an autonomous guidance approach that enables cooperative autonomy, reliability and precision of

future missions. The presented methods yield breakthrough recipes for system-level optimization

involving realistic discrete operational constraints/events/multi-mode actuators with an attribute
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of real-time re-planning capability. The optimization approach while demonstrated on aerospace

dynamical systems has a wide applicability.
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NOMENCLATURE

Isp specific impulse of the engine, seconds

rsc position vector of the spacecraft relative to the sun

vsc velocity vector of the spacecraft relative to the sun

rplanet position vector of the gravity assist planet

vplanet velocity vector of the gravity assist planet

v−∞ hyperbolic excess velocity vector with respect to the planet
prior to gravity assist

v+
∞ hyperbolic excess velocity vector with respect to the planet

post gravity assist
µp gravitational parameter of the flyby planet

rp periapsis radius of the flyby hyperbola

t0 launch time or intial time

tf final time

∆ti time of flight of the ith trajectory leg

v∞L
magnitude of launch hyperbolic excess velocity

np number of planetary flybys during the mission

AU astronomical unit

TU time unit ( 1
2π

of the year)

PBL nominal beginning of life power generated by the solar arrays
at launch at 1 AU (kW)

PSA power generated by the solar arrays

r radial distance of the spacecraft from the sun in AU.

t time elapsed since launch in years

Pmax maximum allowable power for the PPU
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Pmin minimum operational power for the PPU

PPU Power Processing Unit

PL power required for the sustenance of essential spacecraft sys-
tems

Pav power available for thrusting

p, f, g, h, k, l modified equinoctial elements

x state vector associated with modified equinoctial elements

λp, λf , λg, λh, λk, λl costates associated with modified equinoctial elements

T Thrust, Newton

m instantaneous mass of the spacecraft (kg)

ar radial component of the acceleration

at transversal component of the acceleration

an normal component of the acceleration

A ∈ R6×1 denotes the unforced vector part of the dynamics

B ∈ R6×3 denotes the control influence matrix for the dynamics

ṁ propellant consumption rate (kg/sec)

x0 states at initial time

x̃d desired states at final time

m0 mass of the spacecraft at initial time

c exhaust velocity of the engine

cmin minimum admissible exhaust velocity

cmax maximum admissible exhaust velocity

cop optimal exhaust velocity

c̃ effective optimal exhaust velocity

g0 Earth’s gravitational acceleration at the equator

Psel, ṁsel,Tsel, Ispsel
vectors with each element representing the operating power,
mass flow rate, thrust
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and Isp for every operating mode of the engine respectively

Tav operating thrust at every time, Newton

Tmin minimum operating thrust as per the available operating
modes in the throttle table, Newton

Tmax maximum operating thrust as per the available operating
modes in the table, Newton

Tpeak maximum thrust operated in the mission, Newton

Ispavg
average Isp in the mission

mf final mass of the spacecraft, kg

gp condition to determine if power for thrusting is less or equal
to the Pmax

Nm number of selected modes

Pw smooth function (using HTS) of Pav − Psel

Sδ smooth function (using HTS) to determine the throttle input
of the engine for every mode

SL smooth function for combined power and throttle input crite-
ria as per very mode

SH vector representing Hamiltonian associated with each mode

Sm vector with elements representing the combined evaluation
of criteria of power,
throttle input and Hamiltonian for every mode

ηm smooth representation of the optimal contribution of each
mode towards engine operation

δb ∈ [0, 1], throttle input decided as per the optimality criterion

δf ∈ [0, 1], enforces forced coast arcs at any time for any dura-
tion

δk ∈ [0, 1], throttle input ensuring no operation when Pav < Pmin

α̂ thrust steering unit vector

ηd duty cycle

σ time degradation factor of the solar arrays

δ ∈ [0, 1], engine throttling input

δ∗ ∈ [0, 1], optimal engine throttling input
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η thruster efficiency

ρp, ρc, ρb, ρf , ρk, ρm homotopy parameters to enforce various discontinuous
events

χ activation functions

xi
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1. INTRODUCTION AND LITERATURE REVIEW

Since the earliest days of discovery and experimentation, rockets have evolved from gunpow-

der devices to multi-staged rockets. Led by several pioneers like Tsiolkovosky, Goddard, Von Kar-

man, Malina, and Oberth, the ambition of venturing deeper into space has been accomplished by

an array of incrementally improving propulsion systems categorized broadly into class of chemi-

cal engines, electric engines and propellant-less engines like solar sails and electrodynamic tethers.

Pioneers like Robert Goddard recognized early on that rocket hardware innovations must neces-

sarily go hand in hand with enhanced active control and trajectory design. The current era is led by

the technological advancements in solar electric propulsion (SEP) systems that have expanded the

capability of spacecraft in many respects. These advancements are especially relevant for scien-

tific exploration, robotic and re-supply missions. These enhanced spacecraft capabilities reflecting

especially the advanced low thrust propulsion technology also induce the need for numerical en-

hancements in the field of trajectory optimization. With more complex engines that may involve

optimization over both continuous and discrete design variables (e.g., operation mode and number

of active engines), it has become evident that novel methods are needed to solve for fuel- or time-

optimal trajectories. Remarkably these advancements, while aimed mainly at low thrust missions

have turned out to be applicable to more general high thrust applications.

Trajectory optimization for these missions is most often addressed by two major approaches;

solving by direct methods or indirect methods [4]. Direct methods are known to have better robust-

ness with respect to the initial guess but the typically artistic parameterization may lead to a large

number of variables and yet, a poor approximation of the extremal and for the case of moderate

dimensionality of the parameterization [5]. Indirect methods, on the other hand, typically have ex-

cellent convergence properties when the initial guess is sufficiently near a solution, but the inherent

sensitivities imply a small radius of convergence [6]. Additionally, indirect methods have histor-

ically proven difficult to generalize for higher fidelity models and atypical constraints involving

inequalities, discontinuities, and path constraints. Even with the availability of fast modern com-
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puting, direct methods, with respect to space mission applications, have retained their traditional

adoption lead over the more rigorous indirect based methods [7]. In some broad sense, this disser-

tation is motivated by the recent progress in indirect optimization that promise to disrupt the state

of practice. It will become clear in reading this dissertation that indirect methods are being rapidly

matured and are indeed now capable of robust convergence, even for discontinuous controls and

non-linear state and control variable inequality constraints.

In order to set up the trajectory optimization problem, every propulsion system must be mod-

eled as an appropriate forcing function to formulate the dynamics of the rocket system. Two most

popular propulsion systems are: 1) Chemical engines: Near impulsive short burn-time maneuvers

2) Electric engines: Low thrust long burn-time maneuvers. The thrusting capability of the chemi-

cal engines is frequently idealized and quantified in terms of perfect impulses that are equivalent to

a dirac delta function and is approximately and practically realized as short duration finite burns.

One evident exception is in the case of launch trajectories which are high thrust but are operated for

a long duration and hence cannot be adequately approximated as impulsive. Impulsive maneuvers,

however, have always held a special place within reachability analysis studies and preliminary de-

sign phases of space missions [8, 9] as well as uncertainty propagation analysis [10]. Especially,

for chemical engines used for deep space orbit transfer, high thrust is usually applied with burn

time very short compared to long coast arcs. Impulsive maneuvers also provide the theoretical

limits for minimum-time and minimum-fuel extremals and are therefore used to do preliminary

analysis and feasibility studies. The earliest efforts in finding the optimal impulsive solutions for

orbit transfer were carried out by Lawden, culminating in Lawden’s necessary conditions [11]

followed by the works by Edelbaum [12, 13]. Traditional methods for finding minimum-∆V tra-

jectories use heuristics [14] and rely on parameter optimization and transcription methods that

keep increasing the number, estimated times, directions, and magnitudes of the impulses. For tra-

jectories that consist of N impulses, non-linear optimization over a 4N dimensional search space

(ti,∆vi, i = 1, 2...N ) has to be performed. However, the search space is riddled with local extrema

with no guaranteed unimodal performance hypersurface [15]. WhenN is a large two-digit number,
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experience shows that the dual curse of non-linearity and high dimensionality can defeat even the

best available non-linear programming algorithm.

Evolutionary methods have been used in many works [16, 17, 18] to attempt finding a global

optimal, but the solutions are a result of heuristic bootstrapping approaches and an optimal solu-

tion is not guaranteed. A review of the trajectory optimization methods for solving minimum-fuel

impulsive rendezvous problems is given in [19]. Historically, indirect methods have also been

either too cumbersome to converge, leading to challenging optimization problems as the number

of impulses grow into double digits, or have suffered from multiple closely located or non-unique

solutions [15]. Recently, Taheri and Junkins [20] introduced the concept of optimal switching sur-

faces for indirect optimal minimal fuel trajectory and answered Edelbaum’s question [12] with a

surprising finding that there does not always exist a unique optimal answer to Edelbaum’s question.

However, their proposed methodology required information about maximum thrust magnitude, the

specific impulse of the propulsion system as well as the mass of the spacecraft, which is necessary

for constructing fuel- and time-optimal trajectories. In view of the computation time required to

generate the results using the above method, a set of advancements are needed and are proposed in

this work to facilitate and accelerate the numerical solution procedure by minimization of the inte-

gral of the acceleration norm. This approach does not need to specify mass, Isp or more maximum

thrust levels. This approach also allows the continuous version of Edelbaum’s minimum impulse

question to be addressed. It is also more intuitively comfortable that the infinite acceleration lim-

iting case is the impulsive answer to Edelbaum’s question.

Compared to chemical propulsion, electric propulsion provides higher specific impulse, an im-

proved payload-to-mass ratio [21, 22] and low thrust that results in a longer time of flight. Impor-

tantly, chemical propulsion requires a significant fraction of the spacecraft dry mass to be devoted

to plumbing and nozzle hardware, in contrast to electric propulsion with much lower propulsion

system hardware mass. Nuclear Electric propulsion (NEP) engines are most typically modeled as

constant thrust, constant specific impulse with a throttling function that shuts the thruster ”on” or

”off’. The optimum throttle function, in case of fuel-optimal solutions, give rise to a thrust profile
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featuring a bang-off-bang structure that has been handled using a variety of smoothing techniques

to aid convergence of gradient based solvers [4, 6]. SEP thruster delivers thrust as a function of

specific impulse (Isp), power available and the thruster efficiency [23, 24]. While a high-Isp en-

gine reduces the propellant mass, a high-thrust engine reduces the overall trip time. Therefore, a

freedom to select thrust and Isp can ideally be exploited to strike a trade-off between time of flight

and fuel consumption for a given available power to the engine. Conceptual variable-Isp engines

are used to exploit this feature, driving the optimization to include Isp as one of the optimization

variables within some bounds for optimal management of available power.

In recent years, there has been significant studies aimed at uitilization of variable-Isp thrusters

for their reduced propellant consumption feature [25, 26, 27, 28]. Mengali et al. [29] solved

the fuel-optimal rendezvous problem using bounded variable Isp and variable thruster efficiency.

Taheri et al. [30] introduced and demonstrated the application of a novel Composite Smooth Con-

trol (CSC) framework for solving trajectory optimization problems of spacecraft equipped with

variable-Isp, variable-thrust engines. They have also demonstrated the utility of the method for de-

signing fuel-optimal trajectories for spacecraft equipped with multiple engines [31]. In actuality,

virtually all currently available engines do not feature an infinite range of values of time variable

Isp as considered in variable Isp engines, but only engines with a discrete countable number of op-

erating modes are currently available as featured by gridded-ion engines. Following the successful

applications in conducting deep-space missions like the Dawn mission [32], gridded-ion engines

like NASA’s Evolutionary Xenon Thruster (NEXT) and NASA Solar Electric Propulsion Technol-

ogy Application Readiness (NSTAR), have assumed center stage for next generation deep space

missions. In fact, NASA is set to utilize a fully electrically propelled spacecraft in its upcoming

Psyche mission [33]. This mission will be the first to use only Hall-effect thrusters for propul-

sion with no chemical propellant on board, representing a benchmark and provides an opportunity

to gain improved insights while demonstrating the reliability, cost-reductions and performance of

Hall-effect thrusters for multi-year missions [34].

These gridded-ion engines usually consist of multiple discrete operating modes of electric
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thrusters with specific performance metrics associated with each mode that enable a discrete multi-

mode realization of overall control capability of the thruster. Precision mathematical models, from

first principles, for these highly nonlinear multi-mode systems are not presently in a mature state

of development. As a consequence, experimentally derived models represent the state of the art.

These experimented models typically consist of a significant family of operational modes, fre-

quently a double digit. Each of these local modes are characterized pre-flight in the laboratory

and the location of these modes in the design space are such that they span the practical capability

envelop of the specific engine. In principle, a few thousands of operation modes could possibly

be realized through modulation of the current and voltage inputs [35]. Typically, only a handful

of these modes, however, are considered practical for a particular mission, owing to the increased

hardware requirements for operating more modes, increasing the overall complexity, and introduc-

ing the necessity of conducting an expensive systematic calibration of the characteristics of each

modes. The frequently disjoint set of experimentally characterized modes, especially when there

is a large number of them, may defy any heuristic idea of the resulting performance of the engine

but rather are commonly specified as a discrete set of values, typically referred to as a “throttle

table”.

Polynomial approximations by means of interpolating discrete operation points of multi-mode

engines have been historically utilized to approximately capture the aggregate performance of

these engines. Despite the lack of guaranteed accuracy in capturing the macroscopic performance

of disjoint multi-mode engines, polynomial approximations remain widely used for mission de-

sign, because smoothness of these models enhances reliable numerical convergence of gradient-

based solvers. Polynomial approximation of multi-mode propulsion system modelling was first

reported by Rayman and Williams [36] to investigate the capability of SEP systems. Mengali and

Quarta [37] solved minimum-time rendezvous maneuvers using the discrete modes of the NEXT

by an indirect approach. Knittel et al. [38] captured the multiple operation modes of the NEXT

using improved polynomial approximations. Their work involved solving problems with gravity-

assist maneuvers using a direct optimization method. Taheri et al [39] also attempted at solving
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a fuel-optimal trajectory to rendezvous with comet 67P/Churyumov-Gerasimenko using the CSC

framework. However, the results obtained by Taheri et al were sub-optimal.

Apart from regularizing the discrete modes of operation of propulsion systems, smoothing tech-

niques are also employed to smooth discontinuities associated with state path inequality constraints[40]

and all other inequality constraints [41] into an invariant embedding indirect optimization frame-

work. Through judicious smooth approximation of all control switch discontinuities and inequality

constraints, the discontinuous Pontryagin necessary conditions can be made the limiting case of

smooth family of differential equations. These constraints may reflect either a certain science ob-

jective, or orbit determination requirements, or all other operational constraints. The key elements

about these inequality constraints are their frequent dependence on osculating states [41] or pre-

determined time horizon [42] in the mission. However, there are discrete events and operational

constraints that are chanced on specific states as well as being explicit functions of time. Typ-

ical mission inequality constraints embody a variety of scenarios such as thermal constraints in

sun proximity missions, post eclipse warm-up time for engines, operational limitation of thrusters,

radiation regulation, limitation on pointing to enable imaging to accommodate communications

etc.

It is also frequently the case that some operational constraints play a critical role in establish-

ing the feasibility of the mission. For instance, in order to regulate the duration of time spent in

the eclipse or radiation absorbed in Van Allen belt, one can either explicitly choose net eclipse

duration as an optimization objective or can formally introduce an upper bound constraint on the

net duration depending on their significance in the mission. Obviously, imposing ad hoc deci-

sions as constraints frequently leads to significant performance loss. The algorithm developed in

this work provides a mathematically smooth framework to accommodate all inequality constraints

scenarios while using an indirect optimization scheme. In the invariant embedding approach pre-

sented, as the homotopy parameter is swept towards zero, the switches approach instantaneous for

all practical purposes, and the trajectory and controls approach high precision satisfaction of the

underlying Pontryagin necessary conditions. When the smoothing parameter is large, the smooth
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trajectory is much easier to optimize. As the homotopy parameter is swept smaller, the initially

more challenging, near discontinuous trajectory and controls are now approached smoothly.

Most trajectory optimization methods revolve around minimizing fuel or time and not the pri-

mary science payload parameters which intrinsically involves optimization of launch vehicle, solar

arrays, spacecraft subsystems etc. A co-optimization of vehicle and/or payload parameters however

lead to a “more optimal” final payload trajectory which can be very different from the idealized

minimum fuel solution, as shown by Arya et al [43]. Therefore, operational couplings that exist in

spacecraft sub-systems present an opportunity to conduct simultaneous optimization of different

sub-systems (or disciplines); this class of problems are more broadly known as multi-disciplinary

optimization (MDO). While MDO has frequently been done in other settings, until recently MDO

and indirect optimal control to design space missions, especially with non-linear inequality con-

straints including design of the optimal trajectory has not been done. For instance, in case of Solar

Electric Propulsion (SEP) system, power is generated by solar arrays, which in turn is a function

of distance of the spacecraft from the Sun, powers all subsystems as well as determines the perfor-

mance of the thruster [33]. However, altering the size of the solar array changes the system mass

and couples with many other sub-systems. The presence of power cross coupling between the sev-

eral units of the spacecraft system as well as the optimal trajectory itself inspires generalization of

the approach to accommodate optimization over both continuous and discrete design variables.

Until recent advances were made that significantly enhanced convergence of indirect optimal

control, general co-optimization would not have likely led to practical algorithms. Rather heuris-

tic experience based insights have been used to specify system design parameters that were held

fixed during trajectory optimization. However, a few special cases with coupled subsystem and

trajectory have been successful. Vavrina et al. [44] formulated a hybrid control algorithm to do

joint optimization of spacecraft and trajectory for small body missions involving flybys. They used

a combination of a genetic algorithm and Sims & Flanagan-based transcription [45] to solve for

approximate low thrust fuel-optimal trajectories. Petukhov et al. [1] provided a framework for the

joint optimization of the trajectory with the spacecraft parameters and systems.
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When the inherent coupling is considered along with the discrete operating modes of the

gridded-ion engine, the optimization problem becomes richer and beyond the scope of simple

heuristic margins. Furthermore, when these generalizations in the context of indirect methods are

considered, the resulting optimization methods portray breakthrough capabilities. The selection of

the engine and more specifically the operating range and the specific number of operating modes

play an integral role in the overall mission feasibility and optimization analysis and has a signifi-

cant impact on the design of the optimal trajectory. However, the optimal trajectory and its design

methodology should be flexible enough to accommodate practical consideration, allowing a vari-

ety of sub-optimal solutions to be explored and adopted if the analyst expects the approach to be

used in actual missions. It will remain impossible to anticipate “everything” when designing an

optimal trajectory, so in the end game of executing an actual mission, the trajectory design tools

must accommodate exploration of neighboring solutions. For example, the use of a lesser number

of operating modes not only reduces the complexity of the Power Processing Unit (PPU) but also

reduces the number of mode switches, providing robustness towards execution failures. Therefore,

it is beneficial to include such sub-optimal solutions as trade studies seamlessly in the trajectory

optimization process for a coordination between the mission designer and propulsion engineer even

at a preliminary stage of mission design and at subsequent time prior to launch. The availability of

the optimal solution obviously allows one to assess the loss of optimality when considering various

sub-optimal solutions.

With reference to the MDO literature [46, 47, 48], the overwhelming choice of optimization

algorithms to solve such complex problems are direct methods. This drives the motivation of one

of the segments of this dissertation that pushes the boundaries of traditional trajectory optimization

[49, 50] by demonstrating a novel fusion of indirect methods, invariant embedding [51], and mixed

integer nonlinear programming [52]. Maturation of indirect MDO trajectory design is believed to

be of very significant importance to the field and is one major focus of this dissertation.

Although low-thrust trajectory design methods are conventionally implemented on determin-

istic system models, in actual spacecraft operations, the trajectories are perturbed by disturbances
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including unmodeled external accelerations, guidance/navigation errors, propulsion system per-

formance variations and missed thrust events [53] (i.e., coasting periods contingent on operational

failures). For these reasons, a nominal trajectory, typically, is designed adopting a deterministic

system assuming a sub-performing and approximated as constant specific impulse engine to im-

plicitly provide actuation authority needed to accommodate "all reasonable" off-nominal errors

and unforeseen failures. Due to the inability to model the exact discrete propulsion models in

the dynamical model underlying the nominal trajectory, the approximated modelling of propulsion

systems augments the mission uncertainty. To accommodate these irregularities and discrepancies,

heuristic parameters in terms of duty cycle, margins and forced coasts are introduced that require

robustness evaluation and additional tuning. These approaches in the current state of practice, re-

quire professional hand-tuning and are time consuming, while still leading to conservative margins

[54]. Olympio and Yam [55] have suggested a non-heursitic surrogate-based method featuring a

single engine failure. Additionally, Olympio [56] has also solved a two-stage stochastic program-

ming problem while still handling only one temporary engine failure. Both the methods are not

generally applicable to model multiple engine failures and the more general persistent disturbances.

One of the most important elements of such a stochastic guidance approach is the design of the

tracking control. Among the closed loop techniques, Linear Quadratic Regulator (LQR) is the most

common approach used to determine the feedback control required to closely follow the nominal

with or without the given control upper bound. Other traditional techniques comprise of sliding

mode control [57] that utilizes feedback linearization and an add-on term for uncertainty and robust

control schemes like H∞ control that provides spacecraft stability in the presence of disturbances

by solving the Hamilton-Jacobi inequalities. Another class of controllers that have been shown to

be robust to model errors and disturbances are based on adaptive control techniques [58]. Adaptive

techniques [59] estimate the external torques by tracking a Lyapunov function and updating the

selected model parameters in operation based on measured performances. Lyapunov based meth-

ods provide asymptotic stability characteristics with respect to tracking errors but not in learning

the uncertain parameters. Some Lyapunov approaches have been developed for a fast computa-
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tion of a feasible trajectory that can be designed to intermittently track the nominal. Additionally,

approaches like Model Predictive Control (MPC) have risen to prominence owing to an increase

in computing capabilities especially in the ability to solve online finite horizon optimization algo-

rithms. The main advantage claimed for these last two approaches is their direct application using

the high fidelity non-linear dynamical model, removing the requirement of linearization.

There has also been recent research in the area of covariance control, where its importance in

conducting stochastic mission analysis was first recognized because it yields comparable accuracy

to a Monte Carlo analysis with much less computational effort [60]. Linear covariance techniques

have been presented as an efficient methodology to design and statistically analyze stability of the

closed-loop systems and performance of the desired outputs [61, 62]. Concurrently, covariance

analysis has also been used specifically for bounding the output and state covariance at the final

time for both continuous and discrete-time systems [63, 64, 62]. These works were limited to

bounding the steady-state covariance for only the linear time-invariant systems [63, 64, 65]. The

covariance control problem has recently been studied with applications in space mission designs

(powered descent guidance algorithm) and vehicle path planning [66, 67, 68]. These finite-horizon

covariance steering problems have been explored in the presence of both convex and non-convex

state constraints [69] which can also be formulated as chance constraints allowing the satisfac-

tion of constraints with specified (high) probability [67, 70]. A solution for nonlinear dynamical

systems was also recently proposed as an iterative covariance steering with convex state chance

constraints [68]. In this work, a novel covariance based controller is introduced that mimics stan-

dard LQR implementation but assigns a 3D bounded space for the manifold of trajectories in the

presence of disturbances. This approach is applied to departure motion to a deterministic nom-

inal trajectory. The controller features self-adaptive control tuning parameters that are adapted

to achieve the time varying output covariance (error tube) as defined per the mission objectives.

The stochastic covariance constrained guidance approach is a novel contribution to the literature

that is anticipated to be the first step towards an autonomous guidance approach that will enhance

autonomy, reliability and precision of future missions.
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1.1 Summary

With innovations in propulsion and material technology, we have entered an era involving long

duration missions that are targeting science experiments revolving about some specific planets or

asteroids in deep space. The advent of electric propulsion technology and its suitability for such

multi-year, low-thrust missions has inspired this dissertation, focused on investigation of enhanced

optimization techniques for designing the ensuing trajectories more efficiently. One of the primary

objectives of this dissertation is to revisit indirect methods and recondition this approach with novel

smoothing mechanisms to rigorously and more efficiently include various inequality constraints

and through these innovations, re-enhance its domain of convergence to handle complex optimal

control problems (OCPs) of multi-revolution trajectories. This method is a generalized invariant

embedding approach that embeds the Pontryagin necessary conditions into a smooth family that

can smoothly approach satisfaction of the exact necessary conditions with arbitrary precision.

The other objective is to incorporate the concept of spacecraft system level optimization into

the preliminary mission design phase using indirect methods and thereby launch an MDO indirect

family of methods for mission design. For a successful mission design, there are multiple prelimi-

nary aspects that are to be considered like mission objectives, propulsion constraints, solar power

sub-systems and parameters, trajectory design and operational constraints. Such system optimiza-

tion problems call for a multidisciplinary design approach where these coupled aspects provide an

opportunity for simultaneous optimization of different sub-systems.

The introduced algorithms enjoy local optimality guaranteed by indirect methods though hy-

brid methods are employed to seek the global optimal when multiple local optimal solutions are

suspected. The approach established in this work very significantly expands the class of trajectory

optimization problems solvable by indirect methods by a novel fusion of indirect methods, invari-

ant embedding, and mixed integer nonlinear programming. The novelty lies in not only delivering

the most optimal thrust-modes for payload maximization but also in enabling sub-optimal trade

studies by investing into a systematic mode-pruning strategy. This proposed framework provides

the foundation for a practical tool-set needed for trajectory and sub-system design purposes with
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designer defined number of operating modes. The last objective is to provide an advanced tracking

algorithm by means of solving a novel covariance assignment problem to facilitate autonomous

space travel amidst model uncertainties. Advancing indirect and hybrid optimization methods to

accommodate a new lead of autonomy is the over-arching goal of this dissertation. To summarise,

the contribution of the dissertation is developing advanced algorithms that allow pragmatic incre-

ments in the process of preliminary mission design while augmenting the capability to execute the

final mission autonomously with a novel tracking algorithm. The methods introduced in this dis-

sertation open the pathway for a more involved optimization that provides a breakthrough recipe

for system optimization with discrete operational constraints/events. The methodology introduced

is not limited to only aerospace systems and therefore, is expected to find applications to dynamical

systems broadly. The dissertation is divided into three sections: a) Trajectory design b) System de-

sign and optimization c) Autonomous tracking control. Each section comprises multiple chapters

with clearly defined contributions within every chapter. The key objectives/highlights are listed

below:

1. Fast algorithm to find near-optimal multiple impulses maneuvers using a novel acceleration

based method.

2. An indirect scheme is introduced that can include the discrete operational constraints that

are explicit functions of time into the trajectory optimization.

3. Indirect methods are enhanced to enable a simultaneous optimization of solar arrays, realistic

discrete modes of gridded-ion propulsion system and trajectory.

4. A hybrid strategy is devised that enables trade studies when only a subset of all the available

operating modes are considered. The maximum number of operating modes in this subset is

a user-defined input.

5. A novel covariance controller is designed that can follow the prescribed time varying covari-

ance profile for non-linear systems in the presence of model uncertainty.
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2. Orbit Transfers 1

Largely for orbit transfer optimizations, preliminary mission design and analysis is conducted

assuming two body dynamics model. Fortunately, with this assumption, the natural evolution of

the states undergo continuous and well-behaved changes (i.e., the orbits are quasi-elliptical) when

weak perturbing force (i.e. low engine thrust) is applied. Over many decades, many propulsion

systems have been developed and are still being enhanced that extend our reachability to outer

space beyond our mother planet and ultimately, beyond the solar system. In fact, some conceptual

engines like Variable Isp, variable thrust (VIVT) engines are invented and researched to aid mainly

the mission analysis process. VIVT engines are considered capable of providing infinite combi-

nations of thrust and Isp values within specific bounds such that they lead to insights and a good

trade-off between both time and fuel optimal solutions.

The current era of un-manned space travel is dominated by electric propulsion systems; more

specifically solar electric propulsion (SEP). Even with this paradigm shift in propulsion technol-

ogy from chemical engines to SEP, other propulsion systems are still relevant and are used for

certain segments of the mission like the use of impulsive maneuver during launch, re-entry or for

station keeping. For long duration maneuvers like in case of interplanetary missions to the outer

planets and deep space missions, gravity-assist maneuvers using electric propulsion systems have

proven to be quite advantageous. The proclivity of low thrust propulsion over chemical propul-

sion has its reasons rooted into its high specific impulse and improved payload to spacecraft mass

ratio. However, the resulting low thrust trajectories exhibit a sequence of intermittent long coasts

and continuous thrust profiles with throttling in place of instantaneous impulses that increases the

engine operation time, making the optimal control problem (OCP) quite more challenging. Ef-

ficient coordinate selection, regularization, use of smoothing techniques, numerical continuation

and supplying analytical sensitivities are a key to solving such complex optimization problems.

1Reprinted with permission from “Costate mapping for indirect trajectory optimization” by Taheri, Ehsan and
Arya, Vishala and Junkins, John, 2021. Astrodynamics, Volume 5(4), 359–371, Copyright 2021 by Springer
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2.1 Preliminaries

2.1.1 Dynamics

The dynamics considered in this thesis is corresponding to weakly perturbed Keplerian motion

with the assumption of two body dynamics where the central body is considered as a point mass

and is taken to be the major source of gravitational perturbation. It is the modelling of the forc-

ing function (the thruster) which varies extensively in different sections like the use of chemical

engines, nuclear electric propulsion (NEP), solar electric propulsion (SEP), gridded-ion engines,

Hall thrusters etc. A summary plot for some of the propulsion systems are provided in Figure 2.1

to give an Isp vs thrust level overview of their capacity and draw some theoretical comparisons.

A wide range of these propulsion systems are used in different space missions depending on the

scope, objectives and budget allotted. The deep space exploration missions and a large class of

other unmanned missions use the high Isp technologies near the top of the Figure 2.1. As would be

shown later, some of the simplified/specialized actuator models are useful for preliminary studies

and mission analysis like in conducting back-of the envelope calculations and determining reacha-

bility envelopes. Even though most nominal trajectories in this dissertation are evaluated assuming

the two body dynamics, the results are still applicable and extendable to high fidelity force models.

The generalized control acceleration vector can be parametrized as:

u =
Tδ

mc
α̂, (2.1)

where α̂ denotes the thrust steering unit vector, δ denotes the throttle input that determines if

the thruster is ”on” or ”off”, T stands for the thrust value, m is the mass of the spacecraft and c

denotes the exhaust velocity (c = Ispg0). Depending on the propulsion system, the values of T and

Isp can be constants or function of state or tabulated values. The general form of the mass flow rate

differential equation can be written as:

ṁ = −Tδ
c

(2.2)
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Figure 2.1: Propulsion Systems

2.1.2 Coordinate System

The selection of coordinates to describe system dynamics is integral to efficiently solving any

optimization, control or estimation problem not only in the domain of celestial mechanics but

every known application. In case of celestial mechanics, the classic choices for conducting state

propagation with or without perturbations, have been either a set of orbital elements, Cartesian

coordinates or spherical coordinates. Over time, significant effort was poured into developing

various transformations and harnessing the ability to find constants of motion, where possible. The

classical coordinates often encounter singularities and the “degree of non-linearity” depends on

coordinate choices [71]. By exploiting the fact that the translational motion of a spacecraft can be

described via a rotating osculating frame embedded in the rigid body, multiple hybrid sets have

been researched in literature by use of regularized rotational kinematics in the form of different

osculating triads [72]. These different choices aid in eliminating various singularities associated

with near zero inclinations and eccentricities.
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Moreover, when formulating an indirect optimal control (IOCP) problem which we do in this

dissertation, the accuracy of integration is not the sole criteria for selecting a particular set of

coordinates. Especially, IOCP problems lead to an augmented state vector by including the co-

states associated with each state which are essentially iterated upon to solve a two point boundary

value problem (TPBVP). The convergence rate of the gradient based solver used to solve these

TPBVPs is affected by the coordinate choice. There is also utility in developing methods for a

simple transformation of the converged co-states of the IOCP problem seamlessly from one choice

of coordinates to other as detailed in [73]. This straightforward transformation exploits the fact

that in the same frame of reference, the Hamiltonian on the optimal solution remains invariant to

the coordinate set leading to:

λx(t)>
[
∂%

∂y

] ∣∣∣∣∣
t

= λy(t)>. (2.3)

where % represents a non-linear one-to-one continuous and invertible mapping between two differ-

ent coordinate sets (state variables), say set y(t) and set x(t) written as x(t) = %(y(t)). Here λx

and λy are the co-states associated with the states in the x and y sets respectively.

The following coordinate choices have particularly been used to define the state variables

throughout the dissertation.

2.1.2.1 Cartesian

Let x = [x, y, z, ẋ, ẏ, ż]> and ucart = [ux, uy, uz]
> denote the state and control vectors, respec-

tively, associated with the set of Cartesian coordinates. The equations of motion can be written

as

ẋ = Acart + Bcartu, (2.4)

where Acart and Bcart matrices are defined as

Acart =

 v

−µr/r3

 ,Bcart =

03×3

I

 , (2.5)
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where r = [x, y, z]> and v = [ẋ, ẏ, ż]>. Here, I denotes a 3 by 3 identity matrix and r = ||r||.

Though the dynamics written in Cartesian coordinates delivers simple expressions, it suffers from

leading to poor and unreliable convergence due to (i) all state variables being fast variables, (ii)

the inability to enforce number of revolutions around the Sun. The second reason especially can

lead to jump in solutions even during the numerical continuation process when the co-states on the

boundary are iterated upon.

2.1.2.2 Modified Equinoctial Elements (MEEs)

The main reason for selecting the set of MEEs is that they are known to be superior to other sets

of elements and coordinates for solving multi-revolution low-thrust trajectories [74, 72]. On the

other hand, a notable difficulty in using the set of MEEs is that the resulting algebraic expressions

for the dynamics of costates become lengthier compared to when the set of Cartesian coordinates

is used. In addition, the disturbances (e.g., solar radiation pressure or third-body perturbations)

have to be expressed in the Local-Vertical Local-Horizontal (LVLH) frame moving with the space-

craft. Despite these considerations, it is still computationally attractive to formulate trajectory

optimization problems using the set of MEEs. Application of symbolic toolboxes has facilitated

and automated the derivation of the required algebraic expressions[75, 76].

Let xMEE = [p, f, g, h, k, l]> denote the vector of MEEs and let u = [ur, ut, un]> denote the

unit direction vector of the thrust force with its components expressed in the local-vertical/local-

horizontal (LVLH) frame. The MEE set has five slow variables and one (very regular) fast variable.

The slow variables are indeed constants of the motion during any coast phase with u = 0. The

dynamics for MEEs can be written as

ẋ = AMEE(x, t) + BMEE(x, t)u, (2.6a)

ṁ = −T
c
δ, (2.6b)

where AMEE = [0, 0, 0, 0, 0,
√
µp( ξ

p
)2]> and BMEE is defined below as
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BMEE =



0 2p
ξ

√
p
µ

0√
p
µ

sin(l)
√

p
µ

1
ξ
[(ξ + 1) cos(l) + f ] −

√
p
µ
g
ξ
[h sin(l)− k cos(l)]

−
√

p
µ

cos(l)
√

p
µ

1
ξ
[(ξ + 1) sin(l) + g]

√
p
µ
f
ξ
[h sin(l)− k cos(l)]

0 0
√

p
µ
s2 cos(l)

2ξ

0 0
√

p
µ
s2 sin(l)

2ξ

0 0
√

p
µ

1
ξ
[h sin(l)− k cos(l)]


. (2.7)

In these equations, two intermediate variables that frequently appear are ξ = 1 + f cos(l) +

g sin(l), s2 = 1 + h2 + k2, and µ is the gravitational parameter of the central body [77].

2.1.3 Optimal Control Problem

The resulting OCPs are solved by two major approaches: direct methods or indirect methods.

Direct methods gained popularity with the advent of modern computing capabilities. They have

better robustness with respect to the initial guess; although the parameterization often results in a

greater number of variables [1]. They also frequently lead to poor approximation of the extremal,

especially when the thrust has to be operated over long periods which is the case for low thrust

trajectories [5]. Indirect optimization methods [78], on the other hand, do not require an ad hoc

parametrization of state or control variables but rather are based on an analytical derivation begin-

ning with variational calculus concepts, which results in boundary-value problems (BVPs). The

formulation involves enforcement of constraints by means of Lagrange multipliers (costates) and

in the case of state-dependent inequality constraints, the solution becomes especially challenging.

The two-point-boundary-value problem (TPBVP) involves missing boundary conditions on the

co-state variables, which are not trivial to compute, thus making the solution process iterative. All

infinity of extremal trajectories that reach an infinity of terminal states correspond to an infinite

number of initial co-states; One must find the particular initial (or, in some cases final) co-states

that generate the desired optimal solution satisfying the necessary conditions. Finding the required
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initial/final costates is the most challenging issue with the indirect formulation. Hybrid methods

which employ the combination of direct and indirect optimization methods utilize Lagrange co-

state equations but convert the OCP into a parameter optimization problem solved using non-linear

programming (NLP) [79]. In this dissertation, though both direct and hybrid techniques have been

leveraged, the primary focus has been on formulating a general version of indirect based optimiza-

tion formulation and developing homotopy algorithms based on invariant embedding to enhance

convergence in the presence of discontinuous controls and constraints.

2.1.3.1 Indirect Optimization

Let x ∈ Rn and u ∈ Rm denote the set of state and control vectors, respectively, of a dy-

namical system. The general form of a cost functional in optimal control is expressed as a Bolza

problem

minimize
x∈X, u∈U

J = φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt,

whereX andU denote the set of admissible states and controls, respectively, and t0 and tf denote

the initial and final times, respectively. The state dynamics constitute differential-form type of

constraints, which are written collectively as ẋ = f(x(t),u(t), t). There are additional path and

control constraints as well as endpoint constraints such as:

gL ≤ g[x(t),u(t)] ≤ gU (2.8)

χL ≤ χ[x(t0),u(t0),x(tf ),u(tf ), t0, tf ] ≤ χU (2.9)

Denoting λx as the costate vector associated with the state vector, x, the optimal control Hamilto-

nian can be defined:

H = L(x(t),u(t), t) + λ>xf(x(t),u(t), t). (2.10)

Let Φ = φ + ν>ψ, where ν are the set of Lagrange multipliers introduced to augment a set of

non-linear equality constraints at the initial and final time instants, ψ(x(t0),x(tf ), t0, tf ) = 0.
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Calculus of variation dictates that the total variation (including the variations in the initial and

final time) of the augmented cost functional should be zero on an extremal solution, which can be

written as

δJa =

[
∂Φ

∂x(t0)
+ λλλ(t0)T

]
δx0 +

[
∂Φ

∂t0
−H(t0)

]
δt0 (2.11)

+

[
∂Φ

∂x(tf )
− λλλ(tf )

T

]
δxf +

[
∂Φ

∂tf
+H(tf )

]
δtf

+

∫ tf

t0

[(
∂H

∂x(t)
+ λ̇̇λ̇λT

)
δx(t) +

(
∂H

∂u(t)

)
δu(t) +

(
∂H

∂λλλ(t)
− ẋT

)
δλλλ(t)

]
dt+ψψψδνννT .

where Ja denotes the augmented cost functional. Note that the variation is derived for a case in

which t0, tf , x0 and xf are all fixed. Thus, the entire variation occurs along the trajectory and

appears in the integrand and the Euler-Lagrange equations are always satisfied along extremal

trajectories. On equating Eq. (2.11) to zero as necessary conditions leads to the following co-state

differential equations:

λ̇ = −
[
∂H

∂x(t)

]T
,

∂H

∂u(t)
= 0 (2.12)

and additional transversality conditions at initial or final time from the terms outside the integrand

in Eq. (2.11) arise, wherever applicable. It is not always possible to evaluate the optimal control

history using Eq. (2.12) if the control variable is discrete in nature, affine in the Hamiltonian,

singular for some part of the trajectory or is constrained. The weak form of Pontryagin’s Minimum

Principle (PMP) is then popularly used necessary condition to determine optimal values of the

control variables in its admissible set (u ∈ Ω) such that:

u∗ = arg min
u∈Ω

H(x∗(t), δ(t),λ∗(t)). (2.13)

In case of space trajectories, the capability to throttle (δ ∈ 0, 1) leads to a discrete control variable

(u = δ(t)umax) that can be evaluated using PMP. To determine the optimal throttle (δ), split the

Hamiltonian into terms that do not depend on δ denoted by H0 and the terms containing δ linearly

are grouped in Hδ as shown in Eq. (2.14). Here, Hδ act as the switching function (SF), the sign of
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which determines if δ takes the value of zero or one.

H = H0 −Hδδ, (2.14)

H0 = λ>AMEE(x, t), (2.15)

Hδ =
T

c

[
λm −

c

m
B>MEEλxα̂− 1

]
(2.16)

Traditionally, in case of inequality constraints on state and control or both, more rigorous tech-

niques involving Kuhn Tucker conditions and other methods are used. These techniques are lim-

ited in the most general necessary conditions applications [78]. The case of singular arcs are not

treated in this work since they rarely occur in space flight.

2.1.3.2 Numerical Continuation

The importance of numerical continuation methods for solving trajectory optimization prob-

lems using indirect based methods cannot be overemphasized. There are two kinds of continuation

procedures that are followed in this dissertation: (i) Intrinsic/Indirect continuation (ICO) (ii) Ex-

trinsic/Direct continuation (DCO). Direct continuation deals with continuation directly imposed

on the absolute value of the quantity (state or control) while indirect continuation involves con-

tinuation of a quantity (state or control) with respect to a functional change tuned by a separate

parameter (typically called the continuation or embedding parameter). A few examples of a DCO

is finding a family of solutions by sweeping launch time or number of revolutions or thrust value.

Therefore, DCO continuation is done as part of the outer wrapper and does not participate in solv-

ing the TPBVP while for ICO, the parameter is embedded in the dynamics and hence influences

the shooting method (used to solve the posed TPBVP) directly. For time-optimal orbit transfers, it

is known that the thruster remains “on” during the entire time of flight while switching is observed

in fuel-optimal trajectories and such a control is called bang-bang or bang-off-bang control due to

its discontinuous binary on and off characteristics. The discrete discontinuous switched nature of

control δ (bang-bang structure) makes the solution of the TPBVP challenging [6] mainly due to
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the necessity of precisely solving for each of many zeros of the switch function. The concept of

smoothing methods in solving the IOCPs for space maneuvers was introduced by Bertnand et al [6]

consisting of quadratic, logarithmic and extended logarithmic techniques specifically to smooth the

bang-off-bang control profiles allowing propagation using standard integrators. These techniques

utilize a continuation parameter which is typically embedded into the cost functional affecting the

necessary conditions of optimality.

In this work, however, we use hyperbolic tangent smoothing (HTS) introduced by Taheri and

Junkins [51]. The HTS method is particularly advantageous since (i) the derivation of the first-

order necessary conditions remains intact, (ii) unlike traditional indirect approaches, it circumvents

time-consuming switch detections, and (iii) control input (i.e., engine throttling input) is approxi-

mated by a continuously differentiable function with its immediate implications. The last item is

particularly helpful in that: (i) it is possible to use adaptive step-size integration schemes to speed-

up numerical simulations, and (ii) analytic sensitivity calculations become significantly easier.

Moreover, due to control smoothing, it is significantly easier to enhance convergence performance

of solvers that rely on Newton and/or Quasi-Newton update iterative schemes by high-accuracy

sensitivity information such as those obtained through the State Transition Matrix (STM) method

[76]. In this setting, implementation of the STM method is facilitated since the entire trajectory

is smooth, and the control is infinitely differentiable. Thus, there is no need to construct an ad-

ditional transition matrix to patch the discontinuities in the standard implementation of the STM

method when solving non-smooth trajectories with analytical sensitivities [7]. Ultimately, the

smooth control input can be brought arbitrarily close to the well-known “optimal” bang-off-bang

profiles through a homotopic sweep over a rigorously continuous family of neighbouring solutions.

δ∗ ≈ δ(S, ρ) = 0.5

[
1 + tanh

(
S

ρ

)]
. (2.17)

For example, the control input, δ is constructed through a simple algebraic operation on the

switching function that defines a one-parameter family of controls which approaches the bang-

bang switch structure as the smoothing parameter approaches zero. Under HTS, optimal value of
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Figure 2.2: Demonstration of the HTS method for approximating a sign function for different value
of ρ
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throttling, δ∗ is coupled with the value of the switching function through a smoothing parameter ρ

per Eq. (3.31). In order to approach the actual bang-bang control, ρ should be made suitable small

such that S
ρ
) → tanh 10 = 0.999999996 ≈ 1,. This equivalence is shown in Figure 2.2 for the

value of δ obtained for a particular S function and a set of ρ values.

An extension of HTS, is introduced by Taheri et al, especially for handling the min-max struc-

ture that involves amalgamation of constraint conditions. When writing programs, a standard

practice is to distinguish between different mode-switching conditions by using “if-then” com-

mands. However, the presence of many “if-then” conditional statements leads to non-smoothness

and complications in constructing algorithms that must precisely locate many unknown acceler-

ation jump switch times. This leads to both algorithm complexity and unreliable convergence of

boundary-value problems. The CSC framework [30] presents an alternative approach wherein a set

of distinct conditions that govern the value of a particular control are systematically combined with

the help of homotopy parameters. Remarkably, the resulting differential equations do not have any

mathematical acceleration discontinuities (even though the underlying optimal control and mode

switch discontinuities are homotopically approached, the accelerations do have relatively sharp

control and mode transitions). The governing differential equations are solved with an algorithm

implementation that does not involve any “if-then” conditions through the notion of “distance mea-

sures” to the local zeros of the constraint functions that will be used as the argument of the tanh

function.

Thus, a family of tanh functions act as activation for the constraint and switch functions.

The multiplicative incorporation of (many) activation functions allows smooth transitions between

overlapping constraints, rendering dominance of one control variable over others; a summation

over all possible conditions results in a complete recipe for converting any instantaneous switches

over competing controls and control mode switches into a continuous composite structure. While

the multiplication of activation functions seems highly non-linear, in practice, it turns out for well-

isolated switching all of these activation functions, except one associated with a particular local

control switch or mode switch, are typically very nearly zero. Of course, as the equations are prop-
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agated, the values of the activation functions change accordingly and “pop-up” to smoothly switch

with controllable sharpness, as the corresponding constraint (g = 0) conditions are approached.

This dissertation extends the above smoothing methods to include more rigorous optimization us-

ing discrete control variables and describes mathematical and numerical constructs to accommo-

date a set of inequality constraints which are not only function of instantaneous states and costates

but also are an explicit function of time.

For numerical continuation, the standard procedure is to begin the numerical procedure with

a relatively large value of the continuation parameter, say, ρ = 1 or ρ = 0.5, and to reduce the

value of ρ in a sequential manner, solving an optimal trajectory for each ρ value and using the

converged co-state to initiate the TPBVP iteration for the subsequent smaller ρ value. Especially

in case of smoothing multiple switching functions with multiple continuation parameters using the

HTS method, the magnitude of the starting value of the continuation parameter is also dependent

on the magnitude of the constraint condition (‘g’ in tanh
(
g
ρ

)
). In order to approximate the actual

instantaneous change in control inputs, all ρi values should be systematically made as small as

possible (a small fraction of the maximum value of g). It is also useful to non-dimensionalize the

constraint function by scaling it by its allowable range. The gmax in each of the HTS expression

tanh
( g

|gmax|
ρ

)
can be revised based on the largest |gmax| encountered for the previous ρ value. This

non-dimensionalization of the range of the g function permits a more universal behaviour of the

HTS smoothing and facilitates the use of one homotopy parameter for smoothing many different

discontinuities. Typically, values in range 1.0×10−1−1.0×10−2 (times the range of |g|) have been

found to result in solutions that are sufficiently indistinguishable from their discontinuous coun-

terparts to declare “engineering optimality”. With tanh
(

1
0.1

)
= tanh 10 = 0.999999996 ≈ 1, the

switch function approximations become exact much quicker than the corresponding ρ approaches

zero.

2.1.3.3 Analytical Sensitivities

The resulting TPBVP are solved using gradient based solvers which compute the sensitivity

of the final boundary conditions with respect to the change in the design variables (here co-states)
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by a finite difference method. The analytical expressions for the state transition matrix (STM) (to

retrieve sensitivity information) with the HTS method further enlarges the domain of convergence

of the shooting method and enhances the solution convergence performance. The derivation of

state transition matrices for smooth differential equations are likewise continuous and are more

readily numerically integrated than their discontinuous counterparts. This is owing to the reliable

step-size adaptation used in most modern numerical differential equation solvers to maintain preci-

sion. Assuming ψ(x(tf ), tf ) as boundary conditions and λ(t0) as design variables, the first order

sensitivity can be written as:
∂ψ(x(tf ), tf )

∂λ(t0)
, (2.18)

which can be evaluated using chain rule as:

∂ψ(tf )

∂λ(t0)
=
∂ψ

∂z

∣∣∣∣
tf

∂z(tf )

∂z(t0)

∂z(t0)

∂λ(t0)
. (2.19)

Recognizing that Φ(tf , t0) = ∂z(tf )/∂z(t0), where Φ is the STM with its dynamics given in

Eq. (2.20) and z = [rT ,vT ,m,λTv ,λ
T
v , λm]T . The states-co-states vector is augmented by the

STM and is evaluated at each time step using the differential equation

Φ̇ = FΦ; Φ(t0, t0) = I, (2.20)

where I denotes a 14 by 14 identity matrix and F (in Eq. (2.20)) is given below

F =
∂Γ

∂z
=



03×3 I3×3 03×1 03×3 03×3 03×1

F21 03×3 F23 03×3 F25 F26

01×3 01×3 F33 01×3 F35 F36

F41 03×3 03×1 03×3 F45 03×1

03×3 03×3 03×1 −I3×3 03×3 03×1

01×3 01×3 F63 01×3 F65 F66


, (2.21)
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F21 = −µI
r3

+ 3µrrT

r5
, F23 = −Tmaxα

2m2 [1 + tanh(G)]− sech2(G)Tmaxc||λv ||α
2m3ρ

, F33 = Tmax||λv || sech2(G)
2m2ρ

F25 = TmaxI
2m||λv || −

TmaxλvλT
v

2m||λv ||3 + Tmax sech2(G)cλvλT
v

2m2ρ||λv ||2 − Tmax tanh(G)λvλT
v

2m||λv ||3 + tanh(G)TmaxI
2m||λv || ,

F26 = Tmax sech2(G)α
2mρ

, F35 = −Tmax sech2(G)λT
v

2||λv ||ρm , F36 = −Tmax sech2(G)
2cρ

, F45 = I
r3
− 3rrT

r5
,

F63 = Tmax||λv ||
m3 + Tmax||λv || tanh(G)

m3 + Tmax||λv ||2 sech2(G)c
2m4ρ

, F66 = −Tmax||λv || sech2(G)
2m2ρ

,

F65 = −Tmax
2m2

(
sech2(G)λT

v c
mρ

+ tanh(G)λT
v

||λv || + λT
v

||λv ||

)
, F41 = −6(λvrT )

r5
− 3(λv .r)I

r5
+ 15(λv .r)rrT

r7
.

where G = SF/ρ and I denotes a 3 by 3 identity matrix.

27



2.2 Fast Impulsive maneuvers 2

Impulsive maneuvers have been one of the earliest enabler of space travel and though now

more restricted in use, are still revered for their priceless insights into preliminary mission design

and providing ballpark numbers for the feasibility space for both minimum time and minimum

fuel trajectories. For high thrust interplanetary trajectories with a “burn time” short compared to

the time of flight, the impulsive approximation is usually adequate to fly the actual mission. For

optimizing multiple impulse maneuvers, a search for the optimal number, time instants, magni-

tude, and direction of the velocity impulses is carried out to accomplish general three-dimensional

multiple-revolution orbit transfers while minimizing the total ∆V [80]. Many direct, hybrid and

evolutionary algorithms are traditionally used that conduct trade offs between optimality/accuracy

and the computational effort by performing multiple iterations. Due to the parallelizability attribute

of these iterations in most cases, graphical processing units have also been utilized to solve mil-

lion instances of the Lambert’s problem [81, 82]. Finding optimal N-multi-impulse, minimum-∆V

trajectories, however, becomes quite challenging for large N, for a number of reasons: (1) gradient-

based solvers face difficulty in finding an optimal solution unless started with “high-quality” initial

guesses. (2) The performance of the evolutionary algorithms degrades as the number of design

variables increase. (3) Direct methods struggle to optimize multi-revolution trajectories, where

the bulk of the initial transfer orbits occur near the attracting center [83]. (4) Ambiguity in the

unknown optimal number of impulses further increases the problem complexity. Additionally,

the solution is frequently non-unique if the number of en-route revolutions are also considered as

design variables [20].

Historically, indirect methods have also been either too cumbersome to converge leading to

challenging optimization problems as the number of impulses grow into double digits or have

suffered from multiple closely located or non-unique solutions [15]. The approach proposed in

this dissertation draws its motivation from the ones presented in [20], however, a set of advance-

2Reprinted with permission from “Acceleration-based Indirect Methods for Impulsive Trajectory Design” by
Taheri, Ehsan and Arya, Vishala and Junkins, John L, 2021. 31st AAS/AIAA Space Flight Mechanics Meeting,
Virtual, February 1-February 3, 2021
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ments are proposed to facilitate and accelerate the numerical solution procedure by adopting a new

two-step solution process. We propose two novel methods that are used in succession to obtain

near-optimal many-impulse solutions [84]. Perhaps counter-intuitive, it has been shown [?] that

beginning with a continuous thrust and using indirect optimal control, we can find the optimum im-

pulsive solutions by sweeping maximum thrust towards infinity. Near-impulsive solutions provide

“high quality” initial guesses for the position, time, direction and magnitude of impulses, which

can be used by a gradient-based solver to recover the precise impulsive solution that obeys Law-

den’s optimality conditions. The key observation is that impulsive trajectories can be rigorously

viewed as the limiting case of high-acceleration, minimum acceleration or minimum fuel trajec-

tories. The standard methods use the acceleration vector to construct a quadratic cost functional.

However, it is important to devise a mechanism to not only enforce the so-called “bang-off-bang”

profiles on the acceleration arcs, but also to ensure that the thrust acceleration arcs occur over short

time intervals. Thus, a solution to the minimum-acceleration problem, where the thrust acceler-

ation arcs are represented as short finite burn sequences, can approximate the optimal impulsive

trajectories as the thrust acceleration magnitude approaches infinity.

The proposed two-step solution procedure developed in this dissertation to obtain the N-impulse

trajectory is: 1) the original multi-impulse problem is treated as a rendezvous-type, fuel-optimal

problem with the exception that a variable-specific impulse, variable-thrust (VIVT) propulsion

system is considered. The variability of the specific impulse spreads the thrust profile along the

transfer trajectory to an extent that only a few iterations are frequently needed to get a first-cut

solution for prescribed boundary conditions and time of flight. 2) a minimum integral of accelera-

tion based formulation that removes the dependency of the problem formulation on mass, specific

impulse and thrust value. This is the continuous version of the minimum ∆v problem.

The VIVT based cmax method (see Figure 2.3) provides excellent initial convergence but can

provide numerical difficulties during the final continuation iterations. To circumvent this conver-

gence issue, amax method is proposed for the final iterations. If a linear acceleration is considered

in the cost functional, solutions lie entirely on a singular arc. To avoid singular arcs and to enforce
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Figure 2.3: Algorithm flow chart.

optimal “bang-off-bang” acceleration profiles, a parameter, amax is introduced to the problem for-

mulation. This acceleration-based method, as is shown herein, is an elegant formulation to find

optimal multi-impulse maneuvers. Furthermore, the continuation performed over the amax value

is observed to be much more well behaved than continuation on the thrust value. More specif-

ically, we find that large steps can be taken in the values of amax resulting in fewer number of

iterations to reach the near-impulsive solution. The solution obtained from the acceleration-based

method (that is near-optimal and has a fixed number of impulses) is used as an initial guess for

a non-linear programming based method that exploits a Lambert solver and primer vector theory

to isolate the final N-impulse solution to a high precision. The proposed two-step algorithm, as is

shown herein, builds a viable procedure to find many-impulse spacecraft maneuvers involving ≈

50 orbital revolutions.

The optimal control problem (OCP) is formulated using the set of modified equinoctial ele-

ments (MEEs) using the two-body dynamics assumptions to solve for transfer problems as time-

fixed, rendezvous-type maneuvers. There are three major steps in the evaluation of the impulsive

solutions outlined in Figure 2.3 and explained in three subsections below.
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2.2.1 Control Sweep (CS step)

The foremost step in the algorithm is to obtain a near-impulsive solution that is accomplished

using two methods in succession; 1) cmax method and 2) amax method with their details given in the

following sections.

2.2.1.1 cmax method

This method is based on the operation of VIVT engines that are idealized as being capable of

providing a continuous range of values for exhaust velocity and the corresponding thrust. Though

heretofore restricted to academic research, the concept of VIVT engines also is a promising prelim-

inary trajectory design tool to obtain various first-cut trajectories with different thrust modulations.

The exhaust velocity, c = Ispg0, is one of the control variables, which can be constrained to lie

within the bounds [30] as c̃ ∈ [cmin, cmax]. Here, cmin and cmax denote the minimum and maximum

admissible exhaust velocity values, respectively. Therefore, for a VIVT engine, the thrust, T , and

time differential equation for mass, ṁ, can be written as

T =
2ηP

c
δ, ṁ = −2ηP

c2
δ. (2.22)

In Eq. (2.22), the thruster efficiency, η, is set to 1 (i.e., 100% thruster efficiency) and a constant

power, P is assumed to be available for thrusting. Both thrust and mass flow rate depend on ‘c’

and the throttle input, δ. Therefore, there are three control variables: throttle (δ), direction of the

thrust (α̂), and the exhaust velocity (c).

With the state dynamics and control variables defined, the cost functional for minimizing fuel
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consumption is written as

Minimize J =

∫ tf

t0

2ηP

c2
δ dt,

subject to :

Eqs. (2.6) & (2.22), x(tf )− x̃d = 0, P = Puse,

x(t0) = x0, m(t0) = m0, η = 1,

(2.23)

where t0 is the initial time, x0 and m0 are the MEEs and mass of the spacecraft at the initial time,

respectively, tf is the final time, ∆t = tf − t0 is the time of flight, Puse is the power available

for thrusting set by the user and x̃d is the desired MEEs at the final time. The (optimal control)

Hamiltonian associated with the defined cost functional and state dynamics is

H =
2ηP

c2
δ + λ>

(
A(x, t) +

T

m
B(x, t)δα̂

)
− λm

2ηP

c2
δ, (2.24)

where λ = [λp, λf , λg, λh, λk, λl]
> is the costate vector associated with the MEEs and λm is the

costate associated with mass. Due to the bi-linear appearance of α̂ and (δ ≥ 0) in the Hamiltonian,

Pontryagin’s minimum principle (PMP) is used to find the optimal control direction, which is

aligned along the Lawden’s primer vector, p = −B>λ defined as

α̂∗ =
p

||p||
= − B>λ
||B>λ||

. (2.25)

According to the PMP, the throttle input, δ, has to be selected such the Hamiltonian is mini-

mized along an extremal solution

δ∗ = arg min
δ∈[0,1]

H(x∗(t),m∗(t), δ(t),λ∗(t), λ∗m(t)), (2.26)

and the non-negative thrust switching function that governs the optimal throttle (δ) ‘on’ or ‘off’
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modes can be defined as

δ∗ =


1; for SF > 0,∀ c ∈ [cmin, cmax],

0; for SF ≤ 0,∀ c ∈ [cmin, cmax],

(2.27)

SF =
c||B>λ||

m
+ λm − 1. (2.28)

The discontinuous structure of the theoretically extremal control, δ∗ given in Eq. (2.27), which

is in general a sequence of on/off pulses, is made smooth, yet approximated to a high precision,

using hyperbolic tangent smoothing (HTS) method [51] as

δ∗ ≈ δ(SF, ρb) = 0.5

[
1 + tanh

(
SF

ρb

)]
, (2.29)

where ρb is a smoothing parameter that controls the sharpness of the switches of the optimal “bang-

off-bang” throttle input. The time rate of change of costates are governed by differential equations

obtained from the Euler-Lagrange equations as

λ̇ = −
[
∂H

∂x

]>
, λ̇m = −∂H

∂m
. (2.30)

Optimal values of specific impulse can be characterized using the strong form of optimality,

∂H/∂c = 0, giving an expression for copt [?] as

copt =
2(1− λm)m

||B>λ||
. (2.31)

Using Eq. (2.31) along with the admissible bounding constraint that copt ≤ cmax, the effective

optimal exhaust velocity, (c̃), becomes

c̃ =


cmax, if copt ≥ cmax,

copt, if copt ≤ cmax.

(2.32)
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In order to accommodate the above inequality condition imposed on the selection of χcmax ,

smooth structure of c̃ is obtained by the use of an activation function such as

c̃ = χcmaxcmax + (1− χcmax)copt (2.33)

where the activation function is constructed with the help of the HTS method as

χcmax = 0.5

[
1− tanh

(
cmax − copt

ρc

)]
,

As per PMP, Hamiltonian should be minimized over all the set of admissible controls. Therefore,

cmax is used to evaluate the SF in Eq. (3.16) to allow the VIVT engine to be ON, if at least one

admissible value of c exists that makes the power switching function, SF , positive. In case of the

unconstrained formulation, the inequality given in Eq. (2.32) does not get used since cmax is set to

a high enough value such that c̃ = copt is always followed. This also removes the presence of any

throttle discontinuity as PMP dictates the thruster to be always ‘on’ in this case.

Additionally, we have the mass costates terminal boundary condition λm(tf ) = 0 since final

spacecraft mass, m(tf ), is free. Thus, the set of final boundary conditions can be defined as

Γ =
[
(x(tf )− x̃d)>, λm(tf )

]>
= 0. (2.35)

The optimal control expressions along with the state and costate and boundary conditions form

a two-point boundary-value problem (TPBVP). More specifically, state dynamics, Eqs. (2.6) and

(2.22), costate dynamics, Eq. (2.30), extremal control expressions, Eq. (2.25), Eq. (2.29), and

Eq. (2.33) along with the set of final constraints, Eq. (2.35), define the TPBVP associated with the

cmax method. In fact, the TPBVP is a root-finding problem that can be written as

Γ(η(t0); Θ) =
[
(x(tf )− x̃d)>, λm(tf )

]>
= 0, (2.36)
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where η(t0) = [λ(t0)>, λm(t0)]> denotes the unknown costates at the initial time and Θ =

[ρb, ρc, cmax] denotes the three continuation parameters of the resulting TPBVP. Note that for solv-

ing each TPBVP, Θ is fixed, but the continuation parameters will be modified to guide the solution

to the desired one. For the unconstrained case in which the constraint (given in Eq. (2.32)) is

removed from the problem formulation, Θ = cmax. Upon obtaining an optimal solution for the

unconstrained version, a continuation procedure is initiated (with Θ = [ρb, ρc, cmax]) in which the

value of cmax can be swept from a high value (ideal engine) to a low value (chemical engine)

following a DCO method regime to ultimately obtain near-impulsive solutions.

Typically, the introduction of the constraint (cmin ≤ c ≤ cmax) in the exhaust velocity is con-

sidered to represent the performance constraints of a realistic engine. But even with a propulsion

model featuring unconstrained and unrealistically high-Isp engine, the VIVT propulsion modelling

has been found to yield excellent first-cut optimized trajectories with relatively arbitrary boundary

conditions. There are two major advantages of using the unconstrained VIVT solution to kick-start

the optimization: 1) the fuel-optimal solution of the unconstrained version of the VIVT modelling

uses the optimal Isp at all times (see Eq. (3.26)) resulting in a continuous thrust trajectory (δ = 1)

with no control discontinuities. Hence, this inherently smooth control facilitates numerical conver-

gence, and 2) the only control variable affecting the thrust and mass flow rate (Eq. (2.22)) is copt,

which is a function of the instantaneous mass (see Eq. (2.31)). This allows flexibility in choosing

near arbitrary initial mass and time of flight. The exhaust velocity values using arbitrary mass

and power values despite being unrealistic, aid in better selection of these parameters in consecu-

tive steps of the solution procedure (see Figure 2.3). Referring to Figure 2.3, the above ’‘minimum

continuous ∆v” formulation actually has a simpler to look at mathematical structure than the cmax

or amax optimal control approaches. However, moving left to right in Figure 2.3 is recommended

in solving the two-point boundary value problem implicit in Eqs (2.36) because this is a high

confidence route to establish the starting co-states.

In summary, the original difficult-to-solve optimal control problem is embedded in a three-

parameter (i.e., ρb, ρc and cmax) family of neighboring OCPs (see Eq. (2.36)). cmax is usually swept
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first, then ρb and ρc are simultaneously swept. A standard numerical continuation is used to solve

the problem in which the converged costates of the previous iteration are used as an initial guess to

bolster convergence of the subsequent iterations. An adaptive sweep of the homotopy parameter

means we can virtually guarantee we are initiating each iteration sufficiently close to ensure rapid

quadratic convergence. In practice, large steps (only 3-4 iterations) in cmax can be taken to obtain

a near-impulsive solution for simple maneuvers. One primary difficulty encountered in the cmax

method is the occasional occurrence of encountering near zero mass values for a randomly selected

initial guess for costates especially when a low cmax value is set (typically during the last iterations).

Note that lower cmax values are ideal to approximate impulsive thrust arcs (i.e., high thrust in

Eq. (2.22)). Therefore, instead of going to a minimum fuel approach, a second method is proposed

to circumvent this occasional problem.

2.2.1.2 amax method

Impulsive solutions contain only velocity-level information. A pure integral of acceleration

formulation is proposed that removes the dependency of the problem formulation to mass, specific

impulse and thrust value. The removal of these parameters makes the problem substantially easier

given that the mass state and its associated costate (i.e., (ṁ & λ̇m)) are removed from the formula-

tion of the OCP. A fixed-time, rendezvous-type, minimum-∆v trajectory optimization problem is

considered with a cost functional defined in Lagrange form as

minimize
a∈Ω

J =

∫ tf

t0

||a|| dt, (2.37)

where t0 and tf are the initial and final times, respectively, and Ω denotes the set of admissible

acceleration vectors. Obviously the integral of acceleration is a velocity change and as acceleration

impulses approach large amax values and short time intervals, Eq. (2.37) is the continuous equiva-

lent of maximizing total ∆v. The extremal solution that minimizes this cost functional lies entirely

on a singular arc since the control is unbounded and it also appears linearly in the optimal control

Hamiltonian.
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To avoid singular arcs and to enforce optimal “bang-off-bang” acceleration profiles, a bound

on maximum acceleration, amax, is introduced to the problem formulation. In this modification of

the formulation, the thruster induced acceleration is rewritten as, a = amaxα̂δ, where amax is used

to embed the original OCP into a family of neighboring OCPs and as before, the throttle function

is δ(t) ∈ 0 ≤ δ(t) ≤ 1. Therefore, the modified cost functional for minimizing ∆v as the integral

of acceleration can be stated as

Minimize J =

∫ tf

t0

δamax dt,

subject to :

Eq (2.6), x(tf )− x̃d = 0, x(t0) = x0, amax : user defined.

(2.38)

Upon writing the Hamiltonian as

H = δamax + λ> [A(x, t) + amaxB(x, t)δα̂] , (2.39)

the optimal thrust direction is still governed by α̂∗ (see Eq. (2.25)). The costate dynamics are

derived using Euler-Lagrange equation as

λ̇ = −
[
∂H

∂x

]T
. (2.40)

Employing the PMP to determine δ, the smooth throttle input can be written as

δ∗ ≈ δ(SF, ρb) = 0.5

[
1 + tanh

(
SF

ρb

)]
, (2.41)

where SF = ||B>λ|| − 1. The TPBVP associated with the cost functional, Eq. (2.38), the state

dynamics, Eq. (2.6), the costates given in Eq. (2.40), the control inputs given in Eqs. (2.25) and

(2.41), can be written as a non-linear root-finding problem given in Eq. (2.42)

Γ(η(t0); Θ) = xMEE(tf )− x̃d = 0, (2.42)
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where Θ = [ρb, amax] denotes the continuation parameters of the resulting TPBVPs. Thus, a two-

parameter family of neighboring OCPs is formed, with a reduced number of equations, simpler

form of the switching function, no dependence on engine parameters, less number of constraints

and only two continuation parameters. In Eq. (2.42), there is a total of six scalar final constraints.

There are notable advantages of the amax method: 1) The number of differential equations is

reduced to 12 with mass removed, 2) The selection of exhaust velocity as a control variable is not

required, and 3) We have found that this optimization process is very well-behaved and large steps

in amax can be taken without getting trapped in intermediate valleys, which could otherwise make

convergence difficult [20]. Following the DCO methods, the value of amax is swept from a relatively

low to a high value until the thrust acceleration arcs become narrow enough and the change in ∆v

with change in amax becomes very tiny. The numerical continuation procedure for solving the

resulting TPBVPs is identical to the cmax method. However, the set of continuation parameters

consists of only two parameters, i.e., ρb and amax. The former is used to enforce bang-off-bang

acceleration profile, whereas the latter is used to approach, with high accuracy, the minimum-

∆v maneuvers. We would like to emphasize that both cmax and amax methods usually lead to

near-optimal (minimum ∆v) solutions for “simple” problems (e.g., the first two problems that we

considered in this work). It is only for “difficult to converge” problems that a two-step procedure is

recommended per Figure 2.3, to initiate the amax algorithm. It is important to note, sweeping amax

over a feasible range generates an extremal field map of optimal solutions for various maximum

acceleration levels. This map may be useful in sizing of engines for the non-impulsive low thrust

case, not merely a tool to find the impulsive high thrust limit case.

2.2.2 Primer Vector Theory (PVT) step

In this sub-section, a straightforward procedure of extracting the results from the CS step is

described, which supplies a very good initial guess to obtain the exact impulsive solution that

satisfies Lawden’s necessary conditions.
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2.2.2.1 Extraction of Impulses

Each narrow thrust arc obtained from the previous step is treated as an individual impulse. The

midpoint of each individual short finite burn arc is taken as the point of impulse and the time and

position vector stamp for each of these midpoints is noted. The direction of the primer vector

at this mid-point is also collected to approximate the direction of the impulse and the integral of

acceleration over the short burn arcs approximates the velocity impulse magnitude.

The quality of this starting estimate is important, especially to determine the number of im-

pulses, which is not required to be introduced as a design variable. The only design variables that

are required to be iterated upon are the positions and time of the interior as well as departure and

arrival impulses (if the problem happens to have impulses at the boundaries). The starting values

from the amax solution are typically excellent, so efficient convergence to the final solutions can

be expected. This approximate optimal impulsive solution can feature both late departure or early

arrival but does not allow an increase in the time of flight.

2.2.3 Impulsive verification

The time of flight (and the trajectory as a consequence) is divided into time segments featuring

an impulse at each end. On each intervening coast arc, two-body dynamics is assumed (in the cur-

rent implementation) and the transfer arc is computed using a Lambert solver. Utilizing excellent

estimates of the times, directions, and magnitudes of the velocity impulses from the previous step,

a Nonlinear Programming (NLP) solver, MATLAB’s fmincon is used to minimize the cost defined

as [20]

Minimize J =
N∑
k=1

∆vk, (2.43)

where, ∆vk is the magnitude of the k-th impulse. The starting velocities (∆v(tk)) obtained by

integrating the converged amax acceleration impulses centered on tk. The starting positions, r(tk),

are just corresponding positions from the converged amax solution. The design variables for fmincon

are the time of flight of each segment (∆tk) and the position of impulses (rk) with appropriate

bounds set on each. Upon convergence of fmincon, the primer vector, p, is plotted using the
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procedure outlined in [85] and [86]. The resulting primer vector of the optimized solution is

verified against Lawden’s necessary conditions. Violation of these necessary conditions has been

used to determine sub-optimality of impulsive solutions [80, 87] and hence is used as a prerequisite

validation check for an extremal impulsive solution.

Upon convergence of fmincon, the primer vector, p, is computed by propagating the equations

[85]

p(t) = φ11 p(τ) + φ12 ṗ(τ), (2.44a)

ṗ(t) = φ21 p(τ) + φ22 ṗ(τ), (2.44b)

Φ(t, τ) =

φ11 φ12

φ21 φ22

 . (2.44c)

Here, Φ is the relevant subset of the state transition matrix (STM) of a dynamical system mapped

from any time τ to time ‘t’ such that τ, t ∈ [t0, tf ] and follows the differential equation defined as

[88]

Φ̇ = FΦ; Φ(t0, t0) = I, (2.45)

where I denotes a n by n identity matrix with n denoting the number of differential equations

and F denoting the Jacobian matrix evaluated for the equations of motion given in Eq. (2.5). The

initial and final value of the primer vector (p) are:

p(t0) =
∆v(tk)

∆v(tk)
, p(tf ) =

∆v(tk+1)

∆v(tk+1)
. (2.46)

where t0 and tf are the times of first and last impulse.

The most significant difficulty encountered in this work is the sensitivity of the resulting TP-

BVPs with respect to initial costates in the case of many revolution trajectories. To circumvent

this problem, a two-step process is defined, where the cmax method is quick to converge for the

initial iterations but can be tedious in the later iterations when the cmax value is set quite low to
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recover near-impulsive solutions. Therefore, for an intermediate value of cmax depending on the

convergence hiccups, the costates and the associated acceleration value from the solution are used

to feed the amax method to get the final near-optimal, near-impulsive solution. Additionally, an-

alytical sensitivities via solutions of the state/co-state state transition matrix differential equation

[76] are computed at each time to feed to the solver without which convergence becomes difficult

as the dimensionality becomes large. The details are given in [75, 76].

2.2.4 Numerical Example

Three examples are presented: The heliocentric phase of two interplanetary maneuvers from 1)

Earth to Mars (E2M), 2) Earth to Dionysus (E2D) and 3) A Geocentric maneuver from a GTO to a

circular orbit with a radius equal to the distance from the Earth to the L1 point of the Earth-Moon

system (GTO2L1).

2.2.4.1 Earth to Mars (E2M)

In order to demonstrate the utility of the cmax method, a simple (classical) rendezvous example

from Earth to Mars is solved with the following MEE boundary conditions: p(t0) = 1.0005515

(AU), f(t0) = −0.0029454, g(t0) = 0.0162404, h(t0) = 1.0847571 × 10−5, k(t0) = 8.446336 ×

10−7 and L(t0) = 7.4484263. For the target state, pd = 1.5103483 (AU), fd = 0.0854214,

gd = −0.0378510, hd = 0.0104734, kd = 0.01228042 and Ld = 17.4484552.

As explained before, first a solution with unconstrained VIVT formulation is obtained, which

exhibits a continuous thrust profile as shown in Figure 2.4. Here, the increase in the values of Isp

causing sudden drop in the thrust value compensates for the areas where the optimality would have

warranted a coast arc. As lowering of cmax parameter by use of constrained VIVT formulation is

conducted, coast arcs start to appear. Two of these iterations are shown in Figure 2.5 and Figure

2.6 which are plotted for ρb = ρc = 1× 10−5.

Unlike the Isp,max = 1500s case (see Figure 2.5), where copt is still smaller than the set value for

cmax at some time instances, the exhaust velocity is completely saturated at cmax when Isp,max = 800

s as shown in Figure 2.6. Any lowering in cmax from this point is equivalent to a thrust continuation
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Figure 2.4: Thrust profile and Isp vs. time for the E2M problem (unconstrained VIVT formulation).
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Figure 2.5: Thrust profile and Isp for the E2M problem with Isp,max = 1500s.
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Figure 2.6: Thrust profile and Isp for the E2M problem with Isp,max = 800s.
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Figure 2.7: Thrust and switching function of approximate low-thrust impulsive trajectory (top) and
norm of the primer vector associated with the optimal impulsive trajectory (bottom) for the E2M
problem.

process. The final near impulsive, three impulses solution depicted in Figure 2.7 corresponds to

a ∆vtotal = 5.62 km/s. The details on the time and magnitude of impulses for this near-optimal

near-impulsive solution are given in Table 2.1. As is evident, the magnitude of the ∆v impulses

differ from the starting estimate in the 3rd significant digit and are graphically identical on the solar

scale.

Table 2.1: Comparison of the E2M Impulsive solutions.

cmax solution
∆vtotal (km/s) 5.62

Time of impulses(days) [1.9922, 360.6356, 715.29368]
Magnitude of impulses (km/s) [1.425, 1.928, 2.268]

PVT solution
∆vtotal (km/s) 5.6109

Time of impulses (days) [0.0198817, 360.6553, 713.7880
Magnitude of impulses (km/s) [1.439 , 1.891, 2.281]

The solution obtained from the above procedure in terms of number of impulses, position and

time of impulses is fed into the non-linear solver (PVT step described in Section 3.3.1) as an initial

43



2

-0.06

-0.04

-0.02

-2

0

0.02

0.04

0.06

Z
 (

A
U

)

-1 0

Y (AU)
0

X (AU)
1 -22

Earth

Mars

Earth Orbit

Mars Orbit

Trajectory
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guess to converge to the exact impulsive maneuver. The optimal primer vector obtained from the

converged solution of fmincon (see Figure 2.7), satisfies Lawden’s conditions. Notice that the

obtained primer vector profile matches the switching function obtained from the CS step. The total

∆V (∆vtotal) from this PVT step is 5.6109 km/s with some small variation in the departure time

from the CS step solution. The complete comparison of the optimal impulsive solution obtained

from CS and PVT is given in Table 2.1. The optimal impulsive trajectory obtained from PVT is

given in Fig. 2.8.

2.2.4.2 Earth to Dionysus (E2D)

A difficult rendezvous problem with multiple orbital revolutions around the Sun is solved in

this section using the amax method. Though the E2D problem can be solved using both cmax

and amax methods, the latter is chosen to provide the reader clarity over both the methods. The

E2D problem has recently emerged as another standard problem in its own right having been

studied in great detail in [20] with different ∆V solutions and time of flight associated with

different number of revolutions. The impulsive solution associated with 5 orbital revolutions,
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Figure 2.9: Continuation trend for ∆vtotal vs amax for the E2D problem.

(Nrev = 5), is solved in this work with a fixed time of flight of 3534 days and boundary conditions

(in MEEs) defined as: p(t0) = 0.9996943 (AU), f(t0) = −0.00376679, g(t0) = 0.01628689,

h(t0) = −7.7020614 × 10−6, k(t0) = 6.1881685 × 10−7 and L(t0) = 14.1618925. For the fi-

nal target state, pd = 1.5536970 (AU), fd = −0.5199481, gd = 0.0161831, hd = 0.0104734,

kd = 0.1181395 and Ld = 46.3302403.

Starting from a relatively low value of amax, a continuation procedure of increasing amax is con-

ducted until the change in ∆vtotal is below a prescribed threshold (e.g., 1% relative to its previous

value) as shown in Figure 2.9. For each value of amax in the continuation step, the continuation

parameter ρb (defined in Eq. (2.41)) is decreased till 1.0× 10−3 to capture thrust acceleration arcs

with an acceptable accuracy for the next amax iteration. Notice the large amax continuation steps.

For ρb = 1.0 × 10−3, all the thrust arcs might not be sufficiently sharp but to save computational

effort, the continuation in ρb could be stopped as we already have enough information to reliably

initiate the next iteration. The final result corresponding to amax = 1.0 × 10−3 m/s2 is shown in
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Figure 2.11: Primer vector magnitude vs. time for the E2D problem with Nrev = 5.
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Figure 2.11 shows the time history of the primer vector magnitude associated with the im-

pulsive solution that displays excellent satisfaction of Lawden’s necessary conditions. Since all

impulses are intermediate impulses, the primer vector derivative is zero at the time of impulses and

||p|| = 1 where ||p(t)|| is a local maxima [86]. Figure 2.12 shows the impulsive trajectory, where

the first five impulses are applied at the perihelion passages of the intermediate elliptical orbits and

the last impulse is applied at the intersection of the last elliptical orbit with the orbit of the asteroid

Dionysus. This last impulse changes the inclination and the other parameters of the orbit of the

spacecraft.

Figure 2.12: Minimum-∆V , six-impulse trajectory for the E2D problem.

An early-arrival has happened where the last impulse establishes a rendezvous with asteroid

Dionysus. For the remainder of the time of flight, both the spacecraft and the asteroid trajectories

are the same until the marked location of Dionysus on its orbit. The importance of impulsive
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Figure 2.13: Maximum acceleration sweep switch surface for Earth to Dionysus maneuver.

Figure 2.14: Maximum thrust sweep switch surface for Earth to Dionysus maneuver.
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maneuvers for reachability analysis can be observed in the significant reduction in the time of

flight with ideal impulsive solutions even when the original continuous thrust acceleration was

applied along the trajectory.

Figure 2.15: 2D slice of acceleration (top) an thrust (bottom) switch surfaces (S=0 contours).

In fact, the effective time of flight can be considered to be from the first impulse till the last

impulse and the early and late coast arcs are redundant. The shift in the time of flight can be

observed very clearly if amax (opposed to thrust sweeps in [?]) is swept to generate a surface. This

switching function for minimum surface shown in Figure 2.13) is quite similar to the thrust surface

corresponding switching function surface (for minimum fuel with T swept) as shown in Figure

2.14. Notice, there are some different times for the zero crossing of the switching function near the

peaks of the Himalayas when the control variable (amax or T ) is relatively small. The two surfaces

are almost identical for the impulsive limits (see Figure 2.15) corroborating to the fact that both

approaches approach the impulsive maneuver and the impulsive maneuver is independent of the
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thrust performance and mass of the engine. This thruster independence is harnessed especially in

the acceleration switch surfaces which provides different manifolds of trajectories possible for the

fixed boundary conditions and a upper limit set on the time of flight and accleration values (amax).

In fact, the optimization process underlying Figure 2.13 is simply the finite acceleration, finite

pulse duration generalization of the impulsive minimum ∆v optimization. This also provides an

improved reachability analysis where the minimum acceleration value pertaining to the continuous

control solution for a particular amax value aids in engine selection.

Table 2.2: Comparison of the approximate and optimal minimum-∆V solutions for the E2D prob-
lem.

amax solution PVT solution
∆vtotal = 9.9183 km/s ∆vtotal = 9.90742 km/s

Time (days) ∆V (km/s) Time (days) ∆V (km/s)
193.377 1.6488 193.246 1.722
626.049 1.6097 629.608 1.4666

1153.166 1.5501 1152.099 1.6231
1816.915 1.4525 1816.969 1.44027
2683.504 1.2759 2683.731 1.2689
3033.693 2.3811 3032.192 2.3858

Notice the approximate six impulse times and the impulse magnitude again agree with the PVT

optimal values to differences in the 3rd or 4th digit.

2.2.4.3 GTO to L1 (GTO2L1)

A challenging rendezvous problem of GTO2L1 involving 50 revolutions is solved. The MEE

boundary conditions for this maneuver are:

x0 = [0.2765649 (DU), 0.725, 0, 0.06116262, 0, 0]>,

x̃d = [7.74 (DU), 0, 0, 0, 0, 317.3009]>.
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Figure 2.16: Optimal thrust and switching function profiles for the GTO2L1 problem using uncon-
strained Isp in cmax method.

The other parameters are Puse = 1000 watts, and m0 = 250 kg, ∆t = 60 days and number of

revolutions is equal to 50. The solution to the unconstrained cmax method displays a continuous

thrust profile as depicted in Fig. 2.16 with a ∆vtotal = 2.99 km/s and the largest value of Isp recorded

as 2024.42 seconds. The specific impulse is reduced to an Ispmax
= 1000 seconds before handing
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eter amax for the optimal approximate impulsive trajectory for the GTO2L1 problem.
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over the converged costates and amax value of 7× 10−4 m/s2 to the amax method. The value of amax

is then swept from 7×10−4 to 8×10−3 m/s2 beyond which ∆V does not change significantly (see

Fig. 2.17). The final optimal approximate impulsive solution obtained for amax = 7.5× 10−3 m/s2

consists of neither a late departure nor an early arrival with a ∆vtotal = 1.66.08 km/s attributed to

52 impulses.

Figure 2.18: Optimal approximate impulsive trajectory for the GTO2L1 problem.

Every orbital revolution consists of a finite burn close to the perigee to raise the semi-major

axis. Majority of the expensive inclination change is achieved in the last few orbits when the

spacecraft is far from the Earth, which results in large magnitude impulses as shown in Fig. 2.20.

The last (non-linear programming) verification step is not obtained for this maneuver as the con-

vergence of NLP solver deteriorates drastically when a large number of design variables (208 in

this case) are involved. This example shows the power of viewing the impulsive case as a limiting

case of an indirect function space trajectory optimization approximations. We can solve higher

dimensionality minimum impulse problems via the amax function space algorithm than via discrete

non-linear programming.

Therefore, the results indicate that both methods (amax & cmax) are capable of obtaining near-
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optimal impulsive trajectories for maneuvers with medium levels of complexity. It is for more

complex problems like GTO to L1 solved in this work that a two-step process is invoked. Optimal

N -impulse orbit transfer maneuvers (with N > 10) are rare in the literature due to the absence of

an approach to reliably find good starting estimates consistent with optimality principles. Thus, this

dissertation and our recent papers address a significant gap. Also, the unconstrained Isp version of

solving the TPBVP is observed to be more efficient in terms of convergence than the acceleration

squared method traditionally used. This could be due to the direct impact of the high sensitivity

with respect to the unknown initial co-states guess vector (that is iterated upon in the procedure) on

the acceleration magnitude that makes the problem unstable and infeasible for some set of guesses

and therefore numerically challenging. The presented two-step process helps in mitigating the

individual shortcomings of both the methods to provide a powerful tool that can especially generate

complex impulsive maneuvers. In particular, a near-optimal multi-impulse (N = 52 impulses),

multi-revolution (50 revolutions) maneuver is generated using the proposed method. While in

a practical mission it is difficult to design a trajectory with large number of closely occurring

impulses, it is informative to obtain theoretically optimal trajectories. In practice, pruning of the

smallest impulses will likely be required or desired.
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2.3 Low Thrust Transfer with Inequality Constraints 3

Indirect optimization methods exploit smoothing based methods and numerical continuation

to solve many difficult problems; some of which are practically unsolvable without these tac-

tics. Though, related smoothing methods have also proven to be capable of handling inequality

constraints and discontinuous conditions as a function of states and co-states, time explicit con-

straints especially when time triggers are not configured apriori are not explored heretofore. These

temporal “no-go regions” commonly arise in solar electric propulsion (SEP) systems where the

operational limits of the engine and solar arrays are riddled with eclipses and thermal tolerance

limits, especially for planet-centric or sun proximity missions [89].

In the past few decades, solar energy has emerged as the most prominent power source for

employing low-thrust propulsion on a space mission. SEP systems are subjected to occasional

power cut-off during eclipses, so battery power sufficient to operate critical sub-systems during

eclipses are required. The charge capacity of most small spacecraft is not sufficient to power the

SEP system during eclipses. These eclipses occur whenever a body occults the incident Sun rays

on the solar arrays. Assuming that the planetary bodies are spherical, two geometrical regions of

partial blackout (penumbra) and complete blackout (umbra) are formed. Most frequently, during

trajectory optimization the presence of the spacecraft in either of these regions necessitate a coast

arc corresponding to the event of resulting solar power cut off. Therefore, SEP propelled missions

generally require optimization over both continuous and discrete variables to satisfy different op-

timization objectives as well as operational constraints. Direct methods have assumed dominance

for handling such constraints in trajectory optimization since the dawn of space age, because indi-

rect methods were not sufficiently general and/or numerically implemented in a fashion to reliably

handle the diversity of path and control constraints. Recently, many advancements in the field of

indirect optimization of low thrust missions have been achieved, culminating in this dissertation

that make the preliminary mission design more realistic [90]. The methods enhance multiple trade

3Reprinted with permission from “Indirect Based Shadow Modelling with Warm-Up Time” by Arya, Vishala
and Woollands, Robyn and Junkins, John, 2022. AAS Guidance, Navigation and Control Conference, Breckenridge,
Colorado
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studies at the initial stage to make better, more optimal decisions from the onset of the mission

design process [91]. Indirect optimization methods guarantee local optimality of the resulting so-

lutions, and however challenging, we now have a reliable approach to accommodate inequality

constraints and path constraints in the indirect formulation. As will be evident later in the disser-

tation, we now have indirect methods that allow exploration of a key issue: no optimality versus

simplicity of the control structure.

Planet-centric low thrust maneuvers, especially, involve many orbital revolutions making the

task of designing the trajectory itself even without the eclipse consideration, quite challenging.

The eclipse duration is mainly the function of altitude, size of the planet and the Sun angle on

the spacecraft. Kechichian [92] formulated analytical expressions for capturing the variation in

classical elements due to continuous tangential thrusting with coasting enforced during eclipses.

A multi-phase formulation was used by Betts [93] to solve for eclipse conscious multi-revolution

geocentric trajectories by dividing the pre-eclipse, in-eclipse and post-eclipse into different phases.

The orbit error was minimized in the manner similar to using a receding horizon algorithm. A sim-

pler shadow model has been adopted in some works by considering a cylindrical projection of the

Earth for the umbral region [94]. Ferrier and Epenoy modelled two concentric cylinders such that

the power available within the shell is smoothed from 0% to 100 % by a degree 3 polynomial.

However, this modelling does not resolve the discontinuities encountered at the time of the switch.

Those switch discontinuities with the cylindrical model assumption are smoothed using HTS by

Woollands [95] in which higher order of gravity perturbations are also included by use of the Picard

Chebyshev numerical integrator. This cylindrical assumption can become significantly inaccurate

in case of high altitude and highly elliptical orbits. Smoothing of these switches is primarily use-

ful to improve numerical accuracy and to embed these constraints smoothly into indirect optimal

control approaches.

A conical model is used for a more accurate modelling where the thruster is generally kept

off even in the penumbral area where theoretically partial solar energy is still available. This

conservative approach can be relaxed of course based on decisions by the analyst, considering bat-
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tery capacity etc. Using the conical model, many works have adopted a trajectory optimization

approach based on evaluation of the shadow entry and exit times [96, 97, 98] using direct opti-

mization methods. Graham and Rao [99] were the first to use a collocation method to optimize

a minimum time transfer such that the minimum time nominal trajectory was used to determine

the approximate eclipses entry time. Once, eclipse entry time was evaluated, a forced coast arc

and a two body assumption allowed propagation via Keplerian dynamics to evaluate the shadow

exit time. The ambiguity in the number of revolutions when a minimum time solution is used for

the eclipsed trajectory is another challenge that exists. Aziz et al [41] employed hybrid dynamic

differential programming with the dynamics regularized by Sundman transformation to solve the

same problem. A combination of smooth functions for conical shadow model were also intro-

duced such that a 450 revolutions low Earth orbit (LEO) to Geo-equatorial orbit (GEO) maneuver

is rendered solvable with suitable eclipse considerations. Taheri [100] achieved the same solution

but using a simpler smoothing construct using HTS and complex derivatives along with a model

that included a higher-fidelity gravity spherical harmonics (of desired order and degree) into the

indirect formulation optimization problem. Taheri used a single shooting method for which the

Sundman transformation leads to enhancement in numerical convergence for trajectories involving

hundreds of revolutions.

For the duration of the eclipse, energy stored in batteries is used to power the payload and essen-

tial spacecraft systems. Also, when the spacecraft is in shadow, the temperature of the propulsion

system drops significantly. The time needed to revive the solar power processing electronics and

the engine post eclipse, such that it is capable to provide maximum thrust, can be referred to as

warm up time (∆tw). This warm up time is dependent on the time duration spent in the shadow,

and is also typically dependent on the charge depletion and charge recovery rate of the batteries.

The type of constraint that we now consider in solving the above problem can be classified more

broadly as a state-triggered, time-dependent inequality constraint on the admissible control. In

fact, such inequality control constraints that explicitly depend on both state and time are solved for

the first time for trajectory optimization using indirect based methods [?]. The problem of eclipse
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is chosen in this work for easy demonstration and proof of the invariant embedding concept. The

presented smooth algorithm will find utility in many practical scenarios where any operational

time limit on the thrusters imposed either due to science acquisition requirements, communication

constraints with ground station or thermal tolerances can be accommodated.

In this work, a custom-made invariant embedding algorithm is devised to model eclipse con-

straints with warm up time with the help of comprehensive smoothing. The algorithm not only

embeds parametric continuation in the form of functional smoothing for every ‘if-then’ condition

but also lays the foundation for smoothly evaluating cumulative time to impose temporal con-

straints. The HTS smoothed switch functions approximate with near-arbitrary precision all of the

corresponding discontinuous switches, as a limiting case, when the embedding homotopy parame-

ter is swept towards zero. The main example of the operational inequality state and time dependent

constraint that is solved here is the inclusion of warm-up time in the indirect optimization which is

a typical requirement associated with every engine to regain its full thrusting potential. The warm

up time is evaluated as a user-defined fraction of the time spent in the shadow for every eclipse

occurrence during the maneuver.

2.3.1 Rendezvous Problem Formulation

The optimal control problem (OCP) is formulated using the set of modified equinoctial ele-

ments (MEEs) with equations of motions given in Section 2. Since the problems solved in this

paper involves planet-centric manuevers to invoke eclipse conditions, the power generated by the

solar array does not vary significantly as the heliocentric distance hardly varies through several rev-

olutions. Therefore, a simplified thrust power model is considered where a constant power leads to

a constant thrusting capability. Hence, the engine modelling for this problem mimics the nuclear

electric propulsion model. Therefore, without loss of generality we have considered Pav = P0 and

have parametrized the control acceleration vector as

a =
2ηP0

mc
δα̂, (2.47)
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Here, δ ∈ [0, 1] will be realized as a multiplicative smoothed representation of all switches in the

thrust profile triggered by fuel-optimality, eclipses or forced coasts due to warm up time. The

construction of δ for this specific problem is of the form:

δ = δbδsδw (2.48)

The mathematical expression to evaluate all three δ′s individually at each time step throughout the

maneuver will be derived shortly. Even when we have included δs into the throttle function δ, δs

essentially aids in calibrating the fraction of sunlight that is accessible to the spacecraft (incident on

the solar arrays) to generate power. In our case, since total power loss is assumed in the penumbral

region for simplicity, δs takes the value of either 1 or 0 as the case may be. In order to obtain a

time-optimal solution, for example, optimal control problem can be stated as

Minimize J =

∫ tf

t0

1 dt

subject to :

Equation (2.6),

x(tf )− x̃d = 0,

x(t0) = x0,m(t0) = m0,

(2.49)

where t0 is the initial time, x0 and m0 are the MEEs and mass of the spacecraft at the initial time,

tf is the final time which is also a design variable, ∆t = tf − t0 is the time of flight, and x̃d is the

desired MEEs at the final time. The Hamiltonian associated with the defined OCP can be written

as:

H = 1 + λ>
(
A(x, t) +

2ηP0δ

mc
B(x, t)α̂

)
− λm

2ηP0

c2
δ, (2.50)
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where λ = [λp, λf , λg, λh, λk, λl]
> and λm is the costate associated with mass. The control direc-

tion, α̂ is along Lawden’s primer vector P = B>λ) as per PMP.

α̂∗ = − P
||P||

, (2.51)

and the other control variable, the throttle δ which is written as a product of three smoothed δ

functions namely, δb, δs, δw enforce coasts arcs due to fuel-optimality, shadow occurrences and

warm up time respectively. Out of the three δ variables, δb for a minimum time solution comes

out to be identically 1 throughout the maneuver to enforce continuous thrusting for an optimal

maneuver time (in the absence of eclipses).

Figure 2.21: Schematic for a time explicit control operational constraint.

2.3.2 Eclipse Modelling

The eclipse constraints are modeled using general approximations and a body of assumptions

like spherical planetary bodies. Due to the large astronomical distance between the Earth and the
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Sun, the apparent diameter of the Sun becomes relatively small. On ignoring Earth’s oblateness

and surrounding atmosphere, overlapping circular disks as is shown in Figure 2.21 can be used

as a preliminary approach for modelling the eclipses [41]. In Figure 1, RΘ and RB denote the

mean radius of the Sun and occulting body, respectively, rΘ/sc denotes the position of the Sun

with respect to the spacecraft, and RB/sc denotes the position of the occulting body relative to the

spacecraft. The apparent angles (aBR and aSR) and the apparent distance (aD) can be derived as

[41]

aSR = arcsin

(
RΘ

rΘ/sc

)
, (2.52)

aBR = arcsin

(
RB

rB/sc

)
, (2.53)

aD = arccos

(
r>Θ/scrB/sc

||rΘ/sc||.||rB/sc||

)
, (2.54)

where, rΘ/sc = rΘ − rsc and rB/sc = rB − rsc. Using these angles (aSR, aBR & aD), umbral,

penumbral and no eclipse conditions can be modeled using multiple inequality conditions. Each

of these inequality conditions require additional smoothing to transition smoothly from the eclipse

to the no eclipse region. In this work, penumbral region is not identified separately therefore just

one smooth condition suffices to model the eclipse occurrence:

δs =
1

2

[
1− tanh

(
gs
ρs

)]
(2.55)

where gs = aSR + aBR − aD.

2.3.3 Warm-up Time Model

The algorithm that we present in this section holds the key to including a class of time ex-

plicit temporal constraints for incorporating a more realistic thrusting capability into trajectory

optimization. For example, there can be two kinds of operational constraints; (i) where additional

thrust arcs are enforced to adhere to a minimum operational time constraint or (ii) alternatively,

additional coast arcs are enforced to accommodate power constraints. Before detailing the algo-
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Figure 2.22: Schematic for a time explicit control operational constraint of first kind.

Figure 2.23: Schematic for a time explicit control operational constraint.
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rithm, it is important to understand the challenges associated with incorporating this variety of

constraints especially with a variable step size integrator. Figure 2.22 shows a general schematic

for the operational constraint of first kind where tmin denotes the user set minimum time for which

the thruster should be ‘on’. Five different scenarios in terms of five different composite thrust arcs

(each beginning with a iti such that i=1,2,3,4,5) are shown where the green thrust arc represents

the optimal thrust while the blue one represents the forced thrust to satisfy the tmin operational

limit. The variable tcount keeps account of the total time optimal thrust is continuously ‘on’ starting

from the time point iti and tcount is reset to zero when tcount ≥ tmin. A fair idea of the complexity of

a time explicit constraint is provided by three cases marked by black circles in the third scenario

(associated with 3ti) with the black arrow (starting from time ’t’) showing three different represen-

tative locations (say, marked by tr) the correction step in an integrator like ode45 might back trace

to. In the first case, tr goes to the point before 3ti where tcount = 0. Since, tcount = 0, it is simpler to

forward propagate from this point where one can simply coast till a thrust arc is encountered. For

the second case, the back tracked tr goes to the region of forced thrust arc of the second scenario

(associated with 2ti). At this point tcount 6= 0, therefore, tcount will have to evaluated as per 2ti and

not 3ti to evaluate the remaining time for which the thrust arc has to enforced. In the third case,

tr reaches the region of the optimal thrust arc for scenario 2; therefore, using 2ti time stamp, new

tcount is evaluated and compared with tmin. Clearly all of these “ must hit ” state dependent times,

make numerical integration logic painful. The smoothing technique we introduce makes all of this

testing unnecessary and implicitly relies upon an adaptive integrator’s standard step size control

logic to sense the smoothly embedded δ functions time varying curvature.

In this work, the algorithm to enforce the operational constraints of second kind is described,

for which we require to build some time pointers as shown in Figure 2.23. Here, the time point-

ers like tb, te mark the time stamp for beginning of the activation of a constraint and time stamp

for the end of constraint activation respectively. The actual algorithm is presented in terms of a

pseudo algorithm. The algorithm kicks off with some initialization of some secondary parameters

(%, ς , κ ), certain time pointers and some conditions (gs for state associated conditions and gt for
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Algorithm: Event Smoothing algorithm for state and temporal constraints
Result: Tap = Tδsδt
initialize t = 0, tb = 0, te = 0,∆t = 0, ς = 1, % = 1 ;
while t ≤ tf do

δs = 0.5
[
1− tanh

(
gs
ρs

)]
Update tb = t(1− δs)ς + tb[1− (1− δs)ς]
Update ς = ς − ς2(1− δs)
κ = δs(1− ς)(1− %)
Update te = κte + (1− κ)te
∆tc = κ|te − tb|+ (1− κ)∆tc
∆tt = β∆tc
gt = t− (∆tt + te)

δtc = 0.5
[
1 + tanh

(
gt
ρt

)]
% = κ+ %(1− κ)

end

time associated conditions). The final output of the algorithm is the applied thrust (Tap) which is

a product of constant engine thrust value (T), state constraint throttle function (δs) and cumulative

time constrained throttle function (δt). In the context of the problem solved in this work, state

constraint (gs) represents the event of eclipses and the warm up time condition (gt) is attributed as

the time dependent operational constraint. Even when only one combination of gs and gt functions

are considered in the sample pseudocode, the algorithm is easily expandable to include more con-

straint functions by using a combination of products or summation of individual constraints as the

case may be. The variable ∆tc provides the cumulative dwell time for a condition/state/operation

say the amount of time spent in radiation, or the time recording the temperature build up in case

of constant rate of heat absorption by solar arrays etc.. In this particular case, it is used to evaluate

the time spent in eclipse. The accurate evaluation of ∆tc is not trivial as it not only depends on the

satisfaction of a certain inequality constraint but also on the step size of the integrator. This is one

crucial step and also act as a bottleneck in accommodating time explicit constraints with no apriori

set time bounds.

The calculation of ∆tc involves multiple situations conditioned at tracing the switch times
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of gs at both the: (i) activation time and, (ii) the deactivation time of the condition gs. These

conditions are generally realized by multiple if-then conditions causing discontinuities whereas

here, we have smoothed it using a single continuation parameter, ρs. Additionally, in order to

capture various equivalent scenarios analogous to the kinds described in Figure 2.22, additional

variables and checks are introduced such that not only ∆tc is evaluated correctly but the end time

of gs activation (i.e. te) is recorded accurately even when variable step size integrator that goes

back and forth on time is perused. If this is not done carefully, the integrator will take thousands

of steps to converge making the integration not only extremely slow but unreliable in some cases.

As part of logic leading to evaluation of ∆tc, the intermediate event trigger logic variables %,

ς & κ are introduced. Specifically, ς=1 indicates that a lookout for a new eclipse encounter is on,

while ς = 0 indicates continued tracking of the existing eclipse condition. Similarly, % = 1 indi-

cated continued tracking of the existing warm up time while % = 0 indicates the end of warm up

time period and gets updated to the value of 1 only when new warm up time constraint is triggered.

These onset and end conditions along with the eclipse activation constraint should be true simul-

taneously for the warm up time constraint to activate. Therefore, this type of composite trigger

conditions is captured as a product of these three individual conditions in κ. These three support-

ing variables are interdependent and self-updating subjected to the activation and deactivation of

one single condition given by the function gs and their respective current values. Due to the un-

derlying inter-dependencies, the sequence of the steps to update every variable should be strictly

followed as given in the event smoothing pseudo-algorithm.

For the specific case of warm up time, the time duration for which a coast is enforced owing

to engine wait time is set as β times the time spent in shadow ∆ts. Here, β is specified by the

designer depending on the capacity of the battery and the spacecraft size etc. The condition that

determines if the coast arc due to warm up time is imposed or not is given by condition gt which is

expressed smoothly by δtc and the continuation parameter ρt. In order to enable the use of variable

step size integrator, the condition gt is evaluated by means of a time stamp te so that a time stamp

for the end of warm-up time can be obtained to compare the time slot in which the current time ’t’
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Table 2.3: Coefficients for polynomial interpolation of Sun’s position.

(.)4 (.)3 (.)2 (.)1 (.)0

xsun(t̂) 8.2049E4 1.1444E6 -7.4788E6 -4.4379E7 9.7613E7
ysun(t̂) 1.1618E5 -9.2258E5 -8.8375E6 3.8624E7 1.1528E8
zsun(t̂) 156.8767 29.8668 93.8179 -1.7644E3 -6.4347E3

falls in. This evaluation of te requires frequent resets on the intermediate variables so that when the

eclipse conditions occurs again, the same algorithm can be re-iterated without errors. Therefore,

%, which is really the variable responsible to reset the warm up time evaluation, is updated right at

the end subjected to the value of κ.

2.3.4 Numerical Simulation

The duration of the eclipse is evaluated by generating the ephemeris of the Sun with respect to

the central body (the Earth in this case) using JPL DE405 data. If for fast computation, the files

are mexed ( see [75]), the position of the Sun (other planets if needed) are fitted using polynomi-

als of order 4 for the duration of the maneuver. The coefficients of the polynomial for the x,y,z

component of Sun’s position are given separately in Table 2.3. In order to avoid extreme values

for the coefficients caused due to the discrepancy in the scale of time and distance units, the data

is normalized before curve fitting using a mean (µc = 7.370352691858428 × 108 ) and standard

deviation value (σc = 1.9953599425778×106). evaluated on the ’x’ data (here, time). Using these

values, t is centred at zero and scaled to have unit standard deviation by using:

t̂ =
t− µc
σc

(2.56)

Additionally, in order to enhance the convergence of the two point boundary value problem

solver, the state variables are normalized. For an Earth centric trajectory optimization problems,

canonical units are adopted such that one distance unit (DU) is equal to the mean equatorial radius

of the Earth (Re = 6378.137 km), and the gravitational parameter of the Earth is 398, 600.4km3/s2

. Scaling of the state variables and time gives rise to corresponding scaling of the co-state variables.
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First, an initial guess for the unknown costate vector λ(t0) is generated randomly. Then fsolve

is invoked to solve the TPBVP with initial values for different continuation parameters (ρ). There

are multiple strategies to reduce the value of continuation parameter especially when multiple

continuation parameters are used. In this study, there are three continuation parameters that are

used, of which ρs & ρw are used for enforcing the constraint of eclipses and warm up time directly

while ρp is used to evaluate the cumulative operation time ∆tc. The smallest value for these ρ’s

is problem dependent and is typically determined by plotting the variation of the cost functional

versus the continuation parameter. Since, there are some constraints in this problem which are

explicit functions of time, the continuation parameters are lowered to a value consistent with the

minimum step size of the variable time step integrator (O−10). The costate vector of the converged

solution is used as the initial guess for the next sub-problem. As a numerical example, there are 3

“stepping stones” problems that are solved:

1. Minimum time solution

2. Minimum time solution with eclipse constraint

3. Minimum time solution with eclipse and warm-up time constraint

The solution for the first problem feeds into determining a good starting guess (especially the time

of flight) for solving the TPBVP associated with the next problem.

2.3.5 Results

The specific case of warm up time (which is defined as the time duration post an eclipse such

that the engine has to wait before it is allowed to thrust) is used as an example here. This oper-

ational limit is an ideal case to show the efficacy of the algorithm because the warm up time is

set as a user defined fraction of the time spent in shadow. Also, eclipses are observed in planet-

centric maneuvers which generally involve a larger number of revolutions, making the problem

challenging. Such problems are known to benefit greatly from analytical sensitivities for which

smoothness of the differential equations is important. Therefore, the proposed algorithm is tested
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a(km) ecc inc (deg.) Ω (deg.) ω (deg.) ν (deg.)
X0 24505 0.725 7 0 0 0
Xf 42165 0.001 1e−4 0 0 pi

Table 2.4: GTO-GEO maneuver boundary conditions

on a maneuver from a GTO to GEO with the Keplerian elements given in Table 2.4 where ‘a’

is the semi major axis, ‘ecc’ is eccentricity, ‘inc’ is inclination, ‘Ω’ is the right ascension of the

ascending node (RAAN), ‘ω’ is the argument of perigee and ‘ν’ being the true anomaly. Here, the

true anomaly (ν) for GEO indicates the osculating angular position (≤ 2π) of the spacecraft at the

final time on the final revolution and does not indicate the number of en-route revolutions around

the Sun (Nrevs) that are required to reach the target final state.

T (N) 0.187
Isp (s) 3100
m0 (kg) 400

β 0.4

Table 2.5: Spacecraft Parameters

In fact, the problem of finding a global optimal minimum time solution with respect to Nrevs

is a tough problem in itself, which is not considered here, but is studied in [101]. In order to obtain

a feasible solution, minimum time solution was first evaluated with free final longitude (i.e free

Nrevs). The number of revolution observed from this converged solution was rounded off to get

the nearest integer number to solve the minimum time rendezvous problem again pertaining to a

fixed number of revolutions this time. The same number of Nrevs is considered when incorporating

both eclipse and warm up time constraints for drawing logical comparisons among the three cases.

It is recognized, that in some circumstances, incorporating eclipse constraints (with the implicit

loss of thrust during eclipses) may render the target orbit elements being not reachable with the

Nrevs corresponding to the case where eclipses are ignored. This situation was not encountered in
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the case discussed in this dissertation, but the remedy is clear: reduce Nrevs by one until a feasible

solution satisfying the necessary conditions (for a local extremal) is achieved. The spacecraft

parameters are given in the Table 2.5. These parameters are based on a Hall thruster used on a

medium sized spacecraft of 400kg. Using the Hall thruster, a minimum time solution associated

with 90 Nrevs was solved for all three cases. The trajectory for the minimum time solution is not

shown as it is graphically not very different from when eclipse encounters are factored into the

optimization.

Figure 2.24: Minimum time trajectory for the GTO to GEO maneuver with thrust history reflecting
eclipse constraints.

Figure 2.24 shows the time-optimal trajectory when eclipse conditions are considered. A grad-

ual and steady change in inclination is brought about by a low thrust engine such that the semi-
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major axis of the weakly perturbed intermediate orbits go farther out than GTO. With the launch

date as April 1, 2021, the eclipses seem to occur in two batches; one very close to the launch time

and the other very close to arrival as shown in Figure 2.25. A separate study can be done in relation

to the launch time which influences the total time spent in eclipse. Another study can be done with

respect to the selection of initial or final RAAN. If an alternate non-zero Ω value is chosen for GTO

or GEO, it is clear that the duration of shadow has the potential of significantly reducing. The time

penalty of 3 days is observed due to the occurrence of eclipses as compared to the non-eclipsed

minimum time solution of 71.1 days as given in Table 2.6. The coast arcs due to the eclipse are all

close to the osculating apoapsis causing less fuel loss as compared to the periapsis coasts.

0 10 20 30 40 50 60 70

Time (days)

0

0.187

T
 (

N
)

Figure 2.25: Thrust profile for the GTO to GEO maneuver with coast arcs owing to eclipse and
warm up constraints.

The numerical challenge of accommodating such short coast or thrust arcs using any smoothing

method is not trivial. The tolerances of the integrator also needs to be lowered to influence the step

size to be small enough such that very short control arcs are captured. When the constraint of

warm up time is included into the optimization problem, the time of flight increases by half a day

as compared to the eclipsed solution. The optimized trajectory for this case is shown in Figure

2.26 where the red shaded area immediately following the black region of eclipse shows the spatial
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placement of the forced coast arc. The coast arcs due to eclipses alone move around a bit when

coasts arcs due to warm up time are introduced but no substantial shift is observed on this scale.

The coast arcs associated with warm up time are only 40% the duration of eclipse coasts; making

the adaptive step size control of the numerical integration even more important. For capturing such

small thrust arcs, it is generally observed that the time associated continuation parameters have to

be lowered to very small values (O−8) to capture these short, near bang-off- bang thrust profiles.

Figure 2.26: Trajectory for the GTO to GEO maneuver with thrust history, eclipse and warm up
times indicated (XY view).

Figure 2.27: Trajectory for the GTO to GEO maneuver with thrust history, eclipse and warm up
times indicated (YZ view).
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tf mf

Minimum Time 71.098 362.21
Eclipsed 74.126 361.41

Eclipse+Warm up 75 361.11

Table 2.6: Summary of results
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Figure 2.28: Thrust profile for the GTO to GEO maneuver with coast arcs owing to eclipse and
warm up constraints.

This approach lays the foundation for including time explicit inequality constraints that are

triggered by state dependent inequality constraints associated with the operational limitations of,

say, solar electric thrusters. Even though this work specifically solves the problem associated with

warm up time in the event of an eclipse, the smoothing logic proposed herein is by no means

restricted to this specific application or to the assumed physical model. In fact, the evaluation

of warm up time can be improved by including a battery system model to make a more rigorous

decision regarding the power cut off based on the state of charge of the battery. In that case,

it may turn out that sufficiently short eclipses may not require coasts. This can also be used to
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frame a co-optimization problem where battery sizing can be considered, simultaneously with

trajectory design. Furthermore, higher-fidelity gravity spherical harmonics can be included to

make the trajectory optimization more realistic and useful.
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2.4 Gravity Assist Maneuvers 4

In orbital mechanics and aerospace engineering, a gravitational slingshot, gravity assist ma-

neuver, or swing-by is the use of the relative movement (e.g. orbit around the Sun) and gravity of a

planet or other astronomical object to alter the path and speed of a spacecraft, typically in order to

save propellant, time, and expense. The swing-by manuever was first studied by R.H. Battin [102]

during the 1960s and quickly emerged as a key enabler for solar missions. Trajectory optimization

utilizing gravity assist maneuvers generally lead to solving a multi-point boundary value problem

(MPBVP) with many discrete variables like choosing the sequence for flybys of the gravity assist

planets, launch time, time of gravity assist, altitude of the flyby assists etc. In the current state-of-

the-art-practice, gravity-assist maneuvers are continuous events that are modelled and optimized by

high-fidelity tools like Mystic [103] and Copernicus [104]. These tools however required a skilled

user and insight to generate an approximate starting trajectory. For preliminary studies, simplified

patched-conic gravity-assist models are frequently adopted to generate an approximate trajectory,

where the position vector of the spacecraft matches the flyby body, but its velocity undergoes an

instantaneous change. Direct methods are most commonly applied in the trajectory optimization

iterations. This work focuses more on the indirect formulation for fuel-optimal trajectories, but

to deal with the inequalities and the presence of multiple solutions associated with gravity-assist

maneuvers, a hybrid strategy is implemented using a two-level hybrid optimization scheme [105].

The presented algorithm uses a constrained search space particle swarm optimization (PSO) as the

outer optimizer, and an indirect low-thrust optimization technique as the inner optimizer. PSO here

performs a global search over an admissible region for some of the design variables (including de-

parture time, inter-planetary travel times and gravity-assist parameters). These design variables, in

turn, fix some of the boundary conditions for the inner optimizer, which seeks to find a fuel-optimal

trajectory between the fixed boundary conditions (and with a given fixed time of flight). The in-

direct method makes use of continuation and HTS to reduce the sharpness of control switches in

4Reprinted with permission from “Gravity-Assist Fuel-Optimal Low-Thrust Trajectory Design Using Hybrid Op-
timization Techniques” by Arya, Vishala and Taheri, Ehsan and Woollands, Robyn and Junkins, John, 2019. 70th
International Astronautical Congress (IAC), Washington D.C., United States
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Figure 2.29: Schematics for a patched-conic fly-by maneuver.

early iterations and thereby greatly enhance numerical convergence.

2.4.1 Gravity Assist Formulation

Figure 2.29 depicts the schematics of an un-powered gravity-assist maneuver, which is adopted

in this study. In this model, the position vector of the spacecraft, rs/c, is equal to the position vector

of the gravity assist planet, rp at the time of the gravity assist denoted by tga.

t−ga = t+ga = tga, (2.57)

rsct
−
ga = rsct

+
ga = rp (2.58)

where the superscripts ’-’ and ’+’ correspond to the time instants immediately before and after

the gravity assist, respectively. For many preliminary calculations, the time to traverse the planet’s

sphere of influence (on an approximate hyperbolic transfer orbit relative to the planet) is neglected,

i.e. the ∆v due to encountering the planet is assumed to be instantaneous and at a point on the

solar scale. Of course, these approximation can be relaxed in the second phase of the preliminary

trajectory design. The incoming and outgoing hyperbolic excess velocity vectors (v−∞ and v+
∞)
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are aligned with the asymptotes of the transfer hyperbola as shown in Figure 2.29. The velocity

vectors of the spacecraft (relative to the Sun) before and after the gravity-assist maneuver can be

written as:

v−s/c = vp + v−∞, v+
s/c = vp + v+

∞, (2.59)

v∞ =
∣∣∣∣v−∞∣∣∣∣ =

∣∣∣∣v+
∞
∣∣∣∣ . (2.60)

The magnitude of the hyperbolic excess velocity vector remains constant during the gravity

assist while the gain in velocity is attributed solely to the rotation of the velocity vector by angle .

This rotation angle depends on the closest distance, rp = ||rp||, relative to the planet as given by

δ = 2 sin−1

[
µp

rpv2
∞ + µp

]
(2.61)

where µp is the gravitational parameter of the flyby planet. The minimum allowable value for rp

is constrained due to planet’s atmosphere or radiation conditions (or other operational constraints).

This constraint is defined by mission designers as it restricts the maximum gain in velocity obtained

due to gravity assist manifesting itself as an upper bound on the value of the rotation angle, δ.

There are infinite possibilities of flyby hyperbolas that can characterize the flyby trajectory. In

this work, a spherical formulation of v−∞ using two angles, α, β and magnitude of the excess

velocity, v∞ is adopted. This formulation allows us to prescribe appropriate bounds on the angles

in order to generate constructive gravity-assist maneuvers (i.e., those that lead to a gain in velocity).

Figure 2.30 illustrates the intermediate frames and the rotations required to transform v+
∞ from

trajectory frame to ecliptic (inertial) frame using angles α, β and δ and Eqs. (2.62a,b,c) translates

the description into the mathematical relations used for the frame change.
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Figure 2.30: Spherical formulation of v−∞.

Figure 2.31: Spherical angles used to orient v−∞.
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v−∞
∣∣
q

= v∞


−sin α cos β

cos α cos β

sin β

 (2.62a)

v−∞|i = [D1]v−∞|q, (2.62b)

D1 =

[
(vp × np)

>

||vp × np||
,

v>p
||vp||

,n>p

]
(2.62c)

where, vp is the velocity of the gravity-assist planet and np is the unit vector normal to the

gravity-assist planet. Subscripts ‘i’ and ‘q’ denote the frame in which the vectors are expressed

in, namely, ‘i’ for inertial and ‘q’ for the frame attached to the gravity-assist planet. As shown in

Figures 2.30 and 2.31, α represents the azimuth angle and β the elevation angle, both of which

are used to define a 3-1 rotation of the velocity vector of the planet to give v−∞, which undergoes

additional rotation in the trajectory plane to get v+
∞. With v−∞ defined, another additional coordi-

nate is needed to fully characterize the hyperbola, an angle θ, also known as B-Plane angle, that is

modelled using an intermediate frame defined by three orthogonal unit vectors as follows:

Ŝ =
v−∞
||v−∞||

, T̂ =
Ŝ × N̂

||Ŝ × N̂ ||
, R̂ = Ŝ × T̂ . (2.63)

Here, Ŝ is a unit vector in the direction of the incoming excess hyperbolic velocity vector

(v−∞) and N̂ is a unit vector in the direction of the velocity of the gravity-assist planet. Since the

maneuver occurs in the heliocentric frame, the following direction cosine matrices can be used to
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Figure 2.32: Definition of B Plane for gravity-assist.

obtain v−∞ and v+
∞ in a Sun-centered inertial frame:

v+
∞
∣∣
i

= [D2] v−∞
∣∣
b

(2.64)

D2 = v∞[Ŝ, T̂ , R̂]


cos δ

sin δ cos θ

sin δ sin θ

 (2.65)

where, subscript ‘b’ is used for an intermediate frame defined by its unit vectors as
[
Ŝ, T̂ , R̂

]
.

Unit vectors T̂ and R̂ define a plane known as B Plane, which is perpendicular to v−∞ as is shown in

Figure 2.32. Therefore, five design variables, α, β, θ, v∞, and rp fully characterize a gravity-assist

maneuver. Since we are interested only in maneuvers that lead to velocity gain, the following

ranges are considered: α ∈
[
−π

2
, π

2

]
, β ∈ [− π, π ] , θ ∈ [− π, π ] as shown in Figure 2.31. The
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bounds on the other design variables (which will be introduced later: t0,∆ti, v∞ and rp) depend

on the mission scenario and are set accordingly by the designer.

2.4.2 Inner Solver

Taheri et al [72] have shown for zero-revolution enroute orbit transfers that Cartesian coordi-

nates perform better than the set of modified equinoctial elements. In our model, only heliocentric

phases of trajectories are considered, where the spacecraft is predominantly under the gravita-

tional acceleration of the Sun. All other disturbing accelerations (e.g., solar radiation pressure and

third-body perturbations) are ignored. The dynamics is described using Cartesian coordinates with

x = [r,v,m]T as the state vector and the control input, u = δT0α, is parametrized through engine

throttling (ON/OFF) setting (δ ∈ [0, 1]), the thrust direction unit vector, α, and the maximum

thrust, T0. The standard state dynamics for Cartesian coordinates described in Section 1 is used.

The inner solver essentially solves a standard TPBVP assuming NEP propulsion system and eval-

uates the fuel-optimal solution for every segment given the boundary conditions populated by the

outer solver.

2.4.3 Hybrid Optimization Formulation

The problem is formulated in two tiers with the upper tier used for setting the boundary condi-

tions and gravity assist parameters, and the lower tier for computing the fuel-optimal trajectory for

that specific set of boundary conditions. Impulsive maneuvers are oftentimes used for these formu-

lations to obtain a well-phased starting solution that can be used to kick-off the low thrust solution.

In these cases, we use a Lambert solver in the inner loop, to generate good initial guesses, which is

later replaced by a low-thrust solver. For low-thrust trajectories with gravity-assist opportunities,

the complexity grows dramatically with the increase in number of gravity-assists, which is pre-

ceded by use of an evolutionary algorithm (PSO) to find attractive starting regions and increase the

probability of finding the global optimal solution for a given launch window. PSO can be driven by

several decisions involving the swarm size, inter-weighting of the personal and global best veloci-

ties, and their acceleration terms [106]. Gravity-assist trajectory optimization problems are known
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Figure 2.33: Impulsive gravity-assist transfer schematic.

to have several basins of attractions requiring several heuristic iterations to do global then local ex-

plorations using PSO, to ensure a high likelihood of global optimality. The design variables for the

PSO algorithm involve the launch time (t0), time of flight for i-th legs (∆ti), and the gravity-assist

parameters (five parameters per gravity assist, as described in previous sub-section), where i varies

from 1 to np + 1 and np is the number of planetary flybys during the mission. The entire optimiza-

tion is conducted in a sequential manner with judicious selection of initial guesses depending on

the mission requirements. There are three main phases of the formulation: 1) Impulsive starting

estimate generator, 2) Low-thrust optimization, and 3) Thrust continuation. It is difficult to know

a priori, the judicious bounds for the launch time and time of flight for each leg since multiple

planets with different orbit periods are to be visited sequentially. Therefore, first each leg of the

problem is approximately solved using a two-impulse maneuver using a Lambert solver, with PSO

used in the outer loop with an objective to minimize the total ∆v. Not only does this approach

leverage the fast solving attribute of a Lambert solver but the design space is also reduced as the

approaching hyperbolic excess velocity vector can be approximately evaluated as a difference of

the velocity of the spacecraft on the Lambert arc, and the velocity of the flyby planet at time tga as

shown in the Figure 2.33.
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vs/c
(
t−ga
)

= vflbi − vp, (2.66)

vs/ct
+
ga = v0lbi+1

− vp, (2.67)

where i denotes the ith leg and v0lbi and vflbi are the initial and final velocities of the spacecraft

on the Lambert arc associated with the ith leg. The design variables for the optimal impulsive

maneuver are t0,∆ti, θ and rp ratio (define as the ratio of radius of periapse to planet’s radius).

Typically, the bounds for t0 and ∆ti are kept wide enough around the desired launch window to

accommodate various solutions. Post optimization in the PSO-Lambert framework, the converged

set of design variables are used to produce an initial guess for the low-thrust solver as the Lambert

solver is replaced by a gradient based two-point boundary value solver in the second step of the

algorithm. For a given type of propulsion, nuclear electric engine in this case with a fixed thrust,

T0 and throttling capability, the fuel-optimal trajectory is computed for a certain T0 and Isp.

Design Variables Impulsive [LB,UB] Low-Thrust [LB,UB]
Launch time (MJD) [56797, 57892] [57062, 57162]

E-V TOF (days) [100,500] [150, 250]
V-M TOF (days) [100, 500] [200, 350]
v∞ (km/sec) - [1, 12]
α (radians) -

[
−π

2
, π

2

]
β (radians) - [−π, π]
rp ratio [1.05, 10] [1.05, 10]

θ (radians) [−π, π] [−π, π]

Table 2.7: Optimal Design Variables

Low-thrust engines operate for a longer period than their impulsive counterparts. Thus, the op-

timized time of flight obtained for each leg from the PSO-Lambert combination cannot be directly

applied. To accommodate the expected increase in time of operation, the bounds for the respective
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time of flights are modified likewise. Moreover, to make the impulsive solution realizable for a

low-thrust maneuver, a constraint involving a cut-off-ratio is imposed on the impulsive solution as

given below:

∆vLT ≥ ς ∆vtotal (2.68)

∆vLT =
T0∆ti
mi

(2.69)

where ς is the cut-off ratio set as 0.4 in this case, mi is the mass at the beginning of the ith leg,

∆vtotal is the total ∆v incurred for an impulsive transfer, and ∆vLT is the approximate ∆v available

for an equivalent low thrust transfer for a particular T0. This preliminary process is important to

avoid redundant infeasible runs when obtaining fuel-optimal solutions using an indirect approach,

which is expensive owing to the iterative guessing of the costates. The MPBVP is broken down into

several TPBVPs for the inner indirect solver, which evaluates the fuel-optimal trajectory, leg-wise

using the MATLAB solver, fsolve, while feeding the required analytical sensitivities.

Figure 2.34: Optimal trajectory for the EVM problem with the direction of thrust indicated by red
arrows.
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Parameter Value
T0 0.75 N
Isp 2000 s
m0 1000 kg

Table 2.8: Engine Specifications

Optimal Design Variables
t0 Launch time (MJD) April 13, 2015

E-V TOF (days) 188.58
V-M TOF (days) 289.59
v∞ (km/sec) 5.653
α (radians) 0.028
β (radians) 0.23
rp ratio 1.47

θ (radians) 1.23

Table 2.9: EVM optimal result for the low-thrust transfer with ρ = 1.0× 10−6.

The EVM problem was formulated using both Cartesian coordinates and MEEs, but Cartesian

proved to provide better computation speed for fraction of a revolution trajectories. Though, most

of the gravity assist formulations involve a hyperbolic excess velocity at launch, we have assumed

that the spacecraft leaves the Earth sphere of influence with zero excess velocity i.e. v∞ = 0, which

corresponds to maximum payload delivery to escape velocity of launch vehicles. The ephemerides

of the planets are obtained using the Jet Propulsion Laboratory’s (JPL) SPICE package in the J2000

inertial frame, while the spacecraft dynamics are propagated using Keplerian approximation. For

each leg, an initial guess for the unknown co-state vector λ (t0) is generated randomly and the

TPBVP is solved for a certain ρ value. While we generate random λ(t0), we know with virtual

certainty that the initial thrust vector (primer vector) will have an acute angle with respect to the

Earth’s heliocentric velocity vector for transfers to all outer planets, and an obtuse angle for trans-

fers to Venus or Mercury. This truth can be used to constrain or pre-filter PSO iterations on λ(t0).

One should be cautious while selecting the minimum value of the continuation parameter, ρ for
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which the first cut optimal solution via PSO iterations is evaluated. It is known that the computa-

tion time might increase due to either increased number of iterations or increased homotopy steps

required to achieve the near bang-bang control profile; however, it has been observed that a higher

value of continuation parameter might lead to an erroneous optimal result. For example, for the

EVM problem, ρ = 0.7 was selected to find an equivalent energy optimal solution. Once, a candi-

date global optimal solution is obtained, for a relatively large ρ value, the problem is solved using

continuation reducing ρ to bring it to 10−6 to obtain a corresponding near bang-off-bang optimal

solution.

Figure 2.35: Optimal thrust history and switching profile for the EVM problem for ρ = 10−6.

2.4.4 Numerical Example

The Earth-Venus-Mars (EVM) problem, which involves only a single gravity assist is solved

for a range of thrust values (0.2 N-0.75 N). Our goal is to validate the proposed algorithm and

to gain insights associated with thrust continuation in gravity assist problems that have not been

highlighted before. The first subsection provides details about the test case in terms of propul-

sion, bounds and boundary conditions and when a particular maximum fixed thrust value is con-
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sidered. The subsequent section compares the final optimized solution corresponding to thrust

T0 = 0.75N obtained using 4 different algorithms and provides the extremal map of PSO runs for

both impulsive and low-thrust maneuvers. The last sub-section discusses the thrust continuation

and interpretation of the results.

2.4.4.1 Earth-Venus-Mars (EVM) Problem

For the impulsive solution, there are only 5 design variables for PSO as listed in Table 2.7 with

the presented bounds. The bounds for the time-of-flight are selected according to the relative time

period of the involved planets for a particular leg. The lower bound for rp ratio is kept as 1.05 (the

minimum distance (rp) being 1.05 times the radius of Venus), which is the most commonly used

lower bound for inner planets [107]. Traditionally, no upper bound is assumed for v∞ , but as the

escape velocity for Venus is 10.36 km/sec, so a safe selection of 12 km/sec is made for this example

to avoid construction of possible redundant impractical design cases by PSO. For the propulsion

system, a nuclear-powered electric engine is selected with throttling “on” and “off” settings, with

details given in Table 2.8.

The objective function is the total ∆v, i.e minimize the sum of the initial and final ∆v’s of all

involved legs (no deep-space maneuvers are considered). For each leg, the transfer arc is less than

one en-route revolution around the Sun. The optimized solution is used as an initial guess for the

low-thrust solver, with modified bounds as given in Table 2.7. The design variables such as v∞, rp

ratio, and the angles α, β, and θ are kept the same but the launch time and time of flight are built

around the optimal solution obtained from the impulsive iterations. The optimal solution obtained

after 10 complete runs of PSO (with 50 iterations each) is shown in Figure 2.36, and the optimal

design variable vector is given in Table 2.9.

There are 4 thrust arcs in total with a very short thrust arc appearing just before the flyby. Figure

2.43 shows a discontinuity in the switching profile, which is expected due to the instantaneous

change in the velocity at the time of the gravity assist. There is a drastic change in inclination post

gravity assist, which is gradually brought to match the inclination of Mars in the second leg, as

shown in Figure 2.34. The ∆v gain due to gravity assist is 6.025 km/sec, with the flyby altitude of
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Figure 2.36: Extremal map for EVM impulsive and low-thrust solutions; T0 = 0.75N via a single
PSO run with ρ = 0.7.

Figure 2.37: Cluster of the converged solutions vs. departure date corresponding to the best PSO
initiated iterations of the hybrid solver for EVM, T0 = 0.75N .
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2,844 km, a total time of flight of 478.17 days, and a final mass equal to 649.2 kg.

Figure 2.38: Cluster of the solutions vs time of flight corresponding to the best iterations of the
hybrid solver for EVM, T0 = 0.75N .

2.4.4.2 Post-analysis of EVM test case

It is always difficult to guarantee convergence to a globally optimal solution. In fact, due to

high number of design variables which are non-unique, it is possible to obtain similar values with

multiple local combinations of design variables for the objective function. Therefore, it is wise to

consider not only the most optimal solution but also the neighbouring solutions. As is clear from

the extremal map provided in Figure 2.37 and Figure 2.38, one can deduce that a wide flexibility

in terms of launch date and time of flight is available for this problem ( 150 days in a 500-day

mission), with less than 2% increase in fuel consumption. This is a desirable feature of low-

thrust trajectories, which can be exploited for mission design to adhere to additional constraints

and alternative “measures of goodness” that may not be mathematically expressed formally in the

problem. Therefore, these extremal maps provide a better visualization of the objective surface

that can aid mission designers. The clustering of points near the optimal solution is observed in
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the extremal map due to the large, relatively flat basin of attraction and the convergent nature of

the PSO algorithm. The optimized solution for the EVM problem is obtained post several PSO

Figure 2.39: Comparison of transfer energy history obtained for the optimal solution from our tool,
MALTO, EMTG.

runs and iterations. In order to validate the results obtained by our tool, the same problem is

solved using three powerful trajectory optimization tools, namely, MALTO, EMTG and ZOSO.

MALTO is a tool developed and used at JPL to obtain optimal solutions for preliminary mission

design. MALTO uses a local optimizer which makes use of Sims-Flanagan approach [108] to

approximate continuous thrust profiles. Similarly, EMTG is an optimization tool used at NASA

Goddard Space Flight Center for computation of optimal trajectories involving gravity-assists,

using patched conics approximation (recent version of the EMTG can incorporate continuous flyby

maneuvers). EMTG uses Sim-Flanagan approach along with the multiple basin hopping technique

to enhance the local nature of the optimizer in an attempt to globally optimal solutions. ZOSO, is

another collocation-based tool used at JPL for computation of low-thrust trajectories, and provides

a locally optimal solution. The EVM problem was solved using all three solvers with the initial

guess generated by the present algorithm, developed in this paper, to obtain the optimal trajectories

as summarised in Figure 2.44. The final mass is found to be highest for ZOSO, but the solutions
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Figure 2.40: Comparison of orbit transfer osculating inclination history for the optimal solution
from this work, MALTO, EMTG and ZOSO with the same initial guess.

of all algorithms are within acceptable range with minute differences (less than 1% of the initial

mass), which is negligible for preliminary mission design purpose. The changes in energy and

inclination due to the gravity-assist maneuver, as well as the operation of thruster are shown in

Figures 2.39 and 2.40 respectively. The results from the developed tool and MALTO match well

while the EMTG solution differs a little with less boost in energy and more boost in inclination

gained due to gravity assist. However, the time of flight for the presented method is over six days

shorter than the MALTO solution even though the final mass differs by less than 0.3kg.

2.4.4.3 Thrust Continuation

The results in the preceding sub-sections correspond to a fixed maximum thrust value of T0 =

0.75N . In this section, our goal is to provide insights into the variations that occur in optimal

solutions as the thrust value is changed. In particular, for thrust values ranging from 0.2 N to

0.75 N (with the step size of 0.05 N), two methods are used to obtain optimal solutions: Method

1 involves re-solving the OCP for each thrust value using the hybrid algorithm in the same way

as the solution for T0 = 0.75N . Method 2 performs a thrust continuation from 0.75 N down to

0.2 N while keeping the same design vector (boundary conditions), and gravity assist parameters

obtained from the optimized solution for the 0.75 N thrust level. In Figure 2.42, the red curve
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Figure 2.41: Comparison of optimal result obtained using MALTO, EMTG and ZOSO using the
same initial guess.
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marks the solution from Method 1, while the blue curve is obtained by using Method 2.

Figure 2.42: Comparison of final mass obtained against varying nominal thrust using three different
strategies.

No converged solution could be found for thrust values below 0.2 N, as thrust becomes satu-

rated for this time-of-flight, for the E-V leg, as shown in Figure 2.43. This indicates the 0.2N is

approximately the minimum thrust satisfying the constraints, i.e. the reachability boundary. The

placement of these two curves (red and blue) can be used effectively through what we call as a

thrust envelope. Each thrust envelope merely represents a thrust range that share common bound-

ary conditions and gravity assist parameters of the OCP. The extremals of the thrust range are

determined by the condition that the drop in final mass, pertaining to consecutive thrust values, is

not higher than a prescribed threshold value (1% final mass).

There are three thrust envelopes used to obtain the orange curve in Figure 2.42, these are

[0.45-0.75], [0.35-0.45] and [0.2-0.35]. The difference in the final mass, marked by the red and

orange curves, is not greater than 1% of the initial mass. Utilization of the concept of admissible

thrust envelopes eliminates the requirement for conducting computationally demanding simula-

tions for these intermediate thrust values, while providing near-fuel-optimal solutions. Moreover,

the costates of the converged solution from any of the thrust values within a thrust envelope can
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Figure 2.43: Near-Optimal thrust profile for EVM for T0 = 0.222N .

be used as a good initial guess, with high confidence of efficient convergence, for all other thrust

values in that envelope.

Using the concept of the thrust envelope, one can easily obtain the switch function equal to

zero contour plot by stacking the switching profiles, corresponding to different thrust values, to

obtain a continuous thrust profile map (namely, the optimal switching surfaces analogous to those

introduced by Taheri and Junkins [?]). Figure 2.44 depicts the contour associated with the EVM

problem for all infinity of optimal trajectories with an admissible/feasible thrust level. Dark blue

regions denote the thrust arcs, whereas the grey regions denote the coast arcs. Note that this

contour plot depicts the variation of thrust and coast arcs for different values of thrust. In Ref

[?], the contour plots were generated for fixed-time, rendezvous-type low-thrust trajectories (with

no gravity-assist), whereas, Figure 16 provides an extension by incorporating varying boundary

conditions (departure time and time of flight) and a discontinuity in the switching profile at the

time of gravity assist. It is observed that the departure time shifts backwards as the nominal thrust

is lowered, with an expected increase in time of flight. Thus the idealized case with no gravity

assist introduced in [?] now gives rise to a much more versatile generalization. Also, interestingly,
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Figure 2.44: Contour plot of optimal switching surface.

one observes how at the time of the gravity assist, the thrust arc duration gets larger for lower

values of thrust. A step size of 0.05 N was used to obtain this contour plot.

The main feature of the presented algorithm is the ability to explore the objective surface to

provide a global optimal solution. The notion of “thrust envelopes” is introduced, that helps in

reducing the expensive computations when generating an extremal field map for various thrust

values. Also, this algorithm exploits the inherently parallelizable capability of PSO to provide a

major speed up in computation, as well as build confidence that all feasible basins of attraction

have been found to initiate final design iterations.
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3. Optimization of Propulsion System and other Spacecraft Sub-systems Selections in

Interplanetary Mission Design

Ideally, spacecraft should be designed for maximum “efficiency” and payload deliverance, but

in practice, a number of factors (e.g., the complexity of available technology and operational con-

straints) impact the optimization process. Technology-dependent design parameters include the

specific mass of the solar arrays, tank mass ratio and the thruster efficiency. Other design param-

eters that can be optimized (over their admissible set) are the electric power of the solar arrays,

minimum electric processing system (EPS) power consumption and the specific impulse of the

thruster. In many instances, there is set of discrete design choices, based on available technologies

for sub-systems. Motivated by the complexity of the multiplicity of design issues, we introduce

a co-optimization framework that optimizes the trajectory and obtains the optimal values of these

spacecraft’s parameters and design space with the objective of maximizing the net payload de-

livered. This generalized optimization approach enables mission designers to ascertain suitability

metrics for different thrusters and solar array sizing as a stepping stone to achieve a higher level

systems approach for mission design optimization. The methods introduced in this chapter per-

mit an effective way to accommodate the level of complexity that arises in simultaneous indirect

optimal design of the SEP system and the mission trajectory.

3.1 Payload Optimization 1

For optimization at the systems level, it is of practical interest to optimize the trajectory jointly

with the spacecraft parameters to maximize the useful payload mass. The useful payload mass

generally comprises of the primary payload and other spacecraft sub-systems like a part of the

power supply system (PSS), which is necessary for the payload operations. Adopting the spacecraft

mass breakdown presented by Petukhov [1], it is assumed that the mass of the spacecraft can be

1Reprinted with permission from “A composite framework for co-optimization of spacecraft trajectory and propul-
sion system” by Arya, Vishala and Taheri, Ehsan and Junkins, John L, 2020. Acta Astronautica, Volume 178, 773–782,
Copyright 2021 by Elsevier
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expressed in terms of the payload mass, power supply propulsion unit (PSPU) mass and propellant

storage and fuel feeding system (PSFS) mass as shown in Figure 3.1. The initial mass of the

Figure 3.1: Spacecraft payload and electric propulsion sub-system mass breakdown.

spacecraft, m0, can also be derived as a function of the launch velocity to optimize the parameters

of launch vehicle in a co-optimization scheme. However, we do not include m0 as an optimization

choice in the present study. The initial mass will be treated as a constraint. Obviously, in principle,

m0 could be swept to generate a family of designs. The initial mass can be written as a sum of

sub-system masses as:

m0 = mu +mPSPU +mPSFS, (3.1a)

mu = m0 − γ1PBL − γ2Pav − (1 + atk)mp, (3.1b)

where mu is the useful mass, mPSPU is the mass of the PSPU, mPSFS is the mass of the PSFS, γ1

is the specific mass of solar arrays in (kg/kW), γ2 is the specific mass of the power regulator unit

and solar array drives of the PSS for the EPS power supply and the EPS itself (kg/kW), atk is
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the tank mass ratio coefficient, which is equal to the ratio of dry mass of PSFS and unconsumed

remnants of propellant at the end of the flight to the mass of utilized propellant, and mp is the mass

of EPS’ propellant consumed at the end of a transfer. Mass of the solar arrays is parametrized and

approximated as linearly proportional to the nominal power generated (PBL) i.e. mSA = γ1PBL.

The most constraining criteria for the nominal power generated (PBL) is the size of the solar

arrays, which can be a technology-driven constraint. Also, bulkier solar arrays might redundantly

increase the mass of the spacecraft in addition to the issues associated with the flexible structure of

solar arrays. The considered model judiciously captures the mass penalty incurred due to the size

of solar arrays equivalent to the magnitude of PBL thus allowing for the necessary trade-off deci-

sions to be included in mission optimization. It encapsulates the major disposable mass sources in

a spacecraft whose consumption can be duly optimized. This concurrent optimization empowers

the designers to more formally and rigorously justify the main characteristics of a spacecraft for

a certain mission as well as maximize overall efficiency in terms of the net delivered payload. If

variable-Isp engine is considered, the payload optimization problem becomes so much more chal-

lenging to solve as compared to fuel optimization due to: 1) the fact that the available power is

constrained by the size of the solar arrays and is coupled with the design of trajectory itself, 2) the

frequently non-smooth changes in the feasible input power that is bounded between a maximum

and a minimum value, and 3) that the numerical sensitivity owing to the highly non-linear relation-

ship of the specific impulse is intensified along with the implicit requirement to precisely locate

the apriori unknown mode switch times.

The trajectory state dynamics is represented using MEEs from Eq: 2.6 where the acceleration

vector is:

a =
2ηPav

mc
δα̂, (3.2)

Here, Pav is the power available for thrusting, η is thruster efficiency. Due to the bang-off-bang

structure the anticipated optimal thrust history (and similarly the bang-off-bang structure of Pav)
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observed in fuel-optimal trajectories, we have used the throttle δ ∈ [0, 1]. Note that the original

control input is the available power, Pav, that will be sent to an engine. However, instead of

defining the power as the control input, we have considered a multiplicative factor, δ, as the control

input. The optimal structure of the multiplicative factor, δ∗, exhibits multiple switches in the

example which is solved here. In the sub-section 3.1.1, we use the HTS method to smooth this

non-smooth control input. In a more general setting, the thruster efficiency, η, can be a function

of exhaust velocity, EPS power consumption and the configuration in case of multiple engines. In

one of the numerical cases (EDP4) given in the present study, linear or quadratic variation of η are

considered separately to provide a comparison as per the two recent linear and quadratic models in

the literature [29] given below:

ηl = βl0 + βl1Isp, (3.3)

ηq = βq0 + βq1Isp + βq2I
2
sp, (3.4)

where, βl0 = 0.2916, βl1 = 0.9624 × 10−4s−1, βq0 = 0.1424, βq1 = 1.9231 × 10−4s−1 and

βq2 = −0.1499× 10−7s−2.

3.1.1 Power Modelling of Variable-Isp SEP Engines

Depending on solar array size and the technology used, solar arrays are designed to produce a

nominal power value at the heliocentric distance of 1 AU, typically defined at the time of launch

as PBL. The simplest and dominant degradation of power available from a given solar array is

proportional to the 1/r2 reduction in the solar energy flux, where r denotes the distance from the

Sun to the spacecraft. Another factor to consider in variation of nominal power over time is the

degradation usually observed in the efficiency of solar arrays, especially for multi-year missions.

Time degradation is not considered in this section.

The available power to the Electric Processing System (EPS) is typically not only a function

of PBL, but it also changes as the heliocentric distance of the spacecraft varies. Nonetheless, this

power can be considered as constant for some optimization procedures, in which case, one has to
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ensure the sufficiency of the nominal power to operate the thruster at the maximum heliocentric

distance occurring during the maneuver. The power generated by solar arrays can be approximated

empirically as

PSA =
PBL

r2

[
d1 + d2r

−1 + d3r
−2

1 + d4r + d5r2

]
, (3.5)

where [d1, d2, d3, d4, d5] have the (for example) empirical values [1.1063, 0.1495, -0.299, -0.0432,

0] to model the radial dependence of performance variation for a particular solar array design

[109]. Here, the solar array power consists of two multiplicative terms: 1) a dominant governing

term that is inversely proportional to the square of the distance from the Sun, and 2) a multiplying

distance-dependent factor (in bracket) that is a function of a particular design. If a discrete family

of decisions are considered, of course, the di coefficients in Eq. (3.5) would require experimental

or theoretical study for each design.

The power generated by the solar arrays, PSA, can only partially be utilized for the operation of

the thrusters. The power available for thrusting is limited by a maximum power available, Pmax, to

the Power Processing Unit (PPU) required for voltage regulation and the duty cycle (incorporated

as ηd in the formulation) of the PPU. Virtually, all solar-powered propulsion systems incorporate a

duty cycle to give a convenient “knob” for both mission designers and flight control engineers to

throttle down from Pmax, if desired or required, for a variety of reasons. Power can also be delimited

by rotating the normal to the working plane of solar arrays to maintain necessary thermal profile

of the solar arrays as the spacecraft approaches the Sun. The power available to the PPU is equal

to PSA less the power load allocated to operate the spacecraft systems, PL, which is assumed to be

a constant. Therefore, the power available for operation of thrusters, Pav can be written as [29]:

Pav =


ηdPmax; for PSA ≥ PL+ Pmax,

ηd(PSA − PL); for PSA < PL+ Pmax.

(3.6)

Note that Pmax is the maximum power that can be handled by the PPU design, which is a

constant that is set according to the mission and the engine selection. Most thrusters feature a
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minimum power as well as a maximum power bound. Below the specified minimum power, Pmin,

the thrusters cannot be turned on.

Equation (3.6) indicates that the available power may switch instantaneously between two dif-

ferent values depending on the value of power. Such abrupt changes can have adverse numerical

consequences when we are solving OCPs. Specifically, each of the unknown switch times must be

isolated at high precision and be adopted as end points of integration steps. Any errors in isolating

these switch times accumulate and can lead to inefficient, inaccurate and unreliable convergence

of optimal control algorithms. Thus, the many-switch non-smooth control structure (in power)

demonstrated in Eq. (3.6) is handled using the HTS method by use of an embedding process with

a smoothing parameter, ρp. The degree of smoothing in HTS could be tuned to isolate the switch

times to essentially machine precision, or can simply be constantly tuned to a “sufficiently sharp”

degree that makes a negligible departure from optimality. The details are given in sub-section

3.1.2.

Variable-Impulse Variable-Thrust (VIVT) engines have the ability to modify their specific im-

pulse value through which it is possible to modulate the thrust value. Such a flexibility is shown

to constructively affect optimized trajectories both in terms of time and fuel consumption. In for-

mulation of the OCPs, the exhaust velocity, c = Ispg0, is adopted as a control input within some

prescribed bounds as per the engine selection and the desired mission:

c∗ =


cmax; for copt ≥ cmax,

copt; for copt ∈ [cmin, cmax],

cmin; for copt ≤ cmin,

(3.7)

where cmin and cmax are the minimum and maximum admissible exhaust velocity and copt is the

optimal exhaust velocity value. Applying optimal control principles allows us to derive an explicit

algebraic expression for copt in terms of the instantaneous value of states and costates. The algebraic

expression will change for different formulations as is summarized in Eq. (3.17). copt may be non-
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smooth due to the constraint cmin ≤ copt ≤ cmax, but then non-smooth discontinuities near cmin, cmax

can be eliminated using invariant embedding, as discussed below.

3.1.2 Invariant Embedding

Any non-smoothness in the control inputs hinders convergence mainly due to the arduousness

of precisely locating the zeroes of their respective constraint equations [6], which we denote by

gC , gP and gB for exhaust velocity, power and throttle control inputs, respectively. The bang-bang

structure of the control inputs is smoothed by the HTS method on the basis of the sign of the

so-called switching function (SF) (see Eq. (3.16)) as

δ∗ ≈ δ(SF, ρ) = 0.5

[
1 + tanh

(
SF

ρ

)]
. (3.8)

In order to apply the CSC construct to the exhaust velocity, 3 activation functions are required

(corresponding to 3 “if-then” conditions), χcmin , χcmax and χcopt; to provide a composite smooth

structure of c∗ as

c∗ = χcmincmin + χcoptcopt + χcmaxcmax, (3.9)

where each of the three activation functions (χ) is constructed with the help of the HTS method to

replace the “if-then” conditions by three “controllably sharp” smooth functions:

χcmin = 0.5

[
1− tanh

(
gcmin

ρc

)]
,

χcopt = 0.5

[
1− tanh

(
gcopt,1

ρc

)]
× 0.5

[
1− tanh

(
gcopt,2

ρc

)]
,

χcmax = 0.5

[
1− tanh

(
gcmax

ρc

)]
.

The switching conditions (constraints) corresponding to exhaust velocity that are used in the
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three activation functions are defined as zeroes of the following four functions

gcmin = copt − cmin, gcopt,1 = cmin − copt,

gcmax = cmax − copt, gcopt,2 = copt − cmax.

Similarly, the discontinuous structure of available power can be smoothed by the CSC construct

to give smooth composite homotopic power function embedded with the continuation parameter,

ρp, as:

Pav = ηd [χpPmax + (1− χp)(PSA − PL)]χpm, (3.11)

χp = 0.5

[
1 + tanh

(
gp
ρp

)]
, (3.12)

where gp = PSA − (Pmax + PL) as per the condition described in Eq. (3.6). In order to ensure

that the thruster is “on” only when the Pav is higher than Pmin, Pav obtained through Eq. (3.12)

is multiplied with χpm where χpm = 0.5
[
1 + tanh

(
gpm

ρp

)]
and gpm = Pav − Pmin. Each of the

smoothing parameters (i.e., ρi (i ∈ {p, c, b}) corresponds to a sub-problem (each sub-problem

corresponds to solving a TPBVP) that is arbitrarily near a neighbouring converged solution.

3.1.3 Indirect OCP

While indirect optimal control is rarely attempted on a hybrid problem of this complexity, we

show a systematic approach is indeed computationally feasible. First, a detailed review of all

the building blocks used to construct the OCP cost functional is presented. The objective is to

maximize the useful mass (i.e., the payload plus necessary subsystems to support the payload).

This section establishes the OCP posed as a TPBVP with optimality conditions.

In order to model the cost functional of the OCP in Lagrangian form, we have expressed the

useful mass (see Eq. (3.1b)) in terms of two main terms,mPSPU andmPSFS. The termmPSPU consists

of a constant term (mass of the solar arrays = γ1PBL) and a position varying term, γ2Pav. When

we insert it inside the integrand, mPSPU is divided by (∆t = tf − t0) for the purpose of scaling as
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shown in Eq. (3.35).

The advantage of including the mPSPU inside the integral is to factor the influence of change

in position (heliocentric distance) on the cost function. The second term consists of mPSFS, which

involves the mass of the consumed propellant and is denoted as mp in Eq. (3.1b). The value of mp

can simply be evaluated as the integral of differential equation of mass given in Eq. (2.6) over the

total time of flight.

Therefore, the final OCP can be stated as

Minimize J =

∫ tf

t0

[
γ1PBL + γ2Pav

∆t
+

(1 + atk)2ηPavδ

c2

]
dt,

subject to :

Equation (2.6),

x(tf )− x̃d = 0,

x(t0) = x0,m(t0) = m0,

c ∈ [cmin, cmax],

(3.13)

where t0 is the initial time, x0 and m0 are the MEEs and mass of the spacecraft at the initial time,

tf is the final time, ∆t = tf − t0 is the time of flight, and x̃d is the desired MEEs at the final time.

If our goal is not to optimize PBL, it is possible to remove it from integrand, which means

that we can simply remove the term γ1PBL/∆t. However, the reason that we keep this term in the

integrand is that in EDP3, EDP4 and EDP5, we will optimize the initial value of the PBL. Therefore,

in order to get the correct costate dynamics for PBL, we need to retain it in the Lagrangian so that

when we use the Euler-Lagrange equation (namely, dλPBL/dt = −[∂H/∂PBL]), correct expressions
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are obtained. The Hamiltonian associated with the defined OCP can be written as:

H =
γ1PBL + γ2Pav

∆t
+

2(1 + atk)ηPav

c2
δ

+ λ>
(
A(x, t) +

2ηPavδ

mc
B(x, t)α̂

)
− λm

2ηPav

c2
δ, (3.14)

where λ = [λp, λf , λg, λh, λk, λl]
> and λm is the costate associated with mass. Considering the

control inputs (α̂, c and δ), since α̂ and δ appear bi-linearly in the Hamiltonian, Pontryagin’s Min-

imum Principle (PMP) has to be used. This further leads to the formation of the power switching

function, SF , which governs the throttle ‘on’ or ‘off’ condition subjected to a constraint of exhaust

velocity as

δ∗ =


1; for SF > 0,∀ c ∈ [cmin, cmax],

0; for SF ≤ 0,∀ c ∈ [cmin, cmax],

(3.15)

SF =
c||P||
m

+ λm − 1. (3.16)

Singular controls, which occur if the switching function remains zero over a finite time interval,

are not treated in this work. On looking for regions where switching functions did not have a simple

isolated zeros, we did not find any in our numerical solutions. Costates dynamics can be evaluated

by Euler-Lagrange equation, λ̇ = −
[
∂H
∂x

]>.

On the other hand, c is contained non-linearly and may have an interior optimal copt satisfying

cmin ≤ copt ≤ cmax and ∂H
∂c

= 0. Therefore, for characterizing the optimal values of specific

impulse, strong form of optimality is used, ∂H
∂c

= 0. Different expressions for the optimal exhaust

velocity are determined as per the dependence of the thruster efficiency on Isp, as is given in

Eq. (3.17a) in case of constant efficiency, Eq. (3.17b) for linear dependence and Eq. (3.17c) for
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quadratic dependence on Isp:

constant : copt =
2m(1− λm)

||P||
, if cmin ≤ copt ≤ cmax, (3.17a)

linear : copt =
2βl0(1− λm)m

βl1m(λm − 1) + βl0||P||)
, if cmin ≤ copt ≤ cmax, (3.17b)

quadratic : copt = −βq2||P||(
√
Q1−Q2)

1
3

3× 2
1
3

− 2
1
3 (−βq0||P||+ βq1m(1− λm)

(
√
Q1−Q2)

1
3

,

if cmin ≤ copt ≤ cmax, (3.17c)

Q1 = 108β3
q2||P||3(−βq0||P||+ βq1m(1− λm))3

+ (54βq0β
2
q2||P||2m(λm − 1))2,

Q2 = 54βq0β
2
q2||P||2m(λm − 1),

Similarly, the relations given in Eq. (3.7) hold and the CSC method is used to make a composite

control similar to the one presented in Eq. (3.9) for each one of the cases given above.

In case of a VIVT engine, PMP dictates that the Hamiltonian should be minimized over the set

of admissible controls. Therefore, the thruster should be ON, if at least one admissible value of

c exists that makes the power switching function (SF ) positive. Therefore, the power switching

function in Eq. (3.16) features cmax in place of c. One additional boundary condition arises due to

transversality condition λm(tf ) = 0 as the mass of the spacecraft at final time, m(tf ), is free.

In this work, for payload optimization, PBL is considered a design variable. Therefore, the state

vector [x,m]> is augmented by PBL and is written as z> = [x>,m, PBL]. The set of state dynamics

is augmented with one additional differential (trivial) equation (dPBL/dt = 0). As a consequence

of augmentation of the state dynamics, the set of state-costate dynamics consists of 16 differential

equations. Since the value for the additional design variable, PBL, is fixed at all times, (ṖBL = 0)

and PBL is free at both initial and final times, additional boundary conditions which is setting the

corresponding terminal costates to zero as:

λPBL(t0) = 0, λPBL(tf ) = 0.
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Similarly, if cmin and cmax are also introduced as design variables, the state vector can be aug-

mented by two more terms with their corresponding differential equations being dcmin/dt = 0 and

dcmax/dt = 0. Four additional boundary conditions (λcmin(t0) = λcmin(tf ) = 0 and λcmax(t0) =

λcmax(tf ) = 0), have to be introduced.

Therefore, this joint optimization defined by augmented state dynamics Eq. (2.6) (augmented

by ṖBL = 0, ċmin = 0, ċmax = 0 as per the case) and costate dynamics (λ̇ = −
[
∂H
∂x

]>) over

smooth and regularized controls/variables established in Eqs. (3.31), (3.9), (3.12) and thrust direc-

tion (Eq. (4.35)) to minimize the cost function Eq. (3.35) is converted into a two-point boundary-

value problem subject to the boundary conditions given in Eq. (3.37):

ψ =

[
[x(tf )− x̃]> , λm(tf ), λPBL(tf ), λcmin(tf ), λcmax(tf )

]>
= 0. (3.18)

To facilitate reader’s understanding of the components of the TPBVP used in each of the different

cases discussed in the results section, a summary is provided in Table 3.1.

3.1.4 Numerical Example Cases

In order to draw insights from comparisons on the improvement of the final mass when the

optimization problem is augmented with additional flexibility, five formulations for the Earth to

Dionysus rendezvous problem are considered (EDP1-5):

• EDP1: Maximize final mass with a fixed-Isp engine (this is the traditional approach for

preliminary mission design).

• EDP2: Maximize final mass with a variable-Isp engine and with fixed values for PBL, Isp,min,

and Isp,max.

• EDP3: Maximize the useful mass delivered with a variable-Isp engine; PBL as a design vari-

able and with fixed values for Isp,min and Isp,max.

• EDP4: Maximize the useful mass delivered with a variable Isp-engine with variable thruster

efficiency (as a function of Isp); PBL as a design variable and fixed values for Isp,min and
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Table 3.1: Summary of different cases for the TPBVP

Minimize fuel (EDP1 & 2): J =
∫ tf
t0

2ηPavδ
c2

dt

Maximize Payload: J =
∫ tf
t0

[
γ1PBL+γ2Pav

∆t
+ (1+atk)2ηPavδ

c2

]
dt

Case & Optimization Optimality Boundary
Variables Conditions Conditions

EDP1: Eq. (4.35) x(tf )− x̃d = 0
α̂, δ Eq. (3.24) λm(tf ) = 0

EDP2: Eq. (4.35), Eq. (3.24) x(tf )− x̃d = 0
α̂, δ, c Eq. (3.17)a λm(tf ) = 0
EDP3: Eq. (4.35) x(tf )− x̃d = 0

α̂, δ, PBL, c Eq. (3.24) λm(tf ) = 0
Eq. (3.17)a λPBL(t0) = 0

λPBL(tf ) = 0
EDP4: Eq. (4.35), Eq. (3.24) x(tf )− x̃d = 0

α̂, δ, PBL, η(Isp), c Eq. (3.17)b (Linear η) λm(tf ) = 0
Eq. (3.17)c (Quadratic η) λPBL(t0) = 0

λPBL(tf ) = 0
EDP5: Eq. (4.35) x(tf )− x̃d = 0

α̂, δ, PBL, c Eq. (3.24) λm(tf ) = 0
cmin, cmax Eq. (3.17)a λPBL(t0) = 0

λPBL(tf ) = 0
λcmin/max(t0) = 0
λcmin/max(tf ) = 0
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Isp,max.

• EDP5: Maximize the useful mass delivered with a variable-Isp engine; PBL, Isp,min, and Isp,max

as design variables.

Observe that for cases EDP2-EDP5, Isp is not explicitly optimized, however it is implicitly opti-

mized when c is an optimization variable.

Table 3.2: Spacecraft parameters; γ1, γ2 and atk are taken from [1] and PBL, Pmax and PL are
adopted from [2].

EDP1/2 EDP3 EDP4 EDP5
PBL (kW) 11 [10,25] [10,25] [10,25]
Pmax (kW) 6.5 6.5 6.5 6.5
Pmin (kW) 0.6 0.6 0.6 0.6
PL (kW) 0.8 0.8 0.8 0.8
Isp,min (s) 2200 2200 2200 [1500,6750]
Isp,max (s) 3400 3400 3400 [6760,12000]
η 0.68 0.68 Eqs. (3.3) & (3.4) 0.68
ηd 0.94 0.94 0.94 0.94
γ1 (kg/kW) 10 10 10 10
γ2 (kg/kW) 15 15 15 15
atk 0.1 0.1 0.1 0.1

While the bounds on the exhaust velocity (or Isp) are implemented implicitly using CSC, the

bounds on PBL and cmin/max are implemented using a different approach in the EDP3, EDP4 and

EDP5 cases. Note that MATLAB’s fsolve does not impose bounds on the design variables. There-

fore, in order to ensure that the values generated by fsolve always remain within the prescribed

range, we have used the following mapping (for example, shown for just PBL),

PBL = 0.5 [(PBL,lb + PBL,ub) + (PBL,ub − PBL,lb) sin(x)] , (3.19)

where x is the new design variable (which is an angle) and PBL,lb = 10 kW and PBL,ub = 25

kW per Table. 3.8. Observe that Eq. (3.19) is a form of continuous invariant embedding that
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implicitly imposes PBL,lb ≤ PBL ≤ PBL,ub. This numerical artifice allows us to treat bounded

design variables without imposing a constraint on the variable. In addition, the new design variable

x can take any value. The same continuous embedding is used for Isp,min ∈ [1500, 6750] s and

Isp,max ∈ [6760, 12000] s in EDP5.

Figure 3.2: EDP1: Optimal trajectory with the direction of thrust indicated by red arrows for
ρb = ρp = 1.0× 10−4 and ρc = 1.0× 10−5.

The spacecraft is assumed to leave the Earth with zero hyperbolic excess velocity, i.e., ‖v∞‖ =

0. The multiple-revolution, multi-year nature of the optimal trajectory has made it an excellent

benchmark in a number of recent works [75, 51]. The current example is inspired by [75], where

Nuclear Electric Propulsion (NEP) constant specific impulse engine with nominal thrust as 0.32 N

and Isp = 3000 s was used. Departing on December 23, 2012 from Earth, the spacecraft took 3534

days to rendezvous with Dionysus. The position and velocity vectors of the Earth at the departure
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Figure 3.3: EDP1: Comparison of thrust profile for different test runs to determine the most fuel-
optimal solution with fixed Isp values.

date and the final position and velocity for Dionysus are [75]:

rE = [−4561588.65006029, 147076954.664376,−2259.9459243617]>km,

vE = [−30.265097,−0.8486854, 0.0000505]>km/s,

r̃ = [−305026788.667814, 307051467.941918, 82899899.5682193]>km,

ṽ = [−4.23872656978066,−13.436307899221, 0.56536256928611]>km/s.

In Ref. [76], the number (Nrev = 5) of revolutions around the Sun was identified to result in the

most fuel-optimal trajectory when the spacecraft is equipped with one NEP engine. To incorporate

Nrev into the formulation, final true longitude is set as lf = lf + 2πNrev. Care must be taken to

make lf (i.e., the true longitude of the target point) greater than l0 (i.e., the true longitude of the

initial point) by addition of appropriate multiples of 2π before Nrev are factored in.

The presence of local extremals and the triple homotopy structure make the solution procedure

challenging. Though, HTS and CSC convert the problem from an MPBVP to a TPBVP and signif-

icantly enlarges the domain of convergence, numerical difficulties can arise. Numerical sensitivity
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Figure 3.4: EDP1: Variation in osculating true anomaly, thrust profile and acceleration (log scale)
vs. time; ρb = 1× 10−4, ρp = 1× 10−4.

of a triple homotopy problem is two folds: 1) There can be turning points in the homotopic hyper-

surface (depicting the root solving function) in the parameter space leading to singular Jacobian,

and 2) The relative values of the three continuation parameters can lead to an ill-conditioned prob-

lem at some intermediate step. Note also that the existence of a continuous homotopy path and the

existence of a root are generally not guaranteed. Nevertheless, homotopy/continuation methods are

extremely important tools that vastly enhance convergence. Turning points were not encountered

in the numerical results of this dissertation.

As mentioned, five cases (EDP-1 through 5), are considered involving different levels of de-

sign fidelity and therefore, extent of simultaneous spacecraft and trajectory design optimization.

As expected, improved results are observed when the additional spacecraft design flexibility is

incorporated into the optimization problem. All cases except for EDP4 assume constant thruster

efficiency. This assumption is dealt with in EDP4 where two models of varying degree of fidelity

for thruster efficiency values are implemented to capture the impact on the results.
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Figure 3.6: EDP2: osculating true anomaly, thrust profile and Isp vs. time; ρb = ρp = 1 × 10−4

and ρc = 1× 10−5.
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3.1.4.1 Earth to Dionysus Problem 1-3 (EDP1-EDP3)

In the case of EDP1, the value for the fixed Isp is determined on the basis of a study summa-

rized in Table 3.3. Several Isp cases in the range [2000, 3450] seconds were run of which a few

are reported here with the final mass and peak thrust (Tpeak)in the thrust profile (see figure 3.3)

registered during the maneuver. It can be observed that maximum final mass is obtained corre-

sponding to Isp = 3355 s, which is also close to the average Isp (Ispavg
=

∑tf
t=0 Isp(t)

tf
) evaluated

for the optimized variable-Isp (Case EDP2) profile (See Table 3.12). Our approach specifies Nrev

and looks for the local extremal for each feasible Nrev, although there is no formal proof of this

empirical truth. Numerical studies indicates as for the related results of reference [20] that there

was only one local extremal for each feasible Nrev. Note that the results correspond to fixed-time,

fuel-optimal, rendezvous-type maneuvers. The minimum of all local minimals found was adopted

as the believed-to-be global extremal.

Table 3.3: EPD1: Final mass for a range of Isp values for a fixed-Isp thruster.

Isp (s) 2200 2400 3000 3350 3355 3360 3400
Tpeak (N) 0.3852 0.3531 0.2824 0.2529 0.2525 0.2522 0.2492
mf (kg) 2343.3 2411.8 2543.8 2580.67 2580.7 2580.5 2574.1

Since there is negligible graphical difference among the trajectories on a solar scale except

for the thrust profile, for all five cases, the trajectory shown in Figure 3.2 can be considered as a

qualitative depiction of the trajectory for all five problems (EDP1 to EDP5). The differences in the

profile of thrust, and Isp are detailed for each case in Figures 3.4, 3.6, 3.8, 3.11, 3.12 and 3.13. Five

of these figures consist of three subplots containing the osculating true anomaly (θ), thrust profile,

Isp profile stacked below one another. Tav denotes the thrust that is computed using the available

power, Pav as

Tav =
2ηPav

c∗
.
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time; gP is normalized by 10000 for better visibility of thrust profile.

The thrust profile subplots in Figures 3.6, 3.8, 3.11, 3.12 and 3.13 feature the final thrust profile

(Tav) along with three dashed lines that correspond to Tmin = 2ηPav
cmax

, Top = 2ηPav
copt

and Tmax = 2ηPav
cmin

,

where copt is defined in Eq. (3.17). As expected, the applied thrust magnitude (Tav) always remains

within the defined bounds of Tmin and Tmax while jumping to Top during the perihelion of the

quasi-elliptic trajectories as shown in all the cases. Since in the case of Fixed-Isp thruster (EDP1),

cmin = copt = cmax, the boundaries of Tmin and Tmax formed in the other four cases simply coincide

for this one. The dashed lines shown in the thrust subplot of Figure 3.4 refer to the switching

function (see Eq. 3.16) and the power activation constraint, gP (see Eq. 3.12). Similarly, Figures 3.5

and 3.7 map the effect of switching and power activation functions on the thrust profile displaying

how the thrust drops (refer Eq. (3.6)) when gp becomes negative for EDP2 and EDP3, respectively.

For both cases, Figures 3.6 and 3.8 show that the thruster switches to a high thrust at the quasi-

perihelion (θ ≈ 0◦) passages, which can be seen as little bumps in the thrust profile. Concurrently,

a dip is observed in the Isp values during the maximum thrust arcs. In fact, it can be observed that

the thrust profile attains Top value about the perihelion for both EDP2 and EDP3.

Furthermore, EDP3 consists of three coast arcs while there are none observed in EDP1 and

114



-200

0

200

 (
d

e
g

.)

0

0.1

0.2

0.3

0.4

T
h

ru
s

t 
(N

)

T
av

T
min

T
op

T
max

0 500 1000 1500 2000 2500 3000 3500
2000

2500

3000

3500

I s
p
 (

s
)

Figure 3.8: EDP3: The osculating true anomaly, thrust profile, and Isp vs. time; ρb = ρp =
1.0× 10−4 and ρc = 1.0× 10−5.
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EDP2 as the switching function never gets negative for these two problems (see Figures 3.4 and

3.5). This behavior can be attributed to more power available (optimal PBL= 13.8 kW) in case

of EPD3 as compared to EPD1 and EPD2 (PBL= 11 kW), allowing for some coast arcs. In case

of EDP2, the thruster is always “on” and Tav follows the Tmin profile except during the perihelion

passages where it follows Top.

3.1.4.2 Earth to Dionysus Problem 4 (EDP4)

EDP4 accommodates the variation of thruster efficiency with Isp modeled either linearly or

quadratically dependent on Isp, which alters the inverse relation between available thrust and ex-

haust velocity existing earlier in the case of constant efficiency. The thrust available is lower than

observed in the case of constant efficiency depending on the efficiency variation as shown in the

Figure 3.9. For a comparison, the resulting optimal exhaust velocity owing to the varied (linearly or

quadratically) thruster efficiency model, the Isp,opt values for all three models are plotted in Figure

3.10. Thrust profiles for both the linear and quadratic variation display similar trends of thrusting

(Top at the time of pseudo-periapsis) as in the cases EDP1-3. Both (linear and quadratic) cases

feature two coast arcs and similar thrust and Isp profiles as shown in Figures 3.11 and 3.12. Due
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Figure 3.11: EDP4: The osculating true anomaly, thrust profile, and Isp vs. time for linearly
varying efficiency,ηl; ρb = ρp = 1.0× 10−4 and ρc = 1.0× 10−5.

to lower thruster efficiencies than in EDP3 case, EDP4 features one less coast arc than in EDP3,

despite requiring higher power than EDP3.

Post solving EDP1 through EDP4, an opportunity to optimize the lower and upper bounds of

the exhaust velocity is noticed, to gather insights on how much increasing the maximum exhaust

velocity can lead to maximization of delivered payload. Therefore, EDP5 is formulated where cmin

and cmax are inducted as additional design variables. The optimal maximum Isp (11,246 sec) for

this maneuver is very high, and at present not achievable by any known engine. As is frequently

the case allowing optimization of physical variables may lead to insights, but in this case, we see

that Isp (or c) should have imposed a physically realizable upper bound. It is important to note

that including higher fidelity modeling does not always result in higher predicted performance.

Adding more design flexibility must go hand in hand with imposing physical bounds on all design

freedoms, otherwise you may get an insanely high “optimal” say, Isp like in the case of EDP5. One

can observe in Fig 3.13 that Tav approximately follows the curve Top at all times, which is expected
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Figure 3.12: EDP4: The osculating true anomaly, thrust profile, and Isp vs. time for quadratically
varying ηq; ρb = ρp = 1.0× 10−4 and ρc = 1.0× 10−5.

Table 3.4: Comparison of results of five cases (EDP1-5) for Earth-to-Dionysus problem.

EDP1 EDP2 EDP3 EDP4∗a EDP4∗b EDP5
Pau (kW) 11 11 13.8 14.98 15.053 19.61
Tpeak (N) 0.2525 0.3519 0.3508 0.30 0.2941 0.376
Ispavg

(s) 3355 3355.93 3371.54 3291.85 3347.76 5468.76
mf (kg) 2580.7 2603.8 2643.77 2566.87 2569.25 2842.06
mu (kg) 2237.2 2261.95 2272.85 2176.85 2178.18 2432.65
mSA(kg) 110 110 138.06 149.8 150.5 196.1
mPSPU (kg) 201.65 201.65 235.56 247.31 247.94 293.61
mPSFS(kg) 1561.25 1536.39 1491.85 1576.48 1573.87 1273.73
*EDP4a and EDP4b refer to the linear and quadratic efficiency respectively.

118



when cmin and cmax are chosen by the optimization algorithm. Interestingly, the Tav also drops

from the EDP3 case and there are no coast arcs in contrast to 3 coast arcs observed in EDP3. As

can be observed in Fig 3.13, copt always remain within the bounds of cmin and cmax. The resulting

curve for the exhaust velocity is smooth for small values of smoothing parameters, but the process

still requires CSC for the interim values. The results of this case are verified with the outcome of

optimizing payload with unconstrained variable Isp as both cases should lead to identical results.

Table 3.12 compares EDP1-5 on the basis of power generated at 1 AU (Pau, maximum thrust,

average Isp, final mass, useful mass delivered with mass of the power systems, masses of power

subsystems and the mass of the solar panels. A breakdown of the initial mass for each of the cases

is presented as per Eq. (3.1a), where mPSPU and mPSFS are added to mu to provide the initial mass.

Mass of the solar arrays (included in mPSPU ) is only dependent on PBL and is mentioned to give

the reader an idea about the size of arrays involved for each of the cases.
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Figure 3.13: EDP5: The osculating true anomaly, thrust profile, and Isp vs. time; ρb = ρp =
1.0× 10−4 and ρc = 1.0× 10−3.

The power model parameters of EDP1 are kept the same as EDP2 for all the evaluations re-

ported in Table 3.12. EDP1 leads to less final mass and less useful mass delivered than both EDP2
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and EDP3. Though the mass of the solar panels is higher (by approximately 28 kg) in case of

EDP3 due to higher value of PBL, an increment of 40 kg in final mass and approximately 11 kg

in delivered payload mass is observed when co-optimization is conducted in EDP3 over the EDP2

solution. Though EDP1 and EDP2 did not aim at maximization of useful mass delivered, the pay-

load and the solar array mass reported in Table 3.12 are evaluated for comparison using the same

parameters (i.e., γ1, γ2, atk) used in EDP2, mentioned in Table 3.8. In case of EDP4, the final

payload delivered does not change by much (∼2 kg) in between the two cases with varying effi-

ciencies but drops significantly (∼96 kg) from that of EDP3 case with a constant efficiency. This

suggests that while thruster efficiency is important, a simple linear model is adequate to represent

thruster efficiency variations. As for EDP5, the resulting optimal solution is significantly improved

in terms of payload by∼159 kg with higher power requirement (by 5.6 kW) with respect to EDP3.

However, the absence of a constraint on Ispmax
means this case needs further study. It is expected

that the relative advantage to EDP4 would be significantly less.
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3.2 Fuel-Optimization with Ion-Gridded Engines 2

Application of idealized constant-specific-impulse, constant-thrust electric thruster performance

models like shown in the previous sections is quite common for spacecraft trajectory design. How-

ever, incorporation of realistic performance models of multi-mode electric thrusters leads to no-

table challenges, and at the same time, offers unprecedented system-level optimization opportu-

nities. These discrete gridded-ion electrical thrusters, in principle, are capable of providing a few

thousand operation modes realized by the fine resolution of the current and voltage beams. Only

a handful of these modes, however, are considered for a particular mission owing to the implicit

necessity of laboratory calibration of each mode and also the increased hardware requirements for

operating each mode. Each mode requires apriori experimental characterization. A method that is

used to deal approximately with the discontinuity in modes is to use polynomial approximations

[36, 22]. These polynomial approximations are constructed to encapsulate the collective contri-

bution of the different modes [110]. The weights in these polynomial approximations are set pro-

portional to how frequently certain modes are used [36]. These approximations offer smoothness

that enhances the numerical convergence of the gradient-based solvers, but result in an inaccu-

rate application- specific representation of the net thruster performance. These discrete modes’

variables are most generally not a monotonic function of each other or the vehicle state variables,

therefore interpolation frequently encounters difficulties.

This section introduces a novel method that is capable of considering all feasible engine modes

and then selects the mode that minimizes the Hamiltonian using Pontryagin’s minimum princi-

ple (PMP). The approach leads to many switches between operating modes and frequently leads

to convergence difficulties, which can be eliminated by smooth embedding that approaches each

sharp switch in a homotopic fashion. The proposed construct is also structured to reveal which

subset of all the available engine modes that should be included with an associated known sacrifice

in optimality. A critical subset of modes can be identified as ‘integral’ modes which define the

2Reprinted with permission from “Low-thrust gravity-assist trajectory design using optimal multimode propulsion
models” by Arya, Vishala and Taheri, Ehsan and Junkins, John L, 2020. Journal of Guidance, Control, and Dynamics,
Volume 44(7), 1280–1294, Copyright 2021 by American Institute of Aeronautics and Astronautics
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minimum number of modes that should be considered to achieve an essentially “optimal” perfor-

mance (with respect to the prescribed performance index). Finding these ‘integral’ modes serves

dual purposes: 1) It accounts for a close-to-accurate thrusting capability available with an engine

to provide improved prefatory estimates of the preliminary mission-critical parameters. 2) Out of

the thousands of operation modes that an engine maybe capable of, a fraction of these are ideally

established pre-flight [36] to help reduce complexity associated with building power processing

unis (PPUs) and other support systems. Some extra modes can be further added to the ‘integral’

set of modes in order to fortify robustness of the mission to conceivable mode failures.

3.2.1 Power Modelling

The efficiency of solar arrays degrades over time due to radiation and aging. This degradation

can have a significant detrimental effect on power generation in multi-year interplanetary missions.

Variation in power due to the change in the heliocentric distance and the timely degradation can be

written as [22]

PSA =
PBL

r2

[
d1 + d2r

−1 + d3r
−2

1 + d4r + d5r2

]
(1− σ)t, (3.20)

where [d1, d2, d3, d4, d5] have the example empirical values [1.1063, 0.1495, -0.299, -0.0432, 0] to

model a particular solar array design performance variation with radial distance, ‘r’ measured in

AU [109]. The degradation factor is denoted by σ (typically a best-estimated degradation of 2 to

4 %/year) and t is used for the time elapsed since launch in years. Please note that the example

coefficient values correspond to a particular solar array and power management system on a par-

ticular spacecraft. Also, if the coefficients [1, 0, 0, 0, 0] are selected, Eq. (3.20) collapses to the

simplest 1/r2 power model. The size of solar arrays can be set roughly by heuristic experience

and depending on the minimum and maximum heliocentric distance expected during the maneu-

ver. Therefore, the power available for thrusting is evaluated as per the same smooth inequality

conditions (Eq. (3.12)) in Section 3.1.
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3.2.2 Optimal Control Problem Formulation

The objective is to minimize propellant consumption, which for a fixed initial dry mass of

the spacecraft corresponds to maximizing the final mass. To present a general formulation of the

problem, we have defined the cost functional as an integral of mass flow rate, ṁ (which is assumed

to be negative) as

Minimize
T,ṁ,α̂

J =

∫ tf

t0

−ṁ dt,

subject to :

Equation (2.6)

x(tf )− x̃d = 0,

x(t0) = x0,m(t0) = m0,

(3.21)

where t0 is the initial time, x0 and m0 are the MEEs and mass of the spacecraft at the initial time,

tf is the final time and x̃d is the desired MEEs at the final time. This general formulation of cost

functional is chosen since we are planning to formulate different propulsion systems and (T, ṁ) is

governed differently for each modelling.

The Hamiltonian associated with the defined OCP can be written as

H = −ṁ(δ) + λ>
(
A(x, t) +

T (δ)

m
B(x, t)α̂

)
+ λmṁ(δ), (3.22)

where λ = [λp, λf , λg, λh, λk, λl]
> is the costate vector associated with the MEEs and λm is the

costate associated with mass. δ ∈ [0, 1] is used to denote engine throttling input which is absorbed

in the T and ṁ expressions. Irrespective of the thruster modelling, δ appears linearly in the ex-

pressions of T and ṁ as it will be shown later for each case. Upon substitution of T and ṁ in

Eq. (3.22), the Hamiltonian is an affine function of δ. Since both α̂ and δ appear bi-linearly in

the Hamiltonian, Pontryagin’s minimum principle (PMP) is used. The optimal control direction is
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aligned along the Lawden’s primer vector, −B>λ, and optimal throttle is determined as

α̂∗ = − B>λ
||B>λ||

, δ∗ = arg min
δ∈[0,1]

H(x∗(t), δ(t),λ∗(t)). (3.23)

A power switching function (SF ) governs the optimal throttle ‘on’ or ‘off’ times such that

δ∗ =


1; for SF > 0,∀ c ∈ [cmin, cmax],

0; for SF ≤ 0,∀ c ∈ [cmin, cmax],

(3.24)

The expression for the SF is evaluated for each propulsion model as per the expression of T

and ṁ. Costate dynamics can be evaluated by Euler-Lagrange equation, λ̇ = −[∂H/∂x]> and

λ̇m = −∂H/∂m. Additionally, λm(tf ) = 0 since final mass, m(tf ), is not specified.

3.2.2.1 Modelling of VIVT Engines

VIVT engines modulate the thrust value to constructively affect optimized trajectories both in

terms of time and fuel consumption such that:

T =
2η(c)Pav

c
δ, ṁ = −2η(c)Pav

c2
δ. (3.25)

In this work, linearly varying η as a function of Isp is assumed per the relation given in Table

3.5. Our studies indicate that a linear approximate is accurate enough for preliminary studies [43].

Note T and ṁ are a bilinear function of Pav and δ, but is a non-linear function of c. A linear

approximation leads to the expression for the optimal exhaust velocity, copt [90] given as

copt =
2(1− λm)m(

ηl1
ηl0

)
m(λm − 1) + ||B>λ||)

, cmin ≤ copt ≤ cmax, (3.26)

where, ηl0 and ηl1 are obtained when η is fitted using a linear function in Isp and their values

are given in Table 3.5. Note that only the ratio of the η’s in Eq. (3.26) affects copt. Since VIVT

modelling imposes bounds on the minimum and maximum exhaust velocity permissible as per
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Table 3.5: Coefficients for polynomial interpolation of control variables for SPT-140.

(.)5 (.)4 (.)3 (.)2 (.)1 (.)0

T(Pav, δ = 1) 0 -3.174 -9.759 1.785 63.94 215.7
ṁ(Pav, δ = 1) -0.09917 -0.07603 0.3288 -1.39 1.214 16.25
η(Isp) 0 0 0 0 0.07551 0.06316

the engine selection, the effective optimal exhaust velocity (c∗) is bounded by those limits. The

capability to change specific impulse as a continuous function makes the VIVT modelling the most

flexible and efficient propulsion modelling. Even when the propulsion model is not physically

realistic for a known engine, the VIVT modeling acts as a computational model candidate for a

first layer optimization due to its capability in providing insights into the most optimal result to

maximize final mass when the control variables are ultimately bounded as per the engine selection.

3.2.2.2 Polynomial-Based Modelling of Thruster’s Performance

In order to enhance convergence, modelling of thrusters’ performance is frequently achieved

using polynomial approximations. For instance, operation modes of the Hall-effect SPT-140

thruster are summarized in Table 3.6. The data in Table 3.6 represent a 2D grid of the thrust,

T , specific impulse, Isp, mass flow rate, ṁ, and thruster efficiency, η, as a function of power input

to the thruster.

It is a challenge to obtain numerical convergence for both direct and indirect based methods if

discrete setting of the engine propulsion model is considered. To circumvent the issue of numerical

sensitivities or lack of uniqueness that can cause convergence ‘chatter’ or challenge robustness due

to a lack of resolution in the quasi-Newton step, polynomial interpolations are frequently preferred

by the designers for preliminary studies. Therefore, T and ṁ are approximated as a function of

power using a polynomial fit on a selected subset of operation points as

ṁ = −
nm∑
i=0

cmi
P iδ, T =

nT∑
i=0

cTiP
iδ, (3.27)

where nm and nT represent the degree of polynomial used for ṁ and T , respectively. Here, cmi
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Table 3.6: Operation modes of the Hall-effect SPT-140 thruster [3].

Mode Power Thrust ṁ Isp η
# (W) (mN) (mg/s) (sec)
1 4989 263 13.9 1929 0.5
2 4620 270 16.5 1670 0.48
3 4589 287 17.8 1647 0.5
4 4561 264 16.4 1645 0.47
5 4502 260 16.2 1641 0.46
6 4375 246 14 1790 0.49
7 3937 251 17.5 1461 0.46
8 3894 251 17.5 1464 0.46
9 3850 251 17.5 1464 0.47
10 3758 217 13.9 1597 0.45
11 3752 221 13.9 1617 0.47
12 3750 215 13.6 1614 0.45
13 3460 184 17.1 1099 0.29
14 3446 185 20.4 925 0.24
15 3402 189 16.3 1181 0.32
16 3377 201 15.8 1302 0.38
17 3376 175 18.2 979 0.25
18 3360 198 14.7 1371 0.4
19 3142 191 13.8 1409 0.42
20 3008 177 11.4 1579 0.46
21 1514 87 6.1 1449 0.41
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Figure 3.14: The best fit curve for thrust vs. power taking into account both all modes and selected
modes. Out of the 21 operation modes of SPT-140, 7 modes (pink circles) are selected.
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and cTi denote coefficients used to approximate ṁ and T , respectively. Depending on the thruster

model and the operating conditions, the degree of the polynomial and coefficients are altered on

the data weighted to obtain a “best” fit to approximate the aggregate affect of relevant discrete

operation modes. The degree of these polynomial fits is typically less than 7. In this work, one

SPT-140 thruster is used and polynomial approximations similar to the process shown in Eq. (3.27)

are formulated to obtain the best curve fits as shown in Figures 3.14, 3.15 and 3.16 for thrust,

specific impulse, and efficiency, respectively. As is evident in Figure 3.15, the 21 discrete modes

for the SPT-140 engine pose a curve fit challenge.

1500 2000 2500 3000 3500 4000 4500 5000

Power (W)

4

6

8

10

12

14

16

18

20

22

m
d

o
t 

(m
g

/s
e
c
)

1

2

3

45

6

7
89

10
11

12

13

14

1516

17

18

19

20

21

All modes

Selected modes

All Modes fit

Selected Modes fit

Figure 3.15: The best-fit curve for mass flow rate vs. power taking for all and a few selected
modes. Out of the 21 operation modes of SPT-140, 7 modes (pink circles) are selected.

There are two fitting curves (blue and black) provided in Figures 3.14 and 3.15 corresponding

to the best fit obtained when all modes are considered or when only a few selected (7 in number)

modes are used for the curve-fitting process, respectively. The selection of these 7 modes is done

after roughly grouping close operating modes and selecting a single representative mode from each

group for the fitting purpose. It can be observed that the fitting curve does not largely improve

(apart from being a lower-degree polynomial) when fewer (selected) modes are considered (refer
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Figure 3.16: The best fit curve (linear and quadratic) for thruster efficiency (η) vs. Isp for all modes.
Out of the 21 operation modes of SPT-140, 7 modes (pink circles) are some selected modes.

to the blue curve in Figures 3.14, 3.15 and 3.16). Though a lower-degree polynomial can be

obtained for the selected modes, the sensitivity of such curve fits, when parameters go beyond

the valid domain during the continuation process, is considerable. Therefore, the best curve fit

corresponding to all the modes (black curve) is used in the evaluation to help widen the domain of

convergence.

Table 3.5 summarizes the coefficients for a fifth-degree polynomial fitted to all operation

modes. Since, as per Figure 3.16, the quadratic curve provides a marginally better fit than the

linear case (also shown in Ref. [43]), linear dependency of η on Isp is assumed with its coefficients

reported in Table 3.5. The optimal throttle δ∗ (refer Eq. (3.27)) in this case is determined using the

switching function SF defined as

SF =
||B>λ||c

m
+ λm − 1. (3.28)
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3.2.2.3 Multi-Mode Performance Modeling

The polynomial fits introduced earlier encapsulate the compound performance of the engine

over the defined subset of operation modes over the admissible power range of the thruster. There-

fore, the performance derived from these models (however good the curve fitting is) still results in

erroneous and sub-optimal results compared to when the actual discrete modes are employed as is

discussed in [39]. This work, therefore, defines the optimal approach for the implementation of the

smooth approximate version of discrete modes propulsion modelling. Alternatively, we consider

dispensing with the curve fit altogether and ask if we can use PMP to locally select the optimal

mode. WE find that invariant embedding with HTS is an attractive way to directly select the opti-

mal mode. An algorithm for selecting optimal discrete modes via invariant embedding is given as

a pseudo code below:

Algorithm: Selection of Optimal Discrete Modes
Result: T = 2η>mTsel , ṁ = −2η>mṁsel

initialize i = 1 ;
while i ≤ Nm do
Pw(i) = 0.5

[
1 + tanh

(
Pav−Psel(i)

ρc

)]
SF (i) = csel(i)||B>λ||

m
+ λm − 1

Sδ(i) = 0.5
[
1 + tanh

(
SF (i)
ρb

)]
i = i+ 1

end
SL = Sδ ◦ Pw
SH = ṁsel + Tsel

m
||B>λ|| − λmṁsel

Sm = SH ◦ SL
initialize i = 1 ;
while i ≤ Nm do

ηm(i) = 0.5
[
1− tanh

(
−1+Sm(i)

ρm

)] Nm∏
j=1

(
0.5
[
1 + tanh

(
Sm(i)−Sm(j)

ρm

)])
i = i+ 1

end

In the proposed algorithm, Nm is the number of modes selected out of the 21 modes available
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for the SPT-140 thruster, and Psel, csel = Ispsel
g0, ṁsel and Tsel define the corresponding Nm se-

lected operation modes (expressed as column-wise vectors) for power, Isp, mass flow rate, ṁ, and

thrust taken from Table 3.6. The value of Nm can include all operation modes (21 in this case) or

it could represent a fraction of the original set. Selection of operation modes is mission specific,

but can be based on 1) power generation capacity due to the solar arrays and power capacity of

PPU (Pmax), and 2) the estimated maximum heliocentric distance encountered during the maneu-

ver. Some lower power (thrust) modes can also be added especially to cater to unforeseen events

encountered during the actual mission. In the event that there are several modes that are close to

each other, one mode can be selected to reduce chatter in control variables and avoid possible rapid

switches between modes. Moreover, from an operational standpoint, having a fewer number of op-

eration modes with negligible performance loss reduces complexity and improves the reliability of

the propulsion system. The pseudocode provides a general algorithm for ascertaining the optimal

selection of modes (according to PMP) out of Nm modes at each time instant irrespective of the

engine used.

Firstly, out of the selected modes, a set of admissible modes are obtained that correspond to

lesser power requirement than Pav. In other words, at each instant of time during the propagation

of the differential equations, only a few (or as a limiting case of all) Nm modes can be activated

from a power-availability point of view. But, such a selection (filtering or pruning) has to be

achieved in a smooth manner, which is achieved by defining a “distance measure” in the form of

power difference (i.e., Pav − Psel). This distance measure is passed as the input argument of the

hyperbolic tangent function and the results are stored in the elements of Pw. The elements of this

vector will be either 0 or 1 depending on the power admissibility of the respective mode. In order

to have control over the smoothing, a continuation parameter, ρc, is introduced for power-driven

constraints. We emphasize that the elements of the Pw vector belong to the range [0,1] depending

on the value of the continuation parameter per definition of the hyperbolic tangent smoothing [51].

A second filtering has to be performed to take into account the standard fuel-optimality crite-

rion. The switching function of each mode is formed and is used as the argument of the hyperbolic
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tangent function to obtain the throttling factor for each mode (Sδ). According to how we defined δ,

when the switching function is positive, the throttle for that mode is set to 1. However, non-smooth

transitions are made smooth by introducing a continuation parameter, ρb.

The admissible modes using the above two filtering steps are denoted by SL vector, which is

obtained by using a Hadamard multiplication operator (denoted by ◦) on the two vectors, Pw and

Sδ. This multiplication step is important step since both factors determine the modes that pass

power-admissibility and optimality criteria. According to PMP, if the switching function (SF ) is

positive, we have to select the mode that results in the least value of the Hamiltonian. The PMP

is implemented using the definition of SH vector. Note that ṁsel = Tsel/csel relation does not

necessarily hold as per the data given in Table 3.6. Therefore, it might not be possible to take ṁsel

as a common factor in the expression given in SH . On the other hand, if a common factor can be

extracted, SH will simply become (SF ◦ ṁsel).

Sm vector carries mode-wise information of admissibility of a particular mode as well as the

contribution of that mode towards the Hamiltonian. As can be seen from the data in Table 3.6, the

relation between the power available and the control variables (say, T and ṁ) is not monotonic.

Thus, a sorting scheme is required to isolate the mode that results in the least value of the Hamil-

tonian. However, the standard sorting and selection strategy is inherently a non-smooth operation.

In order to overcome this inherent non-smoothness, a smooth scheme is devised to construct the

ηm vector. Extraction of the ṁ and T is achieved through dot product of ηm vector with Tsel and

ṁsel. In order to compensate for the multiplications in the last ‘while’ loop, a coefficient of 2

is needed. The negative in the mass time rate of change (ṁ = −2η>mṁsel) is needed to make it

consistent with the formulation of optimal control problems. In the initial steps of the continuation

procedure, and when the continuation parameters are large, all modes may contribute to T and

ṁ. As the value of the smoothing parameters (ρc, ρb and ρm) are reduced, optimal isolated modes

emerge autonomously.

A representative example (with four modes) is considered to explain the results after apply-

ing the steps outlined above. Four modes are selected from the throttle table, i.e., Nm = 4 as
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{6,11,13,20}. The following vectors are extracted for the respective modes as

Psel = [4375, 3752, 3460,3008]>, csel = [1790, 1617, 1099, 1579]>g0, ṁsel = [14, 13.9, 17.1, 11.4]>.

In order to evaluate the expressions, the following values are considered: m0 = 2400 kg,

λm = 0.89, ||B>λ|| = 88500, Pav = 4 kW, and ρb = ρc = ρm = 1.0× 10−5. For these values and

upon following the steps outlined above, the algorithm will lead to the following vectors

Pw = [0, 1, 1, 1]>, SF = [0.0191, 0.0081,−0.0325, 0.0044]>, Sδ = [1, 1, 0, 1]>,

SL = [0, 1, 0, 1]>, Sm = [0, 0.1126, 0, 0.0502]>, ηm = [0, 0.5, 0, 0]>.

Therefore, mode #11 gets selected as per the algorithm for this simple example. ṁ and T

values of mode #11 will be used until the next switch in the operation mode or shut-down of the

thruster occurs due to optimality criterion since all elements of ηm will be zero in such situations.

The smooth representations of the discontinuous control variables (δ, c,Pav) introduced during

the OCP formulation are obtained in this section using the CSC method.

Throttle: Throttling factor, δ, that represents the bang-bang structure of the thruster due to the

throttle “on” and “off” conditions, plays the same role in all three propulsion formulations. δ(∈

[0, 1]), in this study, is the product of three different δ values. Each one of the throttling factors

corresponds to a different discontinuous event as given below

δ = δbδfδk, (3.30)

where δb (∈ [0, 1]) is decided as per the optimality criteria of minimizing the Hamiltonian according

to PMP. δf (∈ [0, 1]) enforces any desired coast arcs at the points during mission critical events

or for orbit determination purposes and are decided apriori. δk ensures that the thruster is not

operated when Pav is less than the rated minimum operational power of the thruster. Each of these
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δ coefficients leads to a bang-bang structure, which requires smoothing to obtain:

δ∗b ≈ δ(SF, ρ) = 0.5

[
1 + tanh

(
SF

ρb

)]
, (3.31a)

δf = 0.25

[
1 + tanh

(
tstart − t
ρf

)][
1− tanh

(
tend − t
ρf

)]
, (3.31b)

δk = 0.5

[
1 + tanh

(
Pav − Pmin

ρk

)]
, (3.31c)

where tstart and tend denote the beginning and end time stamps of the forced coast arcs. Most

thrusters also have a minimum operational power requirements below which they cannot operate,

which is denoted here as Pmin. Also, δk takes into account the lack of power to switch the thruster

On. The smoothing procedures for exhaust velocity and power can be followed from previous sec-

tion. Each of the smoothing parameters (i.e., ρi (i ∈ p, c, b, f, k,m) corresponds to one parameter

family of sub-problems (each sub-problem corresponds to solving a TPBVP) that is arbitrarily near

a neighbouring converged solution.

A summary of the difference in propulsion modelling (in terms of ṁ, T and c) in all three

cases is provided in Table 3.7. These three control variables are substituted in the Hamiltonian

(Eq. (3.36)) to formulate the OCP.

Table 3.7: Summary of the control inputs and the form of SF for the three propulsion modelling
approaches.

VIVT Polynomial Multi-Mode

T = 2ηPav
c
δ (Eq. (2.22))

∑nT

i=0 cTiP
i
avδ, (Eq. (3.27)) 2η>mTsel

ṁ = −2ηPav
c2
δ, (Eq. (2.22)) –

∑nm

i=0 cmi
P i

avδ (Eq. (3.27)) −2η>mṁsel

c = Eq. (3.9) T
ṁ

c ∈ Selected Modes

SF = ||B>λ||cmax
m

+ λm − 1 ||B>λ||c
m

+ λm − 1 ||B>λ||c
m

+ λm − 1
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3.2.3 Results

The transfer from Earth to asteroid Psyche via Mars gravity assist (E-M-P) is solved using

the three considered formulations for propulsion model for the SPT-140 engine. In the VIVT

modelling, the power range of the engine is taken into account. The three cases are to maximize

the final mass using PF1) a VIVT modelling, PF2) a polynomial-based modelling, and PF3) an

exact multi-mode modelling.

Table 3.8: Spacecraft parameters used for the three test cases.

PBL Pmax Pmin PL Isp range η ηd σ
(kW) (kW) (W) (W) (s)

PF1 20 4.65 1.514 780 [925-1800] 0.68 0.95 0.02
PF2 20 4.65 1.514 780 [925-1800] 0.68 0.95 0.02
PF3 20 4.375 1.514 780 [925-1929]* [0.24,0.49]* 0.95 0.02
*As per Table 3.6.

Canonical units are used for scaling where AU is used for scaling distances, and the Time

Units (TU) is equal to 1
2π

year. The ephemerides of the concerned celestial bodies are taken

from JPL DE435 and JPL AST343DE430 files. As explained before, the hybrid optimization

is solved with the PSO in the outer-solver, while the inner-solver seeks to solve the resulting

TPBVP for each of the thruster modelling. A single-shooting scheme is used to solve the re-

sulting TPBVPs using MATLAB’s fsolve. The initial guesses for the unknown costate vector

λ(t0) = [λp, λf , λg, λh, λk, λl]
> and λm are generated randomly and the TPBVP is solved fol-

lowed by continuation of the five parameters, ρb, ρp, ρc, ρm, ρf , and ρk. The spacecraft parameters

used in the considered problems are obtained according to Table 3.6 and the resulting bounds on

the parameters of power modelling are summarized case-wise in Table 3.8. According to Table

3.9, coast arcs are enforced at three places: one immediately after launch, one prior to flyby and

one immediately after flyby. The bounds on the PSO design variables are defined in Table 3.10.

These bounds are selected based on the Psyche mission constraints.
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Table 3.9: Design parameters for the E-M-P mission.

Launch window (t0) 2020-2021
Time of flight (∆t) 3.5 – 5.2 years

(Illumination at Psyche dictates arrival time)
Initial mass range (kg) 2600 – 2900
Sequence considered Earth-Mars-Psyche
Coasts required ≥ 90 days post launch

and ≥ 60 days pre and >15 days post flyby
Minimum altitude at GA (km) 500
Propellant used (kg) < 950
Engine SPT-140 (Hall thruster)
Launch vehicle Falcon Heavy R
Launch V∞ (km/sec) 5.37 – 5.49

Psyche is the largest metal asteroid in our solar system and is a target body in a planned future

NASA mission. The science objective of the mission is to map the surface of the asteroid for 19

to 20 months conducted in 4 stages of decreasing altitude [33]. The illumination of the surface

of the asteroid is one of the important criteria to attain the required science objectives. Figure 6

in Ref. [34] uses a gray-scale map to depict the percentage of the surface of Psyche illuminated

during 2021 to 2032 time interval. Arrival at the beginning of the white patches (i.e., illumination

≥ 90%) is ideal. The trajectory for the mission is designed by NASA JPL using a high-fidelity

tool, MYSTIC. A number of mission boundary conditions and constraints that are used in setting

up this example are summarized in Table 3.9.

According to the reported trajectories in Refs. [33] and [34], the initial mass of the spacecraft

is kept within the range [2600, 2900] kg with the constraint on the propellant consumption to be

less than 950 kg. Depending on the specified range of initial mass desired post launch, a range

of v∞L
values is considered (see Table 3.9) as per the performance of the chosen launch vehicle,

Falcon Heavy Reusable. In order to approach Psyche close to the optimal lighting conditions

(white patches in Figure 6 in Ref. [34]), the bounds on the PSO design variables like launch time

and time of flight are determined and reported in Table 3.10.

As expected, the value of the final mass delivered to Psyche is heavily influenced by the rigor
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Figure 3.17: The optimal VIVT trajectory. Trajectories obtained using other propulsion modelling
are graphically identical.

Table 3.10: Design variables of the PSO with bounds and the final converged solution.

Bounds Solution
Launch date [1.1.2020 - 5.31.2021] Jan 23rd, 2021
E-M ∆t (days) [500, 850] 800.01
M-P ∆t (days) [500, 900] 850
B-plane piercing γ (rad) [−π, π] 0.693
rp (×Mars radius) [1.147, 4] 1.147 (altitude 500 km)
α (rad)

[
−π

2
, π

2

]
-1.115

β (rad) [−π, π] 0.1244
flyby v∞ (km/sec) [1, 10] 4.108
v∞,L(km/sec) [5.37, 5.49] 5.376
αL [−π, π] -2.499
βL

[
−π

2
, π

2

]
-0.08
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of the approach taken to model the SPT-140 thruster. However, since on a solar scale, there is not

much visible difference among the trajectories except for the thrust profile, the trajectory shown in

Figure 3.17 can be considered as a qualitative depiction for all three problems. The time duration

of the forced coast arc immediately after launch is set to 90 days. However, the thruster does not

operate for an additional 40 days (due to optimality and proper phasing). The time duration of

the forced coast arcs before and after the flyby are set to 60 and 15 days, respectively, which is

enforced using Eq. (3.31b).

The differences in the profile of thrust and Isp are detailed for each case in the form of three

subplots containing the osculating true anomaly (θ), thrust profile, Tav, and Isp profile. Here, Tav

denotes the thrust that is computed using the available power, Pav. The thrust profile subplots

feature the optimal thrust profile (Tav) along with three dashed lines that correspond to Tmin, Tmax

and Top defined as

Tmin =
2ηPav

cmax
, Top =

2ηPav

copt
, Tmax =

2ηPav

cmin
,

where copt is defined in Eq. (3.26) for PF1. Top is the same as Tav for PF3 and Top is not evaluated

for the PF2 case. For PF2 and PF3, Tmin and Tmax denote the minimum and maximum thrust

entries within the considered modes. The plots do not include the time of coasting post launch

but the coast arcs enforced before and after the flyby are evident in Figures 3.18 and 3.19. The

thrust histories of the two segments are denoted by solid blue color lines. The typical values for all

smoothing parameters used to obtain the final result is less than 1.0× 10−5.

3.2.3.1 PF1: VIVT Modelling

After several runs and iterations of the hybrid optimizer with PSO and inner solver with PF1

modelling, the values for the converged solution are reported in Table 3.10. In Figure 3.18, we

observe that the applied thrust magnitude (Tav) always follows Tmin since the optimal exhaust ve-

locity required to extremize the Hamiltonian is always greater than cmax. This is typically observed

when the time of flight is long enough to allow minimum thrusting at all times to rendezvous with
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Figure 3.18: PF1: Time histories of the osculating true anomaly, thrust profile and specific impulse.
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Figure 3.19: PF1: Thrust profile, power activation constraint and switching function vs. time; SF
and gP are both normalized by 10000 for better visibility of thrust profile.
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the target asteroid. If one reduces the time of flight of mission (as a constraint), switching in the

exhaust velocity profile will appear. The observed discontinuities in the osculating true anomaly

and thrust profile are due to gravity assist and the forced coast arcs. The flight time is 4.76 years

with final mass delivered, mf ∼ 1965 kg and the propellant bill of ∼ 890 kg (<950 kg constraint

(see Table 3.9)).
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Figure 3.20: PF2: Osculating true anomaly, thrust profile, and specific impulse vs. time.

The gp plot in Figure 3.19 shows how power generated by the solar arrays (PSA) in the first seg-

ment (E-M) is always high enough to allow maximum PPU operating power (Pmax) be available

for thrusting. The converged solution of PF1 in terms of boundary conditions is used for initial

iterations for both PF2 and PF3 propulsion models. In other words, for PF2 and PF3, only the

inner-level solver of the hybrid optimizer is used to optimize the solutions for different propul-

sion models and determine fuel-optimal trajectories. This ensures a fair comparison between the

three propulsion modeling approaches. VIVT modeling provides greater (than typical low thrust)
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amenability towards flexible time of flights to provide optimal solutions and optimal Isp time his-

tories. This is one of the primary reasons for using this modeling to determine the boundary

conditions (launch date, time of flight for each segment and other parameters). The coefficients of

the polynomials derived to evaluate thrust and ṁ as a function of Pav are given in Table 3.5.
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Figure 3.21: PF3: Osculating true anomaly, thrust, and Isp vs. time; the gaps in the Isp profile at
the time of coasting denote undefined values.

3.2.3.2 PF2: Polynomial-Based Modelling

In case of PF2, the polynomial approximation gives inferior final mass as compared to PF1,

partly due to the specific dependencies (operation modes) of the thrust and mass flow rate on

power. Also, due to errors in the polynomial approximation the actual engine behaviour is not as

accurately captured compared to PF3. The thrust profiles for PF1 and PF2 look very similar but

the thrust magnitude in case of PF2 is higher in the first segment (Earth-to-Mars phase) and lower
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in the second segment (Mars-to-Psyche phase) as compared to PF1. In the second segment, when

the power generated by solar arrays is especially low at the end of the maneuver, the interpolated

approximation of a lower-Isp, high-thrust mode is engaged. In Figure 3.20, the Isp value smoothly

declines as the spacecraft rendezvous with Psyche. Since polynomial-based approximations of ṁ

and T only capture the aggregate behaviour of the individual operation modes and is an approxima-

tion of the discrete an disjoint engine modes, slight violation is observed in thrust profile relative

to the actual maximum thrust limit, Tmax = 0.251 N. Recall that these bounds correspond to the

actual minimum and maximum thrust limits according to Table 3.6.
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Figure 3.22: PF3: Plot of power differential function (Pav − Psel) in kW corresponding to each
mode vs. time.

3.2.3.3 PF3: Multi-Mode Modelling

In case of PF3, Figure 3.21 shows that the thrust profile features several switches since different

operation modes are engaged. As the spacecraft steers farther from the Sun, low-power modes are

141



engaged (cf. Table 3.11 sorted as per power). Since Table 3.6 is arranged in descending order

of the operating power, all the modes below a power admissible mode are also power admissible.

Specifically, Figure 3.22 shows that during the first 1000 days, all the operation modes except for

the first 5 modes are admissible from a power-availability standpoint. The SF associated with

each mode governs the engagement of each mode. As seen in Figure 3.23, there are three intervals

during which the SF value for all modes is negative. This occurs during the first ∼ 40 days at the

beginning of the first segment (a late departure), close to the end of the first segment (∼[440-620]

days), and near the beginning of the second segment (∼[900-980] days). And these time intervals

correspond to the coast arcs appearing in the thrust profile shown in Figure 3.21.
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Figure 3.23: PF3: Plot of switching function (SF) corresponding to each mode vs. time.

The power availability and SF decide only the admissibility of a certain mode and do not

guarantee optimality. According to PMP, the optimal mode is dictated by the minimization of the
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Figure 3.24: PF3: Plot of Hamiltonian corresponding to each mode vs. time.

Hamiltonian function, which is plotted in Figure 3.24 (red dashed line is the optimal Hamiltonian

plot). At times even when the 6th mode minimizes the Hamiltonian the most, it is not admissible

from the power criteria, leading to engagement of other lower power modes. Therefore, the optimal

mode selection is made using the Hamiltonian function in Figure 3.24 only from the set of the

power-admissible operation modes determined from Figure 3.22.

Therefore, simultaneous study of the data in all three plots; Figures 3.22, 3.23, and 3.24 is

required to determine which mode is most optimal to select. For example, in Table 3.6, one can

see that the highest mass flow rate and the lowest Isp (leading to SF < 0) is associated with the 14th

mode, a combination of which results in a higher Hamiltonian value than its neighbouring modes.

Therefore, the 14th mode is never engaged. In fact, for most cases the feature of extremely low Isp

alone is enough for the non-selection of those modes due to the SF < 0 condition. Nevertheless,

modes with lower Isp values can still get selected if no better mode is power admissible. Owing to

the limited power availability at greater distance from the Sun, i.e., towards the end of the trajectory,
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the 20th and 21st modes get engaged. From Table 3.6, notice that the 7th, 8th and 9th modes possess

similar operation characteristics (i.e., with respect to thrust, mass flow rate and Isp). Therefore,

one can possibly select one mode out of the three with little (to near zero) sacrifice in optimality

for all the times when Pav ≥ 3.937 kW. For further explanation, all the ‘integral’ modes are listed

Table 3.11: Selected Operation Modes of SPT-140 for E-M-P mission.

# Group Power (Watts) Thrust (mN) ṁ (mg/s) Isp (sec) η
6 G2 4375 246 14 1790 0.49
8 G2 3894 251 17.5 1464 0.46
9 G2 3850 251 17.5 1464 0.47
11 G3 3752 221 13.9 1617 0.47
18 G5 3360 198 14.7 1371 0.4
19 G5 3142 191 13.8 1409 0.42
20 G5 3008 177 11.4 1579 0.46
21 G5 1514 87 6.1 1449 0.41

in Table 3.11. The selection of these 8 ‘integral’ modes out of all the modes can be understood

by comparing the selected modes with their neighbours in Table 3.6. For better understanding, we

have classified all the modes in 5 groups:

1. G1: {#1, #2, #3, #4, #5}

These modes require the highest power to operate among all the operating modes. Owing to

the set value of Pmax and ηd, these modes are never power admissible and hence are never

selected.

2. G2: {#6, #7, #8, #9}

Among these modes, the 6th mode possesses the highest Isp value, but has a lower ṁ value.

This combination somehow leads to the selection of 6th mode over modes 8th and 9th when-

ever all of them are power admissible. In this particular trajectory optimization example,

mode 7th is never selected over modes 8th and 9th due to its lower Isp and same value for ṁ.

144



3. G3: {#10, #11, #12}

The modes appearing in this group are associated with very close operating power require-

ments. The 11th mode is evidently more superior to modes #10 and #12 owing to its higher

Isp and ṁ values.

4. G4: {#13, #14, #15, #16, #17}

All modes in this group feature lower Isp values (compared to other groups). Also, the

operating power requirement for the modes in this group is close and accounts for a small

range of (∼ 84 W). Therefore, the selection of these modes seem less likely.

5. G5: {#18, #19, #20, #21}

This group features moderate Isp values and have the lowest operating power requirement

among all the modes. The selection of these modes can be anticipated to be mostly driven

by low power availability.

Needless to say, this qualitative analysis was possible only after obtaining an optimal solution and

is not generally intuitive enough to provide mode selection with certainty prior to the optimization.

The mode selection process is a complicated function of time and the distance from the Sun. As

can be seen from Table 3.11, the optimal modes selected belong to Groups 2 and 5 for majority of

the time duration.

Table 3.12: Comparison of results of the Earth-Mars-Pysche problem using VIVT, polynomial and
optimal discrete modes propulsion models using an SPT-140 thruster.

VIVT Polynomial Discrete Modes
Tpeak (N) 0.2693 0.258 0.251
Ispavg

(s) 1800 1744 1625.16
mf (kg) 1964.7 1833.7 1718.9

Although the power available for thrusting in all three cases (PF1, 2, and 3) is almost the same

(there are only minor differences in the three trajectories), they result in significant differences
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Figure 3.25: PF3: Optimal thrust mode selection vs. time.

in final masses (131 kg less for PF2 and 245.8 kg for PF3 as compared to PF1) owing to their

different thrust and mass flow rate adaptations of the same engine. Table 3.12 compares PF-1,2,3

on the basis of maximum thrust (Tpeak), average Isp (Ispavg
= (ΣtIsp(t))/∆t), and final mass. VIVT

modelling features highest values for both Ispavg
and Tpeak. In fact, curiously the trend in the Ispavg

and Tpeak for the three cases is same as the trend in the final mass achieved. The power model

parameters are kept the same for all the evaluations reported in Table 3.12.

It should be clear that the VIVT trajectory design was merely a first step to efficiently establish

insights and a ballpark set of initial co-states to initiate the polynomial and discrete mode trajectory

designs. Note the VIVT trajectory is not physically realizable. Likewise, the polynomial model

of the discrete modes is provided for comparison owing to its frequent use in literature. It is

shown to not accurately capture the engine operational modes. However, it provides even better

initial costate estimates for the optimal discrete mode trajectory design. Only the optimal discrete

mode solution is fully consistent with the SPT-140 thruster nodes. This success in solving such a

tremendously challenging problem indicates the improved capability of indirect based methods in

handling discrete control variables.
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3.3 Discrete Modes Multi-disciplinary Design Optimization 3

Typical systems engineering processes focus on hierarchical decomposition of design and de-

velopment tasks. Such approaches offer a very linear structure of simple relationships, but are

quickly overwhelmed by system interactions in complex systems. By solving a Multidisciplinary

Design Optimization (MDO) problem designers can simultaneously improve the design and re-

duce the time and cost of the design cycle [111] early in the design process. In space mission

design, spacecraft consists of several sub-systems and their performance is typically coupled. For

instance, the power sub-system produces power for operation of other sub-systems as well as the

power needed to operate the thrusters. In case of Solar Electric Propulsion (SEP), power generated

by solar arrays, which is a function of distance of the spacecraft from the Sun, affects the per-

formance of the thruster [112]. The presence of power cross coupling between independent units

of the spacecraft system inspires the use of co-optimization techniques and calls for appropriate

numerical simplifications to optimize these complex spacecraft sub-systems over both continuous

and discrete design variables [113]. As shown in the previous section and Figures 3.21 to 3.25,

the frequently disjoint set of experimentally characterized modes in case of gridded-ion engines,

especially if there is a large number of modes, defy any heuristic idea of the resulting performance

of the engine.

Payload-mass optimization introduces further complexity to the optimization task because the

power (which serves as one of the admissibility criteria for the selection of modes) is predomi-

nantly affected by the size of the solar arrays and the trajectory of the spacecraft (distance from

the Sun vs time). Thus, we are faced with a co-optimization or MDO problem in which the space-

craft design parameters and the trajectory are coupled and in the most rigorous approaches, must

be optimized simultaneously. The size (area) of solar arrays is a continuous variable, whereas

the operating modes of a particular low-thrust engine are discrete. In addition, the trajectory op-

timization problem consists of characterizing the optimal direction of the thrust vector, with the

3Reprinted with permission from “Electric thruster mode-pruning strategies for trajectory-propulsion co-
optimization” by Arya, Vishala and Taheri, Ehsan and Junkins, John L, 2021. Aerospace Science and Technology,
Volume 116, 106828, Copyright 2021 by Elsevier
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possibility of switching the thruster ON and OFF per optimality criterion. Using indirect methods,

the optimal control problem (OCP) becomes a multi-point boundary-value problem, the solution

of which characterizes the exact sequence of the optimal thrust modes. Without making any apriori

assumptions, the algorithm proposed here reveals the subset of all considered modes essential for

optimizing the cost functional (i.e., to maximize the net payload mass). While obtaining the set of

optimal operating modes is insightful, one question has to be addressed: Is it possible to prune the

set of optimal modes to establish sub-optimal solutions with a modest sacrifice on optimality? A

major contribution of this work is to answer the mentioned question by proposing a mode-pruning

algorithm that reveals the impact of removing certain modes from the set of optimal modes. This

mode-pruning algorithm allows sub-optimal modelling of the trajectory-spacecraft system with

a controlled loss in optimality and thereby offers the possibility of trading performance versus

system complexity.

3.3.1 Problem Formulation

We use a set of modified equinoctial elements (MEEs), x = [p, f, g, h, k, l]> and spacecraft

mass, m as state variables to formulate the equations of motion as

ẋ(t) = f(x,a) = A(x, t) + B(x, t)a, (3.32)

where, a = Tδα̂/m denotes the propulsive acceleration expressed in the Local-Vertical/Local-

Horizontal (LVLH) frame of the spacecraft. The value of the thrust at any instant depends on

the operating mode chosen thus providing a saw-tooth like acceleration profile. The time rate of

change of mass depends on the selected mode as

ṁ = −ṁ(mode), (3.33)

Spacecraft system: A simplified breakdown of the spacecraft sub-systems for the purpose of

co-optimization is assumed in this work similar to Section 3.1 and is described in Figure 3.26. The
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Figure 3.26: Payload and propulsion sub-system mass breakdown.

useful payload mass is generally comprised of a primary payload and a part of the power supply

system (PSS), which is essential for payload sustenance and operations [?]. Assuming a constant

initial mass, m0 (held fixed in this work, though it can be swept to reveal a family of optimal

designs), the mass breakdown can be written as

m0 = mu +mPSPU +mPSFS, (3.34a)

mu = m0 − γ1PBL − γ2Pmax − (1 + atk)mp, (3.34b)

Notice that when compared to the Eq. (3.1b) in Section 3.1, Pmax in the place of Pav is used in

the above equation as the engine modes of an ion-gridded thruster are operable at a specific and

the PPU are designed such that the Pmax value is greater than the maximum power requirement of

any available mode. Therefore, it is more reasonable to use Pmax in the equation as Pav could be

way larger than Pmax. As can be observed in Table 3.6 [3], every operating mode is associated with
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a corresponding thrust, T , specific impulse, Isp, mass flow rate, ṁ, and thruster efficiency, η and

a specific operating power. Depending on the power requirement of the optimal mode selected at

each time instant, there can be some excess power that can be stored in a battery. In practical ap-

plications of course, the thruster might not perform exactly as given in the tabulated data presented

in Table 3.6 retaining some excess power and propellant mass offers margins to take these uncer-

tainties into account via guidance (see covariance control in Chapter 4). Engine failures, variation

in engine performance and missed-thrust events are not considered in this section.

3.3.2 Maximum-Payload-Mass Optimal Control Problem

The objective is to maximize the net delivered payload mass over all admissible operation

modes. The problem is stated as a minimization of a Lagrange-form cost functional as

Minimize
modes, α̂,δ, PBL

J =

∫ tf

t0

[
γ1PBL + γ2Pmax

∆t
+ (1 + atk)ṁ

]
dt,

subject to :

Equations (2.6)&(3.33), (3.35)

x(tf )− x̃d = 0,

x(t0) = x0,m(t0) = m0,

Pmax = Pm,

where t0 is the initial time, x0 and m0 are the initial MEEs and mass of the spacecraft at the initial

time (t0), tf is the final time, ∆t = tf − t0 is the time of flight, and x̃d is the desired MEEs at

the final time. Pm is the mission-defined maximum power capacity of the PPU. Note that the term

γ2Pmax in the cost functional is a known constant and can be removed from the Lagrange cost

without affecting the optimal solution. T and ṁ are evaluated at each time instant such that the

Hamiltonian is minimized over the admissible controls and admissible modes (see Eq. (3.36)).
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The Hamiltonian associated with the defined OCP can be written as

H = γ1PBL/∆t+ (1 + atk)ṁ+ λ>f − λmṁ, (3.36)

where λ = [λp, λf , λg, λh, λk, λl]
> is the costate vector associated with the MEEs and λm is the

costate associated with mass. The direction of thrust vector, α̂ and throttle, δ, has to be determined

using PMP. Costates dynamics are derived by the Euler-Lagrange equation, λ̇ = − [∂H/∂x]>,

λ̇m = −∂H/∂m λ̇PBL = −∂H/∂PBL. Payload-mass optimization inducts an additional design

variable, PBL, to size the solar arrays as per the power requirements of the mission. Higher capacity

solar arrays (with large PBL values) facilitate the admissibility of the higher power modes but

leads to increase in the mass of the solar arrays. Therefore, an optimization can be performed to

ultimately lead to maximum payload mass delivery.

In order to incorporate mass of solar arrays into the optimization process, the state vector is

augmented by PBL resulting in a modified state vector, z> = [x>,m, PBL]. Since PBL remains

constant throughout the trajectory, the state dynamics is augmented by a trivial additional dif-

ferential equation (dPBL/dt = 0) and by virtue of PBL being free at both initial and final times,

the corresponding transversality conditions λPBL(t0) = λPBL(tf ) = 0 are obtained. Additionally,

λm(tf ) = 0 since spacecraft mass, m(tf ), is also free at final time. The optimal performance of

the engine in terms of T and ṁ and the optimal throttle condition (δ) are determined using PMP

over the admissible modes and are dealt with in detail in the next section.

3.3.3 Mode Optimization with Discrete Modes

The engine considered in this work is an SPT-140 Hall thruster and it has a total of 21 operating

modes (see Table 3.6). The mathematically smooth but ultimately near instantaneous switches

that accommodate selection of optimal modes of operation at each time out of these available 21

operating modes is achieved as per the algorithm provided in the Section 3.2. Because sub-optimal

pruned solutions are sought, a reduced set of available modes must get tested and selected. This

“outer loop” task is achieved through the Discrete Genetic Algorithm (DGA) whose purpose is to
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select a fixed set of modes and to determine the best solution. The nomination of the fraction of

modes considered for optimization can be mission driven, or constrained by the hardware (PPU)

capacity, Pmax, or can be self-imposed for conducting trade studies. The resulting OCP is subjected

to the boundary conditions given in Eq. (3.37) as

Γ(η(t0); Θ) =

[
[x(tf )− x̃d]>, λm(tf ), λPBL(tf )

]
= 0, (3.37)

where η(t0) = [λ(t0)>, λm(t0), PBL]> denotes the unknown costates at the initial time along with

solar array beginning-of-life power at 1 AU and Θ = [ρb, ρp, ρc, ρm] denotes the vector of continu-

ation parameters of the resulting TPBVP. Thus, we have managed to form a four-parameter family

of neighboring TPBVPs and the set of continuation parameters are used to obtain the solution to

the original difficult-to-solve OCP. The costate associated with PBL at initial time, λPBL(t0), is not

a design variable since its value is zero due to the transversality condition.

3.3.4 Optimal Mode-Pruning Algorithm

The first step defined in the previous sub-section is necessary as it ultimately provides a small

subset of all the available modes that can be treated as the minimum number of operating modes per

optimality principle. This provides an upper bound on the maximum number of useful modes and

serves as a base case (“the best one can do for the bearable level of complexity”) for comparison

with the subsequent sub-optimal solutions with pruned modes. This also aids in reducing the

dimensionality of the problem and simplifies the solution procedure.

Heuristic pruning index (defined in Eq. (3.38)) can be used to evaluate the contribution of the

ith thrust mode towards optimality as

• i) Frequency of use of the ith mode (ωi),

• ii) Net duration of the use of the ith thrust mode during the entire maneuver (∆ti), and

• iii) The admissibility of other neighboring modes when a particular mode is selected (nadi).

ξi =
ωi ∆ti

1 + nadi
. (3.38)
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The metric defined in Eq. (3.38) may be used to characterize “the more contributing modes.”

This metric has been found particularly helpful when the modes are pruned under the assumption

that power available for thrusting, Pav, is not allowed to change. The coupling of power (Pav) and

admissibility of the modes as well as the jumbled distribution of thrusting (T & ṁ) capability of the

operating modes (as evident in Table 3.6), makes the pruning difficult and non-intuitive. Moreover,

owing to low dependence of the total number of modes on the initial costates (design variables of

the shooting method) application of pure indirect-based methods becomes difficult.

Figure 3.27: Comparison of All-Mode optimization (left block) to two-tier optimization (right
block) .

A two-tier hybrid formulation is proposed in this paper for mode pruning with a discrete genetic

algorithm (DGA) used in the outer tier (see Figure 3.27). The left block summarizes the solution

methodology when all modes are considered (i.e., All-Mode optimization). The right block sum-

marizes the two-tier hybrid formulation. In addition, it is possible to quantify the loss in optimality

since the theoretically “best” solution is available for comparison as the outcome of the left block

. In the two-tier optimization, the number of design variables of the outer tier is equal to the num-

ber of modes considered for the optimization, Nsel. The lower and upper bounds of each design

variable are identical and ranges from [1, Ntot] where Ntot is the number of all the modes available

(21 in this case). Considering all existing modes as candidates for the pruned solution is important
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since it can occasionally happen that a mode once rejected at one level of pruning becomes optimal

for subsequent pruned solutions. Therefore, the outer tier provides candidate configurations ofNsel

operating modes that are used by the inner-tier solver. If repetition in the modes is encountered in

the Nsel modes selected by DGA, a high penalty value is returned without executing the inner-tier

solver.

The inner-tier solver is comprised of an invariantly embedded indirect-based, low-thrust solver,

which can be visualized as a neighboring family of OCPs. Each OCP in this family corresponds

to a solved TPBVP associated with a particular value of the smoothing parameters, i.e., ρi (i ∈

{p, b, c,m}). Thus, the inner-tier solver is identical to the All-Mode optimization with the excep-

tion that the number of modes is smaller (ultimately reduced to a minimal subset of modes that

ensure optimality to within some tolerance of performance degradation). It was observed that the

costates from the fuel optimal solution serves as a good starting guess for the multi-mode solutions

(no convergence failures have occurred for the largest ρi trajectories). The computational burden is

not only proportional to the number of considered operating modes, but also how close the admis-

sible operating modes are to each other. For instance, in case of close operating points, the sorting

algorithm for the selection of most optimal mode at each time requires a smaller final value of the

continuation parameter (ρm) which adds to the computational burden.

3.3.5 Results

A rendezvous maneuver from Earth to comet 67P/ Churyumov–Gerasimenko is solved with

a fixed time of flight of 1776 days and the initial mass of the spacecraft as m0 = 3000 kg. The

departure (rE,vE) and arrival (rG,vG) states are given as

rE = [−1671985.956644,−151914424.309981, 1699.375105]> km,

vE = [29.307044,−0.596900,−0.000411]> km/sec,

rG = [−465627493.144610,−50530561.307303, 40190127.950002]> km,

vG = [−9.721779,−14.629481,−0.234945]> km/sec.
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The formulation leads to a variety of optimal solutions corresponding to the user defined Nsel

modes where Nsel ∈ [1, Ntot]. We emphasize that PBL is kept as a design variable for every pruned

Figure 3.28: Three-dimensional view of the optimal trajectory for the most optimal solution.

case and is kept within the range [10, 30] kW. Other spacecraft parameters are as follows: σ = 0.02,

Pmax = 4.863 kW, Psys = 0.59 kW, ηd = 0.95, γ1 = 10, γ2 = 15 and atk = 0.1. Due to smoothing,

the original multi-point boundary-value problem is converted into a TPBVP and is solved by a

single-shooting scheme using MATLAB’s fsolve solver.

Starting from the theoretically best (all modes) solution, the modes are pruned as per the case-

by-case specification set for the total number of modes allowed to operate during the entire ma-

neuver. A single representative trajectory for all these cases is shown in Figure 3.28 since the

trajectories for all the cases have minor solar scale graphical differences. However, plots of thrust

profiles are presented. Table 3.13 presents a comparison in terms of spacecraft mass breakdown

and the details on the optimal modes used throughout the trajectory. The terms PBL, mu, mPSFS,

mPSPU are explained in Eqs. (3.1a) and (3.1b) andmf = m0−mp, wheremp is the mass of the pro-
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pellant used. There are five categories of plots included for each pruned case; (i) Corresponding to

each considered Nsel modes, power availability is evaluated at each time instant, and is denoted by

Pdiff = Psel − Pav. Therefore, a positive value of Pdiff indicates that the particular mode is power

admissible, (ii) Similarly, SF is evaluated for every mode to check which modes satisfy SF > 0

condition to allow the thruster to be ‘ON’, (iii) the time history of the Hamiltonian corresponding

to each mode is plotted to verify that the minimum (optimal) Hamiltonian (Hopt) is achieved.

The Hamiltonian is plotted for each operating mode, which is power admissible at a given time

and the black dashed lines represent the Hamiltonian associated with the operating modes that do

not get selected. (iv) Time histories of the thrust profile Tav, switching function SF and gp (refer to

Eq. (3.12)) corresponding to the optimal solution are also provided for each case. (v) A combined

plot displaying the history of the operation of different modes for all cases. Of the above category

of figures, category (i) and (ii) are listed in Table 3.14 and category (iii) and (iv) are tabulated in

Table 3.15. Since, it is observed that the osculating true anomaly does not change significantly for

all the pruned solutions, a representative osculating true anomaly plot is used with the thrust plots

in Table 3.15 to provide additional insights.
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Figure 3.29: Time histories of power differential (Pdiff) and SF for operating and non-operating
(black) modes for Nsel = Ntot case.

All-mode solution: The optimum value obtained for PBL is 11.19 kW. The size of the solar

arrays is generally kept large enough to allow thrusting at the maximum heliocentric distances, but
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Figure 3.30: Profiles of the Hamiltonian for operating and non-operating (black) modes for Nsel =
Ntot case.
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Figure 3.31: Time histories of thrust, SF and gp for Nsel = Ntot case.
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the trajectory-propulsion co-optimization in this case leads to a smaller size solar arrays that do

not produce enough power for thrusting at arrival (see Figure 3.29).

In order to interpret the results, the switching function and/or power admissibility plots should

not be analyzed independently. The ultimate selection of the mode is achieved through the min-

imization of the Hamiltonian. Therefore, Figure 3.30 is a more important plot for conclusive

remarks. For instance, mode #3 is selected during the first 300 days as it minimizes the Hamilto-

nian the most. However, for the next 100 days, mode #6 results in a lower value of the Hamiltonian

leading to its selection. For the next time period of 15 days, none of the modes are selected and

the thruster is OFF since the switching function is negative for all modes (cf. Figure 3.29) for that

period. Thus, these plots have to be cross-checked in order to understand the decisions underlying

the optimal thrust profile.

The same reasoning has to be followed for the remainder of the trajectory and in the ensuing

results. Figure 3.30 displays how the optimal Hamiltonian follows the minimum Hamiltonian (i.e.,

consistent with PMP) value along the trajectory making various switches among the seven selected

optimal modes. There are 21 mode-switches in Figure 3.31 as different thrust values are achieved

during the maneuver with some coast arcs. As the spacecraft approaches the aphelion, the least-

power mode (#21) is engaged due to lack of availability (due to power) of any other mode for

thrusting (see the left plot in Figure 3.29). Figure 3.31 also indicates that only 7 modes out of the

21 are used as per payload optimality. From Table 3.6, it can be observed that modes #7, #8, and

#9 possess a higher T and ṁ value than their neighbouring modes but are scarcely operated due to

their low Isp.

Keeping in mind the optimal solution revealed in all-mode case, subsequent pruning of modes

is done to obtain solutions corresponding to consecutively decreasing number of total used modes.

Having fewer number of operation modes improves the reliability of the propulsion system from

an operational standpoint. Therefore investigating the impact of reduced number of modes seems

reasonable and is pursued per two-tier hybrid optimization algorithm. The reader is directed to the

plots listed in Tables 3.14 & 3.15 to understand the pruned cases (Nsel = 1− 5).
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Figure 3.32: Time history of the optimal selected modes for Nsel = Ntot case.

Five-mode solution: By inspecting Figure 3.32, one can observe that modes #7 and #12 are

used for a brief time period (corresponding to low values for metric ξ) and therefore, are among

the candidate modes for elimination. The removal of these two modes does not have a significant

impact on the payload mass as shown in Table 3.13. Note that modes #11 and #12 have similar

T , ṁ and Isp values (per Table 3.6) with mode #11 being selected over mode #12 due to its better

performance. The five-mode solution is in a close neighbourhood of the optimal seven-mode

solution.

Four-mode solution: The optimal solution led to a final payload mass of ∼ 868.56 kg which

involved the elimination of mode #6. Since the power requirement of modes #3 and #6 are very

close, mode #3 is selected over mode #6 when both are admissible. Also, with the same value of

nad for both modes in the five-mode solution, mode #3 has higher values for both ω and ∆t than

mode #6 leading to ξ3 > ξ6 (refer Eq. (3.38)). The same logic cannot be used for the removal of

mode #6 in favor of mode #11 as mode #6 is superior in performance when Table 3.6 is consid-
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ered. The sub-optimality of mode #11 in comparison to mode #6 is somewhat compensated by the

reduction in the mass of the solar arrays required to operate mode #11 resulting in smaller mSA

compared to the five-mode solution (refer Table 3.13). The duration of the coast arcs begins to in-

crease (especially the first coast arc) compared to the five-mode solution as the SF corresponding

to the selected modes is slightly shifted down in the y-axis.

Figure 3.33: Comparison of the time histories of the optimal selected modes for all pruned cases.

Three-mode solution: The three-mode solution suffers a deficit of only ∼11 kg with respect

to the four-mode solution. No previously rejected mode appears to be optimal for this case. The

three modes selected are modes #3, #20 and #21 of which modes #20 and #21 require the lowest

power for operation and offer the lowest thrust but fairly high Isp out of all 21 modes. There is a

slight increase (∼0.13 kW) in the value of PBL compared to the four-mode solution to allow longer

(as compared to four-mode solution) operation of mode #20 at the aphelion passages (see Figure
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Table 3.13: Comparison of masses and PBL for solutions with different number of modes.

Nsel 21 5 4 3 2 1
PBL (kW) 11.19 11.2 11.15 11.28 12.65 16.14
mu (kg) 876.44 876.4 868.56 857.02 846.64 823.54
mf (kg) 1237.68 1237.65 1230 1220.72 1223.7 1234.47
mPSPU (kg) (111.9+

72.94)
(112+
72.94)

(111.5+
72.94)

(112.8+
72.94)

(126.5+
72.94)

(161.4+
72.94)(mSA +mPPU)

mPSFS (kg) 1938.63 1938.64 1946.9 1957.2 1953.9 1942.078

Opt. Modes
[3,6,7,11,
12,20,21]

[3,6,11,
20,21]

[3,11,
20,21]

[3,20,21] [3,20] 3

3.33).

Two-mode solution: A thruster that is capable of operating at two modes can be desirable for

its befitting simplification in capturing the aggregate performance of the engine. The two optimal

modes were found to be modes #3 and #20 resulting in a final payload mass of 846.64 kg (see

Table 3.13). The solution is shy of the most optimal result by ∼ 30 kg and the 3-mode solution by

∼ 11 kg. It is generally expected that the two extreme operating modes (the best and the worst in

terms of power and thrust) get selected when an optimal two-mode solution is sought. Also, lower

power (thrust) modes are typically included to prepare for any unforeseen events (hardware failure,

missed thrust) encountered during the actual mission. In this case, when the lowest power mode

(#21) is included in place of mode #20, loss of payload mass of 32 kg is observed. Reduced coast

arcs (only 2) appear in this solution in comparison to previous pruned solutions (4 coast arcs) due

to the significantly reduced thrusting capability of an engine with only two modes.

Single-mode solution: This specific case holds importance in regards to the traditional fuel-

optimization carried out in the preliminary stages of trajectory design. This methodology reveals

which is the most payload-optimal Tmax value. Note that since the time of flight and the number of

en-route revolutions around the Sun are kept consistent for all the cases, there can be some mode

subsets identified, which are deliver insufficient thrust acceleration to complete the maneuver. Our

analysis indicates that the minimum thrust required is Tmax ≥ 0.24 N, which reduces the design

space for the single-mode problem to modes in the range [1-9]. Unsurprisingly, mode #3 turned out
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Figure 3.34: Variation of payload mass (mu) against the number of operating modes.

to be the best among all feasible modes for the selected maneuver. Mode #3 also has the highest

value for ξ among all modes in all pruned solutions due to long duration of operation (∆t) and high

frequency of use (ω). The mass of the solar arrays required is much higher (by ∼ 50 kg) than the

most optimal solution (seven-mode solution) and the reduction in the payload delivered is ∼ 53

kg. Interestingly, the payload mass delivered is smaller than the two-mode solution, but the final

mass is more (fuel-consumption is less). The drop in the payload mass is higher in the transition

from a two-mode solution to a single-mode solution than any other consecutive pruned cases as

shown in Figure 3.34.

The mode-pruning algorithm leads to reduction in chatter in control variables and helps avoid

possible rapid mode switches with a calculated sacrifice on the payload mass (i.e., the optimality

criterion). The results indicate that subsequent sub-optimal pruned solutions (with fewer modes)

featured optimal modes that are all a subset of the modes selected in the most optimal solution;

however, this empirical result, while intuitively reasonable, has not been proven to be universally

162



the case. We anticipate the methodology underlying these results will find applications in optimal

mission design studies where some SEP system variables are subject to optimization, as well as

final optimization of trajectories for many low-thrust missions where multiple operating modes

must be considered.

163



Table 3.14: Summary of Pdiff and SF for solutions with different number of modes: Nsel =
{1, 2, 3, 4, 5}

(Pdiff = Pav − Psel) SF

Nsel = 5
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Table 3.14 – continued from previous page

Power differential (Pdiff = Pav − Psel) SF
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Table 3.14 – continued from previous page

Power differential (Pdiff = Pav − Psel) SF
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Table 3.15: Thrust, SF, gp, and Hamiltonian for solutions with different number of modes- Nsel =
{1, 2, 3, 4, 5}
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Table 3.15 – continued from previous page

Thrust profile, SF and gp Hamiltonian
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Table 3.15 – continued from previous page

Thrust profile, SF and gp Hamiltonian
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4. Guidance & Control1

In recent decades, aerospace vehicles’ guidance and control problems for many space and aerial

applications have been largely comprising of spacecraft and aircraft attitude regulation. Recent

advances have opened up the arena for various other applications like Unmanned Aerial Vehicles

(UAVs), Autonomous Underwater Vehicles (AUVs), miniaturized satellites like CubeSats, and

close mapping of irregular asteroids [114] such that the requirement of the maneuver efficiency and

the class of constraints associated with them have become challenging to accommodate and crucial

to solve for successful operation. Apart from tracking challenges in proximity missions where

stringent covariance constraints are imposed, the covariance study is also helpful in assessing the

guidance policy in case of interplanetary maneuvers. Especially in case of use of multiple engines

and gridded-ion engines with multiple modes of operation, the impact of various operation failures

is crucial and lead to a portfolio of contingent trajectories.

4.1 Covariance Control

This section establishes a systematic methodology that delivers the weighting matrices of the

LQR such that the specified covariance bounds are satisfied at each time. The work also allows

to convert the output covariance assignment problem, from a generally very specialized solution

framework into a very general and well-known LQR framework. Moreover, the traditional random

guessing in the tuning of the constant weighting matrices in LQR is replaced by a systematic

iterative process that yields time-varying Q or R matrices to satisfy a pre-specified time-varying

covariance constraint on the system output. A finite-horizon optimal control problem is solved for

a discrete linear time-varying system subject to a stochastic disturbance assuming fully observable

states. The novelty of the method lies in finding judicious time-varying values of Q which deliver

controls that satisfy tighter covariance bounds to suit the natural dynamics of the system in the

1Reprinted with permission from “Design of LQR Weighting Matrices for Time Varying Output Covariance As-
signment” by Arya, Vishala and Goyal, Raman and Majji, Manoranjan and Junkins, John L, 2021. AAS Astrodynam-
ics Specialist Conference at Big Sky, Montana (Virtual) 2021
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presence of stochastic disturbance, with unbounded control inputs [115]. This is especially useful

when higher precision is required in the maneuvers due to the enhanced capability of balancing

feedback control effort with the desired covariance at any time instant. While the procedure does

not explicitly enforce actuator limits, it implicitly minimizes the control effort by modulating the

Q matrix. I believe it is the first time such a time-varying closed-loop covariance assignment

technique for LTV systems has been proposed and demonstrated.

4.1.1 Bounded Output Covariance Assignment

4.1.1.1 Notation

We denote by Rn the set of n-dimensional real vectors. The matrices are defined by bold

uppercase letters as Y . The expectation operator is defined by E[·] and N (µx,Y ) denotes the

Gaussian distribution with mean µx and covariance Y . The diagonal matrix generated from a

vector x is denoted as diag(x), the block diagonal matrix is denoted as blkdiag(Y1,Y2, · · · ,Y3),

and the transpose of a matrix Y is defined by Y >. The symbol 0 defines a zero matrix with suitable

dimensions. The notations X � 0 and Y � 0 denote the symmetric positive definite (S++
n ) and

symmetric positive semidefinite (S+
n ) matrices, respectively.

4.1.1.2 System Definition

A discrete-time linear time-varying system is described by the following state-space represen-

tation:

xk+1 = Akxk +Bkuk +Dkνk, (4.1)

yk = Ckxk, (4.2)

where xk ∈ Rn is the state of the system at time-step k, uk ∈ Rm is the control vector, yk ∈ Rp

is the output of the system, and k = {0, 1, · · · , N}. The noise in the system is added as process
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noise νk which is modeled as independent zero mean white noises with covariance V ∈ S++, i.e.:

E[ν] = 0, E[νν>] = V, (4.3)

where E[x] denotes the expected value of the random variable x. We assume the process noise

covariance V to be known and fixed. Let us define the covariance of the state xk and output yk at

any time step k as:

Pk , E[xkx
>
k ], (4.4)

Yk , E[Ckxkx
>
kC

>
k ] = CkPkC

>
k . (4.5)

4.1.1.3 Problem Statement

The final problem statement is to find the feedback control uk = Kkxk, such that the output

covariance at all times can be assigned as:

Yk = CkPkC
>
k = Ȳk, for k = 1, · · · , N + 1, (4.6)

and the cost function J :

J = E

[
N∑
k=0

u>kRkuk

]
, (4.7)

is minimized for a given sequence ofRk and commanded covariance profile (Ȳk).

4.1.2 Main Result and Algorithm

This section first provides the main theorem of the paper which results in an algorithm to cal-

culate the gain matrixKk to solve the above mentioned problem statement for some chosen values

of Lagrange Multipliers Qk. It is further observed that the solution for the problem statement

has the same formulation as that of Linear Quadratic Regulator (LQR) problem where weighting
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matrix corresponding to state costQk has taken the place of Lagrange Multipliers. The section fur-

ther provides an iterative algorithm to calculate these weighting matrices Qk to bound the output

covariance while simultaneously minimizing the given cost function J .

Theorem: If there exists a feedback controller which minimizes the cost function:

J = E

[
N∑
k=0

u>kRkuk

]
, (4.8)

and satisfies the constraints given as: CkPkC
>
k = Ȳk, for k = 1, · · · , N + 1, for the discrete-time

time-varying linear system described by the system equation (Eq. (4.1)) and the output equation

((Eq. (4.2)), then the solution for the time varying feedback gain is given by

Kk = −
(
Rk +B>k Sk+1Bk

)−1
B>k Sk+1Ak. (4.9)

and the discrete time Riccatti equation for some choice of Lagrange multipliers Qk for k =

1, 2, · · · , N + 1 is given as:

Sk = C>k QkCk +A>k

(
Sk+1 − Sk+1Bk

(
Rk +B>k Sk+1Bk

)−1
B>k Sk+1

)
Ak, (4.10)

with the terminal condition SN+1 = C>N+1QN+1CN+1.

Proof: Let us start by assuming the solution to be of the state-feedback form given as:

uk = Kkxk. (4.11)

The system dynamics equation for the above-mentioned control can be written as:

xk+1 = (Ak +BkKk)xk +Dkνk, (4.12)
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and the corresponding covariance propagation equation for the state can be written as:

Pk+1 = E[xk+1x
>
k+1], (4.13)

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)
> +DkVkD

>
k , (4.14)

Now, let us write the cost function J in terms of state covariance Pk as:

J = E

[
N∑
k=0

x>kK
>
k RkKkxk

]
=

N∑
k=0

Tr
(
E
[
Kkxkx

>
kK

>
k Rk

])
, (4.15)

J =
N∑
k=0

Tr
(
RkKkPkK

>
k

)
, (4.16)

where Tr(·) is the trace operator. Using the cost function mentioned in Eq. (4.16), the augmented

Lagrangian function corresponding to the constraint optimization problem can be written as:

L =
N∑
k=0

Tr
(
RkKkPkK

>
k

)
+

N∑
k=0

Tr
(
Sk+1(ÂkPkÂ

>
k +DkVkD

>
k − Pk+1)

)
+

N+1∑
k=1

Tr
(
Qk(CkPkC

>
k − Ȳk)

)
, (4.17)

where Âk = Ak + BkKk, and Sk+1 and Qk are the Lagrange multipliers corresponding to sat-

isfaction of the covariance propagation equation (Eq. (4.14)) and output covariance constraints

(Eq. (4.6)).

Now, the partial of the Lagrange function w.r.t. PN+1 gives:

∂L
∂PN+1

= −SN+1 +C>N+1QN+1CN+1, (4.18)

the partial of the Lagrange function w.r.t. Pk gives:

∂L
∂Pk

= K>k RkKk + Â>k Sk+1Âk − Sk +C>k QkCk, (4.19)
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and the partial of the Lagrange function w.r.t. Kk gives:

∂L
∂Kk

= 2RkKkPk + 2B>k Sk+1AkPk + 2B>k Sk+1BkKkPk. (4.20)

The partials w.r.t. the Lagrange multipliers Sk+1 andQk gives back the covariance propagation

equation (Eq. (4.14)) and output covariance constraints (Eq. (4.6)).

Now, using the following necessary conditions for the minimization of the Lagrange function:

∂L
∂PN+1

= 0,
∂L
∂Pk

= 0,
∂L
∂Kk

= 0, (4.21)

we obtain:

SN+1 = C>N+1QN+1CN+1, (4.22)

K>k RkKk + Â>k Sk+1Âk +C>k QkCk = Sk, (4.23)

and

RkKkPk +B>k Sk+1BkKkPk = −B>k Sk+1AkPk. (4.24)

Ignoring the unlikely possibility that all columns of Pk lie in the null-space of Eq.(4.20), notice

that the last equation can be used to solve forKk in terms of Sk+1 as:

(
Rk +B>k Sk+1Bk

)
Kk = −B>k Sk+1Ak, (4.25)

which yields the final equation (Eq. (4.9)) given in the theorem. Let us write Eq. (4.23) again as:

Sk = A>k Sk+1Ak +K>k
(
Rk +B>k Sk+1Bk

)
Kk +A>k Sk+1BkKk +K>k B

>
k Sk+1Ak +C>k QkCk,

(4.26)
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which after substitution forKk from Eq. (4.9) in Eq. (4.23) gives:

Sk = C>k QkCk +A>k Sk+1Ak −A>k Sk+1Bk

(
Rk +B>k Sk+1Bk

)−1
B>k Sk+1Ak, (4.27)

which again can be written to solve as a backward-recursive equation given as Eq. (4.10) with

terminal condition SN+1 = C>N+1QN+1CN+1. A variation of this theorem can also be proved

using the continuous state dynamics as shown in the Appendix.

4.1.2.1 Remark: Relation with LQR

Notice that the feedback gain solution for the problem statement (Eq. (4.9) and Eq. (4.10))

with chosen Lagrange multipliers Qk has the exact same solution form obtained for the LQR

problem with chosen weighting matricesQk. This suggests that the time-varying output covariance

problem can be solved by a substitute LQR control problem which is well understood and have well

established algorithms with an associated process to establish judicious choice ofQ to enforce the

prescribed covariance constraint. The following subsection gives an iterative algorithm we have

established, to calculate the corresponding weighting matricesQk.

4.1.2.2 CAWS : Covariance Assignment via Weight Selection Algorithm

The iterative algorithm used for training the weighting matrixQ is given in Algorithm:CAWS

(see below). Assuming R0,..,N = I and Q0
1,..,N+1 = Q0 ∀ k = 1, .., N + 1, where Q0 is a chosen

diagonal matrix, the algorithm first evaluates the output covariance (Y 0
k ) by solving the Riccatti

equation. The total number of violations (nviol) over all time steps and states in a single iteration

of CAWS are then calculated. For every iteration that carries a non-zero nviol value, the algorithm

alters all the elements of the Q matrix at all times as per their individual relative discrepancies

expressed in terms of the ratio, Y i
k /Ȳk. The algorithm continues until the weighting matrices

Qi
1,..N+1 converges and the total number of violations go to zero.

The act of updating all elements of Q at all times in the ith iteration ensures that any discrep-

ancy in the covariance constraint at any time is collectively accredited byQ alterations throughout

the trajectory. While no formal proof has been established, this procedure has been found to give a
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Algorithm: Covariance Assignment via Weight Selection Algorithm (CAWS)
Result: Q1,..,N+1

initialize i = 0,Qi
1,..,N+1 = Q0

1,..,N+1,
nviol = 1
while nviol ≥ 1 do

initialize k = N , SiN+1 = C>N+1Q
i
N+1CN+1

while k ≥ 1 do
Sik = C>k Q

i
kCk +A>k S

i
k+1Ak −A>k Sik+1Bk

(
Rk +B>k S

i
k+1Bk

)−1
B>k S

i
k+1Ak

Ki
k = −

(
Rk +B>k S

i
k+1Bk

)−1
B>k S

i
k+1Ak

k = k − 1
end
Ki

0 = −
(
R0 +B>0 S

i
1B0

)−1
B>0 S

i
1A0

initialize k = 0, P i
0 = P0

while k ≤ N do
P i
k+1 = (Ak +BkK

i
k)P

i
k(Ak +BkK

i
k)
> +DkVkD

>
k

Y i
k = CkP

i
kC
>
k

k = k + 1
end
Y i
N+1 = CN+1P

i
N+1C

>
N+1

nviol= ΣN
k (Y i

k − Ȳk ≥ ε)
if nviol ≥ 1 then

initialize k = 1,
while k ≤ N + 1 do

Qi+1
k =

Qi
k(k)Y i

k

Ȳk

k = k + 1
end

end
i = i+ 1

end
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near-unique Q profile for all its elements. In other words, if the elements of Q0 are selected suffi-

ciently small such that there are at least some violations at the beginning of the training algorithm,

it is observed numerically that the converged Q appears to be unique to within some tolerance.

The training of Q in this fashion to satisfy the time-varying covariance constraint alters the gain,

Kk and therefore the control input sequence. As with all LQR applications, the feasibility of the

controls if one considers actuator saturation bounds is a practical issue one must address. In actual

applications, the time-varying covariance commanded may not be physically realizable. For the

case that this process control magnitude, ||uk|| to exceed the maximum bound, insights can be

obtained regarding choosing Pk to make Yk − Ȳk as small as possible while satisfying the control

bounds.

4.1.3 Example Application

4.1.3.1 Attitude maneuver

Telemetry, tracking and control subsystem provides vital communication that facilitates obser-

vation of the spacecraft’s state from the ground and transmission of commands from the ground

control to the satellite for guidance or conducting particular science operations, etc. Telemetry

relay satellites provide essential data like spacecraft’s attitude, operational state, and navigational

data as well as timely down-link collected scientific data. This requires these satellites to constantly

point to the receiving ground station for transmitting and receiving data. Therefore, along with the

requirement of very low maneuver errors at the end of the orientation change, the pointing maneu-

vers of these satellites have stringent constraints on the angular errors throughout the maneuver to

ensure a high quality data transmission. In the case that the orbit is eccentric, it is obvious that

the required covariance of pointing errors will necessarily be time varying. Therefore, the attitude

control problem of such satellites provides a good example to demonstrate the capability of the

proposed algorithm.

Attitude dynamics:

This sub-section establishes the attitude control dynamics of rigid spacecraft whose attitude is

177



described by the Classical Rodrigues Parameters (CRPs). The CRPs constitute a symmetric stere-

ographic set that exhibits uniqueness and is quasi-linear for large angular motions [116], earning

them the position of being one of the favorable sets of parameters for attitude dynamics. Unlike

the transcendental expressions used in the case of Euler angles, CRPs provide purely algebraic

expressions for the governing kinematic equations of motion. The domain of linearization and

non-singular notion are also quite large as compared to the Euler angle parametrization [71]. The

CRPs can be defined in terms of Euler’s principal rotation axis (ê) and the principal angle (Φ)

through the relation [88]:

q = ê tan

(
Φ

2

)
. (4.28)

Therefore, the singularity condition in the CRPs is encountered only when the principal angle

approaches 180 deg. The kinematic relations are then given by [116]:

q̇ = Aω,

A =
1

2

(
I3×3 + [q̃] + qq>

)
,

(4.29)

where, q̃ =


0 −q3 q2

q3 0 −q1

−q2 q1 0

, q = [q1, q2, q3]> and ω is the angular velocity of the rigid body

which can be conveniently evaluated by inverting Eq. (4.29) as given in [116]:

ω = Bq̇, (4.30a)

B =
2

(1 + q>q)
(I3×3 − [q̃]). (4.30b)

Using Euler’s equation for rigid body motion, the differential equation of angular velocity can be

written as:

ω̇ = J−1
mat(ω× (Jmatω) + u), (4.31)
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where Jmat is a diagonal matrix (in the present example) with spacecraft’s principal moment of

inertia values (J1, J2, J3) put as its diagonal entries. Therefore, the dynamics assumes a cascade

form of system where the control, u drives the angular velocities which in turn control the orien-

tation using the first kinematic equation (Eq. (4.29)). The system differential equations in the state

space form can be expressed as:

ẋ = F (x,u, t) = A(x, t) + B(x, t)u, (4.32)

where

A =



1
2
(1 + q2

1)ω1 + (q1q2 − q3)ω2 + (q1q3 + q2)ω3

1
2
(1 + q2

2)ω2 + (q1q2 + q3)ω1 + (q2q3 − q1)ω3

1
2
(1 + q2

3)ω3 + (q3q1 − q2)ω1 + (q3q2 + q1)ω2

(J2−J3)
J1

ω2ω3

(J3−J1)
J2

ω1ω3

(J1−J2)
J3

ω1ω2


, B =

03×3

J−1
mat

 .

and x = [q1, q2, q3, ω1, ω2, ω3]).

Design of the nominal trajectory using optimal control theory:

Considering a finite horizon problem, the nominal trajectory for the maneuver is evaluated us-

ing optimal control theory with an objective to minimize the control effort. Therefore, the optimal

control problem (OCP) can be stated as

Minimize J =

∫ tf

t0

1

2
u>udt,

subject to : Equation (4.32),

x(tf )− x̃d = 0,

x(t0) = x0,

(4.33)
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where t0 is the initial time, x0 are the the states at the initial time, tf is the final time, ∆t = tf − t0

is the time of flight, and x̃d are the desired states at the final time.

The Hamiltonian associated with the defined OCP can be written as:

H =
1

2
u>u+ λ> (A(x, t) + B(x, t)u) , (4.34)

where λ = [λq1 , λq2 , λq3 , λw1 , λw2λw3 ]
> are the costate of the system. Since the control variable u

is unbounded and appears non-linearly in the Hamiltonian, strong form of optimality can be used

to give:

u = −B(x, t)>λ. (4.35)

Here, the u is defined in the spacecraft’s body frame. The co-states differential equation is

derived using Euler-Lagrange equation,

λ̇ = −
[
∂H

∂x

]>
=

λ̇q
λ̇ω

 . (4.36)

Since the value of co-states at both initial and final boundary are unknown, TPBVP is solved to

satisfy the boundary conditions defined in Eq. (4.33) using MATLAB’s fsolve solver.

For conducting the linear covariance analysis for controller design, a linear discretized version

of the system equations is obtained by piecewise linearizing about the nominal trajectory using the

crude Euler’s method with an integration step size of h seconds. Therefore, the resulting system

matrices used for designing the controller are:

Ac =
∂F (x,u, t)

∂x

∣∣∣∣
x̄i,ūi

, Bc =
∂F (x,u, t)

∂u

∣∣∣∣
x̄i,ūi

Ad = I6×6 + hAc, Bd = hBc

(4.37)

where, x̄i and ūi are the state and controls on the nominal trajectory at the ith time step and [·]c and

[·]d are the linearized system matrices for continuous and discrete time dynamics equations.
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4.1.3.2 Interplanetary maneuver

There is a significant economic impact of trajectory optimization on space missions. Specifi-

cally, with the advent of ion based electric propulsion, multi-year low thrust missions have emerged

that are both challenging in terms of optimization as well as tracking. In this example, only the

heliocentric phase of the trajectory where the motion is predominantly governed by the Sun’s grav-

itational force is considered. As a consequence, weakly perturbed Keplerian motion is preserved.

Spacecraft dynamics:

The underlying dynamics, even when two body assumptions are made, is significantly more non-

linear than the attitude maneuver problem. To regularize the dynamics, additional normalization

techniques are employed as well as a superior coordinate set of modified equinoctial elements is

selected to describe the dynamics.

Nominal Open-loop Trajectory:

For generating the nominal trajectory, we optimize with respect to minimizing fuel consumption

in place of maximizing the payload delivered, which should be chosen as an objective if a larger

spacecraft design space is to be explored [43]. The resulting TPBVP is solved using the default

settings of MATLAB’s fsolve function which uses finite difference to evaluate the gradients.

4.1.4 Numerical Results

Using the algorithm explained in Section II and dynamics provided in Section III, we have

solved two examples comprising of: 1) Attitude maneuver, and 2) Interplanetary maneuver.

4.1.4.1 Attitude maneuver

In this example, we solve a problem of orienting an asymmetric satellite from orientation Å to

B̊ in fixed time. The boundary conditions of the maneuver are given in Table 4.1 where xÅ and

xB̊ define the states at orientation Å and B̊ respectively. Table 4.1 also lists the parameters used

in the tracking problem where σ0 defines the standard deviation of the uncertainty in the states at

orientation A0 and σ̃ sets the upper bound on the output state error which is used to provide the

desired output covariance profile. The σ0 and σ̃ values given in Table 4.1 are constants and are
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Figure 4.1: Time history of the diagonal entries of the output covariance for all states using theQd

matrix designed by CAWS.

given in degrees which are accommodated and transformed into CRPs using the 3-2-1 Euler angle

sequence rotation by angles θ1, θ2 and θ3, respectively. The non-linear transformation required to

transform CRPs into Euler angles is obtained by using the Cayley transform identity. The resulting

direction cosine matrix used for this transformation is [?]:

C =
1

(1 + q>q)

(
(1− q>q)I3×3 + 2(qq>)− 2q̃

)
. (4.38)

Table 4.1: Boundary conditions and parameters

Jmat diag([10,6,8])
xÅ (deg., rad/sec) [−10o, 20o, 8o, 0.1,−0.0011, 0.01]
xB̊ (deg., rad/sec) [20o, 5o, 30o, 0, 0, 0]

tf (sec) 40
N 400

σ0 (deg, rad/sec) [2o, 2o, 2o, 0.01, 0.01, 0.01]
σ̃ (deg.,rad/sec) [0.5o, 0.5o, 0.5o, 10−3; 5× 10−4; 5× 10−4]

V (N2m2) [0, 0, 0, 10−7, 10−7, 10−7]
Q0 10−10I6×6

R I6×6
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After performing the transformations discussed above at every discrete time step, the resulting

covariance profiles (denoted by Y ) are plotted as solid lines in the left plot of Fig. 4.1. The

actuators are assumed to generate continuous control profile like in the case of momentum wheels

or gas jet actuators with pulse width pulse frequency modulators. As given in Table 4.1, the time

of the maneuver is set as tf = 40 seconds which is discretized into N = 400 steps making the

bandwidth of the controller to be 10Hz. The uncertainty in the system dynamics is modeled via

a zero-mean Gaussian white noise, ν : N (0,V) ∈ R6. Since the kinematic relation (given in

Eq. (4.29)) is exact, no noise is assumed in the first three channels of the states as shown in Table

4.1.
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Figure 4.2: Rate of elimination of time points that violate the covariance bound constraint during
CAWS.

The initial uncertainty and noise parameters used for training Q in CAWS are set to be a little

higher than the one actually used in the non-linear simulation to design the feedback control on

a more conservative system. Using the parameters for initial uncertainty and stochastic actuator

errors defined in Table 4.1, CAWS algorithm is applied on the linearized system to obtain a time-
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varying profile of Q iteratively (Niter iterations). Starting from some initial number of covariance

violations for each of the states, the violations decrease gradually to converge with no violations

towards the end as shown in Fig. 4.2. As the number of violations decreases, the change in the

magnitude of each of the diagonal entries of the Q matrix also converges as per the set tolerance.

It is not necessary that the number of violations and the change in the norm of Q monotonically

decreases throughout the training iterations as shown in Fig. 4.2.
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Figure 4.3: Diagonal entries for the designedQd matrix profile plotted against time-steps.

Fig. 4.1 shows the time history of the pre-specified covariance bounds and the diagonal entries

of the achieved state covariance using the Qd matrix designed by the iterative algorithm (CAWS).

For the linearized system, one can observe that the actual covariances (solid lines) follow the

specified covariance profile (dotted lines) in Fig. 4.1, exactly except for few short time periods

where it stays below the hard limit of the set covariance bound. This is owing to the cross-coupling

of states in the natural dynamics of the system. In other words, it is possible that in order to follow

the covariance profile set for q1, tighter bounds are required for q2 as per the natural dynamics of

the system. It also aids in conserving on the extra control effort that would have been required
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Figure 4.4: Time history of errors in CRPs and angular velocities plotted against time with the
black lines (solid or dashed) denoting the set covariance bound for time varyingQ.
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Figure 4.5: Time history of controls for 100 sample trajectories for time varyingQ.
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to supersede the natural dynamics and match the covariance profile exactly. Fig. 4.3 provides

the diagonal entries for Qd matrix for both CRPs and angular velocity errors plotted against time.

Here, the values of Qd are truncated at 10−12 by considering it essentially as 0 as per machine

precision.

Figure 4.6: Time history of errors in CRPs and angular velocities plotted against time with the
black lines (solid or dashed) denoting the prescribed covariance bound for constantQc case.

Post designing Qd to solve the covariance assignment problem on the linearized system, the

performance of the designed feedback control is illustrated using a small Monte Carlo analysis

for 100 trajectories sampled from the initial distribution of process noise and initial covariance

errors. Since the attitude dynamics, when designed using CRPs, is not highly non-linear, one can

notice that the trajectories in Fig. 4.4 not only stay within the bounds (plotted as solid black lines)

but the profile of the trajectories for the CRPs follow the shape of the covariance profile set in
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the linearized system as shown in Fig. 4.1. Fig. 4.5 shows the time history of the magnitude of

control torques applied for 100 sample trajectories. The black solid line featuring a very short “no

control” arc near over the middle of the maneuver is the nominal control (unom) obtained using

optimal control theory. The red dotted line denotes the upper bound (20% over the nominal value)

on the total control effort allowed for the purpose of tracking the nominal trajectory. Even when

no actuator constraints are formally imposed in our algorithm, Fig. 4.5 shows that the required

feedback control does not violate the upper bound set over the nominal control.
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Figure 4.7: Time history of controls for 100 sample trajectories for constantQc case.

In order to demonstrate the advantage of our time-varying covariance constrained Q training

algorithm over the classic constant Qc strategy for solving traditional LQR, Monte Carlo runs for

100 trajectories are repeated keeping theQc values constant. The candidate values for the diagonal

components of the constantQc is obtained by taking an average of the elements ofQd profile such

that:

Qc = [22, 2169, 332.3, 12.32, 210, 900].
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The time history of state errors and actuator magnitude obtained from the Monte Carlo analysis is

given in Figs. 4.6 and 4.7. The results, though inferior to the results obtained by using CAWS,

feature few violations, mainly at the beginning of the maneuver and towards the end. Traditionally,

the constantQc values are iteratively composed by utilizing the experience and time of the control

designer. One possible application of the proposed method is to provide a better starting iteration

for the designer if constantQc solutions are ultimately desired.
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Figure 4.8: Comparison of standard deviation of feedback control history for designed Qd and
constantQc cases on linearized system and the non-linear Monte Carlo (MC) simulations.

The control effort required in the case of constantQc is almost twice the defined control thresh-

old but only at the beginning of the maneuver as shown in Fig. 4.7. This high value of controls

is probably attributed to controller’s act of tracking the nominal while accounting for large initial

uncertainties as they occur. This does not happen in the case of variable Qd designed by CAWS

due to the facility of effectively distributing the control effort throughout the maneuver to counter

any tracking errors owing to either initial uncertainty or disturbances. Fig. 4.8 shows the standard

deviation of feedback control efforts for constantQc and designedQd weighting matrices over the
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Figure 4.9: Nominal fuel optimal trajectory from Earth to Mars with dashed lines displaying
tracked trajectories.

complete time horizon. The figure shows the standard deviation for the linearized and nonlinear

cases where linearized control efforts are calculated using square root of Tr(Uk) = Tr
(
KkPkK

>
k

)
and the control efforts for the nonlinear case are calculated statistically by running 100 Monte Carlo

simulations. Notice that the feedback control effort for the designed Qd case is smaller than the

constantQc case for the initial time-steps for both linear and nonlinear results owing to effectively

distributing the control effort. Therefore, this example serves the purpose of effectively illustrating

the proposed ideas. Another example involving a different physics is considered next.

4.1.4.2 Interplanetary maneuver

In this example, we have a powered orbit transfer from Earth to Mars with the spacecraft

making a single en-route revolution around the Sun in a fixed time of 630 days, as shown in Fig.
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4.9. The boundary conditions are:

r0 =[−140699693,−51614428, 980]>km,

v0 =[ 9.774596,−28.07828, 4.337725× 10−4]>km/s,

r̃ =[−172682023, 176959469, 7948912]>km,

ṽ =[−16.427384,−14.860506, 9.21486× 10−2]>km/s.

For the normalization, we have adopted for our calculations canonical units for scaling the vari-

Figure 4.10: Time history of the diagonal entries of the output covariance for all states using the
Qd matrix designed by CAWS. The dashed black lines here are the set covariance bounds on the
individual states.

ables such that one distance unit (DU) is equal to one astronomical unit (AU), and the Time Units

(TU) is equal to 1
2π

year. The parameters of the nuclear electric propulsion system used for the

engine are extracted after the model of SPT-140 engine. Therefore, assuming an initial mass of the

spacecraft as 1000kg, T = 0.264N, and Isp = 1645 s , are assumed. The optimal control problem in

this case is solved using MEEs but the tracking algorithm is implemented using a Cartesian coor-

dinate system. If you look carefully at the systems of the two examples (see Eqs.(4.32) & (2.5)),
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the two differential equations in the second example are co-dependent unlike the cascade type sys-

tem observed in the first example. Therefore, defining a covariance profile for the interplanetary

maneuver for both position and velocity requires more care. In our case, the desired covariance

profile is defined assuming a constant threshold for both position and velocity states throughout the

maneuver as given in Table 4.2. The other settings like the initial covariance, σ0, initial Q (Q0),

R and noise covariance, V are also given in the same table. Since, the first relation in Eq. (2.5)

is kinematic in nature, no noise is added in the first three equations corresponding to the position

differential equation.

Table 4.2: Tracking parameters for interplanetary maneuver

N 20000
σ0 (AU, VU)[5× 10−5, 5× 10−3]
σ̃ (AU,VU) [5× 10−7, 5× 10−4]
V (N2/kg2) 10% unom

Q0 10−10I6×6

R I6×6

In this example problem, the controller is again trained (using CAWS) assuming a conservative

system with slightly higher initial covariances and noise parameters. As shown in Fig. 4.11, the

total number of violations rapidly drop in the first 50 iterations, followed by a gradual convergence

gradient to reach zero violations in≈ 670 iterations. The convergedQmatrices,Qd, are plotted in

Fig. 4.12, where the values forQd matrices associated with position are O8 higher than the velocity

values. One of the reasons for this stark difference in weighting is due to the normalization. Also,

it can be observed from Fig. 4.10, how the linear covariance for position(Px, Py, Pz), match the

desired covariance profile exactly while the linear covariance for velocity (Pvx , Pvy , Pvz ) remains

below the desired velocity covariance threshold. This results in smaller values of Qd associated

with velocity, but not tending to zero because the errors in the velocity also feed into the position

errors.
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Figure 4.11: Rate of elimination of time points that violate the covariance bound constraint during
CAWS.

Figure 4.12: Diagonal entries for the designed Qd matrix profile plotted against time-steps. Both
figures are accompanied by a zoomed-in mini-plot to illustrate the fine variations in the profile at
the initial time steps.
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Figure 4.13: Time history of errors in position and velocity plotted against time with the solid
black lines denoting the set covariance bound for time varying Q. The large difference between
the scaling of the two plots is due to the normalization scheme adopted.

Similar to the previous example of attitude maneuver, the control gain evaluated using the

designed weights, Qd are tested on the actual non-linear system perturbed by a Gaussian noise of

covariance V. We assume that the actuator error accommodates both the magnitude of the thrusting

capacity of the engine as well as the pointing errors. The history of nominal control obtained from

optimal control theory is approximated with the help of 6th order polynomial in time to use in

the Monte carlo runs. These sample 100 trajectories stay within the specified bounds as shown

in Fig. 4.12. The initial errors in position are set to stay within 5 × 10−5AU to gradually obtain

the desired constant precision for the remaining 85% of the total maneuver. The feedback control

effort required for all the 100 trajectories to adhere to the covariance constraint mostly stay within

the threshold (uth) which is fixed at 20% over the nominal control effort as plotted in Fig. 4.14.

It is just at the beginning of the maneuver that the control effort for a couple of trajectories

among the 100 samples that violate the control constraint by a very small margin. Unlike the

example of attitude manuever, there are three coast arcs in the nominal control profile in this case.

For the coast arcs, the 20% threshold is not necessary to be applied since the controller is capable

of providing more control effort over the nominal control in those regions. Note that if a variable

covariance profile is designed, tighter tolerances during the coast periods could be enforced due
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Figure 4.14: Time history of controls for 100 sample trajectories for time varyingQ.

to a higher capacity for feedback control available to achieve the set constraints. The tracked

trajectories (100 runs) are also plotted in Fig. 4.9 which clearly track the nominal to graphical

precision on a solar scale. In application, engines like SPT-140 feature multiple operating modes

which can be used to realistically accommodate the feedback control into the preliminary analysis

of this kind. This can provide any additional modes that are required for tracking the nominal over

the modes already selected to form the nominal [91].

In this work, the mass consumption due to the feedback control is also factored into the differ-

ential equations of the Monte carlo runs. The instantaneous mass is approximately calculated using

the mass differential equation(see Eq. (2.6)) with the thrust value evaluated as per the magnitude

of the total control effort written as:

u = ||unom + ufeed||, (4.39)

T = mu. (4.40)

Using the above relations, the final mass for all 100 trajectories are plotted in Fig. 4.15 which

comes out to be within 3% less than the optimal final mass. The optimal final mass of the spacecraft
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Figure 4.15: Mass history as well as final mass values for the 100 sample trajectories are plotted for
time varying Q. The dashed black lines in the left figure denote the mass history for the nominal
trajectory and the embedded top and bottom mini-plots are the zoomed-in versions of the first
encountered thrust and coast arcs respectively.

with respect to the nominal solution is 422.167kg. In Fig. 4.15, it can be observed how the mass

consumption slope is non-zero for the disturbed trajectories compared to the nominal (denoted by

black dashed line) for the period of the first coast arc. If zoomed in further (see Fig. 4.15), the

actual control profiles are not straight lines for any of the thrust arcs as is observed in the case of

the nominal trajectory without any feedback control. This is due to the constant mass flow rate

assumed in the design of the nominal owing to a constant thrust, constant specific impulse type of

actuator. In the case of tracked trajectories, the magnitude of thrust is evaluated using Eq.(4.40)

which results in different mass flow rates which are piece-wise constant as per the discretization

step.

Therefore, this section introduces a novel formulation and an associated algorithm that allows

the control designer to assign a desired time-varying output covariance for a tracking or a guidance-

type maneuver by systematically evaluating the time-varying weighting sequences in a simple

and elegant LQR framework. The example of an attitude maneuver which has a large domain of

linearization shows excellent tracking results where the non-linear error profiles in the Monte Carlo

runs match the desired covariance profiles. The same problem when solved using the traditional
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constantQc approach where the values of the constantQc are derived using the variableQd profile.

The results obtained indicate the superiority of variable Qd over the constant Qc case as well as

illustrates the usefulness of the proposed method as a potential starting point for iterating on the

constant Q’s diagonal entries. In case of a more non-linear system associated with interplanetary

maneuvers, the utility of the method is demonstrated by how closely the trajectory is tracked while

incurring ≈ 1% extra fuel-mass consumption with respect to the initial mass. With only a constant

error bound imposed on both position and velocity, it was observed that the errors in position and

velocity couple with each other such that in order to obtain certain position error bound, velocity

error bounds achievable are somewhat constrained as per the natural dynamics. It is not necessary

to have Q as a diagonal matrix. In fact, the current algorithm can be expanded to use the full

symmetric matrix Q to include the states cross-coupling weighting into the LQR formulation and

this may offer additional advantages.
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5. Conclusions & Future Work

This dissertation clearly enhances the class of optimal control problems that can be solved

using calculus of variation. Indirect based methods wield Pontryagin’s Minimum Principle (PMP)

as a weapon that is the key to finding optimal control on the admissible set; be it discrete or

discontinuous. A generalized invariant embedding approach is introduced in this work that embeds

the Pontryagin necessary conditions into a smooth family (for discrete control, discrete events,

discrete constraints) that can smoothly approach satisfaction of the exact necessary conditions

with arbitrary precision.

The utility of the developed invariant embedding is displayed on various kind of maneuvers

including impulsive, gravity assists and low thrust maneuvers. In case of impulsive, a heretofore

unsolved problem of reliably providing optimal multi impulses ≈ 50 and ≈ 100 revolutions was

achieved. Using a concept of switching surfaces, a class of engines are characterized to explore

the engine design space for a fixed time rendezvous maneuver. This dissertation does not only

provide mathematical constructs to include the operational aspects in the preliminary mission de-

sign but also introduces a framework of multi-disciplinary design optimization for co-optimization

of trajectory, spacecraft sub-systems and propulsion system. This framework can be and will be

inherited to include many other subsystems and spacecraft components like battery, sun-shield etc.

in the future.

The covariance assignment problem solved in this dissertation allows to achieve desired tol-

erance at any time in the maneuver; therefore serving as an initiating step towards the goal of

autonomy. Generally speaking, the future clearly lies in increased autonomy. In that regard, au-

tonomous guidance especially for deep space missions using low thrust multi-mode solar electric

propulsion systems is very challenging. To achieve this vision, it is not only crucial to design a

nominal trajectory with operational limitations embedded into its framework but to accommodate

several contingency in having the ability to re-plan in case of unforeseen failure.

If gridded-ion engines are considered, failures are not manifested only in terms of a com-
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plete engine failures but failure of particular modes. This motivates a more directed study on the

failure of particular modes or to analyze the robustness of a mission with regards to selecting a

sub-optimal neighboring mode. Such actuator failures among other uncertainties are traditionally

dealt with by introducing generous margins and conducting linear covariance analysis. These anal-

yses often consider the closed loop guidance controller to provide continuous and unconstrained

actuation which can lead to erroneous estimates of tracking robustness and stability. The future

work belongs to combining the tracking stochastic control with the uncertain operation of multi-

propulsion modes to provide a unified robust guidance scheme.
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